Curriculum Vitae of Alessandro Chiuso
Transcription
Curriculum Vitae of Alessandro Chiuso
Curriculum Vitae of Alessandro Chiuso Department of Information Engineering - University of Padova Via Gradenigo, 6/b, 35131 Padova, Italy Ph. +39-049-8277709 -Fax. +39-049-8277699 chiuso@dei.unipd.it, http://automatica.dei.unipd.it/people/chiuso.html April 2015 PERSONAL DATA Born on December 21st, 1972 in Venice (Italy) EDUCATION -Ph.D. Degree (Dottorato di ricerca) in System Engineering, University of Bologna. Thesis: “Geometric Methods for Subspace Identification”, Advisor: Prof. G. Picci. 02/2000. -Laurea Degree (joint B.S./M.S. equivalent) in Telecommunication Engineering (summa cum laude), University of Padova (thesis: Image reconstruction from projections), Advisor: Prof. G. Cariolaro. 07/1996. PRESENT POSITION Associate professor, University of Padova 03/2006 - PREVIOUS/VISITING POSITIONS -Researcher (Assistant professor), University of Padova -Visiting Researcher, University of California Los Angeles, USA -EU-TMR Post-Doctoral fellow Royal Institute of Technology, Sweden -Research associate (“Assegnista di ricerca”), University of Padova -Visiting Research Scholar, Washington University, USA 03/2001 -02/2006 07/2001 03/2000-07/2000 03/2000-02/2001 09/1998-06/1999 INVITED SHORT TERM VISITS University of Kyoto (11/2011), Link¨oping University (5/2011 and 11/2011), University of California Los Angeles (08/2010), Royal Institute of Technology (05/2007), University of Melbourne (04/2006), University of Texas at Austin (05/2005), University of California Los Angeles, (05/2005-06/2005). FULL PROFESSOR QUALIFICATION -Abilitazione Scientifica Nazionale (Bando 2012) for the Full Professor position with the following overall evaluation given by the Committee (in Italian): “Il candidato presenta 20 pubblicazioni, la maggior parte in sedi altamente visibili nel settore concorsuale, di cui 9 pubblicate negli anni 2008-2012. Le pubblicazioni, che riguardano diverse tematiche tra cui identificazione parametrica, subspace identification e stima distribuita, sono tutte coerenti con le tematiche del settore concorsuale o con le tematiche interdisciplinari ad esso pertinenti. Nelle 16 pubblicazioni in collaborazione il contributo individuale, considerato paritetico, `e valutato adeguato. La qualit` a della produzione scientifica, caratterizzata da eccellente originalit` a, ` e svolta con eccellente rigore metodologico ed ` e eccezionalmente innovativa. Relativamente ai Parametri di cui alle lettere a)-g), il candidato possiede i seguenti titoli: 1 a) supera 3 mediane su 3. b) responsabilit` a scientifica per progetti di ricerca internazionali e nazionali, ammessi al finanziamento sulla base di bandi competitivi che prevedano la revisione tra pari. d) partecipazione a comitati editoriali di riviste, collane editoriali, enciclopedie e trattati di riconosciuto prestigio. e) attribuzione di incarichi di insegnamento o di ricerca (fellowship) ufficiale presso atenei e istituti di ricerca, esteri e internazionali, di alta qualificazione Relativamente agli ulteriori criteri di valutazione, il candidato ha dimostrato: Capacit` a di attrarre finanziamenti competitivi in qualit` a di responsabile di progetto e capacit` a di promuovere attivit` a di trasferimento tecnologico. ================= Giudizio complessivo ================= Il candidato Chiuso Alessandro i cui indicatori dell’impatto della produzione scientifica complessiva superano i requisiti richiesti per la prima fascia, viene valutato con giudizio di merito eccezionalmente positivo secondo i criteri e i parametri per la valutazione dei candidati, tenuto conto della loro ponderazione. Al candidato Chiuso Alessandro viene attribuita l’abilitazione” EDITORIAL BOARDS -Invited to joint the Editorial Board of SIAM Journal of Control and Optimization - declined due to overlapping editorial commitments (2013) -Associate Editor: IEEE Transactions on Control System Technology: (2013-) -Associate Editor: European Journal of Control: (2011-) -Associate Editor: Automatica (2008-) -Associate Editor: IEEE Transactions on Automatic Control: (2010-2012) -Editorial Board Member: IET Control Theory and Applications (2007-2013) -IEEE CSS Conference Editorial Board (2004-2009) RESEARCH INTERESTS System identification; machine learning; Monte Carlo/particle filtering; human-machine interfaces; computer vision; motion estimation and control; target tracking; texture modeling and recognition; stochastic realization; modeling and estimation; detection and estimation theory; nonlinear filtering; statistical inference on manifolds; hybrid system identification. HONORS AND AWARDS -Invited Plenary Speaker at the 15th IFAC Symposium on System Identification (SYSID), Beijing, China, October 2015. (http://sysid2015.info/PlenaryTalks.html) -Best Oral Presentation (SIDRA annual meeting, Benevento, September 2012) -Outstanding Reviewer (IEEE Transactions on Automatic Control, 2009) -Outstanding Reviewer (Automatica, 2007, awarded to a pool of about 30 referees out of about 1300) -IEEE Senior Member (2006) -Ing. Aldo Gini Foundation Fellowship, Padova, Italy, 1999. RESEARCH FUNDING AS PRINCIPAL INVESTIGATOR (PI) Total funding as PI ' 800Keuro -National Coordinator (PI): “Progetto FIRB 2012” (RBFR12M3AC): Learning meets time: a new computational approach for learning in dynamic systems. Total Funding 713Keuro -PI: “Progetto di Ateneo” (CPDA090135/09): Learning methods for estimation and identification of large scale distributed dynamic systems, University of Padova (2010-2012), Total Funding 38Keuro 2 - Coordinator - Ex 60% - Project: Modeling, Estimation and Control; Automation group at the Department of Management and Engineering: 2007 (Cenedese - Chiuso) and 2008-2009-2010-2011 (Cenedese - Chiuso - Oboe), Total funding ' 34.7Keuro -PI: “Assegno di ricerca” (funds for a Post-Doc position) (CPDR058728): Sensor Networks for surveillance, University of Padova (2005) RESEARCH FUNDING - PARTICIPANT -Contract with the company MEMC s.p.a. (Merano), 2012. -Contract with the company ELECTROLUX (Pordenone), 2012. -HYCON2 Network of excellence (grant agreement #257462). -European Project FeedNetBack [FP7/2007-2013] FP7-ICT-223866-FeedNetBack -MIUR PRIN Projects: Algorithms and architectures for identification and control of industrial systems (1998), New techniques for identification and adaptive control of industrial systems (2000), New techniques for identification and adaptive control of industrial systems (2002), New techniques for identification and adaptive control of technological systems (2004), New techniques for Bayesian estimation, identification and distributed and adaptive control (2006), New Methods and Algorithms for Identification and Adaptive Control of Technological Systems (2008). -“Progetto di Ateneo”: MACONDO (Modelling, Analysis, and CONtrol of Deformable Objects) (2005). -“Progetto di Ateneo”: Simulation of cognitive processes using generative neural networks (2003). -U.S. Army Research Office DAAH0445 e DAAD19-99-1-0139 e NSF IIS-9876145 (PI prof. Stefano Soatto) -Italian Space Agency project: Vision systems for autonomous navigation in space -European Research Networks ERNSI (1998-2003) (European Research Network on System Identification). -European Project RECSYS (2002-2005) RESEARCH NETWORKS -Team Leader of the UNIPD/Italy Team: European Research Network on System Identification (ERNSI) (2013-), (http://people.kth.se/ bo/ERNSI/index.html) RESEARCH GROUP - Mattia Zorzi: Researcher (RTDa) (2014-) funded by the MIUR FIRB project “Learning meets time” coordinated by Alessandro Chiuso. - Giulia Prando: PhD student (2014-) - Diego Romeres: Research collaborator (2013), PhD student (2014-) - Francesca Carli: Post Doctoral fellow (Assegnista di Ricerca) (2011-2012) RESEARCH CONSULTING - Consultant for the Department of Computer Science, University of California Los Angeles (Oct. 2011-Sept. 2012) 3 INVITED PLENARY ADDRESSES -Invited Plenary Speaker at the 15th IFAC Symposium on System Identification (SYSID), Beijing, China, October 2015. (http://sysid2015.info/PlenaryTalks.html) INVITED PAPERS -Invited to write the chapter on “System Identification Techniques: Convexification, Regularization, Relaxation” for the Springer Encyclopedia of Systems and Control (2014) SELECTED INVITED LECTURES - Invited Speaker at the Workshop: “Out of the Box: Robustness in High Dimension”, NIPS 2014, http://nips.cc/Conferences/2014/Program/event.php?ID=4302 - Invited Talk: Bayesian Methods and Regularization in System Identification, to be given at Caltech (USA), 12/2014. - Invited Speaker at the Workshop: “Optimization and dynamical processes in statistical learning and inverse problems”, Sestri Levante, September 8-12, 2014. -Invited Tutorial Lecturer: Tutorial Session on “Identification and model (in)validation”, IEEE Conference on Decision and Control, Los Angeles, 12/2014 -Invited Lecturer (4 hours): DISC Ph.D. Summer school on System Identification, Zandvoort, The Netherlands 06/2014 - Invited Talk: Designing and tuning priors for Bayesian system identification: a classical perspective, DISI, Universit` a di Genova, 2/2014. -Invited Talk: LQG control over finite capacity channels: the role of data losses, delays and SNR limitations, Link¨ oping University, 11/2013. -Invited speaker for the workshop: “Machine Learning for System Identification”, workshop in conjunction to the International Conference on Machine Learning 2013 (organizers: Francesco Dinuzzo, Abdeslam Boularias, and Lennart Ljung), 06/2013. -Invited Talk: A Bayesian approach to sparse dynamic network identification, Optimization techniques for Inverse Problems II, Modena, 09/2012 -Invited Talk: A Bayesian approach to sparse dynamic network identification, Kyoto University, 09/2011 -Invited Talk: Bayesian methods for System Identification and Variable Selection, Link¨oping University, 05/2011. -Invited Tutorial Talk: Bayesian Techniques in System Identification, ERNSI Workshop, Cambridge, 09/2010. -Invited Talk: Gaussian processes for identification of sparse, Large-scale linear systems Dept. of Computer Science, University of California Los Angeles, 08/2010. -Invited Tutorial Presentation: Some Identification Techniques in Computer Vision, Invited Tutorial Presentation IFAC ROCOND Symposium, Haifa, Israel, 06/2009. -Invited Tutorial: Some Identification Techniques in Computer Vision, IEEE CDC, 12/2008. -Invited Talk: An overview of recent results in subspace identification, Dept. of Mathematics, Royal Institute of Technology, 05/2007. -Invited Talk: Recent advances in subspace identification, ERNSI Workshop, Link¨oping (Sweden), 09/2006. -Invited Talk: Recent advances in subspace identification, Dept. of Electrical Engineering, University of Melbourne, 04/2006. -Invited Talk: Recent advances in subspace identification Dept. of Chemical Engineering, University of Texas at Austin, 05/2005. -Tutorial on Subspace Identification (3 hours), Dept. of Chemical Engineering, University of Texas at Austin, 05/2005 -Invited Talk: Stochastic Realization with Inputs and Subspace Identification, Dept. of Mathematics, Royal Institute of Technology, 03/2000. 4 REFEREE FOR GRANT APPLICATIONS -Evaluator -Evaluator -Evaluator -Evaluator -Evaluator for for for for for FONDECYT-CHILE, 2014 a Consolidator ERC grant application, 2014 the Belgian Research Foundation - Flanders (FWO), 2014 an Advanced ERC grant application, 2013 the Romanian National Council for Development and Innovation, 2011-2012. SCIENTIFIC COMMITTEES - ICRA 2015 Workshop on Sensorimotor Learning: Program Committee Member -Vice-Chair of the IFAC Technical Committee on Modeling, Identification and Signal Processing (2014-). -2009, 2012, 2015 IFAC Symposium on System Identification, IPC Member. -2014 IFAC World Congress: Technical Associate Editor for TC1.1.: Modelling, Identification, and Signal Processing. -2013 ROKS: Regularization, Optimization, Kernel Methods and Support Vector Machines: theory and applications. Leuven, July 2013, IPC Member. -2012 ERNSI Workshop (Maastricht) (Co-chair for the program together with P. Van den Hof and H. Hjalmarsson) -2005, 2007, 2008 and 2009 IEEE Conference on Decision and Control, IPC Member. -2004, 2008 and 2010 Int. Symposium on Mathematical Theory of Networks and Systems, IPC Member. -2010 International Conference on Informatics in Control, Automation and Robotics, IPC Member. -2011 Third Int. Workshop on Wireless Sensors, Actor and Robot Networks (WiSARN-Fall 2011), IPC Member. -2006 Mediterranean Control Conference, IPC Member. -IEEE CSS Technical Committee on System Identification and Adaptive Control (member). ORGANIZATION OF SCIENTIFIC EVENTS • Conferences, Workshops and Schools: - Organizer (Chair) of the 25th ERNSI workshop (http://people.kth.se/∼bo/ERNSI/index.html), September 2016, Italy. - Invited organizer of the course on “Stochastic Systems” for the Italian summer school for Ph.D. Students in Automatic Control, 07/2012. - Organizer (Chair) of the Annual SIDRA (Italian Association of Automatic Control) meeting, 2008. - Organizer (with A. Ferrante and S. Pinzoni) of the workshop: Modeling, Estimation and Control: A Symposium in honor of Giorgio Picci on the occasion of his 65-th birthday, 2007. - Local Co-Organizer of the ERNSI (European Research Network System Identification) workshop, 2007. • Invited Sessions: - Invited organizer of the Tutorial Session on “New developments in system identification” - European Control Conference 2014. - Organizer of the invited session on “Advances in Estimation and Control in Wireless Sensor Networks” - IEEE CDC 2013 (with S. Dey and L. Schenato) - Organizer of the invited session “Sparse methods for model structure determination and variable selection”, IFAC SYSID, 2012. - Organizer of the invited session “Distributed Estimation over Sensor Networks”, IEEE CDC, 2007. 5 - Organizer of the invited session “New Developments in Closed-Loop Identification”, IFAC SYSID, 2006. - Organizer of the invited session “New results in closed-loop identification”, IFAC World Congress, 2005. - Organizer of the minisymposium “Identification and Control in Computer Vision”, MTNS, 2004. - Organizer of the invited sessions “New results in subspace identification” and “Subspace identification and applications” IFAC SYSID, 2003. - Organizer of the Tutorial “Dynamical Systems methods in Computer Vision”, ECCV, 2002. MAIN SCIENTIFIC ACHIEVEMENTS (a) Introduction of new Bayesian methods in system identification A. Chiuso and co-workers (G. Pillonetto and G. De Nicolao), developing on seminal work by G. Pillonetto and G. De Nicolao, have recently made fundamental contributions to system identification introducing tools from statistical machine learning (Gaussian processes, kernel methods) and sparsity enhancing methods. In particular: (i) The new Bayesian methods have lead to algorithms for system identification which are very robust w.r.t. model complexity selection, outperforming classical order estimation techniques for parametric identification methods. The robustness is inherited by the regularization properties of the Bayesian approach and allows identification to be performed also when the data set is small (as compared to the model complexity). (ii) His work, combining ”sparse Bayesian methods” with the Bayesian approach to system identification has made it possible to tackle simultaneous identification and variable selection for systems involving large number of variables; this has important implications in modeling sparsely interconnected (networked) dynamical systems. (iii) Has shown that ”sparsity based” methods in a Bayesian framework possess very nice properties in classical (Fisher) terms, e.g. in terms of their mean squared error properties (iv) New Bayesian priors are now being studied to favor “low complexity” (i.e. small McMillan degree) systems, extending ideas recently proposed in machine learning and signal processing using so called “log-det heuristics”. Preliminary results show substantial improvement in terms of performance (quality of the estimators and robustness) w.r.t. classical methods. (b) Contributions to subspace identification While subspace algorithms have been extensively studied during the 80’s and until the late 90’s, two important questions were left open for a long time: (i) Consistent subspace identification of systems operating in closed loop and (ii) deriving manageable expressions for the asymptotic covariance of subspace estimates. In this respect A. Chiuso has given major contributions to the solution of these problems: (i) A key idea has been the introduction of the predictor-based identification approach, based on the observation that both the one-step Kalman predictor and the system state space are the same, irrespective of closed-loop operation. By a stochastic realization approach the state space can be constructed for systems operating in closed loop. This has led to new efficient algorithms for closed loop subspace identification, solving a question which had been open for long time. (ii) A major step forward have been the new expressions for the asymptotic covariances of subspace methods. These expressions have led to a comparative analysis of most available subspace algorithms, including open loop and newly developed closed loop methods. (c) System-theoretic methods in computer vision: real time structure from motion (SFM) The SFM problem has been one of the main research areas of interest for the computer vision community. In real-time it can be formulated as a nonlinear filtering problem in the Euclidean manifold 6 SE(3). Traditionally efforts had been concentrated on the geometric reconstruction while less attention was payed to correctly handling uncertainty and ”noise” in the inference problem. As a result a robust algorithm which could work in unstructured environments has long been lacking. The main contributions to the solution of this problem can be described as follows: (i) Initially, a first principle analysis of the structure from motion (SFM) problem has led to characterization of well known illusions and ambiguities (such as rubbery-motion and bass-relief ambiguity) in terms of local minima of a suitable cost function. (ii) Further, an original analysis (including convergence proofs) of the relevant nonlinear filtering techniques on Lie groups such as SE(n) and SO(n) has been done and then applied to the problem of motion and structure determination from monocular vision. (iii) This research has led to the first real time reconstruction system for simultaneous motion and structure estimation; the system, featured in the July 11 2000 issue of the journal EE Times, consists in a body of hardware, software and algorithms that allows estimating the three-dimensional motion and point-wise structure of a moving scene with a single camera in real-time, with no prior information about the shape and motion of the scene, except for its rigidity. This system represents the first case of a causal algorithm implemented in real-time, and has been made available for academic use via the Internet. (d) Modeling and synthesis of complex dynamic images and visual phenomena A. Chiuso and co-workers have proposed a new approach based on dynamical system modeling and identification for recognition and synthesis of complex visual phenomena such as textures and gaits. Among many non-trivial issues to be solved was, above all, the very large dimension of the order of tens of thousands of the signals involved. These techniques have been proven effective for synthesis of synthetic scenes and provide high potential for video compression, model based recognition and classification tasks. (e) Contribution to estimation and control in networked system In this area the main contributions are as follows: (i) An analysis of Kalman-type algorithms for distributed estimation in networked systems has been performed, analyzing the effect of the network topology. This has evidenced the role of certain synthetic network properties such as the essential spectral radius or the Frobenius norm of the system transition matrix, depending on the specific topology. (ii) A systematic comparison of different (suboptimal) strategies for data fusion in the presence of lossy networks. It has been shown that it is not possible to establish a clear-cut superiority of one algorithm when estimation accuracy and computational complexity have to be traded. Also the relative performance may depend on the specific experimental conditions. New performance bounds have been provided. (iii) A new synchronization algorithm for a class of interconnected systems has been proposed and analyzed. (iv) Recent research activity is targeted to control problems in the presence of non-ideal communication channels accounting for signal to noise ratio limitations, packet dropouts and delays. Needless to say, these are the ingredients which need to be traded when jointly designing control and realistic communication protocols where data rate, decoding delay, and error probability are tightly linked. While these aspects have been separately (and thoroughly) studied in the literature, a framework accounting for all these aspects is still lacking; the problem formulation and some promising results have been recently submitted for publication. (f) Hybrid Systems A. Chiuso has also done research on the analysis of the observability and identifiability properties of switching linear state space models; in particular new rank conditions that the structural parameters of the model must satisfy in order for filtering and smoothing algorithms to operate correctly have been found. Also identifiability of the model parameters has been studied by characterizing the set 7 of models that produce the same output measurements, giving also conditions under which the true model can be identified. (g) Applications to Adaptive Optics Traditional methods for calibrating Adaptive Optics (AO) systems are based on static models and offline identification experiments. This approach may be criticized for two reasons: (i) while static models are accurate enough for existing systems, it is expected that next generation AO systems will exhibit non-trivial dynamic behavior, thus requiring dynamic models and (ii) both the deformable mirror and the sensors exhibit linear characteristics only around the operating conditions. To overcome these problems, the new closed loop subspace identification techniques discussed above have been successfully applied to modeling state-of-the-art adaptive optics systems (in collaboration with the European Southern Observatory). With this new approach dynamical models can be constructed; most importantly this can be performed on-line and, therefore, around the targeted operating conditions. Identification of these systems is highly nontrivial as it involves tens (or even hundreds) of inputs and outputs. DOCTORAL THESIS COMMITTEES -Opponent: Ph.D. defense of Christian Lyzell, Dept. of Electrical Engineering, Link¨oping University, Sweden (2012) -External Evaluator : Ph.D. defense of Dr. Chih-Hong Wang, Dept. of Electrical Engineering, University of Melbourne, Australia (2011) -Ph.D. Committee Member : Universit`a di Pavia (2006) -Ph.D. Committee Member : Universit`a di Padova (2006, 2007) -Ph.D. Committee Member : Politecnico di Torino (2009) DUTIES WITHIN THE UNIVERSITY OF PADOVA -Member of the “Resource” Committee as representative for Associate Professor (elected, 2015-). -Responsible for “Course Catalogue” of the Doctoral Program in Information Engineering, Dept. of Information Engineering, (2015-) -Responsible for the Erasmus exchange program with the Dept. of Electrical Engineering, Royal Institute of Technology (KTH), Sweden (2013-). -Member of the “Collegio dei Docenti” for the Ph.D. program in Information Engineering , Dept. of Information Engineering, 2007, 2008, 2009, 2014, 2015 -Member of the “Commissione Assegni e Progetti - Area 11” (2011). Resigned as participant in one of the projects submitted for possible funding. -Member of the “Scientific” Committee (Commissione Scientifica), Dept. of Management and Engineering, 2010 -Member of the “Library” Committee (Commissione Biblioteca), Dept. of Information Engineering, 2004-2006 -Member of the “Resources” Committee (Commissione Risorse), Dept. of Management and Engineering and Dept. of Information Engineering (2010-2011) -Member of the “Esami di Stato” Committee for the habilitation to the profession of Engineer : 2009 (member) and 2011 (adjunct member). - Coordinator - Ex 60% - Project: Modeling, Estimation and Control; Automation group at the Department of Management and Engineering: 2007 (Cenedese-Chiuso) and 2008-2009-2010-2011 (CenedeseChiuso-Oboe) 8 TEACHING -Signals and Systems, 2005-2015 -System Identification and Data Analysis, 2011-2015 -System Identification and Data Analysis, 2009-2010 -Subspace System Identification (PhD Course), 2008-2009 -Monte Carlo Methods (PhD Course), 2007-2008 -Subspace System Identification (PhD Course), 2006-2007 -Data Analysis (Basic Probability and Statistics), 2003-2005 -System Identification and Data Analysis, 2001-2004 TEACHING ASSISTANTSHIP -System Theory, 2003-2004 -System Identification and Data Analysis, 1997-2004 -Calculus II, 1999-2000 -Probability and Stochastic Processes (Washington University St. Louis), 1998-1999 -Electrical Communications, 1997-1998 -Automatic Control, 1997-1998 OTHER TEACHING -Ducth Institute for Systems and Control (DISC) Ph.D. Summer school on System Identification (invited), Zandvoort, The Netherlands June 16-19, 2014 -Identification Techniques, one day course for the company Electrolux, October 2012 -Stochastic Systems, Ph.D. School in Bertinoro, July 2012 -Identification Techniques: (with Prof. G. Picci) for the consulting company S.A.T.E. s.r.l., Venezia, Fall 2001 -Modeling and Control of Mechanical Systems, (with Prof. G. Picci and R. Frezza) for the company Salvagnini S.p.a. Vicenza, Spring 2001 -Subspace Methods and Linear Algebra in Subspace Identification: QR, SVD, QSVD, Ph.D. School in Bertinoro, July 1999 9 PUBBLICATIONS International Books [E.1]. A. Chiuso, A. Ferrante and S. Pinzoni (Eds.) (2007), “Modeling Estimation and Control, Festschrift in Honor of Giorgio Picci on the Occasion of his 65-th Birthday”. Springer Lect. Notes in Control and Information Sciences. [E.2]. A. Chiuso, L. Fortuna, M. Frasca, A. Rizzo, L. Schenato, S. Zampieri (Eds.) (2009). “Modeling Estimation and Control of Networked Complex Systems”. Springer complexity: understanding complex systems. International Journals [A.1]. A. Chiuso, R. Brockett and S. Soatto (2000), “Optimal Structure From Motion: Local Ambiguities and Global Estimates”. IJCV, International Journal on Computer Vision, 39 (3), pp. 195-228. [A.2]. A. Chiuso, and G. Picci (2001). “Some Algorithmic aspects of Subspace Identification with Inputs”, Int. Journal Applied Mathematics and Computer Sciences, Vol. 11, No.1, pp. 55-75. [A.3]. A. Chiuso, P. Favaro, H. Jin and S. Soatto (2002). “Structure from Motion Causally Integrated over Time”. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(4),pp. 509-522. [A.4]. G. Doretto, A. Chiuso, Y.N. Wu, S. Soatto (2003), “Dynamic Textures”. Int. Journal of Computer Vision, 51(2), 2003, pp. 91-109. [A.5]. A. Chiuso and G. Picci (2004), “Asymptotic Variance of Subspace Estimates”. Journal of Econometrics, 118(1-2), pp. 257–291. [A.6]. A. Chiuso, G. Picci (2004), “On the Ill-conditioning of subspace identification with inputs”. Automatica, 40(4), pp. 575–589, Regular paper. [A.7]. A. Chiuso, G. Picci (2004), “Numerical conditioning and asymptotic variance of subspace estimates”. Automatica, 40(4), pp. 677-683, Brief Paper. [A.8]. A. Chiuso, G. Picci (2004), “Subspace identification by data orthogonalization and model decoupling”. Automatica, 40(10), pp. 1689–1703, Regular paper. [A.9]. A. Chiuso, G. Picci (2004), “Asymptotic Variance of Subspace methods by data orthogonalization and model decoupling: a comparative study.”. Automatica, 40(10), pp. 1705–1717 , Regular paper. [A.10]. A. Chiuso, G. Picci (2005), “Consistency Analysis of some Closed-Loop Subspace Identification Methods”. Automatica, Special Issue on System Identification, March 2005 (41(3)), pp. 377–391, Special issue (regular) paper. [A.11]. A. Chiuso (2006), “Asymptotic Variance of Closed-Loop Subspace Identification Methods”. IEEE Trans. on Automatic Control, 51(8), pp. 1299-1314 (regular paper). [A.12]. A. Chiuso (2007), “The role of Vector AutoRegressive modeling in Predictor Based Subspace Identification”. Automatica 43(6), pp. 1034-1048 (regular paper). [A.13]. A. Chiuso (2007) “On the relation between CCA and predictor-based subspace identification” IEEE Transactions on Automatic Control, 52(10), pp. 1795-1812 (regular paper). [A.14]. A. Bissacco, A. Chiuso and S. Soatto (2007), “Classification and Recognition of Dynamical Models: The Role of Phase, Independent Components, Kernels and Optimal Transport”. IEEE Trans. on Pattern Analysis and Machine Intelligence, 29(11), pp. 1958-1972 (regular paper). 10 [A.15]. R. Carli, A. Chiuso, L. Schenato and S. Zampieri (2008), “Distributed Kalman filtering using consensus strategies” IEEE Journal on Selected Areas in Communications 26(4), pp. 622-634 (regular paper). [A.16]. A. Chiuso, G. Picci, S. Soatto (2008), “Wide-sense Estimation on the Special Orthogonal Group” Communications in Information and Systems, 8(3), pp. 185-200. [A.17]. G. Pillonetto, A. Chiuso (2009), “Fast computation of smoothing splines subject to equality constraints” Automatica, 45(12), pp. 2842-2849 (brief paper). [A.18]. A. Chiuso, R. Muradore, E. Marchetti (2010), “Dynamic Calibration of Adaptive Optics Systems: A System Identification Approach” IEEE Transactions on Control Systems Technology, 18(3), pp. 705 –713, (brief paper). [A.19]. A. Chiuso (2010), “On the asymptotic properties of closed loop CCA-type Subspace Algorithms: equivalence results and choice of the future horizon” IEEE Transactions on Automatic Control, 55(3), pp. 634 -649 (regular paper). [A.20]. G. Pillonetto, A. Chiuso, G. De Nicolao (2011), “Prediction error identification of linear systems: a Gaussian regression approach” Automatica, 47(2), pp. 291-305, (regular paper). [A.21]. A. Chiuso, L. Schenato (2011), “Information fusion strategies and performance bounds in packet-drop networks” Automatica, 47(7), pp. 1304-1316, (regular paper). [A.22]. R. Carli, A. Chiuso, L. Schenato and S. Zampieri (2011), “Distributed synchronization of noisy nonidentical double integrators” IEEE Transactions on Automatic Control, 56(5), pp. 1146-1152, (technical note). [A.23]. A. Chiuso, F. Fagnani, L. Schenato, S. Zampieri (2011), “Gossip algorithms for simultaneous distributed estimation and classification in sensor networks”, IEEE Journal of Selected Topics in Signal Processing, 5(4), pp. 691 -706, (regular paper). [A.24]. G. Pillonetto, M. H. Quang, A. Chiuso (2011), “A new kernel-based approach for nonlinear system identification”, IEEE Trans. on Automatc Control, (regular paper). [A.25]. A. Chiuso and G. Pillonetto (2012), “A Bayesian approach to sparse dynamic network identification”, Automatica 48(2), pp. 1553-1565. (regular paper) [A.26]. A. Aravkin, J. Burke, A. Chiuso and G. Pillonetto (2014) , “Convex vs non-convex estimators for regression and sparse estimation: the mean squared error properties of ARD and GLasso”, Journal of Machine Learning Research, 2014. [A.27]. T. Chen, M.S. Andersen, L. Ljung, A. Chiuso and G. Pillonetto (2014) “System identification via sparse multiple kernel-based regularization using sequential convex optimization techniques”, IEEE Transactions on Automatic Control, (regular paper). [A.28]. A. Chiuso (2014), “System Identification Techniques: Convexification, Regularization, Relaxation”, Springer Encyclopedia of Systems and Control. Editors J. Baillieul and T. Samad. [A.29]. S. Dey, A. Chiuso, L. Schenato (2014). Remote estimation with noisy measurements subject to packet loss and quantization noise. IEEE Transactions on Control of Network Systems. (Regular paper). [A.30]. A. Chiuso, N. Laurenti, L. Schenato, A. Zanella (2014). LQG-like control over communication channels for scalar systems: the role of data losses, delays and SNR limitations. Automatica, (Brief paper) [A.31]. S. Bonettini, A. Chiuso, M. Prato (2015). A scaled gradient projection methods for Bayesian Learning in Dynamical Systems. SIAM J. Scientific Computing, to appear [A.32]. G. Pillonetto, A. Chiuso (2015). Tuning complexity in regularized kernel-based regression and linear system identification: the robustness of the marginal likelihood estimator. Automatica, to appear 11 Book Chapters [B.1]. A. Chiuso and G. Picci (1998) “Visual tracking of points as estimation on the unit sphere”, in The Confluence of Vision and Control, D. Kriegman, W. Hager, S. Morse (Eds.), Springer LNCIS 1998, pp. 91-104. [B.2]. A. Chiuso, H. Jin, P. Favaro and S. Soatto (2000). “MFm” : 3-D Motion and Structure from 2D Motion Causally Integrated Over Time: Implementation. In Computer Vision -ECCV 2000, D. Vernon ed., Lect. notes in Computer Science 1843, pp. 734-750. [B.3]. A. Chiuso, G. Picci (2002), “Geometry of Oblique Splitting, Minimality and Hankel Operators”. in Directions in Mathematical Systems Theory and Optimization, A. Rantzer and C. Byrnes eds. Springer Lect. Notes in Control and information Sciences, 286, pp. 85-124 (2002). [B.4]. R. Vidal, A. Chiuso, S. Soatto and S. Sastry (2003) “Observability Linear Hybrid Systems” In Hybrid Systems: Computation and Control, Lecture Notes in Computer Science 2623, pp. 526-539. [B.5]. Saisan, P., A. Bissacco, A. Chiuso and S. Soatto (2004). “Modeling and synthesis of facial motion driven by speech”. In: Computer Vision -ECCV 2004, T. Pajdla and J. Matas eds., Lect. notes in Computer Science 3023, pp. 453-467. [B.6]. A. Masiero, A. Chiuso (2006) “Non linear temporal textures synthesis: a Monte Carlo approach” in Computer Vision -ECCV 2006, Part II, A. Leonardis, H. Bischof and A. Prinz (eds.), Lect. Notes in Computer Science 3952, pp. 283-294. International Conference Proceedings [C.1]. A. Chiuso and G. Picci (1998) “A wide-sense estimation theory on the unit sphere”. In Proc. of IEEE 37th Conference on Decision and Control, Tampa, Florida, December 1998, pp. 3743-9754. [C.2]. A. Chiuso, and G. Picci, (1999), “Subspace Identification by orthogonal decomposition”, Proc. 14th IFAC World Congress , Pechino, Cina, July, 1999, Volume H, pp. 241-246. [C.3]. H. Kawauchi, A. Chiuso, T. Katayama, G.Picci. (1999), “Comparison of Two Subspace Identification Methods for Combined Deterministic -Stochastic Systems”. In Proc. of The 31st ISCIE International Symposium on Stochastic Systems Theory and its Applications, Yokohama, Japan, 1999, pp. 7-12. [C.4]. A. Chiuso and S. Soatto (2000), “3-D Motion and Structure Causally Integrated Over Time: Analysis”, Tutorial lecture presented at IEEE Intl. Conf. on Robotics and Automation, San Francisco, April 2000. Preliminary version registered as ESSRL Technical Report 99-001 [C.5]. A. Chiuso and G. Picci (2000), “Error Analysis of Certain Subspace Methods”. In Proc. of IFAC International Symposium on System Identification, Santa Barbara, June 2000, pp. 85-90. [C.6]. A. Chiuso and G. Picci (2000), “Probing Inputs for Subspace Identification”. In Proc. of IEEE International Conference on Decision and Control CDC 2000, Sydney, Australia. (Invited paper number INV0201.) [C.7]. A. Chiuso and S. Soatto (2000), “Monte Carlo filtering on Lie Groups”, In Proc. of IEEE International Conference on Decision and Control CDC 2000, Sydney, Australia. (Regular paper number REG1407.) [C.8]. A. Chiuso and G. Picci (2001), “Asymptotic Variance of Subspace Estimates”. Proc. of IEEE International Conference on Decision and Control , Orlando, Florida,USA, December 2001. [C.9]. A. Bissacco, A. Chiuso, Y. Ma and S. Soatto (2001) “Recognition of human gaits.” In Proc. of the IEEE Intl. Conf. on Comp. Vision and Patt. Recog., Hawaii, Dec. 2001. 12 [C.10]. R. Vidal, A. Chiuso and S. Soatto (2002) “Observability and Identifiability of Jump Linear Systems” In Proc. of the IEEE Conf. on Decision and Control, Las Vegas, USA, 2002. [C.11]. G. Gennari, A. Chiuso, F. Cuzzolin, R. Frezza (2002) “Integrating dynamic and probabilistic shape information for data association and tracking” In Proc. of the IEEE Conf. on Decision and Control, Las Vegas, USA, 2002. [C.12]. A. Chiuso, G. Picci (2003) “Asymptotic Variance of Subspace Methods by data Orthogonalization and Model Decoupling”, in Proc. of the IFAC Int. Symposium on System Identification (SYSID), Rotterdam, 2003. [C.13]. A. Chiuso, G. Picci (2003) “Subspace Identification of Random Processes with Feedback”, in Proc. of the IFAC Int. Symposium on System Identification (SYSID), Rotterdam, 2003. [C.14]. S. Soatto, A. Chiuso (2003) “Snippets of System Identification in Computer Vision”, in Proc. of the IFAC Int. Symposium on System Identification (SYSID), Semi-Plenary lecture given by S. Soatto, Rotterdam, 2003. [C.15]. A. Chiuso (2004), “Asymptotic Variance of a Certain Closed-Loop Subspace Identification Method” Proc. of the 43rd IEEE Conf. on Decision and Control, 2004. [C.16]. A. Chiuso, G. Picci (2004), “Consistency Analysis of Certain Closed-Loop Subspace Identification Methods” Proc. of the 43rd IEEE Conf. on Decision and Control, 2004. [C.17]. G. Gennari, A. Chiuso, F. Cuzzolin, R. Frezza (2004), “Integration of shape constraints in data association filters” Proc. of the 43rd IEEE Conf. on Decision and Control, 2004. [C.18]. A. Chiuso, G. Picci (2005), “Prediction Error vs. Subspace methods in open and closed loop identification”. To appear in the Proc. of the 16th IFAC World Congress. [C.19]. A. Chiuso (2005), “On the relation between CCA and predictor based subspace identification”. IEEE Conf. on Dec. and Control 2005 [C.20]. A. Chiuso, A. Ferrante, G. Picci (2005) “Reciprocal realization and modeling of textured images” IEEE Conf. on Dec. and Control 2005 [C.21]. R. Frezza, A. Chiuso (2005) “Learning and exploiting invariants for multi-target tracking and data association” IEEE Conf. on Dec. and Control 2005. [C.22]. A. Chiuso (2006) “Asymptotic Equivalence of Certain Closed-Loop Subspace Identification Methods” IFAC SYSID 2006, Newcastle, Australia (March 2006). [C.23]. A. Chiuso, G. Picci (2006) “Estimating the Asymptotic Variance of Closed-Loop Subspace Estimators” IFAC SYSID 2006, Newcastle, Australia (March 2006). [C.24]. A. Chiuso, A Ferrante and G. Picci (2006) “Realization of Reciprocal processes and applications to computer vision” Presented at the Int. Symp. Mathematical Theory of Network and Systems, July 2006. [C.25]. A. Chiuso (2006) “The role of Vector AutoRegressive Modeling in Subspace Identification”, Proc. of the IEEE Conf. on Dec. and Control, San Diego, Dec. 2006. [C.26]. A. Chiuso (2007), “Some insights on the choice of the future horizon in CCA-type subspace algorithm” Proc. of the American Control Conference, ACC’07 [C.27]. A. Chiuso, R. Muradore and E. Fedrigo (2007), “Adaptive Optics Systems: a challenge for closed-loop subspace identification” Proc. of the American Control Conference, ACC’07 13 [C.28]. R. Vidal, S. Soatto, A. Chiuso (2007) “Applications of Hybrid System Identification in Computer Vision” ECC 2007 (Invited Minitutorial Paper), Kos, Greece. [C.29]. R. Carli, A. Chiuso, L. Schenato and S. Zampieri (2007) “Consensus algorithm design for distributed estimation” 3 rd International Workshop on Networked Control Systems: Tolerant to Faults, Nancy, France, Jun. 2007 [C.30]. R. Carli, A. Chiuso, L. Schenato and S. Zampieri (2007), “Distributed Kalman filtering using consensus strategies” Proc. of IEEE Conf. on Decision and Control, New Orleans, USA, Dec. 2007 [C.31]. A. Chiuso (2008) “A note on estimation using quantized data” 17th IFAC World Congress, Seoul (Korea), July 2008. [C.32]. R. Carli, A. Chiuso, L. Schenato and S. Zampieri (2008), “A PI Consensus Controller for Networked Clocks Synchronization” 17th IFAC World Congress, Seoul (Korea), July 2008. [C.33]. E. Toffoli, G. Baldan, G. Albertin, L. Schenato, A. Chiuso, A. Beghi (2008), “Thermodynamic Identification of Buildings using Wireless Sensor Networks” 17th IFAC World Congress, Seoul (Korea), July 2008. [C.34]. A. Agnoli, A. Chiuso, P. D’Errico, A. Pegoraro, L. Schenato (2008), “Sensor fusion and estimation strategies for data traffic reduction in rooted wireless sensor networks” International Symp. on Communication, Control and Signal Processing (ISCCSP 2008), Malta, March 2008. [C.35]. A. Chiuso, R. Muradore, E. Marchetti (2008), “Dynamic Calibration of Adaptive Optics Systems: A System Identification Approach” 2008 IEEE Conf. on Dec. and Control. [C.36]. A. Chiuso, L. Schenato (2008), “Information fusion strategies from distributed filters in packet-drop networks” 2008 IEEE Conf. on Dec. and Control. [C.37]. G. Pillonetto, A. Chiuso, G. De Nicolao (2008), “Predictor Estimation via Gaussian regression” 2008 IEEE Conf. on Dec. and Control. [C.38]. A. Chiuso, G. Pillonetto, G. De Nicolao (2008), “Subspace Identification using predictor estimation via Gaussian regression” 2008 IEEE Conf. on Dec. and Control. [C.39]. A. Chiuso, G. Picci (2008), “Identification techniques in Computer Vision” 2008 IEEE Conf. on Dec. and Control (Invited Tutorial Paper) [C.40]. G. Pillonetto, A. Chiuso (2009), “Gaussian Processess for Wiener-Hammerstein System Identification” IFAC SYSID [C.41]. M. H. Quang, G. Pillonetto, A. Chiuso (2009), “Nonlinear system identification via Gaussian regression and mixtures of kernels” IFAC SYSID 2009 [C.42]. A. Chiuso, L. Schenato (2009), “Performance bounds for information fusion strategies in packet-drop networks” ECC 2009 [C.43]. G. Pillonetto, A. Chiuso (2009), “A Bayesian learning approach to linear system identification with missing data” CDC 2009. [C.44]. G. Pillonetto, A. Chiuso, G. De Nicolao (2010), “Regularized estimation of sums of exponentials in spaces generated by stable spline kernels” ACC 2010. [C.45]. A. Chiuso, G. Pillonetto (2010), “Nonparametric sparse estimators for identification of large scale linear systems”, IEEE CDC 2010. 14 [C.46]. A. Chiuso, R. Muradore, E. Aller-Carpentier (2010), “Sparse Calibration of an Extreme Adaptive Optics System”, IEEE CDC 2010. [C.47]. A. Chiuso, G. Pillonetto (2010), “Learning sparse dynamic linear systems using stable spline kernels and exponential hyperpriors”, NIPS 2010. [C.48]. A. Chiuso, F. Fagnani, L. Schenato, S. Zampieri (2010). “Simultaneous distributed estimation and classification in sensor networks”. IFAC Workshop on Distributed Estimation and Control in Networked Systems (NecSys’10). [C.49]. S. Soatto, A. Chiuso (2011), “Controlled Recognition Bounds for Scaling and Occlusion Channels”, Data Compression Conference, 2011 [C.50]. A. Chiuso, F. Fagnani, L. Schenato, S. Zampieri (2011), “Gossip algorithms for distributed ranking”, ACC 2011. [C.51]. A. Aravkin, J. Burke, A. Chiuso and G. Pillonetto (2011), “Convex vs nonconvex approaches for sparse estimation: GLasso, Multiple Kernel Learning and Hyperparameter GLasso”, IEEE CDC 2011. [C.52]. F.P. Carli, A. Chiuso, G. Pillonetto (2012), “Efficient algorithms for large scale linear system identification using stable spline estimators”, IFAC SYSID 2012. [C.53]. A. Aravkin, J. Burke, A. Chiuso and G. Pillonetto (2012), “On the estimation of hyperparameters for Empirical Bayes estimators: Maximum Marginal Likelihood vs Minimum MSE”, IFAC SYSID 2012. [C.54]. A. Aravkin, J. Burke, A. Chiuso and G. Pillonetto (2012), “On the MSE Properties of Empirical Bayes Methods for Sparse Estimation”, IFAC SYSID 2012. [C.55]. F. Carli, T. Chen, A. Chiuso, L. Ljung, G. Pillonetto. “On the estimation of hyperparameters for Bayesian system identification with exponential kernels”, IEEE CDC 2012. [C.56]. T. Chen, M. Andersen, L. Ljung, A. Chiuso, F. Carli, G. Pillonetto. “Sparse multiple kernels for impulse response estimation with majorization minimization algorithms”, IEEE CDC 2012. [C.57]. G. Georgiadis, A. Ravichandran, S. Soatto and A Chiuso. “Encoding Scene Structures for Video Compression” SPIE, 2012 [C.58]. V. Karasev, A. Chiuso and S. Soatto. “Controlled Recognition Bounds for Visual Learning and Exploration”, NIPS 2012 [C.59]. A. Chiuso, N. Laurenti, L. Schenato, A. Zanella. “LQG cheap control subject to packet loss and SNR limitations”, ECC 2013 (to appear). [C.60]. V. Karasev, A. Chiuso and S. Soatto. “Controlled Recognition Bounds for Visual Learning and Exploration”, IEEE Information Theory Workshop 2013 [C.61]. G. Georgiadis, A. Chiuso and S. Soatto. “Texture Compression” Data Compression Conference, 2013 [C.62]. A. Chiuso, T. Chen, L. Ljung, G. Pillonetto. “Regularization strategies for nonparametric system identification”, CDC 2013. [C.63]. T. Chen, A. Chiuso, L. Ljung, G. Pillonetto. “Rank-1 kernels for regularized system identification”, CDC 2013. [C.64]. A. Chiuso, N. Laurenti, L. Schenato, A. Zanella. “LQG control over SNR-limited lossy channels with delay”, CDC 2013. [C.65]. S. Dey, A. Chiuso, L. Schenato, “Remote estimation subject to packet loss and quantization noise”, CDC 2013. 15 [C.66]. A. Chiuso, G. Pillonetto. “Bayesian and nonparametric methods for system identification and model selection.” Proc. of ECC 2014. [C.67]. G. Pillonetto, A. Chiuso. “Tuning complexity in kernel-based linear system identification: the robustness of the marginal likelihood estimator”. Proc. of ECC 2014. [C.68]. T. Chen, M. Andersen, A. Chiuso, G. Pillonetto, L. Ljung. “Anomaly detection in homogenous populations: a sparse multiple kernel-based regularization method”. IEEE CDC 2014 [C.69]. A. Chiuso, T. Chen, L. Ljung, G. Pillonetto. “On the design of Multiple Kernels for nonparametric linear system identification” IEEE CDC 2014 [C.70]. G. Prando, A. Chiuso, G. Pillonetto. “Bayesian and regularization approaches to multivariable linear system identification: the role of rank penalties ” IEEE CDC 2014, Invited Tutorial Paper [C.71]. D. Romeres, A. Chiuso, G. Pillonetto. “Identification of stable models via nonparametric prediction error methods”. Proc. of the European Control Conference, 2015 [C.72]. S. Dey, A. Chiuso, L. Schenato. “Linear Encoder-Decoder-Controller Design over Channels with Packet Loss and Quantization Noise” . European Control Conference ECC15, 2015 [C.73]. K. Tsotsos, A. Chiuso, S. Soatto. “Robust Inference for Visual-Inertial Sensor Fusion” . ICRA 2015 [C.74]. G. Georgiadis, A. Chiuso, S. Soatto. “Texture Representations for Image and Video Synthesis”. Proc. of CVPR 2015. Technical Reports [R.1]. A. Chiuso, H. Jin, P. Favaro and S. Soatto (1999), “Application of Extended Kalman Filtering to the Reconstruction of 3-D Shape from Visual Motion”. ESSRL Technical Report 99-001. [R.2]. A. Chiuso (2000) “A Matlab Toolbox for Subspace Identification”, Universit`a di Padova. [R.3]. A. Chiuso, G. Picci (2003),“Canonical Correlation Analysis of Linear Stochastic Systems with Inputs”,MittagLeffler Technical Report No. 45, 2002/2003, Spring ISSN 1103-467X, ISN IML-R-45-02/03–SE+spring. [R.4]. A. Chiuso (2005), “Asymptotic Variance of Closed-Loop Subspace Identification Methods”. Universit` a di Padova -Complete version (contains all proofs which have been omitted due to space limitation of the paper appeared in the IEEE Transactions on Automatic Control (July 2006)). [R.5]. F. Parise, L. Dal Col, A. Chiuso, N. Laurenti, L. Schenato, A. Zanella (2013). “Impact of a realistic transmission channel on the performance of control systems”, Universit` a di Padova. Submitted Papers [S.1]. G. Pillonetto, T. Chen, A. Chiuso, G. De Nicolao, L, Ljung (2014). Regularized linear system identification using atomic, nuclear and kernel-based norms: the role of the stability constraint. Submitted to Automatica [S.2]. T. Chen, T. Ardeshiri, F.P. Carli, A. Chiuso, L. Ljung, G. Pillonetto (2014). Maximum entropy properties of discrete-time first-order stable spline kernel Submitted to Automatica 16