Presentación de PowerPoint
Transcription
Presentación de PowerPoint
¿ De qué está hecho el Universo ? de las partículas elementales a la materia oscura Carlos Muñoz Residencia de Estudiantes, Madrid, 6 Noviembre 2014 RESUMEN 1. Solo entenderemos la composición del Universo si conocemos las partículas elementales que lo constituyen y las fuerzas que se ejercen entre ellas • Describiremos todas las partículas y las interacciones conocidas 2. Después especularemos • ¿Hacen falta más partículas en nuestra lista? 3. • Carlos Muñoz IFT UAM-CSIC Supersimetría, Supercuerdas, ... ¿De qué está hecha la materia oscura? ¿De qué está hecho el Universo? 2 Esta charla, al ser la primera, espero que sirva de introducción a otras charlas posteriors de este ciclo donde se desarrollarán de forma mucho más extensa temas que aquí solo se introducen: Higgs, quarks y gluones, cuerdas, cosmología, etc. Carlos Muñoz IFT UAM-CSIC ¿De qué está hecho el Universo? 3 The mess at the beginning of the 20th century: Heat, magnetism, electricity, light, X-rays, ultraviolet rays, … finalized in 1948 when Feynman, Schwinger, Tomonaga showed it was renormalizable (Nobel Prize in 1965) QED is a quantum field theory, where the particles are excitations of the fields What is the Universe made of? 4 Carlos Muñoz IFT UAM-CSIC What is the Universe made of? 5 Carlos Muñoz IFT UAM-CSIC What is the Universe made of? 6 Gell-Mann (Nobel Prize in 1969) Zweig 1964, proposed quarks Friedman, Kendall & Taylor discovered the quarks in 1967-73 at SLAC (Nobel Prize in 1990) Carlos Muñoz What is the Universe made of? QCD was finalized in 1973 when Gross & Wilczek, Politzer proposed asymptotic freedom (Nobel Prize in 2004) m = 1/7 mp What is the Universe made of? 8 Carlos Muñoz IFT UAM-CSIC What is the Universe made of? 9 (+2/3) (-1) (-1/3) Carlos Muñoz IFT UAM-CSIC ¿De qué está hecho el Universo? 10 La emission de neutrinos está asociada a la desintegración beta. Parecía que este proceso no conservaba la energía y eso llevó a Pauli a postular la existencia de una partícula nueva (el neutrino) 25 años más tarde, Reines lo descubrió (Nobel Prize in 1995) la carga está relacionada con el estado de movimiento y no con el tipo de partícula (aquellas con espín anti-paralelo a la dirección del movimiento poseen carga débil) Glashow, Weinberg, Salam, proposed the electroweak theory SU(2)XU(1) in 1960’s (Nobel Prize in 1979) ‘t Hooft, Veltman, showed it was renormalizable thanks to the Higgs mechanism in early 1970’s (Nobel Prize in 1999) Rubia, Van der Meer, discovered W, Z in 1983 at CERN (Nobel Prize in 1984) Carlos Muñoz IFT UAM-CSIC Carlos Muñoz IFT UAM-CSIC What is the Universe made of? 12 Carlos Muñoz IFT UAM-CSIC ¿De qué está hecho el Universo? 13 ~0.00000001 Carlos Muñoz IFT UAM-CSIC ¿De qué está hecho el Universo? 14 Mendeleiev, 1869 ~1970’s ~0.00000001 15 Mendeleiev, 1869 ~1970’s ~0.00000001 H ~125000 And, in addition, the Higgs boson exists! Glashow, Iliopoulos & Maiani, predicted in 1970 the quark c Richter at SLAC, Ting at BNL discovered it in 1974 (Nobel Prize in 1976) Kobayashi & Maskawa, predicted in 1972 a third familiy of quarks (Nobel Prize in 2008) b and t discovered in 1977 and 1995 at Fermilab 16 The Higgs is not just another elementary particle It has a huge mass = 125 mp . Only the top quark is heavier It’s a scalar. The first known elementary particle with spin=0 The Higgs (field) defines the vacuum. Since <0|H|0>=v≠0, we can imagine the quantum vacuum as a sea full of the Higgs field (rather like the concept of the ether of one century ago!) All particles interact with the Higgs field, getting their unique masses. Englert & Brout, proposed this mechanism in 1964. Higgs also the particle associated (Nobel Prize in 2013) Almost 50 years later, LHC discovered it Carlos Muñoz IFT UAM-CSIC ¿De qué está hecho el Universo? 19 Besides, the standard model provides the fundaments of the early Universe cosmology Carlos Muñoz IFT UAM-CSIC ¿De qué está hecho el Universo? 20 SPECULATION: Do other particles exist still undetected ? History Symmetries are crucial in physics The laws of modern physics are invariant under certain symmetries: Lorentz transformations [special relativity] Local gauge transformations [SU(3)CxSU(2)LxU(1)Y] Supersymmetry (SUSY) was proposed in the early 1970’s: Golfand, Likhtman, 1971 Volkov, Akulov, 1972 Wess, Zumino, 1974 Carlos Muñoz IFT UAM-CSIC ¿De qué está hecho el Universo? 21 An invariance of the theory under interchange of fermions and bosons L (bosons, fermions) Boson Fermion Fermion Boson L (fermions, bosons) = L (bosons, fermions) But known bosons and fermions are not married up in this fashion Quarks (u,d) Electron Neutrino Gluons W, Z Photon Instead, every known particle should have a (super) partner The spectrum of elementary particles is doubled ! Quarks Electron Neutrino Carlos Muñoz IFT UAM-CSIC Squarks Selectron Sneutrino Gluons Photon W, Z ¿De qué está hecho el Universo? Fayet, 1976 With masses 1000 mp Gluino Photino Wino, Zino 23 ~0.00000001 spin 0 particle H ~125000 Carlos Muñoz IFT UAM-CSIC ¿De qué está hecho el Universo? 24 ~0.00000001 spin 0 particles Hu , Hd ~125000 ~ ~ Hu , Hd spin 1/2 particle Carlos Muñoz IFT UAM-CSIC ¿De qué está hecho el Universo? 25 . msusy ( 100 Carlos Muñoz IFT UAM-CSIC mp ) ( ¿De qué está hecho el Universo? 1000 mp 1000 mp ) 27 LEP LHC 28 ¿De qué está hecho el Universo? 29 E.g., in 2012 with a luminosity of 20 fb-1 and a QCD jet production cross section of 106 pb, 2x1010 events of this kind were produced. These are just background events, but they have to be analyzed!! in order to find the new physics But no more than 2x106 events of this kind can be produced!! Detection of the Higgs In spite of the huge backgrounds, ATLAS and CMS detectors at the LHC were able to observe the Higgs in 2012. (gg H) 10 pb H clean decay already ~ 1 million Higgses produced at LHC …perhaps it is one of the Higgses also predicted by models beyond the standard model… Carlos Muñoz IFT UAM-CSIC ¿De qué está hecho el Universo? 38 Englert, Higgs, Nobel Prize in 2013 Be prepared for more Nobel Prizes thanks to the LHC Particle physics is living a historical moment: -Years before the LHC, too early to test any model or theory -Years later, too late, the unknown will already be known Carlos Muñoz IFT UAM-CSIC ¿De qué está hecho el Universo? 38 MORE SPECULATIONS: What about gravity? Carlos Muñoz IFT UAM-CSIC ¿De qué está hecho el Universo? 33 Schwarz, Scherk, 1974 Green, Schwarz, 1984 Might be finite Carlos Muñoz IFT UAM-CSIC ¿De qué está hecho el Universo? 35 Carlos Muñoz Metaphysics 36 All this zoo is unified in an unique fundamental object ~0.00000001 spin 0 particles Hu , Hd ~125000 ~ ~ Hu , Hd spin 1/2 particle Carlos Muñoz IFT UAM-CSIC ¿De qué está hecho el Universo? 37 Carlos Muñoz IFT UAM-CSIC ¿De qué está hecho el Universo? 38 Summarizing: Apart from speculations, everything in the Universe is made of quarks and leptons, exchanging photons, W, Z, gluons (also gravitons?) in the Higgs vacuum EVERYTHING ? One of the great enigmas still unsolved is the existence of dark matter Carlos Muñoz IFT UAM-CSIC Materia Oscura 46 giant galaxy cluster CL0025+1654, about 1000 Mpc away The analysis reveals that the cluster's dark matter (shown in blue) is not evenly distributed, but follows the clumps of luminous matter closely A SOLUTION To assume that there is non-luminous matter Zwicky, 1933 in and around the Galaxies It has gravitational interaction but no electromagnetic interaction This hypothesis is not so odd if we remember that the existence of Neptune was suggested on the basis of the irregular motion of Uranus Carlos Muñoz Materia Oscura 50 85% of the matter in the Universe is dark As often remarked, this implies another Copernican revolution: We are not the center of the Universe + We are not made of what most of the Universe is made of ! Carlos Muñoz IFT UAM-CSIC Materia Oscura 76 BUT…also Dark Energy !! Perlmutter, Schmidt, Ries, discovered in 1998 the accelerating expansión of the Universe (Nobel Prize in 2011) Carlos Muñoz IFT UAM-CSIC Materia Oscura 77 Thus to decipher the nature of the dark matter is one of the great enigmas still unsolved PARTICLE CANDIDATES We need a new particle with the following properties: Stable or long-lived Produced after the Big Bang and still present today Neutral Otherwise it would bind to nuclei and would be excluded from unsuccessful searches for exotic heavy isotopes Reproduce the observed amount of dark matter Within the Standard Model of particle physics there are no candidates This is a clear indication that we need to go beyond the standard model of particle physics i.e. we need to speculate Carlos Muñoz IFT UAM-CSIC Materia Oscura 56 Could this new particle be a supersymmetric particle? photino, sneutrino, gravitino Let us then assume that this kind of particles exist and that any of them is the dark matter the question now is: Can we detect it in experiments ? Carlos Muñoz IFT UAM-CSIC Materia Oscura 55 DETECTION The LHC could detect a new kind of particle …but how can we be sure it is stable on cosmological scales? A complete confirmation can only arise from experiments where the particle is detected as part of the galactic halo Carlos Muñoz IFT UAM-CSIC 58 DETECTION Since the detection will be on the Earth or on satellites, we only need to know the properties of the Galactic halo near the Earth For m ~ 100 mp these imply J ~ 100,000 particles/cm2 s, and therefore direct detection through elastic scattering with nuclei in a detector is possible Goodman, Witten, 85 Wasserman, 86 View of some detectors in the copper box in progress of installation experiment: Installing the detectors inside the copper box and shield Carlos Muñoz Materia Oscura 62 INDIRECT DETECTION Annihilation of dark matter particles in the galactic halo will produce gamma rays, antimatter, neutrinos and these can be measured in space–based detectors: Fermi (gammas), PAMELA, AMS (antimatter) or Cherenkov telescopes MAGIC, HESS, VERITAS, CANGAROO (gammas) Carlos Muñoz IFT UAM-CSIC Materia Oscura 63 Dark matter can accumulate in the Sun or the Earth. Its annihilation will produce neutrinos which can be detected in neutrino telescopes, specially through the muons produced by their interactions in the rock Under-ice experiments (IceCube with a size 106 m2 ) Underwater experiments (ANTARES with a size of 104 m2. In the future KM3NeT with a size of 106 m2 ) CONCLUSIONS The standard model of particle physics “almost” answers the question: What is the Universe made of? However, one of the great enigmas still unsolved is the existence of dark matter Within the standard model there are no possible candidates, thus we need to assume the existence of new particles Supersymmetry, that predicts that every known particle should have a partner, has candidates for dark matter, which could be tested in the LHC and in direct and indirect detection experiments Supersymmetry is not sufficient to unify gravity with the other interactions in Nature, but perhaps string theory allow us to achive this goal Carlos Muñoz IFT UAM-CSIC ¿De qué está hecho el Universo? 65