Industria dei semiconduttori, tecnologie, progettazione: stato attuale
Transcription
Industria dei semiconduttori, tecnologie, progettazione: stato attuale
Industria dei semiconduttori, tecnologie, progettazione: stato attuale e sviluppi futuri Ing. Michele Taliercio CR&D - External R.& D. Program Coordinator Crema, 14 Maggio 2001 STMicroelectronics Industria dei semiconduttori •Mercato • Tecnologia • Progettazione • Fabbrica •Fattore umano Industria dei semiconduttori, tecnologie, progettazione: stato attuale e sviluppi futuri 1) Il mercato 2) La tecnologia 3) La progettazione 4) La fabbrica 5) Il fattore umano Semiconductor market cycles beyond 2000, long term trend $ Billions 1000 2000 : $204B 1990 : $50B 1980 : $10B % Growth MARKET CAGR % : • 15% over 40 years • 15% over last 10 years • 7% over last 5 years 100 75% +37% 50% 10 25% 1 0% -25% 19 59 19 61 19 63 19 65 19 67 19 69 19 71 19 73 19 75 19 77 19 79 19 81 19 83 19 85 19 87 19 89 19 91 19 93 19 95 19 97 19 99 20 01 20 03 20 05 20 07 0 % Growth 2000 market Current Market Trend Line Source : WSTS, ST 8 NEW MARKET DRIVING FORCES GROWING SEMICONDUCTOR CONTENT IN ELECTRONIC EQUIPMENT 1965 : 2% •Main Frame •Defense 1975 : 4% 1985 : 7% •Mid-frame •Industrial 1995 : 20% •PC Motherboard •Communication Infrastructure Productivity •Portability •Connectivity Corporation Productivity Commodities Bipolar 2" 12" $204B Mem, Micro, Asic Cmos 4" $4B 2005 : 25% 6" 8" Individual Productivity System-on-chip Cmos, Mixed Power $144B $25B $1.5B 1965 15% 1975 1985 1995 $400B in 2005 16% 2005 2010 ELECTRONICS IN THE CAR Drive assistance Weather Manual on line DRIVER INFORMATION SYSTEM GPS Messaging Web traffic Camera Rear View Camera Climate Power seats Lighting Door control BODY MOTOR Internet/Games Radio/phone TV/DVD ENTERTAINMENT DVD changer SAFETY Emergency call the Car is connected to the World Engine Transmission Regulator ABS ASR AirBag Power Steering 2010 Electronics on individual Permanent portable electronics : •communication (UMTS, …) •leisure (games, music, video, …) •work (data processing, …) •health monitoring + Private data •identification •mobility tools (GPS, …) •… Picture : Siemens 2010 Generalized e-commerce • Home purchases • Street purchase • Office purchase • Mobile purchase Source : Siemens Paying by mobile phone, by calling the number of the machine The development of microelectronics is at the very heart of economic development Research Banking systems Government action Services Leisure Computers Medical systems Microelectronics Communications Education Electronics Transportation Industry Environment Size and price reduction for electronic functions 2000 100$ Voice recognition Communication protocol Image compression Processing power 2005 10 $ Voice recognition Image compression Communication protocol Processing power 2010 1$ Economic Impact - Value Added An Industry Built On Sand • • • • • • • 106 Value Added Chain Sand … <$1/kg Polysilicon … $50/kg 200mm Prime Wafer … $1,400/kg 200mm Processed Wafer … $25,000/kg Packaged Integrated Circuit … $100.000/kg Generating End Equipment Worth … $500,000/kg With A Street Value Of More Than … $1,000,000/kg That’s What Makes Microelectronics So Important MEDEA Forum ’99 Slide 8 Industria dei semiconduttori, tecnologie, progettazione: stato attuale e sviluppi futuri 1) Il mercato 2) La tecnologia 3) La progettazione 4) La fabbrica 5) Il fattore umano History 1897 1907 1948 1958 1962 1970 1971 Discovery of the electron (J. Thomson) First termoionic valve (L. De Forest) First transistor (W. Shockley, J. Bardeen, W. Brattain) Integrated circuit MOS transistor 1 Kb DRAM memory 4 bit microprocessor ... 80s CMOS convergence ... 1993 1995 1997 1999 Central R&D 32 bit microprocessor 64 Mb DRAM (16 Mb production) 256 Mb DRAM (64 Mb production) 1 Gb DRAM (256 Mb production) Genova, November 10th, 2000 CMOS Integration Trend: Moore’s Law Transistors /chip 10G 4 Gb 1 Gb 1G 256 Mb Memory (DRAM) 100M Power 4 64 Mb 16 Mb 10M P III® 4 Mb P II® Pentium® 1 Mb 1M 80386 256 Kb 64 Kb 100K 16 Kb 4 Kb 10K 8080 4004 1K 1970 1975 8086 8085 1980 68020 80286 68000 1985 80486,680 Microprocessor 1990 1995 2000 Central R&D R&D - Jan 2000 COMPANY CONFIDENTIAL J.Monnier 2005 ITRS Roadmap Potential Acceleration 500 95 97 250 (DRAM Half-Pitch) 05 08 11 1994 SIA 350 Minimum Feature Size (nm) 02 99 1997 SIA 180 1998 / 1999 ITRS 130 100 ISMT Litho 2000 Plan 70 50 Area for Future Acceleration 35 25 95 97 99 02 05 08 11 ST 8/31/00 GF 5 Index [log] ≡ 1Tbit 10 000 Complessità (bit-volume) x 4000 1000 1,20 $ / Mbit 100 ≡ 22cm² 10 Dimensioni del chip x8 1 DRAM Prezzo/Mbit x 1/200 ≡ 0,66cts/Mbit 0,1 1996 1999 2002 2005 2008 2011 2014 18 ans 256Mbit 1Gbit 4Gbit 16Gbit 64Gbit 256Gbit 1Tbit 250 180 130 100 70 50 35 Complessità in bit Geometrie in nm Fonte: ITRS, MEDEA The Optical Lithography perspective Determining the limits of today state of the art photolithography 1999 180 nm 2001 150 nm 2003 130 nm 2006 100 nm 2009 70 nm 2012 50 nm MOS & Interconnect SK SK WR WR HWR BH Contact SK WR HWR HWR BH BH Solutions Known Source: SEMATECH Work Required Hard Work Required Black Hole The Sub Wavelength Gap Lithography Wavelength Silicon Feature Size Copyright 2000 Numerical Technologies, Inc. 08/08/2000 10:12 AM PAGpr600 GG 3 Interconnect Challenges As technology scales, wires, not devices, dominate the delay, power and size of integrated circuits Interconnect trends Technology generation (nm) metal levels (number) max interconnect length (Km) 180 6-7 1.7 130 7 3.3 100 7-8 5.0 Copper, instead of Al, and low K dielectric Below 100nm not known solutions to meet performance requirements Design and layout solutions managing signal delay on a local scale are needed Central R&D Genova, November 10th, 2000 VLSI Process Evolution 2 Year acceleration of technology nodes : 70 nm for DRAM and 45 nm for MPU in 2008 (ITRS) Lithography reaching optical limits New front-end / back-end materials needed Interconnect challenge below 100 nm Defect control: exponentially growing difficulty Technology modeling and new simulation tools Central R&D Genova, November 10th, 2000 VLSI Process Evolution Major non incremental changes : SiGe introduction 1999 Copper replacing Aluminum 2000 300 mm transition 2001 SiO2 evolving to low K dielectric 2002 High K deposited gate dielectric 2003 Gate electrode poly replacement 2007 Non-optical lithography intercept 2007 Central R&D Genova, November 10th, 2000 DIFFERENTIATED PROCESS V ARIANTS BY APPLICATION CMOS CMOS Derivatives Derivatives Analog ! Tuner(Set-Top Box) BICMOS RF(cellular phone) ! Fiber Optic IC ! RFCMOS ! Bluetooth HFCMOS ! Power Management (Cellular phone) Imager ! Web Cam SRAM/DRAM ! PC peripherals CMOS CORE PROCESS DIFFERENTIATED PROCESS V ARIANTS BY APPLICATION Non Non Volatile Volatile Memories Memories (NVM) (NVM) derivatives derivatives Multilevel Flash embedded ! MP3 Flash embedded ! Automotive peripherals EEPROM embedded ! Smartcard OTP/EPROM embedded ! GPS CMOS CMOS NVM NVM CORE CORE PROCESS PROCESS Transistor, a silicon perspective M1 : W MOS STI 1 µm MOS poly gate length = 0.25 µm, Shallow Trench Isolation Metal 1 and contact Metal1, a silicon perspective CMOS 0.25 µm, Shallow Trench Isolation, M1 : Metal1 MOS & inteconnections, silicon perspective M6 : Al Via5 : Al M5 : Al Via4 : Al M4 : Al Via3 : W M3 : Al Via2 : W M2 : Al Via1 : W M1 : W Contact : W CMOS 0.25 µm, STI, 5 Metal Layer with CMP, M6 for bump Interconnect Delay versus Dielectric K for Al and Cu Normalized Delay 1.2 1.0 0.8 Al Cu 0.6 0.4 0.2 0.0 0.5 1.0 1.5 2.0 2.5 Dielectric K 3.0 3.5 4.0 Industria dei semiconduttori, tecnologie, progettazione: stato attuale e sviluppi futuri 1) Il mercato 2) La tecnologia 3) La progettazione 4) La fabbrica 5) Il fattore umano Technology platform for System-On-A-Chip Concurrent Engineering Process & options development Pilot line Production UNICAD tools & methods Cores : µP, DSP, RAM, ROM,... Technology System prototype Platform HW - SW codesign & IP reuse Central R&D R&D - Jan 2000 Early access for customers to new prototypes Time to Market & flexibility COMPANY CONFIDENTIAL J.Monnier Complex VLSI : Challenges Manage the Complexity System-on-chip design Design Reuse HW/SW Co-design Testing Millions of Gates System on a Chip < 0.18 µm Geometries Manage the Performance Critical dimensions Power Physical Design Reliability Central R&D R&D - Jan 2000 COMPANY CONFIDENTIAL J.Monnier SOC AT THE HEART OF CONFLICTING TRENDS Process roadmap acceleration Consumerization of electronic devices Link ST20 FEI Dolby AC3 Denc Time-to-market MPEG2 Video 2 x 3 DAC Deep sub micron effects crosstalk electro migration wire delays mask costs (OPC, PSM) Complex systems uCs, DSPs HW/SW SW protocol stacks RTOS Digital/Analog IPs On-Chip busses ACCELERATION OF TIME Years 20 18 16 14 12 10 8 6 4 2 0 B&W TV TIME TO 10 MILLION UNITS Color TV VCR PC GSM STB DVD 1950 1960 1970 1980 1990 2000 2010 In 2010, instant 10 Million Units volumes will be required SoC Implementation Platform Cell Libraries IP Blocks Link Link ST20 Dolby AC3 Design Tools Denc FEI MPEG2 Video Data Management 2 x 3 DAC Flows Kits & Methods Central R&D R&D - Jan 2000 COMPANY CONFIDENTIAL J.Monnier THE DESIGN PRO D UCTIVITY GAP 100000 1000 10000 CAGR 58% 100 1000 10 100 1 10 CAGR 21% 0.1 1 0.01 0.1 0.001 0.01 1981 1985 1983 Source ITRS roadmap 1999 1989 1987 1993 1991 1997 1995 2001 1999 2005 2003 2009 2007 Productivity (K)Trans./Staff-Mo. Logic Transistors per Chip (M) 10000 Process / Design Gap Design Complexity Process Capability System Level Entry (tr. count linear) HW-SW Methodologies + 60% / year IP Reuse RTL-to-Layout Flow + 20% / year Analog & Full-Custom Design Year 94 95 96 97 98 99 2000 Source : ST Central R&D R&D - Jan 2000 COMPANY CONFIDENTIAL J.Monnier From System Level down to Silicon, the needs Complement the rich, heterogeneous process technology offer with tools/methods supporting it at architecture and system design levels System Level Entry DSP algorithms, Protocols, Control, Real-time, GUI Executable specifications, system validation DO THE RIGHT THING HW-SW Methodologies Processors, memories, logic, datapaths, analog, RF, A/D Virtual prototype, Architecture exploration HW/SW co-verification (co-simulation, co-emulation) High performance S/W compilation DO THE THING RIGHT, FAST RTL-to-layout Flow Process capabilities Logic, analog, DRAM, SRAM, Flash, High-speed, Power DO IT IN ON A SINGLE CHIP! CO NCLUSION :DEEP SUB MICRO N SOC DESIGN PLATFORM S Application Application Sensors DRAM DSP CORE CLOCK GEN Fast Fast Prototyping Prototyping System-Level System-Level platform platform J T A G I/O (serial) STBUS RAM RF ROM Logic eFPGA SOC core-std. CMOS logic (Bluetooth, PicoRadio) SOC SOC Process Process U A R T Flash SOC SOC Design Design Platform Platform Industria dei semiconduttori, tecnologie, progettazione: stato attuale e sviluppi futuri 1) Il mercato 2) La tecnologia 3) La progettazione 4) La fabbrica 5) Il fattore umano I Prodotti 2001 1994 1980 0.5 µm 1.5 M tr/cm2 3.5 µm 0.15 M tr/cm2 3 ML / 3.3 V 200 mm 1 ML / 5 V 100 mm 0.15 µm 15 M tr/cm2 7 ML / 1.5 V 300 mm ( start of prototyping) Central R&D R&D - Jan 2000 COMPANY CONFIDENTIAL J.Monnier Evolution of Design Methodology CD's (nm) 250 INTERCONNECT 180 POWER 130 100 70 50 RELIABILITY 97 Standard cells RC for Clocks 98 99 Dig. libraries RC for all nets Signal isolation 00 01 Block reuse Leakage Crosstalk FlipChip 02 03 RLC parasitics Block protocols Package simul. Power solution New analog des. New tools & methodology Increased design complexity 10/05/01 04 05 Appli. specif. platform Combined P&R/synth. New device models Gate current Transmission line eff. Soft errors Current switch Substrate coupling 06 07 Years Block communication Signal skew New faults models Signal integrity Local thermal variation Interco. skin effects Source barrier effects Quantum effects New BIST ... STPC industrial PC-ON-CHIP System On Chip X86 Core TFT controller 64-bit Graphics Engine 64-bit Memory controller PCMCIA (Cardbus) PCI & ISA controller Keyboard & Mouse controller Serial & parallel port controller ... HCMOS6 - 5L 140 mm² 2.5 M transistors Set-top box for DXX (STi5500) Link ST20-TP2 (design DPG & PPG) MPEG2 A/V : 1.3 M tr. ST20-TP2 : 2.0 M tr Link, encoder & DACs : 0.7 M tr. MPEG2 Audio MPEG2 Video Encoder RGB YUV process HCMOS6 CMOS 0.35 µm, 5 ML 4.0 M transistors 96 mm2 ST10 HDD controller with Embedded DRAM (Design DPG) 1 Mbit DRAM HCMOS6 : 0.35 µm, 5 ML ST10 microprocessor & 1 Mb DRAM 1.8 M transistors 49 mm2 DSP952 : core, memories & peripherals SPS2 SPS2 SPS2 program SPS2 SPS2 data CORE DPR2 program 16 bit fixed point DSP : program memory : 32 kWord data memory : 16 kword cycle time : 10 nS HCMOS7 : 0.25 µm, 5 ML total area : 27 mm2 core area : 1 mm2 PLL SPS2 peripherals ST10F269 - 16 bit µC with 2 Mbit Flash 0.35 µm, 5 metal levels, 48 mm2 M5 M4 M3 M2 M1 M3 M2 M1 Array interconnection scheme Logic interconnection scheme 1.72µm² Flash Cell Central R&D April 7th, 2000 64Mbit Multilevel Flash Memory Technology: 0.18um CMOS triple well double poly triple metal Multilevel Concept: 2bit/cell "11" "10" "01" "00" VRead Central R&D - Non Volatile Memory Process Development 4 storage levels 64Mbit = 32Mcells Industria dei semiconduttori, tecnologie, progettazione: stato attuale e sviluppi futuri 1) Il mercato 2) La tecnologia 3) La progettazione 4) La fabbrica 5) Il fattore umano ST – Agrate Brianza: Centro Tecnologico R2 Processi Ø Processi di lavorazione delle fette di silicio • Il processo richiede circa 400 operazioni e un numero molto elevato di controlli • Il tempo di ciclo della produzione è di circa 2 mesi • L’ impianto lavora 24 h / giorno per 7 giorni / settimana • Le fette finite e collaudate elettricamente vengono inviate agli stabilimenti di assemblaggio per l’incapsulatura plastica Agrate Brianza - R2 : Caratteristiche dell’ Impianto Ø Area pulita ( clean room ) : 5600 m 2 • Ricircolo dell’aria 10 X / minuto • Pulizia dell’aria 10000 volte quella di una camera operatoria • Polverosità : classe 0 (< 1 particella da 0.5 micron / m 3 ) • Temperatura controllata : 22 ° +/ - 0.1° C in litografia • Umidità relativa : 40 – 45 % Agrate Brianza - R2 : Caratteristiche dell’ Impianto Ø Prodotti chimici , gas ultrapuri e acqua deionizzata • Rete per la distribuzione e raccolta di gas e fluidi di processo • Più di 20 prodotti chimici ad alta purezza controllati al punto d’uso • 2 edifici di servizio per la generazione di acqua deionizzata (120 m 3 / h) e prodotti chimici Industria dei semiconduttori, tecnologie, progettazione: stato attuale e sviluppi futuri 1) Il mercato 2) La tecnologia 3) La progettazione 4) La fabbrica 5) Il fattore umano Microelectronics is a "Global Human Challenge" The Microelectronics Industry employs around 800 thousand people worldwide In the assumption: Productivity increase of 10-20% per year Replacing turnover of around 5% per year The industry need will be: 100 thousand people per year 60 thousand highly qualified, highly specialized 40 thousand still classified as operators, but high degree of qualification is a must This Human Capital availability can be the major limiting factor to the Microelectronics growth in the year 2000’s, and primarily in the Western world