Speaker - Sfogliami.it

Transcription

Speaker - Sfogliami.it
25|26
Sept 2014
SHERATON MILAN
19 | 20 September
2013
MALPENSA AIRPORT
HOTEL HOTEL
SHERATON MILAN MALPENSA AIRPORT
INDUSTRIALIZATION
Industrialization
of the
OF THE ADDITIVE
Additive
Manufacturing
process
MANUFACTURING
and lamination of Composite Materials
PROCESSS
S P O N S O R E D
SPONSOR GOLD
S
P
O
SPONSOR GOLD
N
S
O
R
E
SPONSOR SILVER
SPONSOR SILVER
AN EVENT ORGANIZED BY
ERIS PROGRAM
D
B Y
B
Y
THE PROGRAM
Industrialization
of the Additive
Manufacturing process
Presentations of
25 September 2014
SHERATON MILAN MALPENSA AIRPORT HOTEL
La terza rivoluzione industriale,
una nuova prospettiva
per il nostro paese
Speaker |
Ing. Giuseppe Catalfamo
Ha conseguito la Laurea Magistrale in Ingegneria Gestionale
comprensiva del Percorso di Eccellenza in Energy Management, presso l’Università Carlo Cattaneo - LIUC.
Dal 2011 ha svolto attività di ricerca presso la LIUC - Università Cattaneo, sia all’interno del Lab#ID (laboratorio per il
trasferimento tecnologico sui sistemi RFId), occupandosi in
particolare di analisi di processo, sia al CETIC (Centro di Ricerca per l’Economia e le Tecnologie dell’Informazione e della
Comunicazione) per lo sviluppo di algoritmi di simulazione.
Da circa dieci anni svolge inoltre attività di consulenza
nell’ambito dell’analisi dei processi aziendali per diverse
aziende del varesotto e per l’Associazione Piccole e Medie
Imprese della Provincia di Varese.
Dalla fine del 2013 è il Coordinatore di SmartUp – Laboratorio Fabbricazione Digitale, il progetto attivato alla LIUC in
collaborazione con l’Unione degli Industriali della Provincia
di Varese.
Abstract|
La vicenda umana si è sviluppata nella relazione dinamica tra bit (prodotti e gestiti da menti
umane) e atomi (manipolati per migliorare le nostre condizioni di vita) che hanno generato
cambiamenti nella logica della produzione e le cosiddette rivoluzioni industriali.
Un nuovo cambiamento in questa relazione sta avvenendo adesso, e con questo anche una
nuova rivoluzione industriale: la terza. Alla sua base ci sono la prototipazione digitale e la
stampa 3D che stanno aprendo nuove opportunità per fare innovazione tecnologica, per fare
impresa, per fare politiche industriali.
Come la stanno affrontando le imprese? Quali pro e quali contro hanno riscontrato quelle che
hanno già introdotto la fabbricazione digitale nei loro processi, e quali esigenze e dubbi manifestano quelle che vi si stanno avvicinando solo adesso? Dove effettivamente si sono ottenuti
i maggiori benefici?
Le risposte, raccolte di prima mano durante mesi di contatti e attività a financo delle imprese,
le fornisce un osservatorio privilegiato, quello del laboratorio di fabbricazione digitale nato
alla LIUC – Università Cattaneo proprio per volontà dell’Associazione degli Industriali della
Provincia di Varese con l’obiettivo di includere le proprie imprese tra i protagonisti di questa
Terza Rivoluzione Industriale.
EOS – Leader in e-Manufacturing
Solutions
Speaker |
Mr Vito Chinellato /
General Manager-Regional Manager Italy, EOS
22/09/2014
EOS: A Global Service Organisation
EOS Headquarter
Krailling (Germany)
• 45 Field Service Engineers,
• 9 2nd Level Support Engineers
• 15 Application Specialists
• 4 Hotline employees
EOS – Leader in e-Manufacturing Solutions
Corporate Presentation
EOS North America
Novi (USA)
• 16 Field Service Engineers
• 5 Application Specialists
Vito Chinellato Regional Manager Italia
July 2014
EOS China
Shanghai
• 2 Field Service Engineers
• 1 Application Specialist
Regional Service Center
Local Service unit
 EOS has Regional Service Centers on 3 continents
EOS AsiaPacific
Singapore
• 8 Field Service Engineers in 4 countries
• 3 Application Specialists
 A growing number of local Service units with own Field Service Engineers and depots
ensures customer vicinity in key regions
 Application Engineers consult on customer specific application challenges.
This presentation may contain confidential and/or privileged information.
Any unauthorized copying, disclosure or distribution of the material in this document is strictly forbidden.
Industrial Companies Face Similar
Challenges – Additive
Manufacturing Offers Unique
Challenges
of industrial companies
Additive Manufacturing advantages
Solutions
EOS: Global Presence
EOS worldwide installed base
EOS global footprint
1,330 Systems
 Customers in 51 countries
 EOS Sales & Service offices in 11 countries,
distribution partners in 22 countries
 More than 500 employees worldwide
(74% Germany, 26% International)
 Strong patent portfolio: More than 700 active
patents in nearly 100 patent families
 R&D Spendings of approx. 15% of Sales
 ⅓ Metal systems
 ⅔ Polymer systems
 266 customers with more than 1 system
North
America
Europe &
Rest of World
of global client base
of global client base
15%
67%
Faster Time-to-Market combined
with shorter Lifecycle
$

Productivity advantage
 Rapid prototyping and serial
applications
Productivity increase:
Need for cost reduction
$
Flexible production
("factory around the corner")
Innovation →
Increase of customer value add
AsiaPacific
18%
Freedom of design
 Lightweight
 Complex component
Customisation of products
of global client base
Customisation
 Customer specific adaptations
 Cost efficient small series
Focus on Sustainability
EOS Corporate Presentation | 3
Source: EOS. Installed base (includes purchased and rented systems) as per 12/2013. Stafffigures as per 09/2013.
Additive Manufacturing
Opens Two Roads to Success
1
Resolving the constraints of
conventional manufacturing
 AM can resolve constraints of the conventional design of an
existing solution by e.g.
 Reducing part complexity
 Reducing costs normally caused by e.g. tooling needed
after manufacturing
2
Together with Partners, EOS Provides End-to-End
Additive Manufacturing Solutions
Enabling a completely new
design approach
Industry Partners
e-Manufacturing Partners
 Leading to completely new solutions, e.g
 Move from metal to plastic
& others
Partnerships with leading industry
experts to explore new business
areas for Additive Manufacturing
Partners include:
Example: Washing rotor (Hettich)
Example: Load-bearing engine block (WITHIN Labs)
 From 32 components to 2 laser-sintered parts
+ 1 steel ring
 New design not possible with
conventional methods
 No tooling necessary
 Integrated conformal cooling channels,
lightweight design
Image sources: Hettich, WITHIN Labs
Technology Partners
 AM can enable design that in conventional
manufacturing environments has not been possible
before
 Making a part lightweight, yet functional
 Functional integration, product customization,
production on demand
Cost advantage
 Integrated functionality
without assembly

Cooksongold for the jewellery
industry

Bego for the dental industry
& others
•Co-operation with highly
experienced AM service
providers to offer customers:
•
•
Industry-specific application and/or
process development Presentation
High quality parts production
& others
•Partnering with
technology champions
who develop and offer
products complementary
to the AM technology.
•Partners include:
•
•
 Reduced cycle times, increased part quality,
weight reduction
EOS Corporate Presentation | 5
Within Lab: Custom design of
optimised lattice structures
and surface skins to meet
exact specifications
Best-in-Class: Precision surface
finishing
EOS Corporate Presentation | 6
1
22/09/2014
Business Positioned in Line with
Market Demand:
EOS Offers Solutions for Many
Industries
Rapid
Prototyping
Aerospace
Medical
Industry
Tooling
Lifestyle
Customers from Numerous
Industries
Rely on EOS Technology
OEMs
Automotive
Service Providers
Market
priorities
Sustainability
EOS Distribution Channels: Regional, Industry-Specific, Distributors, Sales Partners
Productivity
Customisation
EOS Portfolio
Products
Design*
Application
specific
(e.g. lightweight)
Solutions
Services
Finish*
Surface
engineering
Build
Systems
Material
Software
Process
Service
EOS Corporate Presentation | 1
*With EOS technology partners
EOS Additive Manufacturing
(AM)
Automotive Applications
EOS Additive Manufacturing
Aerospace Application Examples
Jet Engines
Interiors
EOS Corporate Presentation | 2
Sample customers.
UAV
Lightweight, complex components
Airduct
Rennteam
Uni Stuttgart
axle pivot
Conceptual
car seat
University of Warwick drive shaft
Morris Technologies Swirler
Individualised parts
Integrated functionality
SULSA aircraft made of PA 2200
 Challenge: Build highly complex
design (fuel injection systems, vane
segments) as ‘one piece’
 Solution: Manufacturing with DMLS
using EOS technology and EOS
CobaltChrome MP1
 Challenge: Build ducts for air
conditioning of cabin
 Solution: Manufacturing with EOS
plastic Additive Manufacturing
technology
 Challenge: University of Southampton
and 3T RPD create first ‘printed’
unmanned aircraft and show the use of
Additive Manufacturing for UAVs
 Solution: Manufacturing of a flightcapable UAV within one week, using
EOSINT P 730
 Challenge: Build lightweight drive
shaft for Formula Student racing car
 Solution: Carbon-titanium drive shaft
with laser-sintered double-walled
ends
 Challenge: Create light-weight car
seat with innovative ergonomic
design
 Solution: Functional integration via
laser-sintered plastic elements
 Challenge: Build a reliable,
lightweight axle pivot with high
rigidity in short time
 Solution: Production of topologyoptimised steering stub axle using
EOS technology
 Optimised: Improved design, no
brazed joins, increased robustness
 Quick: Delivery time less than 2
weeks (vs. 6 weeks)
 Economic: Significant cost reduction
– typically 50% less cost
 Optimised: Meets mechanical
performance requirements, tested
for FAR/JAR qualification (flame
retardant, smoke density & toxicity)
 Wide range of use: Already used in
several aircrafts
 Economic: Significant cost and fuel
reduction through light weight
 Optimised: Functional integration
simplifies assembly and excludes
the need for fasteners
 Freedom of design: Production of
complex structures to achieve the
best-possible flight characteristics
 Quick: From sketch to maiden flight
in less than one month
 Flexible: Part design without design
restraints
 Economic: Weighs only 350 g
(length 50 cm). 70% weight
reduction (vs metal version),
supports trend towards reducing
CO₂ emissions
 Comfortable: Thanks to anatomical
seat adjustment
 Economic: Significant weight
reduction
 Functional integration: Reduces
installation costs – pneumatic
actuators replace servomotors;
integrated heating and ventilation
 Optimised: Perfect form and
contouring – weight reduced by
35%, rigidity increased by 20%
 Speedy: Significantly shorter
development and production time
 Safe: Reliable on the track
EOS Corporate Presentation | 3
Sources Images (left to right): Morris Technologies, EOS, University of Southampton/3T RPD
EOS Additive Manufacturing
Industry Applications
Gripper: Lightweight and complex
components
Festo gripper
Bionic Assistance System
Special purpose machinery:
Integrated functionality
EOS FORMIGA
Laser adjustment unit
EOS Corporate Presentation | 4
Sources Images (left to right): University of Warwick; Fraunhofer IPA; Rennteam Uni Stuttgart
EOS Additive Manufacturing
Lifestyle Products Applications
Heat exchanger: complex
and scalable components
3T RPD/WITHIN Labs
Heat exchanger
Footwear & Sports
Accessories & Gadgets
Jewellery
Digital Forming
Cooksongold
Ross Barber shoes
 Challenge: Production of a bionic
gripper that can reliably pick up and
safely put down objects gently and
flexibly
 Solution: Small batch production
using EOS FORMIGA P 100
 Challenge: For EOS FORMIGA,
produce device to adjust laser mirror
in Y and Z direction
 Solution: Production with EOS
plastic laser-sintering technology
using EOS material PA2200
 Challenge: Create heat exchanger
that can efficiently increase or
dissipate heat; geometry to be
adapted to part that needs cooling
 Solution: Production on EOSINT M
270 with EOS Aluminium AlSi10Mg
 Challenge: Develop DMLS suitable
for gold
 Solution: New technology capable
of series production offering a high
degree of design flexibility
 Challenge: Individualisation of
products requires a dedicated
software as well as a flexible
manufacturing technology
 Solution: DigitalForming ‘s UCODO
software combined with EOS
Additive Manufacturing
 Challenge: Produce high-fashion
men footwear with a complex
design
 Solution: EOS plastic laser-sintering
of sole and cushioning structure
 Optimised: Function integration
reduces number of single parts and
assembly expenditure
 Economic: Light-weight and longlasting through innovative
manufacturing method
 Efficient: Tool-less production saves
time and money.
 Optimised: Functional integration:
 Integrated cam levers to fix
regulating screws
 Integrated control angle markings
(no stickers required)
 Economic: Manufacturing on
Demand possible, enabling
adjustments and offering spare parts
 Optimised: Self-supporting,
integrated cooling fins on outside
surfaces. Tear drop tubes, fully self
supporting
 Economic: Turbulators inside
cooling tubes disrupt flow of cooled
fluid to maximise heat transfer
 Speedy: Build time ca. 85 hours
 Optimised: Specially built laser
optics and raw material
 Sustainable: Less raw material
required
 Creative: Completely new
possibilities for designers
 Optimised: 3D files can be
customised within the design rules of
AM technology
 Economic: e-Manufacturing provides
the possibility of producing small
batch sizes
 Creative: UCODO opens up new
ways for mass-customised products
 Freedom of Design: 8 unique
designs with organic structure
 Optimised: Innovative AM
technology (sole production)
combined with traditional
craftsmanship (leather shoe uppers)
 Economic: Design could only be
manufactured with EOS technology
Sources Images (left to right): Festo; Kuhnstoff; EOS; components built into EOS systems; 3T RPD/WITHIN Labs
EOS Corporate Presentation | 5
Sources Images (left to right): Cooksongold (Heimerle + Meule Group), Digital Forming, Ross Barber
EOS Corporate Presentation | 6
1
22/09/2014
EOS Additive Manufacturing
Medical Applications
Dental
Applications
Orthopedic Devices
and Implants
EOS Additive Manufacturing
Tooling Applications
Surgical
Instruments
Medical
Devices
Smarter design of conformal cooling channels:
Cost savings, cycle time reduction, increased performance, scrap rate reduction
Injection Molding
BEGO USA Dental restorations
Acetabular Cups, WITHIN Labs
STarFixMicroTargeting™ platform
Die Casting
 Challenge: Production of
acetabular cups that promotes osseointegration
 Solution: EOS DMLS using
EOS Titanium Ti64. Design
with WITHIN software
 Challenge: Manufacturing
patient-matched frameless
stereotactic fixtures
 Solution: Small-batch
production of precision
surgical components using
EOS FORMIGA P 110
 Challenge: Simplify
production of washing rotor
ROTOLAVIT
 Solution: Laser sintering on
EOSINT P 395 with PA 2200
as series material
Result
 Fast and cost-efficient
manufacturing
 Provided accuracy of units is
+/- 20 microns
 Restorations are durable,
capable and have a
consistently high quality
Result
 Fully dense sections for
stability, lattice structures
for better osseointegration
 Both sections produced in
a single production step
 Sections merge seamlessly
to optimally absorb loads
Result
 Customised design shortens
surgery time
 Parts consolidation resulting
in in simpler designs with
more features
 Uses less material, faster
manufacturing turnaround
Result
 High functional integration
 3 parts (laser-sintered parts
plus 1 steel ring) instead of
32 parts
 Finish and assembly effort
reduced
EOS Corporate Presentation | 1
Sources Images (left to right): EOS/BEGO USA; WITHIN Labs/3T;L FHC Inc.; Hettich
Salcomp tool insert
and injection-moulding part
 Challenge: Enable precision
cooling for production of
mobile phone plastic parts
 Solution: Improved cooling
design. Manufacture of core
inserts using EOS technology
Result
 Production increased by
56,000 units/month
 Rejection rate reduced
from 2% to 1.4%
 Annual cost savings of
approx. 20,000 euros
Innomia tool insert for die casting
Ecoparts tool insert
Production
Monitoring
EOS
Hardware
Systems
EOS FORMIGA P 110 EOSINT P 395
EOSINT P 760
EOS P 396
EOS P 800
Periphery
EOS IPCM / IPCM P plus
EOS Unpacking/Sieving station*
Cooldown Station P7
EOS
Materials
PA 2200
PrimePart® PLUS
PA 2202 black
PA 3200 GF
Alumide®
CarbonMide®
PA 1101
PA 2201
PA 2105
PA 2210 FR
EOS
Parameters
ParameterEditor
ParameterSets
PPPs: TopQuality (60µm), Performance (100µm),
Balance (120µm), Speed (150µm), Top Speed (180µm)
OEPs: (60µm), 100µm, 120µm, 150µm
Removal &
Cleaning
PEP (Pôle Europeen de Plasturgie) tool insert
 Challenge: Repair a partially
damaged tool insert
 Solution: Generation of a
new reference surface;
Positioning of part in EOS
machine. On-top construction of missing parts
 Challenge: Build a tool
insert for a die casting
application
 Solution: Cooling system
optimisation; insert built via
DMLS on EOSINT M 270 in
EOS MaragingSteel MS1
 Challenge: Injection
moulding tooling for 50,000
electrical component parts
 Solution: Redesign of inserts
with conformal cooling
channels; inserts built in
EOS MaragingSteel MS1
Result
 Save costs of a complete
new insert construction
 Reduction of lead time:
partial construction instead
of complete construction
Result
 Significant cycle time
reduction
 Improved life time of
inserts
Result
 Lead time and cost
reduction
 Higher mould productivity
 Better thermal management
EOS Corporate Presentation | 2
Sources images (left to right): Innomia, Ecoparts, PEP
EOS Systems for the Additive
Manufacturing
of Polymer Parts
EOS Portfolio
Additive Manufacturing of
Polymers
System Set-up &
Production
Rapid Tooling
Hettich wash rotor Rotolavit
 Challenge: Economic
production of patientspecific restorations made of
high-performance alloy
 Solution: Manufacturing
fully dense restorations w/o
porosity using EOSINTM270
Design
Repairing
FORMIGA P 110: Compact
system for RP applications
and small series
EOS P 396: Productive
mid-volume polymer laser
sintering system
EOSINT P 760: Largest
build volume for polymer
parts
EOSINT P 800: For
high-performance
polymer parts
Usable build size
 Width 200 mm
 Depth 250 mm
 Height 330 mm
 Max. volume: 16.5l per build
Usable build size
 Width 340 mm
 Depth 340 mm
 Height 600 mm
 Max. volume: 69.4l per build
Usable build size
 Width 700 mm
 Depth 380 mm
 Height 580 mm
 Max. vol.: 154.3l per build
Usable build size
 Width 700 mm
 Depth 380 mm
 Height 560 mm
 Max. volume = 149l per build
Main properties
 Highest detail resolution and
final part accuracy
 Production flexibility
 Small machine footprint
(1350x1040x2200 mm) for fit
into every production
environment
Main properties
 The “workhorse” in the midvolume segment
 High mechanical
homogeneity across full build
volume thanks to EOSAME
feature
Main properties
 High-volume production
 Large part sizes
 Double-laser system
 Extensive portfolio of
periphery for maximum
system productivity (e.g.
CoolDown Station)
Main properties
 First and only ultra-hightemperature material system
(EOS PEEK HP3, melting point
of 372°C)
 Option to reduce build size
enabling cost-effective
production of fewer parts
EOS OLPC
PrimePart® FR
PrimePart® ST
EOS PrimeCast® 101
EOS PEEK HP3
EOS
Software
EOS RP Tools
EOS PSW
EOS PSW
EOSTATE
Partner
Solutions
Materialise Streamics
Materialise Magics
Materialise Streamics
Materialise
Streamics
EOS Blasting
Cabinet
Normfinish
EOS Corporate Presentation | 3
*For P1, P3, P7
EOS Polymer Materials
Composition
EOS Portfolio
Additive Manufacturing of Metals
Trade name
Colour of parts
Main feature
Typical applications
PA 2200
white
natural
PA 2202 black
anthracite black
Polyamide 12,
glass bead filled
PA 3200 GF
whitish
Polyamide 12,
aluminium filled
Alumide ®
metallic grey
Polyamide 12,
carbon fibre reinforced
CarbonMide ®
anthracite black
Polyamide 11
PA 1101
natural
For special applications
Polyamide 12
PA 2201
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Multipurpose material
Balanced property profile
Economic multipurpose material
Balanced property profile
Certificates available (Biocompatibility, Food contact)
Balanced property profile
Pigmented throughoutd
High stiffness
Wear resistance
Improved temperature performance
Easy post-processing, good machinability
High temperature performance
Thermal conductivity (limited)
High stiffness
Extreme strength and stiffness
Thermal and electrical conductivity (limited)
Best strength/weight-ratio
Very high ductility / elongation at break
100% from renewable sources (castor/ricinus oil)
Acceptable tensile strength
•
PrimePart® PLUS
(PA 2221)
natural
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Multipurpose material
Material certificates available (Food contact)
Highest dimensional accuracy
High surface quality and detail resolution
Economic flame-retardant material
Halogen-free
Economic flame-retardant material
Material certificates available (flammability)
Rubber-like flexibility (Shore D ≈ 35)
No infiltration necessary
High dimensional accuracy
Low residual ash-content
High performance material
Excellent temperature performance, strength, stiffness
and chemical resistance
Excellent wear resistance. Inherently flame retardant
Biocompatibility and sterilizability
Polyamide 12
PA 2105
light beige
PA 2210 FR
white
white
TPE-A PolyetheramideBlock-Copolymer
Polystyrene
PrimePart® FR
(PA 2241 FR)
PrimePart® ST
(PEBA 2301)
PrimeCast® 101
white
Polyaryletherketone
EOS PEEK HP3
beige-brown
Polyamide 12,
flame retardant
grey
•
•
EOS Corporate Presentation | 4
Functional parts
•
Functional parts
•
Functional parts in anthracite black colour
•
•
•
•
•
•
Stiff housings
Parts with requirements on wear and abrasion
Parts used under elevated thermal conditions
Applications with metal-like look
Parts which need machining
Parts with thermal loads
•
•
Light and stiff functional parts
Metal replacement
•
•
Functional parts which need impact resistance
Parts with functional elements (film hinges)
•
Medical, food
•
Dental
•
•
•
Aerospace
Electric & Electronic
Aerospace
•
Damping devices, bumpers / cushions, gaskets /
gasket seals, shoe sole elements
Patterns for investment casting
Master patterns for vacuum casting
Metal replacement
Aerospace
Automotive and motorsports. Electric & Electronic
Medical
EOS Corporate Presentation | 5
Industrial
•
•
•
•
•
•
•
Design
System Set-up &
Production
EOS
Hardware
Systems
EOSINT M 280 200W/400W
EOSINT M 270 Dental
EOS M 400
EOS
Materials
EOS MaragingSteel MS1
EOS StainlessSteel GP1
EOS StainlessSteel PH1
EOS StainlessSteel 316L
EOS
Parameters
ParameterEditor
EOS
Software
EOS RP Tools
EOS PSW
EOSPRINT
Partner
Solutions
Materialise Magics
Production
Monitoring
Periphery
EOS IPCM M
EOS Comfort Powder Module
EOS NickelAlloy IN718
EOS NickelAlloy IN625
EOS NickelAlloy HX
EOS Titanium Ti64
Removal
&Cleaning
EOSTATE
Laser
Measurement
EOS CobaltChrome MP1
EOS CobaltChrome SP2
EOS Aluminium AlSi10Mg
EOS Titanium Ti64ELI
ParameterSets
Surface, Performance, Speed
EOSTATE Base
EOSTATE
LaserMonitoring
EOSTATE
PowderBed
EROWA Alignment System
IEPCO Shot
Peening
1
22/09/2014
EOS Systems for the Additive Manufacturing
of Metal Parts
EOSINT M 270 Dental:
High-Performance DMLS
for Dental Copings & Bridges
EOSINT M 280: Mid-Sized
System for Additive Manufacturing of Metal Parts
EOS M 290: For High-Quality
Metal Parts – with Enhanced
Quality Management
EOS Metal Materials
Material Group
EOS M 400: For Industrial
Production of High-Quality
Large Metal Parts
Maraging Steel
Stainless Steel
Nickel Alloy
Usable build size
 Width 250 mm
 Depth 250 mm
 Height 215 mm
Usable build size
 Width 250 mm
 Depth 250 mm
 Height 320 mm
Usable build size
 Width 250mm
 Depth 250 mm
 Height 325 mm
Usable build size
 Width 400 mm
 Depth 400 mm
 Height 400 mm
Laser
 Yb-fibre laser
 200 W
Laser
 Yb-fibre laser
 200 W or 400 W
Laser
 Yb-fibre laser
 400 W
Laser
 Yb-fibre laser
 1,000 W
Technical data
 Precision optics: F-theta-lens,
high-speed scanner
 Scan speed: up to 7.0 m/s
Technical data
 Precision optics: F-theta-lens,
high-speed scanner
 Scan speed: up to 7.0 m/s
Technical data
 Recirculating Filter System
 Monitoring of machine and
process parameters
Cobalt Chrome
Titanium
Technical data
 Precision optics: F-theta-lens
 Scan speed: up to 7.0 m/s
Aluminium
Brand name
Material type
Typical applications
EOS MaragingSteel MS1
18 Mar 300 / 1.2709
Injection moulding series tooling; engineering
parts
EOS StainlessSteel GP1
Stainless steel
17-4 / 1.4542
Functional prototypes and series parts;
engineering and medical
EOS StainlessSteel PH1
Hardenable stainless
15-5 / 1.4540
Functional prototypes and series parts;
engineering and medical
EOS StainlessSteel 316L
Stainless steel
1.4404
Functional prototypes and series parts;
lifestyle, aerospace, medical
EOS NickelAlloy IN718
Inconel™ 718, UNS N07718, AMS 5662,
W.Nr 2.4668 etc.
Functional prototypes and series parts;
high temperature turbine parts etc.
EOS NickelAlloy IN625
Inconel™ 625, UNS N06625, AMS 5666F,
W.Nr 2.4856 etc.
Functional prototypes and series parts;
high temperature turbine parts etc.
EOS NickelAlloy HX
UNS N06002
Severe thermal conditions and high risk of
oxidation, e.g. combustion chambers,
EOS CobaltChrome MP1
CoCrMo superalloy,
UNS R31538, ASTM F75 etc.
Functional prototypes and series parts;
engineering, medical, dental
EOS CobaltChrome SP2
CoCrMo superalloy
Dental restorations (series production)
EOS Titanium Ti64
Ti6Al4V light alloy
Functional prototypes and series parts;
aerospace, motor sport etc.
EOS Titanium Ti64ELI
Ti6Al4V ELI (grade 23)
Medical Implants
EOS Aluminium AlSi10Mg
AlSi10Mg light alloy
Functional prototypes and series parts;
engineering, automotive etc.
EOS Corporate Presentation | 1
Quality Assurance with EOSTATE
Software
EOS Corporate Presentation | 2
EOS Service Portfolio
Reporting software for QA documentation
 Base Module: Machine status and data for trouble
shooting
 Quality Assurance Module: Job Quality Report with
all quality relevant data and statistics
 Controlling Module: Controlling Report with all
financially relevant data and statistics
 Machine Park Management Module: Machine Park
Report with all system data and statistics
Technical
Services
Training
Services
Application/
R&D Services
Quality Mgmt
Services
Financial
Services
Installation /
Relocation
System operation
trainings
Building of sample
parts
FAT (Factory
Acceptance Test)
Renting models
Maintenance
Advanced level
trainings
Feasibility studies
IQ (Installation
Qualification)
Leasing models
Repair
Trainings for
Software
Remote Support
for Applications
Support for
Operational Qual.
Individ. financing
solutions
Spare parts supply
Design rules
trainings
ExposureEditing
Consulting
Support for
Performance Qual.
Remote Service
Application-specific
trainings
Application
Consulting
Support for
Customer SelfCare
Customer specific
developments
The EOS Service offer addresses a variety of customer needs and all levels of know-how.
EOS Corporate Presentation | 3
1) Requires dedicated business case * In development, subject to technical changes





Semi-automated processes
Modular concept
Single field with 1kW laser
Multi-field with 200/400W* lasers
XL build chamber (400x400x400mm)
Focus on flexibility
 Develop & qualify applications
 Freeze system settings for
production
 Produce small scale volumes
Adapt to
application
 Derive application-specific
system, e.g. PRECIOUS M 080
 Designed for flexible material
exchanges
 200 / 400 W laser
 Build chamber
(250x250x325mm)
Applicationspecific approach
Focus on speed
Focus on accuracy
 Big & bulky parts
 Surface roughness allowed
 Functional surfaces typically
finished
 Rather small parts
 High resolution required
 Direct similarity to M 280
Multi-field
with overlap*
Single field*
Focus on application
 Adapted system to match
requirements of specific
applications 1)
 Dedicated materials and
parameters (e.g. gold)
EOS Corporate Presentation | 5
Multi-field
without overlap*
4 x 400 W 1)
Scale up for
production
Focus on production
4 x 400 W 1)
 Manufacture application in
production environment
A Peek into the Lab: Depending
on Application, EOS will offer a
Single or Multi-Field Solution
1 x 1,000 W
Application
specific 1)
R&D / Small scale
Production
Platform
Large scale
Production
Platform
A Peek into the Lab: EOS Pursues
a Platform-based DMLS Strategy
– from R&D to Production
EOS Corporate Presentation | 4
1) Laser power can be adapted for similarity purposes (e.g. 200 W) * In development, subject to technical changes
EOS Corporate Presentation | 6
1
22/09/2014
A Peek into the Lab:
EOSTATE PowderBed
A Peek into the Lab:
EOSTATE MeltPool
EOSTATE PowderBed: Step II & III*
Principle of operation*
Current development*
 Step II and III allow software-based image
recognition, error identification and closed-loop
control
 Capturing light emissions from DMLS process with
photodiode-based sensors
 Cooperation with experienced industry partner
leveraging synergies of EOS process know-how and
partner’s expertise in industrial monitoring
A: “On-Axis“ configuration (through the scanner)
 Image recognition algorithms for the specific
conditions and needs of the DMLS process
 Allocation of detected failure to specific layer and
part
 Closed-loop control of recoating quality
B: “Off-Axis“ configuration (diode inside process chamber)
Recognize insufficient recoating
 Control of exposure quality through advanced edge
detection algorithms
Repeat recoating until OK
 Sensing light intensity and signal dynamics, which are
among the most relevant indicators for process
behaviour
 Correlation of sensor data with scanner position and
laser power signal
 Full integration in EOS software including userfriendly graphical user interface
 Deepening know how about correlations of monitoring
data, process characteristics and part quality
 Further development of algorithms for automated data
analysis and visualization
 Implementation in user-friendly software
A
B
Recognition of contours and
particles in powder bed
* In development, subject to technical changes
Mapping of data of a tensile bar
* In development, subject to technical changes
1
Powder – The Basis for
Additive Manufacturing
Speaker |
David Novotnak
Senior Materials Engineer
Carpenter Powder Products
Metal Powder & Specialty P/M Products
14/10/2014
Carpenter Technology Corporation
Powder – The Basis for Additive Manufacturing
Agenda
ENGINEERED FOR A CHANGING WORLD
I
Introduction
II
Powder Manufacturing Processes
III
Metal Powder Considerations
IV
718 AM Results
V
Current and Future Growth
VI
Summary
Powder – The Basis of Additive Manufacturing
D J Novotnak
RM Forum 2014
September 26, 2014
Milan, Italy
Unless otherwise noted, the logo and registered trademarks are property of CRS
Holdings, Inc. a subsidiary of Carpenter Technology Corporation.
© 2014 CRS Holdings, Inc. All rights reserved
Powder – The Basis for Additive Manufacturing
Global Environment
Carpenter Powder Products
• Division of Carpenter Technology
• Predominant manufacturer and supplier of:
Conventional Inert gas atomized powder
•
Powder – The Basis for Additive Manufacturing
− Air and Vacuum melted
− Fe, Ni, Co and Cu based alloys
Powders
− Additive Manufacturing – Laser Bed, EB
− Thermal Spray
− Braze
Materials - Rising costs and supply constraints
Manufacturing - Long deliveries and low yields
Labor - Increasing costs
Product Development - Long cycle time and high costs
− PTA, Laser Clad
− Tool Steels
− MIM
An evolving solution
Additive Manufacturing
− HIP Components
© 2014 CRS Holdings, Inc. All rights reserved
© 2014 CRS Holdings, Inc. All rights reserved
Powder – The Basis for Additive Manufacturing
Perceived Advantages
Powder – The Basis for Additive Manufacturing
Powder Processes Suited for AM
• Flexible Designs
•
•
•
• Complex Parts
• No Tooling
• High Material Yield
• Lower Costs
•
• Improved Delivery
• Green Technology
• Pervasive
© 2014 CRS Holdings, Inc. All rights reserved
Courtesy of RPM Innovations
Plasma Atomization of Wire
PREP – Plasma rotating electrode
Plasma Spherodization
− Hydride/Dehydride – Titanium powders
− Chemically reduced powder – refractory alloys
− Water atomized powder
Conventional Inert Gas Atomization – Primary method
− Close coupled
− Free fall
− Air/Vacuum Melt
− Argon or Nitrogen atomized
© 2014 CRS Holdings, Inc. All rights reserved
1
14/10/2014
Powder – The Basis for Additive Manufacturing
Powder – The Basis for Additive Manufacturing
Metal Powder Considerations
Sample of Additive Manufacturing Alloys
Ni Base
Fe Base
Co Base
718
15-5
F75 Type
Ti 6A4V
• Particle Size Distribution
625
17-4
Many
Gamma Ti
DMLS 10-44u
EBM 44-106u
FLM 44-150u
HX
316L
Variants
247
1.2709
• Chemistry
Ti Base
CP
Ti6242
• Morphology
• Flow
• Chemistries based on cast and wrought requirements
• Cleanliness
PSD -45u
© 2014 CRS Holdings, Inc. All rights reserved
© 2014 CRS Holdings, Inc. All rights reserved
Powder – The Basis for Additive Manufacturing
Chemistry – Alloy 625:
0 - .40
0 - .10
3.15 - 4.15
0 - 1.00
Cr
20.00 - 23.00
Fe
Ta
Mn
Mo
Ni
P
S
Si
Ti
0 - 5.00
0 - 0.05
0 - .50
8.00 - 10.00
Bal
0 - .015
0 - .015
0 - .50
0 - .40
AMS 5666
Chemistry – Oxygen/Nitrogen
• What are the acceptable values
What is the Target Aim – Major El
• What is the expected capability
• Nb, Cr, Mo
• What are the affects based on powder size
Oxygen
What about residuals
• Al, B, C, Ca, Co, Fe, Mn, P, S, Si, Ti
Missing Elements
Nitrogen
PPM
Al
C
Nb
Co
Powder – The Basis for Additive Manufacturing
• Oxygen
• Nitrogen
© 2014 CRS Holdings, Inc. All rights reserved
Powder – The Basis for Additive Manufacturing
Powder Size Distribution
• Considerable variation for powder requirements for DMLS
© 2014 CRS Holdings, Inc. All rights reserved
Powder – The Basis for Additive Manufacturing
Powder Size Distribution
• Consider Possible Sizing Requirements for -325 (44u) Powder
o Both for range and tolerance
• Sizing evolved
o as wattage increased, new capabilities developed
• Considerations based on powder reuse
© 2014 CRS Holdings, Inc. All rights reserved
Size
Allowance % (max)
+230 (63u)
0.0, 0.1, 0.2
+270 (53u)
0.0, 0.1, 0.2
+325 (44u)
0.1, 1, 3, 5
-325 (44u)
100, 97, 95
-15u
1, 5, 10
-10u
2, 5, 9
© 2014 CRS Holdings, Inc. All rights reserved
2
14/10/2014
Powder – The Basis for Additive Manufacturing
Metal Powder Flowability
Powder – The Basis for Additive Manufacturing
Cleanliness
1800
Powder Manufacturer
• Metallic Cross contamination
• Non-Metallic contamination
1600
1400
Flow Energy 50 taps
Energy (mJ)
1200
1000
Powder User
• Metallic Cross contamination
• Other grades
• System, hoppers
• Non-Metallic contamination
• System
• Airborne
Conditioned Flow Energy
800
600
400
200
0
Cobalt
-45u
Nickel #1
177/53u
Nickel #2
177/53u
© 2014 CRS Holdings, Inc. All rights reserved
© 2014 CRS Holdings, Inc. All rights reserved
Powder – The Basis for Additive Manufacturing
Cleanliness - Reuse
New Powder
Powder – The Basis for Additive Manufacturing
Cleanliness - Reuse
Reused Powder
Suggests agglomeration and loss of fines
© 2014 CRS Holdings, Inc. All rights reserved
© 2014 CRS Holdings, Inc. All rights reserved
Powder – The Basis for Additive Manufacturing
Powder – The Basis for Additive Manufacturing
AMS 718 Heat Treatment
Cleanliness - Reuse
Z
Y
X
Tensile Minimum
Yield Minimum
New Powder
Oxygen = 320ppm
Reused Powder
Oxygen = 830ppm
Oxidation, Agglomeration
© 2014 CRS Holdings, Inc. All rights reserved
© 2014 CRS Holdings, Inc. All rights reserved
18
3
14/10/2014
Powder – The Basis for Additive Manufacturing
AMS 718 Heat Treatment
Powder – The Basis for Additive Manufacturing
API6A718 Heat Treatment
Z
Y
Z
Y
X
X
Tensile Minimum
Yield Minimum
RA Minimum
EL Minimum
© 2014 CRS Holdings, Inc. All rights reserved
19
Quality Considerations
Z
Y
20
Powder – The Basis for Additive Manufacturing
Powder – The Basis for Additive Manufacturing
API6A718 Heat Treatment
© 2014 CRS Holdings, Inc. All rights reserved
X
• Alloy 718 Microstructures – As Built
XY
XZ
YZ
RA Minimum
EL Minimum
© 2014 CRS Holdings, Inc. All rights reserved
21
Powder – The Basis for Additive Manufacturing
Quality Considerations
© 2014 CRS Holdings, Inc. All rights reserved
Powder – The Basis for Additive Manufacturing
Post Build Considerations
• Alloy 718 Microstructures –
• Microstructure - Porosity
200x
As Built
500x
As Built
500x
As HIP’ed
© 2014 CRS Holdings, Inc. All rights reserved
•
Mainly confined to perimeter
of test specimen
•
Can be healed with HIP as
long as pores are not surface
connected
500x
HIP, Solution & Age
© 2014 CRS Holdings, Inc. All rights reserved
4
14/10/2014
Manufacturing AM Aerospace Parts
Current Growth
Estimated consumption
Manufacturing AM Aerospace Parts
Future Growth
Estimated consumption
C = MPU where
C
M
P
U
=
=
=
=
consumption
number of machines
productivity
machine utilization
Assumptions
M = 1000 machines since 2000
P = 1.4 to 7 cm3/hr DMLS, 16.5cm3/hr EBM
U = 35-75%
C = MPU where
C
M
P
U
=
=
=
=
consumption
number of machines
Productivity
machine utilization
Assumptions
2017 at current build rates
– 320 tons
2017 with productivity increases – 400 tons
2017 with utilization increases
– 500 tons
Current Volume Estimates
– 150 tons/year (CAGR of 25%/year)
© 2014 CRS Holdings, Inc. All rights reserved
© 2014 CRS Holdings, Inc. All rights reserved
Powder – The Basis for Additive Manufacturing
Summary
•
Sizing requirements need standardization for a given alloy
and laser bed machine model – beneficial effect on price
•
Alloys designed for cast/wrought but used for AM may need
tweaks to chemistry targets to improve weldability and
mechanical properties.
•
Reusing powder, although providing economic benefits, has
to be seriously considered with regard to oxidation and other
contamination pickup from the operation and powder
handling that could jeopardize the properties.
•
When specifying an oxygen requirement, the basic capability
of the powder process needs to be considered.
•
AM test results for 718 show considerable promise
© 2014 CRS Holdings, Inc. All rights reserved
5
PROGETTAZIONE PER IL PROCESSO
ADDITIVO – UN CASO PRATICO
Speaker |
Mr Alessandro Consalvo
Application Engineer, Additive Manufacturing
Products Division, RENISHAW
Renishaw plc
14/10/2014
In sintesi
Building metal parts with
Produzione
Additiva
in metallo
Laser based
AM systems
Progettare per il processo
Bob Bennett – Product Sales Manager
Renishaw AMPD
415 milioni
di Euro
15%
dei ricavi investiti in
progettazione inclusa
R&D nel 2013
di vendite nel 2013
3300
32
dipendenti
paesi con filiali
locali
Alessandro Consalvo - Support Engineer
Renishaw AMPD
Design for Process
I nostri clienti
Considerazioni generali:
Vantaggi dell’AM
Aerospazio
Veicoli pesanti
Agricoltura
Medicina
Industria
automobilistica
Prodotti di
consumo
Generazione
di energia
Cave e
miniere
Vantaggi dell’AM
Il vostro componente è adatto all’AM?
Geometria del componente – da fare e da non fare
Strutture di supporto
Gestire gli stress
Processi di finitura
Esempi
Il vostro componente è adatto all’AM?
Strutture complesse e a pareti sottili
Strutture reticolari interne per la riduzione del peso
Funzionalità interne come canali di raffreddamento in inserti per lo
stampaggio a iniezione
Combinazione di diversi componenti per eliminare post operazioni
Libertà di progettare il componente focalizzandosi sulle funzionalità richieste
Materiale collocato solo dove necessario a soddisfare i requisiti applicativi

Ottimizzare il design ottenendo
•Vantaggi tecnici
•Vantaggi economici
Confidential


Page 1
Renishaw plc
14/10/2014
Erogazione di farmaci in applicazioni neurologiche
Terapia di stimolazione cerebrale profonda
• Produzione di un piccolo collettore
• Materiale - Titanio Ti6Al4V
• 4 porte per un’accurata erogazione dei farmaci
• Erogazione di farmaci direttamente al
cervello, superando l’ostacolo della
Barriera Emato-Encefalica
• Controllo più accurato dei dosaggi
terapeutici
10/14/2014
Slide 7
10/14/2014
Geometria del componente – Superfici a sbalzo
Slide 8
Geometria del componente – Superfici a sbalzo
Geometria costruita verticalmente
Funzioni dei supporti:
• Dissipare il calore
L’angolo limite a cui si può
costruire senza supporti è
approssimativamente:
• Fissare il componente alla piattaforma
Cobalto Cromo: 45 °
• Prevenire le deformazioni
• Supportare le superfici a sbalzo
Inconel 718: 45 °
Inconel 625: 45 °
SS316: 45 °
Ti6Al4V grado 23 Eli: 30 °
Possono comunque essere costruiti brevi tratti non supportati anche oltre l’angolo limite ma
in queste aree si otterrà probabilmente una scarsa finitura superficiale.
14/10/2014
Slide 9
14/10/2014
Geometria del componente – Superfici a sbalzo
Slide 10
Geometria del componente – Superfici a sbalzo
Supportare le zone a sbalzo riduce le possibilità che una costruzione possa fallire.
Ottimizzando il design di un componente l’uso dei supporti può essere ridotto o
eliminato.
Strutture a sbalzo (overhang)
Ogni nuovo layer necessita di essere supportato
dalla piattaforma di processo o dal layer
solidificato sottostante.
Riduzione del tempo e del costo di lavorazione
L’immagine mostra zone del componente che:
• sono costruibili senza supporti (verdi)
• potrebbero essere costruite senza supporti
(gialle)
• non possono essere costruite senza supporti
(rosse)
14/10/2014
Confidential
Slide 11
Strutture a sbalzo –
potrebbero essere
necessari supporti per
evitare cattive finiture
superficiali o scarsa
qualità generale del
componente.
Soluzione per ridurre i supporti: raccordi a 45°
Strutture verticali al
piano – Ogni layer
è supportato dal
layer precedente
14/10/2014
Slide 12
Page 2
Renishaw plc
14/10/2014
Geometria del componente – Fori
Fori/ tunnels
L’immagine mostra come un foro (o la sezione di un tunnel) è costruito in un processo strato su
strato.
Geometria del componente – Fori
L’entità delle deformazioni nei fori circolari dipende principalmente dalla loro taglia, e varia
inoltre per materiali differenti.
Come regola generale, i fori con un diametro inferiore a 10 mm si possono auto-supportare
senza originare distorsioni visibili a occhio.
Il quarto superiore del foro orizzontale sarà costruito con un angolo di sbalzo molto basso.
Necessita di essere supportato altrimenti presenterà una deformazione.
14/10/2014
Slide 13
14/10/2014
Geometria del componente – Fori
Slide 14
Geometria del componente – Fori
Canali interni - possono essere considerate
diverse opzioni
Sopra i 10 mm Ø è necessario
supportare.
sezione ottimale
Per minimizzare l’uso di supporti
è possibile utilizzare fori con
profili a goccia, ovali o romboidali.
sezione ottimale
14/10/2014
Slide 15
Geometria del componente – Fori
Sezioni con grandi diametri richiedono supporti, in caso di condotti la loro
rimozione può essere problematica.
14/10/2014
sezione realizzabile
ma non consigliata
Slide 16
Geometria del componente – Fori
Ottimizzando l’orientazione di costruzione, l’uso dei supporti può essere ridotto.
Nessun supporto
necessario
all’interno dei
tunnel.
Supporti
necessari
solo nella
parte
inferiore.
14/10/2014
Confidential
Slide 17
14/10/2014
Slide 18
Page 3
Renishaw plc
14/10/2014
Tensioni termiche
Tensioni termiche
L’AM è essenzialmente un processo di saldatura, tuttavia il diametro dello spot del
laser di 70 µm è molto piccolo e perciò la densità di energia trasferita è molto
elevata.
Questo può portare a stress in grandi sezioni o in componenti con variazioni di
sezioni trasversali.
Piegatura dovuta a tensioni termiche
Una grande sezione XY accumula
tensioni durante il processo.
14/10/2014
Separazione del componente dai
supporti causata dalle tensioni termiche.
Le tensioni tendono a sradicare dalla piastra il componente a
partire dalle estremità, causando incurvamenti.
Slide 19
14/10/2014
Tensioni residue
Slide 20
Tensioni residue
Sezioni lunghe e spesse possono essere
mantenute fissate alla piastra usando supporti
più larghi o più fittamente distribuiti.
Questo comporterà ovviamente l’impiego
di un tempo maggiore per le operazioni di
rimozione dei supporti.
Quando si costruiscono componenti con sezioni
molto spesse è consigliato utilizzare piastre più
alte, per evitare deformazioni dei componenti e
delle piastre stesse.
14/10/2014
Rapporto altezza su larghezza
Strutture reticolari
Regola generale = 8:1
14/10/2014
Confidential
Slide 23
Slide 22
Le strutture reticolari sono esenti dalle normali restrizioni di progettazione. Per via del loro
volume ridotto non accumulano tensioni termiche e non necessitano di supporti neanche
per le aree a sbalzo.
14/10/2014
Slide 24
Page 4
Renishaw plc
14/10/2014
Pareti con sezioni sottili
Operazioni di finitura
Pareti con sezioni troppo sottili non riescono
ad auto-supportarsi dando origine a
fenomeni di instabilità superficiale.
Collettore con spessore parete 200 µm
• Distesione termica delle tensioni
• Pallinatura
• Sabbiatura con ossido di alluminio e/o di zirconio
• Lucidatura
Eccessivo rapporto altezza / larghezza
• Negli inserti e utensili di precisione prodotti per AM
generalmente viene applicato un sovrametallo di
0.2 mm per consentire successive lavorazioni
meccaniche di rettifica.
14/10/2014
Slide 26
Empire Cycles – Bicicletta costurita additivamente
Sistema Renishaw
AM250
Volume di lavoro (x, y, z)
250 x 250 x 300 mm
(z estendibile a 360 mm)
Velocità di costruzione*
da 5 cm³/h a 20 cm³/h
Spessore dello strato
Diametro del fascio laser
da 20 a 100 µm
70 µm
Opzioni laser
200 W o 400 W
Alimentazione
230 V 16 A
Consumo elettrico
1.6 kW
Consumo di gas inerte
<30 l/h
*La velocità di costruzione dipende dal tipo di materiale , dalla densità e
dalla geometria
* Build rate is dependent on material, density & geometry, not all materials build at the highest build rate.
10/14/2014
Empire Cycles
•
•
•
•
Empire MX-6 - punto di partenza della progettazione
Forcella posteriore in lega di alluminio lavorata dal pieno
Telaio tubolare composto da componenti lavorati dal pieno e saldati
Staffa reggisella in alluminio da casting
10/14/2014
Confidential
Slide 29
Slide 28
Parte originale da valutare per l'ottimizzazione topologica
Modello CAD del reggisella progettato per
la fusione a cera persa di alluminio:
360gms
10/14/2014
Slide 30
Page 5
Renishaw plc
14/10/2014
Design originale
Ottimizzazione topologica
• Volume componente – 129 cm³
• Volume supporti – 5 cm³
• Dal greco Topo, strada o percorso: percorso ottimale per i carichi.
• Un software iterativo calcola il materiale minimo per resistere ai carichi
massimali e rimuove il superfluo (Altair’s solidThinking Inspire 9.5).
• Il risultato del processo è la soluzione più efficiente per far scaricare al
materiale il carico impostato.
• Non è necessariamente ottimizzato per
essere costruito
• Occorre rimodellare la texture della
superficie
10/14/2014
Slide 31
10/14/2014
Prima iterazione
Seconda iterazione
• Il risultato della prima iterazione necessitava di eccessivi supporti.
• Volume del pezzo – 78 cm³; dei supporti 26 cm³ (il 25% della
lavorazione sarebbe stato per materiale di supporto).
10/14/2014
Slide 33
Confidential
Slide 35
• Il componente è stato svuotato internamente, riducendo il volume di
materiale da 78 cm³ a 46 cm³.
• Sono stati ridotti anche il peso e il tempo di produzione (< 200 g in
lega di Titanio).
10/14/2014
Confronto fra il componente originale e quello ottimizzato
10/14/2014
Slide 32
45° auto-portante
Raggio < 3 mm
Strutture ad arco autoportatnti
Angoli > 45°
Slide 34
Seconda iterazione
• Con qualche modifica nel design, i componenti possono essere
costruiti minimizzando i supporti.
10/14/2014
Slide 36
Page 6
Renishaw plc
Quanto è resistente?
14/10/2014
Prova a fatica per il carico verticale
AM =
• Titanio Ti6Al4V
• Elevato rapporto resistenza/peso
• High Ultimate Tensile Strength (UTS) > 900MPa
1) Rullo libero di muoversi sul piano
2) Barra di acciaio applicatrice del carico
3) Sospensione vincolata fra reggisella e forcella posteriore
4) Perno fisso sul piano
L’obiettivo del progetto è di produrre una bici completamente
funzionante, per questo motivo la staffa reggisella è stata
testata secondo lo standard EN 14766 usato per tutte le
mountain bike.
Il componente ha superato il test resistendo per 50000 cicli a
1200N. Il test è stato prolungato fino a 6 volte lo standard
senza arrivare a rottura.
EN 14766
I test del telaio completo stanno continuando, sia in laboratorio
presso il Bureau Veritas UK, sia sui pendii montani usando
sensori portatili in collaborazione con la Swansea University.
10/14/2014
Slide 37
Kit telaio completo sulle piastre di supporto
10/14/2014
Slide 38
Bicicletta assemblata
• Peso del telaio = 1400 g (telaio originale in lega di Alluminio 2100 g)
• Tempo di produzione per il ‘kit’ completo = 3 giorni 18 ore
• Volume di costruzione inclusi i supporti = 418 cm³
• Resistenza a fatica migliorata
10/14/2014
Slide 39
Vantaggi dell’AM
Libertà di progettazione
• Iterazioni rapide; elevata flessibilità nell’introdurre miglioramenti di
progettazione fino alla produzione
• Capacità di realizzare profili derivati da ottimizzazioni topologiche
• Facilità di customizzazione
Costruzione
• Forme complesse con nervature di rinforzo
• Strutture cave
• Personalizzazioni integrate in produzione, come il nome del cliente in
rilievo sul telaio
Performance, lega di Titanio
• Staffa reggisella più leggera del 44% rispetto all’originale in AL
• Elevata resistenza – testata secondo la norma EN 14766
• Resistenza a corrosione e lunga durata
10/14/2014
Confidential
Slide 41
10/14/2014
Slide 40
Grazie – Qualche domanda?
Per maggiori informazioni visitate www.renishaw.com
10/14/2014
Slide 42
Page 7
Introduction To Additive
Industries’ Next Generation
Industrial Additive Manufacturing
Solutions & Addlab
Speaker |
Ir Daan A.J. Kersten
MBA, CEO, ADDITIVE INDUSTRIES
Challenges In Additive Manufacturing Process Development For Large
Volume Manufacturing In A Medical
Regulated Environment
Speaker |
Mr. Harry Kleijnen
Manager Development, PHILIPS HEALTHCARE
14/10/2014
Market demand grows but many aspects of additive
manufacturing need further refining for industrial use
Customer demand
Applications
Topology
optimization
Building
strategies
AddLab
Post processing
Material
qualification
Design for AM
Technologies
Equipment
A special additive manufacturing partnership
Equipment
Testing
Standardization
Additive Industries
Additive Manufacturing promise
RM Forum, Milano, September 26, 2014
2
Design experience and industrial 3D printing
applications are developed in a shared pilot facility
?
Demand
Design for Additive
Manufacturing &
Application Development
!
Post processing &
distribution
Additive Manufacturing
& testing of parts
AddLab is founded by 9 partners from
the Dutch high tech supply chain
Supply
1. KMWE
2. NTS Group
3. Frencken Europe
4. Philips
Design support,
consultancy, materials
science
Shared pilot factory for
3D metal printing of
functional parts
Additional post
processing, testing & part
supply
Next generation integrated industrial
additive manufacturing solutions
5. Machinefabriek De Valk
6. MTA
Feedback
Applications
Experience
7. FMI
8. Kaak Group
9. Additive Industries (organising partner)
Financial partner of
AddLab
Additive World community, internet platform & virtual factory
Network partner of
AddLab
3
4
5
6
AddLab addresses mainly
high mix, low volume, high complexity markets
AddLab partners will focus on fixed goods*/functional parts for high tech (equipment) markets like:
• Semicon
• Analytical & laboratory
• Medical technology
• PV and solar
• Printing
• Food & pharmaceutical processing
• General machine building/industrial machinery
• Aerospace
• Defence
• (Petro)chemical, oil & gas
In addition applications will be developed for high end professional markets where personalisation or
customization is key:
• High performance automotive/motorsports
• Rapid product development, prototyping & modeling /visualisation (R&D support)
• Precision mechanics
• Implants and surgical instruments
• Tooling (manufacturing & assembly jigs, fixtures, guides, etc) and moulds (performance improving)
* This is considered to grow to become the largest & most significant
application of AM Technology (Wohlers Report 2012)
1
14/10/2014
Challenges in Additve
Manufacturing Process
Development in a Medical Device
Regulated Environment.
Harry Kleijnen
H. Kleijnen
BU GTC- Grids
April 09, 2014
More information: d.kersten@additiveindustries.com
www.addlab.com
• Introduction
Harry Kleijnen
• Tungsten 3D printing
– 31 years experience in Healthcare,
• Application meets technology
– Working on X-ray anti-scatter grid product & process development since 2001.
• Accuracy and Repeatability
– Active in 3D printing and additive manufacturing development since 2007.
Philips Healthcare
• Process validation
BU- GTC Netherlands
Veenpluis 6 | 5684PC, Best, The Netherlands
Phone : +31 40 2794542 | Mobile: +31 6 22421136
harry.kleijnen@philips.com
www.philips.com
www.smitroentgen.com
• Cost drivers
9
10
September 25th BU GTC- Grids
Philips Healthcare (HealthTech)
Smit Röntgen
• Founded in 1930’s
• Part of Imaging Systems
Philips Healthcare
Businesses
Imaging
Systems
37%
Patient Care
and Clinical
Informatics
Services
15%
22%
26%
€9.9
Billion in sales in
2013
11
Sales & services geographies
Home
Healthcare
Solutions
September 25th BU GTC- Grids
37,000+
People employed worldwide
in 100 countries
North America
43%
8%
September 25th BU GTC- Grids
of system sales
invested in R&D
In 2013
International
32%
Business Unit Generators Tubes & Components
• Leading OEM grid supplier
Emerging
Markets
• R&D-Production-Sales
• Located at Healthcare Campus in
Best , The Netherlands
• Serving both healthcare and
non-healthcare customers.
25%
450+
Smit Röntgen
www.smitroentgen.com
Products and services offered
in over 100 countries
12
September 25th BU GTC- Grids
2
14/10/2014
Tungsten 3D printing
Facility
History
• Started in 2007, Joint development with EOS
• Post processing methods and equipment
• Product verification & qualification equipment.
• Optical, Tactile and X-ray Quality Inspection tooling
• M270 and M280 FDR DMLS equipment
13 September 25th , 2014 BU GTC- Grids
14 September 25th , 2014 BU GTC- Grids
Capabilities
Application meets technology
• Pure tungsten (melting temperature 3420oC)
• Build platform 23x23x20cm
• Wall thickness < 100mu
• Postitional accuracy <25mu
• Wall aspect ratio >700
• Density up to 97-98%
• Large volume manufacturing
10000-40000 pc/yr
• ISO 13945 certified
15
September 25th BU GTC- Grids
16
September 25th BU GTC- Grids
18
September 25th BU GTC- Grids
X-ray scatter
scatter
no-scatter
scatter
Cross-section
17
September 25th BU GTC- Grids
3
14/10/2014
Process Development
Accuracy and Repeatability
• Powder development
• Optics
• Process settings
• Long term effects
• Material characteristics
positioning
error
bending
Wrong
thickness
19
20
September 25th BU GTC- Grids
Post Processing
September 25th BU GTC- Grids
Metrology
• Tactile
• Platform separation
• Optical
• Surface treatment
• X-ray
• Heat treatment
• Machining
21
22
September 25th BU GTC- Grids
Enablers for short design cycles
September 25th BU GTC- Grids
Product Verification & Process Validation
Customer CAD
drawing
Layered process
Manufacturing CAD
drawing
Slicing and verification
No feedback loops
Job preparation
and building
Process predictability
100% functional inspection
Platform heating module
Argon extraction
Carbon Fiber Recoater
Argon
Measurement and
evaluation
September 25th BU GTC- Grids
Strips with 2D ASG incl. Stock
Used tungsten Powder
Compressed Air
Laser Power
Building Strips
ISO 13945
23
Air extraction
Laser Sintering
Tungsten Powder
24
Building Platform
CAD model
September 25th BU GTC- Grids
4
14/10/2014
Cost Drivers
Part building
Post processing
Inspection &
Verification
Part handling costs
25
September 25th BU GTC- Grids
26
September 25th BU GTC- Grids
27
September 25th BU GTC- Grids
28
September 25th BU GTC- Grids
29
September 25th BU GTC- Grids
30
September 25th BU GTC- Grids
5
14/10/2014
www.smitroentgen.com
31
September 25th BU GTC- Grids
6
Market Status And Performance
Of SLM-Technology
Speaker |
Mr. Stefan Ritt
SLM SOLUTIONS GROUP
18/09/201
SLM Solutions Group –
a leader in metal based 3D printing
Dipl.eng. Stefan Ritt
Market Status and performance of SLM-technology
September 2014
Disclaimer
1
3D printing is a highly disruptive technology
Rapidly growing expanding market opportunity (global market size)
(US$bn)
The 3D Printing market is expected to grow at 25% CAGR,
partially by replacing traditional manufacturing processes but
also by creating its own unique applications
This Presentation has been produced by SLM Solutions Group AG (in the course of formation) (the “Company”) and no one else and is furnished to you solely for your
information.
This document contains certain forward-looking statements relating to the business, financial performance and results of the Company and/or the industry in which the
Company operates. Forward-looking statements concern future circumstances and results and other statements that are not historical facts, sometimes identified by the
words “believes,” “expects,” “predicts,” “intends,” “projects,” “plans,” “estimates,” “aims,” “foresees,” “anticipates,” “targets,” and similar expressions. The forward-looking
statements, including assumptions, opinions and views of the Company or cited from third party sources, contained in this Presentation are solely opinions and forecasts
which are uncertain and subject to risks. A multitude of factors can cause actual events to differ significantly from any anticipated development. None of the Company or any
other person guarantees that the assumptions underlying such forward-looking statements are free from errors nor do they accept any responsibility for the future accuracy
of the opinions expressed in this Presentation or the actual occurrence of the forecasted developments.
11
8
6
4
1
2009
No representation or warranty (express or implied) is made as to, and no reliance should be placed on, any information, including projections, estimates, targets and
opinions, contained herein, and no liability whatsoever is accepted as to any errors, omissions or misstatements contained herein, and, accordingly, none of the Company or
any other person or any of its parent or subsidiary undertakings or any of such person’s officers or employees accepts any liability whatsoever arising directly or indirectly
from the use of this document.
2
2
2011
2013
2015
2017
2019
2021
3D Printing awareness has significantly increased over time
By reviewing this Presentation you acknowledge that you will be solely responsible for your own assessment of the Company, the market and the market position of the
Company and that you will conduct your own analysis and be solely responsible for forming your own view of the potential future performance of the Company’s business.

= Google trends development(a )
This publication constitutes neither an offer to sell nor an invitation to buy securities.
February 10, 2011
The Economist published cover
article “Print me a Stradivarius:
How a new manufacturing
technology will change the world”

November 12, 2012
GE Aviation acquired the assets of
Morris Technologies, and its sister
company, Rapid Quality
Manufacturing
This Presentation speaks as of 07-Apr-14. Nothing shall under any circumstances, create any implication that there has been no change in the affairs of the Company since
such date.
Rapid Quality
Manufacturing, Inc.
This presentation is not for publication or distribution, directly or indirectly, in or into the United States of America. This presentation is not an offer of securities for sale into
the United States. The securities referred to herein have not been and will not be registered under the U.S. Securities Act of 1933, as amended, and may not be offered or
sold in the United States, except pursuant to an applicable exemption from registration. No public offering of securities is being made in the United States. No offer or sale of
transferable securities is being, or will be, made to the public outside Germany and Luxembourg. Offers in Germany and Luxembourg will be made exclusively by means of
and on the basis of a prospectus that will be published and will be available free of charge inter alia at the Company.
2005
3
4
Minimal penetration to date of an enormous
addressable market
2007
2009
2011
2013
(a) Represents Google search popularity of “3D printing” over time (searches done for a particular term, relative to the total number of searches done on Google over time)
Source: Wohlers Associates, Google, press articles, Broker research
Metal 3D printing is believed to be at an
inflection point
3D printing today as a % of the
manufacturing market
Phases of customer adoption process
$10.5tn
$2bn
Implied metal 3D printing market size
of $0.2bn (~9% of 3D printing is metal
based 3D printing)
Revenue opportunity
100%
“The global economy is
worth about $70 trillion,
and manufacturing
accounts for more than
15%, which is $10.5tn.
Opportunity
If AM grows to capture
just 1% of this global
manufacturing market,
that’s $105bn”
Industrial companies for
volume production
Industrial companies for prototyping
Source: Wohlers
<
Manufacturing market (2012)
0.1%
Academic and R&D
3D printing market (2012)
Time
Source: CODEX Partners, Wohlers
5
Source: Roland Berger, Broker research
6
Today
18/09/201
SLM Solutions Group – a deep rooted 3D printing
heritage
SLM Solutions Group and its predecessors have
a history of innovation…
1996 – 1998
Basic Research F&S Stereolithography GmbH, Trumpf GmbH and Fraunhofer Institute for Laser Technology (ILT)
1998 – 2002
Fockele & Schwarze (F&S) research leading to IP with today more than 30 own patents and applications

SLM 500HL
Drive industrial application of
3D metal based printing
technology
SLM 280HL
2002
F&S/SLM Solutions(a) partner to develop, produce and market the SLM Technology to industrial requirements
2003
Launch of first Fibre Laser technology with the MCP SLM 250
Multi laser
technology &
automated
powder
handling devices
SLM 125HL
Hull–Core
technology
2006
Launch of SLM 100 as an entry model
2007
Launch of the 400 Watt technology
2009
Launch of the new SLM 250HL
World Wide cross license agreement with Trumpf, EOS and Fraunhofer ILT
2011
Launch of SLM 125HL and SLM 280HL with hull and core (400W & 1000W) technology and 3D laser technology
2012
Introduction of SLM 500HL and the multi laser technology
2013
Launch of SLM 500HL with additional automated powder handling devices
Fibre Laser
technology
Development of
SLM technology
Rapid
prototyping
400 Watt
technology
2009
2007
2006
2003
1998 - 2002
Since 1970
8
Note: History of SLM Solutions Group and its predecessors
Source: Company information
(a) In 2002 SLM Solutions Group was known as MCP. MCP changed its name to MTT Technologies Group in 2008. MTT Technologies Gm bH, Lübeck was renamed into SLM Solutions GmbH in 2010
Source: Company information
7
2011
SLM 250HL
First company to
process
aluminum and
titanium
2014 onwards
2013
Further expand global sales, application and service footprint
9

Hire 2 more sales and 3
more service and
application professionals

Hire 1 COO /
General Manager
Expand sales offices in Spain, Italy

Hire 2 sales professionals in Italy and Spain

Hire professionals and trainees for backup in sales,
application and material science in Lübeck

Add distribution partners
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
2012 in €m
x
Aerospace
x
Automotive
x
x
Dental
x
x
Nickel
x
x
Aluminum
x
x
Titanium
x
x
Number of
metal
3D printing
systems
sold in
2012(a)
x
nm
44
18
21
Renew agency / distributor in
Australia / New Zealand
Concept Laser
DE
Arcam
SE
Realizer
DE
x
x
Renishaw
UK
x
x
Phenix
Systems(b)
FR
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
18
43
16
23
4
14
x
nm
12
x
4
10


Headquarters
•
Invest in additional demo centers
US subsidiary
•
Establish on site service centers for multiple production machine orders
Distribution partners
•
Ability to seize on selected sales and service network acquisitions
x
x
x
x

SLM Solutions Group one
of few pure play 3D metal
printing companies
Our solutions provide
ready-to-use parts in
volume and excel across
speed, quality and cost
Density grade of up to
99.9%, comparable to the
highest quality of
“traditional” manufacturing
processes
Main competitors are
Concept Laser and EOS
Different technology than
Arcam
(a) Sorted by estimated revenues of metal 3D printing systems sold in 2012
(b) Acquired by 3D Systems in July 2013
Source: Company information, company register, Creditreform, CODEX Partners, Wohlers
10
Source: Company information
2
2
Strong and accelerating growth in
metal 3D printing
(New system units sold)
Direct parts production has been
increasing
Direct parts production
as a % of overall 3D
Printing market
Estimated revenue growth
significantly higher, as
capabilities and prices of units
sold have increased
7%
10%
8%
12%
14%
17%
20%
28%
24%
$0.4bn
Number of units
7,770
$0.6bn 3D printed
direct parts
production
(US$bn)
$0.3bn
166
3D metal printing offers most attractive
opportunities
(Worldwide, in # of systems and €m, 2012)
207
4%
$0.2bn
Significant upside from developing
consumables and service business
(Worldwide, in €m and %, 2012)
Revenues
€460m
All materials
€1,701m
Metal
3% (207)
9%
144
18%
SLM covers all relevant end markets
€85m
Metal

Automotive
6%

Academic
Institutions
13%

2009
2010
2011
2012
Dental
13%
Aerospace
20%
Source: Wohlers Associates, CODEX Partners, Broker research, Company presentations


Other
97%
17%
Services
(maintenance etc.)
12%
Metal sales
(material)
53%
Systems
91%
(7,563)
82%

SLM’s target segments represent
ca. 84% of total end market
 = SLM Solutions Group end market
Contract
manufacturing (job
shop)
€19m
Service
center
18%
Healthcare
14%
19%
€27m
(Metal 3D printing systems installed by industry worldwide in 2012)
Others
16%
Only metal
€161m
€31m
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
125
11


EOS
EMEA

DE
DE
HQ
Key considerations
Revenues
Jewelry

Name
Steel
Qualify Japanese distributor
with full sales application and
service facility
Other materials
Set up 2 additional sales
and service offices in
California and the South
East

Industries
Precious alloys

Setup Singapore subsidiary as
a sales, application and
service hub in Asia
Cobalt-Chrome
Americas

Tool making
Materials
APAC
Detroit
Healthcare
Lübeck, Germany
€375m
2012
2012
Other
materials
€85m
2012
2012
SLM Solutions Group operates in the 3D metal market which is characterised by high value-added printers. Within this
market, the Company is focused on printer systems and will develop the consumables business
12
Source: CODEX Partners, Wohlers
18/09/201
2
The power of metal 3D printing vs
traditional manufacturing methods
Same or superior part
properties
+
Technology
Powder bed fusion
 Materials/alloys
 Prototyping
 Direct part cost
 Sizes & shapes
 Repair
 Weight
 Density
 Lower capex
 Maintenance
 Flexible location
 Part integration
 No storage cost
 Eco balance
 Surface
 Biocompatibility
Companies with this
technology
Arcam AB
EOS
Concept Laser
Renishaw
Phenix Systems
81%(a)
Directed energy deposition

TRUMPF
Focused thermal energy is used to fuse materials by
melting as the material is deposited
Metals

Metals,
paper
Sheets of material are bonded to form an object
Binder jetting

Mcor Technologies
Metals,
polymers,
foundry sand
Liquid bonding agent is selectively deposited to join powder
material
Material jetting

Optomec
DMG Mori Seiki
Sheet lamination
 Material saving
 Texture
Metals,
polymers
Thermal energy selectively fuses regions of a powder bed
 Key technologies: Selective Laser Melting, EBM

Lower total cost of
ownership
Relevance
for metal
Materials
Optimized Part
Design
Higher speed & flexibility
 Stability
Powder Bed Fusion technology is most
relevant for metal 3D printing
Metal technologies
Additive
Manufacturing
3
voxeljet
ExOne
Polymers,
waxes
Droplets of build material are selectively deposited
Material extrusion

Material is selectively dispensed through a nozzle or orifice
13
3
Liquid photopolymer in a vat is selectively cured by lightactivated polymerization
Photopolymers
(a) Powder bed fusion technology accounting for 81% of metal based 3D systems sold as per CODEX Partners analysis
Source: ASTM International Committee F42 on Additive Manufacturing Technologies; Roland Berger, CODEX Partners
14
Source: Company estimate for illustrative purposes
Others
Polymers
Vat photopolymerization

3
SLM Solutions Group has recently shown
•
high growth
Illustrative build-up speed and resolution of selected powder bed fusion systems(a)
•Market share expansion
(SLM HL systems sold globally p.a.)
Build speed advantage due to
multi laser technology
3
5
21
5
EBM
7
Functionality
6
1
2011
Speed
SLM 250HL/SLM 280HL
473
2
21
16
2012
35% growth based on
powder bed systems
2013
SLM 125HL
SLM 500HL
207
 Patented bi-directional loader movement
 Automated powder and build part handling
 Large build chamber size appropriate to address many common product
Resolution(b)
High
 Open architecture allowing for diverse applications and materials used
Established SLM technology:
Build rate(a)
−
Advanced exposure strategy for
overlapping areas
−
Laser beams positioned next to
each others in gas stream
SLM
market share
(of total metal
market)
Aerospace
Aviation
4x 400W
4 Scanner
SLM 500HL
Healthcare
Energy
SLM Solutions
~10%
~13% (b)
 General
Electric Global
Research
 General
Electric Aviation
 General
Electric Energy
 Alstom
 BMW
Hull-Core Technology

Beam switch patent

Other companies focused on hullcore with single laser
 Airbus
~300 – 600%(b)
Solutions Group has exposure to attractive end
markets and has longstanding relationships with blue
chip customers
2x 400W
2x 1000W
2 Scanner
SLM 500HL
 The
market continues the shift from rapid prototyping
to industrial applications
 SLM
(a) Productivity accounted without powder deposition time
(b) Productivity depending on number of layers melted with 1000W laser
Source: Company information
Innovation Works
(EADS)
 SLM
~150 – 300%(b)
1x 400W
1x 1000W
1 Scanner
SLM 280HL
17
Total market
~4%
2013
 Siemens
100%
Monolaser
400W
2012
Selected blue chip
customers
Automotive
Up to 400%
Up to 200%
2x 400W
2 Scanner
SLM 280HL
28
21
7
(a) According to CODEX Partners
(b) Based on company estimate
Source: Company information, CODEX Partners, Wohlers, broker research
SLM Solutions Group is already operating in
key industries
Multiple laser
SLM Solutions Group early adopter
of technology
Powder Bed:
167
Powder Bed:
124
5
SLM Solutions Group with powerful multi laser technology

166
2011
dimensions
16

2013
Revenue growth significantly
higher driven by average sales
price growth due to larger size
and capabilities
 Highest build rate in its class due to multi laser technology(a)
Accuracy
Performance
Low
537
2011
SLM Solutions' key differentiators
Surface finish
(a) Based on 2012 Wohlers report
(b) Measured by layer thickness
Source: CODEX Partners, company estimates
15
CAGR: +7%
28
(New system units sold)
Maximum build-up speed
in cm³/h
Hig
h
Low
SLM machine ASP (€’000):
SLM 500
18
Solutions Group is well positioned to capitalise on
this trend given SLM Solutions' technology and
Source: Company website
customer base
 NASA
 SpaceX
 BEGO
 More
than 60 universities and
research institutes
 Polyshape
 Citim
 Fruth
18/09/201
5
SLM Solutions Group‘s technology covers
the most relevant metals...
General Electric – Jet Engines

Aluminium

GE is one of SLM Solutions' largest customers and an important development partner

GE makes significant effort in 3D printing

Product examples: Fuel nozzles for Jet Engines and Ultrasound Transducers

Material
Properties




Applications

Cobalt-Chrome
Light weight
Good alloying properties
Good processability
(casting and pressing etc)
Good electrical conductivity

Aerospace
Automotive
General industrial
applications





Inconel
High toughness
High strength
Good bio-compatibility
Good corrosion resistance





Dental
Medical implants
High temperature







AlSi12
AlSi10Mg
AlSi7Mg
AlSi9Cu3
AlMg4,5Mn0,4
Other Materials on request

19
GE has a global team of 600 engineers at 21 sites driving additive manufacturing
technologies
Alloys

Co212-f acc to ASTM F75



Operates a full-scale additive manufacturing facility in Ohio
•
SLM Solutions' machines help GE to increase precision and productivity in this field
and the company’s benefit from a strong partnership
•
GE forecasts to manufacture 100k additive parts for GE Aviation by 2020
•
GE believes that ~450kg weight reduction per aircraft engine can be achieved
through 3D direct manufacturing
20
…and created a technology leader in
metal 3D printing with a differentiated
solution
- Twin laser technology: 2x 400 Watt
lasers
- Quadruple laser technology: 4x 400
Watt lasers

SLM produces excellent
metal printers based on
powder bed fusion
technology

Key differentiators vs.
direct competition include
multilaser systems and
quality of output
- Hull & core double laser technology:
two sets of 1x1000 Watt + 1x400 Watt
lasers each
 Closed loop powder cycle
Functionality
 Layer control system (LCS)
 Automated exchangeable build chamber
to allow for continuous machine usage
Speed
 Open architecture allowing for diverse
applications and materials used
Dental caps and crowns
in cobalt-chrome
Accuracy
Performance
22
SLM offers a wide range of products…
•
Patented bidirectional loader movement offers a safe filter
system and highly efficient protective gas consumption due to
internal recirculation of inert gas at laminar flow
•
Offers software to process CAT / STL-data files as a standard
feature which is also used for slicing and support generation
•
Can process most metals. Stainless Steel, Tool Steel, CobaltChromium, Inconell, Aluminum and Titanium have been
processed successfully already
System Parameters
Build Chamber in mm (x/y/z)
Laser Power
Build Speed
Pract. Layer Thickness
Min. Scan Line / Wall Thickness
Operational Beam Fokus variable
Dimensions in mm (B x H x D)
Weight
125 x 125 x 75 (125)
100/200 W, YLR-Faser-Laser
15 ccm/h
20 µm – 75 µm
140 – 160 µm
70 µm – 130 µm
1350 x 1900 (2400) x 800
Circa 700 kg
Provides a build chamber of 280 x 280 x 350 mm and an
excellent double beam technology. This will improve not only
the laser beam profile but also the quality factor of components
•
New bidirectional loader movement, field-proven, latest
software does support a production-oriented data preparation
for specific applications and highly optimised building processes
Covers a wide range of metals. Stainless Steel, Tool Steel,
Cobalt-Chromium, Super Alloys, Aluminum and Titanium have
been processed successfully already
System Parameters
Build Chamber in mm (x/y/z)
Laser Power
Build Speed(a)
Pract. Layer Thickness (a)
Min. Wall Thickness
Operational Beam Focus
Dimensions in mm (B x H x D)
Weight
Source: Company information





Pure titanium
Ti6Al7Nb
Ti6Al4V
Grade X materials
on request
High hardness and
toughness
High corrosion resistance
Good machinability
Plastic injection and
pressure diecasting moulds
Medical implants
Cutlery and kitchenware
Maritime
Spindles and screws
1.2709
1.4404 (316L)
1.2344 (H 13)
1.4540 (15-5PH)
Other Materials on request




Mould inserts with integrated,
surface conformal cooling channels.
Photo with kind permission of
Gardena AG


125 x 125 x 75mm chamber
Entry level tool able to handle
broad range of metal
components
M ax. build
speed
–
15 ccm / h
Units sold
’13E(a)
–
5
–
PSM 100
–
PSH 100
PSX
–
SLM 280 HL


280 x 280 x 350mm chamber
Multi laser technology
SLM 500HL


500 x 280 x 325mm chamber
Automates the management
of powder and eliminates
manual handling of loads

Multi laser technology
–
35 ccm / h
–
70 ccm / h
–
19 SLM 280HL
2 SLM 250HL
–
2 (launch in Dec-13)
–

Powder recovery for each system for emptying the
process chamber and refilling the powder container
(a) Invoiced machines
Source: Company information
PSA 500
•
Build chamber of 500 x 280 x 325 mm and excellent double
beam technology. Each of the two fibre lasers (400 + 1000W)
operate on the powder bed by a 3D scanning unit. Two of these
units are working at the same time
•
Automatic Powder Sieving Station PSA 500 and Build Volume
Handling Unit. The machine is equipped with a special screw
system for emptying the process chamber overflow funnel and
refilling the powder container under an inert gas atmosphere
•
The transport of metal powder is done by a continuous
conveying system. This automates the management of powder
and eliminates the manual handling of loads with bottles and
containers
•
The electrically operated build volume is carried out to a
container station to empty the whole build powder into a funnel
•
•
The system does offer a leading software in rapid prototyping.
Magic AutoFab, to process CAD/STL-data files as a standard
feature which is also used for slicing and support generation
The system is equipped with an additional ultrasonic device to
support the sieving procedure. Fine mesh filters and sieves are
standard and commercially available products and preassembled with a 100 µm mesh insert
System Parameters
Build Chamber in mm (x/y/z)
Laser Power
Build Speed(a)
Pract. Layer Thickness
Min. Scan Line / Wall Thickness
Operational Beam Fokus
Dimensions in mm (B x H x D)
Weight
280 x 280 x 350
400 / 1000 W, YLR-Faser-Laser
20 ccm/h / 35 cm/h
20 µm – 75 µm / 150 µm
150 / 1000 µm
70 – 120 µm / 700 µm
1800 x 1900 (2400) x 1000
Circa 1000 kg
(a) Depending on material, position of the component geometry
23

Turbine blade of latest generation
Individual Hip Implant in Titanium
with internal conformal cooling
made for an Australian patient
channels to improve performance of
jet engines
SLM 500HL
•
•
Bio-material for implants
Aerospace
F1 motor sport
Maritime applications


…providing a suitable solution for every client
SLM 280HL
Produces highly complex metal components using fine metal
powders from 3 D CAD-data files



Inconel 625
Inconel 718
Inconel HX (2.4665)
SLM 125HL
Other/ additional
products
Surface finish
 Comparable density, resistance and
accuracy of
cast components
Source: Company information
•



 Patented bi-directional loader
movement
SLM 125HL

High strength, low weight
High corrosion resistance
Good bio-compatibility
Low thermal expansion
Good machinability
Source: Company information
 Highest build rate in its class due to
multi laser technology and 3D optics.
Laser options:
21





...with a diverse and competitive product
portfolio
Key technological highlights and USPs
Impeller
Aerospace
Gas turbines
Rocket motors
Nuclear reactors
Pumps
Turbo pump seals
Tooling

Propeller for racing boats
as scaled model for
flow measurements
Source: GE company data
Titanium Hip Implant


•
Latest generation
turbine blades


SLM systems
•
Tool Steel and
Stainless Steel
Titanium
High corrosion resistance
Excellent mech.strength
High creep rupture strength
up to 700°C
Outstanding weldability
24
(a)
Subject in technical modifications
Source: Company information
500 x 280 x 325
2x 400, and optional 2x 1000 W YLR-Faser-Laser
70 ccm/h
20 µm – 200 µm
160 – 180 µm
80 – 150 µm / 700 µm
3000 x 2000 (2500) x 1100
Circa 2000 kg
System Parameters
One PSA 500 may deliver four parallel
Tank volume, depending on the build cylinder
Sieving process under full load (Aluminium)
Sieving process under full load (Titanium)
Sieving process under full load (Tool Steel and
Stainless Steel)
Dimensions in mm (B x H x D)
Weight (without powder)
Systems SLM® 500HL
circa 60 L – 100 L
5 hours
4.5 hours
3 hours
3500 x 2200 x 2700
Circa 2500 kg
18/09/201
R&D focus areas

Enlarged build envelope

Higher build rate – faster recoating & multilaser

Robustness 24/7

New powder cassette

Tailored microstructure production

Melt pool temperature monitoring

Laser power management and control

Process monitoring & control

Optimized powder and build part handling
Functionality
Speed
Surface finish
25

Data management – storage & export
Accuracy

User friendliness
Performance

Easy maintenance

Cost of machine and associated peripherals

Standardization, modularization and flexible customization

Remote operation and service
Selected relevant R&D focus areas
New powder cassette (powder
conveyor/container)
 Higher operating speed
 Operable under higher temperature
Example: PSX – automated powder handling
 Improved real time laser power
monitoring
 Monitoring of melt pool temperature
for quality assurance
Source: Company information
Next step: Integrating SLM machines into
complex production processes
Laser power management and control
 Real time heat map
 Quasi single crystalline structure
 Requires correct parameters (power,
speed, layer thickness, beam
diameter) to be used with 1000W
laser
Selected relevant R&D focus areas (continued)
Process monitoring and control
 Strengthens part robustness for high
temperature applications eg turbine
blades
 Weight reduction more than 60%
26
Source: Company information
Tailored microstructure production
(quasi single crystalline)
•
Inert atmosphere
•
Safe powder handling
•
 Improved quality assurance
Short processing times
•
Closed-loop powder cycle
•
Automatic sieving and feeding
PSA 500 prototype – fully automated
powder handling
Example: Process set up
Start
Schematic of process enhancing
integration
End
27
Source: Company information
28
Source: Company information
Highly attractive business model focused on building
the installed base and driving recurring revenue
Sale of 3D printers
Thank you for your attention!
Drive market adoption
Drive recurring
revenue
Installed base of 133(a)(b)
Build installed base
R&D
Continued innovation
(a)
(b)
29
Industrial
customers
Provide materials
and services support
As per December 2013
Number of machines brought to market via SLM HL: 76 thereof 4 demo machines, via Fockele & Schwarze: 5, via MTT: 6, 46 Realizer
machines were brought to market and serviced by SLM Solutions Group
Source: Company information
Any questions ?
18/09/201
Industrialization
of the Additive
Manufacturing process
Presentations of
26 September 2014
SHERATON MILAN MALPENSA AIRPORT HOTEL
LA SIMULAZIONE NUMERICA
A SUPPORTO DEL PROCESSO
DI ELECRON BEAM MELTING (EBM)
Speaker |
Mr Luca Iuliano /
Professor of Technologies and Production Systems,
Polytechnic of Turin, Department
of Production and Management Engineering
Research group in Advanced Manufacturing Tecnologies (AMTech)
Advanced Manufacturing Technologies Research Group
Team
Assistant Professor
Prof. Luca Iuliano (luca.iuliano@polito.it)
Eleonora Atzeni, Manuela Galati
Paolo Minetola, Alessandro Salmi
Paolo
Minetola
Assistant Professor
Alessandro
Salmi
Modena & Reggio Emilia University
Eleonora
Atzeni
La simulazione numerica
a supporto del processo di
Electron Beam Melting (EBM)
Politecnico di Torino
Andrea
Gatto
Full Professor
Department of Management and Production Engineering
Luca
Iuliano
Full Professor
Elena
Bassoli
Assistant Professor
Lucia
Denti
Postdoctoral fellow
Department of Mechanical and Civil Engineering
Research group in Advanced Manufacturing Tecnologies (AMTech)
Research assistants
Ph.D. students
Master’s candidates
Assistant Professor
Manuela
Galati
Research fellow
Politecnico di Torino
Dipartimento di Ingegneria Gestionale e della Produzione (DIGEP), Torino, Italia
La simulazione numerica a supporto del processo di Electron Beam Melting (EBM)
Prof. Luca Iuliano – Politecnico di Torino (DIGEP)
Research group in Advanced Manufacturing Tecnologies (AMTech)
Research group in Advanced Manufacturing Tecnologies (AMTech)
Collaborations for AM @ PoliTO
Associate
Professor
Full Professor
CAD/CAE/CAM
and 3D scanning systems
Il gruppo di ricerca AMTECH
Material Science
and Technology
Advanced
CNC machining and
additive manufacturing
Politecnico di Torino
Politecnico di Torino
Prof. Luca
Iuliano
Research group in Advanced Manufacturing Tecnologies (AMTech)
•
Prof. Paolo
Fino
Applied Science and Technology Department
Department of Management and Production Engineering
Research group in Advanced Manufacturing Tecnologies (AMTech)
•
•
•
•
Prof. Fabrizio Pirri
•
IIT Center Coordinator
La simulazione numerica a supporto del processo di Electron Beam Melting (EBM)
Prof. Luca Iuliano – Politecnico di Torino (DIGEP)
Dai primi anni 90, il gruppo di ricerca di Advanced Manufacturing TECHnologies
(AMTECH) del Politecnico di Torino è interessato alle tecnologie di Rapid
Prototyping.
Le attività di ricerca sviluppate nel corso degli ultimi anni, riguardano i campi più
differenti, dalle applicazioni spaziali a quelle dentali, alla produzione virtuale per
tecniche innovative di controllo qualità.
Nel corso degli ultimi venti anni, le attività di ricerca hanno seguito da vicino lo
sviluppo delle tecnologie additive dal Rapid Prototyping, passando per il Rapid
Tooling and Rapid Casting sino ad oggi con l’ Additive Manufacturing.
Oggi, le attività di ricerca sono focalizzate all’applicazione delle tecnologie additive e
quindi all’analisi di processi esistenti in termini di ottomizzazione del processo,
miglioramento della qualità della parte e nuove applicazioni o prospettive
futuredelle tecnologie additive dal punto di vista del fruitore finale e di nuovi
utilizzatori.
Il gruppo AMTECH ha esperienza nel campo della riprogettazione per AM di parti in
materiale metallico.
In riferimento alle limitazioni dovute alla presenza di supporti, sono state analizzate
le prestazioni meccaniche e le potenzialità geometriche.
La simulazione numerica a supporto del processo di Electron Beam Melting (EBM)
Prof. Luca Iuliano – Politecnico di Torino (DIGEP)
Research group in Advanced Manufacturing Tecnologies (AMTech)
OBIETTIVI
Research group in Advanced Manufacturing Tecnologies (AMTech)
Il gruppo di ricerca AMTECH
•
Le competenze non sono limitate alle tecnologie di AM, ma riguardano anche
l’analisi e l’ottimizzazione dei processi produttivi in termini di:
–
–
–
–
–
•
progettazione di processo;
influenza dei parametri di processo;
valutazione di forze e potenze;
simulazione di processo in ambiente CAE;
valutazione della qualità della parte in termini di rugosità superficiale, accuratezza
dimensionale e relative deviazone, tolleranze GD&T.
Inoltre, Il gruppo AMTECH ha abilità specifiche nelle aree di:
MODELLO
CONVALIDA
CONCLUSIONI
Obiettivi
•
•
•
•
Realizzare un completo modello termico di simulazione capace di rappresentare
il processo EBM e rispondere in modo corretto a diversi parametri di processo
Utilizzare il modello per esaminare ed approfondire differenti scenari «what if»
Utilizzare la simulazione come strumento di supporto decisionale per migliorare
le performance del processo, con l’individuazione dei parametri di processo
ottimali.
La simulazione del processo può fornire utili informazioni rispetto alle criticità
del problema fisico, agli effetti dei parametri di processo e la loro interazione, e
le caratteristiche dinamiche del processo.
– Reverse Engineering (RE);
– Computer Aided Manufacturing (CAM);
– Coordinate Metrology.
La simulazione numerica a supporto del processo di Electron Beam Melting (EBM)
Prof. Luca Iuliano – Politecnico di Torino (DIGEP)
STATO DELL’ARTE
Research group in Advanced Manufacturing Tecnologies (AMTech)
La simulazione numerica a supporto del processo di Electron Beam Melting (EBM)
Prof. Luca Iuliano – Politecnico di Torino (DIGEP)
OBIETTIVI
STATO DELL’ARTE
MODELLO
CONVALIDA
CONCLUSIONI
OBIETTIVI
Research group in Advanced Manufacturing Tecnologies (AMTech)
STATO DELL’ARTE
MODELLO
CONVALIDA
CONCLUSIONI
Research group in Advanced Manufacturing Tecnologies (AMTech)
Stato dell’arte
Meccanismi fisici durante il processo EBM
La ricerca sul processo EBM è recente. Dal 2004 meno di 50 pubblicazioni
scientifiche vs circa 150 pubblicazioni inerenti a processi di AM per i metalli
Gli studi riguardano:
• Studi teorici sulle caratteristiche del processo (diffusione delle polveri)
• Indagini metallografiche su campioni EBM (18 pubblicazioni)
• Un unico rilievo sperimentale durante la lavorazione (Zäh e Lutzmann,2009)
• Modelli numerici puramente termici convalidati sulla base di sperimentazioni
con fascio laser
• Un unico tentativo di simulazione termomeccanico (convalidato con confronto
con dati di Electron Beam Welding)
EB
Impatto del fascio
Irraggiamento
Vaporizzazione
Cambio di Fase/Cambio di materiale
Convenzione
Forze di capillarità
Bagnatura
Conduzione
La simulazione numerica a supporto del processo di Electron Beam Melting (EBM)
Prof. Luca Iuliano – Politecnico di Torino (DIGEP)
La simulazione numerica a supporto del processo di Electron Beam Melting (EBM)
Prof. Luca Iuliano – Politecnico di Torino (DIGEP)
OBIETTIVI
STATO DELL’ARTE
MODELLO
CONVALIDA
CONCLUSIONI
OBIETTIVI
Research group in Advanced Manufacturing Tecnologies (AMTech)
Approccio complessivo che considera gli elementi principali e le loro interazioni:
– Fascio di elettroni
– Materiale
– Parametri di processo
Impatto del fascio
Irraggiamento
•
•
X
Vaporizzazione
Cambio di Fase/Cambio di materiale
Convenzione
X
•
•
•
EB
Impatto del fascio di elettroni
Effetto dell’impatto del fascio sul letto di polvere
Assorbimento del fascio di elettroni nel letto di
polvere
Conversione dell’energia cinetica degli elettroni in
flusso termico sul letto di polvere (efficienza,
distribuzione, ecc.)
Distribuzione del flusso termico generato
Controllo del fascio su una traiettoria prestabilita
X
STATO DELL’ARTE
MODELLO
CONVALIDA
CONCLUSIONI
OBIETTIVI
Research group in Advanced Manufacturing Tecnologies (AMTech)
UI
S
STATO DELL’ARTE
MODELLO
CONVALIDA
Modello termico fisico-matematico
Analisi Termica Transiente
de
−𝛻𝛻 ∙ φ = ρ
dt
CONCLUSIONI
Research group in Advanced Manufacturing Tecnologies (AMTech)
Modello termico fisico-matematico
La simulazione numerica a supporto del processo di Electron Beam Melting (EBM)
Prof. Luca Iuliano – Politecnico di Torino (DIGEP)
Layer successivo
La simulazione numerica a supporto del processo di Electron Beam Melting (EBM)
Prof. Luca Iuliano – Politecnico di Torino (DIGEP)
OBIETTIVI
Analisi Termica Transiente
• Flusso termico conduttivo
all’interno del letto di polvere
• Flusso termico conduttivo tra il
letto di polvere e il substrato
solido
• Flusso termico conduttivo tra il
substrato solido e la tavola di
costruzione
• Flusso termico conduttivo
all’interno del substrato solido e
nel materiale processato
• Flusso termico per irraggiamento
tra il materiale e la camera di
lavoro
CONCLUSIONI
86μm
𝑞𝑞 x1 , x2 , x3 , v, t = η
Conduzione
La simulazione numerica a supporto del processo di Electron Beam Melting (EBM)
Prof. Luca Iuliano – Politecnico di Torino (DIGEP)
CONVALIDA
4μm
Layer
Forze di capillarità
Bagnatura
MODELLO
Modello termico fisico -matematico
Modello termico fisico -matematico
•
STATO DELL’ARTE
Research group in Advanced Manufacturing Tecnologies (AMTech)
𝜕𝜕
𝜕𝜕𝜕
𝜕𝜕
𝜕𝜕𝜕
𝜕𝜕
𝜕𝜕𝜕
λ
+
λ
+
λ
=
𝜕𝜕x1 𝜕𝜕x1
𝜕𝜕x2 𝜕𝜕x2
𝜕𝜕x3 𝜕𝜕x3
=ρ
𝜕𝜕(c T + ∆h)
𝜕𝜕 (c T + ∆h)
𝜕𝜕(c T + ∆h)
𝜕𝜕 (c T + ∆h)
+ x2
+ x3
+ x1
𝜕𝜕𝑡𝑡
𝜕𝜕x1
𝜕𝜕x2
𝜕𝜕x3
i.
ii.
Condizioni al contorno
iii.
T x1 , x2 , x3 , 0 = Tpreheat
T x1 , x2 , x3 , 0 = Tr
T x1 , x2 , x3 , ∞ = Tr
iv.
−λ
vi.
−λ
v.
−λ
vii. −λ
𝜕𝜕𝜕
𝜕𝜕𝜕
𝜕𝜕𝜕
𝜕𝜕𝜕
𝜕𝜕𝜕
𝜕𝜕𝜕
𝜕𝜕𝜕
𝜕𝜕𝜕
Ω
= φ x1 , x2 , x3 , v, t − φr
Ω
= −λ
Ω
= −φr
S1−Ω
La simulazione numerica a supporto del processo di Electron Beam Melting (EBM)
Prof. Luca Iuliano – Politecnico di Torino (DIGEP)
=
𝜕𝜕𝜕
𝜕𝜕𝜕 ∑
𝜕𝜕𝜕
−λ
𝜕𝜕𝜕 S2−∑
=0
OBIETTIVI
STATO DELL’ARTE
MODELLO
CONVALIDA
CONCLUSIONI
OBIETTIVI
Research group in Advanced Manufacturing Tecnologies (AMTech)
Modello termico fisico-matematico
•
•
•
•
MODELLO
CONVALIDA
CONCLUSIONI
Modello termico fisico-matematico
Cambio di fase/Cambio del materiale
Sinterizzazione/Fusione/Solidificazione del materiale
Calore latente di fusione e solidificazione
Coesistenza di polvere solida, polvere fusa, solido derivante da polvere già
processata
Proprietà termofisiche funzione della temperatura e dello stato del
materiale(polvere o solido processato):
•
•
•
•
STATO DELL’ARTE
Research group in Advanced Manufacturing Tecnologies (AMTech)
Struttura del modello FE
λ = λ(T,MAT_ID)
ρ = ρ(T,MAT_ID)
c = c (T,MAT_ID)
ε = ε (T,MAT_ID)
La simulazione numerica a supporto del processo di Electron Beam Melting (EBM)
Prof. Luca Iuliano – Politecnico di Torino (DIGEP)
La simulazione numerica a supporto del processo di Electron Beam Melting (EBM)
Prof. Luca Iuliano – Politecnico di Torino (DIGEP)
OBIETTIVI
STATO DELL’ARTE
MODELLO
CONVALIDA
CONCLUSIONI
OBIETTIVI
Research group in Advanced Manufacturing Tecnologies (AMTech)
Modello termico fisico-matematico
STATO DELL’ARTE
MODELLO
CONVALIDA
CONCLUSIONI
Research group in Advanced Manufacturing Tecnologies (AMTech)
Modello termico fisico-matematico : Convalida statica
0,9
0,9
v = 400 mm/s
q = 860 W/mm2
Ф = 400 μm
Power 20 W; Φ = 3.6 mm
Velocità di
scansione
CONDUZIONE
CONDUZIONE
Hs,Ds [mm]
IRRAGGIAMENTO
POLVERE
CONDUZIONE
SUBSTRATO SOLIDO
CONDUZIONE
TAVOLA DI COSTRUZIONE
La simulazione numerica a supporto del processo di Electron Beam Melting (EBM)
Prof. Luca Iuliano – Politecnico di Torino (DIGEP)
Power 40 W; Φ = 4.7 mm
Temp [K]
10
9
8
7
6
5
4
3
2
1
0
Hs
Ds
0
Hs, numerico
Ds, Numerico
10
20
30
Potenza [W]
40
50
2100
1944 Fusione
1800
1700
1600
1500
1400
1300
1200 Sinterizzazione
300
Tolochko,et al.,2003
La simulazione numerica a supporto del processo di Electron Beam Melting (EBM)
Prof. Luca Iuliano – Politecnico di Torino (DIGEP)
OBIETTIVI
STATO DELL’ARTE
MODELLO
CONVALIDA
CONCLUSIONI
OBIETTIVI
Research group in Advanced Manufacturing Tecnologies (AMTech)
Modello termico fisico-matematico: Convalida statica
MODELLO
CONVALIDA
CONCLUSIONI
Modello termico fisico–matematico: Convalida dinamica
0,9
0,9
STATO DELL’ARTE
Research group in Advanced Manufacturing Tecnologies (AMTech)
2,02
Temp [K]
2430
2233
2037
0,85
1840
1645
Power 60 W; Φ = 5.1 mm
Hs, Hm[mm]
10
Hs
Hm
Hs, numerico
Hm, numerico
12
10
Ds,Dm [mm]
12
8
6
4
1449
Power 80 W; Φ = 5.1 mm
Ds
Dm
Ds, numerico
Dm, numerico
8
1253=980°C
300
Fusione
6
Il confronto tra I risultati
numerici e quelli
sperimentali rilevati in
letteratura mostra una
differenza marginale.
4
2
2
0
0
40
60
80
Potenza [W]
100
40
60
80
Potenza [W]
100
Tolochko,et al.,2003
La simulazione numerica a supporto del processo di Electron Beam Melting (EBM)
Prof. Luca Iuliano – Politecnico di Torino (DIGEP)
Yang et al.,2010
Thermal model of EBM tracks
La simulazione numerica a supporto del processo di Electron Beam Melting (EBM)
Prof. Luca Iuliano – Politecnico di Torino (DIGEP)
OBIETTIVI
STATO DELL’ARTE
MODELLO
CONVALIDA
CONCLUSIONI
Advanced Manufacturing Technologies Research Group
Research group in Advanced Manufacturing Tecnologies (AMTech)
Research group in Advanced Manufacturing Tecnologies (AMTech)
Conclusioni
Secondo le conoscenze attualmente presenti in letteratura il modello risponde in modo
corretto ai diversi inputo di processo
Sviluppi futuri
•
•
•
Utilizzare la simulazione come strumento efficace per l’ottimizzazione del
processo EBM
Sviluppare un modello termomeccanico, per analizzare simultaneamente il
comportamento termico anche quello meccanico del processo
Valutare le sollecitazioni e le deformazioni indotte dal passaggio del fascio
Gli autori ringraziano
La simulazione numerica a supporto del processo di Electron Beam Melting (EBM)
La simulazione numerica a supporto del processo di Electron Beam Melting (EBM)
Prof. Luca Iuliano – Politecnico di Torino (DIGEP)
E.
L. Iuliano,
M. Galati,
P. Minetola
& A.diSalmi
La Atzeni,
simulazione
numerica
a supporto
del processo
Electron Beam Melting (EBM)
Politecnico
di Torino,
Dipartimento
di Ingegneria
Prof. Luca Iuliano
– Politecnico
di Torino
(DIGEP) Gestionale e della Produzione (DIGEP), Torino
Bring Additive Manufacturing Up To
The Standard Of Mature Traditional
Manufacturing
Speaker |
Mr. Filippo Montanari
Application Engineer, MATERIALISE
Content of the presentation
About Materialise
Why are people turning to Additive Manufacturing
(AM)?
 The business case for Additive Manufacturing
 Example of successful AM applications


Bring Additive Manufacturing up to the
standard of mature traditional
manufacturing



Mass customization
Medical
Industrial
Reveal the backbone
 Streamics AM automation & control system

Filippo Montanari - Materialise
2
The Materialise Flywheel
Innovators you can count on since 1990
One machine and a belief in the incredible potential of Additive
Manufacturing
4
3
STL
FBX
ACIS
VRML
ProESTL
CT/MRI
Topology data
3DM
3DS
OBJ
Google Sketchup 8.0
.AMF
Software
Connect Industries/Applications
Platform for
to
3D Printing
3D Printing
...
PLY
VDA
ZPR
DXF
Catia
...
Software
Platform for
3D Printing
...
EBM
FDM
Binderjet
Laser Sintering
DLP
Stereolithography
...
Metal Sintering
Polyjet
...
5
6
The business case for AM:
3D Printing on the curve of Gartner
Software
Platform for
3D Printing
7
8
The business case for AM:
The marble analogy
© Phonak
©University of Michigan
Why are people turning to Additive
Manufacturing (AM)?
9
2
20
200
2.000
10
Mass customization AM environment
11
12
Mass customization AM environment
Medical AM production environment
Drivers for Additive Manufacturing
Drivers for Additive Manufacturing
• Unique model personalized to the specific
• Unique model personalized to the specific
needs of the patient
needs of the patient, perfectly fitting the bone
• Freedom of design: use of lattice structures
structure of the patient
• Freedom of design: use of porous structures to
• Time saving: easy assembly
improve bone ingrowth
• Cost advantage
• Part complexity
13
Industrial AM application
14
Industrial AM application
Intrion:
Drivers for Additive Manufacturing
Gripper for Highspeed Packaging Robot
• Faster robot performance
• Product : Complex gripper printed in one piece
• Goal: Faster robot and project cycle
•
PA
1,14 kg/dm³
•
ALU
2,755 kg/dm³
•
Steel
7,8 kg/dm³
•
Maximum accepted weight for high speed
robot: 3 kg
• Shorter project time
•
Tests of customer specific designs can be
done in 2 weeks
• Impossible to mould in one piece
15
Industrial AM application
16
Reveal the backbone
Serial manufacturing of certified AM components
AM adapted to the industrial rules
17

Communication

Automated design

Full Traceability

Validated environment

Part analysis

Machine planning

Efficient process
18
Streamics AM automation &
control system
Streamics AM automation &
control system
AM can only be managed efficiently
if you link people, AM machines,
materials and processes together
by 1 system.
PEOPLE
MACHINES
CONSULTANCY

A database application
storing all AM related
process data

Guides the AM data
through the company

Allows to diagnose and
solve inefficiencies

Provides a lifetime AM
traceability

Links the « external »
processes with AM
MATERIALS
SOFTWARE
SERVICES
PROCESSES
19
20
Solutions for every step
of your AM process
Streamics AM automation &
control system

AM is more than a printer. It is a labor
intensive process requiering a team of
highly qualified people

Our experience: 20+ years of daily
balancing cost, lead-time and quality of
parts

The complexity that comes along with AM
builded parts which is not found in other
areas, e.g. building parts grouped,
reusing powder, …
21
22
Usefull Links
http://software.materialise.com/
http://materialise.com/cases
 http://3dprintbarometer.com/


Thank you!

Contact us at: Software@materialise.be
Software.materialise.com
23
24
Direct Metal Printing –
Manufacturing Industrial
Metal Parts In Series
Speaker |
Mr.Kevin McAlea
Executive VP & Chief Impact Officer,
3D SYSTEMS
10/14/2014
WHY 3D DIRECT METAL PRINTING?
Direct Metal Printing
Manufacturing Industrial Metal Parts in Series
Mass Customization
Mass Complexity
High Value Parts
Challenging
Materials
WWW.3DSYSTEMS.COM|NYSE:DDD
GROWING MANUFACTURING APPLICATIONS
Specialized
Tooling
Dental
Medical
Industrial
WHY DIRECT METAL PRINTING FROM 3D?
Outstanding Output Quality and Quality Control
INDUSTRIAL PARTS
•
•
•
•
•
•
Semiconductor
Precision mechanics
Oil & gas
Food & pharma
Aviation and aerospace
Chemical
WHY DIRECT METAL PRINTING FROM 3DS
Metal 3D printing
technology pioneers
Material Versatility
Manufacturing Services – 3DS
Satellite combustion chamber
(Courtesy of European Space Agency)
Together mastering
MANUFACTURING-READY PRINTERS
acquired
HIGH-END MANUFACTURING SERVICES
Manufacturing Ready Printers – ProX™ Series
1
10/14/2014
OUTSTANDING OUTPUT QUALITY
OUTSTANDING OUTPUT QUALITY
Wall thickness ~ 200μm
Feature size ~ 120 μm
Channel diameter ~ 250 μm
Basic Surface Finish ~ 4 - 7 μm Ra
Tolerances ~ ±0.1% typical; 50 μm minimum
Repeatability ~ 30μm
CoCr
Density ~ 99%
2 mm gear with 20 teeth and C- clamp holding 0.4 mm wire
MATERIALS VERSATILITY
SPECIFICATIONS - MATERIALS
• 15+ Materials/Steel/Aluminum/Ni-Based Alloys/Precious Metals
CoCr
AlSil2
Pure Cu
Al2O3
HIGH-END MANUFACTURING SERVICES
“Metal 3D printing
for volume manufacturing
of critical components”
QUALITY CONTROL
• Extensive testing for initial validation and follow-up:
–
–
–
Geometric accuracy
Mechanical testing
Compositional testing
• Collaborations with third parties:
–
–
–
–
Fully equipped mechanical & metrology testing lab
Microscopy (optical, SEM, etc.)
X-ray (XRD, CT, micro-CT, etc.)
Compositional analysis
100µm
2
10/14/2014
QUALITY CONTROL
CO-ENGINEERING PART REDESIGN
• QA according
to ISO 9001
and ISO 13485
ProX DIRECT METAL PRINTERS
Build volume
Laser power
Loading
Recycling System
MANUFACTURING READY PRINTER
ProX 100
ProX 200
ProX 300
100 x 100 x 80 mm
140 x 140 x 100 mm
250 x 250 x 300 mm
3.94 x 3.94 x 3.15 in
5.51 x 5.51 x 3.94 in
9.84 x 9.84 x 11.81 in
50W
300W
500W
Manual
Semiautomatic
Automatic
Optional external system
Optional external system
(PX BOX)
(PX BOX)
Dental version available
Dental version available
Automatic
PATENTED ROLLER LAYERING SYSTEM
•
•
•
•
Spreads and densifies powders
Can spread fine (5 μm) and non-spherical powders
Improves materials versatility (metals & ceramics)
Improves output quality
• Robust design & construction
• Emphasis on precision,
repeatability and reliability
• Unique powder layering system
• Advanced scan strategies
• Integrated “hands off” powder
management
AEROSPACE – MASS COMPLEXITY
Satellite combustion chamber
(Courtesy of European Space Agency)
3
10/14/2014
AEROSPACE – MASS COMPLEXITY
TURBINE BLADE – MASS REDUCTION
Expansion nozzle
(Courtesy of European Space Agency)
500 mm
FLOW PARTS
DENTAL MASS CUSTOMIZATION
• Dental prostheses @ DentWiseTM
REMOVABLE DENTAL PROSTHESIS
CoCr -Dental
SMALL COMPLEX PARTS
• Cycle time reduced from
4 days to 2 days
• Eliminated multiple steps
• Cost to build each partial
dropped from $85 to $35
10 mm
4
10/14/2014
CONFORMAL INTERNAL CHANNELS
SPECIALIZED TOOLING
• Function integration
• Integrated cooling channels
• Improved performance and
life time
Quartz bulb burners with
integrated cooling channels
(Courtesy of Havells Sylvania)
SPECIALIZED TOOLING – TIRE MOLDS
150 micron
wall thickness
UTS,MPa
Yeild, MPa
Elongation,%
AM*
1030±20
800±35
9,5±1,2
After HT
Pure
1330±65
1180±32
10,5±1,5
Quenching + aging
1103
1000
5
Cu
METAL 3D PRINTING RESEARCH
•
•
•
•
•
New machines
Introducing new materials
Build style development
Process monitoring & control
Scaffolds – Designed porosity
MATERIAL RESEARCH
BUILD STYLE RESEARCH
• Lightweight and ‘hard-to-work-with’ metal alloys
(Titanium, Inconel, etc.)
• High-density and high-atomic-number alloys
(Tantalum, Tungsten, etc.)
• First test samples – Microstructure analysis
• Parameter optimization (density, mechanical
properties)
Homogeneous and dense microstructure through
optimum parameters settings for:
• Laser power
• Scan speed
• Atmosphere
5
10/14/2014
PROCESS MONITORING AND CONTROL
PROCESS MONITORING AND CONTROL
• Test samples printed in every production job
• Real-time melt pool monitoring and control
Real-time melt pool monitoring and control
 e.g. accounts for geometric influences
– Tracking of melt-zone characteristics
– High speed imaging and data recording
inert atmosphere
air atmosphere
SCAFFOLDS – DESIGNED POROSITY
• Arbitrary scaffold unit cell shape, size & orientation
• Full control over scaffold porosity degree and
interconnectivity
• Superior material rigidity/weight ratio
• Revolutionizes industrial and medical applications
Thanks for taking the journey
WWW.3DSYSTEMS.COM|NYSE:DDD
6
Current Am Productions And
Near Term Evolution
Speaker |
Mr PAOLO GENNARO
Managing Director, AVIO AERO
14/10/2014
Additive Manufacturing Concept
Current am productions and near
term evolutions
Design
Materials
Paolo Gennaro
26.09.2014
Machines
2
14/10/2014
Design: based on topological optimization
Machines: DMLS & EBM are special process
Put material only where it is needed…
Special process are to be qualified
• AM allows to put material directly in the right place instead of removing it only
where possible
Task
− no joints, screws and nuts or flanges
− replacement of ‘solid-body’ parts with reinforced structures
− add as many stiffening ribs as required
Milestones
1.1 MATERIALS (powders)
1.2 EQUIPMENT (EBM & DMLS) Calibration
1.3 PERSONNEL Training
1
SYSTEM Qualification
• Reducing assembly requirements
− integration of multiple part numbers in one
− reliability increases: less part count means less unique failure points
Example (GE 3D Printing Design Quest)
Conventional Manufacturing
2
PROCESS qualification (on specimens)
2.1 MACHINE
2.2 MATERIALS
2.3 PROCESS PARAMETERS
3
PARTS Qualification ( every PN)
3.1 Task 2 + geometry on
components and specimen
Additive Manufacturing
Winner bracket
(titanium alloy by EBM
process)
Original bracket GE
asked the GrabCAD
Community to redesign
via 3D Printing
Weight: 327 grams
(84% reduction)
Weigh: 2,033 grams
3
14/10/2014
Materials: powders
4
14/10/2014
Application case: TiAl LPT blades
Powder atomization to produce powders for AM
is a special process to be qualified
Task
1
System
2
Process
3
Parts
14/10/2014
Milestones
1.1 MATERIALS Suppliers
1.2 SYSTEM Calibration
1.3 SOFTWARE Validation
1.4 PERSONNEL Training
Design
Materials
2.1 Powder production (procedure in place)
Machines
3.1 Specimen production
On qualified machines
5
14/10/2014
6
1
14/10/2014
Application case: TiAl LPT blades: design
Application case: TiAl LPT blades :machines
Avioprop new plant - Cameri (Novara)
Additive Manufacturing (EBM)
TiAl raw blade
Weight: X - 40%
Investment casting
TiAl raw blade
Weight: X
AM allow a drastical reduction on stock material
• The row blade cost less
• Machining cost less
•
•
•
•
Built year: 2013
12,000 sqft (+ potential 2x)
Up to 60 AM machines
AM machines qualified for
Aerospace productions
• Lab (chemical, Laser Scan)
• Gas Atomization system
EBM
Electron Beam Melting
Material
choice
Temperature
7
14/10/2014
• TiAl 48-2-2
• TiAl high Nb
Relative hot process (700-1100°C)
• Less stress, less distortion
• Fine microstructure
8
14/10/2014
Application case: TiAl LPT blades: material
GAS ATOMIZATION PROCESS for TIAl powder production
• Built year: 2014
• Up to 50 Tons/hear capacity
• Design for reactive materials
• Quality powder lab
Additive Manufacturing
Avio Aero capabilities
HT
EBM
HIP
Thanks for your attention
…
14/10/2014
Post-EBM microstructure can be fully tailored
through heat treatment, depending on design
requirements
9
14/10/2014
10
2
Concept Laser: State Of The Art
And Future Trends
of LaserCusing® Technology
Speaker |
Mr ALESSANDRO ZITO
Sales Manager, RIDIX|CONCEPT LASER
The Interesting Case Study
Of The Spinal Implants
Produced By Tsunami Medical
Speaker |
Mr. Stefano Caselli
CEO, TSUNAMI MEDICAL
14/10/2014
Rappresentanze macchine utensili
Tecnologie per lavorazioni meccaniche
The pioneers of metal laser melting technology
Concept Laser
State of the art and future trends of
LaserCUSING® Technology
www.ridix.it
www.concept-laser.de
www.concept-laser.de
Our company group - Hofmann Innovation Group
Hofmann Industrial Prototyping
Lichtenfels, Bayern
·
·
·
·
Page 3 | Hofmann Innovation Group
Turnover 2013 100 Mio. EUR
6 locations
More than 500 employees
More than 50 years experience in injection moulding
www.concept-laser.de
Hofmann Tool Manufacturing
·
·
·
·
·
Founded in 1990
130 employees
Rapid prototyping / Rapid tooling
Small series production
Manufacturing of gauges
Page 4 | Hofmann Innovation Group
Concept Laser
Lichtenfels, Bayern
· Founded in 1958
· 220 employees
· Construction and manufacturing of
complex serial injection moulds
· Special machine manufacturing
Page 5 | Hofmann Innovation Group
www.concept-laser.de
Lichtenfels, Bayern
·
·
·
·
·
www.concept-laser.de
Founded in 2000
80 employees
Leading manufacturer in the field of machines for metal laser melting process
Development of LaserCUSING® technology
Development and sales of the machines Mlab cusing, M1 cusing, M2 cusing und X line 1000R
Page 6 | Hofmann Innovation Group
www.concept-laser.de
14/10/2014
Concept Laser – Network sales partner
Concept Laser - History
Parallel- and surface
cooling
USA:
North America
Central und South America
Page 7 | Hofmann Innovation Group
LaserCUSING®
Europe:
Germany
Switzerland
Austria
Italy
Greece
France
Spain
Portugal
Asia:
Japan
Korea
Singapore
Malaysia
Hong Kong
Thailand
China
Australia
United Kingdom
Denmark
Ireland
Sweden
Norway
Turkey
Russia
www.concept-laser.de
Processing reactive powder
materials
QM meltpool and
Mlab cusing
Xline 1000R
Machine construction
according to ATEX guidelines
Integration of the
meltpool monitoring
system & development of
the small Mlab cusing
630 x 400 x 500 mm
2007
2009
2010
New machine. World
Biggest build envelope:
2011
Quality assurance
QM coating
Integration of the QM
system for monitoring
the build process
Development of the
system QM coating for
monitoring and controlling
the coating process
Page 9 | Hofmann Innovation Group
1998
1999
Patent number:
DE 10200505011.8
2000
2002
2005
Stochastic exposure
Hybrid build style
Development of the unique
exposure strategy to reduce
stresses inside the component.
Development of the hybrid
construction method for economical
production of tool inserts.
Patented by Concept Laser
Patent number:
DE 10042134
EP 01274639(1441897)
Patented by Concept Laser
Patent number:
EP 03762442(1521657)
US 11/028,428(7,261,550)
Page 8 | Hofmann Innovation Group
www.concept-laser.de
· Software:
Materialise, 3Shape, Marcam, LCM+
· Machines:
Mlab cusing (R), M1 cusing,
M2 cusing, X line 1000R
· QM System:
Available for process component
meltpool, coating, documentation
atmosphere, powder and temperature
· Materials:
Controlling the grain size and
chemical composition through a
external testing laboratory
· Accessoires:
furnace for heat treatment, sieving
station
2012
www.concept-laser.de
Page 10 | Hofmann Innovation Group
www.concept-laser.de
Concept Laser – Applications
Installed machine basis
Medicale
Europe:
200 LaserCUSING® systems
Dentale
Stampi
Orafo
Aerospazio
Asia:
50 LaserCUSING® systems
USA Central and South:
45 LaserCUSING® systems
Africa:
2 LaserCUSING® systems
Page 11 | Hofmann Innovation Group
Foundation of the
Concept Laser GmbH
Concept Laser – Profile
Concept Laser - History
Product launch M2 cusing
Developed and patented
by Werkzeugbau Siegfried
Hofmann GmbH
Foundation
Development of
LaserCUSING®
process
Automotive
www.concept-laser.de
Seite
Page 12 | Hofmann Innovation Group
www.concept-laser.de
14/10/2014
Concept Laser – Future Trends, Quality Management Control
Concept Laser – Future Trends, Increase Productivity
QMmeltpool – Idea of mapping
Xline 1000R
I
t
x
z
y
time-dependent
M2 Cusing
2D
3D
Build Envelope 630 x 400 x 500 mm
Build Envelope 250 x 250 x 280 mm
Advantages:
· Transparent evaluation
· Local process deviations can be identified easily → possibility to build three-dimensional
measuring object by piling single Maps analog to the layer build-up
· Direct comparison of the measuring data with 3D-geometry possible (CAD, CAM, ...)
www.concept-laser.de
Grazie per l’attenzione!!
Seite 15 | Hofmann Innovation Group
www.concept-laser.de
- Target  Increase Productivity
. Redesign of machine
. Introduction of Multi-Laser technology
www.concept-laser.de
10/11/2014
the wave of innovation
CONCEPT LASER
MLAB CUSING
SPINAL IMPLANT
MANUFACTURING
our production:
THE WAVE OF INNOVATION
percutaneous
discectomy systems
The company has been founded in 1997 as subcontractor of some big
manufacturing companies invasive diagnostic devices. Over the years we bought
the Bloodline trade mark that is very well known in the Biopsy and vertebroplasty
market, especially in south America, Europe and Russia.
The manufacturing plant located nearby Modena at the heart of the “biomedical
valley” is ISO 13485 certified to design and manufacture medical devices.
In 2010 start the manufacturing and design of MLS spinal implant
Currently, the Company has 20 employees and it is owned and managed by one
shareholders coming from the original group of founders.
bone cement
mixers and injector
biopsy
needle
spinal
implant
transplant needle
kyphoplasty
baloon
The manufacturing facility is located on 1200 square meters with modern
machinery and clean rooms classe ISO.
4
DIFFERENT MEDICAL PHILOSOPHY
SAME “CONCEPT” SOLUTION
SPINE FUSION
MOBILITY
PRESERVATION
SPINE FUSION
INTERBODY VERTEBRAL CAGE
1
10/11/2014
An inter body fusion cage (colloquially known as a "spine cage") is an
implant used in spinal fusion procedures to maintain foraminal height
and spine decompression,
There are several varieties
changing from the material to
the shape depending on the
anatomy segment to be
treated.
In past the cage was made in
titanium realized by drilling
full bars.
Such implants are inserted when the space between the spinal discs is
distracted, normally in combination with screws and rots, the cages are
cylindrical or square-shaped devices, and usually threaded.
Today the market leader are
the cage made in PEEK due
to the fact that the PEEK
have almost the same
compression rate than the
natural bone, have no
radiologic
artifact
(they
insert marker to understand
the cage position) but!!!
the peek have no bone
grown integration, and the
SLEEP OFF of the cage
should happen also after a
long period from the implant
the disadvantage of a full body titanium cage was the strength that was too hight and in some
case was damaging the bones, moreover the radiologic artifact was often not clear due to the
heavy mass of the titanium cage, for that reason recently the manufacturer turn the cage
production to a “new” polymeric material :
PEEK
THE INNOVATION:
Thank’s to the new MLS technology we integrate the
advantages of the both material leading the market.
From the titanium we took the osteo integration, the
bone growth capacity, and part of the radiolucent
factor.
From the PEEK we keep the flexibility.
The result is a full range cage
catalogue with:
- Perfect osteo integration with
an incredible bone growth
factor
- Perfect flexibility that simulate
the bone elasticity and facilitate
the bone integration.
- Perfect radio visibility to
facilitate the surgical placement
and the radiology control after
surgery.
- Perfect anatomic shape and
stand alone effect that limitate
cage sleep off
2
10/11/2014
Together with a commercial
partner, and the Carl Von
Ossietzky
University
in
Oldenburg,
we
realized
a
detailed clinical study that
demonstrate the bone growth
factor of the surface and the
geometry
realized
with
CONCEPT
LASER
TECHNOLOGY with our unique
geometry
“Overall, this work has shown that, thanks to
titanium implants, generated dose increases
and
CT
imaging
artifacts
are
not
underestimated and must be included in the
clinical treatment planning. Structured
implants are a useful approach to minimize
these risks and hide a potential that can be
exploited in other areas of implantology.”
Dr. Thomas Failing
LOBSTER IS A DYNAMIC INTERSPINOUS
SPACER, STUDIED TO OPTIMIZE THE
SPINE
STABILITY
IN
CASE
OF
DEGENERATIVE SPINE PROCESS IN THE
EARLY STAGE, IMPLANTED IN MINIMAL
INVASIVE PERCUTANEOUS SURGERY
SPINE
MOBILITY PRESERVATION
LOBSTER
REQUIRE A PERFECT SHINE
EXTERNAL
SURFACE
WITH
VERY LOW ROUGHNESS, TO
REDUCE THE GROWN OF
TISSUE AROUND THE IMPLANT
VERY FAR FROM THE
INITIAL PRODUCTION
OUTPUT
PRODUCTIONS PHASES:
INTERNAL COMPLICATE GEOMETRY
WITH
GEAR
AND
BI-FRONTAL
COCLEA,
CONTROLLED
INTERFERENCE
BETWEEN
THE
INTERNAL
COMPONENT
COMPONENT
PREPARATION
COMPONENT
ASSEMBLING
COMPONENTS
LASER WELDING
SHINE POLISHING
3
10/11/2014
THE SURGERY
IMPLANT
DIMENSIONAL
TESTING
IMPLANT
POSITIONING
IMPLANT
RELEASE
FIXATION BY
WINGS OPENING
THE ALTERNATIVE OF THE FUSION IS THE MOBILITY PRESERVATION, AND THE
ONLY WAY TO PRESERVE THE MOBILITY OF THE SPINE IS : THE DISC PROSTHESIS.
IN THE YEARS THE DISC PROSTHESIS HAD SO MANY IMPROVEMENT, BUT THE
FUSION
REMAIN
THE
STANDARD
IN
TERMS
OF
SPINE
SURGERY.
WE STUDIED A DIFFERENT APPROACH TO THE DISC DISEASE TRYING TO OPTIMIZE
THE RESULT PUTTING THE PATIENT ANATOMY TO THE CENTER OF THE PROJECT.
CUSTOM LUMBAR
DISC PROSTHESIS
THANKS TO THE CONCEPT TECHNOLOGY WE REALIZED 2
PLATE CONNECTED BY 2 SPRINGS ALL IN ONE BODY.
IN BETWEEN WE INJECT A CORE OF IMPLANTABLE
SILICON.
THE 2 PLATES ARE REALIZED CUSTOMIZED ON THE
PATIENT RADIOLOGY, TO GUARANTEE A PERFECT
COMBINATION WITH THE SINGLE CASE ANATOMY
TITAN
SPRING
TO
GUARANTEE
RESISTANCE TO THE
SPINE SOLICITATION IN
COMBINATION
WITH
THE SILICONE CORE
BONE GROWN
STRUCTURE WITH
CUSTOMIZED SHAPE
SILICON CORE
COPING THE
DISC HARDNESS
THE RESULT :
THE WAVE OF INNOVATION
combination of Italian design and German technology
www.tsunamimedical.it
Via Spallanzani n. 7 - 41036 Medolla (MO)
ITALY
tel. +39.0535.38397 fax. +39.0535.38399
mail: info@tsunamimedical.it
360° OF NATURAL MOVEMENT
ISO 13485:2012
4
MMP TECHNOLOGY, is the most
accurate superfinishing option
for Additive Manufacturing.
This unique process makes it
possible to produce a part
with a contolled roughness
Speaker |
Mr Frederic Bajard
COO- BinC INDUSTRIES
Laser Metal Deposition
Technology To Shape
Cast Iron Foams
Speaker |
Mr. Riccardo NICASTRO,
MS Mechanical Engineer,
Centre of Computational Multiphysics
Politechnic University of Turin
Department of Applied Science & Technology
Laurea Triennale Ing. Meccanica - Nicastro
Riccardo
POLITECNICO di TORINO
POLITECNICO DI TORINO
DISAT
Applied Science & Technology
Department (DISAT)
Why a
CAST IRON?
LASER METAL DEPOSITION
TECHNOLOGY TO SHAPE
CAST IRON FOAMS
Prof. Giovanni MAIZZA
Eng. Roberto Cagliero
Milan
2014, September 26
POLITECNICO DI TORINO
DISAT
Riccardo NICASTRO
Centre for Computational Multiphysics
QUESTIONS
Institute for Metallurgy
Centre for Computational Multiphysics
Eng. Riccardo NICASTRO
14/10/2014
Riccardo NICASTRO
Centre for Computational Multiphysics
Why a
FOAM?
ANSWERS
Improve
DAMPING
PROPERTIES
Reduce
WEIGHTS
POLITECNICO DI TORINO
DISAT
APPLICATION
Riccardo NICASTRO
Centre for Computational Multiphysics
SUMMARY
PHASE I
Cast Iron Foams:
Manufacturing through LMDT
PHASE II
Damping of vibrations in porous media:
Experimental tests
PHASE III
Material Analysis:
Mechanical and Chemical Characterization of LMDT samples
Machines Guides
POLITECNICO DI TORINO
DISAT
Riccardo NICASTRO
Centre for Computational Multiphysics
POLITECNICO DI TORINO
DISAT
Riccardo NICASTRO
Centre for Computational Multiphysics
LMDT Process Fundamentals
PHASE I
Cast Iron Foams:
Manufacturing trhough Laser
Metal Deposition Technology
• Typical single layer thickness: 0.2 – 2.0 mm
• Apply layers to repair surfaces, or build layer by
layer to free-form complete components
• Heat input in part: Low. Very small HAZ
• Dilution with substrate material: less than 5%
• Adhesion: Metallurgical bonding
• Structure: Completely dense (99.9%....)
• Atmosphere: Argon atmosphere (< 5 ppm Oxygen)
or deposit in open atmosphere with shielding gas
applied to melt pool
• Materials: Several, including Carbon and alloyed steel, stainless, nickel and titanium alloys, cobalt
alloys, cermets, ceramic composites, carbides…
• Resulting properties of deposited materials are typically equal to or better than wrought post heat
treatment when indicated
Laurea Triennale Ing. Meccanica - Nicastro
Riccardo
POLITECNICO DI TORINO
DISAT
14/10/2014
Riccardo NICASTRO
Centre for Computational Multiphysics
POLITECNICO DI TORINO
DISAT
RPM Innovations
Rapid City, SD, USA
Laser Metal Deposition
Technology
(LMDT)
• Repair
• Hybrid Manufacturing
• Freeform manufacturing
POLITECNICO DI TORINO
DISAT
Riccardo NICASTRO
Centre for Computational Multiphysics
Riccardo NICASTRO
Centre for Computational Multiphysics
Materials
Commonly Used Commercial Alloys with RPMI/EFESTO LMD
Note: Not limited to these materials only. Several other alloys are in developmental stage.
Material
Group
Material
Compatible with
Repair/Cladding
Ti-6Al-4V
Yes
Titanium
CP Ti
Yes
Alloys
Ti-6-2-4-2
Yes
304 SS
Yes
316 SS
Yes
410 SS
Yes
420 SS
Yes
13-8
Yes
Steel Alloys
15-5
Yes
17-4
Yes
H13, P20, S7, CPM1V
Yes
A2, D2, Aermet 100 Developmental
Free Form
Fabrication
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
No
Invar 36
Yes
Yes
Aluminum
4047
Yes
No
CopperNickel
Cu-Ni
Developmental Developmental
Material
Group
Nickel
Alloys
Cobalt
Alloys
Tungsten
Carbide
Other
POLITECNICO DI TORINO
DISAT
Hoganas powders analysis
Material
Compatible with
Repair/Cladding
CP Nickel
Yes
Inconel 617, 625, 718, 722
Yes
Nimonic 75
Yes
Haynes 188, Haynes 230
Yes
Hastelloy X
Yes
Mar-M-247
Yes
Rene 142, Rene N5, Rene 77 Developmental
Waspalloy
Developmental
CMSX-3
Developmental
Stellite 6, Stellite 21
Yes
Stellite 12
Yes
Cobalt-Chromium
Yes
Free Form
Fabrication
Yes
Yes
Yes
Yes
Yes
Developmental
Developmental
Developmental
Developmental
Developmental
Developmental
Yes
WC-Ni
Yes
No
WC-Co
Yes
No
Bulk Alumina, Zirconia, CPV,
CPMo, CPTa, CPRe, CPNb, CrC,
Various Cermets, Nb-Si, Norem,
NanoSteel, C103, PCD-Co, PCD-Ni,
Al 6061, Al 2024
Developmental
Developmental
Riccardo NICASTRO
Centre for Computational Multiphysics
SAMPLES DESIGNED FOR LMDT
Selection of the unit structure  FCC. (Higher density of pores)
FCC
Grey cast iron
powders water
atomized
Optic microscope images
POLITECNICO DI TORINO
DISAT
Rapid re-design to meet
the minimum contact
angle requierement
BCC
Selection of the pore radius  1 mm (≈0.04 inch). As seen before, the
influence of radius dimiensions are negligible towards porosity.
Selection of samples size  20x10x200 mm (≈ 0.4x0.8x8 inch). Beams. In
order to conduct a flexural fluctuation test
SEM images
Riccardo NICASTRO
Centre for Computational Multiphysics
Cross
section
Longitudinal
section
Minimum
cell
vs
POLITECNICO DI TORINO
DISAT
Cast iron deposition optimization
and samples manufacturing
Riccardo NICASTRO
Centre for Computational Multiphysics
Laurea Triennale Ing. Meccanica - Nicastro
Riccardo
POLITECNICO DI TORINO
DISAT
Riccardo NICASTRO
Centre for Computational Multiphysics
14/10/2014
POLITECNICO DI TORINO
DISAT
Riccardo NICASTRO
Centre for Computational Multiphysics
LMDT Samples
Flexural oscillations
PHASE II
Damping of vibrations in
porous media:
experimental test
η ≈ 0.003
POLITECNICO DI TORINO
DISAT
Riccardo NICASTRO
Centre for Computational Multiphysics
PHASE III
Material analysis:
Mechanical Characterization
of LMDT Samples
POLITECNICO DI TORINO
DISAT
Riccardo NICASTRO
Centre for Computational Multiphysics
POLITECNICO DI TORINO
DISAT
Riccardo NICASTRO
Centre for Computational Multiphysics
New samples
LMDT sample
splitting
POLITECNICO DI TORINO
DISAT
Riccardo NICASTRO
Centre for Computational Multiphysics
Tensile tests
Rm= 211 MPa
A max= 0,12%
Standard ASTM E8
SEM Images
Laurea Triennale Ing. Meccanica - Nicastro
Riccardo
POLITECNICO DI TORINO
DISAT
14/10/2014
Riccardo NICASTRO
Centre for Computational Multiphysics
POLITECNICO DI TORINO
DISAT
Riccardo NICASTRO
Centre for Computational Multiphysics
Scanning Electron Microscope
Bulk Microstructure
Microstructure
Optic Microscope Image
SEM Image
POLITECNICO DI TORINO
DISAT
Riccardo NICASTRO
Centre for Computational Multiphysics
POLITECNICO DI TORINO
DISAT
Scanning Electron Microscope
Scanning Electron Microscope
Bulk Microstructure
Element
% Wt
% At
C
8.84
30.73
Si
1.47
2.18
Cr
0.59
0.47
Mn
1.21
0.92
Fe
87.90
65.70
Riccardo NICASTRO
Centre for Computational Multiphysics
Bulk - EDS maps
Mn
C
Cr
Si
No O peak
Fe
Low Si dendritic structures
Spots of Mn and C
Fe and Cr homogeneously dispersed
POLITECNICO DI TORINO
DISAT
Riccardo NICASTRO
Centre for Computational Multiphysics
POLITECNICO DI TORINO
DISAT
Scanning Electron Microscope
Riccardo NICASTRO
Centre for Computational Multiphysics
Scanning Electron Microscope
Powders – EDS maps
Powders
Si
Element
% Wt
% At
C
21.57
50.11
O
7.01
12.22
Si
3.97
3.94
Mn
1.11
0.56
Fe
66.35
33.16
Mn
Fe
O
C
Relevant O peak, no Cr peak
Black spot in Fe due to C
Laurea Triennale Ing. Meccanica - Nicastro
Riccardo
POLITECNICO DI TORINO
DISAT
Riccardo NICASTRO
Centre for Computational Multiphysics
Instrumented Indentation Test
Basic principle
IIT employs an hardware similar to the
hardness test device. Unlike hardness
tests, instrumented indentation tests
requires high resolution sensors to
continuously record the loads and the
displacements during loading and
unloading. The resulting indentation
curves (ICs) are post-processed to
extract indentation properties such as an
equivalent Vickers hardness together
with so called indentation hardness and
indentation modulus, Martens hardness
and indentation works.
14/10/2014
POLITECNICO DI TORINO
DISAT
Riccardo NICASTRO
Centre for Computational Multiphysics
Instrumented Indentation Test
Tensile properties correlation
Work in progress!
Apparatus
IITs is perfomed with a OMAG SR HU 09 prototype machine under force control
POLITECNICO DI TORINO
DISAT
Riccardo NICASTRO
Centre for Computational Multiphysics
CONCLUSIONS:
• Deposited a challenging material, as a cast iron
• LMDT is the only way to shape a foam with a hollow controlled porosity
• Process parameters need to be improved
• Used a non-destructive method for the material characterization
POLITECNICO DI TORINO
DISAT
Riccardo NICASTRO
Centre for Computational Multiphysics
REFERENCES:
[1]. F. C. MOON and C. C. Mow 1970 Rand Corporation Report RM-6139-PR 1970.
Wave propagation in a composite material containing dispersed rigid spherical
inclusions.
[2]. C. SVE 1973 International Journal of Solids and Structures 9, 937.-950. Elastic
wave propagation in a porous laminated composite.
[3]. V. L. BIDERMAN 1972 Applied Theory qf Mechanical Vibrations (in Russian:
Prik-kudnaya Tcorij.a Mechanicheskich Colebanei). MOSCOW
[4]. B.WANG and D.SHU 2002, Experimental investigation on the viscoelastic
properties of porous metals, Brunel University,Uxbridge, UK
[5]. W.S. SANDERS, L.J. GIBSON, 2002, Mechanics of BCC and FCC hollowsphere foams, Massachusetts Institute of Technology, USA
POLITECNICO DI TORINO
DISAT
POLITECNICO DI TORINO
DISAT
Thanks for your
attentions
Sponsor:
Chris Shade
Hoganas North America
ALMA – Additive Layer
Manufacturing Adoption
Abstract|
Una delle prime esperienze europee
di adozione di tecnologie additive
in produzione
L’intervento di “Nofrill -professionisti senza fronzoli” illustra l’esperienza
nell’iniziativa ALMA (Additive Layer Manufacturing Adoption) per molti versi
unica nel panorama Italiano ed in Europeo: un progetto di adozione di tecnologie di manifattura additiva direttamente in produzione, per un grande gruppo
Aerospaziale presso uno dei suoi stabilimenti in Italia.
Verrà quindi descritto in sintesi la nascita dell’iniziativa ed il progetto di fattibilità concluso, con le sperimentazioni (prototipi) e gli strumenti (metodologia AMALFI – Additive Manufacturing Assessment for Lean and Fast Introduction e busines plan a corredo), che hanno consentito l’avvio della fase di
realizzazione attualmente in corso, con significativi investimenti associati ad
un piano di trasformazione industriale.
Verrà quindi presentata l’iniziativa ALMA nella prospettiva di Centro di Eccellenza per lo sviluppo dell’Additive Manufacturing nel distretto Aerospaziale,
attraverso una innovativa architettura di “Cloud Manufacturing”.
Speaker |
Claudio Giarda
CEO Nofrill
14/10/2014
PROFESSIONISTI SENZA FRONZOLI
ALMA – Additive Layer Manufacturing Adoption
RM Forum - 26 set 2014
PROFESSIONISTI SENZA FRONZOLI
Nofrill solo professionisti per Grandi Aziende
Nofrill è nata nel 2009 solo per servire Grandi Gruppi Industriali.
La formula è semplice: Professionisti che han già fatto ciò che c’è da fare
Nofrill è un network di Professionisti: il vantaggio di non avere una struttura fissa
– Ingaggiare le risorse più adatte allo scopo, avendo l’opportunità di disegnare e costruire
il team o la soluzione dopo una prima analisi.
– Le consulting blasonate, per quanto grandi, usano un insieme limitato di
dipendenti/consulenti: molto spesso è il cliente che si adatta e che “insegna” al
consulente come affrontare il problema sul quale dovrebbe essere d’aiuto.
ALMA – Additive Layer Manufacturing Adoption
Professionisti “ad hoc”: hanno una o più esperienze su... quel che c’è da fare
– Nofrill nella sua, pur breve, storia ha accumulato referenze e specializzazioni, ma la
forza sta nel selezionare e ingaggiare le persone giuste per un incarico specifico.
– Passaparola e Social Network (Linkedin): oltre 400 professionisti prequalificati.
Specializzazioni consolidate
– ICT-Business advisory (sourcing, capitolati, sicurezza, trasformazioni, etc.)
– 3D Printing & Additive Manufacturing (studi fattibilità, progettazione,
sperimentazione, strumenti, supporto alla industrializzazione, etc.)
– Automazione aziendale (sviluppo rapido automazione processi in mobilità)
Una delle prime esperienze europee di adozione di tecnologie
additive in produzione
RM Forum 2014, Malpensa 26 settembre 2014 – CLAUDIO GIARDA
PROFESSIONISTI SENZA FRONZOLI
ALMA – Additive Layer Manufacturing Adoption
RM Forum - 26 set 2014
3
PROFESSIONISTI SENZA FRONZOLI
Le Tecnologie Additive (3D Printing): una delle «corsie di Back-Shoring»
Costo Orario Operaio Cinese 2002 1: $0,5
Costo Orario Operaio Cinese 2012 1: $4,5
Container CINA-USA 2009 2: $1.200
Container CINA-USA 2012 2 : $2.300
Fonte
Fonte
1:
2:
Boston Consulting Group
Shangai Containerized Freight Index
5
ALMA – Additive Layer Manufacturing Adoption
RM Forum - 26 set 2014
PROFESSIONISTI SENZA FRONZOLI
Manifattura Additiva: la prossima rivoluzione industriale
ALMA – Additive Layer Manufacturing Adoption
RM Forum - 26 set 2014
PROFESSIONISTI SENZA FRONZOLI
INTRODUZIONE INIZIATIVA ALMA
Esistono tecnologie particolarmente innovative che non apportano un
miglioramento incrementale, ma operano un cambiamento radicale di
approccio permettendo un vero e proprio salto di prestazioni:
 Uno dei principali trend nel settore manufacturing è rappresentato dall’introduzione delle
tecnologie di stampa industriale 3D, denominata anche Additive Manufacturing (AM), che
sta prendendo piede soprattutto nel settore Medicale e Aerospaziale: serie limitate ad
elevato valore.
 Questa tendenza come di consueto è sia una opportunità (attese):
 benefici competitivi per i pionieri: aumento produttività, riduzione costi, drastica
riduzione lead time e migliori prestazioni prodotto/servizio.
 … che una minaccia (rischio):
 Le aziende che non presidieranno questo cambiamento rischiano di andare
incontro all’obsolescenza di macchine, processi e competenze, con conseguente
perdita di competitività e rischio di sopravvivenza.
 Per queste ragioni MBDA Italia intende muoversi con decisone, anticipando gli eventi
e mirando a migliorare, nel breve periodo, la propria competitività. Lo Studio
Sperimentale è il primo passo concreto in questa direzione.
 Il progetto, denominato ALMA (Additive Layer Manufacturing Adoption) mira a creare in
Campania dapprima un sofisticato laboratorio (AMLab) per le tecnologie di stampa
3D e, successivamente, un nuovo reparto di produzione (AMProd) che sfrutti
queste tecnologie.
6
7
1
14/10/2014
ALMA – Additive Layer Manufacturing Adoption
RM Forum - 26 set 2014
PROFESSIONISTI SENZA FRONZOLI
Posizionamento di ALMA nella matrice prodotto/catena fornitura
ALMA – Additive Layer Manufacturing Adoption
RM Forum - 26 set 2014
PROFESSIONISTI SENZA FRONZOLI
Masterplan Studio Sperimentale
ALMA OBJECVTIVES:
Fast Adoption of Additive
technologies in order to:
a) leverage early adopters
competitive advantage
on the market;
b) boost technology
introduction by
minimizing changes in
product & supply chain
(Path 1 in the matrix);
c) «Revamping» Fusaro
site, leveraging
Precision mechanical
capabilities boosted to
Additive Manufacturing
innovation;
d) start up the Aerospace
Additive Manufacturing
Virtual district (Cloud
Manufacturing
Architecture).
8
ALMA – Additive Layer Manufacturing Adoption
RM Forum - 26 set 2014
PROFESSIONISTI SENZA FRONZOLI
ALMA in sintesi
ALMA – Additive Layer Manufacturing Adoption
RM Forum - 26 set 2014
PROFESSIONISTI SENZA FRONZOLI
AMALFI : Additive Manufacturing Assessment for Lean and Fast Introduction
Identification of current manufactured Part Numbers potentially
feasible and potentially convenient in AM (subset pre-selection
from the complete PN list)
Construction of an integrated technical-economic model
able to assess AM cost impacts vs traditional
technologies
Key factors and correlations for economic
benefits depending on PN and machines
characteristics
REAL Example: About 40 out of the 59 Part
Numbers have shown production costs
reduction with AM Technology adoption
compared with traditional (subtractive)
technology
Optimization of new production balance
with AM and valuation of EBIT and FOCF
impact including machine sizing and
changes on current workshop
11
10
ALMA – Additive Layer Manufacturing Adoption
RM Forum - 26 set 2014
PROFESSIONISTI SENZA FRONZOLI
AMALFI: Modello economico-gestionale per valutare la convenienza additiva
Parametrico
rispetto a
macchine AM
Assumptions
% Riuso polveri
% sovrametallosu prodotto finito
% supportisu massa totale
Spazio in pianta tra componenti, extra z
Ciascunciclo di stampa con 1 solo PN
Ciascunciclo di stampa 1 solo strato
Dati economico finanziari (cdc ad
hoc AM)
Costo del lavoro
Ammortamenti
Controllabili
Ribaltamentiausiliariproduttivi
Ribaltamenticosti servizi
Costo orario macchinetradiz.
Costo orario macchineAM
Marca/modello
Velocità
Risoluzione
Potenza
Volume di stampa
Costi acquistoe manut
PROFESSIONISTI SENZA FRONZOLI
AMALFI: Fattori chiave dimensionali di convenienza economica
VARIAZIONE COSTO DELLA PRODUZIONE vs TECNOLOGIA TRADIZIONALE
Quando
conviene AM
P/N
Coperchio
Supporto
superiore
Lista
componenti
selezionati
• Volume
Basso
• Ore Fresatura Alto
Densità /Peso
Dimensioni
Materiale
Yearly
saving
Payback
DCFA
ALMA – Additive Layer Manufacturing Adoption
RM Forum - 26 set 2014
• Buy to Fly
Quantità
?h -uomo di lavorazione
?h -macchina di lavoraz .
• Ingombro
Alto
Basso
Make/buy
• Shape
Complessa
Il livello di saving delle attività di lavorazione è proporzionale alle ore macchina di
sgrossatura ed inversamente proporzionale alla massa
12
13
2
14/10/2014
ALMA – Additive Layer Manufacturing Adoption
RM Forum - 26 set 2014
The more complex&small … the more convenient
PROCESSO
AM
Progettazione
e calcoli
effettuati a
livello
integrato di
sistema: in
prima analisi
nessuna
variazione
DELTA AM vs
TRADIZIONALE
27€
17€
3€
24€
238€
136€
2,5 €
18€
17€
1€
9€
146€
136€
1€
GESTIONE
MATERIALI
FINITURA/
TRATTAMENTI/
COLLAUDO
PROCESSO
TRADIZIONALE
SGROSSATURA
/ADDITIVE MFG
+51%
Energia
INDUSTRIAL.
COSTO
UNITARIO
(Pro forma)
PROTOTIPAZIONE
COPERCHIO
PN: AP010546500 COPERCHIO
Ore Macchina Trad: 4,41 h
Ore Uomo Trad: 3,55 h
Massa Finale: 0,25 Kg
K= 34 h/Kg (h/mm^3)*10^6
Molteplicità = 1
Materiale: Lega U.S.A. 2024
MATERIALI
-64%
PROFESSIONISTI SENZA FRONZOLI
Esempio Costo Totale per un PN significativo
PROGETTAZIONE
E CALCOLI
SUPPORTO SUPERIORE
PN: AP010634000 SUPPORTO SUPERIORE
Ore Macchina Trad: 7,68h
Ore Uomo Trad: 3,68h
Massa Finale: 0,045 Kg
K= 937 (h/mm^3)*10^6
Molteplicità = 45
Materiale: AISI 303
ALMA – Additive Layer Manufacturing Adoption
RM Forum - 26 set 2014
PROFESSIONISTI SENZA FRONZOLI
Scarti
=
Parte
Finita
447€
Al momento si
stima i due
processi
abbiano
stesso
impatto sugli
scarti
328€
0€
-9€
0€
-2€
-15€
-92€
0€
-1,5 €
0€
-119€
0%
-24%
0%
-67%
-62%
-39%
0%
-30%
0%
-27%
Da una prima stima il costo pieno del pezzo in AM presenta un beneficio pari al
25 – 30% in base alle caratteristiche tecniche della parte
4,4
15
14
ALMA – Additive Layer Manufacturing Adoption
RM Forum - 26 set 2014
ALMA – Additive Layer Manufacturing Adoption
RM Forum - 26 set 2014
PROFESSIONISTI SENZA FRONZOLI
PROFESSIONISTI SENZA FRONZOLI
Brilliant Factory architecture (the new GE buzzword…)
Brilliant Factory
Manufacturing
today
Assembly
•
•
•
•
Improved and simplified governance
Deep integration between Engineering and
Manufacturing
Reduction and simplification of support tasks
Logistics: less energy, less part moving, less part to
maintain, less material waste
Engineering &
Rapid
Prototyping
3D
Printers
3D Printer
Load optimization
and Quality Mgmt
Control room: Production job
scheduling, monitoring and
dispatching
16
ALMA – Additive Layer Manufacturing Adoption
RM Forum - 26 set 2014
17
ALMA – Additive Layer Manufacturing Adoption
RM Forum - 26 set 2014
PROFESSIONISTI SENZA FRONZOLI
INIZIO CICLO
A
18
PROFESSIONISTI SENZA FRONZOLI
La Catena del Valore del CoE Fusaro
Aerospace Cloud Manufacturing: many control room &“Fusaro HUB”
Servizi offerti CoE Fusaro
PROGETTAZIONE
B
CICLI TERMICI
RINVENIMENTO
C
COLLAUDO
NEAR NET
SHAPE
INDUSTRIALIZZAZIONE
LAVORAZIONI
POST STAMPA
BAGAGLIAIO E
ESUPPORTI
ADDITIVE MFG
AGGIUSTAGGIO
FINITURA CNC
TRATTAMENTI
SUPERFICIALI
TERMICI
PIANIFICAZIONE
DELLA
PRODUZIONE
MATERIALI
(POLVERI)
PRODOTTO
FINALE
COLLAUDO
FINALE
19
3
14/10/2014
ALMA – Additive Layer Manufacturing Adoption
RM Forum - 26 set 2014
PROFESSIONISTI SENZA FRONZOLI
PROFESSIONISTI SENZA FRONZOLI
ALMA Business Model
NOFRILL S.R.L.
TEL: +39.02.8715.8404 - FAX: +39.02.8715.2302
WWW.NOFRILL.COM
claudio.giarda@nofrill.com
PROFESSIONISTI SENZA FRONZOLI
ALMA – Additive Layer Manufacturing Adoption
RM Forum - 26 set 2014
PROFESSIONISTI SENZA FRONZOLI
La rivoluzione silenziosa della logistica
3D Printer in a Box: Allestimento di Shelter attrezzato per luoghi remoti
Immaginate un tecnico in una zona di guerra
inviando una e-mail con una scansione digitale di
una parte inutilizzabile di un veicolo corazzato
che poi viene stampato e rifinito alla più vicina
base logistica nelle retrovie con servizio stampa
3D, così da essere consegnato al richiedente in
poco tempo.
Questa soluzione può forse ridurre al minimo la
necessità di trasportare e mantenere grandi
scorte in zona di combattimento. Questa
rivoluzione è in atto in modo molto silenzioso ed è
probabile avere implicazioni di vasta portata per
la supply chain e gestione della logistica delle
forze armate.
BACKUP
Ebbene la soluzione esiste già ed è stata impiegata in Afghanistan dall’esercito americano (Kandahar
and Bagram Air Base). Non è difficile tuttavia immaginare il medesimo impiego per usi anche civili (si
pensi ai settori delle infrastrutture, costruzione centrali energetiche, Oil & Gas, Protezione civile, etc.)
Queste e altre riflessioni portano a concludere che la stampa 3D è già in grado di alterare le modalità di
approvvigionamento e logistica, nel settore della Difesa e in molti altri settori.
23
ALMA – Additive Layer Manufacturing Adoption
RM Forum - 26 set 2014
PROFESSIONISTI SENZA FRONZOLI
Scelta tecnologica stampanti 3D – Criteri di selezione
ALMA – Additive Layer Manufacturing Adoption
RM Forum - 26 set 2014
PROFESSIONISTI SENZA FRONZOLI
Modello mercato dei prodotti e servizi manifattura additiva
Covering the whole supply chain on 3D Printing, wirh specific vocation for the
higher value consulting services
MATRICE VALUTAZIONE 3D PRINTER
Catteristiche tecniche: produttività, consumi, ingombri, sw controllo
Materiali certificati disponibili
Documentazione: manuali, modalità di rilevazione performance,
bibliografia di terze parti, report provini
Disponibilità e manutentibilità
Condizioni economiche
TCO
Consulting Services (BP, Bus. Case,..)
Developing the new manufacturing
and engineering process
3D Printing Outsourcing
SW: BPM, Rapid Prototyping, 3D
Modeling, Manufacturing
Optimization
3D Printing and Scanners
Cons
Engineering
BPO
Software
Hardware
25
4
Additive Manufacturing with Ebm
- The Route to Production
Speaker |
Mr Stefan Thundal /
Sales Area Manager, ARCAM
Arcam in short
Additive Manufacturing with EBM
- The Route to Production
2014-09-26
RM Forum 2014, Milano, Italy
1
Mission Statement
Arcam AB incorporated 1997
-
Listed on NASDAQ OMX Stockholm
-
First EBM system delivered in 2003
-
More than 130 systems installed worldwide
-
220 people, in Sweden, the US, Canada, UK, Italy and China
-
Arcam: Systems – Powders - Parts
2014-09-26
RM Forum 2014, Milano, Italy
2
Success factors for production
”Arcam provides a cost-efficient Additive Manufacturing
solution for production of metal components.”
•
Reliability
-
Stable machine systems
Stable manufacturing process
•
Economy
-
High production rate
Competitive powder cost
•
Quality
-
Material quality
Geometric accuracy
Surface quality
•
Added values - Freedom in design
with AM
Cellular structures
Focusing on
-
-
Aerospace components
Orthopedic implants
Metal powder
2014-09-26
RM Forum 2014, Milano, Italy
3
Cellular structures
2014-09-26
RM Forum 2014, Milano, Italy
4
Production case for implants:
Acetabular cups in Ti6Al4V
•
•
•
•
CE-certified acetabular cups with integrated
Trabecular Structures™ since 2007
Implants with US-FDA clearance since 2010
> 40,000 cups implanted
2% of the global production of acetabular
cups is now manufactured with EBM®
Height ~30 mm
Diameter ~50 mm
Adler Ortho, IT
2007-
Courtesy of North Carolina State University
2014-09-26
RM Forum 2014, Milano, Italy
5
2014-09-26
Lima, IT
2007-
Exactech, US
2010-
RM Forum 2014, Milano, Italy
6
System and process stability
EBM implants on the market
The graph below shows development of system reliability for
EBM systems in serial production of acetabular cup implants
over more than three years during production ramp up.
•
based on more than 45.000 running hours
Monthly success rate of production runs from log files from all builds
2014-09-26
RM Forum 2014, Milano, Italy
7
EBM productivity:
stacking of parts
•
Cups have excellent geometry
for stacking.
Production example 80 cups:
• Non-stacked: 126 h
• Stacked: 90 h (A1)
Build time reduction: ~30%
RM Forum 2014, Milano, Italy
9
EBM® - Electron Beam Melting
The electron beam gun generates a
high energy beam (up to 3.000 W)
•
The beam melts each layer of powder
metal to the desired geometry
•
Extremely fast beam translation with
no moving parts
•
High beam power -> high melt rate
(up to 80 cm3/h) and productivity
•
Vacuum process -> eliminates impurities
and yields excellent material properties
•
High process temperature (650 ºC
for titanium) -> low residual stress
and no need for heat treatment
2014-09-26
8
Implants built with EBM
•
•
RM Forum 2014, Milano, Italy
Production cost of cups
•
2014-09-26
2014-09-26
RM Forum 2014, Milano, Italy
•
High productivity
•
Excellent material properties
•
No mechanical support structure (hot process)
•
No secondary coating operation
2014-09-26
RM Forum 2014, Milano, Italy
10
Advantage of hot process
for bulk melting
Fast beam
Fast beam
& higher power
Slow beam
Fast beam & warm bulk (& lower power)
Surface
Melt depth
Temp
Temp
T boil
Tmelt
T boil
Surface
Melt depth
Tmelt
Surface
Melt depth
Surface
Temp
T boil
Tmelt
Melt depth
Time
Time
Surface
Melt depth
Bulk temperature
Time
Increased bulk temperature reduces gradient,
allowing for higher speed with preserved quality
11
2014-09-26
RM Forum 2014, Milano, Italy
12
EBM® -TiAl: microstructures
Production case for aerospace:
Turbine blades in -TiAl
•
•
•
•
•
Cooperation agreement with AvioAero
Courtesy of Avio Aero
and Politecnico di Torino
Prototype turbine blades in -TiAl
325 mm build height
Dimensional tolerance: 0.1 mm
Turnaround time: 7,5 h / blade
As-built by EBM
HIP 1260 C, 1700 bar, 4h
Equiaxed 
Grain size <20 m
Heat Treatment
Duplex
Lamellar colonies ~100 m
Equiaxed grains ~15 m
Lamellar fraction ~ 40%
Courtesy of AvioAero
2014-09-26
RM Forum 2014, Milano, Italy
13
Production focus
2014-09-26
RM Forum 2014, Milano, Italy
Overview: Arcam machine
generations
•
Series production allows process optimization in each specific
production case (application and geometry)
•
Parameters such as layer thickness may for this reason be
different for different production cases
•
Arcam actively supports our customers in setting up the most
optimal process for each production case
S series
EBM S12 (2003)
A series
Arcam A1 (2009)
Arcam A2 (2008)
Arcam A2X / A2XX
Q series
A2 derivatives with modified features
Arcam Q10 (2013)
2014-09-26
RM Forum 2014, Milano, Italy
15
Design for Production
2014-09-26
Arcam Q20 (2013)
RM Forum 2014, Milano, Italy
The Arcam Q10 / Q20 are developed in collaboration
with leading implant and aerospace manufacturers
•
New EB gun design
•
Improved resolution
•
Arcam Q10 is the EBM system designated for
volume production of orthopedic implants
•
Higher productivity
•
Prevention of operator mistakes
•
Arcam Q20 is the EBM system designated for
volume production of aerospace components
•
Inline quality verification
•
Closed powder handling
•
Software adapted to volume production
RM Forum 2014, Milano, Italy
Currently in production
16
Arcam Q - Highlights
•
2014-09-26
14
17
2014-09-26
RM Forum 2014, Milano, Italy
18
Higher productivity
New EB gun design
•
Use of high brightness cathodes LaB6
• 500+ hours operating time
• Improved beam formation
•
Improved spot quality at high beam power
enables faster processing of high quality surfaces
Arcam A2XX
Build time, customer part
Arcam Q20
Build time, customer part
~ 130 h
2014-09-26
RM Forum 2014, Milano, Italy
19
Inline quality verification
•
Arcam LayerQam™
•
Camera-based quality verification system
•
Additive Manufacturing provides a new melted surface for each layer
•
Camera-based monitoring of each melted layer provides porosity
control of the entire produced part
•
Monitoring each layer provides a unique capability to verify
the full density of EBM-produced components
2014-09-26
RM Forum 2014, Milano, Italy
20
- demo, sample with deliberately generated defects
Filtered
camera
images
21
2014-09-26
Micro
tomography
RM Forum 2014, Milano, Italy
22
Electron beam –
powder interaction model
Faster processing and Larger build envelope
•
•
RM Forum 2014, Milano, Italy
Arcam LayerQam™
EBM® and aerospace
- Long-term development
•
2014-09-26
~ 85 h
The available beam power restricts build area and build rate
The need for higher electron beam current is thus twofold:
• More power for heating to enable larger build envelope
• More power to enable more Arcam MultiBeam™ spots
•
The FastEBM project also developed
a powder-based interaction model,
based on the Lattice Boltzman Method,
to support EBM process development
•
Development partner: Erlangen University
• An EU FP7 project, FastEBM, has developed a prototype
electron gun for EBM with more than three times higher
beam power than for current systems
•
The prototype gun is under testing on an Arcam Q platform
to evaluate potential for system development
• Project aim: 2D  3D
2014-09-26
RM Forum 2014, Milano, Italy
23
2014-09-26
RM Forum 2014, Milano, Italy
24
Contact
Thank you for your attention!
Arcam AB
Krokslätts Fabriker 27A
SE-431 37 Mölndal, Sweden
Phone: +46 31 710 32 00
Web site: www.arcam.com
E-mail: info@arcam.com
Arcam - CAD to Metal®
2014-09-26
RM Forum 2014, Milano, Italy
25
Tecnologie Cam2 Allo Stato
Dell’arte Di Scansione Laser e
Reverse Engineering:
Il Nuovo Cam2 Edge Scanarm Hd
Speaker |
Mr. Stefano Maracich
Sales Engineer,
CAM2 – Gruppo FARO Technologies
25| 26 September 2014
SHERATON MILAN MALPENSA AIRPORT HOTEL
25|26
Sept 2014
SHERATON MILAN
_6HSWHPEHU
MALPENSA AIRPORT
HOTEL
6+(5$7210,/$10$/3(16$$,53257+27(/
INDUSTRIALIZATION
,QGXVWULDOL]DWLRQRIWKH
OF THE ADDITIVE
$GGLWLYH0DQXIDFWXULQJSURFHVV
MANUFACTURING
companies
DQGODPLQDWLRQRI&RPSRVLWH0DWHULDOV PROCESSS
SPONSORS
S P O N S O R E D
SPONSOR GOLD
6
3
2
6321625*2/'
1
6
2
5
(
SPONSOR SILVER
63216256,/9(5
$1(9(1725*$1,=('%<
(5,6352*5$0
'
B Y
%
<
sponsor
GOLD
SPONSOR GOLD |
3DSYSTEMS
Headquarter:
3DSYSTEMS | NYSE: DDD | WWW.3DSYSTEMS.COM
333 Three D Systems Circle |
Rock Hill, SC 29730 | USA
phone:+18033263900
Italia
3DSYSTEMS ITALIA srl
Via Roberto Incerti, 25
10064 PINEROLO (TO)
Tel: +39 0121 376966
fax +39 0121 326956
Email: buson.giorgio@3dsystems.com
3D Systems is a leading provider of 3D printing centric
design-to-manufacturing solutions including 3D printers,
print materials and cloud sourced on-demand custom parts
for professionals and consumers alike in materials including plastics, metals, ceramics and edibles. The company also
provides integrated 3D scan-based design, freeform modeling and inspection tools and an integrated 3D planning and
printing digital thread for personalized surgery and patient
specific medical devices. Its products and services replace and
complement traditional methods and reduce the time and
cost of designing new products by printing real parts directly
from digital input. These solutions are used to rapidly design,
create, communicate, prototype or produce functional parts
and assemblies, empowering customers to manufacture the
future..
SPONSOR GOLD |
ARCAM AB
Krokslätts Fabriker 27A
SE-431 37 Mölndal
Sweden
Phone +46 (0)31 710 32 00
Fax +46 (0)31 710 32 01
Ref. for Italy o for Europe’s Market
Mr Stefan Thundal
info@arcam.com
www.arcam.com
Arcam provides a cost-efficient Additive Manufacturing solution for
production of metal components. The
technology offers freedom in design
combined with excellent material
properties and high productivity.
Arcam’s market is global with customers mainly in the orthopedic and
aerospace industries. The company
was founded in 1997 and is listed on
NASDAQ OMX Stockholm, Sweden.
Head office and production facilities
are located in Mölndal, Sweden. Support offices are located in the US, UK,
Italy and China.
Arcam offre soluzioni di Additive
Manufacturing efficienti e
vantaggiose per la produzione di
componenti in metallo. La tecnologia
offre libertà nella progettazione,
combinata a eccellenti proprietà dei
materiali ed elevata produttività.
Arcam copre il mercato globale con
clienti principalmente nei settori
ortopedico e aerospaziale. L’azienda è
stata fondata nel 1997 ed è quotata al
NASDAQ OMX di Stoccolma, in Svezia.
Direzione e stabilimento di produzione
si trovano a Mölndal, in Svezia. Gli
Uffici satelliti si trovano negli Stati
Uniti, nel Regno Unito, in Italia e in
Cina.
SPONSOR GOLD |
BinC Industries SA
Chemin des Aulx, 16
CH - 1228 Plan les Ouates (Suisse)
BinC Industries France
Offices and surface treatment lab
BinC Industries France SAS
10 rue du Champ Dolin
F - 69800 St Priest (France)
Tél +33 / 472 79 39 40
Fax +33 / 478 90 24 88
www.binc.biz
Founded in Switzerland in 1995, BinC Industries SA
has developed a proprietary precision surface finishing technique, the Micro Machining Process (MMP
Technology).
MMP Techology makes it possible to obtain super
finished surfaces by selectively removing specific
ranges of roughness. Unlike traditional polishing,
MMP differentiates itself by its ability to finely control
the material removal process. MMP can deliver finely
controlled surfaces ranging from matte to brilliant
mirror-like finishes. MMP’s advantages include reporductibilty, homogeneity, precise preservation of the
exact form of the part and predictable costs.
MMP Technology is highly effective across a wide range of
materials, including :
- steels (carbon, stainless, tool, alloy),
- copper, nickel and titanium alloys,
- carbides, ceramics,
- inconels,
- precious metals (Gold, Platinum, …),
- MIM, CIM and Additive Manufacturing,
- PVD/CVD coatings.
BESTinCLASS’ 7 key markets are :
Aerospace/Forge, Stamping and Die/ Luxury Goods/
Medical/ Plastic Injection Molds /Cutting Tools
/ Transmissions. Partner of the most demanding
manufacturers in the world, BESTinCLASS can meet
the exacting standards of its customers, thanks to its
permanent investments in R&D.
Fondata in Svizzera nel 1995, BINC Industries SA ha
sviluppato una tecnologia brevettata di finitura di precisione, il processo di lavorazione Micro (Tecnologia MMP).
MMP Technology permette di ottenere eccellenti superfici
finite rimuovendo selettivamente specifici assortimenti
di rugosità. A differenza della lucidatura tradizionale,
MMP si differenzia per la sua capacità di controllare con
precisione il processo di rimozione del materiale. MMP è
in grado di fornire con precisione superfici con finiture
che vanno da opaco al brillante a specchio. I vantaggi di
MMP includono riproducibilità, omogeneità, la precisa
conservazione della forma esatta della parte e costi
prevedibili.
La tecnologia MMP è altamente efficace in una vasta
gamma di materiali, tra cui :
- acciai (carbonio, inossidabile, strumento, in lega);
- leghe di rame, nichel e titanio;
- carburi, ceramiche;
- inconel;
- metalli preziosi (oro, platino, ...);
- MIM, CIM e di produzione di additivi;
- rivestimenti PVD/CVD.
I 7 mercati fondamentali di BINC Industries sono: Aerospaziale/ Forgiatura, stampaggio e tranciatura/ Beni di
lusso/ Medicale/ Stampi per iniezione plastica /Utensili da taglio/ Trasmissioni. Partner dei produttori più
esigenti al mondo, BINC Industries è in grado di soddisfare gli standard di qualità dei suoi clienti, grazie ai suoi
investimenti permanenti in R&D.
SPONSOR GOLD |
Concept Laser GmbH
An der Zeil 8
96215 Lichtenfels -Germany
Phone: +49 (0) 9571 949-238
Fax: +49 (0) 9571 949-249
Ridix s.p.a.
Grugliasco (TO)
Phone: +39 011 4027568
Fax: +39 011 4081484
Ref. Alessandro Zito
azito@ridix.it
www.ridix.it
Concept Laser GmbH is an independent company that forms part of the
Hofmann Innovation Group from Lichtenfels (Germany). A total of about 500
workers are employed at the company,
working in production areas covering
around 17,000 m2. It was back in 1958
that senior partner Siegfried Hofmann
founded the company Werkzeugbau
Hofmann in a garden shed. Starting
from humble beginnings – and shaped
by his absolute desire for innovation
– the company has evolved over the
course of five decades into a corporate
group which today is one of the most
renowned companies in the plasticsprocessing industry.
Over 50 years of experience in injectionmoulding and mould-making bear
witness to a real passion for pioneering
technology. Concept Laser GmbH was
established in 2000 and it regards itself
as a pioneer in the field of laser melting technology, working across lots of
different sectors of industry with the
patented LaserCUSING® technology. The
high quality standards, many years of
experience and references of Concept
Laser are synonymous with processreliable and cost-effective machine solutions which demonstrate their effectiveness in everyday production.
Ridix Spa is operating since 1969 in Italy
in the field of advanced Mechanics. It
proposes fine solution regarding Machines and Consumables related to Mechanics Manufacturing, and since some
years is the Italian partner of Concept
Laser GmbH. Located closed to Turin,
Ridix Spa provides technical and commercial competence to its customers.
Concept Laser GmbH è una società
indipendente che fa parte del Hofmann
Innovation Group con sede a Lichtenfels
(Germania). La società conta circa 500 impiegati che lavorano nelle aree produttive
che coprono una superficie di circa 17.000
m2. Iniziò tutto nel 1958 quando il socio
senior Siegfried Hofmann fondò la società
Werkzeubau Hofmann in un capanno del
giardino. Con queste umili origini- e plas-
mata grazie al suo desiderio assoluto per
l’innovazione- la società è cresciuta nei
cinque decenni successivi diventando un
gruppo corporativo che attualmente rappresenta una delle società più importanti
nell’industria della trasformazione delle
materie plastiche.
Gli oltre cinquant’anni di esperienza nello
stampaggio ad iniezione e nella costruzione di stampi testimoniano una vera passione per le tecnologie pionieristiche. la
Concept Laser GmbH fu fondata nel 2000 e
si considera una pioniera nel campo delle
tecnologie di fusione laser, operando in
molti e diversi settori dell’industria grazie
alla sua tecnologia brevettata LaserCUSING®. Gli elevati standard qualitativi, i
molti anni di esperienza e le referenze di
Concept Laser sono sinonimi di soluzioni
di macchine dai processi affidabili e dai
costi redditizi, che dimostrano la loro efficacia nella produzione quotidiana.
Ridix Spa opera in Italia dal 1969 nel
campo della meccanica avanzata.
Propone soluzIoni ottimali per Macchine e materiali di consumo relativi
alla produzione meccanica e da alcuni
anni è partner italiana di Concept laser
GmbH. Situata vicino a Torino, Ridix Spa
fornisce competenze tecniche e commerciali ai suoi clienti.
SPONSOR GOLD |
EOS s.r.l. Electro Optical Systems
Via Gallarate, 94
I-20151 Milano - Italy
Ref. Vito Chinellato
Phone +39 02 33 40 16 59
Fax +39 02 33 49 89 19
info@eos-italy.it
www.eos.info
Founded in 1989 and headquartered
in Germany, EOS is the technology
and market leader for design-driven,
integrated e-Manufacturing solutions
for industrial applications. EOS offers
a modular solution portfolio including systems application know-how,
software, process parameters, materials and its further development. The
portfolio is completed by services,
maintenance, application consulting
and trainings. An Additive Manufacturing (AM) process, it allows the fast and
flexible production of high-end parts at
a repeatable industry level of quality. A
disruptive technology it paves the way
for a paradigm shift in product design
and manufacturing. It accelerates
product development, offers freedom
of design, optimizes part structures –
also enabling lattice structures – and
functional integration and as such
creates significant competitive advantages for its customers. Laser-sintering
is an additive layer manufacturing
technology and the key technology for
e-Manufacturing. It enables the fast,
flexible and cost-effective production
of products, patterns or tools directly
from electronic data.
Any shape – Design-driven manufacturing
e-Manufacturing via laser-sintering liberates designers from the restrictions of
conventional manufacturing technolo-
gies. As such, it enables the creation of
three dimensional tempering systems
for tooling applications.
Anytime – At every stage of the product life cycle
e-Manufacturing can be applied in
every phase of the product life cycle:
from pre-development to the supply of
spare parts.
Anywhere – Suited to all industries
e-Manufacturing via laser-sintering
creates a competitive advantage for all
industries where complex, high value
products are being produced: • Medical
• Consumer goods • Design / Architecture • Aerospace • Tooling • Automotive
• Robotics
Fondata nel 1989, con quartiere generale
in Germania, EOS è leader di tecnologia e
mercato per soluzioni integrate di e-Manufacturin g per la progettazione nelle applicazioni industriali. EOS offre un portafoglio di soluzioni modulari che includono
know-how sulle applicazioni di sistemi,
software, parametri di processo, materiali e ulteriori sviluppi. Il portafoglio si
completa con servizi, manutenzione, consulenza sulle applicazioni e formazione. Un
processo di Produzione additiva consente
la produzione veloce, flessibile e ripetibile
a livello industriale di componenti di alta
fascia di qualità. Si tratta di una tecnologia innovativa che prepara la strada
ad un cambiamento nel paradigma della
progettazione e costruzione del prodotto.
Accelera lo sviluppo dei prodotti, consente
libertà di progettazione, ottimizza la struttura delle parti – consentendo anche strutture reticolari- e l’integrazione funzionale,
e cosi facendo offre ai clienti significativi
vantaggi in termini di concorrenza.
La sinterizzazione laser è una tecnologia
di produzione additiva per strati ed è la
tecnologia chiave dell’e-Manufacturing.
consente una produzione rapida, flessibile
e redditizia di prodotti, modelli o utensili
direttamente dai dati elettronici.
Qualunque forma- produzione guidata
dalla progettazione
L’e-Manufacturing tramite la
sinterizzazione laser libera i progettisti
dai vincoli delle tecnologie di produzione
convenzionali e per questo permette la
creazione di sistemi di normalizzazione per
applicazioni di utensili.
In qualunque momento- ad ogni stadio
del ciclo di vita del prodotto
e-Manufacturing si può applicare ad ogni
stadio nel ciclo di vita di un prodotto: dal
pre-sviluppo fino alla forniture di parti di
ricambio
In qualunque luogo- adatto per tutte le
industrie
e-manufacturing tramite la
sinterizzazione laser offre un vantaggio
competitivo per tutte quelle industrie
che producono prodotti complessi e di
valore elevato: • medico • beni di consumo
•design/architettura • aerospaziale •
attrezzaggio • automobilistico
• robotica
SPONSOR GOLD |
Materialise
Materialise
Technologielaan 15
3000 Leuven
Belgium
Phone: +32 16 39 66 11
Fax: +32 16 39 66 00
software@materialise.be
www.materialise.com
We are the innovators that you can
count on
Ever since Wilfried Vancraen started
Materialise, he and all of us who work
here have dedicated ourselves to be
the innovators that others can count
on. Now, after more than 20 years of
hard work and successful collaboration with others, we are happy to report that even those who never heard
of Materialise have probably been
touched by the work made possible by
our products, services, and solutions.
Through our work with Additive
Manufacturing (AM), also known in
the popular media as 3D printing,
Materialise is helping bring great
ideas to life. We work with others to
put great products aimed at niche
markets directly into the marketplace
as well as helping make the prototypes of products later manufactured
by the millions. What’s more, through
our software, we enable others to do
the same with their own AM equipment and services. Our software is
also powering new innovations in
biomedical research, helping others make discoveries that save lives.
Furthermore, we are taking patientspecific healthcare to new heights by
working closely with surgeons for the
planning and execution of complicated surgical procedures. Our work with
surgeons and the improved medical
solutions being created with our software are getting people back on their
feet, and putting smiles back on patient’s faces. Our own in-house need
for automation, process optimization,
traceability, and quality control in
our prototyping and manufactur-
ing facilities, as well as our role as a
trusted software partner for hundreds
of companies within the AM industry,
have year after year, developed the
expertise of our software division
and contributed to the leading role
we play in optimizing AM processes.
Materialise is also putting the power of
Additive Manufacturing into the hands
of everyday people. With an easyto-use online service, now anyone
can create a truly customized object,
whether they are experts at computer modeling or beginners who are
discovering 3D printing for the first
time. We have also challenged some of
the world’s top designers to use this
technology in the creation of an award
winning line of 3D printed objects
available for sale worldwide…or from
our own store in Brussels, the world’s
first store dedicated to 3D printed design. We are Materialise and we are all
around you, making the world a better
and healthier place to live.
Siamo gli innovatori sui quali potete contare
Dal quando Wilfired Vancrean ha
creato Materialise, ci siamo dedicati
ad essere innovatori sui quali gli
altri possono contare. Oggi, dopo
più di 20 anni di duro lavoro e di
collaborazioni di successo con altri
parnter siamo felici di poter dichiarare
che anche coloro i quali non hanno
mai sentito parlare di Materialise sono
probabilmente entrati in contatto
con il lavoro reso possibile dai nostri
prodotti, servizi e soluzioni.
Attraverso il nostro lavoro con la
produzione Additiva (AM), nota
anche ai media popolari come stampa
3D, Materialise aiuta a dare vita a
grandi idee. Lavoriamo con gli altri
per portare grandi prodotti destinati
a settori di nicchia direttamente
sul mercato, e sostiene altresì la
creazione di prototipi di prodotti che
saranno successivamente prodotti a
milioni. Attraverso il nostro software
permettiamo agli altri di fare lo stesso
con i loro dispositivi e servizi di
produzione additiva. Il nostro software
sta anche alimentando importanti
innovazioni nella ricerca biomedica,
aiutando gli altri a fare scoperte che
salvano la vita. Stiamo portando a
nuove vette cure sanitarie specifiche
lavorando a stretto contatto con i
chirurghi nella pianficiazione ed
esecuzione di complesse procedure
chirurgiche. Il nostro lavoro con
i chirurghi e le migliori soluzioni
mediche create tramite i nostri
software stanno aiutando le persone
a guarire, ridando il sorriso ai
pazienti. Anno dopo anno, le nostre
esigenze interne di automazione,
ottimizzazione di processo,
tracciabilità e controllo qualità nelle
nostre strutture di prototipazione
e produzione, oltre al nostro ruolo
come fornitori software di fiducia per
centinaia di società nell’industria della
produzione additiva hanno consolidato
le competenze della nostra divisione
software contribuendo al nostro ruolo
chiave nell’ottimizzazione dei processi
di produzione additiva.
Materialise sta anche mettendo il
potere della Produzione Additiva
nelle mani delle persone comuni. Con
un servizio online facile da usare,
ora chiunque può creare un oggetto
personalizzato, sia esperti nella
modellazione sia principianti che
stanno scoprendo la stampa 3D per la
prima volta. Abbiamo anche sfidato
alcuni dei progettisti più famosi a
usare questa tecnologia per creare una
linea di oggetti 3D che ha vinto molti
premi ed è disponibile per la vendita
in tutto il mondo… o presso il nostro
negozio a Bruxelles, il primo negozio al
mondo dedicato al design stampato in
3D. Siamo Materialise e vi siamo vicini
ovunque, per rendere il mondo un
posto migliore e più sano in cui vivere.
SPONSOR GOLD |
RENISHAW s.p.a.
Renishaw s.p.a.
Via dei Prati 5,
10044 Pianezza - Torino - Italia (Italy)
Ref. Enrico Orsi
Phone: +39 011 966 10 52
Fax: +39 011 966 40 83
italy@renishaw.com
www.renishaw.it
Renishaw is a global company with core
skills in measurement, motion control,
spectroscopy and precision machining.
We develop innovative products that
significantly advance our customers’
operational performance - from improving manufacturing efficiencies and
raising product quality, to maximising
research capabilities and improving the
efficacy of medical procedures.
Our products are used for applications
as diverse as machine tool automation,
co-ordinate measurement, additive
manufacturing, gauging, Raman spectroscopy, machine calibration, position
feedback, CAD/CAM dentistry, shape
memory alloys, large scale surveying,
stereotactic neurosurgery, and medical diagnostics. In all of these areas we
aim to be a long-term partner, offering
superior products that meet our customers’ needs both today and into the
future, backed up by responsive, expert
technical and commercial support.
Renishaw è una società globale, il
cui core business risiede nei sistemi
di misura, controllo del movimento,
spettroscopia e apparecchiature di
precisione. Sviluppiamo prodotti
innovativi che permettono ai nostri
clienti di migliorare in modo significativo le prestazioni delle loro macchine,
aumentando l’efficienza, aumentando
la qualità dei prodotti, massimizzando
le capacità di ricerca e l’efficacia delle
procedure mediche.
I nostri prodotti sono utilizzati per
applicazioni molto diverse fra loro:
automazione delle macchine utensili,
misura di coordinate, produzioni
additive, spettroscopia Raman,
calibrazione, feedback di posizione,
CAD/CAM odontoiatrico, materiali
con memoria di forma, neurochirurgia
stereotassica, sondaggi su larga scala
e sistemi di diagnostica medica. In
tutti questi settori ci impegniamo per
diventare partner a lungo termine
fornendo prodotti di qualità superiore,
in grado di soddisfare le esigenze attuali e future dei clienti e un servizio
di assistenza tecnica e commerciale
competente e professionale.
SPONSOR GOLD |
SLM Solutions GmbH
Roggenhorster Straße 9c
23556 Lübeck Germany
+49 (0) 451 160820
Fax:+49 (0) 451 16082250
info@slm-solutions.com
www.slm-solutions.com
DKP s.r.l.
Via Boccaccio, 81/I
20090 Trezzano sul Naviglio (MI) - ITALY
Phone: +39 02 38230801
Fax: + 39 02 22229804
Ref. Vittorio Pedron
infoweb@dkp-med.eu
www.dkp-med.eu
Your partner for additive manufacturing in prototyping and production
We know what is essential in your business area. This know-how does support
you and your innovative product design.
The unmatched flexibility of our modular system approach and multiple choice
of consumables is the ideal match for
your requirements.
You will get and use what you need for
the customer orientated design and
small run production, exactly that and
nothing else!
Our Innovations are used to enhance
your creativity
With our SLM-systems we were the first
to process reactive metal powders like
Aluminum. Also Titanium implants for
life hip surgeries in humans were first
produced on our systems.
Our aim is to be a leader in product performance and innovation and you as our
customer will benifit majorly from that
philosophy and approach.
Il vostro partner per la produzione
additiva nella prototipazione e nella
produzione
Sappiamo ciò che è essenziale per il vostro
settore di attività. Questo know-how aiuta
voi e aiuta la progettazione di prodotti
innovativi.
La flessibilità senza uguali del nostro
approccio con sistema modulare e con
un’ampia scelte di materiali di consumo è
la risposta ideale alle vostre esigenze.
Otterrete e userete ciò che vi serve per la
vostra progettazione mirata al cliente e
per piccole produzioni, esattamente quello
e nient’altro!
Le nostre innovazioni servono a migliorare la vostra creatività
Con i nostri sistemi SLM siamo stati i primi
a trattare polveri metalliche reattive come
l’alluminio. Gli impianti in titanio per
interventi chirurgici all’anca sugli umani
sono stati prodotti la prima volta usando i
nostri impianti.
Il nostro scopo è di essere leader nelle
prestazioni del prodotto e nell’innovazione
e voi, in quanto nostri clienti trarrete i
massimi benefici dalla nostra filosofia e
dal nostro approccio.
sponsor
SILVER
SPONSOR SILVER |
4D TECH s.r.l.
4DTECH Srl
via Antonio Fossati, 3/A
33170 Pordenone ITALY
Phone:+39 0434571769
Fax: + 39 0434573871
Rif.Lucio Marcolin
info@4dtech.it
www.4dtech.it
4DTECH Srl was created out of the knowhow developed by Marcolin Guido Snc
of Pordenone in 60 years of experience
within precision mechanics sector. It’s
a company that has put down roots in a
territory with an extraordinary technical background, handed down from
generation to generation. It is located in
North Eastern Italy. Constant technological research, continuous updating and
daily contact and consultations with our
customers are the real challenges that
4DTECH is launching on the increasingly
heterogeneous market, in search for
innovative, unique, prototypal solutions with exceptionally high qualitative
standards. It’s a new dimension in the
production that transforms the design
idea into reality, using sophisticated cutting edge 4th generation technology.
Mission
Rise to market challenges, transforming
even the most extreme, ambitious ideas
into reality and allow our designers total
freedom of creativity and design, with
no constraints or limitations deriving
from traditional production processes.
4DTECH S.r.l. nasce dal know-how maturato in 60 anni di esperienza nel settore
della meccanica di precisione della Marcolin Guido Snc di Pordenone. Una realtà
che affonda le sue radici in un territorio
con uno straordinario bagaglio tecnico e di
tradizione, tramandato di generazione in
generazione. Il nord-est Italia. La costante
ricerca tecnologica, l’aggiornamento
continuo e il confronto quotidiano con i
clienti, sono le sfide reali che 4DTECH lancia ad un mercato sempre più eterogeneo,
alla ricerca di soluzioni innovative, uniche,
prototipali e dagli elevatissimi standard
qualitativi. Una nuova dimensione produttiva che trasforma il pensiero
progettuale in realtà, attraverso l’impiego
di sofisticate tecnologie avanzate, di 4a
generazione.
Mission
Accogliere le sfide del mercato trasformando in realtà anche le idee più estreme
ed ambiziose e permettere ai progettisti
una totale libertà creativa e progettuale,
senza vincoli o limiti derivanti dai processi
produttivi tradizionali.
SPONSOR SILVER |
CAM2 s.r.l.
CAM2 s.r.l.
Corso Alemanno Canonico, 34/A
10095 Grugliasco (TO) - Italy
Phone:+39 011 9588588
Fax. +39 011 9588590
Ref. Alberto Castiglioni
alberto.castiglioni@faroeuope.com
www.cam2.it
FARO develops and markets portable
CMMs (coordinate measuring machines)
and 3D imaging devices that ensure
high precision 3D measurements
and documentation. Used for
applications such as inspection, reverse
engineering, alignment, calibration,
and as-built documentation, FARO’s
3D measurement technology allows
companies to maximize efficiencies
and improve production and quality
assurance processes.
Worldwide, approximately 15,000
customers are operating more than
30,000 installations of FARO’s systems.
The Company’s global headquarters is
located in Lake Mary, Fla., its European
head office in Stuttgart, Germany and
its Asia/Pacific head office in Singapore.
FARO has branches in Brazil, Mexico,
Germany, United Kingdom, France,
Spain, Italy, Poland, Netherlands,
Turkey, India, China, Singapore,
Malaysia, Vietnam, Thailand, South
Korea and Japan.
CAM2 sviluppa e commercializza macchine
di misura a coordinate (CMM) portatili e
dispositivi di imaging 3D che garantiscono
misurazioni e documentazione 3D
di alta precisione. Utilizzate per
applicazioni quali ispezione, reverse
engineering, allineamento, calibrazione e
documentazione as-built, la tecnologia di
misura 3D di CAM2 consente alle aziende
di massimizzare l’efficienza e migliorare i
processi di produzione e controllo qualità.
In tutto il mondo sono circa 15.000 i clienti
che utilizzano i più di 30.000 sistemi CAM2
installati. L’Headquarters dell’azienda si
trova a Lake Mary, Florida/USA, mentre
la sede centrale europea è a Stoccarda
(Germania) e quella asiatica a Singapore.
CAM2 ha filiali in Brasile, Messico,
Germania, Regno Unito, Francia, Spagna,
Italia, Polonia, Paesi Bassi, Turchia,
India, Cina, Singapore, Malesia, Vietnam,
Tailandia, Corea del Sud e Giappone.
SPONSOR SILVER |
Carpenter Powder
Products AB
P O Box 45,
SE-644 21 Torshälla Sweden
Phone: +46 16 15 01 00
Fax: +46 16 35 76 20
CPPAB@Cartech.com
www.cartech.com
Carpenter Technology (Europe) S.A.
Rue Edouard Belin 11
1435 Mont-Saint-Guibert Belgium
Phone: +32-10-686-010
Fax: +32-10-686-020
intlservice@cartech.coEFESTO LAB
EF-
Ref. Italy and RoE:
Maria-Cruz Ruiz
Sales Manager – Southern Europe
Phone: + 32.478.204.274
mruiz@cartech.com
Carpenter Powder Products (CPP)
is a business unit of the US-based
Carpenter Technology Group
(NYSE:CRS).
CPP is manufacturer of gas atomised
powders with production facilities in
Sweden and USA.
The product range includes Fe-, Niand Co-base alloys such as stainless-,
tool- and other alloyed steels, high
temperature-, hardfacing- and super
alloys.
Application areas are for example
cold work and cutting tools, MIM,
HIP, brazing, all methods of thermal
spraying, laser cladding, additive
manufacturing and PTA-welding.
The products end up in many different industrial fields like automotive industry, oil & gas, aerospace,
tool making, medical, gas turbine
refurbishment, pulp and paper and
many other.
Carpenter Powder Products (CPP)
è un’unità aziendale della statunitense Carpenter Technology Group
(NYSE:CRS).
CPP è una società che produce polveri
atomizzata con gas nei suoi impianti
in Svezia e negli Stati Uniti. La gamma
dei prodotti include leghe a base di Fe-,
Ni-, e Co, acciai
inossidabili, altri acciai alligati, ad
alte temperature, stellitatura e super
leghe.
Queste trovano applicazione ad esempio negli utensili per lavorazioni a
freddo e taglio, MIM, HIP, brasatura,
tutti i metodi di spruzzatura a caldo,
rivestimenti laser, fabbricazione additiva e fusione PTA.
I prodotti sono destinati a svariati
campi applicativi quali l’industria
automobilistica, petrolio e gas, aerospaziale, costruzione attrezzi, fornitura
turbine a gas, cellulosa e carta e molte
altre.
SPONSOR SILVER |
ESTO LAB S.R.L.
Piazza Gaetano Salvemini, 4/7
PADOVA (ITALY) Visualizza mappa
Telefono: +39 049 664035
E-mail: info@efestolab.com
www.efestolab.com
Efesto Lab è una realtà rivolta alla ricerca
ed all’analisi delle innovazioni per poter
ampliare la qualità e l’offerta nel campo
della prototipazione rapida, unendo la
tecnologia più all’avanguardia alla finitura
artigianale di ogni singolo pezzo.
Hephaestus Lab is a reality dedicated to
research and analysis of innovations in order
to expand the quality and availability in the
field of rapid prototyping, combining the latest
technology with crafted finishing of each piece
www.hoganas.com
Digital Metal® belongs to the global Höganäs Group,
which is headquartered in Sweden and best known
for its pioneering work in metal powders.
There is an obvious and natural connection between
3D metal printing and the Group’s core business, but
the advantages do not end there. Being part of a much
larger organisation guarantees our financial stability,
and makes Digital Metal a partner you can rely on in
the long term.
In addition, we leverage our parent company’s worldwide presence and well-developed supply chain to
ensure deliveries.
Digital Metal® appartiene al gruppo globale Höganäs, che
ha sede in Svezia ed è meglio conosciuto per il suo lavoro
pionieristico nelle polveri metalliche.
Vi è una connessione ovvia e naturale tra la stampa 3D in
metallo e il core business del Gruppo, ma i vantaggi non
finiscono qui. Essere parte di un’organizzazione molto più
grande garantisce la stabilità finanziaria, e fa di Digital
Metal un partner su cui contare nel lungo periodo.
Inoltre, la presenza in tutto il mondo della società madre
e la supply chain ben sviluppata sono una garanzia per le
consegne.
SPONSOR SILVER |
PROTOSERVICE s.r.l.
ProtoService s.r.l.
Strada Prinzera, 17
43045 Fornovo di Taro - PR - Italy
Ref. Cesare Zanetti
Phone:+39 39 0525 401281
Fax + 39 0525 406949
proto@protoservice.it
www.protoservice.it
Protoservice was born in 1997, when in Italy rapid prototyping was at the beginning. At present, fifteen years from
its foundation, it is possible to understand how the search
for quality, the ongoing experimentation of new materials
and innovative technologies has enabled Protoservice to be
a technological partner for many companies that have understood the benefits of rapid prototyping. Throughout the
years, the company based in Parma, having as its precise
goal the creation of a consolidated collaboration relationship with its customers and in order to respond to increasingly different and articulate issues, has invested greatly,
extending the range of offered services. ProtoService was
one of the first companies to promote rapid manufacturing with DMLS technology for the manufacturing of
final parts in metal alloys. The parts manufactured with
DMLS technology show physical features and mechanical
properties comparable to those obtained with traditional
technologies, but they can have especially complex geometries with undercuts and cavities without the need for
post-treatments. The evolution from rapid prototyper to
rapid manufacturer is part of the more recent history, but
it is already a consolidated technology for Protoservice that
feels is ready for new challenges. Currently, Protoservice’s
machine park consists of one Q10 Arcam EBM machine to
which it will add another by the end of September 2014,
four EOS laser systems, one of which is newly installed,
two Renishaw systems which will be added a third in end of
September 2014.
To this is added a wire cutting machine for cutting support
and grinding equipment for the plates. The purchase of a
vacuum furnace dedicated to the processing of titanium is
in the definition phase, which will be installed by the first
quarter 2015.
Protoservice nasce nel 1997 quando, in Italia, la prototipazione rapida muove i primi passi. Oggi, a quindici anni dalla
fondazione, si comprende come la ricerca della qualità, la
continua sperimentazione di nuovi materiali e di tecniche
innovative, abbiano consentito a ProtoService di essere
partner tecnologico di molte aziende che hanno compreso i
benefici del rapid prototyping. Nel corso degli anni l’azienda
parmense, avendo come chiaro obiettivo la creazione di un
consolidato rapporto di collaborazione con i propri clienti e al
fine di rispondere a domande sempre differenti e articolate,
ha investito con forza ampliando la gamma dei servizi offerti.
ProtoService è stata tra i primi a promuovere il rapid manufacturing con tecnologia DMLS per la produzione di parti
definitive in leghe metalliche. I pezzi prodotti con il processo
DMLS mostrano caratteristiche fisiche e proprietà meccaniche
sovrapponibili a quelle ottenute da tecnologie tradizionali,
ma possono avere geometrie particolarmente complesse,
con sottosquadri e cavità senza l’ausilio di post-lavorazioni.
L’evoluzione da rapid prototyper a rapid manufacturer fa
parte della storia più recente, ma è già tecnologia consolidata
per Protoservice che si ritiene già pronta a nuove sfide.
Attualmente, il parco macchine di Protoservice è composto da
1 macchina EBM Q10 Arcam a cui se ne aggiungerà un’altra
entro fine Settembre 2014 , 4 sistemi laser EOS, di cui uno di
recente installazione, 2 impianti Renishaw cui se ne aggiungerà un terzo a fine settembre 2014.
A ciò si aggiunge una macchina taglio a filo per il taglio dei
supporti e un’attrezzatura di rettifica per le piastre. E’ in
fase di definizione l’acquisto di un forno sottovuoto dedicato
al trattamento del titanio, che verrà installato entro il primo
trimestre 2015
SPONSOR SILVER |
R.B. Srl
Via Luigi Gavioli, 1 - 41037 Mirandola (MO)
Tel 0535 26742 / 0535 98276
Fax 0535 26698
Commerciale info@rbsrl.it
www.rbsrl.it
R.B. s.r.l. was born in 1973 in the heart of the biomedical industry district of Mirandola, in the
province of Modena, is active in the sector of the
construction of injection moulds for plastic materials. After these decades of work in various areas of
this activity, we now have real practical experience
in the manufacture of plant whose purpose is to
optimise production cycles.
The headquarters occupies an area of about 3,000
square metres of covered space, partly used by
B.B.G. s.r.l., a firm that belongs to the same group
and specialises in precision engineering jobs using
latest generation technologies.
Our main objective is to do the best we can to meet
our customers’ day-by-day requirements, which can
only be done by following a policy of active collaboration with leading companies in parallel sectors.
By doing so R.B. s.r.l. is able to provide a complete
service.
Our company has certified its Quality System on the
basis of the UNI EN ISO 9001:2000 standards, gaining
the TUV mark as early as 2001.
R.B. s.r.l. azienda nata nel 1973 nel cuore del distretto biomedicale di Mirandola (MO), operante nel
settore della costruzione stampi ad iniezione per materie plastiche,dopo alcuni decenni di attività svolti
in vari settori, oggi vanta una concreta e tangibile
esperienza nel realizzare impianti mirati ad ottimizzare cicli produttivi.
La sede è dislocata su di un’area di oltre 3.000 mq coperti, utilizzati in parte da B.B.G. s.r.l azienda facente
parte dello stesso gruppo, specializzata in lavorazioni
meccaniche di precisione ottenute mediante l’utilizzo
di tecnologie di ultima generazione.
Come obiettivo principale ci impegniamo a soddisfare al meglio le richieste quotidiane dei nostri
clienti: tutto questo grazie ad attive collaborazioni
con aziende leader di settori paralleli, tramite i quali
possiamo fornire un servizio più completo.
L’azienda ha certificato il proprio Sistema Qualità in
base alle normative UNI EN ISO 9001:2000 con marchio TUV già nell’anno 2001.
SPONSOR SILVER |
Vacuum S.p.A.
Trattamenti Termici in Vuoto
Vacuum S.p.A.
Via Mario Pagano, 10-18
20090 TREZZANO SUL NAVIGLIO (MI)
Phone:+39 02 9443451
Fax. +39 02 4456654
info@vacuum.it
www.vacuum.it
SPONSOR SILVER |
ZARE
ZARE S.r.l. Unipersonale
Via 4 Novembre, 37/A
42022 Boretto (RE)
TEL.(+39) 0522-704745
(+39) 0522-965106
info@zare.it
www.zare.it
Over 50 years of experience and
expertise in the precision mechanics but always attentive to process
innovations.
Zare enters the rapid prototyping
industry in 2009 and quickly consolidates the skills and expands the
machine park by inserting the metal
sintering and systems for prototyping monolithic large format.
The year 2011 is the time of the
inauguration of the area dedicated
to post-process, the finish of the
prototypes and the preparation of
medical and dental models. Zare
completes the offer with the services
of particular surface finish, reverse
engineering, laminated, lightweight
fibers. Accurate and reliable Zare
faces the challenge of international
positioning.
Oltre 50 anni di esperienza e professionalità nella meccanica di precisione
ma sempre attenti alle innovazioni di
processo.
Zare entra nel settore della prototipazione rapida nel 2009 e rapidamente
consolida le competenze ed amplia il
parco macchine inserendo la sinterizzazione dei metalli ed impianti per la
prototipazione monolitica a grande
formato.
Il 2011 è il momento dell’inaugurazione
del dell’area dedicata al post-processo,
alla finitura dei prototipi ed alla preparazione di modelli dentali e medicali.
Zare completa l’offerta con i servizi
di finitura superficiale particolare,
reverse engineering, laminati, fibre
leggere. Precisa ed affidabile Zare
affronta la sfida del posizionamento
internazionale.
ERIS EVENTI &
ERIS PROGRAM srl
VIA PRINCIPE EUGENIO, 43
20155 MILANO
TEL.+39 02 3108121
FAX +39 0233611129
E-MAL: INFO@ERISPROGRAM.COM
WWW.ERISPROGRAM.COM
WWW.ERISEVENTI.COM
www.eriseventi.com