+ r - Asoex
Transcription
+ r - Asoex
Manejo sustentable de suelo, riego y nutrición. C. Xiloyannis University of Basilicata, ITALY home page: http://www.unibas.it/utenti/xiloyannis CO2 29 y 30 de Agosto 2012 Hotel Sheraton – Santiago CHILE. cristos.xiloyannis@unibas.it Focus on: - Mineral nutrition - Irrigation - Soil management Knowledge of vine-demand to calibrate the fertilization plan Amount of some mineral elements in whole kiwifruit vine (cv Hayward, 740 p/ha) each value is the mean of 3 plants uprooted at the end of each year. kg ha-1 Year from plant. N P2O5 K2O CaO MgO I 4.3 1.6 3.6 11.8 2.2 II 20.9 7.4 18.0 57.8 10.5 III* 41.9 15.4 43.4 96.2 18.3 * Yield 7 t ha-1 The distribution method should be taken into consideration to estimate the efficiency irrigation methods that wet all soil surface have low nutrient distribution efficiency during the early years after planting 4-year average annual dry matter (DM) and nutrients partitioning among plant organs (cv Hayward, Pergola 494 p/ha, 21-year old, yield 34.2 t ha-1). DM N P K t /ha Ca Mg Kg / ha Yield 5.9 52 7 95 12 10 Leaves 4.3 43 3 78 104 17 Pruning material 2.0 14 2 10 8 4 Thinned fruits 0.2 2 0.2 9 0.3 0.7 Total 12.4 111 12.2 192 124.3 31.7 OUT of Orchard 5.9 81 7 95 12 10 (Pruning material was mulched in loco) Entrano con l’acqua di irrigazione (10000m3 /ha): 220 kg di N nitrico; 625 kg di Ca; 80 kg di magnesio; 24 kg di K; 167 kg di Na e 220 kg di cloro ogni anno per ettaro. ….Nitrogen flow ( yield 34.2 t ha-1 ) Out Kiwifruit plant Fruit 52 kg Leaves 43 kg 110 kg ha-1 cover crop (grower) Pruning mat. 14 kg ha-1 Thinned fruits 2 kg ha-1 In soil Orchard system Mineralization Organic pool? out Losses ?? Irrigation water 10-200 kg/ha Mineralization??? Caratteristiche chimiche dell’acqua di pozzo impiegata per l’irrigazione e relativo apporto di sali al suolo. (Volume irriguo annuale 12.460 m3 ha-1, campione di acqua prelevato nel mese di Giugno). (Hayward, 5 x 5 tendone) ANALISI CHIMICA mg L-1 Cloruri Azoto da nitrati Solfati Sodio Potassio Magnesio Calcio Bicarbonati APPORTI kg anno 107.6 9 14.1 48.7 1340,7 112.1 175.7 606.8 28.6 21.8 96.1 305 356.4 271.6 1197.4 3800.3 NITROGEN fertilization: knowledge of mineralization process 70 21 42 42 21 Kg /ha N 120 100% N ) 110 100 90 75% N sustainable conventional 70 compost 50% N 60 50 3- ppm NO (0-40 cm 80 25% N 40 30 roughly stable N availability… 20 10 1-feb 28-mar 7- 8- sustainable conventional 21- 9- 4- M ag O tt O tt 30 1 fase 2 Se t fase 1 3 M ag 6 20 Giu G iu 6 14 Lug Lu g 31 Lu g 80 29 9 Ap r 0 11 Elementi minerali (% rispetto al valore finale) Assorbimento medio di macronutritivi dal suolo 100 fase 3 60 40 20 Variations of Nitrogen content storaged in shoots (kg ha-1) in a mature kiwifruit orchard (pergola, 625 t ha-1) 20 Bark woody 15 10 5 60 120 180 240 300 DOY Example of fertigation plan for a mature kiwifruit orchard (% of the total) Weeks from bud break 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 4 6 8 10 11 12 13 14 15 16 17 18 19 20 21 22 N P K Nutrients are distributed as % of 6 6 7 7 8 8 10 10 10 6 6 6 3 3 2 2 100% 20 20 20 20 20 100% 8 8 10 10 10 10 10 10 8 8 4 4 100% the mean annual requirement accordind to vine demand along the season IRRIGATION Best interval for N distribution 30 min. 30 min. PERIOD THAT WE CAN USE FERTIGATION CALCIUM Kg ha-1 Total POTASSIUM Kg ha-1 Total Leaves Leaves Fruits Shoots Shoots Fruits 15 Mar 15 May 15 Jul 15 Sept 15 Nov 15 Mar 15 May 15 Jul 15 Sep 15 Nov Seasonal calcium and potassium demand and partitioning in the different plant organs (mature kiwifruit orchard 625 p ha-1) …. Ca accumulation into fruit Fruit Calcium harvest TIME 8-9 weeks After Fruit Set (AFS) • Affect plant water consumption Leaf transpiration… • the centre of photosynthetic capacity (Bodribb, Plant Sci, 2009) • …impact on yield •……. Very small (0.5% of total transpired water) Fruit transpiration… Ususally fruits effect leaf transpiration ( from 15 to 30% xiloyannis, Naor) Impact on fruit quality (i.e. mineral composition) -2 -1 Fruit Transpiration (mmol m s ) 2,5 2,0 1,5 Midday values 1,0 0,5 0,0 0 20 40 60 80 100 Days AFB (Montanaro et al., 2006) …. on attached fruit 6.00 X-Ray counts (P/B) 5.00 Calcium Potassium 4.00 Part of the total Ca is stored in specialised cell ….. 3.00 2.00 1.00 0.00 Parenchymatic cell (Vacuol) Parenchymatic cell (Wall) Parenchymatic modified cell (storage area) a a b High calcium content c (by Vitagliano et al., 1999) How Ca naturally reach the fruit?? A causal chain… Transpiration Xylem stream Ca …some features of fruit transpiration •higher in young fruit Why this trend? -2 -1 Measured transpiration E (mmol cm h ) •diurnal/seasonal pattern 23 days AFB 35 49 65 94 140 -1 -2 0.8 2.5 Fruit Transpiration (mmol m s ) 1.0 0.6 0.4 0.2 0.0 0 4 8 12 16 Time of day (h) 20 24 2.0 1.5 1.0 0.5 0.0 0 20 40 60 80 100 Days AFS Montanaro et al Plant Sci 2006 …fruit transpiration decrease with changes of: Hairs viability alive 10 days AFB 100% % alive hairs 80 60 death 60 days AFB 40 20 0 0 10 20 30 40 Days AFB Dichio et al., 2003 50 60 70 Alexander’s stain method 4th week from fruit set 5 weeks AFB ( Xiloyannis et al., 2001) Stoma A …fruit transpiration decrease with changes of: Epidermal layer B 17 weeks AFB (Xiloyannis et al., 2001) The collapse of the external layers of epidermal cells during the development of the fruit. (Xiloyannis et al., 2001). Efficiency of sprays on fruits at different growth stages with CaCl2 (0,16 M) Potassium Chlorine Calcium Potassium K, Cl, CA ions digital EDXMA map in the flesh layer of kiwifruit at different growth stage 40 days after fruit set Chlorine At harvest Calcium nutrients did not reached the flesh PHOTO Minnocci A. Rr 40% 20% 0% 20% 9 0% 100% 80% 60% 100% 6 Rp 3 Rd Rpress 40% 80% 60% 40% 20% 0 20 0% 20 40 60 40 60 80 100 DAA 80 100 120 140 160 120 140 160 180 20% 0% 20 DAA 40 60 80 100 120 140 160 180 Mazzeo et al in preparation rprox + rrec + rped 12 3 40% 60% + 60% rt= rdis 80% PRESS. CHAMBER 3 15Rpe 2 80% 100% Cut 1 -1 Hydraulic resistance x 10 (MPa s g ) 100% <------vvvv-----------vvvv------vvvv-------vvvv------- …fruit transpiration decrease with changes of: Hydraulic resistances ? Temperature RH Transpiration Xylem stream Wind Radiation Hypothesis… Ca Xylem stream Ca Calcium (mg/fruit) 50 230 V electric fans in rainproof boxes created wind speeds up to 3.3 m /s 40 30 20 10 0 (Dichio et al. Acta Hort 2007) Windspeed Transpiration How Ca naturally reach the fruit?? A causal chain… y = a + bx3 (a = 21.846; b = 0.511) r2 = 0.72 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Windspeed m/s Xylem stream Temperature, RH Transpiration How Ca naturally reach the fruit?? A causal chain… Ca Bagged fruit / LOW VPD 1. Control fruits (regular transpiration) 2. Bagged fruits (restricted transpiration) Relative humidity ~ 95% (Banuelos et al., 1987; Hofman et a 100 L vpd RH (%), Temp (°C) 80 Transpiration = (bag weigh t0) – (bag weigh t1) 60 H vpd 40 20 0 -1 -1 Fruit water loss (g f d ) 2.0 1.5 1.0 H Vpd …the effect of minerals accumulation 0.5 Lvpd 0.0 DAFB K, Mg Xylem/phloem mobile nutrients Low transpiring (bag) Dry weigh per fruit (g) Low transpiring (bag) Ca Phloem immobile Xylem stream Radiation Transpiration Ca Calcium concentration in light exposed and shaded kiwifruits 0.7 * * Fruit Calcium (% DM) 0.6 * 0.5 * exposed 0.4 * * 0.3 * 0.2 shaded 0.1 0 20 40 60 80 100 Days AFS 120 140 160 Accumulo di minerali nei frutti 50 300 40 225 30 150 20 -1 -1 10 Potassium (mg fruit ) Calcium (mg fruit ) 75 150 20 120 15 90 10 60 5 0 -1 Nitrogen (mg fruit ) -1 Magnesium (mg fruit ) 0 30 60 90 120 150 180 30 60 90 120 150 180 Days AFB 30 AIR TEMPERATURE 16 RELATIVE HUMIDITY 23 AFB RADIATION r =-0.942; P<0.0001 12 12 8 8 4 16 23 AFB 16 12 12 8 4 r =0.945; P<0.0001 12 r =-0.969; P<0.0001 r =0.886; P<0.0001 12 8 4 4 12 32 AFB 12 8 8 2 R =0.92 (Sigmoidal fit) 4 9 46 AFB 6 r =0.922; P<0.0001 3 r =-0.917; P<0.0001 r =0.935; P<0.0001 2 2 1 1 r =-0.806; P<0.0001 1.0 0.5 0.5 -1 r =0.66; P<0.002 1.5 -2 1.5 91 AFB Transpiration (mg cm h ) 62 AFB 8 46 AFB 8 6 6 4 4 2 r =0.853; P<0.0001 -2 -1 Transpiration (mg cm h ) 3 -2 -1 Transpiration (mg cm h ) 6 3 3 r =0.704; P<0.001 62 AFB 2 2 1 1 r =0.701; P<0.0001 r =0.67; P<0.00013 0 0.4 0.4 1.0 1.0 0.5 0.5 r =0.858; P<0.0001 0.0 r =0.512; P<0.025 0.6 137 AFB 0.6 r =0.457; P<0.056 0.4 0.2 r =0.77; P<0.0002 20 0 91 AFB 0.6 137 AFB 16 2 3 0.0 0.6 4 r =0.825; P<0.0001 9 r =-0.842; P<0.0001 1.0 4 r =0.804; P<0.0001 16 8 3 8 2 R =0.93 (Sigmoidal fit) 4 16 32 AFB WINDSPEED 16 24 28 32 Air Temperature (°C) 36 0.4 0.2 r =-0.814; P<0.0001 30 40 50 0.2 60 70 Relative humidity (%) 80 0.2 r =0.89; P<0.0001 0.0 0.0 0 1000 2000 3000 -2 Radiation (KJ m ) 1 2 3 4 -1 Windspeed (m s ) 5 Youngest roots (less suberised) are more efficient increase suberin formation Cucurbita pepo; Redrawn by White 2001 -3 Calcium translocated (mmol mm ) 7 6 youngest roots 5 4 highly suberised roots 3 2 1 0 0 10 20 30 40 Distance from root tip (cm) 50 Preserving young roots at the shallow soil layers would increase Ca uptake and Ca concentration in the Xylem sap. Soil Ca (mg kg-1) Soil depth (cm) 0 100 I 200 I 300 I 400 I 500 I 15 _ 30 _ 45 _ 60 _ 75 _ By Ortiz and Gallaher, 1985 Le lavorazioni del suolo danneggiano le radici superficiali 4th week from fruit set 5 weeks AFB ( Xiloyannis et al., 2001) Stoma Efficiency of sprays on fruits at different growth stages with CaCl2 (0,16 M) Potassium Chlorine Calcium Potassium K, Cl, CA ions digital EDXMA map in the flesh layer of kiwifruit at different growth stage 40 days after fruit set Chlorine At harvest Calcium nutrients did not reached the flesh PHOTO Minnocci A. 8 0,4 6 0,3 4 2 0,2 0 0,1 140 160 180 200 DOY 220 240 260 Fruits water consumption (% total) fruit surface (% total) 0,5 Ca is imported mainly within the early weeks AFS - Minimize soil tillage…. - Reduce shoot:fruit competition….. - Minimise antagonisms (e.g. K ) --Spray Ca no later 40-50 days AFS --Irrigation VPD of the air surrounding fruit is the main driver of transpiration - Training system - Summer pruning - Keep the grass short Frutti con elevata pezzatura (> 120 g) indotta con . fitormoni esogeni hanno minor concentrazione in… Concentrazione elementi minerali e sostanza sacca objectives of a sustainable fruit orchard management increase and preservation of soil fertility (= chemical, physical, microbiological quality) by means of soil management techniques % Organic matter (0-20 cm depth) 4,5 3,8 Conventional management 3.2 sustainable management Easy degradation 2.6 Part of OM with long life 1.9 0 20 40 60 Rielaborato da WBGU Special Report: The Accounting of Biological Sinks and Sources Under the Kyoto Protocol 80 Annual global carbon emissions during the past 50 years (billions metric tons per year) 380 ppm 8 360 6 340 5 4 320 3 Atmosphere CO2 7 280 2 1 1957 today Source: National Geographic. Oct 2007 - IPCC Total and per capita CO2 emissions in various country (source: UNFCCC, EEA, DIW Berlin) Total emissions CO2 (Mt) Per capita emissions (t/year) 1990 2000 (* = 2001) 2000 (* = 2001) Australia 259 502 26,8 Canada 421 726 24,0 USA 4844 7001 19,0 Arabia Saudita 160 271 13,1 EU 15 * 3152 4120 11,0 Sud Africa 291 354 8,5 Cina (+ Hong Kong) 2389 2893 2,3 India 595 908 0,9 Soil fertility Organic matter in South Italy 0,8 - 1,3% Partitioning of Carbon footprint for each stage of the NZ-kiwifruit lifecycle based on product shipped to Europe. 1.74 Carbon eq for every kg of fruit UK's PAS 2050, Methodology Repacking and retailer Packhouse and coolstore processes 11% 9% 41% Orchard operations Source: Zespri.com 17% 22% Consumer consumption and disposal Shipping Source ZESPRI.COM ORCHARD FACTORS: Electricity Diesel Fertilisers and Pesticides Lubrificant Capital Soil-plant-atmosphere carbon fluxes ARE NOT considered Grower Sustainable Soil management Compost (15 t ha-1) Mineral N if necessary Fertilization Pruning material Mineral fertilizers increase C input limit C output increase C input carbon sources internal external cover crops pruning material senescent leaves stabilised manure compost Biochar, others the use of carbon sources can provide mineral elements for plant nutrition choice improve soil C cover crops sown spontaneous increase the photosynthesising surface and Root system, which extends to various depths in the soil, improves soil characteristics improve the C sequestration ability of the system Carbon balance Carbon input.(photos. Cover crops, compost) Carbon balance Carbon to the atmosph. (respiration of roots and Soil micro..) suolo Soil-plant-atmosphere carbon fluxes ASSESMENT - SEQUESTRATION ( Photosynthesis CO2 sequestered) + EMISSIONS (soil-chamber based measurements) Can grower’s orchard management effect CF? Improving soil carbon storage through friendly soil practices. -Recycling – cover crops- biomass formation Carbon (t ha-1 y-1) -compost application By building soil carbon, soils also enhance water retention properties, fertility, yield and quality Sustain Convent. Burning residuals or mulched in situ Montanaro et al., 2010 LDD CO2 balance in the two systems -100 -80 CO2 t *ha -1* year -1 sustainable -60 -40 -20 conventional 0 +20 +40 1° year 2 3 Sustainable in the orchard: -0.8 kg of CO2 per kg of fruit Conventional in the orchard:+0.26 kg of CO2 per kg of fruit Carbon stored in above/below-ground structures of kiwifruit vine after approx. 20 years 0.48 kg vine-1 39.5 kg vine-1 (1-year old) (23-year old) (Bouwalda and Smith, 1987) ~ 39 kg D C (19.5 t ha-1C ; 500 p/ha) (Xiloyannis, in preparation) Association of some cover crops increases soil iron availability 1 µg/l 0,8 0,6 0,4 0,2 0 Fe Tilled Control Cover Covercrops crops Festuca rubra c. Lolium perenne Poa pratensis (Source: Rombolà et al.) pH Changes after 10 years of different soil management 8 A 7 B 6 5 4 3 2 1 0 TILLED COVER CROPS Measured between rows SUSTAINABLE SOIL MANAGEMENT AND soil water holding capacity Cover Inerbito crops profondità (cm) 0-10 cm a 0-10 a 10-20 Regolari a 20-30 Irregolari Allungati a 30-40 a 40-50 0 2 6 Tilled Lavorato 4 10-20 cm 8 10 12 Macroporosità (%) a (cm) profondità cm Depth 0-10 b 10-20 Regolari b 20-30 Irregolari Allungati b 30-40 0-10 cm ab 40-50 0 2 4 6 8 10 Macroporosity % Macroporosità (%) 12 10-20 cm Saturated hydraulic conductivity measurements (Model 2800 Guelph Permeameter, Santa Barbara, USA) Measurements made in May 2007 at 12 cm depth Evaluation of the vertical water flux (using a plastic tube as confined well) Soil Water Conducibility Treatments Ksat (Guelph) (mm d-1) Sustainable 160 Conventional 13 most rappresentative genus of fungi in the two systems (some of them produce glomalin) Sustainable Aspergillus Streptomices Phaeoacremonium Conventional Aspergillus Mucor Penicillium Armillaria Cladosporium Acremonium Alternaria Phaeoacremonium Rosellinia Phyalophora Cylindrocarpon Microdochium Rosellinia Mucor Cladosporium More funghi in the soil of sustainable system (diluition 10-2) Sustainable Conventional …….as intestinal flora for humans…………… roots with ifes and spores of glomus intraradices (10 X). Metapontino (media 20 anni) Deficit annuale 850 mm fonte: Reg. Basilicata mm 250 200 150 100 50 0 250 200 150 100 50 0 ETo Pioggia Deficit annuale 158 mm Cesenate (media 10 anni) fonte: Cons. Bonif. Canale Emiliano Romagnolo gen mar mag lug set nov Optimizing irrigation in mature orchard: DRIVING CRITERIA IRRIGATION SHOULD BE SCHEDULED WHEN the water content in the first 50 cm of soil volume explored by root system APPROACH the Readily Available Water (RAW) threshold HOW GROWER CAN BE ASSISTED IN? Evaluation of soil water content through: # Use of soil humidity sensors TDR-probe # Daily computation of the soil-water balance This requires: # access to daily ET0 and effective rainfall records # use of locally tested Kc # knowledge of soil hydraulic properties and irrigated soil volume Tensiometer Irrigation system wetting the whole soil surface irrigation line 1st year 3rd year mature vine # Low irrigation method efficiency (2-20% throughout 3 years after planting) Soil volume explored by roots ( Xiloyannis et al., 1993) 4th year mature vine 3rd year m3 1500 1000 m3 ha-1 300 200 m3 ha-1 2nd year 1st year ha-1 m3 ha-1 5000 m3 ha-1 1000m3 ha-1 600 m3 ha-1 120 m3 ha-1 100 m3 ha-1 20 m3 ha-1 available water Foto Xiloyannis Field capacity = 32%vol Wilting point = 12%vol Root depth = 0.5 m Amount of water that can be hold in the soil in a kiwifruit orchard irrigated by different irrigation systems (planting distances 5x4). Soil irrigated at field capacity to 0.5 m depth AW ( Available Water) =20% vol (Field Capacity-Permanent Wilting Point) Easy AW (amount of water that plants can absorb before stress)= 50% of A.W Irrigation system Whole surface Efficiency 50% Wetted surface m2 Depth (m) Volume of irrigated soil (m3) A.W m3 Easy W.A m3 10.000 0.5 5.000 500 250 Micro-Sprinklers Efficiency 70% 6000 0.5 3.000 420 210 Drip irrigation Efficiency 90% 2.000 0.5 1.000 162 81 Drip Irr. Wetted volume from irrigation. Only rain Correct irrigation manag. (A) Excessive water (B) Deficit (C) summary - Fertigation should match vine nutrients demand to avoid environmental pollution and improve fruit quality - Orchard tools are available to improve Ca absorption and accumulation in the fruits - Use cover crops or minimum tillage to improve carbon footprint assessment, soil fertility and soil hydraulich characteristics - More effort to improve the transfering of the knowledge to the growers K R G - University of Basilicata I T A L Y Kiwifruit Research Group C. Xiloyannis B. Dichio G. Montanaro G. Celano A.Tuzio A.Sofo A.Palese E.Lardo VIII International Peach Symposium on 17-20 June, 2013 –Matera (ITALY) Matera is a UNESCO World Heritage site peach2013@unibas.it http://www.unibas.it/peach2013/home.htm