evtrans
Transcription
evtrans
Molecular Transistors Mark A. Reed Depts. of Applied Physics and Electrical Engineering Yale Institute for Nanoscience & Quantum Engineering Hyunwook Song Department of Applied Physics, Kyung Hee University Takhee Lee Department of Physics, Seoul National University with: Youngsang Kim and Heejun Jeong (Hanyang), Ilona Kretzschmar (Yale/CCNY), Wenyong Wang (Yale/Wyoming), Sonya Sawtelle and Zak Kolbos (Yale) Purdue Physics seminar West Lafayette, IN September 18, 2015 M. Reed (Yale) Mesoscopics Reed Lab Biosensors Device scaling Electrokinetic physics Bioelectronic interfaces Nanoionic and & applications nanofluidic devices Molecular transport Purdue Physics seminar West Lafayette, IN September 18, 2015 M. Reed (Yale) Single Molecule Measurements Cui et. al, Science 294, 571 (2001) Reed et. al, Science 278, 252 (1997) Purdue Physics seminar Reichert et. al, PRL 88, 176804 (2002), Proc. Bad Honnef (2003) West Lafayette, IN September 18, 2015 M. Reed (Yale) Challenge: a transistor where the molecular orbital structure is modulated Fabrication & design challenges Molecular identification in the junction Orbital level modulation Molecular engineering Purdue Physics seminar West Lafayette, IN September 18, 2015 M. Reed (Yale) Spectroscopic methods (control: alkane SAMs) Length dependence with alkanes T independent tunneling IETS 100 Jd (A/cm) I (nA) 10-2 (80-300K) 10 1 C12 -0.5 0.0 0.5 1.0 10-9 10-11 -4 10 10-6 0.1 -1.0 1.0V 0.9V 0.8V 0.7V 0.6V 0.5V C8 β = 0.79 Å-1 I(V,T) 10-8 12 0.4V 0.3V 0.2V 0.1V 14 10-13 C12 C16 16 18 Jd2 (A) 100 20 22 24 10-15 Length (Å) V (V) W. Wang et al, PRB 68, 035416 (2003); also see H.B. Akkerman et al, Nature 441, 69 (2006) Purdue Physics seminar West Lafayette, IN September 18, 2015 M. Reed (Yale) Inelastic Electron Tunneling Spectroscopy (IETS) Tunneling electrons couple with vibrational modes of molecule Elastic tunneling eV < hν I - hν V hν σe G = dI/dV Inelastic tunneling eV > hν σ = σe + σie - hν hν dG/dV = d2I/dV2 σe σie - hν hν Purdue Physics seminar V West Lafayette, IN September 18, 2015 V M. Reed (Yale) IETS on SAMs Au S Au-S stretching (33 meV) C-C stretching (133 meV) -1 0 1000 2000 4000 cm 3000 20.0µ S-C stretching (80 meV) d2I/dV2 (A/V2) 15.0µ CH2 wagging (158 meV) 10.0µ 5.0µ S-H Si 0.0 -5.0µ S Au CH2 rocking (107 meV) 0.0 0.1 Au O-H H H Si-H CH2 stretching (357 meV) CH2 scissoring (186 meV) 0.2 0.3 0.4 C C Scissoring Rocking 0.5 V (V) C C 2ω @ T = 4 K Stretching Wagging Wang et. al, NanoLetters 4, 643 (2004) Purdue Physics seminar West Lafayette, IN September 18, 2015 M. Reed (Yale) temperature & modulation dependencies, non-resonant 0 20 -1 1000 2000 3000 4000 cm experiment (4K) Experimental result theory (NLSQ) NLQS 80K 15 10 Wmod=1.7VRMS 5 saturation due to intrinsic linewidth 0 d2I/dV2 (A/V2) FWHM (mV) 80.0µ 65K 60.0µ 50K 40.0µ 35K 20.0µ 20K 1 2 3 4 5 6 7 8 9 10 11 12 AC modulation (RMS value) (mV) 4.2K 0.0 0.0 0.1 0.2 0.3 0.4 0.5 2 2 2 W = Wmodulation + Wthermal + Wintrinsic V (V) Vrms = 8.7 mV Wtherm=5.4kBT W intrinsic, C-C = 3.73 ± 0.98 meV Purdue Physics seminar West Lafayette, IN September 18, 2015 M. Reed (Yale) Molecular transistor structures LUMO EF Source Drain HOMO Purdue Physics seminar West Lafayette, IN September 18, 2015 M. Reed (Yale) Fabrication Drain (Au) Source (Au) Gate (Al2O3/Al) electromigrated break junction technique in a vacuum at 4.2 K, leads precoated underlying Al2O3/Al gate >5K devices, ~50% open, ~30% CB & other, ~10% asymmetric, ~10% operational, ~ 10% of those show significant gating Purdue Physics seminar West Lafayette, IN Courtesy Dan Ralph (Cornell) September 18, 2015 M. Reed (Yale) EMBJ improvements Active EMBJ, feedback; Spontaneous self-break Purdue Physics seminar West Lafayette, IN September 18, 2015 M. Reed (Yale) Single Molecule Junctions ODT (n=8), BDT consistent single molecule G 10 nm Au GBDT = 1.32 (±0.21) × 10-2 G0 Au 1 µm Low bias (0-0.1V) conductance Purdue Physics seminar West Lafayette, IN September 18, 2015 M. Reed (Yale) Single molecule junctions G ∝ exp(-βd) Length dependence T independent tunneling Purdue Physics seminar West Lafayette, IN September 18, 2015 M. Reed (Yale) 25 Single molecule junctions T independent tunneling G (µS) Length dependence I (nA) 1 0 -25 -0.1 0.1 BDT DBDT TBDT 0.0 0.1 V (V) 0.01 β = 1.54 per a phenyl ring (= 0.36 Å-1) 1 2 3 Number of Phenyls Purdue Physics seminar West Lafayette, IN September 18, 2015 M. Reed (Yale) Transition Voltage Spectroscopy (TVS) In high bias (FN tunneling), 4d (2mΦ B 3 )1 / 2 I ∝ V exp − 3 eV 2 rewriting, 4d (2mΦ B )1 / 2 1 I ln 2 ∝ − 3e V V 3 In low bias (direct tunneling), 1/ 2 I 1 2 d ( 2 mΦ B ) ln 2 ∝ ln − V V J.M. Beebe et al, Phys. Rev. Lett. 97, 026801 (2006) also Beebe, ACS Nano 2, 827 (2008); Roth, Appl. Phys. Lett. 92, 042107 (2008); Wang, JACS 131, 5980 (2009); Frisbie, Science 320, 1482 (2008); Yu, J. Phys.: Condens. Matter 20, 374114 (2008); Liu, ACS Nano 2, 2315 (2008); ...... Purdue Physics seminar West Lafayette, IN September 18, 2015 M. Reed (Yale) TVS: Barrier (FN) Tunneling versus Coherent Transport ΦB for HOMO transport FN picture is physically incorrect The coherent “resonant tail” picture surprisingly gives very similar “FN-type” behavior (M. Araidai and M. Tsukada, Phys Rev. B 81, 235114 (2010); J. Chen et al, Phys. Rev. B 82, 121412 (2010)) Orbital energies may be different by ~13% (I. Baldea, Chem Phys. 377, 15 (2010)) Purdue Physics seminar West Lafayette, IN September 18, 2015 M. Reed (Yale) TVS: Barrier Tunneling versus Coherent Transport Coherent model predicts length independent TVS Vtrans , contradicts FN model (Huisman et al, Nano Lett. 9, 3909 (2009)) H. Song et al. J. Phys. Chem. C 114, 20431 (2010) Vtrans = 1.86 V 2.4 -16 C8 C9 -18 C12 5 -22 -24 0 -5 0 10 -1 2.0 DC8 DC9 DC11 DC12 11 12 DC10 Vtrans (V) C11 -20 I (nA) ln(I/V2) C10 1.6 C8 -2 20 0 V (V) 1.2 2 30 8 9 10 Number of Carbon 1/V (V ) Purdue Physics seminar West Lafayette, IN September 18, 2015 M. Reed (Yale) …. however, it should change with varying degree of conjugation (vs saturated) SH BDT 1.2 -12 SH BDT Vtrans (V) ln(I/V2) DBDT -15 TBDT 1 SH SH 0.9 SH SH I (µA) BDT -18 DBDT 0 TBDT 0.6 -1 0 DBDT 5 10 1/V (V-1) -1 0 V (V) 15 TBDT 1 1 20 2 3 Number of Phenyls Vtrans decreases with extended conjugation length (HOMO−LUMO gap of π-conjugated organic molecules decreases with increase in conjugation length) H. Song et al, J. Appl. Phys. 109, 102419 (2011). Purdue Physics seminar West Lafayette, IN September 18, 2015 M. Reed (Yale) I(V) fit F (offset, linewidth) 1.5 1.0 I (µA) 0.5 where, E0 (= |Ef – Em|) Γ (= ΓL + ΓR) I (V) plot Experiment Fit HS SH 0.0 -0.5 E0 = 0.92 eV Γ = 0.046 meV -1.0 -1.5 -2 -1 0 1 2 V (V) PRB 82, 121412 (2010) [ |Ef – Em|/Vtrans ] expt = 0.87 Experiment Fit ln(I/V2) -14.0 -14.5 -15.0 FN plot Vtrans = 1.06 V -15.5 For symmetric molecular junctions, [ |Ef – Em|/Vtrans ] theory ~ 0.87 Purdue Physics seminar West Lafayette, IN -4 -2 0 2 -1 1/V (V ) September 18, 2015 M. Reed (Yale) 4 Transistor transfer characteristics, ODT a 15 b -8 Al2O3/Al 10 High V Low V Au VG = -3.3 V -10 Au VG = -2.8 V 5 -12 D ln(I/V2) I (nA) S G 0 VG = -3.3 V VG = -2.1 V VG = -1.6 V VG = -1.1 V -18 VG = -2.1 V VG = 0.0 V VG = -1.6 V -10 -15 -2 -14 -16 VG = -2.8 V VG = -2.6 V -5 VG = -2.6 V VG = -1.1 V VG = 0.0 V -1 0 1 -20 -22 2 V (V) 0 10 20 -1 30 1/V (V ) d H. Song et al, Nature 462, 1039 (2009) Purdue Physics seminar West Lafayette, IN September 18, 2015 M. Reed (Yale) Gate dependence of Vtrans, ODT ( ) ( c ) d ΦB 1.6 eVtrans (eV) 1.6 FND EF eV Drain Source 1.4 ∆eVtrans/∆VG = +0.25 eV/V 1.3 B D B 1.5 eVG,eff HOMO 1.5 eV (eV) 1.7 eV D eV S S A C 1.4 eV D eV S S 1.3 D D 1.2 1.2 1.1 -3.2 -2.8 -2.4 -2.0 -1.6 -1.2 VG (V) C A DT -0.8 -0.6 -0.4 -0.2 dln(I/V2)/d(1/V) 0.25 -0.3 eVG,eff (eV) Vtrans scales linearly and reversibly with VG Positive α for p-type (HOMO); negative α for n-type (LUMO) Vtrans,0 = 1.93 V for ODT, which approximates EF - EHOMO at zero gate bias Purdue Physics seminar West Lafayette, IN September 18, 2015 M. Reed (Yale) Gate lever arm – screening is dominant S.S. Datta et al, Phys Rev. B79, 205404 (2009) Purdue Physics seminar West Lafayette, IN September 18, 2015 M. Reed (Yale) Transistor transfer characteristics, BDT D b 6 0 -2 -6 S D G -1 0 1 V (V) D c 2.0 Low V VG = -3 V -12 -14 -16 -4 S 1.6 eVtrans (eV) 2 D High V -10 ln(I/V2) 4 I (µA) -8 VG = -3 V VG = -2 V VG = -1V VG = 0 V VG = 1 V VG = 2 V VG = 3 V S S ∆eVtrans/∆VG = +0.22 eV/V 0.23 1.2 1.4 FN 1.2 1.0 0.8 DT -0.5 0.0 0.5 0.8 VG = 3 V 0.4 -18 0 5 10 15 -1 20 -0.31 eV (eV) a eVG,eff (eV) -3 -2 -1 1/V (V ) 0 1 2 3 VG (V) H. Song et al, Nature 462, 1039 (2009) Purdue Physics seminar West Lafayette, IN September 18, 2015 M. Reed (Yale) “n-type” (e.g., LUMO) Purdue Physics seminar West Lafayette, IN September 18, 2015 M. Reed (Yale) Complementary transistors HS Purdue Physics seminar SH West Lafayette, IN September 18, 2015 M. Reed (Yale) Single Molecule IETS Au-ODT-Au I-V Au-BDT-Au DC dI/dV d2I/dV2 H. Song et al, Appl. Phys. Lett. 94, 103110 (2009) Purdue Physics seminar West Lafayette, IN September 18, 2015 M. Reed (Yale) 15 7.8 mV 7.2 mV 6.1 mV 4.9 mV 4.3 mV 3.8 mV 0.34 FWHM (mV) 20 0.36 0.38 V (V) 40 30 ν(C-H) δ(CH2) ν(C-H) 50 K 40 K 30 K 20 K 10 K 4.2 K 0.34 0.36 0.38 V (V) 20 10 5 3 50 ν(C-H) (d2I/dV2)/(dI/dV) d 25 (d2I/dV2)/(dI/dV) FWHM (mV) c v(C-S) δ(CH2) v(C-C) ν(Au-S) ODT γ(CH2) ODT IETS 4.2 K 4 5 6 7 8 AC modulation (RMS value) (mV) Purdue Physics seminar West Lafayette, IN 10 0 7.8 mV 10 20 30 40 50 Temperature (K) September 18, 2015 M. Reed (Yale) IETS (VG), ODT Wavenumbers (cm-1) 0.5 eVG,eff = -0.75 eV eVG,eff = -0.5 eV eVG,eff = -0.25 eV eVG,eff = 0 eV b (d2I/dV2)/(dI/dV) 0.37 0.8 0.4 ν(C-H) 0.3 δs(CH2) ν(C-S) 1.0 δr(CH2) ν(C-C) γw(CH2) ν(Au-S) (d2I/dV2)/(dI/dV) (V-1) 1.5 500 1000 1500 2000 2500 3000 3500 eV (eV) 0 ν(C-H) a 0.2 δs(CH2) ν(C-C) 0.1 D S 0.0 0.1 δr(CH2) ν(Au-S) G 0.0 ν(C-S) γw(CH2) 0.2 0.3 V (V) 0.4 0.0 0.00 -0.25 -0.50 eVG,eff (eV) -0.75 ODT: no electrode-orbital coupling, far from resonant system BDT? Purdue Physics seminar West Lafayette, IN September 18, 2015 M. Reed (Yale) Near-resonant IETS (Persson & Baratoff, PRL 59, 339 (1987), & others) near eV = Ω for a molecular vibration, the change η in the total normalized tunneling conductance is (orbital energy EM , width Γ, coupling δE ); ( EM − EF − Ω) 2 − (Γ / 2) 2 η θ (eV − Ω) ( EM − EF ) 2 + (Γ / 2) ( EM − EF − Ω) 2 + (Γ / 2) 2 ( EM − EF − Ω)Γ eV − Ω 1 − ln ∆ π ( EM − EF − Ω) 2 + (Γ / 2) 2 δ E2 Implications: Far from resonant – no change in intensity, for either small linewidth or large spacing Near resonant – enhancement in intensity, increasingly “Fanotype” lineshapes Mii et al, Phys Rev B 68, 205406 (2003) Purdue Physics seminar West Lafayette, IN September 18, 2015 M. Reed (Yale) BDT: resonantly enhanced IETS Wavenumbers (cm-1) 2000 2500 dip 0.2 S 0 6 S HOMO VG,eff D 3 0 eVG,eff = -0.22 eV 40 3 2 1 0 S HOMO D VG,eff 20 0 dip dip 0.1 0.0 Purdue Physics seminar 0.1 V (V) 0.2 -0.35 -0.40 -0.45 eVG,eff (eV) c 5 ν(18a) Persson & Baratoff model Experiment Fit 4 3 0.3 West Lafayette, IN γ(C-H) peak D G ν(18a) peak eVG,eff = -0.66 eV S ν(8a) peak eVG,eff = 0 eV -0.22 eV -0.66 eV d2I/dV2 (a.u.) 1 eV (eV) D HOMO VG,eff eVG,eff = 0 eV 3 2 1 0 16.5 2 Ω 0 (d2I/dV2)/(dI/dV) -5.1 (d2I/dV2)/(dI/dV) (V-1) (d2I/dV2)/(dI/dV) (V-1) 1 1500 b η (%) 2 1000 ν(18a) ν(Au-S) 3 500 γ(C-H) 0 ν(8a) a 0.12 -0.3 -0.4 V (V) -0.5 eVG,eff (eV) September 18, 2015 0.16 -0.6 M. Reed (Yale) Molecular engineering: p-type transport (thiol endgroup) Source S LUMO X S Drain EF I V Gate Source HOMO Drain 4 0 -2 +0 . 1.1 Vtrans I (µA) 08 1.2 2 -8 VG = -2.4 V -2.0 V -1.6 V -1.2 V -0.8 V -0.4 V 0V 0.4 V 0.8 V 1.2 V 1.6 V 2.0 V 2.4 V 2.8 V = ln(I/V2) (a.u.) VG -4 SH: e-donating character shifts frontier MOs upwards HOMO closest to EF α 1.0 0.9 -1 -6 0 V (V) -4 0.8 -3 -2 -1 0 1 2 3 VG (V) 1 -2 0 -1 2 4 6 8 1/V (V ) Purdue Physics seminar West Lafayette, IN September 18, 2015 M. Reed (Yale) Substituent p-type molecules BDT2Me SH 2 +0 .1 3 0.9 = HS 1.0 Vtrans (V) CH3 ln(I/V2) (a.u.) H3C α 0.8 F 0 1.4 4 2 b 5 HS SH 0.9 Cl 0.7 α -3 -2 -1 0 VG (V) 5 Cl Purdue Physics seminar 0 2 4 1/V (V-1) West Lafayette, IN 8 Cl HS 1.0 0.8 6 Cl 6 1 8 VG = -2.4 V -2.2 V -2.0 V -1.8 V -1.6 V -1.4 V -1.2 V -1.0 V -0.8 V -0.6 V -0.4 V -0.2 V 0V 0.2 V 0.4 V 0.6 V SH Cl Cl VG = -2.0 V -1.5 V -1.0 V -0.5 V 0V 0.5 V 1.0 V BDT4Cl 1.6 Vtrans (V) Cl d = Cl F Vtrans (V) F 4 1/V (V-1) BDT1Me 4 ln(I/V2) (a.u.) SH α 1.1 2 SH F HS 0 8 CH3 HS F 6 1/V (V-1) 3 1.2 -2 -1 0 1 2 VG (V) ln(I/V2) (a.u.) SH 1.3 0 1 VG (V) +0 .0 9 HS 2 VG = -2.0 V -1.5 V -1.0 V -0.5 V 0V 0.5 V 1.0 V 1.5 V 2.0 V 2.5 V BDT4F 0.7 -1 F +0 .0 7 VG = -0.6 V -0.4 V -0.2 V 0V 0.2 V 0.4 V 0.6 V 0.8 V 1.0 V 1.2 V SH = H3C HS +0 .1 6 1 SH 1.4 = SH HS F F 4 Vtrans (V) HS c CH3 1 ln(I/V2) (a.u.) a CH3 α 1.2 1.0 -2 -1 0 1 2 VG (V) 0 September 18, 2015 2 4 6 8 1/V (V-1) M. Reed (Yale) α 0.9 0 1/V (V-1) 2 -1 0 1 VG (V) 4 6 -6 VG = -0.6 V -0.4 V -0.2 V 0V 0.2 V 0.4 V 0.6 V 0.8 V 1.0 V 1.2 V -2 0 1/V (V-1) +0 .1 3 0 VG (V) 4 6 8 +0 .0 9 1.1 α 1.0 0.9 -4 1 -2 -1 0 1 2 3 VG (V) -2 0 1/V (V-1) 2 2 4 West Lafayette, IN +0 .1 4 = -1 4 0 VG (V) 1 6 8 -8 -1 -6 0 V (V) -4 1.2 1.1 1.0 0.9 0.8 0.7 α -1 1 -2 0 1/V (V-1) 2 4 0 VG (V) 6 1 8 VG = -2.1 V -1.8 V -1.5 V -1.2 V -0.9 V -0.6 V -0.3 V 0V 0.3 V 0.6 V 0.9 V 1.2 V 1.5 V 1.8 V 2.1 V 2.4 V 1.2 0 V (V) 0 1/V (V-1) 0 -6 1 1.3 -1 -2 3 = 2 Vtrans I (µA) -1 1 -4 -4 -3 = I (µA) Vtrans 0 V (V) 0.7 1 6 α 0.8 -6 0 V (V) VG = -0.4 V -0.2 V 0V 0.2 V 0.4 V 0.6 V 0.8 V 0.7 -1 -6 ln(I/V2) (a.u.) 0.9 -8 8 -1 +0 .2 1 -2 -2 Purdue Physics seminar α = -4 0 -6 0.9 0.8 Vtrans 1 I (µA) 0 V (V) ln(I/V2) (a.u.) -1 1.0 3 2 1 0 -1 -2 -3 1.0 0 VG = -0.9 V -0.6 V -0.3 V 0V 0.3 V 0.6 V 0.9 V 1.2 V 1.5 V 1.8 V 0.8 2 -8 1.1 3 -3 4 -4 6 Vtrans 1.0 I (µA) +0 .1 4 1.1 -6 ln(I/V2) (a.u.) -8 1.2 = 3 2 1 0 -1 -2 -3 Vtrans I (µA) ln(I/V2) (a.u.) BDT,2Me ln(I/V2) (a.u.) VG = -1 V -0.5 V 0V 0.5 V 1V 1.5 V 6 September 18, 2015 M. Reed (Yale) Substituent p-type molecules e-donating groups CH3 HS SH e-withdrawing groups 1.4 1 LUMO 1.3 H3C EF CH3 SH 2 Vtrans,0 (V) HS 1.2 Source HOMO Drain 1.1 X = 4Cl X = 4F 1.0 HS SH 3 0.9 X = CH3 α = +0.06 to +0.23 X = 2CH3 F F 0.8 1 HS F F Cl Cl HS Cl SH 4 SH 5 2 3 4 5 Molecules Cl Purdue Physics seminar West Lafayette, IN September 18, 2015 M. Reed (Yale) Molecular engineering: n-type transport (cyanide endgroup) X Source NC LUMO EF CN Drain I V Source Gate HOMO VG ln(I/V2) (a.u.) Drain CN: e-withdrawing character shifts frontier MOs downwards LUMO closest to EF 0.1 1.2 1.0 . -0 14 Vtrans = I (µA) α 0.0 0.8 0.6 -0.1 -8 -1 -6 0 V (V) -4 1 -3 -2 -1 0 1 2 3 VG (V) -2 0 -1 2 4 6 8 VG = 2.7 V 2.4 V 2.1 V 1.8 V 1.5 V 1.2 V 0.9 V 0.6 V 0.3 V 0V -0.3 V -0.6 V -0.9 V -1.2 V -1.5 V -1.8 V -2.1 V 1/V (V ) Purdue Physics seminar West Lafayette, IN September 18, 2015 M. Reed (Yale) Substituent n-type molecules 6 H3C CH3 CN F F BDCN4F 1.2 = 2 4 6 0.8 -2 -1 0 1 2 VG (V) 8 0 2 4 1/V (V-1) 7 b NC F NC F F Purdue Physics seminar 0.8 0 2 1.2 4 6 8 1.0 0.8 0.6 -3 -2 -1 0 1 2 3 VG (V) -1 0 1 2 3 VG (V) 1/V (V-1) West Lafayette, IN BDCN4Cl 4 .1 -0 Cl 1.0 Cl Cl = Cl 10 1.2 CN α CN 1.4 5 .1 -0 NC VG = 2.4 V 2.1 V 1.8 V 1.5 V 1.2 V 0.9 V 0.6 V 0.3 V 0V -0.3 V -0.6 V = Cl NC α Cl 9 Cl Cl CN BDCN1Me ln(I/V2) (a.u.) CN 10 d CH3 Vtrans (V) F 8 VG = 2.1 V 1.8 V 1.5 V 1.2 V 0.9 V 0.6 V 0.3 V 0V -0.3 V -0.6 V -0.9 V -1.2 V -1.5 V -1.8 V -2.1 V -2.4 V 8 Vtrans (V) CN 6 1/V (V-1) ln(I/V2) (a.u.) NC 3 .1 -0 1.0 -3 -2 -1 0 1 2 3 VG (V) 0 α 9 .0 -0 7 1.6 1.5 1.4 1.3 1.2 1.1 = CN BDCN2Me α NC VG = 3.0 V 2.4 V 1.8 V 1.2 V 0.6 V 0V -0.6 V -1.2 V -1.8 V -2.4 V NC Vtrans (V) H3C F F 9 CN Vtrans (V) CN NC ln(I/V2) (a.u.) NC c CH3 6 ln(I/V2) (a.u.) a CH3 0 2 4 1/V (V-1) September 18, 2015 6 8 VG = 2.7 V 2.4 V 2.1 V 1.8 V 1.5 V 1.2 V 0.9 V 0.6 V 0.3 V 0V -0.3 V -0.6 V -0.9 V -1.2 V -1.5 V -1.8 V -2.1 V M. Reed (Yale) Substituent n-type molecules e-donating groups CH3 e-withdrawing groups 1.5 NC CN LUMO 6 1.4 H3C EF CH3 NC CN 7 Vtrans,0 (V) 1.3 1.2 Source Drain HOMO X = 2CH3 1.1 X = CH3 1.0 NC CN 8 0.9 X = 4F α = -0.05 to -0.21 F F 6 NC F F Cl Cl NC Cl X = 4Cl 0.8 CN 9 CN 10 7 8 9 10 Molecules Cl Purdue Physics seminar West Lafayette, IN September 18, 2015 M. Reed (Yale) Decoupled contact-molecule system Native conductance is set by endgroup Molecular conductance set by orbital position (T~1/(E-EF)2) LUMO CN- contact HOMO S- contact s=9.5x10-3/V2 s=7.5x10-4/V2 GS/GCN = slopeS/slopeCN = 13 Purdue Physics seminar West Lafayette, IN September 18, 2015 M. Reed (Yale) Summary Molecular transistor with orbital gating Coherent transport, resonant coupling “n” & “p” type Molecular engineering The future: “active” functional molecular systems Purdue Physics seminar West Lafayette, IN September 18, 2015 M. Reed (Yale)