Elektrownie biogazowe - informacje podstawowe

Transcription

Elektrownie biogazowe - informacje podstawowe
Projekt kluczowy nr POIG.01.01.02-00-016/08
Modelowe kompleksy agroenergetyczne jako przykład kogeneracji rozproszonej
opartej na lokalnych i odnawialnych źródłach energii
Biogas power plant – basal information
Elektrownie biogazowe – informacje podstawowe
Janusz Gołaszewski
Center for Renewable Energy Research of the University of Warmia and Mazury in Olsztyn
Baltic Eco-Energy Cluster in Gdańsk
janusz.golaszewski@uwm.edu.pl
„…with BIOGAS alone we can power
the whole world…” – E.J. Nyns
„…samym biogazem możemy zasilić cały świat…”




Nature produces gas everywhere
where plants, people and animals are, there is
organic waste
where there is organic matter, solid or liquid,
there are naturally running decomposition
processes
methanogenesis is an absolutely natural
process, which is now adapted by humans in
biogas plants
People, by generating organic waste (industry,
agriculture, communal, etc.), have created an
environmental problem – the lack of balance in
GHG emission
Theses
1. Managing all kinds of organic waste, including agricultural waste, is
an overriding issue for immediate solution and application
zagospodarowanie odpadów – konieczność środowiskowa
2. Biogas plant, as a link in a distributed energy generation system,
has an important role in
• waste recycling
• development of energy-producing function of farming
• balancing the carbon cycle in the environment
biogazownia – ogniwo rozproszonej generacji energii
3. Biogas is an universal fuel, which can find a wide array of energy uses
biogaz – paliwo uniwersalne
Outline
1. Biogas in a general energy context
2. Methane cycle in carbon cycle
3. Methane fermentation process
4. Physical and biochemical conditions of biogas production
5. Substrates of biogas plant, including dedicated crops
6. Technological process of biogas production and use
7. Recapitulation
BIOGAS
Energy demand <Policy>Environment
potrzeby energetyczne<polityka>środowisko
Policy
• sustainable development
• energy security – prosumption model
Energy sources
• nonrenewable
• renewable
• alternative
Synergy
Environment
• climates
• ecosystems
• landscapes
• resources
• elements
Global Use of Primary Energy – brief history
Globalna konsumpcja energii pierwotnej
2011
~13%
Nakicenovic N. 2006. Global Energy Perspectives to 2050 and Beyond. Intern. Conf. „Energy Paths – Horison 2050, Viena.
Energy supply:
Power supply:
1990 >>> 2008
103 >>> 144 PWh
12 >>> 20 PWh
Production of primary energy (world, EU-27, Poland) in 2008-2009
(% of total, based on tonnes of oil equivalent)
Struktura energii pierwotnej: świat, Unia Europejska, Polska
100%
90%
13
17.6
5.8
24
80%
70%
33.5
28.7
12
60%
Crude oil
12.7
Natural gas
20.9
Solid fuels
19.9
30%
56
20%
10%
26.8
21
0%
World
Source: IEA (World), EUROSTAT (EU-27)
Renewable energy
Nuclear energy
50%
40%
8
0
EU-27
Poland
Primary energy production from renewable energy sources, breakdown by
individual source (EU-27, 2008)
Energia pierwotna ze źródeł odnawialnych w krajach UE, 2008
Source: European Commission. Renewables make the difference. Luxembourg: Publications Office of the European Union 2011
Primary energy from biomass in UE (ktoe) – scenario for 2015 and 2020
Pierwotna energia z biomasy – scenariusz rozwojowy UE na lata 2015, 2020
waste
agriculture and fisheries
forestry
2006: domestic + imported
2015, 2020: domestic
Source: DG Energy, 24 NREAPs
Climate changes scenarios
Scenariusze zmian klimatu
n
scenario
Reference
scenario
scenario
Nuclear
CCS
Combustible renewables
Energy efficiency
Source: IEA 2010
1st partial recapitulation
Agricultural biomass and waste are energy
resources with a potential to be significant
contributors to the future energy portfolio
accompanied by low greenhouse gases
emission
Biomasa rolnicza i odpady są źródłami energii
które mają potencjał, aby stać się istotnymi
elementami przyszłego portfolio
energetycznego z niską emisyjnością gazów
cieplarnianych
Agriculture – 14% of global GHG emission1
Rolnictwo odpowiada z 14% emisji globalnej GHG
LCE CO2 is the result of:
(1) energy expenditure (fertilizers, cultivation, etc.)
(2) transformation of forests and grasslands into arable land
Main sources of GHG emission by agriculture
•
•
•
•
•
fertilizers
rice cultivation
livestock
biomass burning
manufacturing of agricultural factors of
production
• increase of agricultural land for energy crops
Fertilizers
11%
Livestock
13%
Management
of residuals
from livestock
production
38%
Emission of NOx
N2O and CH4
(without CO2)
Rice cultivation
7%
Other agricultural practices
31%
Rys.8. Sources of GHG emissions from agriculture.
(own acc. to US EPA, 2000)
1the
World Resources Institute (Annual Report 2006-2007)
Agriculture – 14% of global GHG emission1
Rolnictwo odpowiada z 14% emisji globalnej GHG
LCE CO2 is the result of:
(1) energy expenditure (fertilizers, cultivation, etc.)
(2) transformation of forests and grasslands into arable land
Main sources of GHG emission by agriculture
•
•
•
•
•
fertilizers
rice cultivation
livestock
biomass burning
manufacturing of agricultural factors of
production
• increase of agricultural land for energy crops
Zredukowanie emisji 1 kg CH4
odpowiada redukcji 25 kg CO2
Fertilizers
11%
Management
of residuals
from livestock
production
38%
Emission of NOx
N2O and CH4
(without CO2)
Livestock
13%
Rice cultivation
7%
Biomass >>> Biogas
•
•
1the
specific environmental squeeze
always value added
• energy from agricultural waste
and crops
• pro-environmental dimension
World Resources Institute (Annual Report 2006-2007)
Other agricultural practices
31%
Rys.8. Sources of GHG emissions from agriculture.
(own acc. to US EPA, 2000)
Communal biowaste – odpady komunalne
Biomass >>> Biogas
•
•
specific environmental squeeze
always added value
• additonal energy from agricultural and communal waste
• pro-environmental dimension
Biowaste
Bioodpady
EU scale:
120-140 mil tones (~70% - municipal biowaste)
Global scale:
800 million tones of biowaste
= 64 billion m3 of biogas
= 32 billion tones of liquid fuels
= 110 GWh of electric energy
2 t waste ~ 1 t coal
CH4
METAN
The value of waste biomass is at least the value of generated energy
Neterowicz J., Haglund G. 2011. Energy in Sweden. Mat. Conf. „SymbioCity – Sustainability by Sweden”, Warszawa
Sweden – ca. 85% of energy in heating grid is from waste
Neterowicz J., Haglund G. 2011. Energy in Sweden. Mat. Conf. „SymbioCity – Sustainability by Sweden”, Warszawa
Paris – ca. 45% of energy in heating grid is from waste
Polish Biogas Association
2nd partial recapitulation
Any (nearly) organic agricultural and
communal waste are natural feedstocks
for biogas production – there is a specific
environmental squeeze to utilize it
Prawie każdy rodzaj biodegradowalnej
biomasy odpadowej, rolniczej i komunalnej
jest naturalnym substratem biogazowni – jest
swoista presja środowiskowa aby odpady
organiczne zostały zagospodarowane
Solar energy – Photosynthesis – Biomass – Decay – Biogas –
Methane – Useful energy
PRODUCTS
SUBSTRATES
20% + 0.2-3%
100%
Sunlight+
CO2 + H2O
+ Minerals in the soil
N
P
K
Ca
…
Methabolic
processes
„CH2O”
+
O2
Organic
matter
Methane fermentation
naturally
BIOGAS
atmosphere
biogas plant
Energy
Digestate
Methane
Hydrogen
Plant productivity = sunlight, water, nutrients plus environmental conditions:
temperature, humidity
Potential of photosynthesis conversion efficiency
from solar energy to biomass (chemical energy)
Efektywność fotosyntetyczna konwersji energii słonecznej do biomasy
Crop
Type of
photosynthesis
Photosynthesis
conversion
efficiency
Most of annual crops
C3
0.3
Switchgrass
C4
0.6
Corn
C4
0.8
Willow and poplar
C3
0.4
Tropical sugarcane
C4
2.6
Tropical Napier grass
C4
2.8
• dostępność określonego składnika mineralnego – czynnik limitujący przyrosty biomasy
• większość autotrofów wymaga podobnego stosunku głównych składników
pozostających w relacji C:N:K:P 2000-20000:100:30:8.
Klass D. Biomass for renewable energy and fuels. Encyclopedia of Energy. Oxford: Elsevier Inc.; 2004.
Plant productivity = sunlight, water, nutrients plus environmental conditions:
temperature, humidity
How to store and utilize more solar energy? – by increasing the photo-active area of plants
(C4 type of photosynthesis (corn, sugarcane) is more efficient, mostly by reduction in photorespiration)
W jaki sposób wykorzystać i zmagazynować większe ilości energii słonecznej? – poprzez zwiększenie
fotoaktywnej powierzchni roślin (rośliny typu C4, takie jak kukurydza lub trzcina cukrowa, są efektywniejsze
przede wszystkim dzięki mechanizmom redukcji fototranspiracji)
How to reduce water use? – by increasing water use efficiency
(corn, sugar cane, miscanthus, cereals – 100-800 kg H2O per kg biomass depending on irrigation, fertilization – C4 plants are at the
bottom of the range)
W jaki sposób zredukować wykorzystanie wody? – poprzez zwiększenie efektywności wykorzystania wody
(WUE – Water Use Efficiency). Kukurydza, trzcina cukrowa, miskantusy, rośliny zbożowe, i inne wymagają
zróżnicowanych ilości wody 100-800 kg H2O na kg wytworzonej biomasy w zależności od nawadniania i
nawożenia – rośliny typu C4 są w dolnej części podanego zakresu.
How to balance the fertilization? – by increasing nutrient use efficiency=decrease cultivation energy inputs
(accumulation of nutrients in DM accounts for 5-10% of the mass, current NUE is at most 40% for N, 10% for P, and 40% for K)
W jaki sposób zrównoważyć nawożenie? – poprzez zwiększenie efektywności wykorzystania składników
pokarmowych (NUE – Nutrient Use Efficiency) co odpowiada obniżeniu nakładów energetycznych na
prowadzenie upraw (akumulacja składników w suchej masie stanowi zasadniczo 5-10% masy rośliny; wskaźnik
wykorzystania składników pokarmowych przez rośliny wynosi 40% dla azotu, 10% dla fosforu, i 40% dla potasu).
Klass D. Biomass for renewable energy and fuels. Encyclopedia of Energy. Oxford: Elsevier Inc.; 2004.
Biogeochemical carbon cycle
Biogeochemiczny obieg węgla w środowisku
CH4 900 mln t
90% biomass decomposition
Methane cycle
Obieg metanu
Solar
energy
CO2
H2O
Energy
Biogas plant
CO2
Biogas
Biomass
Natural
decomposition
Nutrients
Digestate
(biomass)
Organic
fertilizer
H2O
Biogas production – facts

Brief history (Cheremisinoff et al. 1980)
 Assyria – 10th century BC – first records
 1859 – first biogas plant – leper colony waste management (Mumbai)
 1895 – biogas for lightning streets (Exeter)
 WW II – use of biogas as a transportation fuel

Biogas production in EU-27 - 25,2 TWh (Eurobserv’ER 2009)
 toe/1000 inhabitants
• Germany (51.5), Great Britain (27.8), Luxembourg (24.5), Austria
(19.7), Denmark (18.0),
• Poland - 21st place, 2.6 toe/1000 inhabitants (98 ktoe)
Primary biogas energy
output in EU
Produkcja biogazu w UE
2009, ktoe
8.3 Mtoe, incl. ~ 25.2 TWh
KEY
• light green – landfill gas
• medium green – urban
sewage and industrial
effluent sludge gas
• dark green – other
biogas
Source: EurObserv’ER 2010
Dominant substrate
• agricultural biomass (Germany,
Netherlands, Austria)
• landfill (Great Britain, France, Italy, Spain)
• sewage sludge (Sweden, Poland)
Biogas

is produced from the anaerobic digestion of organic matter

made up of 40-70% CH4, 30-50% CO2, up to 10% other gases,
H2S, H2, CO, O2, and N2

calorific value 17-27 MJ/m3 – 5-6 kWh/m3
Universal biofuel
 can be used in energy generation and transportation






used for all applications designed for natural gas
can be combusted to produce heat and steam
to generate electricity with an electrical efficiency up to 40%
used in co-generation and tri-generation producing heat and electricity at more than
60% efficiency in advanced fuel cell technology (co- and tri-generation)
in biogas vehicles
can be integrated into the natural gas grid if the biogas is
upgraded to increase the methane content to 97%.
Biogas
Heat of combustion in comparison with fossil fuels and firewood
Fuels
Heat of combustion
Equivalent of 1 m3 biogas at the heat
of combustion 26 MJ/ m3
17-27
MJ/ m3
1
m3
Natural gas
33
MJ/ m3
0.7
m3
Diesel
42
MJ/ l
0.6
l
Coal
23
MJ/ kg
1.1
kg
Firewood
13
MJ/ kg
1.9
kg
Biogas
Biogas has a
potential for
reduction of
CO2 emission
Net energy performance of biomethane per 1 ha for chosen crops in comparison with other biofuels
biomethane
(maize)
biodiesel
(winter rape)
bioethanol
(wheat)
GJ ha-1
bioethanol
(sugar beet)
0
20
40
Szlachta 2008, De Baere 2007, Fachagentur Nachwachsende Rohstoffe e.V.
60
80
Bioprocesses in biogas production
Bioprocesy w wytwarzaniu biogazu
Organic
matter
1. Hydrolysis biopolymers
decomposition
Carbohydrates
Lipids
Proteins
Simple sugars,
alcohols,
higher fatty acids,
amino acids
hydrolitic and
fermentative
bacteria
celullase
cellobiase
xylanse
amylase
lipase
protease
2. Acidogenesis volatile fatty acids
formation
3. Acetogenesis formation of
methanogenic
substrates
Carboxylic acids
(valeric, formic,
propanoic, …)
Alkohols
Gases
acidic
bacteria
Bacteriocides (an.)
Clostridia (an.)
Bifidobacteria (an.)
Streptococci (f. an.)
Enterobacteriaceae (f. an.)
4. Methanogenesis biogas formation
Acetates
Biogas
CO2, H2
acetogenic
bacteria
methanogenic
bacteria
autotrophs, heterotrophs
Methanosarcina barkerei
Metanococcus mazei
Methanotrix soehngenii
Acetobacter woodii
Clostridium aceticum
Clostridium
termoautotrophicum.
70% use acetates
30% use hydrogen and
carbon dioxide
Procesy fermentacyjne
www.nilu.pl/download/RP_ntewopz.pdf
Biogas plant – initial criteria
Biogazownia – przesłanki wyjściowe
manure as a feedstock
obornik jako substrat
Water added
Bedding added
As excreted
Covered Complete Plug-flow
Lagoon
mix
Appropriate Digester Type by Manure Characteristics
Source: own on the basis of USEPA 2004
Biogas plant – initial criteria
Biogazownia – przesłanki wyjściowe
Criteria
Fermentation process
AD stages
single-stage
two-stage
multi-stage
Temperature of AD
psychrophilic (10-25ºC)
mesophilic (35-40ºC)
thermophilic (52-55ºC)
Flow characteristics
Batch (batch, batch/percolation)
Continuous (CSTR, PFR)
DM in substrate
dry fermentation (>15%)
wet fermentation (<12%)
Chosen parameters of the AD process:
pH 5.5-6.5 acetogenic phase and 6.8-7.2 methanogenic phase
C:N:P:S=600:15:5:1; COD:N:P:S=800:5:1:0.5
C:N – 15:1-30:1
Substrate: Water (i.e. manure) – 1:1 (~8-10% DM.)
Microelements: Fe, Ni, Co, Se, Mo, W (toxic in higher concentration)
Inhibitors: antibiotics, pesticides, synthetic detergents, soluble salts of Cu, Zn, Ni, Hg, Cr
In dependence on fermentation environment: salts of Na, K, Ca, Mg – facilitation or inhibition depending on
the concentration
Chosen characteristics of 63 German agricultural biogas plants built in 2007-2009
Wybrane charakterystyki 63 biogazowni rolniczych wybudowanych w Niemczech
w latach 2007-2009
% (ºC) <36
36-38
38-40
40-42
42-44
44-46
46-48
48-50
50-52
52-54
%>54
(animal waste)
40
30
20
15
0
0
% (kg VS m3d-1)
% (No of crops)
1-1.5
1.5-2
2-2.5
2.5-3
3-3.5
3.5-4
>4
20
30
10
15
0
0
% (CH4)
0
0
0-10
10-30
30-50
50-75
75-100
1
2
3
4
5
>5
<4
4-6
6-8
8-10
10-12
>12
% (installed power capacity)
<50
50-52
52-54
54-56
>56
50
30
25
15
0
0
% (H2S)
<50
50-100 100-150 150-200
>200
Electricity &Thermal
% (calorific value)
30
40
15
20
0
0
Source: Bundesmessprogramm, 2009 (FNR) za Linke B. 2009. Biogas plants in Germany – experiences in implementation and processing. Mat. Conf. „Bioenergia w rolnictwie ze szczególnym
uwzględnieniem biogazu”, Poznań.
Biogas plants

agricultural – rolnicza



recycling – utylizacyjna


main substrate – livestock waste biomass (+ cosubstrate)
main substrate – biomass from dedicated crops (+ cosubstrate)
anaerobic digestion of municipal solid waste (landfills) and sewage sludge
agricultural-recycling – rolniczo-utylizacyjna
Substrates of agricultural origin – substraty pochodzenia rolniczego
1. Waste from primary agricultural production
•
animal waste (manure, slurry), straw, beet leaves, etc.
2. Waste from agricultural processing
•
from slaughter houses, food processing industries: brans, molasses, brewer's spent grain, distillery
wastewater, whey, etc.
3. Organic residuals of agricultural origin
•
Biowaste from households, food residuals, used vegetable fats and oils, etc.
4. Feedstock from dedicated energy crops
•
Annual: maize, sorgo, beet, etc.
•
Perennial: miscanthus, sida hermaphrodita, legumes, legumes in mix with grasses (orchard grass,
timothy-grass)
Agricultural biogas plant
Primary characteristics of feedstocks
Istotne cechy substratu biogazowni rolniczej



different yield and quality of biogas depending on substrate
substrate ought to be free of pathogens, in the other case
 pasteurization 70ºC
 sterilization 130ºC
different organic compounds of a substrate may be easily or hardly
degradable
 carbohydrates, proteins, lipids – 0.4, 0,5, 0.7 m3 CH4 kg-1
 cellulose, hemicelluloses, lignin !
Source: own acc. to Linke B. 2009. Biogas plants in Germany – experiences in implementation and processing. Mat. konf. „Bioenergia w rolnictwie ze szczególnym uwzględnieniem biogazu”, Poznań.
Primary characteristics of feedstocks of agricultural biogas plant
Istotne cechy substratu biogazowni rolniczej
Biomass
Cattle manure
Swine manure
Pultry manure
Cattle slurry
Swine slurry
Poultry slurry
Melasses
Sugar beet residuals
Potato pulp
Maize
Grass
Winter rye
Biogas yield for chosen agricultural substrates.
DM
VS
Biogas
(% of FW)
(% DM)
m3 (Mg VS)-1
Animal waste - manure
22
80
410
8
70
420
>20
77
560
Animal waste – liquid manure
10
93
225
6
95
300
15
89
320
Waste from agricultural processing
73
78
510
22
90
840
14
93
720
Dedicated crops - silage
35
97
730
35
91
540
33
93
730
Source: own acc. to Linke B. 2009. Biogas plants in Germany – experiences in implementation and processing. Mat. konf. „Bioenergia w rolnictwie ze szczególnym uwzględnieniem biogazu”, Poznań.
Dedicated crops - criteria for choosing
Uprawy dedykowane – kryteria wyboru roślin
Economy
 yield of biomass
 cultivation energy inputs
Processing
 fermentation potential
 content of biopolimers (lignocellulose)
 easiness of biomass conservation
Environment
 external conditions for development of dedicated crop
production (economic, environmental, social, legal)
Productivity – produkcyjność
static measure – biological yield in kg, Mg
Productiveness, photosynthetic productivity produktywność
dynamic measure – amount of biomass (expressed in DM or energy)
produced per area per time (net production) [i.e. g/ (cm2 h)]
Plants differ in their productiveness depending
on the type of photosynthesis C3 or C4
C4 (low than 5%) – higher productiveness at the relatively
small demand for water. Examples:










Maize (Zea mays L.),
Sugar cane (Saccharum officinarum L.),
Panicum (Panicum miliaceum L., Panicum virgatum),
Sorgum (Sorghum Moench),
Amaranth (Amaranthus caudatus L.)
Spartina pectinata (Spartina pectinata Bosc ex Link),
Miscanthus (Miscanthus spp.),
Andropogon (Andropogon gerardi Vitman),
Agave (Agave L.),
Aloe (Aloë L.).
Dedicated crops cutivated in moderate climate
Legumes (fresh biomass, silage)
Grasses (fresh biomass, silage)
Red clover
Maize
Timothy-grass
Alfa-alfa
Reed canary grass
Rye
Biomass with good conservation potential (silage, hay,
grassilage)
grass
maize
rye
Beet root and leaves
Groups of feedstocks of agricultural biogas plants
Grupy substratu biogazowni rolniczej
I competitive to food crop production



maize
legumes
cereals
II competitive to feed crop production with well known conservation
techniques





grasses in mix with leguminous crops
maize
winter rye
legumes
beet leaves
III plants not common as substrates but with high potential




miscanthus
cale
Fallopia sachalinensis
as well as certain forms of Nettles and Rheum
IV other


cereal grains
root and tuber crops (beet, potato i Jerusalem artichoke)
Conservation and conditioning
Feedstocks – mix of land and water biomass
Water biomass
Terrestrial biomass
6
5
2
8
1
10
3
10
9
7
4
11
Laboratory digesters
Źródło: Opracowania autorów: Krzemieniewski M., Dębowski M., Zieliński M.
Modules of biogas plant
Moduły organizacyjne/techniczne biogazowni
 Substrate – organic

matter


Supply logistics
Pretreatment
Shredding
Conservation
Conditioning
Storage


Energy use:
electricity,
Biomethane Heating,
cooling,
transportation
Biogas
production
Homogenization
Sanitation

Storage of digestate

Use of digestate
Developmental problems – problemy rozwojowe:
• modularisation, standardisation – modularyzacja, standaryzacja
• power of biogas plant – series of types (micro-, mezo-, macro-scale) – skala biogazowni
•
microbiogas plant – not cost-effectve but always value added by additional energy from agri-waste
Organization of biomass supply – problems to consider
Organizacja dostaw biomasy - problemy
Dedicated crops






available land,
integrated crop rotation (food, feed, industrial and
energy production should be taken into consideration)
intercropping,
high yielding crops and cultivars
monoculture!
optimization of fertilization (production, use of
digestate)
Animal waste, agricultural residues, industry
waste, etc.)

sanitation of waste according to the procedures
applicable to such substrates due to potential health
hazards and epizootics (category I, II, or III).
Supply chain logistics – to reduce energy lost and to initiate
biodegradation
Logistyka dostaw biomasy – redukcja strat energetycznych
oraz inicjacja biodegradacji
Form of substrates from energy crops

fresh biomass

silaging – a method of conservation and preconditioning
– it may be given additives (bacteria, enzymes which start biodegradation)
– often higher biogas production than from fresh biomass

hay

grass silage

biomass from press machines
How to facilitate and speed-up hydrolysis and fermentation process?
green
crop sequence supply
Jak usprawnić
i przyspieszyć
proces hydrolizy fermentacji?
physical
shredding
steam
thermohydrolisis
wet oxidatiom
ultrasounds
radiation
chemical
acids and bases
solvents and oxidants
biological
microorganisms
enzymes
Digestor
Bioreaktor




horizontal or vertical
insulation
systems of heating, filing of the bioreactor (batch, continuous),
agitationg, digestate and biogas outlets, and storage tanks
monitoring system of fermentation process parameters
 biomass chemical composition
 pH
 temperature
 biogas composition
 content of volatile fatty acids (VFA’s)
 proportion of VFA’s to the total inorganic carbon TIC (a
measure of acidification) (VFA:TIC),
 redox potential (-300-330 mV)
 NH3
 other
Gas Handling System
System postępowania z gazem
• to remove biogas produced from the digester
• upgrading by drying, desuphurisation, drying and chemical absorption
of CO2
•
•
e.g. input raw 140 m3/h 52% CH4 - output upgraded 70 m3/h 96% CH4
biomethane can be used in CNG powered cars without modification
• to transport it to the end-use, either for direct combustion or electricity
generation.
Components:
•
•
•
•
•
•
•
piping
a gas pump
a gas meter
a pressure regulator
condensate drains
a gas scrubber (to avoid corrosion of the equipment.
odor eliminating system
Biogas use
Wykorzystanie biogazu
Biogas
Desulfuring
Desulfuring
Boiler
Heat
CHP
Heat
oElectricity
Desulfuring
Desulfuring
Reforming
Compression
MCFC, SOFC
Compressed tank
Heat
Electricity
Not desired compounds – cleaning of biogas
•
•
•
•
•
•
•
•
Źródło: Weilinger (2008).
CO2 ?
H2O
H2S
siloxanes
aromatic compounds
O2
N2
halogens (fluorine (F), chlorine (Cl), etc.)
Fuel
whole digestate – w całości
Digestate
Poferment
separated into liquid and solid fractions
rozdzielone fazy ciekła i stała

Fertilizer or soil
coditioner

Waste

Sewage sludge
•
indigestible material, dead micro-organisms
•
90-95% of what was fed into the digeste
•
N, P, K present in the feedstock will remain in the
digestate (they are more bioavailable)
•
reduce consumption of synthetic fertilisers = reduction
of consumption of fossil fuels nad reduce our carbon
footprint
Recapitulation - Podsumowanie
Any organic waste provide biomass energy conversion feedstock
without increasing land requirements
Biogas plant is a desired element of a distributed system for energy
and biofuel generation
Environmental effects:
o
o
o
o
o
o
o
Reduction of GHG emission
Recycling of organic waste
Neutralization of pathogens
Deactivation of weed seeds
Biofertiliser production from digestate = reduction of synthetic fertilizer production =
reduction of GHG emission
Possible reuse of liquid part of digestate
Protection of ground water
Energy effects:
o
o
o
o
Universal biofuel
Decentralized units of energy generation
The idea of prosumer implementation (local energy production – local use)
Element of energy security
Economic effects:
o
o
o
o
Resultant of above benefits
Added value by formation of storage waste into profitable centers of energy
generation
Independence on energy import
Diversification of farm income sources (green and brown certificates, selling biofertilizer,
bioenergy, biofuel)
Recapitulation – innovation opportunities
Podsumowanie – możliwości innowacyjne
Feedstock
o improvements in the photosynthetic efficiency and nutrient
requirements of energy crops
o crop rotation
Process
o genetic engineering of microorganisms for more efficient
bioconversion
o optimal composition of microflora to a given substrate
o specification of microorganisms to run methane or hydrogen
fermentation
Technology
o modularization, standardization of elements of biogas plant
o development of micro biogas plants
o biogas plants at farm level may treat organic residues of both
municipalities and the agri-industrial sector
Limitations
Ograniczenia
• high upfront capital investment
• the current technology requires a certain, large-sized farm in
order to produce biogas in a usable and profitable quantity
• although the life cycle benefits may exceed the initial cost,
many medium- and small-scale farm owners cannot afford
the initial investment without support
• requirement of technical skills to operate and maintain
• location on or near the farm, which is stationary –
sometimes far away from the electiricy grid (additional costs)
Bramley J., Cheng-Hao Shih J., Fobi L., Teferra A., Peterson C., Yuan Wang R., Rainville L. 2011. Agricultural biogas in the United States. A market assessment. Tufts University Urban &
Environmental Policy & Planning Field Project Team #6.
Recapitulation – trends
Podsumowanie - trendy
Biogas plant as an element of a biorafinery (substrate –
biorefinery waste)


Integration of conversion processes to exploit 100% of
the value of raw material, including effective energy
utilization of waste (by-products, but at the same time byproducts may be raw material for the other process)
 Production of 2nd generation biofuels by biochemical
(biogas, bioethanol, etc.) or thermochemical
(bioalcohols, biodiesel, etc.)
systemic approach which integrate of decentralized
biogas plants in a system of local supply via gas network
or for communal fleet (logistics for transportation of
waste)
Recapitulation – trends
Podsumowanie - trendy
Fuel cells may become the predominant type of small-scale biogas power
plant
1. generation of electricity
2. cogeneration systems (electricity and heat)
3. trigeneration systems (electricity, heat, and hydrogen)
Fuel Cells
electric efficiency is up to 48% (55%); causes less noise, useful for urban
applications
Micro-Gasturbines
less sensitive, low maintenance costs, high durability compared to gas
engines low el. efficiency (38% - 28%)
ORC-Modules
10% raise in el. efficiency; advantageous in combination with
micorturbines
(Persson & Jonsson 2006, Brown, 2008)
Which biofuel from the same substrate?
Jakie paliwo z tego samego substratu?
METAN
Benefits
Biogas
• can be produced and used on-site to offset energy costs
• can be sold to utilities to promote a more resilient and diversified energy
system composition
Digested effluent
• can be applied as fertilizer, reducing the use of artificial fertilizer and
reducing costs
• fertilizing value is enhanced over that of raw manure because nutrients in
the manure are more readily available for plant uptake (Liebrand & Ling,
2009)
• can be sold as a soil amendment
Biogas plant
• serves as a method of waste and sewage disposal; pathogens and weed
seeds are eliminated
• decreases the risks of global climate change
• is a potential source of renewable energy generation for regions that have
limited ability to produce electricity from more developed technologies like
wind or solar energy
• decreases a risk of surface and ground water contamination in farms with
livestock
Bramley J., Cheng-Hao Shih J., Fobi L., Teferra A., Peterson C., Yuan Wang R., Rainville L. 2011. Agricultural biogas in the United States. A market assessment. Tufts University Urban &
Environmental Policy & Planning Field Project Team #6.