presentation - PMAA`06
Transcription
presentation - PMAA`06
Outline Numerical experiments with additive Schwarz preconditioner for non-overlapping domain decomposition in 3D Azzam Haidar CERFACS, Toulouse joint work with Luc Giraud (N7-IRIT, France) and Shane Mulligan (Dublin Institute of Technology, Ireland) 4th International Workshop on Parallel Matrix Algorithms and Applications, September 7-9, 2006, IRISA, Rennes, France 1/21 Numerical experiments with additive Schwaz preconditioner Outline Outline 1 General Framework 2 Algebraic Additive Schwarz preconditioner Structure of the Local Schur Complement Description of the preconditioner Variant of Additive Shwarz preconditioner MAS MAS v.s. Neumann-Neumann 3 Parallel numerical experiments Numerical scalability Parallel performance 4 Prospectives 2/21 Numerical experiments with additive Schwaz preconditioner General Framework Algebraic Additive Schwarz preconditioner Parallel numerical experiments Prospectives Outline 1 General Framework 2 Algebraic Additive Schwarz preconditioner Structure of the Local Schur Complement Description of the preconditioner Variant of Additive Shwarz preconditioner MAS MAS v.s. Neumann-Neumann 3 Parallel numerical experiments Numerical scalability Parallel performance 4 Prospectives 3/21 Numerical experiments with additive Schwaz preconditioner General Framework Algebraic Additive Schwarz preconditioner Parallel numerical experiments Prospectives Background The PDE 8 < −div (K .∇u) u : (K ∇u, n) = = = f 0 0 in on on Ω ∂ΩDirichlet ∂ΩNeumann The associated linear system 0 A11 Au = f ≡ @AT1Γ 0 A1Γ (2) + AΓ A2Γ (1) AΓ 4/21 10 1 0 1 0 u1 f1 AT2Γ A @u2 A = @f2 A uΓ fΓ A22 Numerical experiments with additive Schwaz preconditioner Background Algebraic splitting and block Gaussian elimination: AI1 I1 B .. B . B @ 0 A Γ 1 I1 0 SuΓ = ... .. . ... ... N X A IN IN A Γ N IN ! RΓTi S (i) RΓi uΓ = fΓ − i=1 where N sub-domains case 1 uI1 f I1 AI1 Γ1 .. C B .. C B .. C B C B C . C CB . C = B . C A AIN ΓN @uIN A @fIN A uΓ fΓ AΓΓ 0 .. . 10 1 N X 0 RΓTi AΓi Ii A−1 Ii Ii fIi i=1 S (i) = AΓi Γi − AΓi Ii A−1 Ii Ii AIi Γi (i) Spectral properties for elliptic PDE’s κ(A) = O(h−2 ) ||e(k ) ||A ≤ 2 · κ(S) = O(h−1 ) !k p κ(A) − 1 p ||e(0) ||A κ(A) + 1 General Framework Algebraic Additive Schwarz preconditioner Parallel numerical experiments Prospectives Structure of the Local Schur Complement Description of the preconditioner Variant of Additive Shwarz preconditioner MAS MAS v.s. Neumann-Neumann Outline 1 General Framework 2 Algebraic Additive Schwarz preconditioner Structure of the Local Schur Complement Description of the preconditioner Variant of Additive Shwarz preconditioner MAS MAS v.s. Neumann-Neumann 3 Parallel numerical experiments Numerical scalability Parallel performance 4 Prospectives 6/21 Numerical experiments with additive Schwaz preconditioner General Framework Algebraic Additive Schwarz preconditioner Parallel numerical experiments Prospectives Structure of the Local Schur Complement Description of the preconditioner Variant of Additive Shwarz preconditioner MAS MAS v.s. Neumann-Neumann Structure of the Local Schur Complement Non-Overlapping Domain Decomposition Eg Em Ωj Ωi Ek E` Γi = E` ∪ Ek ∪ Em ∪ Eg Distributed Schur Complement 0 S (i) (i) Smm B B Sgm =B @ Skm S`m Smg (i) Sgg Skg S`g Smk Sgk (i) Skk S`k 1 Sm` C Sg` C C Sk ` A (i) S`` (i) (j) Sgg = Sgg + Sgg If A is SPD then S is also SPD ⇒ CG In a distributed memory environment: S is distributed non-assembled 7/21 Numerical experiments with additive Schwaz preconditioner General Framework Algebraic Additive Schwarz preconditioner Parallel numerical experiments Prospectives Structure of the Local Schur Complement Description of the preconditioner Variant of Additive Shwarz preconditioner MAS MAS v.s. Neumann-Neumann A simple mathematical framework The local component U a algebraic space of vectors associated with unknowns on Γ Ui subspaces of U such that U = U1 + ... + Un and Ri : the canonical pointwise restriction from U 7→ Ui Mloc = n X RiT Mi−1 Ri where Mi = Ri SRiT i=1 Examples : Ui associated with each edge: block Jacobi Ui associated with ∂Ωi : additive Schwarz 8/21 Numerical experiments with additive Schwaz preconditioner General Framework Algebraic Additive Schwarz preconditioner Parallel numerical experiments Prospectives Structure of the Local Schur Complement Description of the preconditioner Variant of Additive Shwarz preconditioner MAS MAS v.s. Neumann-Neumann Additive Schwarz preconditioner [ Carvalho, Giraud, Meurant, 01] Preconditionner properties Ui associated with the entire interface Γi of sub-domain ∂Ωi MAS = #domains X RiT (S̄ (i) )−1 Ri i=1 0 S̄ (i) Smm B Sgm =B @ Skm S`m Smg Sgg Skg S`g Smk Sgk Skk S`k 1 Sm` Sg` C C Sk ` A S`` Assembled local Schur complement 0 S (i) (i) Smm B B Sgm =B @ Skm S`m Smg (i) Sgg Skg S`g Smk Sgk (i) Skk S`k 1 Sm` C Sg` C C Sk` A (i) S`` local Schur complement Remarks MAS is SPD if S is SPD 9/21 Numerical experiments with additive Schwaz preconditioner General Framework Algebraic Additive Schwarz preconditioner Parallel numerical experiments Prospectives Structure of the Local Schur Complement Description of the preconditioner Variant of Additive Shwarz preconditioner MAS MAS v.s. Neumann-Neumann Cheaper Additive Shwarz preconditioner form Main characteristics Cheaper in memory space FLOPS Reduction Without any additional communication cost Sparsification strategy s̄ij b sij = 0 if else s̄ij ≥ (|s̄ii | + |s̄jj |) Mixed arithmetic strategy Compute and store the preconditioner in single precision arithmetic 10/21 Numerical experiments with additive Schwaz preconditioner General Framework Algebraic Additive Schwarz preconditioner Parallel numerical experiments Prospectives Structure of the Local Schur Complement Description of the preconditioner Variant of Additive Shwarz preconditioner MAS MAS v.s. Neumann-Neumann MAS v.s. Neumann-Neumann Neumann-Neumann preconditioner [J.F Bourgat, R. Glowinski, P. Le Tallec and M. Vidrascu - 89] [Y.H. de Roek, P. Le Tallec and M. Vidrascu - 91] A(i) 1 1 S ⇒ S −1 = ((S (1) )−1 + (S (2) )−1 ) S (1) = S (2) = 2 2 2 «„ «„ « „ « „ Aii AiΓ Aii 0 I 0 I A−1 ii AΓi = = (i) I AiΓ A−1 0 I 0 S (i) AiΓ AΓ ii „ « ` ´ 0 (S (i) )−1 = 0 I (A(i) )−1 I #domains MNN = X #domains RiT (Di (S (i) )−1 Di )Ri i=1 while MAS = X RiT (S̄ (i) )−1 Ri i=1 11/21 Numerical experiments with additive Schwaz preconditioner General Framework Algebraic Additive Schwarz preconditioner Parallel numerical experiments Prospectives Numerical scalability Parallel performance Outline 1 General Framework 2 Algebraic Additive Schwarz preconditioner Structure of the Local Schur Complement Description of the preconditioner Variant of Additive Shwarz preconditioner MAS MAS v.s. Neumann-Neumann 3 Parallel numerical experiments Numerical scalability Parallel performance 4 Prospectives 12/21 Numerical experiments with additive Schwaz preconditioner General Framework Algebraic Additive Schwarz preconditioner Parallel numerical experiments Prospectives Numerical scalability Parallel performance Computational framework Target computer IBM-SP4 (CINES) SGI O3800 (CINES) Cray XD1 (CERFACS) System X (Virginia Tech) jointly with Layne T. Watson-Virginia Polytechnic Institute Local direct solver : MUMPS [Amestoy, Duff, Koster, L’Excellent - 01] Main features - Parallel distributed multifrontal solver (F90, MPI) Symmetric and Unsymmetric factorizations Element entry matrices, distributed matrices Efficient Schur complement calculation Iterative refinement and backward error analysis Public domain: new version 4.6.3 www.enseeiht.fr/apo/MUMPS - mumps@cerfacs.fr 13/21 Numerical experiments with additive Schwaz preconditioner General Framework Algebraic Additive Schwarz preconditioner Parallel numerical experiments Prospectives Numerical scalability Parallel performance Numerical scalability 3D Poisson problem: Number of CG iterations where either: H h constant while # sub-domains is varied Increasing mesh size sub-domains size 20 × 20 × 20 25 × 25 × 25 30 × 30 × 30 35 × 35 × 35 MAS MSpAS MAS MSpAS MAS MSpAS MAS MSpAS H h horizontal view → while # sub-domains kept constant 27 64 16 16 17 17 18 18 19 19 23 23 24 25 25 26 26 28 vertical view↓ # sub-domains ≡ # processors 125 216 343 512 729 25 26 26 28 27 29 30 30 29 31 31 34 32 36 33 38 32 34 33 37 34 40 35 46 35 39 37 42 39 44 43 46 39 43 40 45 42 48 44 50 1000 42 46 43 49 45 52 47 56 The solved problem size vary from 1.1 up to 42.8 Millions of unknowns The number of iterations increases slightly when increasing # sub-domains This increase is less significant when the local mesh size 14/21 H h grows Numerical experiments with additive Schwaz preconditioner General Framework Algebraic Additive Schwarz preconditioner Parallel numerical experiments Prospectives Numerical scalability Parallel performance Numerical scalability 3D Difficult Discontinuous problem : Jumps in diffusion coefficient functions a() = b() = c(): 1 − 103 15/21 Numerical experiments with additive Schwaz preconditioner General Framework Algebraic Additive Schwarz preconditioner Parallel numerical experiments Prospectives Numerical scalability Parallel performance Numerical scalability 3D Difficult Discontinuous problem : Jumps in diffusion coefficient functions a() = b() = c(): 1 − 103 Number of CG iterations where either: H h constant while # sub-domains is varied Increasing mesh size H h horizontal view→ while # sub-domains kept constant vertical view↓ # sub-domains ≡ # processors sub-domains size 20 × 20 × 20 25 × 25 × 25 30 × 30 × 30 35 × 35 × 35 MAS MSpAS MAS MSpAS MAS MSpAS MAS MSpAS 27 64 125 216 343 512 729 1000 32 32 29 34 34 30 31 29 37 42 41 45 43 47 43 51 44 48 46 51 46 52 49 58 53 58 52 63 57 68 62 71 58 63 60 66 61 70 63 84 68 75 71 82 75 90 80 92 78 85 80 89 84 96 87 105 82 91 85 99 87 105 92 116 16/21 Numerical experiments with additive Schwaz preconditioner General Framework Algebraic Additive Schwarz preconditioner Parallel numerical experiments Prospectives Numerical scalability Parallel performance Parallel performance 3D Difficult Discontinuous problem: Implementation details: Setup Schur: MUMPS Setup Precond: dense Schur(LAPACK)- sparse Schur(MUMPS) Target computer : System Xserve MAC G5 - jointly with Layne T. Watson-Virginia Polytechnic Institute Parallel elapsed time: 103 processors H h vary = 10−4 Jumps in diffusion coefficient functions a() = b() = c(): 1 − 103 Sub-domains size 20 × 20 × 20 25 × 25 × 25 30 × 30 × 30 35 × 35 × 35 setup Schur 1.30 1.30 4.20 4.20 11.2 11.2 26.8 26.8 setup Precond 0.93 0.50 3.05 1.60 8.73 3.51 21.4 6.22 time per iter 0.08 0.05 0.23 0.13 0.50 0.28 0.77 0.37 total 8.79 6.17 26.8 18.6 63.0 44.1 119 75.9 # iter 82 91 85 99 87 105 92 dense local Schur Precond MAS - sparse local Schur Precond MSpAS 116 17/21 Numerical experiments with additive Schwaz preconditioner General Framework Algebraic Additive Schwarz preconditioner Parallel numerical experiments Prospectives Numerical scalability Parallel performance Local data storage MAS vs MSpAS Memory behaviour MAS MSpAS −5 Subdomains size 20 × 20 × 20 25 × 25 × 25 30 × 30 × 30 35 × 35 × 35 = 10 35.85MB 91.23MB 194.4MB 367.2MB 18/21 7.5MB 12.7MB 19.4MB 28.6MB (10%) (14%) (10%) ( 7%) = 10−4 1.8MB 2.7MB 3.8MB 10.2MB ( 5%) ( 3%) ( 2%) ( 2%) Numerical experiments with additive Schwaz preconditioner General Framework Algebraic Additive Schwarz preconditioner Parallel numerical experiments Prospectives Outline 1 General Framework 2 Algebraic Additive Schwarz preconditioner Structure of the Local Schur Complement Description of the preconditioner Variant of Additive Shwarz preconditioner MAS MAS v.s. Neumann-Neumann 3 Parallel numerical experiments Numerical scalability Parallel performance 4 Prospectives 19/21 Numerical experiments with additive Schwaz preconditioner General Framework Algebraic Additive Schwarz preconditioner Parallel numerical experiments Prospectives Prospectives Objective Control the growth of iterations when increasing the # processors Various possibilities (future work) Numerical remedy: two-level preconditioner - Coarse space correction, ie solve a closed problem on a coarse space - Various choices for the coarse component (eg one d.o.f. per sub-domain) Computer Science remedy : several processors per sub-domain - two-level of parallelism - 2D cyclic data storage 20/21 Numerical experiments with additive Schwaz preconditioner General Framework Algebraic Additive Schwarz preconditioner Parallel numerical experiments Prospectives Numerical alternative: preleminary results Domain based coarse space : M = MAS + ROT A−1 O R0 “As many” dof in the coarse space as sub-domains [Carvalho, Giraud, Le Tallec, 01] Partition of unity : R0T simplest constant interpolation Anisotropic and Discontinuous 3D problem: # procs 125 216 343 H h = 30 512 729 1000 setup Schur 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 setup Precond 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8.70 setup coarse 0.80 time per iter 0.50 0.50 0.50 0.50 0.51 0.50 0.51 0.50 0.52 0.50 0.53 0.50 total 40.2 44.9 46.7 50.9 51.8 55.4 55.0 59.9 58.5 64.0 62.5 67.6 # iter 39 - 0.83 - 50 52 62 with coarse space 21/21 0.87 61 - 71 0.92 67 - 80 0.96 73 - 88 1.30 78 - 95 - without coarse space Numerical experiments with additive Schwaz preconditioner General Framework Algebraic Additive Schwarz preconditioner Parallel numerical experiments Prospectives Parallel computing alternative Main characteristics of the two-level of parallelism Anisotropic and Discontinuous 3D problem: very preliminary result ongoing work # Sub-domains Sub-dom size # iter Setup Schur Setup MAS time/iter total time 1 Level 1000 20 × 20 × 20 186 1.30 0.95 0.08 17.0 2 Level 125 39 × 39 × 39 99 21.0 11.2 0.26 58.5 22/21 Numerical experiments with additive Schwaz preconditioner