n - Влада Републике Српске
Transcription
n - Влада Републике Српске
Издавач: Publisher: Завод за изградњу а.д. Бања Лука Institut for Construction Banja Luka За издавача: For the publisher: Генерални директор Александар Цвијановић, дипл.инж.грађ. General director Aleksandar Cvijanović, Dipl. Civ. Eng. Уредници: Проф. др Мирко Аћић, дипл.инж.грађ. Раjко Пуцар, дипл.инж.грађ. Prof. dr Mirko Aćić , PhD, Dipl. Civ. Eng. Rajko Pucar, Dipl. Civ. Eng. Editors: Технички уредник: Technical editor: Рајко Пуцар, дипл. инж. грађ. Rajko Pucar, Dipl. Civ. Eng. Припрема за штампу: Чедомир Радуловић, дипл. инж. ел. Сњежана Лепир дипл. инж. ел. Reparation for printing: Čedomir Radulović, BScEE Snježana Lepir, BScEE Штампа: Printed by: Тираж: Printed: CD ROM: Н. И. Г. Д Независне новине д.о.о., Бања Лука Nezavisne newspaper 600 примјерака 600 copies 600 copies Бања Лука, април 2011. Banja Luka, April 2011 VII МЕЂУНАРОДНИ НАУЧНО СТРУЧНИ СКУП САВРЕМЕНА ТЕОРИЈА И ПРАКСА У ГРАДИТЕЉСТВУ 7th INTERNATIONAL SCIENTIFIC TECHNICAL CONFERENCE CONTEMPORARY THEORY AND PRACTICE IN BUILDING DEVELOPMENT OРГАНИЗАТОРИ: - МИНИСТАРСТВО ЗА ПРОСТОРНО УРЕЂЕЊЕ, ГРАЂЕВИНАРСТВО И ЕКОЛОГИЈУ РЕПУБЛИКЕ СРПСКЕ - АРХИТЕКТОНСКО – ГРАЂЕВИНСКИ ФАКУЛТЕТ, БАЊА ЛУКА - ПРИВРЕДНА КОМОРА РЕПУБЛИКЕ СРПСКЕ - ЗАВОД ЗА ИЗГРАДЊУ а.д. БАЊА ЛУКА ORGANIZERS: - MINISTRY OF SPATIAL PLANNING CIVIL ENGINEERING AND ECOLOGY OF THE GOVERNMENT OF THE REPUBLIC OF SRPSKA - FACULTY OF ARCHITECTURE AND CIVIL ENGINEERING, BANJA LUKA - CHAMBRE OF COMMERCE AND INDUSTRY OF THE REPUBLIC OF SRPSKA - INSTITUT FOR CONSTRUCTION BANJA LUKA ПОКРОВИТЕЉИ: - ВЛАДА РЕПУБЛИКА СРПСКЕ - ГРАД БАЊА ЛУКА, РЕПУБЛИКА СРПСКА, БиХ SPONSORS: - GOVERNMENT OF THE REPUBLIC OF SRPSKA - SITY OF BANJA LUKA, REPUBLIC OF SRPSKA, BOSNIA AND HERZEGOVINA БАЊА ЛУКА, 14. и 15. АПРИЛ 2011. ГОДИНЕ BANJA LUKA, 14 & 15 APRIL 2011 ОРГАНИЗАЦИОНИ ОДБОР ORGANIZING COMMITTEE 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. Александар Цвијановић, дипл.инж.грађ. - предсједник Сребренка Голић, дипл. правник Мр Борко Ђурић, дипл.инж. грађ. Проф. др Миленко Станковић, дипл.инж.арх. Проф. др Мирко Аћић, дипл.инж.грађ. Проф. др Владимир Лукић, дипл.инж.геод. Доц. др Игор Јокановић, дипл.инж.грађ. Будимир Балабан, дипл.инж. грађ. Верица Кунић, дипл.инж. арх. Чедо Савић, дипл.правник Рајко Пуцар, дипл.инж.грађ. Горана Станаревић Кењало, дипл.менаџер медија НАУЧНО-СТРУЧНИ ОДБОР SCIENTIFIC TECHNICAL CONFERENCE 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. Проф. др Мирко Аћић, дипл. инж грађ. – Београд, Србија Проф. др Миленко Пржуљ, дипл.инж.грађ. – Љубљана, Словенија Проф. др Душан Вуксановић, дипл.инж.арх. – Подгорица, Црна Гора Проф. др Жорж Поповић, дипл.инж. арх. – Београд, Србија Проф. др Драган Михајловић, дипл. инж грађ. – Бања Лука, РС, БиХ Проф. др Петер Сухадолц, дипл.инж.геол. – Трст, Италија Проф. др Миленко Станковић, дипл.инж.арх. – Бања Лука, РС, БиХ Проф. др Михаил Гаревски, дипл. инж грађ. – Скопље, Македонија Проф. др Владимир Лукић, дипл.инж.геол. – Бања Лука, РС, БиХ Проф. др Раденко Пејовић, дипл. инж грађ. – Подгорица, Црна Гора Проф. др Михаило Трифунац, дипл.инж.грађ. – Лос Анђелес, САД Проф. др Мићо Гаћановић, дипл.инж.ел. – Бања Лука, РС, БиХ Проф. др Марија Тодоровић, дипл.инж.маш. – Београд, Србија Проф. др Предраг Гавриловић, дипл.инж.грађ. – Скопље, Македонија Проф. др Мила Пуцар, дипл.инж.арх. – Београд, Србија Доц. др Бранкица Милојевић, дипл.инж.арх. – Бања Лука, РС, БиХ Доц. др Љубиша Прерадовић, дипл.инж.ел. – Бања Лука, РС, БиХ Мр Михаела Замоло, дипл. инж. грађ. – Загреб, Хрватска Мр Новак Пупавац, дипл.инж.грађ. – Бања Лука, РС, БиХ Бранко Бојовић, дипл.инж.арх. – Београд, Србија САДРЖАЈ CONTENTS ПРЕДГОВОР FOREWORD МАРИЈА С. ТОДОРОВИЋ ОЛИВЕРА ЕЋИМ-ЂУРИЋ ИВАНА МАТИНОВИЋ ДУШАН ЛИЧИНА ОИЕ у нераздвојивој спрези са енергетском ефикасношћу - пут ка зградама и насељима нула енергије и одрживом развоју MARIJA S. TODOROVIĆ OLIVERA EĆIM-ĐURIĆ IVANA MATINOVIĆ DUŠAN LIČINA RENEWABLE ENERGY SOURCES AND ENERGY EFFICIENCY’S INEXTRICABLE LINKAGE TO APPROACH nZEB AND CITIES............................. 1 THEODOR KLEIN Захтеви енергетских система за зграде - технички услови према немачком стандарду (EnEV 2009) THEODOR KLEIN ENERGETIC SYSTEM REQUIREMENT FOR PHYSISAL STRUCTURES -SPECIFICATIONS BY THE GERMAN STANDARD (EnEV 2009) ........................... 19 БРАНИСЛАВ ТОДОРОВИЋ Термичке особине зграда у сличностима и разликама од људског тела BRANISLAV TODOROVIĆ BUILDINGS THERMAL CHARACTERISYICS: SIMILARITIES AND DIFFERENCES TO THE HUMAN BODY.................................................................... 29 МИРКО АЋИЋ ДРАГИЦА ЈЕВТИЋ Могућност коришћења рециклираних материјала као агрегата за бетон у савременој грађевинској пракси MIRKO AĆIĆ DRAGICA JEVTIĆ ABILITIES OF USAGE OF RECYCLING MATERIALS AS AGGREGATE TO CONCRETE IN CONTEMPORARY CIVIL ENGINEERING ............................................................................................................... 41 ДЕЈАН ЉУБИСАВЉЕВИЋ Нестандардни канализациони системи: вакуумска канализација и канализација под притиском DEJAN LJUBISAVLJEVIĆ NON-STANDARD SEWAGE SYSTEMS: VACUUM AND PRESSURE SEWAGE .......................................................................................................................... 57 МИЛА ПУЦАР Еколошки одржива архитектура у теорији и пракси MILA PUCAR ECOLOGICALLY SUSTAINABLE ARCHITECTURE IN THEORY AND PRACTICE ............................................................................................................. 69 ПЕРО ПЕТРОВИЋ МИЛОВАН КОТУР ИНДИР МУЈАНИЋ Изолација зидова према негријаном простору PERO PETROVIĆ MILOVAN KOTUR INDIR MUJANIĆ THERMAL INSULATION OF INTERNAL WALLS BETWEEN HEATED AND UNHEATED SPACES ...............................................................................................81 ЂОРЂЕ ЛАЂИНОВИЋ МИРКО АЋИЋ Концепт пројектовања и прорачун сеизмичке отпорности зиданих конструкција зграда ĐORĐE LAĐINOVIĆ MIRKO AĆIĆ CONCEPT OF ANALYSIS AND DESIGN OF MASONRY STRUCTURES FOR EARTHQUAKE RESISTANCE ................................................... 87 ЖЕЉКА РАДОВАНОВИЋ Понашање зиданих конструкција при дејству земљотреса – оштећења на црквама ŽELJKA RADOVANOVIĆ BEHAVIOUR OF MASONRY STRUCTURES UNDER THE EARTHQUAKE ACTION - DAMAGES ON THE CHURCHES .................................. 105 МИРКО АЋИЋ БОШКО СТЕВАНОВИЋ Зидане зградe – наук из грешака MIRKO AĆIĆ BOŠKO STEVANOVIĆ MASONRY BUILDINGS - LEARNIG FROM MISTAKES .......................................... 117 НЕДИМ СУЉИЋ ЗАХИД БАШИЋ Анализа утицаја дубине фундирања сусједног објекта на стабилност аб потпорног зида NEDIM SULJIĆ ZAHID BAŠIĆ THE ANALYSE OF THE FUND DEPTH OF NEIGHBOUR OBJECT ON A STABILITY OF REINFORCED CONCRETE SUPPORTING WALL....................... 135 ДРАГИЦА ЈЕВТИЋ ГОРДАНА ТОПЛИЧИЋ-ЋУРЧИЋ ЗОРАН ГРДИЋ Утицај различитих врста ситних дробљених минералних агрегата на својства бетона DRAGICA JEVTIĆ GORDANA TOPLIČIĆ-ĆURČIĆ ZORAN GRDIĆ EFFECTS OF VARIOUS TYPES OF FINE CRUSHED MINERAL AGGREGATES ON CONCRETE PROPERTIES ........................................................... 145 МИЋО ГАЋАНОВИЋ РАЈКО ПУЦАР Грађевинске мјере противексплозивне заштите MIĆO GAĆANOVIĆ RAJKO PUCAR EXPLOSION PROTECTION MEASURES IN CIVIL ENGINEER CONSTRUCTION ........................................................................................................... 157 ЗЛАТКО МАРКОВИЋ МИЛАН СПРЕМИЋ ВЕЉКО КОКОВИЋ ЈЕЛЕНА ДОБРИЋ МАРКО ПАВЛОВИЋ НЕНАД ФРИНЦ Пројекат конструкције вишеспратне отворене јавне гараже у Картуму ZLATKO MARKOVIĆ MILAN SPREMIĆ VELJKO KOKOVIĆ JELENA DOBRIĆ MARKO PAVLOVIĆ NENAD FRINC MAIN DESIGN OF OPENED MULTISTOREY PUBLIC CAR-PARK IN KHARTOUM ......................................................................................... 169 ВЛАДЕТА ВУЈАНИЋ Шта се данас сматра у свету под појмом геотехничког инжењерства VLADETA VUJANIĆ WHAT IS NOWADAYS IMPLIED BY THE CONCEPT OF GEOTECHNICAL ENGINEERING................................................................................ 181 ПЕТАР МИТРОВИЋ БРАНКО ЈЕЛИСАВАЦ СВЕТОЗАР МИЛЕНКОВИЋ Геотехничка истраживања и санација косине на граничном прелазу „Мехов Крш“, на путу М-2, Рожаје – К.Митровица PETAR MITROVIĆ BRANKO JELISAVAC SVETOZAR MILENKOVIĆ. GEOTECHNICAL INVESTIGATIONS AND SLOPE REPAIR ON THE BORDER CROSSING POST „MEHOV KRŠ“, ON M-2 ROAD, ROŽAJE – K. MITROVICA ............................................................................................ 193 РАТКО СПАИЋ Технолошки поступак управљања пројектима комуналне изградње RATKO SPAIĆ PM IN PUBLIC PROJECTS BUILDING:THE PROCESS OF PROJECT GUIDANCE.............................................................................................. 203 НЕЂО МИШЕЉИЋ Цијена грађења и ризик промјене цијене у изградњи објеката NEĐO MIŠELJIĆ PRICE OF CONSTRUCTION AND THE RISK OF CHANGE IN PRICE OF A BUILDING CONSTRUCTION.............................................................................. 219 ВЕЉКО РАДУЛОВИЋ РАДЕНКО ПЕЈОВИЋ Реконструкција отвореног пливалишта на „Шкверу“ у Херцег Новом VELJKO RADULOVIĆ RADENKO PEJOVIĆ RECONSTRUCTION OF AN OPEN SWIMMING POOL AT THE ŠKVER IN HERCEG NOVI.............................................................................. 235 ЖОРЖ В. ПОПОВИЋ Пропадање фасада зграда под дејством спољњих фактора: узроци, последице, превенција (санација) ŽORŽ V. POPOVIĆ FACADE DETERIORATION UNDER THE INFLUENCE OF EXTERNAL FACTORS: CAUSES, EFFECTS, PREVENTION (REHABILITATION) ....................................................................................................... 243 ЖЕЉКО ЗУБАЦ Проблем процједних вода из Акумулације Горица - ХЕ Требиње II ŽELJKO ZUBAC REHABILITATION PROBLEMS OF PERCOLATION WATERS ON PROFILE OF DAM GORICA – TREBINJE II......................................................... 249 ДРАГАНА ВАСИЛСКИ СВЕТЛАНА СТЕВОВИЋ Обновљива соларна енергија у савременом пројектовању DRAGANA VASILSKI SVETLANA STEVOVIĆ RENEWABLE SOLAR ENERGY IN CONTEMPORARY DESIGN............................ 259 СВЕТЛАНА СТЕВОВИЋ МИЛАН СТАМАТОВИЋ НЕНАД БОЈАТ Одрживо хидро-енергетско и водопривредно решење доње Дрине SVETLANA STEVOVIĆ MILAN STAMATOVIĆ NENAD BOJAT SUSTAINABLE HYDRO-ENERGY AND WATER MANAGEMENT SOLUTION OF LOWER DRINA ................................................................................... 271 ДРАГАН ЛУКИЋ АЛЕКСАНДАР ПРОКИЋ ЕЛЕФТЕРИЈА ЗЛАТАНОВИЋ Рехабилитација и реконструкција путева DRAGAN LUKIĆ ALEKSANDAR PROKIĆ ELEFTERIJA ZLATANOVIĆ REHABILITATION AND RECONSTRUCTION WORKS ON ROAD STRUCTURES.............................................................................................. 285 ЂОРЂЕ НЕНАДОВИЋ ВЛАДИМИР ПАРЕЖАНИН ИВАНА ЛУКИЋ Употреба рачунарски генерисаних сенки у презентацији архитектонских објеката ĐORĐE NENADOVIĆ VLADIMIR PAREŽANIN IVANA LUKIĆ USE OF COMPUTER GENERATED SHADOWS IN ARCHITECTURAL PRESENTATIONS ........................................................................................................... 305 МИЛЕНКО ПРЖУЉ Мостови – симболи и утилитарне грађевине MILENKO PRŽULJ BRIDGES, SYMBOLS AND UTILITARIAN BUILDINGS .......................................... 317 ВУКАШИН АЧАНСКИ ЉУБО КОРПАР МИЛЕНКО ПРЖУЉ ДОБРОСЛАВ ЧАБРИЛО СТАНИСЛАВ ГОЗНИК Расцеп ²Бутила² конструкције на а.п. коридору Vc, Сарајевска обилазница VUKAŠIN AČANSKI LJUBO KORPAR MILENKO PRŽULJ DOBROSLAV ČABRILO STANISLAV GOZNIK THE BUTILA JUNCTION ON SARAJEVO BYPASS.................................................. 331 МЛАДЕН А. УЛИЋЕВИЋ Мост “Миленијум” преко ријеке Мораче у Подгорици - концепт, пројекат и извођење MLADEN A. ULIĆEVIĆ MILLENNIUM BRIDGE OVER MORAČA RIVER IN PODGORICA CONCEPT, DESIGN AND EXECUTION ...................................................................... 345 ДОБРИВОЈЕ ТОШКОВИЋ Саобраћајна инфраструктура као обликовни градитељ градских центара DOBRIVOJE TOŠKOVIĆ THE TRAFFIC INFRASTRUCTURE AS AN SHAPIN CREATOR OF TOWNS CENTRS...................................................................................................... 357 БРАНКИЦА МИЛОЈЕВИЋ Пилот пројекат зонинга у 11 општина у БиХ – прилог новој методолигији планирања BRANKICA MILOJEVIĆ PILOT PROJECT OF ZONNING IN 11 MUNICIPALITIES IN BOSNIA AND HERZEGOVINA- ATTACHMENT TO THE NEW METHOLOGY OF PLANNING................................................................................................................ 371 РАДМИЛА СИНЂИЋ – ГРЕБОВИЋ Бетон високе чврстоће – материјал за савремене конструкције RADMILA SINĐIĆ – GREBOVIĆ HIGH STRENGTH CONCRETE – MATERIAL FOR CONTEMPORARY CONSTRUCTIONS ......................................................................................................... 383 МИХАЕЛА ЗАМОЛО Материјали у примјени Еурокодова MIHAELA ZAMОLO MATERIALS USED IN EUROCODES APPLICATION................................................ 397 МИХАИЛО ЛУЈАК НЕВЕНА ПРЕДОЈЕВИЋ Нови просторни концепти - иновациони центар Бања Лука MIHAILO LUJAK NEVENA PREDOJEVIĆ NEW SPACE CONCEPTS – INNOVATIONAL CENTRE BANJA LUKA ................... 407 МИХАИЛО РИСТИЋ ИВАНА МИЛОШЕВИЋ ЉИЉАНА ПИЛИПОВИЋ Композити на бази вуне за топлотну и звучну изолацију MIHAILO RISTIĆ IVANA MILOŠEVIĆ LJILJANA PILIPOVIĆ COMPOSITES BASED ON THE WOOL FOR THERMAL AND SOUND INSULATION .......................................................................................... 423 МИЛЕНКО ШАРИЋ РИСТО СТЈЕПАНОВИЋ ДАРИЈО КУПРЕШАК Градитљски проблеми сеоских водовода на територији Града Бања Лука MILENKO ŠARIĆ RISTO STJEPANOVIĆ DARIJO KUPREŠAK BUILDING PROBLEMS OF WATER SUPPLY IN RURAL AREAS IN BANJALUKA CITY ................................................................................................... 429 ВЕЉКО ЂУКИЋ Могућност поновног коришћења старог одлагалишта VELJKO ĐUKIĆ THE POSSIBILITY OF REUSING THE OLD WASTE DUMPING SITE .................... 443 РАШИД ХАЏИЋ МИЉАН ОБРАДОВИЋ Просторна стабилност репрезентативног система металне мостовске скеле преко задатог профила лука RAŠID HADŽIĆ MILJAN OBRADOVIĆ SPATIAL STABILITY OF IDENTITY SYSTEM OF METAL SCAFFOLD THE BRIDGE PROFILES THROUGH ARCH............................................................... 453 ГЛИГОРИЈЕ ПЕРОВИЋ Могућности ласерског снимања асфалтних путева из летилица GLIGORIJE PEROVIĆ POSSIBILITIES OF LASER SCANNING OF ASPHALT ROADS FROM AIRBORNE.......................................................................................................... 471 РАДИСЛАВ МИШИЋ НАТАША МИШИЋ БОШКО МИШИЋ Анализа могућности реконструкције и побољшања енергетских карактеристика зграда примјеном термографије RADISLAV MIŠIĆ NATAŠA MIŠIĆ BOŠKO MIŠIĆ ANALYSIS OF POSSIBILITIES OF RECONSTRUCTION AND IMPROVEMENT OF THE ENERGY CHARACTERISTICS OF BUILDINGS USING THERMOGRAPHY ............................................................... 477 ПРЕДГОВОР Позиву за учешће на овом скупу, одазвао се велики број, како познатих научника и стручњака, тако и учесника млађе генерације. Од 68 приспjелих приједлога радова, у виду резимеа, научно-стручни одбор је прихватио 39 рада. Одбор се, при томе, руководио да радови задовољавају основну концепцију мултидисциплинарности скупа, да су одабране теме врло актуелне, савремене и разноврсне; једном ријечју, да су, у функцији рјешавања проблема градитељске дјелатности и да доприносе унапређењу и развоју савремене теорије и праксе. Дио радова, који би представљао, углавном, понављање тема са претходних скупова, није уврштен у програм скупа. Такође, радови који нису задовољили постављене критеријуме нису прихваћени. На овоме, као и на неколико претходних скупова, поред других тема, незаобилазне су врло актуелне теме као што су: енергетска ефикасност, одрживи развој, обновљиви извори енергије, европски стандарди, екологија, савремене технологије, земљотресно инжењерство, инфраструктурни системи, трајност, одржавање и рехабилитација објеката и др. Сматрамо да велики број пријављених тема, представља потврду да су досадашњи рад и уређивачка концепција организатора овога и претходних скупова, били оптимално програмирани и прихватљиви за већину учесника у градитељској дјелатности. То потврђује и релативно велики број учесника који се увећавао приликом сваког наредног скупа. Претходних шест научно-стручних скупова, који су одржавани сваке године, почев од 2005. године, постали су већ препознатљиви, по завидном нивоу презентираних радова и великом учешћу истакнутих истраживача и стручњака, разних специјалности, не само из држава бивше СФРЈ, већ и шире. Због тога, организатори скупа, преко својих тијела, организационог одбора и научно-стручног одбора, реализују приједлог учесника шестог скупа, одржаног у априлу 2010. године, да овај седми и наредни скупови прерасту у међународне. Ова конверзија, из националног у међународни скуп, је у складу са одредбама важећег Правилника о публиковању научних публикација Републике Српске (2010.), које се односе на научне и научностручне скупове и њихове публикације. Услов да скуп добије статус међународног скупа је испуњен, јер у научно- стручном одбору има чланова из најмање пет земаља и најмање је десет учесника са радовима из иностранства. Просјечно учешће аутора радова из иностранства, на досадашњим скуповима, износило је око 67% од укупног броја радова. Користимо ову прилику да се захвалимо свим учесницима скупа, посебно ауторима радова, који ће, увјерени смо, знатно допринијети успјешном раду скупа. Захваљујемо се, такође, свим институцијама, фирмама и установама, као и свим појединцима који су подржали одржавање овог међународног скупа. Бања Лука, април 2011. године Уредници: Проф. др Мирко Аћић, дипл.инж.грађ. Рајко Пуцар, дипл.инж.грађ. FOREWORD A great number of well known scientists and specialists as well as number of younger generation participants has applied to participate in the conference. Scientific – technical committee has accepted 39 out of 68 received summaries of paperwork. One of the committee criteria was that all paperwork should contribute to multidisciplinary character of the conference, problems addressed in summaries to be contemporary and various, in a word helpful in problem solving within building development sector, and to contribute to improvement and development of contemporary theory and practice. Some paperwork, mostly repeating problems addressed on the previous conferences as well as ones beyond established criteria, were not accepted to become a part of conference program. This conference, as well as previous ones, is addressing subjects such as energy efficiency, renewable energy sources, European standards, ecology, modern technologies, earthquake engineering, infrastructure, durability, maintenance and rehabilitation of structures, etc. In the opinion of the Committee, a large number of received summaries, confirms that work and editorial concept of the organizational committee of this and previous conferences was right and acceptable for the majority of participants within structural engineering sector. Increased number or participants taking part in the every conference in the previous years also confirms this. Six scientific- technical conferences held every year since 2005, are already well known by the high level of the presented works, as well as by participation of well known researchers and scientists of various specialties, coming not only from ex Yugoslav countries, but other countries as well. This fact enabled the organizers of the conference, via its bodies – scientific- technical and organizational committee, to work under suggestion of the participants of the sixth conference held in April 2010, and enable this and following conferences to become international. This change, from the national into international conference, is in line with rules of the present Code on publishing scientific publications of the Republic of Srpska (2010), that refers to the scientific, and scientific – technical gatherings and its publications. Main condition for the international conference has been fulfilled, as the scientific-technical committee consists of members from at least five countries and minimum ten participants coming from abroad. Average participation of the paperwork authors from abroad in the previous conferences was 67%. We take this opportunity to express our gratitude to all participants of the conference, especially paperwork authors as we are convinced they will greatly contribute to the success of this conference. We would also like to thank all institutions and companies, as well as to all individuals for their support in holding this conference Banja Luka, April 2011 Editors Professor Mirko Aćić, PhD, Dipl.Civ.Eng. Rajko Pucar, Dipl.Civ.Eng. Marija S. Todorovi1, Olivera Eim uri2, Ivana Matinovi and Dušan Liina3 RENEWABLE ENERGY SOURCES AND ENERGY EFFICIENCY’S INEXTRICABLE LINKAGE TO APPROACH ZEB AND CITIES Summary: Paper reviews advances in integrating energy efficiency, solar and other renewable energy sources in new and existing buildings, to approach sustainable net Zero Energy Buildings, villages and cities. Paper stresses importance of the BPS (Building Performance Simulation) and Co-simulation in developing reliable method/engineering procedures for RES co-utilization and interwoven “energy mix” scenarios optimization, including existing buildings RES integrated refurbishment. Finally, presented are study results on the technical feasibility of efficient/cost-effective use of relatively low temperature geothermal waters for co- and tri-generation of electricity and heat for heating and/or cooling by absorption refrigeration for building integration. Key words RES technologies, Building Performance Simulation, RES integrated refurbishment, geothermal co- and tri-generation, RES hybridization and co-utilization - : , , ! , " . # . $%- " " & & '*+0 '23. : , , , - -, -! 1 2 3 University of Belgrade & VEA-INVI, Belgrade, Serbia and Southeast University, Nanjing, China University of Belgrade, Serbia VEA-INVI, Belgrade 1 1. Introduction In order to stop the global climatic changes and its more and more obvious consequences, it is urgently necessary to further develop independent, vital and elastic energy systems in which the miniaturization and distributed energy production based on the renewable energy sources - RES have vital role. Current irreversible destruction processes are to be stopped, and much more intensive growth of energy efficiency and RES utilization are to be reached especially in building sector. Energy-related impacts of buildings must be considered in their life-cycle environmental analysis focusing factors that affect energy consumption: facades concepts/building envelope alternatives, glazing and fenestration, types of building structure thermal mass and insulating materials, lighting and day-lighting control, natural ventilation and energy-recovery opportunities, and HVAC systems regimes and operational modes such as temperature control, air volume control, motors and pump types of control, indoor and outdoor air quality and environmental protection. All of these considerations have an impact on the buildings energy efficiency, HVAC&R requirements and resulting CO2 emission. A holistic approach to building design requires a method to estimate the performance that will result from the energy flows and interactions between the different technical domains of buildings – HVAC and other technical systems. In the same time occupant comfort is not to be neglected or excluded. Multiple-domain comfort assessment is required for IEQ (thermal environment, light, air quality and acoustics). Building performance simulation (BPS) in design or redesign, reconstruction and refurbishment phase is to encompass all relevant building’s domains: building intrinsic performances (energy consumption, acoustics, etc.); occupant comfort; and life cycle impacts assessment (LCIA), which characterises the environmental impacts of building energy consumption, the construction materials and processes occurring during the LC (including the construction, use, maintenance and deconstruction phases). BPS is a powerful method and technique for predicting building’s dynamic behavior, building’s energy efficiency and RES integration optimization. BPS enables building’s environmental technologies and sustainability harmonization. 2. Harmony of traditional village houses It would be a great challenge for contemporary architects to be asked to start planning houses which represent the reminiscence of traditional Serbian houses heritage. The house is the mirror of the people who live in it - a psychological, social, material, spiritual mirror. It is also true that the man usually builds his house once and then the house builds the man forever. The influence of architecture on people is huge and far-reaching. At the end of the 60’s and the beginning of the 70’s of the 20th century many scarecrow houses were built all over Serbia. Our charming settlement, built according to needs of people and the community, in harmony with nature and the milieu, has become a frightening dump of houses. Manners and forms of building in one nation and in one culture are not created by chance but they are results of crystallizations which lasted for several millenniums. 2 Fig. 1. Traditional village houses architecture, construction types and materials – " !, The biggest values of an old Serbian house are that it was made out of need, and it is simple, suitable and human. It was made out of life and it was dedicated to it. It does not serve for advertising, for prestige, for luxury. There was, no pretentiousness, but harmony, taste and measure which were creatively produced even in great poverty. An old Serbian house is exquisitely proportional. Its geometrical values are stunning. They understand a codex, standardization which was adjusted and fixed up for centuries. It was not called under that name but it was more than present. Is it possible, that spirit to catch and transpose it in a modern Serbian house, but taking in account that the style and the rhythm of a modern man’s life, are much different than they were in earlier times. The spirit of heritage is to be expressed in very different ways. We have not to go back to heritage and tradition, but to start with them - to transpose the inherited and to develop it to modern needs, to the modern itself, which must not be an empty shell, and especially not formal and lifeless architecture. The Serbian house is generally built out of material that could be found in the nearby milieu. Skillfully used material from natural milieu and respecting the characteristics of the climate, exquisite architectural results were achieved. The famous labelling program LEED is based on the same logic and its aim is to promote sustainable buildings concerning IEQ, environment protection and energy. The study of the traditional buildings of all nations in the world are justifying the first basic principle of sustainable architecturee - small is beautiful. Serbian house, and more generally village houses worldwide, characterize: the optimum volume ratio of house and roof area of tread and minimize the impact of low outside 3 temperature in winter and too intensive solar radiation and high outside air temperature in summer; Socrates roofs – passive use of solar radiation - good bioclimatic construction; enough daylight and good exposure and absorption of solar radiation in winter and shading and reduced exposure to sunlight in summer. Layout of rooms and windows is suitable for natural cross ventilation and natural cooling in the summer. Finally harmonization of relations with the environment contributes to the harmonious choice of materials wall structure, their thermal characteristics (the optimal value of thermal mass and thermal conductivity: a wooden structure - avoid thermal bridges; construction of wood, mud plaster, and other naturall materials for construction – bio-degradablele and materials suitable for recycling 3. Residential buildings refurbishment Architectural and energy condition of buildings and poor social and economic status of tenants determine the approach towards improvement. Namely, we go through a period of inconsistent value systems regarding architectural and urban planning practice in Serbia, which leaves certain consequences on the valuable architectural and urban heritage of New Belgrade. The compact, reduced and space-saving building construction, large green surfaces, good ventilation and abundance of sunlight, urban complexes characteristic for the time of their construction, are the qualities that should be recognized and preserved. Unfortunately, the construction wave during the 1990s and 2000s was not always appropriate regarding the specific urban context of New Belgrade. In the meantime, numerous residential buildings erected during the period of intensive construction in New Belgrade, from 1950s to 1980s, have become dilapidated and completely untended (Fig. 2). New Belgrade residential buildings area is covering 4.096ha. Within these exclusively high rise residential buildings are approx 90.000 dwellings with total dwellings area of 5.000.000 sq. meters. 90 % of dwelling are within Belgrade’s District Heating System. Fig. 2. By the BPS ivestigated residential building – # 4 Many of them have visibly damaged façades, moisture penetration into the walls and lack of indoor comfort, primarily inadequate air temperature with high infiltration of outdoor air, regardless of extremely high energy consumption for heating from the Belgrade district heating system and high consumption of energy for air-conditioning, leading to the alarming peaking loads in the electricity network during the summer period. It can be certainly expected that the project of architectural improvement of buildings (improvement of energy efficiency – improvement of indoor environment and comfort, as well as provision of cleaner and healthier outdoor environment), would bring positive social changes and reduce some social problems. The application of energy efficiency principles to reconstruction (retrofitting) could be a great motivation for tenants and, generally, for inhabitants of New Belgrade to be personally involved. The aim of the project was an architectural revitalization (reconstruction, retrofitting) through the application of measures and technologies for improving and optimization of energy efficiency of residential buildings in New Belgrade, for the purpose of providing energy efficiency on the quality level which will ensure cost effective integration of renewable energy sources - RES utilization. A four-floor building (useful area 13000 m2) selected to serve as “Case building” with 7 entrances and three substations of the district heating system of “Belgrade power plants” was chosen as a typical residential building of New Belgrade (/4/-/8/,/15/). For several scenarios of the building construction, computer models were created and calculations were made, for meteorological data of the typical meteorological year (TMY) of Belgrade, such as: G1 – model of the building according to the design of 1969; G0 – model of the building approximately as it is today; G1 - G5 are building of the improved construction’s energy efficiency; and G – model in accordance with the data obtained from “Belgrade Power Plants” regarding energy consumption of the building concerned. Results of the performed calculations are presented on Fig. 3. and 4. Fig. 3. Specific heating losses and heating gains – $% Results show that with the reference to the basic model G0 specific heating losses are reduced a 4 times (from MO0 to MO5), and specific heat gains are reduced more than 4 times – nearly 5 times. Hence, installed heating power of the DHS heat exchanger in DHS 5 substation in buildings after refurbishment is to be 4 times smaller, and similar order of magnitude will be reduction of necessary installed power of air-conditioning split units. Fig. 4. Specific annual heating and cooling energy demand – $% & 4. RES integrated refurbishment By the preformed BPS predicted building’s refurbishment results are excellent approval that approach to refurbishment can successfully lead to the effective integration of solar energy utilization. Namely, not only reduced loads by the refurbished envelope’s thermal features, but the fact that building’s envelope construction attacked by the moisture penetration needs intervention, reconstruction to the ventilated façade offer challenge to perform “Synergetic refurbishment approach” increasing energy efficiency and integrated solar energy utilization. Concerning the construction works and existing building structure statics, low weight PV cells and PV system’s simplicity would make it the most appropriate of the solar technologies candidate to be integrated in renewed façade (/1/, /6/, 12/). As the most cost-effective variant of interventions for architectural and energy reconstruction of the analyzed “case building” has been selected complete construction of a new residential floor (as financial potential source of funding by selling new-built apartments), ending with the green roof or the roof plate that contains photovoltaic panels for electricity generation /15/. Potential BIPV co- and trigeneration. In the Table 1. are given relevant characteristics of the PV modules selected for “Case building” façade integration. For the Belgrade TMY Typical Meteorological Year, have been determined incident solar global radiation and potentially produced electricity by the BIPV in the building’s façade. In the Table 2. are presented, for the determined BIPV area, values of determined installed power and yearly produced electricity, obtained by the TRNSYS simulations. For the total installed area on the west oriented facade of 1310 square meters total installed PV power potential for selected PV cells/panels is 180,4 kW. One third of that power would be enough to power all existing AC split units in the same building, thus 6 providing during the summer cooling and participating during the winter in heating supply. Architectural animation of the PV panels integrated in the building’s facade is shown on the Fig. 5 – nontransparent, and semi-transparent as second facade. Thus, obtained result is more than significant justification to proceed with development of proposed project on the “Cost Effective Solar Integrated Refurbishment of Residential Buildings in New Belgrade” and to accomplish fully RES integrated residential/municipal energy refurbishment, as follows: reduction of heating and cooling loads in buildings a 4 times with the reference to the existing, and consequently replacement of heat exchanger (4 times lower capacity and of higher energy efficiency at the current technology level) in the DHs substation in the building; production of electricity by the BIPV – building integrated PV for the heat pump (HP) operation, lighting and appliances when there is surplus with the reference to the HP demand. Thus, obtained result is more than significant justification to proceed with development of proposed project on the “Cost Effective Solar Integrated Refurbishment of Residential Buildings in New Belgrade” and to accomplish fully RES integrated residential/municipal energy refurbishment, as follows: reduction of heating and cooling loads in buildings a 4 times with the reference to the existing, and consequently replacement of heat exchanger (4 times lower capacity and of higher energy efficiency at the current technology level) in the DHs substation in the building; production of electricity by the BIPV – building integrated PV for the heat pump (HP) operation, lighting and appliances when there is surplus with the reference to the HP demand. Table 1. PV modules characteristics – Module type BP SX 3195 Maximal power W Voltage on Pmax V Current at Pmax A Short-circuit current A Open-circuit voltage V Nominal operating cell temperature °C Number of cells Area m2 195 24,4 7,96 8,6 30,7 47 72 1.41 As New Belgrade has been built on “ground-water” existing air-source/sink split units are to be replaced by the ground-water HP, resulting in reduction of necessary electrical power – order of the COP ratio change related to the source/sink (air/ground-water) temperature difference. 7 Fig. 5. Integration of nontransparent PV panels (left) semi-transparent (right) – '* ( ) () Ground water PV powered HP can be used energy efficiently for heating in certain periods of year, what will further contribute to the DHS demand reduction and in the same time further increase of the renewable energy balance. Residential/municipal RES integrated refurbishment. Concerning the share of the Households, Public and Commercial Activities in the FEC (3.219 of the total 8.411Mtoe), and by the NEEAP/B Serbia adopted 2% saving as the intermediate target in 2012 (0.16722Mtoe), and 9% adopted related energy saving target in 2018 (0.75244 Mtoe), there is urgent need to develop commercial “industrial” scale of energy refurbishment (buildings architecture and construction refurbishment technologies accompanied with corresponding HVAC systems engineering (/1/ - /8/, /14/, /15/). It is very hard to expect that required residential/municipal RES integrated refurbishment planned by the National Energy Efficiency Action Plan/Building Sector (NEEAP/Bs) can be realized in Serbia, or other Non-EU, or even in the most developed EU countries, if there are missing developed “industrial” scale buildings architecture and construction refurbishment technologies and corresponding integrally harmonized HVAC/PV/Other RES systems and engineering technologies developed – validated as based on the relevant R&D results (/4/-/8/, /14/, /15/). Developed, mature, commercially available on the market, pre-constructed HVACRES-HP and/or HVAC-RE-DHS/HP systems and unified retrofitting construction works as well as corresponding mechanical and electrical subsystems would eliminate important technical and technological barriers to spreading deep energy refurbishment projects conducted integrally with solar, wind, ground or groundwater source HP implementation /14/. In addition, development of the specific hardware and software within the building/HVAC retrofitting system can directly increase competitiveness of related Europe's HVAC, Heat Pumps and especially for the renovated refurbished buildings optimal intelligent control systems industries. 5. RES powered co- and tri-generation for nZero Energy Cities Modern society is increasingly dependent on electricity and there is no realistic chance to make its consumption decreased in the future. Gradual robotization, computerization of 8 society as well as transportation (directly into the electrical circuit or indirectly through synthetic fuels: hydrogen, methane and methanol) will all be more focused on increase of its use. Production of electricity from renewable sources is the only way to provide longterm stable electricity production at constant prices to approach sustainable society (/15/,/16/). Low temperature geothermal fluids (<1000C) are available and used mainly for heating and balneological purposes. At the same time, as a result of global warming (GW) a need for cooling, particularly air-conditioning of buildings and related electricity demand are growing extremely fast around the world. In Serbia more than 60 hydro-geothermal lowtemperature systems (below and about 100oC), present a large potential (highest temperature levels in broader region - ranked among the hottest in Europe). Estimated energy reserves of these geo-resources are about 800 Mat. Currently, in Vranjska SPA with the highest temperature levels (about 100oC), a DH - district heating (including sanitary water and swimming pools) and AC is planned implementing absorption refrigerating systems in some of the DH substations and vapour compression refrigerating units powered by the grid electrical energy in other (during heating season these units can be also used for heating in their heat-pump operational regime). Similar examples as these in Central and Southeastern Europe, can be found in many other regions in the world rich in low temperature geothermal waters (<1000C). At the same time, there is a growing interest of governmental, public and private investors worldwide in funding the construction of energy plants which could utilize these waters in a more efficient and cost effective way than it is practice today /7/. Thus, it is necessary to explore technical feasibility of efficient/costeffective use of these waters for co- and tri-generation of electricity and heat for heating and/or cooling by absorption refrigeration. Investigation is necessary to identify the most cost-effective configuration to harvest low temperature geothermal energy for cogeneration and tri-generation systems assisted by solar energy or some other locally available RES such as biomass /7/. Technical feasibility, efficiency, and cost are to be explored using low temperature geothermal fluids for co-generation systems to produce electricity and thermal energy for heating, and/or for tri-generation producing electricity, heating and cooling via absorption refrigeration processes. Relevant studies of building thermal and electrical load dynamics, and corresponding demands, should be performed based on optimum co-generation systems. It is well known that the Kalina thermodynamic cycle can convert relatively low temperature energy, at relatively low temperature compared to the heat sink or ambient temperature, to mechanical power and further to electricity. The Kalina cycle has a potential for significantly higher exergy efficiency compared to conventional Rankine cycle because, unlike pure fluids, the ammonia-water mixture has variable boiling temperature (/8/-/10/). There are also some other thermodynamic cycles and processes of interest which could be potentially used for utilization of geothermal fluids at even lower temperatures than those required for the pure Kalina cycle. In addition, there is possibility of hybridization – integration of the use of low temperature geo-waters and solar or other RES to increase the geothermal fluid temperature upstream of CHP systems /8/. Namely, it is generally assumed that if the resource temperature is higher than about 90ºC, it can be utilized to generate electricity. However, it is nearly impossible to get any offer at the market, even 9 from those producers who affirm that they are designing and engineering the utilization of hydrothermal resources with temperatures about 100ºC. Rodgakis and Antonopoulos /13/ analyzed a Kalina power cycle driven by a heat source of high and moderate temperatures operational with three pressure levels. In this cycle the heat contained in the exhaust steam is used to drive a “thermal compressor” allowing a higher turbine expansion ratio and a higher efficiency. Kalina and Leibowitz (/9/,/10/) presented a power cycle for geothermal applications showing that the Kalina cycle has a higher power output for a specified geothermal heat source compared with organic Rankine cycles and steam flash cycles. P. A. Losos and E. D. Rogdakis /13/ performed the thermodynamic analysis of a dual pressure Kalina power cycle operational at the low temperature heat sources (similar to the power unit installed in Husavic-Iceland /11/). They presented an improved configuration which appears to have a better performance. Further, this paper presents parametric analysis of thermodynamic limits of a new concept of boosting the relatively low temperature geo-water sources using solar or other locally available renewable energy sources to enable energy efficient co-generation and trigeneration by increasing the level of “high” temperature turbine inlet, and getting enough high temperatures of co-generated heat for its efficient use for the heating and/or absorption cooling purposes. In addition to the introduction of the concept of coutilization/hybridization of geothermal with solar or other RES, this paper presents an extension of the study /13/ and continuation of the study /7/, encompassing relevant parameters including the cooling source and local – site climate conditions, beside the HVAC and other energy loads demands. 6. Description of the cycle The Kalina cycle uses a working fluid comprised of at least two different components (typically water and ammonia). The ratio between those components is varied in different parts of the system to increase thermodynamic reversibility and overall thermodynamic efficiency (/16/). There are numerous variants of Kalina cycle systems specifically applicable for different types of heat sources. Since the phase change from liquid to steam is not at a constant temperature, the temperature profiles of the hot and cold fluids in a heat exchangers can be made closer, thus making the overall efficiency of the heat transfer higher. Several proofs of concept power plants using the Kalina cycle have been built. On Fig. 6. is shown a simplified scheme of the co-generation, alternatively tri-generation unit arrangement installed in Husavic-Iceland based on a Kalina cycle. Necessary thermal energy is supplied to the cycle’s working fluid in evaporator. After releasing heat in evaporator, geo-water and the solar collector field’s working fluid are used for heating purposes: lower exergy geo-water for SPA and agriculture, and higher exergy value solar collector field water for district heating system (DHS) and/or district cooling system (DCS). Characteristic states of the Kalina cycle working fluid are as follows. Starting at the outlet of the absorber (State 0) the strong solution of a mass fraction Xr is saturated at a low pressure pL. This stream is pumped to a high pressure by the feed pump (State 1r). The feed stream is preheated in the low temperature (State 2r) and the high temperature (State 3r) recuperators before entering the evaporator. In the evaporator the mixture is heated by the 10 heat source (I geothermal and II solar or biomass) to TH, where it is partially vaporized (State 4r). The mixed-phase fluid is sent to the separator where the basic solution is separated into an enriched vapor (Xv) (State 5) and a weak liquid solution Xw(State 4w). The high-pressure, strong saturated vapor from the separator drives the turbine as the vapor expands and cools to a low temperature, low pressure exhaust (State 7). The saturated liquid solution (State 4w), after recuperating some of the heat at the high temperature recuperator, is throttled down to a low pressure (State 2w). Then the expanded stream (state 7) mixes with the weak stream (State 2w), condenses and forms the basic solution completing the cycle (this is achieved through a counter-current absorber). There is though a cooling circuit system which works as follows: firstly the cooling fluid absorbs the heat rejected from the absorption process (change 8r-0r or 2w-0r); then, the absorbed heat, through the cooling circuit, is used to preheat the rich solution (change 1r-2r). In /13/ had been analyzed co-current absorber. As the study /13/ did show important advantage of obtainable cycle’s higher thermal efficiency, in this study such configuration has been selected as an initial reference for the further parametric thermodynamic analysis. The coand tri-generation modes of this type of Kalina based power generation unit assumes utilization of the residual thermal potential of geo-fluid after releasing heat in the first part of the evaporator section for the lowest level heating purposes, and also utilization of the residual thermal potential of solar heated working fluid after the evaporator’s second section (for heating and when necessary or absorption cooling – tri-generation), as well as further utilization of the condensation heat transferred to the cooling fluid. An ideal Kalina cycle’s relevant independent variables are: cycle low pressure, pL; cycle minimum temperature TL (temperature at condenser exit); cycle maximum temperature; TH (temperature at boiler exit). Streams involved in the cycle are: a weak solution of mass mw=g [kg] and mass fraction Xw (change 2w-4w); a strong solution of mass mr=(1+g) [kg] and mass fraction Xr (change 1r-4r); and a rich vapor stream of mass mv=1 [kg] and mass fraction Xr (change 5-7). Cycle modeling has been performed /7/ using the following assumptions: All processes within the cycle, excluding pumps, throttling valves and the turbine, are considered as constant pressure processes. The enthalpy increase in pump is assumed to be enough small to be neglected. The strong mixture at condenser exit (State 0) and at the evaporator inlet (State 3r) are at saturated condition. The weak mixture after its throttling to the low pressure (state 2w) is at saturated condition. Heat losses in the piping and the heat exchangers are enough small to be neglected. Thermodynamic properties of the Kalina working fluid - mixture of NH3-H2O are calculated /13/. In /8/ thermodynamic analysis of the ideal Kalina cycle defined in /13/ has been extended using the variables and assumptions listed above, and using the mass balance and a set of relevant equations to calculate the boiler heat transfer, absorber heat rejection, work output and thermal efficiency (for 1 kg of vapour expanded in the turbine) as follows: 11 Boiler heat transfer qin Absorber heat rejection qabs Work output wt Thermal efficiency K h5 h2 h7 h2 h5 h7 wt qin (1) (2) (3) (4) Fig. 6 Scheme of solargeothermal Kalina power cycle with counter-current absorber – 7 % : Boiler heat defined by the equation (1), is given as a whole and not reduced for the recuperated heat within the cycle itself. As this new concept of increasing the heat source temperature by the composition of geo and other RES aims to reach a CHP (co-generation) efficiency high enough for practical cost-effective implementation even with the available low temperature geo-sources, the main issue is analysis of the impact of increased temperature of heat source (adding solar to geo), and analysis of different cooling fluid/environment temperatures on thermodynamic limits. Thus, the heat recovery within the cycle has been treated in the same way as in the referential studies (/8/, /13/). Recuperation’s role and especially its heat transfer efficiency is additional positive impact on the Kalina cycle’s efficiency improvement. 12 7. PARAMETRIC ANALYSIS AND THERMODYNAMIC LIMITS Extended parametric analysis has been conducted with the reference to the case study /7/ which has been made for following parameters: low pressure, pL=5 bar; minimum temperature TL = 22oC; and maximum temperature TH = 120oC. Determined dependence of the theoretical cycle efficiency and the produced work per kg vapor for the various values of the low pressure analyzed in /13/ shows the rate at which for given maximum and minimum temperature of the cycle, low pressure raising causes a reduction of the produced work and the efficiency. The relationship between the high pressure pH and the maximum temperature TH of the unit for three values of the low pressure (1, 2 and 4 bar) and for given minimum temperature TL, as well as the correlation of the high pressure in terms of the three independent variables of the analyzed Kalina cycle, TH, TL and pL are expressed using following equations (/8/, /13/): pH a1 b1 TH c1 TH 2 (5) a1 16.47 4.33 pL 1.366 10 2 TL 0.696 (6) b1 (0.42 0.08 pL ) (1.3604 1.644 102 TL ) 3 4 2 c1 (3.14 10 7.3810 pL ) (1.3234 1.474 10 TL ) (7) (8) Searching thermodynamic limits, the parametric analysis of the Kalina based cycle for the geothermal CHP (co- and tri-generation) systems has been extended at the lower side of the high temperature range to only 50oC. Thus, determined thermal efficiency of Kalina cycle at so low TH will enable analysis of potential increase of efficiency if additional higher temperature level heating (solar or biomass) is added within corresponding evaporator sections. Other than adding solar energy to geothermal heat source, with the reference to /13/, study /8/ extended cooling temperature range by adding two low temperature values 14oC, and 30oC (representing groundwater or outside air and cooling tower use for cooling respectively). The theoretical cycle efficiency < (%) has been determined for a great number of combinations of the minimum temperature TL (14, 22 and 30oC) and low pressure pL (1 to 4 bar), and obtained correlations between the efficiency and relevant independent variables of the cycle have been expressed as follows: K a2 b2 TH c2 TH 2 (9) a2 0.049 0.0022 TL (10) b2 0.0035 0.921/ pL c2 -2.36 10 -2.19 10 pL 3.14 10 pL -6 (11) -6 -7 13 2 (12) Using given equations a series of thermal efficiencies data are calculated and presented on the diagram in Fig.8. Given are also values of the Efficiency and Carnot Efficiencies for the same values of corresponding cycle’s high TH and low temperatures TL. For example, an increase in TH temperature from 70oC to 100oC, 120oC and 140oC will result in the cycle’s efficiency growth of 7,29%; 11,58%; and 15.44% respectively for the low temperature TL equal 14oC /8/. It is visible how much the cycle efficiency is closer and closer to the Carnot efficiency as TH increases and TL decreases. The efficiency < (%) has been calculated for a three minimum temperature TL (12, 22 and 30oC) /8/. It is very impressive how close the theoretical Kalina cycle’s efficiency values are to the Carnot cycle’s efficiencies (values of the </<c ratios are between 0,74 and 0,94). It is important to stress that the absorption refrigerator’s coefficient of cooling (trigeneration case) also significantly increases with raising inlet temperature of heating fluid (solar collector fluid exit temperature from the evaporator), Coefficient values are significantly higher for higher temperatures what contributes to the increased efficiency of cooling and hence of the tri-generation as a whole, what justifies further engineering R&D& economic optimization to be conducted (/8/, /12/,/15/). It is visible how much the cycle efficiency is closer and closer to the Carnot efficiency as TH increases and TL decreases. The efficiency < (%) has been calculated for a three minimum temperature TL (12, 22 and 30oC) /8/. It is very impressive how close the theoretical Kalina cycle’s efficiency values are to the Carnot cycle’s efficiencies (values of the </<c ratios are between 0,74 and 0,94). It is important to stress that the absorption refrigerator’s coefficient of cooling (trigeneration case) also significantly increases with raising inlet temperature of heating fluid (solar collector fluid exit temperature from the evaporator), Coefficient values are significantly higher for higher temperatures what contributes to the increased efficiency of cooling and hence of the tri-generation as a whole, what justifies further engineering R&D& economic optimization to be conducted (/8/, /12/,/15/). Fig. 7. Theoretical cycle efficiency vs. Tmax for pL= 2bar and three values of the low temperature TL - # $ Tmax pL= 2bar TL 14 8. Conclusions Concluding remarks on the building’s energy loads and demand minimization Part I of conducted study are: retrofit of building envelope and structure including replacement of external windows and doors will result in reduction of specific heating demand and DHdistrict heating energy consumption for 60 - 75%, and DHS can increase own heating capacity for the same amount of thermal power and annually delivered energy. Integration of PV panels non-transparent on the opaque parts and semi-transparent as the second facade on the appropriately oriented external walls will result in installation of enough PV electricity to power all AC split units substituting EDB’s grid-electricity, and in addition can send to the grid surplus electricity. This result justifies the proposed project on the “Cost Effective Solar Integrated Refurbishment of Urban Residential Buildings in Serbia”. Energy efficiency of the air-conditioning system can be much more efficient than the efficiency of the existing installed AC split air-type units, by the replacement of AC units with water cooled AC system – system which is using ground water as a heat sink in summer when cooling is necessary, but also applicable as heat pump in other periods of year for heating purposes using ground water as heat source (also as RES source). DH substation is to be reconstructed with the reference to reduced heating power and energy due to building envelope retrofit and to the PV powered HP operation. Necessary financing formula can be obtained by joining financial support of the PPP type. Conclusions on the Part II – residential-municipal RES integrated refurbishment to approach nZEB and cities are: feasibility of “Successful Composition of the Geo Co- and Tri-generation Projects” and possibilities to increase theoretical cycle thermal efficiency and expand the low-temperature geo-water utilization for co- and tri-generation based on the co-utilization or hybridization of geothermal with solar or other RES has been confirmed and determined. Furthermore, parametric analysis and the determination of relevant thermodynamic limits of corresponding systems have been conducted, which encompass relevant parameters including the cooling source and its characteristics (river or lake water, wet cooling tower, or else), as well as local – site climate conditions, beside the HVAC and other energy loads demands. It has been confirmed that geo-heat source of lower temperatures than 100ºC can be "boosted" by addition of solar or other high temperature renewable heat sources, reaching very significant increase of co- and tri-generation efficiencies values – values very close to the corresponding Carnot efficiencies. RES integrated residential/municipal refurbishment in synergy with the RES integrated co- and tri-generation at the municipal level, are to be seen as a reliable way towards net ZEBuildings and Cities. Nomenclature < = efficiency [%] h = specific enthalpy [kJ.kg-1] p = pressure [bar] q = specific heat [kJ.kg-1] 15 T w = = temperature [oC] specific work [kJ.kg-1] = = = = = = high pressure low pressure strong solution weak solution vapor turbine Subscripts H L r w v t References 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. Todorovic M.S., NEEAP/B 2009-2018 Study Report and NEEAP-BS for the RS Ministry of Mining and Energy, VEA-INVI, IRG/Washington, 2010. Energy-efficient Buildings PPP Research Priorities for the Definition of a Multiannual Roadmap and Longer Term Strategy, Ad-hoc Industrial Advisory Group Energy-efficient Buildings PPP, 2009. Public Utility Company Beogradske elektrane – Series of District Heating Systems Substations Energy Consumption Measurement Data, Belgrade, 2006, 2007, 2008. Todorovic M.S., New and Existing Building’s Cost effective Integrated Solar, Coand Tri-Generation to Approach Sustainability, AICARR Proceedings, pp. 241-256, Rome 2009. Todorovic M. S. and others: USCE Tower - Building Envelope and Construction Energy Optimization Study, EnPlus/DERES-LTT, Euro Construction, Belgrade, 2003. Todorovic M. S.: Building Integrated PV Air-conditioning and Water Heating in Special Hospital of the SPA Rusanda, Passive and Low Energy Cooling Conference, Creta, Greece, 2007. M.S. Todorovic, Successful Composition of the Geo Co-and Tri-generation Projects, International Geothermal Days, http://80.81.229.22/igd2009/proceedings/proceedings.igd.09/proceedings. PDF/V.1. Todorovic.pdf, Slovakia, 2009. M.S.Todorovic and D.Licina, Parametric Analysis and Thermodynamic Limits of Solar Assisted Geothermal Co-And Tri-Generation Systems, Transactioons ASHRAE, 2011, Vol.1. Kalina, A. I., Combined Cycle and Waste Heat Recovery Power Systems Based on a Novel Thermodynamic Energy Cycle Utilizing Low-Temperature Heat for Power Generation, Proceedings of the 1983 Joint Power Generation Conference, Indianapolis, Indiana, USA, (1983), ASME Paper No. 83-JPGC-GT-3. Kalina, A. I., Leibowitz, H. M., Application of the Kalina Cycle Technology to Geothermal Power Generation, Geothermal Resources Council Transactions, Vol. 13, (1989), 605-611 Leibowitz, H. M., Micak, H. A., Design of a 2 MW Kalina Cycle Binary Module for Installation in Husavik, Geothermal Resources Council Transactions, Oct. 17-20, Vol. 23, (1999), 75-80. 16 12. 13. 14. 15. Valdimarsson and L. Eliasson, Factors influencing the economics of the Kalina power cycle and situations of superior performance, International Gepthermal Conference, Reykjavik, 2003, pp 32-40. Periklis A. Losos and E. D. Rogdakis, Thermodynamic Analysis of a Kalina Power Unit Driven by low Temperature Heat Sources, Thermal Science: Vol. 13 (2009), No. 4, pp. 21-31. Todorovic M.S. National Energy Efficiency Action Plan of Buildings in Serbia – An Approach to the large Scale Municipal Energy Refurbishment, REHVA Journal, Vol. 47, Issues 6, December, 2010, pp. 22-26. Todorovic M. S. Izbor prilaza unapre{enju energetske efikasnosti i održivosti zidanih zgrada, Journal for Research of Materials and Structures, 4, LII, pp. 5-27, (with O.Ecim, I.Martinovic), 2010. 17 Theodor Klein14 ENERGETIC SYSTEM REQUIREMENT FOR PHYSISAL STRUCTURES-SPECIFICATIONS BY THE GERMAN STANDARD (EnEV 2009) Summary: This paper presents (technical) requirements for energy efficiency and energy consumption according to the standard EnEV 2009. Higher demands are made to newly established or modernised, heated and cooled buildings. Specific values of the annual primary energy need is given by standard, so calculated annual primary power demand for heating, hot-water preparation, airing, cooling and built-in lighting should not be higher than the permissible high value. Standard EnEV 2009 bligas owners of new buildings and owners in sales, lease and renting, to prepere energy performance certificate. The specific values of the annual primary power demand for building and the heat transmission losses of building shell (cover) are given in it. Key words: energy efficiency, energy consumption, Standard EnEV 2009 - (EnEV2009) : " EnEV 2009. " . # , , , , , , ! , ! ! . $ , ", , , , & . : $, ! , EnEV 2009 1 Dipl.ing., Dipl.Kfm. IGK. INgenieurgeselschaft Klein Passauer str. 101; 84347. Pfarrkirchen; tel. 08561-2388400; Weinmann,.andrea@igk-klein.de 19 Energetic system requirement for physical structures – Specifications by the legislator in Germany (EnEV 2009) Introduction In Germany higher demands are made to newly established, or modernised, heated and cooled buildings by legal requirements of the energy saving act in 2009 (EnEV 2009), concerning energy efficiency and energy consumption. In order to realise this aim, a comprehensive planning is needed, which considers the warmth-transferring building shell, as well as systems engineering. Furthermore the EnEV2009 regulates the replacement and after-market equipment duty in the building stock, as for example: the additional insulation of the supreme floor cover, or the insulation of heating pipes and hot-water pipes, the abandonment of electric night storage heating and the exchange of out-dated boilers. As a standard for the energy efficiency of buildings, the specific values of the annualprimary energy need and the heat insulation of the building shells, defined by the building heat transfer loss, are valid. Already in the planning stage you need to pay attention to the fact, that the calculated annual primary power demand for heating, hot-water preparation, airing, cooling and built-in lighting is not higher than the permissible high-value. The high value is determined with the help of an authoritative building with the same geometry, usable area, adjustment, and use like the planned building. In addition, the outside shell of the built and planned building may not cross the high-value for the heat transmission, given by the EnEV. The energy performance certificate shows these energetic specific values very clearly, even for the non-expert. The EnEV2009 obliges owners of new buildings, and owners in sales, lease, and renting, to the preparation of the energy performance certificate. The specific values of the annual primary power demand and the heat transmission losses are fixed obligingly in it for the respective building. If one looks at a building as a concluded energetic system, the losses by the building shell and the airing are accompanied by the system-internal and solar profits. This difference is to be supplied by the heating system or during the summer months dissipated by sun shading, specific night airing or by climate control. Therefore to reach a high energetic quality, a maximisation of the profits and minimisation of the losses is to be aimed for. The used building materials contribute hereby decisively to the positive energy balance and also to the atmospheric environment. Energetically relevant are the insulating qualities, as well as the heat storage abilities. If solar profits and the storage ability of the building stick together in a well-balanced relation, additional heating energy conservations of up to 20% can also be reached, beside the avoidance of the overheating in summer. A lower thermal heat need also affects the heating systems. Therefore power ranges far under the level of conventional buildings can be realised, so that in combination with low temperature heat emission systems a considerable reduction of the heat losses and therefore a higher efficiency of the heat production becomes possible. 20 Contents: 1. Objectives of the legislator in Germany by the EnEV 2. System of the EnEV 3. Essential energetic system standards for physical structures by the EnEV 3.1 Demands of the EnEV for new buildings 3.1.1 Building cover 3.1.2 Building Services 3.2 Demands of the EnEV for existing buildings 4. Energy Identity Card 5. Outlook EnEV2012 1. Objectives of the legislator in Germany by the EnEV The European Union has set its aims in the action plan energy efficiency, to save a total of 20% of the annual energy consumption up to 2020. Buildings have a great share (more than 40%) in the global energy consumption Therefore this section offers the biggest potential in energy reduction. Hence the aim is to economically provide new buildings with very economical energy balances and the building stock with the use of all available possibilities for the energy conservation. In Germany the energy saving bill (EnEV), in its current version from the 1st of October 2009, regulates these demands. The bill improves the energetic quality of new buildings about 30 percent compared with the previous standard, and helps to exhaust the huge energy savings potentials in the building continuance stronger than up to now. Clear aim of the EnEV 2009 is to build houses who use only on an average seven litres of fuel or cubic metres of gas per square metre and year. Previously about ten litres of fuel or cubic metres of gas per square metre and year were usual. This aim can be reached with today's construction standard also under economical aspects easily. Picture: Thermal image of a dwelling house with evident heat bridges 21 2. System of the EnEV The EnEV is valid in Germany basically for all heated and cooled buildings or parts of the building. Special provisions are valid only for buildings, which are not regularly, heated, cooled or used. The energy saving bill defines obliging limit values for the primary power demand of buildings and refers to calculation norms for the representative determination of the energy consumption of buildings. For the energetic demands and the calculation methods for the power demand it is basically distinguished between: x x residential buildings non-residential building, i.e. building for all the other purposes, e.g., industrial halls, schools, office buildings, etc.For residential/non-residential buildings the following energy consumptions are balanced: x heating x cooling x mechanical airing x hot-water preparation In addition, for non-residential buildings, the power demand for the lighting has to be also balanced. 3. Energetic system standards for building 3.1 Demands of the EnEV for new buildings 3.1.1 Building cover The aim of the EnEV is to limit the heat losses by the building cover, through: x Minimisation of the transmission heat loss HT' According to building type limit values were fixed for residential buildings, e.g., empty residential building with a living space smaller than 350 m ²: => allowed transmission heat loss of HT' for the whole building cover: 0.40 W / m²K This limit value can be met by exact designed definition of all U values of single outside components and for new buildings easily undercut. As an example, some U-Values and strength of insulation: Component Outer wall Base plate Roof Window Outside door U-Values (W/m2K) 0,28 0,35 0,20 1,3 1,8 22 Strength of insulation 12 – 14 cm 8 – 10 cm from 20 cm Picture on the left: Exemplary insulating strengths of a dwelling house new building to EnEV2009 Picture on the right: Subdivision of the warm losses about the building cover x Minimisation of the airing heat loss: New buildings must be established airtight, according to the state of the technology. In addition structural element joints, for example sealing of windows, have to fulfil quality criterions. If the density of the building cover is proven with the so-called Blower Door test, the primary power demand is positively affected, as no warmed up air leaves uncontrolled the building. With the installation of a mechanical ventilation system, the Blower Door test is already obliging. Picture: Blower Door test with measuring facilities 23 3.1.1 Building Services There are also energetic minimum demands within the scope of the EnEV to housetechnical arrangements for heating, cooling, airing and lighting in order to minimise the primary power demand. Even with excellent insulation of the building cover an efficient heat production system is necessary to keep the energetic minimum demands. x For heat production with oil and gas, minimisation of the exhaust gas losses by calorific value technology, therefore additional usage of the exhaust heat thru condensation. Picture left: old oil kettle without calorific value technology Picture right: new oil fuel value device integrated in the hot-water tank x Mechanical ventilation systems with heat recovery from heat exchanger with normative agreed efficiencies. In the picture below a flat airing device is shown with a cross-stream heat exchanger. The heat recovery grade of min 65 % should be reached. Picture: Airing device with cross-stream heat exchanger 24 x x Possibility of the charge of electricity from renewable energy Due to the legally agreed reimbursement for photovoltaic systems, Germany has experienced a real photovoltaic boom for some years. With the EnEV2009 the legislator has created the possibility in Germany to credit regenerative electricity, which is generated in immediate nearness of a building, on the primary energy balance of the building. However only under the condition that this generated electricity is only used within the building. Therefore the electricity demand can be covered by a photovoltaic systems arrangement, e.g., for the airing, circulating pumps, and the building cooling. Surpluses can be also fed into the electricity net during self-use. Picture: Switchboard for own use of the solar electricity in the building. Company Schüco Solar 3.2 Demands of the EnEV for existing buildings Special energy savings potentials lie in the building stock. Therefore, the bill mobilises these reserves by retrofit obligations and energetic demands for upcoming modernisation measures. For upcoming modernisation work the possibilities of an energetic renovation must be exhausted. For example during plaster renewal and the exchange of windows or glazing it is economical to improve the energetic quality at the same time. Requirement catalogue: x Substitution of more than 2 millions ineffective boilers, built in before the 1st of October 1978. x The additional insulation of undammed pipelines 25 x Attics must be fitted with heat insulation until the end of 2011. According to space usage the floor cover or roof insulation can be chosen. With new acquisition a retrofit obligation exists. x For old building modernisation with essential architectural changes in components (facade, window and roof) the energetic requirement was raised by 30%. An exception is granted only, if the surface of the changed component is not more than 10 % of the whole respective component surface. x Air-conditionings, which change the humidity of the room air, must be refitted with an automatic regulation for the moistening and drying out. x Electric night memory heating systems, which are 30 years old or older, must be substituted until the 1st of January 2020 with more efficient heating systems. This concerns in particular residential building with at least six residential units and non-residential building with more than 500 square metres of usable area. There are excluded buildings which are built after the requirement level of the heat insulation order in 1995, or if the exchange is uneconomical. 4. Energy Identity Card For new buildings and for sales, renting and lease of existing buildings the EnEV prescribes the production of an energy identity card, which contains important information about the energetic qualities of the building. These are: x x x x Primary power demand and its requirement value Transmission heat loss of the building cover and its requirement value CO2-Emission Consumption of energy like oil, gas, or electricity As for example, with fridges, where new devices are to be marked obliging with the EU label, the power demand values provide real estates with more transparency concerning the energetic quality. 26 Picture: Example of energy identity card for an apartment house with relatively high power demand By lower deviation of the requirement level for the primary power demand it is possible to take up interest-improved loans of the state conveyor bank KFW. Picture: Requirement levels for the primary power demand 27 5. Outlook EnEV2012 In 2012 there will be a further amendment to the energy saving bill. Compared with the EnEV 2009 the requirement level will be raised once again by 30%. At the same time the European Union has decided in summer 2010 a new building directive (»EPBD 2010). There will be increased requirements introduced to new buildings and continuance buildings in the member countries. The directive has to be implemented until July 2012 into national right. x From 2021 all new buildings have to built as a lowermost energy building. x The notice duty for energy identity cards in publicly accessible buildings will be lowered to buildings with 500 m ² usable area. x Energy identity cards must be presented by sales and renting unsolicited. In sales and renting announcements an energy identification number has to be given. x For energy identity cards high-class controls are introduced. The increase of the requirements is still discussed controversially under the points of feasibility and the economic efficiency. Above all the real estate economy criticises the rising demands as uneconomical. Bibliography: x x x x x x x Homepage Deutsche Energie-Agentur, DENA, Stand 09.02.2011 http://www.thema-energie.de/energie-im-ueberblick/gesetzeverordnungen/energieeinsparverordnung-enev/energieeinsparverordnungenev.html Homepage Europäische Gebäuderichtlinie, Stand 09.02.2011 http://www.eu-greenbuilding.org/index.php?id=162 Bundesverkehrsministerium für Verkehr, Bauwesen und Städtebau, Stand 10.02.2011 http://www.bmvbs.de/DE/BauenUndWohnen/EnergieeffizienteGebaeude/Energiee insparver ordnung/energieeinsparverordnung_node Homepage Sacramento Building Performance, Blower-Door-Test, Stand 10.02.2011 http://www.sacsustainable.com/blowerdoortbl.html Homepage Planungsbüro für Lüftungsanlagen, Stand 10.02.2011 http://www.brusberg-hlks.de/leistungen/lueftung.html Englische Website der Deutschen Energieagentur, Stand 10.02.2011 http://www.zukunft-haus.info/index.php?id=9619 Homepage Arch-M-Energieberatung in Berlin, Stand 10.02.2011 http://www.arch-m.de/ 28 Branislav Todorovic 1 BUILDINGS THERMAL CHARACTERISYICS: SIMILARITIES AND DIFFERENCES TO THE HUMAN BODY Summary: In the paper, a building envelope was studied and compared with human skin behaviour, and its reaction to different thermal conditions. There are some mimics of human reactions noticeable in buildings:double facades as a copy of wearing coats , various constructional structures throwing a partly shadow on a building, etc. However, human reaction to very high temperatures is perspiration, producing the evaporation effect for cooling; the application of human perspiration effects on facades was found on several buildings, in the world , with water flowing above facades. Keywords: Buildings, energy, envelope, skin, evaporative cooling, double facades. : * ! & . %& se " , . G !, ! ; , . : , ,$ , G, & , $ 1 Professor of University Belgrade, permanent visiting professor at South-East University in Nang Jing in China, editor-in-chief of Elsevier’s journal Energy&Buildings, President of Serbian HVAC Society. 29 1. INTRODUCTION The world’s energy requirements show permanent growth. Between 1960 and 2000 the energy needs increase was nearly 200%, with the average annual increase of 3,3%. The main reasons of it were the population growth, as well as the economic development, where the industrialized countries of the worlds (OECD) and the central Europe are accounted for 61% of the world’s total energy consumption. The population growth is specially remarkable in developing countries, where it was doubled from 1965 to 2000, with stagnation in developed countries, and in countries of central and eastern Europe. In such a situation, with energy crisis becoming more serious and critical every day, because of the consequences of the emission of the green house gases and CFC and need for their elimination, the global energy consumption has to be decreased and very seriously controlled. There are constant efforts to reduce and stop the emission, unfortunately unsuccessful. The history of energy resources used since 1850 is presented on Figure 1, showing that the dominating energy resource was the biomass, with present trends to stay constant. The accent is put on the wind, solar, and geothermal energy, and hopefully on some new solutions still to be found. Fig. 1. History of energy resources used till present and prdiction for future Sl. 1. ! & ! Knowing that there is the greatest energy demand in the building sector, engineers of HVAC, together with architects and building specialists, have to build efficient energy buildings that should be the first step to zero energy buildings. In respect to the fact that wind, geothermal, and especially solar energy are becoming the mostly used energy resources, new buildings have to be projected and constructed adopting the application of these energy resources. That is why is important to study and simulate the new forms for each location, each specific climatic condition, and used materials, as well as building envelope’s thermal properties. Following the EU directive, energy losses are limited in Germany through envelope, regarding building’s geometry, allowing the highest values of heat losses by transmission through 1sq.m of envelope, depending on the building’s geometry, which is expressed by 30 relation of building area and its volume A/V (Fig. 2.) taking in the consideration glass area participation in the envelope. The upper curve presents the values for public buildings with > 30% of windows participation in an envelope, and for apartment buildings the lower curve with window’s area of <30%. 1.6 H (W/m2K) 1.4 1.2 a 1 b 0.8 0.6 0.4 0.2 A/V 0 0 0.2 0.4 0.6 0.8 1 1.2 Fig. 2 . The allowed heat losses through envelopes for different A/V Slika 2. QU % % A/V 2. OLD FACADES The old buildings’ thermal properties, based on buildings in Belgrade erected in the first half of the 19th century, have very thick brick walls (0.9m) with an overall coefficient of heat transfer 0.8 W/m2K, and relatively small windows participation of about U=4W/m2K. The mean U factor of the building built in this period is approximately 1,9 W/m2K. Such buildings were during the summer period nearly the entire day under the shadow of façade construction and did not need summer cooling. The buildings built till 1918 were made of similar material, but with very high rooms, even more than 4 m. For such buildings, it was estimated that they had design heating capacity of 232 W/m2 or 50W/m3. The houses erected between 1918 and 1942 were 3.5m high, and had 200W/m2 or 57W/m3 specific heat, what was caused by relatively thinner walls and bigger windows. The thickness of brick walls was 0.56m and 0.38m, while windows had wooden frames, and were single, or mostly double framed. Immediately after the second World War, specific heating power was 185W/m2 or 60-70W/m3, decreasing later to 50-60W/m3. Windows were wood framed, height of floors 2,4m in dwelling houses. Today, when district heating systems are introduced in most cities, with new standards caused by critical situation regarding the energy, needs for sustainability, environmental protection and global warming, the energy demands of buildings must be much lower. The specific heating power should be under 25 W/m3. 3. MODERN FACADES The advances of High Tech in the building sector, intelligent buildings, air-conditioning systems, new materials and building’s technologies, including glass technologies, have 31 opened great possibilities in realising the importance of and expressing architectural vision, imagination, new ideas, but have also limiting energy aspects, ecological situation, environment protection, sustainability or Green Building directions. The new architectural era, with computer modelling and building simulation have enabled us to analyse a building in it’s real life, predicting its dynamic behaviour and estimating it’s energy consumption, indoor air quality, lighting, even in the projecting period, when building’s design is in it’s initial phase. 3.1 GREEN BUILDING CONCEPT As it is underlined in the ASHRAE Green Guide, the broad characteristics of good building design, encompassing both the engineering and non engineering disciplines, might be briefly outlined as follows: It meets the purpose and needs of the building’s owners/managers and occupants, meets the requirements of health, safety and environmental impact as prescribed and by codes and recommended by consensus standards Achieves good indoor environment quality which in turn encompasses high quality in the following dimensions: thermal comfort, indoor air quality, acoustical and visual comfort. They are compatible with and respectful of the characteristics, history, and culture of the closest surroundings, and create the intended emotional impact on the building’s occupants and beholders. A green design proponent might be add to the above list of the items concerning energy conservation, environmental impact, low impact emissions, and waste disposal – those very characteristics that are incorporated in the foregoing definition of green design. While this may be true someday, we are not there yet. There are plenty of designs being built today in our region that exhibit few or no green design characteristics. Many of these are still characterized as well-designed buildings - largely because the generally accepted characteristics of good design do not (at least do not yet) incorporate those of green design. In summary, there are a lot of well designed buildings, but not exactly with all green buildings characteristics. The green building concept towards building envelope is based on the fact that envelopes are protecting occupants from the outside weather’s influence, and when it is feasible, letting its good aspects in. Its design is a key factor that defines how well a building and its occupants perform. Access to outdoor views and natural light have positive psychological and physiological effects upon the building’s occupants. Analysis of the building envelope utilizing day-lighting simulations programs can help an optimization of building geometry, define glazing characteristics and provide information needed in performing an energy analysis of the facility (ASHRAE Green Guide). 4. BUILDING’S ENVELOPES AS HUMAN SKIN From a “static mass” the architecture produces “adaptive” building structure, with an envelope as a skin moderating heat flows. A building presents a fully integrated, intelligent adaptable structure, both in terms of the used materials, their fabric, locations, information technologies and all building operation systems. With the central control system, building’s intelligence and with defaulted values concerning energy systems, 32 buildings are getting characteristic of a human body, at least in regard to the reaction to thermal conditions - but in which degree? . In a cold environment, a human body reacts by lowering blood an additional protective cover circulation toward the skin surface by the blood vessels tightening, thus conserving body’s heat and controlling it’s heat losses. That is an instinctive reaction, default attribute, without any conscious possibility to influence it. But a man can improve the condition by dressings, adding thus over his body, above his skin, and acquiring thus better insulation. This human way of additional protection can be applied on buildings. Why can’t they be covered with movable covers, in winter to protect them from the wind and low outside temperature, and in summer from the sun, in order to reduce heat gains from the solar radiation, and so reduce the necessary energy for its air conditioning. Maybe a kind of automatic lowered shades? Or covering a building with a second façade? There are buildings today with such doubled protection, mostly static, like a “pullover” or a “winter coat” on a man. Those are the double-facade buildings – additional cover is added to the main façade, usually made of glass. A double façade in the summer could be protection from the sun. A winter coat or a pullover is changed by a light material blouse of the bigger size, roomy over the body, so that the air may circulate next to the body and cool it, enabling the body to transfer a heat out of a body. In the double façade, various forms of shades, curtains, or similar devices, are put in the inter-space for the sun-protection, though a passage must be provided for the outside air circulation, so that the inter-space temperatures may be as close as possible, if not identical, with the outside temperature. From the constructional point of view, a double-façade outer envelope may be continuously extended by covering the total height of a building, or discontinued with breaks at each floor level. Disregarding the height, the inter-space is opened both at the bottom and at the top, thus providing the outdoor air circulation in the summer, when the temperature of inter-space should be as low as possible, in principle equal to the outside temperature. Or the openings may be closed, which is the case during the winter, in order to trap the air in the inter-space, which will act as insulation layer, with the temperature above the outside temperature, producing lower heat losses of a building (Fig. 3.) Figure 3: Different double-facade constructions: continues (left), discontinued (right) 3 W % $: ( ), (o). 33 Figure 4-a The temperatures during the sunny day in January Slika 4 –a T % Figure 4-a shows the course of temperatures in the inter-space on an average sunny day in January, for the South-turned double façade, in Belgrade (45NL). And the figure 4-b the cavity temperature in July summer day Figure 4-b Yhe cavity temperature in July summer day 4,Y & % % . It is evident that during the heating period, cavity temperature of a building with a double-façade is above the outside one, and will have lower heat losses and decreased needs for heating. In the summer, during the cooling period, the temperature between the two facades could be equal or very close to the outside temperature, and additionally can have smaller heat gains from solar radiation, depending on glass properties regarding solar transmittance. As a consequence, heat gains will not be above the gains of a single façade buildings. During the summer, one uses his conscious reactions for the additional protection of his body. He may protect himself by hats, or make a shade using a parasol. Similar protection is used in buildings by various curtains, shades, and Venetian blinds on 34 windows, while today copies of caps and parasols are constructed, as immovable elements over roofs, or movable, depending on the sun temporary location. All those protections may be also used on facades. Examples of building protection from the solar radiation are numerous, especially in the regions of tropical conditions. An illustrative example is a building designed by the English architect Grindshaw in Seville, built for the EXPO 1992. Movable protection on the roof is put according to the momentary sun location, controlled by “building’s intelligence” (Fig. 5). 5. BUILDING’S EVAPORATIVE COOLING During the summer, heat enters into buildings from the outside through hot air and solar radiation, but there are also heat gains inside (lighting, domestic hot water systems, people, electric appliances and devices). Such heat must be eliminated so that the inside temperature would not be above the planned one, for example 22°C. In conditions when the outside temperature is above the human body temperature, the only way for a man to eliminate his inner heat is by perspiration, through evaporation. A building cannot sweat, so that it has to be cooled mechanically by air conditioning system. But can we use the human body sweat evaporation effect on buildings? There are buildings for which it may be said that they use the effect of water evaporation for their cooling, as in the case of a man’s sweating It is an old practice to put water sprinklers on the roofs of large surfaces, and use them at high outside temperatures, when the sun radiates intensively. The roof is so moistened, and because of the heat absorbed by the outer roof surface and the air layer next to it, water evaporation occurs, and the roof temperature is lowered. Pools are also installed on roofs of multi-storey residential and business buildings. Figure 5. Solar “hats” on the roof of the British pavilion at EXPO 1992. 5 .# “” U na EXPO 1992. 35 The idea to let the water flow down a building façade, an imitation of human sweating, is an option in a modern architecture, in case of glass facades as frequently used elements in contemporary buildings, probably more for visual effects, but also as a way to get some kind natural reaction. Flowers, grass, but also water as an especially important element in some cultures become a repeatedly used elements in the modern architectural expression .most often inside the large halls, restaurants, atriums. Figure 6. The example of a building with water above the vertical façade. 6. Z $ There are several buildings around the world with water flowing down the glass vertical or the inclined facade. One of such examples is again the building of the British pavilion in Seville (Figure 6.). Such façade has smaller coefficient of the solar radiation transmission, and with the water layer, due to its evaporation, the temperature next to the façade is significantly lower than the outside one, reducing so the heat gain from the solar radiation, as well as from temperature difference between the outside and inside. 760 740 720 700 680 660 640 620 600 580 a b c d 560 14 :09 13 :55 13 :40 13 :26 13 :12 12 :57 12 :43 12 :28 12 :14 12 :00 11 :45 11 :31 11 :16 11 :02 10 :48 10 :33 10 :19 10 :04 540 the inside. Figure 7. Measurements results of solar radiation effects on dry and wet glass under the angle of 45 deg. 7. W $ % G 45 . 36 The measurements provided above the glass with an angle of 45 degrees are presented on the Figure 7. showing the outside temperature, the temperature of dry and wet glass, solar radiation intensity through dry and wet glass. Uniform water flow above glass façade has a lower solar radiation transmittance for 10-15% than an ordinary dry glass. And when the water flow is turbulent and disturbed, even 25-30%, depending on water quantity. The temperature of a glass under water flow was about 10C lower than the glass without a water above it. The temperature difference on a water inlet and outlet was very small, as the distance between them was 1.5m only. On the figure 8. Is the model of glass above which is lowing water. The thermo-vision made photo is showing temperature differences in a water film. The values of these temperatures are separately given for two horizontal sections and one vertical, with the temperatures of the upper and down horizontal sections as well as through vertical section. The temperature increase was measured 1,5 C. coating is Water cooling system with application of super-hydrophilicity of Ti02 developed Japan and described in the paper written by Jiang He and Akira Hoyano (Energy&Buildings 40/ 2008). Water is sprinkled ( Figure 10.) at the top of a wall or roof flowing down the wall. The water is collected in the bottom into water reservoir. This water is pumped up also with collected rainwater and reused for sprinkling the entire cycles. Such technology produces the very thin water layer and water saving and also the uniform distribution of water, as well as water saving what is important in coming future concerning needs of water Fig. 8. The model of glass façade wall above which is flowing thin layer of water 8. [ $ 37 Fig.9.. Thermo vision camera picture of the temperature field in the water film and temperatures along the horizontal and vertical sections above the glass pane 9. U U . • . Fig. 10. The view on the new cooling system for buildings 10.. & 38 CONCLUSION Building’s mechanism of thermal behaviour is in many details copy of a human body reaction. By his unconscious, instinctive behaviour, with the defaulted characteristics, a man reduces or increases heat loss into the outer environment, through his blood circulation regulation toward the skin as a body’s outer envelope. Besides, using their mind, humans dress themselves into clothes with better insulation characteristics. Buildings are protected with insulation which remains unchanged during both the summer and the winter season. It is an advantage for a building, as, opposite to a man, a building uses cooling devices to reduce its temperature. However energy is necessary in such cases, which should be avoided in the present situation, regarding the energy crisis. Perspiration, the only possible effect of a human body cooling in high temperature areas has not been used largely in buildings. A few buildings around the world show it is a possible option. Unfortunately, the impression is that building cooling was not the primary task of the water flow on facades, although it was one of the aims when designing those buildings. The task remains to expand it, but before each such building design, exact calculations, simulations, optimisation should be done, resulting in total energy balance, taking into account water and energy balance. The building envelopes are the main factor of building energy efficiency, as they represent a skin of a building’s body. They should react as real skin as much as possible , defending interior from preheating, conserving it from heat losses in the heating season. That could be achieved relatively easy, but the architects and all factors influencing building design have to be working together in a manner of integral designing. The energy needs analyze should be implemented in the building technical documentation, as a proof that the building will be a green one - at least from the point of view of energy efficiency and energy conservation. Computer programs that can be easily and quickly used on all locations have defined a meteorological year. For other locations, there are another methods, based on degrees-days, or formulas given in some studies and recommended, as in Germany. The effect of water flowing above a glass facades is in lowering the temperature of glass, and in reduced solar radiation transmittance. 39 REFERENCES 1. 2. 3. 4. 5. 6. 7. 8. 9. Grumman D, Green Guide, American Society of Heating, refrigeration and Airconditioning, ASHRAE, Atlanta, USA, 2002 Todorovic B., Tintor M. The latest facades in Belgrade, MIT-Harvard Faculties conference, Boston, CD edition of Building Envelope Organization, 2002, German standards, Verodnung ueber einen energiesparenden Waerme schutz bei Geauden, Bundesgesetzblatt. 2001 Todorovic B. Cvjetkovic T. 2001. Classical and Double Building Facades-Energy Needs for Heating and Cooling, Proceedings, CLIMA 2000, REHVA, Naples, 2000., Todorovic B. Past, present and future buildings envelopes-human body thermal behaviour as the final goal, Energy for buildings, Proceedings of 6th International Conference, Vilnius. 2004 Todorovic B Can a building mimic the thermal behaviour of a human body? Presentation at the ASHRAE Chapter in Singapore. 2005 Todorovic B. Building Low energy cooling and advanced ventilation technologies in the 21st century. 2nd PALENC conference, Greece, 2007. Jiamg He, Akira Hoyano, A numerical simulation method for analysing the thermal improvement effect of super-hydrophilic photocatalystic building surfaces .Energy&Buildings, 40, 2008. Todorovic B. Double skin facades : Types of constructions, air circulation between two facades in winter and summer, basis for estimation of heating and cooling load, ASHRAE winter meeting, Chicago, Published on line, ASHRAE , 2009. 10. 40 [ "!!1, Q \!2 ! " : $ ! , & , & . " " , . ' . : , U , , , ABILITIES OF USAGE OF RECYCLING MATERIALS AS AGGREGATE TO CONCRETE IN CONTEMPORARY CIVIL ENGINEERING Summary: Contemporary construction practice, with respect to the sustained developement concept, increasingly deals with the problems of recycling of materials. This state-of-the-art paper deals with the differences in production technology of concrete made with recycled aggregate. The properties of recycled aggregate, "old" concrete, crushed brick and recycled rubber, as a component for new concrete production, are being analyzed in the first part of the paper as well as its specifics and distinctions in comparison to natural aggregate. At the end, general guidelines for recycled aggregate concrete mix design are given. Key words: recycled aggregate, crushed brick, recycled rubber, concrete technology, concrete mix design 1 2 # G 0"", . &. !., 2! * , # # 3 ", . &. ., , 2! * , 0 73, , dragica@imk.grf.bg.ac.rs 41 1, ! . " , , " . G" & . # , "& " , " " , " , & " . & , , & . & , . ! ; , , . & " , . [1] ! " (35%), (20%), (12%), (10%) ( . 1). # 12% 8% 3% 12% 10% 20% 35% 1. Z U & Fig 1. Persentage of recycled materials * ", ! & . , " , ( , , , ), , ! ( , , ), . '' '' , . ' , ( , , ), ! & . % "3R" (Reduce, Recycle, Renewable) . 42 ! (Reduce), (Recycle) - (Renewable resource). ! ( Construction and Demolition Waste – " & C&D Wast) - , . C&D , , & ! , & & [2]. ' , , , 37000 C&D , 4 , . [3]. ' " "" , & , . , , " , , ! () . ! , , , . * , & ( , , , &) (, ) , " ! . , " , . , , , , . " ! & & / , , , , . 0 80% ! , " & , . " ( ) – , & " & , " , . – . 2! , " , . , , 9 . &" &, " . % – & " , & . & ; 55-65% . $ & 25-30% , , 10% . 43 200 , . , , & , $ " " 28000 , 7000 " . "" , . . 75% . * & , () &. * 199/31 EC 2003. , 2006. . 2. ! * ( ) . , , , , () , & , , , . ' , , , : - " , - , - " , - " & , - " , - - . ( ) 2 [1, 20]. 2. Fig 2. Apparance of recycled aggregate ! " . 44 – . * " , : - () - " - [8]. * " , ". " . " & & () " . G , [2, 3, 4]. & " – ; "" , [8, 9]. , . , . . , " ! . % " , (% . [10]). , , . & , . " " " , " , . & , ; [8]. , " . ' [16] & , (Na2SO4). & , 7%, , 10% ( 1). * , " ! ( , , . - 2). 45 1. Tab 1. Classes of aggregates made from recycled concrete * (%) – Na2SO4 (%) C1 C2 C3 d3 d3 d5 d7 F1 F2 d5 d 10 d 12 d 40 d 10 d 12 - - 2. Tab 2. Classes of aggregates made from recycled concrete and their application in civil engeenering " $ & (MPa) G 0 : CI C1 18 – 24 , , ' : , 16 – 18 , , CII C2 F1 , . CIII C3 F2 < 16 , # BI C1 t 18 , , BII C2 t 18 , , BIII C2 F1 t 18 , BIV C3 F2 t 18 3. ! $ , , : - – - . - () (interface) ! . ! ( , ) , [12]. $ . ' , (Recycled Aggregate Concrete - RAC) , ! ( ) ! 46 "" ( ). & 3 [2]. 3. Z () Fig3. Interfaces between recycled aggregate in concrete % & , (RAC), " . – " , . , , . , (bleeding), , . ' & - ", " ! " [2]. 0 [4] 20-40% . 2 , , , ! ( " 20-30% ). , & . # " , , & , & , " RA. 47 4. ! ! * " , , , . * , , , – , . ', , , , 120. ' , , , , , . , . & (Normal Mixing Approach - " NMA). 4. 4. ) ) 4. () (NMA), () $ (TSMA) Fig 4. (a) Normal Mixing Approach (NMA), (b) Two Stage Mixing Approach (TSMA) # , & W. Y. Tam . [2], . % & (Two Stage Mixing Approach - " TSMA). , , " ( 4): ( ) "" & 60s. * 60s. ' , 48 30s. ' & & . TSMA & NMA. * , , , & , & , " " " ( ). * , . " " RAC , [4]. , RAC (NMA), ( ). $ . 5. 5. ZU $ (TSMA) Fig5. Improvement of recycled aggregate structure by TSMA 0 , . " PZ, & ( " ). & ( ), " " , . 49 # ( 2%) , , . " " & . (TSMA) (NMA) , . " , " , " , RAC 10% 30%, & [2]. % , & & . ' , " / & , ( ) . G !, " , & . ! , ! " " [3]. " " , , & . $ " " . " , & [3]. & RAC , , , , & . $ , RAC , . * , " , , . " " , " , , , . 0 , , " , " ; " " ("bleeding"), " [3]. ' [19] & 80% & , . ' , & & 30 , , ! [19]. # , , " ( ) 50 ( ). . RAC & , . , , - , , . , . . ( ) & – " . ' , " 30 MPa " ! 5 6 MPa. . , , " " 5 16 %, " 4 25 %, . " " , . - [24,25]. ' [22,23,26] & & . , & , . * & , , , ! . * – "; , " , " . ! &. # ( < 2000 kg/m3) ! . , , . % , , , " . ' , " , & : , , & " . ! : " , , & , , " , 51 . 2 , ! , , & , , . $ , , & , ! , ! , , , , , , , , . 5. #$%&# '$#* % +$;<=>;?%@ '%'>%?% J>;#% #% J% $*=&$%#;[ %[$>%>% , . $ [19] [27], . , " , . " & [19] [27], . . " ; " 30 . " , , . 0 G [19], , ! 30 . 0 & 30 . ! & . , , & " " . * , , 16-20 mm. $ . ! " 10 l/m3 , . % " ", . , 52 (CEM I – CEM V) . 6. . ' , & , , . & , , " " ! , " . ' & & ! – , – . , , , , . – ( , , , " .) " " &. , & & , "" . . $ & (! & , , , ) , ! . ' " , . , " ! . & , & . , " . 0 " , , & , . " . ' " , ! &, & , " . , & . " & , " ! , ? & " , , , 53 , . ''! "'' (polluter pays principle), . 2 , ! , . *! " . & . ' , 1986. & . # 50 & . * & G $ -36017 : "& " , & , & ! $ ". 7. [1] [2] [3] [4] [5] [6] [7] Jevti, D., Marinkovi, S., Zaki, D., Savi, A.: Primena recikliranog betona – korak ka održivom razvoju u gra{evinarstvu, Me{unarodni nauni skup "Održivi prostorni razvoj gradova Srbije", Beograd, decembar 2007. godine, Zbornik radova, str. 150-161., ISBN 978-86-80329-53-6, Vivian W.Y. Tam, C.M. Tam: Diversifying two-stage mixing approach (TSMA) for recycled aggregate concrete: TSMAs and TSMAsc, Construction and Building Materials 22 (2008) 2068–2077, C.S. Poon, Z.H. Shui, L. Lam, H. Fok, S.C. Kou: Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of concrete, Cement and Concrete Research 34 (2004) 31–36, Vivian W.Y. Tam, X.F. Gao, C.M. Tam: Microstructural analysis of recycled aggregate concrete produced from two-stage mixing approach, Cement and Concrete Research 35 (2005) 1195– 1203., M. Kikuchi, T. Mukai, H. Kozoumi: Properties of concrete products containing recycled aggregate, Demolition and Reuse of Concrete and Masonry: Reuse of Demolition Waste, Chapman and Hall, London, 1988, pp. 595-604., R. S. Ravindrarajah, C. T. Tam: Properties of Concrete Made With crushed Concrete as Coarse Aggregate, Magazine of Concrete Research 37 (130) March 1985., T. C. Hansen, H. Narud: Strength of recycled concrete made from crushed concrete coarse aggregate, Concrete International-Design and Construction 5 (1) pp. 79-83., January 1983., 54 [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] A.K. Padmini, K. Ramamurthy, M.S. Mathews: Influence of parent concrete on the properties of recycled aggregate concrete, Construction and Building Materials 23 (2009) 829–836, Fung, W.K. (2005), The Use of Recycled Concrete in Construction, Ph.D. dissertation, University of Hong Kong, pp. 30-55. Roumiana Zaharieva, Francois Buyle-Bodin, Frederic Skoczylas, Eric Wirquin: Assessment of the surface permeation properties of recycled aggregate concrete, Cement & Concrete Composites 25 (2003) 223–232, Vivian W.Y. Tam: Recycled aggregate from concrete waste for higher grades of concrete construction, Ph.D. dissertation, City University of Hong Kong, June 2005., Jevti Dragica: Svojstva svežeg i ovrslog betona u funkciji termohigrometrijskih parametara sredine, Monografija, Gra{evinski fakultet Univerziteta u Beogradu, 1996., Jiusu Li, Hanning Xiao, Yong Zhou: Influence of coating recycled aggregate surface with pozzolanic powder on properties of recycled aggregate concrete, Construction and Building Materials 23 (2009) 1287–1291, Vivian W.Y. Tam, C.M. Tam, K.N. Le: Removal of cement mortar remains from recycled aggregate using pre-soaking approaches, Resources, Conservation and Recycling 50 (2007) 82–101, S. Nagataki, A. Gokce, T. Saeki, M. Hisada: Assessment of recycling process induced damage sensitivity of recycled concrete aggregates, Cement and Concrete Research 34 (2004) 965–971, F. Tomosawa, T. Noguchi, New technology for the recycling of concrete—Japanese experience, Concrete Technology for a Sustainable Development in the 21st century, E & FN Spon, London, 2000, pp. 274–287., Marta Sánchez de Juan, Pilar Alaejos Gutiérrez : Study on the influence of attached mortar content on the properties of recycled concrete aggregate, Construction and Building Materials 23 (2009) 872–877 Vivian W.Y. Tam, C.M. Tam, Y. Wang: Optimization on proportion for recycled aggregate in concrete using two-stage mixing approach, Construction and Building Materials 21 (2007) 1928–1939 Radonjanin Vlastimir, Malešev Mirjana: Beton sa agregatom od recikliranog betona, sastav, svojstva i primena, Gra{evinski kalendar 2008., Savez gra{evinskih inženjera i tehniara Srbije, Vol. 40, Decembar 2005, str. 48-91., D. Jevti, D. Zaki, A. Savi: "Specifinosti tehnologije spravljanja betona na bazi recikliranog agregata", Materijali i konstrukcije 1, 2009, str. 52-62, pregledni rad, UDK: 666.972.12=861 D. Jevti, D. Zaki, A. Savi, A. Radevi: "Physical and mechanical properties of mortar and concrete made with the addition of recycled rubber", II Me{unarodni kongres: "Inženjerstvo, ekologija i materijali u procesnoj industriji, mart 2011, Jahorina F. Roos, K. Zilch: "Verification of the dimensioning values for concrete with recycled concrete aggregates", Munchen, 1998. M. Muravljov, D. Jevti: "Gra{evinski materijali 2", Akademska misao 2003. D. Jevti, D. Zaki, Lj. Pavlovi: "Testing of different composite materials based on recycled brick aggregate", 6th International Conference on the Environmental and Technical Implications of Construction with Alternative Materials Science and 55 Engineering of Recycling for Environmental Protection – WASCON 2006, Belgrade, May 30 – June 2, 2006, p. 409-415, ISBN 86-908815-0-6. [25] D. Jevti, D. Zaki, J. Markievi, Lj. Pavlovi, A. Terzi: "Mogunost spravljanja i primene betona na bazi recikliranog opekarskog loma", I Simpozijum o recikliranim tehnologijama i održivom razvoju sa me{unarodnim uešem, Soko Banja, novembar 2006., Zbornik radova, str. 136-141, ISBN 86-80987-45-X [26] D. Jevti, D. Zaki, A. Savi, A. Radevi: "Mogunost upotrebe reciklirane gume kao agregata u kompozitima tipa betona", YUCORR XIII, Tara, april 2011. [27] V. Radonjanin, M. Malešev, I. Luki, V. Milovanovi: "Polimer-betonski kompoziti na bazi recikliranog agregata", asopis Materijali konstrukcije br. 1/2009, str. 91107 56 Q `U!1 ! : ! ! : , & & , : 200': # $G: & . K : , NON-STANDARD SEWAGE SYSTEMS: VACUUM AND PRESSURE SEWAGE Summary: Sewage systems, from the standpoint of the regime of flow channel content in the pipes, are divided into: - Gravity: classic sewage systems - PRESSURE: sewage systems under pressure and vacuum sewage systems and sewer systems under the pressure resulting from the need to overcome specific technical problems and the need for economical and rational solutions to channel the settlement. Key words: vacuum sewerage, sewage under pressure 1 2! 57 1. ! 1860. . + 0 -, $ , - . !, 3 + , 1950. . $ : +;>+\#; $%?%# >$#, ?';= #?; +;]#^ ?;]%, & $%_# \'+;#% +%];?%, #'>%J&#; >&;, ?&= =;`*<#> #$%?#;$#;'> , , ;[\z[ %[{@% =%#%&'= '%]$_%<, 2 : [$%?>%*;# =\z# +$=|\}*, ( " ) ; +$=|\}# <]#* '% +#\%>'= '`;#'= ?#>&%, "(& 5 " ), , , , .$ , " , ; ?%=\\'= [&%?# =;&=>;$, ( ) & 0.60 & & ; '%J$#% '>%#*% & . , , , " . $ . 58 1. 1. 2. Q 1.1. $#*+ `\#=*;#'%@% ''>% *, " : * , , " ! . ! , . 59 / , . , / , " " " , & , ! . / . & , & 3 30 . & & . $ & " , , (/). * ! , . , . ( :=6:1) " 4,56,5 /. " & , , ( ). , , &" , . " , , .' & , . , . , ! .' , / . , ( ), / & , " . * , , , & , , ( /) . . , , , . , . 60 1.2. ;?;|#;'> ''>% +;] ?%=\\; ' : &%?# =%#%& ;[\ ]% +$%> +;?$~#\ >$#%, ( & ), & " ! , . +;&;_# #%] '+;] #?;% >$#%. $_ '=;+ '% ''&%=~;'' ^%#%*<;, ! ! . &='J&#; +;'>%?|%@ *?;?;]%, *?# %>$<%& #< =$\> +% < %@% ;[\z#;'> +\*%@% *?. % *$+#^ '>%#*% ]\_ [&%?#;[ =;&=>;$%, '?% &=>$}#% ;+$% & #% <]#; '>\ " , . ;[\z#;'> >$%#'+;$>% ?;] ''\J$];'', & . %&% +;>$;~@% &=>$}# #$[< (0.2-1 w/³ ). &= ]\_# [$%#% =%#%&%*< - 4 & . % +$;+>$z@% =;&=>;$'=^ [$%#% $_, ! & . % ~%^>;?% $?;#^ ;=%#% - , . , & , & .$" .$ " , , .' " " . $>=%&# $?;# *? #% ''>\, & 100 " " ! " , ! . %& +$}#* *?, , & (4,5-6/) , . Ø200 Ø100 , Ø80 Ø65 . '%@\< =;~>%@ *?;?;]% +; ]\_#; >$\. %=;z% +$&%'=% +$=; +$+$=% - & , . % #`&>$%*< \ ''>, 61 .%" , " . & " " . % ='`&>$%*< ''>%, , " .$ . ;[\z#;'> +;'>%?|%@% ?;];?;]#^ ?%=\\'=^ *?;?;]% \ '> $;? - , . % +;<%? ^]$%\&}=;[ \]%$% - / " . %[%]<\<\z, J #+;_|#^ $'% - &, , & &.' & , . , & 30-45% . 1.3. +' ''>% ! " . $%?>%*;# =\z# +$=|\}*, ", . & , - . $=|\}# <]#* '% +#\%>'= '`;#'= ?#>&%, , 1.80 , , , () . () " , " . & & 5, ! 3,4,5 " " " .* " . * , ! , () , " .* " " , & . 62 , , - , . $ , " ( ), . %=\\'= [&%?# =;&=>;$ ! .* ! , , & " . & 0,60 .$& & . Ø110 Ø250. 1,40. * 0,2% 0,7% " 0.8. & & . . 2 45 . $& " .% Ø110 300, Ø450.% 50, 150, . 6, x. 150. ! ! . $ ! , . ! 100 . %=\\'=% '%J$#% (*$+#%) '>%#*% . $ . : ( ), & , ( ), ( &) !, ( - ).*! & & .0 . . ! , . 63 * - . 1. ! " ! Nazivni prenik cevi DN 110 125 160 200 225 300 Unutrašnji prenik mm 96 110 141 176 198 277 Preporueni protok l/s 2.0 2.9 5.5 9.8 13.4 32.4 - ( 2) & . . 2. '& 0-900 5:1 ›900-1500 ›1500-2100 ›2100-3000 ›3000-3600 6:1 7:1 8:1 9:1 ›3600 11:1 Q=3.6×0×Q××G (³/) 0= . Q- - =3 G- G=1,33 64 ! . () 3 . =3×60×Q * =3× ! ! : =[(2/3)×+(-)]/Q (.) - (184,5³) - (³) - (³) Q- 3 { - 4. Y 65 – aprox. 150 m 0.2% %] $ >}@% „'>$%'> +$;`&" %=\'= '%J$# ?;] #% $%?#; >$#\ 5. ZG $ 3"(76.2 )- T EB3 mm • EN1091 • (SLW 60) 3“- • 6. { 2. ! * " " .* . " # 50 . ( ). " & . $ &. " " . " " " . ' 7 & . 66 Pressure pipe 5 Calculation of Hgeo incl. air valve 3,0 8,0 5,0 4,0 1,0 +/-0,0 150m 220m 300m 400m 250m 7. |G $ 8 U 3. # & - . ( ! ) & ! . 1 G. G ": , $ ( ) 1998. 67 [ Z1 : & , & ( & - , ), ( , , ), , ( -, - ). $ & " . ", " . : $-, - ECOLOGICALLY SUSTAINABLE ARCHITECTURE IN THEORY AND PRACTICE Summary: Ecologically sustainable architecture in theoretical analyses signifies an integral approach in design, in which are equally important the context (tradition and surroundings – all the elements of location, microclimate), the building design (compact construction, orientation, thermal zoning of the foundation etc), the comfort, applied materials and energy consumption (energy efficient -, low-energy- or passive architecture). All these elements that imply an ecologically sustainable architecture shall be briefly analyzed and discussed. How this is carried out in practice, and what are the obstacles and the possibilities, are the questions that shall be dealt with in this work. Key words: energy efficient-, low-energy- or passive architecture 1 G , . &.. , $ , , . 0 73/II, $ milap@iaus.ac.rs & 36035 Z, , U – & , G $ 69 1 $ , 40 – 50%. ' " . %" ! " , , " . $ , , , " " " & , " " . " 2000. 2050. . * , " , , . , . $ " , 40-45%. * , . , , " . G" , , & , , , , ", . $ ( ) , , , ! , " , " . & . & , " (CO2) . " . % (2$) , & . . G !, " 2$, % " . 2$ 80 % CO2 . " (, ) ! , , , , . " CO2 . 2$ " " " . CO2 280 . , G + 2005. , 381 [1]. % 50 , 40 % " " , & . $ ! CO2 . % 0.5°C 70 . " % " 1-3.5°C 2100. . & 10.000 . % " . " " . ! " , , . % " , " , . 78 % . , . * " . G ( , , 78 % ), " . ' " " , " " , , & . ! . $ & * 2007. " , 2002. . 2007. : 2$ * 20% 2020. ; 20% 2020. ; " " 20% 2020. ; " 10% 2020. . , " ! . $ " , " " . . , 2$ " . " . , , 3 . 2. – * $ 43%. * , , " ". " , , , 50 . " 71 , , ! , . $ , , , & " . $ " " & . " : , & ; " ; " ; ; " &; ; . ' . ' 2-3 " . 180-250 kWh/m2 ., 50% " . , , ! . , - . G " , : ; , " ; , , ( '' ''); ; " ! , , .; " ", , m2. " & $ . " , $ *. * * . : ( , , , ), ). 72 2. ! & ", , , , , , , , & ! . " & , " , & , & . ! ! , , , , . 2.1 " , " , " , C2 " , , . , ! , , , , . " " & . , , , ! . , " . , & . " & , & . & " . , , ! " " . " " . ' " ! , , & , " [2]. 73 2.2 !: , !, " " & . " , " , & . & & . , , , , , , , [3]. ' & & . , & , , , & . ! & " , [4]. $ , & & . , , & , , , & . &, " & , , & . " " ", . 2.3 " , ( , , " , ! , ) [5]. ! . & , , . . # , , " . & " ! . 10% ! . " " . 74 # " ! . . ' , ! : (, , ), , , , , , " , " / . 2.3.1 $<#>%*<% " . " " , " . $ , . ! . * . % & , &, , , , & , [6]. 2.3.2 ;+%=>#% [$%]@% 3 & . % [7]: , " " , ; . ! & . & ! . ! & ; ! . $ " , " ! . " & 75 2.3.3 & ; , , , , , , " ! . $}=; ;#$%@ () & . & , " , " . ' " ( ) . ' " , , " , . (, ). ' . . 2.3.4 ;`;$ , ! , . * " . & , ! ( , , , ) & , " . : ( ); ( ); ( ); () . ! " , " , , ! , . 2.3.5 $$;]#% ?#>&%*<% (+%'?#;) ^&%{@ [$%] ' " : , , , ( , " , ), , . * " , " - !. " , 76 " . % ! , & ! & . " . ' . %" , " . . ! . & . 2.3.6 #$[>'= `=%'#%, #'=; #$[>'=% +%'?#% =\z% . ' : ! , , " , ( ) , , , " , ! , , . & . # " , : ; & & " ; , , ; ; () ; ; ; () ! ; ; - , . # " : . 1. # (). $ %& ' " '& ( &) ' 70 kWh/m2 %&. ( " C) % 0,35 - 0,4 W/m2K 1,4 - 1,7 W/m2K () 0,3 - 0,4 W/m2K ( 0,3 - 0,4 W/m2K) 77 2. . $ %& ' " '& ( &) ' 50 kWh/m2 %&. ( " B) % 0,25 W/m2K 1,1 – 1,4 W/m2K () 0,3 W/m2K ( ) 0,3 W/m2K 3. ! . $ %& ' " '& ( &) ' 15 kWh/m2 %&. ( " *+) % 0,10 - 0,15 W/m2K 0,8 - 1,1 W/m2K () 0,2 W/m2K ( ) 0,2 W/m2K " , ! ! . . , , ! , ! " . " , " ! . 4. ' & ' 00$: 0 $ $ $0'#0# $: $ " U- " " 0.15 W/(m²K) 3& " & " " - & 78 ( , ) U ! 0.80 W/(m²K), 50%. " 60% " , . $ & & " . 5°C, . , " " " & ( 80%). $ " $ ! . " (& , , , , - , ...) ". : ! " & " 25% ". & : , , , . " " 10-20% ". " 21,4°C . * 25°C. " & . & , . U ! " "" " ("Zero Energy House") 10 KW/m², " , " . " , " " . 3 & & , , 2$, , . & . , & &. & & , . % . " " . 79 G" " . 3 & , " &. . " " , & , & &, . G& & . 2 & " & & . " , $ , " , . % & " , , . U [1] The three United Nations Intergoverment Panel for Climate Change (IPCC), Summaries for Policy Makers, 2007.www.ipcc.ch [2] G. : * $ , ' : $ , % , 2009., +, . 55-75. [3] G. : } – U , G, 0U$, 2006., . [4] G. : [! ! c { – }%, , , ' – & , 2010., +, . 225 - 238. [5] M. Pucar: Principi energetski efikasne i pasivne solarne arhitekture, The Regional Environmental Center for Central and Eastern Europe (REC), Seminar: Održivi urbani stil života, Uvodno predavanje, 2007., Beograd [6] G. , G. ' ": " – $ $ U , '- : , 2005., , . 97-104. [7] G. : , Expeditio – & , , ' : & , 2006. , 24-27. [8] G. : : } – $ !? , EXPEDITIO, The Regional Environmental Center for Central and Eastern Europe (REC), 2008., [9] G. : Zc $ – c , , , & , , 2008., & 80 Z Z!1, [ :2, [!3 ! : $ ! (3*$ *.35.600) ! . ! . * ! , . ': , U . THERMAL INSULATION OF INTERNAL WALLS BETWEEN HEATED AND UNHEATED SPACES Summary: The standard in the area of building (JUS U.J5.600) provides the minimal thermal insulation capability of building structure elements depending on the climate zone in which the object is built. Energy characteristics of internal walls between heated and unheated spaces in the building are also defined in this standard. This paper attempts to define how to determine the wall insulation thickness, with the aim of achieving the minimum of exploitation costs if the insulation investment costs for the whole building are pre-defined. Key words: standard, optimal thickness of the insulation material. 1 # ", . , G + G G , , G + 3 G", Master , G + 2 81 1 & & " . . , & . * , ! , . " , " , & . ' & : - - . 1.1 " ! 3 ! [1]: 1/ 2 kopt § Oi Ci · ¨ ¸ © MCtW e ¹ ª W º « m2 K » ¬ ¼ (1) : ªW º Oi -$ & « », ¬ mK ¼ ª KM º Ci - « 3 » , ¬ m ¼ ª KM º Ct - « », ¬ J ¼ ª sK º M - - « », ¬ god ¼ W e - > god @ ,# ' "" (1) 6& % ' " % (. 1). 82 1 – Q – U Figure 1 – Chart: costs – insulation thickness $ ! (3*$ *.35.600) W " k = 0.8 2 . mK ( ) ! . , W " k = 0.7 2 . mK * [2] DIN 4701/1983 a . % 20 m 2, 3 4 10 0C . ! k, 't : ( q k 't ) (2) 0 ! ( ), pe & " . $ , (1) . ( ) . & ( ). , . , . 83 : „" " & " , ! ?“ * „ “ . 2 " (1) ! , & . * & +, (.2) 20m " . - - unheated staircase and hall 2 – Y G Figure 2 – Typical floor $ U } : 1/ 2 0.041 600 W § · kopt ¨ 0.48 2 ¸ 8 8 m K © 2.57 10 2.78 10 15 ¹ : Oi 0.041 W m2 K - $ & , 84 Ci 600 KM m, m2 Ct 100 KM MWh We 15 god - , 2.78 10 8 KM , J - , - . Q kopt () - G, tem . Y ( t x ) . : % ( ), % U . Z , $ G G. ¦ (k F t ) ¦ (k F t ) u u tx u s s s ¦ (k F ) ¦ (k F ) u u , (3) s s : ¦ (k F ) s - kF s , ¦ (k F ) u - kF u , - , - , tu ts $ ! ( + tem 4.2 0C ). * .2, : tx 2560.8 k x 642.896 128.04 k x 42.32 (4) # t x k x , k x &. 0 (1), " , : 85 1/ 2 0.041 600 § · ¨ ¸ . 8 M 2.78 10 15 © ¹ ( ts tem ), - : kopt M 20 tx 188 24 3600 (3.2486 0.1624 t x ) 108 sK god * [ kopt ! : 0.5899 (5) 3.2486 0.1624 t x $ ! (4) (5) : (4) o 128.04 k x t x 42.32t x 2560.8k x 642.896 0 kx 2 (5) o 3.2486 k x 2 0.1624 k x 2 t x 0.58993 0 " : kopt | 2.6 W tem, hodnika | 19.5 0C . m2 K 3 () " ! . ! 3*$ *.35.600 EN 832 , " & . (1) : !, : Z% , [Y, }, 1982. (2) }%!, Q: Z % , [Y, }, 1985. 86 & &!1, [ "!!2 ! ! [$%]% : $ " & ! ! , , . . q & ! . # & ! , EN 1998-1. : U, , CONCEPT OF ANALYSIS AND DESIGN OF MASONRY STRUCTURES FOR EARTHQUAKE RESISTANCE Summary: The modern concept of earthquake-resistant design of buildings is based, above all, on the choice of structural systems that do not have expressed irregularity, and on providing a balance between stiffness, strength capacity, ductility and energy dissipation. The resistance and energy dissipation capacity to be assigned to the structure are related to the extent to which its non-linear response is to be exploited. This balance is characterised by the value of the behaviour factor q and the associated ductility classification depending on types of construction. The most important provisions for determining the seismic actions and effects, analysis and conceptual design of masonry buildings in accordance to EN 1998-1 are presented. Key words: earthquake, masonry buildings, structural analysis and design 1 ., , . &. !., ' $, # ! , # " 6, 21000 ' $, e-mail: ladjin@uns.ac.rs 2 ., , . &. !., 2! , 0 73, 11000 87 1 $ , ! , & , , , , , , , . , ! . $ & , 6 & 8 [1]. * ! , & " " . % , . " ! ! & ! . % , . % & ! . * " , & . $ , , ! , , . 2 % & , & & ( ) . % , . % (" " ") , , . , , , . , , , , ., . 0 & , 88 . , , [2]. 2.1 N 1998-1 ' " " " . + , . * & A, B, C, D, E, S1 S2 [1], ! : vs,30, NSPT cu, vs,30 (m/s) " 30 m " 10–5 , NSPT /30 cm , cu (kPa) " " . * EN 1998-1 ! , agR 0. ! & TNCR . , ! & , JI 1,0. % , ag 0 agR & JI. % , " ". , . ( ) " ( ). ! Se(T), Sve(T), , . % , Se(T) . TB, TC TD, S, , ' . * EN 1998-1 , 1 2 (. 1). 0 , , Ms t 5,5, " 1, (Ms 5,5) 2. $ & & . , , 89 . % & , () . " . $ , " , (. 2). " ". 1 (Ms ! 5,5) 2 (Ms d 5,5) 1 – % (5% ): ) 1, ) 2 Figure 1 – Elastic response spectra (5% damping): ) type 1, b) type 2 800 Type ground type B, PGA 0.25 g, ] 5% 5% 1, 1, B, ag = 0,25g, 700 0 d T d TB S d (T ) S d (T ) 2 2 ] ] SSa[cm/s d [cm/s 600 TB d T d TC 500 q = 1 – 400 TC d T d TD 300 TD d T S d (T ) ag S S d (T ) ag S q=2 200 § 2,5 2 · º ¨ ¸» © q 3 ¹¼ 2,5 ª TC º t E ag q ¬« T ¼» 2,5 ª TC TD º t E ag q ¬« T 2 ¼» q=5 100 0 0.0 Elastic q =2 q=5 ª2 T ag S « ¬ 3 TB 2,5 ag S q 0.5 1.0 1.5 2.0 2.5 3.0 T [s] 2 – Z % $ q Figure 2 – Design response spectra for different values of behaviour factors q 90 q, 5% , ! " . q " " N 1998-1. q , & . 2.2 % "" , , ! – ! &. % " , " , " " , . G ! ( ) " " . # & " , ! ! . & , , ! . " . ! " , ! " . & , & , ! " " [6]. 0 " , &, ! [7]. : (. 3). 3 – [ Figure 3 – Failure mechanisms of masonry walls 91 + " . 2 ! , . + " . % , (.4 .5) "X" " . ! , . " " , " . 4 – Y% %! : ) } 1979; ) :U 2010 Figure 4 – Typical shear failure of brick masonry piers: a) Budva 1979; b) Kraljevo 2010 5 – : U :U 2010 Figure 5 – Shear cracks in masonry walls after the earthquake Kraljevo 2010 92 3 % ! , " ( , ) . $ , ! . ' ! , " , ! , ! , &, . 3.1 G & . " , . % , & , . * , & . G ( G) . " " . ! " 0,10 0,40, , ! . 500 fk < < 3000 fk, fk " , , . * , EN 1996 ( ) & = 1000 fk. * ! ( & ) . 0 , & ! . , & . : 93 K= G ×F 1 × h 1, 2 + (G / E ) ×(h / l ) 2 (1) G , , F , h l & . , [6] : K o = G ×F ×(1- c / 0,85) (1, 2 ×h) (2) c & (c = F / F ). & c < 0,7. (2) , & , . * & , " ! , : K o = K p ×K s ×K n / ( K n ×K p + K n ×K s + K s ×K p ) (3) Ks ! , Kn , Kp , ! (1). * ! . , , . : . , ! . $ N 1998-1 ! . " " " : ¦ Gkj " " ¦< 2,i Qk ,i (4) : Gki " , <2,i - i EN 1990, Qk,i i, "+" " ". 3.2 ! 0 – ! " [4]. * N 1998-1, , , 94 . G , . * , . $ , , . ! , . % , & " : 1) " " ! ; 2) " " & . : (pushover) / () [4]. % . $ , . % , , () . * , . 0 & , " , [3]. *" & , & i & eai (eai = r0,05 Li, Li ). $ . Y1 4TC 2,0 s. % . $ " Fb, , ! : Fb m Sd T1 O (5) m , Y1 , Sd (Y1) Y1, O O 0,85 Y1 d 2YC , O 1,0 . * ! Fi: 95 Fi Fb mi si1 ¦ m j s j1 (6) Fi i, Fb (5), si1 sj1 mi mj , mi mj . $ N 1998 (6) si1 sj1 zi zj mi mj . $ Fi, (. 6). 6 – Q % % Figure 6 – Shears and moments due to seismic forces in typical masonry building 0 ! , " & G : G 1 0, 6 x / Le (7) x " , , Le ! ! " , . , eai (7), 0,6 1,2. $ " / . . 90% " 5% . , . * " Fb(k) ! k, : 96 Fb ( k ) mk ,ef S d Tk (8) Tk k , Sd (Tk) Yk, mk,ef k. () " , ! sk: mk ,ef ¦ m s ¦ m s 2 i i(k ) i 2 i(k ) (9) sik mi k. ' ! " Fb(k) k, : Fi ( k ) Fb ( k ) mi si ( k ) (10) ¦ m j s j (k ) k , i . $ Fi(k) . * ! " . % ! SRSS : EE ¦ EEk2 (11) (. , , .), k k. (11) , . * N 1998-1 . , ! . " : : EEd 2 2 EEdx EEdx : EEd EEdx 0,3EEdy (12) EEd EEdy 0,3EEdx (13) dx dy x y . % . 3.3 ! ! , , & : 1) & (. & ); 2) 25%, " 33%; 97 3) (). % " : Ed d Rd (14) Ed EN 1990 , , ( ), Rd " " ( fk Jm) . Ed ! : Ed E ^Gkj ; P; AEd ;< 2,i Qk ,i ` j t 1, i t 1 (15) & : ¦ Gkj " " P " " AEd " " ¦< 2,i Qk ,i (16) Gkj j, P , AEd (= JI AEk, JI - , AEk - ), <2,i - i, Qk,i i, "+" " ". # ! " ". % , EN 1996-1-1:2004. J m J s . ' , J m 2/3 ' EN 1996-1-1:2004, 1,5, J s 1,0. 4 4.1 , ", * EN 1998-1 . , " , ! EN 7721, fb,min , fbh,min 98 . ag 0 " 0,08g (0,78 m/s2) agS " 0,10g (0,98 m/s2). fb,min fbh,min , ' , : fb,min = 5 N/mm2 fbh,min = 2 N/mm2. % " fm,min, " EN 1996 – fm,min = 5 N/mm2 &, fm,min = 10 N/mm2 . : ) , ) ) . % , ! , " ! : 1) (unreinforced masonry construction), 2) & (confined masonry construction) 3) (reinforced masonry construction). % ! , q , , 1,5, 2,0 2,5. * , j , , & . % , , q " " (overstrength). ' 40 , () ! 1,8 2,4 [5]. % " EN 1996, (DCL) , tef tef,min. % EN 1996, agS ! ag,urm, ' . ag,urm , 0,20g. % , . $ ! ( &). G& . $" (shear walls), & , ! ( 1). $" , . 99 1 – ! ' " " " Table 1 – Recommended geometric requirements for shear walls t ef,min (mm) (h ef /t ef)max + ];?% ' , ' , ' , , (l/h)min 350 9 0,50 240 12 0,40 170 15 0,35 % & 240 15 0,30 0 240 15 – : t ef – U , h ef – $ , h – ! % , l – G % #%$$%# ];?, EN 1998-1, ( &) , , , " 4,0 m. & . & & 200 mm2. % ];? '% '$=&%_% ( &) ! . # ! & , ! . # & 150 mm. # & . & : ) ; ) " 1,5 m2; ) , , ! & " 5 m; ) , & " 1,5 m. & , " 4 m. & 5 mm 150 mm. ' " & 60 . N 1992-1-1:2004, .1. % %$$%# ];? & , " 600 mm. * , ( ). G 4 mm, . G , , 0,05%, 0,08%, . G " . , 100 200 mm2, " , : ) ; ) ; ) , ! " 5 m. . 4.2 " " I II & ! , " " " . * a g S ! , n , " A min , & pA,min . n pA,min ! ' , 2. n pA,min k " 12 N/mm2 5 N/mm2 & . % 70% " & 2 m, k : k = 1 + (l av – 2)/4 d 2, l av & " & . * k = 1. ' k , ( a gS a g,urm) . 2 –9" ' " % "a Table 2–Allowable number of storeys above ground and minimum area of shear walls J$%@ #% &;=%*< a gS %}# [$%{@% %$$%# ];? ];? '% '$=&%_% $$%# ];? $;< '+$%>;?% n 1 2 3 4 2 3 4 5 2 3 4 5 d 0,07 k g d 0,10 k g d 0,15 k g d 0,20 k g #%&#% +;?$~#% '}\z^ ];?% % '?%= +$%?%*, =%; +$;*#%> p *,min ;] \=\+# +;?$~# '+$%>% 2,0% 2,0% 3,0% 5,0% 2,0% 2,0% 4,0% 6,0% 2,0% 2,0% 3,0% 4,0% 2,0% 2,5% 5,0% – 2,5% 3,0% 5,0% – 2,0% 2,0% 4,0% 5,0% 101 3,5% 5,0% – – 3,0% 4,0% – – 2,0% 3,0% 5,0% – – – – – 3,5% – – – 3,5% 5,0% – – # " ", " , " : & ; ! & " & O min ( O min = 0,25); " p max, & ( p max = 15%). , " " " " : " " ; , & l min " 30% & & ; ! " 75% & ; " 75% " ; " & . * G m " ! G A, G m,max G A,max ( G m,max = 20% G A,max = 20%). 7 m. * & l min & & " , . * , " & l l /h 1. 5 $ , , " , . . . $ , , . ! , & & & . G 102 " . $ ( ) , , &, , ( ). (P- ) , , ! T 0,10. G !, " . 0 , ds de, : ds = qd de, qd q. ds " . * , " , . $ ! " () . " " . N 1998-5, 5, N 1997-1. * , " " . G !, (q = 1,0). %^?%&#;'>: ! -& 36043 G $ . 103 [1] La{inovi ¡., Foli R., Bri S., Bruji Z., Koetov Mišuli T., Rašeta A.: Evrokod EN 1998-1: Proraun seizmiki otpornih konstrukcija, Gra{evinski fakultet, Beograd, 2009. [2] La{inovi ¡., Foli R.: Analiza konstrukcija zgrada na zamljotresna dejstva, Materijali i konstrukcije 47, br. 3-4, Beograd, 2004, str. 31-64. [3] La{inovi ¡.: Nonlinear seismic analysis of asymmetric in plan buildings, Facta Universitatis, Series: Architecture and Civil Engineering, Vol. 6, No 1, 2008, pp. 25 – 35. [4] La{inovi ¡.: Savremene metode seizmike analize konstrukcija zgrada. Materijali i konstrukcije 51, br. 2, Beograd, 2008, str. 25-40. [5] Magenes G.: Masonry building design in seismic areas: recent experiences and prospects from a European point of view, The First ECEE&S, Geneva, 2006; Keynote paper 4009. [6] Petrovi B.: Odabrana poglavlja iz zemljotresnog gra{evinarstva, GK, Beograd, 1985. [7] Tomaževi M.: Earthquake-Resistant Design of Masonry Buildings, Imperial College Press, London, 1999, p. 268. 104 U W!1 ! – ! : * , 1979. ! , " . % , " . 2000. 2003, 2, 2. * " a " ! . ': # , , , !, U BEHAVIOUR OF MASONRY STRUCTURES UNDER THE EARTHQUAKE ACTION - DAMAGES ON THE CHURCHES Summary: Montenegrin earthquake, which happened in 1979. affected Montenegrin shore and its hinterland, so cultural-historical monuments were damaged. More important cultural-historical monuments have been rehabilitated but numerous churches are still damaged. Regional institution for cultural monuments protection from Kotor in the period from 2000. to 2003, on the initiative of the inhabitants of Grbalj, did several designs of rehabilitation and strenghtening for churches in the area of Grbalj. Damages at the registered structures will be presented in this paper for which designs for rehabilitation and strengthening were done. Key words: masonery structures, stone, churches, damages, earthquake 1 #, # , * 2 , 2! , ¢ , 105 1 , ! . 2 " , ! , & . $ & , ! , . $ , , . 2 ! % , " , , 7% " . " " . , & , . ": - % " " , " ; - &; - , " & ; - " ! s s . 3 % . ' , " , . $ , , " " ! , ! . ' " : " , , ! ! . , " . 106 " " . 0 " , . 3.1 * " . & " . ( , .). , ! . % , " , . #, " " , " . $ : ( ) ! & . " , " . * ! " , , , " " " . , . 3.2 " ! " . " . ! . ' , , & . 107 1 - | G – :, 1979. Figure 1- Collapse of roof and failure wall, -Kotor, Montenegro 1979. 2 - G, Christchurch, New Zealand, 2011. Figure 2- Bad connection of upper floor Christchurch, New Zealand, 2011. & & ! . G ! , " , " : " . + &" " . % "" . 0 " , " "X" . 3 - :% "X" betonskom , :U, 2010. 4 - 2010. (Chile 2010.) (Specific“X“ crack of building with concrete slab, Kraljevo, Serbia 2010.) 108 % ! . + " ! , " , . 0 " & , , & " """ &. + " . 4 ! 15. 1979. % 15. 1979. , 7.0 &. 3 , ! * , 15 km , 12 km. 10-15s 0.15-1.7 s. * 0.435 g. *'$- 1984. 1.487 " , 49.6% 38% . 63.57%. $ 20.15% g 9.18% &. 5 - : $ U 15.04.1979. Figure 5 - Map of izoseists and aftershocks of Montenegrins earthquake, 15.04.1979.) % & . " : , , & &. ' " " : *, , , , , ' . 109 6 ! 2003-2008. % , " . 2000. 2003, 2, 2. * " " ! . " , & " . $ ! , , . $ ! . * " " . 5.1 ! . “$. ” + 2 . * 4.8 m x 11.5 m, & 0.9 . # 66 76 cm. 1979. , " . ! , , . $ , . , . 6 - ! . U Figure 6 - Daag on th church St. Ilija in Lastva Grbaljska * , – , . " , & . 0 ! , " . 110 " " : , & , , & , . " & , & & . 5.2 ! . “$. $” + 2 . # 4.4 m x 6.5 m, 1.2 m. 7 - ! . U Figure 7 - Daag on th church St. Spas in Lastva Grbaljska " , , . " " : & , , ( ) , . 5.3 ! . , . ! . # 56 cm & 98 cm . $ & & , & . $ ! , . 0 " . %, " 111 , . % . * . 8 - ! . *UG! Figure 8 - Daag on th church St. Spas in Naljzici 5.4 ! . “$. ” " , . * 4.7 m x 6.8 m, 1.8 m. # 67 cm , 76 cm & . " . . * 1979. . & " . ' & & . 9 - . `! Figure 9- Daag on th church St. Hariton in Ljsvici " " : - % & , 112 , . % & " ; - ' . . " ; - ' & & . * & . " , " . & & 5.5 ! . “$. ” 4.7 m x 7.3 m, 1.5 m. 10 - . Z `! Figure 10 - Daag on th church St. Ptka in Ljsvici # 58 cm 91 cm, & . , " . % . * ! 1979. " . " : . , , " : , , , . * & . 5.6 ! . “$. '” 2 . * 6.5 m x 11.5 m & 1.8 m. # 73 cm. 113 11 - . * Figure 11 - Daag on th church St. Nikola in Glavati 1979. , “”. , , . 6 % . ! . ' " , ! 2000-2003. , " & . & , , & ! & . , ! . ! " . 114 (1) (2) (3) (4) (5) (6) "2 $. + 2", .", 3.", g , 2000. g 2 $. $ + 2", .", 3.", g , 2000. g "2 $. ' &"", .", 3.", g , 2000. g "2 $. ' 2", .", 3.", g , 2003. g «2 $. "», .", 3.", g , 2000. g "2 $. "", .", 3.", g , 2000. g 115 [ "! [ "!!1, } ! 2 - : # . , , , ! . G !, . * " ! , , &, , . , ! , , " . : # , , , , . MASONRY BUILDINGS - LEARNIG FROM MISTAKES Summary: In order to obtain a full affirmation of masonry structures, the excellent knowledge of all unique characteristics of this type of structures is necessary. This is mainly related to their design, analysis and construction. However, the existing experience has shown that huge mistakes and errors were done exactly in these stages. In the paper, the most common mistakes done during design and construction of masonry structures are presented, as well as, some other mistakes that can compromise masonry structures, such as errors in maintenance, rehabilitation etc. In addition, the consequences of done mistakes are shown and, also, the ways and possibilities to overcome and repair them. Key words: Masonry structures, rehabilitation, overbuilding, design, mistakes. 1 2 Redovni profesor u penziji, dr, dipl. gra{. inž., Gra{evinski fakultet, Beograd, Bulevar kralja Aleksandra 73/I. Vanredni profesor, dr, dipl. gra{. inž., Gra{evinski fakultet, Beograd, Bulevar kralja Aleksandra 73/I. 117 1 , ! . ! , . ' , , , , . G !, , 80% , , . % ! ("), - , , , , , ! . % ! , , , . $ XX , , , , . $ & , , , . * ! , ! . G , ! , . , . % , , ! &. . ' , ! , " , , , &, , ! - . G !, , , " , ! " . " ( , .) , , . " ! . 2 , : . 2 ; . 2 ! (! ) ; . 2 & ; . ; . # . 118 ' 1 " () (). ' : 1 - , 2 - , 3 - , 4 - . 1- Z ! Figure 1 - Percentage of damage of building parts 2 , ! , . G ! , , . ' ! . , , , , " , " , . ' " , , " ., , . ! . , & . , , - , ( 2, 3, 4 5). ' , , 119 " (, , , , .). ' 2 3 "" " " . * & . ' . & , ! , . % , ! , , ! . , " " , , " " ( 6). 0 & , . * & , / . ) ) 2 - ZU () U () Figure 2 - Favorable (a) and unfavorable (b) forms of building plans 3 - *U Figure 3 - Unfavorable forms of buildings plans 120 4 - ZU () U () Figure 4 - Favorable (a) and unfavorable (b) building height dimensions 5 - *U Figure 5 – Unfavorable height distribution of rigidity in objects ) ) 6 - Q () () Figure 6 - Expansion Joints in floor plan (a) and building section (b) 121 & 0 & ( 7). & , , " / , , " &, 5. 0 & , " ( 8). # " " & , . # , ( ) ! ( ) . ( & , G .) & . 7 - Z U G () G () Figure 7 - The principles of setting concrete columns (a) and the correct connection between column and wall (b) 8 - Z Figure 8 - Incorrectly derived wall openings 122 3. " (") 2 ! / " , , . ! 0 . - , " " ( 9). 9 - Z U Figure 9 - Incorrectly placed wall blocks , ! , , , . "" , 2-3 , " , ( ), " " & " . % " & , , , , . & , , , , , " ! , , , , , , . "" - , , , ( 10). & . "G" " , . "" , . 0 &, "-", " , . $ , , 0 . &, , & &. ) ) 10 - * () () Figure 10 - Incorrectly (a) and correctly (b) derived mortar joints in the wall 123 ! . &. '! , , , . ' ! , . ! , . , ( ) " . % (2 ) & " [Y*-81], " ! , " " . '! ! & " ! ( 11 12). ! , " , ( ), ( ) , & ! & " % , , , ( " ), , ( & ! &), ! , . G !, ! . ! ! , ( ! ), & . , , !, " , ( ) . 11 - Q% Figure 11 - Drastic examples of bad building upgrades 124 12 - Q% Figure 12 - Drastic examples of bad building upgrades ' , , ( , , .) , ! " . , , , , , . . , , , ! . 0 () , , , ., &, , , & & . 0 , 0 & & ( 13). 0 40, . 13 - Za % & Figure 13 - Proper way to perform masonry parapet on the building 125 # ! , . " 14. " , &, . , , , & . " . 14 - QU ! Figure 14 - Details of reinforcement of free standing chimneys and ventilation ducts , , . ( 15). * , , ( , , & .). 15 - Za G Figure 15 - Proper connection of roof structure and belt course , , "" . # " " " & & ( 16). 16 - Za % "} G Figure 16 - Correctly derived aseismic masonry gable wall with reinforced concrete ring beams 126 4. ! , " () " . , , , ! ., . ' , () . ' " , , . * , ( ) " . . , . & , . ' , & , & " , , . ( 17) 17 - ! G & Figure 17 – Wall demage due to lack of maintenance of gutters and proper drainage of water from buildings 5. * , , , &, , , . 127 , , " , , , 2 . " ( ) 18 19. & . , . , & " & , " " , " , ( , , ...), ( ), . 18 - ! U Figure 18 – Buildings damage caused by earthquake 19 - ! $ Figure 19 – Buildings damage caused by liquefaction 6. 0 (, , , , ) (, , .), " " . G !, ! , &, " . 128 " : !, G , !, , , , " . , : - " , - , , , - , - " " , - , . ! , " . ' " " . 1. , ! U, , , 2. $ (! $ , ! % , , , ) 3. $ 4. , 20 - [! Figure 20 - Possible location and types of occurrence of moisture in buildings 129 ) ) 21 - Z () () Figure 21 - Incorrectly (a) and correctly (b) derived thermal insulation of flat roof 22 - ( ) "" % Figure 22 - Segregation of concrete flat roof (horizontal cracks) due to its "work" because of significant changes in temperature 23 - Z U a Figure 23 - The appearance of flaking and falling of the wall finishes due to high moisture 130 24 - ! $ Figure 24 - Damage to the brick wall facades caused by frost ' , , " . % ( ), " . 25 - ! U Figure 25 - Damage to hollow bricks and blocks caused by frost $ " , & ( ) ( ). " () . * , . , . , , & , &, " ( " ). 131 26 - ! Figure 26 - Damage to mortar in a massive wall caused by frost 27 - ! Figure 27 - Damage to the walls due to moisture 28 - Figure 28 - The appearance of salt on the surface of the masonry blocks 132 7. * , & . & . * , , , ! &, ! . ' () " . $ . 0 , , . % , ! % . 1. 2. 3. 4. 5. 6. 7. 8. 0" #., ., " ., $-' 0., & G.: %G$' '$ – $20#0; 2! , , 1990. G G., $ " .: %#0' #' '$*3 %20#0, 2! * , 2003. " .: #00'0 2+00 % %G$'2 20£'0$0, 2! , , 1985. # " G.: $0 '$*' +G * %0 20#$2 '0$+£0, 0 * . 0¤ .: #¥ #'¦ $+¥'¥ '$*§, $¨, G, 1979. $" #.: 0 '0 %20#0G0, G , $ , 1961. # 8: , # 1-1: , 2! * , 2009. ($. $3 31/81, 48/82, 29/83, 21/88, 52/90); 133 * U!1 , # }!2 ! : ! ! & . * ! , ! . * , 1,0 m . " 10,0 kN/m2 . ': , $, , THE ANALYSE OF THE FUND DEPTH OF NEIGHBOUR OBJECT ON A STABILITY OF REINFORCED CONCRETE SUPPORTING WALL Summary: There are some neighbour construction objects which influence on a supporting construction stability can be important. The influence of construction objects on a supporting construction stability can depend, between all other things, of the fund depth of object and also of its distant of supporting wall.There are analises of reinforced concrete supporting wall stability considering the distant of the fund of neighbour object, and also the analyses of different fund depth of neighbour objects in this work. The analyses gives different sizes of safety factor and also on a slide and a pressure in a base ground all in function of fund depth of neighbour objects which burden is 10,0 kN/m2 and is constant for all cases of fund dpth and sizes of ground parameter and supporting wall geometry. Key words: supporting wall, fund depth, neighbour objects, stability. 1 #. . . ' $", ..!., - -! * 2 #. . . % ", ..!., - -! * 135 1 & & ! . , , " ! ! ! . * , , " . " , & " , " . ! , " , & " . % . ' . 2 ! ' " , ! . " . & & , . * ! , ! . ! " & ! . , . % " . ' " " " " . " , - " . . 3 % " : 136 - 25 cm , 50 cm, 50 cm, 80 cm, 10 cm , 30 cm . " : - 1: J=19,0 kN/m3; M=25o; c=0 kN/m2 - 2: J=20,0 kN/m3; M=27o; c=0 kN/m2 - 3: J=22,0 kN/m3; M=35o; c=0 kN/m2 1 – Z $ 1,0m Picture 1 – Supporting wall with a neighbour object fund on 1.0m depth ' 1 1,0, 1,0 1,0. 0 " : -Df=1,00m l=1,00m -Df=2,00m l=1,00m -Df=3,00m l=1,00m -Df=3,50m l=1,00m. 137 * , " q=10,0 kN/m2, 2. 2 – 7 G $ Picture 2 – The overview of supporting wall with a neighbour object fund circumstance % V=150,00 kN/m2. 4 4.1 . `=1,00 $ 1 J=19,0 kN/m3; M=25o; c=0 kN/m2. " q=10,0 kN/m2. 1 10 . 0 - 1. 50 2 R - 3. 00 30 20 - 3. 40 10 m 0. 3 3 0 . 44 0 3 [ kN / m2 ] 3 – Z G ! G Df=1,00m Picture 3 – The burden of a result Df = 1,00m 138 Df=1,00m " : $ V=95,60 kN/m. $ =40,88 '/. $ M=31,56 kNm/m. : V1=143,28 kN/m2 V2=0,00 kN/m2 b’=0,89 m. : Fp=1,88 > Fp,dop=1,50. : Fk=1,64 > Fk,dop=1,50. 4.2 Df=2,00m $ 2 J=20,0 kN/m3; M=27o; c=0 kN/m2. " q=10,0 kN/m2. 1 - 1.5 0 10 .0 2 R - 3.0 0 30 20 - 3.4 0 10 m 0. 30 0 .47 0 3 [ kN/ m2] 4 – Z G ! G Df=2,00m Picture 4 – The burden of a result Df =2,00m Df=2,00m " : $ V=94,99 kN/m. $ H=39,82 kN/m. $ M=28,85 kNm/m. : V1=134,38 kN/m2 V2=0,00 kN/m2 b’=0,94 m. : Fp=1,99 > Fp,dop=1,50. : Fk=1,67 > Fk,dop=1,50. 4.3 Df=3,00m $ ! 2 3. " q=10,0 kN/m2. 139 1 -1.50 2 R -3.00 0 0.31 30 -3.40 m 0.46 20 3 10 10 .0 [kN/m2] 5 – Z G ! G Df=3,00m Picture 5 – The burden of a result Df =3,00m Df=3,00m " : $ V=92,43 kN/m. $ H=37,37 kN/m. $ M=28,77 kNm/m. : V1=132,89 kN/m2 V2=0,00 kN/m2 b’=0,93 m. : Fp=1,98 > Fp,dop=1,50. : Fk=1,73 > Fk,dop=1,50. 4.4 Df=3,50m $ 3 J=22,0 kN/m3; M=35o; c=0 kN/m2. " q=10,0 kN/m2. 1 - 1 .5 0 2 R - 3 .0 0 30 - 3 .4 0 20 0 .3 2 0. 4 6 10 10. 0 0 3 m [ k N/ m 2] 6 – Z G ! G Df=3,50m Picture 6 – The burden of a result Df = 3,50m Df=3,50m " : $ V=91,93 kN/m. $ H=36,97 kN/m. $ M=29,00 kNm/m. 140 : V1=133,35 kN/m2 V2=0,00 kN/m2 b’=0,92 m. : Fp=1,97 > Fp,dop=1,50. : Fk=1,74 > Fk,dop=1,50. 4.5 ' " . # . Odnos Fp prema Df susjednog objekta 3,5 3 2,5 2 1,5 1 0,5 0 1 2 3 4 Df 1 2 3 3,5 Fp 1,88 1,99 1,98 1,97 7 –' $ Picture 7 – Stability factor of tumble which depends on fund depth of neighbour object Odnos Fk prema Df susjednog objekta 3,5 3 2,5 2 1,5 1 0,5 0 1 2 3 4 Df 1 2 3 3,5 Fk 1,64 1,67 1,73 1,74 8 –' $ Picture 8 – Stability factor of slide which depends on fund depth of neighbour object 141 Odnos Fk i Fp u odnosu na Df 4 3 Veliine Df, 2 Fk, Fp 1 0 Df Fk 1 2 3 4 Df 1 2 3 3,5 Fk 1,64 1,67 1,73 1,74 Fp 1,88 1,99 1,98 1,97 Položaj susjednog objekta Fp 9 – $ ' ' $ Picture 9 – The relation of stability factors Fp and Fk which depends on fund depth of neighbour object 5 ! . % 1,00m 1,00m H=3,00m, d=25cm. b=155cm 50cm. (c=0 kN/m2). 0 1,0m, 2,0m 3,0 3,5. * " q=10 kN/m2 1,00m. ' , & " : - . - Df=1,0m Df=2,0m, Df=3,0m Df=3,5m. - V1 V=150,00 kN/m2. ' V1 Df=1,0m Df=3,0m, Df=3,0m Df=3,5m ". 142 % ! . 1) $" '.: , 2 “x” , 2005. 2) $" '.: Z , - -! , 2010. 3) " .: , -! , 2005. 4) ©" $.: % % – , , 2006. 5) MB software Ing + 5.0, 2 y, 2000. 143 Dragica Jevti1, Gordana Toplii-uri2, Zoran Grdi3 EFFECTS OF VARIOUS TYPES OF FINE CRUSHED MINERAL AGGREGATES ON CONCRETE PROPERTIES Summary: Application of crushed mineral aggregate in the composition of the cement concrete is gaining increasing importance. The previous statement can be analyzed along to lines of reasoning. The first is environmental, as it substitutes the river aggregate in this way avoiding disruption of river courses. The second is service durability and costefficiency of concrete carriageway structures. In this paper was examined the effects of various kinds of fine crushed mineral aggregates in the composition of the cement concrete on the consistency of fresh concrete and compressive strength of hardened concrete. It was established that the type of fine crushed mineral aggregates has effects on previously mentioned properties, and that it can be applied in the composition of a self compacted concrete. ey words: aggregate type, consistency, compressive strength ! : . ' & . , . # a . * & " . *! !" . : , , %! 1 Full professor, doctor of technical sciences, The Faculty of Civil Engineering, Belgrade Ass. professor, doctor of technical sciences, The Faculty of Civil Engineering and Architecture, Nis 3 Assoc. professor, doctor of technical sciences, The Faculty of Civil Engineering and Architecture, Nis 2 145 1 INTRODUCTION Aggregate as a component of concrete, with its physical and thermal, and sometimes with its chemical properties has considerable effects on concrete performance. Many properties of crushed mineral aggregate depend on the properties of bedrock from which it was obtained. The aggregate possesses some properties which did not exist in the original rock, and those are: the size and shape of the grain, surface texture and absorption. All these properties can have a great influence on the concrete quality – either in fresh and hardened state >1@. With the aggregate, whose properties are all satisfactory, a good concrete can be always made. The opposite case need not be correct, therefore it is the reason for which a criterion of concrete performance is required. On the basis of the experiences in engineering practice, it was concluded that there are cases when an aggregate property is not favorable in some of its aspects, but it is proven that there were no problems with the concrete made with it. If an aggregate proves to be inadequate, according to several criteria, then the chances are that the concrete made with it will be of poor quality. It can be concluded that only the testing of the stone aggregate may help us to assess to what extent it is suitable or unsuitable for making of concrete. If concrete consistency is observed as an important property of fresh concrete mix, we may conclude that the workability of concrete is greatly affected by: water/cement ratio, aggregate/cement ratio and quantity of water [1, 2]. The required quantity of water depends on the type of aggregate, that is, of the size of the largest grain, particle size distribution, shape and texture. The required quantity of water in the aggregate depends on the content of fine particles. Absorption capacity of aggregate increases along with its total surface area. When all other conditions remain unchanged the finer aggregate will require an increased quantity of water [3]. The shape and texture of fine aggregate have effects on the concrete water requirement [4]. If the properties of fine grain aggregate are expressed via the percentage of void between the aggregate grains in loose state, than its effects on the quantity of necessary water will be as in the figure 1. Figure 1 - Ratio between fine aggregate voids in loose state and needs in water for the concrete made with the aggregate 146 The shape of the grains of the rough aggregate has considerable effects on workability of fresh concrete mix, particularly the slab-like grains. One should point out that the effects of the aggregate on consistency of concrete mixture decreases with the increase of cement in the aggregate, and becomes almost inconsequential, when the ratio aggregate e cement is very low, in the environs of 2,5 or even 2 [5]. Concrete compressive strength depends on the type of aggregate. The shape and surface structure of the stone aggregate grain, considerably affect the concrete strength. According to some researches, the shape of the grain has effects on the compressive strength of 22 , and the surface structure as much as 44 . The bond of the aggregate and the cement paste is better and stronger if the aggregate grain surface is rougher, owing to the roughness of the aggregate. It is the most characteristic of the crushed aggregate. With the aggregate whose grains have a larger specific surface, higher adhesive forces are achieved. This bond depends on the mineralogical and chemical composition of the aggregate. The crushed aggregate strength also affects the fp of concrete. This property of concrete depends on its composition, structure and texture. If the compressive strengths of two basic micro-structural ingredients of ordinary concrete are compared, it will be seen that the mineral stone aggregate compressive strengths range between 150 and 200 MPa, with less quality aggregates it is 80 – 150 Mpa, and that strengths of cement rock range between 20 and 60 MPa. It should be emphasized that transference of compressive force in concrete is not accomplished only via the aggregate but via the hardened cement paste. The compressive strength of concrete considerably depends on the realized structure of concrete, that is, of the degree of void between the aggregate grains filled with cement paste. Depending on this the aggregate will to a larger or smaller extent influence the compressive strength of concrete. The aggregate must have considerable higher compressive strength than concrete strength, because the actual stresses at the points of contact between two aggregate grains in concrete can be much higher than the nominal compressive stresses in concrete. >6@. Vertical cracks of the benchmark concrete loaded by an axial compressive force emerges under load which is 50 – 75% of limit load. This has been established by the technique measuring the ultrasonic impulse velocity through the concrete. The stress at which the cracks begin to emerge largely depends on the properties of coarse grains of the aggregate. If the grains have smooth surfaces, the cracks will begin to emerge at lower stresses in comparison to the aggregate containing rough and sharp grains. It is explained by the fact that in the second case, the bond of the aggregate with cement rock is stronger because of the grain surface properties, and to a certain extent due to the shape of the grains themselves.>7,8,9@. The influence of the type of coarse aggregate on the strength of concrete changes depending on the water cement factor. When the water cement factor is lower than 0,4 then the application of the crushed rock aggregate may contribute to the increase of strength up to 38% in comparison to the concrete mixes made with the natural gravel. However, it was marked that with the increase of water cement factor, the influence of the aggregate type decreases. Thus, for instance, at concretes with he water cement factor higher than 0,65 there is practically no difference in terms of the strength, irrespective of the type of aggregate. >10@. With respect to the stated facts, when selecting the rock material, which can be of igneous, sediment and metamorphic origin, that is alluvial origin, one must consider the end purpose of the aggregate, that is the type of concrete for the making of which it will be used. 147 2 EXPERIMENTAL PART When making the concrete mixtures, the starting point was to obtain as representative spectrum of various mixtures in terms of the type of crushed mineral aggregate. The method of making of concrete mixtures was the same: the type of mixer, sequence of component dosing, duration of mixing, manipulation of fresh concrete. Thermohygrometric conditions in the course of making of fresh concrete and measuring of its properties were in accordance with the regulations and they varied within permissible range. All the planned measuring of fresh concrete was performed by the same apparatuses. Two variants of concrete in respect to the type of the aggregate were produced. Variant A represents the concrete mixes which contain only one type of crushed mineral aggregate in their composition. Variant B represents the concrete mixes which contain fine river aggregate, while the coarse one is from crushed mineral aggregate. In this way, the goal was to find out how the fine crushed aggregate affects some properties of concrete. The maximum aggregate grain dmax = 16 mm was adopted. Experimental research were conducted in the laboratory for concrete and building materials of the Faculty of Civil Engineering and Architecture of Nis. The adopted constant amount of cement was 380 kg per test. The river aggregate used was from the Juzna Morava river, separated in three fractions 0 4 , 4 8, 8 16 mm. For the experiment four types of crushed mineral aggregate were chosen: limestone from the quarry sKorenis of Nishor near Pirot, andesite from the quarry sVelika Bisinas near Rashka, diabase from the quarry sTavanis near Ruma, basalt from the quarry sZebrniks near Kumanovo, Macedonia. The total amount of aggregate per 1m3 of concrete was also constant and amounted to 1850 kg. The same particle size distribution of the aggregate was adopted for all the concrete mixtures (figure 2). Sieve passage percentage (%) 100 99 100 90 80 70 70 60 50 B M 46 40 A 35 30 25 20 14 10 0 0 dno 1 0.125 3 0.25 0.5 1 2 4 8 11.2 16 31.5 Sieve opening (mm) Figure 2 - Limit curves A and B and assimilated particle size curve for benchmark concrete mixes For each type of the aggregate, three water cement factors were varied: 0.45, 0.55, 0.65. The values of water cement factor were chosen so as to cover all the types of consistency, from the liquid to stiff. For each fraction of the aggregates, the tests of certain properties were conducted, so in the table 1 there are results of the volumetric mass of the aggregate grains, water absorption established by the piknometer and hydrostatic balance methods, as well as the contents of fine particles. 148 From the table 1 it can be seen that for the concretes made with only one type of aggregate, the highest content of fine particles is in the limestone aggregate, and the lowest in the river aggregate. The highest percentage of water absorption is recorded for the andesite aggregate, and the lowest water absorption is found for limestone aggregate. Among the mixtures made from the fine river and coarse crushed aggregate the highest percentage of fine particles and water absorption has the mixture with diabase. Table 1. Grain density, water absorption, fines content Fraction >mm@ 0–4 4–8 8 – 16 Mix R 0–4 4–8 8 – 11.2 11.2 – 16 Mix K Mix KR 0-2 2-4 4-8 8 – 11.2 11.2 - 16 Mix A Mix RA 0-4 4-8 8 – 11.2 11.2 - 16 Mix B Mix BR 0-2 2-4 4-8 8 – 11.2 11.2 - 16 Mix DR River aggregate “MORAVAC“ Grain density Water absorption >kgem3@ >@ 2539 2.100 2577 1.479 2576 1.268 2562 1.647 LIMESTONE, crushed 2524 2.805 2708 0.584 2710 0.583 2837 0,435 2647 1.579 2653 1.254 ANDESITE, crushed 2541 2.672 2565 2.344 2742 2.897 2698 1.565 2757 2.655 2650 2.527 2646 2.302 BASALT, crushed 2720 2.299 2862 2.134 2806 2.433 2830 1.912 2782 2.235 2700 2.145 DIABASE, crushed 2636 2.298 2633 2.353 2636 1.455 2808 0.580 2833 0.594 2664 2.411 149 Fines content >@ 1.598 0.378 0.242 0.798 13.582 0.380 0.186 0.264 6.389 0.878 7.730 1,528 1.492 0.453 0.292 3.343 1.203 12.727 1.174 0.678 0.464 6.167 1.159 4.085 0.502 0.635 0.270 0.364 2.092 In the tables 2 and 3 the values of consistencies measured by slump and Vebe method. Table 2: Consistency values measured by slump and Vebe methods for concrete mixes A Aggregate river R limestone K andesite A basalt B Mixture wc R/0.45 R/0.55 R/0.65 K/0.45 K/0.55 K/0.65 A/0.45 A/0.55 A/0.65 B/0.45 B/0.55 B/0.65 0.45 0.55 0.65 0.45 0.55 0.65 0.45 0.55 0.65 0.45 0.55 0.65 Slump value [cm] 0 4 23 0 2.5 17 0 2 18 0 1 5 Vebe >sec@ 18.0 4.4 1.0 32.3 9.2 1.0 51.8 7.8 1.0 57.7 16.4 7.1 Consistency Stiff Semi - plastic Liquid Stiff Semi - plastic Liquid Stiff Semi - plastic Liquid Stiff Stiff Semi - plastic Table 3: Consistency values measured by slump and Vebe methods for concrete mixes B Aggregate river R R + limestone KR R + andesite AR R + basalt BR R + diabase DR Mixture wc R/0.45 R/0.55 R/0.65 KR/0.45 KR/0.55 KR/0.65 AR/0.45 AR/0.55 AR/0.65 BR/0.45 BR/0.55 BR/0.65 DR/0.45 DR/0.55 DR/0.65 0.45 0.55 0.65 0.45 0.55 0.65 0.45 0.55 0.65 0.45 0.55 0.65 0.45 0.55 0.65 Slump value [cm] 0 4 23 0 7 23 0 5.5 24 0 3 19 0 10 25 Vebe >sec@ 18.0 4.4 1.0 18.9 4.3 1.0 14.4 5.1 1.0 16.0 8.1 1.0 13.7 2.0 1.0 Consistency Stiff Semi – plastic Liquid Stiff Semi – plastic Liquid Stiff Semi – plastic Liquid Stiff Semi – plastic Liquid Stiff Plastic Liquid The concrete was in the first 24 hours cured in molds in laboratory conditions, and the remaining time until testing in the water at 20 qC according to the standard SRPS ISO 27361 and SRPS ISO 27362. The compressive strength after 2, 7, 28 and 90 days according to SRPS ISO 4012. In the table 4 was given a summary review of the compressive strengths for all the concrete mixtures. 150 Table 4. Summary table of strengths by concrete types No Mixture Zc 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 R/0.45 R/0.55 R/0.65 K/0.45 K/0.55 K/0.65 A/0.45 A/0.55 A/0.65 B/0.45 B/0.55 B/0.65 R1/0.45 R1/0.55 R1/0.65 KR/0.45 KR/0.55 KR/0.65 AR/0.45 AR/0.55 AR/0.65 DR/0.45 DR/0.55 DR/0.65 BR/0.45 BR/0.55 BR/0.65 0.45 0.55 0.65 0.45 0.55 0.65 0.45 0.55 0.65 0.45 0.55 0.65 0.45 0.55 0.65 0.45 0.55 0.65 0.45 0.55 0.65 0.45 0.55 0.65 0.45 0.55 0.65 Compressive strength > Mpa@ 2 7 28 90 days days days days 26.11 36.56 52.98 60.43 15.56 27.78 40.66 46.21 8.33 18.00 29.77 40.88 25.77 35.77 44.21 55.11 17.66 25.77 35.99 42.66 9.33 19.99 26.88 36.44 22.77 36.66 41.33 48.22 11.66 27.75 33.25 41.25 6.66 16.88 26.66 36.88 21.77 34.88 40.41 58.44 15.55 25.55 37.77 51.44 9.22 19.33 27.55 45.10 12.88 27.77 46.44 52.55 7.05 20.17 39,10 41.99 3.22 14.44 25.66 34.88 18.99 36.77 50.88 65.10 10.33 21.77 34.44 53.55 4.775 15.55 25.11 40.44 17.33 30.10 53.77 61.33 7.77 19.33 41.75 47.77 5.55 13.10 26.55 39.77 18.44 41.77 55.55 73.77 9.99 26.22 35.77 55.99 5.77 13.99 29.99 39.66 18.44 38.22 57.77 74.66 9.77 25.99 45.77 61.77 6.77 15.99 27.22 48.21 Strengths ratio fp,t /fp,28 2 / 28 7 / 28 90 / 28 0.493 0.382 0.279 0.583 0.491 0.347 0.551 0.351 0.249 0.539 0.412 0.335 0.277 0.180 0.125 0.373 0.299 0.190 0.322 0.186 0.209 0,332 0.279 0.192 0.319 0.213 0.249 0.690 0.683 0.605 0.809 0.716 0.744 0.887 0.835 0.633 0.863 0.676 0.702 0.598 0.516 0.562 0.723 0.632 0.619 0.560 0.463 0.493 0.752 0.733 0.466 0.661 0.568 0.587 1.141 1.136 1.373 1.246 1.185 1.356 1.167 1.241 1.356 1.446 1.362 1.637 1.131 1.074 1.359 1.279 1.555 1.610 1.140 1.144 1.497 1.328 1.565 1.322 1.292 1.349 1.771 3 DISCUSSION OF OBTAINED RESULTS Consistency measured by Abrams cone in function of water – cement ratio shows that for Zc = 0.45 (concrete mixes made of fine and coarse crushed aggregate, variant A) consistency was stiff, figure 3. For Zc = 0.55 the stiffest consistency had concrete with basalt B, slump value was 1 cm, and the least stiff consistency had concrete with river aggregate R, slump value was 4 cm. There was no significant deviation in results for this water – cement ratio and different aggregate sorts. For Zc = 0.65 the lowest slump had concrete with basalt B, slump value was 5 cm. This was the most significant deviation slump value was from 17 to 23 cm. 151 25 23 20 18 w =0.45 w = 0.55 w = 0.65 Slump test [cm] 17 15 10 5 4 5 2.5 2 0 R 1 0 0 0 K 0 A B Type of aggregate Figure 3 - Aggregate influence on concrete consistency measured by Slump method in function of water – cement ratio (Variant A) For Zc = 0.65 the lowest slump had concrete with basalt B, slump value was 5cm. This wasthe most significiant deviation slump value was from 17 to 23 cm. For water-cement ratio 0.45 (concrete mixes made of fine river and coarse crushed aggregate, variant B) figure 4, consistency was stiff for all concrete mixes, without distinction of aggregates. For water- cement ratio 0.55 concrete mix DRe0.55 (mix of river aggregate and diabase) had the highest slump value 10 cm concrete mix BR e0.55 (mix of river aggregate and basalt) had the lowest slump value 3 cm. Aggregate influence dominates for this watercement ratio. For water-cement ratio 0.65 slump values are almost the same. For high water-cement ratio water quantity dominates aggregate. 30 Slump test [cm] 25 24 23 25 23 w = 0.45 w = 0.55 w = 0.65 19 20 15 10 10 7 5,5 4 5 3 0 0 0 0 R KR 0 0 AR DR BR Type of aggregate Figure 4: Aggregate influence on concrete consistency measured by slump method depending on water-cement ratio variant B 152 Compressive strenght (MPa) Comparing obtained results for consistence for both variants of concrete mixtures, it can be concluded that fine crushed aggregate reduces workability of fresh concrete. The extent of the influence of fine crushed mineral aggregate on the consistency of concrete, depends on the type of crushed aggregate. For the concrete mixtures made with crushed aggregate (concrete mixtures under numbers, 1 to 12, table 4), the compressive strengths obtained are not a logical consequence of he aggregate type property. The influence was due to the fine crushed aggregate. By substituting the fine crushed aggregate by the river one, the compressive strengths which were in the function of the properties of the type of coarse crushed aggregate were obtained (concrete mixtures under numbers 13 to 27, table 4). For the value of water cement factor Zc = 0.45 out the concrete mixtures made of fine river aggregate and coarse crushed mineral aggregate (figure 5), the concrete mixture with coarse aggregate of basalt BRe0.45 and the concrete mixture with coarse aggregate of diabase DRe0.45 had the highest values of compressive strengths and their correlation curves almost coincide. The concretes made with fine river aggregate and coarse limestone aggregate KRe0.45 and the concretes with fine river and coarse andesite aggregate ARe0.45 have correlation curves which also almost coincide, where these concretes had slightly lower strengths in comparison to the previous two types of concrete. The lowest values of compressive strength were recorded for the benchmark concrete made with the river aggregate Re0.45, around 52.5 MPa at the age of 90 days. 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 DR/0.45 BR/0.45 KR/0.45 AR/0.45 R1/0.45 W = 0.45 0 10 20 30 40 50 Time(days) 60 70 80 90 Figure 5 – Dependency of compressive strength on the type of aggregate for Zc = 0.45 The concrete mixtures of plastic consistency (Zc = 0.55) with fine river aggregate and coarse basalt aggregate BRe0.55 have the highest strengths, figure 6. The curves corresponding to the concretes made with coarse aggregate of andesite ARe0.55, limestone KRe0.55 and diabase DRe0.55 are almost equal. The benchmark concrete still had the lowest strengths. The concretes of liquid consistency (Zc = 0.65), figure 7, concretes with fine river 153 aggregate and the coarse basalt aggregate BRe0.65 still had the highest values of compressive strength. The other concretes, with the coarse aggregates of diabase, limestone and andesite have almost equal compressive strengths. The lowest values of compressive strengths here has the benchmark concrete, around 35 MPa at the age of 90 days. 65 60 Compressive strenght (MPa) 55 DR/0.55 50 BR/0.55 45 AR/0.55 KR/0.55 40 R1 35 30 25 20 W = 0.55 15 10 5 0 0 10 20 30 40 50 Time(days) 60 70 80 90 Figure 6 – Dependency of compressive strength on the type of aggregate for Zc = 0.55 55 Compressive strenght (MPa) 50 45 40 35 KR/0.65 BR/0.65 30 DR/0.65 R/0.65 AR/0.65 25 20 15 W = 0.65 10 5 0 0 10 20 30 40 50 60 70 80 90 Time(days) Figure 7 – Dependency of compressive strength on the type of aggregate for Zc = 0.65 154 4 CONCLUSIONS On the basis of the obtained results, the following conclusions can be drawn: With the increase of water cement factor from 0.45 to 0.65 the consistency changes from rigid to liquid, regardless of aggregate type. In the case of concrete mixtures mad only of crushed mineral aggregate, an unfavorable influence of fine crushed mineral aggregate on consistency of fresh concrete mixture is observed. By substituting the fine crushed aggregate with the river one, the deficiencies of the mixture with fine crushed aggregate were removed. At the mixtures for the water cement factor 0.55 tested for consistency, the type of the aggregate has a significant influence on it. For the water cement factor 0.65 the type of the aggregate has a small influence on consistency of concrete mixtures. In concrete mixtures produced with the fine river aggregate and coarse crushed aggregate, with the increase of the water cement factor, the influence of the type of aggregate on the concrete consistency decreases. On the basis of comparison of obtained values of compressive strength it can be concluded that by substituting the first fraction of crushed aggregate with the river one, the higher values of compressive strengths are obtained. This increase is particularly prominent at the concretes wit the water cement factor 0.55 which has plastic and weak plastic consistency. With the increase of water cement factor, the influence of the type of aggregate on the concrete compressive strengths decreases. By comparing the obtained data for different water cement factors, no single conclusion in terms of the increment of strength by concrete mixtures types can be found. Concrete mixtures made with the first fraction of the river aggregate and other fractions of crushed mineral aggregate proved to be applicable in the high-rise building construction and civil engineering construction, because the adverse influence of fine crushed mineral aggregate was eliminated. In the contemporary concrete production conditions, the application of plasticizers is almost unavoidable. Introduction of this influential parameter is the subject of further research. It could yield results showing a different influence of the aggregate type on the concrete consistency. The initiated research of concrete consistency and compressive strength with crushed mineral aggregates creates a possibility of further research of application of fine crushed mineral aggregate in the composition of SCC with the goal of obtaining a good performance concrete. The obtained results open the possibility of application of these concretes for production of concrete prefabricated elements such as: concrete curbs, concrete slabs and high compressive strength concretes, as well as FOR concrete road paving production. 155 REFERENCES >1@ >2@ >3@ >4@ >5@ >6@ >7@ >8@ >9@ >10@ Prilog izuavanju korelacione zavisnosti fiziko mehanikih karakteristika betona od koliine cementne kaše i od karakteristika komponenti / Z. Grdi// doktorska disertacija, Niš, 2000. Osnovi teorije i tehnologije betona / M. Muravljov // Gra{evinska knjiga, Beograd, 1991. Uticaj vrste mineralnog drobljenog agregata na vrstou pri pritisku ovrslog betona / G. Toplii ªuri, Z. Grdi //Zbornik radova sa internacionalnog nauno strunog skupa- ''Gra{evinarstvo – nauka i praksa'', Žabljak 03.-07.03.2008. Effect of limestone fines content in manufactured sand on durability of low- and high-strength concretes / Li Beixing Wang Jiliang, Zhou Mingkai // Construction and Building Materials 23 (2009) 2846–2850 Effect of absorption of limestone aggregates on strength and slump loss of concrete / Abdulrahman M. Alhozaimy // Cement & Concrete Composites 31 (2009) 470–4 Properties of concrete / A.M Neville // Pearson Education Limited, England, 2005 Uticaj fiziko mehanikih karakteristika razliitih vrsta drobljenog mineralnog agregata na svojstva betona sa posebnim osvrtom na vrstou / G. Toplii ªuri // doktorska disertacija, Niš,februar 2009. Uticaj fiziko mehanikih karakteristika razliitih vrsta drobljenog mineralnog agregata na svojstva betona sa posebnim osvrtom na vrstou / G. Toplii ªuri // doktorska disertacija, Niš,februar 2009. Influence of crushed stone aggregate sort on concrete consistency / G. Topliiªuri, Z. Grdi, I. Despotovi, N. Risti // Facta Universitatis, Series Architecture and Civil Engineering, Vol.8, No 1, 2010 pp. 99 – 109, UDC 691.212:691.214(045)=111 DOI: 10.2298/FUACE1001099T, University of Nish, 2010 The Influence of Addmixture on Cement Paste Texture Changes / Z. Grdi, S. ¡or{evi// Facta Universitatis, Series Architecture and Civil Engineering, Vol.1, No.1//University of Nish, 1995. ACKNOWLEDGEMENTS The work reported in this paper is a part of the investigation within the research project TR 36017 "Utilization of by-products and recycled waste materials in concrete composites in the scope of sustainable construction development in Serbia: investigation and environmental assessment of possible applications", supported by the Ministry for Science and Technology, Republic of Serbia. This support is gratefully acknowledged. 156 [! !!1, W Z2 " : ! ! . , , . ( ! - ) , . . & , . : & , , EXPLOSION PROTECTION MEASURES IN CIVIL ENGINEER CONSTRUCTION Summary: To implement protection measures, the main task in design phase and the first step of explosion protection should be providing of good preconditions. So far in practice, this problem in design phase has been resolved only by Electrical Engineer. Nonparticipation of other Engineers (designers of construction part, mechanical and tehnological equipment) in designing of Danger Zone Study, makes the explosion protection incomplete.From the point of explosion protection, project documentation control should be performed by professionals with necessary multidisciplinary approach.This point is clear if we consider that total security in affected area depends on, not only electrical, but all undertaken precautions. Key words: affected area, explosive mixture, explosion protection. 1 2 . # G" 2"", .&. . + , . &. !. % + 157 * , , ! ! . 3 &, ! . * & , " " . $ , , , ! . $ , , , & , , . $ & , " , , , ! . ! . * ! , , , ! . " + ! ( ) : - ! - & - - - % – & , : ) ;#% ;+%'#;'> 0 - , & . ;#% ;+%'#;'> 1 – , " , ! . ;#% ;+%'#;'> 2 – , , ! . 158 ) : ;#% ;+%'#;'> 20: (% 11) & . ;#% ;+%'#;'> 21: (% 11) " . ;#% ;+%'#;'> 22: (% 12) " , , " . : , , , ( ), , & , (, , .). $ ...... " - * ! - : 1. 2. % , , " . 3. " ! 4. * () 5. * & 6. % (, , ) 7. * 8. % ! & ( , ) 9. * , ! & 10. G ! ! (& , !, & ) 11. * , . 12. . $ ''Ex'' & & " " ! " 159 ! . ' ! & , &, & . ! & " &. 1902. .# " ( # ATEX 137 ICOP 1-7). ' ! – . ' " , . # , , , , " " ! ! ( # ATEX 137) ICOP 1-7 (2). $ " : &=>$}# '>$\<, '>%>}= &=>$*>>, \]%$ [$;%, \|#}= ''>, =%>;]#% %~>>%, #]\=*<%, '\+$+;<$%@ #%'>%&^ +;|%, ?#>&%*< ( +$$;]#% ?<~>%}=%), |\]'= `%=>;$,...>]. ' . , ! , , , , . ' ! . * ! , ! ( IECEx ) ! $ ( " & ''x'' ). , . ! ''Ex'' . 160 &, &. & , '' '', " , (/, , .), (, " , .) G . ( , - ). * , " ! . , , ! . ! , ! , , , " . ! % 426 G ! (IEV), 1. &=>$;>^#}= \${%< % ='+&;?#\ %>;'`$\ – +$;>?='+&;?#; %~>z# &=>$}# \${%< ! . 2. + %~>> (&=>$}#;[ \${%<% % ='+&;?#\ %>;'`$\) $ ! 3. $\+% (&=>$}#;[ \${%<% % ='+&;?#\ %>;'`$\) ! ! , : I – ! II – ! , . 161 4. %='%&#% >+$%>\$% +;?$~# ' & ! , " , !, . 5. +$%>\$#% =&%'% (&=>$}#;[ \${%<% % ='+&;?#\ %>;'`$\) ! 6. +$%>\$% +%|@% ='+&;?# [%';?> %>;'`$ '& , , . 7. ='+&;?#% %>;'`$% $ ( , , , , , , . 8. ='+&;?#% [%';?>% %>;'`$% $ , , , , , . 9. ='+&;?#% %>;'`$% '% +$%~#; $ , , , , . 10. ;@% [$%#*% ='+&;?#;'> - DGE ' , . 11. ;$@% [$%#*% ='+&;?#;'> - GGE ' " , . 12. %='%&# ='+$#>%&# JJ<]#;'# %;$ – MEBZ ($%'+;$) G ! ! , & 25 13. #%&#% '>$\<% +%|@% - MSP ' " 1000 24 V , 95 mH . MSP mA, " MSP MSP . 162 14. ='+&;<% (='+&;?# %>;'`$) ' " . 15. +$%>\$% '>?%$%@% %+%|? '<~ – >+$%>\$% %+%|?;'> '& ! , . 16. ;<%?% +;?z%@% +$>'=% ", ". 17. O+%'# +$;'>;$ (J;[ +$'\'>?% ='+&;?# [%';?> %>;'`$) , & , , , !. 18. ;+%'# +$;';>$ , !. 19. ;#% 0 (\ =&%'`=%*< ;+%'#^ +$;'>;$%) & , . 20. ;#% 1 (\ =&%'`=%*< ;+%'#^ +$;'>;$%) " " , . 21. ;#% 2 (\ =&%'`=%*< ;+%'#^ +$;'>;$%) " , , , , " . . 22. ?;$ ;+%'#;'>; <'>; '+\~>%@% , , " , & . 23. $$;]#% ?#>&%*<% & 24. +~>% ?<~>%}=% ?#>&%*<% , , & . 163 25. ;=%&#% ?<~>%}=% ?#>&%*<% & , , . 26. \z~> (&=>$}#;[ \${%<%) $ & ! " , , , , . 27. >+# %~>> =;< ;JJ<{\< =\z~> (&=>$}#;[ \${%<\%) G " ! : - , , ( ") ! ). - ! " . 28. $=>%# \?;] (\ &=>$}# \${%<) G ! " " ". 29. #]$=>%# \?;] (\ &=>$}# \${%<) G ! " ". 30. '+>?%@ >+% (\${%<%) !, ! ! , & ! , . 31. '+>?%@ +;<]#^ \${%<% !, , ! . 32. +$;+%|?; =\z~> ''d'' (e&=>$}#^ \${%<% % ='+&;?#\ [%';?>\ %>;'`$\) – #+$;];$# ;=&;+ ! – ! – " & ", " , ". $ & " . 33. +$;+%|? '+;< – $%'+;$ G " " & " . 164 34. %;$ (#+$;+%|?;[ '+;<%) – ~$#% +$;*<+% – ~$#% $%'+;$% ! " , ! . 35. %='%&#; ];?;|# %;$ - $%'+;$ ' " ! " & . 36. \_#% #+$;+%|?;[ '+;<% – ]\_#% $%'+;$% '" ". 37. +$;+%|? +$;&%# ;&%>;$ – +$;?;]# ;&%>;$ ! , , ", " . 38. \@@ +<'=; ‘’q'' (e&=>$}#;[ \${%<% % ='+&;?#\ [%';?>\ %>;'?$\) ! " , , ! , , ", " . 39. ;?z%#% JJ<]#;'> ‘’’’ (% &=>$}# \${%< % ='+&;?#\ [%';?>\ %>;'`$\) – +;?z%#% '[\$#;'> , & " " " ! . 40. $%#}#% >+$%>\$% (% &=>$}# \${%< >+% ‘’’’) G ! ! & ! : ) " ) " . 41. $< tE (% &=>$}# \${%< >+% ‘’’’) , ( ) lA, & " . 42. ;?z%# +$>'%= ''p'' (e&=>$}#^ \${%<% % ='+&;?#\ [%';?>\ %>;'`$\ – #%]+$>'%=) ! & " " & " . 165 43. \=~> '% +;?z%# +$>'=; – #%]+$>'%= " , " , . 44. $;]\?%?%@ – +$]?#>&%*<% " ! , & . 45. %~>># [%' (% &=>$}# \${%< >+% ''p'') 2 & " & & . % & , . 46. ;>%+%@ \ \| '';'' (&=>$}#^ \${%<% % ='+&;?#\ [%';?>\ %>;'`$\) ! ! ! ! " & ". 47. ;&% '% '?;<'>?#; JJ<]#;~z\ – '%;'[\$#;'> , , , . 48. &=>$}# \${%< '% '?;<'>?#; JJ<]#;~z\ – '%;'[\$#;~z\ ! ". 49. $];]%> &=>$}# \${%< (=;&% '% '?;<'>?#; JJ<]#;~z\) ! ", . 50. &=>$}# \${%< ''i%'' ! " & : , , . 51. &=>$}# \${%< ''ib'' ! " & . 52. J<]#;'#% J%$<$% – %~>>#% J%$<$% ' ! " , " " . 166 KISEONIK IZ VAZDUHA EKSPLOZIJA IZVOR PALJENJA ZAPALJIVA SUPSTANCA 1.: Z ,% Figure 1.:Represents elements, explosion inducements ELEKTROPROVODLJIV LEPAK UGAONA LETVA ANTISTATIK PODNA OBLOGA PODLOGA UZEMLJENJE BAKARNA TRAKA 10x0,08 mm 2. "% Figure2: The antistatic floor 167 0% 0% DGE DGE GGE 100% 100% DGE ' ' 3: $% Figure 3: Graphic display of explosion boundaries 1. G. 3: , * “”, , 1996. . 2. G. 3, 0 #. ": , , 1996. . 3. G. 3, 0 #. ", 3 G. : G ! , , 1996. 4. : , % , 1995. . 5. G. 3, . ': & , “”, , , 1994. . 6. G. 3, 0 #. ", $ . 3": G ! , % , * , “”, , 1996. . 7. $ $", 3, 0 ": &, , , 1998. . 8. #. G ": & & , Fahrenheit, 1995. . 9. ($. $3 24./71 26/71). 10. ($. $3 20/71 23/71). 11. & & ($. $3 45/67). 12. & . 168 # [! 1, [ ! 2, {U :! 3, \ Q! 4, [ Z ! 5, * ' 6 ! : * " & 1000 , $. & 25.000 m2. G ! 0 , 15,5 m . $ " , &, ' 1994-1-1 . ': G, , MAIN DESIGN OF OPENED MULTISTOREY PUBLIC CAR-PARK IN KHARTOUM Summary: In this paper, main design of opened multistory car-park with capacity for 1000 vehicles in Khartoum, Sudan, is shown. It has rectangular layout with seven stories and gross area of 25.000 m2. Floor structure consists of reinforced concrete slab on corrugated steel plate, composite steel beams with span of 15.5 m, and floor cross beams. Head stud shear connectors are used, and design of composite beams is done according to European design codes for composite steel-concrete structures: EN1994-1-1. Plastic design is used for all composite floor beams. Key words: car-park, composite structures, Eurocode 1 . , . !. &, 2! * G, . !. &, 2! * 3 G, . !. &, 2! * 4 G, . !. &, 2! * 5 . !. &, 2! * 6 . !. &, 2! * 2 169 1 3 & . G : , & , , . ! , (& & ). ' " & . 1 – W % ! G Figure 1 – Different traffic arrangements & & . * , , & " . & " ! 3000 5000 . " : - , , " , 170 - " ", , , , - , , " " , - & & , - &, - " & , - . & : " , , & , " & , , , ( , ), . , " ( 2). $ , 2,3 m x 5,0 m, , " 6,50 m. ' " . ( 1), " " . G 3,5 m, 7,0 m . ' ( 2,10 m). $ " , !, " &. * " 1:6 1:10. . " & " . ! , , " , ! ! . " ! & " & " " 2,50 kN/m2, & 3,13 t , " & (1 2 t). " ! (& ) !, , . % " (). * , 0 . ! . " , 171 . * ( 2,3 m 2,5 m). ( 15,5 m 16,5 m) , , . * " „ "“, " ( 7,5-10 m), - . , , . ' " HEA, HEB HEM , ! . 2 – W % Figure 2 – Possible layouts of parking places ! , & ( ) . & 0 , 0 , „hollow core“ , & 0 . % I , & &. 0 , 20% . , 172 & . ' " 1/2 " . , " & S355 S420. 2 ! - & $, , 1000 & 2,5 t. + . : 41,582,8m (3436 m2). % ! 2,10 m, 2,63 m (2,10+0,40 +0,13). & 3, . 2& ( + 6 ). $ ! , " & " , " , ( 4). ' 13,15%. # 2,35,0 m. * 143+156 6=1079. % " ! . 3 – G : – ( ) Figure 3 – View of public Car-Park in Khartoum 173 & . & & . # & ( 5 6). 2.1 '+;*;#; $~@ ' " ! , " " . & ! 2,3 m. 15,5 m (Lmax = 5,0 + 5,5 +5,0 = 15,5 m), " " . , " , , ! . 4 – ! „ „ G Figure 4 – Traffic layout and parking places arrangement in ground floor 0 , a 130 mm (60+70 mm). " " . 2,5 m, . * , . % " " S355JR. * & 4, & 5 6. # & " $$ , 4 . " 3 kN/m2, (") " 2,5 kN/m2 , " (a a 19 m/s) . 174 2.2 {\'+$%>#% =;#'>$\=*<% , , " , . 5 – ZG $ Figure 5 – Elevation of facade and in the middle axis # , ( 7), : EN 1994-1-1:2004: Z% % # 1-1: . , 1 2. & : " " . (15,5 m), ( ! ). " & & , , ! " . * " & , , ! . 175 & & & " , &, & , & & . 6 – Z% % % Figure 6 – Cross section of steel structure in ramp zone , . & , , " „I“ . & . " & . & & , . 7- Z % Figure 7 – Composite section plastic resistance 176 % 15,5 m IPE 400 (S355JR). " " 78%. & 16 mm 175 mm ( ). , (") " . % " , " 13 cm. " (=2,3 m) , " . 9,2 m . # & , HEB450 (S355JR). ' & 16/250 mm, ! . $ 175/60/1 mm 7,0 cm, 13,0 cm. & 26mm (RA 400/500-2) , & Q188. 2,3 m. 2.3 >\J;? '+$[;? $ ! . . . $ HEB & , HE0 . $ ! . % & 133/4 mm (S355JR). # " . 2.4 ;#'>$\=>?# ]>%| ?;{@ * ! ( ), . $ " 8.8, . % " , & ( 8). ! , ! , . ' " (CNC – ) . 177 % ! $, $ BelKhart & . $ $, . ) { % ! U% a) Joint of floor beams and column with angle cleats ) { , % b) Joint of floor beam, brace and column 8 – :% U Figure 8 – Characteristic joint details 178 ' ! ! . & 800 , &, . , . G" , , , " , & , ! . 3 " (NC – ) . & , ! . 2.5 \#]$%@ ;J<=>% , " ' & 20 ÷ 30 m, 2 . $ & " . , , " , " . *! 80% 7 m 0,1 mm. ' & 30 m (' ), ! 15 m . , , " &. &, $ & , & $ , . , 160 mm . , " , . " , & & , 2,5 m . $ & 2,30 m, 2,50 ÷ 3,85 m, 1,40 ÷ 4,00 m, . G !, , " , . , & . & & & , 179 &. ' ! , ! , 25 cm. $ , , !. ' , . * , & . 3 $ , . 2 , . * , , ! " . & , ". ' , , . , & . ' & & $, ! , " . ! , . ! , . $ & 32 kg/m2. $ ! , , 3000 , . , " , , . [1] G – : () / # & // , 2010. [2] * 1993-1-1:2005 3 – Z% % % ; Q 1-1 // 2! * , , 2006. [3] * 1993-1-8:2005: 3 – Z% % % Q 1-8: Z% , 2! * , 2006. [4] * 1994-1-1: 4 – Z% % ; Q 1-1- // 2! * , , 2006. [5] [ / #. ! , %. G", #. , #. " // 2! * , , 1999. . 180 { {!1 : * , & ., ( ) 3 , (, , , – ! .) : % G, , % , $ . WHAT IS NOWADAYS IMPLIED BY THE CONCEPT OF GEOTECHNICAL ENGINEERING Summary: In default of precise scientific and technical definitions and interpretations, what is nowadays implied by the concept of geotechnical engineering etc., the author makes an attempt to present his own standpoints, as well as those of other experts from our country and from all parts of former Yugoslavia. This applies particularly to the field of geotechnics (concepts, interpretation, connotation, modeling – forecast or process etc.). Key words: geotechnical engineering, geotechnics, geotechnical modeling, definitions and concepts. 1 G , .&. ., & 0 $ , % , , .. – , 257 181 1. ( , " ), , : - , , . ! , [;>^#}=% '?;<'>?% >$#%, , „“ (feasibility), . ! . $, & , , - , , ! & . * , ?%$<%#>#;[ - ;+>%&#;[ ( ) $~@%. , , ! , ! , , ! - , , , ! – ! . 2 & , ! , %~>> _?;># '$]#, (), , " , ;J<=%> - >$#, & & „ “ ( ), ( ), & , , – , +$;<=>;?%@\ [$%{@\ ;J<=%>%, , & – , ! , „;>^#}=; #_@$'>?;“, , '\~>#, , #_@$'=; [;&;[<;, , , ;J&%'> [;>^#= ( . 1). * , – , , „ & “, „ “ ( , - ), ( , ), () , & , , , ( ), " , +$^?%>%<\ +$@\<\. 1. , ? 1.1. `#*<, +;<;? >\%}@% # – (& ) , " , " " , : ;>^#}=; #_@$'>?;, ! , , , , ! (R. L. Handy – 1995). 182 $ ! ! ( ) , , ! . (), , ": - # & ? - , " ? - " , ? - # " ? , ? - ? - * , ? - " ? - # ! ? # ? * , ? . G !, , & &, . ' , , - . ' , , , () , [;>^#}=;[ #_@$'>?% #_@$- '=; [;&;[<;, (D.P. Coduto, R.L. Handy). 3 , ( ) , !, " , ( ! ) , ( ), [;>^#=%. 1. – % G U &, G . Figure 1. – Geotechnical engineering is a branch of civil engineering, while engineering geology is a branch of geology 183 # [;>^#}= ;'#;? % +$;<=>;?%@, & , ! , , , , . G , , & , () . , , , , . , , , . , " & – , , , ! , . , : . +, #. $", #. 3 ", . " . " ( ), 1997. . () %&[;$>%, . 2, & [;>^#=, '$;]# #%\=%%. G30 2+230 2%0 G0G00 G0'0 2. - (: Z., Q.!, Q. \!, {.{!, `. W!) Figure 2. - Relation of geotechnics toward other sciences (according to: P.Lokin, D.Sunari, D. Jevremovi, V.Vujani, LJ. Roki) 184 '0 (! ) %0 G, ", ( ), – , , () , , . , : G.. +", . $ ", G. 3", 3. ", . &", #. &", 3. ", . 3", . 3", '. ", . $", '. '", $. $ ", . 0, #. ", G. G", 3. 3", #. 2", G. 3 ", . ", '. + . 0 , & " . . $ , .. , .G. $ , 2.$. % , '.0. , T.W. Lambe-a, R.V. Whitman-a, F. Ruter-a, K. Klengel-a, J. Pašek-a, M. Matulu, D.P. Codut-a, R.L. Handy-a, J. Burlend-a i dr. ' , , ( ) , . , : [;>^#=% \&>]'*+&#%$#% , : & , , , , , & , & , & , . ! , ! , , (! , ), ., . , , & +$@# [;&;[<, $\]%$'= [$%{?#'= >^#= (. +, . "). * , & - %>%>=, '>%>'>=, ^<, `=, ^%#= ]$. # , &, . $ & : ! . 2 : & (& , , ! " ); ( ); ( - , ! " ). (. +, . "); ( , , , , .); ( , . , - , ., - , ). , , [;>^#}=% '>$%_?%@%, & , , 185 , , , " (. +, . " .). '" , ! , . ;&;[<% , , >^#}= #%\= . ;&;~=% '$]#% , - " ! . " , & & , (G. G, . +, . " .). $# ( ), , ! , & . ' , $|` (G. G, . +, . " .). * , ! ( " ), >&;, , , , (T. W. Lambe, R. V. Whitman). $ , & (G. 3", . ", . +, #. &" .). , +$$;]# =;#'>$\=*< ( ), ( ). 0 , . 3 , , . , $%]# '$]#, : , , , , ., . #_@$'=% [;&;[<% ( ), , , " ( ), & " , (. G. $ ). #_@$'=; – [;&;~=% '>$%_?%@%, , , & (. +, . " .). , & , [;&;~=% #%\=%, (2! ), , (2. $. % ). * & (F. Reuter, K. Klengel, J. Pašek), ]; ;>^#=, " : ! ( , "), , ( ! ), ( , , ), ( , " ), & . 186 1.2. ;>^#}=; #\$}=; ;]&$%@ – ! * & , , - 3 (3ohn Birlend), + 1987.. * , & : & $ / , & / - . 3 , ; . . , "Ground Engineering" (' 1999.), a . 3. 2 / 2 / & / , , , G + / , , % . , 3. – Z } (* 1999. .) Figure 3. – Expanded Burland Triangle (Anonymous 1999.). ! & , ! , , " . & & & : +$?;, ]$\[;, . & , ! & . 187 , & " ( ) & " . & , , ! , . & , & & & . &. %, , & & . G & & . ' & (1990.) : “[% / . Y ( ), % ”!! . 4, : ! G $% ! % , G %/. G0G0 $$G % $$G '*G $$G 4. – \ $ Figure 4. – Simple definition of modelling &;_#;'> ;]&$%@% G , , +$;*' " & . * - ( ), & . * & , , , ! . $ , . # , & , " & . 188 G ! , & . ( ); $ ( / ), ( / ") $ ( ). $ & & , . & , & . $#% ;]&% *!" & , . ? , , ? G" " , >$ ;+~> =%>[;$<: x Y%: . ' , & " ; x Z% / Z: , ! , ! ; x Z&: , , " ! . $ " , & " - ! , , / !. & ( / ), ( ), . +~>% >;];&;[<% ;]&$%@% . & G (1981.), . '&]z =;$%=: x ( ). x (G ). x " , , , (' ). 189 , , =%; ~>; '\: x : 2 , x # : , x : ' , x : , x : , . ># ;]$]#* & & . & " & . & , , , & . # & / . W G G % , ! G, , U . '>$%<#;'> \ <]#;'>%?#;'> $?% +;\=% < : % , G. & . % . ' , . ' , " - , . " . . # " & , , . " & . G . 2 ! & / & . 3 , je ( ), . 190 & . , . $\[% +$]#;'>, & , , ! . ! " , , . & . ' , , !. " , & $% . , & & i & " o & ! " !. 3. ;>^#}=; #_@$'>?;, & , . ;>^#=% +$]'>%?|%, & , & , . ;>^#=% '%]$_, , & , , . 2 , & , & ( ! ). ^%#= >&%, ^%#= '>#% ( & , ), ^%#=% `&\]% , – , [;>^#= [;>^#}=;[ #_@$'>?%. * +$$;]#% - [;&;~=% ?~>%}=% =;#'>$\=*<%, & , . % , " >%}#; ]`#'%@ +$$;]# =;#'>$\=*<, . \$}=; ( ) ;]&$%@, ( & ), & ! . $#% [;>^#=, ! , : , , , . , , ;>^#}=; #_@$'>?;, [;>^#=%, , , () , , , , %\\ +$%?&%# '>%? ; >;. 191 - . +, . ": [ & % G , & – I $, , , 1996. - . +, #. $", #. 3 ", . ", . ": , „2 “ – , $$, , 1997. - . ", . ", . 3 , G. 3": [ !, $ „ – & 3“, , 1997. - Gudelines for geotechnical reports, technical buletin, Ministry of Transportatiom and Highways, Canada, 1998. - V. Vujani, P. Lokin, LJ. Roki: Geotechnical investigations in road engineering, Zbornik referatov (1 del), 6 Slovenski kongres o cestah in prometu, Portorož, 2002. - S. Lee Barbour and John Krahn, Geotecnical News, Richmond, 2004. - $ , .., . 192 Z [!1, } \ 2, [ !3 ! „ “, -2, – .! : 2 „G “ ! $ 2 . G-2 20 m - 16 m, & 155 m 40 m. a, . ' , & " : , , & , , , . : % , , , GEOTECHNICAL INVESTIGATIONS AND SLOPE REPAIR ON THE BORDER CROSSING POST „MEHOV KRŠ“, ON M-2 ROAD, ROŽAJE – K. MITROVICA Summary: Border crossing post „Mehov krs“ is located between the Republic of Serbia and the Republic of Montenegro at the entrance of Ibar river gorge. It was formed by the widening of M-2 road by the construction of anchored gabions structure 16 m high and by building a steep slope in dolomite limestone. As the built slope being 155 m long with the hight within the range of 5 to 40 m was very cracked and potetially unstable, thus requiring geotechnical surveys of cracks and faults. Based on analyses of labile blocks, a series of repair measures were undertaken such as: retaining wall, anchors, nets, wire cables, sprayed concrete and perimeter channel. Key words: border crossing point, road widening, slope, repair measures 1 # .&.!, $ % , - .&. ., % , , .. - 3 .&. ., 2 & % , , .. - 2 193 1. * „G “ ! $ 2 , G-2, & – G, km 1168+310 - km 1168+650, 1, ! " 20 m 12 m ( ), 8 m ( ). ȱʂɯʒʅɪȱɼʇʘȱ 1. – $ G G Figure 1. – Geographic location of the investigation area „ “ , ! , 10:1, 16 m & & . , 2009 , „G – “ . ! , „2 & “ . * & , , , . ' 30 m. ' & , " . ' , , ! , & & 194 . % " : - & - & " & ; - " , ; - & ; - & - ! , " : , . 1. " ! & & 45 - 70q. , , . " . , 785 – 850 m, : , ! . " & 155 m, , (). 2009 . GN-200 VI . 5 – 30 m , " 50 - 80q. ɫʇɧʃɸʕʃɸ ʆʇɯʁɧɶ ʂɯʒʅɪȱɼʇʘ 2. – Z Figure 2. – Panoranic view of Ibar canyon 195 # - , ( ). $- . 3. – : Figure 3. – Rupture contour plot * Y 1. Y 2. - . 1. – ' #' Table 1. – Basic crack properties % Z% 1 2 3 114/51 308/43 224/87 1,0 – 5,0 m 2,0 – 10,0 m 10,0 – 30,0 m 0,0 – 2,0 cm QG (m) 10,0 – 20,0 m Z [$ " : 0 – 10,0 cm 196 3,0 – 5,0 m 10,0 – 20,0 m 0,0 - 10 cm 2. – ! % " Table 2. – Input parametars for geostatical analysis Z"W"[YW \Q* J kN/m3 E MPa Q Vz MPa c MPa 1,80 ® (o) 47 cr MPa ®r (o) Q % 26 10.000 0,28 0,12 %, 0,06* 35* Z 0,05 20 % ! " & , 4. , 6, 27 1, Ep=114/41, Fs = 1,08 ! & . 4. – " ! G Figure 4. –Kinematic shear analysis along one crack 5. – % Figure 5. – Stability analysis along fault 197 2. ! & & , , , ! . % & , 15.2 mm " 1770 kN. #& 13 m, 6.00 m, 7.00 m, $ 6. 6. – QU % Figure 6. – Detail of the prestressed geotechnical anchor 7. – Z % Figure 7. – Panoramic view of the border crossing 198 4.493 m2. ' ! 115 & 13 m. " " , ! &. " : 0,50 0,75 % . ' . . $ " . % & . * . & ('Le), " ('Lt). 'Le Z LS , EF : Z ; F ; . 0 ('Lt) & & ('Le), " " . % & . , " , . & " : " . , " : - &" 10% ! ; - 10%, &" " 30% ! & 15 ; - " 10%; - " 60% ! , 15 ; - " 10%; - " &" 90% & 15 . - " 10%; - 50 - 75%, " . 199 , ! , , " " . - '$$ 0+0 1. ' : r 0,10m1 ; R 1, 20 u r 1, 20 u 0,10 La duzina.sidra 0,12m1 ; 6, 00m1 Am arhezija.cem.masa.tlo 350kN / m1 ; IM ugao.trenja, tlo cementni.valjak VV h u J ST VN V V u cos 30$ 15 u 22,50 47(iz.geot.elab.) Fs 47 1,3 36$ ; 337,50kPa, 337,50 u 0,866 292, 28kPa $ ! : T R1 S La ª¬ Am V N tgIM º¼ 0,12 3,14 6, 00 >350 292, 28@ 1452.kN / sidru 2. * . a & , 15,20 mm, 0, " 1770 kN kN/mm2, Z = 413 kN/. 3 x Z= 3x413 kN/ = 1239 kN/ < =1452 kN/ 3. : La R1 S a 6, 00 0,14 3,14 680 FCUPANJA 1, 448 ! FCUP.DOZ 1, 400 Z 1239 a o i.& , % / . 4. * Ls = 7,00 m 5. * & : 6,00+7,00 = 13,00 m 6. & $ 7,00 m; G : 2,10 x 10 kN/m2; & 0,0152 420 x 10-6; & 200 'L Z LS EF 413 7, 00 2,10 108 u 420 u 106 2891, 00 88200 0, 032m1 7. , 75% x Z = 0,75 x 413,00 = 310 kN. . 8 & ! , : – ! , : 350 kN/m2 LA T FS Rc S a 590,49 1,6 0,24 3,14 350 944,78 # 3,50m1 263,76 . $ " km: 1168+435 km: 1168+470 km: 1168+535 km: 1168+555. 2 3 m, „-“ . , , , & . ' !. # & & . ! & " : & " 550 kN/mm2; & 3 mm; 270 g/m2; & (), ! . G & ! , 3.3 mm, 270 g/m2, 20 mm. & 1 mm3. & , . . & & " . , , . # & & & " , . . & " . 0 & ! , ! " . 0 ! 0 400/500-2, 19 mm. 270 g/m2. * 150 . #& 100 cm , & . 0 2-4 m. & & & . ! , & " " , " : " 550 kN/mm2; 12 mm; 201 270 g/m2. & & ( ). & & , ( 30 cm), . # , , ! , " . 3. $ G , , . $ ! , , !, ! . , „G “, $. - . – : Z & & , Q $ } [, ISHEBECK TITAN, Z ATLAS COPCO, Z Q „[ “, # 1986. 202 W ! 17 : & ! . % " ! . ': : , & , & . PM IN PUBLIC PROJECTS BUILDING: THE PROCESS OF PROJECT GUIDANCE Summary: In this work is shown the role of project manager in public buillding project guidance. The project-team working technology is sistematicaly presented, with special consideration of the role of project manager, who direkts the organization as well as the realization project of public objekts building programme. Key words: key word: public building , project guidance, management 1 [, .G.&., % { G :, colaboratore del Dipartimento di Ingegneria Civile Universita' di Firenze; e-pošta: spaicr@yahoo.com, spaicr@dicea.unifi.it 203 1 ( , ), , ( ) ( " " ). " ! . % , & , " ! , , , . [8] 2. " 1. ! " ( ) . G& , . & ! . - ( ). 2. ! , . % & " () & , & . 3. ' & ! ( ). 4. ! () . 5. ! ( ) ! () ; , . 6. ' , , . 7. *! & , . 8. # , , , - . 9. ! ! , , " . 10. * ! ! ! : ( ), , &, , 204 , . 11. : - & , - !, , ! , - ! , - , , , . 12. & ! , . 13. ! . 14. () " . 15. () . 16. * ! & & . 17. *! . 18. ! ( ). 19. & & , , ! . 20. & ( ) . 21. (). 22. $ ( ). 23. ! ( ). 24. , - . 25. , . 26. . 27. , " . 28. : ! . 29. ! ! . 30. ! . 31. $ . 205 32. , . 33. * ( ) . 34. ! - (..., , , , ...). 35. ! () . 36. $ , , !, ( ). 37. & – - , ! , ! . 38. & (# . ) & ( ) . 39. *! ! , . 40. ! ( ) & ( , ! ). 41. % ! , & ,! . 42. # . 43. # () ! " . 44.* " ! & & . 45. % ( ) ! () ( . 3 5 ). 46. % ( &) ! ( , ) & . 47. ! . 48. . 49. * ( ). 50. . 51. ( . ' ) ! ! . 52. , ! , " . 206 53. % () 10% . 54. , ! ( , , ,...) " . 55. ! ! . 56. % !, ! ! . 57. ! . 58. *! , , . 59. & ! . 60. & . 61. # " ( ). 62. # , " & . 63. $ " . 64. $ & ( ) ! ( , ). 65. ! , " . 66. # !. 67. 0 ! , ! " . 68. ' & . 69. * ! – " . 70. # & & !. 71. " . 72. & ( , , .) . 73. # . 74. . 75. 207 . 76. ! & . 77. * ! , , & " . 78. % ( ) . 79. 0 , . 80. , , ! . 81. ' . 82. () " . 83. . 84. , ! " . 85. ! . 86. $ " . 87. * & . 88. ! . 89. ! " . 90. $ ( ). 91. , . 92. ( , ). 93. # . 94. , , , 95. ! . 96. ! " & , 97. 0 " . 98. * " ! - . 99. 0 , , , ! ; & ! & . 100. ! . 208 3. $*<>* ! ?*@* D E F ?<HH< @ JL* !< M** H $H*E M N,<*9L " {Z 1 2 *., , , , , 3 4 5 6 7 .& « « , ., . , , 8 9 10 11 12 .&. . . , , , 13 , , 14 15 , , , 16 . . & 17 18 . .& , 19 , 20 21 .& ($) ( ) % 209 { ! ., . & $& , ., . 22 . .& , . ", , , 23 24 25 , 26 27 28 29 30 31 . . & 32 33 34 w 35 . 36 37 38 39 40 41 42 43 44 45 , . . . & . .& . .& . .& & ! . .., . .&. . -& . . . , , 210 , , , , , %. . % . ( ) . % , " 46 47 48 . . . ! ! 49 . 50 . ! 51 ! 52 ! 53 ! 54 ! 55 ! 56 57 58 ! ! ! 59 ! 60 ! ,!, & . .. .,. ., . .& , . , ! ,! .,! ,! ., ! ., ! 61 ! 62 ! 63 ! 64 65 ! ! 66 67 ! ! 68 ! 69 ! " ! *, , , , , ! . . & . .& . . & ,! 211 !. & , , , , , ' . " 70 71 ! ! 72 ! 73 ! ' 74 ! 75 ! , ! ' / G 76 77 ! ! , , 78 79 ! ! 80 ! , , ,, , 81 82 ! ! , 83 ! 84 ! . 85 ! , ' 86 ! , 87 ! 88 ! 89 90 91 ! ! ! , , , , , , 92 ! # , & , ,, ! -« # , ! , ! , ! , ! , ! , ! " & , , & 212 , , , ' 93 94 95 96 97 98 99 100 ! ( .). . & , 213 *. . #. ' 4. ! " - 214 215 216 5. ISO 10013 »Guida per lo sviluppo di un sistema qualità«,Tipografia del Genio Civile, Roma, 2003; [2] Patrone P., Piras V.: » Construction Management » Alinea, Bologna, 1997; [3] ", .: » G &«, 2! , , 1992; [4] $" ., " G.: »Criteria for chosing tunnels as a possible corridor for urban public instalation«, Third International Conference on the Sustainable City, Siena (Italy), 2004; [5] $" .:«Z $«, % »« . 2-84, , 1984; [6] $" ., £!" G.: »|U $«, , * »" "« »«, , 1999; [7 $" . : »Optimization of dynamic plan of annual program of public utilities«, 4th World Congress ICEC, Cape Town (South Africa), 2004; [8] $" . : „* : ! “, II '- „2' 2008“, 2! * 2, , 2008; [9] " G., $" ..: «Z U », « -G » .1/05, , 2005; [10] " .: »Z & & «, 2! , , 1992; [1] 217 *& [U!1 ! " ! : * & +. . ! . " . # &. ': &, , . PRICE OF CONSTRUCTION AND THE RISK OF CHANGE IN PRICE OF A BUILDING CONSTRUCTION Summary: The paper describes the construction planning and project management for construction of a residential building for the real-estate market in Banja Luka. Optimal planning and management strategies are based on modern methods of planning and the process of multicriteria optimization in construction planning and management of a building construction. The risk caused by the change in price of construction was taken into consideration as well as the strategy as a response to the risks of the construction of a building. The paper also shows the planning model and management model of a building construction, as well as the considered possibilies of model improvement. Finally, some directions in the further research are given. Key words: construction price, the difference in price, the risk in building construction 1 G. .!.&. G ! , ! , + 219 1. “ PMI-(Project management institute)2 [12] & . 2 . $ - G 3" 7 +. 1.1. , ! * ! " ! ! . # " „ADHOCK“ : MS Project 3, , G, , 2! , 02 r. . ' " ! ! (Cost engennering) [7]. 0 & o ! ! – („Cost – benefit“ ). . & & " " ! & " ( ) : & " ": 2 3 - ! , ! ! , - $ " ! . PMI ( Project management institute ) - 0 MS Project – $ 220 2. 2.1. & [5], [6],[7], [12]. G : x G (Activity base costing), x G (Bills of Quantities), x („Monte Carlo“method ), x ( ). ": x , , , , x . 2.1.1. >$\=>\$% *<# [$%{?#'=^ $%];?% ! " f ! ! [1], [5], [19], [21]. n Cg ¦ ( p pi m pi u pi a pi ) * f (1) i 1 Cg p pi m pi u pi a pi f , , , , , . 2.1.2. &%#;? % [$%]@\ ;J<=%>% ! CPM (Critical Path Method4) presedence & ! MS Project 2007 [5], [14], [23], [24], 4 CPM (Critical Path Method) presedence – & ( ) 221 [25]. " ! & [3], [12], [19], [21]. 0 : (project faze), OBS (Organizational Breakdown Strukture) , WBS (Work Breakdown Strukture) , (Resource Breakdown Strukture), (account codes) *! ! , ! ! [4], [5], [8], [9], [10], [17], [20], [22]. * ! & ! . 1. [G - } , [ \! 7. - { 1 Figure 1. Construction Network Plan for a residential and office building in Banja Luka, Street: Majke Jugovica 7 - illustration of a part of the plan ,Option 1. ! " ! , ! . 2. Z % - } , [ \! 7. - Figure 2. Estimated bill of quantities of a residential and office building in Banja Luka, Majke Jugovica 7. - review 222 2.1.3. ~=$>$<\'=% o+>%*<% \ J;$\ +&%#;?% * “$$“ (“TOPSIS“method). Kao ( ) [, 2006], [15]: % ! A^a1 , a 2 ,..., a n ` . $ k f 1 , f 2 ,..., f k . A f * * 1 * , f 2 ,...., f k * (2) : f j* max a A f j ( a i ) (3) f j (x) (). , . * & . % d p ( a i ) + G. 1 d p (ai ) § n ·p p ¨ ¦ w j ( f j * f j (ai )) p ¸ ©i1 ¹ (4) : A^a1 , a 2 ,..., a n ` , ai ( i 1,....n) , f j ( j 1,....., k ) , k wj ( j 1,...k ) , ¦w j 1 & ( ), j 1 p = 1,2 ...± . . # & : D p (ai ) d p (ai ) /(d p * (ai ) d p (ai ) (5) ! " : 1. 0 d D p ( a i ) d 1 , 2. D p ( A* ) 1 , 3. D p ( A) 0 223 % p . ' : D O1 D O 2 D O3 Df (6) Oi , i 1,2,3 D p p " " . . * - : , , , . " . ' 3. - . – & & , , . { 1 . 3. { „ YZ“ - } , [ \! 7. Figure 3. Multi-criteria optimization method "TOPSIS" for a residential and office building in Banja Luka, Majke Jugovica 7 224 2.1.4. $;<#% *<# [$%{@% (%&=% \ *<# ) * FIDIC5-a (Adjustment for Changes in Cost), : Pn ab Ln E M c n d n ... L0 E0 MO (5) : - &- ! , Pn a - , b, c, d ... - " , Ln , E n , M n ,.... - " n , L0 , E0 M 0 ,... - . , " " . $ , , " & . G € & , . 2.2. [6], [7], [11], [16], [18], [21]: n Pi ¦ Pi min D Prisk (6) i 1 : Pi Pi min D Prisk . (), , . 5 FIDIC –Federation Internationale des Ingenieurs-Consels - G ! & 225 4. 4. Figure 4. The general model of planning and income control 2.3. * . ! . " " [21]: n Pi ,min ¦ randPI 'Pi(rand ( p( x) i , j )) randPi (7) i 1 n Pk ¦ randP (8) i i 1 Pmax - Pmin & . G - („ Monte Carlo“ ) & & ! [12], [13], [21], 5. [ U Figure 5. Risk control and risk management model " 3 . 226 !, . | „MS Projectu“ & & . ! . , " ! . 6. " $ “ Pr risk“ } , [ \! 7. Figure 6. Risk analysis in software "Pr risk" for a residential and office building in Banja Luka, Majke Jugovica 7. ! : 0 - ( 3%) . * . 2 . B – ( 10%) !. * ! , ! . C – ( -7% ) * " , D – ( -10,6%) , E - ( 32,7% ) * . 227 3 2 ! & . ! , ! , ". * " , , " ". 7. :$ [ - } , [ \! 7. Figure 7. Quantification of planned risks in the building construction Qualitative risk analysis matrix for a residential and office building in Banja Luka,Majke Jugovica 7. 2.4. ! ! " ! & ( „ “8 ). * ! , , . 2.4.1. [;?%$%@ [$%]@ >+;? \[;?;$#^ ;]#;'% & . * " ! * " : 6 „Centris“ – 228 (Tradicional) (Bills of Quantities Contract) „ “ (turn –key), (hibridni ugovori) (Shedule Contracts) . , a ! . 2.4.2. +$%?|%@ \[;?;$; ; [$%{@\ –+$;*'# +$'>\+ & [2]: I. - (Contract Planning), II. - (Contract Formation), III. - ! . G & : - , - . & : , & , , , . 3. " & & & . & 3 & MS Project . & " ! " ! . % & " , ! ! " ! ! ! ! [4], [7]. & & " . " . 0 . " ! , " , . 229 * , " ! ! . ( ). ! , , " , . % . ! , ! ! . & ! ( 0 ), . * - . $ ! ( ) . „$$“. * & . 3.1. * . & ! ! . , " " & & " . & : , ! e, " ! " &, , ! , ! , " ! , & & " . " , ! & , 230 - 3.2. & " . " ! ! . * & : & ! , ! ! : – , & ! , & , & & , & , & , & ! . & " & ! & * , & , & & $ , : # ! ! ! , , , ($), " , , , " " , " , " " & " , & " " , & , , , ! . 231 5. ' " " & . : & " , ! " ; " ! " . $ – ". " - , . # " , & ! &. * ! " ! MS Project. *3 " & " . 6. [1] , $., (2003): "$ ! " 2! “, % , [2] ", #., (2008): " & ",2! , % [3] ", %., (2004): "G ! " 2 232 [4] ©", 2., +", ., (1994): "' o " [5] ©", 2., (2005): " ! " 2! - [6] ©", 2., +", . (2005): " ! " 2! - [7] ©", 2., (2005): " & ! " 2! . [8] ©", 2., , #. (2005): "2 ! “ # &, [9] ©", 2., G" $. (2008): " ! " [10] ©", 2., +"-", $, #. (2004): " ! " [11] Engineering and Ekonomics, (1993) " Risk and Uncertainty" + [12] ", ., ", ., (2005): "* ! " 2 [13] ", %., ", #., (1996) " " " ' [14] , ., (2007): "G ! " 2 . [15] , $., ", G., "-", ., G", G., ", M., (2004): " &", [16] , #., ", G., (2006): " " [17] G, G., ", $., ", ., (1993): "$ ! " , [18] ", ., ©", 2., (1995): "$ ! " [19] $", $., (2008): " ! ", 2 [20] ", G., (2000.): " " 2! % [21] ", G., , +., (2005): " ! "2! , % 233 [22] ", G., G", #., # -0, %., (2007): "* ! "2! % [23] ", ., (1983): " ! " ' [24] ", ., (1983): " ! ! "' [25] ", ., (1997): " , ! ", $ - www.fileguru.com , Project Risk Analysis by Katmar - www.palisade-br.com . - www.projectvare.com.au –Rob Jeges. : ' ! G " „ +“, - , 0 -! +, 2009. . " ! , , ! +-$ , 1999. . ! ( 1.-7.) 2! , , 1995. 2002-2008. , ! "+ & " ... $ 2007. . , ., ", 2., $", G., " ! " +. " ! "- , 2! $ % ,2004.., , ., (2006): " " , &, + ", ., "+ ! " % , % .: % ! ! "$.$" 55/10, "$. $" 7/4. "$. $" 87/4. %^?%&#;'>: " "0 " .. . + „2 “ ... + & " . 234 {U W !1, W Z!2 ! „“ ! : „3“ -'. & & , . , , & ! , " , . ': ,, RECONSTRUCTION OF AN OPEN SWIMMING POOL AT THE ŠKVER IN HERCEG NOVI Summary: The matter concerned presents the design reconstruction process of an open swimming pool of the Sports Club „Jadran“ from Herceg-Novi. This memory and ambiance important city location is marked by the complex and, at the same time, very attractive urban status, which makes it a great architectural challenge. Sensitive perspective, various physical context, the complexity of natural conditions for building construction, and its great identity potential in the future urban image of the city, have defined the platform of the design activity. Key words: context, construction, architectural identity 1 G , 0 2 # ! , 2! 235 1. , , ! -'. 20. . ' & & «3», , . 1 – 30- 70- 20- Figure 1- Picture of location from the thirties and sewenties of the 20. century 20. « », , ! , " . G ", 20. . $ ' #" -'. #", , , & , ", & . 2 – * [ Z!, 1951. Figure 2 - The new club facility designed by Milorad Petijevic,1951 236 , , « #», , & 7 . 3.50 , & % -$ . 3 – 7 «7» Figure 3- The wider situation plan ' 21. «3» , 90- 20. , 2008. , G. 3 , " , " . ! , &. & " 2 ", . ! " , , « » , " , " . 2 « ! », 2! . " , , 237 « » -'. * , & , " . . , . 4 – Z «7» Figure 4- (Spatial view on open pool in Skver " , . $ & , , &. , 1 . , " . 5 – Z% Figure 5 - Crossection of facility 238 * 780 " , "" & , . * & , . !" , . 6 – Figure 6- The higer part of seating area & ! , " . " , -'. 7 – Y Figure 7 - Actual status of building development 239 2. ! - . " & , & . 60 . 35 . # . , . * ( 12 ). ø800 15 , 2 3 . 4.30 , ! . . * 0 , . 0 20 . 0 . ' , , 0 , ! . % " . % " , 0 ! . * 0 & , & . ! 0 , & , " , . 240 8 – Figure 8- Construction plan 241 G {. Z!1 : !, !, ! (!) : * , , &, &. . : , , , $, FACADE DETERIORATION UNDER THE INFLUENCE OF EXTERNAL FACTORS: CAUSES, EFFECTS, PREVENTION (REHABILITATION) Summary: Using several practical examples, the negative effects of sun energy, wind carrying desert sand, low-quality construction and fire action are presente. Also, some prevention procedures are described. Key words: high temperature, sand, styrofoam, facade deterioration, prevention 1 #.&. , . . 2! , . . 0 -! +, . , 39, $. 243 1 "' , & " $0'*, . ' . , , . ", 2, & , , . % , , , & , , . , " . , , , " " " . 2 2.1 1 ' ' ! , , , & " " ( ). -. ' & (* 3'0) 2! - G - . * . : , ", , , . 2.2 2 0 0.. , , - G, , " . : - , . , . 2.3 3 ) ' , & . ' ! , . 2 .: ., G.G : "* ", : "% - , ", , . 2010. % . 15 passim 244 ) & .#. - , ! , SIPOREX- ( YTONG-), . 2.4 4 $ ! , , , , , , , ! . G , & , & . , , , ! ; , , , , , , , " " , . 2.5 5 % G - ( G ) ( ). * , ", ! 1999. , & , , , . 40 , & , 1 , " . 3 3.1 1 % " " ! & G$ ( & ) , , " , " . , . , , , & ! . + , , , ( 14 ), , ( ), , , " " . ! " " , ("" " - ). 245 U $ (Lever House, NY 1952. arh: S.OM.)3 9 Q $ 16 %.. $ ( - ). 3.2 2 - G . * & - , - " , . 3.3 3 ) & , . " ". G !, " , " . , . ) SIPOREX-, , , ! . ', , "" . 39 : & " %20#0$, . 223 246 3.4 4 $ , & &! & ", . & , " ( ), . * " " &, " , , " . 3.5 5 & G , & 800$, &, , , ! , , . 3 ! ! 4.1 1 % " " G & " : " , , ( ) " - - - L , " . . ! & . ' , . & *$# J;< , , ;-. " - , " . 4.2 2 " - . G !, , , ! - , " . * - , , , . 4.3 3 ) "$"- " , , ! . ! 247 , . ) ' , ! , . 4.4 4 % ! : , & ( , ) , , " , ", , & . 4.5 5 & , & : , . & &, & & , " . 5 ! ! , ! , , ! , & " & . 248 U #1 ! ! ! - II : „2“ – II ! . , , je „$ 2“, ! & . , " " . : , G , . REHABILITATION PROBLEMS OF PERCOLATION WATERS ON PROFILE OF DAM GORICA – TREBINJE II Summary: Problem with water percolation from Gorica lake is an actual topic in management of system of hydroelectric power plants on the river Trebisnjica. Quantity of water penetration beneath and through grouting curtain has constant growing . As the result of huge investigation, project „ Consolidation of water penetration from reservoir Gorica“ was made. It is planned to build up a new part of grouting curtain and repair part of old curtain. In this case, water loss will became minimum or will completely disappear. Keywords: water penetration, investigative work, building of grouting curtain. 1 # & ; % " „ “ ; + " 2 , 89101 ; zzubac@het.ba 249 1. "2" . " 15,6 m³ . ! I, ! 2 - 2, , #, II . 2 13,5 km 2 3 , . 1 - $ G $ e „ “ Figure 1 - Geographical location of dam and artifical lake of „Gorica“ 2! 2 33,5 m, & 185 m. . ' , , . "2", , . #& 55 m ( 12) ! II . * & 200 m 67,5 m. % . * ! & cca 400 m. 250 & 170 m. . 2 . ! $ „2“ 4,80 m³/s. , 1964. 2009. " ! 1,8 m³/s 4,80 m³/s. ' 1979. # + . $ ! , 600 m 2. + , . '=&%]\ '% '? +;#\>, +&%#$%# < #%'>%?%= [$%]@ @=*;# %?<' \ J;=;?% '+;] ><&% J$%# ;$*%. '#;?# *| +&%#$%#^ $%];?% < '+$}%?%@ [\J>%=% ?;] %=\\&%*< > @^;?; #$[>'=; '=;$~z@, %& '%@@ #[%>?#;[ \>*%<% #% '>%J&#;'> J$%# „;$*%“. 2. * & „2“ , , ! , & , " " ! . * & : "2" 540 m . . 33 kg Na- 23 cm $ 0" . , ", 10-15 l/s. " : - 20 2 - - 4 - - II - # () - % G 251 # 25 kg Na - 277 mnm. 2.5 m. ' , , ! : - -1 -3 - 3 (& 0+090, 0+120 0+216) - - 2 - 6 - + - . 2 – „“ Fig. 1. - results of colouring of estavelle „Gorica“ # & 0+216 276.30 mnm. " ! 274.60 275.90 mnm. 3 . 252 3 – „ – Q“ Fig. 3. - results of colouring of cavern in the tunnel „Gorica – HPP Dubrovnik“ 1980. & "2" , 150 m , " . 310º. 4 – „“ Fig. 4. - results of colouring of swallow hole at the right side of dam „Gorica“. 253 3. /$/ 1958. 2 1958. . /$/- . 40 30 ! 3 , . * 5 km². G-5 G-6. ! 200 ..., . ! , /$/ ! . 65 ! & 5 , & 3 , & . G ! 250 m. & 9 & 3 km. ! 125 m ($ 5). ' , " , . " 100 150 m. & . , " . . & . & . 254 5 – $% G & „“ Fig. 5. - results of geophysical investigation behind estavella „Gorica“. ' ', , " " . # & & , 1984. . ' GK-1 GK-2 cca 15m & . # ! , . . ' ' (# , & , ") & ( ) " , ! G-12 G-15 & 255 . $ ! ' GK-3, 150 m . ' , 340m 20m ! 2 ( 293,30) , "+" "" . + , . ! , ! „2“, - . ' & . , , ! & . ' ! & , ! , , #, & 300m + 200m ( ), " . ! 6 m, , . , " " . * , ! „$ ! 2“ ( 6 ). 256 6 – Z „“ Fig. 6. - Display of plan for grouting curtain - location dam „Gorica“ # , & ( II ', #) , " : 0. 0# '0 0* $# 3+0 0' . 0# '0 %0# %03$ * +3G %00* . 0# '0 %0# %03$ * #$'G %00* 2 ! "2" , & , "2". "2" " , " 257 . $ " . ! , ! , " & ( ). % , & , " . ;}>%= +$;<=>; +&%#$%#^ $%];?% < +$]?{# % +;&;?#\ %<% 2011. [;]#. Y – G } . , % 1962. 2. Z U ( 4) 3. Y% G , 2 & , % 1960. 2 4. G $ . , , 2003. 5. } „“ – - – G – 2. , $ 1960. 6. Y – : $% . 2 &- , % . 1964. 7. } 2 . , $ 1962. 8. } „0 + 216“ . , $ 1963. % „ “. % &, , 1965. . 9. „ $ ! 2 “, „ “; G 2009. , . 10. G, Z Y. [ ! Y, 1979. 11. : % % U, Z Y. [ ! }, 2006. 1. 258 Q { 1, !2 : . $ " ( , ! ). . * , " : . * & . : , , , RENEWABLE SOLAR ENERGY IN CONTEMPORARY DESIGN Summary: Application of renewable energy sources is imperative for the ecological development of cities today. Solar energy is ideal solution for increasing needs of urban structures (heating of the space and water, cooling). The needs of urban areas for energy amounts to almost half of today's total energy consumption. In contemporary design, there are two approaches to the use of solar energy in buildings that are based on: active and passive systems. The basic principles of sustainable modern design are developped and analysed in this paper, through the striking examples of European practices. Key words: solar energy, renewable energy, contemporary design, the cities of Europe 1 2 # # , , , 0 , # $ $ ", , , 259 1. , , . * , . . , : - - , , , , , , , , , - - , , ' ( ) " , CO2 (International Energy Agency, 2007:3). ( ) . & . " , " " , , ( ,2006.:12). 3 & " " " , & (!, 2002.:7). ( , ! ) . $ ", , . $ . 2. $ . & , , . ' , " , , , ": , , . ' . $ , ! . . $ & : - " ; - ; 260 - & ; - ; - " ; - % ! ; - % , , ; - % " "; - % " - ; - * . 3. ! " " (!, 1994:34). % , , , &, & , . . 0 & + 6500. 5500. . . . ( 1), #, . , . " " (!, 1969). ' 0 , 1300. 1200. . ., . $ ", , . * " . , . , , " . * 0 " & , ". 1: (6500. - 5500.. ...) Fig.1: Lepenski vir (6500. - 5500. bc) 261 * 20. , , , (Frank Lloyd Right). $ " : (Robie House), (Taliesen East house) 3 (Jacobs House), 2. * !: , . , . # " , " . 3& , . + . 2: '.. W !: W, Y \ Fig.2: Frank Lloyd Right: Robie House, Taliesen East house, Jacobs House $ + (Le Corbusier) : " , ", . , " 18. . , " , 1 , . + " ", ! ! " . " " , . ". + , & , 3. 3: :: Vila Savoja Fig. 3: Le Corbusier: Villa Savoye 262 $ , & , " " . " ( 4) 1939. 0 . , , " , . " , " , . $ . 4: Z !, 1937., }, |" Fig.4: The first Solar House, 1937., Boston, USA * ({ , !: 2009), " , . Z , " " , . !. $ ( , ! , ) " . $ . " " . , ! ( ). , & , (!, { , 2008: 267-274). 2 (!, { , 2010:22). 0 , , & . 0 : $ - , 263 - ( ). " . " ' , " . ' & (. ! & ) (. & ). ' , . ' - & , ! & (, $ ":2009). : , * - & , & . & 25% ($ ", , 2009). 4. " . 0 " ({ , !:2009.). , ! . & ! : & , & " " & " , ! " . * " ! , ! ! . * 0 ! , 20%, 264 . * , ! " , &. * . ' ! , " & . , , ! , " . 4.1. (VAUBAN DISTRICT), , 2 ! ' , & , . # , " " , (Rieselfeld), (Solar City). 41 . * " . & . G !, " , (sharing servis) , & &, . " & ( 160 2), (baugruppen) . 2 ! , , . " (15 kUh/m2/y) ", ! , . " , &. 5000 ( ), 5 (Forum Vauban: 2000.). 5: {, ', *% Fig. 5: Vauban District, Freiburg, Germany 265 4.2. (RIESELFELD DISTRIKT), , ' 70 , ! 4 200 10.000/12.000 . ' " : " & , , (Stadt Freiburg im Breisgau: 2003). 6: W $ , ', *% Fig. 6: Rieselfeld District, Freiburg, Germany 2 " & " . ! & , , , , . * " . . 6. " & ": . , " & , 30 / h. * & (Aa.Vv.: 2003). 4.3. !- (LINZ – PICHLING), $ (SolarCity) 6 000 , , 7. 266 7: -Z , " Fig. 7: Linz - Pichling, Austria % 630 , + , 0# (Renewable Energy in Architecture and Design - ), ! . * , & . ! , , . ' ! , & . 4.4. - (GWL-TERREIN), , 2+- . , 600 (Aa.Vv., 2000:44). . & : - " - ! . " , , " . 2 & ", . % , . * , ! , ( ) . - ; , . - " : ! , & . 267 : 57% , ( ), 73% ( 2-6 ), 39% , 10% & car-sharing . * & ! - & 400 . , 100 , 8 (Cerreta, Salzano,2009: 207-221). 8: { Y, ", Fig. 8: GWL-Terrein, Amsterdam, Netherlands 4.5. , (LYON), ! " " . 20% . + 305 7 +, . ! 18% 45%. G 99W/2. * : , , " & . 1997. ' 9. 9: U, , ' Fig. 9: Solar village, Lyon, France 268 5. , . !" , & % . , , " , " " . , . ' , ! , " " " . " - " % . , . 2 " " & , , , , & , " , & , (, $ ": 2010). $ , , . 1. 2. 3. 4. 5. 6. 7. 8. 9. Aa.Vv.: Gwl-Terrein, Amsterdam: Carfree Public Housing, Urban Ecology, Innovations in Housing Policy and the Futures of Cities, Amsterdam, 2000. Aa.Vv.: The New District of Rieselfeld, Freiburg, 2003. Badenova: Verbunden Geschäftsbericht, Dinner Druck, Schwanau, 2003. Cerreta, Maria; Salzano, Ilaria: ‘Green Urban Catalyst’: An Ex Post Evaluation of Sustainability Practices, REAL CORP 2009, Sitges. Spain, http://www.corp.at:207-221 £", ' : G , , 2002, ISBN 86- 7352- 081- 9 Forum Vauban: A Journey through the Model District Vauban, Freiburg im Breisgau, Freiburg, 2000. International Energy Agency: U ; ! , #, 2007.:3. +", G: , ' , , 1994. , $ , , 2006. Solarsiedlung GmbH: The solar community in Freiburg im Breisgau, Freiburg im Breisgau, 2003. 269 10. $ ", #.. (1969) { - ZU, : $ & / $% Stadt Freiburg im Breisgau: Quartier Vauban, Freiburg im Breisgau, 2003. 11. $ ", $. , #. 2008: $ U , ' , - , , ISBN 978- 86- 907727- 4- 2 12. $ ", $ ; , #: % U $ &, G ! G , , Ecologica, .54. . XVI, (2009a). YU ISSN 0354 – 3285:155 – 157, www.ecologica.org.yu 13. $ ", $., , #. 2010.: G , %& 0 ", , ISBN 978-86-7244-836-8, UDK 502.131.1:71/72 14. Vasilski, D., Stevovi, S.: Increasing energy efficiency through contemporary solutions of passive house, G#*'0#'0 ''¦ "$0'$ §$00 0*0 - 0#¦ '0$", 3 - 5 ¶ 2009a. ., , ¦ , ISBN 978-9549430-43-1, : 206-212, www.vfu.bg 15. Vasilski, D., Stevovi, S.: Daylighting and PV panels in function of sustainable architecture, Conference in Lozenec, Bulgaria, 2009.b, ISSN 1313-7735: 184 – 187 16. Vasilski, D., Stevovi, S.: Energy-efficiency and solar renewable energy through minimalism, 14th International Conference on Urban Planning and Regional Development in the Information Society, GeoMultimedia 2009c, Sitges, Spain, 2009. www. realcorp.at ISBN 978-39502139-6-6 (CD rom), ISBN 978-395021397-3 (print):97-103. 17. , #., $ ", $.: [ G , +, $ , .3, 2010. : 072-080 +, UDK 621.244:725.4, www. zibl.net 270 !1, [ !2, * }3 - : " # & . # , % " # $, . " : , , , , , & , , , . : Q Q, G , , . SUSTAINABLE HYDRO-ENERGY AND WATER MANAGEMENT SOLUTION OF LOWER DRINA Summary: Hydropotential water development of Lower Drina is analysed in the contects of sustainable development. Optimal parameters selection and concept definition of hydropower facilityes, from Zvornik to Drina mauth in to Sava, are incorporated in the function of integral water management solution. Multipurpose resource utilization: power production, flood control, navigation, agriculture impruvment, stabilization of underground water level, environmental protection, development of turism and sport, are conflict of interest and criteria of goal function, which solution is presented in this paper. Key words: Lower Drina, sustainable development, dams, hydropower plants. 1 2 3 . $ $ ", D.Sc.Civ.Eng, Faculty of Construction Magament, Union University, Belgrade . G $", D.Sc.Ch.Eng, Faculty of Gnagement, University of Metropolitan, Belgrade . ' , D.Sc.Biol. Faculty of ecology and environmental protection, Union University, Belgrade 271 1. # , . , " " , . , , , [16] ! [1], , & . # , . # 14.2 Wh/., " 4 Wh/. # . # # 1.6 Wh/. " , , # G ( ) $ ( ). " , # , ! " # % " [13], ! , " , . 2. ! ! , " # " , , " & [7]. " & # , " & # $ " # % " [2]. " # % ", " , , . ! # . & # , . & , ! " : - G 272 - & " $ G $ " , ! - - % & , . [4]. % , & ! . G & [5], , , . # . . " . & [6], & & , , " . $ G $ , , & , . " #. $ 2010. # . & , , # ! , " ! . # , " [9], , , & [10]. 3. & , , , [11]. , . $ , , ! & . & ! " # , ! . 273 ! , " & , " , " # . [17]. , & [15] , , &, " . $ & [12], & , & , " . , , . * & " % " # $, . 4. ! # " , - " ". ! , & ! " ", , & , & . 4.1. %#%&'=% ?%$<%#>% * & ! . G , ! &. ! : $-G, + , $-$ , . . . * # . 4.2. }#% ?%$<%#>% . , " & . * . # G $ , ! , &, , " - . 274 , . ( ) ! , & " - , , . , , & ! , ! " . " 1%. " # ! % " " , ! , ! # , + , & . 5. ! : , # I, # II # III, " , & . * , . $ - . ' . . 0 % , : - , '* = 135.00 ..., & 64+150 - # I, '* = 121.00 ..., & 46+800 - # II, '* = 107.00 ..., & 31+140 - # III, '* = 93.00 ..., & 10+960 . " " # % ", , , & , . , & . * # %. : , # I, # II # III " . # & " , G $ , " ! . #, ! ! , , # I, # II # III ( 1.), " & # . 275 1: , D " " Table 1: The main caracteristic of the possible HPP on the analyzed river section # I # II # III $& '* Hbr Qinst Ninst Egod 60+200 43+600 28+200 8+800 135 121 107 93 13.3 13.3 13.3 13.3 3/ 800 800 800 800 MW 93.4 93.4 93.4 93.4 GWh 396.5 396.5 396.5 396.5 Qprel. '* 3/ 8000 4075 4075 4075 # I, # II # III, , 8000 3/. * %, # III $ ( " # $; # $). . & 160 , , . # " : * , . , . ' 20 8.6 '*. ' , # I, # II # III, . $ . ' , # I, # II # III , . & . 2: " %& Table 2: Basic elevation on hydropower plants layout DRINA I DRINA II DRINA III HE KOZLUK 122.50 108.50 94.50 136.50 99.35 85.35 71.35 113.35 & 115.50 101.50 87.50 129.50 94.50 80.50 66.50 106.50 ! 95.05 81.05 67.05 109.05 99.35 85.35 71.35 113.35 96.70 83.60 69.60 111.60 115.50 101.50 87.50 129.50 276 # . ' . & " . ! , ", " . 0 . * , , . % , , " & &, , . G $ . # I , " . & ! , , " . 0 , G $ . 0 & ! , ( ) # / , # I, II III / G $ " . & " , , , / . % G $ " ! , " . % ! , ! . * , + ! # I. ' , , , . . 6. $ ! , ! , " , # & , " , , &, ! , , " , . & , & , 277 , , . % & , " & & , , . $ : & , ! & !. & = 2 x 10-3 /. 2 ! H = const (#) H = const ( ) . * , 3 , & (H = const). & # III, ! , & & . ' , , 5-9 & . $ &, " & . & & & , . #& 1.5-2.5 . G ! , , , , & . $ 70-80 , 200 70 . & 3 . G ! & (q) (Q) !. ' & . & 3. 278 3: <" ( ) Table 3: Results of mathematical models (according to finite elements model) () # & # q (//) + #& () Q+ (/) # #& () Q# (/) Q = Q+ + Q# (/) - Gx. . #'0 I 121,0 114,8 #'0 II 107,0 100,6 #'0 III 93,0 88,0 3,5 113,5 0,500 3 500 1,748 15 000 7,492 9,240 117,0/115,28 4,0 99,0 0,849 11 200 9,509 11 200 9,509 19,018 103,0/101,55 4,5 86,5 0,825 16 000 13,198 16 000 13,198 26,396 91,0/89,16 ' # I # II & (3,5 4 ) & " . #& # III 4,5 , 5 , . $ " , & & 7 4,5 , . 7. " & # , & . 2 ! , & # I, II III. , # I & 500 , " , + , . 0 , # I, II III . #& : , 8.5 , # I 4,4 , 11.6 , # II 10.4 , 9.8 # III 11.5 13.0 . " : () '* + 1.5 , '* = () '* + 0.5 , '* = . 8. (93,4 GW) " (, # I, II III) . G" 279 40- . * , 1 , . 75 3/ & # III. $ 13,3 . 800 3/ ! [14] %, " 640 3/ 800 3/ . $ (, # I, II III) % % . %, . * 396,49 2W, 213,66 GWh . * " & , " 20 . G 2 . " , , & 20 . % " " 0,7. , " , 90% & 20 . 34,84 GW, 58,56 GW. & . 9. - , .4. 4: #'- " Table 4: Main financial and economical parameters %+* #'0 I #'0 II #'0 III $ 299.75 113.42 125.12 126.67 $ . $/W 3315.98 1384.86 1527.72 1546.64 280 . $/Wh 0.83 0.33 0.37 0.40 10. " # % " # $, & " , !&, , , . # . " , , , & , - & . , & . , # , , & , #. $ " # % " (! & ) ' & 35030, G $ . 1. 2. 3. 4. 5. 6. 7. Fillip Wiliams, Ecological and Environmental Quality Studies, Fifth International Symposium and Exhibition on Environmental Contamination in Central and Eastern Europe, Prague, September 2000. Gert A.Shultz&Martin Hornbogen, Sustainable development of water resources systems with regard to long term changes of design variables, Modelling and Management of Sustainable Basin - scaleWater Resource Systems, Boulder Simposium, July 1999. Hanley N., Shogreen J.A. and White B., Environmental Economics in Theory and Practice, Palgrave-Macmillan, Houndmills Hampshire UK and New Jork, 2002. IFC Environmental Operational Policies, Environmental Assessment Report for a Hydro Project, 2000. Nansy C. Banner, Environmental Compliance Policies & Tools, Environment 2000, October, 2000, Orlando, Florida Perace D. (ed.), Perace C. and Palmer C., Valuing the Environment in Developing Countries, Edward Elgar, Chaltenham UK, 2002. $ " $., , %& 0 ", 2006. 281 8. 9. 10. 11. 12. 13. 14. 15. 16. $ " $., G G., – , : $ , ", , 2001. $ " $., G" '., G , : $ , ", , 2001. $ " $., G , II 3# – , 2003. $ " $., Optimization and evaluation of Hydro Development, Millenium Congress on Energy and Environment, Clean Energy, Geneve, 2000, January 2000. $ " $., $ , 2002, , 3, 2002. $ " , $a " # % ", -& , , 1999. $ " $., # ! $ 2& , -& , , 2000. $ " $., # & , , 2008. $ " $., $ & ! # , $ , +, 2010. 282 1 – W% – G $ Q # ! Figure 1 – Solution along the river – Drina longitudinal cros section betwen HPP Zvornik and mouth to Sava 2 – Q I, Q II Q III – % % Figure 2 – HPP Drina I, HPP Drina II HPP Drina III - Layout and tipical cros sections 283 Q !1, " Z!2, $ # !3 ! ! : ! & . ! & . &, , " " . * . : , , , REHABILITATION AND RECONSTRUCTION WORKS ON ROAD STRUCTURES Summary: Rehabilitation works on road structures are a part of maintenance measures, considerably differing from reconstruction works. Rehabilitation means both a new layer coating of certain bearing capacity within a total width of a road surface and a pavement shape correction, with an aim of a serviceability period prolongation. By reconstruction works, the pavement is being upgraded within a full length and width, as well as, shoulders and drain channels are being reconditioned, mostly along the existing alignment and by changing the road geometrical elements. In the scope of this paper, common principles and techniques of rehabilitation and reconstruction works of non-urban roads and associated structures are presented. Key words: rehabilitation works, reconstruction works, non-urban road structure, __________________________ 1 2 3 . ..&. 2! $ . ..&. 2! $ . ..&. 2! - ' 285 1. ! " ( , .) & & , . ' & & , & , " " [1]. " " & , , [2]. ! & ( , ) . 0 & ( ! ) , , ! & , . & : . & . & . ! & ( ) .0! [2] 1. 1. G [2] Figure 1. Systematization of concepts in the travel Engineering [2] 286 : () , ( ) ( " ) . , & , & . G !, ! " " ! , , & & , " . 1 " : 2. Z G Figure 2. Expanded systematization of concepts in the travel Engineering 287 2. ! ! ? , " & & & ( 3). G& , & . & & " , ! & . 3. " G [2] Figure 3. Algorithm deciding the level of intervention on the road network [2] * , , . *! " , . 4. 288 4. 7 & [1] Figure 4. Schematic view of determining the level of reconstruction [1] " & ! , & & " ! . ' & & , , & (& 10-12 & " ). 5. Z% G [1] Figure 5. Research field of hazardous places [1] 289 3. ! & , " , " , " , . 3.1 ! ! * " !" & $ . G : 3.1.1 ;#'>$\=*< =;< %<\ ?&=\ $]\%&#\ #;'?;'> % " " : a) +\=;># +;$=&; +;?$~#'=^ '&;<?% =;&;?;# =;#'>$\=*< " " & . % , . ! & , & , . % & . , , & " , & . % & , . " " " . b) =;&;>$% =;< +;>}\ %'`%&>#^ '&;<?% , & . (", ) , " , , " ! , & . c) $`&=>;?%# +\=;># . 3 " . 290 & . : " . d) #];'>%* +;?$~# ^%J%<\z[ '&;<%: '+&?%?%@ J>\#%, '+;&$%#;'> =%#;[ %>$<%&% %'`%&># ~%?# & }\+%@ $#% %[$[%>%. 0 " , & . " , ! " " . 3.1.2. ;#'>$\=*< =;< %<\ %&\ $]\%&#\ #;'?;'> " & " : • +;<%}%@ '>$\=>\$ =;&;?;% $%]; #;?^ '&;<?% 0 " ! " . . & (" " ), , . % & ! . G !, " . * " , & . ' & , , " , & . & " . • $=;#'>$\=*<% =;&;?;% – ]&}#% & +;>+\#% * " . ! . " ( ), & & " . , , " ! . " " , . % 291 & " . , " . 3.2 ! ! * " . ( &) 1991. . " & . / ! . ' " & 5 . ' " ( ) " & ( ) . ! - & , , " & . ' , ( - ) & " . 80 85 % " , . $ & , , , . * & >;+&; ^&%]#; +;'>\+=\, ( ) , . * >;+& +$$%] \ '>%J&# +;'>$;<@% - ( ), ! . (+$$%]% #% &*\ '>%) & - , , & , . ( '>%J&# +;'>$;<@%) , . (+$$%]% #% &*\ '>%) , " " 15 , , ( ), . 292 $$%]% %'>;$% " 6 . , " ( " ). $ & ( & ) " , . & . Z & , , , , . ( 2.5 ). " " , , " . ' " . . ! . : , ( ! ). 3.2.1. $$%]% %'`%&>#^ %'>;$% #% &*\ '>% +; >;+&; +;'>\+=\ 0 " , " . " , " , , " ( " ) " ( & ). : x x - x & x ( ) x ! x & , ( ) " : x ( 4 6 ) x 50 % x 5 x & 293 x , & 60 % ! ! 60 % ( ) 6. Z $ Figure 6. Manufacture of asphalt surfacing on the site of hot procedure 3.2.2 J#;?% =;&;?;#^ =;#'>$\=*<% +; ^&%]#; +;'>\+=\ - & " . ! , " : , , , " . & , . ! . ! . ! . 294 7. 7 $ Figure 7. Schematic processing machine asphalt surfacing & - " , , , , . ', . $" & . " : x x x x 3 ( ) x " x " x ( 50%) # & ! " 2.5 7.5 . * , " 20 40 %. ( ) 40 50 %. 295 4. ! , . * ! , . ' " " " . " ! . 4.1 ! ! . 0! sA ! s [1]: s]<# +$;<=%> $=;#'>$\=*< & " , , ! . * " ! , . &%?# +$;<=%>, , & ! , ! . $^?'= +$;<=%> & & . " (X,,Y,Z). #%&% "+$ +;'&" ( ) , , " .s 4.2 " ! ' ! . ! , . , ". ' & " ! . ( , ) . " ! . ' " . 296 4.3 ! , & " (, , .) : , " – . . $ . , &, ! . ' & . 5. ! ! ( , , .). % ! , " . 5.1 ! " ! ' $, & . # – " . ! .( 8 9) 8. # & 9. Z & Figure 8. Sealed cracks newly built bar Figure 9. Cracks in the newly built bar 297 ' ( " ). " . " ! ! & , , ( 10) ( , , , " ..)( 11), " (+", 0, 2010)[6] 10. 11. { Figure 10. The organization of construction of the undercarriage Figure 11. Weather conditions of construction of the undercarriage * ! ( "). ! , & ! ! . ' & & . ' , , " " . 5.2 ! >*%< |;>$'% " ", , " & . G& " & & . # " , 298 & & . " " , , . ' 12 " . 12. ! U Figure 12. Damage of roads, the earthquake impacts 0 =&~>% & " ( , , " ). . * ", . * . " " . 13. Posledica klizišta. Prekinut i alociran deo puta. Lokacija: Bogdanje, Trstenik. Figure 13. The consequence of landslides. Discontinued and allocated part of the road. Location: Bogdanje, Trstenik 299 ;+&%? " . " , . , , , . ", , ! ". $ s s & . 14. ! Most u selu Ljuberaa na putu M9, 12.2007. Figure 14. Damage to the bridge as a result of flooding. Most in the village on the road Ljuberaa M9, 12.2007. 6. , , , . 3" & $ , 2007 , & $ [7]: s , & , " " : 1. ' , , " , " " , , . &, " " , 300 , . , & , , & ! , , &, , , & & , ; 2. , & " . ' “ ”, ! , , ! . $ , " & " “ ” , " & (& , “ ”, ) " , , ! " " . ! , , . , " , , ; 3. # . # , ! . # , () ! / , , , ; 4. " , & , & . ", a & , ! ! & " , , . & , ". '&, , , , , . * , " " ; 5. " ! , ". " ! " o , " 301 . G " & " " . G 20 &, , ! . ! . ! " $ . , . G !, ! , , , ! ; 6. % , , , &. & , " , . " " " & . * , " . ! , & & , . ! & , , " & & .s , & , & & . * & " , . # " & : ! ! ! , : & & & . ' & ( & ) . $ & , &, " . 302 [1] " ! / .0! // 2! [2] / .0! // '- , % 2007 [3] [ , / .0! // $ ! 2004, ' - 2, ' $, 2004, . 131138 [4] | & G, / $. // ' , % 2007 [5] Z & & ! /£.* // ", 3-4/1985, , . 10-15 [6] ! /#. +", . 0// , , , 2010 [7] W ? [! & ! / .3"// ' , % 2007 [8] Pavement Recycling Executive Summary and Report, Federal Highway Administration, Report No. FHWA-SA-95-060, Washington, DC, 1995. [9] [ , /.0!, G.G , %. " // , 2! , 1993. [10] } , , , BCEOM, , FINNROAD, , G$, $, 2004-2005. ' : " G $ , ' 22-26 ( 36043)" 303 & *!1, { ZG2, !3 ! : * " . & ! ! " , !" : (shadow map) " (ray trace). & ! . : 3Q ; ; ; ray trace; CAAD USE OF COMPUTER GENERATED SHADOWS IN ARCHITECTURAL PRESENTATIONS Summary: This study examines use of light and diverse shadow types in computer generated architectural presentations. The aim of the study is to detect differences between the existing models of computer generated shadows, using an example of two dominant models of shadow generating in architectural practice: shadow map and ray trace. Conclusion points to the necessity of precise selection of methods for the development of shadows, dependant on characteristics of the architectural object and decision to describe a virtual space in a certain way. Key words: 3D virtual object; shadow; shadow map; ray trace; CAAD 1 ... , * - 0 , . 0 73, $ djuk@sezampro.rs 2 ...-.arch. ,* - 0 , . 0 73, $ 3 ... ,* - 0 , . 0 73, $ 305 1. $ . 3 0 , . $ & " . & . & () . . 0 + + ($ 1). 1 - : ( {%) : () 0 & 0. ($ 2). 0 . 2- % 0 , , 306 " , , ($ 3). 3- 0 ! , () (). () , . . * , . 2. %" ! . & & . 4- * , ! . ($ 4) & 307 ! . 5- *! ($ 5), , ! , . , . " " . 6- ! (! "., *! [., *! .: , [%, 2007.) ' ($ 6), & " . *! " , . 308 3. 3# (2#) , . , & ", ( . wire-frame) , & " . # , , " ( . real-time render) " ( . walk-thru). 3.1. (#[. SHADOW MAP) G 0 0. : ( ) ( . sample range) ( . bias) . 0 , . . % , ($ 7) . 7- : . Q: 0 . ! " & , . * , . . 309 ' 0. 0 " : ( . aliasing) 0. # & " . ' " . 3.2. (#[. RAY TRACE) Ray tracing 0. " ! 0. ' ! ! " . Ray trace , & , " . 0 , . ' ( ). * , . $ ( , ) , ! ( " ). 3.3. (#[. SINGLE SAMPLE SOFT SHADOWS) . " . % () ( ), " ! . . 0 , . 0 . ' " , , ($ 8). 310 8- % % 0 4. ' ($ 9) " . 110.000 . 9- Z } (*! [., *! [., *! .: I , , 2005.) $ , . , . & 311 , . . G . # . 1. $ Intel , 4G 0G Nvidia 8600 . 4.1. 10- % % 128 , 1 $ ($ 10) " . ' , , . , " & & " & . ' " " " ($ 11). $ , . 3 & . 312 11- % % 512 , 4 12- % % 5000 , 10 313 $ ($ 12) " , , " . . , " & " . 4.2. 13- ! $ ($ 13) , " . . , " " & . ' " , " : 314 1- " " (rendering time for diverse shadow types) Shadow map 128 px 1 Shadow map 512 px 4 Shadow map 5000 px 10 Ray trace 5 7 9 2:43 5. , . ! . % " ( ) 100.000 , ". % , " " . % , & ! " ! ! . " , " & . 0 , ! , & , " . & , " , " , ( . software) ( . hardware). 315 1. 2. 3. 4. 5. 6. 7. 8. Brabec S., Seidel H.-P.: Single sample soft shadows using depth maps, Graphics Interface, 2002, . 219–228 Fernando R., Fernandez S., Bala K., Greenberg D.: Adaptive shadow maps, Computer Graphics (Proceedings of SIGGRAPH 2001) Annual Conference Series, 2001, . 387-390 Hasenfratz J.-M., Lapierre M., Holzschuch N., Sillion F.: A Survey of Real-time Soft Shadows Algorithms, Computer Graphics Forum 22 (4), 2003, . 753-774 Owens J., Luebke D., Govindaraju N., Harris M., Krüger J., Lefohn A., Purcell T.: A Survey of General-Purpose Computation on Graphic Hardware, Computer Graphics Forum 26 (1), 2007, . 80-113 Parker S., Shirley P., Smits B.: Single Sample Soft Shadows, Technical Report UUCS-98-019, Computer Science Department, University of Utah, 1998, . 1-6 Whitted T.: An improved illumination model for shaded display, Communications of the ACM, 23 (6), 1980, . 343-349 Williams L.: Casting Curved Shadows on Curved Surfaces, Computer Graphics (Proceedings of SIGGRAPH 78) 12 (3), 1978, . 270-274 Yonas A.: Attached and cast shadows, Perception and Pictural Representation, Praeger, 1979, . 100-109 316 [ ZGU1 – " : , & " , , . * , , . & , , . : , , , , , . BRIDGES, SYMBOLS AND UTILITARIAN BUILDINGS Summary: The more than two million bridges in the world are utilitarian buildings that serve their fundamental purpose – traffic – and they need to be functional, durable, beautiful and in harmony with the surroundings. In the history of civilisation, some bridges were so important that they have become symbols of cities, empires and development. The article contains an introduction, bridges, symbols, general discussions about bridges and the principles of evaluating bridges. Keywords: Bridges, Symbols, Utilitarianism, Evaluation, Durability, Aesthetics. 1 .. G &, DDC svetovanje inženiring d.o.o., 40, 317 1. G ! , , ! & ! . , , . , , , , ! ! ! . $ , .. . , , ". 0 & & , 40 – 50 % " . $ " " " . , . # 80 % ! . ! & " " . * " " 60- " . * , ! . G ! & " . 2. , ! , . G , , , " . 2 G " , 1452. . G & & . ! 1566. , , G $, . G , " " . $ G . ' 1 ' G. 318 1. : % [ Figure 1: Stone arch Bridge in Mostar # »' # "« ! 1571. 1577. & . * 430 ! . $ & " # . & . G !, ! . 2. * Q ! { Figure 2: Bridge over Drina in Višegrad G $ : " , " + " ! 16. ", ! G & , & . 0 0 1914. + " , ! & . 319 3. ! (Z ) Figure 3: Latin Bridge in Sarajevo $ , , " 3& . ! ! & . 4. Y `U Figure 4: Three Bridges in Ljubljana $ $ $ . $ . 2! , ! . 0 . 5. " Z Figure 5: Alexander Bridge on river Siena in Paris 320 ' & " " , . Pont Du Gard Nimesa ! 50 . G, & 270 2 49 . 6. Pont Du Gard u ' Figure 6: Pont Du Gard in France " , ! 15. 16. " . 7. $ & 1596. Figure 7: Bridge in Isfahan built in 1596 G & , . The Forth Bridg , & 1890. . 2 5000 7 ". * + 0 , & , ! . 321 8. Y ' } 7 Figure 8: The Forth Bridge in Scotland 3. & " & & , . , , ! & & !. ! & " " . ' & . 9: } Q } 210 Figure 9: Concrete Bridge over Danube in Beška with record span of 210 m G , " ! . * , . $ . G ! : , . G & " , . # , 322 , . , , , , . * & " " . " & 1/10 1/1. G " & , . 10: Z G 8000 kN 600 kN Figure 10: Special Transport weight 8.000 kN over the Bridge designed for Vehicles 600 kN ' . , ! , " , & & " . ( , , , " ) . 80 % ! . , &, , 100 . , , , , . : " , & , ! . G& , , . & , & , . 323 [$%]@% ;'>;?% ?<%]\=%>% ;] ;#>%_#^ #;'%}% J =;#>#\$%@% '+$%@% '% %.J. +&;}; +;+$}# #;'%}% J>;#$%# #% &*\ <'>% \ ?z J$;<\ %|% #< ?z ];?;|#%. * ! ! , & , " ! ! . % & 80 (100) m . – &. , &, . " " , , &. & , " . & " . 11: * & .. 44 m Figure 11: Overpass built as integral prestressed construction with span of 44 m . 12: * .. Figure 12: Overpass designed as integral construction with sickle shaped arch 324 ' , . ' + -G & . & ! , . $ " " . 13: YU Figure 13: Pier Foundation of slope viaduct . & , . & . ' . 14: Z % 11 70 –125 , G 870 Figure 14: Slope viaduct Loica with 11 spans from 70 to 125 m with total length 870 m 325 , , 30 . $ ! 30 . , . * ! 10-12 %. ! 50 m & 3000 m. & 20–30 m , &, ! . , , ! . % ! ! & . % " " , ! . % ! , , , . 15: { & Figure 15: Viaduct built with launching method * 50 & , . ' . 2,0 m , & & . " , & . 3 ! . $ „ “ ! & 326 , & " . ! &, .. . & , . & 200 , , & . 16: Z% Y % Figure 16: Bridge Cross section made of T beams 4. ! , , & .' " " . % , . : ;J<=>?#;'> +$ =;#*+$%@\ \'?%<%@\ ]'+;*< ;'>%, `\#=*;#%&#;'>, +;\]%#;'> >$%<#;'>, $%*;#%&#;'>, >$;~=;? [$%]@ ;]$_%?%@%, '>>=% ^%$;#<% '% ;=;&#; $ ! & & . 4.1 J<=>?#;'> +$ =;#*+$%@\ \'?%<%@\ +$;<=>% ;'>% , " . . * & " . G & . . 327 , , , . + . 4.2 \#=*;#%&#;'> ;'>;?% " " . ! . ' , & . & " , . 4.3 ;\]%#;'> >$%<#;'> ;'>% & , . . " . * , " & 80 – 120 . , & , " . &, , . ' ( , , , , ) ! . , , , . & & & " . , , & " & . 4.4 %*;#%&#;'>, >$;~=;? [$%]@ ;]$_%?%@% ;'>;?% & , , . * " &. , , &" , ! . 328 G ! . 3 , &. 4.5 '>>=% ^%$;#<% '% ;=;&#; . $, . $ , . , , & . G & .. . G & . ' . $ . ! ! . G & . ' . & ! . „ % & "', " , ' ' ; ' ' .“ (!. ?'). + " " & , . * 20. " ! . # . $ , , & ! . " , . ' ! , . 17: [ \ % . Figure 17: Bridge over Jablanca Lake is a part of surrounding ant it makes it 329 [1] . & , 3, [2] ' ! ,9/76 [3] . & , Il ponte sul Danubio a Beska in Jugoslavia, L'industria Italiana del 2/1981 [4] G. ", $ , , 1984 [5] G. ", II., % , , 1964 [6] . ", G, * % , 1981 [7] 3. ", G , , % 2007 [8] . ", , , %2, . 34, . 6 7, 1988 [9] G. &, 0 . $, , # 89 [10] G. &, , 9. , &, 2009 330 { "%*,1 ` :*,2 [U ZGU**,3 Q *,4 *5 ! "": ! .. VC, ! : ' Vc - -$ - 3 – - $ . 0.. $ Vc. * & , " " . ' – & 1.993 m 19.935 m2. % , , , 23 m 35 m 1,40 m ! - . ': , , , G, THE BUTILA JUNCTION ON SARAJEVO BYPASS Summary: On the Vc corridor of the Budapest-Osijek-Sarajevo-Ploe motorway, the Jošanica-Vlahovo-Sarajevo bypass is being constructed. The Butila Junction represents a contact between the municipal motorway with the Vc corridor via Sarajevo. In the main design of the junction, the fundamental geometry of a three-level junction with prestressed reinforced concrete structures remains unchanged; these structures are bridging the Bosna River as well as the space foreseen for the future communications on the right river bank. The total length of the six bridges – ramps amounts to 1,993 metres, while their total area is 19,925 square metres. They are designed as prestressed reinforced concrete semi-integral structures of spans of 23 to 35 metres. The superstructures are slabs of constant depth of 1.40 metres. The width of carriageway slab cantilevers is variable since it has to fit the required y. Key words: bridge , prestressed concrete, integral structures, bearing, x ________________________ * ..&.!., 20#$, G ..., + 3, G, @-. **. . G &, ..&.!., DDC svetovanje inženiring, d.o.o., 40, 1000 331 1. ' Vc - -$ -G- , 3- , $ Vc. 6 0, , , # " . ! 0 23 35 m. 2 1.4 . " 1990 Vc. " 0$ $ ( 1). 1: [ } * $ , " INOSCA INGENIERING G . % , , ! $ . ! 20#$ G, 2008 2009 , ! . 332 2. ! ! ! »« ! " Vc " $ . $" $ % " " #. , G " " . $" & (G) $ " 0 " , (% ) $ " " ( 2 3). , , " " , ( ) , , () . 2: U% ".Z. U } 333 3: Y U } x 0 9 : 23,01 + 32,70 + 30,00 + 5 × 32,70 + 23,50 = 272,71 m. x 15 : 24,17 + 30,00 + 6 × 34,35 + 33,00 + 33,00 + 32,22 + 30,73 + 30,67 + 27,75 + 21,97 = 470,21 m. x 18 : 20,94 + 5 ×30,00 + 33,30 + 2 × 35,00 + 33,30 + 7 × 30,00 + 25,00 = 542,54 m. x # 5 : 24,50 + 30,00 + 2 × 33,30 + 24,57 = 145,67 m. x " 11 : 28,85 + 5 × 34,35 + 33,30 + 3 × 30,00 + 23,00 = 346,90 m. x " 7 : 29,71 + 34,19 + 34,35 + 33,30+ 2 × 30,00 + 23,00 = 214,55 m. 3. ! 3.1 ! ' - , 120 cm &. #& ! .$ 0 # 334 4 & 25,20 m, . 5,2 × 5,2 × 1,5 m 6,2 × 6,2 × 1,5 m . – 2, 3 4 & . . $ 4 5 & 25,2 m 32,0 m, . 5,2 × 5,2 × 1,5 m, 6,2 × 6,2 × 1,5 m 6,7 × 6,7 × 1,5 m. " 6 & 32,0 25,20 m. $ 4 5 & 25,2 . 27,7 m . 5,2 × 5,2 × 1,5 m 6,7 × 6,7 × 1,5 m. " 6 & 25,20 m. 4: Z $ " 6 & 25,20 m , 27,70 . 8,80 × 5,20 × 1,5 m. 3 & 27,70 m. 3.2 ! $ ! . & &, . & " &, ! . $ ! ". $ " . 335 5: | }! 6: | } 3.3 $ , , : * I. 150 cm . $ . $ (. 7). * II. 150 cm ! & (. 8). * III. . 1,20 x 2,20; 1,20 × 3,80 m 1,20 × 4,30 m. $ . 0, # 3 , " 4 . (. 9). * . 1,20 × 2,20 m; 1,20 × 3,80 ; 1,20 × 4,30 m 1,20 × 6,20 m. 0 3 , 7 , 11 , 10 " 6 (. 10). 336 7 8 9 10 . 0 2,8 9,05 m, 4,10 9,30 m, 4,75 16,70 m, # 7,30 9,40 m " 7,30 8,90 m 6,95 9,20 m . ! . % 0 " . ' , . $ " &. 337 11: Z 12: & , , . *! " & . * , ! , ! &. $ & 338 (. 12). 13, 12. 13: #% »X« 4. ! , " , 1,40 m 339 » « . 10 cm . " . , ! . 14: : 15: :% 340 ! »0« »« »« »#« " – " – Š1 Š2 \_#% ;?$~#% (m) (m) (m) (m2) 6,40 – 6,90 9,90 9,00 6,90 11,40 – 14,11 11,40 – 13,55 2,10 4,10 4,10 2,10 4,60 – 8,60 4,30 – 8,22 272,71 470,21 542,54 145,67 1.850,60 4.655,12 5.371,14 1.005,12 346,90 4.468,80 214,55 2.583,70 1.992,58 19.934,48 Y 1: Z 0 9 & 23,0 32,87 m, 15 & 21,97 34,35 m, 18 & 21,0 – 35,0 m, # 5 & 24,70 33,50 m, " – 11 & 23,0 34,35 " – 7 & 23,0 34,35 m. $ .. , & . 4.1. ! » « 8,0 m . * , . " , & . ' & 8,0 m. * , . 0 ! . " , " . ! ! . * 50 % , 50 % . 341 16: % ! ! » « ! &. ' ! &, ! &. #&, , &. $ & & . ! & . ! &, & ( 12). 17: Z 342 18: * G% 5. % & 3# # 2006. CUBUS 5. 2 ! , " " . 0 ! Fachberichte, FB 101, FB 102 FB 103. # ! Eurocode 8/2. 19: Z 3 343 6. [1] 2 ! , 20#$ G, 2008, 2009. [2] $ ! , ## , 2005. [3] , #0$, 2004. [4] G. &: $ – , 5. $ , , 2000 344 [ | !!1 “” ! - !, " <": , , 0/' . G 160 24.20 . $ 145 , 2.60 . 57 : , " . . ': , "} % , MILLENNIUM BRIDGE OVER MORAA RIVER IN PODGORICA - CONCEPT, DESIGN AND EXECUTION Summary: As a response to the urban-plan, ambient and topography conditions, a cable stayed RC bridge with a single tower has designed. The bridge is 160 m long and 24.20 m wide. Clear span is 145 m long and the deck (closed RC box with cantilever plates) is 2.60 m depth. The inclined tower (57 m height) is located on the left river side and it supports the three-dimensional stay system: the span fan shaped cable stays are positioned in the plane of deck symmetry while two group of the backstays are anchored in the counterweights on the river side and they generate two hyperbolic paraboloids. This solution is first prize awarded on the anonimous competition. Key words: cable stayed bridge, RC box section, inclined pylon 1 #, .&.!, , 2! * 2 , 345 1. * & G " . \ Z ! 13. G - , 3& * 2003. , & & " . ' 1999.. , ! 29 , . G *" ", " G j. 0 G , ", . ! , & "" G . * , , , &. 2. ! ' & & : , ( 20 ). # , , " 350 850 '/2, " 32-36. ! , . . ' - ! , 1350 /, , ! 550 890 G. . 3. !, & : , "; & , ! 30 40 , G &. 346 1 - Q Figure 1- Picture 1 - Bridge elevation 347 #& ! 150 . ' " , 20 , & 0.3 %. 2% , 1%. % " (4x3.5 ), (2x3.0 ) 2.0 , 4.80 . 4. 4.1. , ! 0 G , " " . % 2.60 , 57 , , ( 1). 2 - Z% Figure 2 - Cros section of span structure $ ( 2) , , G . # - , "" & , , " . . ' , & & . & , ( 3), . 348 3 - - % Figure 3 - The pylon - eastern view . " , ". ( ) " , . ' & , . & , - , &. !" & "image" , ( 4). &. , - " " & . " " 349 , " " . 4 - Figure 4 - Bridge fance - . 2.0 % , 10 . & ", & G. ! " , " " . 0 ! , 4 - " 3.0 . ! 3 , . # ( ) " & ±80 . 350 60 , ! " . , , . , ". , " " ( 5). 5 - ! Figure 5 - The bridge by night , " G . G& , ! * . * & , , 160 . 351 4.2. ! 22.30 2.60 , ( 1). 20 30 , 35 , - 10.0 . & " & . $ 145.00 , & . 2.0 6.0 3.0 x. 5.6 , ( 6). , ( ). , 75, , " , ! " . 57 , . 127 109 109 91 91 91 91 73 73 61 61 61 6 - ZG % Figure 6 - Pylon elevation and cross sections 352 (fan shape) ! 10.0 . 78 190.5 2 , . . % (2x12) , . * , & . , & , . , 6.2x14.0 , 3.20 . ' & & . $ & " &. 40/260 , . $& . $ 0 & 5 (=30 ) . $- 10.80/(9.27-11.50) 6.50 . 3.0 . 20x18 3.5 . 0 & 5 30 . & , ( 7), 5600 3. “” . 4.0x3.5 , - & 63 7 - Z% Figure 7 - Cross section of the counterweight 353 " . * . # ! . # . 5. ! 5.1. ! ! % " . 2 FRAME SAP 2000, ( 8), ( ) SHELL ( ) SOLID (). 8 - Z% Figure 8 - Bridge structural models FRAME . $ , ! P- . ! , . 0 & 3 %, . . $ " , , 0 & , ! ( ). 1.54 sec, . $ . , (time history) " & , " . 354 ! ! , 5 %. ! " 00G " . * , . 5.2. 0/' , " . , &. & . G & & , . , , . * G 40, -8, G-100. . G 50, -8, G-100, & . * , " . " DYWIDAG & , , FREYSSINET " 1860 G. * G 50, -8, G-100. 2 0 400/500, & FREYSSINET " 1860 G. 715. FREYSSINET " 1770 G " 115$, " . $ ". " # , , & . G 30. ' - 1800 /3. 2 . 355 6. “G ” 2004. 2005. . G " 13. 2005. , # & 2 . 0 ! Joint venture “ ”, $ & “Freyssinet International”, . 2 , , " 2! * 2 , . 9 - Figure 9 - Downstream view to the bridge * ! &, , , ! . * , ! ! “” & , $ , ! . * ! ! , ! , . . ! , ! . 356 Q Y!1 ! : $" , , , ! . * , & , , & , - , , , ! . 0, , ! , - . G , , . , , , . , ! , , . $" , " . : !, %, , , U THE TRAFFIC INFRASTRUCTURE AS AN SHAPIN CREATOR OF TOWNS CENTRS Abstract: Traffic flows, willingly or unwillingly have their influence on the decision about a location, and so, on the form of a town too. As a whole, the street network in every town's zone make its basic skeleton, and with respect on the function of the network within the nature of needs for movement and parking, this phenomenon has its influence on shaping of street, and so partly determine the physiognomy of a town, as a whole. But, in this changing world, the form of our towns is changing too, now as a result of the new socio-economic influences. The frame of the form of a town is its Master plan, while the picture of a town depends on the creative interpretation of its micro wholes. Hence, it is needed a new strategy for town's development incorporating simultaneously function and aesthetic in a coherent whole. The effects of road types on the shaping of an environment are also shown, particularly, through the optical vision in movement. The traffic within a town's center in the context of shaping is considered at a macro levels giving their stamp on the urban quality representing creative answers at several levels, and which can result only from agreed intentions, common approaches and an integration of efforts. Key words: traffic, decision, influence, shaping, creator 1 #, , .&.., $ , 357 1. % & " , - , , . $ " - , , , " & " " ! . , " , " ! ( , , & , ) . , " & ! " . G ! : , , . 0 - , " ! , - . 3 , : , , , , , & . $ " ! , " ( &, ), ! , & : " & , & ". >1] " " , . * "" &, ". [2] & &" . + , & " ". 2 , & , , , & " " " - , ! . , . & , & " , - & . 358 . (3) # , - , " ! . , . $ , , . 21. & 2. " , . , , . . 2 . . " " " . & ! , , . 3 : " "?" # : & ? $ & . ' & ! : - - . # , . . ' , , & , , . - , & , . * , " , . 21. . * 30 20# , #G - $+ " & . ! : 359 x . x - , " - (4). * ! & - . & "" , , . . , . " . , ! . : & , " ( ) , ( ). . : " , - ". (5) # & #3'2 . & . # - (). $ & : " : & & (mimezis), & &, &, . (6) 0, , (mimezis poiezis) , & . " " : • ( , , .) , . • * : ( , ), " & !, . • * , . - , , mimezisa poiezisa, . $ , . & . & : . 360 • * . * " , , & , , , , ." (7) • 3 . " , " ! , . • "" . ! " ": ( " ), . & . (8) 3. : $" !, . - - " , , , , . - `=%> =;J#%*< +$%?;[ =$?;&#<'=;[ '%;J$%z%<#;[ ''>% , & , ! , , , ! - . - `=> ;$>;[;#%&#;[ ;]&% - . . "" , , , , . - `=> ;+>}= ?< \ =$>%@\ : • %, " ; • , , .; • . " ! . . ' : ( ), ( ) " (). (.1.) 361 1. Z ( ) 2. ! 3. ! % . . : , ( ) , ( , , ) ", . (. 4.) 4. 362 , " %, & (. 5). 5. * 0 & & 3 ! " . (.6) 6. :% U: G * " . (. 7) 7. : 3 & (. 8). 363 8. G : 4. ! %) %=$; #?; & . * % , , " . , & && , , . G !, " ". , , , - , ! &. , , . ! . # & . , , & , , , , , , , , , , , . , " ! " " ". * " , ! ", , , . , . ' (Salt Lake City) . ( 9.). 364 9. : : :G ! & ! , & . * " , . 0 , - " " . " - , , " , , , : , , , , . . * & , . ' , , & . G& : # " " ? 0 , " ? " . % ! . ! " " . * . * , , , . & . 365 . G , , . 3 & . 0 " . (. 10) 10. Y . Z . }%, . Shepherd, Epstein i Hunter . " , . ! & , , " . J) =$; #?; * () , " & . ! ! &. + 2 & , ! , & . # ! , & &. + " 10 m " & " 200 m . * & & , . . 366 3 ! & ". * , & & ! . $ . ! . " & . 3 & " ! & . " . , . " & & . , " , . 5. & " ! . , " , , & . ' & . ! , , & a &. , , . , . * , & & . 3 , ! & . , & & , . , . . $ , & " & , , , . * , . 0 " & & . () . . 367 # & , " - . , & - - &. " , & , " " . & " . '" , " ! . . & ! &. . " . , , , . , ! . 0 . G ! . 3 , " " " . & . : , , . $ , , , . : ?, " : , ? " , !? ! ! . |! . , , , , , 1. 2. ( , ) . * ()- , & , & . 368 1. 2. 3. 4. 5. 6. 7. 8. .'. : "2%$'30, $, 0*0". 2! , , 1974. Van Eyck: Team 10 Primer, Alison Smithson ed London, Architectural Design, 1964. $, .: "$0230 *0'%G0" $ , , 0*$, 1998. , .: "'0 +0 20#0 0 2+#0+ *0'$ #+0'$" G $ , , 0*$, 1998. ", $.: "$0", , , 1996. , '.: "$0", , , 1968. Dessoir, M. : 1) "30 $0, 2) 30 ''%00 3) 30 %'000 '", $; # " "*0' #%03'", 2000, +. 369 } [ !1 11 ! – <":W % 11 } (Y !, [! , : {, :G, {U, :, Q, [, } :, { : }G) U Z (GAP) USAID Sida, U & U U &, ! $ & & W ' } . ': , , PILOT PROJECT OF ZONNING IN 11 MUNICIPALITIES IN BOSNIA AND HERZEGOVINA- ATTACHMENT TO THE NEW METHOLOGY OF PLANNING Summary: Work represents recently completed a pilot project of zoning in test areas in eleven municipalities in Bosnia and Herzegovina (Teslic, Mrkonjic Grad, Kotor Varos, Knezevo, Vukosavlje, Kostajnica, Drvar, Sanski Most, Bosanska Krupa, Velika Kladusa i Buzim) under the patronage of Governance Accountability Project (GAP), by USAID and Sida, which scopes, among the other things, where to improve methodology of planning zoning and to provide training of staff in urban departments, giving support to the definition and implementation of new lows of spatial planning and building in Republic of Srpska and Federation of Bosnia and Herzegovina. Key words: pilot project, planning methodology, legislation 1 . G ", . &. , 0 -! * + 371 1. * % ! ! $ 2010. . # & , , " " ! , . ! ! . " ( %) " ! , , " , " . * , % " , . *! - , " & . (. 25. %), & & , " , ! . & %, " , & &. # G ! , ! $ - , & , , . G , , , , - & , &" ! , " $. 2 ! , , , , " . % $ ! , & . 372 $ . * , , " 3 2010. , ! , . $ ! ! . 3 - " , & & & , , & - . % ! ! USAID Sida (GAP) , , , - , &, " 2$-, " . , , 50 , ! ! GAP-, 2. 2. ! & & -, - . & & & . % & & , , & , , 2 * , I GAP-, , ! , ! 2 * $ , & 11 GAP- . 373 & . * , ! , , ! , , , . ! , & , , - " , & , ! , " . , & , " , , . , , , , " ! , . , & , . ! ? * $, " , &, " , , , " . $& &, , " " . * ( ! ) , %, , , & ! , & , ( , , , , .) &. $ . * * 2010. & " , , ", , & . , & 374 , , , . 3.1. (( ", G" 2, , & , , , #, $ G, , &) ! 2010. . " , . , # ( ) ! , " . " , , . $ GIS- ( , , ), " " ! " GIS-. *! & . (. 1., 2., 3., 4. 5.). ?. 1. ' – { : ( % U &) Fig 1 Final report –detail from Pilot Project of zoning in Velika Kladusa (report design by staff of urban department in Velika Kladusa) 375 ?. 2. ' – Q ( U &) Fig. 2 Final report-detail from Pilot project of zoning in Drvar (report design by staff of urban department in Drvar) ?. 3. ' – } :, U \ ( % G & ) Fig. 3 Final report –detail from Pilot Project of zoning in Bosanska Krupa, settlement Jezersko (report design by staff of urban department in Bosanska Krupa) 376 " , " . , " , & , , , ! . " " " & , ! . * Exellu ! GIS-, & ( % ) (. 6.). & ! , ! , GIS GIS- ( GAP-) , . ?. 4. ' – [, U% U ( % U &) Fig. 4 Final report – detail from Pilot Project of zoning in Sanski Most, Railway Village (report design by staff of urban department in Sanski Most) 377 ?. 5. ' – [! , '% U [% ( U &) Fig. 5 Final report-detail from Pilot Project of zoning in Mrkonjic Grad, Factory Village Manjaca,(report design by staff of urban department in Mrkonjic Grad 378 ?. 6. Y ( &) , $ (: }. [ !) Fig. 6 Table of regulation elements (building rules) in zones, defined pilot project (author B. Milojevic) 379 3.2. . , , , ! " & , -, . , & , ! , ( ) GIS-. , , , &, ! & (", , , " / , .) " - . $ , " , & , " . 0 & , , , & , " - . * ! 0 -! G-- * +, 0 $ , ! , . 4. ! # $ & & ! ( & & , , ) & . ! (GAP), 380 USAID Sid, , " . 1. 2. 3. 4. 5. 6. 7. 8. 9. ", G. * , $ , , 2004. ", #. U % , , * , , , 1988., .81 G ", . * – } W , % ' -, # , 2007. G ", . Z $ – G , % - $ , %+, , 2010. , G. } U , $ , 2006. # ", $. , ! !, * $, 1999. # & & W, . . W 55-10 Z G , . . W, $ 2003. | '} ( . *. '.}. 872/10) 381 W &!-!1 - ! : * " ! . # e "e, . , . 3 " . ! " " , " . ': %!,%! , %! HIGH STRENGTH CONCRETE – MATERIAL FOR CONTEMPORARY CONSTRUCTIONS Summary: This paper analyzes the approach by which high strength concrete as contemporary material is introduced into the construction practice. We summarize the main parameters that influence high strength, as well as other improved properties of concrete. The analysis of modern design codes, with special emphasis on European regulations is performed. One of the aspects of analysis is the relationship between compressive and tensile strength of concrete. It also analyzes the shear strength of beams and minimum of shear reinforcement concerning the use of high strength concrete. Key words: high strength concrete, tension strength, shear reinforcement 1 #, , 2! , 383 1. " ! . , , . ' - ". 1.1 & " " . 3 & " , , . * , , " . ! , . " . " , - , & . " , & . $ " . G& " & " " . T 30- " je " " 20 MPa, 80- " " . G !, " 60- " ", a, " . * ! " . * ! 60- " 42 MPa, G „Place Victoria“ 190 m. 70- " 60-70 MPa, ! , ”Water Tower Place“ , & 3, . G !, 80- 90- " , " " " . 58- , „Two Union Square“ $ , , 384 , 3 m, " 130 GP. " & 216 m, & . 50 GP. + " " 130 MP, " , " fc¹ =90 MPa [1]. " 130 MPa ! “Pacific Frst Center“ $ (1989), “Gatway Tower“, ! $ , (1990) ! " 117 MPa. * 68- “Scotia Plaza“ ! " 70 MPa, 65- 311 „South Wacker Drive“ , " 83 MPa. % , ! 2000. , “Bankers Hall 2“ (53 ) „TCPL Tower“ (35 ) “Pantages Place“ (46) " 80-85 MPa. 1 – “Two Union Square“ „311 South Wacker Drive“ („Two Union Square“ in Seattle and „311 South Wacker Drive“ in Chicago) * " , , , " , " , . 3 "Confederation Bridge" Prince Edvard Island New Brunswick . $ & 13 km ! & - 250 m & & 7500 . G , ! ". " , 28- " 385 50-80 MPa, " & 100 MPa. & & , 100- . 2 - [ "Confederation Bridge" G („Confederation Bridge" is one of the longest bridges of the world) 1.2 1.2.1 ;<% “J>;# ?';= }?$'>;z” " " " HSC , High Strength Concrete. High Performance Concrete (HPC) Ultra High Performance Concrete (UHPC). High Performance Concrete " . & " a , , HPC ! , . !" (Self Compacting Concrete SCC). & " " , & . $ , & HSC HPC-. ! ACI 1998. , HPC , ! . , 386 , " , . & " (0 87) " 50 GP. ( ) " . " 50 GP , " . , & , " f cc =50 MPa. ' EC2 (EN 1992-1-1: 2004) ! " " C90/105, EN 206-1: 2000 C100/115. EC2 - " fck 50 MPa " 50<fck90 MPa. * , - ! , " . Russell (1999) " " : ! 0.35; " 4 21 MPa, 24 34 MPa 28 69 MPa. 1.2.2 ;J<%@ J>;#a ?';= }?$'>;z " " : , . % " , . $ " , , " . % , " , & . " . , , , & , , . % " " ( 42.5 52.5). & " , ! " . , " " , ! & . " " , " . " , " 387 & , ! " . * " , & " " . . " & " . $ & ! , " . 2. ! 2.1 - ! " , " & , . * e & " , " . G& , , . 3 & , " " , . $ " " 50 MPa " . * EC2 fc¼>50 MPa " , & " ! & " 50 MPa, . 2.1.1 %?'#;'> #%+;#-]`;$%*<% +$ <]#;%='<%&#; +$>'=\ " - " . ' 3 & - " . 388 3 - # -$ ! %! (Stress-strain curves with increasing compressive strength of concrete) - ! " & " % " , - " " , - " . 0 - , 150/300 mm f cc , & " , (1), Aïtcin 1998, Collins, Mitchell, MacGregor 1993, Wong i Vecchio 2002, [1,5,7]. fc H c n (1) u nk f cc H cc § Hc · n 1 ¨¨ ¸¸ © H cc ¹ : f cc , H cc f cc , n, k . k " & " " . % & H c H cc 1 k=1, H c H cc t 1 k>1. 389 Collins Porasz (1988), Collins Mitchell (1991) Collins, Mitchel McGregor (1993) [5,6] & " n k H c H cc t 1 : fc n 0.8 c ( MPa) (2) 17 fc k 0.67 c ( MPa) (3) 62 U relaciji (1) figurišu etiri konstante: f cc , H cc , n i k koje se mogu odrediti iz odgovarajueg dijagrama napon-deformacija. Me{utim, u veini sluajeva je poznata samo vrstoa cilindra f cc , pa je potrebno odrediti ostala tri parametra. Parametri n i k se mogu odrediti pomou relacija (2) i (3), dok je deformaciju H cc mogue odrediti ukoliko je poznat poetni modul elastinosti betona Ec, pomou jednaine (4): f cc n H cc (4) Ec n 1 Ispitivanja su tako{e pokazala da je beton visoke vrstoe osjetljiviji na poprene deformacije nego beton niže vrstoe. Proraun napona u poprenom pravcu može se sprovesti pomou jednaine (5) (Collins, Porasz, 1988) [6]: f cc H c 2 n u u fc2 (5) nk O H cc § H c2 · ¸¸ n 1 ¨¨ © H cc ¹ " : O (0.8 0.34 H1 )(0.9 0.0045 f cc) t 1.0 H cc (6) EN 1992-1-1: 2004 " " " C50/60, [2]. 2.1.2 ;]\& &%'>}#;'> J>;#% G - . G " " " , " " , ! . " , , , " . G !, , " , . EN 1992-1-1: 2004 ! & " : 390 Ecm § f · 22¨ cm ¸ © 10 ¹ 0.3 (GPa) (7) fcm = fck+8 MPa, fck " . ! ! . 3 " (Aïtcin 1998) Baalbaki (1997), [1]. ' " Baalbaki : E c K 0.2 f c (GPa) (8) c 0 c * (8) K0 . K0 = 9.5GPa, K0 = 19GPa K0 = 22GPa. , 60GPa, 50GPa 30GPa, (Aïtcin 1998) [1]. , " : 95MPa, 130 MPa 155 MPa. B " " a " , " . * " " " , " " " & , , . " , , ! . (CSA) & (8) . 2.1.3 ?$'>;z% J>;#% +$ %>%@\ # " & , " ! - " " . " " , ! " " . , , " . ' , [1,3]: (9) Comité Euro-International du béton CEB-FIP (1978) f sp 0.273 f cc2 3 (MPa) Carrasquillo, Nilson i Slate (1981) f sp ACI Committee 363 (1984) f sp 0.54 f cc1 2 (MPa) 0.59 f cc0.55 (MPa) 391 (10) (11) Burg i Ost (1992) f sp 0.61 f cc0.5 (MPa) (12) (10) (11) & 21< f cc < 83 MPa, (12) & 85< f cc < 130 MPa. EN 1992-1-1:2004 ! ! " , fctm, " . % " " , fck, " " , fcm. % " , C50/60 f ctm 0.30 f ck2 3 (MPa) (13) % " , >C50/60 f ctm 2.12 ln1 f cm 10 (MPa) (14) ' + 2! , " ( 45 MPa 107 MPa 15 cm), (15), [8, 11]: f sp 0.5 f cc0.5 (MPa) (15) fsp " , f cc " 15/30 cm. ' 4 ! " " , (9) – (15). EN 1992-1-1 (EC2) " " " , & . " " [8,11], 4. 8 vrstoa pri zatezanju (MPa) 7 6 CEB-FIP (9) 5 ACI (11) CNS (10) 4 GFP (15) 3 EC2 (13,14) 2 BO (12) 1 0 0 20 40 60 80 100 120 140 vrstoa pri pritisku (MPa) 4 – ! $ %! (Splitting strength as a function of the compressive strength according to the given relationships) 392 3.1 ! , " " , " , . 5 – | %! %! (Influence of concrete compressive strength on shear strength of beams)[9] ' 5 & " , & , " . ' " " " & . & " " " " . 2 . % " " " . EC2 " , " : U w Asw sbw sin D (16) : U w, min 0.08 f ck f (17) yk Asw " , s , bw ! , fyk " . 393 EC2 ! " . # 6 ! " " , CSA 2004, ACI 318-02, EC2 2004, AASHTO 2001 Concrete Society Technical Report 49 (1998). 0,900 0,800 U w fy (MPa) 0,700 0,600 0,500 0,400 EC2 2004 0,300 CSA 2004 0,200 ACI318-02 AASHTO 0,100 CSTR 98 0,000 10 20 30 40 50 60 70 80 90 fck (MPa) 6 – [ %! % (Minimum of shear reinforcement according to different design codes) [11] & " ! " . Yoon, Cook i Mitchell (1996) " CSA-94 CSA-2004 " , [10]. G !, Ozcebe (1999) " , (0.25mm). 4 " , & . " & ! . # " , ", . " 394 ! . " &. " " . " o je & , " " . [1] High-Performance Concrete / P.C. Aïtcin // E&FN Spon, London 1998, 591pp [2] EN 1992-1-1:2004- Evrokod 2, – # 1-1 – , , 2006. [3] State-of-the-Art Report on Hgh-Strength Concrete / ACI Committee 363 // American Concrete Institut, 1992, Reapproved 1997, 55 pp. [4] A State-of-the-Art Review of High Performance Concrete Structures Built in Canada 1990-2000 / J.A. Bickley, D. Mitchell // Publication printed in Canada, 2001, 114pp. [5] Structural Design Considerations for High-Strength Concrete / M.P. Collins, D. Mitchell, J.G. MacGregor //, Concrete International, Vol 15, No.5, May 1993, pp.27-34 [6] Shear design for high strength concrete / M.P. Collins, A. Porasz //, 26th Plenary session of CEB, Dubrovnik 1988 [7] VecTor2&FormWorks User's Manual / P.S. Wong, F.J. Vecchio // http://www.civ.utoronto.ca/vector/ August 2002, pp. 213 [8] Tensile and Shear Strength of High-Strength Concrete / R. Sin{i-Grebovi // The 5th Central European Congress on Concrete Engineering, Innovative Concrete Technology in Practice, 2009, Baden, Austria, pp 285-289. [9] Simplified Shear Design of Structural Concrete Members - Appendixes / N.M. Hawkins, D.A. Kuchma, R.F. Mast, L.M. Marsh, K.H. Reineck // NVHRP WebOnly Document 78, July 2005, 338 pp. [10] Minimum shear reinforcement in normal, medium and high-strength concrete beams / Y.S. Yoon, W.D. Cook, and D.Mitchell //, ACI Structural Journal, Vol. 93, No.5, September-October 1996, pp.576-584 [11] | %! %! / . $!"–2 " //, # , 2! , 2009. . 263 395 [ # 1 :* ! , . # , , ! . , & !. 2 ! " . .. ': , /& , MATERIALS USED IN EUROCODES APPLICATION Summary:To satisfy essential requirements for civil works material properties shall be well defined. Special emphasis is given to mechanical resistance and stability. Suitably selected materials in conjunction with quality construction should assure civil works complying assumptions defined in the design. Definition of suitable properties of concrete and reinforcement steel is discussed. These properties shall be given in the design, shall be identified on the market and applied by the manufacturer. Neccessary system of construction product conformity assessment at the national level is discussed as procedures for fulfilling and application of European legislation. An example is given for concrete structures. Key words: eurocodes, materials/ construction products, fulfillment of requirements 1 .. G %, ..!., % 397 1. . # , . ! . ! ! , " . & , ! , & ! . " ! , , , , , . " , . 2 * , . $ , ( EN 1992, EN 1993, EN 1994, EN 1995, EN 1996, EN 1999 EN 1998 & ), . 2.1 ! % , EN 1992-1-1 EN 1998-1. 2.1.1 >;# – %^><? #;$ EN 1992-1-1 # . % %! EN 206-1 " , fck / fck,cube ( (5 %- ) " / ). * EN 1992-1-1 ( 1) " fck " & . ' " , , . " , . " " fck, ! 398 28 " Cmax & NA2, " C90/105. { % %! " " . $ " " ( 1) . ' " . 0 " ! > 28 , acc act ! 3.1.6 (1) 3.1.6 (2) EN 1992-1-1 . NA, 0,85. * RH Dcc=1,00. .1 - N' #' ( 3.1 EN 1992-1-1) fck (MPa) fck, cube (MPa) fcm (MPa) fctm (MPa) fctk,0,05 (MPa) fctk, 0,95 (MPa) Ecm (GPa) Hc1 ( 0 00) Hcu1 ( 0 00) 12 16 20 25 " 30 35 40 45 50 55 60 70 80 15 20 25 30 37 45 50 55 60 67 75 85 95 20 1,6 24 1,9 28 2,2 33 2,6 38 2,9 43 3,2 48 3,5 53 3,8 58 4,1 63 4,2 68 4,4 78 4,6 88 4,8 90 10 5 98 5,0 1,1 1,3 1,5 1,8 2,0 2,2 2,5 2,7 2,9 3,0 3,1 3,2 3,4 3,5 2,0 2,5 2,9 3,3 3,8 4,2 4,6 4,9 5,3 5,5 5,7 6,0 6,3 6,6 27 29 30 31 33 34 35 36 37 38 39 41 42 44 1,8 1,9 2,0 2,1 2,2 2,25 2,3 2,4 2,45 2,5 2,6 2,7 2,8 2,8 3,5 3,2 3,0 2,8 2,8 2,8 Hc2 ( 0 00) Hcu2 ( 0 00) 2,0 2,2 2,3 2,4 2,5 2,6 3,5 3,1 2,9 2,7 2,6 2,6 n 2,0 1,75 1,6 1,45 1,4 1,4 Hc3 ( 0 00) Hcu3 ( 0 00) 1,75 1,8 1,9 2,0 2,2 2,3 3,5 3,1 2,9 2,7 2,6 2,6 % $ , . EN 1992-1-1 " . G !, ! (. ! . % 10 %, 30 % , " 20 %). . 0,2 0 . 10·10-6 -1. NA. Z U , , " " . " 0,45·fck(t0) 0, 2 399 " . 0 0 0,45·fck(t0) . - $ " . ( 3.2 EN 1992-1-1). { % % % %! ! & , , ", acc act fcd D cc fck / J C f ctd D ct f ctk,0,05 / J C NA. 1,0. - $ EN 1992-11, – . 1 – - $ ( 3,3 3,4, 3.6 EN 1992-1-1) % , ( ), " " " . ' EN 1992-1-1 " " . $ " . EN 206-1 ! ! & , ! ( 0.1 EN 206-1), , 2.1.2 &= % %$$%@ - %^><? #;$ EN 1992-1-1 , , & . * EN 10080, , 3.2.2 3.2.6 # , . ' EN 10080 Re, , " . fyk ! . ' ! fyk Re. G ! EN 10080 400 ! fyk. ! EN 1992-1-1 ( 2, . " , ). * EN 1992-1-1 fyk = 400 600 MPa. 2 $y NA. * # EN 1992-1-1 ( 2), $ ( ), . $ - 40 C + 100 C. $ ! EN 13670. ! - 2 fy " ft " " " , . fyk NA. C.2N EN 1992-1-1, 0,6. 2 - ?' ( C.1 9 C EN 1992-1-1). 0 fyk f0,2k (MPa) C % (%) G & 0 C 400 600 5,0 ' k = (ft/fy)k ¾ 1,05 ¾ 1,08 ¾ 1,15 < 1,35 ¾ 1,05 ¾ 1,08 ¾ 1,15 < 1,35 10,0 " , uk ( 0 00) ¾ 2,5 ¾ 5,0 ¾ 7,5 ¾ 2,5 ¾ 5,0 ¾ 7,5 10,0 $ - - 0,25 A fyk (" & ) " ( kN) 401 ' ' " ( & ) (%) ' () 8 >8 5,0 ± 6,0 ± 4,5 fyk, euk 2 . ' EN 10080 . $ ! 2: - , ( " fyk ) - fy ! " , M t Cv + , : „Cv„ , „“ '0. fyk 10 MPa, 0. ' " fy, NA, C.3N EN 1992-1-1. # " " " $y,x 1,3 fyk. $ EN 10080 EN ISO 15630-1. Q " (ft/fy)k " , . - ! ( 2). 2 - Q – $ – $ % ( % % ) ( 3.7 3.8 EN 1992-1-1) % EN 10080, " ( & " , & ), EN ISO 17660. 402 " , , EN 10080. # C EN 1992-1-1. . % " ( 2): ) " k·fyk/gS , k=(ft/fy)k, ) eud '0, 0,9·. (ft/fy)k # 2. $ " 7850 kg/m3, , , 200 GPa. 2.1.3 >;# }&= % %$$%@ – ];]%># %^><? +$% #;$ EN 1998-1 % & (DCM) C 16/20. * ( ), B C, .1 EN 1992-1-1 ( 2). G& & ( ). (DCH) " C 20/25. 0 ! C. (95%) , fyk 0.95, 25%. 3. ' . G !, . " 3 : , ! (NA) . 3.1 CPD ( 89/106/EEZ) CPD & , ! CE . # ! ! ! () ( ). & ( ) 403 (! ) ! ! . ' & & () ! ! , . ' ( ) !. ' . * & ! , ! (2+) ! . ! , HRN EN 206-1 HRN 1128 . % EN 10080 ! . ' , ! , HRN EN 10080 HRN 1130 (&, , & ). ( , .) ! . 3.2 ! * ! ! (! ) . % ! ! , & . % ! ! EN 13670. * " ! . , . 3.3 ! ! (#[. National Annex, NA) * 2, , " ! . % . %, NA " , . ' " , . 404 4. " " ! , ! . ! . # , ! , & ! # ! . G ! . " () . # ! " & , ! , ! . 1 2 3 4 5 6 7 8 EN 1992-1-1 ( 3. ) EN 1998-1 ( 5.3.2, 5.4 5.5) # 89/106/EZZ (PD) ' HRN EN 206-1 HRN 1128 HRN EN 10080 HRN 1130 405 [ 1, * Z! 2 ! - ! ! : , " , , & , „ “. , & & , " - 21. . , , , , , " " , !. : , , & NEW SPACE CONCEPTS – INNOVATIONAL CENTRE BANJA LUKA Summary: The Twenthieth century architectural object, using the principle elements of an architectural object, bases, facades and a roof, has had for an aim the tendency to express the architectural object’s function through its form, which coincides with the concept that the form pursues the function. The main elements of The Innovational Centre, as an architectual object, do not tend to express a completely new contents of that object, but, they tend to express the character of the space corresponding to the sociocultural context at the beginning of The Twentyfirst century. The elements of The Innovational Centre, as an architectual object, base, facade, roof, motion, function, merge into a bigger whole thus becoming the active segments transforming the architectural object into a singular dinamic space event. Key words – open space concept, singular architectural object, event 1 2 . G +, ... , 0 * . ' ", ... , „ “,.. +. 407 1. - 1.1. - + (+) * + 2007. , ! 2 + , % +. * +, ", .. . 710/17 .. + ( ), .. . 1623/4 .. + 6 ( ). * +. „$ “ , " +2, & 2.226,4 m2. ! ”$ " , - ! 3, " ! , ! , " " , 5. " " , &. ' +, ! + * . ! 2009. 2010. „ “, .. +. 0 G +. * : 1. – G +, $ ", $" ! 0" 3 © ", 3D – 0 "; 2. – ! & % ", G 3 " 3 "; 3. – ! & G G " $; 4. – & G , G $" "; 5. – & % 3". $ +. 408 1.2. ! ! + * + . , ", " , G" & , . + " * " " &. " G" " , , , & . , , . * , 156 m, , ! 500 , 9° MCS, Ks=0,100. 1.3. ! ! ' .. 1623/4, .. 6 , 187.017 m2 , " * , " ! . ' ! " &, ! . , ! . , 4.914,71 m2. ", " , " & . ! " " , " , . *- , " : - 79,0 24,5 m, ! e e. - ++3 (, ) 409 - 4.000 m2 - ! . - & . 2. 2. 1. ! ! " " , - , & : , , , , , - , , . , +2, +3, 4.000 m2, & ! , *- . 2 , ". & ! , -3.00 m . # ! . $ & ! , " . 2.2 ! ! - +, $ ' . + , $ " $ G $ ' . +, *, " . „start up“ + " $ *, &, " & " , , , . 410 : - - - - - " " - " " -& * - , +- $ " $ . 2.3. ! , ! & (PPP – Public and Private Partnership). 3 , $ , 2 +, * + ' XI ( ), , ". „“ +-, , " , & . " ! , “start-up” , " , “spin-off” * -& , &- . " & , , &, “outsourcing“, , . ! ! " +-, " &, ! " , . * " +- -& , , " * -& , . + & 411 " + ! & , , IT , , , *. & & " + , & ! & , ! &. 3 " & & . , & +: - , $ ! &, , *, : , , , " &- „Know-How“, , & , “seed fund“ $. 3. ! ! 3.1. 0 " ", , ! . , , ! . ' ! , , , .[1] $ , , & . , , . " , . , , " . $ & , " , & . 412 2 + , - & , % , , . * & , , + $ . 3.2. \ (Jean Baudrillard) Q& /vent Theory/. , „“ , " . , , ! , " [2] . " , , , „ " , " “.[3] , " ! " " " - . , " " . # ! & ! : ! " ". #! , , . #! , & , , . 3.3. ! ! ! 0 , , , .[7] , , " , & ! . . ' , , , , , " ! & . 413 $ , ! ! - , . & ", -&[4] " - . , „ ", , - “ „ " & " “. ! , +- " : „“state-of-art” , , , , , , , & “. " & , . G , , „ „0““[5] , & „ „““. , , , +- „“ & !. , " , , & , „ “. , & , , & , " - . [6] * , , , , , / , " , !. o- + & , . 414 4. – ! ! ! ! 4.1. ! . ! 4.000 2 , : 1. - 2. 3. 4.2. -! * & . &. : , , & , , - . * , , , -. * " , . 4.2.1. !#>$%&# ^;& , , & ! . ! , ! " , - . , . * & & , &" . , & – , , . , "" , , - 415 . * ! " &: - - - – - - & - - “Press releases” – ! - - 4.2.2. #=\J%>;$ *#>%$ >$##[ ;]&@ , . +- " +-, . " " " , & , " , & . ! . ! , ! , , . & , , " ! . * ! " &: -* “e-learning” – "" e-learning . # 12 " , ", 24 " . - – & “e-learning” . * 15 " . - – ! , . - e-learning – & elearning . , start-up . ! , " „kno416 wledge-based“ , & . # , ! start-up -& , , , , & & " . " ! " " . , . * ! " : 1. „start-up“ 26 - 1-3 . - 3–6 , , . - , , . 2. $ – , 15 " . 3. + – , . 4. % - " , . , " -& * . 5. – ! . 4.2.3. ;#'%&>#[ ;]&@ #%#> *#>$% , ! . * . &, &, &, " & . 1. - - - IT 417 - ! – Hot Desk - 10 - – 15 " - - 2. G - - 5 - - – 20 " 4.2.4. ;#`$#*<'= *#>%$ - , &, ! . , & . " ( 12,0 m), - . ! & . * 225 " , , , , " . & " . * ! , ! , " - , . &, , & ! , , , , & . 5. ! ! 5.1. ! ! ! - 15 20 cm, . & " 5.60/6.00 m, " , 5.80/12.00 m, . ' " - ! , & & 418 & ¿ 55 cm, 50/50 cm. G ! - 18 cm, - 20/70, 30/70, 50/70 50/100 cm. - 60 cm 60 cm. * ! " . ' , . , , , "" " . ! . 2 . # , !" " . " , , ! &. ! - & . # - , . ! PROTAN SE 1,6 mm 01 , , . , , . 5.2. ! ! ! " Sto Ventec, , 15 cm. % , Stolit, , , + 2, & , . 6-14-6, 0 90% Ug=1,1 W/m2K. SCHUCO FW50 SI+, . " 150 mm, 155 mm, Uf=1,2 W/m2K. * Ucw=1,3 W/m2K. ' ! 8 mm, - 14 cm. * 419 ! Schuco AWS 120 SK, "" . ! , , ! . 1 – U } Fig. No. 1 - The Innovational Centre Banja Luka – ground floor base 2 – | $ } Fig. No. 2 - The Innovational Centre Banja Luka – the principal facade 420 3 – }% $ } Fig. No. 3 - The ICBL – the flank facade and the facade overlooking the courtyard 4 – Z } Fig. No. 4 - The Innovational Centre Banja Luka - panoramic view 421 6. [1] [2] [3] [5] [4] [6] [7] Lefebvre, Henri. The producion of space (1974). Translated by Donald Nicholson-Smith. Oxford: Blackwell Publishing Ltd, 1991. Baudrillard, Jean i Nouvel, Jean. The Singular Objects of Architecture, (2000). Minneapolis: University of Minnesota Press, 2002. Tschumi, Bernard. Arhitektura i disjunkcija (1996). Prevod S. Kali. Zageb: AGM, 2004. Hayes, Michael K. ed. Architecture Theory since 1968. New York: MIT Press, 1998. Colomina, Beatriz, Privacy and Publicity: Modern Architecture as Mass Media, (1994), The MIT Press, Cambrige, Mass, 1996. 422 [ W!1, [ !2, `U Z !3 ! : " , " , . *! 1 10 cm. ! , ! . ': {, , , cija COMPOSITES BASED ON THE WOOL FOR THERMAL AND SOUND INSULATION Summary: Wool is a precious natural fiber used in the shoe and home textiles production and recently in the production of technical textile and composite materials for insulation. Composite materials are made of wool with the polypropylene and bicomponent polyester fibers from 1 to 10 cm thickness. Characteristics of these composites, insulating properties and certain optimal composite combination for insulating materials are determined also. Key words: Wool, polymers, composite materials, thermal insulation 1 . G ", . &. , , +, . $. $ " 73, 78000 +, 2 G ", . &. , , +, . $. $ " 73, 78000 +, 3 ", $% „G“, 29. ' , 79101 423 1. . # " " , " , ( , , ! .). * . ! , , . 160 ºC . G &. 3 ! . ' ! & & & . 1. Figure 1. From nature to thermal insulation 2. & , , . , , ! , . & , . 424 $ & , À- , : R – CH – COOH I NH2 , , : ... – CH – CO – NH – CH – CO – NH – CH - CO – NH - ... I I I R1 R2 R3 ,,R“ & , . : 80%; 17%; 1,5% 1,5%. % & . . & . * , . ' & & , & , " . * , , . 2. $$ Figure 2. Electric microphotography of the wool fiber 425 & . & . ' " , & . 3. : " ; () ($). * , 35x35 cm. ' & $ , & . 5 20%. , 1 10 cm. pod ' " 160 ºC, " .* . . 1 cm, 5 " 3 kg. % 3cm 10 " 5 kg. 0 5 7 cm, 15 " 7 kg. 10 cm, 20 " 7 kg. ' " " . 3 . Figure 3. Final sample appearance of the composite materials 426 4. * $ & . $ 5 20%. $ ! , & " " . ' 8%. , , & . * , & ! / /$. ' & & , , . , " ! ( ), . 1. 1. #' " ' Table 1. Thermal conductivity coefficient of the insulating materials $'> %>$<%&% O [W/mK] 0.0360 0.0346 0.0324 ' & " . $ , 4% , . 10% , & . ! . 427 5. . , , & . " " . . ! . ! " , 4% 10% . ! , , , . 4. Z % Figure 4. Composite materials application based on the wool as thermal and sound insulation 6. 1. G. ": „- $ $ “, * +, , +, 2000. 2.$. ": „G “, * , - , , 2006. 3. G. : „0 “, 3 ! 28 4/1988 . 20-26, -, + 4. A. S. Blicblau, R. S. P. Coutts, A. Sims: „Novel composites utilizing raw wool and polyester resin“, Journal of Materials Science Letters 16 (1997) 1417-1419 5. Jong-Kyo Kim, Yin-wing Mai: „Enfineered Intefaces in Fiber Reinforad Composites“, Elsevier, Oxford, UK, 1998. 428 [ 7!1 , W ! 2, Q : 3 E : # () 2 +, . , ! , " " , , " , . : a , $ , U U . BUILDING PROBLEMS OF WATER SUPPLY IN RURAL AREAS IN BANJALUKA CITY Summary: The work presented reviews of the current ways of water supply in rural areas in Banjaluka municipality, as well as activities that are planned and implemented in order to improve the quality of water supply during the year. Among other activities in order to provide sanitary and non-bacterial water to rural areas, it is planned to introduce the technology of self-rinsing quick filters at the sources, water disinfection, installation of appropriate equipment for automatic operation, remote control and central management of water systems in rural areas. Keywords: springs water, self rinsing quick filters, remote monitoring and control systems. 1 . , ! , + . .&.!., *$ '0, ..., + 3 .&.!., ! , + 2 429 1. ( ) 2 + . 2 & & ! . , " , " ( & ) , &, ( ). ' , ( – – "), 3 , , , $ ( ). 2 +, & ( ) . % & , ! : o " 2 + 24 , ; o & ! ; o * ! . 2. % ( & ) $ : - % ! ! ("$& $ ", . 55/10), - % ("$& $ ", . 50/06, 92/09), - % ("$& $ ", . 11/95, 51/02), - % ("$& ", . 49/04), - " ("$& $ ", . 40/03), - , ! & , , ("$& $ ", . 07/03), - ! , ("$& $ ", . 44/01), 430 - ("$& $ ", . 68/01), - ($& 2 + . 25/07). % $ $ # , 2 +. 3. % 2 +, ! 30 " ! ( 4 , $ 2 + .16/03, 19/06) . ' " ! " ! : (&), ( 50 1200 3), ( 4 W 75 W), , ( , 20 300 ). ' & ! , " : , , . % ! " ( & ! ) 1. 1 – N " ' Table 1 - Summary data on water supply facilities built * ! 40 6485 3 23 49 * & & 430077 – " 5929 ' ! 1. G& ! & ! : , , , , , , ( ). 431 . 1. * & Figure 1. Some of the facilities built for water supply systems " ! „2" “ „ “ ( 3), ( & ) 2 + (, , , 0 , , 943 ), 3 & G " . 70 / . * , . ( ) (). G 40 / " . PLC-a4, " SCADA5. . ! , , " , " , . 2" 2, 3. 4 PLC – Programmable Logic Controller - ! & SCADA – Supervisori Control And Data Acquisituon - 5 432 2: } $ ! Figure 2: Fast filters at the source Gasica vrelo * „$“ ( 4), 1908. + . 25 / . $ " & : 2 (69 ), # (25 ), , , $ ( 315 ). 3: 7 ! Figure 3: Scheme of water supply system Gasica vrelo * " : „"“ ( 520 ), „“ „“ G G ( 128 433 131 ), „2 “ ( 220 ), „ “ ( 392 ), „ G“ ( 319 ), „ – “ ( 362 ), „ "“ ( 356 ), ( 300 ). % " ( " ), ( ). % & , ! . 4: 7 Figure 4: Scheme of water supply system Subotica % G " : „£" “ ( 244 ) „" “ ( 141 ). -. %" ( 10 W 4 W) ( 200 3) & . % . % , : 30 W , 37 W . ' ( ) 227 ("). * " " , . 434 4. $ 2 + & ( ) & ! , 75% . ' ! " , . (, ", 1, # , , 3 , , $). ' , (", ", 2 , ,...). % " , . G ! ! , ( ", ", , , G , , „ "“ G.%. , 2" ). 0 , . % . % & ! , , , " &a . & & ( & , , " ). 5. * , 2 +, , " : , ", ", ; , (, , &), ( , , ); ; ( = 1,50, = 1,65). $ " ( ) 2, 3. 435 2 – !' Table 2 - The average amount of water required per household " $ G 150 60 10 1,50 40 * 2 12% * " . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 6 3,8 4 15 50 3,8 * 570 240 150 75 152 1187 142,44 1330 3 – !'& " ' Table 3 - The estimated amount of water needed for certain settlements ' G 20066 2010 2030 2006 2010 2030 0 $ 655 629 642 3,98 3,82 3,90 415 410 444 2,52 2,49 2,70 1396 1368 1424 8,48 8,31 8,65 1328 1301 1367 8,07 7,91 8,31 " 876 854 889 5,33 5,19 5,40 G 718 700 736 4,36 4,25 4,47 84 82 86 0,51 0,50 0,52 126 124 129 0,77 0,75 0,78 # 50 48 50 0,31 0,30 0,31 # 2342 2333 2578 14,22 14,17 15,66 # 135 129 134 0,82 0,80 0,81 2 450 441 459 2,73 2,68 2,79 3 1292 1310 1419 7,85 7,96 8,62 " 221 214 219 1,34 1,30 1,33 1637 1604 1737 9,94 9,74 10,55 # 723 728 805 4,40 4,42 4,90 653 633 652 3,97 3,85 3,96 1463 1457 1547 8,89 8,85 9,40 + 140 134 140 0,85 0,82 0,85 +" 152 146 152 0,93 0,89 0,93 482 470 490 2,93 2,85 2,98 G 789 765 789 4,79 4,65 4,79 G 2150 2204 2534 13,10 13,39 15,40 ( ) 436 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 " # 2 () G " () $" $ $" $ " " % 569 321 423 239 2761 40 555 308 412 232 2733 39 572 321 429 239 2902 42 3,46 1,95 2,57 1,45 16,77 0,24 3,37 1,87 2,50 1,41 16,60 0,24 3,47 1,95 2,61 1,45 17,63 0,26 3267 3241 3510 19,84 19,69 21,32 590 207 0 319 1633 838 231 270 90 36 0 1177 148 60 25898 587 203 0 311 1600 818 223 260 87 35 0 1167 142 57 25626 648 211 0 324 1733 851 232 276 89 38 0 1239 146 60 27567 3,58 1,26 0 1,94 9,92 5,10 1,40 1,64 0,55 0,22 0 7,15 0,90 0,36 157,3 3,57 1,23 0 1,89 9,72 4,97 1,35 1,58 0,53 0,21 0 7,09 0,86 0,35 155,7 3,94 0 1,97 10,53 5,17 1,41 1,68 0,54 0,23 0 7,53 0,89 0,36 167,5 6. ! & & 2 +. * (24-) " ( ) . * ! & , & 2 +. ( ) , ! . 3 , , , , , , & " , . 437 # 2 +, " ( 5): „“ ( 7) G. , ", $", , % , # . „ “ ( 8) " G, ", $", , , . " – – G – – " ( 9), " . , 3 . 438 5. % Figure 5. The situation of major water systems in the City 439 6. QU „}“ Figure 6. Details of the implementation of water supply system Banjica 7. 7 } Figure 7. Scheme of water supply system Banjica 440 8. 7 Figure 7. Scheme of water supply system Crno vrel 9. 7 W! - {! Figure 8. Scheme of water supply system Ramici - Verici 7. ! 2 +, & " : - ]$_%?%@ +;>$J#;[ =?%&>>% ?;] #% ?;$~>%. ?; < '>%&#% +$?#>?#% <$% \ }<\ $%&%*<\ >$J% ]% J\] \=|\}#% ~$% ]$\~>?#% %<]#*% #% }&\ '% #%]&_# #'>%$'>?%. - %?$~>%= [$%]@ '>%?|%@ \ `\#=*<\ ;J<=%>% $[;#%&#^ ?;];?;]#^ ''>% „!$#; ?$&;“, „%@*%“ „%~z% ?$&;“. 441 - %?$~>%= [$%]@ ?;];?;]% % '#%J]<?%@ ?;]; ';'=^ #%'|% '% ?;];?;]#;[ ''>% $%]% %@% \=%: #%'|% #% +$%?*\ %z, ~# %#, ;>=;%$<, $z, =%; +$[$%]'=% #%'|% ;#$, %[%$, %$%#;?%*, ]; #%'|% ;>=. - +;$]; '% [$%]@; $[;#%&#^ ?;];?;]%, +;'>;<z ?;];?;] (=;< z J> #>[$'%# \ ?&= ?;];?;]# ''>) ;]$_%?%> #% '%]%~@ #?;\ (~>; '=\< #%}%<#% `#%#'<'=% '$]'>?%). - %<#% ];>$%<%&^ *<?;?;]% ;+$, =%; '%#%*<% [$%{#^ ;J<=%>% (=%+>%_%, +\+#^ '>%#*%, $$?;%$% >$%`;'>%#*%) < >%=;{$ %=>\&%# +$;J& =;< \?&=; \>} #% =?%&>> \ '#%J]<?%@\ ?;];. - %'>%?%= %=>?#;'> #% ''>%>'=; ;>=$?%@\ ;>=&%@%@\ =?%$;?% #% ]'>$J\>?#;< $_ \ *|\ '%@@% [\J>%=% +;J;|~%@% '#%J]<?%@% ?;];. - ;#$%@% ]'>$J\>?# $_ \'+;'>%?|%@ =;#>#\$%#^ <$@% +$;>;=% +$>'%=% \ *|\ +;J;|~%@% =?%&>>% '+;$\= ?;] +;>$;~%}%. [$%]> ?;];<$ =;] '?^ +;>$;~%}%. - %|@ $%?;< #%];$#;-\+$%?|%}==;[ #>[$%&#;[ #`;$%*;#;[ ''>% #% ?;];?;]#;< $_. [1] 0 2 + // ! , „ “, ... +, * $ , .. +, „* “, ... +, -, ... +, „ & “ +; [2] % % } // #.. * +, ... „ “ +, 1991., +; [3] II ' $ , ZZ „* 2“ / // #3 „“ +, „ “ , ... +, & , 2002., + [4] Z } 1986 - 2005/. // * $ , .. +// , 1990., + [5] $ % } ! U // ! + // 2010 ( $ 2010. ) 442 {U !1 : * - " . (+2) . % & " ! , , " . " ( & ) , " . ': , , G U THE POSSIBILITY OF REUSING THE OLD WASTE DUMPING SITE Summary: In this paper, rehabilitation technologies for waste dumping sites are discussed where the biological and mechanical in-situ stabilization of a waste dump as well as the redevelopment of an old landfill are realized.Waste dumps and old landfills are causing severe environmental impacts due to the formation of leachates and landfill gas (LFG) during decomposition of organic materials. Therefore the rehabilitation of waste dumping sites has become a matter of omportance for controlling adverse effects like groundwater pollution, differential surface settling, odor problems and damage to surrounding vegetation. Especially if redeveloping of land (land- recycling) is planned later on for construction of buldings, the adequate rehabilitation of old waste dumping sites is a must. Key words: ld waste dumping, landfill gas, land-recycl 1 #. £", , 0' + 443 1 * . % " & . & . " & ! . % , " . - & . & ! [1]: - , - ! , - . 0 " & . 1- * (') ! - Figure 1 -The emergence of leachate and landfill gas anaerobic digestion of domestic waste at the landfill reactor-type 444 2. ! . (CH4), (CO2) . 1. 1- ? ' (' ') 1- Composition of landfill gas (average concentration) !! (%) G (CH4) * (CO2) (O2) 0 (N2) (H2) ' - 38-58 30-48 1-2 2-10 0-1 <1 =1 $ (H2S) G 0 (mg/m3) 0-150 10-1000 0-800 0-100 0-15 ppm ppb * " , , (LFG) " " . , & . ! . . 3 . „G “ . G [2]: 445 LFG = 2 x L0 x R(e+kc – e–kt) (1) : LFG – " (m3/a), L0 - (m3/kg), R - & & (kg/a), k - (l/a), t - (), c - (). L0, " kg . k, ! kg . * L0 ( 0.14 – 0.18 3 CH4/kg ), k- (& :0.1 – 0.35 l/a, & : 0.02 -0.10 l/a). % k L0, ± 50%. % , & 6 3 . # & . & ( & &) ; & . & & . LFG ! , " & . CH4 „ “ ( 18.4%) . LFG . 3 ! 30 , . & . , & . * . * ! 2 9.5 3 & [3]. % , " ! . * ! ! . ! 178 . . 446 U.S.EPA [4], (LFG) . , ! . ! !- 60 . , 4.000 2 . # , ! 10 18 . * SAD EPA , " 75% , " " . ! 1 0,6 " 0.1 0.15 . -# . " " , (. ) . ' " . " . ' 2. . 2-{ Figure 2- Vertical well for the degassing of old landfills 447 % . & +2. 2 " -# . & , . % . # & 2-30. * , +2 ( ) 70% . * , " . % " " : - 1 , - 10 , - , - ( ) - 100 . ' " . % " " . 30-50% CH4. + & ( ) , (. ). # " , & &. % " , ( 30 2000 W) / (500 W 10 MW). 0 . . . # : , " . * , ! " . (=0.28 ) , 2.5 . , . 950 m3/h 30% CH4. % CH4 (30-40%) 15-20 MJ/m3. $ &. 448 & , " . , . * ! " , ( 14 ) . $ , , . 3.1 - ! $ " " & . 2 , & . 3.1.1 ;&;~=% '>%J&%*<% #-'>\ +$>'# +$;$%}?%@ * Feldbach, " . " . " " . -*$ . 0 , " " ( 35% 2). -*$ (0 - ) : , 3.) 3-Z }-Z|YW - Figure 3-Display BIO-PUSTER system for a biological in-situ stabilization 449 " , ! . " (2-6 ) . & . . * . & ! . ' , . G -*$ . # " " . # 50% & " . * , ( ) . ' & & . 3.2 ! ! ! " , ! , & . " . SOILFRAC ( ) . ! " (. ) , " ( , . ) . & , , , , , . & . 4 " - & . ! . # & (LPG) " . % SOILFRAC . , 450 (. ) „nd of pipe“ ". >1@ G / . £"/ 0' +,2008., +. [2] Landfill Gas,Aglobal Resource/ R.A.Watts/ Report presented at the 13th International Conference on Solid Waste Technology and Management, Philadelphia,USA,1997. [3] Altdeponien: sanierung, Nachsorge und Nutzung/Publication series od OWAV, journal Nr.118, national Solid Waste Conference in Bregenz, Austrija, 1999. [4] Superfund Innovative Technology Evaluation program/ U.S.Environmental Protection Agency, Office of Research and Development,/ Washington, 1995. 451 W !1, [U !2 <": . # , , ! : L – H – (f) B – 44,08m 24,00m 2 u 0,75+3,95m ': , , ,... SPATIAL STABILITY OF IDENTITY SYSTEM OF METAL SCAFFOLD THE BRIDGE PROFILES THROUGH ARCH Summary: This work includes a static analysis of technological systems bridge construction scaffolding. The bridge scaffolding is made of heavy elements and light steel sections. These combination of light and heavy construction scaffolding is applied via a specified port profile to interact with the location of the bridge, where the dimensions of the default: L – length H – arrows vault (f) B – width 44,08m 24,00m 2 u 0,75+3,95m Key words: spatial stability, reprezntativni system, metal bridge scaffolding,... 1 2 .., . !.&, 2! $ $ , .!.&, 2! $ 453 1. " „2! & . ! & , ! " . ! " , " " , +;'J# ;'?$>; #% ''> ;+&%>% '=&%. 3 %'?# =;#'>$\=*< ;'>;?% [$%]& '\ ' #% '=&%%, " . , . % ! , & . G - , " . * , & & , ! " , & . , , " . #, , . ' - ! - . $ ! , . () ! , " . , . # , ! . . , " " . $ 1. 0- ! ,$ 1955-1958. ! ( ). : ( &\=;?% =;] &\$;`.]$. $\#;'&%? ;#=;?z > 2 @ }#^ ;'>;?%), " Figure 1. Reinforced concrete bridge above ! , river Korana, Slunj 1955-1958, (Croatia) Desing: . * Ph.d. Krunoslav Tonkovi 454 ! & ( ) . ! , ! & . ( ) ( ) . ! , ! , ! .“ ($ 1) >1 @ 2. ! $ & ! . * : 1. # – ; 2. G – ; 3. , , , " . # & , ! , ! . % . „% , " , ! , ! – , . , , , , . ! – " , , & . , " , 2. & .“ > 3 @ :, Y > 5 @ ! Figure 2. Staging made of timber, system – Koraj, river Tara , 455 , & ! . # ! & , . %, & ! (1938-1940. ), 2 #! „ , , : 803,67-662,40=141,27m. $ 657,00. 805,94, 805,94-657,00=148,94m , 148,94+1,15=150,09m.“ ($ 2) * – & ! ! . G & ( ). , . %" , – ! , , . # , , , ! . G& , ! , – , , & 15 . „ , ! , . G , , , , – – ( ). , , , : a) , ! 48. 3 , ; b) , 193mm , . " . . G – ! . , ( " ! ). , &. , , – .“ > 5 @ 456 ! – . 2 – & . $ & . $ – . , , – " . $ . , '=&% +$]'>%?|% <]#\ +$;'>;$#\ $~>=%'>\ =;#'>$\=*<\ =;<% +$% ;+>$z@% ;] =;#'>$\=*< ;'>% +$#;' ^ #% >&;. +$#*+\ ' '%>$% ]% '? '& =;#'>$\=*< ;'>%, ]; >$#\>=% ;>+\~>%@% '=&, +$#;' '%% '=&%, % >%=? '& < +;>$J#; ]#;#'%> '=&\, ~>; ' $];?#; }#. ; < +$;$%}\# ]#;#'%@ +;] \>*%< >^#;&;[< [$%{@% ]%>;[ +;]#J|%. 3. % . „£! " “ 2. „G 5,50+2x0,50m. 805,94-811,28. 657,00. , 150,00m. ' , , () ( Rh 500 m) 2%. 116,00m, 1/4,89; () 44,08m, 1/1,84. # : 74/210, 120/300cm, : 75/92, 75/150cm. ($ 3) * 141,00m. ( 2) 457 3. "- Y Q 1938-1940. (W ) Z: !#.. $' ' Figure 3. Reinforced bridge above river Tara, below mountain Surmitor 1938-1940 (Montenegro) Desing: Ph.d. Mijat Trojanovi] $ G £! " , , l=116m }>$ %@% l=44,08m. 150m . ($ 3)“ > 4 @ , , & . %" , , , , , & ! " " . " ( " ), ( " ) ! " . , , , & . ' ! , ! ! ! . „$<#; >~= [$%{?#'= '=& J&; J %#|?; [$%]> %& &\=;? ?<%]\=>% ;'>%. 50m, " " , : ~>; <]#;'>%?#< &%=~ [$%]@ ;'>%. * " . „%& &\=“ – ( ) .“ > 6 @ 458 " ! . G ! 47m. „# , 4,70m ( ), . ($ 4) 4. 7 ( % G!) Figure 4. Scheme of the bridge with spans of arches (arch representative highlighted circle) $ 5,30m. 2 35/120cm. $ 22cm. % , ! , & 2 , & , , ( 22cm) ! , . % (160cm!) . & " & ( 1 U & ). 459 G , 50/190cm, 17m, . ($ 5)“ > 4 @ „ ( ) , . ($ 6) 5. „ “ Figure 5. The appearance of "small arcs" bridge 6. 1. Figure 6. The appearance of the staging variant 1. 460 ( ! , . ($ 7) 7. 2. Figure 7. The appearance of the staging variant 2. , ) 159 150 mm , & . G& . , 2x IPE 30 . & ) 159 150 mm " ) 48,3 47,6 mm . ' 20 30 cm . , " 20 5 cm . , 4, ! 20cm. , 2 m h 1, " 3 . * " " 1 2. " 2 3 " & .“ > 6 @ & , : #;'>;?'> l '>%J&#;'>! 461 4. $ „%&;[ &\=%“ $ " • & • & • & )159 / 150 • & ) 48,3 / 47,6 g opl 0,2 kN mc g rem 8 u 0,05 0,20 u 7,0 g159 0,00218 u 78,5 17,15 kN mc g 48,3 1,05 10 4 u 78,5 0,008 kN mc 0,6 kN mc " • & & b 4,15 0,75 u 25 77,8 kN mc oslonac ® ¯0,92 0,75 u 25 17,25 kN mc sredina • & hsr h 1 0,75 u 25 0,70 13,125 kN m ® ¯3 0,75 u 25 0,70 39,375 kN m 26,25 kN m " • p 2,0 kN mc $ " • " • " Wmax 0,159 u 1,6 u 2,5 0,64 kN mc Wmin 0,159 u 1,6 u 1,5 0,38 | 0,40 kN mc " $ " G g opl g rem g cijevi 0 F1 hsr ,1 b1 , F 2 hsr , 2 0,5 hsr ,1 b1 b2 , F 3 hsr ,3 0,5 hsr , 2 b1 b2 b3 , F4 hsr , 4 0,5 hsr ,3 b1 b2 b3 b4 , F6 hsr , 67 0,5 hsr ,5 b1 b2 b3 b4 b5 b6 b7 F7 hsr ,811 0,5 hsr , 67 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 F5 hsr ,5 0,5 hsr , 4 b1 b2 b3 b4 b5 F 8 0,5 hsr ,811 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 " " max W " " G Wmax min W 462 G ANEVEL P Wmin $ : # • )159 / 150 1. Q xW 2. Q xW 463 3. Q W 4. Q W A 21,84 cm 2 ix li iy Iy 652,27 cm 4 Wx O li i 180 5,465 O Wy 82,05 cm3 5,465 cm 180 cm N Ix 32,94 0,9652 464 O Ov 32,94 92,9 0,35 N max 192 kN N max A VN 192 21,84 8,80 kN V i ,dop cm 2 N V dop 0,9652 16,0 15,44 kN cm 2 622 kNcm M max M max 622 kN 7,58 2 V dop 16,0 kN cm 2 W 82,05 cm 18,97 kN N 18,97 kN VN 0,87 2 V i ,dop 0,9652 16,0 15,44 kN cm 2 A 21,84 cm VM N x ) 48,3 / 47,6 A 0,527 cm 2 ix li Iy O li i 1,515 cm 4 Wx Wy 0,6275 cm3 1,695 cm iy 200 cm N max Ix 200 1,695 117,99 O O Ov 117,99 92,9 1,27 N 0,57 25 kN VN N max A 25 0,527 47,44 kN V i ,dop cm 2 N V dop 0,57 16,0 9,12 kN cm 2 ' ! ! x + 300 "7" Q W 465 "8" # W A 149 cm 2 iy Ix 25 170 cm 4 Iy Wx 1 678 cm3 Wy 8 563 cm 4 570,87 cm3 ix 13,0 cm 7,58 cm M max 8897 kN 5,30 2 W 1678 cm N 1220 kN N 1220 kN VN 6,29 2 A 194 cm V M V N 5,30 6,29 11,59 kN cm 2 V dop 24,0 kN cm 2 M max 8897 kNcm N max -452 kN M VM VN VM 1537,5 kNcm M max W N 452 kN 2,33 2 A 194 cm 1537,5 kN 0,91 2 1678 cm IPE300 "9" Q W "10" Q W A 65,9 cm 2 Wx 686,27 cm3 Ix 10 500 cm 4 Iy 728 cm 4 Wy 99,05 cm3 ix 12,62 cm 466 iy 3,32 cm VN 152 kN N 11,10 2,30 13,40 kN cm 2 V dop VM VN 24,0 kN cm 2 VN -586 kN N max VM 2186 kNcm M M max 7613 kN 11,10 2 W 686,27 cm N 152 kN 2,30 2 A 65,9 cm VM 7613 kNcm M max M max W 8,90 3,19 12,09 kN cm 2 V dop VM VN 2186 686,27 N A 586 65,9 kN 3,19 2 cm 8,90 kN cm 2 24,0 kN cm 2 # "11" Q W A 15,62 cm 2 ix li Iy 238,82 cm 4 Wx Wy O li i 224 3,91 O O Ov 41,535 cm3 3,91 cm iy 224 cm N max Ix 57,29 57,29 92,9 0,60 N 0,89 267 kN VN N max A 267 15,62 17,09 kN V i ,dop cm 2 N V dop 0,89 24 21,36 kN cm 2 EC-3 . ! „ “ ($ 9) 467 8. 7 $% “1“-“11“. 9. " „ “ 5. G – " $%&;?%> [$%]@\ ;'>% 'J;&% [$%]>|'= J%~># ?$#% 1938-1940. [;]#! . () „ “ , ! . ! ! . , – ! : - ' - $;'>;$# '>%J&#;'>, ! $;'>;$#% '>%J&#;'> " , „ “. " : , , , . >; #%} \ '? `%%% >;=; ;#>%_ =;$~>@% '=&. ; #%}, % ?$< #%#;~@% ;+>$z@%, ;]#;'#; \ >;=\ J>;#$%@%, =%; >;=; ];#>$%@% '=&. $ " – & , & – . , " 468 , – " , " , ! , " , – ! . &: a) ! , , ; b) ! ; c) , " , & – , . ; < '\~>#% %];?;|%?%@% \'&;?% +$;'>;$# '>%J&#;'> ]%> '=&! ( $ 9) , & ;< #%~ +$;`';$ +;=;<# <%> $;<%#;?z $\#;'&%? ;#=;?z #=% < '&%?% ^?%&%! % : [1] $ : G, 2! – $ $, $ [2] ": , , % , 1985. [3] G 2: # , 2! , , 1988. [4] <%> . $;<%#;?z: G 1960, % $ $ , , 1960. [5] . ": ! , , 2! $ , $ , 2008. [6] G . ": ! :+ - £! " , ( , .. "), 2! $ , $ , 2011. 469 [ &! Y, W urevia Tara bridge, Montenegro 470 Z!1 ! : % ( , & , , , .), ! – FLI-MAP 400. % U % $ 3 cm. . G !, " " " . * PERGFLIMAP " & # % 0,5-1 cm. ': , , U %. POSSIBILITIES OF LASER SCANNING OF ASPHALT ROADS FROM AIRBORNE Summary: For the purpose of corridor scanning (includes roads, railways, transmission lines, water streams and the like) a laser-scanning technique from a helicopter – FLI-MAP 400 - has been developed. The standard accuracy for heights of scanned points on asphalt surfaces is 3 cm. This accuracy level satisfies a number of geodetic works in civil engineering. However, it is possible to achieve a better accuracy for scanned points of built surfaces. To this end one presents here a new method, PERGFLIMAP, which makes it possible to achieve an accuracy for heights of points on asphalt surfaces of roads of 0,5-1 cm. Key words: roads, laser scanning, accuracy improving. 1 , , . &. ., 2! , 471 1. ! FLI-MAP FLI-MAP % $ , % . " " , " – , ! , . 1. , FLI-MAP " Fast Laser Imaging and Mapping Airborne Platform " ' & " . . 1 – Z ! FLI-MAP-. (Fig. 1 - Principle of FLI-MAP laser scanning) G GPS () 15-25 km & . ' GPS (Global Positioning System) INS (Inertial Navigation System) . 3# & , . ' & % 39 % U. % , , , FLI-MAP 400 % , , , , GU, , % a, $ (#G) , ., . 472 * FLI-MAP 400 GPS (KGPS), - LiDAR ( .: Light Detecting and Ranging), - INS ( .: Inertial Navigation System) , software FLIP7 . 2. FLI-MAP FLI-MAP 400 ''>% '\ (FUGRO, 2005, $;?z, 2007): - U % ~ 150 000, - 5 - 400 m, - '& - (1Â) 1 cm, - U % 20 – 70 /m2, - G U 200 km, - & 5 - 25 km. 3# , (X,Y,H), FLI-MAP 400 GPS- , . (X,Y) "' (FUGRO, 2005, ", 2005, 2007): - " " WGS 84 '&: 3 cm, - " " 6 ' 6: 5 cm, =%; - % 3 cm, +$ }\ < ?%_#; #%[&%'> ]% < ;?; >%}#;'> \ ;]#;'\ #% ]%> – J%# >%}=. 3. % ;J$%]\ & software FLIP7, ! $ ; $ ! $ G & . & & , FUGRO, . : U & & & % . FLI-MAP : - ( , , IMU, GPS) , 473 - 3# FLI-MAP . ! , - , , . 4 PERGFLIMAP % ?z#\ %]%>%=% >%}#;'> #%?]#% \ +;[&%?|\ 2 < %];?;|%?<\z%. % +$$, % '#%@ %'`%&>#^ +\>?% % $%]\ #=^ +$;<=%>%, \ $J< ' %^>?% >%}#;'> ;] 3 cm, \ #[&'=;< ;] 3,5 cm, '&. &, % #= %]%>= %^>?% ' ?z% >%}#;'> ?'#% =;<% ' '>%#]%$]# '#%@ '% ''>; FLI-MAP 400 # ;_ ];J>. FLI-MAP 400 ! ! " , , , , PERGFLIMAP ! FLI-MAP . G – $, & 80 km, " " "FUGRO" . 4.1 PERGFLIMAP FLI-MAP 400 6 %, ''PERGFLIMAP U % FLI-MAP ''. # PERGFLIMAP ' ! % : x Z: x Q: Z , FLI-MAP &, $ % ! 1 2 km, $ . Z " ! 1-2 km . Q & . # 0, 2 m u 20 m 0,5 m u 20 m , 0, 2 m u 10 m 0,5 m u 10 m , ., & . ' ! FLI-MAP . 474 4.2 , . 0 & 0,5 m u 500 m – ( – $), . 2. . 2 – W$ % C G . (Fig. 2 - Reference height point C as the centroid of reference rectangle). 4.3 ! FLI-MAP L , H & . # 3, : C1 C2 – , D C1 - C2 . . 3 – Q , L H . (Fig. 3. Disposition of heights, ellipsoidal L and orthometric H ). 475 $ $ L i i – ! C1 C2 , H i H ic Li L 2 L1 H 2 H1 D D i L1 H1 . (1) 4.4 PERGFLIMAP – % ! (1) . PERGFLIMAP – $, & 80 km. * PERGFLIMAP – ! 630 . ! „ (1) “ % % ! % , . ! " FLIMAP 400 3 cm, FLI-MAP 400 , & PERGFLIMAP FLI-MAP 400 6 % $ 0,5 cm 1 cm. AA >1@ FLI-MAP 400 System Characteristics / FUGRO-INPARK B. V. // 2005, Leidschendam. >2@ PERGFLIMAP method possibilities of increasing the absolute vertical accuracy of the laser scanned points obtained by FLI-MAP syste applied on hard topography / G. Perovi // International Symposium "Modern Technologies, Education and Professional Practice in Geodesy and Related Fields", 09-10 November, 2006, Sofia, Proceedings, pp. 370-377. >3@ Z / 2. " // * , 2! , 2007, . 476 W [!1 , * [!2, } [!3 ! <": " ! . ! " „“ , . 0 & #. ': $, , $ ANALYSIS OF POSSIBILITIES OF RECONSTRUCTION AND IMPROVEMENT OF THE ENERGY CHARACTERISTICS OF BUILDINGS USING THERMOGRAPHY Summary: Study is aimed at the demonstration and usage thermal imaging in analysis of thermal characteristics of the particular object. Also is presented potential for a solution to "keep warm" facility as well as claddings reconstruction and application of energy efficient system and their implementation. Study includes proposals for reconstructive procedures and the demonstration solutions of reconstruction of experimental model of administrative services building in Doboj. Key words: thermgraphy, reconstruction, energy efficiency 1 #.. , , ! , # #.. , , '- , 3 #.., ..., $" , # 2 477 1. 2 " # ! 1960. , & . * , &: 60- & # ( ) " " / " . 1.1 / # ( 54 ). # 0 & o #j (o # ). 0 . * , , , . " „ “ $ . " # , " ! . , # 3'0 #, " , " , ! . ! 60- , . # " , & , - , 478 " . # & " " . * , " ! . * , . 2. „# “ #. $ . $ . " (-273.16$) , & . G !, , . , . $ " : - (IRLS – Infra Red Line Scaning) - (FPA – Focal Plane Array). , , " . ( ) & ! . " , " , & . G" . " , ( ) ! . * , , & , . & ! &. $ & 479 . 0 ! " 50-80%. # , , , " " & , . 3. . ' ! , , , , – „# “, #. ! 1963. 3 . * 5432,02. 1355,02, 4077,02. 2! . & / , , " / (& , ). & . & / , & / . ! 1970. , . ' , , " , , " . . ' " , . 0 ! . ' " 0 . 0 , 25 38. ! ! . 30. " 3*$- 2-2.5 . 7-15°$. $ & 16-17°$. # * 2002/91/ *, & . 480 1 – Z! «Q {» Q, $ .[! W. (The current state of the analyzed object " Dom Vojske" in Doboj). 4. " " , " " „ “ ". . , , &, & & . 0 " . ' ! " . 4.1 ! ": *+ #G' 30 , & . " , , , . * (, .) . " , ( 481 ) . 5-8 . ' , " . * ! , ( ). 0 2300 30 $ " " . $+0%030 %20# . * & . ' & " . . " " & . ! , " & . , , , . * . 3 . #20# $0+' ' " & . $ , & ¾ & , & #. . , ". 2 – Z , . (U , ), :http://www.greenbuilding.ca/gbc98cnf/studies/n orway/st-n4.htm (Transfer of cold air from the warm parts of the building, ie. from rooms oriented to the north side of the building (summer treatment, while in winter the other way around). 482 ' $ 2. " . &. ' ( ) . # , ! . 4.2 A ! “ ”, G & ( ) , " : - G , ! Y Y, - *! Y , " Flir i50. ' 3, 4 5 : , . % . ' " & , . . ! . 3 – Y Flir i50, $$ http://www.thermalcamerarentals.com/rentalcameras.html (Thermal camera which was performed thermal imaging of the object, Flir i50). 483 4 5 – , $ $ % % , $: .[! W. (from left to right, Image of the facade wall of the entrance area of the building in the thermographic image of the same object with the characteristic points and temperature values). (Y - Y) , & W/(2:) ( ) Q/" W/2. 8 W/2:. Q/" & (Y - Y) . ' & " : (1) 484 1 - <" #' " # & (') # ' „9 @'“ 9' ' & " : . G . ! . 4.3 ! " " , . , , 485 . 80% , . = 3,2 4,2 W/2:, 320 :W/2 . 210 :W/2 . 6. " $ , : www.domis.rs (Aluminium windows with a minimum coefficient of heat release) (, , , ) ! . * 1,8 W/2: 1,4 W/2:, 16 , ., low emission . & , & , . $ : - 16 ( #+ 16) - 4+16 +6, = 1.2 1.4 W/2:. - , 16. $ 60% 70%, 250 :Wh/2 70-80 :Wh/2. , ! 486 - ! ! . ! " " ! . 4.3 # ! 20 , , . , " 250 :Wh/2. ! , . 7. { /$ , $: . [! W.(Visible traces of water / atmospheric inside the building are the result of the poor condition of the flat roof building) ' " , " , . " . ! ( ) ", " & . - " . , " 487 " 10 13 . # " 15% 20% , 60% 70%. 5 " , " , " " . ! , " . , " , & & . , , ! , . 8. Z , $: .[! W. (The spatial model of the reconstruction of the bject) * # , ! ! . & & " , & & , " , , . 3 , , . „# “ # ! , ! #. 488 5.1 * 50 , & . 2 " , , U 1,40 W/2:. ' " 2,00-3,50 W/2: , " 1,401,80 W/2:. a *. O 1,3 W/2: . (low emission) . , . * , " 50% . 20%, " . 9. Z , $: .[! W. (The spatial model of the reconstruction of the bject) $ , . $ . % , & , ! (. ! ) ! . 489 >1@ [! % / $. +" / 1987., , . 18-27. >2@ :|* #W"Q" :|* Y / ' / " &" / 2001., % >3@ W / «Z G * « / . , . $ / , / 2008., ' $, . 4-12 >4@ [ % $ / 3*$ *.35.510-23.12. / 1987., >5@ Y - Y% & / 3*$ *.35.600-23.12. / 1987., >6@ / , / 2! , 1984., 490 CIP - Каталогизација у публикацији Народна и универзитетска библиотека Републике Српске, Бања Лука 711.4(082) ИНТЕРНАЦИОНАЛНА конференција Савремена теорија и пракса у градитељству (2011 ; Бања Лука) Савремена теорија и пракса у градитељству, Бања Лука, 14. и 15. април 2011 = Contemporary Theory and Practice in Building Development / [едиторс Мирко Аћић, Рајко Пуцар]. - Бања Лука : Завод за изградњу = Institute for Construction, 2011 (Бања Лука : Независне новине). - 490 стр. : илустр. ; 24 цм Текст ћир. и лат. - Радови на енгл. и срп. језику. - Тираж 600. - Библиографија уз сваки рад. ISBN 978-99955-630-6-6 COBISS.BH-ID 1946648 На располагању смо инвеститорима за све фазе грађења, од припреме земљишта до техничког пријема FCL FABRIKA CEMENTA LUKAVAC Povjerenjem do uspjeha Success trought trust D.D. FABRIKA CEMENTA LUKAVAC Lukavačkih brigada bb, 75300 Lukavac, Bosna i Hercegovina Telefon Centrala: +387 (0)35 554 502 Sekretarijat: +387 (0)35 553 215 Služba nabave: +387 (0)35 553 748 Služba prodaje: +387 (0)35 553 251 Fax Sekretarijat: +387 (0)35 553 580 Služba nabave: +387 (0)35 553 405 Služba prodaje: +387 (0)35 550 225 E-mail: info@fclukavac.ba Web: www.fclukavac.ba www.vodovod-bl.com ОДРЖАВАЊЕ Булевар војводе Живојина Мишића 24 Телефон: (051) 310-811 факс: (051) 307-647 e-mail: vodovodt@teol.net ПРОИЗВОДЊА И ДИСТРИБУЦИЈА ВОДЕ Новоселија Тел./факс: (051) 413-190 (051) 413-194 e-mail: pitkavoda@blic.net Ул. 22. Априла бр. 2 Телефон: (051) 212-316, Факс: (051) 212-380, e-mail: vodovod@blic.net Fortis Group Mješoviti Holding HET „Elektroprivreda Republike Srpske“ Trebinje Zavisno preduzeće "Hidroelektrane na Trebišnjici" akcionarsko društvo, Trebinje Adresa: Obala Luke Vukalovića 2, 89101 Trebinje, Republika Srpska / BiH www.het.ba, e-mail het@het.ba Tel: +387 (59) 260 213 Faks: +387 (59) 260 782 Osnovna djelatnost proizvodnja električne energije Registrovano kod Osnovnog suda u Trebinju, reg. Ul. Br. Ru-1-777-00 Matični broj 1050834 JIB 4401355020001 PIB 401355020001 Kaldera company d.o.o. Karađorđeva bb. 78250 Laktaši Republika Srpska / Bosna i Hercegovina Telefon: + 387 51 580 654, + 387 51 580 625, + 387 51 580 371, + 387 51 580 286 Fax: +387 51 580 624 Mail: info@kalderacompany.com Prodaja: sales@kalderacompany.com DVD Banja Luka Kralja Petra I Karađorđevića 94 Tel/fax: 051/316-360 INŽINJERING - DVD d.o.o. ПРОЈЕКТОВАЊЕ, КОНСАЛТИНГ, ИНЖЕЊЕРИНГ Бања Лука Његошева 5д, тел: 051/303 777 факс 051/303 242 Д.O.O. БАЊА ЛУКА ХT ХИДРОТЕХНИКА “Hidro-kop” d.o.o. hidrogradnja i građevinarstvo Ive Andrića 14, Banja Luka, Republika Srpska, BiH Telefoni: (051) 220-170, 216-985, 213-500, 213-501; Fax: 213-499; e-mail: hidro-kop@blic.net, hidrokop@teol.net РЕГУЛАЦИОНИ ПЛАН АДА- заштита животне средине d.o.o. PROJEKTOVANJE, SERVIS I MONTAŽA LIFTOVA Ul.Rakovačkih rudara br.4, Banja Luka Telefon: +387 (51) 358 700; fax: +387 (51) 358 701; e-mail: duolift@teol.net; web:www.duolift.si Osnovna djelatnost preduzeća je projektovanje, montaža i servisiranje liftova, u skladu sa važećim propisima i standardima. Našu ponudu čini široka paleta proizvoda: hidraulični liftovi (putnički, teretni, auto-liftovi) električni liftovi sa mašinskom prostorijom liftovi bez mašinske prostroije (električni i hidraulični) panoramski liftovi maloteretni liftovi platforme za invalide teretne platforme. Nudimo idejna rješenja i stručne savjete u ranoj fazi projektovanja objekata. Izvodimo projekte za dobivanje građevinske dozvole kao i izvedbene projekte. Naša poslovna politika zasniva se na proizvodima visokog kvaliteta, brzoj isporuci i konstantnoj tehničkoj podršci.