X-ray Absorption Spectroscopy studies at the GILDA
Transcription
X-ray Absorption Spectroscopy studies at the GILDA
X-ray Absorption Spectroscopy studies at the GILDA beamline (ESRF): the role of ab-initio structural modeling in data analysis F. d'Acapito, CNR-IOM-OGG, dacapito@esrf.fr Layout ➲ The GILDA beamline ● ● ● ➲ Ab-initio structural modeling for XAS analysis ● ● ● ➲ Layout XAS station Novel experimental techniques: XEOL and TR-XAS BVM DFT MD (-DFT) Conclusion F. d'Acapito, CNR-IOM-OGG, dacapito@esrf.fr News from the GILDA beamline at ESRF F. d'Acapito, CNR-IOM-OGG, dacapito@esrf.fr Beamline layout Optic Hutch •beam sizing •mono-chromatization • focalization Control room • Remote instrumentation control • Data analysis 3 Experimental cabins • XAS Hutch (Instrumentation for XAS experiments) • Diffraction Hutch (Instrumentation for XRD experiments) • “Open Hutch” (Open to user’s experimental apparata) F. d’Acapito et al. ESRF Newsletter 30 (1998), 42 A new MONO configuration Si311 Si311 1st crystal split in two ●Si(311): 6-30keV ●Si(755) 18-90 keV ● Si755 ● Access a wide energy range without intervention. ● XAS 3 experimental chambers • Standard sample environment • User’s sample environment • ReflEXAFS Fluorescence detectors • 2* multi elements HP-Ge Resolution 200 eV @ 6.4 keV Max CR 80kcps/element Digital data collection X-ray Emission Yield from sample (Arb. Units) Excit. energy 28170 eV • • • • 2 10 G. Ciatto et al. JSR 11 (2004), 278-283 Compton Emission fit gaussian background Elastic In-K 4 2.2 10 4 4 2.4 10 2.6 10 Energy (eV) 4 2.8 10 4 3 10 4 Time structures at ESRF ● 16 bunches (spacing = 176 ns) ● 4 bunches (spacing = 704 ns) ● X-ray pulse ~100ps. ● ● Stroboscopic pump-probe data collection possible even on a BM beamline provided that ● Full bunch rate ● Reversible processes ● Process timescale << bunch spacing Typical experimental layout Data acq. XAS detect. Sample ESRF RF signal Driver Pulse generator ● sample excited in phase with the bunches ● Fixed time delay pump-probe ● Use of slow detectors. XEOL st 1 Lens 2nd Lens Fibre Sample Detector Detectors: Si-PIN diode and PMT Range 300 – 1100 nm 2014: filters for band selection F. d'Acapito, CNR-IOM-OGG, dacapito@esrf.fr The role of Structural modeling in the XAS data analysis (and comprehension) F. d'Acapito, CNR-IOM-OGG, dacapito@esrf.fr ➲ XAS provides easily – Distance with neighbors – Number and nature of neighbors – – So, what ? – ➲ ➲ ➲ ➲ Need of tools for interpreting the data in a more general vision. Comparison with theories for structural prediction. Easier job due to the increase of computing power in recent years. F. d'Acapito, CNR-IOM-OGG, dacapito@esrf.fr Bond Valence Model I. D. Brown, The Chemical Bond in Inorganic Chemistry: The Bond Valence Model, Oxford University Press, 2002. ➲ ➲ ➲ ➲ ➲ ➲ ➲ Empirical method, useful for bonds with high ionic character Defines a relation between the ith cation valence Vi, bond length rij and number of neighbors V i =∑bonds j sij r ' o−r ij B si=e Cation-anion parameters r'0 and B tabulated basing on crystal structures (http://www.iucr.org/resources/data/datasets/bond-valence-parameters) Calculator: http://www.esrf.eu/UsersAndScience/Experiments/CRG/BM08/Users/UserUtilities F. d'Acapito, CNR-IOM-OGG, dacapito@esrf.fr Smalt: Co based potash glass (very basic). ● CoII ions, blue hue ● Tetrahedral environment ● Degradation to grey color with time (and humidity). ● K moves out from the glass grains. Loosing K the glass becomes acidic. ● ● More acid environment: Co switches to octahedral sites ● F. d'Acapito, CNR-IOM-OGG, dacapito@esrf.fr Deterioration of smalt pigment 1 BVM Co 0.8 2+ 0.6 s ij N=4 0.4 N=6 0.2 1.94 A 2.09 A 0 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 R (Ang. ) ij F. d'Acapito, CNR-IOM-OGG, dacapito@esrf.fr Modelign a octahedron distortion CoII-O case ● BVM permits to modelize the distortion keeping constant the valence ● Easily implemented in XAS fitting codes. ● Using Bond Valence Model for XAS analysis F. d'Acapito et al. JNCS accepted 2014 Mg+Er -doped Silica Optic Fiber preforms ● Looking for possible structural origin of the modified optical response with growing Mg content ● Density Functional Theory ➲ ➲ ➲ Necessary in a general case Useful when bond parameters are not available. Several powerful codes ● ● ● ➲ VASP AbInit Quantum Espresso... Predictions ● ● Structure Site energetics F. d'Acapito, CNR-IOM-OGG, dacapito@esrf.fr M. Rovezzi et al. ● Main issue in Magnetic SMC: precipitates. ● QE code ● LSD-GGA-U ● U fixed from previous studies. ● F. d'Acapito, CNR-IOM-OGG, dacapito@esrf.fr Beamline SAMBA @ SOLEIL ● Structure simulated with DFT ● XANES calculated with Real Space methods (FeFF) ● Evidence of Co -VO complexes by Zn looking at the 1-2 valley and 3 peak. ● Complexes linked to the magnetization saturation. ● F. d'Acapito, CNR-IOM-OGG, dacapito@esrf.fr What makes amethyst different from other Fe-bearing quatz. ● Hypotesei ● Fe4+ ● Fe3+ with Li or H ● ● Fe mainly as Fe3+ ● Fe2+ < 20% ● ● ● DFT ● LSD-GGA-U F. d'Acapito, CNR-IOM-OGG, dacapito@esrf.fr Site of Fe in amethyst Fe3+ + H+ F. d'Acapito, CNR-IOM-OGG, dacapito@esrf.fr Fe4+ Color centers easily created in LiF upon X-ray exposure ● Useful for X-ray imaging. ● Pb added to increase sensitivity ● F. d'Acapito, CNR-IOM-OGG, dacapito@esrf.fr EXAFS data DFT ●VASP ●64 atoms supercell ●GGA F. d'Acapito, CNR-IOM-OGG, dacapito@esrf.fr Site energetics Equilibrium F2 PbF2 LiF 2µF=EF µPb+2µF=EPbF2 µLi+µF=ELiF ̂ μ= ⃗ A∗⃗ E ⃗ =μ Â−1∗E ⃗ E f =∑i N i∗μ i Doping process PbLi+VLi-f PbLi+VLi-n Pbi+2VLi-f Pbi+2VLi-n F. d'Acapito, CNR-IOM-OGG, dacapito@esrf.fr MD-(DFT) ➲ Useful to simulate whole XAS/XANES spectra ● ● Careful ! Classic MD fails at low temp. Computationally heavy ● ➲ Cases involving complex environments ● ● Many bond distances / ligands High configurational disorder ● ➲ Additional Support to static DFT calculations F. d'Acapito, CNR-IOM-OGG, dacapito@esrf.fr BM29 beamline, ESRF ● Hg-H O pair potentials 2 determined by QM methods ● Classical MD ● Equilibration time 5ns ● Snapshots every 12.5 ps ● ● MXAN code for XANES generation ● F. d'Acapito, CNR-IOM-OGG, dacapito@esrf.fr Corresponding structure with 2 shells of H2O molecules Experimental XANES data (dots) with the MDderived XANES spectrum Evidence of 7 coordination for Hg F. d'Acapito, CNR-IOM-OGG, dacapito@esrf.fr Method: ● Loeffen & Pettifer PRL 76 636 ● Vila, Rehr, Rossner, Krappe, PRB 76 014301. ● Simulate the structure via DFT ● Calculate the dynamical matrix ● Calculate the DWF for the most important paths ● Simulate the spectrum ● ● ● DM codes non available for any DFT code. ● F. d'Acapito, CNR-IOM-OGG, dacapito@esrf.fr TEM from M. Jamet et al. Nature materials 5 (2006), 653 F. d'Acapito, CNR-IOM-OGG, dacapito@esrf.fr Energetics of the various structures F. d'Acapito, CNR-IOM-OGG, dacapito@esrf.fr XAS data simulation via MD-DFT DFT: ●LSDA-GGA ●96 atoms spc MD ●1000 time steps, 2fs ●NVT ●T target 300K ●XAS: Last 200 frames averaged ● The interface disorder of the NC permits to reproduce the XAS data ● F. d'Acapito, CNR-IOM-OGG, dacapito@esrf.fr Found Zn and Fe in yellow Pb animonates ● Presumably added on purpose ● Do they enter the structure of the crystal ? ● F. d'Acapito, CNR-IOM-OGG, dacapito@esrf.fr Zn site: static DFT Zn in Pb ● Zn-O: 2*1.762, 6*2.679 ● Zn-Pb: 6* 3.553 ● Zn-Sb: 6* 3.669 F. d'Acapito, CNR-IOM-OGG, dacapito@esrf.fr Zn site: spectrum simulation MD-DFT NVT, 300K ● 1000 steps ● 2fs/step ● Last 200 spectra averaged ● ● F. d'Acapito, CNR-IOM-OGG, dacapito@esrf.fr Conclusion ➲ ➲ ➲ ➲ GILDA: well adapted to XAS on diluted systems New opportunities: TR-XAS and XEOL Ab-initio methods necessary for a more complete interpretation of XAS data ● ● ● Site geometry Site energetics Dynamics F. d'Acapito, CNR-IOM-OGG, dacapito@esrf.fr