26 et 27 septembre 2012 Lyon • Qualité de l`air intérieur
Transcription
26 et 27 septembre 2012 Lyon • Qualité de l`air intérieur
Parce que chacun a droit à la qualité de l’air qu’il respire au quotidien ... Because the quality of the air we breathe is our everyday right ... 3e Edition International Conference • Qualité de l’air intérieur Indoor air quality • Emissions atmosphériques Air emissions 26 et 27 www.atmosfair.fr © septembre 2012 Lyon En partenariat avec / In partnership with Un événement UCIE L’Union des Consultants et Ingénieurs en Environnement 2012 Enviro-Invest & Risques Environnementaux et Sécurité des Investissements Environmental Due Diligence Environmental Safety in Operations and M&A e 4th conferenc y b sponsored 14 - 15 novembre 2012 - Paris Proposed & sponsored by Programme et Inscription : www.webs-event.com In partnership with An event by Mercredi 26 septembre 2012 Qualité de l’air intérieur / Indoor air quality 08h30 Accueil et inscription des participants / Welcome and participant’s registration 09h00 Discours de bienvenue / Welcoming speech Allocution de / Speech of: Président du Congrès / Conference President 09h20 - 09h40 Matériaux d’aménagement et produits de construction : la réglementation de la qualité de l’air intérieur entre correction et anticipation des risques / Interior finishes and building materials: the regulation of indoor air quality between correction and anticipation of risks Françoise Labrousse & David Desforges, Jones Day 09h40 - 10h00 La gestion des risques dans des maisons riveraines d’un site industriel – Approche juridique / Risk management in houses neighboring industrial sites – A legal approach Joëlle Herschtel, King & Spalding 10h00 - 10h20 Etude de la contamination fongique de bioaérosols dans des habitations dégradées par la mérule (Serpula lacrymans) et les moisissures : évaluation de l’exposition humaine et impact génotoxique (projet MYCOAEROTOX) / Fungal profiles of bioaerosols collected in houses damaged by Serpula lacrymans and molds: exposure and genotoxicity assessment David Garon, Université de Caen 10h20 - 10h40 Mycotoxines de l’habitat et le Généraliste / Indoor mycotoxins and the General Practitioner Marcel Tony, Healthvalue 10h40 - 11h00 Coffee Break 11h00 - 11h20 Pollution dans l’air intérieur de logements, résultant de l’activité d’établissements de nettoyage à sec et d’établissements de manucure «ongleries» / Indoor air pollution induced by drycleaning and by manicure shops Laurence Schang, Laboratoire Central de la Préfecture de Police 11h20 - 11h40 Combined professional and residential toxicological exposure risks by VOC Frank Karg, HPC Envirotec 11h40 - 12h00 Suivi temporel des niveaux de concentration en atmosphère intérieure lors de l’application d’insecticides ménagers / Monitoring of time related concentration levels in indoor air during household insecticide application Aude Vesin, Laboratoire Chimie Environnement 12h00 - 13h00 Questions - Answers - Discussion 13h00 Déjeuner / Lunch 14h00 - 15h20 Table ronde / Round table Qualité de l’air intérieur – Formaldéhydes et COV / Indoor air quality – Formaldehyde and VOCs Impact des émissions de matériaux sur la qualité de l’air intérieur : dosage simultané des COV et du formaldéhyde dans l’air intérieur et à l’interface air/matériau / Impact of material emissions on indoor air quality : simultaneous quantification of VOCs and formaldehyde in indoor air and at the air/material interface Delphine Bourdin, Nobatek Development and validation of a colorimetric passive flux sampler for formaldehyde emission rate measurements in indoor environments Sébastien Dusanter, Ecole des Mines de Douai Qualité de l’air intérieur : Bilan des mesures de Kudzu Science sur les COV et aldéhydes dans l’air intérieur / Indoor air quality : Review of Kudzu Science data on indoor VOCs and aldehyde measurements Vincent Peynet, Kudzu Science Qualité de l’air intérieur : détermination des sources secondaires de formaldéhydes dans des établissements scolaires de la Région Centre / Indoor air quality : determination of the secondary sources of formaldehyde in educational institutions of the «Region Centre» of France Carole Flambard, Lig’Air Mesure des composés nouvellement réglementés dans les ERP de la ville de Nogent-sur-Marne / Measurement of newly regulated compounds in the Publicly open establishments of Nogent-surMarne Etienne de Vanssay, Cap Environnement 15h20 - 15h40 Coffee Break 15h40 - 16h00 Capteurs chimiques colorimétriques pour la détection de teneurs ppb de trichloramine / Chemical and colorimetric sensors for the detection of nitrogen trichloride at ppb level Thu-Hoa Tran-Thi, CEA 16h00 - 16h20 Qualité de l’air intérieur habitacle. Application du champ des odeurs – Approche pour l’évaluation de l’odeur de pièces automobiles / Car cabin air quality: Application of the « Field Of Odors® » approach in a sensory descriptive analysis for the evaluation of car part smells Marie Verriele, Ecole des Mines de Douai 16h20 - 16h40 La modélisation 3D de la qualité de l’air en milieu confiné, un outil de conception et de diagnostic / 3D modelling of indoor air quality : a tool for design and diagnosis Lobnat Ait Hamou, Fluidyn 16h40 - 17h00 Modélisation de la qualité de l’air à l’intérieur de halls industriels / Numerical modeling for indoor air quality in industrial halls Catherine Turpin & Perrine Volta, Sillages Environnement 17h00 - 17h20 Projet Vaicteur Air2 / Vaicteur Air2 project Philippe Petit, CIAT 17h20 - 17h40 La photocatalyse génère-telle du formaldéhyde lors du traitement d’air intérieur ? / Does photocatalysis increase formaldehyde production during VOC degradation under indoor air conditions? Benoît Kartheuser, Certech 17h40 - 18h00 Dépollution de l¹air par photocatalyse : Etat des lieux et développements futurs. Stratégie pour progresser sur un marché émergent / Indoor air pollution removal by photocatalytic process : state of art and futur development. Strategy for this emerging market development Didier Chavanon, BMES & Pascal Kaluzny, Tera Environnement 18h00 Fin de la première journée / End of Day One Interior Finishes and Building Materials: the Regulations of Indoor Air Quality between Correction and Anticipation of Risks – September 26, 2012 Matériaux d’aménagement et produits de construction : la réglementation de la qualité de l’air intérieur entre correction et anticipation des risques – 26 septembre 2012 Jones Day 2 rue Saint-Florentin 75001 Paris www.jonesday.com Françoise Labrousse Partner Certified Specialist in Environmental Law in France +33 1 56 59 39 39 flabrousse@jonesday.com David Desforges Of Counsel +33 1 56 59 39 39 ddesforges@jonesday.com Abstract Except in intensive industrial settings, indoor air quality has long been a non issue. With an ever expanding range of interior and construction materials with physical and technical properties, the issue of the health, safety and environmental impact of such materials has now become a matter of concern. Law n° 2010-788 of July 12, 2010 added another layer to the construction of a regulatory framework aiming at ensuring safe working but also housing conditions from a materials standpoint rather than from an activities perspective only. These amendments to the French environmental code (Code de l’environnement) complement the labor code (Code du travail), the public health code (Code de la santé publique) and the housing and construction (Code de la construction et de l’habitation) each of which participate to the building of a comprehensive approach to this issue. The 2010 law provides for a future definition of eco-materials (éco-matériaux) not yet adopted which shall take into account not only the actual health, safety and environmental properties of materials while in use but also their health, safety and environmental impact throughout their life cycle. Interestingly, the 2010 law also enforces a labeling obligation for construction and furniture materials as well as for wall and floor paneling materials, paints and varnishes releasing substances in ambient air. This framework already includes enforceable indoor air quality limit values for formaldehyde and benzene. A list which will probably expand in the future. Our presentation will offer a comprehensive view of the state of the law today and an outlook to foreseeable developments. Jones Day Today, we are one of the largest international law firms, with more than 2,400 lawyers in 37 offices around the world. Our clients - a substantial number of whom have trusted us for decades - are among the Fortune Global 500. The Paris Office opened in 1970 and counts more than 90 lawyers. Jones Day’s Environmental, Health & Safety practice is one of the most substantial in the world. Our lawyers help clients in Europe, the U.S. and Asia comply with complex laws and regulations pertaining to solid and hazardous waste, air emissions, water quality, and employee health & safety. We have extensive experience with the full range of environmental, health & safety laws that relate to litigation, transactional and regulatory compliance matters. We also advise clients on all climate change and REACH related issues. The Paris team is ranked among the top environmental practices in France in the guides Chambers Europe, PLC Which lawyer? and The Legal 500 - EMEA. LAGESTIONDESRISQUESDANSDESMAISONSRIVERAINESD’UNSITEINDUSTRIEL Fondé sur des retours d’expérience, l’exposé abordera la gestion des risques liés à la qualité de l’air intérieurdemaisonsriverainesd’unsiteindustriel,générésparunepollutiondelanappephréatique. Lagestiondecesrisquess’articuleautourdetroisvolets,technique,juridiqueetdecommunicationqui sontétroitementimbriqués,etcetoutaulongdesdifférentesétapesqu’impliquentl’identificationetla maîtrisedesrisquesinduitsparunepollutiondel’airintérieurd’habitations. Ainsi, la mise en œuvre de ces phases s’intègre dans un cadre méthodologique et juridique qui sera développé dans la présentation. Il convient de l’accompagner d’une étroite information de l’Administration (Préfet, Inspection des Installations Classées, ARS…) ainsi que d’une communication ciblée avec les riverains concernés, de même qu’avec les différentes parties prenantes (maire, associations…). Si la gestiondes risquessanitaires est la priorité, les aspects patrimoniaux sont souvent à l’origine de contentieuxinitiésparlesriverainsquisaisissentsoitlesjuridictionspénalessoitlestribunauxcivilsen vued’obtenirl’indemnisationdelapertedevaleurdeleurmaison.L’appréciationtantduprincipeque duquantumd’untelpréjudiceestparticulièrementdélicate. RISKMANAGEMENTINHOMESADJACENTTOANINDUSTRIALSITE Based on feedback from experience, the presentation will address risk management related to the indoor air quality of homes that are adjacent to an industrial site, and generated by the pollution of groundwater. Themanagementoftheserisksfocusesonthetechnical,legalandcommunicationcomponentsthatare closely intertwined, throughout the different steps involved by the identification and management of risksinducedbythepollutionoftheindoorairqualityofhomes. Thus,theimplementationofthesesphasesispartofalegalandmethodologicalframeworkwhichwill be developed in the presentation. It should go with a thorough information of the public authorities (Prefect,ClassifiedInstallationsInspection,ARS)aswellasatargetedcommunicationwiththeresidents concerned,andwiththevariousstakeholders(Mayors,Associations). Ifthehealthriskmanagementisapriority,theestateaspectsareoftenthecauseoflitigationinitiated bytheresidentswhobringclaimsbeforethecriminalorcivilcourtstoobtaincompensationfortheloss of value of their homes. The assessment of both the principle and quantum of such damage is particularlysensitive. JoëlleHERSCHTELͲAvocatAssociéͲKing&SpaldingLLP T+33(1)73003918ͲF+33(1)73003959ͲEjherschtel@kslaw.com 12coursAlbert1erͲ75008Paris,France www.kslaw.com Etudedelacontaminationfongiquedebioaérosolsdansdeshabitationsdégradéesparla mérule(Serpulalacrymans)etlesmoisissures:évaluationdel’expositionhumaineet impactgénotoxique(projetMYCOAEROTOX) [FungalprofilesofbioaerosolscollectedinhousesdamagedbySerpulalacrymansandmolds: exposureandgenotoxicityassessment] VirginieSéguin1,VéroniqueAndré1,JeanͲPhilippeRioult1,DidierPottier1,MathieuGuibert1,Alain Bourreau1,RachelPicquet2,ValérieKientzͲBouchart2,PhilippeVérité3,DavidGaron1,* 1 UnitéABTEEA4641ͲEquipeToxEMAC,UFRdesSciencesPharmaceutiques,UniversitédeCaen BasseͲNormandie 2 LaboratoireFrankDuncombe,Caen 3 UnitéABTEEA4641ͲEquipeToxEMAC,FacultédeMédecineͲPharmacie,UniversitédeRouen *DavidGaron,UnitéABTEEA4641ͲEquipeToxEMAC,BâtimentGRECANͲCentreF.Baclesse, avenueGénéralHarris,BP5026,14076CAENcedex05,david.garon@unicaen.fr. Depuisquelquesannées,lescasdedégradationd’habitationspardeschampignonslignivorestels quelamérule(Serpulalacrymans)sontenrecrudescence,enparticulierdansl’OuestdelaFrancequi esttrèsdurementtouché.Cechampignonquipossèdeundéveloppementrapidedansdesconditions d’humidité importante est très sporulant. De plus, sa présence s’accompagne de la croissance d’autresespècesfongiques,enparticulierdenombreusesmoisissures,parmilesquellesdesespèces capables de produire des métabolites potentiellement toxiques (mycotoxines). La contamination fongique de ces environnements intérieurs paraît donc complexe. Le manque de connaissances concernant la nature et les effets sanitaires de cette contamination fongique nécessite la mise en place d’une approche transdisciplinaire. Ainsi ce projet évalue la contamination fongique de bioaérosols et matériaux prélevés dans des habitations atteintes par un champignon lignivore. Les bioaérosolssontprélevésaumoyendepompesportatives(filtres)etd’uncollecteurCoriolis®(liquide stérile).Ilsfontl’objetd’unecaractérisationfongique(identificationdesmoisissuresetchampignons lignivores,recherchedemycotoxines)ettoxicologique(évaluationdelamutagénicité);lepotentiel toxinogèneetmutagènedesisolatsfongiquescollectésestégalementexploré. Lesdonnéesobtenuesdoiventpermettredemieuxcaractériserlerisquefongiquedeshabitations touchées par la mérule et d’évaluer l’exposition humaine aux spores fongiques et mycotoxines au seindeceshabitationsdégradées. Projet réalisé avec le soutien financier du MEDDTL (Programme Primequal 2: Qualité de l’air à l’intérieurdesbâtimentsetdestransports:effets,causes,préventionetgestion. Contact:david.garon@unicaen.fr Indoor Mycotoxins and the General Practitioner Tony Georges MARCEL, MD, PhD, HealthValue,1 En matière de maladies liées aux mycotoxines il est impossible en France, à l'heure actuelle, en routine médicale, de faire pratiquer une recherche dans le sang ou les urines de mycotoxines, et très difficile de demander la recherche d'un panel de mycotoxines sur les murs. Il faut au mieux, se contenter de l'une d'entre elles. Qui plus est une réputation d'usurpation flotte sur tous ceux qui se plaignent de pathologies diverses apres dégât des eaux, et les publications de l'Institute of Medicine ne sont pas faites pour dissiper cela. Quand donc le médecin doit-il évoquer le rôle pathogénique d'une mycotoxine dans l'habitat (par DDE et/ou d'origine alimentaire), et à laquelle penser? Deux attitudes d'exploration diagnostique sont possibles dans le cas de maladies humaines et de mycotoxines de l'habitat. 1/D'une part, devant certaines pathologies, il peut être raisonnable de s'enquérir d'un dégât des eaux dans les mois ou années qui ont précédé l'éclosion de cette pathologie. Si tel est le cas, la recherche de certaines mycotoxines peut être importante, dans un but d'établir un lien physiopathologique . cancer de l'estomac cancer primitif du foie cancer de l'oesophage cancer des voies urinaires cancer spino-cellulaire cutane Cancer du poumon (adeno-) asthme mycobacteriose atypique hemorrhagies alveolaires Ballonnements abdominaux, nausees Ballonnement abd. et hypothermie nocturne sterigma aflatoxine fumonisine OTA sterigma ster+ DON nombreuses satratoxine OTA DON Parkinson Alzheimer Ataxie Probl mnesiques Anosmie d'apparition rapide Vertiges OTA OTA Tricho, Fumo, DAS Tricho, Fumo, DAS roridine Tricho, Fumo, DAS roquefortine, Fibrillations musculaires tremorotoxines Anomalie tube neural Fumonisine Vertige parox. benin resistant Sterigma, Afla Aplasie medullaire DAS Glomerulosclerose focale et segmentaire OTA 2/D'autre part, devant un dégât des eaux avec existence de moisissures, un bilan médical devrait être fait, ne serait-ce que pour établir l'état initial du ou des patients, car une pathologie peut s'installer après un délai. On recherchera: - Sur le plan hepato-gastroenterologique: -des douleurs épigastriques, pouvant amener à une fibroscopie (K estomac, sterigma); - une gêne à la déglutition, pouvant amener à pratiquer transit baryté oeso-gastrique, ou endoscopie (cancer de l'œsophage, fumonisine); - ballonnements abdominaux, surtout s'ils sont associés une sensation nocturne d'hypothermie (DON), ou des nausées importantes (OTA); - douleur de l'hypochondre droit, avec sd biologique de rétention, surtout si HBA et/ou HCA positif, avec ou sans à l'interrogatoire ingestion en outre d'Aflatoxine possible: cacahuètes, laitages suspects, voyage en pays endémique (riz parfois). 1 tony@healthvalue.net - Sur le plan rénal et urinaire: - hématurie, pouvant amener à vérifier l'état des voies urinaires (cancer: OTA); - protéinurie évoquant une glomerulosclerose focale et segmentaire, nécessitant une biopsie, sur laquelle l'OTA doit être recherchée. - Sur le plan neurologique: - des troubles de la marche, impressions de vertige, avec élargissement du polygone de sustentation, et impossibilité de marche de funambule (un pied devant l'autre): trichothecenes, Fumonisine, DAS. Une recherche fine d'éléments ataxiques est nécessaire: Romberg, sensibilité vibratoire au diapason. L'exploration vestibulaire peut mettre en évidence des anomalies d'autant plus intéressantes qu'elles ne régressent pas apres manœuvre de Dix et Hallpike; - des fibrillations musculaires sous-cutanées visibles, spontanées (sans chiquenaude pour les provoquer), associées à des sd. de type neuropathie périphérique, cliniquement et à l'EMG (tremorotoxines, roquefortine). - Sur le plan ORL: - Une anosmie d'apparition rapide (roridine), une hypoacousie pour les fréquences élevées (toxicité pour canaux BK) - Sur le plan hématologique: - une cytopénie (DAS); - une lymphopénie, avec en particulier chute des CD4 et/ou des CD8 peut être le fait de nombreuses mycotoxines; un phenotypage peut montrer un accroissement des TREG. - Sur le plan infectieux: - mycobacteriose atypique (image évocatrice au scanner thoracique) en dehors d'une sérologie HIV positive: plusieurs mycotoxines peuvent en être cause. - Sur le plan gyneco-obstetrical: - naissance d'un enfant avec anomalie du tube neural (Fumonisine.) Toutes ces anomalies connues pour être liées parfois aux mycotoxines, sont observées soit dans d'autres contrées, soit chez l'animal, et dans quelques cas explorées dans l'espèce humaine. Cependant pour l'espèce humaine, outre la dénégation de ce lien, la difficulté voire l'impossibilité de faire doser les mycotoxines, fait que le lien de causalité n'est pas démontré, tout comme pour le Mal décrit par Bright quelques années avant qu'on ne dose l'urée sanguine, et le tabes dont le diagnostic reposait sur la clinique et la notion de chancre ancien, jusqu’à ce que Bordet et Wassermann grâce a la déviation du complément, permettent d'établir le lien de causalité. Des cas cliniques seront présentés pour illustrer ces éléments. Indoorairpollutionoccursbydrycleanerandmanicureestablishments II. I. L.SCHANG,G.GOUPIL,L.PAILLAT,G.THIAULT, LaboratoirecentraldelaPréfecturedePolice,39bisruedeDantzig,75015PARIS,FRANCE OBJECTIVE: The Central Laboratory of Police headquarters (LCPP) is a public department responsible for assessingtheimpactofurbanandindustrialactivitiesontheenvironment.Inthiscontext,theLCPPis regularlyasked,duetoproblemsofodornuisances,tomakemeasurementsindwellingsneardrycleaner andmanicureestablishmentsinstalledingroundfloorbuildings.Thesemeasuresaimsatdeterminethe impactoftheseactivitiesontheindoorairqualité.Airsamplesarecarriedoutbypassivesensorduring 1to7daysorbyusingactivesamplingduring1to8hours. DRYCLEANING Thepresentationwillfocus on theconcentration levelsof tetrachlorethylenecan be achieved in homeslocatednearthelaundryandthepossiblepathways. A statistical review of concentrations measured by the LCPP tetrachlorethylene (up to 120 000 ʅg.mͲ3)inasampleof122homeslocatedneardrycleaningfacilitieswillbepresentedandcompared withreferencevalues.Aspecialstudywillbedetailedtoillustratethepathwaysoftetrachlorethylenein housing. This investigation concerns a building in which the LCPP was asked to odor problems. Measurementsperformedinemergencyrevealedhighconcentrationsoftetrachlorethyleneindwellings (1600 ʅg.mͲ3 on the 5th floor). The measurements were performed by passive sampling (activated carbon)followedbydesorptionsolventandadeterminationbyGC/FID.Adrycleanerlocatedonthe ground floor of the building was quickly suspected to be responsible for these emissions. The dry cleaningmachinewasstoppedpendingthecompletionofworkforcomplianceofthefacility(installation of a mechanical ventilation system with activated carbon treatment). Following this work and before restarting the machine dry cleaning, new measurements of concentrations of tetrachlorethylene were conductedinthebuilding. Concentrations were significantly reduced compared with the first steps, but the longͲterm guidelinevalueof250ʅg.mͲ3recommendedbyANSES,whichisalsothebenchmarkofairqualitysetby theHCSPisstillexceededintheaccommodationandpublicareas.Theresultshaveshownadecreaseof concentrationsintheapartmentsasyougoupthefloors.Thehighestconcentrationsaremeasuredin theapartmentsonthefirstfloorofthebuilding. MANICUREESTABLISHMENTS Although there are not reference value of the main chemical compounds used in these establishments, the LCPP realized analysis of organic volatile compounds in the indoor air of flats to identifyandmeasuremethacrylateofmethylorethylandethylacetate,whoarethemainsubstances usedbymanicureestablishments. The methacrylate of methyl or ethyl are specific compounds used to manufacture resins (for manicure establishments and teeth prosthesis), and should not be presents in indoor air or in atmosphere. The results of these measures had to be less as detection limit value, but our investigations realized in 2010 and 2011 showed the presence of these compounds in indoor air of flats at concentrationssometimeshigh. Twostudieswillbeexposed.. Thefirstone,concernstheméthylmethacrylateobservedinacoveredwaybyaglassroof,where were installed several manicure establishments, and in flats situated just upstairs. The concentrations observed in the air of the way covered are between 93 μg/m3, and 380 μ/m3. The concentration observedinthelivingroomofaflatjustupstairstwoestablishmentsis240μg/m3,. Thesecondoneconcernstheethylmethacrylateinaflatjustnearamanicureestablishment.We measuredintheroom adjoiningtheestablishment 2700μg/ m3 withactivesamplingon7hours.This anormaly very high result showed the impact of manicure establishment activities on the indoor air pollution.Inthiscaseourresultshowedadefaultofinsulationofthepartywall. TherearenoreferencesvaluesconcerningthesesubstancesinFrance,butforinformationwecan findaCanadianreferencevalueof52μg/m3,forthemethylmethacrylate.Wefoundhighervaluesin2of 7flatsanalyzedinthecoveredway. Wecansupposedaequivalenttoxicityfortheethylmethacrylatebecauseitschemicalstructureis nearlythesameofmethylmethacrylate. DISCUSSIONANDCONCLUSIONS Despite compliance with the dry cleaner establishments including the installation of mechanical ventilation equipped with activated carbon filters, the activity still has an impact on indoor air quality housing.Inspiteofimprovementoftheairquality,thereferencevaluearenotrespected.Clothesstored and manual detaching activity and ironing activity.are also emitting sources of tetrachlorethylene in additiontoemissionsfromtheuseofthedrycleaningmachine. Tetrachlorethyleneinhousingspreadsbothbytheoutsideair,especiallywhenthedismissalofthe mechanical ventilation system leads in front of the dry cleaner establishment, and the air inside the buildingduetoleakageofthewallsandfloors.Thespreadonthefloorsisalsobythechimneyeffectof thestairwell. Concerningthesubstancesusedinmanicureestablishments,methacrylateo methylorethylare both toxic irritant and sensitizing. In France, there are no regulatory reference value for these compounds. It is therefore difficult to recommend the facilities and necessary work that would limit nuisancetoneighbors.Therecommendationsandadvicearesometimesinadequate. CombinedprofessionalandResidentialToxicologicalExposureRisksbyVOC Risques croisés d’exposition professionnels et dans les habitations par des COV KARG, Frank / HPC Envirotec S.A. / France Scientific Director of HPC-Group Germany & International 1 rue Pierre Marzin, Noyal-Châtillon sur Seiche, CS83001, 35230 SAINT ERBLON / FRANCE Tél : +33 (0) 299 131 450, Fax : +33 (0) 299 131 451, Email : frank.karg@hpc-envirotec.com Introduction: Professional Exposure Risks are known concerning VOC, and especially in case of solvent use or in case of applications and use of hydrocarbons as BTEX, aliphatics or PAH (Poly-AromaticHydrocarbons). Solvent use can include also chlorinated solvents, as TCE, PCE or polar VOC. Additional in-door residential exposure to toxic VOC can be happen if professional VOC air pollution sources are nearby housings, as in case of lots of petrol stations, dry cleaning installations (Pressings), etc. The research work concerning “Combined professional and Residential Toxicological Exposure Risks by VOC” showed, that in some cases residential exposures and professional exposures are nearly the same, especially in case of residential spaces very close to professional spaces of Petrol Stations,etc. The presented case studies shows exposures to aliphatic and aromatic hydrocarbons in buildings with professional use of three (3) Petrol Stations and nearby apartments with residents,includingchildren.Personsinprivatespacesareexposedinthesecasesnearlyinthe samewayastheprofessionals. A pragmatic and transparent application of Health Risk Assessments concerning pollutant exposures was realized by Toxicological Exposure Risk Quantifications (TERQ). Results of this kind of Health Risk Assessment are used to define also Remediation Goals for corrective actions, as contamination source reduction, etc. AmbientAirAnalyses: Thefirstcase(“A”)ofinvestigationswasaPetrolStationwithprivateapartmentlivingspacein ground&1stfloor,directlyoverthePetrolStation“A”(cf.Fig.1).InͲdoorambientairanalyses resultsshowedabout5.9mg/m3oftotalhydrocarbons.Indetailthefollowingconcentrations wereobtained(cf.Tab.1): Substance HC6Ͳ12 Benzène Toluène Ehylbenzène mͲ&+pͲXylène oͲXylène Naphtalène Conc.(mg/m3) 5,8 0,005 0,051 0,010 0,019 0,011 0,001 Tab.1:residentialAmbientAirConcentrationsof“CaseA” 1 The ambient air analysis results showed an exposure especially concerning C6Ͳ12Ͳaliphatic hydrocarbons(includingnͲhexane),benzeneandnaphthalene. Thesecondcase(“B”)ofinvestigationswasaPetrolStationwithprivatelivingspaceinahouse, directly next to a Petrol Station “B” (cf. Fig. 2). InͲdoor ambient air analyses results showed about10.3mg/m3oftotalhydrocarbons.Indetailthefollowingconcentrationswereobtained (cf.Tab.2): 3 Substance HC Conc.(mg/m ) Benzène Toluène Ethylbenzène mͲ&pͲXylène 9,5 0,012 0,205 0,079 0,171 oͲXylène Naphtalène 0,124 0,001 6Ͳ12 Tab.2:ResidentialAmbientAirConcentrationsof“CaseB” The ambient air analysis results showed an exposure especially concerning C6Ͳ12Ͳaliphatic hydrocarbons(includingnͲhexane),benzene,toluene,ethylbenzene,xylenesandnaphthalene. 2 Thethirdcase(“C”)ofinvestigationswasaPetrolStationwithprivatelivingspaceinahouse, directly next to a Petrol Station “C” (cf. Fig. 3). InͲdoor ambient air analyses results showed about 0.2 mg/m3 of total hydrocarbons. In detail the following concentrations were obtained (cf.Tab.3): 3 Substance Conc.(mg/m ) 0,003 0,004 0,008 0,004 0,003 0,004 0,07 0,003 (C5Ͳ12) 0,006 0,014 0,013 0,008 0,008 0,048 0,025 (C10Ͳ40) 0,015 0,003 0,039 0,006 0,020 0,006 2ͲMéthylͲpentane 3ͲMéthylͲpentane nͲHéxane MéthylͲcyclopentane 2ͲMéthylͲhexane 3ͲMéthylͲhexane nͲHéptane 4ͲMéthylͲheptane 2,4ͲDiméthylͲhéptane 2,4ͲDiméthylͲ1Ͳhéptene 4ͲMethylͲoctane, alpha.ͲPinène DͲLimonène Undécane Benzène Toluène Ethylbenzène m+pͲXylène oͲXylene Tab.3:ResidentialAmbientAirConcentrationsof“CaseC” 3 The ambient air analysis results showed an exposure especially concerning C6Ͳ12Ͳaliphatic hydrocarbons(includingnͲhexane)andBETEX. TERQ:ToxicologicalExposureRiskQuantification: The TERQ: Toxicological Exposure Risk Quantification shows different Exposure Risks for residents(adultsandchildren),whilecompliancetoallworkspacerelatedconcentrationlimits existed. A conceptual scheme (Fig. 4) shows the “coͲexistance” of the residential exposure spaceandtheprofessionalexposurespacefordefinitionoftheexposurescenarios. Fig. 4: Conceptual Scheme of the Exposure Scenario The detailed comparison between the on-site measured pollutant concentrations and limit Values for work space or residential use, shows, that Compliance to Work place related Limit Values (as for ex. concerning the French VLEP or VME) exist (cf. Tab. 4). Non-compliance exists to Limit Values for residential site use, according WHO and the French Agency for Environmental Health (ANSES: VGAI). Based on the fact, that existing Limit Values are given only for mono-pollutant exposures needs a site and pollutant cocktail specific definition of Concentration limits for acceptable risks (as the ICR: Individual Cancer Risk of 10-5 or the NCR: Non-Cancer-Risk of 1 = DED: Daily Exposure Dosis/ADI: Acceptable Daily Intake). Site and Pollutant Cocktail specific Limit Values for Residential and Professional Exposure 4 Scenarios, defined by a TERQ shows, that these values are exceeded for aliphatic hydrocarbons C6Ͳ12, benzene, ethyl benzene (in one case), ethyl benzene and xylenes in one case and naphthalene in two cases. Paramètres HC C -C European Community Health related Limit value WHO Limit Value Site and Site and Work French Pollutant Pollutant space recomCocktail Cocktail related mended specific specific Limit limit Value Value for Limit value: value: VLEP/VME Indoor Residential Professional In France (ANSES) (TERQ) (TERQ) 3 Concentrations in (mg/m ) Case A Case B Cas C - - - 0,84 3,80 1000 9,5 5,8 - Benzène 0,005 0,0017 0,002 0,0014 0,017 3,25 0,012 0,005 0,003 Toluène - 0,26 - 5,5 24 192 0,205 0,051 0,039 Ethylbenzène - - - 0,01 0,034 88,4 0,079 0,01 0,006 m,p-Xylène - - - 0,019 0,02 - - 1 0,171 - 0,24 221 o-Xylène 221 0,124 0,011 0,006 - - - - - - - - 0,003 - - - - - - - - 0,004 - - - 0,55 2,1 72 - - 0,008 - - - - - - - - 0,004 - - - - - - - - 0,003 - - - - - - - - 0,004 - - - - - 1668 - - 0,003 - - - - - - - - 0,006 - - - - - - - - 0,014 - - - - - - - - 0,013 - - - - - - - - 0,008 alpha-Pinène - - - - - - - - 0,008 D-Limonène - - - - - - - - 0,025 Undécane - - - - - - - - 0,015 Naphtalène - - 0,01 0,00077 0,0025 50 0,001 0,001 - 5 12 Méthylpentane 3-Méthylpentane n-Hexane Méthylcyclopentane 2-Méthylhexane 3-Méthylhexane n-Heptane 4-Méthylheptane 2,4-Diméthylheptane 2,4-Diméthyl1-heptene 4-Méthyloctane Tab. 4: Analyses results of ambient air of the three case studies and comparison with different Limit values The case study concerning “Case A” showed non-acceptable Cancer Risks for the professional exposure scenario of the site specific pollutant cocktail concerning ethyl benzene and non-acceptable Non-Cancer-Risks concerning aromatic hydrocarbons C>10-12. The case study concerning “Case A” showed also non-acceptable Cancer Risks for the residential exposure scenario of the site specific pollutant cocktail concerning benzene and ethyl benzene and non-acceptable Non-Cancer-Risks concerning benzene, xylenes and aromatic hydrocarbons C>7-12. 5 CASE A: Professional CASE A: Residential ADULTS PROFESSIONNEL Benzene Toluene Xylenes Ethyl benzene Aliphatic hydrocarbons C -C ADULTS Children AD + C Non-cancer Risks Cancer Risk Non-cancer Risks Cancer Risk Non-cancer Risks Cancer Risk 0,24 0,0082 0,26 0,033 6,7E-06 2,3E-05 1,11 0,037 1,21 0,081 2,9E-05 5,40E-05 0,85 0,028 0,93 0,12 5,6E-05 2,1E-05 risques Cancer Risk 8,5E-05 7,5E-05 0,06 - 0,046 - - 0,013 - Aliphatic hydrocarbons C -C 0,030 - 0,13 - 0,10 - - Aliphatic hydrocarbons C -C 0,16 - 0,730 - 0,56 - - Aliphatic hydrocarbons C -C 0,014 - 0,064 - 0,049 - - Aliphatic hydrocarbons C -C 7 0,01 - 0,045 - 0,034 - - Aromatic hydrocarbons C -C 8 0,61 - 2,77 - 2,14 - - Aromatic hydrocarbons C -C 2,49 - 11,2 - 8,65 - - 5 6 >6 8 >8 >10 10 12 >5 >7 >8 Aromatic hydrocarbons C 10 -C 0,88 - 4,00 - 3,09 - - n-Hexane Naphthalene Total ICR: Individual Cancer Risk 0 0,066 Limit: 1E-05 3,9E-06 3,3E-05 0 0,30 Limit: 1E-05 9,2E-06 9,2E-05 0 0,23 3,6E-06 8,0E-05 1,29E-05 1,7E-04 Total Non-Cancer-Risk Neurotoxicity (1+2+3+5+6+13+14) Hepatotoxicity (2+3+4+7+8+9+10) Nephrotoxicity (2+4+9+10) Vesicular toxicity (1+7+8+13+14) Immunotoxicity (1+2+10) Pulmonary toxicity (3+13+14) Body Wight effects (11+12+14) Intestine toxicity (14) Reprotoxicity (2+3+4) Limit: 1 0,636 1,11 0,667 0,491 0,871 0,336 2,56 0,067 0,311 - - 2,21 3,88 2,33 1,71 3,03 1,17 8,89 0,233 1,09 - - >10 12 Limit : 1 2,86 4,94 2,93 2,21 3,92 1,51 11,51 0,301 1,33 Tab. 5: Cancer Risks and Non-Cancer-Risks concerning “Case A” for the site specific & pollutant cocktail specific professional and residential exposure scenarios. The case study concerning “Case B” showed no non-acceptable Cancer Risks for the professional exposure scenario but non-acceptable Non-Cancer-Risks concerning aromatic hydrocarbons C>8-10. The case study concerning “Case B” showed also non-acceptable Cancer Risks for the residential exposure scenario of the site specific pollutant cocktail concerning benzene and non-acceptable Non-Cancer-Risks concerning benzene, xylenes, aromatic hydrocarbons C>7-12. 6 CASE A: Professional CASE A: Residential ADULTS PROFESSIONNEL ADULTS Children AD + C Non-cancer Risks Cancer Risk Non-cancer Risks Cancer Risk Non-cancer Risks Cancer Risk Benzene Toluene Xylenes Ethyl benzene Aliphatic hydrocarbons C -C 0,103 0,002 0,027 0,0042 2,80E-06 2,92E-06 0,46 0,0092 0,12 0,010 1,21E-05 6,83E-06 0,35 0,0071 0,095 0,016 2,33E-05 2,69E-06 risques Cancer Risk 3,5E-05 9,5E-06 0,0084 - 0,036 - 0,028 - - Aliphatic hydrocarbons C -C 0,018 - 0,083 - 0,064 - - Aliphatic hydrocarbons C -C 0,099 - 0,44 - 0,34 - - Aliphatic hydrocarbons C -C 12 0,0087 - 0,039 - 0,03 - - Aliphatic hydrocarbons C -C 7 0,0061 - 0,027 - 0,021 - - Aromatic hydrocarbons C -C 8 0,37 - 1,69 - 1,31 - - Aromatic hydrocarbons C -C 1,52 - 6,84 - 5,28 - - Aromatic hydrocarbons C 0,54 - 2,44 - 1,89 - - n-Hexane Naphthalene Total ICR: Individual Cancer Risk 0 0,066 Limit: 1E-05 3,9E-06 9,6E-06 0 0,301 Limit: 1E-05 9,2E-06 2,8E-05 0 0,23 3,6E-06 2,9E-05 1,2E-05 5,7E-05 Total Non-Cancer-Risk Neurotoxicity (1+2+3+5+6+13+14) Hepatotoxicity (2+3+4+7+8+9+10) Nephrotoxicity (2+4+9+10) Vesicular toxicity (1+7+8+13+14) Immunotoxicity (1+2+10) Pulmonary toxicity (3+13+14) Body Wight effects (11+12+14) Intestine toxicity (14) Reprotoxicity (2+3+4) Limit: 1 0,22 0,52 0,38 0,27 0,48 0,094 1,59 0,067 0,033 - - 0,78 1,82 1,35 0,96 1,67 0,32 5,52 0,23 0,11 - - 5 6 >6 8 >8 >10 10 >5 >7 >8 >10 10 -C 12 Limit : 1 1,02 2,35 1,74 1,25 2,16 0,425 7,14 0,30 0,143 Tab. 6: Cancer Risks and Non-Cancer-Risks concerning “Case B” for the site specific and pollutant cocktail specific professional and residential exposure scenarios. 7 The case study concerning “Case C” showed no non-acceptable Cancer Risks and Non-Cancer-Risks for the professional exposure scenario. The case study concerning “Case C” showed non-acceptable Cancer Risks for the residential exposure scenario of the site specific pollutant cocktail concerning benzene but no non-acceptable Non-Cancer-Risks. CASE A: Professional CASE A: Residential ADULTS PROFESSIONNEL ADULTS Children AD + C Benzene Toluene Xylenes Ethyl benzene Aliphatic hydrocarbons C -C 0,061 0,0015 0,023 0,0025 1,6E-06 1,7E-06 0,27 0,0070 0,10 0,0062 7,2E-06 4,1E-06 0,21 0,0054 0,082 0,0097 1,4E-05 1,6E-06 risques Cancer Risk 2,1E-05 5,7E-06 6 0,00016 - 0,00074 - 0,00057 - - Aliphatic hydrocarbons C -C 0,00037 - 0,0017 - 0,0013 - - Aliphatic hydrocarbons C -C 0,0022 - 0,0090 - 0,0070 - - Aliphatic hydrocarbons C -C 12 0,00017 - 0,00080 - 0,00061 - - Aliphatic hydrocarbons C -C 7 0,00012 - 0,00056 - 0,00043 - - Aromatic hydrocarbons C -C 8 0,0076 - 0,034 - 0,026 - - Aromatic hydrocarbons C -C 0,030 - 0,13 - 0,10 - - Aromatic hydrocarbons C 0,011 - n-Hexane Naphthalene Total ICR: Individual Cancer Risk 0,0037 0 Limit: 1E-05 0,0E+00 3,3E-06 0,049 0,0091 0 Limit: 1E-05 0,0E+00 1,1E-05 0,038 0,014 0 0,0E+00 1,5E-05 0,0E+00 2,7E-05 Total Non-Cancer-Risk Neurotoxicity (1+2+3+5+6+13+14) Hepatotoxicity (2+3+4+7+8+9+10) Nephrotoxicity (2+4+9+10) Vesicular toxicity (1+7+8+13+14) Immunotoxicity (1+2+10) Pulmonary toxicity (3+13+14) Body Wight effects (11+12+14) Intestine toxicity (14) Reprotoxicity (2+3+4) Limit: 1 0,091 0,037 0,011 0,067 0,071 0,027 0,034 0 0,027 - - 0,31 0,13 0,042 0,23 0,24 0,096 0,12 0 0,097 - - 5 >6 8 >8 >10 10 >5 >7 >8 >10 10 -C 12 Non-cancer Risks Cancer Risk Non-cancer Risks Cancer Risk Non-cancer Risks Cancer Risk Limit : 1 0,40 0,16 0,048 0,29 0,32 0,11 0,14 0 0,12 Tab. 7: Cancer Risks and Non-Cancer-Risks concerning “Case C” for the site specific and pollutant cocktail specific professional and residential exposure scenarios. Conclusion: It must be concluded, that: ¾ Professional ambient air exposure can become also residential ambient air exposure, as showed by examples of Petrol Stations, dry cleaning installations (pressings), Car Garages, Panting Workshops, etc., ¾ In case of exposure to pollutant cocktails, a simply comparison of obtained ambient air concentrations with “generic Limit Values” for professional or residential scenarios is not sufficient. HRA: Health Risk Assessments, as TERQ: Toxicological Exposure Risk Quantifications should be done. 8 ¾ Fine HRA / TERQ application shows, that in case of Compliance to “mono-exposure” Limit Values for ambient air, “Pollution Cocktails” can show non-acceptable Cancer Risks and nonacceptable systemic Non-Cancer-Risks. In this case corrective actions, as for ex. Pollution Source reduction or building equipment, etc. are necessary. References: [1] Karg, F., Robin-Vigneron, L., Hintzen U., Grauf, TH., Olk, C. (2006): TERQ (Toxikologische Expositionsrisiko-Quantifizierung): Die standortspezifische Gefährdungsbewertung und Sanierungszieldefinition unter Berücksichtigung der Vielstoffbetrachtung – Beispiel: Standort RAGRütgers Chemicals in Oberhausen: - Gefahrschwellenmanagement im Vollzug (HRA: Health Risk Assessment and site specific Remediation Goal determination at the RAG-site in Oberhausen / Germany). Handbuch Altlastensanierung und Flächenmangement: 11/2006 in Press. [2] Karg (2007): Site investigations and Risk Assessment on Sites Polluted by Military Chemicals. Congress Handbook INTERSOL 2007, 28/03/2007, Ivry-sur-Seine. [3] Karg, F., Hintzen, H. (2007): Umweltchemie und gesundheitliche Risiken von toxischen Aminen und heterozyklischen Stickstoffverbindungen auf belasteten Standorten. (Environmental Chemistry and Health Risks by Amines and Heterocyclic Nitrogene Compounds on Contaminated Sites). Altlastenspektrum Berlin 05/2007, p. 222 – 228. [4] Karg, F. (2008) : Caractérisation du danger des substances sans seuil d’effet (Danger Characterization of Compounds without exposure effect-limit). Exposition aux faibles doses un défi pour l’évaluation et la gestion des risques pour l’homme et l’environnement . Colloque ARET : Association pour la Recherche en Toxicologie. Paris – Muséum National d’Histoire Naturelle, 09 – 10/06/2008. [5] Dor, F., Karg, F., Robin-Vigneron, L. (2009) : Recensement et identification des menaces environnementales pour la Santé Publique (Inventory and identification of Environmental Threats to Public Health). ERS, 2009. [6] AFSSET, Karg, F. et al (2010) : Valeurs toxicologiques de référence (VTR) pour les substances cancérogènes (Toxicological Reference Values for cancerogenic Compounds) - Méthode de construction de VTR fondées sur des effets cancérogènes - Saisine n°2004/AS16. Agence Française de Sécurité Sanitaire de l’Environnement et du Travail, 05/2010 (aujourd’hui ANSES : Agence Nationale de Sécurité Sanitaire). http://www.afsset.fr/upload/bibliotheque/141844903203317036420911165719/VTR_cancer_methodologie_afsset_ mars10.pdf [7] Karg, F. (2010) : Recensement des menaces environnementales pour la santé publique et l’importance de la pollution de l’air ambiant. Rapport de l’INVS / Inventory of environmental threats on public health and links with ambiant air pollution. INVS report – Minutes AtmosFair, Lyon 28/09/2010. [8] Karg, F. (2011): Evaluation des risques liés aux amines aromatiques et aux composés hétérocycliques (Risk Assessment linked to Aromatic Amines and Heterocyclic Compounds. AtmosFair 21-22/06/2011. Paris : Minutes of Congress. [9] Karg. F. (2011): TERQ: Toxicological Exposure Risk Quantification for Heterocyclic PAC and Aromatic Amine Contamination in case of DNBA Site Remediation. Book of Minutes of ISPAC: International Society for Polycyclic Aromatic Compounds; Munster, Germany, 04-08/09/2011. 9 Evaluationofthehouseholdinsecticideconcentrationsduringandaftertheirapplicationin indooratmospheres AudeVesin DoctoranteauLaboratoireChimieEnvironnement EquipeInstrumentationetRéactivitéAtmosphérique(IRA) 3,placeVictorHugoͲCase29 13331MARSEILLECedex3 The evaluation of the exposure to environmentallyͲsignificant and healthͲrelevant compounds in indoorenvironmentsbecomesagrowingissueofconcernsincepeoplespendonaveragemorethan 80% of their time indoors (Klepeis et al., 2001). In this context, the increasing application of commercial household insecticides in indoor environments is becoming a health concern due to hazardous properties of the active substances. OnͲline monitoring of household insecticidal substancesintheaircompartmentduringandimmediatelyaftercommercialinsecticideapplication via electric vaporizers or aerosol cans can provide key parameters such as peak concentration and increase/decayrates.Duetothehightimevariabilityoftheconcentrationsduringtheseapplications, the use of high timeͲresolution instruments is relevant to supplement the stateͲofͲtheͲart offͲline methods(BergerͲPreissetal,2009).Dataonconcentrationlevelsandkineticsareactuallysignificant informationinaperspectiveofhumanexposureevaluation.Inhalationactuallyappearstobeoneof theprimaryroutesforresidentialpesticideexposureinsomestudies(Hahnetal.,2010;Whyattet al.,2007). Thestudyisspecificallyfocusedonsyntheticpyrethroids,whichbelongtothehouseholdinsecticide familymostfrequentlyappliedtoday(Feoetal.,2010;Frenchauthorizedbiocidedatabase).Evenif humanhealtheffectsstillremainunclear(Feoetal.,2010),insecticideapplicationhasbeenshownto cause some adverse effects, specifically impacting children and pregnant women (ATSDR, 2003). Thus, a European workshop on endocrine disruptors includes pyrethroids in a list of chemicals suspected to interfere with the hormone system (European Commission, 2004). In addition, some pyrethroids were classified by the US EPA as possible human carcinogens (US EPA RED reports for permethrinandcypermethrin,2006). TheanalyticalstrategyconsistsintheutilizationofaHighSensitivityProtonͲTransferͲReactionMass Spectrometer(HSͲPTRͲMS)(Ionicon)forthemeasurementofthegaseousphase(Vesinetal.,2012) andaHighResolutionAerosolTimeͲofͲFlightMassSpectrometer(HRͲToFͲAMS)(AerodyneResearch) for the measurement of aerosols. Both instruments provide highͲtimeͲ and chemicallyͲresolved measurements. Field measurements involving three electric vaporizers and four aerosol cans were carriedoutunderairexchangerate(AER)controlledconditionsinafullͲscaletestroom,locatedin the“MechanisedhouseforAdvancedResearchonIndoorAir”(MARIA)experimentalhouse,atthe Scientific and Technical Centre of Building (CSTB) in MarneͲlaͲVallée, France (Vesin et al., under review). The concentration profile for the active ingredients obtained from the electric vaporizers experimentsshowsarapidincreaseassoonastheelectricvaporizerispluggedin,beforereachinga peak a few minutes after unplugging (up to 8.5 μg/m3). The active ingredient concentration then starts decreasing, to finally come down close to the initial background level in several hours. The mathematicalmodellingofthedatashowsthatfromakineticpointofview,ventilationisthemain or even the exclusive elimination mechanism of transfluthrin from the room, therefore crucial to maintainanacceptableairquality.Massbalancecalculationsneverthelessunderlinethesignificance of adsorption on indoor surfaces that appears to be the major elimination process of transfluthrin from the gaseous phase, however acting as a temporary sink due to the reversible nature of this mechanism(Vesinetal.,underreview).Theanalysisofthevapoursemittedbythecommercialrefills finallyhighlightsthequalitativeandprobablyalsoquantitativesignificanceoftheadditivesrelativeto thepesticideespeciallyasregardstheliquidrefills. Due to the known harmful health effects of the active substances present in the aerosol cans, an innovativedatatreatmentoftherawHRͲToFͲAMSdataisrealizedtodissociatethecontributionof the pesticides alone relative to the additives. The study of the pesticide size distribution shows a meanparticlediameteraround6μm.Thepesticideaerosolisthereforepartoftheinhalablefraction (PM10)andisconsequentlylikelytohaveasignificanthealthrelevance.Reachedafewsecondsafter vaporization, the peak concentrations of pesticide are of the order of several dozens of μg/m3, followedbyarapideliminationfromtheaircompartment(t1/2 =22to39min),primarilyduetoair exchangeandparticlesdeposition.Surfaceadsorption,coagulation,reactivityphenomenamayalso occur in the room. These high concentrations coupled to the “cocktail effect” due to the simultaneouspresenceofseveralactiveingredientsresultinapotentiallysignificantexposureafter theapplicationofcommercialaerosolcans. Theuseoftheseinnovativeanalyticaltoolshavingahightimeresolutionenablestocarefullyfollow the pesticide concentration profiles during and after the application of household insecticides in indoor atmospheres. Consequently, such results may serve as foundations to study the exposure levels and gives a more accurate output on the exposure doses and duration that turn out to be crucial,especiallyforfragilepopulationssuchaschildrenandpregnantwomen. This study is funded by the French Agency for Environmental Health Security (ANSES), the French EnvironmentandEnergyManagementAgency(ADEME)andtheFrenchNationalCentreforScientific Research(CNRS). REFERENCES ATSDR, 2003. Toxicological profile for pyrethrins and pyrethroids. U.S. Department of health and human services,PublicHealthService. BergerͲPreiss,E.,Koch,W.,Gerling,S.,Kock,H.,Appel,K.E.,2009.Useofbiocidalproducts(insectspraysand electroͲvaporizer)inindoorareas–exposurescenariosandexposuremodelling.InternationalJournalof HygieneandEnvironmentalHealth212,505Ͳ518. EuropeanCommission,2004.CommissionStaffWorkingDocumentonImplementationoftheCommunityfor Endocrine Disruptors Ͳ a range of substances suspected of interfering with the hormone systems of humansandwildlife,SEC(2004)1372,EC,Brussels,Belgium. Feo, M.L., Eljarrat, E., Barcelo, D., 2010. Determination of pyrethroid insecticides in environmental samples. TrendsinAnalyticalChemistry29,692Ͳ705. Frenchauthorizedbiocidesdatabase,editedbytheFrenchMinisterofEcology,consultedon10/2011,available at:biocides.developpementͲdurable.gouv.fr. Hahn, S., Schneider, K., Gartiser, S., Heger, W., Manglesdorf, I., 2010. Consumer exposure to biocide – identificationofrelevantsourcesandevaluationofpossiblehealtheffects.EnvironmentalHealth9,1Ͳ7. Klepeis, N.E., Nelson, W.C., Ott, W.R., Robinson, J.P., Tsang, A.M., Switzer, P., Behar, J.V., Hern, S.C., Engelmann,W.H.,2001.TheNationalHumanActivityPatternSurvey(NHAPS):aresourceforassessing exposuretoenvironmentalpollutants.JournalofExposureAnalysisandEnvironmentalEpidemiology11, 231Ͳ252. US EPA Reregistration Eligibility Decision (RED) for Cypermethrin – List B, Case No. 2130, 2006, Prevention, Pesticides and Toxic Substances, United States Environmental Protection Agency (EPAͲHQͲOPPͲ2005Ͳ 0293Ͳ0036). US EPA Reregistration Eligibility Decision (RED) for Permethrin Ͳ Case No. 2510, 2006, Prevention, Pesticides andToxicSubstances,UnitedStatesEnvironmentalProtectionAgency(EPA738ͲRͲ06Ͳ017). Vesin, A., Bouchoux, G., Quivet, E., Temime, B., and Wortham, H. (2012) Use of the HSͲPTRͲMS for onͲline measurements of pyrethroids during indoor insecticide treatments. Analytical and Bioanalytical Chemistry403,1907Ͳ1921. Whyatt,R.M.,Garfinkel,R.,Hoepner,L.A.,Holmes,D.,Borjas,M.,Williams,M.K.,Reyes,A.,Rauh,V.,Perera, F.P., Camann, D.E., 2007. WithinͲ and betweenͲhome variability in indoor air insecticide levels during pregnancy among an innerͲcity cohort from New York city. Environmental Health Perspectives 115(3), 383Ͳ389. Impactofbuildingmaterialemissionsonindoorairquality:simultaneousquantificationof VOCsandformaldehydeinindoorairandattheair/materialinterface DelphineBourdin1,2,PierreMocho3,ChristopheCantau1andValérieDesauziers2 1 Nobatek,67ruedeMirambeau,64600Anglet,France Laboratoire Génie de l’Environnement Industriel (LGEI) – Mining school of Alès (site de Pau) – Hélioparc,2avenueduprésidentPierreAngot,64053PauCedex9,France 3 Laboratoiredethermiqueenergétiqueetprocédés(LaTEP)ͲUniversityofPau–RueJulesFerry– BP7511–64075PauCedex,France Contact:DelphineBourdin,R&DEngineer,dbourdin@nobatek.com Indoor air quality (IAQ) is nowadays recognized as a major public health issue. In France, the legislation is evolving with the publication of two decrees on indoor air quality in public buildings making compulsory to measure some pollutants and giving guideͲvalues for formaldehyde and benzene. Plus, the labeling of all building materials according to their VOCs emissions will become effectivein2013.Indeed,theimpactofbuildinganddecorationmaterialsonindoorairqualityisnow wellknownandrecognized.Inthiscontext,itisimportanttohaveefficientanalyticaltoolsableto studybothindoorairandair/materialinterface.Thesekindsoftoolscouldbeusedtorealizeindoor air diagnosis or to identify the materials responsible of an indoor pollution. All the standard or developingmethodsusedtoanalyseIAQorbuildingmaterialemissions(DNPHcartridges,Radiello£ tubes,FLEC£…)involveanalysisofVOCsandaldehydesbytwodifferentways.Thefirstoneisusually realized by gas chromatography (GC) whereas the second one is made by high pressure liquid chromatography (HPLC) after a derivatization. Our analytical method relies on solidͲphase microextraction (SPME). This sampling method consists in concentrating the pollutants on a fiber which is then directly desorbed into a GC injector prior to a gas chromatographic analysis. This samplingdevicewasusedtorealizesimultaneousquantificationofVOCsandaldehydes.Inorderto evaluatethe analytical performancesofthedevelopedmethod, thefiberwas exposed tostandard atmospheres enclosed in a 250mL vacuum sampling vial. The SPME extraction was made in static mode.AsSPMEcanbeconsideredasapassivesamplerthefirstFick’slawofdiffusioncanbeapplied. Thus, the amount of pollutant adsorbed on the fiber is proportional to the product of the concentrationofthepollutantinthevialandtheextractiontime.Theanalyticalmethodwastested on a mixture of 9 compounds: formaldehyde, acetaldehyde, toluene, pͲxylene, styrene, 1,2Ͳ dichlorobenzene, tetrachloroethylene, alphaͲpinene and hexanal. These compounds are either concerned by the labeling of building material products or representative of wooden construction. For these nine compounds, with FID detection, a good linearity was obtained up to a mg.mͲ3 concentrationlevelfora5minuteSPMEextraction.Witha20minuteSPMEextraction,weobtained limits of detection ranging from 1.4 to 11.3 μg.mͲ3 with FID and from 0.005 to 0.124 μg.mͲ3 with a massspectrometry(SM)detectionoperatinginsingleionmonitoring(SIM)mode.Itwasalsoproven thatairrelativehumidity(0Ͳ70%)didnothaveanyimpactonsampling.Finally,afirstcomparisonof our method with the standard one was made for the analysis of formaldehyde in indoor environmentsandemittedbybuildingmaterialsinanenvironmentalchamber.Theresultsobtained withthesetwomethodswerecomparable. 2 This simultaneous quantification of VOCs and aldehydes was then applied in a new office building, builtfollowingthe“HQE”approach.Inthemeetingroom,indoorairqualityaswellastheinterfaceof air/material were studied with our SPME analytical method. In indoor air four VOCs among our 9 modelcompoundswerequantified. For formaldehyde, all the material emissions were determined by a new method developed in our laboratory (patent pending). Air exchange rate was evaluated with a CO2 injection. From these results, a simple box model was applied to predict the formaldehyde indoor concentration in the studied room. The theorical concentration obtained was 6.4 μg.mͲ3 whereas the measured concentration was 7.0 μg.mͲ3. This modelling, which should be strengthened with further studies, could offer the possibility to predict indoor air quality and to try different scenarios in order to evaluatetheimpactofvariousparametersofbuildingmanagement(ventilation,materials...) A fast, sensitive and easy to implement analytical method for the evaluation of both VOCs and carbonyl compounds, including formaldehyde, was developed. The modeling of indoor air quality gaveveryencouragingfirstresultsandwillnowbeadjustedthankstoa6Ͳmonthstudyinanewhigh school. DevelopmentandvalidationofaColorimetricPassiveFluxSamplerforformaldehyde emissionratemeasurementsinindoorenvironments Guillaume Poulhet1,2,3, Sébastien Dusanter1,2,4*, Sabine Crunaire1,2, Philippe Karpe5, Yves Bigay5, Pascal Kaluzny3,NadineLocoge1,2,PatriceCoddeville1,2 1 UnivLilleNorddeFrance,FͲ59000,Lille,France 2 EMDouai,CE,FͲ59508Douai,France 3 TeraEnvironnement,Crolles,France 4 SchoolofPublicandEnvironmentalAffairs,IndianaUniversity,Bloomington,IN,USA 5 ETHERA,Grenoble,France * Correspondingemail:sebastien.dusanter@minesͲdouai.fr Formaldehyde(HCHO),classifiedascarcinogenictohumansbytheInternationalAgencyforResearchon Cancer[IARC2004],isoneofthemostabundantvolatileorganiccompoundinindoorenvironmentsdue to the presence of many diffuse sources such as building and furnishing materials (particleboard, hardwood plywood paneling, medium density fiberboard…) as well as point sources from human activities (cosmetics, carpet cleaners, tobacco smoke…). As a consequence, indoor concentrations are severaltimeshigherthanoutdoorlevels(afewʅg/m3)asobservedduringanationalcampaigninvolving morethan500Frenchdwellings(medianconcentrationof19.6ʅg/m3)[Kirchneretal.,2007].Itisworth notingthatindoorconcentrationsareusuallyhigherthantheactualguidelinevalueof10μg/m3forlong term exposures (HCSP: High Committee on Public Health, 2009), bringing questions about potential adversehealtheffectsthatcouldresultfromindoorexposure. Sincebuildingandfurnishingmaterialsareknowntobeamongstthelargestemittersofformaldehyde, an efficient reduction of indoor concentrations could be achieved by replacing these emitters by materials exhibiting lower emission rates. However, measurement techniques that are available to monitorinͲsituemissionratesareeithertoocumbersome(FieldandLaboratoryEmissionCellcoupledto asuitableanalyticalinstrument)ortootimeconsumingwhenadelayedlaboratoryanalysisisrequired (PFSͲPassiveFluxSamplers[Blondeletal.,2010;Shinoharaetal.,2007]).Itisclearthatthereisaneed todeveloprealͲtime,lowͲcostandeasyͲtoͲuseanalyticaltoolstopinpointthestrongestemittersandto quantify their impact on indoor concentrations of HCHO. It is a prerequisite to propose efficient strategiesforthereductionofindoorconcentrationsofformaldehyde. ETHERA, TERA Environnement and l’Ecole des Mines de Douai initiated a collaborative project to develop a lowͲcost PFS that is suitable for inͲsituand quasiͲreal time measurementsofformaldehyde emissionratesfrombuildingandfurnishingmaterials.ThisPFSismadeofasmallexpositioncell(5Ͳcm diameter,2.5Ͳcmheight)containingasensormadeofananoporousSolͲGelmatrice(SiO2)dopedwith FluoralͲP [Mariano et al., 2010]. When exposed for a few hours onto surface areas characteristic of indoor environments, the sensor acts as a trap where FluoralͲP selectively reacts with formaldehyde emissions. A color change of the sensor, depending on the amount of formaldehyde reacted, allows estimatingthestrengthofanemissionsourcebyasimplevisualcomparisontoacolorcodedchart.A lowͲcost optical detector can also be used to measure the sensor’s opacity at 410 nm to perform accurate and precise measurements of emission rates. This new colorimetric PFS is currently being calibratedbyexposingittobuildingmaterialswhoseformaldehydeemissionrateshavebeenmeasured using an emission chamber under standardized conditions (ISO 16000Ͳ9), as made previously to characterizeadifferentPFS[Blondeletal.,2010].PreliminaryresultsindicateagoodlinearityofthePFS responseandalimitofdetectionofapproximately10μg/m2/h,whichislowenoughforindooremission monitoring. In this communication, we will present a complete characterization of the performances of this new colorimetric passive flux sampler and we will discuss its potential for the identification of emission sourcesinindoorenvironments. References: Blondel, A., and H. Plaisance (2010), Validation of a passive flux sampler for onͲsite measurement of formaldehyde emission rates from building and furnishing materials, Analytical Methods, 2(12), 2032Ͳ2038. International Agency for Research on Cancer (IARC). 2007. Overall evaluations of carcinogenicity to humans.In:IARCMonographs,vol1Ͳ96 ISO16000Ͳ9:2006IndoorairͲPart9:determinationoftheemissionofvolatileorganiccompoundsfrom building products and furnishings – Emission test chamber method. Standard, ISO 16000Ͳ9:2006 (2004Ͳ05Ͳ15) Kirchner,S.,J.ͲF.Arenes,C.Cochet,andM.Derbez(2007),Étatdelaqualitédel’airdansleslogements français,Environnement,Risques&Santé,6(4),259Ͳ269. Mariano, S., W. Wang, G. Brunelle, Y. Bigay, and T.ͲH. TranͲThi (2010), Colorimetric detection of formaldehyde: A sensor for air quality measurements and a pollutionͲwarning kit for homes, ProcediaEngineering,5,1184Ͳ1187. Shinohara,N.,M.Fujii,A.Yamasaki,andY.Yanagisawa(2007),Passivefluxsamplerformeasurementof formaldehydeemissionrates,Atmosphericenvironment,41,4018Ͳ4028. Qualitédel’airintérieur:BilandesmesuresdeKudzuSciencesurlesCOVetaldéhydes dansl’airintérieur INDOORAIRQUALITY:REVIEWOFKUDZUSCIENCEDATAONINDOORVOCSANDALDEHYDESMEASUREMENT’S V.Peynet,T.MereuetC.Burg KUDZUSCIENCE,38ruedel’Industrie,CS80026,67401ILLKIRCHCedex,France, www.kudzuscience.com DepuisAvril2011,KudzuSciencecommercialisepourlesparticuliersetlesprofessionnelsdeskits d’analyse de l’air intérieur selon le concept du Home Testing®. Les kits d’analyse de l’air intérieur contiennent deux supports de prélèvement passif: le premier destiné au prélèvement des COVs (GABIE)etlesecondauprélèvementdesaldéhydes(SKCͲUMEX100).Lesprélèvementssonteffectués durant une période de 7 jours consécutifs et envoyés au laboratoire pour analyse accompagnés d’unefichedeprélèvementrenseignantlesconditionsduprélèvement. Les composés fixés sur les supports de prélèvement sont extraits à l’aide d’un solvant organique adapté,puisl’extraitestanalyséparchromatographieenphasegazeusecoupléeàunedétectionpar spectrométrie de masse (GCͲMS) pour les COVs et par chromatographie liquide couplée à une détection UV et par spectrométrie de masse pour les aldéhydes (LCͲUVͲMS). Les concentrations aériennes(μg/m3)sontensuitecalculéesàpartirdesconcentrationsmesuréesdanslesextraits.Les mesures réalisées sur un total de 26 COVs et de 8 aldéhydes sont présentées dans un rapport d’analysepersonnalisétéléchargeableavecunidentifiantunique. Enfonctiondelaconcentrationmesuréeetdelatoxicité,unindicedepollutionestattribuéàchaque composé. Ces indices ainsi que la concentration totale des 34 polluants recherchés permettent de déterminerunIndicedeQualitédel’AirIntérieurquiestuneévaluationglobaledelaqualitédel’air intérieur. La campagne de mesure réalisée par Kudzu Science en 2011 a porté sur plus d’une centaine d’habitationsrépartiessurl’ensembleduterritoirefrançaisetdansdifférentespiècesdeshabitations (salon, chambre, bureau…). Dans plus de 80% des cas, les résultats obtenus ont révélé un air de qualitémoyenneoumauvaise,impliquantlamiseenplacedemesurepouraméliorerlaqualitéde l’airintérieur. Un bilan des composés les plus souvent détectés est présenté avec leur occurrence dans les échantillons,lesvaleursmoyenne,maximumetmédianedesconcentrationsmesurées.Apartirdes données obtenues, une analyse statistique des résultats a été réalisée afin d’identifier des différences en fonction plusieurs facteurs dont la nature de la pièce analysée, les conditions d’aération…Uneétudedecasconcernantletétrachloroéthyleneseraégalementprésentée. SinceApril2011,KudzuSciencecommercializesuserfriendlyindoorairqualityanalyticalkitsfor privateindividualsandprofessionalsbasedonHomeTesting®concept.Indoorairquality analytical kits contain two passive samplers: one for VOCs sampling (GABIE) and one for aldehydes sampling (SKCͲUMEXͲ100).Samplingisperformedduringonecompleteweekandsamplesaresentbacktothe laboratorytogetherwithasamplingformgivinginformationaboutsamplingconditions. Thecompoundsthatwerefixedintothesamplingsorbentwereextractedusingappropriateorganic solvent,theextractswerethenanalyzedusinggaschromatographycoupledwithmassspectrometry detection (GCͲMS) for VOCs and liquid chromatography coupled with UV and mass spectrometry detection (LCͲUVͲMS) for aldehydes. Aerial concentrations (μg/m3) were calculated with concentrationsmeasuredintheextracts.Measurementsmadeonatotalof26VOCsand8aldehydes arepresentedinananalyticalreportthatcanbedownloadedusinguniqueID. Apollutionindexisattributedtoeachcompound,dependingonthemeasuredconcentrationandits toxicity.Theseindexesandthesumoftheconcentrationforthe34compoundsarethenusedtogive anIndoorAirQualityindexthatisadirectassessmentoftheindoorairquality. MeasurementcampaignperformedbyKudzuSciencein2011wasconductedinmorethanhundred homeslocatedinFranceandindifferentrooms(livingroom,bedroom,office…).Morethan80%of the results obtained indicated average or poor indoor air quality, which need actions to improve indoorairquality. A review of the most frequently detected compounds will be presented together with their occurrence in samples, mean, maximum and median value of the measured concentrations. A statisticalanalysisofthesedatawasperformedbasedonthenatureoftheroom;airingconditions… Acasestudyregardingtetrachlorethylenewillalsobepresented. LQ VMA VAI Fig.1:Indicedepollutionpourchaquepolluant/Pollutionindexforeachpollutant Fig.2:Indicedequalitédel’air/Indoorairqualityindex IndoorAirQuality:DeterminationoftheSecondarySourcesofFormaldehydeinEducational InstitutionsoftheRegionCentreofFrance YenyTOBON,1CaroleFLAMBARD,2BenoîtGROSSELIN,1MathieuCAZAUNAU,1AbderrazakYAHYAOUI,2FlorentHOSMALIN,2 PatriceCOLIN,2IvanFEDIOUN,1AbdelwahidMELLOUKI,1VéroniqueDAËLE1 1 InstitutdeCombustion,Aérothermique,RéactivitéetEnvironnement,CentreNationaldelaRechercheScientifique(ICAREͲ CNRS)/OSUC,1C,AvenuedelaRechercheScientifique,45071Orléanscedex2,France 2 Lig'Air–Réseaudesurveillancedelaqualitédel'airenrégionCentre,3RueduCarbone45100Orléans,France veronique.daele@cnrsͲorleans.fr ABSTRACT In this communication we present preliminary results of the studies carried out in educational institutions (elementaryandhighschools)oftheRegionCentreinFrance.IntheframeworkoftheFORMUL’AIRprojectwe havemeasuredformaldehydeandseveralvolatileorganiccompoundswiththeaimofidentifyingthesecondary sourcescontributingtoincreasetheindoorformaldehydeconcentration.Numericalsimulationsoftheairmotion inaclassroomhavealsobeenperformedtodeterminetheeffectoftheairrenewalanddefinethemoreeffective ventilationconfigurationadaptedtotheclassroomarrangement. INTRODUCTION Inthelastyears,indoorairqualityhasbecomeanimportantoccupationalhealthandsafetyissue.Infact,people spendmorethan80%oftheirtimeindoorswheretheconcentrationsofmanyVOCscanbeconsistentlyhigher thanoutdoorenvironments.1,2Formaldehyde,oneofthemainindoorpollutants,hasbeenrecognizedasahuman carcinogen compound by the International Agency for Research on Cancer IARC.3 It is used in several manufacturingprocesses,especiallytheproductionofwoodbindingadhesivesandresins. Formaldehyde can be released directly (primary sources) from some building materials, cleaning agents, disinfectants, pesticide formulations, paper products, cigarette smoke, etc. However, other VOCs could also contribute to increase the ambient formaldehyde levels through chemical reactions within the ambient air (secondarysources).4Consequently,theknowledgeofthesecondarysourcesofformaldehydecouldpermitnot only to decrease the formaldehyde indoor concentration by direct control of their precursors but also to contributetoformulateregulatorymeasures. METHODS TheexperimentswereorganizedinrepresentativeclassroomsofanurbanhighschoolinOrléansandanurban elementary school in Bourges from Mars 9th to 26th, 2012 and from June 1st to 18th, 2012 respectively. The ventilationofthehighschooldependsonasmallcontrolledmechanicalventilation(CMV)andnaturalventilation through doors, windows and two small natural ventilation grilles. The ventilation at the elementary school depends only on natural ventilation through doors and windows. Carbonyls compounds and other VOCs were collectedinparallelbyactivesamplerdevices(usingNDPHandAirͲToxiccartridges),PTRͲTOFͲMSandHCHO,O3 and NOx analysers. Comfort and confinement parameters as well as outdoor O3, NOx, and PM10 concentrations werealsomonitored.TrappedcarbonylͲNDPHcompoundswereextractedwith5mlacetonitrileandquantified usingHPLCwithaphotodiodearrayUVdetector(Jasco).AirToxictubesanalysiswasperformedusingathermal desorption technique with gas chromatography (GC) separation and mass spectrometry (MS) detection. Blank sampleswerealsoanalysedunderthesameconditions. RESULTS High schoolͲOrléans:Formaldehyde concentration variation monitored by the HCHO analyzer, with a resolutiontimeof30seconds,showedthattheindoor formaldehyde levels were kept between 3 and 20 μg/m3duringthecampaignwithanaveragenearto10 μg/m3.Asshowninfigure1,mostoftheformaldehyde peaksareproducedintheweekdays,generallywhen theclassesbeginoraftersomebreaks. Figure1.Formaldehydevariationatthehighschool. Acomparisonwiththetimetableoftheclassandsomeinformationcollectedbyaquestionnairehaspermittedto explain some variations of the formaldehyde. As it is expected, formaldehyde level is decreased when one or morewindowsareopenedandincreasedagainwhentheyareclosed.However,somesharpformaldehydepeaks appearwhenthestudentsarriveinthemorningoraftersomebreaks.Asitiswellknown,peoplecanincrease theindoorpollutionlevelsbyusingofrecentlydrycleaningclothsandperfumes. NocorrelationbetweenformaldehydeandVOCswereobservedexceptforterpens(C10H16)intheweekdays,with acorrelationfactoraround51%. ElementaryschoolͲBourges: Formaldehyde levels varied between 5 and 28 μg/m3 during the campaign with an average around 16 μg/m3 (Figure 2). The formaldehyde concentration was observed to increase on weekend 1 where the indoor temperaturereachedaround25°C(Thehighestindoortemperatureduringthecampaign).Desorptionprocesses havebeenevidencedbyanalysisofcorrelationbetweenformaldehydeandthetemperatureonweekends,witha correlationfactorof0.67. We have also found good correlation between formaldehyde and compounds as limonene (0.53), ɲͲ pinene (0.55), isoprene (0.43), butene (0.57), octene (0.57),3ͲhexenͲ2,5Ͳdione(0.52)andozone(0.50),but onlyonthenightdatawherewindowsanddoorsare closed. Temperature was not correlated at night. These observations could indicate some ozoneͲ induced reactions occurring indoors that form formaldehyde. Nonetheless, other campaigns and analysiswillbenecessariesandarealreadyplanned. Figure2.Formaldehydevariationattheelementary school CONCLUSIONS Firsts campaigns organized in educational institutions of the Region Centre in France provide indications of the indoor formaldehyde concentrations levels and variation according to the activities and human habits. Both institutionscanbeconsideredtohaveagoodairquality.However,theelementaryschoolisonthetargetvalue 10μg/m3. Inthiswork,wehavefoundsomeindicationsthatsecondaryformaldehydeismainlyproducedbyindoorozone reaction with terpens and unsaturated hydrocarbons. Nevertheless, other reactions pathways could also contributetothesecondaryformationofformaldehyde. Furtherexperimentswillbeconductedinordertohavemoreevidencesandbetteridentifythesecondarysources offormaldehydeindoors. ACKNOWLEDGEMENTS TheauthorsgratefullyacknowledgetheRegionCentreforthefinancialsupportoftheFORMUL’AIRprojectand the staff of the educational institutions CP and NL for their assistance and valuable collaboration during the campaigns. REFERENCES 1. Jones, A.P. Atmos Environ, 1999, 33, 4535-4564. 2. Hodgson A. T.; Beal McIlvaine D. Indoor Air 2002, 12, 235-242. 3. International Agency for Research on Cancer (June 2004). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Volume 88, 2006: Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxypropan-2-ol. 4. M. Nicolas, O. Ramalho, F. Maupetit. Atmos Environ, 2007, 41, 3129-3138. Présentationproposéepar: ͲLavilledeNogentsurMarne ͲEtiennedeVanssay,Dr(+33628090954)ͲDirigeantdeCapEnvironnement,PrésidentdeFimea En2010,laVilledeNogentsurMarne,devançantlalégislationaémisunmarchépourlaréalisation de mesures de la qualité de l’air intérieur dans les établissements recevant la petite enfance et relevantdesaresponsabilité. Après une présentation du contexte et des enjeux motivant la Ville de Nogent sur Marne dans sa décision de faire réaliser une campagne de mesure de la qualité de l’air intérieur dans les établissements de la commune, nous présenterons la méthodologie déployée (protocole LCSQA / phase pilote campagne nationale) et les résultats obtenus au travers de quelques retours d’expériences contrastés (très bonne qualité de l’air, moyenne qualité et dépassement de seuil) et descasdefiguremettantenperspectivelesproblématiquesquel’onpeutretrouverconcernantle benzène,leformaldéhydesetleCO2. Suivra une rapide présentation des éléments clés des décrets promulgués dans le cadre de la réglementation de la qualité de l’air intérieur dans les établissements recevant du public (décrets 2011Ͳ1727et1728du2décembre2011et2012Ͳ14du5janvier2012)parussuiteàlaréalisationde laphasepilotedescampagnesdemesuresdanslesécolesetcrèches. Lasecondepartiedelaprésentationporterasurlastratégiedegestionadoptéefaceàlaprésence dansundesétablissementsdeformaldéhydeàdesniveauxdépassantlesseuilsrecommandés.Les étapes de cette démarche seront décrites et commentées à la fois sur un plan technique (méthodologie de recherche des sources, procédure de suivi régulier) et sur un aspect de gouvernance(mobilisationetinformationdespartiesprenantes,recherchedessolutionsàmettreen œuvreetplanificationdesactions). LaconclusionseradéveloppéepourlaVilledeNogentsurMarnequiprésenteralesbénéficesqu’elle aputirerdecetteexpérienceenanticipantl’applicationdelaréglementation. Chemical and Colorimetric Sensors for the Detection of Nitrogen Trichloride at ppb Level T.-H. Nguyen1,2, J. Garcia1, T.-D. Nguyen1, A.-M. Laurent3, C. Beaubestre3, T.-H. Tran-Thi1 1 CEA-Saclay, DSM/DRECAM/SPAM/Laboratoire Francis Perrin, URA CEA-CNRS 2453, 91191 Gif-sur-Yvette Cedex, France 2 3 ETHERA R&D, CEA-Saclay, Bât. 451, F-91191 Gif-sur-Yvette Cedex, France Laboratoire d’Hygiène de la Ville de Paris, 11 rue Georges Eastman, 75013 Paris, France In swimming pools, chlorine (Cl2) is used as a disinfectant to minimize the risk to users from microbial contaminants. In water, Cl2 is transformed into hypochlorous acid (HOCl) which reacts with nitrogen compounds like saliva, sweat, urine and skin, leading to the formation of several chloramines, such as monochloramine, dichloramine and nitrogen trichloride (NCl3)[1]. Because of its low solubility in water, the produced NCl3 is essentially found in the air. This toxic gas provokes significant eye and respiratory irritations in swimmers and pool attendants, [2] and epidemiologic studies have recently shown that it can induce asthma, especially in children [3]. The detection and analysis of NCl3 at ppb level has become of great importance. However, there is currently no direct and selective method of measurement of NCl3 in the atmosphere. The development of innovative chemical sensors for the direct detection of nitrogen trichloride, is described. They are based on nanoporous materials with high adsorptive properties and whose pores are tailored to become efficient nanoreactors. These nanoreactors, are designed to enhance a specific reaction between a probe molecule and NCl3, thus providing rapidity and high sensitivity. These sensors can detect NCl3 at ppb level within 20 minutes in humid atmospheres (RH:80%) at ambient pool temperatures. Due to the fast change of colour, from transparent to violet-blue visible with the naked eye, these sensors can be used to monitor the air quality of indoor pools in public or private areas and in food processing plants. We will show the comparison of the sensor performance to the currently used, but indirect, methods during campaigns of measurements in swimming pools. References 1] C. Colin, M. Brunetto, R. Rosset, “Les chloramines en solution : préparations, équilibres, analyse”, Analusis, 1987, 15(6), 265-274. [2] M. Héry, G. Hecht, J. M. Gerber, J. C. Gendre, G. Hubert, J. Rebuffaud, “Exposure to chloramines in the atmosphere of indoor swimming pools“, Annals of Occupational Hygiene, 1995, 39, 427-439. [3] A. Bernard, S. Carbonnelle, X. Dumont, M. Nickmilder, “Infant swimming practice, Pulmonary epithelium intregrity and the risk of allergic and respiratory diseases in childhood”, Pediatrics, 2007, 119, 1095-1103. !"#$<!" >\^>"_#_`#_{|}"~" {|___|__"___"_ "#_|__|\_|__"__|_ }"__"_|"\_|"_ "_ }"_ _ _| _ ___ | {|"__"__{| "__|_|__|__|__ "_ _| _ _| | _ _| {| ___|_{|"_ __|{|_""___"_ _|__|_ {|__||""__|"__"_""_ _||___|__|_"__| _""___}"_____"{|| _|"_"|"\\_" !{|____| _____|{||__ _"___""|^__|}" _ _ "| _ _ |_ " " _ __ __"___"_____"|_|_ _ _ _| | " "_ _| "_}"_$#^^_^ "_" }"_ " _| __ _| _| "_ "_ __" _ _ "_ | ^_|_ _ !^"__|___|_|{_{\__ _| __ }" }"_ "_ _ _ "_ _| | |__ _| {|>\^_!""__|"_ ! ¡#¢__|_|"_| ! "_ _ _| "__ _ _| _|"_ }"__ }"___ " _{|__|_"__"||"| _|_|___|"__"____|"_ "_"____|"_"_"_ "#!${|_|___|__ __|_|"_""_" _|{|__ __||___| _ _ _ " _ || _| _"_ ^ _| _| "__ "_||___ #% _ _" _| {{|__ "_ _| _ _ _| _ £ ^ {_| _ __ _| _ #|_ # _ _ __ _ \"" !_|"|!!\ __ _| __ _| _ ! ¤"_^ " _| _ ^_^ _ _" _ $_|__ \_ _|__| \_ "_ $_|"__ \ _| | _ ¤| $_|_ ___|__ \_ #__ "_ _ _ "" "_}"¤ |_ _| _ _| \___ || \_ _ { _| >¤" _|_#> ^_ _|"__ !"_ "_ _ >| >~ | "_ ^ "__ _| _ _ "_ _ |||_ _| _ _ _ _ "_ _| ___|___|_ !&#{|"_"___|_|"__|" "_ _| _ _| _| "| "_ _ || _ ___|_|_|"__¤ _ _ "_ _ _| _| _ "_ _ _| {| _ _| _ ¥ _ | _|_ _| _"__|___}"____|" ¥¥___||_|_| __|"__"|__|_^__|_| _|_|^___| ___ _|__"___"_ ( )*+/ )001 ^ _~" |_ "_ _ {|}" ~" 2+033+4/)003>\^__ _|~_|_~">¦|__$"_ __~_$"__"~|_ 21*(00+56/+**7"____|"_}"____"_ "|__ 89 ;<#/)0/+***$"#_^_^"___$_ "_\$"_^"_ 0303=9+/)000{____|\___|"_ >2)40/+**)^"_"_!___|"|____ _| >8 88?/? 8?@/?>28E G8?>/?=8?/?HE8?H//%8 8?=/I)0+)J "______|| _"\\_"¡ § 7, Boulevard de la Libération, 93200 Saint-Denis Tél. 33 (0)1.42.43.16.66, Fax 33 (0)1.42.43.50.33 Email : contact@fluidyn.com http://www.fluidyn.com La modélisation 3D de la qualité de l’air en milieu confiné, un outil de conception et de diagnostic L. Ait Hamou, G. Vaton, A. Tripathi, C. Souprayen Corr. Lobnat.ait-hamou@fluidyn.com, FLUIDYN France 7 bld de la Libération 93200 SAINT-DENIS Après l’accent mis sur la déperdition énergétique qui a amené à isoler au maximum habitations et espaces collectifs, il est maintenant de notoriété publique que la qualité de l’air intérieur est souvent plus dégradée par rapport à la qualité de l’air extérieur, en raison d’un taux médiocre de renouvellement de l’air ainsi que d’émissions accrues de polluants à partir de matériaux présents. La qualité de l’air intérieur est donc devenue un enjeu de santé publique qui intervient aussi bien au niveau du diagnostic sur les sites existants qu’au niveau de la conception sur les bâtiments nouveaux. Cette préoccupation grandissante a pris notamment la forme d’un décret paru en 2011 enjoignant de surveiller périodiquement et éventuellement remédier à la qualité de l’air dans les Etablissements Recevant du Public, en particulier les établissements d’accueil des mineurs. Afin de diagnostiquer un état de fait pour un établissement existant, les mesures sont nécessaires car elles permettront de fournir une mesure objective. Cependant les mesures restent locales et ciblées dans le temps et ne peuvent représenter l’intégralité du diagnostic à moins d’un déploiement coûteux. D’autre part, les mesures ne peuvent évidemment pas permettre de prédire la qualité de l’air d’un bâtiment au stade de l’avant-projet, pas plus que de privilégier une conception plutôt qu’une autre. En complément de la mesure, la simulation numérique permet d’obtenir des informations sur les zones faiblement ventilées, zones de fortes concentrations, les zones de forte convection thermique et éventuellement le couplage avec l’émission en lien avec l’écoulement et la température sur les surfaces. Elle permet également de définir rapidement l’impact de préconisations qu’elles soient liées à des modifications de ventilation ou de matériaux, visant à la réduction de niveaux élevés de concentrations. Parmi les différentes modélisations possibles, la simulation 3D basée sur les équations de la mécanique des fluides (CFD) est un outil puissant et précis. Les outils généralistes de simulation CFD sont souvent jugés hors de portée des bureaux d’étude, architectes et concepteurs, du fait de leur complexité et de temps de calculs élevés. Une solution logicielle dédiée ouvre l’accès à la CFD à un usage plus répandu. Un nouvel outil logiciel de simulation numérique 3D, fluidyn-VENTIL, est proposé, alliant une interface simple et aisée avec des méthodes numériques pertinentes et efficaces. Cet outil a été conçu avec un certain nombre d’objectifs : - Prise en compte facilité de la géométrie des bâtiments, structuration en pièces et communications (portes, couloirs) prise en compte de conditions aux limites externes (fenêtres, ouvrants) et de l’occupation interne (encombrement, obstacles, sources). - Possibilité de présenter des émissions canalisées et diffuses multiples simultanément. - Possibilité d’ajouter les ventilations forcées mais aussi les ouvertures vers l’extérieur ainsi que les points chauds (équipements actifs, personnes) entraînant les écoulements par convection naturelle. Les résultats attendus répondent à plusieurs points des exigences réglementaires et HQE : - Conformité avec les seuils de qualité de l’air par la connaissance détaillée des champs de concentration de polluants - Qualification et connaissance des sources d’émission par comparaison des résultats de concentration avec les mesures. - Evaluation des différentes solutions proposées (positionnement et puissance de la ventilation, ouverture, etc.) - Arbitrage entre les objectifs parfois contradictoires de qualité de l’air, confort des usagers et déperdition énergétique. L’outil contient une interface dédié pour la construction de la géométrie des volumes, pièces et bâtiments exploitant une base de données d’objets, base augmentable, et de menus permettant la mise en place aisée des conditions aux limites pour les sources et éléments actifs (au sen aéraulique). Une illustration simple de l’interface associée est fournie ci-dessous Figure 1 avec les principales étapes de mise en place. a b c Figure 1 : Interface VENTIL et étapes de construction – (a) Volume et ouvertures – (b) équipement et occupations (c) cloisonnements et sources. La base de la simulation repose sur la résolution des équations de la mécanique des fluides avec cependant un choix orienté (pour aider l’utilisateur) sur une technique numérique robuste, les maillages 3D automatiques des domaines de simulations, la reprise/multiplication de scénarios dont les performances doivent être comparées. L’analyse des résultats est réalisée avec des visualisations 3D, des coupes et des bilans en termes d’efficacité (taux de captation, temps de séjours, flux et vitesses/humidités (pour le confort), bilans thermiques globaux. Les extraits Figure 2 ci-dessous de la partie post-traitement de l’interface illustrent quelques rendus graphiques fournissant l’aide à l’interprétation et les analyses d’implantation d’équipements. b c a Figure 2 : Exemples de sorties de simulations par Ventil – (a) concentrations multidomaine, (b) zoom sur le développement initial autour d’un équipement) (c) distribution des champs de vitesse. Une étude de cas sera présentée pour montrer la mise en œuvre et les applications possibles. Ce cas présente l’intérêt de montrer les couplages intérieur/extérieurs pouvant se développer naturellement sur des bâtiments avec ouvertures (aéraulique externe fournie par un outil d’écoulement atmosphérique) et des sources chaudes (problématique industrielle récurrente) avec des sources associées. La Figure 3 cidessous montre un état développé de l’aéraulique et des concentrations. Un pré calcul en aéraulique externe initialise le problème et les lignes de courant en convection chaude sont analysées. a b c d Figure 3Exemple de mise en œuvre industrielles (a-b) vitesses et pression externe au site (c ) lignes de courant visualisant le transport convectif interne (d) concentrations en coupe du bâtiment Une analyse de design (captation) est aussi proposée. 2012 Modélisationdelaqualitédel’airàl’intérieurdehallsindustriels NumericalModelingforindoorairqualityinindustrialhalls CatherineTURPIN Ingénieurd’étudesetdedéveloppement catherine.turpin@sillagesͲenv.com SillagesEnvironnement 64,chemindesMouilles69134ECULLYCedex www.sillagesͲenv.com Un habitant des pays industrialisés passe en moyenne 90% de son temps dans un milieu confiné(habitations,bureaux,transports,etc.),cependantl’airintérieurpeutparfoisêtrepluspollué quel’airextérieur.Larécenteprisedeconsciencequelaqualitédel’airintérieurserévèleêtreun enjeusanitairemajeurs’accompagneaujourd’huid’unevolontédemieuxmaîtriserlaqualitédel’air àl’intérieurdesdifférentslocauxquenousoccupons. En regard des problématiques de qualité d’air à l’intérieur de halls industriels, la société Sillages Environnement, experte dans le domaine de la modélisation de la mécanique des fluides environnementale, réalise des études numériques permettant de déterminer l’aéraulique, la thermique ainsi que la toxicité dans de telles enceintes. Différents méthodes de modélisation peuventêtremisesenœuvreenfonctiondudegrédecomplexitédubâtimentàmodéliseretdela précision spatiale souhaitée. A titre d’exemple, un modèle multizone permet d’obtenir une information moyenne dans une pièce d’un bâtiment, et un modèle CFD (Computational Fluid Dynamics), le plus précis à ce jour, modélise chaque pièce par des milliers voire des millions de cellulescontenantchacuneuneinformationdistincte. L’objectif de la présentation est d’exposer la méthodologie, mise en œuvre par Sillages Environnement,permettantdereprésenterlaqualitédel’airàl’intérieurd’unbâtiment.Autravers d’exemplestypessurdessitesindustriels,l’ensembledespossibilitésd’applicationserontprésentés. ATMOS’FAIR International Conference – LYON – September 26th & 27th 2012 M.PETITPhilippe,CIATResearch&InnovationCenter, Healthandhygienelaboratorymanager 700AvenueJeanFalconnier,01350CULOZ PhoneNr:+33(0)479424368–Fax:+33(0)479424013 Email:p.petit@ciat.fr VAICTEURAIR2(1)project:forahealthyAIR,acomfortableAIR,a“LowEnergy”AIR 1 2 9 9 9 9 3 withthesupportof et Introduction: Howtointegratethenewlegalenvironmentalrequirementsforenergyreductionandforindoorairquality in the buildings? How to find efficient solutions to Human Health and comfort in indoor environments in whichhespends85%ofhistime?Howtoconsiderthosenewtechnicalandhealthchallengeswherethe issueofindoorairqualitywillincreasewiththe“LowEnergy”buildings?CIATanditspartnershavecome together to work on a comprehensive and systemic approach of buildings in an attempt to answer these questions:itisthebirthofVaicteurAIR2projectofficiallylaunchedinNovember2008,withthesupportof OSEOandADEME. PresentationofVaicteurAIR2projectinfewwords: Purpose: Develop new innovative components for both HVAC (Heating, Ventilation, Air Conditioning) and IAQtechnology,heatpumpscoupledornotwithrenewableenergysources,efficientheatexchangers,air broadcastersanddistributors,linesensorsandaircleaningtechnologies. Schedule:2008/2014 Partners:industrialsCIAT,CAIRPOL,FAUREQEI,TECSOL publiclaboratoriesCSTB,LaSIE(UniversityofLaRochelle),CEA,IUSTI,INERIS R&Dbudget:25M€,financialhelp:10M€ PresentationofresultsinthetasksdedicatedtoIAQ: 9 Transports, transfers, deposits: Develop knowledge on the mechanisms and physical elementary phenomena determining the transfer of particulate, chemical or biological pollutants in ambient atmospheres and in the different components of the air handling units. Translate this knowledge into softwaremodulesoftypeinput/outputrepresentingthebehaviorofpollutantsinthesystemorthetype ofatmospheretargeted Oneofthemainresultsofthisworkistherealizationofamodel,coupledwithTRNSYS,whichsimulatethe spread of different types of pollutants between the outdoor and the indoor of a building such as offices buildingsorhospitals(egahospitalroom). 1 VǯA I±CرǤTEURǤA ǯIR± ȀR ATMOS’FAIR International Conference – LYON – September 26th & 27th 2012 9 Biologicsensor:Developanoriginalsensorforthedetectionoftargetedmicroorganismsintheair (bacteria,viruses). This sensor is mainly dedicated for the fight against nosocomial infections. The specifications have been madeinthisdirection.CEAͲLeti,themainactorofthistaskhasdevelopedthesensorinthreemodules:the sample collection, sample preparation and finally the sample analysis by PCR which allows identification andquantificationoftargetspeciesinalmostrealͲtime. 9 Particulatesensor:Realizationofasensorwhichcanbeintegratedintoventilationsystemsandcanmonitor the air quality. Integration of the sensor into a ventilation system and real tests. Software development usingthesensorcouplingtotheventilationsystem.ThissensormustallowcontinuousmonitoringofPM10 andPM2.5levelsinindoorenvironments.ThistaskismainlycarriedbytheCAIRPOLcompany 9 HealthImpact:Developandimplementamethodtotargetprioritypollutantsintermsofhealthissues,and integrate these selected pollutants in all stages of the project process to ensure the protection of people livingintheindoorenvironmentsstudied. This task, mainly driven by INERIS and LaSIE has allowed the development of a methodology for prioritization of pollutants in living spaces, according to their dangerousness and their frequency, determining in particular, indices of acute and chronic risks. This methodology thus completes a database calledPANDORE(acompilationofpollutantemissionsfromindoorair)enrichedduringthiswork.Itisfreely availableonthewebsiteofLaSIE(http://leptiab.univͲlarochelle.fr/PresentationͲPANDORE.html) 9 Demonstrators: Returns of experience in real conditions on the use of equipment and control systems developed. A new commercial building BBC (second half of 2012), will be specifically instrumented to monitorIAQ,dependingontheoccupation,activity,particulateandchemicalpurificationsystemsdrivenby controlalgorithmsspecificallydeveloped.Themonitoringcampaignmustbeheldbetween1and2years. 4 Conclusionsandprospects: TheVaicteurAIR2project,currentlymidterm,hasalreadyallowedtoseeanumberofachievementsbothin the field of energy optimization of buildings and in the area of IAQ. Advancement of knowledge, developmentofequipmentsorsoftwaretoolsforforecasting,dedicatedsensors,areallresultsofthiswork. ADEME has confirmed its confidence by launching, early this year, a second phase of work dedicated to residential buildings DoesphotocatalyticdeviceincreasetheformaldehydeconcentrationduringVOCdegradationinindoor airconditions? DrB.Kartheuser,SeniorScientist CERTECHasbl,RueJulesBordetZoneindustrielleC,7180Seneffe,Belgium Benoit.kartheuser@certech.be www.certech.be Today,mostpeoplelivinginindustrialareas,particularlyduringthecoldermonths,spendaround90%oftheir timeinclosedenvironmentwithonlyshortairingperiods.Atthesametime,heatͲinsulatingmeasuresdecreasethe freshairsupplyandleadtoanincreasingaccumulationofemittedsubstances,sometimesexceedingthevalues measuredinoutdoorair. Sourcesofindoorairpollutionmayoriginatefromthecombustionofoil,gas,coal,wood,tobacco;building materialsandfurniture;productsforhouseholdcleaningandmaintenance,personalcareorhobbiesandoutdoor airpollution.Inaddition,manyhealthproblemsarecausedbybiologicalagentssuchasfungi,moulds,bacteriaand othermicroͲorganisms. Thevolatileorganiccompounds(VOC)orsemiͲvolatileorganiccompounds(sͲVOC)foundinindoorairaremainly aromatic,aliphaticandchlorinatedhydrocarbons,,terpenes,carbonylderivatives,alcohols... Thecontrolofindoorairqualityisthenbecomingamajorconcerninmodernbuildings,duetotheirincreased insulationforenergysavingandtotheuseofmaterialscontainingvolatilechemicals.Indoorairisacomplex mediumcontainingVOCs,pathogenicornonͲpathogenicmicroorganismsandaerosols.Abettercontrolofthisair pollutioninenclosedenvironmentmaybeachievedbycontrollingpollutionsources,increasingairexchangeand purifyingthepollutedair. Severalpurificationtechniquesmaybeusedseparatelyorincombinationdependingonthecomplexityofthe mixtureofpollutantsintheairtobetreated:particlesfilters,VOCadsorption,airionisation,VOCdegradation... Thedevicescanbeinstalledintheduckworkofahome’scentralheating,ventilatingandairconditioningorcanbe usedasstandͲalonesystemplacesinsingleroom. Photocatalyticoxidation(PCO)aircleaners,operatingatroomtemperatureandatmosphericpressure,arewell suitedforcontaminatedairwithlowpollutantconcentrationandflowrate.Thustheycanachievethenecessary reductionsinindoorVOCconcentration. Manydifferenttypesofphotocatalyticmaterialsareavailableonthemarket,theycanbesplitintwocategories: thepassivematerialssuchaspaints,wallpapers,tiles,curtains...forwhichpollutantsneedtoreachthesurfaceof theactivematerials,andactivematerials(airpurifier)onwhichpollutantsareforcedtomeettheactivematerials lightedwithUVlight. Thereisaneedforstandardisationduetothefactthatitisdifficulttocompareresultsobtainedfromdifferent laboratoriessincealotofdifferentoperatingconditionsareused:pollutantconcentrations,typeoflighting, temperature,relativehumidity... AstandardatFrenchlevelwaspublishedin2009,AFNORXPB44Ͳ013toassessthephotocatalyticactivatedof standͲaloneairpurifierandisundervalidation.ThisstandardisproposedatCENlevelandisunderdiscussion. CERTECH, association sans but lucratif associée à l’Université catholique de Louvain Zone industrielle C - Rue Jules Bordet - B-7180 Seneffe Tél.32(0)64 52 02 11 - Fax 32(0)64 52 02 10 TVA BE 0470.677.454 - IBAN : BE87.3701.1282.1494 - BIC : BBRUBEBB E-mail : info@certech.be http://www.certech.be n°400-TEST ThisstandardproposestoworkwithaVOCmixturerepresentativeoftheindoorairpollutant:acetaldehyde,nͲ heptane,acetoneandtoluene.Theairpurifiersaretestedinaclosedchamberofabout1m³.Theprotocolrequires toverifythemineralizationthroughtheproductionofCO2,butalsototracebyͲproductsthatcanbereleaseinthe gasphase.ManystudiescarriedoutonthedecompositionofsingleVOCshowedthatformaldehydeisoneofthe majorbyͲproductreleasedintheairfromthephotocatalystsurfaceandformaldehydeisoneofthemajor concernedinindoorairquality However,thestandardisnotabletoanswertothefollowingquestion:doesphotocatalyticdeviceincreasethe formaldehydeconcentrationduringVOCdegradationinconcentrationclosedtoindooraircondition? Inaclosedchamber,itisobviousthatformaldehydewillbefound,mainlyatthebeginningoftheexperiment,in thegasphase.Butisitthesame,ifformaldehydeisaddedtothestandardmixture? ThispaperwillpresentrelevantresultsobtainedinclosedroomswithairpurifiersfortheremovalofVOCmixture includingornotformaldehydeatlowVOCconcentration. OneexampleofVOCconcentrationasafunctionoftimeincludingformaldehydeispresentedinfigure1. Fig1:EvolutionofVOCconcentrationversustime. Thepaperwillshowtheimportancetohavegoodstandardtoassessthephotocatalyticactivityofmaterialsanda labeltoguarantythatthesystemsthatareonthemarketaresaveandwillnotcontributetoincreasetheindoor airpollution. CERTECH, association sans but lucratif associée à l’Université catholique de Louvain Zone industrielle C - Rue Jules Bordet - B-7180 Seneffe Tél.32(0)64 52 02 11 - Fax 32(0)64 52 02 10 TVA BE 0470.677.454 - IBAN : BE87.3701.1282.1494 - BIC : BBRUBEBB E-mail : info@certech.be http://www.certech.be n°400-TEST Dépollutiondel’airparphotocatalyse,l’étatdeslieux,développementsfuturs.Stratégie pourprogressersurunmarchéémergent Présentation de Didier CHAVANON gérant de BMES et de Pascal KALUZNY gérant de TERA Environnement, Président de la commission AFNOR B44A (Photocatalyse) et du CEN TC 386 (Photocatalysis) , (tous deux membres de la FFP Fédération Française de la Photocatalyse et partenairesduprojetCOVKO) BMESjeuneentrepriseinnovante,spécialiséedansletraitementdel’eauetdel’airpartechnologie UV et par Procédés d’Oxydation Avancée (POA) comme la photocatalyse, s’est positionnée avec 9 entreprisesLyonnaisesdontTERAEnvironnement(5Pme,3laboratoires,1utilisateur)pourmenerà bienleprojetCOVKO«0Microorganismes»«0COV»«0deurs». Partieduconstatsuiteàlaparutiondel'articledansRisqueetSantédeJanvier/Février2011queles matérielsprésentssurlemarchén’étaientpasd’unegrandeefficacité(desmatérielsproduisaient euxͲmêmesdespolluants),BMESavecsespartenairesontdécidédereleverledéfi: Développerlemarchédeladépollutiondel’airintérieur,retrouverlaconfiancedeconsommateurs déçus pour certains et suspicieux pour d’autres, assurer un résultat final non contestable pour l’utilisateur. Pour cela COV KO, projette de concevoir des matériels innovants (faible bruit, basse consommationLED,technologiePOA)sécurisés(indicationdemauvaistraitement)quirépondent auxattentesdesclientsavecdestestsenlaboratoiresetinsitu(maisonvideouencoreavecla présencedeshabitants),avecunelabellisationdequalitédedépollutionreconnueetincontestée, quiprennentencomptelesnormesactuelles. Unétatdeslieuxdesnormesexistantesautourdesépurateursd’airseradoncprésenté(notamment cellesexistantsauseindelacommissionAFNORB44A). LadémarchemiseenœuvreparlaFFPpourmettreenplacecelabelseraégalementdécrite. Indoorairpollutionremovalbyphotocatalyticprocess,stateofart,futurdevelopment.Strategy forthisemergingmarketdevelopment PresentationofDidierCHAVANONBMES’SCEOetdePascalKALUZNYTERAEnvironnement, ChairmanofAFNORB44AcommissionandofCENTC386(Photocatalysis) (membersofFrenchFederationofPhotocatalysisandpartnersonprojectCOVKO) BMESisastartupandengineeringandconsultingfirmandalsoamanufacturerthatspecializes inthedesignandthemanufactureofunitsfortreatmentofwaterandairwithUVtechnologyand withAdvancedOxidationProcesses(AOP)asphotocatalysis.With9partnersofLyon’sareaofwhich TERAenvironment(5companies,3laboratories,1Enduser)tobringtoasuccessfulconclusionthe COVkOproject"0Microorganisms""0VOC""0smells". LeftthereportfurthertothepublicationofthearticleinRiskandHealthofJanuary/February,2011 when the present equipments on the market were not of a big efficiency (equipments produced themselvespollutants),BMESwiththepartnersdecidedtotakeupthechallenge: Developthemarketofthecleanupoftheinternalair,findtheconfidenceofconsumersdisappointed forcertainandsuspiciousfortheothers,guaranteeanotquestionablefinalresultfortheuser. COV KO, intends to design innovative equipments (low noise, low consumption LED, AOP technology) with safety information if the unit doesn’t work efficiently, which answer customer expectations with tests in laboratories and in situ (empty house or still with the presence of the inhabitants),withaqualitylabelingofrecognizedanduncontestedcleanup,whichtakeintoaccount thecurrentstandards. Aninventoryoftheexistingstandardsdealingwithairpurifierswillthusbepresented(inparticular thoseexistingwithincommissionAFNORB44A). ThestepimplementedbytheFPtosetupthislabelwillbealsodescribe BMES PARCARIANE2 290RueFerdinandPERRIER 69800SAINTPRIEST Téléphone+33(0)960041024 Mobile+33(0640191328 didier.chavanon.@bmes.fr www.bmes.fr 628,RueCharlesdeGaulle38920CROLLES PascalKALUZNY Tel:0476921011 Fax:0476908524 Email:pascal.kaluzny@teraͲenvironnement.com Siteweb:www.teraͲenvironnement.com Jeudi 27 septembre 2012 Emissions Industrielles / Industrials Emissions 09h00 - 09h40 Focus réglementation / Regulation focus Emissions atmosphériques des véhicules et contraintes juridiques / Vehicle emissions : regulatory constraints Anne-Caroline Urbain, Jones Day Pollution de l’air et émissions industrielles : vers un renforcement des règles relatives à la limitation des émissions polluantes / Air pollution and industrial emissions : toward a reinforcement of the rules relating to the limitation of pollutant emissions Carine Le Roy Gleizes & Corentin Chevallier, Winston & Strawn Obligations et responsabilités liées à la qualité de l’air extérieur / Obligations and responsabilities related to outdoor air quality Laurence Lanoy, Laurence Lanoy Avocats 09h40 - 10h00 Emissions atmosphériques de l’agglomération de Marrakech / Air emissions inventory of the urban agglomeration of Marrakech Erik Sinno, Environ France 10h00 - 10h20 Coffee Break 10h20 - 10h40 Les émissions atmosphériques du compostage : bilan des connaissances et des méthodes d’évaluation / Existing knowledge of atmospheric emissions from composting facilities Isabelle Déportes, Ademe 10h40 - 11h00 Méthodologie d’évaluation des risques sanitaires : application aux rejets gazeux d’une chaudière biomasse / Methodology for health risk assessments: application to gaseous discharges of a biomass boiler Christophe Royer, Bertin Technologies 11h00 - 12h00 Table ronde / Round table Les pesticides / Pesticides Regulatory approach for risk assessment of pesticides in air Sari Nuutinen, ANSES Simulation numérique de la dispersion de pesticide à l’échelle des rangs de vigne et de la parcelle / Numerical simulation of the pesticide dispersal at the level of vineyard rows and plots Ali Chahine, SupAgro Montpellier Surveillance des pesticides dans l’air / Surveillance of pesticides in air Bernard Bonicelli, IRSTEA Utilisation de l’abeille (apis mellifica) pour la bio-surveillance de pollution agricole (pesticides). Illustration avec l’utilisation d’un compteur d’abeilles par vidéosurveillance pour le suivi à distance et en temps réel de la mortalité au sein des colonies / Using the bee (Apis Mellifica) for bio-monitoring agricultural pollution (pesticides). Case study via use of a video based bee counter for remote monitoring and real-time mortality in colonies Benjamin Poirot, Apilab 12h00 - 12h20 Modélisation de la dispersion atmosphérique de polluants sur sites industriels / Numerical modeling of atmospheric pollutants on industrial sites Catherine Turpin & Perrine Volta, Sillages Environnement 12h20 - 12h40 Plum’Air, un nouvel outil pour la surveillance des odeurs et de la qualité de l’air dans l’environnement des sites industriels / Plum’Air, a new tool to control odour annoyances and air quality around industrial plants Frédéric Pradelle, Numtech 12h40 - 13h00 Questions - Answers - Discussion 13h00 Déjeuner / Lunch 14h00 - 14h20 L’analyse des COV, gaz permanents et composés soufrés par μGC/ MS sur site : une alternative aux méthodes usuelles - Etudes sur un gaz sidérurgique Karim Medimagh, Explorair 14h20 - 14h40 Qualité de l’air intérieur : démarche de contrôle des agents chimiques dangereux dans les ateliers et bureaux de PSA Peugeot Citroën / Indoor air quality: hazardous chemicals process control in the workshops and offices of PSA Peugeot Citroën Juliette Quartararo, PSA Peugeot Citroën 14h40 - 15h00 Système multi-sites de surveillance et gestion des odeurs. Etude d’un cas concret / Multi-sites system of monitoring of odour : a case study Jean-Michel Turmel, Odotech 15h00 - 15h20 Caractérisation et traitement des fumées de bitume / Characterization and treatment bitumen fumes Jérôme Rheinbold, Colas Environnement 15h20 - 15h40 Mise à l’échelle d’un système de biofiltration methanotrophe pour la réduction des GES générés par un lieu d’enfouissement au Québec (Canada) / Scale-up of methanotrophic biofilters to reduce GHG generated by LFG in Quebec (Canada) Nicolas Turgeon, CRIQ & Matthieu Alibert, Ville de Québec 15h40 - 16h00 Coffee Break 16h00 - 16h20 Traitement de faibles concentrations de TEX par un biofiltre végétalisé : capacité d’élimination et rôles des bactéries indigènes / Treatment of low concentrations of TEX through a planted biofilter : removal efficiency and roles of indigenous bacteria Anne Rondeau, Laboratoire d’Ecologie Microbienne 16h20 - 16h40 Contrôle de la pollution intérieure dans les cabines de peinture et des émissions de Composés Organiques Volatils (COV) dans l’environnement / Air quality control inside painting booths and VOC emissions regulation Déborah Kuntz, Vision’Air 16h40 - 17h00 Traitement des composés à phrases de risque : comment dimensionner pour atteindre des valeurs < 2mg/ m3 / Treatment of compounds with risk phrases : how to design treatment units and reach values < 2mg/m3 Patrice Vasseur, Biobatique 17h00 - 17h20 Le traitement de l’air par la technologie AELORVE / Air pollution removal by the AELORVE photocatalytic process Cédric Dutriez, AELORVE 17h20 - 18h00 Questions - Answers - Discussion 18h00 Fin de la seconde journée / End of Day Two Fin du congrès / End of the congress Vehicle Emissions: Regulatory Constraints – September 27, 2012 Emissions atmosphériques des véhicules et contraintes juridiques – 27 septembre 2012 Jones Day 2 rue Saint-Florentin 75001 Paris www.jonesday.com Abstract While France may soon debate a ban on the use of dieselpowered vehicles in urban areas, the issue of the environmental and public health impact of emissions originating from motor vehicles is worth an update. Unsurprisingly, applicable emissions standards result from European Union regulations. These vary according to the nature and type of motor vehicules, i.e., whether light-duty vehicles (cars and light vans) or heavy-duty vehicles (trucks and buses) are concerned, to the type of energy used (petrol, gas or diesel), and to the types of pollutants emitted (e.g., particulates or PM, nitrogen oxides or Nox, carbon monoxide or CO, and carbon dioxide or CO2). Anne-Caroline Urbain Associate +33 1 56 59 39 39 aurbain@jonesday.com Emissions standards set for new light-duty vehicles are increasingly stringent: the Euro 5 standard entered into force in September 2009 while the Euro 6 standard will enter into force in September 2014. This is in fact a fast changing legal framework under pressure from vehicle manufacturers on the one hand, and under the scrutiny of municipalities and health organizations alike, on the other hand while new technologies seem to allow fast and meaningful improvements on emission levels. At the national level, Member States retain significant prerogatives in the implementation of various tools designed to curb motor vehicle emissions. In this respect, France uses a wide range of incentive measures for the purchase or use of “clean” vehicles (tax credit for hybrid cars) or, conversely, of disincentives discouraging the use or purchase of the most polluting vehicles (bonus-malus system depending on CO2 perfomance, taxes on polluting vehicles, the so-called “écotaxe” on trucks). Jones Day Today, we are one of the largest international law firms, with more than 2,400 lawyers in 37 offices around the world. Our clients - a substantial number of whom have trusted us for decades - are among the Fortune Global 500. The Paris Office opened in 1970 and counts more than 90 lawyers. Jones Day’s Environmental, Health & Safety practice is one of the most substantial in the world. Our lawyers help clients in Europe, the U.S. and Asia comply with complex laws and regulations pertaining to solid and hazardous waste, air emissions, water quality, and employee health & safety. We have extensive experience with the full range of environmental, health & safety laws that relate to litigation, transactional and regulatory compliance matters. We also advise clients on all climate change and REACH related issues. The Paris team is ranked among the top environmental practices in France in the guides Chambers Europe, PLC Which lawyer? and The Legal 500 - EMEA. «Pollutiondel’airetémissionsindustrielles:versunrenforcementdesrèglesrelativesà lalimitationdesémissionspolluantes». CarineLeRoyͲGleizes et CorentinChevallier AvocatsauBarreaudeParis Winston&Strawn Depuisl'interventiondelaloin°96Ͳ1236du30décembre1996surl'airetl'utilisationrationnellede l'énergie, désormais codifiée aux article L. 220Ͳ1 et suivants du Code de l'environnement, et le Grenelle de l’Environnement, la prise en considération de l'impact des émissions atmosphériques polluantesetlarecherchedeleurmaitrisen'acessédeserenforcertantdanslesréglementations nationalesquedanslecadredelatranspositiondesdirectivescommunautaires. Lesintervenantsseproposentd’exposerainsinotammentlesenjeuxassociésàlatranspositionde directive2010//CEdu24novembre2010relativeauxémissionspolluantes(diteIED)danslecodede l’environnement. En effet, le principal apport de cette Directive consiste dans la nouvelle portée donnée aux Meilleures Techniques Disponibles («MTD»), issues des documents de référence («BREFs»)sectorielsoutransversauxélaborésauniveaucommunautaire.Cesconclusionsfixeront lesvaleurslimitesd’émission(«VLE»),ycomprispourl’air,àreprendredanslestitresd’exploitation des installations. Les possibilités de discussion et de dérogations seront moindres qu’auparavant. Cecisupposedoncuneattentionparticulièredesexploitantsd’installationsindustriellessurcepoint, ced’autantplusqueleprincipeestceluid’unréexamenplusfréquentdesconditionsd'autorisation (dansundélaide4anssuivantl'adoptionoulamiseàjourdesconclusionssurlesMTD). Parailleurs,lesdifférentsplansmisenplaceparlespouvoirspublics,auniveaunationaloulocal,et les outils de gouvernance dont ils disposent ont de réelles incidence pour les exploitants des installations. Seront ainsi évoqués les enjeux que présentent, pour les émissions industrielles, notamment le plan «particules», les schémas régionaux climat air énergie ou encore les Plans de Protectiondel’Atmosphère. *** ATMOS'FAIR 2012 «Industrialemissions» LaurenceLanoy PhDinlaw Lawyer/Certifiedspecializationin environmentallaw 3,rueAntoineArnauld•75016 PARIS Tél.+33(0)145201310• llanoy@laurencelanoy.com Obligationsandresponsibilitiesrelatedtooutdoorairquality Faced with increased regulations related to air quality and public health obligations particularly following the Grenelle Environment Forum, public andprivateactorsareexposedtoincreasedlegalrisks. Liabilityforindustrialcompaniesandtheirofficersforfailuretocomplywith airqualityrequirementscanhavesignificantimplications.Airpollutionfrom a registered facility may expose operators to civil liability towards government authorities and third parties, and to criminal sanctions for endangerment. TheState,municipalities,andotherpublicbodiesalsoplayanimportantpart in the prevention and sanctioning of air pollution. In particular, under EU commitments regarding outdoor air quality and the exercise of their law enforcement powers, public bodies are required to implement concrete actions;thismayraisetheissueofliabilityforfaultornuisance. Laurence Lanoy, a certified environmental law specialist, will review the latest developments in the obligations of industrial firms and public bodies regarding outdoor air quality and the related legal risks, with concrete examplesofliabilitybasedondecisionsbycivil,administrativeandcriminal courts.. *** A lawyer since 1990 and graduated with a PhD from PARIS II – Panthéon Assas University, Laurence Lanoy has developed a sound practice in environmental law before establishing in 2004 LAURENCE LANOY AVOCATS, which now ranks among the most highly recommended firms in environmentallawinFrance. Laurence Lanoy assists and represents corporations, public administrations andinternationallawfirmsinenvironmentalandhealthandsafetymatters. ª'¬¯±¬²²´¯¶¯±·²¬´'¯¸´²¹,º¼½²¼¾¯ª¿ÀÁÂÿ¯Ä'½²Å·¯±Æ±¯ ÇD¾¯',·¯ª¼¬·²²·¯È½'Å·º¯¶¯ÊÇÌÌD¯Í½'¬¹¯¯ÎϯÐEE¯ÑÌ>Ò¯ÓD¯ÊÒ¯ÒÒ¯Ò̯¶¯ÈϯÐEE¯ÑÌ>Ô¯DK¯ÓD¯ÇǯÒE¯ ·¹¬²²´Õ·²Ö¬'´²Å´'×ØÅ´Ù¯ ¯ ƹ¯×½'¼¯´Ú¯¼Û·¯½¹¹·¹¹Ù·²¼¯´Ú¯¼Û·¯½¬'¯&,½º¬¼Ü¯´Ú¯¼Û·¯Å¬¼Ü¯´Ú¯È½''½·ÅÛ¯½²Ý¯¬²¯´'Ý·'¯¼´¯×'·¹·²¼¯½²¯½Å¼¬´²¯ ׺½²¯ ¼´¯ '·Ý,Å·¯ ½¬'¯ ·Ù¬¹¹¬´²¹¯ ´Ú¯ ¼'½²¹×´'¼¯ ½²Ý¯ ¬²Ý,¹¼'¬·¹¾¯ ¼Û·¯ È´'´ÅŽ²¯ Ȭ²¬¹¼'ܯ Ú´'¯ ª²·'Þܾ¯ Ȭ²·¹¾¯ ß½¼·'¯ ½²Ý¯ ª²Ö¬'´²Ù·²¼¯ Å´²¼'½Å¼·Ý¯ ¸ªáƱ¯ ÈÆÂø¯ ½²Ý¯ ª¿ÀÁÂÿ¯ Ä'½²Å·¯ ¼´¯ ×'·×½'·¯ ¼Û·¯ ½¬'¯ ·Ù¬¹¹¬´²¹¯¬²Ö·²¼´'ܯ´Ú¯¼Û·¯Å¬¼Üد ÎÛ·¯ ×'·×½'½¼¬´²¯ ´Ú¯ ¼Û·¯ ½¬'¯ ·Ù¬¹¹¬´²¹¯ ¬²Ö·²¼´'ܯ ¬¹¯ Ý´²·¯ ¼Û'´,ÞÛ¯ ¼Û·¯ Ý·Ö·º´×Ù·²¼¯ ´Ú¯ Þ·´¶º´Å½º¬ã·Ý¯ ½Ù´,²¼¹¯´Ú¯×´ºº,¼½²¼¹¯'·º·½¹·Ý¯¬²¼´¯¼Û·¯½¼Ù´¹×Û·'·¯½²²,½ººÜ¯¬²¯È½''½·ÅÛ¯äܯ½ºº¯²´å²¯¹´,'Å·¹¯´Ú¯ ·Ù¬¹¹¬´²¹Ø¯ÎÛ·¯¬²Ö·²¼´'ܯ¬¹¯½¯'·¹×´²¹·¯¼´¯¼Û·¯²·Å·¹¹¬¼Ü¯¼´¯Þ·¼¯½¯ä½¹·º¬²·¯´Ú¯¼Û·¯½¬'¯·Ù¬¹¹¬´²¹¯´Ú¯¼Û·¯ Ŭ¼Ü¯¼Û½¼¯å¬ºº¯ä·¯'·Þ,º½'ºÜ¯,×ݽ¼·Ý¯´²¯¼Û·¯ä½¹¬¹¯´Ú¯½¯¼'½²¹×½'·²¼¯Ù·¼Û´Ý´º´ÞÜد ÎÛ·¯½××'´½ÅÛ¯¬¹¯×½'¼¯´Ú¯½¯Þ'´å¬²Þ¯'·Þ,º½¼´'ܯÚ'½Ù·å´'¯¬²¯È´'´ÅÅ´¯½¬Ù·Ý¯½¼¯¼½¬²Þ¯ä·¼¼·'¯½ÅÅ´,²¼¯ ´Ú¯·²Ö¬'´²Ù·²¼½º¯¬¹¹,·¹Ø¯ ÎÛ·¯ Ŭ¼Ü¯ ´Ú¯ Ƚ''½·ÅÛ¯ ¬¹¯ ¼Û·¯ Ž׬¼½º¯ ´Ú¯ ¼Û·¯ ߬º½Ü½¯ ´Ú¯ Ƚ''½·Å۶η²¹¬Ú¼¶Æº¶æ½´,㯠½'·½¾¯ åÛ¬ÅÛ¯ ¬¹¯ º´Å½º¬¹·Ý¯¬²¯¼Û·¯å·¹¼¶Å·²¼'·¯´Ú¯¼Û·¯ë¬²ÞÝ´Ù¯´Ú¯È´'´ÅŴد ÎÛ·¯ Ŭ¼Ü¯ ¬¹¯ ¼Û·¯ Ú´,'¼Û¯ º½'Þ·¹¼¯ Ŭ¼Ü¯ ¬²¯ È´'´ÅŴد Á¼¯ ·/¼·²Ý¹¯ ´²¯ DE̯ ÙD¯ ½²Ý¯ Û½¹¯ KÔD¾ÓÌ̯ ¬²Û½ä¬¼½²¼¹¯ ÑDÌÒÒ>دʹ×,º½¼¬´²¯Ý·²¹¬¼Ü¯'·½ÅÛ·¹¯EÇ̯¬²Û½ä¬¼½²¼¹¯×·'¯Û·Å¼½'·¯¬²¯¼Û·¯ìÈíݬ²½ïدÎÛ·¯Å¬¼Ü¯¬¹¯²´å½Ý½Ü¹¯ ¹·×½'½¼·Ý¯¬²¯¼å´¯Ý¬ÚÚ·'·²¼¯½'·½¹Ï¯¼Û·¯Èíݬ²½¯ÑÛ¬¹¼´'¬Å½º¯¼´å²>¯½²Ý¯¼Û·¯²·å¯¼´å²¯åÛ¬ÅÛ¯Ù½¬²¯Ý¬¹¼'¬Å¼¹¯ ½'·¯ðÛíº¬ã¯½²Ý¯æ¬Ö·'²½Þ·Ø¯ ÎÛ·¯ Ù½¬²¯ ½¬'¯ ·Ù¬¹¹¬´²¯ ¹´,'Å·¹¯ ¹¼,ݬ·Ý¯ ½'·¯ ¼Û·¯ Ú´ºº´å¬²Þ¯ ´²·¹Ï¯ ¯½²Ý¯ د ÎÛ·¯ Å´²¹¬Ý·'·Ý¯ ×´ºº,¼½²¼¹¯ ½'·¯ ¼Û·¯ Ú´ºº´å¬²Þ¯ ´²·¹Ï¯ ²¬¼'´Þ·²¯ ݬ´/¬Ý·¾¯ ¹,º×Û,'¯ ݬ´/¬Ý·¾¯ Ž'ä´²¯ Ù´²´/¬Ý·¾¯×½'¼¬Å,º½¼·¯Ù½¼¼·'¾¯Ö´º½¼¬º·¯´'Þ½²¬Å¯Å´Ù×´,²Ý¹¯½²Ý¯Ù·¼½º¹¯Ñº·½Ý¾¯Å½ÝÙ¬,Ù¯½²Ý¯²¬Å·º>د ÎÛ·¯ ä½¹·¯ Ü·½'¯ ¹·º·Å¼·Ý¯ äܯ ¼Û·¯ Þ'´,ׯ ¬¹¯ !د ÎÛ¬¹¯ ÅÛ´¬Å·¯ å½¹¯ ٽݷ¯ ä·Å½,¹·¯ ¼Û·¯ Ù´'·¯ '·Å·²¼¯ ½²Ý¯ ½Ö½¬º½äº·¯¹¼½¼¬¹¼¬Å¯Ý½¼½¯Ú´'¯¼Û·¯½¬'¯¬²Ö·²¼´'ܯݽ¼·Ý¯´Ú¯DÌÌKد ¯ # δ¯Þ·¼¯¼´¯½²¯¬²Ö·²¼´'ܯ½¹¯·/Û½,¹¼¬Ö·¯½¹¯×´¹¹¬äº·¾¯¼Û·¯×'´ñ·Å¼¯å½¹¯Ý¬Ö¬Ý·Ý¯¬²¯¼Û'··¯×Û½¹·¹Ï¯ • • • Á²Ú´'Ù½¼¬´²¯Å´ºº·Å¼¬´²¯½²Ý¯½²½ºÜ¹·ò¯ ª¹¼¬Ù½¼¬´²¯´Ú¯½¬'¯·Ù¬¹¹¬´²¹¯·Ù¬¼¼·Ý¯äܯ¹´,'Å·¹¯´Ú¯¼Û·¯Å¬¼Ü¯´Ú¯È½''½·ÅÛò¯ ªÙ¬¹¹¬´²¯¬²Ö·²¼´'ܯ'·¹,º¼¹¯×'·¹·²¼½¼¬´²Ø¯ ÎÛ·¯½××'´½ÅÛ¯ÅÛ´¹·²¯¼´¯·Ö½º,½¼·¯½¬'ä´'²·¯×´ºº,¼½²¼¯&,½²¼¬¼¬·¹¯'·º·½¹·Ý¯äܯ¼Û·¯Ý¬ÚÚ·'·²¼¯½¬'¯·Ù¬¹¹¬´²¯ ¹´,'Å·¹¯ ´Ú¯ ¼Û·¯ Ŭ¼Ü¯ ¬¹¯ ä½¹·Ý¯ ´²¯ ªÈªÍ:ªªÆÒ¯Ù·¼Û´Ý´º´Þܯ ,¹·Ý¯ ¬²¯ ¼Û·¯ ª,'´×·½²¯ 󲬴²Ø¯ á½¼½¯ Å´Ù¬²Þ¯ Ú'´Ù¯ó±¯ªÍƯå·'·¯½º¹´¯,¹·Ý¯¬²¯¹´Ù·¯Å½¹·¹Dد¸ÃͪÂίӯٴݷº¯å½¹¯,¹·Ý¯Ú´'¯¼'½Úڬů½¬'¯·Ù¬¹¹¬´²¹Ø¯ ÎÛ·¯Ù½¬²¯'·¹,º¼¹¯½'·¯¹Û´å²¯´²¯¼Û·¯Ú´ºº´å¬²Þ¯×¬Å¼,'·¯½²Ý¯º·½Ý¯¼´¯¼Û·¯Ú´ºº´å¬²Þ¯'·Ù½'¹Ï¯ • • • • • ÎÛ·¯Ù½¬²¯¿Ã¯·Ù¬¼¼·'¯¬¹¯'´½Ý¯¼'½ÚÚ¬Åò¯ ±ÃD¯½²Ý¯¸Ã¯·Ù¬¹¹¬´²¹¯½'·¯º¬²·Ý¯¼´¯ä´¼Û¯'´½Ý¯¼'½Úڬů½²Ý¯Ú´¹¹¬º¯Ú,·º¯,¹·ò¯ ÎÛ·¯Ù½¬²¯ÍÈÒÌ ½²Ý¯¸ÃÀ¯·Ù¬¼¼·' ¬¹¯Ú´¹¹¬º Ú,·º¯,¹·¯Ú´'¯·²·'Þܯ×'´Ý,ż¬´²ò Ƭ'ä´'²·¯·Ù¬¹¹¬´²¹¯´Ú¯½¬'×´'¼¯¼'½Úڬů'·×'·¹·²¼¯Ò̯¼´¯D̯õ¯´Ú¯¼´¼½º¯·Ù¬¹¹¬´²¹ò¯ Ä´¹¹¬º¯Ú,·º¯,¹·¯'·×'·¹·²¼¹¯½¯Û,Þ·¯×½'¼¯´Ú¯¸ÃD¯½²Ý¯¸Ã¯½¬'ä´'²·¯·Ù¬¹¹¬´²¹Ø¯ ¯ ÒÌÌõ¯ KÌõ¯ Î'½²¹×´'¼¯'´,ø·'¯ ÷Ìõ¯ ¸´²¹´ÙÙ½ø´²¯í²·'Þíø&,·¯ ÊÌõ¯ ªº¬Ù¬²½ø´²¯Ý·¹¯ÝíÅÛ·¼¹¯ ÔÌõ¯ Á²Ý,¹¼'¬·¯ ÇÌõ¯ ±¼´Å½Þ·¯Ý·¯Å½'ä,'½²¼¯ ÓÌõ¯ óøº¬¹½ø´²¯Ý·¯Þ½ã¯Ñ½'ø¹½²½¼>¯ EÌõ¯ ᬹ¼'¬ä,ø´²¯Ý·¯Å½'ä,'½²¼¯ DÌõ¯ Æ'ø¹½²½¼¯ Î'½²¹×´'¼¯½í'¬·²¯ ÒÌõ¯ Ìõ¯ ¿Ã/¯ ±ÃD¯ ¸Ã¯ ÍÈÒ̯ ¸ÃÀ¼¯ Èí¼Û½²·¯ ¸ÃD¯ ¯ ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ Ò ¯ªÈªÍ:ªªÆ¯½¬'¯×´ºº,¼½²¼¯·Ù¬¹¹¬´²¯¬²Ö·²¼´'ܯÞ,¬Ý·ä´´¯ö¯DÌÌKد ¸´Ù׬º½¼¬´²¯´Ú¯Æ¬'¯Í´ºº,¼½²¼¯ªÙ¬¹¹¬´²¯Ä½Å¼´'¹¾¯ÆͶÓD¾¯Ä¬Ú¼Û¯ªÝ¬¼¬´²¾¯À´º,Ù·¯Áϯ±¼½¼¬´²½'ܯʹ¬²¼¯½²Ý¯Æ'·½¯ ±´,'Å·¹¾¯ó²¬¼·Ý¶±¼½¼·¹¯ªÍÆد D ¯ Existingknowledgeofatmosphericemissionsfromcompostingfacilities Isabelle DEPORTES –Health impacts and waste management – ADEME –Waste prevention and managementdepartmentͲ20avenueduGrésillé–BP90406Ͳ49004ANGERScedex01–France– isabelle.deportes@ademe.fr–phone:+33(0)241204306 LaurenceLOYON(IRSTEA),PascalMALLARD(IRSTEA),IsalineFRABOULET(INERIS),HélèneBACHELEY (VERI), Nathalie WERY (INRA), Marina MOLETTAͲDENAT (CSTB), Fabrice GUIZIOU (IRSTEA), Olivier SCHLOSSER(SuezEnvironnement) Emissions of gas and particulates (including bioaerosols) linked to composting wastes come essentiallyfromthebiodegradationoforganicmatterbymicroorganismsandfromsitemanagement activities,especiallymaterialhandling(oftherawwaste,mixesandcompost):movements,turning, screeningandloading.Carbondioxide(CO2)is,intermsofweight,themaingasproducedalongwith watervapourduringcomposting.However,manyothergasesemittedinsmallamountscanhavea majorimpactontheenvironmentoronhealth.Suchisthecasefornitrousoxide(N2O)andmethane (CH4)withrespecttoglobalwarming,andalsoforammonia(NH3)withrespecttoacidificationand eutrophicationofthelocalenvironment,andofawiderangeofsulphurͲbasedandvolatileorganic compoundswhichcanpotentiallyleadtoodourandhealthrisks.Asforemitteddustparticles,they canoftencarrymicrobesandbiologicalcompoundswiththeknownhealtheffectsofinflammation, allergicreactionsandinfection.Thusdealingwiththeseemissionsandtheevaluationoftheirhealth andenvironmentalimpactsrepresentskeyaspectsinthelongtermsustainabilityofthecomposting option. Eveniftheunderstandingoftheseemissionsremainsincomplete,takingintoaccountthewiderange ofsolidwastestreatedandofthemethodsofcompostingavailable,effortshavebeenmadethese lastyearstobettercharacterizethesubstrateandtoimprovethemeasurementmethods.ADEMEin particular launched in 2006 a research programme specifically addressing this theme, involving nineteen research organizations, technical centres, research consultancies and industrial partners. Thecharacterizingemissions,oftheirsourcesandcontrollingfactors,oftheirmetrology(whetherat theworkcarriedoutinthisframeworkhasenabledanimprovementintheknowledgeofsourceor within the environment around treatment sites), of their dispersion to the atmosphere and subsequentexposuretothelocalpopulation.Followingonfromthisprogramme,acompilationof the results produced, drawing also from a literature review has been undertaken. This scientific work,writtenbytheresearchpartnersoftheprogramme,benefitsfromtheirexpertiseandgained experience. It can thus be considered a “state of the art” of the current understanding of atmospheric emissions from composting: be it emission values, means of measurement or of their control. Thedocumentisorganizedinthreemainparts: In the first, the general principles of composting and the related atmospheric emissions are given. Thesectionalsosetsoutthecurrentunderstandingofthemainimpactsontheenvironmentandon thehealthofstaffandpeoplelivingnearthecompostingsites. Thesecondpartdealswiththequantificationofemissions.Itdescribesthemethodsandstrategies of sampling and analysis for gas emissions (including odours) and for particulates (including microorganisms. The current report takes note in particular of the knowledge of factors affecting emission The third part looks at the consequences of the work given in the report. This includes especially recommendations for the prevention of emissions and for the direction of future studies. The outlookforcomplimentaryresearchisalsoincluded. Someresultsandconclusionsfromthereportaregivenbelow. OnthebasisofresultsfromtheADEMEprogrammeandthescientificliterature,emissiondatacould be provided. They could be given as a function of the composting phase and according to certain kindsofwastes.Table1setsoutthedynamicsofthewholesetofemissionsstudiedinthisreportfor thedifferentstagesofthecompostingprocess. Table1:Dynamicsofemissionduringtheprocess(wherearrows,quantitativedatascanbefoundinthereport) Fresh matter handling Sorting Milling Turning Sieving Composting Maturation NH3 n.a. n.a. n.a. ј n.a. јјј N2O n.a. n.a. n.a. ј n.a. јјј CH4 AsafunctionofanaerobicconditionsandinthepresenceofbiodegradableC CO2 n.a. n.a. ј n.a. јјј ј VOC n.a. јјј јјј ј јјј јјј Sulphated compounds Odours Particles d<2,5μm Particles 2,5<d<10μm Particles d>10μm AsafunctionofanaerobicconditionsandinthepresenceofbiodegradableS n.a. јјј јјј ј јјј јјј јј n.a. јј јј јјј n.a. n.a. n.a. јј n.a. n.a. јј n.a. јј n.a. n.a. n.a.:notavailable Thedatathatisavailabletodaydoesnotenabletheidentificationoftheroleofthecompletesetof factors that determine compost emissions. Thus the references for that relating for sludge, green wastesandhouseholdrefusearescarceandforthegasesN2O,CH4andCO2,thereisastrongneed fordatafrommuchlongertrialperiods(exceeding6weeks).Effectively,forsomegases,especially N2O, the key emission stages are found at the end of the process rather than at the beginning or withintheactivestages. For particulates, (including the microͲorganisms), the current data essentially enables the demonstration of the role of material handling operations on the atmospheric emissions. The influence of other determining factors is not evident. The research programme enabled a better characterisation of the microbial diversity in composting bioaerosols and the developments of new monitoring techniques. The report is available on the ADEME Web site: www.ademe.fr under rubric Médiathèque (French site)orPublications(Englishwebsite).EnglishversiontranslatedbyColinBurton. Methodologyforhealthriskassessment:applicationtogaseousemissionsofabiomassboiler ChristopheRoyer,IndustrialRiskAssessmentConsultantͲTel:+33(0)139306065Ͳcroyer@bertin.fr PascaleCompain,SalesManagerͲ+33(0)442604634Ͳpcompain@bertin.fr ObjectiveofHealthRiskAssessment(HRA)istohighlightifproductsused,producedorcoͲproducedin industrialprocess,wasteornuisancecreatedbyanindustrialsitemayhaveforneighboringpopulations, directorindirectchroniceffectsonhealth. Studyoftheeffectsofthesedischargesonhumanhealthistodayconductedbasedontheguidelinesof the French National Institute for Industrial Environment and Risks (INERIS) and the French National Institute of Health Surveillance (INVS) published respectively in 2003 and 2000. This type of study is usually conducted as part of "health effects" impact studies in administrative siting and authorization document(DDAE)butalsouponrequestoftheadministration,particularlyinthepreliminarystepsof establishmentofairemissionsmonitoringplans. Asafirststep,forallidentifiedsubstancesreleased,theassociatedeffectsarecollected(nonͲthreshold carcinogenicandothereffectsthreshold).Preferentialroutesofexposure(inhalationand/oringestion) are defined and the relationship between exposure levels and the occurrence of hazards specific pollutantsconsidered,definedbythetoxicologicalreferencevalues(TRVs).ThechoiceofTRVismade consistentwiththecircularof30May2006,basedonthedatastatedinINVS’sfuretox.frwebsiteand INERIS’sTRVselection. Analysisofsiteenvironmentcanthencharacterizesensitivityofthestudyarea.Sensitivepoints(EPCͲ exposurepointconcentration)suchasschools,kindergartens,hospitals,andvegetablecropsorculture areasandlivestockaresystematicallyidentified.Followingthecharacterizationofthestudyareabased onrelevanteffectsidentifiedabove,aconceptualframeworkofmultimediatransferisdefined. Modelingofatmosphericdispersionofemissionsisperformedusingdispersionsoftwaredevelopedby the ADMS4 CERC recognized by INERIS. This model allows determination of air concentrations and ground deposition, particularly at sensitive points identified above. Exposurelevelsareevaluatedfromtheresultsofmodeling.Thecomparisonoftheseairconcentrations withtheTRVareusedtocharacterizeinhalationrisks. In accordance with the INERIS recommendations, concentrations in the different media of the food chainarecalculatedusingthemodelHHRAPfromUSͲEPA.Thesecalculationstakeintoaccountnational orregionaldietaryhabits. The calculated concentrations allow to define a daily dose of exposure (DDE). DDE can then be comparedwiththeTRVtocharacterizeriskbyingestion. A practical application of this methodology to a gaseous biomass boiler will be presented. Due to the presence of heavy metal emissions and dioxin, risk assessment will be complete with ingestion in additiontoriskassessmentbyinhalation. BT.D01.Pa In conclusion, future developments of the French regulation on the analysis of the health effects of industrial waste will be discussed: changes in methods of health risk assessment and in particular the choice of TRV, implementation of atmospheric emissions monitoring plan in the environment, developmentofareastudiesforlargeindustrialplatforms. REGULATORYAPPROACHFORRISKASSESSMENTOFPESTICIDESINAIR NUUTINENS.,POULSENV. FrenchAgencyforFood,EnvironmentalandOccupationalHealth&Safety(ANSES) RegulatedProductsDepartment EcotoxicologyandEͲfateRiskAssessmentUnitforPesticidesandFertilizers 253AvenueduGénéralLeclerc,94701,MaisonsͲAlfortcedex,France EͲmail.sari.nuutinen@anses.fr Regulatorycontext Before placing on the market and before being used in agriculture, the plant protection products (pesticides)havetobeauthorised.Theauthorisationprocessreliesonseveralimportantregulatory criteria and includes among other things assessment of risks to ensure the protection of environment.AtEuropeanlevel,regulation(EC)No1107/20091providestherulesforauthorisation and assessment of plant protection products, but also of active substances in those products. In France, the French Agency for Food, Environmental and Occupational Health & Safety (ANSES) is responsibleofevaluationofapplicationsformarketingofplantprotectionproducts.TheRegulated ProductsDepartmentprocessesapplicationsforplantprotectionproductsandpreparesopinionsto be submitted for decision to the Ministry of Agriculture responsible for issuing marketing authorisations. Riskassessmentofpesticidesinair The regulation (EC) No 1107/2009 requires the assessment of predicted environmental concentrations in soil, surface water, groundwater and air resulting from the use of pesticides. However, unlike for other compartments, no agreed guideline has been available for air risk assessment until recently. FOCUS2 organisation is an initiative of the European Commission to harmonise the calculation of predicted environmental concentrations of active substances of plant protectionproductsintheframeworkoftheregulation(EC)No 1107/2009.FOCUSisbasedoncoͲ operationbetweenscientistsofregulatoryagencies,academiaandindustry.InJune2008,theFOCUS working group on pesticides in air published a report3 establishing a tiered shortͲrange exposure assessment scheme for the air compartment. ANSES follows the recommendations of FOCUS Air reportinitsriskassessment. Tier1considersthepotentialofasubstancetoreachtheatmosphere.Someapplicationtechniques such as granular formulations or incorporation into the soil can reduce the amount of substance reachingtheairtosuchextentthatassessmentofairconcentrationisnotneeded.Incaseswhereair contaminationispossible,vapourpressureisusedasatriggerforpotentialofthesubstancetoreach the air. Vapour pressure of >10Ͳ4 Pa (at 20 °C) indicates potential for volatilisation from soil and vapour pressure of >10Ͳ5 Pa (at 20 °C) indicates potential for volatilisation from plants. Only substancesshowingpotentialforvolatilisationareconsideredforthefollowingexposureassessment. When substance is volatilised, it will deposit back onto water or soil surface. Another route of contaminationofwaterandsoilisthelossesduringapplication(spraydrift).Incaseswheretherisk foraquaticandterrestrialorganismsisacceptablewithoutspraydriftmitigationmeasures(i.e.nonͲ spray buffer zones), contamination by deposition of volatilised pesticide is considered to be minor 1 2 3 Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC FOrum for the Co-ordination of pesticide fate models and their USe Focus (2008). “Pesticides in Air: Considerations for Exposure Assessment”. Report of the FOCUS Working Group on Pesticides in Air, EC Document Reference SANCO/10553/2006 Rev 2 June 2008. 327 pp. compared to other routes of contamination. If spray drift mitigation measures are needed, deposition after volatilisation is considered in addition to spray drift deposition in calculating the environmentalconcentrationofthesubstance. Tier2consistsofmodellingdepositionaftervolatilisationasafunctionofdistancefromtheedgeof thefield.TheFOCUSairgrouprecommendsusingEVA2.0modelforthesecalculations.EVA2.0isan empirical model, which uses the relationship between vapour pressure and deposition after volatilisationtoanonͲtargetsurface.ThemodelhasonebuiltͲinscenario;itestimatesvolatilisation duringthefirst24hoursafterapplication;andconsidersdispersionupto20metersfromthetreated crop. Tier3suggeststhatifmodellingresultsleadtoarisktoaquaticorterrestrialorganisms,experimental dataand/ormitigationmeasurescanbeapplied. For very volatile substances e.g. fumigants (vapour pressure >10Ͳ2 Pa at 20°C) volatilisation and subsequent deposition can be substantially higher, even when they are incorporated into the soil. These substances would not be adequately assessed by the above described exposure assessment andastudywouldberequiredtodeterminethedepositionfromthistypeofsubstances. TheFOCUSAirreportstatesthatlongͲrangetransportofpesticideispossibleiftheDT504inairofthe substanceislongerthan2days.Inthiscase,monitoringdataonconcentrationsofsubstanceinair havetobeprovidedtoANSES.InFrance,associationsAASQA5havemadecampaignstomeasurethe airqualitysince2001.Thesemonitoringdatamaybeusedtoconductriskassessmentforresidents. 4 5 Time taken for 50% of substance to disappear. Associations Agréées pour la Surveillance de la Qualité de l’Air Numerical simulation of pesticide dispersal at the scale of rows and vineyards ALI CHAHINE12, SYLVAIN DUPONT1, YVES BRUNET1 and CAROLE SINFORT2 1 UR1263 Ephyse, INRA, F-33140 Villenave d’Ornon, France 2 UMR ITAP, SupAgro Montpellier, France ABSTRACT Spray drift during pesticide applications is a major path for atmospheric contamination by agrochemical products, which has been shown to be a potential risk for human health. Spray drift should therefore be better understood in order to reduce their undesirable effects. As spray drift is controlled by canopy architecture and wind flow structures, modelling pesticide dispersal is a promising way to survey pesticide input to the atmosphere and evaluate resulting exposure levels for the bystanders. In this study pesticide dispersal over vineyards was studied combining numerical and experimental approaches. The experimental approach consisted in measuring wind velocity and monitoring spray application in a vineyard, in order to quantify the air flow generated by an air-assisted sprayer as well as vertical losses to the air and ground deposition. The numerical approach was used to model wind flow and pesticide dispersal over the vineyard. The atmospheric wind flow model ARPS was used in the large-eddy simulation (LES) mode to solve the transient air flow within and above the vineyard, while for pesticide dispersal a coupled Lagrangian-LES approach was used to track droplet trajectories. Our measurements show that the vertical losses of pesticides are well correlated with meteorological conditions such as temperature, wind speed and turbulence level. They also show that the spatial structure of pesticide losses at the plot scale is directly related to the characteristics of the spray jet. In the numerical approach the source of pesticide at the scale of the rows is considered as a moving air-assisted sprayer. The model predictions compare well with the measurements. At a larger scale the source is deduced from the spatial structure of pesticide losses at the vineyard-atmosphere interface. Several scenarios of vineyard configurations, differing by the orientation of the vine rows with respect to the dominant wind direction and the presence of a tree hedge, were studied numerically. The exposure level of the bystanders during the vine treatment is shown to depend strongly on the vineyard configuration. With this modelling strategy, we show that it is possible to simulate pesticide drift and predict human exposure levels at larger scales. Atmos’Fair2012,Lyon26Ǧ27septembre2012 SurveillancedesPesticidesdansl’Air SurveillanceofPesticideinAir 1 2 BERNARDBONICELLI ,JEANͲLOUISFANLO ,BRUNOAUBERT3,MICHAELDOUCHIN4,ALICHAHINE1, CAROLESINFORT5 1 2 UMRITAP,IrsteaMontpellier,France, LGEI,EcoledesMinesd’Ales,France,3Cairpol,MéjannesͲlèsͲ Alès,France,43Liz,Montpellier,France, 5 UMRITAP,SupAgroMontpellier,France Session:Airemissions Topic:Measures,methodologyandmodeling Keywords:airpollution,Healthimpacts,monitoringsystem,modeling ABSTRACT Air contamination by Plant Protection Products (PPPs) carries significant risks for human health. Improving knowledge on exposure pathways is a key point to reduce the potential impacts. The presentcommunicationpresentstheongoingresearchanddevelopments. Cropprotectionsprayinginducesaircontamination.Observationsshowedtransfersduringandafter spraying. For each situation, agrochemical concentration in air results in a set of interactions: localization, weather conditions, spraying process, properties of compounds. In consequence, the concentrations vary greatly in space and time. At the human scale, health impact depends on chronicles of the exposition by inhalation. As concentration peaks are impossible to measure the researchfocusedoncouplingsimulationandexperimentationtocalculatetheaircontamination. Simulations are based onclassical Gaussian dispersion. The model includes low complexity models and GIS visualization. The model validation will be achieved in semi artificial conditions and wind tunnel. Specific tools of the Montpellier/Ales Regional Research Platform are dedicated on this development.Experimentationsconductedinfieldsconcernsprayingpractices,weatherconditions andaircontamination.Themonitoringofairqualityimplementssmartsensorsandspecifictracer dyes.Analysismethodologiesareorientedondecisionsupport. Irstea UMR ITAP – 361 rue Jean-François Breton – 34796 Montpellier Cedex 5 bernard.bonicelli@irstea.fr – 06 50 91 52 78 ¯¯¯ ¯¯ ¯ ¯¯¯¯¯ ¯¯¯¯¯¯¯¯¯ ¯¯¯ ¯¯¯ ¯ ¯ Benjamin Poirota, Valérie Neversa, Petra Gomezb, Michel Ménardb, Didier Crauserc, Yves Le Contec a APILAB, Pôle technologique – 40 rue Chef de Baie 17 000 La Rochelle. Tel: +33 (0) 5 46 34 10 71, Fax: +33 (0)5 35 54 01 98 www.apilab.fr, contact@apilab.fr b Laboratoire Informatique Image et Interaction (L3i) – avenue Michel Crépeau 17 042. La Rochelle. Tel : +33 (0) 5 46 45 82 62, petra.gomez@univ-lr.fr c UMR « Abeilles et environnement » INRA –Université d’Avignon et des Pays de Vaucluse. INRA Domaine Saint-Paul - Site Agroparc 84 914 Avignon. Tel : +33 (0) 4 32 72 26 01, yves.leconte@avignon.inra.fr Summary: The use of bee for environmental biomonitoring is a relatively recent technique which has proven its efficiency. Indeed, scientific researches revealed that bee is a perfect tool for environmental diagnostics thanks to pollutant biocollection. A recent study1 has clearly demonstrated that bees can be used for the characterization of environmental contamination by xenobiotics and more particularly by the following compounds: heavy metals, PAHs and PCBs. Bees were also used to detect radioisotopes in the environment after Chernobyl and other industrial disasters2. Bee can also be used as a biointegrator. Bee colonies are used as an alert tool in case of environmental pollution. Principal indicators studied are daily mortality and colony behavior. The number of ingoing/outgoing bees is a reliable parameter. An innovating bee counter using video surveillance was developed by the INRA of Avignon and the L3i (Laboratoire Image Intéraction) of La Rochelle University. This presentation will introduce this innovating tool and the different possibilities of application. Devillers J. Utilisation de l’abeille pour caractériser le niveau de contamination de l’environnement par les xénobiotiques. Bulletin Technique Apicole (35) 4, 2008, 179-180. Porrini, C. Les abeilles utilisées pour détecter la présence de radio-isotopes dans l’environnement. Bulletin Technique Apicole (35) 4, 2008, 168-178. 2012 Modélisationdeladispersionatmosphériquedepolluantssursitesindustriels NumericalModelingofatmosphericpollutantsonindustrialsites CatherineTURPIN Ingénieurd’étudesetdedéveloppement catherine.turpin@sillagesͲenv.com SillagesEnvironnement 64,chemindesMouilles69134ECULLYCedex www.sillagesͲenv.com Aucoursdesdernièresannées,lapollutionatmosphériqueestdevenueunepréoccupationmajeure denotresociété.Danscecontexte,denouvellesdirectivesenvironnementalesvisantàdiminuerles impactsenvironnementauxdesindustriesontétéadoptées. En regard des problématiques de qualité d’air sur les sites industriels, la société Sillages Environnement, experte dans le domaine de la modélisation de la mécanique des fluides environnementale,réalisedesétudesnumériquesdedispersionatmosphériquedepolluantsàpetite échelle à l’aide de logiciel de CFD (Computational Fluid Dynamic). Pour ses calculs, Sillages Environnement a développé une méthodologie de calcul adaptée au cas d’écoulement atmosphérique en tenant compte de la stratification thermique de l’atmosphère, de la présence d’obstaclescomplexes(i.e.relief,bâtimentsouzonesporeuses)etdelarugositéaérodynamiquedes sitesétudiés.Saméthodologieaétévalidéepardesexpériencesensoufflerie(LMFA–ECL). L’objectif de la présentation est d’exposer la méthodologie, mise en œuvre par Sillages Environnement, permettant de représenter correctement un écoulement de couche limite atmosphérique dansun calcul dedispersiondepolluant.Autraversd’exemplestypessur dessites industriels,l’ensembledespossibilitésd’applicationd’untelmodèledecalculserontprésentés. Plum’Air:anewtooltocontrolairqualityandodourannoyancesaround industrialplants Dr.FrédéricPradelle frederic.pradelle@numtech.fr NUMTECH,6alléeAlanTuring ParcTechnologiquedeLaPardieu BP30242Ͳ63175AubièreCedex,France Tel:+33(0)617775388 Abstract Theatmosphericdispersionmodelingsystemsarenowcommonlyusedtoassesstheimpact ofodorousemissionsintotheenvironment,andmeetregulatoryrequirements.Anumberof researchprojectshavevalidated these modelingapproachesappliedtoodors.Meanwhile, theneedfortoolsofdecisionsupportinacontextofsustainabledevelopmenthasledlarge industrial companies to develop integrated modeling systems for operational monitoring and forecasting of air quality in the environment facilities. The development and standardizationofcomputationaltoolsnowmakeitpossibletousethesesystemsonsmaller facilities,especiallyformonitoringandforecastingodornuisancearoundwastefacilitiesand water treatment plants. We propose to present one of these tools, the system Plum'Air developed by NUMTECH, and to illustrate this by presenting concrete use cases. Plum'Air system can also be coupled to the system Expoll.net that centralizes information from local residents (complaints, systematic observations), and electronic noses for realͲ timecharacterizationoftheemissionfluxlevelofsources WebinterfaceofthePlum’Airsystem L’analysedesCOV,gazpermanentsetcomposéssoufrésparμGC/MSsursite:une alternativeauxméthodesusuelles:Etudesurungazsidérurgique KarimMedimagh,ExplorairͲkarim.medimagh@explorair.com,rueLaverlochèreͲ38780PontEvêque Introduction CetteinterventionapourobjectifdefairelalumièresurlaméthodeexploitéeparEXPLORAIRpour conduire des analyses sur un site industriel quel qu’il soit, du moment qu’il s’agit de mesurer et suivre des gaz organiques (COV, alcanes, aromatiques….) ou permanent ainsi que les soufrés (H2S, COS,CS2)etendehorsdesacideinorganiques. Nousmontreronsl’avantagedel’utilisationdelaμGCMSsursiteparrapportauxautresméthodes usuellesoumêmeparfoisréglementaires. Nous traiterons le cas d’un site sidérurgique produisant un gaz à haut pouvoir calorifique mais contenant aussi des polluants nocifs (composés soufrés: H2S, COS, CS2..) que ce soit pour l’environnementoupourleprocessluiͲmême. Problématique Danslecasgénéral,quandundonneurd’ordrefaitappelàunlaboratoirepourconduiredesmesures surungazdeprocessouungazderejetatmosphérique,lelaboratoiresouhaiteavoiruneidéesurce qu’ildoitchercherdanscegazoulecaséchéantilimposeral’analysedescomposésqu’ilsaittraiter. Decefait,ilestdorsetdéjàcertainquelelaboratoirevapasseràcotédecertainesmoléculesqui dans certain cas peuvent avoir un intérêt particulier, comme un fort potentiel calorifique ou inversement un caractère nocif pour l’environnement ou pour le process luiͲmême comme par exemplelescomposéssoufrés. De plus le laboratoire en question va déployer toute une panoplie de méthode et d’appareils de mesures ainsi que de prélèvement pour essayer de répondre aux mieux à la demande. Dans cette panoplie de méthodes, certaines seront conduite en continu et d’autre en prélèvement ponctuel aveclerisquequeleprocessnesoitpasstable. Vient ensuite la question du prix d’une telle campagne de mesure et ce qu’elle engendre de sous traitanceetdedélaid’attentepourlesrésultats. Notresolution EXPLORAIR a essayé de lever tous ces verrous en proposant l’analyse en direct, en continu et sur site par la technique de la μGC/MS. Avantage: x unseulappareil, x unseultechniciensursite, x une durée de mesure de quelques heures jusqu'à quelquesmois, x unpasd’analysetoutesles3min,uneanalysesexhaustivedesCOVetgazpermanents x Unsuiviqualitatifetquantitatifdirectementsursite. x Possibilité de calculer le PCI et PCS en direct sur un gazdeprocess. x Prix équivalent aux mesures usuelles et réglementaires. En effet EXPLORAIR a misé sur l’utilisation d’une technique connue et éprouvée qui est la GCMS, avec le chalenge d’amenerl’appareilversl’échantillonetnonl’inverse,etceci pour une meilleure réactivité et une meilleure stabilité de l’échantillon. Etuded’uncasparticulier:ungazdesidérurgie. Uncastrèsintéressantquiseradéveloppéaucoursdelaprésentationestlegazdesidérurgie.Car cesgazsontassezcomplexesdepartleurcomposition:ilsontunPCIimportant(présencedeH2,CO, CH4) mais aussi de nombreux COV à fort pouvoir calorifique qu’il ne faut pas négliger (alcanes, aromatiques…). Mais leurs inconvénient c’est qu’ils peuvent aussi contenir des composés très toxiques pour l’environnementmaisaussipourleprocessluiͲmêmecommelescomposéssoufrésetnotammentle H2SquiformeduSO2aprèscombustion. En effetlesgazdesidérurgie dépendentbeaucoupdela matièrepremièreentrantedanslesHautsfourneaux(lahouille)quipeutêtreplusoumoinsricheen composés soufrés. D’où la nécessité d’une mesure en continu sur une période représentative qui permetdeconnaitrelavariabilitédesconcentrationsainsiquelesniveauxhautsànepasdépasser pourlaréglementationfrançaise. propene Suivi des COV dans le gaz Haut fourneaux H2S 24 heures 1,3-cyclopentadiene COS 4000 3500 Concentration en mg/(n)m3 3000 2500 2000 1500 1000 03:07 02:38 02:08 01:39 01:09 00:40 00:10 23:41 23:12 22:42 22:13 21:43 21:14 20:44 20:15 19:45 19:16 18:47 18:17 17:48 17:18 16:49 16:19 15:13 14:44 14:08 13:20 12:50 11:52 12:21 11:22 10:53 10:23 09:54 09:23 0 08:20 500 Nous avons conduit une étude durant une année complète sur un site sidérurgique. Cette étude a d’abordcommencéparunétatdeslieuxdesgazcͲaͲduneconnaissancedétailléedelacomposition dugazetlecalculdesontPCIavectouslescomposésd’intérêt.Ensuitecetteétudes’estpoursuivi parlamesureencontinusuruneannéedemoléculessoufréesCOS,CS2 et H2Safin defournirau client la variation annuelle des concentrations de ces molécules. Les résultats sont fournis chaque semaine par envoi d’un rapport sur la base des données collectés directement par internet. Enfin nousavonsaccompagnénotreclientsurlamiseenplacedesonréseauanalytiqueeninternepourle suividecesmolécules. Toutecetteétudeaétéconduiteparunseulappareilsursitedéportéparrapportaugazdeprocess avecfournituredesrésultatsenmoinsd’unesemaineaprèslesanalyses. Qualitédel’airintérieur:Démarchedecontrôledesagentschimiquesdangereuxdansles ateliersetbureauxdePSAPEUGEOTCITROEN Juliette Quartararo, Martine Klinguer, Guillaume Meunier, PSA Peugeot Citroën, Centre Technique deBelchamp,Voujeaucourt,France DrPatrickRosseel,PSAPeugeotCitroën,PôleTertiaire,Poissy,France LegroupePSAPeugeotCitroënestengagédepuis2004dansunedémarchedecontrôledesAgents ChimiquesDangereuxetdesCMR(CancérogènesMutagènes,toxiquespourlaReproduction). Pour chaque process de l’automobile (emboutissage, ferrage, peinture, montage, mécanique et fonderie),desmesuresàl’émissionontpermisd’établirunelistedesubstancesàrisquecontrôlées annuellement sur opérateur et en ambiance. Ce Plan de Surveillance a permis d’établir une cartographie des principaux polluants, de réaliser la traçabilité des substances en fonction des processetdemettreenœuvrelesplansd’actiondesubstitutionet/oudeprotectionnécessaires. L’objectifdecetteétudeestdeprésenterladémarchemiseenplace,d’évaluerlesapportspourla protectiondessalariésetdecommenterladémarcheparrapportàlarèglementation(notamment parrapportaudécret2009.1570relatifaucontrôledurisquechimiquesurleslieuxdetravail). MultiSiteOdorTracking&MonitoringSolutiontoControlOdor andReduceOperatingCostsassociatedwithOdor JeanͲMichelTURMEL,PhD DirecteurCommercial ODOTECHSAS 20,ruedelaVillette 69328LYON,France The SMTD (Syndicat Mixte de Traitement de Déchets) is a public institution which is charged with treating household and other waste generated from the largest part of Bearn: 265 municipalities members,thatismorethan280000inhabitants.CapEcologiaisasitethatprocessesthewasteand includesseveralunitsofwastetreatment(Water,Householdwaste,GreenWaste). The site of Cap Ecologia is near residences and near a shopping mall. Over the last few years, the number of complaints received by the SMTD has grown. Unfortunately, even though there were manycomplaintsaboutthestench,itwasusuallyimpossibletodeterminetheoriginoftheseodor nuisances. A system of odor tracking and monitoring (OdoWatch) was installed in 2009 on the wastewatertreatmentplant(STEP),andonthecompostingplatformandthewasteincinerator. Thesystemisusedbytheoperatorsofeachsite,aswellasbytheSMTD,toestimatewhichsources ofodorgeneratesthecomplaints.Thealarmsystemintegratedintothesystemallowstheoperator to know in real time which source causes the nuisance and which methodology must be implementedtominimizeit. The system’s results demonstrate that the waterͲtreatment plant was rarely responsible for the nuisances,whileitwasthoughttobethesourceoftheodors.Inplacingtheelectronicnoseonthe chimneyandusingtheprocessofdeodorization,theSTEPwasabletoreducetheaveragelevelofthe odor by 50%. The tracking system highlighted that when the doors of the incinerator storage zone were open there were more complaints of odor nuisance. Using this information the operations processesweremodified. Thecompostingsite,whichwasonlyveryrarelythoughttobeanodorsource,hasbeenprovedtobe the main source of complaints. Improvements have been made this summer based on this informationgeneratedbythesystem.Amanagementsystemtotrackthecomplaintswassetupby theSMTDusingtheOdoWatchsystem.TheSMTDreceivedmorethan200complaintsin2008and nowreceiveslessthan2complaintspermonth. Caractérisationettraitementdesfuméesdebitume JérômeRHEINBOLD–ColasEnvironnement 1) Caractérisationdesfuméesdebitumes Lebitumeestunproduitconnuetréférencé.Maischaquebitumeasaproprespécificitéetaucune fiche de données ne précisent les molécules le constituant. Les traitements mis en place peuvent diminuerlesodeursmaisnepasavoird’influencesurlesconcentrationsouinversement. Ilestpossibledecaractériserlebitumeselonces2critères: - AnalysesolfactométriquesͲodeurs: La concentration d’odeur est exprimée en unités d’odeur par m3 (uoE /m3). Le seuil de perception d’un gaz est défini par l’article 29 de l’arrêté du 2 février 1998 comme étant la concentration à laquelle 50% des personnes constituant un échantillon de population ne «ressent»plusl’odeurdecegaz.Leseuildeperceptionestéquivalentà1uoE/m3. Lors d’une opération de dépotage, les résultats obtenus après analyses olfactométriques des échantillonsprélevéssontlessuivants: Niveauolfactif(uoE/m3) Audébutdudépotage 990000 Alafindudépotage 2125270 Avantl’unitédetraitement - AnalyseschimiquesͲmoléculesodorantes: Desprélèvementstype«TENAX»ontpermisdedéterminélesmoléculesprésentes.Ellessont lessuivantes: Composé Concentration mg/(n)m3 alcane/alcène(deC9àC12) 3,61 Aromatique(deC9àC10) 0,87 Soufré(Thiophene3Ͳpropyl) 0,05 Une caractérisation plus fine a ensuite été effectuée. Les molécules les plus détectées sont: Butaneetisobutane,H2S,Isobutene,pentane. 2) Traitementdesfuméesdebitumes Plusieurs pilotes ont été menés: refroidissement cryogénique, lavage des gaz, réaction chimique, filtration. Puis,plusieurstraitementontétéréalisésaussibiensurdescuvesdestockagesdebitumesquedes postes d’enrobé. Les systèmes de traitement par filtration sur charbon actif se sont avérés être performantsavecdesbilanstechnicoéconomiqueavantageux. Traitementdesgazd’unecuvedestockagede bitume Cetraitementestcomposéd’unrefroidisseur,d’une turbineetdefiltrespourcapterlesCOVainsique l’H2S. L’ensembledecetteunitéestéquipéd’unsystème desuividesconcentrationsencontinu,notamment aurejet. 3) Influenced’unteltraitement Les données collectées sur les fumées de bitume permettent de déterminer les impacts par dispersionsurlesavoisinantsaussibienentermedegêneolfactifquederisqueliéauxcomposés. Concernant les concentrations des molécules présentes dans le bitume, les résultats de l’étude de risquetoxiquemontrentqueleseffetssurlasantédusàuneexpositiondirecteparinhalationouune exposition indirecte par voie orale sont faibles et, pour tous les scénarii étudiés, l’Excès de Risque Individuelestinférieurouégalà10Ͳ5,valeurpréconiséeparl’OMS. Lesrendementsobtenusparlessystèmesdefiltrationenentréeetensortiedel’unitédetraitement desgazsont,d’unepart,pourlesrendementsolfactométriquesdeplusde99,5%et,d’autrepart,de plusde90%pourlesanalyseschimiques.L’influencedutraitementsurlesodeursauxavoisinantsest représentéainsi: Avanttraitement–Impactgénéral Aprèstraitement–Impactconfinéausite Miseàl'échelled’unsystèmedebiofiltrationméthanotrophepourlaréductiondes GESgénérésparunlieud'enfouissementauQuébec(Canada) ScaleͲupofmethanotrophicbiofilterstoreduceGHGgeneratedbyLFGinQuebec(Canada) N.Turgeon1,M.Alibert2 :CentrederechercheindustrielleduQuébec(CRIQ),333,Franquet,Québec(Québec)G1P4C7, Canada Tél.:418Ͳ659Ͳ1550poste2620 eͲmail:nicolas.turgeon@criq.qc.ca 2 :VilledeQuébec,1595,rueMonseigneurͲPlessis,Québec(Québec)G1M1A2,Canada Résumé 1 Le méthane (CH4) est un gaz à effet de serre (GES) qui possède un pouvoir de réchauffement planétaire (PRP) 21 à 25fois plus important que le dioxyde de carbone (CO2). Les sites d’enfouissement, par la dégradation anaérobie des déchets organiques, constituent une des principalessourcesanthropiquesd’émissionsdeCH4.Commedansdenombreuxpaysàtravers le monde, le Canada a mis en œuvre aux cours de dernières années des programmes et des règlementations pour inciter les exploitants à capturer et à brûler les gaz d'enfouissement (biogaz). Toutefois, lorsque l'oxydation thermique (par torchage ou valorisation énergique) ne peut être utilisée (c.ͲàͲd. concentration de CH4 ou flux énergétique trop faibles), l'oxydation microbienne du méthane par le biais de bactéries méthanotrophes peut représenter, dans un contextedelutteauxchangementsclimatiques,unesolutionintéressantepourlaréductiondes GESprovenantdusecteurdesdéchets.Untravailexploratoireeffectuédansleslaboratoiresdu CRIQ(Québec,Canada)encollaborationavecl’UniversitédeSherbrookeetl’UniversitéLavala permisdetesterdifférentstypesdesupports(organiqueetinorganique)pourlaconceptiondes biofiltres méthanotrophes. À la suite de cette initiative, un projet à l'échelle pilote a été entreprisen2009encollaborationaveclaVilledeQuébec(Canada).L'objectifétaitd'évaluer, enutilisantunprototype(1m3)installédansunlieud'enfouissementfermé(Beauport,Québec), la faisabilité technicoͲéconomique pour l’implantation d’un système de biofiltration méthanotrophe de type BIOSORMD pour le traitement des biogaz1. À la suite des résultats obtenus, un projet visant la mise à l'échelle de la technologie BIOSORMD sur le site d’enfouissementdeBeauportaétéproposédanslecadreduProgrammededémonstrationdes technologiesvertesvisantlaréductiondesémissionsdegazàeffetdeserreTECHNOCLIMATMC.La présentation fera état de la démarche d’innovation réalisée depuis les cinq dernières années pourlamiseenœuvreprochained’unepremièrevitrinepourcetteapplicationdelatechnologie auQuébec. Abstract Methane(CH4)hasaglobalwarningpotential(GWP)21to25timesofcarbondioxide(CO2)and landfillsareoneofthemajoranthropogenicsourcesofatmosphericCH4producedbyanaerobic degradationoforganicwaste.Canada,asmanycountriesaroundtheworld,hasimplemented programs and regulations to encourage capture and burning of landfill gas (LFG). However, when thermal oxidation (flaring or energetic valorisation) is not possible (i.e. low CH4 concentration or flowrate), microbial methane oxidation by methanotrophic biofilters 1 Turgeon N., Bourgault, C., Buelna, G. Le Bihan, Y., Verreault, S., Lessard, P., Nikiema, J., Heitz, M. (2011), Application of methanotrophic biofilters to reduce GHG generated by LGF in Quebec (Canada), 19th International Conference on Modelling, Monitoring and Management of Air Pollution, Air Pollution XIX, Wessex Institute of Technology, WIT Press, 387-397 represents a new technology that holds great promises for GHG reduction and air pollution controlofLFG.ExploratoryworkdoneinCRIQlaboratories(QuebecCanada)incooperationwith Université de Sherbrooke and Université Laval allowed testing different types of mediums (organicandinorganic)forthedesignofmethanotrophicbiofilters.Followingthisinitiative,pilot scale project using the BIOSOR technology was undertaken in 2009. The objective was to evaluate, using a prototype (1 m3) installed in a closed landfill (Beauport, Quebec City), the technicalandeconomicfeasibilityofimplantationofmethanotrophicbiofilterforthetreatment ofLFG1.Followingtheresults,aprojecttoscaleͲupBIOSORtechnologyattheBeauportlandfill wasproposedintheframeworkofthedemonstrationprogramofgreentechnologiestoreduce emissionsofGHGs(TECHNOCLIMATTM).Thepresentationwillreporttheinnovationprocesscarried out during the last five years for the upcoming implementation of the first demonstration technologyinQuebec(Canada)forthisapplication. TREATMENTOFLOWCONCENTRATIONSOFTEXTHROUGHAPLANTEDBIOFILTER: REMOVALEFFICIENCYANDROLESOFINDIGENOUSBACTERIA AnneRONDEAU1,2,AgnèsMANDON2,LucMALHAUTIER3,ThomasPOMMIER1,FranckPOLY1,Agnès RICHAUME1 1 UniversitédeLyon,Lyon,FͲ69003,France.CNRS, UMR5557 USCINRA1193, Ecologie Microbienne, France43boulevarddu11Novembre1918,Villeurbanne,FͲ69622. 2 Canevaflor®,24rueduDocteurGuffon,69170,Tarare. 3 Laboratoire Génie de l’Environnement Industriel, Ecole des Mines d’Alès, Avenue de Clavières 6, 30319,AlèsCedex,France. The treatment of urban atmospheric pollution, mainly linked to transport and heating, is a major environmental and public health question. In town, indoor car parks are confined spaces in which high degrees of pollution are found, so complex that 275 substances have been identified (AFSSET2007,ATMORA2010).Themaincompoundsarecarbonoxides(COx),nitrogenoxides(NOx) as well as VOCs such as BTEX (Benzene, Toluene, Ethylbenzene and Xylene). The pollution concentratedinthesecarparksisalsoasourceofcontaminationoftheexternalenvironmentsince thetreatmentoftheairpumpedoutbyventilationsystemsisnotregulated.Amongstthepolluting agents present in car parks, nitrogen oxides (NOx) and volatile organic compounds (VOCs) are notoriousfortheirharmfuleffectsonhealthandtheenvironmentastheyleadtotheformationof tropospheric ozone and contribute to global warming. Filtering the air from such environments throughaplantedbiofilterisaninnovativeandlongͲtermsolutioncontributingtotheimprovement of urban air quality by reducing the dispersion of gaseous pollutants and providing other environmentalandsocialbenefitslikebiodiversityandlandscapeintegration. The efficiency of biofiltration in the treatment of VOCs and NOx has been clearly demonstrated. However, for the treatment of air, using a planted biofilter combining bacteria and plants is an innovative and efficient approach. It uses bioremediation exploiting the degradation capacities of numerous pollutants (VOCs, NOx…) serving as a source of energy for the microorganisms. It also exploits the purifying qualities of plants (consumption of CO2, fixing of VOCs…)and theircapacitytoencouragetheexistenceofrichandvariedrhizosphericmicroflora.A recentstudyshowedtheefficiencyofsuchasysteminthetreatmentoflowconcentrationsofTEX (about200μg.mͲ3)foranairͲflowspeedclassicallyusedinbiofiltrationof100m.hͲ1(Rondeauetal. 2012). TheaimofthepresentworkistodeterminetheinfluenceofairͲflowspeedandfillingheight onbiofiltrationefficiencyinordertoimproveplantedbiofiltersperformanceinthetreatmentofTEX, particularly in terms of the volume of air treated. However, the understanding of microbial functioningofplantedbiofiltersremainsinsufficientregardingoptimaloperationalcontrolofthese innovative systems of treatment. This study thus also aims at evaluating the way the microbial communityfunctionsinaplantedbiofiltrationsysteminthetreatmentofNOxandVOCs. ThefunctioningofapilotͲscaleunitofbiofiltration,madeupof6bioreactorsintheformofa column,wasstudiedinthelaboratoryfor50days.Eachcolumnwasfilledupto20cmor40cmwith an organoͲmineral support enabling microbial growth and plant cultivation. It was equipped with three(20cmcolumns)orfive(40cmcolumns)gassamplingportsat10cmintervals.Ivy(Hederahelix) previouslygrowninapotwasplantedwithitsmoundofsoilinthecentreofthefilteringmaterialat thetopofeachbioreactor.Acontinuoussyntheticgaseouseffluentwasgeneratedbyvolatilization ofliquidcompoundsincleanair,previouslyhumidifiedsoastoobtaina600μg.mͲ3 concentrationof TEX (200 μg.mͲ3 for each compound), which corresponds to the concentrations of TEX currently observed in underground car parks. The biofilters were fed with an upward flow and the gas flow rateineachcolumnwasadjustedsoastomaintainsuperficialgasvelocityof200m.hͲ1(EBRTof7sor 3.5srespectivelyforthecolumnswith40cmor20cmofpackingmaterial). Thebiofiltrationefficiencywascheckeddailyforthevariousheightsofgassamplingandthe results showed a removal efficiency higher than 97% whatever the bioreactor packing material height. Themicroflorawascharacterizedwhenthesystembeganworkingandaftermaintainingthe maximalremovalefficiencyfor30daysonthebasisof: (i)afunctionalanalysisusingmicrobialactivitymeasurements, (ii)aquantitativeandqualitativeanalysisofthetotalbacterialcommunity,usingmolecular biology techniques, such as real time quantitative PCR and pyrosequencing from the metagenomic DNA. Theglobalmicrobiologicalfunctioningwasthusevaluatedandthisstudyenablesustorealize thepotentialofmicrobialcommunitiesinthebiodegradationofNOxandTEXinplantedbiofilters.It thus seems possible to treat large volumes of air polluted by low concentrations of TEX with a plantedbiofilteroflimiteddepth.Theindigenousbacterialcommunitiesofthepackingmaterialand themoundofsoilarerapidlyabletoadapttothefunctioningconditionsofsuchasystem. AIRQUALITYCONTROLINSIDEPAINTINGBOOTHSANDVOCEMISSIONSREGULATION OBJECT: As a specialist in environmental painting cabins, we offer an energy eco system of supervision and optimization of ventilation: the PROB’AIR. This regulation system allows meeting the goals of performance, profitability and control of the painting activity’s impacts on operators, environment and energy resources. Our schemeisanintelligentregulationsystemofairexhaustforpaintingbooths. Today, 60 to 70% of the energy used for ventilation of paint booth operations is consumed outside painting operations.Measureandassesssafelybecomesessentialtoacteffectivelyandsustainably:controlofinformation results in adjustment of ventilation to the needs of the production (preparation of the parts, marouflage, dessolvatation...).Thesystemensures,measuresandanalysesinrealtime,targetsandreactsinstantlytochangesin pollutants concentration (in particular of VOC), corrects gradually and simultaneously the relevant parameters, maintainsqualityandoptimallyandconstantairtemperature. PROB’AIRSPECIFICBENEFITS: •Security: ImmediatedetectionoftheVOClevelsinsidesprayboothsthankstotheCELLUL’AIRsensor Protectionforoperators’healthandsecurity •Cleantechnology: Rationalmanagementoftheneedinenergy(treatedairvolume) ReductionofGreenhouseGasEmissions •Ergonomics: Programmablecontroller Startandstopwithspraygunapplication Keepconstanttemperatureandcleanairflowinsidethepaintingbooths Reductionofthenoiselevelinsprayareas •Easyinstallationandmaintenance: Readyforuse:Compatiblewithanytypeofpaintingcabins Easymaintaining Increaselifetimeofglobalequipment(fans,mechanicalparts…) •Performance: Ventilationondemandandconstantconformitytostandards Deleting unnecessary evacuation (and unnecessary replacement) of heated or airͲconditioned airflow in the spray areas •CostandEnergySavings: Energycostscuttingupto70%: - heating,airconditioning,drivingforce - gas, electricity: related to the treatment of captured emissions in waste gas (VOC treating equipment, installedonpaintingcabins’exhaust) Runningcostscuttingduetotheequipmentoptimization VISION’AIRTECHNOLOGICALCOMPETENCES: The painting cabins aim is the protection for operators during each production painting stage. The system controlsinformation,allowsthedetectionofthesestages,andresultsinadjustmentofventilationtotheneedsof theproduction(preparationoftheparts,“marouflage”,flashoff...). The benefit remains in saving on energy consumption and keeping a constant conformity with standards, a total operators’safe,anadvancedusingcomfort,anincreasedcareofenvironment. VISION’AIR 171,chemindelaMadragueVilleͲ13002MARSEILLEͲTel:0491942431ͲFax:0491482062 contact@visionͲair.orgͲwww.visionͲair.org METHODS: PROB’AIRisanintelligentregulationsystemofairexhaust: Forexample,inthatcaseofonesingleclosedpaintingboothwithoneMakeͲupandaverticalairflow:Findhere belowthesequenceofoperations(occupancyrate)inthepaintingboothandalltheventilationcontrolleranswers (extractionlevelswhichdependsonnecessarystages) Stage1:Preparationofpieces ÎPROB’AIRholdsonminimumventilation Stage2:Marouflage ÎPROB’AIRkeepsonminimumventilation Stage3:SpraypaintingÎPROB’AIRgraduallyincreasestheventilationstepbystepfromminimumupto maximumventilation Stage4:StoppaintingÎPROB’AIRdecreasestheventilationbylevels:ittakesaround2minutesfrom maximumtominimumventilation,informationconfirmedbytheVOCsensor CELLUL’AIR Theairqualityinsidethepaintingboothisconstantlyfiltered,heated,VOCͲfreeandbalanced. IncaseofdetectionbytheVOCsensorCELLUL’AIR(ex:fabricsimpregnatedwithsolvent,leftinthepainting booth),withorwithoutpresenceofoperatorsinthepaintingbooth:PROB’AIRdetectsimmediatelytheventilation needsandgraduallyincreasesventilationratebasedonthethresholdofppmtoleranceprogram(forexample:180 ppm). PROB’AIRistheonlycontrollerabletotakeintoaccountinthesametimetheMakeͲupandtheairbalancedDemand andiscompetentenoughtoofferacustomizedsolution. PROB’AIRRESULTS: EnergySavings: Thissystemreducesenergycostsofgasandelectricityupto70%.Thepaybacksaregenerallyasfastaslessthan2 years,accordingtotheflowofeachsprayarea.Actually,thereturnoninvestmentwiththissystemisconsequent, especiallywithcontinuallyrisingenergycosts. EnvironmentalGain: ThePROB'AIRrespondsinrealtimetothecompensationandextractiondemandofthepaintingboothsbydetecting sprayandvariationsinconcentrationsofpollutantsfromtheVOCssensorCELLUL’AIR. ThePROB'AIRpreciselyadjuststheventilationtotheneedsoftheproductionandensuressafetyandcomfortonthe spraysareasinthesametimethanareductionofthelevelofnoiseoutofpaintingoperations. TheEcologicalandSustainableSolutionPROB'AIRprovidesarealenvironmentalgainwithhugereductionsin GreenhouseGasEmissionsanddividesCO2emissionsby2. Accordingtotheflowinm3/hofeachzoneofsprayandtheoccupancyofyourcabins,thePROB'AIRistheonly controllerabletotakeintoaccountinthesametimetheMakeͲupandtheairbalancedDemandandiscompetent enoughtoofferacustomizedsolution. CONCLUSION: Adaptabletoeveryindustryexhaustsystem,thissynchronizingsolutionisthekeyallowingthebalancesandthe controlforairmakeͲupunits,animprovedemployeeworkingenvironment(reducednoiselevelsandstable temperatures),andatthesametimeofferinganecologicalandsustainableprocessgoingwithaneconomicalissue. VISION’AIRoffersaleadingͲedgetechnologyintermsofventilationondemand,constantairqualityinsidethe paintingbooths,globalsecurity,accordingtoeverysingleneedorenvironmentalandenergybalance. ThePROB’AIRistheidealmonitorͲpartnerforyourpaintingbooths. DéborahKUNTZ Technology&ProcessDepartment/QualityDepartment 0609207550 debokuntz@visionͲair.org www.visionͲair.org VISION’AIR 171,chemindelaMadragueVilleͲ13002MARSEILLEͲTel:0491942431ͲFax:0491482062 contact@visionͲair.orgͲwww.visionͲair.org TRAITEMENT DES COMPOSES A PHRASES DE RISQUE COMMENT DIMENSIONNER POUR ATTEINDRE DES VALEURS < 2 mg/m3 ... TREATMENT OF COMPOUNDS WITH RISK PHRASES HOW TO DESIGN TREATMENT UNITS AND REACH VALUES < 2 mg/m3… Patrice Vasseur – Chargé d’affaires Mobile : +33 6 76 85 90 45 BIOBATIQUE 31 J, rue Victor Schoelcher 68200 MULHOUSE biobatique@orange.fr Tél : +33 3 89 45 54 09 / Fax : +33 3 89 56 26 51 ¾ Généralitéssurcesmolécules o Donnéesphysiques/Utilisationsindustrielles/Risques ¾ Lestechnologiesdisponibles o PeutͲonatteindre2mg/m3aveclestechniquesclassiquesdetraitementdesCOV ¾ Combinaisonsetassociationsdetechniques o Pourquoiaugmenterlestempsdecontactpouratteindrecesrendements ¾ Retoursd’expérience o EliminationdeDMF(diméthylformamide)parabsorption(fabricationdefibrespour dialyseurs) o EliminationdeCOV(benzène)paroxydationthermique(industriechimique–traitement d’éventsderéacteursetcuvesdestockage) o Récupérationde1,2DCE(dichloroéthane)paradsorptionsurcharbonactif(industrie chimique–traitementderéacteurs) Elimination de DMF Elimination de COV (benzène) Récupération de 1,2 DCE AirpollutionremovalbytheAELORVEphotocatalyticprocess CédricDutriez ResponsableProjets AELORVE 27,avenueGalliéni 92400Courbevoie Aelorveprojectsconcernthedecontaminationoftheindoorair.Inparticular,Aelorvefocusesonthe eliminationofbothchemicalsandmicroorganisms(virusandbacteria). Themultiplicationofchemicalallergiesandviralpandemicsinthelastyearsencouragespublichealth authorities to put in place systems of control and reduction of allergenic and contagion outbreaks. Aelorve works for the application of photocatalysis in critical places such as aircrafts, hospitals or researchlabs. Aelorvepromotestheengineeringandtheindustrializationofembeddedsystemthatuseaspecially designed photocatalytic reactor. According the first experiments, conducted with the help of CERTECH,CIMLandCNRS,thereactorisshowingexcellentresultsinairtreatment,forbothbiological andchemicalpollutions. The Aelorve solution is now adapted to different systems of air treatment via different research projects: x SAVABproject(SystemAntiͲVirusandAntiBacteriological)aimstodevelopasystemforthe treatmentofair,atreasonablecostandmaintenance,capableofdestroyingvirusesandL1or L2 type bacteriological agents combining two technologies (germicidal ultraviolet and photocatalysis)whilerespectingthestandardsofcivilaviation. x UniT’R project aims to create a system for the treatment of air in hazardous conditions (Industrial disaster or chemical weapon attack). This project concerns both chemical and biologicalthreat. x Aelorve will equip the soon opening Immunophenomic lab of Luminy, to maintain a good indoorairqualityinaL3/R3lab. In the course of those projects, Aelorve wishes to accurately characterize the efficiency of its photocatalyticreactorindifferentenvironments(humidity,temperature,concentrationofpollutants …) and to adapt the reactor for different uses (long time air treatment, short time depollution in hazardousconditions,inlineormobilesystems…). Une offre complète dédiée à la sécurité industrielle pour la protection de l'environnement Analyses de risques Etudes de dangers Evaluation des risques sanitaires Etudes d'impact environnemental Dossiers de demande d'exploitation Mesures et analyses de polluants chimiques et biologiques Système de contrôlle 'aérosols biologiques www.bertin.fr Contact : Pascale Compain (pcompain@bertin.fr) Call for papers / Appel à communications s po ke n p r e s e n t a t i o ns a n d p osters / présen ta tion s ora les et posters D e a d l i n e : N o v e m b e r 15, 2 0 12 Certification - Retours / Certification - Feedbacks Terres excavées - Matériaux alternatifs / Excavated soils - Alternative materials Impact des sites et sols pollués sur l’air ambiant / Impact of contaminated lands on ambient air Techniques innovantes de dépollution / Innovative techniques for pollution control w w w.i ntersol .fr 26 to 28 March 2013 - Lyon, France In partnership with : www.webs-event.com In collaboration with : UCIE L’Union Union des Consultants Consultan nts eet Ingénieurss en Environnement on