The use of SAXS to study biological relevant systems
Transcription
The use of SAXS to study biological relevant systems
UNIVERSIDADEDESÃOPAULO INSTITUTODEFÍSICA TheuseofSAXStostudybiological relevantsystems LeandroR.S.Barbosa lbarbosa@if.usp.br 2016 Laboratório de Biofísica! EquipamentosdeApoio LeandroR.S.Barbosa-lbarbosa@if.usp.br Calorímetro Diferencial de Varredura DMPC DPPC DSPC Viscosímetro de Ostwald η = kt Schott - ViscoClock 3.5 t η relativa 3.0 2.5 2.0 1.5 1.0 Capilar de Ostwald 0 5 LeandroR.S.Barbosa-lbarbosa@if.usp.br 10 15 20 25 30 35 40 Temperature(ºC) 45 50 55 Ressonância Paramagnética Eletrônica Espectro EPR Mobilidade–Microambiente LeandroR.S.Barbosa-lbarbosa@if.usp.br B (G) Espectrofotômetro UV-Visível 2.0 Determinação da concentração de proteínas; Absorbância Estrutura Eletrônica ... 1.6 1.2 0.8 0.4 0.0 280 300 320 340 360 λ (nm) 380 400 420 440 Fluorescência Estática e Resolvida no Tempo -1 3 -1 λ (x10 cm ) 26.7 25.0 23.5 22.2 21.0 20.0 19.1 18.2 17.4 16.7 1000 Intensidade Normalizada Contagens 1.0 100 10 0.0 5.0 10.0 15.0 t (ns) 20.0 25.0 30.0 16.0 15.4 Água Metanol Acetonitrila Diclorometano Clorofórmio Ciclohexano 0.8 0.6 0.4 0.2 0.0 375 400 425 450 475 500 λ (nm) 525 550 575 600 625 650 Espalhamento de Raios-X a Baixos Ângulos 2.5 1E -3 1.5 p(r)(a .u.) In te n s ity (a .u .) T c O Y E 2.0 1.0 1E -4 0.5 0.0 1E -5 0 20 40 60 80 r(A ) 1E -6 0.0 0.1 0.2 0.3 0.4 -1 q(A ) 0.5 0.6 LeandroR.S.Barbosa-lbarbosa@if.usp.br Comparisonamongstructuraltechniques. Small-AngleX-RaySca/eringAppliedtoProteinsinSolu9on. Barbosa,LRS,Spinozzi,F.Mariani,P.andItri,R.49–72,“ProteinsinSoluYonandat Interfaces:MethodsandApplicaYonsinBiotechnologyandMaterialsScience”,2013,Wiley SAXS Setup Detector Monocromator 2θ RXSource PolicromaYc X-ray CollimaYon system SampleHolder Vacuumchamber Beamstopper Low-pressureSystem q 2θ Incoming RX: kin Outcame X-ray: kout1 Sample Holder Reciprocal space ! 4π q = sin θ λ “Typical” SAXS Experiment X-Ray FormFactor InterferencefuncYon relatedtotheg(r) SAXS Theory ∞ ⎧⎪ 2 ⎫⎪ 2 2 sen(qr) I(q)= n p ⎨〈 F (q)〉 + 4π n p 〈 F (q)〉 ∫ (g(r)−1)r dr ⎬ qr ⎪⎩ ⎪⎭ 0 2 ∞ ⎧ ⎫⎪ 〈 F (q)〉 ⎪ 2 2 sen(qr) = n p 〈 F (q)〉 ⎨1+ 4π n p (g(r)−1)r dr ⎬ 2 ∫ qr 〈 F (q)〉 0 ⎪⎩ ⎪⎭ !" !" " = n p ( Δρ )V 2 P(q)S(q) i qi r Δρ = ρ Particle − ρ Solvent F (q) = ∫ (ρ Particle ( r ) − ρ Solvent ) e dr VParticle For non interacting systems, S(q) = 1 describing the electron density is to solve the problem! For non interacting systems, S(q) = 1 describing the electron Example:HomogeneousSpherewithradiusRandconstant density is to solve the problem! electronicdensity ! ⎧⎪ ρ ρ r =⎨ S ⎪⎩ ρ 0 () r≤R r>R ⎧ I (q) ∝ ⎨ ∫ ⎪V ⎩ ( () ) 2 ! ! !⎫ ! ρ r − ρ 0 eiq⋅r d r ⎬ ⎪ ⎭ ⎧ ⎫ ⎪ ⎪ 2 sen(qr) = ⎨4π ( ρ E − ρ 0 ) ∫ r dr ⎬ qr ⎪ ⎪ 0 ⎩ ⎭ R 2 ⎧ ⎧ sen(qR) − qRcos(qR) ⎫ ⎫ ⎪ ⎪ P(q) = ⎨3V ( ρ E − ρ 0 ) ⎨ ⎬⎬ 3 (qR) ⎪ ⎩ ⎭⎪ ⎩ ⎭ 2 Asfarasyoudefinetheelectrondensityitispossibletocalculatethe theoreYcalscacering...But,doesthiswork? HomogeneousSphere(Latexspheres) ⎧ sen(qR) − qRcos(qR) ⎫ I (q) ∝ ⎨ ⎬ 3 (qR) ⎩ ⎭ 2 Figureextractedfrom:hcp://iramis.cea.fr/scm/lions/techniques/saxs/ Example:HomogeneousEllipsoidwithsami-axisR,RandvRand I constantelectronicdensity ⎧ x 2 + y 2 )ν 2 + z 2 ( ⎪ρ if ≤1 2 2 ρ ( x, y, z ) = ⎨ Particle ν R ⎪ρ otherwise ⎩ 0 ⎧ I (q) ∝ ⎨ ∫ ⎪ ⎩V π PEllipsoid (q, R,υ ) = 2 ∫ 0 ( ⎧ ⎧ ⎪ ⎪ sin ( qR1 ) − qR1 cos(qR1 ) ⎫ ⎪⎫ ⎪ ⎨3V ( ρ E − ρ 0 ) ⎨ ⎬ ⎬ cos α d α 3 (qR1 ) ⎪ ⎪ ⎪ ⎩ ⎭⎪ ⎩ ⎭ 2 R1 = R sin α + ν cos α 2 2 ( () ) 2 ! ! !⎫ ! ρ r − ρ 0 eiq⋅r d r ⎬ ⎪ ⎭ 2 ) 1 2 HomogeneousEllipsoid:Lysozyme Lysosyme Lysozyme 7 mg/mL 100 Ellipsoid of revolution + background R = 15.48 Å 2=2.4 (χ=1.55) χ ε = 1.61 (prolate) -1 I(q) [cm ] 10-1 10-2 10-3 0.0 0.1 0.2 q [Å-1] 0.3 0.4 19 Figureextractedfrom:FormandInterferencefactors:ModelingandinteracYons,J.S.Pedersen. RadiusofgyraYon:InformaYonaboutthearrangementof maceraroundthecenterofmass. TheGuinier’sLaw: describesthescacering intensityintheq->0 limit… n 1 2 R = ∑ ri n i=1 2 g Guinier’sLaw 1911-2000 I (q → 0) I (0)e − q 2 Rg2 3 Åln[I (q)] = ln[I (0)] − q 2 Rg2 3 !!if qRg ≤ 1.3!! Rg = 26.0 ± 0.5 Å Isthisimportantfor whatkindofstudy? Guinier’sLaw–Effectofureaonproteins:HIPcase CDFluorescence -Gnd-HClshowedtwodis9ncttransi9onswithCD(at 1.0and3.0M)andalsowithfluorescence(at0.9and 2.6M),whereasthecurvesusingureashowedonly one(2.6M)welldefinedtransi9on. Dores-Silvaetal.Arch.ofBiochemandBioph.,520,88-98,2012. Andtheradiusofgyra:on? Theradiusofgyra:onfollowsthesametrendofCDand Fluorecence.ButisSAXSaspectroscopictechnique? Dores-Silvaetal.Arch.ofBiochemandBioph.,520,88-98,2012. Sistemasderelevânciabiológica Proteínas; Lipídeos; Ácidos Nucleicos; Sacarídeos LeandroR.S.Barbosa-lbarbosa@if.usp.br Proteínas • Macromoléculasquedesempenhamosmais diferentespapeisnascélulas/organismos: • Enzimas,hormônios(insulina),anYcorpos, pepwdeos,... • Sãoformadasporumasequênciade aminoácidos... LeandroR.S.Barbosa-lbarbosa@if.usp.br Aminoácidos Todasasproteínassãoformadasporumasequêciade aminoácidos. Existem20Yposdeaminoácidose“Todos”apresentam estaestrutura LeandroR.S.Barbosa-lbarbosa@if.usp.br LeandroR.S.Barbosa-lbarbosa@if.usp.br Ecomoosaminoácidosseorganizam? LeandroR.S.Barbosa-lbarbosa@if.usp.br Ecomoosaminoácidosseorganizam? EstruturaPrimária EstruturaSecundária EstruturaTerceária EstruturaQuaternária LeandroR.S.Barbosa-lbarbosa@if.usp.br TécnicasFísicas: Fluorescência,SAXS, Espalhamentode Luz... Comosedáoprocessodeorganizaçãodos aminoácidos? Energia, Entropia RelaçãoEstrutura-Função E0,S0 MínimodeEnergia EdeEntropia Masasvezesissonãoacontece… LeandroR.S.Barbosa-lbarbosa@if.usp.br A2aleidaTermodinâmicanosdizque… “A quanFdade de entropia de um sistema qualquer, isolado termodinamicamente, tendeaaumentarparaumvalormáximoaté que o equilíbrio termodinâmico seja alcançado” “AEntropiadoUniverso devesempreaumentar” Energia, Entropia Masateoriadofunilde envelamentoestariaviolando asegundaleidatermodinâmica? MínimodeEnergia E0,S0 EdeEntropia Masasvezesissonão acontece… AProteínapodeassumirestruturasestáveisdiferenteda naYva? Estados Intermediários SvenFrokjaer&DanielE.Otzen. Proteindrugstability:aformulaYonchallenge NatureReviewsDrugDiscovery4,298-306(2005) EfeitodaTemperaturana EstruturadeProteínas AProteínapodeassumirestruturasestáveisdiferenteda naYva Masqualseriaaestruturamaisestável? ThomasR.JahnandSheenaE.Radford TheYinandYangofproteinfolding FEBSJournal272(2005)5962–5970 SalahuddinP.ProteinFolding,Misfolding,AggregaYonAndAmyloid FormaYon:MechanismsofA��OligomerMediatedToxiciYes. JournalofBiochemistryandMolecularBiologyResearch2015;1(2): 36-45 AProteínapodeassumirestruturasestáveisdiferenteda naYva MaldeAlzheimer, Parkinson DoençadaVaca-Louca DoençadeCreutzfeldt–Jakob Estudodasformaçõesde FibrasAmiloides AsFibrasamiloidessão ricasemestruturasdo 9poβ LeandroR.S.Barbosa-lbarbosa@if.usp.br UsingSAXStoelucidadetheamyloidfibrilformaYon Parkinsonaffectsmorethen4mipeopleItheworld; LostofdopaminergicneuronsintheSubstanFaNigra(regionofparsreFculata); Some amyloidosis 1 2 Disease Alzheimer'sdisease AorYcmedialamyloid Proteinfeatured Betaamyloid Medin Abbrev. Aβ AMed 3 Atherosclerosis ApolipoproteinAI AApoA1 4 Cardiacarrhythmias,Isolatedatrialamyloidosis AtrialnatriureYcfactor AANF 5 Cerebralamyloidangiopathy Betaamyloid Aβ 6 Cerebralamyloidangiopathy(Icelandictype) CystaYn ACys 7 8 Diabetesmellitustype2 Dialysisrelatedamyloidosis IAPP(Amylin) Beta-2microglobulin AIAPP Aβ2M 9 Familialamyloidpolyneuropathy TransthyreYn ATTR 10 11 FatalFamilialInsomnia Finnishamyloidosis PrPSc Gelsolin APrP AGel 12 Hereditarynon-neuropathicsystemicamyloidosis Lysozyme ALys 13 14 HunYngton'sDisease La•cecornealdystrophy HunYngYn Keratoepithelin none AKer 15 Medullarycarcinomaofthethyroid Calcitonin ACal 16 17 18 Parkinson'sdisease ProlacYnomas RheumatoidarthriYs Alpha-synuclein ProlacYn SerumamyloidA none APro AA 19 SporadicInclusionBodyMyosiYs S-IBM none 20 systemicALamyloidosis ImmunoglobulinlightchainAL AL 21 Transmissiblespongiformencephalopathy“MadCow” PrPSc APrP C.Dobson,NatureReviewsDrugDiscovery2,154-160(2003) General model for Fibril formation Besidesα-syn,otherproteinsarefound intheamyloidfibrils,likeGAPDH… h/p://lashuel-lab.epfl.ch/page-50760-en.html Glyceraldehyde3-phosphate dehydrogenase Amyloidspreading NormalNeuron Ø α-synisdegradedbyUPS (ubiquiYn–proteasomesystem)(or autophagy); Ø Small fracYon is released (exocy tosis); DiseasedNeuron Ø Ø Ø Ø α-synisNOTdegradedbyUPS(norautophagy); Largeamountsarereleased(exocytosis); InternalizaYonbyneighboringcells; The“seeds”cansurviveiflysosomalfuncYonis impairedduetoageingorgeneYcmutaYons. Leeetal.NatureReviewsNeurology10,92–98(2014) General model for Fibril formation Theoryofproteinfolding tic because they tend r (Fig. 1). This is due ophobic amino-acid ckbone to the solvent Like intramolecular c forces and primarily ly, fibrillar aggregates REVIEW INSIGHT Thefunneltheory Unfolded Chaperones Chaperones Energy g. 1). Chain collapse native interactions ds to be searched en surface that must be molecules must cross nsequence, partially s kinetically trapped r proteins larger than which have a strong nto compact globular isorganized globules figurational entropy -native interactions ch for crucial native eed, whereas in the ay be rate-limiting1 obular intermediates larger, topologically by many long-range ch proteins are often GAPDH Folding intermediates Partially folded states Native state Oligomers Amorphous aggregates Amyloid fibrils Intramolecular contacts Intermolecular contacts Figure 1 | Competing reactions of protein folding and aggregation. Scheme of the funnel-shaped free-energy surface that proteins explore as they move towards the native state (green) by forming intramolecular contacts (modified from refs 19 and 95). The ruggedness of the free-energy landscape results in the accumulation of kinetically trapped conformations that need to traverse free-energy barriers to reach a favourable downhill path. In vivo, these steps may be accelerated by chaperones39,41,42. When several molecules fold Heparin Amyloid formation of GAPDH and Heparin THTfluorescence λ=1617cm-1 SAXS data Rg = 32(2) A Rg = 50(1) A Rg = 66(1) A Guinier’slaw I (q → 0) = I (0) e − Rg2 q 2 3 sin ( qr ) r2 p (r ) = I q 4π q 2 dq ( ) 3 ∫ qr ( 2π ) V PDDF Torres-Bugeau,etal.2012,JBC,287,2398-2409 FIGURE 4. SAXS curves and data analysis of GAPDH in the presence and in the absence of heparin. A, correspondence between theoretical and exper- (Fig. 4C). particle c than Dma SAXS res bined to indicated Size Di tion in th at 37 °C a Fig. 5A. P dynamic compatib GAPDH with a me heparin ( average m respective was disca nal could Glycol the nativ bation w (Fig. 5B). tions coe tetramer Accord GAPDH for a non of the hy Thus, it i arranged (38, 52) t where Rh ments, an respective SAXS data Time evolution of amyloid fibril formation Systemissupposedtobecomposedof: Ø NaYvetetramers; Ø Dimers; Ø Monomers Ø Protofibrils(effecYvecylinders) SAXS data Nomonomerswereevidenced Àvila,etal.2014,JBC,289,13838-50 Cylinder:2R=118(2)Å L=215(9)Å SAXS data and Molecular Dynamics Simulations SAXSdatausedas“input”intheMDsimulaYons Theprotofibrilsarecomposedof “trimersofdimers” Mechanism of fibril formation Acknowledgements Ø Ins9tutodeQuímica/USP-SC JulioCesarBorges Ø UNICAMP-IQ CarlosH.I.Ramos; Ø Ins9tutoAdolfoLutz AndréTempone Ø Ins9tutodeQuímica/USP-RP PietroCiancaglini Ø F.deC.Farmacêu9cas/USP CarlotaRangel Ø IFUSP RosangelaItri Ø U.DeLisboa NunoSantos Ø Ancona,Itália PaoloMariani FrancescoSpinozzi Ø IFUSP–Grupode Biousica MariaTeresaLamy