CREEP School 1
Transcription
CREEP School 1
CREEP School 1 – Creep in Soft Soils September 10-11, 2012 Trondheim, Norway Course Handouts This material may not be published, reproduced, rewritten, or redistributed without permission. CREEP is funded by the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007-2013/ under REA grant agreement n° PIAP-GA-2011-286397. Monday, 10.09.12 Time Topic 10:00 - 10:15 Welcome - CREEP project Lecturer Benz 10:15 - 11:15 Experimental observations and 1D empirical models for creep in soft soils (1) Den Haan 11:15 - 12:00 12:00 - 13:15 13:15 - 14:00 14:15 - 15:00 15:00 - 15:15 15:15 - 16:45 16:45 - 18:00 Experimental observations and 1D empirical models for creep in soft soils (2) Break Viscoplasticity - Posible creep formulations - Soft Soil Creep in 3D Surcharging effects and 1D isotache behaviour Break Performance of different creep models in comparison Performance of different creep models in comparison - Exercise Tuesday, T esda 11.09.12 11 09 12 Time Topic 8:15 - 9:00 Anisotropy and destructuration - Experimental observations 9:00 - 9:45 Anisotropy and destructuration - Aspects of modelling 9:45 - 10:00 Break 10:00 - 11:00 Some creep models that incorporate anisotropy and destructuration 11:00 - 12:00 Exercise: Test fill - Parameter determination from Oedometer test 12:00 - 13:15 Break 13:15 - 14:45 Exercise: Test fill - Numerical analysis with different models 14:45 - 15:00 Break 15:00 - 15:45 Creep in various geomaterials C Creep and d smallll strain t i stiffness tiff Discussions 15:45 - 16:00 Closure Den Haan Benz Den Haan Jostad Jostad Lecturer Karstunen Karstunen Grimstad Grimstad Grimstad Benz 8 september 2012 Time scales in creep compression (and a few more additional slides) Trondheim CREEP course E.J. den Haan 10-11.09.2012 primary compression u secondary log t slope c The well-known eps - log t graph gradually attains a straight tail with slope c. But primary has usually already passed before this. Why isn’t the creep tail straight straight after primary? 1 8 september 2012 R pe slo c 1/ t tr primary secondary u log t tr compression By reducing time t with a constant time shift t_r the whole secondary curve can be straightened. Obviously the soil is obeying another time: its in its own time zone. This is the intrinsic time. Or Bjerrum's equivalent time, but it has turned out to be a fundamental concept hence 'intrinsic‘, following Schiffman. slope c intrinsic time isobar for acting 'v intrinsic time = t - tr = cst + c log (t-tr) d/dt = c/(t-tr) Resistance concept H. Lundgren - N. Janbu R = dt/d = 1/c (t-tr) tr now smaller than 0 primary tr pe slo c 1/ u log t compression tr c R secondary e op sl Negative time shift can occur. Your time is smaller than the soil's intrinsic time. This occurs when you apply a small load and reset your clock. Nothing much happens in terms of primary compression, and secondary continues as before. Only now you've reset your time to smaller values. On the log t scale this distorts the shape of the creep curve. intrinsic time isobar for acting 'v intrinsic time = t - tr = cst + c log (t-tr) d/dt = c/(t-tr) t Resistance concept H. Lundgren - N. Janbu R = dt/d = 1/c (t-tr) 2 8 september 2012 primary secondary ttransfer log t compression u tr = ttransfer slope c The negative time-shift is well illustrated by resetting the time when a project is transferred from contractor to client. The secondary slope has already been reached and the soil has found it’s intrinsic eps – log t creep tail. Putting t_client = 0 at t = t_transfer, the curve is pulled back to negative infinity, and then gradually curves back to the intrinsic creep tail. The time difference remains t_r = t_transfer. The Scandinavian resistance concept is often applied to 1D stiffness M, and in the nc region an offset linear relation with sigma is often found. This resemble the time shift in the creep resistance, and is the structural bond strength thesis den Haan 1994 Resistance concept applied to stiffness M = cst + b log (-s) M = d/d = 1/b (-s) pe slo s b 1/ 3 8 september 2012 log v log v slope b slope c creep isobars (v cst) creep isochrones creep isotaches: dvp/dt = c/ Creep isobars and Creep isochrones (isotaches) cover the whole eps – sigma – intrinsic time or creep rate of strain space. log v0 log v v slope b slope c creep isobars (v cst) creep isochrones creep isotaches: dvp/dt = c/ Creep is synonomous with visco-plastic. In addition there are elastic strains which are uniquely related to change of effective vertical stress. Total strains are the sum of vp and el strains. These are used in a Darcy type consolidation calculation. In each time increment, both strain types occur 4 8 september 2012 specific volume – an alternative for strain (v = 1 kPa, v1) 30 30 v1 v1 1.37 y = 1.04x v1 = 1.336 exp(9.26 b ) 25 25 Sliedrecht Sliedrecht 11.7 v0 v0 lnv b ln v 11.7 16.7 20 20 16.7 0.605 b = 0.0622(v1 - 1.54) (remoulded clay - eq. 15, Den Haan 1992) 15 15 10 10 5 5 1 0 0 0.0 0.1 0.2 b 0.3 0.4 0 5 10 15 vo Plot deformation as ln v (with v = specific volume), and it turns out that normally consolidated states plot on a unique line for a given soil. v_1 and b are interrelated, and for remoulded clays and natural organic Dutch clays, the relationship is unique. This depiction gives extra information which should not be ignored. Many modellers however work only with epsilon 5 8 september 2012 2 'V [kN/m ] 1 3.3 10 100 1000 2.9 0.4 b16d 1 achter b15d 1 sloot b10d 3 achter b22d 4 achter 2.7 ln (v) 20ab 33a 55b 112da 0.2 natural e0 = 20ab b16d 1 achter 14.2 33a b15d 1 sloot 14.5 55b b10d 3 achter 19.4 112da b22d 4 achter 21.3 3.1 0 2.5 2.3 2.1 0.6 1.9 0.8 1.7 1.5 1 1 10 100 1000 2 'V [kN/m ] 1.2 using v allows identification of similar soil at different density 0.5 30 b [-] b/c 0.4 25 b = 0.326 (t /w) -2.11 20 0.3 15 0.2 10 Sliedrecht 5 boring 11.7 boring 16.7 0.1 0 0.9 0 1.0 1.1 1.2 1.3 1.4 t / w 1.5 1.6 1.7 1.8 0.9 1.1 1.3 1.5 nat / w 1.7 1.9 correlations, organic clay 6 Compression and Creep CIE4367 E.J. den Haan Compression and Creep: History Terzaghi 1918 – 1925 (Istanbul) permeability, stiffness, consolidation of clay - k depends on voids ratio - effective stress principle (but earlier also Fillunger 1915) - flow of water analogous to flow of heat (Forchheimer) - k determined from hydro-dynamic phase 1925 Erdbaumechanik 2012 T 1.E-04 0 1.E-03 1.E-02 1.E-01 1.E+01 0 solution to Terzaghi's consolidation equation: 0.1 0.1 2 0.2 U = 1 - 2M x exp(-M T) M=/2, 3/2, 5/2, .. 0.3 U = Z/Zmax = 1 - uav/ 0.2 0.3 T = t cv / L2 0.4 U 1.E+00 0.4 0.5 0.5 0.6 U-logT first term 1/6th power U-sqrt T sqrt approach wortelbenadering 0.7 0.8 best approximation (relatively unknown): U = {4T/} U 6 0.6 T3 T 3 0.5 0.7 0.8 0.9 0.9 1 1 0 0.5 1 1.5 T/4=0.886 T Terzaghi’s consolidation: - 1d - saturated - homogeneous - incompressible water and grains - compressibility of grain skeleton a constant - permeability a constant - small strain Here: - natural strain - compressibility of grain skeleton: elasto-viscoplastic - permeability: f(e) - consolidation equation large strain 2 2.5 3 3.5 U NATURAL STRAIN Natuurlijke rek gewone rek linear strain C=h/ho (Cauchy) Almansi Almansi rek = h/h = h/(h-h) e0 ho Green ... Green h natuurlijke rek(Hencky, (Hencky, eerder Röntgen): Natural strain earlier Röntgen) h H = ho dh h 1 e h 1 dh C h = -ln(h/ho) = -ln((ho-h)/ho) = -ln(1- ) ho v = soortelijk specific volume volume hoogte height v = 1 + e => H = -ln v/v0 H C h=0 rek strain "zakking groterexceeds dan laagdikte" settlement initial layer thickness!! Not only no settlement larger than layer thickness, but also better fits to H - ln v for most soils without brittle, cemented structure, especially for soft soils. v' kPa 1 10 100 1000 0 0.2 0.4 C rek 0.6 0.8 1 1.2 1.4 Veen Zegveldpolder H 10000 Terzaghi’s consolidation: - 1d - saturated - homogeneous - incompressible water and grains - compressibility of grain skeleton a constant - permeability a constant - small strain Here: - natural strain - compressibility of grain skeleton: elasto-viscoplastic - permeability: f(e) - consolidation equation large strain Elasto-viscoplastic behaviour - history: - “creep” - Buisman pre 1936: direct and secular - North America pre 1936: primary and secondary (Gray 1936, Mesri from 1970’s) - Koppejan 1948: time lines model - Bjerrum 1967: conceptual isotache model - Leroueil 1985: first isotache model + Darcy - Mesri ~1985: EOP principle + secondary + Darcy - Delft abc model 1994: isotache + Darcy + large strain - Mesri / Leroueil ‘roadshow’: EOP versus isotache concept time [sec.] 10 100 1000 10000 100000 0.0 10000000 10 kPa 22 kPa فين الخث торф tørv Torf turve τύρφη כבול पीट tőzeg gambut 泥炭 turba veen 0.2 0.4 natural strain [-] 1000000 0.6 0.8 1.0 1.2 34 kPa 68 kPa 134 kPa 270 kPa 600 kPa 1200 kPa Zegveldpolder peat 25D 2400 kPa time in step [sec.] 10 100 0.0 1000 10000 100000 1000000 10 kPa 22 kPa 34 kPa 0.2 68 kPa natural strain [-] 0.4 134 kPa 0.6 270 kPa 0.8 600 kPa 1.0 1200 kPa 1.2 Zegveldpolder peat 25D 2400 kPa time in step [sec.] 10 100 0.2 1000 10000 100000 34kPa 00 1000000 tp primary secondary ural strain [ ] 0.4 68kPa Mesri: strain at tp independent of layer thickness. End of Primary EOP concept 13134 4kPakPa 0.6 270kPa Creep models based on time Creep models based on visco-plasticity H a log( p / v0 ) b log( v / p ) c log(t / t0 ) v0 1 p a logv H 1 dH b sH c e.g. Maxwell element v Elastic (direct) compression Visco-plastic (secular) compression t0 10t0 100t0 Buisman & Koppejan: divergence t0 : 1 day (rest of the world) : Mesri: tp H dH sH H dH sH time in step [sec.] 10 100 1000 10000 0.0 100000 1000000 10 kPa 22 kPa 34 kPa 0.2 68 kPa natural strain [-] 0.4 134 kPa 0.6 270 kPa 0.8 600 kPa 1.0 1200 kPa 1.2 Zegveldpolder peat 25D 2400 kPa 1e-4 1/s 1e-4.5 1/s 1e-5 1/s 1e-5.5 1/s 1e-6 1/s 1e-6.5 1/s 1e-7 1/s time in step [sec.] 10 100 0.0 1000 10000 100000 1000000 10 kPa 22 kPa 34 kPa 0.2 68 kPa natural strain [-] 0.4 134 kPa 0.6 270 kPa 0.8 600 kPa 1.0 1200 kPa 1.2 Zegveldpolder peat 25D 2400 kPa 1e-4 1/s 1e-4.5 1/s 1e-5 1/s 1e-5.5 1/s 1e-6 1/s 1e-6.5 1/s 1e-7 1/s time in step [sec.] 10 100 1000 10000 100000 0.0 10 kPa 22 kPa 34 kPa 0.2 68 kPa 0.4 natural strain [-] 1000000 134 kPa 0.6 270 kPa 0.8 600 kPa 1.0 1200 kPa 1.2 Zegveldpolder peat 25D 1 2400 kPa 10 100 1000 10000 effective vertical stress [kPa] 1e-4 1/s 1e-4.5 1/s 1e-5 1/s 1e-5.5 1/s 1e-6 1/s 1e-6.5 1/s 1e-7 1/s time in step [sec.] 10 100 1000 10000 100000 1000000 0.0 0.2 natural strain [-] 0.4 0.6 0.8 1.0 1.2 Zegveldpolder peat 25D 1 10 100 effective vertical stress [kPa] 1000 10000 1e-4 1/s 1e-4.5 1/s 1e-5 1/s 1e-5.5 1/s 1e-6 1/s 1e-6.5 1/s 1e-7 1/s time in step [sec.] 10 100 1000 10000 100000 1000000 0.0 0.2 natural strain [-] 0.4 0.6 0.8 1.0 1.2 Zegveldpolder peat 25D 1 10 100 1000 10000 effective vertical stress [kPa] 1e-4 1/s 1e-4.5 1/s 1e-5 1/s 1e-5.5 1/s 1e-6 1/s 1e-6.5 1/s 1e-7 1/s time in step [sec.] 10 100 1000 10000 100000 1000000 0.0 0.2 natural strain [-] 0.4 0.6 0.8 1.0 1.2 Zegveldpolder peat 25D 1 10 100 effective vertical stress [kPa] 1000 10000 1e-4 1/s 1e-4.5 1/s 1e-5 1/s 1e-5.5 1/s 1e-6 1/s 1e-6.5 1/s 1e-7 1/s time in step [sec.] 10 100 1000 10000 100000 1000000 0.0 0.2 natural strain [-] 0.4 0.6 0.8 1.0 1.2 Zegveldpolder peat 25D 1 10 100 1000 10000 effective vertical stress [kPa] 1e-4 1/s 1e-4.5 1/s 1e-5 1/s 1e-5.5 1/s 1e-6 1/s 1e-6.5 1/s 1e-7 1/s time in step [sec.] 10 100 1000 10000 100000 1000000 0.0 0.2 natural strain [-] 0.4 0.6 0.8 1.0 1.2 Zegveldpolder peat 25D 1 10 100 effective vertical stress [kPa] 1000 10000 1e-4 1/s 1e-4.5 1/s 1e-5 1/s 1e-5.5 1/s 1e-6 1/s 1e-6.5 1/s 1e-7 1/s time in step [sec.] 10 100 1000 10000 100000 1000000 0.0 0.2 natural strain [-] 0.4 0.6 0.8 1.0 1.2 Zegveldpolder peat 25D 1 10 100 1000 10000 effective vertical stress [kPa] 1e-4 1/s 1e-4.5 1/s 1e-5 1/s 1e-5.5 1/s 1e-6 1/s 1e-6.5 1/s 1e-7 1/s time in step [sec.] 10 100 1000 10000 100000 1000000 0.0 0.2 natural strain [-] 0.4 0.6 0.8 1.0 1.2 Zegveldpolder peat 25D 1 10 100 effective vertical stress [kPa] 1000 10000 1e-4 1/s 1e-4.5 1/s 1e-5 1/s 1e-5.5 1/s 1e-6 1/s 1e-6.5 1/s 1e-7 1/s time in step [sec.] 10 100 1000 10000 100000 1000000 0.0 0.2 v v and creep distorted o.c. isotaches natural strain [-] 0.4 creep isotaches 0.6 0.8 b 1.0 ln(10) 1.2 Zegveldpolder peat 25D 1 vertical spacing c = ln(d/dt) 10 100 1000 10000 effective vertical stress [kPa] 1e-4 1/s 1e-4.5 1/s 1e-5 1/s 1e-5.5 1/s 1e-6 1/s 1e-6.5 1/s 1e-7 1/s tijd na in begin stap[sec] [sec.] time step 10 100 1000 10000 100000 1000000 0.0 natural strain natuurlijke rek [-][-] 0.2 0.4 24 uur 0.6 0.8 1.0 1.2 Zegveldpolder veen 25D 1 10 100 stress [kPa] spanning [kPa] 1000 10000 1e-4 1/s 1e-7 1/s 1e-4.5 1/s 1e-7.5 1/s 1e-5 1/s 1e-8 1/s 1e-5.5 1/s 1e-6 1/s 1e-6.5 1/s tijd inindestep stap [days] [dagen] time 0.01 0.0 0.10 1.00 10.00 0.1 natuurlijke rek [-] [-] natural strain 0.2 0.3 0.4 0.5 0.6 Oostvaardersplassenklei (gehomogeniseerd) 0.7 1 10 100 1000 10000 spanning[kPa] [kPa] stress Elastic-Viscoplastic model equations Maxwell element Secular strain (visco-plastic component) H b ln( v / p ) c ln(sH,ref / sH ) v0 sH sH,ref ( v / p )b / c exp( H / c) Lines of equal rate of creep strain: isotaches p 1 a lnv 1 dH b sH Direct strain (elastic component) dH a ln( v / vo ) dH a v / v Summation H dH sH H dH sH H c H s ,ref v ln ’v onderbouwing 0 c ln 0 ln c ln 0 0 0H t0 H t 0 0 exp c 0 exp d 0 dt c t 0 exp c d 0 dt 0 t0 0 -tr 0 0 t t 0 1 t t 0 0 exp c 1/ 0 0 c t tr 0 c ln c ln t t 0 0 r t tr c ln 0 t tr 0 c ln t0 tr c 0 c ln t tr time shift Intrinsic time Time registration time shift makes good the difference between the intrinsic time and the value of t resulting from the chosen time zero. shape of secondary phase curve depends on sign of tr ln ’v t’0 0 t’’0 ln(t), ln() c 0,t0 H • H - ln is linear, not H – ln(t) • 0 < t0 (tr > 0) for large v • 0 > t0 (tr < 0) for small v log t creep tail: 1 i c log t c /(t - tr ) i c log ln(10) c Integrate The intrinsic creep time is t tr c i c log(t t r ) For each arbitrary choice of time zero in a settlement calculation, tr gives the difference between t and : tr = t - Finite strain consolidation + isotache compression q= - ue k w v v o ue =- o k v z v z w datum z d= v vo dz dz d u e = ( - p - u s ) ( p = v ) z z initial state - w ( - u s )= s z vo q= - Fig. 3. Coordinates of an element of soil in the initial and deformed states. s - w vo k v z v w 1 vo k vo p + w v z v z v v H = dH + sH v v deformed state mass conservation finite strain consolidation d p p s - w vo k 1 vo vo p c equation for = + k - dt a v z v w v z v z elasto-viscoplastic solid w q= - H = - Note: MSettle now superseded by D-Settlement 80 60 load in kPa 40 20 time in seconds 2 4 settlement in mm model effects, demonstrated by Consef Consef: consolidation and secular effect. Solves finite strain consolidation equation including a visco-plastic term d v v s w vo k 1 vo vo v c k dt a w v z v w v z v z elastic Darcy, self weight Darcy, proper for single, double draining layer, and single load slope a ref=1d =104d vp Ko - C.R.S. oedometer load cell v top backpressured triaxial cell piston Ko-ring with insulation strain gauges sample platen and drainage filter soil sample h Ko ring load cell v bottom excess pore pressure v' kPa 1 10 100 1000 1 0.0 0.9 0.1 0.8 0.2 0.7 0.6 0.5 0.4 Ko H [-] 0.3 0.5 0.4 0.3 0.6 Ko - C.R.S. oedometer test 710402 46A 152/.011-066 0.7 Sliedrecht Gorcum Licht clay wet = 1.29 t/m 3 0.2 0.1 0 0.8 v' kPa 1 ko 10 0.0 100 1000 710402 46A 152/.011-066 0.1 = -Ck log (k/ko) ] 0.2 0.3 0.4 0.5 slope Ck 0.6 1.E-11 logv' logk 1.E-10 1.E-09 1.E-08 k [m/s] 1.E-07 1.E-06 v' kPa 1 10 100 1000 1 0.0 0.9 0.1 0.8 Ko,nc slope a 0.2 0.7 0.6 Ko 0.4 0.5 0.5 Ko H [-] 0.3 0.4 0.3 0.6 Ko - C.R.S. oedometer test 710402 46A 152/.011-066 0.7 Sliedrecht Gorcum Licht clay wet = 1.29 t/m slope b 3 0.2 0.1 0 0.8 creep parameter c from relaxation phase b vR 1 v vR t c vR vR' 102 v' in kPa 97 c / b 92 87 relaxation 82 77 Ko - C.R.S. oedometer test 710402 46A Sliedrecht Gorcum Licht clay wet = 1.29 t/m3 72 0 2 4 6 8 relaxation time in hours 10 12 14 Imai 1989 The Hypothesis A vs. Hypothesis B controversy EOP vs. Isotache models? Exercise: Use Consef to show that the isotache model can yield both Hypothesis A and Hypothesis B type behaviour CREEP – School1 Trondheim, September 10th 2012 Viscoplasticity - Posible creep formulations Soft Soil Creep in 3D Thomas Benz With thanks to Valentina Berengo, Martino Leoni & Pieter A. Vermeer Table of contents Part 1 Possible approaches to creep modeling Part 2 Possible creep formulations Part 3 Soft Soil Creep 3D as an example Part 1 Possible approaches to creep modeling Part 1: Possible approaches to creep modeling RHEOLOGICAL MODELS Uniaxial condition condition, aiming to conceptual understanding 1D EMPIRICAL MODELS Data fitting of experimental data Data-fitting Specific boundary conditions GENERAL STRESS-STRAIN-TIME MODELS Mostly 3D models in incremental form Liingaard et al. (2004) Characterization of Models for Time-Dependent Behavior of Soils Part 1: Possible approaches to creep modeling – Rheological models Basic components (solid mechanics) Constitutive models can be built by combining these basic elements, e.g.: ((Maxwell model)) Part 1: Possible approaches to creep modeling RHEOLOGICAL MODELS Uniaxial condition condition, aiming to conceptual understanding 1D EMPIRICAL MODELS Data fitting of experimental data Data-fitting Specific boundary conditions GENERAL STRESS-STRAIN-TIME MODELS Mostly 3D models in incremental form Liingaard et al. (2004) Characterization of Models for Time-Dependent Behavior of Soils Part 1: Possible approaches to creep modeling – Empirical models Well known creep rate concepts: Norton (1929): ε Prandtl (1928): ε Soderberg (1936): ε 1 1 1 (σ σ o )α sinh (ασ ασ o ) for ( exp (ασ ασ o ) 1) for = reference time, may be temperature dependnet Part 1: Possible approaches to creep modeling – Empirical models Bj Bjerrum (1967) t Cα = SECONDARY COMPRESSION INDEX t eoc Void ra atio e e = e e o c - C α lo g eeoc 1 Cα teoc log t eeoc = void ratio at end of consolidation teoc = time at end of consolidation Garlanger (1972): e eeoc - C α log τ + t τ with: τ = extra parameter t’ = t - teoc Part 1: Possible approaches to creep modeling – Empirical models Bj Bjerrum (1967) e OCR NC-Line Cs CS 1 σo σp σo σp = SWELLING INDEX log AN OVERCONSOLIDATED STATE CAN BE REACHED BOTH BY CREEP AND UNLOADING Part 1: Possible approaches to creep modeling – Empirical models Šuklje (1957): Isotache model Unique relationship between e, log and e e e a1 e a2 e a3 log Further example: Den Haan (1994) Part 1: Possible approaches to creep modeling – Empirical models Incomplete list of 1D empirical models Sing and Mitchell (1968) – 3 parameter, constant stress, primary loading, ... Lacerda and Houston relaxation model - Relaxation, undrained, ... Prevost relaxation model (1976) – Triaxial, Triaxial undrained Strain rate approach: Sukjle (1957) Leroueil et al. (1985) Viad and Campanella (1977) Vermeer, Stolle & Bonnier (1998) Vermeer & Neher, (1999) Vermeer, Leoni, Karstunen & Neher (2006) Part 1: Possible approaches to creep modeling – General models RHEOLOGICAL MODELS Uniaxial condition condition, aiming to conceptual understanding 1D EMPIRICAL MODELS Data fitting of experimental data Data-fitting Specific boundary conditions GENERAL STRESS-STRAIN-TIME MODELS Mostly 3D models in incremental form Liingaard et al. (2004) Characterization of Models for Time-Dependent Behavior of Soils Part 1: Possible approaches to creep modeling – General models 1 O 1. Overstress concept (Malvern, (M l 19 1951; 1 P Perzyna, 1963) “Overstress models” 2. Nonstationary Flow Surface theory (NSFS) (Sekiguchi & Ohta,1977); Nova, 1982) 3. Others Note: General 3D creep models typically belong to the class of viscoplastic models. Differences and similarities to elastoplastic models see next section. The word "viscosity" is derived from the Latin "viscum", meaning i mistletoe. i tl t A viscous i glue l called ll d bi birdlime dli was made d ffrom mistletoe berries and was used for lime-twigs to catch birds [http://www.etymonline.com]. Part 2 Elastoplasticity - Viscoplasticity Part 2: Elastoplasticty – Viscoplasticity Elastoplasticity Part 2: Elastoplasticty – Viscoplasticity Viscoplasticity – Possibility 1: Overstress concept • No viscous strain inside the yield surface • No N consistency i t condition diti • Non-associated flow rule possible • Creep strain rate is function of overstress Part 2: Elastoplasticty – Viscoplasticity Viscoplasticity – Possibility 2: NSFS Define yield function as function of: • Stress • Internal variables variables, including viscoplastic strains • Time = (t) and d th then enforce f consistency i t condition diti so that: th t • No viscous strain inside the yield surface • Consistency C i t condition diti enforced f d • Non-associated flow rule possible • Creep strain rate is function of overstress Part 2: Elastoplasticty – Viscoplasticity Viscoplasticity – Comparison Part 2: Elastoplasticty – Viscoplasticity Viscoplasticity – Comparison Part 2: Elastoplasticty – Viscoplasticity Viscoplasticity – Other possibilities exist, too. Example: Soft Soil Creep 3D e e e e c p p p eq pp q2 peq p 2 M p q NCL σi peq p´ pp Part 3 Soft Soil Creep 3D Part 3: Soft Soil Creep 3D e 1+e e 1 1 Cc Cs 1 1 Cα 1 log V′ = Cc / ln10 = modified difi d compression i iindex d 2Cs / ln10 = modified swelling index = Cα / ln10 = modified creep index ln p′ log t Part 3: Soft Soil Creep 3D ( 1 = 2 = 3 ) CREEP MODEL FOR ISOTROPIC LOADING p 1 p e e e e c p τ pp p = Cc / ln10 l 10 = modified f compression index 2Cs / ln10 = modified swelling index = Cα / ln10 = modified creep index 1 3 1 2 3 The preconsolidation pressure pp is continuously updated by using: e c p p p p - a T Part 3: Soft Soil Creep 3D CREEP MODEL FOR ISOTROPIC LOADING (Model derivation) Assume: v v e,eop v p,eop v creep *ln p ' pc,eop t' p' ( * *) ln *ln c p '0 p ' pc 0 c Hardening rule: creep dp ' pc p ' pc p ' pc 0 exp v and thus d v creep * * * * p ' pc A creep model based on Bjerrum’s ’ idea ((e.g. above hardening rule): ) v ve v creep *ln p ' pc p' ( * *) ln p '0 p ' pc 0 Equate the first and third equation above: v *ln p ' pc,eop p ' pc t' p' p' ( * *) ln *ln c *ln ( * *) ln c p '0 p ' pc 0 p '0 p ' pc 0 *ln p ' pc c t ' ( * *) ln c p ' pc,eop (1) Part 3: Soft Soil Creep 3D CREEP MODEL FOR ISOTROPIC LOADING (Model derivation) Assume p ' pc p ' and t ' t EOP then: *ln c t EOP p' ( * *) ln c p ' pc,eop Furthermore if c t EOP then: ( * *) * p' c p ' pc,eop p ' pc,eop c p' thus ( * *) * OCReopp Finally, develop model formulation from: v v e v creep * (1) (2) dp ' * p ' c t ' d v d v e, eop d v creep * dp ' * d p ' c ( * *) * dp ' * p ' d v * p ' p ' pc ( * *) p ' pc, eop * p ' pc dp ' * 1 * p ' OCR ( * *)) * Part 3: Soft Soil Creep 3D ELLIPSES OF MODIFIED CAM CLAY ARE CONTOURS FOR CONSTANT RATE OF VOLUMETRIC CREEP STRAIN q e c = a e c<< a NCL σi p´ p peq peq pequivalent p q2 M 2 p pp NCL : peq = p p (2) Part 3: Soft Soil Creep 3D Summary 3D formulation p eq ε i ε ε C σ j Λ e i c i e ij C eij 1 μ p eq Λ d τ p p σ i 1 E 1 ν ν ν ν 1 ν 1 ν q q p d 1 M E 3(1 2 ) p p p p0 σi ε ic peq NCL 2 p κ ec0 ec exp λκ p e q p q2 M 2p p´ pp ν Poisson's P i ' ratio i κ κ/(1 /( e0 ) Model parameters: , , , , M = 1 day) μ μ/(1 /(1 e0 ) Initial conditions: 1o , 2 o , 3 o , p p o , e o Part 3: Soft Soil Creep 3D M d l prediction Model di ti iin undrained d i d ttriaxial i i l ttests t (σ1 σ3 )/ 2 q/2 • • FAST SHEARING • • Cu FAST SLOW Cu SLOW p´ ε1 ε3 Part 3: Soft Soil Creep 3D E t Extension i for f anisotropy i t (see ( Minna Mi Karstunen) K t ) ε i ε ε C σ j Λ e i c i e ij peq σ i 1 μ peq Λ d τ pp 1 q 2 α 2 p 2 d 1 p 2 M 2 α 2 q p eq p NCL peq pp q αp M α 2 e c p p - p p - 2 2 1 p a T p´ 3q q q α α ε cv α ε dc 3p' 4p' Model parameters: Initial conditions: , , , , M, a, , 1o , 2 o , 3 o , o , p p o , e o , To Part 3: Soft Soil Creep 3D Although g the p physical y nature of the creep pp phenomenon is still unclear,, several 1D constitutive laws have been proposed based on experimental observations, e.g. Bjerrum (1967): an overconsolidated state can be reached by creep and unloading Sukljie (1956): isotache model These early researches were the basis of the development of more general constitutive laws, mainly within the framework of visco-elasto-plasticity. An example is Soft Soil Creep 3D. Soft S ft Soil S il Creep C 3D iis nott an overstress t model, d l and d also l cannott be b fformulated l t d as a NSFS model (no elastic nucleus). References (1/2) Creep in soft soils Bjerrum, L. 1967. Engineering geology of norwegian normally-consolidated marine clays as related to settlements of buildings. Géotechnique, 17: 81-118. Boudali, M. 1995. Comportement tridimensionnel et visqueux des argiles naturelles. PhD Thesis, Université Laval, Québec. Claesson, P. 2006. Creep around the preconsolidation pressure – a laboratory and field study. In CREBS Workshop. Edited by N.G.I. Oslo. Garlanger, J.E. 1972. The consolidation of soils exhibiting creep under constant effective stress. Géotechnique, 22: 71-78. Janbu, N. 1969. The resistance concept applied to deformations of soils. In 7th ICSMFE. Mexico City, Vol.1. Leroueil, S. 1987. Tenth Canadian Geotechnical Colloquium: Recent developments in consolidation of natural clays. Canadian Geotechnical Journal, 25: 85-107. Leroueil, S. 2006. The isotache approach. Where are we 50 years after its development by Professor Šukljie? Simonini, P. and Berengo, V. 2006. Private communication Constitutive modelling of creep Den Haan, E.J. 1996. A compression model for non-brittle soft clays and peat. Géotechnique, 46: 1-16. Liingaard, M., Augustesen, A., and Lade, P.V. 2004. Characterization of Models for Time-Dependent Behavior of Soils. International Journal of Geomechanics: 157-177. 157 177 Malvern, L.E. 1951. The propagation of longitudinal waves of plastic deformation in a bar of metal exhibiting a strain rate effect. Journal of Applied Mechanics, 18: 203-208. References (2/2) Nova,, R. 1982. A viscoplastic p constitutive model for normally y consolidated clays. y In IUTAM Conference on Deformation and Failure of Granular Materials. Delft, pp. 287-295. Perzyna, P. 1966. Fundamental problems in viscoplasticity, New York. Sekiguchi, H., and Ohta, H. 1977. Induced anisotropy and time dependency in clays. In 9th ICSMFE. Tokyo, pp. 229-238. Š Šukljie, L. 1957. The analysis of the consolidation process by the isotaches method. In 4thh ICSMFE, Vol.1, pp. 200-206. Yin, J.-H. 1999. Nonlinear creep of soils in oedometer tests. Géotechnique, 49(2): 699-707. Yin, J.-H., and Graham, J. 1999. Elastic viscoplastic modelling of the time dependent stress-strain behaviour of soils. Canadian Geotechnical Journal, 36: 736-745. Isotropic (Soft Soil Creep model) creep model: Stolle, D.F.E., Bonnier, P.G., and Vermeer, P.A. 1997. A soft soil model and experiences with two integration schemes. In NUMOG VI. Edited by Pietruszczak S. and Pande G.N. Montreal. 2-4 July 1997. Balkema, Rotterdam. Vermeer, P.A., and Neher, H.P. 1999. A soft soil model that accounts for creep. In Int.Symp. "Beyond 2000 in Computational Geotechnics". Edited by R.B.J. Brinkgreve. Amsterdam. Balkema, Rotterdam, pp. 249-261. Vermeer, P.A., Stolle, D.F.E., and Bonnier, P.G. 1998. From the classical theory of secondary compression to modern creep analysis. l i In I Computer C t M Methods th d and d Advances Ad in i Geomechanics. G h i Edit d b Edited by Yuan. Y B Balkema, lk R Rotterdam. tt d Anisotropic creep model: Vermeer, P.A., Leoni, M., Karstunen, M., and Neher, H.P. 2006. Modelling and numerical simulation of creep in soft soils. In ICMSSE. Vancouver, p. Proceedings in print. Wheeler, S.J., Näätänen, A., Karstunen, M., and Lojander, M. 2003. An anisotropic elastoplastic model for soft clays. Canadian Geotechnical Journal, 40: 403-418. Surcharging and Isotache models Trondheim Creep Course E.J. den Haan 10-11.09.2012 Unloading <> Service-life settlement In NL, “restzetting” or service-life settlement is much more important than settlement during construction. Very often, surcharging and vertical prefab drains are used to expedite creep during construction. More effective: - larger surcharge - longer duration of surcharge - closer spacing pvd’s Compression models must deal with effects of unloading Imposed criteria on service-life settlement Extreme: HSL railway max. 3cm/100y Tramway: max. 5cm/2y then 10cm/10y Trunkroad: 15cm/30y Polder urbanisation landfills: 10-50cm/30y settlement rate, city of Rotterdam (Frits van Tol): old quarters: 1cm/y some new quarters: 2-3cm/y Preloading inevitable => unload/reload behaviour Mesri’s Definitions wrt Surcharge Termen final surcharge “OCR” = vs/vf Rs = OCR - 1 extra surcharge negative creep “creep recovery” Dr. Eric Farrell: “Period of Grace” end of primary swelling Definitions, Mesri renewed creep “recompression” Views on post-unloading behaviour – Deltares colleagues and clients (2005) A (isotaches): 9 B: 3 C: 2 and a nr. of clients D (Koppejan): 7 belasting II I III log t I II A B z D C Jamiolkowski, Ladd, Wolski 1971, 1983 case B Road crossing peat bog, Canada Samson & La Rochelle, 1972 Case B Samson, 1985 C reduced relative to n.c. value C increases to n.c.-value C increases to n.c.-value Case1970 B? Johnson 1970 Johnson Johnson 1970 isotache concept! = C log [ 1 + t / tsc ] Austria Case C Case A MSettle isotache model applied to embankment in highway N11 (SSB project) 9 Fig. 1 8 7 zanddikte [m] 6 5 4 as built, N11 terpkop 15950-Z-HB-A 3 schematisatie Boskalis 2 installatie verticale drains 1 0 0 50 100 150 200 250 tijd [d] 300 350 400 450 500 200 Fig. 2 1 basissom 2 geen voorbelasting 3 geen ontlasting gem. wateroverspanning 1 totale spanning op halve laagdikte [kN/m2] 150 1 100 3 2 50 0 0 100 200 300 400 500 600 -50 tijd in dagen 2 v' [kN/m] tijdindagen 1.E+00 0.0 1.E+01 1.E+02 1.E+03 1.E+04 100 0.00 Fig. 3 0.5 -0.05 -0.10 1.0 1.5 rek [-] 1basisgeval 2geenvoorbelasting 3geenontlasting -0.15 -0.20 1 2.0 -0.25 2 3 isotachen1(10x)1e5d 2.5 -0.30 200 F ig . 2 1 b as isso m 2 g ee n v o o rb ela stin g 3 g ee n o n tla stin g g em . w ate ro v e rsp a n n in g 1 150 totale spanning op halve laagdikte [kN/m2] zetting [m] 10 1.E+05 1 100 3 Isotache calculation of post-unloading deformations. Probably too optimisitic 2 50 0 0 100 200 300 -5 0 tijd in d ag en 400 500 600 6 -0.015 Fig. 12 5 -0.005 1.E-01 0.000 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 4 tijd na ontlasten [d] 3 0.005 0.010 1 basissom 1b kleinere voorbelasting smaller preload 1c kortere voorbelasting shorter preload meting zakbaak 15950-Z-HB-A, terpkop N11 measured zanddikte sand thickness 0.015 0.020 zanddikte [m] rek na ontlasten [-] -0.010 2 1 0 0.025 Initial swelling well-predicted. But much shorter ‘period of grace’. Creep already returning after 15d. Could be 2D effect. Note increase of load after 30 days. But swelling increases concommitantly! No sensible model could account for that. But such is ‘practice’. Klapwijk Pijnacker – Test embankments Boskalis 2.5m on extensive fill of 4m With close drain spacing, to all intents and purposes, Case C Gemiddelde zandhoogte proefterp 7000 Gemiddelde zakkingen Pijnacker 0 6000 -400 zakking [mm] hoogte [mm] 5000 4000 3000 2000 -800 voorspelde zetting voor spuitvak na 0.5 a 1.5 jaar -1200 -1600 1000 -2000 0 0 0 100 200 300 400 tijd [dag] 500 600 100 200 700 terp, 2 m hoh 300 400 500 600 tijd [dag] terp, 0.5 m hoh terp, 1 m hoh spuitvak, 2 m hoh 700 Characteristics post-unloading behaviour in-situ swelling after undefined period, renewed creep beter drainage, more preload => longer swelling period Confusing data. We’re no-where close to resolving post-unloading deformation behaviour. Will CREEP help? Oedometer post-unload behaviour Small strains during oedometer post-unloading and strong temperatue effects on creep rate. Pumping? 6.500 1E-03 6.550 1E-04 1E-05 abs(-dv/dt) 1E-06 1E-07 6/4 n~40 1E-08 6/4 n=20 6/4 n=6 1E-09 hele dagen na ontlasten 1E-10 1E-11 reduction from 100 kPav to 64 kPa smoothed with n points red dots full days after unloading Book 1940 Keverling Buisman Case D reduced creep? 6.600 Long duration unload test peat Bergambacht Case D reduced creep? 0.0 15 kPa 30 kPa 60 kPa 0.1 linear strain 80 kPa 120 kPa 0.2 80 kPa eps - log(t) 0.3 1E+01 1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08 1E+09 time [sec] long duration unloading, organic clay, N11 – Alphen a/d Rijn (concluded 2009) t: log scale Case B or C reduced creep! natural strain 80 kPa 0.4 depth 5.2 m-g.l. bulk density 1.30 t/m3 w0 158% LOI 14.2% v0 5.12 duration of unloading 596 days excellent T-control 105 kPa Expected characteristics in oedometer Systematische oedometerstudie OCR : swelling swelling duration C,new ts’ : ontlastgedrag swelling swelling duration C,new softer clay: swelling swelling duration C,new Kamao 1995 Chiba peat Kamao 1995 Chiba peat Kamao 1995 Chiba peat Kamao 1995 Chiba peat Kamao 1995 Chiba peat swell : Ip , OCR Kamao 1995 Chiba peat longer preloading => less swelling!! Kamao 1995 Chiba peat swelling period : OCR Kamao 1995 Chiba peat swelling period preload duration !! (useful rule of thumb) Kamao 1995 Chiba peat Cnew : soil softness , OCR Kamao 1995 Chiba peat Cnew : ts’ , OCR Method Mesri – nomograms from oedometer tests Method Mesri - tl/tpr dubius - tpr how to find? - amount of swelling? Method Mesri Isotaches and Post-unload behaviour 60 min 1 day dHH/dt sec-1 d dt 1/s 1.E-01 1.E-04 1.E-07 1.E-10 7 days 0.20 40kPa 80 kPa 60 kPa H H 0.25 60 kPa OCR=1.3 tp=60min tp=1day tp=7day 80kPa 0.30 Kamao: Renewed creep on unique (steeper) isobar independent of duration of preloading Isotaches <> Post-unload behaviour renewed creep: hopeful. but not very important swelling: (period of grace) • elastic • negative creep difficult but important drainage capacity => layer thickness-effect Postulated Principle of behaviour (den Haan) - AB Creep after monotonic loading follows virgin isotaches - AC Relaxatie eg. in middle of thick layer - AD Elastic swelling eg. at draining boundaries - After swelling first negative creep - Renewed creep after neg. creep following Kamao’s steeper isobar - Renewed creep after relaxatie following virgin isotaches - Reloading after swelling followin distorted isotaches Competing view – Di Benedetto & Tatsuoka Final creep state in the EVP model of Di Benedetto and Tatsuoka J.H. Yin has a similar final creep state Creep downwards above reference curve Creep upwards (negative) below reference curve Isobars virgin and renewed compression don’t line up d/dt [sec-1] 1E-02 0.35 1E-03 1E-04 1E-05 1E-06 1E-07 1E-08 1E-09 1E-10 1E-11 8.5 0.40 0.45 0.50 7.5 0.55 7 0.60 0.65 0.70 100 kN/m2 specific volume v natural strain 8 68 kN/m2 isobar (extrapolated) heave after unloading from 100 kN/m2 to 68 kN/m2 6.5 100 kN/m2 isobar "resettlement" at 68 kN/m2 following heave Deltares model and Deltares test results 1 6m/3m thick 0.9 Rate Reduction Ratio R 0.8 6m/4m clay 6m/4m thick 0.7 6m/3m 0.6 6m/4m 4m/2.7m 0.5 4m/2m 0.4 0.3 0.2 0.1 0 1 1.2 1.4 1.6 1.8 2 OCR for thicker sample ! =1 in-situ?? 2.2 Comparison p of different creep models Hans Petter Jostad Discipline leader in numerical modeling at NGI Adjunct Professor at NTNU 1st CREEP Course, Trondheim, Norway, 10-11th September 2012 Keyy q questions What is the definition of creep? Do we have creep deformations at the same time as we have deformations due to pore pressure/stress changes? When does creep start? What controls the (volumetric) creep deformation? Motivation How to calculate long term settlements in soft clay? Primary and secondary compression phases? Coupled consolidation and creep? de e d ' e e dT e d i dt ' t dt t ' T dt i dt stress induced creep (temperature) (chemical) tp t e d' e e e dt dt ' t dt t ' t ' 0 t p Primary (consolidation) Secondary (creep) Bjerrum's delayed compression concept Main challenges g Problem Due to significant different time scale in field and laboratory conditions, the deformation in the field must be described (extrapolated) by a creep model based on input from laboratory tests. Verification/calibration of creep models Back-analyses of measured field data Generally large number of uncertainties Back-analyses y of idealised model tests (e.g. ( g oedometer tests with different specimen heights) Extrapolation is still necessary Long term laboratory tests Extrapolation is still necessary Key questions related to long term settlements Extrapolation of laboratory data; rate? Extrapolation of laboratory data; time? Long time oedometer tests Time (min) 1.E+03 1 E+03 0.0 1 day 1 E+04 1.E+04 1 E+05 1.E+05 1 E+06 1.E+06 400 days 0.5 crreep 1.0 1.5 p'/po'=1.2 2.0 p'/po'=1.5 p p 2.5 p'/po'=1.75 p/'po'=1.6 3.0 p'/po'=2.3 3.5 KRYKON, r=150 Behaviour around pc' (destructuration)? Effect of varying load history? Effective stress kPa -5 % 0 100 200 300 400 500 600 several years KRYKON, r=300 4.0 0.6 700 1.0 p' / po' 1.5 2.0 3.0 0% 2 Strain 5% 0 , R0 4 10 % 400 days v (%) 6 15 % 10 yr -1 -1 0.1 yr 20 % 0.001 yr-1 25 % R = 0.1 R=1 R = 10 R = 100 Time resistance (years) 400 days 8 24 hrs Test 1 10 R = 1000 12 Test 2 Test 4 400 days 400 days Sample p disturbance Effective stress (kPa) 0 2 4 6 8 10 12 14 16 18 20 22 24 100 8 1000 Block Tangent modulus (MPa) T Strain (%) 10 Block 54 mm 54 m m 6 4 2 0 0 100 200 300 400 500 ( ) Effective stress (kPa) Is soil disturbance the reason for good agreements between standard consolidation lid i analyses l ((without ih creep)) and field observation? Moc = a · Mpc a = 5 -> 15 CREBS • 3 Workshops on CREep Behaviour of Soft clay) • NGI (Oslo, Norway, January 2006) • Univ. Univ Stuttgart (Pisa (Pisa, Italy Italy, September 2007) • Univ. Chalmers (Gothenburg, Sweden, July 2009) Establish a common basis of understanding g long g term compaction in soft soil - analyse a set of well defined hypothetical cases Example calculations • C Comparison off results obtained by different ff calculation programs (for a set of well defined cases) • Comparison of material models • Interpretation of laboratory tests (model dependent) • Recommendations of laboratory tests and field investigation • Not a competition! Hypothetical yp cases 1. NC-behaviour (OCR=1) ( ) 2. NC-behaviour with apparent pre-consolidation 3 Varying time history (pre 3. (pre-loaded loaded several years) 4. Layered soil profile (different permeability) 5. Stress distribution with depth (some shear strain) The real case: Oslo Railroad Customs Building - 50 years with measurements (may include additionally 30 years) Soil Investigation Soil profile from e.g. CPTU and location of depth to bedrock (or a stiff layers) In-situ pore pressure measurements (piezometers) Soil samples from different depths Standard index tests Oedometer tests - constant strain rate (CRS) tests with unloading/reloading loops. - x days creep test (and/or CRS tests with different rates) - additional permeability tests? - incremental loading (IL) tests (specification: Dq/q=1?, duration=24 hours or EOP, EOP pore pressure measurements measurements, long term creep phases, etc) Hypothetical cases q = 50 kPa (light) and 90 kPa (heavy) GWT drainage 10 MPa 10 MP '' = 10 kN/ kN/m3 ' = 10 kN/m3 OCR = 1.4 (10 000 years old) e0 = 1.17 (po'=143 kPa) kv = 0.02 m/year Open and closed bottom Hsand = 10 0m Hclay = 30 m Main assumption 1 1. Fully saturated clay (incompressible pore water) 2. 1D Condition a. 1D pore water flow with defined drainage conditions b. Negligible horizontal strains (oedometer condition) 3. g in stress levels and initial void Uniform material ((onlyy changes ratio) within the soil layers 4. Assumed perfect oedometer test data (no effect of sample disturbance?) Oedometer results – standard IL test 20 mm sample with drainage at top and bottom Test 693 (load step 280 kPa creep phase) Odometer test 693 (24 hours results) time (min.) Effective vertical stress (kPa) 0 500 1000 0.1 1500 0.00 0,0 2,0 5.8 days creep phase 0.50 6,0 8,0 10 0 10,0 12,0 14,0 16 0 16,0 18,0 20,0 eo = 1.17 (p0' = 143 kPa) y Results after 1 day Vertical sttrain (%) Vertical strain (%) 4,0 1.00 1.50 2.00 2.50 3.00 3.50 4.00 1 10 100 1000 10000 Oedometer test data Test no. 693, po' = 143 kPa Ti Time (min.) ( i ) 0.1 1.0 10.0 100.0 1000.0 10000.0 0.00 1.00 Increme ental strain (% %) 2.00 3.00 0-10 kPa 10-20 kPa 4.00 20-40 kPa 40-80 kPa 5.00 80-130 kPa 130-180 kPa 6.00 180-280 kPa 280-320 kPa 7.00 320-640 kPa 640-1280 kPa 8.00 Hypothetical cases q = 50 kPa and 90 kPa GWT drainage vo'+ +q 10 MPa '' = 10 kN/ kN/m3 Hsand = 10 0m ' = 10 kN/m3 OCR = 1.4 vo' e0 = 1.17 (po'=143 kPa) kv = 0.02 m/year vc' Open p and closed bottom Hclay = 30 m 6 Participants p • University of Stuttgart • • Dr. Martino Leoni and Professor Pieter Vermeer University of Strathclyde (and Ecole Central de Nantes) • • Dr. Zhen-Yu Yin and Professor Minna Karstuen University of BRISTOL • • Dr. David Nash Chalmers University of Technology (Gothenburg) • • Mats Olsson and Professor Claes Alén Swedish Geotechnical Institute (SGI) • • g and Rolf Larsson Per-Evert Bengtsson Norwegian Geotechnical Institute (NGI) • Professor II Hans Petter Jostad Models • Plaxis (FE) with Soft Soil Creep and Anisotropic Creep (3D) • • Plaxis (FE) with EVP SCLAY-1S (3D) • • EVP, structure, stress dependent creep parameter Embankco (FD) with an isotache model (1D) • • EVP, rotated EVP t t d modified difi d CC, CC over-stress t formulation, f l ti structure, t t two t creep parameters Briscon (FD) with a general isotache model (1D) • • EVP MCC, EVP, MCC rotated modified CC CC, no structure, structure one creep parameter EPVP, structure and threshold value for creep G S i (FE) with GeoSuite i h two slightly li h l diff different isotache i h models d l (1D) • EPVP, structure by stress dependent creep Comparison based on Janbu’s resistance concept v‘ vc‘ vo‘ 1 teqv Mt constant v‘ Ro increasing time 1 reference strain at a reference time t R Mt = f(v’) d v 1 d v ' 1 dt M t dt R R = f(v’, e or ) Janbu’s time resistance R = Ro + r (t - to) teqv 1 R 1 t ln ln r Ro r to creep R Ro e e 1 constant v‘ r creep 1 R rteqv R teqv tref * * * * OCR N ( OCRs 1) 1 1 1 * r t R R Time resistance (y (years)) 50 100 150 1% 0 Sttrain (%) 2% 3% 4% 1 R 0 = 1.2 % R0 = 0 0.3 3 year r = 150 1 R Creep strain rate ( 1 / year) 0 0% 10 R R0 e r ( 0 ) 1 0.1 0 5% 0.01 0% 6% 2% 4% Strain 3D formulation ijvp F f d ij pmd 1 1 s pm F exp N 6% Interpretation – reference strain (24 hours) Odometer Od t ttestt 693 (24 hours results) Effective vertical stress (kPa) 0 500 1000 1500 0,0 2,0 4,0 Vertical strain ((%) V y ' 152 kPa Disturbed, Moc = 1.5 · m · pc’ 6,0 Cc 0.167 1 eo Virgin loading loading, MNC = 14 · ( ( v’ – pr) 8,0 10,0 Unloading, Mu = 5 · m · pc’ 12,0 Cs 0.021 1 1 eo 14,0 , 16,0 18,0 20,0 Interpretation - creep phase (NC-regime) t (min) 2000 4000 6000 8000 R = Ro + r (t-to) 10000 0,0 5 0,5 4 1,0 , 1,5 2,0 2,5 3,0 3,5 4,0 R (yea ars) Verrtical strain increment (%) 0 r 3 1 2 1 0 0 2000 4000 time (min) 6000 8000 Interpretation - creep phase (NC-regime) ( g ) creep t C log 1 e to t creep * ln to Interpretation - creep phase (OC-regime) 100/r r = 300 Anisotropic elasto elasto-viscoplastic viscoplastic model (EVP-SCLAY1S) User-defined model in Plaxis 2D Overstress principle (Perzyana) Elasto-plastic model, model S-CLAY1S (Karstuen et al.) al ) Average strain rate during each step (Crank-Nicolson rule) ijvp F f d ij pmd 1 1 s pm F exp N creep 1 1 t R rs teq EVP-SCLAY1S - interpretation * 1 eo 0.162 /(1 1.215) 0.073 Comparison of stress-strain-time curves Reference strain at 24 hrs at top of clay layer Reference strain (24 hrs) at bottom of clay layer Effective vertical stress (kPa) 120 140 160 Effective vertical stress (kPa) 180 200 400 00 0.0 0 00 0.00 0.5 0.50 Vertical sstrain (%) Vertical sstrain (%) 100 1.0 Krykon 1.5 SCC/ACM 20 2.0 Briscon 2.5 EVP‐SCLAY1S 3.0 Embankco Chalmers 3.5 Briscon 2.50 EVP‐SCLAY1S 3.00 Embankco Chalmers Time dependent strain at bottom of clay layer 20 40 60 Time (years) 80 0 100 1.5 EVP‐SCLAY1S 2.0 Embankco 2.5 Chalmers 3.0 3.5 60 80 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.0 4.5 4.5 Results – Case 1 40 0.5 SCC/ACM Briscon 20 00 0.0 Krykon Vertical sstrain (%) Vertical sstrain (%) 500 4 00 4.00 0 1.0 480 SSC/ACM 2 00 2.00 Time (years) 0.5 460 Krykon 1.50 Time dependent strain at top of clay layer 0.0 440 1.00 3.50 40 4.0 420 Krykon SCC/ACM Briscon EVP‐SCLAY1S Embankco Chalmers q = 50 kPa 100 Results – Case 1 Generation of pore pressure due to creep? Results – Case 2 u 0? t t Results (strain after 50 yr) Case 2 (q = 50 kPa,Open bottom) Strain [%] 0 1 2 3 4 5 6 0 5 10 Briscon 3 Depth [m] 15 Briscon 3-d1 Briscon 3-d2 20 Embancko Krykon 25 Chalmers 30 SSC/ACM EVP-SCLAY1S 35 40 Results – Case 5 Li ht building Light b ildi Heavy building Oslo Railroad Customs Building Measured Results Time (years) 0 10 20 30 40 0 0.1 0.2 Settlements (m) 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Light builing Heavy builing 50 Recommendations of laboratory tests IL tests are well suited to provide data on creep parameters and the location of the RTL CRS tests is recommended to define the shape of one p y around the yyield stress isotache specially How should we define creep behaviour before pc? Conclusions • Large differences in settlements for well defined idealized examples • The main reason is uncertainties in the creep behaviour before the yield stress (apparent pre-consolidation pressure) • The differences may have been even larger due to uncertainties in the pre-consolidation pressure (if not given!) • The programs and material models seems to work well (except EMBANCKO?) • Difficult ff to check the results obtained with the general 3D models (especially EVP-SCLAY1) • Diffi Difficult lt to t compare models d l due d tto different diff t sets t off input i t parameter t even when they are based on the same framework Anisotropy and destructuration Anisotropy and destructuration Experimental observations p Prof. Minna Karstunen Chalmers University of Technology Chalmers University of Technology & University of Strathclyde Acknowledgements • Co‐workers (past and current): • Current sponsors: – – – – – – – – – – – – – – – – – – – – – – – Prof. Simon Wheeler (GU) Prof. Pieter Vermeer (USTUTT/Deltares) Prof Helmut Schweiger (Tu Graz) Prof. Helmut Schweiger (Tu Graz) Dr Martino Leoni (Wechselwirkung Studio Italiano, previously USTUTT) Dr Zhenyu Yin (Shanghai Jiaotong University, previously USTRAT) Dr Rachid Zentar (Ecole des Mines Douai, France, previously GU) Dr Christoph Wiltafsky (Garber, Dalmatiner & Partner ZT‐OG, Austria, previously GU) Dr Urs Vogler (FutureShip GmbH, Germany, previously USTRAT) Dr Harald Krenn (Zublin Austria previously GU/USTRAT) Dr Harald Krenn (Zublin, Austria, previously GU/USTRAT) Dr Jorge Castro (University of Cantabria, Spain, previously USTRAT) Dr Mohammad Rezania (University of Portsmouth, formerly USTRAT) Dr Patrick Becker (USTRAT) Dr Daniela Kamrat‐Pietraszewska (previously USTRAT) Dr Nallathamby Sivasithamparam (USTRAT/PLAXIS) Dr Ronald Brinkgreve (Plaxis bv/TUD) Dr Ronald Brinkgreve (Plaxis bv/TUD) Dr Paul Bonnier (Plaxis bv) Ms Anu Näätänen (HUT) Mr Matti Lojander (HUT) Ms Mirva Koskinen (AU) Mr Igor Mataic (AU) GEO‐INSTALL “Modelling Installation Effects in Geotechnical Engineering” IAPP project funded by the EC/FP7 2009‐ 2014 CREEP “Creep CREEP Creep of Geomaterials of Geomaterials ” IAPP project funded by the EC/FP7 2012 IAPP project funded by the EC/FP7 2012‐2016 2016 Experimental work funded by the Academy of Finland (Grant 128459 “Modelling progressive failure of embankments and slopes”) Outline • Motivation • Origin and structure of natural clays • Anisotropy Anisotropy • • • • Basic concept and definitions Anisotropy of strength Anisotropy of initial yield Changes in anisotropy • Destructuration • Experimental evidence (1D, 2D) • Implications for rate‐dependent behaviour • Conclusions • Key references World Population Distribution World Population Distribution Formation of soft clays Formation of soft clays • Composition and mineralogy of clay minerals Origin of clays by rock weathering and soil • Origin of clays by rock weathering and soil formation • Erosion, sedimentation E i di i q g g g • Subsequent loading due to geological processes • Geochemical alterations (leaching etc.) G h i l lt ti (l hi t ) Str ct re of Nat ral Cla s Structure of Natural Clays e.g. Craig (1974): (a) dispersed; (b) flocculated; (c) bookhouse; (d) turbostratic (e) natural clay with silt particles SEM images of clay structures SEM images of clay structures Source : http://www‐odp.tamu.edu/publications/190196SR/212/212_f5.htm Sensitive clay (quick clays) Sensitive clay (quick clays) Crawford 1967 http://www.landslideblog.org/2010/05/possible‐flowslide‐not‐sinkhole‐in‐st.html Types of clays Types of clays • • • • Natural clays Natural clays Remoulded clays Reconstituted clays Compacted clays Compacted clays 15 kPa Piston with openings for escaping water Perspex cylinder Filter p paper p Recons- Porous stones tituted clay sample Filter paper Piston with openings for escaping i water Leroueil & Vaughan (1990) Structure of Natural Clays • Soil structure consists of: – fabric ((anisotropy py) – interparticle bonding (sensitivity) • D Due to t plastic l ti straining t i i – gradual degradation of bonding (destructuration) – changes in fabric ( h i f b i (anisotropy) • All these phenomena are rate‐dependent rate dependent Anisotropy • Material is anisotropic if its properties are p direction dependent • Clayey soils generally anisotropic: – Composition (clay platelets) C iti ( l l t l t) – Deposition (preferred orientation of particles) – Previous stress history (K0 consolidation, groundwater changes, geochemical changes) K0 consolidation Anisotropy in macroscale Anisotropy in macroscale Laminated clays from Lake Malawi After Casagrande & Carillo (1944) After Casagrande & Carillo (1944) • Inherent anisotropy ‘physical characteristic inherent to material and entirely independent of applied stress’ • Induced anisotropy py ‘due exclusively to the strains associated with applied stress’ • Initial anisotropy Combination of both applies to soil in situ Combination of both – applies to soil in situ Geotechnical problems Geotechnical problems • Highly non‐linear response with a range of strain levels • Anisotropic stress changes, involving rotation of the direction of major principal stress 1 of the direction of major principal stress between 0°‐90° Hight & Higgins (1994) Geotechnical problems Geotechnical problems • Changes in the relative magnitude of the intermediate principal stress p p 2 2 3 1 3 b takes values between 0 → 1 Hight & Higgins (1994) Experimental investigation Experimental investigation Standard equipment: Standard triaxial test b=0 0 or b or b=1 1 • Standard triaxial test b • Direct shear and simple shear allow continuous changes in b, but no control i h i b b l Special equipment • Hollow cylinder apparatus Hollow cylinder apparatus Hollow cylinder apparatus No longer element test but a element test but a BVP Zdravkovic & Potts (2000) ( ) Effect of sample disturbance Effect of sample disturbance Leroueil & Vaughan (1990) Vertical samples of Bothkennar clay Vertical samples of Bothkennar clay =1.4 c=34.6° e° =1.1 McGinty (2006) Horizontal samples of Bothkennar clay Horizontal samples of Bothkennar clay McGinty (2006) y( ) Hong Kong Marine Deposit cu= 93 kPa cu= 30 kPa Hong Kong Marine Deposit (data from Zhou et al. (2006)) Hong Kong Marine Deposit Influence of anisotropy Hong Kong Marine Deposit (data from Zhou et al. (2006)) 1D Compression of “ideal” 1D Compression of ideal clay clay 1 day lnt Each day: CC = compression index l ’ lnp’ constant CS = swelling index C = creep index Effect of sample disturbance Effect of sample disturbance Leroueil & Vaughan (1990) Leroueil & Vaughan (1990) Anisotropy of yielding Anisotropy of yielding Leroueil & Vaughan (1990) S CLAY1 S‐CLAY1 Yield curve for simplified conditions of triaxial test f q p M 2 2 pm p p 0 2 Dafalias (1986), Korhonen & Lojander (1987) 80 1 Wi i Winnipeg clay l 241 kPa 310 kPa 380 kPa 0.5 q/ q, kP a M = 0.67 0 67 0.25 40 M = 0.84 20 0 0 0.25 Marjamäki clay Depth 5.5-6.1 m 60 vc ', kkPa 0.75 191 kPa 0.5 0.75 0 1 0 p'/ v c ', kPa -0.25 20 40 60 -20 90 80 p', kPa 90 Mexico City clay Depth 1.7 m Bothkennar clay Depth 5.3 - 6.3 m M = 1.4 M=1.75 60 q, kPa q, kPa 60 30 ’ = 18‐43 degrees 30 yield points from p'-v yield points undrained failure from q-s Wheeler et al. (2003) 0 0 0 30 60 0 90 30 p', kPa 60 90 p', kPa -30 -30 Strain‐Rate Dependency Critical state line M = 1.5 20 q (kPaa) 1 Corresponding to in-situ 'v0 Corresponding to in-situ 'v0 10 Murro clay Intact Remoulded 0 (a) 1 Vanttila clay Experiment 0 0 -20 Critical state line M = 1.35 20 q (kPa) 40 20 40 60 80 0 Corresponding to 'pi p' (kPa) p 10 20 -10 (b) p' (kPa) 30 40 Pseudo‐isotropic loading of Otaniemi clay 50 Test series B 1=0.11 e d q , kP a 2 25 q c = 0.11 0 0 25 a a: CAE2550 b: CAE2561 c: CAD2422 d. CAD2423 e: CAD2422 -25 b K0 50 75 p', kPa p’ Wheeler et al. 2003 Loading with different stress ratios Loading with different stress ratios 20 40 60 p', kPa -10 0 -30 0 20 40 -20 60 80 p', kPa CAD2264 0.30 30 =0 =0.25 20 0 0 20 -20 40 60 80 p', kPa -25 25 25 50 75 p', kPa p 0 -25 60 80 p', kPa 25 10 -10 0 20 50 CAD227 & CAD2464 0.90 =0.90 =0.34 25 0 40 60 p', kPa CAD2280 0.42 42 =0 =0.33 25 0 25 50 75 p', kPa 0 25 50 75 p', kPa -25 25 50 CAD2463 =1.00 =0.44 0 0 40 CAE2496 =-0.35 0 11 =-0.11 -30 0 CAD2260 =1.08 =0.46 25 q, kPa 0 q, kPa CAD2251 & CAD2530 =0.60 25 =0.38 20 -25 50 50 0 50 -40 -40 40 0 -20 q, kPa 0 20 30 -40 40 q, kPa CAD2276 0.25 =0.25 =0.15 20 q, kPa 40 60 p', kPa -30 40 q, kPa 20 CAE2586 =-0.40 0 06 =-0.06 q, kPa -10 0 10 40 q, kPa 10 CAE2544 =-0.59 0 15 =-0.15 q, kPa 30 CAE2513 =-0.66 0 11 =-0.11 q, kPa q, kPa 30 0 0 50 75 p', kPa 25 50 75 p', kPa p -25 Wheeler et al. 2003 E Experimental evidence i t l id 1 0.8 06 0.6 /M=0 0.5 0.4 1 0.2 M 0 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 1 0.5 -0.4 -0.6 -0.8 0.8 1 -0.2 Otaniemi clay Natural POKO clay Reconstituted POKO clay Natural Murro clay Reconstituted Murro clay -1 Determination of yield points Determination of yield points Ideal sample with K0= 0.83 Koskinen et al. (2003) Determination of yield points Determination of yield points Ideal sample with K0= 0.83 Koskinen et al.(2003) Determination of yield points Determination of yield points a) 0 0.00 10 p' (kPa) 20 30 40 b) 20 -20 0.00 p'y=12.1 kPa 0.04 0.04 v 0.08 v 0.08 0.12 0.12 0.16 c) 1 q (kPa) -10 10 -5 5 0 p'y=11.6 kPa Otaniemi clay CAE 2544 0.53 53 =-0 0.16 0 p' (kPa) 10 20 30 40 d) -20 -0.04 -0.04 -0.03 -0.03 -0.02 1 -0.01 -15 q (kPa) -10 -5 0 CAE 2544 S-CLAY1 S CLAY1 -0.02 -0.01 0.00 0.00 p'y=12.4 kPa 0.01 -15 15 p'y=11.9 kPa 0.01 Koskinen et al. (2003) Tests on Natural Clay Samples Tests on Natural Clay Samples M=1.6 =0.63 pp'm=34.5 kPa a) Murro clay 40 30 30 20 20 10 M=1.2 =0.46 pp'm=49 49 kPa 50 40 q (kP Pa) q (kP Pa) 50 b) POKO clay 10 0 0 0 10 20 30 40 50 60 70 0 -10 10 20 30 40 50 60 70 -10 -20 20 -20 20 p' (kPa) p' (kPa) c) Otaniemi clay d) Vanttila clay M=1.3 =0.50 p''m=19.5 19 5 kP kPa 20 M=1.35 =0.52 p'm=18.5 =18 5 kPa 20 10 q (kPaa) q (kPaa) 10 0 0 0 10 20 30 -10 0 10 20 30 -10 p' (kPa) p' (kPa) Tests on Reconstituted Clays Tests on Reconstituted Clays Yield points M=1 6 M=1.6 max Max. stress during 0 loading 40 30 q (kPa) 20 10 p'm=35.5 kPa 0 -10 0 10 20 30 40 50 60 b) POKO clay 30 20 70 -20 -30 -30 Yield points M=1.3 Max. max stress during 0 loading 30 0 10 20 30 40 50 60 70 p' (kPa) Yield points d) Vanttila clay M=1 35 M=1.35 Max. max stress during 0 loading 40 30 20 p'm=26.0 kPa 0 0 10 20 30 40 50 60 70 p' (kPa) q (kPa) 20 10 -10 p'm=42.0 kPa 0 -20 40 q (kPa) 10 -10 p' (kPa) c) Otaniem i clay Yield points M=1 M 1.2 2 Max. stress max during 0 loading 40 q (kPa) a) Murro clay 10 p'm=26.0 kPa 0 -10 -20 20 -20 -30 -30 0 10 20 30 40 50 60 70 p' (kPa) Karstunen & Koskinen (2008) After Leroueil & Vaughan (1990) The Grande Baleine clay (Locat & Lefebre 1982) Mexico City Clay (Mesri et al. 1975) 1D Compression of natural and 1D Compression of natural and reconstituted clays y 'pi = 6 kPa 2.4 4 'p = 45 kPa 0 37 kPa kP ''pi = 0.37 Vanttila clay 3.2 1.6 e e 2 Reconstituted Intact Remoulded 2.4 Reconstituted Murro clay 1.2 1.6 Intact Remoulded 0.8 1 (a) kPa ''p = 29 kP 10 100 'v (kPa) Karstunen & Yin (2010) 0.8 1000 01 0.1 (d) 1 10 100 'v (kPa) Yin & al al. (2011) 1000 10000 1D Compression of natural and 1D Compression of natural and reconstituted clays y 0.1 0.04 Intact Remoulded 0.03 IIntact Remoulded Vanttila clay 0.08 Murro clay C e C e 0 06 0.06 0.02 0.04 0.01 0.02 0 1 10 100 'v (kPa) (b) 0 1000 1 10 100 'v (kPa) (e) Karstunen & Yin (2010) 1000 Yin & al al. (2011) Constant q/p’ tests Vanttila V ttil clay l St>30 POKO clay St=12 1.2 1.4 1.0 1.2 0.8 0.6 0.4 0.2 0.0 -1.0 i -0.5 0.0 0.5 q/p’ i 1.0 10 1.0 0.8 06 0.6 0.4 0.2 0.0 -1.0 i -0.5 0.0 q/p’ 0.5 1.0 10000 f q p M 2 2 pm p p 0 2 Dafalias (1987), Korhonen & Lojander (1987) Effect of destructuration on Effect of destr ct ration on undrained creep p 10 -2 Vanttila clay d a/d dt (%/s) 10 (c) Tertiary creep With destructuration -4 Without destructuration Secondary creep 10 10 -6 6 CAUCR1 q=14.4 kPa CAUCR2 q=17 q 17.3 3 kPa CAUCR3 q=20.0 kPa Primary creep EVP-SCLAY1S EVP-SCLAY1 (c) -8 10 1 10 2 10 3 10 Time (s) 4 10 5 10 6 Data from Yin & al. (2011) C l i Conclusions • N Natural soft clays are complex materials, structured l f l l i l d and time‐dependent • Initial anisotropy & changes is anisotropy I iti l i t & h i i t • Bonding and destructuration • Results Results rely on high quality sampling and testing rely on high quality sampling and testing • Anisotropy affects both yielding and mobilised strength and changes with plastic straining strength and changes with plastic straining • Salinity of the sedimentation environment affects the slope of NCL slope of NCL • At the onset of yielding, significant compression and (creep) that reduces as destructuration progresses (creep) that reduces as destructuration progresses • All plastic strains contribute to destructuration Some Key References: • • • • • • • • • • • • • A. CASAGRANDE & N. CARILLO (1944). Shear Failure of Anisotropic Materials. Proc. Boston Soc. of Civil Eng. Vol. 31, pp. 74 – 87 D.W. HIGHT & K.G. HIGGINS (1994). An approach to the prediction of ground movement in engineering practice: background and applications. Pre‐failure deformation of geomaterials, IS‐ Sapporo, Japan. Vol. 2, pp. 909‐945. M KARSTUNEN & Z ‐Y YIN (2010) Modelling time‐dependent behaviour of Murro test M. KARSTUNEN & Z.‐Y. YIN (2010). Modelling time‐dependent behaviour of Murro test embankment. Géotechnique 60(10): 735‐749. M. KARSTUNEN & M. KOSKINEN (2008). Plastic anisotropy of soft reconstituted clays. Canadian Geotechnical Journal 45: 314‐328. M. KARSTUNEN, C., WILTAFSKY, H., KRENN, F., SCHARINGER & H.F. SCHWEIGER (2006). Modelling the stress‐strain behaviour of an embankment on soft clay with different constitutive models. International Journal of Numerical and Analytical Methods in Geomechanics 30(10): 953‐982 M. KARSTUNEN, H., KRENN, S.J., WHEELER, S.J., M. KOSKINEN & R. ZENTAR (2005). The effect of anisotropy and destructuration on the behaviour of Murro test embankment. ASCE International ( ) Journal of Geomechanics 5(2): 87‐97. M. KOSKINEN, M. KARSTUNEN & M. LOJANDER (2003). Yielding of “ideal” and natural anisotropic clays. Proc. Int. Workshop on Geotechnics of Soft Soils‐ Theory and Practice, 17‐19 September 2003, Noordwijkerhout, The Netherlands. pp. 197‐204. K. McGinty (2006) The stress‐strain behaviour of Bothkennar clay. PhD thesis. University of Glasgow S. LEROUEIL & P.R. VAUGHAN (1990). The general and congruent effects of structure in natural soils & ( ) h l d ff f l l and weak rocks. Géotechnique 1990 Vol. 40 No. 3 pp. 467‐488 S.J. WHEELER, A. NÄÄTÄNEN, M. KARSTUNEN & M. LOJANDER (2003). An anisotropic elasto‐plastic model for natural soft clays. Canadian Geotechnical Journal 40(2). pp. 403‐418. Z ‐YY. YIN, M. KARSTUNEN, C.S. CHANG, M. KOSKINEN & M. LOJANDER (2011). Time Z. YIN M KARSTUNEN C S CHANG M KOSKINEN & M LOJANDER (2011) Time‐dependent dependent behaviour of soft sensitive clay. ASCE International Journal of Geotechnical and Geoenvironmental Engineering 137(11):1103‐1113. L. ZDRAVKOVIC & D.M. POTTS (2000). Advances in modelling soil anisotropy, Workshop on Constitutive Modelling of Granular Materials, Springer Verlag, Berlin pp. 491‐521. C Zh C. Zhou, J.H. Yin, J.G. Zhu & C.M. Cheng (2005). Elastic anisotropic viscoplastic modelling of the J H Yi J G Zh & C M Ch (2005) El i i i i l i d lli f h strain‐rate‐dependent stress‐strain behaviour of K0‐consolidated natural marine clays in triaxial shear tests. ASCE International Journal of Geomechanics 5 (3): 218‐232 Anisotropy and destructuration Anisotropy and destructuration Aspects of modelling p g Prof. Minna Karstunen Chalmers University of Technology & University of Strathclyde E il i Email: minna.karstunen@chalmers.se k t @ h l Acknowledgements • Co‐workers (past and current): • Current sponsors: – – – – – – – – – – – – – – – – – – – – – – – Prof. Simon Wheeler (GU) Prof. Pieter Vermeer (USTUTT/Deltares) Prof Helmut Schweiger (Tu Graz) Prof. Helmut Schweiger (Tu Dr Martino Leoni (Wechselwirkung Studio Italiano, previously USTUTT) Dr Zhenyu Yin (Shanghai Jiaotong University, previously USTRAT) Dr Rachid Zentar (Ecole des Mines Douai, France, previously GU) Dr Christoph Wiltafsky (Garber, Dalmatiner & Partner ZT‐OG, Austria, previously GU) Dr Urs Vogler (FutureShip GmbH, Germany, previously USTRAT) Dr Harald Krenn (Zublin Austria previously GU/USTRAT) Dr Harald Krenn (Zublin, Austria, previously GU/USTRAT) Dr Jorge Castro (University of Cantabria, Spain, previously USTRAT) Dr Mohammad Rezania (University of Portsmouth, formerly USTRAT) Dr Patrick Becker (USTRAT) Dr Daniela Kamrat‐Pietraszewska (previously USTRAT) Dr Nallathamby Sivasithamparam (USTRAT/PLAXIS) Dr Ronald Brinkgreve (Plaxis bv/TUD) Dr Ronald Brinkgreve (Plaxis bv/TUD) Dr Paul Bonnier (Plaxis bv) Ms Anu Näätänen (HUT) Mr Matti Lojander (HUT) Ms Mirva Koskinen (AU) Mr Igor Mataic (AU) GEO‐INSTALL “Modelling Installation Effects in Geotechnical Engineering” IAPP project funded by the EC/FP7 2009‐ 2014 CREEP “Creep CREEP Creep of Geomaterials of Geomaterials ” IAPP project funded by the EC/FP7 2012 IAPP project funded by the EC/FP7 2012‐2016 2016 Experimental work funded by the Academy of Finland (Grant 128459 “Modelling progressive failure of embankments and slopes”) Outline • Modelling elastic anisotropy • Modelling large strain anisotropy M d lli l t i i t • Introduction to various approaches • Elasto Elasto‐plastic plastic models models • Microstructural models • Modelling large strain anisotropy with elasto‐ plastic approach plastic approach • • • • Modelling destructuration Example: simple model S‐CLAY1S Example: simple model S CLAY1S Conclusions Key references Key references Real problem Idealized (conceptual model) Idealizedproblem problem (conceptual model) R Relevant p phenomen a Mathematical M th ti l Model (PDE) Results m a.s.l. 440 400 North portal (Lleida) 360 320 280 411+100 412+000 Quaternary Colluvion Solution S Analytical Numerical Middle Eocene 4 Early Eocene Limestone Claystone & Siltstone Marl Anhydritic-Gypsiferous Claystone Structure of Natural Clays • Soil structure consists of: – fabric ( fabric (anisotropy) – interparticle bonding ( (sensitivity) y) • D Due to t plastic l ti straining t i i – gradual degradation of bonding (destructuration) – changes in fabric ( h i f b i (anisotropy) • All these phenomena are rate‐dependent rate dependent Constitutive modelling Elastic Anisotropy Elastic Anisotropy Isotropic p elasticityy in 3D y yz zy y z yx xy xz zx x xy z x 1 ( ' x v' ' y v' ' z ) E' 1 y ( ' y v' ' x v' ' z ) E' 1 z ( ' z v' ' x v' ' y ) E' x yz zx xy G' yz G' zx G' Cross‐isotropic p elasticityy ((around yy‐axis)) Sampling direction h v yz zy y z x y yx x xy xz zx z General 3D elasticity would require the specification of 21 ifi ti f 21 elastic constants! 'x Eh ' y x z xy yz zx vhh ' v ' ' y vh ' z Ev ' Ev ' ' v ' vhh ' ' x y hh ' z Ev ' Ev ' Ev ' vvh ' v ' ' ' x hh ' y z Eh ' Ev ' Eh ' xy Gvh ' yz Gvh ' zx Ghh ' Needs 5 elastic constants! Constitutive modelling Large Strain Anisotropy Large Strain Anisotropy Modelling large strain anisotropy d lli l i i 1 Standard elasto‐plastic framework 1. Standard elasto plastic framework • Nova (1985), Banerjee & Yousif (1986), Dafalias (1986) D i & N (1986), Davies & Newson (1993) Whittl & (1993), Whittle & Kavvadas (1994), Wheeler & al. (2003) 2. Micromechanical models K0 consolidation Standard elasto plastic framework Standard elasto‐plastic framework • Because the directions of the principal y stresses and the fabric do not necessarily coincide, cannot use purely stress/strain invariants Deviator stress tensor Fabric tensor b Example of definitions: Deviatoric stress vector Deviatoric fabric tensor (in vector form) 'x p' ' p' y ' z p ' d 2 xy 2 yz 2 zx p' ' x ' y ' z 3 x 1 1 y z 1 d 2 xy 2 yz 2 zx x y z 3 1 Standard elasto plastic framework Standard elasto‐plastic framework • Because the directions of the principal y stresses and the fabric do not necessarily coincide, cannot use purely stress/strain invariants Deviator stress tensor Fabric tensor b Only in a special when looking at vertical samples being loaded in a triaxial cell can use triaxial invariant combined with a scalar related to the inclination of the yield surface in p’‐q – plane Standard elasto plastic framework Standard elasto‐plastic framework • Elastic law Inclined initial yield surface (dependant on • Inclined initial yield surface (dependant on initial state) F(’, , ) = 0 • (Volumetric hardening) law relating to the size (V l i h d i )l l i h i of the yield surface p0’ = f(vp)‐ same as MCC • Kinematic or translational hardening laws (often called rotational hardening) – evolution (often called rotational hardening) – evolution of anisotropy (additional soil constants) – Soil constants with a physical meaning, but not always easy to derive S il t t ith h i l i b t t l t d i Standard elasto plastic framework Standard elasto‐plastic framework • Flow rule Flow rule – Associated or non‐associated? Depends on the combinations of the yield surface formulation and the combinations of the yield surface formulation and the hardening law – Controls the prediction of K Controls the prediction of K0 and strain path (and hence and strain path (and hence ultimately the undrained shear strength) 0.0 0.1 0.2 0.3 v 0.05 d 0.15 0.25 Standard elasto plastic framework Standard elasto‐plastic framework • Failure condition ’3 ’1=’ 2= ’3 ’2 ’1 Potts & Zdravkovic (1999) Standard elasto plastic framework Standard elasto‐plastic framework • Failure condition Need modified definition of Lode angle (Sivasithamparam 2012) Modelling large strain anisotropy d lli l i i 2 2. Micromechanical models Micromechanical models i. Multilaminate framework • Zienkiewicz & Pande (1977), Pande & Sharma (1983), Pietruszczak & Pande (1987), Karstunen (1998), Wiltafsky (2003), Neher et al. (2001, 2002), Mahin Roosta et al. (2004) ii. Microplane models • ( ), g ( ), g Bazant (1995), Chang & Liao (1990), Chang & Gao (1995), Chang & Hicher (2005), Yin et al. (2009) Multilaminate model Multilaminate model Multilaminate model Multilaminate model • No global equivalent for yield surface, so yielding, K No global equivalent for yield surface so yielding K0 prediction and mobilized undrained strength need to be checked through simulations at global level • Computational costs is high Microplane models • Considers clay as a collection of clusters Sliding and compressing Sliding and compressing the clusters along their contact planes E l ti Evolution of the state f th t t variables at each contact plane • • • Assumptions need to be made for contact number and mean cluster size • Inter‐cluster properties (shear sliding, dilation and normal compression) not directly measurable l i ) t di tl bl • Extra computational costs Constitutive modelling Modelling destructuration Modelling Destructuration • Concept of an intrinsic yield surface proposed b G by Gens & Nova (1993) &N (1993) – Lagioia & Nova (1995), Rouainia & Muir Wood (2000), Kavvadas & Amorosi (2000), Gajo & Muir Wood (2001), Liu & Carter (2002), Karstunen et al. (2005) CSL q 1 M 1 pmi’ 1 CSL M pm’ p’ Modelling Destructuration • Initial amount of bonding CSL q 1 M 1 pmi’ 1 CSL M pm’ p’ – Relates Relates the size of natural yield the size of natural yield curve to the intrinsic yield curve – Additional state variable ddi i l i bl (scalar) – Approaches to zero pp • Hardening law for destruction of bonding – Gens & Nova (1993) assume all plastic strains contribute – Slightly different forms Slightly different forms proposed by various authors Modelling Destructuration Modelling Destructuration Gens & Nova (1993) Gens & Nova (1993) Constitutive modelling Simple model: S‐CLAY1S Simple model: S CLAY1S Constitutive models • Anisotropy – S‐CLAY1 (see Wheeler et al. 2003, Karstunen & Koskinen 2008) ’y • Bonding & destructuration p’ – Adding intrinsic yield surface (Gens & N Nova, 1993) resulted in S‐CLAY1S 1993) l d i S CLAY1S (Karstunen et al. 2005) • Time‐dependence & creep – Anisotropic Anisotropic creep model ACM & ACM‐S creep model ACM & ACM S (Leoni et al. 2008, Kamrat‐Pietraszewska 2011) – n‐SAC (Grimstad et al. 2010) – EVP‐SCLAY1S (Karstunen & Yin 2010) EVP‐SCLAY1S (Karstunen & Yin 2010) – Ani‐Creep (Yin at al. 2011) ’’x ’z E Experimental evidence i t l id 1 0.8 06 0.6 /M=0 0.5 0.4 1 0.2 M 0 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 0.5 1 -0.2 Otaniemi clay -0.4 Natural POKO clay -0.6 Reconstituted POKO clay Natural Murro clay -0.8 Reconstituted Murro clay -1 S CLAY1 S‐CLAY1 model (Wheeler et al . 2003) d l (Wh l t l 2003) 0 ’y 20 40 60 p’ 80 80 60 40 20 ’x 0 0 ’z 20 40 60 80 F 3 d p' d T d p' d M 2 3 d T d p'm p'p' 0 2 2 Dafalias (1986), Korhonen & Lojander (1987), Wheeler (1996), Wheeler et al. (2003) Simplified case: vertical sample in triaxial space f q p M 2 2 2 p m p p 0 Dafalias ((1987), ) Korhonen & Lojander j f ( q (1987) p' ) 2 ( 2 2 )( p'm p' ) p' 0 Definitions: Deviatoric stress vector Deviatoric fabric tensor (in vector form) 'x p' ' p' y ' z p ' d 2 xy 2 yz 2 zx p' ' x ' y ' z 3 x 1 1 y z 1 d 2 xy 2 yz 2 zx x y z 3 1 Fabric Tensor for K0 consolidated soil x 1 1 y 1 d z 2 xy 2 yz 2 zx 1 3 ( x y ) 2 ( x y ) 3 1 d 3 ( x y ) 0 0 0 xy yz zx 0 x z 3 2 3 d 3 0 0 0 1 3 (3 x 3) 2 (3 x 3) 3 d 1 (3 3) x 3 0 0 0 x y z 3 1 2 3 d T d 2 Need to be careful with axes notation! Fabric Tensor for K0 consolidated soil Hardening Laws: 1) Size of the yield surface vp'm d vp dp'm 2) Rotation of the yield surface 3 d d ( d ) d vp d ( d )d dp 3 4 Tests on Reconstituted Clays Tests on Reconstituted Clays Yield points M=1 6 M=1.6 max Max. stress during 0 loading 40 30 q (kPa) 20 10 p'm=35.5 kPa 0 -10 0 10 20 30 40 50 60 b) POKO clay 30 20 70 -20 -30 -30 Yield points M=1.3 Max. max stress during 0 loading 30 0 10 20 30 40 50 60 70 p' (kPa) Yield points d) Vanttila clay M=1 35 M=1.35 Max. max stress during 0 loading 40 30 20 p'm=26.0 kPa 0 0 10 20 30 40 50 60 70 p' (kPa) q (kPa) 20 10 -10 p'm=42.0 kPa 0 -20 40 q (kPa) 10 -10 p' (kPa) c) Otaniem i clay Yield points M=1 M 1.2 2 Max. stress max during 0 loading 40 q (kPa) a) Murro clay 10 p'm=26.0 kPa 0 -10 -20 20 -20 -30 -30 0 10 20 30 40 50 60 70 p' (kPa) d p' Simulations with S-CLAY1 S CLAY1 1.5 2.5 3.5 4.5 5.5 0.0 -0.05 0 05 ln p' -50 0 50 100 150 q (kPa) 0.05 0.1 d v 0.15 0.2 0.3 -0.05 0.25 0.0 0.1 0.2 0.3 CAD 3216R Reconstituted Murro clay 6 9-7 6 m 6.9-7.6 0=0.98, 1=-0.62, 2=0.60 v 0.05 d 0.15 CAE 3216R S-CLAY1 S CLAY1 MCC 0.25 Karstunen & Koskinen (2004) For full validation For full validation, see Karstunen & Koskinen (2008), Can. Geotech. J. see Karstunen & Koskinen (2008) Can Geotech J S‐CLAY1S Model S‐CLAY1S Model (Karstunen et al. 2005) q ’y “intrinsic” yield curve CSL 1 pp’ M Natural yield curve 1 pmi’ ’x ’z pm’ p’ 1 CSL p 'm (1 ) p 'mi Intrinsic yield surface F M 3 d p' d T d p' d M 2 3 d T d p'm p'p' 0 2 2 Hardening Laws: Hardening Laws: 1) Size Si off th the iintrinsic t i i yield i ld surface f vp'mi d vp dp 'mi i 2) Degradation of bonding dx d vp d d dp 3) Rotation of the yield surface 3 p p d d ( d ) d v d ( d )d d 3 4 Tests on Natural Clay Samples Tests on Natural Clay Samples M=1.6 =0.63 pp'm=34.5 kPa a) Murro clay 40 30 30 20 20 10 M=1.2 =0.46 pp'm=49 49 kPa 50 40 q (kP Pa) q (kP Pa) 50 b) POKO clay 0 10 0 0 10 20 30 40 50 60 70 0 -10 10 20 30 40 50 60 70 -10 -20 20 -20 20 p' (kPa) p' (kPa) c) Otaniemi clay d) Vanttila clay M=1.3 =0.50 p''m=19.5 19 5 kP kPa 20 M=1.35 =0.52 p'm=18.5 =18 5 kPa 20 10 q (kPaa) q (kPaa) 10 0 0 0 10 20 -10 30 0 10 20 -10 p' (kPa) p' (kPa) 30 d p' Si l ti Simulations with S‐CLAY1 and S‐CLAY1S ith S CLAY1 d S CLAY1S POKO clay 1=0.95, POKO clay, =0 95 2=0.06 =0 06 a) 1.5 v 2.5 3.5 d b) ln p' 4.5 5.5 0.0 6.5 0.1 0.2 c) 0.3 0.4 0.0 0.0 0.00 0.1 0.1 0.05 0.2 0.2 0.10 0.3 v 0.3 d 0.4 0.20 0.5 0.5 0.25 0.6 0.6 0.30 0.7 0.35 S CLAY1 S-CLAY1 CAD 2751 20 40 0.15 0.4 0.7 q 0 S-CLAY1S Constitutive modelling Creep models for natural clays Creep models for natural clays 60 80 100 Rate‐dependent models EVP-SCLAY1S q Dynamic loading surface 1 q M psm’ Dynamic loading surface 1 1 pmi’ pdm’ psm’ pmi’ p’ pdm’ Normal consolidation surface 1 p’ peq’ pp’ pmi’ Intrinsic surface pmd f d r pm ij ijvp Grimstad et al. (2010), Yin et al. (2011) c vol * 1 OCR * Leoni et al. (2008), Kamrat‐Pietraszewska (2011) EVP‐SCLAY1S Influence of anisotropy p’ Current stress surface Intrinsic surface pmd f 1 1 d p m ij M 1 Static loading surface ijvp exp N Karstunen & Yin (2010) q 1 Intrinsic yield surface M Static yield surface ACM/ACM-S AniCreep/n-SAC Influence of destructuration Hong Kong Marine Deposit (data from Zhou et al. (2006)) EVP‐SCLAY1S Influence of destructuration Influence of anisotropy Influence of anisotropy Hong Kong Marine Deposit (data from Zhou et al. (2006)) EVP‐SCLAY1S 10 -2 (c) Tertiary creep d a/d dt (%/s) 10 With destructuration -4 Without destructuration Secondary creep 10 10 -6 6 CAUCR1 q=14.4 kPa CAUCR2 q=17 q 17.3 3 kPa CAUCR3 q=20.0 kPa Primary creep EVP-SCLAY1S EVP-SCLAY1 (c) -8 Vanttila clay y 10 1 10 2 10 3 10 Time (s) 4 10 5 10 6 C l i Conclusions • Of Of the various approaches exist for modelling large h i h i f d lli l strain anisotropy elasto‐plastic approach computationally most efficient but requires computationally most efficient, but requires additional state variable (fabric tensor) and additional soil constants additional soil constants • Largely a consensus on how to model the effect of bonding and destructuration bonding and destructuration • S‐CLAY1S model is a simple model which incorporates both anisotropy and destructuration incorporates both anisotropy and destructuration • Combining these effects to rate‐formulations rather straight‐forward, straight forward, but challenges remain as selection but challenges remain as selection of creep formulation not trivial Some key references: Some key references: • • • • • • • • • • • • A. Gens & R. Nova (1993). Conceptual bases for a constitutive model for bonded soils and weak rocks.” Proceedings of International Symposium on Hard Soils ‐ Soft Rocks, Athens, 485–494. G. GRIMSTAD, S.A. DEGADO, S. NORDAL & M. KARSTUNEN (2010). Modelling creep and rate effects in structured anisotropic soft clays. Acta Geotechnica 5: 69–81. Z.‐Y. YIN, C.S. CHANG, M. KARSTUNEN & P.‐Y. HICHER (2010). An anisotropic elastic viscoplastic model for soft clays. International Journal of Solids and Structures 47(5): 665‐677. Z ‐Y YIN C S CHANG P ‐Y HICHER & M. KARSTUNEN Z.‐Y. YIN, C. S. CHANG, P.‐Y. HICHER & M KARSTUNEN (2009). Micromechanical analysis of kinematic (2009) Micromechanical analysis of kinematic hardening in natural clay. Int. J. Plasticity 25(8):1413‐1435. M. KARSTUNEN & M. KOSKINEN (2008). Plastic anisotropy of soft reconstituted clays. Canadian Geotechnical Journal 45: 314‐328. M. KARSTUNEN & Z.‐Y. YIN (2010). Modelling time‐dependent behaviour of Murro test embankment. Géotechnique 60(10): 735‐749. M. LEONI, M. KARSTUNEN & P. VERMEER (2008). Anisotropic creep model for soft soils. Géotechnique 58 (3): 215‐226. M. KARSTUNEN, C., WILTAFSKY, H., KRENN, F., SCHARINGER & H.F. SCHWEIGER (2006). Modelling the stress‐strain behaviour of an embankment on soft clay with different constitutive models stress‐strain behaviour of an embankment on soft clay with different constitutive models. International Journal of Numerical and Analytical Methods in Geomechanics 30(10): 953‐982 M. KARSTUNEN, H., KRENN, S.J., WHEELER, S.J., M. KOSKINEN & R. ZENTAR (2005). The effect of anisotropy and destructuration on the behaviour of Murro test embankment. ASCE International Journal of Geomechanics 5(2): 87‐97. D. POTTS, D. & L. ZDRAVKOVIC (1999). Finite element analysis in geotechnical engineering‐ ( ) l l h l Theory. h Thomas Telford,1999. S.J. WHEELER, A. NÄÄTÄNEN, M. KARSTUNEN & M. LOJANDER (2003). An anisotropic elasto‐plastic model for natural soft clays. Canadian Geotechnical Journal 40(2). pp. 403‐418 Z ‐YY. YIN, M. KARSTUNEN, C.S. CHANG, M. KOSKINEN & M. LOJANDER (2011). Time Z. YIN M KARSTUNEN C S CHANG M KOSKINEN & M LOJANDER (2011) Time‐dependent dependent behaviour of soft sensitive clay. ASCE International Journal of Geotechnical and Geoenvironmental Engineering 137(11):1103‐1113. Some creep models that i incorporate t anisotropy i t and d destructuration Assoc. Prof. Gustav Grimstad (HiOA) Fundamental aspects of soft clay behavior — Creep — Anisotropy A i t — Strength — Stiffness — Yield stress — Structure and destructuration — Unloading/reloading cycles – small strain — Degradation during cyclic loading — ALL ARE LINKED! “1D” Creep – (24h) incremental oedometer t t test — Advantages: — Gives first estimate of creep/consolidation parameters and the “vertical” pre-consolidation stress directly — Disadvantages — Time consuming compared to CRS tests — Only average settlement parameters for large stress increments — Ideally back calculation with mathematical model is needed (FEA) Current Norwegian engineering practice — Using low OCR (if material has not been subjected to preloading an OCR of 1 1.0? 0? is often used) — Ignoring creep — Adding creep after consolidation?(Hyp. consolidation?(Hyp A!) — Advanced: Janbu´s time resistance concept — What about the selected pre pre-consolidation consolidation stress? IMPORTANT!!! — What about sample quality? Sample quality Compression curves for Väsby clay at a depth of 4.0 – 4.3 m (after Leroueil and Kabbaj, 1987) j, ) DeGroot et. al. (2005) Janbu´s time resistance concept — Increment in time divided by the increment in strain (Cause/Effect) (Cause/Effect). R = ∂t/∂ε 1D equation ddt t rs t Rref rs t d vvp ”Pure creep” rs Rref tref 1 rs tref Rref when tref t l ( refeq = peq), t ln(p ) t=τ d 1 1 t vvp ln dt rs t rs vp v tp l ( refeq), (t = t) ln(p ) (t t) 1 ζ ln(τ)/rs eq ref vp v dp d p vvp ln p eq ref p d 1 dt Rref vp v eq ref eq p p eq ref eq rs Δεvvp ln(t)/rs * p pref eq eq * * * εv vvp 1 1 rs Rref vvp 1 rs t prefeq is important for creep rate! Initial value is the pre consolidation stress! value is the pre‐consolidation stress! “Alternative approaches” to Janbu for 1D — Yin and Graham (equivalent time approach) – Adopted from Bjerrum — Leroueil — Den Haan (ABC model) — etc. ALL ARE THE SAME? Ignoring creep? Illustration of dependence of OCR on the corresponding reference time (). A case of SSC and SS model giving the same final settlement final settlement. The effect of the μ*/(λ*-κ*) ratio on OCR (creep rate) H H0 * * * 1 rs age = 10000 yrs OCR = 1.3 OCR age λ* decreasing with stress ln(σ’) 0.010 1.163 6.79E+08 years 0.015 1.254 1.08E+05 years 0 020 0.020 1 353 1.353 1 36E+03 years 1.36E+03 years 0.025 1.459 98.9 years 0.030 1.574 17.2 years 0.035 1.697 4.93 years 0.040 1.830 1.93 years 0.050 2.129 0.518 years 0.070 2.880 0.113 years H H0 H H0 σv0’ σvc’24h ln(σ’)) ln(σ μ* decreasing with time ln(σ’) “Recommended” range (PLAXIS manual) ~0.04 ‐ 0.07 Same μ* μ Same λ* Anisotropy — First: — Undrained Triaxial Compression versus Undrained Triaxial Extension and Direct Simple Shear (Bjerrum 1973) — Second: — Preconsolidation stress from Oedometer test versus isotropic consolidation test (Feng 1991) — Third: — “Stress/strain induced anisotropy” – Changes in macroscopic yield surface (Wheeler 2003) Undrained shear strength — Used as basis for the NGIADP model 0.5 0.4 cr/ v00' 0.3 0.2 0.1 0 90 60 30 0 [ o] 30 60 90 Pre-consolidation stress and ”cap” yield surface f — Experiments from literature on finding cap surface – yield points in p’ – q space Stress/strain induced anisotropi — Wheeler et al. Destructuration 2500 Eberg clay, 6.47 m Eberg clay, 6.13 m 2000 1.8 1.6 1.4 12 1.2 2.0 0.8 0.6 0.4 1500 rs Vooid ratio [-] 22 2.2 2.0 1000 Undisturbed sample In situ state Reconstituted at wL Predicted ICL SCL 1 10 100 'v[kPa] 500 0 1000 0 200 400 600 v' 800 1000 1200 Christensen (1985) 10000 Burland (1990) Creep - Yield surface becomes reference surface f 1.2 d /dt = constant - ACM d /dt = constant - new formulation 1 — Option 1 – extending by volume strain (ACM) — Option 2 – extending by plastic multiplier directly 08 0.8 0.6 eq q/pref 0.4 0.2 0 -0.2 02 -0.4 -0.6 0 0.2 0.4 0.6 eq p'/pref 0.8 1 1.2 Anisotropy and creep – Th n-SAC The SAC model d l — A non-associated creep model for structured anisotropic clay — Non-associated because: — prediction of the strain behavior under various stress paths paths, based on experimental evidence from e.g. Feng (1991) 3 T σ d p ' β d σ d p ' β d p eq p ' 2 2 3 T M βd βd p ' 2 3 T σ d p ' α d σ d p ' α d eq 2 pQ 0 Q p ' 3 T 2 M f αd αd p ' 2 where p’ = mean stress; σd=deviatoric stress vector; βd = deviatoric rotational vector; M = Lode angle dependent peak of the reference curve of in p’‐q space where Mf is the Lode angle dependent citical state line in p’‐q p q space; α p ; d is the deviatoric rotational vector. Modelling of destructuration State variables inc. x Models with anisotropy and destructuration — Option 1 — ACM -> > ACM ACM-S S (Leoni 2008 2008, Kamrat-Pietraszewska Kamrat Pietraszewska 2011) — Extension of SSC (Stolle et al. 1999) (PLAXIS current model) — Option p 2 — EVP-SCLAY1S (Karstunen and Yin 2010) — Ani-Creep (Yin et al. 2011) — n-SAC (Grimstad et al. 2010) — n-SAC –using creep limit and option 2: 1 p eq rsi 1 x pmi ' rsi i tmax mK 0 NC How to use/Parameters for analyses • Two models ‐ d l SSC and n‐SAC SSC d S C • Three analysis cases ‐ SSC1, SSC2 and n‐SAC Model SSC1 SSC2 n‐SAC ν 0.15 0.15 0.15 K0NC 0.54 0.54 0.5 Eref / pref 200 200 200 {Eoedref}i / pref 9.5 6.0 13.0 rsmin ‐ ‐ 200 rsi 267 233 625 kv = kh = 5e‐5 m/day; γ’ = 10 kN/m3, K0 = 0.54, OCR = 1.36 ω ‐ ‐ 0.3 φp ‐ ‐ 25° φcs 35° 35° 35° Oedometer simulations 400 R = Δt/Δε (d days) 350 300 250 200 SSC1 150 SSC2 100 n‐SAC 50 0 4 5 6 7 8 Time [days] 14000 Eoed = Δσ/Δε [kP Pa] 12000 10000 Two way drainage 8000 SSC1 6000 SSC2 4000 n‐SAC 2000 0 0 200 400 600 800 1000 V i l Vertical stress, σ [kP ] [kPa] Example: settlement problem SSC1 n SAC n‐SAC Uy [m] 0 SSC1 - Point A -0.3 SSC2 - Point A -0.6 n-SAC - Point A -0.9 -1.2 -1.5 1 10 100 1e3 Time [day] 1e4 1e5 1e6 Profiles Horizontal displacements [m] 0.05 0.10 0.15 0.00 0 ‐5 ‐5 ‐10 ‐10 ‐15 ‐15 Dep pth [m] 0 ‐20 0.20 0.40 0.60 0.80 ‐20 ‐25 SSC1 ‐25 SSC1 ‐30 SSC2 ‐30 SSC2 n‐SAC n‐SAC ‐35 ‐35 ‐40 ‐40 Mesh dependency due to softening Time [days] [ y] 0 0.5 1 1.5 2 2.5 3 0 ‐0.1 ‐0.2 Vertical displacement [m m] Dep pth [m] 0.00 Vertical displacements [m] Application of load, fine mesh Undrained creep phase, fine mesh Application of Load, coarse mesh Undrained creep phase, coarse mesh ‐0.3 ‐0.4 ‐0.5 ‐0.6 ‐0.7 ‐0.8 ‐0.9 60 kPa Shadings of “structure” Effect of stiffness 30 25 xyy ' [kPa] 20 High Eref Low Eref 15 10 v0' = 105 kPa d/dt = 1/(3E5 s) 5 0 DSS 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 xy *2 ”stiff” ”soft” 25.7 days. Looks more like perfectly plastic behavior! Conclusions — Creep/rate and anisotropy are important if we want to fully understand soil behavior behavior. — Sample quality is crucial and deserves more attention as it forms the basis for numerical modeling. modeling — With increased sample quality and testing procedure, the soil models also needs to be improved — The “huge gap” between state-of-the-art and state-ofp must be closed or at least narrowed the-practice down! Laboratory study of creep — Creep can be studied in all types of soil tests as it manifests itself along with all soil behavior — Incremental oedometer test – the standard — Loads typically applied incrementally with sequence 12.5 kPa, 25 kPa, 50 kPa, 100 kPa, 200 kPa, 400 kPa, 700 kPa and 1200 kPa — Time between load increments is 24 hr — Deformation under each load increment is measured 2 oedometer Schematic drawing of the 20 cm h d f h d cell (www.ngi.no ) ll ( ) Exercise - Oedometer 1. Open geometry from file oedo.P2D 2 Input material properties – n-SAC (not the “default”?) 2. default ?) or SSC 1. 3. 4. 5. 6 6. Optional: run “SoilTest”, play around with triax etc. Go to calculation Mark all calculate Run oedometer O t t and Output d curves 1. 2. Make curve with time deformation – Export to excel and calculate stress- strain and time – strain curves and resistance curves (excel sheet oed.xlsx can be used) Curve with p’-q Exercise – Test fill — See handout Exercise on settlement of the Väsby test fill with SSC and n-SAC Grimstad1, G. and Degago2, S. A. Brief description of the Väsby test fills (Extracted from Chang (1981) SGI report No 13, Larsson (1986) SGI report No 29, Larsson and Mattsson (2003) SGI report No 63.) The Väsby test fills were designed and constructed by the Swedish Geotechnical Institute (SGI) and are located 30 km north of Stockholm. The test fills were constructed in order to assess the suitability of a site for construction of an airport. The test fills have been monitored with extensive instrumentations installed before and after the fills were constructed. The instrumentations consist of surface and sub‐surface settlement gages and piezometers. Three fills have been constructed, with and without vertical drains, from 1945 to 1948. Of the three test fills constructed the one considered in this exercise is without drains (denoted the undrained fill), constructed in October‐November 1947 and is simply hereafter referred to as the Väsby test fill. The Väsby test fill is still under monitoring and with the latest extensive field measurements were conducted in May‐June 2002. The Väsby test fill was constructed with 2.5 meter high fill of gravel with a density of 16.5 kN/m3. The fill had bottom dimensions of 30 x 30 m and slopes of 1:1.5. Time for construction was 25 days and no change in load other than natural variations has been made after that. The net increase in vertical stress directly under the fill was calculated to originally be around 41 kPa. 1 HiOA 2 SVV Figure 1: Soil profile at the Väsby test fill area (Chang , 1981) The Väsby test fill site consists of soft sediments of glacial and post‐glacial origin. The soft soil layer under the fill is 14 m thick. A generalized characterization of the soil profile in the natural ground in the test fill area is shown in Figure 1. The ground water table outside the loaded area is hydrostatic with a ground water level of about 0.8 m below the surface with little seasonal variations of ± 0.2 m measured throughout the year. Due to excessive settlements in the order of 2 meters the original surface soil and some of the fill is today below the groundwater level. This implies that the load has actually been reduced over time related to increased buoyancy (2m higher GW level – relatively speaking – reducing the load by 20 kPa.), see Figure 2. An updated mesh Plaxis simulation is proposed in this exercise to automatically take this into account (wit an updated mesh analysis you do not need to unload manually, just leave the load on). 50 kPa 100 kPa Vertical stress 0m “Load” reduction due to settlements 5m “Final” load Immediately after loading:v0’ + v 10 m Initial stress v0’ 15 m Depth Figure 2: Initial effective stresses and additional total stresses under fill (Rolf Larson 1986, SGI report no 29) Laboratory test data for interpretation of soil parameters The following selection of laboratory data is provided to let you try to evaluate the proposed soil parameters for the 13 m thick bottom clay layer. Most of the tests shown are from samples taken at about 4 meter depth. You may not get exactly the same parameters, but this will give you an idea on how they, in principle, may be determined. Oedometer test results on samples taken by the Swedish standard piston sampler are reproduced in Figure 3. One of the results are compared to a test on a block sample, see Figure 4. Consider the tests on samples at 4 or 4.3 meter depth and use the parameters for the entire 13 meter thick lower soil layer. Try to determine the * and * parameters from these tests: See the Wed 01 lecture. Figure 4: Oedometer test results on Swedish piston tube sampler (Chang, 1981). Initial effective stress: 22 – 24 kPa Over‐ consolidation 35 – 40 kPa ? Figure 4: Block samples Oedometer tests Väsby clay, End of Primary Tests (not 24 hour tests), (Kabbaj, Tavenas and Leroueil 1988, Geotechnique vol 38 No 1) Please note that the piston tube sampler indicates an OCR = 1,1 or less while the block sample gives higher OCR closer to 1.5 or even 1.7(?) Figure 5: Deformation with time in an oedometer test. Chang (1987), SGI report No 13 Try to evaluate a secondary compression index * from Figure 5 above. You may also consider the */* ‐ ratio found in the tests on the piston sampled soil samples and apply this ratio to estimate * based on the * from the block sample test. (I could not find the deformation versus time curves in the literature for the block sample tests.) Figure 6: Determination of permeability coefficients. (SGI report No. 63) Please note that the permeability changes as the soil is compressed under the fill. We may use an average value in this exercise or try to find a k0 and a ck for a changing permeability used in “Advanced parameters”: log(k/k0) = e/ck PLAXIS analyses of the Väsby test fill The Väsby test fill is analyzed using PLAXIS. Important considerations and idealizations made for the analysis of the fill are highlighted below. Geometry An axisymmetric model shall be used. The 2.5 meter high, 30 by 30 meters square fill is to be represented by a circular fill of 34 m diameter:. Details of the geometry are given below. The geometry is provided in *.P2D file. 13.25 m 4 5 0 8 x Dry crust GWL 2.5 m Gravel fill y 1 m 6 1 3 17 m 13 m Väsby clay 7 2 Figure 7: Layout of the axisymmetric FE model: Material settings and input parameters Average soil parameters are used. For a more refined analysis the clay should be divided in many layers. Table 1: Material properties of the Gravel fill Parameter Material model Material type Unit weight above phreatic level Unit weight above phreatic level Permeability in vertical direction (constant) Permeability in horizontal direction (constant) Young’s modulus (constant) Poisson’s ratio Name Model Type unsat unsat ky kx Eref Value Linear Elastic Drained 16.5 16.5 1.0 1.0 10000 0.0 Unit ‐ ‐ kN/m3 kN/m3 m/day m/day kN/m2 ‐ Table 2: Material properties of the Dry crust Parameter Material model Material type Unit weight above phreatic level Unit weight above phreatic level Permeability in vertical direction (constant) Permeability in horizontal direction (constant) Modified swelling index Modified compression index Modified creep index Pre‐over burden pressure Cohesion Friction angle Dilatancy angle Earth pressure coefficient at rest Name Model Type unsat unsat ky kx POP c K0NC Value Soft Soil Creep Undrained 14.0 14.0 5.5×10‐05 5.5×10‐05 0.025 0.2 0.012 40 5.0 30.0 0.0 0.65 Unit Value Soft Soil Creep Undrained 15.0 15.0 4.0×10‐05 4.0×10‐05 0.030 0.357 0.021 1.6 0 33.5 0.0 0.6 Unit ‐ ‐ kN/m3 kN/m3 m/day m/day ‐ ‐ ‐ kPa kN/m2 o o ‐ Table 3: Possible material properties of the Väsby clay - SSC Parameter Material model Material type Unit weight above phreatic level Unit weight above phreatic level Permeability in vertical direction (constant) Permeability in horizontal direction (constant) Modified swelling index Modified compression index Modified creep index Over Consolidation Ratio Cohesion Friction angle Dilatancy angle Earth pressure coefficient at rest Name Model Type unsat unsat ky kx OCR c K0NC ‐ ‐ kN/m3 kN/m3 m/day m/day ‐ ‐ ‐ ‐ kN/m2 o o ‐ Initial conditions Initial pore pressure conditions The Ground water level is set to 1 m below the surface. And a closed consolidation boundary is specified only at the line of symmetry (at the left end of the model). The bottom boundary is free for drainage. 4 Phreatic level 5 y 0 x 6 General 8 1 3 Closed consolidation boundary 7 Figure 8: Initiating pore water conditions and flow boundaries Initial stress condition The initial stresses are set after giving the POP and OCR values of the soil layers. When an OCR value is given, PLAXIS automatically changes the K0 value. However, the K0 value needs to be changed back to its initial value of K0. (Remark: PLAXIS considers OCR to come from unloading and adjusts its K0 value. However, in creep analysis, the OCR that results from creep does not induce a significant change to K0.) When initiating, the initial stresses, remember to switch off the gravel fill! 2 Calculation Three phases are defined. They are named as Apply Gravel fill, Settlement analysis – 1 and Settlement analysis – 2 (See Figure 9) Advanced feature for Large deformation analyses Figure 9: Calculation phases First phase (Apply Gravel fill) ‐ On the parameters tab specify the Time interval under Stage construction as 25 days ‐ Activate the gravel fill (by clicking on the define button and updating it finally) ‐ Calculation type = Consolidation analysis ‐ Loading input = Staged construction ‐ Click on the advanced tab found below Calculation type (see Figure 9). Then on the Advanced General Settings check the Updated mesh and Updated water pressures options ( Figure 10) ‐ On the Parameters tab click on Manual setting and Define the Manual settings. Tolerated Error = 0.001 (Remark: The updated mesh analysis is necessary in cases where deformations are expected to be significant. More and interesting discussion on this option can be found in PLAXIS user’s manual) Second phase (Settlement analysis ‐1) ‐ On the parameters tab specify the Time interval under Stage construction as 375 days ‐ Calculation type = Consolidation analysis ‐ Loading input = Staged construction ‐ Do Large Deformation analysis (see Figure 10) ‐ On the Parameters tab click on Manual setting and Define the Manual settings. Tolerated Error = 0.001 Third phase (Settlement analysis ‐2) ‐ On the parameters tab specify the Time interval under Stage construction as 2.1 E4 days ‐ Calculation type = Consolidation analysis ‐ Loading input = Staged construction ‐ Do Large Deformation analysis (see Figure 10) ‐ On the Parameters tab click on Manual setting and Define the Manual settings. Tolerated Error = 0.01, Maximum iterations = 50, Desired minimum = 2, Desired minimum = 50 and First time step = 200 . This should give constant time steps with 200 days in between each of the calculation steps. (Remark: The need to use the Manual iteration scheme (Figure 11) is to control the output data. It is possible to use the Standard setting but the time steps could be large after the initial part of the consolidation. So what is done is to do the analysis with automatic time stepping until 400 days (25 + 375 days), then to run the analysis at a given time step of 400 days. In this way, the output data after the first 400 days, will be given with constant interval. Analysis Before running the the calculations, points needs to be selected for Curves At Väsby test fill, settlement have been monitored, below the centerline of the embankment, at a depth of 0 m (surface), 2.5 m, 5.0 m and 7.3 m. Excess pore pressure a have also been monitored, , below the centerline of the embankment, at a depth of 2.6 m, 6.4 m and 9.1 m. Post processing Measurements of actual time‐ settlement behavior and pore pressures can be found on the following pages. If time allows then compare your results to the measurements. 1. Open output 2. Make relevant curves What about the far field settlements? Excess pore pressure [kPa] 0 5 10 15 20 25 30 35 0 2 Depth [m] 4 6 8 Measured - 1968 10 Measured - 1979 Measured - 2002 12 Measured - 2002 Measured - 2002 14