- Universiti Teknologi Malaysia

Transcription

- Universiti Teknologi Malaysia
PENGECAMAN IMEJ KAPAL TERBANG MENGGUNAKAN
TEKNIK LMI" TMI DAN KMI BAGI KAEDAH SOM
NURULLIZ AH BINTI MAHIDIN
Laporan Projek ini dikemukakan
Sebagaimemenuhisebahagiandaripadasyarat
penganugerahan
ljazah SarjanaMuda Sains(SainsKomputer)
F'akultiSainsKomputer dan SistemMaklumat
Universiti TeknologiMalaysia
MEr,2008
I
ABSTRAK
Mata merupakansuatuanugerahyangtidak ternilai di manamelaluinyakita
dapatmelihat apayangberlakudi sekelilingkita. Mata bertindaksebagaikamera
iaitu denganmenangkapsuatuimej untuk dihantardandiprosesoleh otak. Maka
giat menciptasatumesinbaruyangberkait
tidak hairanlahsekiranya,parapenyelidik
rapatdengansistempenglihatanmanusia.Bagi mesinbaruini terdapatdua(2) fasa
yangpentingiaitu fasapengekstrakan
imej danfasapengelasan.Bagi melakukan
fasapengekstrakan
imej teknik momentak varianiaitu LegendreMomentsInvariant
(LMD, Tchebichef
MomentsInvariant(TMI), danKrawtchoukMomentInvariant
(KMD digunakanmanakalakaedahrangkaianneuraliaitu Self-OrganisingMap
(SOM)digunakanuntuk membuatpengelasan
imej danpengecaman
terhadapobjek
domainyangdipilih iaitu kapalterbang.Hasil yangdiperolehidaripadakajian
menunjukkanbahawateknik KMI merupakanteknik yangterbaikdalammembuat
pengekstrakan
imej ke atasimej kapalterbang.Peratusralat mutlakyangdiperolehi
daripadakajian ini ke ataskapalterbangberjenisAirbus A320-214ialahkurang
daripada0.0794iaitu mempunyaiketepatansebanyak99.92peratus.Teknik ini juga
sesuaidigunakanuntuk membuatanalisismengenaiciri-ciri intrakelasdaninterkelas.
Selainitu, bagipengelasan
imej didapatikaedahSOM dank-NearestNeighbour(kNN) sesuaidigunakanberdasarkan
nilai Percentageof CorrectClassffication(PCC)
yangtinggi bagi ketiga-tigasampeliaitu lebih daripada70 peratus.
v1
,
ABSRACT
Eyesarespecialgifts that aregivenby our Creator.Throughthemwe can
comprehendwhat happenedin the environment.Eyesact asa camerathat takesthe
particularof imageobjectsand sendit to the brainto be processed.Thus,researchers
areenthusiasticto invent a new machinethat mimickedhumanvision system.There
aretwo (2) significantphasesin the associated
systems;featureextractionand
classificationphase.In this research,three(3) momentinvarianttechniquesare
adoptedto performthe featureextractionof the aircraftimages,namelyLegendre
MomentInvariant(LMI), TchebichefMomentInvariant(TMI), andKrawtchouk
MomentInvariant(KMD. Self-Organising
Map (SOM)is usedto classi$the
resultingfeaturevectors. The resultfrom the resealchshowsthat KMI techniqueis
the bestfeatureextractiontechniquewhencomparedto the LMI andTMI. The
percentage
of absoluteerrorfor the featureextractionof an aircraftmodelAirbus
4320-214is leastthan 0.0794which is its accuracyis 99.92percent.Thusthe KMI
featuresvectorsareutilizedfor intraclass
andinterclass'analysis.
Besides,SOMand
k-NearestNeighbour(k-Itil.l)techniquearethe bestclassificationtechnique
(PCC). ThePCCfor the
accordingto percentage
of correctclassification
classification
of samplel,2,and 3 aremorethan7} percent.
60
RUJUKAN
Biehl, M., Ghosh,A. and Hammer, B (2007). Dynamics and GeneralizationAbility of
LVQ Algorithms.Journal of MachineLearningResearch8. pages:323-360.
Chee,W. C., Raveendran,R., and Mukundan,R. (2004).Translationand Scale
Invariants of LegendreMoments. TheJournal of the Pattern RecognitionSociety.
PatternRecognition37, ll9-129.
chowdhury, N., and Saha,D. (2005).unsupervisedText classificationUsing
Kohonen'sSelf-OrganizingNetwork. 7 15-718.
DassaultFalcon 10 (2007).Retrievedon September6,2007 from
http ://www.airliners.neVopen.fi
lel 0576193lL.
Deghan,M. and Faez,K. (1977).Farsi Handwrittencharacter Recognitionwith
MomentInvariants,IEEE, Pages:507-510,Retrievedon September5,2007 from
http://ieeexplore.ieee.or
gl ieI3I 496l I 13653I 00628387.pdf.
Fu, B., Zhou,J.,Li,Y., Zhang,G., and W*g, C. (2007).ImageAnalysisby Modified
LegendreMoments. TheJournal of the Pattern RecognitionSociety.Pattern
Recognition40. 691-704.
Ghorbel,F., Derrode,S., Dhahbi, S., and Mezhoud,R. Reconstructingwith Geometric
Moments.Retrievedon August 15,2007 from
http ://www. fresnel.frlperso/derrode/publi/Acida2005.pdf.
6l
Haddadnia,L,Faez, K. andMoallem,p. (2001).NeuralNetworkBasedFace
Recognitionwith Moment Invariants.IEEE, pages:l0lg-1021. Retrievedon
September
5,2007 fromhttp:llieeexplore.ieee.org/ie15175g4l20726100g5g21i.pdf.
Honkela,T., Leinoeni,T., Lonka,K., andRaike,A. setf-organising
Ma/s and
constructive Learning. 339-343.Retrievedon August 14,2007 from
http://www.ifip.or.atlcon200O/iceut
10-04.pdf.
Hopfield Net (2007,9 August).Retrievedon August 12,2007 from
http://en.wikipedia.
org/.
fr-MeansAlgorithm (2008,March 17).Retrievedon March 20" 200g from
http://en.wikipedia.org/.
ft-NearestNeighbourAlgorithm (2008,March 6). Retrievedon March 20, 2008 from
http :II en.wikipedia.org/.
Kamgar-Parsi,B,, and Jain,A. K. AutomaticAircraft RecognitionToward Using
Human Similarity Measurein a Recognition System. Computer Vision pattern
Recognition,1999.IEEE ComputerSocietyConferenceon. June,23-251999.Fort
Collns,CO: IEEE. 1999.268-273.
Kulkarni, A.D., Yap, A. C. and Byars,P. (1990).Neural NetworlrsforInvariant Object
Recognition.2S-32.Retrievedon August 14,2007 from
http://ieeexplore.ieee.or
gl iel 512781269
5I 00082135.pdf.
Lee, H-j. and Cho, S. (2006).Application of LVQ to NoveltyDetectionusingoutlier
training data. PattemRecognitionLetters27.pages: 1572-1579.
LVQ (2007, 11November).Retrievedon March 16,2008 from http://en.wikipedia.orgl.
62
Mezghani,
N., Mitiche,A., andCheriet,M. (2002).On-lineRecognition
of Handwritten
Arabic Characters
Usinga KohonenNeuralNetwork.Proceedings
of theEight
InternationalWorkshopon Frontiersin HandwritingRecognition(IWFHR'72),
Retrievedon August 12,2007from
:
http://ieeexplore,ieee.org/ie15/8011/2213g/01030958,pdf
.
t
Mukundan,R., ong, s. H., andLee,p.A. (200r).ImageAnalysisby Tchebichef
Moments.IEEE Transactions
on ImageProcessing.l0(9).I357-l364.Retrieved
on
August12,2007fromhttp:llieeexplore.
ieee.orgliel5/83/20391/0094IgS9.pdf.
Mukundan,R. andRamakrishnan
K. R. (1998).MomentFunctionin ImageAnalysis.
Singapura:
World ScientificpublishingCo.pte.Ltd.
Negnevitsky,
M. (2005).ArtificialIntelligentA Guideto IntelligentSystem.(2nded.)
EdinburgGate:Pearson
Education
Limited.
NeuralGas(2007,23December).
Retrievedon March16,200gfrom
http:II en.wikipedia.
org/.
NeuralNetworkDocumentation
(2007).Retrievedon August 14,2007from
http://www.wolfram.com/.
Perelomov,r.,Azcarraga,
A. p. , Tan,J. andchua, T. s. (2002).usingstructuredself_
organizingMapsin NewsIntegrationwebsites.citeseer.IST.
Putehsaad,ShahrulNizamyaakob,andAbu HassanAbdullah.(2005).
Features
Extractionof BinaryImagesUsingMomentInvariants.