n - Влада Републике Српске

Transcription

n - Влада Републике Српске
Издавач:
Publisher:
Завод за изградњу а.д. Бања Лука
Institut for Construction Banja Luka
За издавача:
For the publisher:
Генерални директор Александар Цвијановић, дипл.инж.грађ.
General director Aleksandar Cvijanović, Dipl. Civ. Eng.
Уредници:
Проф. др Мирко Аћић, дипл.инж.грађ.
Раjко Пуцар, дипл.инж.грађ.
Prof. dr Mirko Aćić , PhD, Dipl. Civ. Eng.
Rajko Pucar, Dipl. Civ. Eng.
Editors:
Технички уредник:
Technical editor:
Рајко Пуцар, дипл. инж. грађ.
Rajko Pucar, Dipl. Civ. Eng.
Припрема за штампу:
Чедомир Радуловић, дипл. инж. ел.
Сњежана Лепир дипл. инж. ел.
Reparation for printing: Čedomir Radulović, BScEE
Snježana Lepir, BScEE
Штампа:
Printed by:
Тираж:
Printed:
CD ROM:
Н. И. Г. Д Независне новине д.о.о., Бања Лука
Nezavisne newspaper
600 примјерака
600 copies
600 copies
Бања Лука, април 2011.
Banja Luka, April 2011
VII МЕЂУНАРОДНИ
НАУЧНО СТРУЧНИ СКУП
САВРЕМЕНА
ТЕОРИЈА И ПРАКСА
У ГРАДИТЕЉСТВУ
7th INTERNATIONAL
SCIENTIFIC TECHNICAL CONFERENCE
CONTEMPORARY
THEORY AND PRACTICE
IN BUILDING DEVELOPMENT
OРГАНИЗАТОРИ:
- МИНИСТАРСТВО ЗА ПРОСТОРНО УРЕЂЕЊЕ, ГРАЂЕВИНАРСТВО
И ЕКОЛОГИЈУ РЕПУБЛИКЕ СРПСКЕ
- АРХИТЕКТОНСКО – ГРАЂЕВИНСКИ ФАКУЛТЕТ, БАЊА ЛУКА
- ПРИВРЕДНА КОМОРА РЕПУБЛИКЕ СРПСКЕ
- ЗАВОД ЗА ИЗГРАДЊУ а.д. БАЊА ЛУКА
ORGANIZERS:
- MINISTRY OF SPATIAL PLANNING CIVIL ENGINEERING AND ECOLOGY
OF THE GOVERNMENT OF THE REPUBLIC OF SRPSKA
- FACULTY OF ARCHITECTURE AND CIVIL ENGINEERING, BANJA LUKA
- CHAMBRE OF COMMERCE AND INDUSTRY OF THE REPUBLIC OF SRPSKA
- INSTITUT FOR CONSTRUCTION BANJA LUKA
ПОКРОВИТЕЉИ:
- ВЛАДА РЕПУБЛИКА СРПСКЕ
- ГРАД БАЊА ЛУКА, РЕПУБЛИКА СРПСКА, БиХ
SPONSORS:
- GOVERNMENT OF THE REPUBLIC OF SRPSKA
- SITY OF BANJA LUKA, REPUBLIC OF SRPSKA, BOSNIA AND HERZEGOVINA
БАЊА ЛУКА, 14. и 15. АПРИЛ 2011. ГОДИНЕ
BANJA LUKA, 14 & 15 APRIL 2011
ОРГАНИЗАЦИОНИ ОДБОР
ORGANIZING COMMITTEE
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
Александар Цвијановић, дипл.инж.грађ. - предсједник
Сребренка Голић, дипл. правник
Мр Борко Ђурић, дипл.инж. грађ.
Проф. др Миленко Станковић, дипл.инж.арх.
Проф. др Мирко Аћић, дипл.инж.грађ.
Проф. др Владимир Лукић, дипл.инж.геод.
Доц. др Игор Јокановић, дипл.инж.грађ.
Будимир Балабан, дипл.инж. грађ.
Верица Кунић, дипл.инж. арх.
Чедо Савић, дипл.правник
Рајко Пуцар, дипл.инж.грађ.
Горана Станаревић Кењало, дипл.менаџер медија
НАУЧНО-СТРУЧНИ ОДБОР
SCIENTIFIC TECHNICAL CONFERENCE
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
Проф. др Мирко Аћић, дипл. инж грађ. – Београд, Србија
Проф. др Миленко Пржуљ, дипл.инж.грађ. – Љубљана, Словенија
Проф. др Душан Вуксановић, дипл.инж.арх. – Подгорица, Црна Гора
Проф. др Жорж Поповић, дипл.инж. арх. – Београд, Србија
Проф. др Драган Михајловић, дипл. инж грађ. – Бања Лука, РС, БиХ
Проф. др Петер Сухадолц, дипл.инж.геол. – Трст, Италија
Проф. др Миленко Станковић, дипл.инж.арх. – Бања Лука, РС, БиХ
Проф. др Михаил Гаревски, дипл. инж грађ. – Скопље, Македонија
Проф. др Владимир Лукић, дипл.инж.геол. – Бања Лука, РС, БиХ
Проф. др Раденко Пејовић, дипл. инж грађ. – Подгорица, Црна Гора
Проф. др Михаило Трифунац, дипл.инж.грађ. – Лос Анђелес, САД
Проф. др Мићо Гаћановић, дипл.инж.ел. – Бања Лука, РС, БиХ
Проф. др Марија Тодоровић, дипл.инж.маш. – Београд, Србија
Проф. др Предраг Гавриловић, дипл.инж.грађ. – Скопље, Македонија
Проф. др Мила Пуцар, дипл.инж.арх. – Београд, Србија
Доц. др Бранкица Милојевић, дипл.инж.арх. – Бања Лука, РС, БиХ
Доц. др Љубиша Прерадовић, дипл.инж.ел. – Бања Лука, РС, БиХ
Мр Михаела Замоло, дипл. инж. грађ. – Загреб, Хрватска
Мр Новак Пупавац, дипл.инж.грађ. – Бања Лука, РС, БиХ
Бранко Бојовић, дипл.инж.арх. – Београд, Србија
САДРЖАЈ
CONTENTS
ПРЕДГОВОР
FOREWORD
МАРИЈА С. ТОДОРОВИЋ
ОЛИВЕРА ЕЋИМ-ЂУРИЋ
ИВАНА МАТИНОВИЋ
ДУШАН ЛИЧИНА
ОИЕ у нераздвојивој спрези са енергетском ефикасношћу
- пут ка зградама и насељима нула енергије и одрживом развоју
MARIJA S. TODOROVIĆ
OLIVERA EĆIM-ĐURIĆ
IVANA MATINOVIĆ
DUŠAN LIČINA
RENEWABLE ENERGY SOURCES AND ENERGY EFFICIENCY’S
INEXTRICABLE LINKAGE TO APPROACH nZEB AND CITIES.............................
1
THEODOR KLEIN
Захтеви енергетских система за зграде - технички услови према
немачком стандарду (EnEV 2009)
THEODOR KLEIN
ENERGETIC SYSTEM REQUIREMENT FOR PHYSISAL STRUCTURES
-SPECIFICATIONS BY THE GERMAN STANDARD (EnEV 2009) ........................... 19
БРАНИСЛАВ ТОДОРОВИЋ
Термичке особине зграда у сличностима и разликама од људског тела
BRANISLAV TODOROVIĆ
BUILDINGS THERMAL CHARACTERISYICS: SIMILARITIES AND
DIFFERENCES TO THE HUMAN BODY.................................................................... 29
МИРКО АЋИЋ
ДРАГИЦА ЈЕВТИЋ
Могућност коришћења рециклираних материјала као агрегата
за бетон у савременој грађевинској пракси
MIRKO AĆIĆ
DRAGICA JEVTIĆ
ABILITIES OF USAGE OF RECYCLING MATERIALS AS
AGGREGATE TO CONCRETE IN CONTEMPORARY CIVIL
ENGINEERING ............................................................................................................... 41
ДЕЈАН ЉУБИСАВЉЕВИЋ
Нестандардни канализациони системи: вакуумска канализација
и канализација под притиском
DEJAN LJUBISAVLJEVIĆ
NON-STANDARD SEWAGE SYSTEMS: VACUUM AND PRESSURE
SEWAGE .......................................................................................................................... 57
МИЛА ПУЦАР
Еколошки одржива архитектура у теорији и пракси
MILA PUCAR
ECOLOGICALLY SUSTAINABLE ARCHITECTURE IN THEORY
AND PRACTICE ............................................................................................................. 69
ПЕРО ПЕТРОВИЋ
МИЛОВАН КОТУР
ИНДИР МУЈАНИЋ
Изолација зидова према негријаном простору
PERO PETROVIĆ
MILOVAN KOTUR
INDIR MUJANIĆ
THERMAL INSULATION OF INTERNAL WALLS BETWEEN HEATED
AND UNHEATED SPACES ...............................................................................................81
ЂОРЂЕ ЛАЂИНОВИЋ
МИРКО АЋИЋ
Концепт пројектовања и прорачун сеизмичке отпорности
зиданих конструкција зграда
ĐORĐE LAĐINOVIĆ
MIRKO AĆIĆ
CONCEPT OF ANALYSIS AND DESIGN OF MASONRY
STRUCTURES FOR EARTHQUAKE RESISTANCE ................................................... 87
ЖЕЉКА РАДОВАНОВИЋ
Понашање зиданих конструкција при дејству земљотреса
– оштећења на црквама
ŽELJKA RADOVANOVIĆ
BEHAVIOUR OF MASONRY STRUCTURES UNDER THE
EARTHQUAKE ACTION - DAMAGES ON THE CHURCHES .................................. 105
МИРКО АЋИЋ
БОШКО СТЕВАНОВИЋ
Зидане зградe – наук из грешака
MIRKO AĆIĆ
BOŠKO STEVANOVIĆ
MASONRY BUILDINGS - LEARNIG FROM MISTAKES .......................................... 117
НЕДИМ СУЉИЋ
ЗАХИД БАШИЋ
Анализа утицаја дубине фундирања сусједног објекта
на стабилност аб потпорног зида
NEDIM SULJIĆ
ZAHID BAŠIĆ
THE ANALYSE OF THE FUND DEPTH OF NEIGHBOUR OBJECT ON
A STABILITY OF REINFORCED CONCRETE SUPPORTING WALL....................... 135
ДРАГИЦА ЈЕВТИЋ
ГОРДАНА ТОПЛИЧИЋ-ЋУРЧИЋ
ЗОРАН ГРДИЋ
Утицај различитих врста ситних дробљених минералних
агрегата на својства бетона
DRAGICA JEVTIĆ
GORDANA TOPLIČIĆ-ĆURČIĆ
ZORAN GRDIĆ
EFFECTS OF VARIOUS TYPES OF FINE CRUSHED MINERAL
AGGREGATES ON CONCRETE PROPERTIES ........................................................... 145
МИЋО ГАЋАНОВИЋ
РАЈКО ПУЦАР
Грађевинске мјере противексплозивне заштите
MIĆO GAĆANOVIĆ
RAJKO PUCAR
EXPLOSION PROTECTION MEASURES IN CIVIL ENGINEER
CONSTRUCTION ........................................................................................................... 157
ЗЛАТКО МАРКОВИЋ
МИЛАН СПРЕМИЋ
ВЕЉКО КОКОВИЋ
ЈЕЛЕНА ДОБРИЋ
МАРКО ПАВЛОВИЋ
НЕНАД ФРИНЦ
Пројекат конструкције вишеспратне отворене јавне
гараже у Картуму
ZLATKO MARKOVIĆ
MILAN SPREMIĆ
VELJKO KOKOVIĆ
JELENA DOBRIĆ
MARKO PAVLOVIĆ
NENAD FRINC
MAIN DESIGN OF OPENED MULTISTOREY PUBLIC
CAR-PARK IN KHARTOUM ......................................................................................... 169
ВЛАДЕТА ВУЈАНИЋ
Шта се данас сматра у свету под појмом геотехничког инжењерства
VLADETA VUJANIĆ
WHAT IS NOWADAYS IMPLIED BY THE CONCEPT OF
GEOTECHNICAL ENGINEERING................................................................................ 181
ПЕТАР МИТРОВИЋ
БРАНКО ЈЕЛИСАВАЦ
СВЕТОЗАР МИЛЕНКОВИЋ
Геотехничка истраживања и санација косине на граничном
прелазу „Мехов Крш“, на путу М-2, Рожаје – К.Митровица
PETAR MITROVIĆ
BRANKO JELISAVAC
SVETOZAR MILENKOVIĆ.
GEOTECHNICAL INVESTIGATIONS AND SLOPE REPAIR ON THE
BORDER CROSSING POST „MEHOV KRŠ“, ON M-2 ROAD,
ROŽAJE – K. MITROVICA ............................................................................................ 193
РАТКО СПАИЋ
Технолошки поступак управљања пројектима комуналне изградње
RATKO SPAIĆ
PM IN PUBLIC PROJECTS BUILDING:THE PROCESS
OF PROJECT GUIDANCE.............................................................................................. 203
НЕЂО МИШЕЉИЋ
Цијена грађења и ризик промјене цијене у изградњи објеката
NEĐO MIŠELJIĆ
PRICE OF CONSTRUCTION AND THE RISK OF CHANGE IN PRICE
OF A BUILDING CONSTRUCTION.............................................................................. 219
ВЕЉКО РАДУЛОВИЋ
РАДЕНКО ПЕЈОВИЋ
Реконструкција отвореног пливалишта на „Шкверу“
у Херцег Новом
VELJKO RADULOVIĆ
RADENKO PEJOVIĆ
RECONSTRUCTION OF AN OPEN SWIMMING POOL
AT THE ŠKVER IN HERCEG NOVI.............................................................................. 235
ЖОРЖ В. ПОПОВИЋ
Пропадање фасада зграда под дејством спољњих фактора:
узроци, последице, превенција (санација)
ŽORŽ V. POPOVIĆ
FACADE DETERIORATION UNDER THE INFLUENCE OF
EXTERNAL FACTORS: CAUSES, EFFECTS, PREVENTION
(REHABILITATION) ....................................................................................................... 243
ЖЕЉКО ЗУБАЦ
Проблем процједних вода из Акумулације Горица - ХЕ Требиње II
ŽELJKO ZUBAC
REHABILITATION PROBLEMS OF PERCOLATION WATERS
ON PROFILE OF DAM GORICA – TREBINJE II......................................................... 249
ДРАГАНА ВАСИЛСКИ
СВЕТЛАНА СТЕВОВИЋ
Обновљива соларна енергија у савременом пројектовању
DRAGANA VASILSKI
SVETLANA STEVOVIĆ
RENEWABLE SOLAR ENERGY IN CONTEMPORARY DESIGN............................ 259
СВЕТЛАНА СТЕВОВИЋ
МИЛАН СТАМАТОВИЋ
НЕНАД БОЈАТ
Одрживо хидро-енергетско и водопривредно решење доње Дрине
SVETLANA STEVOVIĆ
MILAN STAMATOVIĆ
NENAD BOJAT
SUSTAINABLE HYDRO-ENERGY AND WATER MANAGEMENT
SOLUTION OF LOWER DRINA ................................................................................... 271
ДРАГАН ЛУКИЋ
АЛЕКСАНДАР ПРОКИЋ
ЕЛЕФТЕРИЈА ЗЛАТАНОВИЋ
Рехабилитација и реконструкција путева
DRAGAN LUKIĆ
ALEKSANDAR PROKIĆ
ELEFTERIJA ZLATANOVIĆ
REHABILITATION AND RECONSTRUCTION WORKS
ON ROAD STRUCTURES.............................................................................................. 285
ЂОРЂЕ НЕНАДОВИЋ
ВЛАДИМИР ПАРЕЖАНИН
ИВАНА ЛУКИЋ
Употреба рачунарски генерисаних сенки у презентацији
архитектонских објеката
ĐORĐE NENADOVIĆ
VLADIMIR PAREŽANIN
IVANA LUKIĆ
USE OF COMPUTER GENERATED SHADOWS IN ARCHITECTURAL
PRESENTATIONS ........................................................................................................... 305
МИЛЕНКО ПРЖУЉ
Мостови – симболи и утилитарне грађевине
MILENKO PRŽULJ
BRIDGES, SYMBOLS AND UTILITARIAN BUILDINGS .......................................... 317
ВУКАШИН АЧАНСКИ
ЉУБО КОРПАР
МИЛЕНКО ПРЖУЉ
ДОБРОСЛАВ ЧАБРИЛО
СТАНИСЛАВ ГОЗНИК
Расцеп ²Бутила² конструкције на а.п. коридору Vc,
Сарајевска обилазница
VUKAŠIN AČANSKI
LJUBO KORPAR
MILENKO PRŽULJ
DOBROSLAV ČABRILO
STANISLAV GOZNIK
THE BUTILA JUNCTION ON SARAJEVO BYPASS.................................................. 331
МЛАДЕН А. УЛИЋЕВИЋ
Мост “Миленијум” преко ријеке Мораче у Подгорици - концепт,
пројекат и извођење
MLADEN A. ULIĆEVIĆ
MILLENNIUM BRIDGE OVER MORAČA RIVER IN PODGORICA CONCEPT, DESIGN AND EXECUTION ...................................................................... 345
ДОБРИВОЈЕ ТОШКОВИЋ
Саобраћајна инфраструктура као обликовни градитељ
градских центара
DOBRIVOJE TOŠKOVIĆ
THE TRAFFIC INFRASTRUCTURE AS AN SHAPIN CREATOR
OF TOWNS CENTRS...................................................................................................... 357
БРАНКИЦА МИЛОЈЕВИЋ
Пилот пројекат зонинга у 11 општина у БиХ – прилог
новој методолигији планирања
BRANKICA MILOJEVIĆ
PILOT PROJECT OF ZONNING IN 11 MUNICIPALITIES IN BOSNIA
AND HERZEGOVINA- ATTACHMENT TO THE NEW METHOLOGY
OF PLANNING................................................................................................................ 371
РАДМИЛА СИНЂИЋ – ГРЕБОВИЋ
Бетон високе чврстоће – материјал за савремене конструкције
RADMILA SINĐIĆ – GREBOVIĆ
HIGH STRENGTH CONCRETE – MATERIAL FOR CONTEMPORARY
CONSTRUCTIONS ......................................................................................................... 383
МИХАЕЛА ЗАМОЛО
Материјали у примјени Еурокодова
MIHAELA ZAMОLO
MATERIALS USED IN EUROCODES APPLICATION................................................ 397
МИХАИЛО ЛУЈАК
НЕВЕНА ПРЕДОЈЕВИЋ
Нови просторни концепти - иновациони центар Бања Лука
MIHAILO LUJAK
NEVENA PREDOJEVIĆ
NEW SPACE CONCEPTS – INNOVATIONAL CENTRE BANJA LUKA ................... 407
МИХАИЛО РИСТИЋ
ИВАНА МИЛОШЕВИЋ
ЉИЉАНА ПИЛИПОВИЋ
Композити на бази вуне за топлотну и звучну изолацију
MIHAILO RISTIĆ
IVANA MILOŠEVIĆ
LJILJANA PILIPOVIĆ
COMPOSITES BASED ON THE WOOL FOR THERMAL
AND SOUND INSULATION .......................................................................................... 423
МИЛЕНКО ШАРИЋ
РИСТО СТЈЕПАНОВИЋ
ДАРИЈО КУПРЕШАК
Градитљски проблеми сеоских водовода на територији Града
Бања Лука
MILENKO ŠARIĆ
RISTO STJEPANOVIĆ
DARIJO KUPREŠAK
BUILDING PROBLEMS OF WATER SUPPLY IN RURAL AREAS
IN BANJALUKA CITY ................................................................................................... 429
ВЕЉКО ЂУКИЋ
Могућност поновног коришћења старог одлагалишта
VELJKO ĐUKIĆ
THE POSSIBILITY OF REUSING THE OLD WASTE DUMPING SITE .................... 443
РАШИД ХАЏИЋ
МИЉАН ОБРАДОВИЋ
Просторна стабилност репрезентативног система металне
мостовске скеле преко задатог профила лука
RAŠID HADŽIĆ
MILJAN OBRADOVIĆ
SPATIAL STABILITY OF IDENTITY SYSTEM OF METAL SCAFFOLD
THE BRIDGE PROFILES THROUGH ARCH............................................................... 453
ГЛИГОРИЈЕ ПЕРОВИЋ
Могућности ласерског снимања асфалтних путева из летилица
GLIGORIJE PEROVIĆ
POSSIBILITIES OF LASER SCANNING OF ASPHALT ROADS
FROM AIRBORNE.......................................................................................................... 471
РАДИСЛАВ МИШИЋ
НАТАША МИШИЋ
БОШКО МИШИЋ
Анализа могућности реконструкције и побољшања енергетских
карактеристика зграда примјеном термографије
RADISLAV MIŠIĆ
NATAŠA MIŠIĆ
BOŠKO MIŠIĆ
ANALYSIS OF POSSIBILITIES OF RECONSTRUCTION AND
IMPROVEMENT OF THE ENERGY CHARACTERISTICS
OF BUILDINGS USING THERMOGRAPHY ............................................................... 477
ПРЕДГОВОР
Позиву за учешће на овом скупу, одазвао се велики број, како познатих научника и
стручњака, тако и учесника млађе генерације. Од 68 приспjелих приједлога радова, у
виду резимеа, научно-стручни одбор је прихватио 39 рада. Одбор се, при томе,
руководио да радови задовољавају основну концепцију мултидисциплинарности
скупа, да су одабране теме врло актуелне, савремене и разноврсне; једном ријечју, да
су, у функцији рјешавања проблема градитељске дјелатности и да доприносе
унапређењу и развоју савремене теорије и праксе. Дио радова, који би представљао,
углавном, понављање тема са претходних скупова, није уврштен у програм скупа.
Такође, радови који нису задовољили постављене критеријуме нису прихваћени.
На овоме, као и на неколико претходних скупова, поред других тема, незаобилазне
су врло актуелне теме као што су: енергетска ефикасност, одрживи развој, обновљиви
извори енергије, европски стандарди, екологија, савремене технологије, земљотресно
инжењерство, инфраструктурни системи, трајност, одржавање и рехабилитација
објеката и др.
Сматрамо да велики број пријављених тема, представља потврду да су
досадашњи рад и уређивачка концепција организатора овога и претходних скупова,
били оптимално програмирани и прихватљиви за већину учесника у градитељској
дјелатности. То потврђује и релативно велики број учесника који се увећавао
приликом сваког наредног скупа.
Претходних шест научно-стручних скупова, који су одржавани сваке године, почев
од 2005. године, постали су већ препознатљиви, по завидном нивоу презентираних
радова и великом учешћу истакнутих истраживача и стручњака, разних
специјалности, не само из држава бивше СФРЈ, већ и шире. Због тога, организатори
скупа, преко својих тијела, организационог одбора и научно-стручног одбора,
реализују приједлог учесника шестог скупа, одржаног у априлу 2010. године, да овај
седми и наредни скупови прерасту у међународне. Ова конверзија, из националног у
међународни скуп, је у складу са одредбама важећег Правилника о публиковању
научних публикација Републике Српске (2010.), које се односе на научне и научностручне скупове и њихове публикације. Услов да скуп добије статус међународног
скупа је испуњен, јер у научно- стручном одбору има чланова из најмање пет земаља
и најмање је десет учесника са радовима из иностранства. Просјечно учешће аутора
радова из иностранства, на досадашњим скуповима, износило је око 67% од укупног
броја радова.
Користимо ову прилику да се захвалимо свим учесницима скупа, посебно
ауторима радова, који ће, увјерени смо, знатно допринијети успјешном раду скупа.
Захваљујемо се, такође, свим институцијама, фирмама и установама, као и свим
појединцима који су подржали одржавање овог међународног скупа.
Бања Лука,
април 2011. године
Уредници:
Проф. др Мирко Аћић, дипл.инж.грађ.
Рајко Пуцар, дипл.инж.грађ.
FOREWORD
A great number of well known scientists and specialists as well as number of younger
generation participants has applied to participate in the conference. Scientific – technical
committee has accepted 39 out of 68 received summaries of paperwork. One of the committee criteria was that all paperwork should contribute to multidisciplinary character of
the conference, problems addressed in summaries to be contemporary and various, in a
word helpful in problem solving within building development sector, and to contribute to
improvement and development of contemporary theory and practice. Some paperwork,
mostly repeating problems addressed on the previous conferences as well as ones beyond
established criteria, were not accepted to become a part of conference program.
This conference, as well as previous ones, is addressing subjects such as energy efficiency, renewable energy sources, European standards, ecology, modern technologies,
earthquake engineering, infrastructure, durability, maintenance and rehabilitation of structures, etc.
In the opinion of the Committee, a large number of received summaries, confirms that
work and editorial concept of the organizational committee of this and previous conferences was right and acceptable for the majority of participants within structural engineering
sector. Increased number or participants taking part in the every conference in the previous
years also confirms this.
Six scientific- technical conferences held every year since 2005, are already well known
by the high level of the presented works, as well as by participation of well known researchers and scientists of various specialties, coming not only from ex Yugoslav countries, but
other countries as well. This fact enabled the organizers of the conference, via its bodies –
scientific- technical and organizational committee, to work under suggestion of the participants of the sixth conference held in April 2010, and enable this and following conferences
to become international. This change, from the national into international conference, is in
line with rules of the present Code on publishing scientific publications of the Republic of
Srpska (2010), that refers to the scientific, and scientific – technical gatherings and its publications. Main condition for the international conference has been fulfilled, as the scientific-technical committee consists of members from at least five countries and minimum ten
participants coming from abroad. Average participation of the paperwork authors from
abroad in the previous conferences was 67%.
We take this opportunity to express our gratitude to all participants of the conference,
especially paperwork authors as we are convinced they will greatly contribute to the success of this conference.
We would also like to thank all institutions and companies, as well as to all individuals
for their support in holding this conference
Banja Luka,
April 2011
Editors
Professor Mirko Aćić, PhD, Dipl.Civ.Eng.
Rajko Pucar, Dipl.Civ.Eng.
Marija S. Todorovi1, Olivera Eim uri2, Ivana Matinovi and Dušan Liina3
RENEWABLE ENERGY SOURCES AND ENERGY EFFICIENCY’S
INEXTRICABLE LINKAGE TO APPROACH ZEB AND CITIES
Summary: Paper reviews advances in integrating energy efficiency, solar and other
renewable energy sources in new and existing buildings, to approach sustainable net
Zero Energy Buildings, villages and cities. Paper stresses importance of the BPS
(Building Performance Simulation) and Co-simulation in developing reliable
method/engineering procedures for RES co-utilization and interwoven “energy mix”
scenarios optimization, including existing buildings RES integrated refurbishment.
Finally, presented are study results on the technical feasibility of efficient/cost-effective
use of relatively low temperature geothermal waters for co- and tri-generation of
electricity and heat for heating and/or cooling by absorption refrigeration for building
integration.
Key words RES technologies, Building Performance Simulation, RES integrated
refurbishment, geothermal co- and tri-generation, RES hybridization and co-utilization
- : , , !
, " . # . $%-
" "
& & '*+0 '23.
: , , , - -, -!
1
2
3
University of Belgrade & VEA-INVI, Belgrade, Serbia and Southeast University, Nanjing, China
University of Belgrade, Serbia
VEA-INVI, Belgrade
1
1. Introduction
In order to stop the global climatic changes and its more and more obvious
consequences, it is urgently necessary to further develop independent, vital and elastic
energy systems in which the miniaturization and distributed energy production based on the
renewable energy sources - RES have vital role. Current irreversible destruction processes
are to be stopped, and much more intensive growth of energy efficiency and RES utilization
are to be reached especially in building sector.
Energy-related impacts of buildings must be considered in their life-cycle
environmental analysis focusing factors that affect energy consumption: facades
concepts/building envelope alternatives, glazing and fenestration, types of building
structure thermal mass and insulating materials, lighting and day-lighting control,
natural ventilation and energy-recovery opportunities, and HVAC systems regimes and
operational modes such as temperature control, air volume control, motors and pump
types of control, indoor and outdoor air quality and environmental protection. All of these
considerations have an impact on the buildings energy efficiency, HVAC&R requirements
and resulting CO2 emission. A holistic approach to building design requires a method to
estimate the performance that will result from the energy flows and interactions between
the different technical domains of buildings – HVAC and other technical systems. In the
same time occupant comfort is not to be neglected or excluded. Multiple-domain comfort
assessment is required for IEQ (thermal environment, light, air quality and acoustics).
Building performance simulation (BPS) in design or redesign, reconstruction and
refurbishment phase is to encompass all relevant building’s domains: building intrinsic
performances (energy consumption, acoustics, etc.); occupant comfort; and life cycle
impacts assessment (LCIA), which characterises the environmental impacts of building
energy consumption, the construction materials and processes occurring during the LC
(including the construction, use, maintenance and deconstruction phases). BPS is a
powerful method and technique for predicting building’s dynamic behavior, building’s
energy efficiency and RES integration optimization. BPS enables building’s environmental
technologies and sustainability harmonization.
2. Harmony of traditional village houses
It would be a great challenge for contemporary architects to be asked to start planning
houses which represent the reminiscence of traditional Serbian houses heritage. The house
is the mirror of the people who live in it - a psychological, social, material, spiritual mirror.
It is also true that the man usually builds his house once and then the house builds the man
forever. The influence of architecture on people is huge and far-reaching. At the end of the
60’s and the beginning of the 70’s of the 20th century many scarecrow houses were built all
over Serbia. Our charming settlement, built according to needs of people and the
community, in harmony with nature and the milieu, has become a frightening dump of
houses. Manners and forms of building in one nation and in one culture are not created by
chance but they are results of crystallizations which lasted for several millenniums.
2
Fig. 1. Traditional village houses architecture, construction types and materials –
" !, The biggest values of an old Serbian house are that it was made out of need, and it is
simple, suitable and human. It was made out of life and it was dedicated to it. It does not
serve for advertising, for prestige, for luxury. There was, no pretentiousness, but harmony,
taste and measure which were creatively produced even in great poverty. An old Serbian
house is exquisitely proportional. Its geometrical values are stunning. They understand a
codex, standardization which was adjusted and fixed up for centuries. It was not called
under that name but it was more than present.
Is it possible, that spirit to catch and transpose it in a modern Serbian house, but taking
in account that the style and the rhythm of a modern man’s life, are much different than
they were in earlier times. The spirit of heritage is to be expressed in very different ways.
We have not to go back to heritage and tradition, but to start with them - to transpose the
inherited and to develop it to modern needs, to the modern itself, which must not be an
empty shell, and especially not formal and lifeless architecture.
The Serbian house is generally built out of material that could be found in the nearby
milieu. Skillfully used material from natural milieu and respecting the characteristics of the
climate, exquisite architectural results were achieved. The famous labelling program LEED
is based on the same logic and its aim is to promote sustainable buildings concerning IEQ,
environment protection and energy. The study of the traditional buildings of all nations in
the world are justifying the first basic principle of sustainable architecturee - small is
beautiful.
Serbian house, and more generally village houses worldwide, characterize: the optimum
volume ratio of house and roof area of tread and minimize the impact of low outside
3
temperature in winter and too intensive solar radiation and high outside air temperature in
summer; Socrates roofs – passive use of solar radiation - good bioclimatic construction;
enough daylight and good exposure and absorption of solar radiation in winter and shading
and reduced exposure to sunlight in summer. Layout of rooms and windows is suitable for
natural cross ventilation and natural cooling in the summer. Finally harmonization of
relations with the environment contributes to the harmonious choice of materials wall
structure, their thermal characteristics (the optimal value of thermal mass and thermal
conductivity: a wooden structure - avoid thermal bridges; construction of wood, mud
plaster, and other naturall materials for construction – bio-degradablele and materials
suitable for recycling
3. Residential buildings refurbishment
Architectural and energy condition of buildings and poor social and economic status of
tenants determine the approach towards improvement. Namely, we go through a period of
inconsistent value systems regarding architectural and urban planning practice in Serbia,
which leaves certain consequences on the valuable architectural and urban heritage of New
Belgrade. The compact, reduced and space-saving building construction, large green
surfaces, good ventilation and abundance of sunlight, urban complexes characteristic for the
time of their construction, are the qualities that should be recognized and preserved.
Unfortunately, the construction wave during the 1990s and 2000s was not always
appropriate regarding the specific urban context of New Belgrade.
In the meantime, numerous residential buildings erected during the period of intensive
construction in New Belgrade, from 1950s to 1980s, have become dilapidated and
completely untended (Fig. 2). New Belgrade residential buildings area is covering 4.096ha.
Within these exclusively high rise residential buildings are approx 90.000 dwellings with
total dwellings area of 5.000.000 sq. meters. 90 % of dwelling are within Belgrade’s
District Heating System.
Fig. 2. By the BPS ivestigated residential building – # 4
Many of them have visibly damaged façades, moisture penetration into the walls and
lack of indoor comfort, primarily inadequate air temperature with high infiltration of
outdoor air, regardless of extremely high energy consumption for heating from the Belgrade
district heating system and high consumption of energy for air-conditioning, leading to the
alarming peaking loads in the electricity network during the summer period. It can be
certainly expected that the project of architectural improvement of buildings (improvement
of energy efficiency – improvement of indoor environment and comfort, as well as
provision of cleaner and healthier outdoor environment), would bring positive social
changes and reduce some social problems. The application of energy efficiency principles
to reconstruction (retrofitting) could be a great motivation for tenants and, generally, for
inhabitants of New Belgrade to be personally involved.
The aim of the project was an architectural revitalization (reconstruction, retrofitting)
through the application of measures and technologies for improving and optimization of
energy efficiency of residential buildings in New Belgrade, for the purpose of providing
energy efficiency on the quality level which will ensure cost effective integration of
renewable energy sources - RES utilization. A four-floor building (useful area 13000 m2)
selected to serve as “Case building” with 7 entrances and three substations of the district
heating system of “Belgrade power plants” was chosen as a typical residential building of
New Belgrade (/4/-/8/,/15/).
For several scenarios of the building construction, computer models were created and
calculations were made, for meteorological data of the typical meteorological year (TMY)
of Belgrade, such as: G1 – model of the building according to the design of 1969; G0 –
model of the building approximately as it is today; G1 - G5 are building of the
improved construction’s energy efficiency; and G – model in accordance with the data
obtained from “Belgrade Power Plants” regarding energy consumption of the building
concerned. Results of the performed calculations are presented on Fig. 3. and 4.
Fig. 3. Specific heating losses and heating gains – $% Results show that with the reference to the basic model G0 specific heating losses are
reduced a 4 times (from MO0 to MO5), and specific heat gains are reduced more than 4
times – nearly 5 times. Hence, installed heating power of the DHS heat exchanger in DHS
5
substation in buildings after refurbishment is to be 4 times smaller, and similar order of
magnitude will be reduction of necessary installed power of air-conditioning split units.
Fig. 4. Specific annual heating and cooling energy demand – $% &
4. RES integrated refurbishment
By the preformed BPS predicted building’s refurbishment results are excellent approval
that approach to refurbishment can successfully lead to the effective integration of solar
energy utilization. Namely, not only reduced loads by the refurbished envelope’s thermal
features, but the fact that building’s envelope construction attacked by the moisture
penetration needs intervention, reconstruction to the ventilated façade offer challenge to
perform “Synergetic refurbishment approach” increasing energy efficiency and integrated
solar energy utilization. Concerning the construction works and existing building structure
statics, low weight PV cells and PV system’s simplicity would make it the most appropriate
of the solar technologies candidate to be integrated in renewed façade (/1/, /6/, 12/). As the
most cost-effective variant of interventions for architectural and energy reconstruction of
the analyzed “case building” has been selected complete construction of a new residential
floor (as financial potential source of funding by selling new-built apartments), ending with
the green roof or the roof plate that contains photovoltaic panels for electricity generation
/15/.
Potential BIPV co- and trigeneration. In the Table 1. are given relevant characteristics
of the PV modules selected for “Case building” façade integration. For the Belgrade TMY Typical Meteorological Year, have been determined incident solar global radiation and
potentially produced electricity by the BIPV in the building’s façade. In the Table 2. are
presented, for the determined BIPV area, values of determined installed power and yearly
produced electricity, obtained by the TRNSYS simulations.
For the total installed area on the west oriented facade of 1310 square meters total
installed PV power potential for selected PV cells/panels is 180,4 kW. One third of that
power would be enough to power all existing AC split units in the same building, thus
6
providing during the summer cooling and participating during the winter in heating supply.
Architectural animation of the PV panels integrated in the building’s facade is shown on the
Fig. 5 – nontransparent, and semi-transparent as second facade.
Thus, obtained result is more than significant justification to proceed with development
of proposed project on the “Cost Effective Solar Integrated Refurbishment of Residential
Buildings in New Belgrade” and to accomplish fully RES integrated residential/municipal
energy refurbishment, as follows: reduction of heating and cooling loads in buildings a 4
times with the reference to the existing, and consequently replacement of heat exchanger (4
times lower capacity and of higher energy efficiency at the current technology level) in the
DHs substation in the building; production of electricity by the BIPV – building integrated
PV for the heat pump (HP) operation, lighting and appliances when there is surplus with the
reference to the HP demand.
Thus, obtained result is more than significant justification to proceed with development
of proposed project on the “Cost Effective Solar Integrated Refurbishment of Residential
Buildings in New Belgrade” and to accomplish fully RES integrated residential/municipal
energy refurbishment, as follows: reduction of heating and cooling loads in buildings a 4
times with the reference to the existing, and consequently replacement of heat exchanger (4
times lower capacity and of higher energy efficiency at the current technology level) in the
DHs substation in the building; production of electricity by the BIPV – building integrated
PV for the heat pump (HP) operation, lighting and appliances when there is surplus with the
reference to the HP demand.
Table 1. PV modules characteristics – Module type BP SX 3195
Maximal power
W
Voltage on Pmax
V
Current at Pmax
A
Short-circuit current
A
Open-circuit voltage
V
Nominal operating cell temperature
°C
Number of cells
Area
m2
195
24,4
7,96
8,6
30,7
47
72
1.41
As New Belgrade has been built on “ground-water” existing air-source/sink split units are
to be replaced by the ground-water HP, resulting in reduction of necessary electrical power
– order of the COP ratio change related to the source/sink (air/ground-water) temperature
difference.
7
Fig. 5. Integration of nontransparent PV panels (left) semi-transparent (right) –
'* (
) ()
Ground water PV powered HP can be used energy efficiently for heating in certain
periods of year, what will further contribute to the DHS demand reduction and in the same
time further increase of the renewable energy balance.
Residential/municipal RES integrated refurbishment. Concerning the share of the
Households, Public and Commercial Activities in the FEC (3.219 of the total 8.411Mtoe),
and by the NEEAP/B Serbia adopted 2% saving as the intermediate target in 2012
(0.16722Mtoe), and 9% adopted related energy saving target in 2018 (0.75244 Mtoe), there
is urgent need to develop commercial “industrial” scale of energy refurbishment (buildings
architecture and construction refurbishment technologies accompanied with corresponding
HVAC systems engineering (/1/ - /8/, /14/, /15/). It is very hard to expect that required
residential/municipal RES integrated refurbishment planned by the National Energy
Efficiency Action Plan/Building Sector (NEEAP/Bs) can be realized in Serbia, or other
Non-EU, or even in the most developed EU countries, if there are missing developed
“industrial” scale buildings architecture and construction refurbishment technologies and
corresponding integrally harmonized HVAC/PV/Other RES systems and engineering
technologies developed – validated as based on the relevant R&D results (/4/-/8/, /14/,
/15/).
Developed, mature, commercially available on the market, pre-constructed HVACRES-HP and/or HVAC-RE-DHS/HP systems and unified retrofitting construction works as
well as corresponding mechanical and electrical subsystems would eliminate important
technical and technological barriers to spreading deep energy refurbishment projects
conducted integrally with solar, wind, ground or groundwater source HP implementation
/14/. In addition, development of the specific hardware and software within the
building/HVAC retrofitting system can directly increase competitiveness of related Europe's
HVAC, Heat Pumps and especially for the renovated refurbished buildings optimal
intelligent control systems industries.
5. RES powered co- and tri-generation for nZero Energy Cities
Modern society is increasingly dependent on electricity and there is no realistic chance
to make its consumption decreased in the future. Gradual robotization, computerization of
8
society as well as transportation (directly into the electrical circuit or indirectly through
synthetic fuels: hydrogen, methane and methanol) will all be more focused on increase of
its use. Production of electricity from renewable sources is the only way to provide longterm stable electricity production at constant prices to approach sustainable society
(/15/,/16/).
Low temperature geothermal fluids (<1000C) are available and used mainly for heating
and balneological purposes. At the same time, as a result of global warming (GW) a need
for cooling, particularly air-conditioning of buildings and related electricity demand are
growing extremely fast around the world. In Serbia more than 60 hydro-geothermal lowtemperature systems (below and about 100oC), present a large potential (highest
temperature levels in broader region - ranked among the hottest in Europe). Estimated
energy reserves of these geo-resources are about 800 Mat. Currently, in Vranjska SPA with
the highest temperature levels (about 100oC), a DH - district heating (including sanitary
water and swimming pools) and AC is planned implementing absorption refrigerating
systems in some of the DH substations and vapour compression refrigerating units powered
by the grid electrical energy in other (during heating season these units can be also used for
heating in their heat-pump operational regime). Similar examples as these in Central and
Southeastern Europe, can be found in many other regions in the world rich in low
temperature geothermal waters (<1000C). At the same time, there is a growing interest of
governmental, public and private investors worldwide in funding the construction of energy
plants which could utilize these waters in a more efficient and cost effective way than it is
practice today /7/. Thus, it is necessary to explore technical feasibility of efficient/costeffective use of these waters for co- and tri-generation of electricity and heat for heating
and/or cooling by absorption refrigeration. Investigation is necessary to identify the most
cost-effective configuration to harvest low temperature geothermal energy for cogeneration and tri-generation systems assisted by solar energy or some other locally
available RES such as biomass /7/.
Technical feasibility, efficiency, and cost are to be explored using low temperature
geothermal fluids for co-generation systems to produce electricity and thermal energy for
heating, and/or for tri-generation producing electricity, heating and cooling via absorption
refrigeration processes. Relevant studies of building thermal and electrical load dynamics,
and corresponding demands, should be performed based on optimum co-generation
systems. It is well known that the Kalina thermodynamic cycle can convert relatively low
temperature energy, at relatively low temperature compared to the heat sink or ambient
temperature, to mechanical power and further to electricity. The Kalina cycle has a
potential for significantly higher exergy efficiency compared to conventional Rankine cycle
because, unlike pure fluids, the ammonia-water mixture has variable boiling temperature
(/8/-/10/).
There are also some other thermodynamic cycles and processes of interest which could
be potentially used for utilization of geothermal fluids at even lower temperatures than
those required for the pure Kalina cycle. In addition, there is possibility of hybridization –
integration of the use of low temperature geo-waters and solar or other RES to increase the
geothermal fluid temperature upstream of CHP systems /8/. Namely, it is generally
assumed that if the resource temperature is higher than about 90ºC, it can be utilized to
generate electricity. However, it is nearly impossible to get any offer at the market, even
9
from those producers who affirm that they are designing and engineering the utilization of
hydrothermal resources with temperatures about 100ºC.
Rodgakis and Antonopoulos /13/ analyzed a Kalina power cycle driven by a heat source
of high and moderate temperatures operational with three pressure levels. In this cycle the
heat contained in the exhaust steam is used to drive a “thermal compressor” allowing a
higher turbine expansion ratio and a higher efficiency. Kalina and Leibowitz (/9/,/10/)
presented a power cycle for geothermal applications showing that the Kalina cycle has a
higher power output for a specified geothermal heat source compared with organic Rankine
cycles and steam flash cycles. P. A. Losos and E. D. Rogdakis /13/ performed the
thermodynamic analysis of a dual pressure Kalina power cycle operational at the low
temperature heat sources (similar to the power unit installed in Husavic-Iceland /11/). They
presented an improved configuration which appears to have a better performance.
Further, this paper presents parametric analysis of thermodynamic limits of a new
concept of boosting the relatively low temperature geo-water sources using solar or other
locally available renewable energy sources to enable energy efficient co-generation and trigeneration by increasing the level of “high” temperature turbine inlet, and getting enough
high temperatures of co-generated heat for its efficient use for the heating and/or absorption
cooling purposes. In addition to the introduction of the concept of coutilization/hybridization of geothermal with solar or other RES, this paper presents an
extension of the study /13/ and continuation of the study /7/, encompassing relevant
parameters including the cooling source and local – site climate conditions, beside the
HVAC and other energy loads demands.
6. Description of the cycle
The Kalina cycle uses a working fluid comprised of at least two different components
(typically water and ammonia). The ratio between those components is varied in different
parts of the system to increase thermodynamic reversibility and overall thermodynamic
efficiency (/16/). There are numerous variants of Kalina cycle systems specifically
applicable for different types of heat sources. Since the phase change from liquid to steam
is not at a constant temperature, the temperature profiles of the hot and cold fluids in a heat
exchangers can be made closer, thus making the overall efficiency of the heat transfer
higher. Several proofs of concept power plants using the Kalina cycle have been built. On
Fig. 6. is shown a simplified scheme of the co-generation, alternatively tri-generation unit
arrangement installed in Husavic-Iceland based on a Kalina cycle. Necessary thermal
energy is supplied to the cycle’s working fluid in evaporator. After releasing heat in
evaporator, geo-water and the solar collector field’s working fluid are used for heating
purposes: lower exergy geo-water for SPA and agriculture, and higher exergy value solar
collector field water for district heating system (DHS) and/or district cooling system (DCS).
Characteristic states of the Kalina cycle working fluid are as follows. Starting at the
outlet of the absorber (State 0) the strong solution of a mass fraction Xr is saturated at a low
pressure pL. This stream is pumped to a high pressure by the feed pump (State 1r). The feed
stream is preheated in the low temperature (State 2r) and the high temperature (State 3r)
recuperators before entering the evaporator. In the evaporator the mixture is heated by the
10
heat source (I geothermal and II solar or biomass) to TH, where it is partially vaporized
(State 4r). The mixed-phase fluid is sent to the separator where the basic solution is
separated into an enriched vapor (Xv) (State 5) and a weak liquid solution Xw(State 4w). The
high-pressure, strong saturated vapor from the separator drives the turbine as the vapor
expands and cools to a low temperature, low pressure exhaust (State 7). The saturated
liquid solution (State 4w), after recuperating some of the heat at the high temperature
recuperator, is throttled down to a low pressure (State 2w). Then the expanded stream (state
7) mixes with the weak stream (State 2w), condenses and forms the basic solution
completing the cycle (this is achieved through a counter-current absorber). There is though
a cooling circuit system which works as follows: firstly the cooling fluid absorbs the heat
rejected from the absorption process (change 8r-0r or 2w-0r); then, the absorbed heat,
through the cooling circuit, is used to preheat the rich solution (change 1r-2r). In /13/ had
been analyzed co-current absorber. As the study /13/ did show important advantage of
obtainable cycle’s higher thermal efficiency, in this study such configuration has been
selected as an initial reference for the further parametric thermodynamic analysis. The coand tri-generation modes of this type of Kalina based power generation unit assumes
utilization of the residual thermal potential of geo-fluid after releasing heat in the first part
of the evaporator section for the lowest level heating purposes, and also utilization of the
residual thermal potential of solar heated working fluid after the evaporator’s second
section (for heating and when necessary or absorption cooling – tri-generation), as well as
further utilization of the condensation heat transferred to the cooling fluid.
An ideal Kalina cycle’s relevant independent variables are: cycle low pressure, pL; cycle
minimum temperature TL (temperature at condenser exit); cycle maximum temperature; TH
(temperature at boiler exit). Streams involved in the cycle are: a weak solution of mass
mw=g [kg] and mass fraction Xw (change 2w-4w); a strong solution of mass mr=(1+g) [kg]
and mass fraction Xr (change 1r-4r); and a rich vapor stream of mass mv=1 [kg] and mass
fraction Xr (change 5-7). Cycle modeling has been performed /7/ using the following
assumptions:
ƒ All processes within the cycle, excluding pumps, throttling valves and the turbine,
are considered as constant pressure processes.
ƒ The enthalpy increase in pump is assumed to be enough small to be neglected.
ƒ The strong mixture at condenser exit (State 0) and at the evaporator inlet (State 3r)
are at saturated condition.
ƒ The weak mixture after its throttling to the low pressure (state 2w) is at saturated
condition.
ƒ Heat losses in the piping and the heat exchangers are enough small to be neglected.
Thermodynamic properties of the Kalina working fluid - mixture of NH3-H2O are
calculated /13/. In /8/ thermodynamic analysis of the ideal Kalina cycle defined in /13/ has
been extended using the variables and assumptions listed above, and using the mass balance
and a set of relevant equations to calculate the boiler heat transfer, absorber heat rejection,
work output and thermal efficiency (for 1 kg of vapour expanded in the turbine) as follows:
11
ƒ Boiler heat transfer
qin
ƒ Absorber heat rejection
qabs
ƒ Work output
wt
ƒ Thermal efficiency
K
h5 h2
h7 h2
h5 h7
wt
qin
(1)
(2)
(3)
(4)
Fig. 6 Scheme of solargeothermal Kalina power cycle with counter-current absorber –
7 % :
Boiler heat defined by the equation (1), is given as a whole and not reduced for the
recuperated heat within the cycle itself. As this new concept of increasing the heat source
temperature by the composition of geo and other RES aims to reach a CHP (co-generation)
efficiency high enough for practical cost-effective implementation even with the available
low temperature geo-sources, the main issue is analysis of the impact of increased
temperature of heat source (adding solar to geo), and analysis of different cooling
fluid/environment temperatures on thermodynamic limits. Thus, the heat recovery within
the cycle has been treated in the same way as in the referential studies (/8/, /13/).
Recuperation’s role and especially its heat transfer efficiency is additional positive impact
on the Kalina cycle’s efficiency improvement.
12
7. PARAMETRIC ANALYSIS AND THERMODYNAMIC LIMITS
Extended parametric analysis has been conducted with the reference to the case study
/7/ which has been made for following parameters: low pressure, pL=5 bar; minimum
temperature TL = 22oC; and maximum temperature TH = 120oC. Determined dependence of
the theoretical cycle efficiency and the produced work per kg vapor for the various values
of the low pressure analyzed in /13/ shows the rate at which for given maximum and
minimum temperature of the cycle, low pressure raising causes a reduction of the produced
work and the efficiency.
The relationship between the high pressure pH and the maximum temperature TH of the
unit for three values of the low pressure (1, 2 and 4 bar) and for given minimum
temperature TL, as well as the correlation of the high pressure in terms of the three
independent variables of the analyzed Kalina cycle, TH, TL and pL are expressed using
following equations (/8/, /13/):
pH
a1 b1 ˜ TH c1 ˜ TH 2
(5)
a1
16.47 4.33 ˜ pL
1.366 ˜10 2 ˜ TL 0.696
(6)
b1 (0.42 0.08 ˜ pL ) ˜ (1.3604 1.644 ˜102 ˜ TL )
3
4
2
c1 (3.14 ˜10 7.38˜10 ˜ pL ) ˜ (1.3234 1.474 ˜10 ˜TL )
(7)
(8)
Searching thermodynamic limits, the parametric analysis of the Kalina based cycle for
the geothermal CHP (co- and tri-generation) systems has been extended at the lower side of
the high temperature range to only 50oC. Thus, determined thermal efficiency of Kalina
cycle at so low TH will enable analysis of potential increase of efficiency if additional
higher temperature level heating (solar or biomass) is added within corresponding
evaporator sections.
Other than adding solar energy to geothermal heat source, with the reference to /13/,
study /8/ extended cooling temperature range by adding two low temperature values 14oC,
and 30oC (representing groundwater or outside air and cooling tower use for cooling
respectively).
The theoretical cycle efficiency < (%) has been determined for a great number of
combinations of the minimum temperature TL (14, 22 and 30oC) and low pressure pL (1 to 4
bar), and obtained correlations between the efficiency and relevant independent variables of
the cycle have been expressed as follows:
K a2 b2 ˜ TH c2 ˜ TH 2
(9)
a2
0.049 0.0022 ˜ TL
(10)
b2
0.0035 ˜ 0.921/ pL
c2
-2.36 ˜10 -2.19 ˜10 ˜ pL 3.14 ˜10 ˜ pL
-6
(11)
-6
-7
13
2
(12)
Using given equations a series of thermal efficiencies data are calculated and presented
on the diagram in Fig.8. Given are also values of the Efficiency and Carnot Efficiencies for
the same values of corresponding cycle’s high TH and low temperatures TL. For example, an
increase in TH temperature from 70oC to 100oC, 120oC and 140oC will result in the cycle’s
efficiency growth of 7,29%; 11,58%; and 15.44% respectively for the low temperature TL
equal 14oC /8/. It is visible how much the cycle efficiency is closer and closer to the Carnot
efficiency as TH increases and TL decreases. The efficiency < (%) has been calculated for a
three minimum temperature TL (12, 22 and 30oC) /8/. It is very impressive how close the
theoretical Kalina cycle’s efficiency values are to the Carnot cycle’s efficiencies (values of
the </<c ratios are between 0,74 and 0,94).
It is important to stress that the absorption refrigerator’s coefficient of cooling (trigeneration case) also significantly increases with raising inlet temperature of heating fluid
(solar collector fluid exit temperature from the evaporator), Coefficient values are
significantly higher for higher temperatures what contributes to the increased efficiency of
cooling and hence of the tri-generation as a whole, what justifies further engineering
R&D& economic optimization to be conducted (/8/, /12/,/15/).
It is visible how much the cycle efficiency is closer and closer to the Carnot efficiency
as TH increases and TL decreases. The efficiency < (%) has been calculated for a three
minimum temperature TL (12, 22 and 30oC) /8/. It is very impressive how close the
theoretical Kalina cycle’s efficiency values are to the Carnot cycle’s efficiencies (values of
the </<c ratios are between 0,74 and 0,94).
It is important to stress that the absorption refrigerator’s coefficient of cooling (trigeneration case) also significantly increases with raising inlet temperature of heating fluid
(solar collector fluid exit temperature from the evaporator), Coefficient values are
significantly higher for higher temperatures what contributes to the increased efficiency of
cooling and hence of the tri-generation as a whole, what justifies further engineering
R&D& economic optimization to be conducted (/8/, /12/,/15/).
Fig. 7. Theoretical cycle efficiency vs. Tmax for pL= 2bar and three values of the low
temperature TL - # $ Tmax pL= 2bar TL
14
8. Conclusions
Concluding remarks on the building’s energy loads and demand minimization Part I of
conducted study are: retrofit of building envelope and structure including replacement of
external windows and doors will result in reduction of specific heating demand and DHdistrict heating energy consumption for 60 - 75%, and DHS can increase own heating
capacity for the same amount of thermal power and annually delivered energy.
Integration of PV panels non-transparent on the opaque parts and semi-transparent as
the second facade on the appropriately oriented external walls will result in installation of
enough PV electricity to power all AC split units substituting EDB’s grid-electricity, and in
addition can send to the grid surplus electricity. This result justifies the proposed project on
the “Cost Effective Solar Integrated Refurbishment of Urban Residential Buildings in
Serbia”.
Energy efficiency of the air-conditioning system can be much more efficient than the
efficiency of the existing installed AC split air-type units, by the replacement of AC units
with water cooled AC system – system which is using ground water as a heat sink in
summer when cooling is necessary, but also applicable as heat pump in other periods of
year for heating purposes using ground water as heat source (also as RES source).
DH substation is to be reconstructed with the reference to reduced heating power and
energy due to building envelope retrofit and to the PV powered HP operation.
Necessary financing formula can be obtained by joining financial support of the PPP
type.
Conclusions on the Part II – residential-municipal RES integrated refurbishment to
approach nZEB and cities are: feasibility of “Successful Composition of the Geo Co- and
Tri-generation Projects” and possibilities to increase theoretical cycle thermal efficiency
and expand the low-temperature geo-water utilization for co- and tri-generation based on
the co-utilization or hybridization of geothermal with solar or other RES has been
confirmed and determined.
Furthermore, parametric analysis and the determination of relevant thermodynamic
limits of corresponding systems have been conducted, which encompass relevant
parameters including the cooling source and its characteristics (river or lake water, wet
cooling tower, or else), as well as local – site climate conditions, beside the HVAC and
other energy loads demands.
It has been confirmed that geo-heat source of lower temperatures than 100ºC can be
"boosted" by addition of solar or other high temperature renewable heat sources, reaching
very significant increase of co- and tri-generation efficiencies values – values very close to
the corresponding Carnot efficiencies.
RES integrated residential/municipal refurbishment in synergy with the RES integrated
co- and tri-generation at the municipal level, are to be seen as a reliable way towards net
ZEBuildings and Cities.
Nomenclature
< = efficiency [%]
h = specific enthalpy [kJ.kg-1]
p = pressure [bar]
q = specific heat [kJ.kg-1]
15
T
w
=
=
temperature [oC]
specific work [kJ.kg-1]
=
=
=
=
=
=
high pressure
low pressure
strong solution
weak solution
vapor
turbine
Subscripts
H
L
r
w
v
t
References
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Todorovic M.S., NEEAP/B 2009-2018 Study Report and NEEAP-BS for the RS
Ministry of Mining and Energy, VEA-INVI, IRG/Washington, 2010.
Energy-efficient Buildings PPP Research Priorities for the Definition of a Multiannual Roadmap and Longer Term Strategy, Ad-hoc Industrial Advisory Group
Energy-efficient Buildings PPP, 2009.
Public Utility Company Beogradske elektrane – Series of District Heating Systems
Substations Energy Consumption Measurement Data, Belgrade, 2006, 2007, 2008.
Todorovic M.S., New and Existing Building’s Cost effective Integrated Solar, Coand Tri-Generation to Approach Sustainability, AICARR Proceedings, pp. 241-256,
Rome 2009.
Todorovic M. S. and others: USCE Tower - Building Envelope and Construction
Energy Optimization Study, EnPlus/DERES-LTT, Euro Construction, Belgrade,
2003.
Todorovic M. S.: Building Integrated PV Air-conditioning and Water Heating in
Special Hospital of the SPA Rusanda, Passive and Low Energy Cooling Conference,
Creta, Greece, 2007.
M.S. Todorovic, Successful Composition of the Geo Co-and Tri-generation Projects,
International
Geothermal
Days,
http://80.81.229.22/igd2009/proceedings/proceedings.igd.09/proceedings.
PDF/V.1. Todorovic.pdf, Slovakia, 2009.
M.S.Todorovic and D.Licina, Parametric Analysis and Thermodynamic Limits of
Solar Assisted Geothermal Co-And Tri-Generation Systems, Transactioons
ASHRAE, 2011, Vol.1.
Kalina, A. I., Combined Cycle and Waste Heat Recovery Power Systems Based on a
Novel Thermodynamic Energy Cycle Utilizing Low-Temperature Heat for Power
Generation, Proceedings of the 1983 Joint Power Generation Conference,
Indianapolis, Indiana, USA, (1983), ASME Paper No. 83-JPGC-GT-3.
Kalina, A. I., Leibowitz, H. M., Application of the Kalina Cycle Technology to
Geothermal Power Generation, Geothermal Resources Council Transactions, Vol.
13, (1989), 605-611
Leibowitz, H. M., Micak, H. A., Design of a 2 MW Kalina Cycle Binary Module for
Installation in Husavik, Geothermal Resources Council Transactions, Oct. 17-20,
Vol. 23, (1999), 75-80.
16
12.
13.
14.
15.
Valdimarsson and L. Eliasson, Factors influencing the economics of the Kalina
power cycle and situations of superior performance, International Gepthermal
Conference, Reykjavik, 2003, pp 32-40.
Periklis A. Losos and E. D. Rogdakis, Thermodynamic Analysis of a Kalina Power
Unit Driven by low Temperature Heat Sources, Thermal Science: Vol. 13 (2009),
No. 4, pp. 21-31.
Todorovic M.S. National Energy Efficiency Action Plan of Buildings in Serbia – An
Approach to the large Scale Municipal Energy Refurbishment, REHVA Journal, Vol.
47, Issues 6, December, 2010, pp. 22-26.
Todorovic M. S. Izbor prilaza unapre{enju energetske efikasnosti i održivosti zidanih
zgrada, Journal for Research of Materials and Structures, 4, LII, pp. 5-27, (with
O.Ecim, I.Martinovic), 2010.
17
Theodor Klein14
ENERGETIC SYSTEM REQUIREMENT FOR PHYSISAL STRUCTURES-SPECIFICATIONS BY THE GERMAN STANDARD (EnEV
2009)
Summary: This paper presents (technical) requirements for energy efficiency and
energy consumption according to the standard EnEV 2009. Higher demands are made to
newly established or modernised, heated and cooled buildings. Specific values of the
annual primary energy need is given by standard, so calculated annual primary power
demand for heating, hot-water preparation, airing, cooling and built-in lighting should not
be higher than the permissible high value.
Standard EnEV 2009 bligas owners of new buildings and owners in sales, lease and
renting, to prepere energy performance certificate. The specific values of the annual
primary power demand for building and the heat transmission losses of building shell
(cover) are given in it.
Key words: energy efficiency, energy consumption, Standard EnEV 2009
- (EnEV2009)
: "
EnEV 2009. "
. #
, , , , , ,
!
, ! !
.
$ , ", , , ,
& .
: $, ! , EnEV 2009
1
Dipl.ing., Dipl.Kfm. IGK. INgenieurgeselschaft Klein Passauer str. 101; 84347. Pfarrkirchen; tel. 08561-2388400; Weinmann,.andrea@igk-klein.de
19
Energetic system requirement for physical structures –
Specifications by the legislator in Germany (EnEV 2009)
Introduction
In Germany higher demands are made to newly established, or modernised, heated and
cooled buildings by legal requirements of the energy saving act in 2009 (EnEV 2009),
concerning energy efficiency and energy consumption. In order to realise this aim, a
comprehensive planning is needed, which considers the warmth-transferring building shell,
as well as systems engineering.
Furthermore the EnEV2009 regulates the replacement and after-market equipment duty
in the building stock, as for example: the additional insulation of the supreme floor cover,
or the insulation of heating pipes and hot-water pipes, the abandonment of electric night
storage heating and the exchange of out-dated boilers.
As a standard for the energy efficiency of buildings, the specific values of the annualprimary energy need and the heat insulation of the building shells, defined by the building
heat transfer loss, are valid. Already in the planning stage you need to pay attention to the
fact, that the calculated annual primary power demand for heating, hot-water preparation,
airing, cooling and built-in lighting is not higher than the permissible high-value. The high
value is determined with the help of an authoritative building with the same geometry,
usable area, adjustment, and use like the planned building. In addition, the outside shell of
the built and planned building may not cross the high-value for the heat transmission, given
by the EnEV.
The energy performance certificate shows these energetic specific values very clearly,
even for the non-expert. The EnEV2009 obliges owners of new buildings, and owners in
sales, lease, and renting, to the preparation of the energy performance certificate. The
specific values of the annual primary power demand and the heat transmission losses are
fixed obligingly in it for the respective building.
If one looks at a building as a concluded energetic system, the losses by the building
shell and the airing are accompanied by the system-internal and solar profits. This
difference is to be supplied by the heating system or during the summer months dissipated
by sun shading, specific night airing or by climate control. Therefore to reach a high
energetic quality, a maximisation of the profits and minimisation of the losses is to be
aimed for.
The used building materials contribute hereby decisively to the positive energy balance
and also to the atmospheric environment. Energetically relevant are the insulating qualities,
as well as the heat storage abilities. If solar profits and the storage ability of the building
stick together in a well-balanced relation, additional heating energy conservations of up to
20% can also be reached, beside the avoidance of the overheating in summer.
A lower thermal heat need also affects the heating systems. Therefore power ranges far
under the level of conventional buildings can be realised, so that in combination with low
temperature heat emission systems a considerable reduction of the heat losses and therefore
a higher efficiency of the heat production becomes possible.
20
Contents:
1. Objectives of the legislator in Germany by the EnEV
2. System of the EnEV
3. Essential energetic system standards for physical structures by the EnEV
3.1 Demands of the EnEV for new buildings
3.1.1 Building cover
3.1.2 Building Services
3.2 Demands of the EnEV for existing buildings
4. Energy Identity Card
5. Outlook EnEV2012
1. Objectives of the legislator in Germany by the EnEV
The European Union has set its aims in the action plan energy efficiency, to save a total
of 20% of the annual energy consumption up to 2020. Buildings have a great share (more
than 40%) in the global energy consumption Therefore this section offers the biggest
potential in energy reduction.
Hence the aim is to economically provide new buildings with very economical energy
balances and the building stock with the use of all available possibilities for the energy
conservation. In Germany the energy saving bill (EnEV), in its current version from the 1st
of October 2009, regulates these demands.
The bill improves the energetic quality of new buildings about 30 percent compared
with the previous standard, and helps to exhaust the huge energy savings potentials in the
building continuance stronger than up to now. Clear aim of the EnEV 2009 is to build
houses who use only on an average seven litres of fuel or cubic metres of gas per square
metre and year. Previously about ten litres of fuel or cubic metres of gas per square metre
and year were usual. This aim can be reached with today's construction standard also under
economical aspects easily.
Picture: Thermal image of a dwelling house with evident heat bridges
21
2. System of the EnEV
The EnEV is valid in Germany basically for all heated and cooled buildings or parts of
the building. Special provisions are valid only for buildings, which are not regularly,
heated, cooled or used.
The energy saving bill defines obliging limit values for the primary power demand of
buildings and refers to calculation norms for the representative determination of the energy
consumption of buildings.
For the energetic demands and the calculation methods for the power demand it is
basically distinguished between:
x
x
residential buildings
non-residential building, i.e. building for all the other purposes, e.g., industrial
halls, schools, office buildings, etc.For residential/non-residential buildings the
following energy consumptions are balanced:
x heating
x cooling
x mechanical airing
x hot-water preparation
In addition, for non-residential buildings, the power demand for the lighting has to be also
balanced.
3. Energetic system standards for building
3.1 Demands of the EnEV for new buildings
3.1.1 Building cover
The aim of the EnEV is to limit the heat losses by the building cover, through:
x Minimisation of the transmission heat loss HT'
According to building type limit values were fixed for residential buildings, e.g.,
empty residential building with a living space smaller than 350 m ²: => allowed
transmission heat loss of HT' for the whole building cover: 0.40 W / m²K
This limit value can be met by exact designed definition of all U values of single outside
components and for new buildings easily undercut.
As an example, some U-Values and strength of insulation:
Component
Outer wall
Base plate
Roof
Window
Outside door
U-Values (W/m2K)
0,28
0,35
0,20
1,3
1,8
22
Strength of insulation
12 – 14 cm
8 – 10 cm
from 20 cm
Picture on the left: Exemplary insulating strengths of a dwelling house new building to
EnEV2009
Picture on the right: Subdivision of the warm losses about the building cover
x Minimisation of the airing heat loss:
New buildings must be established airtight, according to the state of the technology. In
addition structural element joints, for example sealing of windows, have to fulfil quality
criterions.
If the density of the building cover is proven with the so-called Blower Door test, the
primary power demand is positively affected, as no warmed up air leaves uncontrolled the
building. With the installation of a mechanical ventilation system, the Blower Door test is
already obliging.
Picture: Blower Door test with measuring facilities
23
3.1.1 Building Services
There are also energetic minimum demands within the scope of the EnEV to housetechnical arrangements for heating, cooling, airing and lighting in order to minimise the
primary power demand. Even with excellent insulation of the building cover an efficient
heat production system is necessary to keep the energetic minimum demands.
x
For heat production with oil and gas, minimisation of the exhaust gas losses by
calorific value technology, therefore additional usage of the exhaust heat thru
condensation.
Picture left: old oil kettle without calorific value technology
Picture right: new oil fuel value device integrated in the hot-water tank
x
Mechanical ventilation systems with heat recovery from heat exchanger with
normative agreed efficiencies. In the picture below a flat airing device is shown
with a cross-stream heat exchanger. The heat recovery grade of min 65 % should
be reached.
Picture: Airing device with cross-stream heat exchanger
24
x
x
Possibility of the charge of electricity from renewable energy
Due to the legally agreed reimbursement for photovoltaic systems, Germany
has experienced a real photovoltaic boom for some years.
With the EnEV2009 the legislator has created the possibility in Germany to
credit regenerative electricity, which is generated in immediate nearness of a
building, on the primary energy balance of the building. However only under the
condition that this generated electricity is only used within the building. Therefore
the electricity demand can be covered by a photovoltaic systems arrangement, e.g.,
for the airing, circulating pumps, and the building cooling. Surpluses can be also
fed into the electricity net during self-use.
Picture: Switchboard for own use of the solar electricity in the building.
Company Schüco Solar
3.2 Demands of the EnEV for existing buildings
Special energy savings potentials lie in the building stock. Therefore, the bill mobilises
these reserves by retrofit obligations and energetic demands for upcoming modernisation
measures.
For upcoming modernisation work the possibilities of an energetic renovation must be
exhausted. For example during plaster renewal and the exchange of windows or glazing it is
economical to improve the energetic quality at the same time.
Requirement catalogue:
x
Substitution of more than 2 millions ineffective boilers, built in before the 1st of
October 1978.
x
The additional insulation of undammed pipelines
25
x
Attics must be fitted with heat insulation until the end of 2011. According to
space usage the floor cover or roof insulation can be chosen. With new
acquisition a retrofit obligation exists.
x
For old building modernisation with essential architectural changes in
components (facade, window and roof) the energetic requirement was raised by
30%.
An exception is granted only, if the surface of the changed component is not more than
10 % of the whole respective component surface.
x
Air-conditionings, which change the humidity of the room air, must be refitted
with an automatic regulation for the moistening and drying out.
x
Electric night memory heating systems, which are 30 years old or older, must
be substituted until the 1st of January 2020 with more efficient heating systems.
This concerns in particular residential building with at least six residential units
and non-residential building with more than 500 square metres of usable area.
There are excluded buildings which are built after the requirement level of the
heat insulation order in 1995, or if the exchange is uneconomical.
4. Energy Identity Card
For new buildings and for sales, renting and lease of existing buildings the EnEV
prescribes the production of an energy identity card, which contains important information
about the energetic qualities of the building.
These are:
x
x
x
x
Primary power demand and its requirement value
Transmission heat loss of the building cover and its requirement value
CO2-Emission
Consumption of energy like oil, gas, or electricity
As for example, with fridges, where new devices are to be marked obliging with the EU
label, the power demand values provide real estates with more transparency concerning the
energetic quality.
26
Picture: Example of energy identity card for an apartment house with relatively high power
demand
By lower deviation of the requirement level for the primary power demand it is possible
to take up interest-improved loans of the state conveyor bank KFW.
Picture: Requirement levels for the primary power demand
27
5. Outlook EnEV2012
In 2012 there will be a further amendment to the energy saving bill.
Compared with the EnEV 2009 the requirement level will be raised once again by 30%.
At the same time the European Union has decided in summer 2010 a new building
directive (»EPBD 2010). There will be increased requirements introduced to new buildings
and continuance buildings in the member countries. The directive has to be implemented
until July 2012 into national right.
x From 2021 all new buildings have to built as a lowermost energy building.
x The notice duty for energy identity cards in publicly accessible buildings will be
lowered to buildings with 500 m ² usable area.
x Energy identity cards must be presented by sales and renting unsolicited. In sales
and renting announcements an energy identification number has to be given.
x For energy identity cards high-class controls are introduced.
The increase of the requirements is still discussed controversially under the points of
feasibility and the economic efficiency. Above all the real estate economy criticises the
rising demands as uneconomical.
Bibliography:
x
x
x
x
x
x
x
Homepage Deutsche Energie-Agentur, DENA, Stand 09.02.2011
http://www.thema-energie.de/energie-im-ueberblick/gesetzeverordnungen/energieeinsparverordnung-enev/energieeinsparverordnungenev.html
Homepage Europäische Gebäuderichtlinie, Stand 09.02.2011
http://www.eu-greenbuilding.org/index.php?id=162
Bundesverkehrsministerium für Verkehr, Bauwesen und Städtebau, Stand
10.02.2011
http://www.bmvbs.de/DE/BauenUndWohnen/EnergieeffizienteGebaeude/Energiee
insparver
ordnung/energieeinsparverordnung_node
Homepage Sacramento Building Performance, Blower-Door-Test, Stand
10.02.2011
http://www.sacsustainable.com/blowerdoortbl.html
Homepage Planungsbüro für Lüftungsanlagen, Stand 10.02.2011
http://www.brusberg-hlks.de/leistungen/lueftung.html
Englische Website der Deutschen Energieagentur, Stand 10.02.2011
http://www.zukunft-haus.info/index.php?id=9619
Homepage Arch-M-Energieberatung in Berlin, Stand 10.02.2011
http://www.arch-m.de/
28
Branislav Todorovic 1
BUILDINGS THERMAL CHARACTERISYICS: SIMILARITIES
AND DIFFERENCES TO THE HUMAN BODY
Summary: In the paper, a building envelope was studied and compared with human
skin behaviour, and its reaction to different thermal conditions. There are some mimics of
human reactions noticeable in buildings:double facades as a copy of wearing coats , various constructional structures throwing a partly shadow on a building, etc.
However, human reaction to very high temperatures is perspiration, producing the
evaporation effect for cooling; the application of human perspiration effects on facades was
found on several buildings, in the world , with water flowing above facades.
Keywords: Buildings, energy, envelope, skin, evaporative cooling, double facades.
: * ! &
. %& se "
, . G
!, !
; , .
: , ,$ , G, & , $
1
Professor of University Belgrade, permanent visiting professor at South-East University in Nang Jing in China,
editor-in-chief of Elsevier’s journal Energy&Buildings, President of Serbian HVAC Society.
29
1. INTRODUCTION
The world’s energy requirements show permanent growth. Between 1960 and 2000 the
energy needs increase was nearly 200%, with the average annual increase of 3,3%. The
main reasons of it were the population growth, as well as the economic development, where
the industrialized countries of the worlds (OECD) and the central Europe are accounted for
61% of the world’s total energy consumption.
The population growth is specially remarkable in developing countries, where it was
doubled from 1965 to 2000, with stagnation in developed countries, and in countries of
central and eastern Europe.
In such a situation, with energy crisis becoming more serious and critical every day,
because of the consequences of the emission of the green house gases and CFC and need
for their elimination, the global energy consumption has to be decreased and very seriously
controlled. There are constant efforts to reduce and stop the emission, unfortunately
unsuccessful.
The history of energy resources used since 1850 is presented on Figure 1, showing that
the dominating energy resource was the biomass, with present trends to stay constant. The
accent is put on the wind, solar, and geothermal energy, and hopefully on some new
solutions still to be found.
Fig. 1. History of energy resources used till present and prdiction for future
Sl. 1. ! & !
Knowing that there is the greatest energy demand in the building sector, engineers of
HVAC, together with architects and building specialists, have to build efficient energy
buildings that should be the first step to zero energy buildings. In respect to the fact that
wind, geothermal, and especially solar energy are becoming the mostly used energy
resources, new buildings have to be projected and constructed adopting the application of
these energy resources. That is why is important to study and simulate the new forms for
each location, each specific climatic condition, and used materials, as well as building
envelope’s thermal properties.
Following the EU directive, energy losses are limited in Germany through envelope,
regarding building’s geometry, allowing the highest values of heat losses by transmission
through 1sq.m of envelope, depending on the building’s geometry, which is expressed by
30
relation of building area and its volume A/V (Fig. 2.) taking in the consideration glass area
participation in the envelope. The upper curve presents the values for public buildings with
> 30% of windows participation in an envelope, and for apartment buildings the lower
curve with window’s area of <30%.
1.6
H (W/m2K)
1.4
1.2
a
1
b
0.8
0.6
0.4
0.2
A/V
0
0
0.2
0.4
0.6
0.8
1
1.2
Fig. 2 . The allowed heat losses through envelopes for different A/V
Slika 2. QU % % A/V
2. OLD FACADES
The old buildings’ thermal properties, based on buildings in Belgrade erected in the first
half of the 19th century, have very thick brick walls (0.9m) with an overall coefficient of
heat transfer 0.8 W/m2K, and relatively small windows participation of about U=4W/m2K.
The mean U factor of the building built in this period is approximately 1,9 W/m2K. Such
buildings were during the summer period nearly the entire day under the shadow of façade
construction and did not need summer cooling. The buildings built till 1918 were made of
similar material, but with very high rooms, even more than 4 m. For such buildings, it was
estimated that they had design heating capacity of 232 W/m2 or 50W/m3.
The houses erected between 1918 and 1942 were 3.5m high, and had 200W/m2 or
57W/m3 specific heat, what was caused by relatively thinner walls and bigger windows.
The thickness of brick walls was 0.56m and 0.38m, while windows had wooden frames,
and were single, or mostly double framed. Immediately after the second World War,
specific heating power was 185W/m2 or 60-70W/m3, decreasing later to 50-60W/m3.
Windows were wood framed, height of floors 2,4m in dwelling houses.
Today, when district heating systems are introduced in most cities, with new standards
caused by critical situation regarding the energy, needs for sustainability, environmental
protection and global warming, the energy demands of buildings must be much lower. The
specific heating power should be under 25 W/m3.
3. MODERN FACADES
The advances of High Tech in the building sector, intelligent buildings, air-conditioning
systems, new materials and building’s technologies, including glass technologies, have
31
opened great possibilities in realising the importance of and expressing architectural vision,
imagination, new ideas, but have also limiting energy aspects, ecological situation,
environment protection, sustainability or Green Building directions. The new architectural
era, with computer modelling and building simulation have enabled us to analyse a building
in it’s real life, predicting its dynamic behaviour and estimating it’s energy consumption,
indoor air quality, lighting, even in the projecting period, when building’s design is in it’s
initial phase.
3.1 GREEN BUILDING CONCEPT
As it is underlined in the ASHRAE Green Guide, the broad characteristics of good
building design, encompassing both the engineering and non engineering disciplines, might
be briefly outlined as follows: It meets the purpose and needs of the building’s
owners/managers and occupants, meets the requirements of health, safety and
environmental impact as prescribed and by codes and recommended by consensus
standards Achieves good indoor environment quality which in turn encompasses high
quality in the following dimensions: thermal comfort, indoor air quality, acoustical and
visual comfort. They are compatible with and respectful of the characteristics, history, and
culture of the closest surroundings, and create the intended emotional impact on the
building’s occupants and beholders.
A green design proponent might be add to the above list of the items concerning energy
conservation, environmental impact, low impact emissions, and waste disposal – those very
characteristics that are incorporated in the foregoing definition of green design. While this
may be true someday, we are not there yet. There are plenty of designs being built today in
our region that exhibit few or no green design characteristics. Many of these are still
characterized as well-designed buildings - largely because the generally accepted
characteristics of good design do not (at least do not yet) incorporate those of green design.
In summary, there are a lot of well designed buildings, but not exactly with all green
buildings characteristics.
The green building concept towards building envelope is based on the fact that
envelopes are protecting occupants from the outside weather’s influence, and when it is
feasible, letting its good aspects in. Its design is a key factor that defines how well a
building and its occupants perform. Access to outdoor views and natural light have positive
psychological and physiological effects upon the building’s occupants. Analysis of the
building envelope utilizing day-lighting simulations programs can help an optimization of
building geometry, define glazing characteristics and provide information needed in
performing an energy analysis of the facility (ASHRAE Green Guide).
4. BUILDING’S ENVELOPES AS HUMAN SKIN
From a “static mass” the architecture produces “adaptive” building structure, with an
envelope as a skin moderating heat flows. A building presents a fully integrated,
intelligent adaptable structure, both in terms of the used materials, their fabric, locations,
information technologies and all building operation systems. With the central control
system, building’s intelligence and with defaulted values concerning energy systems,
32
buildings are getting characteristic of a human body, at least in regard to the reaction to
thermal conditions - but in which degree? .
In a cold environment, a human body reacts by lowering blood an additional protective
cover circulation toward the skin surface by the blood vessels tightening, thus conserving
body’s heat and controlling it’s heat losses. That is an instinctive reaction, default attribute,
without any conscious possibility to influence it. But a man can improve the condition by
dressings, adding thus over his body, above his skin, and acquiring thus better insulation.
This human way of additional protection can be applied on buildings. Why can’t they be
covered with movable covers, in winter to protect them from the wind and low outside
temperature, and in summer from the sun, in order to reduce heat gains from the solar
radiation, and so reduce the necessary energy for its air conditioning. Maybe a kind of
automatic lowered shades? Or covering a building with a second façade?
There are buildings today with such doubled protection, mostly static, like a “pullover”
or a “winter coat” on a man. Those are the double-facade buildings – additional cover is
added to the main façade, usually made of glass. A double façade in the summer could be
protection from the sun.
A winter coat or a pullover is changed by a light material blouse of the bigger size,
roomy over the body, so that the air may circulate next to the body and cool it, enabling the
body to transfer a heat out of a body.
In the double façade, various forms of shades, curtains, or similar devices, are put in the
inter-space for the sun-protection, though a passage must be provided for the outside air
circulation, so that the inter-space temperatures may be as close as possible, if not identical,
with the outside temperature.
From the constructional point of view, a double-façade outer envelope may be
continuously extended by covering the total height of a building, or discontinued with
breaks at each floor level. Disregarding the height, the inter-space is opened both at the
bottom and at the top, thus providing the outdoor air circulation in the summer, when the
temperature of inter-space should be as low as possible, in principle equal to the outside
temperature. Or the openings may be closed, which is the case during the winter, in order
to trap the air in the inter-space, which will act as insulation layer, with the temperature
above the outside temperature, producing lower heat losses of a building (Fig. 3.)
Figure 3: Different double-facade constructions: continues (left), discontinued (right)
3 W
% $: (
), (o).
33
Figure 4-a The temperatures during the sunny day in January
Slika 4 –a T % Figure 4-a shows the course of temperatures in the inter-space on an average sunny day
in January, for the South-turned double façade, in Belgrade (45NL). And the figure 4-b the
cavity temperature in July summer day
Figure 4-b Yhe cavity temperature in July summer day
4,Y & % % .
It is evident that during the heating period, cavity temperature of a building with a
double-façade is above the outside one, and will have lower heat losses and decreased
needs for heating. In the summer, during the cooling period, the temperature between the
two facades could be equal or very close to the outside temperature, and additionally can
have smaller heat gains from solar radiation, depending on glass properties regarding solar
transmittance. As a consequence, heat gains will not be above the gains of a single façade
buildings. During the summer, one uses his conscious reactions for the additional protection
of his body. He may protect himself by hats, or make a shade using a parasol. Similar
protection is used in buildings by various curtains, shades, and Venetian blinds on
34
windows, while today copies of caps and parasols are constructed, as immovable elements
over roofs, or movable, depending on the sun temporary location. All those protections may
be also used on facades.
Examples of building protection from the solar radiation are numerous, especially in the
regions of tropical conditions. An illustrative example is a building designed by the English
architect Grindshaw in Seville, built for the EXPO 1992. Movable protection on the roof is
put according to the momentary sun location, controlled by “building’s intelligence” (Fig. 5).
5. BUILDING’S EVAPORATIVE COOLING
During the summer, heat enters into buildings from the outside through hot air and
solar radiation, but there are also heat gains inside (lighting, domestic hot water systems,
people, electric appliances and devices). Such heat must be eliminated so that the inside
temperature would not be above the planned one, for example 22°C. In conditions when the
outside temperature is above the human body temperature, the only way for a man to
eliminate his inner heat is by perspiration, through evaporation. A building cannot sweat, so
that it has to be cooled mechanically by air conditioning system.
But can we use the human body sweat evaporation effect on buildings? There are
buildings for which it may be said that they use the effect of water evaporation for their
cooling, as in the case of a man’s sweating It is an old practice to put water sprinklers on
the roofs of large surfaces, and use them at high outside temperatures, when the sun radiates
intensively. The roof is so moistened, and because of the heat absorbed by the outer roof
surface and the air layer next to it, water evaporation occurs, and the roof temperature is
lowered. Pools are also installed on roofs of multi-storey residential and business buildings.
Figure 5. Solar “hats” on the roof of the British pavilion at EXPO 1992.
5 .#
“” U na EXPO
1992.
35
The idea to let the water flow down a building façade, an imitation of human sweating,
is an option in a modern architecture, in case of glass facades as frequently used elements in
contemporary buildings, probably more for visual effects, but also as a way to get some
kind natural reaction. Flowers, grass, but also water as an especially important element in
some cultures become a repeatedly used elements in the modern architectural expression .most often inside the large halls, restaurants, atriums.
Figure 6. The example of a building with water above the vertical façade.
6. Z $
There are several buildings around the world with water flowing down the glass vertical
or the inclined facade. One of such examples is again the building of the British pavilion in
Seville (Figure 6.). Such façade has smaller coefficient of the solar radiation transmission,
and with the water layer, due to its evaporation, the temperature next to the façade is
significantly lower than the outside one, reducing so the heat gain from the solar radiation,
as well as from temperature difference between the outside and inside.
760
740
720
700
680
660
640
620
600
580
a
b
c
d
560
14
:09
13
:55
13
:40
13
:26
13
:12
12
:57
12
:43
12
:28
12
:14
12
:00
11
:45
11
:31
11
:16
11
:02
10
:48
10
:33
10
:19
10
:04
540
the inside.
Figure 7. Measurements results of solar radiation effects on dry and wet glass under the
angle of 45 deg.
7. W
$ % G 45 .
36
The measurements provided above the glass with an angle of 45 degrees are presented
on the Figure 7. showing the outside temperature, the temperature of dry and wet glass,
solar radiation intensity through dry and wet glass. Uniform water flow above glass façade
has a lower solar radiation transmittance for 10-15% than an ordinary dry glass. And when
the water flow is turbulent and disturbed, even 25-30%, depending on water quantity.
The temperature of a glass under water flow was about 10C lower than the glass without
a water above it. The temperature difference on a water inlet and outlet was very small, as
the distance between them was 1.5m only.
On the figure 8. Is the model of glass above which is lowing water. The thermo-vision
made photo is showing temperature differences in a water film. The values of these
temperatures are separately given for two horizontal sections and one vertical, with the
temperatures of the upper and down horizontal sections as well as through vertical
section. The temperature increase was measured 1,5 C.
coating is
Water cooling system with application of super-hydrophilicity of Ti02
developed Japan and described in the paper written by Jiang He and Akira Hoyano
(Energy&Buildings 40/ 2008). Water is sprinkled ( Figure 10.) at the top of a wall or roof
flowing down the wall. The water is collected in the bottom into water reservoir. This
water is pumped up also with collected rainwater and reused for sprinkling the entire
cycles. Such technology produces the very thin water layer and water saving and also the
uniform distribution of water, as well as water saving what is important in coming future
concerning needs of water
Fig. 8. The model of glass façade wall above which is flowing thin layer of water
8. [
$ 37
Fig.9.. Thermo vision camera picture of the temperature field in the water film and
temperatures along the horizontal and vertical sections above the glass pane
9. U U .
•
.
Fig. 10. The view on the new cooling system for buildings
10..
& 38
CONCLUSION
Building’s mechanism of thermal behaviour is in many details copy of a human body
reaction. By his unconscious, instinctive behaviour, with the defaulted characteristics, a
man reduces or increases heat loss into the outer environment, through his blood circulation
regulation toward the skin as a body’s outer envelope. Besides, using their mind, humans
dress themselves into clothes with better insulation characteristics. Buildings are protected
with insulation which remains unchanged during both the summer and the winter season. It
is an advantage for a building, as, opposite to a man, a building uses cooling devices to
reduce its temperature. However energy is necessary in such cases, which should be
avoided in the present situation, regarding the energy crisis. Perspiration, the only possible
effect of a human body cooling in high temperature areas has not been used largely in
buildings. A few buildings around the world show it is a possible option. Unfortunately, the
impression is that building cooling was not the primary task of the water flow on facades,
although it was one of the aims when designing those buildings. The task remains to
expand it, but before each such building design, exact calculations, simulations,
optimisation should be done, resulting in total energy balance, taking into account water
and energy balance.
The building envelopes are the main factor of building energy efficiency, as they
represent a skin of a building’s body. They should react as real skin as much as possible ,
defending interior from preheating, conserving it from heat losses in the heating season.
That could be achieved relatively easy, but the architects and all factors influencing
building design have to be working together in a manner of integral designing.
The energy needs analyze should be implemented in the building technical
documentation, as a proof that the building will be a green one - at least from the point of
view of energy efficiency and energy conservation. Computer programs that can be easily
and quickly used on all locations have defined a meteorological year. For other locations,
there are another methods, based on degrees-days, or formulas given in some studies and
recommended, as in Germany. The effect of water flowing above a glass facades is in
lowering the temperature of glass, and in reduced solar radiation transmittance.
39
REFERENCES
1.
2.
3.
4.
5.
6.
7.
8.
9.
Grumman D, Green Guide, American Society of Heating, refrigeration and Airconditioning, ASHRAE, Atlanta, USA, 2002
Todorovic B., Tintor M. The latest facades in Belgrade, MIT-Harvard Faculties
conference, Boston, CD edition of Building Envelope Organization, 2002,
German standards, Verodnung ueber einen energiesparenden Waerme schutz bei
Geauden, Bundesgesetzblatt. 2001
Todorovic B. Cvjetkovic T. 2001. Classical and Double Building Facades-Energy
Needs for Heating and Cooling, Proceedings, CLIMA 2000, REHVA, Naples,
2000.,
Todorovic B. Past, present and future buildings envelopes-human body thermal
behaviour as the final goal, Energy for buildings, Proceedings of 6th International
Conference, Vilnius. 2004
Todorovic B Can a building mimic the thermal behaviour of a human body?
Presentation at the ASHRAE Chapter in Singapore. 2005
Todorovic B. Building Low energy cooling and advanced ventilation technologies
in the 21st century. 2nd PALENC conference, Greece, 2007.
Jiamg He, Akira Hoyano, A numerical simulation method for analysing the
thermal improvement effect of super-hydrophilic photocatalystic building
surfaces .Energy&Buildings, 40, 2008.
Todorovic B. Double skin facades : Types of constructions, air circulation between
two facades in winter and summer, basis for estimation of heating and cooling
load, ASHRAE winter meeting, Chicago, Published on line, ASHRAE , 2009.
10.
40
[ "!!1, Q \!2
!
" : $
!
, & , &
. "
" , . ' .
: , U , , , ABILITIES OF USAGE OF RECYCLING MATERIALS AS
AGGREGATE TO CONCRETE IN CONTEMPORARY CIVIL
ENGINEERING
Summary: Contemporary construction practice, with respect to the sustained
developement concept, increasingly deals with the problems of recycling of materials. This
state-of-the-art paper deals with the differences in production technology of concrete made
with recycled aggregate. The properties of recycled aggregate, "old" concrete, crushed brick
and recycled rubber, as a component for new concrete production, are being analyzed in the
first part of the paper as well as its specifics and distinctions in comparison to natural
aggregate. At the end, general guidelines for recycled aggregate concrete mix design are
given.
Key words: recycled aggregate, crushed brick, recycled rubber, concrete technology,
concrete mix design
1
2
# G 0"", . &. !., 2!
*
‚
,
# # 3
", . &. ., , 2!
*
‚
, ‚
0
73, ‚
, dragica@imk.grf.bg.ac.rs
41
1, ƒ !
. ƒ
"
, , "
. G"
&
. # , "& " , "
"
, "
, & " . & , , & . & , . „ !
;
, , . ƒ & "
, .
ƒ
[1] !
"
(35%), (20%), (12%), (10%) (
. 1).
# 12%
ƒ 8%
‰
3%
12%
ƒ
10%
‚
20%
35%
1. Z
U & Fig 1. Persentage of recycled materials
*
", !
& .
†
, "
, (
,
, , ), , !
(
, , ), .
‡ ''
'' ,
. '
, (
, , ), !
&
. % "3R" (Reduce, Recycle, Renewable) . ˆ 42
!
(Reduce), (Recycle) - (Renewable resource).
!
( Construction and Demolition Waste – "
& C&D Wast)
-
, . ‡ C&D , , & !
, &
&
[2]. ' , Š
‡, , 37000 C&D , 4 , „ . [3].
'
" ""
, & , . , , "
, , !
() .
„!
, , , . *
, & (
,
, , &) (, ) ,
"
!
. , "
, . , , , , .
„
" !
& &
/ , , , , . 0 80% !
,
" & , .
‹
" (
) – ,
& "
&
, "
, . – .
2!
, " , . „, , 9 . ƒ&" &, " . % – &
" , &
. ƒ
&
; 55-65% . $
& 25-30% , , 10% . Œ 43
200 , .
„ , , &
, $ "
" 28000 , 7000 " .  "„" ƒ ,
. . 75% . *
& , () &.
ƒ
* 199/31 EC 2003. , 2006. .
2. ! *
(
) . „ , , , , () , & ,
, , .
'
, , , :
- "
,
- ,
- " ,
- " & ,
- " ,
- - .
(
) 2 [1, 20].
2. Fig 2. Apparance of recycled aggregate
‡
!
"
.
44
ƒ –
. *
"
, :
- () - " - [8].
*
"
, ". ƒ "
. "
&
&
() " .
G
, [2, 3, 4]. ‹& " – ; "" , [8, 9]. , . „
, . . , "
! . % "
, (%
. [10]).
‡
, , .
& , . „
" "
" , "
, .
‡ & , ; [8].
, "
.
'
[16] & , (Na2SO4). „ &
, ‘ 7%, , ‘ 10% (
1). * , " !
( , , . - 2).
45
1. Tab 1. Classes of aggregates made from recycled concrete
‹ ‡ *
(%)
– Na2SO4 (%)
C1
C2
C3
d3 d3
d5
d7
F1
F2
d5
d 10
d 12 d 40
d 10
d 12
-
-
2. Tab 2. Classes of aggregates made from recycled concrete and their application in civil
engeenering
‰"
‡
$
ƒ
&
(MPa)
G 0 : CI
C1
18 – 24
, , '
: ,
16 – 18 , , CII
C2
F1
, .
CIII
C3
F2
< 16
„, #
BI
C1
t 18
„
, ,
BII
C2
t 18
„
, , BIII
C2
F1
t 18
ƒ
, BIV
C3
F2
t 18
3. ! $ , , :
- – - . - () (interface) ! .
ƒ
! (
, ) , [12].
$ . '
, (Recycled
Aggregate Concrete - RAC) , ! ( ) ! 46
"" ( ). &
3 [2].
3. Z
() Fig3. Interfaces between recycled aggregate in concrete
% & , (RAC), " .
– " , . , , . ‡
, (bleeding), , . ' & -
", " !
" [2].
0 [4] 20-40% .
2
, , , !
(
"
20-30% ). , &
.
# " , , &
, & , " RA.
47
4. ! ! * "
, , , . * , , , – , .
', , , , ’120. '
, , , , , . ƒ
, . &
(Normal Mixing Approach - "
NMA). 4. 4.
)
)
4. () (NMA), () $ (TSMA)
Fig 4. (a) Normal Mixing Approach (NMA), (b) Two Stage Mixing Approach (TSMA)
# , & W. Y. Tam . [2], . % &
(Two Stage Mixing Approach - "
TSMA).
ƒ , , " ( 4): (
) "" & 60s. * ’60s. ' , 48
30s. ' & & .
ƒ TSMA &
NMA. * , , , &
, &
, " "
" (
). *
, .
ƒ
" " RAC , [4].
, RAC (NMA), ( ). $
. 5.
5. ZU $
(TSMA)
Fig5. Improvement of recycled aggregate structure by TSMA
0 , . " PZ,
&
( " ).
&
( ), " " , .
49
# ( 2%) , , .
‚
" " &
. (TSMA) (NMA) , . " , "
, " , RAC 10% 30%, &
[2].
% , &
&
. '
, "
/ &
, (
) . G
!, "
,
& . „!
, !
"
" [3].
‰" "
, , & .
$
"
"
. ‚
"
, & [3].
Œ & RAC , , , , & . $ , RAC , . * ,
"
, , . „ "
" , "
, , , . 0 , , "
, "
; "
" ("bleeding"), "
[3]. '
[19]
& 80% &
, .
' , &
&
30 , , ! [19].
#
, , " ( ) 50
( ). ‹ .
ƒ RAC &
, . „ , , - , , . ƒ , . .
(
) &
– "
. '
, " 30 MPa " ! 5 6 MPa. . „ , , "
"
5 16 %, "
4 25 %, . "
"
, . - [24,25].
' [22,23,26] &
&
. ƒ , &
, . * &
, , , !
.
* – "; , " , " . !
&.
#
(“ < 2000 kg/m3) !
.
Œ , , .
% , , , " . '
, " , & : , , & " . ‡ !
: " , , & , , "
,
51
. 2
, !
, , &
, , .
$ , , & ,
!
, !
, , ,
, , , , , .
5. #$%&# '$#* % +$;<=>;?%@ '%'>%?% J>;#% #% J%
$*=&$%#;[ %[$>%>%
ƒ
, . $
[19] ‚
[27], . ƒ , "
, .
ƒ
"
&
[19] [27], . . ƒ "
; "
30 . „
" , , .
0 G
[19], , !
30
. 0 & 30 .
‡ ! &
.
, , &
"
" .
* , ‹
‚, 16-20 mm. $ .
!
" 10 l/m3 , . % "
", . Œ
, 52
(CEM I – CEM V) .
6. . '
, &
, , .
ƒ
&
, , "
" !
, " . ' & &
! – , – .
ƒ , , , , . – (
, , , " .) "
" &. , & &
, ""
.
. $ &
(!
&
, , , ) , ! . ' "
, . , " !
.
& , &
.
,
"
. 0 " , , & , .
ƒ
"
. ' "
, ! &, &
, "
. ƒ , & .
‡ " &
, "
!
, ? &
" , , , 53
, . ‚ ''! "'' (polluter pays principle), . 2
, !
, . *!
" . ‡ &
. ' , 1986. &
. # 50 &
.
* & G $
„-36017 : "&
" , & , &
!
$ ".
7. [1]
[2]
[3]
[4]
[5]
[6]
[7]
Jevti”, D., Marinkovi”, S., Zaki”, D., Savi”, A.: Primena recikliranog betona – korak ka
održivom razvoju u gra{evinarstvu, Me{unarodni nau•ni skup "Održivi prostorni razvoj
gradova Srbije", Beograd, decembar 2007. godine, Zbornik radova, str. 150-161., ISBN
978-86-80329-53-6,
Vivian W.Y. Tam, C.M. Tam: Diversifying two-stage mixing approach (TSMA) for
recycled aggregate concrete: TSMAs and TSMAsc, Construction and Building
Materials 22 (2008) 2068–2077,
C.S. Poon, Z.H. Shui, L. Lam, H. Fok, S.C. Kou: Influence of moisture states of
natural and recycled aggregates on the slump and compressive strength of concrete,
Cement and Concrete Research 34 (2004) 31–36,
Vivian W.Y. Tam, X.F. Gao, C.M. Tam: Microstructural analysis of recycled
aggregate concrete produced from two-stage mixing approach, Cement and Concrete
Research 35 (2005) 1195– 1203.,
M. Kikuchi, T. Mukai, H. Kozoumi: Properties of concrete products containing
recycled aggregate, Demolition and Reuse of Concrete and Masonry: Reuse of
Demolition Waste, Chapman and Hall, London, 1988, pp. 595-604.,
R. S. Ravindrarajah, C. T. Tam: Properties of Concrete Made With crushed Concrete
as Coarse Aggregate, Magazine of Concrete Research 37 (130) March 1985.,
T. C. Hansen, H. Narud: Strength of recycled concrete made from crushed concrete
coarse aggregate, Concrete International-Design and Construction 5 (1) pp. 79-83.,
January 1983.,
54
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
A.K. Padmini, K. Ramamurthy, M.S. Mathews: Influence of parent concrete on the
properties of recycled aggregate concrete, Construction and Building Materials 23
(2009) 829–836,
Fung, W.K. (2005), The Use of Recycled Concrete in Construction, Ph.D.
dissertation, University of Hong Kong, pp. 30-55.
Roumiana Zaharieva, Francois Buyle-Bodin, Frederic Skoczylas, Eric Wirquin:
Assessment of the surface permeation properties of recycled aggregate concrete,
Cement & Concrete Composites 25 (2003) 223–232,
Vivian W.Y. Tam: Recycled aggregate from concrete waste for higher grades of
concrete construction, Ph.D. dissertation, City University of Hong Kong, June 2005.,
Jevti” Dragica: Svojstva svežeg i o•vrslog betona u funkciji termohigrometrijskih
parametara sredine, Monografija, Gra{evinski fakultet Univerziteta u Beogradu,
1996.,
Jiusu Li, Hanning Xiao, Yong Zhou: Influence of coating recycled aggregate surface
with pozzolanic powder on properties of recycled aggregate concrete, Construction
and Building Materials 23 (2009) 1287–1291,
Vivian W.Y. Tam, C.M. Tam, K.N. Le: Removal of cement mortar remains from
recycled aggregate using pre-soaking approaches, Resources, Conservation and
Recycling 50 (2007) 82–101,
S. Nagataki, A. Gokce, T. Saeki, M. Hisada: Assessment of recycling process
induced damage sensitivity of recycled concrete aggregates, Cement and Concrete
Research 34 (2004) 965–971,
F. Tomosawa, T. Noguchi, New technology for the recycling of concrete—Japanese
experience, Concrete Technology for a Sustainable Development in the 21st century,
E & FN Spon, London, 2000, pp. 274–287.,
Marta Sánchez de Juan, Pilar Alaejos Gutiérrez : Study on the influence of attached
mortar content on the properties of recycled concrete aggregate, Construction and
Building Materials 23 (2009) 872–877
Vivian W.Y. Tam, C.M. Tam, Y. Wang: Optimization on proportion for recycled
aggregate in concrete using two-stage mixing approach, Construction and Building
Materials 21 (2007) 1928–1939
Radonjanin Vlastimir, Malešev Mirjana: Beton sa agregatom od recikliranog betona,
sastav, svojstva i primena, Gra{evinski kalendar 2008., Savez gra{evinskih inženjera
i tehni•ara Srbije, Vol. 40, Decembar 2005, str. 48-91.,
D. Jevti”, D. Zaki”, A. Savi”: "Specifi•nosti tehnologije spravljanja betona na bazi
recikliranog agregata", Materijali i konstrukcije 1, 2009, str. 52-62, pregledni rad,
UDK: 666.972.12=861
D. Jevti”, D. Zaki”, A. Savi”, A. Radevi”: "Physical and mechanical properties of
mortar and concrete made with the addition of recycled rubber", II Me{unarodni
kongres: "Inženjerstvo, ekologija i materijali u procesnoj industriji, mart 2011,
Jahorina
F. Roos, K. Zilch: "Verification of the dimensioning values for concrete with
recycled concrete aggregates", Munchen, 1998.
M. Muravljov, D. Jevti”: "Gra{evinski materijali 2", Akademska misao 2003.
D. Jevti”, D. Zaki”, Lj. Pavlovi”: "Testing of different composite materials based on
recycled brick aggregate", 6th International Conference on the Environmental and
Technical Implications of Construction with Alternative Materials Science and
55
Engineering of Recycling for Environmental Protection – WASCON 2006, Belgrade,
May 30 – June 2, 2006, p. 409-415, ISBN 86-908815-0-6.
[25] D. Jevti”, D. Zaki”, J. Marki”evi”, Lj. Pavlovi”, A. Terzi”: "Mogu”nost spravljanja i
primene betona na bazi recikliranog opekarskog loma", I Simpozijum o recikliranim
tehnologijama i održivom razvoju sa me{unarodnim u•eš”em, Soko Banja,
novembar 2006., Zbornik radova, str. 136-141, ISBN 86-80987-45-X
[26] D. Jevti”, D. Zaki”, A. Savi”, A. Radevi”: "Mogu”nost upotrebe reciklirane gume
kao agregata u kompozitima tipa betona", YUCORR XIII, Tara, april 2011.
[27] V. Radonjanin, M. Malešev, I. Luki”, V. Milovanovi”: "Polimer-betonski kompoziti
na bazi recikliranog agregata", —asopis Materijali konstrukcije br. 1/2009, str. 91107
56
Q `U!1
! : ! ! : ‡ , & & , :
20‹„0ˆ': ƒ# ƒ„$‡G: ‡ &
.
K : , NON-STANDARD SEWAGE SYSTEMS: VACUUM AND PRESSURE
SEWAGE
Summary: Sewage systems, from the standpoint of the regime of flow channel content
in the pipes, are divided into: - Gravity: classic sewage systems - PRESSURE: sewage
systems under pressure and vacuum sewage systems and sewer systems under the pressure
resulting from the need to overcome specific technical problems and the need for
economical and rational solutions to channel the settlement.
Key words: vacuum sewerage, sewage under pressure
1
2!
‚
57
1. ! ‹ 1860.
.
ƒ
+
0
-Š, $
‚, „- . Œ
!, 3
+
, 1950.
Œ
.
$
:
+;>+\#; $%?%# >$#, ?';= #?; +;]#^ ?;]%,
& $%_# \'+;#% +%];?%,
#'>%J&#; >&;,
?&= =;`*<#> #$%?#;$#;'>
, ,
;[\z[ %[{@% =%#%&'= '%]$_%<,
2 :
[$%?>%*;# =\z# +$=|\}*, (
"
)
;
+$=|\}# <]#* '% +#\%>'= '`;#'= ?#>&%, "(&
5 "
), , , , .$ , " , ;
?%=\\'= [&%?# =;&=>;$, ( ƒ‹ˆ ƒ ) & 0.60 & &
;
'%J$#% '>%#*% & . , , , "
.
$ .
58
1. 1.
2. Q 1.1. $#*+ `\#=*;#'%@% ''>%
*, "
:
*
, , " !
.
ƒ !
, . 59
/
, .ƒ , /
, "
" " , & , !
.
/
. „ & , & 3 30 . ‹
&
& . $
&
"
,
, (/). *
!
, .ƒ
, .
‹ (
:=6:1)
"
4,56,5 /.‹ "
& , , (
). ƒ , ,
&" , .
ƒ "
, , .' &
, .„
,
. ‹
, ! .' ,
/ .
‡ , ( ), / &
, "
.
* , , , & , , (
/) .
ˆ
. ƒ
, , , .
‡
,
.
60
1.2. ;?;|#;'> ''>% +;] ?%=\\;
'
:
&%?# =%#%& ;[\ ]% +$%> +;?$~#\ >$#%, ( &
), &
"
!
, . ˆ
+;&;_# #%] '+;] #?;% >$#%.
$_ '=;+ '% ''&%=~;'' ^%#%*<;, !
!
.
&='J&#; +;'>%?|%@ *?;?;]%, *?# %>$<%& #< =$\> +% < %@%
;[\z#;'> +\*%@% *?.
% *$+#^ '>%#*% ]\_ [&%?#;[ =;&=>;$%, '?% &=>$}#% ;+$% &
#% <]#; '>\ "
, . ;[\z#;'> >$%#'+;$>% ?;] ''\J$];'', & . %&% +;>$;~@% &=>$}# #$[< (0.2-1 w/³
).
&= ]\_# [$%#% =%#%&%*< - 4 &
. % +$;+>$z@% =;&=>;$'=^ [$%#% $_, !
& .
% ~%^>;?% $?;#^ ;=%#% - ,
.‚
, &
, & .$"
.$ "
, , .'
" "
.
$>=%&# $?;# *? #% ''>\, & 100 " " !
" , !
.
%& +$}#* *?, , & (4,5-6/) , . ‡ Ø200 Ø100 , Ø80 Ø65 . „
'%@\< =;~>%@ *?;?;]% +;
]\_#; >$\.
%=;z% +$&%'=% +$=; +$+$=% - &
, .
% #`&>$%*< \ ''>, 61
.%" , " .
&
"
"
.
% ='`&>$%*< ''>%, , "
.$
.
;[\z#;'> +;'>%?|%@% ?;];?;]#^ ?%=\\'=^ *?;?;]% \ '> $;? - , .
% +;<%? ^]$%\&}=;[ \]%$% - /
" .
%[%]<\<\z, J #+;_|#^ $'% - &, , &
&.'
& , .
, & 30-45% .
1.3. +' ''>%
‹ ! " .
$%?>%*;# =\z# +$=|\}*, ", .
‹& , -
.
$=|\}# <]#* '% +#\%>'= '`;#'= ?#>&%, , ’1.80 , , ,
() .„ () " , " .
&
&
5, !
3,4,5 " " " .* " .
* , !
, ()
, " .* " " , &
.
62
,
, -
,
. $ , " (
), .
%=\\'= [&%?# =;&=>;$ !
.* !
, , & "
. & 0,60 .$&
& .
ˆ
Ø110 Ø250. ƒ
1,40.
* 0,2% 0,7% " 0.8.
„
& & .
ƒ . ƒ
2 45
. $& "
.% Ø110 300, Ø450.% 50, 150, . 6, x. 150. ƒ
!
! .
$
!
, .
ƒ
!
100 .
%=\\'=% '%J$#% (*$+#%) '>%#*% . $ .
: (
),
& , (
), ( &) !, (
- ).*!
& &
.0 .
‹
. ƒ
!
, .
63
* ƒ‹ˆ- ƒ.
1. ! " ! Nazivni
pre•nik cevi
DN
110
125
160
200
225
300
Unutrašnji
pre•nik
mm
96
110
141
176
198
277
Preporu•eni
protok
l/s
2.0
2.9
5.5
9.8
13.4
32.4
‹ -
(
2) &
. .
2.
'& 0-900
5:1
›900-1500
›1500-2100
›2100-3000
›3000-3600
6:1
7:1
8:1
9:1
›3600
11:1
Q=3.6×0×Qׇ×G (³/)
0= .
Q-
‡-
‡=3
G- G=1,33
64
! ‡
.
‡ (‹) 3 .
‹=3×60×Q
* ‹=3׋
! ˆ ! :
„=[(2/3)׋+(‹-‹)]/Q (.)
‹-
(184,5³)
‹- (³)
‹- (³)
Q-
3 { -
4. Y 65
– aprox. 150 m
0.2% %]
$ >}@%
„'>$%'> +$;`&"
%=\'= '%J$# ?;] #% $%?#; >$#\
5. ZG $
3"(76.2 )-
T
EB3
mm
• EN1091 • (SLW 60)
3“-
• 6. { 2. ! * " " .* . "
# 50 . (ƒ ). "
&
. $
&.
"
"
.
ƒ" "
" .
' 7 & .
66
Pressure pipe 5
Calculation of Hgeo
incl. air valve
3,0
8,0
5,0
4,0
1,0
+/-0,0
150m
220m
300m
400m
250m
7. |G $
8 U
3. # &
-
. (
!
) & !
.
1
G. G
":‡
, ƒ
$ ( ) 1998.
67
[
Z1
‚ : & , & ( &
- , ), (
, , ), , (
-, - ). $ &
"
. ‡ ", "
.
: $-, - ECOLOGICALLY SUSTAINABLE ARCHITECTURE IN THEORY
AND PRACTICE
Summary: Ecologically sustainable architecture in theoretical analyses signifies an
integral approach in design, in which are equally important the context (tradition and
surroundings – all the elements of location, microclimate), the building design (compact
construction, orientation, thermal zoning of the foundation etc), the comfort, applied
materials and energy consumption (energy efficient -, low-energy- or passive architecture).
All these elements that imply an ecologically sustainable architecture shall be briefly
analyzed and discussed. How this is carried out in practice, and what are the obstacles and
the possibilities, are the questions that shall be dealt with in this work.
Key words: energy efficient-, low-energy- or passive architecture
1
G ƒ, . &.. , $
, ‚
,
‚. 0
73/II, $ milap@iaus.ac.rs
& „ 36035 Z, , U – & , G $
69
1 $
, 40 – 50%. '
" . %" ! "
, , " . $ , , ‡ , " "
" & , "
"
. „ "
2000. 2050. . * , " , , . , . $
"
, 40-45%.
*
, . ƒ
, , " . G" , , & ,
, , , ", .
$
( ) , , , ! , " , " .
&
. ‹
& , " (CO2) . ™ " . % (2$‚) , & . . G
!, "
2$‚, %
" . 2$‚ 80 % CO2 .
‡"
(, ) !
, , , ,
. "
CO2 . 2$‚ " "
"
. ‡
CO2 280 . „ , G + 2005. , 381 [1].
% 50 , 40 % "
"
, &
. $
!
CO2 . %
0.5°C 70
. ƒ
"
%
" 1-3.5°C 2100. . „ &
10.000 . %
"
. „ "
"
. „!
"
, , . % "
, "
, .
ƒ 78 % . , .
* " . G ( , , 78 % ), " .
' " "
, "
" , , & .
!
ƒ ‡.
$
& * 2007.
"
‡ ƒ ,
2002. . 2007. :
2$‚ * 20% 2020. ;
20% 2020. ;
"
" 20% 2020. ;
"
10% 2020. .
ƒ
, " ! . $
" , " " . . ƒ
, 2$‚ "
.
‚" . , , 3 .
2. – * $
43%. * ,
, "
". ƒ
" , ‡, , 50 . ƒ
"
71
, , !
, . $
, , , &
" . $ " "
&
.
ƒ
"
:
, & ;
"
;
"
;
;
"
&;
;
.
' . '
2-3 " . ƒ 180-250 kWh/m2 .,
50% " . ƒ , , !
. ‡
, - .
G "
,
:
;
, " ;
, , (
''
'');
;
" ! , , .;
"
", , m2.
"
&
$ . ƒ "
, $ *. *
* .
:
(
, ,
, ), ).
72
2. ! ‚ & ", , , , , , , , &
!
. "
&
, "
, &
, &
.
!
!
, , , , .
2.1 ƒ
"
, "
, "
, C2 "
, , . , !
, , , , . " " & . , , , !
. , " .
„
, & . ‡ " &
, &
. „
& " .
ˆ , , ! " "
. "
" .
' " ! ,
, &
,
" [2].
73
2.2 !:
, !, ‚
ƒ "
" &
. ‹
" , "
, &
. ‹& &
. „ , , ,
, , , , [3].
'
&
&
. , & , , , &
. „!
&
" , [4].
$ , & &
. ƒ
,
, &
,
, , &
. ‡ &, "
& , , & . " " ", .
2.3 ‚ " , ( , , "
, !
, ) [5].
!
. „ &
, , . .
# , , " . ‹ & " ! .
10% !
.
‡ " "
.
74
# " !
. .
'
, !
:
(, ,
),
,
, ,
,
,
"
,
" / .
2.3.1
$<#>%*<%
"
.
"
"
, "
. $ , .
!
. * .
% &
, &, , , , &
, [6].
2.3.2
;+%=>#% [$%]@%
3
& .
% [7]:
, " " , ;
. ƒ !
& . ƒ & !
. „
!
&
;
!
. $
" , "
!
. ‡ " & 75
2.3.3
& ;
, , , ,
, , "
!
.
$}=; ;#$%@
„
() & . ‹
&
, "
, " .
'
"
(
) . '
"
, , "
,
.
(, ).
'
.
„
.
2.3.4
;`;$
‡ , !
, .
* "
.
ƒ
&
, !
(
, , , ) &
, " .
ƒ :
(
);
(
);
(
);
() .
ƒ
!
"
,
"
, , ! , .
2.3.5
$$;]#% ?#>&%*<% (+%'?#;) ^&%{@ [$%]
' " : ,
, , (
, "
, ), , .
* " , "
-
!. † "
,
76
" .
% !
, & !
&
. ƒ" . ' . %" , "
.
. ƒ !
. ƒ &
.
2.3.6
#$[>'= `=%'#%, #'=; #$[>'=% +%'?#% =\z%
ƒ . '
: !
, , "
, (
)
, , , "
, ! , , . ‹
&
.
# " , :
; & & "
;
, , ;
;
() ;
;
;
() !
;
;
- , .
# " :
.
1. # (). $ %&
' " '& ( &) ' 70 kWh/m2 %&.
( " C)
% 0,35 - 0,4 W/m2K
ƒ
1,4 - 1,7 W/m2K
„ ()
0,3 - 0,4 W/m2K
ƒ ( 0,3 - 0,4 W/m2K)
77
2. . $ %& ' " '&
( &) ' 50 kWh/m2 %&. ( " B)
% 0,25 W/m2K
ƒ
1,1 – 1,4 W/m2K
„ ()
0,3 W/m2K
ƒ ( )
0,3 W/m2K
3. ! . $ %& ' " '& (
&) ' 15 kWh/m2 %&. ( " *+)
% 0,10 - 0,15 W/m2K
ƒ
0,8 - 1,1 W/m2K
„ ()
0,2 W/m2K
ƒ ( )
0,2 W/m2K
ƒ " , !
!
. ƒ .
‹ , , !
, !
"
.
‡ "
, "
!
.
4. ' & ' ‡00‡„$„‡:
‡0‡ $ ƒ$„š $„0'#0# ƒ$‡:
‡ $
"
U-
"
" 0.15 W/(m²K)
3& "
&
ƒ "
"
 - ƒ &
78
ƒ ( , ) U !
0.80
W/(m²K), 50%.
"
60% "
, .
$
& &
"
. 5°C, .
‹ , "
‹
" " &
(
80%).
$
"
$ ! .
‡" (&
, , , ,
-
, ...) ".
: !
ƒ
"
& " 25% ".
&
: ,
, , .
ƒ
"
" 10-20% ".
ƒ
"
21,4°C .
* 25°C.
ƒ " &
.
ƒ
&
, .
U !
"
"" " ("Zero
Energy House") 10 KW/m², " , "
.
ƒ " , " " .
3 & &
, , 2$‚, , . &
. ƒ
, & &.
ƒ
& & ,
. %
. "
" .
79
G" "
. 3
&
, "
&. ƒ
. „
" "
, & , & &, .
G&
&
. 2 & " &
&
. " , Œ $ , " , . % & "
, , .
U
[1] The three United Nations Intergoverment Panel for Climate Change (IPCC), Summaries
for Policy Makers, 2007.www.ipcc.ch
[2] G. ƒ: * $ ,
' : $
, % ,
2009., ‚ +, . 55-75.
[3] G. ƒ: }
– U , G, 0U$, 2006., ‚
.
[4] G. ƒ: [! ! c
{ – }%, ƒ
, , ' – & ,
2010., ‚ +, . 225 - 238.
[5] M. Pucar: Principi energetski efikasne i pasivne solarne arhitekture, The Regional
Environmental Center for Central and Eastern Europe (REC), Seminar: Održivi urbani
stil života, Uvodno predavanje, 2007., Beograd
[6] G. ƒ, G. '
": " –
$ $ U
, '- : ƒ
›
, 2005., ‡
, . 97-104.
[7] G. ƒ: ƒ , Expeditio – ˆ
&
, ‡, ' : & , 2006. ˆ
, 24-27.
[8] G. ƒ: ƒ
: }
– $ !? ƒ
, EXPEDITIO, The
Regional Environmental Center for Central and Eastern Europe (REC), 2008.,
ƒ
[9] G. ƒ: Zc $ – c , , , ƒ&
, ƒ
, 2008., ƒ&
80
Z Z!1, [
:2, [!3
! : $ !
(3*$ *.35.600) !
. !
. * ! , .
': , U .
THERMAL INSULATION OF INTERNAL WALLS BETWEEN
HEATED AND UNHEATED SPACES
Summary: The standard in the area of building (JUS U.J5.600) provides the minimal
thermal insulation capability of building structure elements depending on the climate zone
in which the object is built. Energy characteristics of internal walls between heated and
unheated spaces in the building are also defined in this standard. This paper attempts to
define how to determine the wall insulation thickness, with the aim of achieving the
minimum of exploitation costs if the insulation investment costs for the whole building are
pre-defined.
Key words: standard, optimal thickness of the insulation material.
1
# ƒ
ƒ
", . , G ‚ +
G G ‡, , G ‚ +
3
G", Master , G ‚ +
2
81
1 &
&
" . ƒ . „
, & . * ,
!
, . ƒ
"
, " , & . ' &
:
- - .
1.1 " !
3
!
[1]:
1/ 2
kopt
§ Oi Ci ·
¨
¸
© MCtW e ¹
ª W º
« m2 K »
¬
¼
(1)
:
ªW º
Oi -$ & «
»,
¬ mK ¼
ª KM º
Ci - « 3 » ,
¬ m ¼
ª KM º
Ct - «
»,
¬ J ¼
ª sK º
M - - «
»,
¬ god ¼
W e - > god @
,# ' "" (1) 6& % ' " % (. 1).
82
1 – Q – U 
Figure 1 – Chart: costs – insulation thickness 
$ !
(3*$ *.35.600) W
" k = 0.8 2 .
mK
( ) !
. ƒ ,
W
" k = 0.7 2 .
mK
* [2] DIN 4701/1983 a . % 20 m 2, 3 4 10 0C .
!
k, 't :
( q k ˜ 't )
(2)
0 !
( ), pe & " . $ , (1) . ‡ (
)
. ƒ
& (
). ‡ , . †
, .
83
ƒ
: „Š"
" &
"
, !
?“ * „
“ .
2 ƒ"
(1) !
, &
. * & ‚ +, (.2) 20m " .
-
-
unheated staircase and hall
2 – Y G
Figure 2 – Typical floor
$ U } € :
1/ 2
0.041 ˜ 600
W
§
·
kopt ¨
0.48 2
¸
8
8
m K
© 2.57 ˜10 ˜ 2.78 ˜10 ˜15 ¹
 :
Oi
0.041
W
m2 K
- $ & ,
84
Ci
600
KM
m,
m2
Ct
100
KM
MWh
We
15 god
- ,
2.78 ˜ 10 8
KM
,
J
- ,
- .
Q kopt ()
- G, tem . Y ( t x ) . :
% ( ), % U . Z , $ G G.
¦ (k ˜ F ˜ t ) ¦ (k ˜ F ˜ t )
u u
tx
u
s s
s
¦ (k ˜ F ) ¦ (k ˜ F )
u
u
,
(3)
s
s
:
¦ (k ˜ F )
s
- kF s
,
¦ (k ˜ F )
u
- kF u
,
- ,
- ,
tu
ts
$
!
( ‚ + tem 4.2 0C ).
*
.2, :
tx
2560.8 ˜ k x 642.896
128.04 ˜ k x 42.32
(4)
# t x k x , k x &.
0 (1), " , :
85
1/ 2
0.041 ˜ 600
§
·
¨
¸ .
8
M
˜
2.78
˜
10
˜
15
©
¹
ƒ ( ts tem ), -
:
kopt
M
20 tx ˜188 ˜ 24 ˜ 3600
(3.2486 0.1624 ˜ t x ) ˜108 sK god
*
[ kopt ! :
0.5899
(5)
3.2486 0.1624 ˜ t x
$
!
(4) (5) :
(4) o 128.04 ˜ k x ˜ t x 42.32t x 2560.8k x 642.896 0
kx 2
(5) o 3.2486 ˜ k x 2 0.1624 ˜ k x 2 ˜ t x 0.58993 0
"
:
kopt | 2.6
W
tem, hodnika | 19.5 0C .
m2 K
3 ‹
() "
!
. „ !
3*$ *.35.600 EN 832 , "
&
.
(1) :
!, : Z% , [Y, }, 1982.
(2) }%!, Q: Z
% , [Y,
}, 1985.
86
‚& €&!1, [ "!!2
! ! [$%]%
: $
" &
!
! , , . . „ q &
!
. # & !
, EN 1998-1.
: U, , CONCEPT OF ANALYSIS AND DESIGN OF MASONRY
STRUCTURES FOR EARTHQUAKE RESISTANCE
Summary: The modern concept of earthquake-resistant design of buildings is based,
above all, on the choice of structural systems that do not have expressed irregularity, and on
providing a balance between stiffness, strength capacity, ductility and energy dissipation.
The resistance and energy dissipation capacity to be assigned to the structure are related to
the extent to which its non-linear response is to be exploited. This balance is characterised
by the value of the behaviour factor q and the associated ductility classification depending
on types of construction. The most important provisions for determining the seismic actions
and effects, analysis and conceptual design of masonry buildings in accordance to EN
1998-1 are presented.
Key words: earthquake, masonry buildings, structural analysis and design
1
ƒ., , . &. !., 
' $, #
!
, „
#
" 6, 21000 ' $, e-mail: ladjin@uns.ac.rs
2
ƒ., , . &. !., 2!
‚
, ‚
‡ 0
73, 11000
‚
87
1 $ , !
, &
,
, , , , , , . , !
. $ & , 6 &
8 [1].
* !
, &
" "
. %
, . ‹
"
!
!
&
!
.
% , . % &
!
. * "
, & . $
, , !
, ,
.
2 %
&
, &
& (
) . % , . %
("
"
") , , . ‡
, , , . ‹
, , , , ., . 0
&
, 88
. ƒ , , [2].
2.1 N 1998-1
' " " " . + , .
* &
A, B, C, D, E, S1 S2 [1], !
: vs,30, NSPT cu, vs,30 (m/s) " 30 m "
10–5 , NSPT /30 cm , cu (kPa) " " .
* EN 1998-1 ! , agR 0. !
&
TNCR . „
, !
&
, JI 1,0. % , ag 0 agR
&
JI.
%
, "
". , . ( ) "
( ). Š
! Se(T), Sve(T), , . % , Se(T) .
‹
TB, TC TD, S, , ' . * EN 1998-1 ,
1 2 (. 1). 0 , , Ms t 5,5, "
1, (Ms 5,5) 2.
$
&
&
. ‡ ,
,
89
. % & , () .
‡
" . $ , " ,
(. 2). "
".
1 (Ms ! 5,5)
2 (Ms d 5,5)
1 – % (5% ): ) 1, ) 2
Figure 1 – Elastic response spectra (5% damping): ) type 1, b) type 2
800
Type
ground type
B, PGA
0.25
g, ] 5%
5% 1, 1,
B, ag =
0,25g,
700
0 d T d TB
Ÿ
S d (T )
Ÿ
S d (T )
2 2
] ]
SSa[cm/s
d [cm/s
600
TB d T d TC
500
q = 1 – 400
TC d T d TD
300
TD d T
Ÿ
S d (T )
ag ˜ S ˜
S d (T ) ag ˜ S ˜
q=2
200
§ 2,5 2 · º
˜¨
¸»
© q 3 ¹¼
2,5 ª TC º
˜
t E ˜ ag
q ¬« T ¼»
2,5 ª TC ˜ TD º
˜
t E ˜ ag
q ¬« T 2 ¼»
q=5
100
0
0.0
Elastic
qŸ
=2
q=5
ª2 T
ag ˜ S ˜ « ¬ 3 TB
2,5
ag ˜ S ˜
q
0.5
1.0
1.5
2.0
2.5
3.0
T [s]
2 – Z % $ q
Figure 2 – Design response spectra for different values of behaviour factors q
90
q, 5% , !
" .
‹
q " " N 1998-1. ‹
q , &
.
2.2 %
"" , , ! – ! &. % "
, " , "
"
, .
G
!
(
) " "
. # &
"
, ! !
. ‡ & , , !
. ‡
"
. ! "
, ! " .
ƒ
&
, &
, ! "
"
[6]. 0 "
, &, !
[7].
ƒ
: (. 3).
3 – [ Figure 3 – Failure mechanisms of masonry walls
91
+ "
. 2 ! , . +
"
. %
, (.4 .5) "X" "
.
ƒ
! , . "
" , " .
4 – Y% %! : ) } 1979; ) :U 2010
Figure 4 – Typical shear failure of brick masonry piers: a) Budva 1979; b) Kraljevo 2010
5 – : U :U 2010
Figure 5 – Shear cracks in masonry walls after the earthquake Kraljevo 2010
92
3 % !
, " ( , ) . $
, ! . ' ! , "
, !
, !
, &, .
3.1 G
& . ‡ " , .
% , &
,
. * ,
&
.
G
( G) . ‹
" "
. ! "
0,10 0,40, , !
. ‹
500 fk < < 3000 fk, fk " , , . * , EN 1996 ( ƒ) &
= 1000 fk.
* ! (
&
) . 0
, &
! .
‡ , & . ‡ :
93
K=
G ×F
1
×
h 1, 2 + (G / E ) ×(h / l ) 2
(1)
G , , F , h l & . , [6] :
K o = G ×F ×(1- c / 0,85) (1, 2 ×h)
(2)
c &
(c = F / F ). & c < 0,7.
(2) , & , .
* &
, " ! , :
K o = K p ×K s ×K n / ( K n ×K p + K n ×K s + K s ×K p )
(3)
Ks ! , Kn , Kp , ! (1).
* ! . ƒ , , .
: . , !
.
$
N 1998-1 ! . " "
" :
¦ Gkj " " ¦< 2,i ˜ Qk ,i
(4)
: Gki "
, <2,i - i EN 1990, Qk,i i, "+" "
".
3.2 ! 0 – ! " [4]. * N 1998-1, , , 94
. G
, . * , .
$
, , . !
, . % , &
" : 1) "
" !
; 2) " " &
. ‡ : (pushover) / ()
[4].
%
. $ , . % , , () . * , . 0 &
, " , [3].
*" & , & i & eai (eai = r0,05 ˜ Li, Li ).
$ . „ Y1 4TC 2,0
s. %
. $
" Fb, , !
:
Fb
m Sd T1 O
(5)
m , Y1 , Sd (Y1) Y1, O O 0,85 Y1 d 2YC , O 1,0 .
* ! Fi:
95
Fi
Fb
mi ˜ si1
¦ m j ˜ s j1
(6)
Fi i, Fb (5), si1 sj1 mi mj , mi mj . $ N 1998 (6) si1 sj1 zi zj mi mj . $ Fi, (. 6).
6 – Q % % Figure 6 – Shears and moments due to seismic forces in typical masonry building
0 !
, " &
G :
G
1 0, 6 ˜ x / Le
(7)
x "
,
, Le ! ! " , . ‡ , eai (7), 0,6 1,2.
$ " / . ƒ . 90% "
5% .
‡ , .
* " Fb(k) !
k, :
96
Fb ( k )
mk ,ef S d Tk (8)
Tk k , Sd (Tk) Yk, mk,ef k. () " , !
sk:
mk ,ef
¦ m ˜ s ¦ m ˜ s 2
i
i(k )
i
2
i(k )
(9)
sik mi k.
' !
"
Fb(k) k, :
Fi ( k )
Fb ( k )
mi ˜ si ( k )
(10)
¦ m j ˜ s j (k )
k , i . $ Fi(k) .
* ! " . % !
SRSS :
EE
¦ EEk2
(11)
(. , , .), k k. ƒ
(11) , .
* N 1998-1 . , !
. ƒ " :
Ÿ
:
EEd
2
2
EEdx
EEdx
Ÿ
:
EEd
EEdx 0,3EEdy
(12)
EEd
EEdy 0,3EEdx
(13)
dx dy x y . % .
3.3 !
! , , &
:
1) & (. & );
2) 25%, " 33%; 97
3) ().
% " :
Ed d Rd
(14)
Ed EN 1990 , , ( ), Rd " "
(
fk Jm) .
ƒ Ed !
:
Ed
E ^Gkj ; P; AEd ;< 2,i Qk ,i `
j t 1, i t 1
(15)
‡ &
:
¦ Gkj " " P " " AEd " " ¦< 2,i ˜ Qk ,i
(16)
Gkj j, P , AEd (= JI AEk, JI - , AEk - ), <2,i - i, Qk,i i, "+"
"
".
# !
"
". % , EN 1996-1-1:2004. ‡ J m J s . ' , J m 2/3 ' EN 1996-1-1:2004, 1,5, J s 1,0.
4 4.1 , ", * EN 1998-1 . , " , !
EN 7721, fb,min , fbh,min
98
. ‡ ag 0 "
0,08g (0,78 m/s2) ag˜S " 0,10g (0,98 m/s2).
‹
fb,min fbh,min , ' , : fb,min = 5 N/mm2 fbh,min = 2 N/mm2. %
" fm,min, " EN 1996 – fm,min = 5 N/mm2 &, fm,min = 10 N/mm2 .
ƒ
: ) , ) ) .
% , !
, " !
: 1) (unreinforced masonry construction), 2) & (confined masonry construction) 3) (reinforced masonry construction). % !
,
q , , 1,5, 2,0 2,5.
* , j , , &
. %
, , q " " (overstrength). ' 40 , () ! 1,8 2,4 [5].
% "
EN 1996, (DCL) , tef tef,min. % EN 1996, agS !
ag,urm, ' . ‹
ag,urm , 0,20g.
%
, . $ ! ( &). G&
. $" (shear walls), &
, !
(
1). $" , .
99
1 – ! ' " " "
Table 1 – Recommended geometric requirements for shear walls
t ef,min (mm) (h ef /t ef)max
+ ];?%
'
, '
, '
, , (l/h)min
350
9
0,50
240
12
0,40
170
15
0,35
% &
240
15
0,30
0 240
15
–
: t ef – U , h ef – $ , h – ! % , l – G % #%$$%# ];?, EN 1998-1, (
&) , , , " 4,0 m. & . Š & & 200 mm2.
% ];? '% '$=&%_% (
&) ! . # ! & , !
.
#
& 150 mm. #
& . ‹
& : ) ; ) "
1,5 m2; ) , , ! & " 5 m; ) , & "
1,5 m. Š & , " 4 m. &
5 mm 150 mm. '
" & 60 . ‰
‚ ˆ N 1992-1-1:2004, ˆ.1.
% %$$%# ];? &
, "
600 mm.
* , (
). G 4 mm, .
G , , 0,05%, 0,08%, . G " . ‹
, 100
200 mm2, " ›
, : ) ; )
; ) , ! " 5 m. ƒ
.
4.2 "
"
I II & !
, "
" " . * a g S !
, n , " A min , & pA,min . ‹
n pA,min ! '
, 2.
‹
n pA,min k " 12 N/mm2 5 N/mm2 & . % 70% " &
2 m, k : k = 1 + (l av –
2)/4 d 2, l av & " &
. * k = 1. '
k , ( a gS a g,urm) .
2 –9" ' " % "a
Table 2–Allowable number of storeys above ground and minimum area of shear walls
J$%@ #% &;=%*< a g˜S
%}#
[$%{@%
%$$%#
];?
];? '%
'$=&%_%
$$%#
];?
$;< '+$%>;?%
n
1
2
3
4
2
3
4
5
2
3
4
5
d 0,07 k ˜ g
d 0,10 k ˜ g
d 0,15 k ˜ g
d 0,20 k ˜ g
#%&#% +;?$~#% '}\z^ ];?% % '?%=
+$%?%*, =%; +$;*#%> p *,min ;] \=\+# +;?$~#
'+$%>%
2,0%
2,0%
3,0%
5,0%
2,0%
2,0%
4,0%
6,0%
2,0%
2,0%
3,0%
4,0%
2,0%
2,5%
5,0%
–
2,5%
3,0%
5,0%
–
2,0%
2,0%
4,0%
5,0%
101
3,5%
5,0%
–
–
3,0%
4,0%
–
–
2,0%
3,0%
5,0%
–
–
–
–
–
3,5%
–
–
–
3,5%
5,0%
–
–
# "
", " , "
:
Ÿ
Ÿ
Ÿ
& ;
! & "
&
O min (
O min = 0,25);
" p max, &
(
p max =
15%).
Ÿ
ƒ
, "
" " "
:
"
" ;
Ÿ , &
l min " 30% &
& ;
Ÿ ! "
75% &
;
Ÿ " 75% "
;
Ÿ " & .
* G m "
! G A, G m,max G A,max (
G m,max = 20% G A,max = 20%).
‡ 7 m.
* & l min &
& " , . * , " & l l /h 1.
Ÿ
5 $
, , " , . . ‡ . $ , , .
ƒ ! , & & &
. G 102
" .
$ ( ) , , &, , (
). ‡ (P- ) , , ! T 0,10. G
!, " . 0 , ds de, : ds = qd ˜ de, qd q. ‹
ds " .
* , " , . $
!
"
() . ‡ "
" .

N 1998-5, 5, N 1997-1.
* , " "
. G
!, (q = 1,0).
%^?%&#;'>: !
-& „ 36043
G $
.
103
[1] La{inovi” ¡., Foli” R., Br•i” S., Bruji” Z., Ko•etov Mišuli” T., Rašeta A.: Evrokod
EN 1998-1: Prora•un seizmi•ki otpornih konstrukcija, Gra{evinski fakultet, Beograd,
2009.
[2] La{inovi” ¡., Foli” R.: Analiza konstrukcija zgrada na zamljotresna dejstva,
Materijali i konstrukcije 47, br. 3-4, Beograd, 2004, str. 31-64.
[3] La{inovi” ¡.: Nonlinear seismic analysis of asymmetric in plan buildings, Facta
Universitatis, Series: Architecture and Civil Engineering, Vol. 6, No 1, 2008, pp. 25 –
35.
[4] La{inovi” ¡.: Savremene metode seizmi•ke analize konstrukcija zgrada. Materijali i
konstrukcije 51, br. 2, Beograd, 2008, str. 25-40.
[5] Magenes G.: Masonry building design in seismic areas: recent experiences and
prospects from a European point of view, The First ECEE&S, Geneva, 2006; Keynote
paper 4009.
[6] Petrovi” B.: Odabrana poglavlja iz zemljotresnog gra{evinarstva, GK, Beograd, 1985.
[7] Tomaževi• M.: Earthquake-Resistant Design of Masonry Buildings, Imperial College
Press, London, 1999, p. 268.
104
†U W!1
! – !
: * , 1979. !
, "
.
% , "
. ‡ 2000. 2003, 2, 2. * "
a "
!
.
': # , , , !, U
BEHAVIOUR OF MASONRY STRUCTURES UNDER THE
EARTHQUAKE ACTION - DAMAGES ON THE CHURCHES
Summary: Montenegrin earthquake, which happened in 1979. affected Montenegrin
shore and its hinterland, so cultural-historical monuments were damaged. More important
cultural-historical monuments have been rehabilitated but numerous churches are still
damaged. Regional institution for cultural monuments protection from Kotor in the period
from 2000. to 2003, on the initiative of the inhabitants of Grbalj, did several designs of
rehabilitation and strenghtening for churches in the area of Grbalj. Damages at the
registered structures will be presented in this paper for which designs for rehabilitation and
strengthening were done.
Key words: masonery structures, stone, churches, damages, earthquake
1
#, #
, *
ˆ
2
, 2!
, ¢› ‹ , ƒ
105
1 ‡ , !
. 2
"
, !
, &
. $ &
, !
, . $
, , .
2 !
% , " , , 7% "
. "
" .
ˆ
, & , . ":
- % " " , "
;
- ‹
&;
- ‹
, "
&
;
- ‹
" !
s s
.
3 %
.
' , "
, . $ , , " "
!
, !
. ' " : "
, , ! ! . , "
.
106
‡
"
"
. 0 "
, .
3.1 * "
. &
"
. ƒ (
,
.). ‰
, !
. % , "
, . #, "
" ,
" . $
: ( ) ! &
. ƒ
" , "
. * !
"
, ,
, "
" "
. „ , .
3.2 "
!
"
. ‡ " . ƒ
! .
'
, , &
.
107
1 - | G – :, ‡  1979.
Figure 1- Collapse of roof and failure
wall, -Kotor, Montenegro 1979.
2 - € G, Christchurch, New Zealand,
2011.
Figure 2- Bad connection of upper floor
Christchurch, New Zealand, 2011.
&
& !
.
G
!
, " , "
: "
.
+ &" " . % "" . 0 "
, "
"X"
.
3 - :% "X"
betonskom ,
:U, 2010.
4 - ‰
2010. (Chile 2010.)
(Specific“X“ crack of building
with concrete slab, Kraljevo, Serbia 2010.)
108
% ! . + "
!
, "
, . 0 " &
, , &
" """ &.
+ "
.
4 ! 15. 1979.
%
15. 1979. ˆ , 7.0 &. 3
, ! * ‚, 15 km , 12
km. „ 10-15s 0.15-1.7 s. *
ƒ
0.435 g.
ƒ
*'$‡- 1984. 1.487 "
, 49.6% 38% . 63.57%. $ 20.15% g 9.18% &.
5 - : $ U ‡  15.04.1979.
Figure 5 - Map of izoseists and aftershocks of Montenegrins earthquake, 15.04.1979.)
%
&
. "
: , , &
&. '
" "
: *, ‚, ‚,
‡, „, Š
' ˆ
.
109
6 ! 2003-2008.
% , "
. ‡ 2000. 2003, 2, 2. * "
"
!
.
"
, & "
. $
!
, , . $ !
. * "
"
.
5.1 ! . ˆ “$. ” + 2 . * 4.8 m x 11.5 m,
& 0.9 . #
66 76 cm.
ˆ 1979. , "
.
ˆ !
, , . $
, . ƒ , .
6 - ! . € U
Figure 6 - Daag on th church St. Ilija in Lastva Grbaljska
* , – ,
. "
, &
.
0 !
, "
.
110
‹
" "
: , & , , &
, . "
& , &
& .
5.2 ! . ˆ “$. $” + 2 .
#
4.4 m x 6.5 m, 1.2 m.
7 - ! . € U
Figure 7 - Daag on th church St. Spas in Lastva Grbaljska
"
, , . ‹
" "
: &
, , ( ) , .
5.3 ! . ‚
ˆ , . ƒ
!
.
#
56 cm & 98 cm
.
$ &
& , &
. $ !
, . 0 "
. %,
" 111
, . % . * .
8 - ! . *UG!
Figure 8 - Daag on th church St. Spas in Naljzici
5.4 ! . ˆ “$. Š” ™
" , . * 4.7 m x 6.8 m,
1.8 m.
#
67 cm , 76 cm & .
ˆ "
. ˆ .
* 1979. . &
"
. ' &
&
.
9 - ‡ . Š `!
Figure 9- Daag on th church St. Hariton in Ljsvici
‹
" "
:
- % &
, 112
, . % &
"
;
- ' . ƒ
. "
;
- ' &
&
.
* & .
"
, " .
& &
5.5 ! . ˆ “$. ƒ
” 4.7 m x 7.3 m, 1.5 m.
10 - ‡ . Z `!
Figure 10 - Daag on th church St. Ptka in Ljsvici
#
58 cm 91 cm, & .
ˆ , "
. % .
* !
1979. "
. "
: .
‹
, , " : , , , . * & .
5.6 ! . ˆ “$. '” 2 . * 6.5 m x 11.5 m & 1.8 m. #
73 cm.
113
11 - ‡ . *

Figure 11 - Daag on th church St. Nikola in Glavati
ˆ 1979. , “”. , , .
6 %
. !
. ' "
,
!
2000-2003. , " &
.
ƒ&
, , & ! & . , !
. ˆ
!
"
.
114
(1)
(2)
(3)
(4)
(5)
(6)
"2 $. +
2", š.", 3.", g ‡, 2000. g
2 $. $ +
2", š.", 3.", g ‡, 2000. g
"2 $. '
&"",
š.", 3.", g ‡, 2000. g
"2 $. ' 2",
š.", 3.", g ‡, 2003. g
«2 $. ƒ
™
"»,
š.", 3.", g ‡, 2000. g
"2 $. Š ™
"", š.", 3.", g ‡, 2000. g
115
[ "!
[ "!!1, } ! 2
- : # . , , , !
. G
!, .
* "
!
, , &, , . ƒ
, !
, , " .
: # , , , ,
.
MASONRY BUILDINGS - LEARNIG FROM MISTAKES
Summary: In order to obtain a full affirmation of masonry structures, the excellent
knowledge of all unique characteristics of this type of structures is necessary. This is
mainly related to their design, analysis and construction. However, the existing experience
has shown that huge mistakes and errors were done exactly in these stages.
In the paper, the most common mistakes done during design and construction of
masonry structures are presented, as well as, some other mistakes that can compromise
masonry structures, such as errors in maintenance, rehabilitation etc. In addition, the
consequences of done mistakes are shown and, also, the ways and possibilities to overcome
and repair them.
Key words: Masonry structures, rehabilitation, overbuilding, design, mistakes.
1
2
Redovni profesor u penziji, dr, dipl. gra{. inž., Gra{evinski fakultet, Beograd, Bulevar kralja Aleksandra 73/I.
Vanredni profesor, dr, dipl. gra{. inž., Gra{evinski fakultet, Beograd, Bulevar kralja Aleksandra 73/I.
117
1 ‡
, !
. !
, . '
, , , , .
G
!, , 80% , , . %
!
("), - , , , , , !
.
% !
, , , .
$
XX , , , , . $ &
, , , . * !
, !
.
G
, !
, . , . % , , !
&.
. '
, !
, "
, , , &, ,
!
- .
G
!, , , " , !
"
. "
(
,
.) , , .
"
!
. 2
, :
. 2
;
. 2
!
(!
) ;
. 2
& ;
. ;
. #
.
118
' 1 "
() (). ' :
1 - , 2 - , 3 - , 4 - .
1- Z
! Figure 1 - Percentage of damage of building parts
2 ‡ , !
, . G
!
, , . '
!
.
ƒ , , , , "
, "
, . '
"
, , "
., , . ƒ
!
. ƒ
,
& .
‡ , , - , (
2, 3, 4 5). '
, , 119
"
(, , , , .). ' 2 3
"" "
" . * & . '
. ƒ&
, !
, .
%
, !
, , !
. , "
" , , "
" ( 6). 0
& , . * & , / .
)
)
2 - ZU () U () Figure 2 - Favorable (a) and unfavorable (b) forms of building plans
3 - *U Figure 3 - Unfavorable forms of buildings plans
120
4 - ZU () U () Figure 4 - Favorable (a) and
unfavorable (b) building
height dimensions
5 - *U Figure 5 – Unfavorable height distribution of rigidity in objects
)
)
6 - Q
() ()
Figure 6 - Expansion Joints in floor plan (a) and building section (b)
121
ƒ &
0‚ & ( 7). & , , "
/ , , "
&, 5. 0
&
, " ( 8). # "
" & , .
# , ( ) ! (
) . „
(
&
, „G .) & .
7 - Z U G () G ()
Figure 7 - The principles of setting concrete columns (a) and the correct connection
between column and wall (b)
8 - Z Figure 8 - Incorrectly derived wall openings
122
3. " (") 2
!
/ " , , . ƒ
!
0‚ . - , " " ( 9).
9 - Z U Figure 9 - Incorrectly placed wall blocks
, ! , , , . „ "" , 2-3 , " , ( ),
"
" &
" . % "
&
, , , , . &
, , , , , " !
, ,
, , , , .
‹
"" - , , ,
( 10). „ &
. "G" "
, .
"" , . 0‚ &, "-", " , . $ , , 0‚ . &, , & &.
)
)
10 - *
() ()
Figure 10 - Incorrectly
(a) and correctly (b)
derived mortar joints in
the wall
123
ƒ
!
. „ &.
'! , , , . ' !
, .
!
, . , (
) " . %
(2 ) &
" [Y*-81], " !
, " " . '!
!
& "
!
(
11 12).
‰
!
, " , ( ), (
) , &
!
&
"
% , , ,
(
" ), , ( & !
&), !
, . G
!, !
.
!
!
, (
!
), & . , , !, " , (
) .
11 - Q% Figure 11 - Drastic examples of bad building upgrades
124
12 - Q% Figure 12 - Drastic examples of bad building upgrades
' , , (
, , .)
ƒ
, !
"
.
„, , , ,
, . .
‡
, , , !
.
0 () ,
, , ., &,
, , &
&
. 0 , 0‚ & &
(
13). 0 40, .
13 - Za
% & Figure 13 - Proper way to perform masonry parapet on the building
125
#
!
, . ƒ
"
14. „
" , &, . , , , & . „
" .
14 - QU ! Figure 14 - Details of reinforcement of free standing chimneys and ventilation ducts
‡
, , . ( 15). * , , (
, , &
.).
15 - Za
G
Figure 15 - Proper connection of roof structure and belt course
ƒ
, , "" . # "
" " & & ( 16).
16 - Za
% "} G
Figure 16 - Correctly derived aseismic masonry gable wall with reinforced concrete ring
beams
126
4. ! ‚
ƒ , "
()
"
. ƒ
, , , ! ., .
'
, ()
. '
"
, , . *
, (
) "
. . ‰
, .
&
, . ' , &
, &
"
, , . ( 17)
17 - ! G & Figure 17 – Wall demage due to lack of maintenance of gutters and proper drainage of
water from buildings
5. * , , , &, , , .
127
, , " , , , 2 . ‡
"
(
) 18 19. & . , . , &
"
& , " "
, "
, (
, , ...), (
), .
18 - ! U
Figure 18 – Buildings damage caused by earthquake
19 - ! $
Figure 19 – Buildings damage caused by liquefaction
6. 0
(, , , , ) (, , .), " "
.
G
!, !
, &, "
.
128
‡
"
:
ƒ
‚!, ƒ
G
, ƒ
™
ƒ
ƒ
ƒ
ƒ
‚!, , , , "
. ‹ , :
- "
,
- , , ,
- ,
- "
" ,
- , .
‚! , "
.
'
"
" .
1. ,
! U, ,
, 2. $ (! $ ,
! %
, ,
, )
3. $ 4. , 20 - [! Figure 20 - Possible location and types of occurrence of moisture in buildings
129
)
)
21 - Z
() () Figure 21 - Incorrectly (a) and correctly (b) derived thermal insulation of flat roof
22 - (
)
"" % Figure 22 - Segregation of concrete flat roof (horizontal cracks) due to its "work" because
of significant changes in temperature
23 - Z U a Figure 23 - The appearance of flaking and falling of the wall finishes due to high moisture
130
24 - ! $ Figure 24 - Damage to the brick wall facades caused by frost
'
, , "
. % (
), "
.
25 - ! U Figure 25 - Damage to hollow bricks and blocks caused by frost
$ "
, &
( ) ( ). " () .
* , . , . , , &
,
&, "
(
"
).
131
26 - ! Figure 26 - Damage to mortar in a massive wall caused by frost
27 - ! Figure 27 - Damage to the walls due to moisture
28 - Figure 28 - The appearance of salt on the surface of the masonry blocks
132
7. * , &
. ƒ
&
. *
, , , !
&,
!
. '
() " .
$ .
0 , , .
% , !
%
.
1.
2.
3.
4.
5.
6.
7.
8.
0" #.,  ƒ., ƒ
" ‚., $-' 0., „&
G.:
%G™„$' 'š†$„‹ – ‹$‡20#†0; 2!
,
‚
, 1990.
G G., $
" ‚.: %#0' #‹' ‡'$„*‡ˆ3
%20#0, 2!
*
‚
, 2003.
ƒ
" ‚.: #0‚0'0 ƒ2+0‹™0 % %G™„$'2 20£‹'0$„‹0, 2!
, ‚
, 1985.
#
" G.: $„0„‰‡ ‡'$„*‡„‹' ƒ‚+G * %0Œ„„
20#„™$‡2 '0$+£0, 0
*
‚
.
0¤
.: #‡„¥ ƒ‹š#'¦ $„„+¥'¥Š
‡'$„*‡ˆ§, $¨, G, 1979.
$" #.: ‡‹0‹ '0 %20#0G0, ‹
G
, $
, 1961.
‹‡# 8: ƒ , #
1-1: , 2!
*
‚
, 2009.
ƒ ($. $3 31/81, 48/82, 29/83, 21/88, 52/90);
133
* U!1 , # }!2
! : ‹
!
!
&
. * !
,
! . * , 1,0 m . ƒ
"
10,0
kN/m2 .
': , $, , THE ANALYSE OF THE FUND DEPTH OF NEIGHBOUR OBJECT
ON A STABILITY OF REINFORCED CONCRETE SUPPORTING
WALL
Summary: There are some neighbour construction objects which influence on a
supporting construction stability can be important. The influence of construction objects on
a supporting construction stability can depend, between all other things, of the fund depth
of object and also of its distant of supporting wall.There are analises of reinforced concrete
supporting wall stability considering the distant of the fund of neighbour object, and also
the analyses of different fund depth of neighbour objects in this work. The analyses gives
different sizes of safety factor and also on a slide and a pressure in a base ground all in
function of fund depth of neighbour objects which burden is 10,0 kN/m2 and is constant for
all cases of fund dpth and sizes of ground parameter and supporting wall geometry.
Key words: supporting wall, fund depth, neighbour objects, stability.
1
#. . . '
$", ..!., -
-!
*
„
2
#. . . % ‚", ..!., -
-!
*
„
135
1 ƒ &
&
!
. ‹
, , " !
!
!
. * , , "
. "
, &
"
, "
.
!
, "
,
& "
. % . ' .
2 ! ' "
, ! .
"
. „ &
&
, .
* ! , ! . ! "
& !
.
‡ , . %
" . ' " "
"
" . ‚ " , - "
. .
3 % "
:
136
-
25 cm ,
50 cm,
50 cm,
80 cm,
10 cm ,
30 cm .
" :
- 1: J=19,0 kN/m3; M=25o; c=0 kN/m2
- 2: J=20,0 kN/m3; M=27o; c=0 kN/m2
- 3: J=22,0 kN/m3; M=35o; c=0 kN/m2
1 – Z $ 1,0m
Picture 1 – Supporting wall with a neighbour object fund on 1.0m depth
' 1 1,0, 1,0 1,0.
0 "
:
-Df=1,00m l=1,00m
-Df=2,00m l=1,00m
-Df=3,00m l=1,00m
-Df=3,50m l=1,00m.
137
* , "
q=10,0 kN/m2, 2.
2 –
7 G
$
Picture 2 – The
overview of
supporting wall with
a neighbour object
fund circumstance
% V=150,00 kN/m2.
4 4.1 . `=1,00
$
1 J=19,0 kN/m3; M=25o;
c=0 kN/m2.
"
q=10,0 kN/m2.
1
10 . 0
- 1. 50
2
R
- 3. 00
30
20
- 3. 40
10
m
0. 3 3
0 . 44
0
3
[ kN / m2 ]
3 – Z
G ! G Df=1,00m
Picture 3 – The burden of a result Df = 1,00m
138
ƒ
Df=1,00m
" :
$ V=95,60 kN/m.
$ Š=40,88 '/.
$ M=31,56 kNm/m.
‹
: V1=143,28 kN/m2 V2=0,00 kN/m2 b’=0,89 m.
 : Fp=1,88 > Fp,dop=1,50.
 : Fk=1,64 > Fk,dop=1,50.
4.2 Df=2,00m
$
2 J=20,0 kN/m3; M=27o;
c=0 kN/m2.
"
q=10,0 kN/m2.
1
- 1.5 0
10 .0
2
R
- 3.0 0
30
20
- 3.4 0
10
m
0. 30
0 .47
0
3
[ kN/ m2]
4 – Z
G ! G Df=2,00m
Picture 4 – The burden of a result Df =2,00m
ƒ
Df=2,00m
" :
$ V=94,99 kN/m.
$ H=39,82 kN/m.
$ M=28,85 kNm/m.
‹
: V1=134,38 kN/m2 V2=0,00 kN/m2 b’=0,94 m.
 : Fp=1,99 > Fp,dop=1,50.
 : Fk=1,67 > Fk,dop=1,50.
4.3 Df=3,00m
$
! 2 3. "
q=10,0 kN/m2.
139
1
-1.50
2
R
-3.00
0
0.31
30
-3.40
m
0.46
20
3
10
10 .0
[kN/m2]
5 – Z
G ! G Df=3,00m
Picture 5 – The burden of a result Df =3,00m
ƒ
Df=3,00m " :
$ V=92,43 kN/m.
$ H=37,37 kN/m.
$ M=28,77 kNm/m.
‹
: V1=132,89 kN/m2 V2=0,00 kN/m2 b’=0,93 m.
 : Fp=1,98 > Fp,dop=1,50.
 : Fk=1,73 > Fk,dop=1,50.
4.4 Df=3,50m
$
3 J=22,0 kN/m3; M=35o;
c=0 kN/m2.
"
q=10,0 kN/m2.
1
- 1 .5 0
2
R
- 3 .0 0
30
- 3 .4 0
20
0 .3 2
0. 4 6
10
10. 0
0
3
m
[ k N/ m 2]
6 – Z
G ! G Df=3,50m
Picture 6 – The burden of a result Df = 3,50m
ƒ
Df=3,50m
" :
$ V=91,93 kN/m.
$ H=36,97 kN/m.
$ M=29,00 kNm/m.
140
‹
: V1=133,35 kN/m2 V2=0,00 kN/m2 b’=0,92 m.
 : Fp=1,97 > Fp,dop=1,50.
 : Fk=1,74 > Fk,dop=1,50.
4.5 ‚
' "
. #
.
Odnos Fp prema Df susjednog objekta
3,5
3
2,5
2
1,5
1
0,5
0
1
2
3
4
Df
1
2
3
3,5
Fp
1,88
1,99
1,98
1,97
7 –' $ Picture 7 – Stability factor of tumble which depends on fund depth of neighbour object
Odnos Fk prema Df susjednog objekta
3,5
3
2,5
2
1,5
1
0,5
0
1
2
3
4
Df
1
2
3
3,5
Fk
1,64
1,67
1,73
1,74
8 –' $ Picture 8 – Stability factor of slide which depends on fund depth of neighbour object
141
Odnos Fk i Fp u odnosu na Df
4
3
Veliine Df,
2
Fk, Fp
1
0
Df
Fk
1
2
3
4
Df
1
2
3
3,5
Fk
1,64
1,67
1,73
1,74
Fp
1,88
1,99
1,98
1,97
Položaj susjednog objekta
Fp
9 – $ ' ' $ Picture 9 – The relation of stability factors Fp and Fk which depends on fund depth of
neighbour object
5 ‚ !
ƒ
. % 1,00m 1,00m H=3,00m, d=25cm. Œ b=155cm 50cm.
„ (c=0 kN/m2).
0 1,0m, 2,0m 3,0 3,5. * "
q=10 kN/m2 1,00m.
' , &
"
:
- .
- Df=1,0m Df=2,0m, Df=3,0m Df=3,5m.
-‹
V1 V=150,00 kN/m2. ' V1 Df=1,0m Df=3,0m, Df=3,0m Df=3,5m ".
142
% !
.
1) $" '.: , 2‡
“ƒx” „
, 2005.
2) $" '.: Z , -
-!
„, 2010.
3) ‰" .: , -!
„, 2005.
4) ©" $.: % % – , ‚
, 2006.
5) MB software Ing + 5.0, 2
y, 2000.
143
Dragica Jevti1, Gordana Toplii-Œuri2, Zoran Grdi3
EFFECTS OF VARIOUS TYPES OF FINE CRUSHED MINERAL
AGGREGATES ON CONCRETE PROPERTIES
Summary: Application of crushed mineral aggregate in the composition of the cement
concrete is gaining increasing importance. The previous statement can be analyzed along to
lines of reasoning. The first is environmental, as it substitutes the river aggregate in this
way avoiding disruption of river courses. The second is service durability and costefficiency of concrete carriageway structures. In this paper was examined the effects of
various kinds of fine crushed mineral aggregates in the composition of the cement concrete
on the consistency of fresh concrete and compressive strength of hardened concrete. It was
established that the type of fine crushed mineral aggregates has effects on previously
mentioned properties, and that it can be applied in the composition of a self compacted
concrete.
ey words: aggregate type, consistency, compressive strength
! : ƒ
. '
&
. ƒ , . # a . *
&
" . *!
!"
.
: , , %! 1
Full professor, doctor of technical sciences, The Faculty of Civil Engineering, Belgrade
Ass. professor, doctor of technical sciences, The Faculty of Civil Engineering and Architecture, Nis
3
Assoc. professor, doctor of technical sciences, The Faculty of Civil Engineering and Architecture, Nis
2
145
1 INTRODUCTION
Aggregate as a component of concrete, with its physical and thermal, and sometimes
with its chemical properties has considerable effects on concrete performance. Many
properties of crushed mineral aggregate depend on the properties of bedrock from which it
was obtained. The aggregate possesses some properties which did not exist in the original
rock, and those are: the size and shape of the grain, surface texture and absorption. All these
properties can have a great influence on the concrete quality – either in fresh and hardened
state >1@.
With the aggregate, whose properties are all satisfactory, a good concrete can be always
made. The opposite case need not be correct, therefore it is the reason for which a criterion
of concrete performance is required. On the basis of the experiences in engineering
practice, it was concluded that there are cases when an aggregate property is not favorable
in some of its aspects, but it is proven that there were no problems with the concrete made
with it. If an aggregate proves to be inadequate, according to several criteria, then the
chances are that the concrete made with it will be of poor quality. It can be concluded that
only the testing of the stone aggregate may help us to assess to what extent it is suitable or
unsuitable for making of concrete.
If concrete consistency is observed as an important property of fresh concrete mix, we
may conclude that the workability of concrete is greatly affected by: water/cement ratio,
aggregate/cement ratio and quantity of water [1, 2]. The required quantity of water depends
on the type of aggregate, that is, of the size of the largest grain, particle size distribution,
shape and texture.
The required quantity of water in the aggregate depends on the content of fine particles.
Absorption capacity of aggregate increases along with its total surface area. When all other
conditions remain unchanged the finer aggregate will require an increased quantity of water
[3]. The shape and texture of fine aggregate have effects on the concrete water requirement
[4].
If the properties of fine grain aggregate are expressed via the percentage of void between
the aggregate grains in loose state, than its effects on the quantity of necessary water will be
as in the figure 1.
Figure 1 - Ratio between fine aggregate voids in loose state and needs in water
for the concrete made with the aggregate
146
The shape of the grains of the rough aggregate has considerable effects on workability
of fresh concrete mix, particularly the slab-like grains. One should point out that the effects
of the aggregate on consistency of concrete mixture decreases with the increase of cement
in the aggregate, and becomes almost inconsequential, when the ratio aggregate e cement is
very low, in the environs of 2,5 or even 2 [5].
Concrete compressive strength depends on the type of aggregate. The shape and surface
structure of the stone aggregate grain, considerably affect the concrete strength. According
to some researches, the shape of the grain has effects on the compressive strength of 22 ,
and the surface structure as much as 44 . The bond of the aggregate and the cement paste
is better and stronger if the aggregate grain surface is rougher, owing to the roughness of
the aggregate. It is the most characteristic of the crushed aggregate. With the aggregate
whose grains have a larger specific surface, higher adhesive forces are achieved. This bond
depends on the mineralogical and chemical composition of the aggregate. The crushed
aggregate strength also affects the fp of concrete. This property of concrete depends on its
composition, structure and texture.
If the compressive strengths of two basic micro-structural ingredients of ordinary
concrete are compared, it will be seen that the mineral stone aggregate compressive
strengths range between 150 and 200 MPa, with less quality aggregates it is 80 – 150 Mpa,
and that strengths of cement rock range between 20 and 60 MPa.
It should be emphasized that transference of compressive force in concrete is not
accomplished only via the aggregate but via the hardened cement paste. The compressive
strength of concrete considerably depends on the realized structure of concrete, that is, of
the degree of void between the aggregate grains filled with cement paste. Depending on this
the aggregate will to a larger or smaller extent influence the compressive strength of
concrete. The aggregate must have considerable higher compressive strength than concrete
strength, because the actual stresses at the points of contact between two aggregate grains in
concrete can be much higher than the nominal compressive stresses in concrete. >6@.
Vertical cracks of the benchmark concrete loaded by an axial compressive force
emerges under load which is 50 – 75% of limit load. This has been established by the
technique measuring the ultrasonic impulse velocity through the concrete. The stress at
which the cracks begin to emerge largely depends on the properties of coarse grains of the
aggregate. If the grains have smooth surfaces, the cracks will begin to emerge at lower
stresses in comparison to the aggregate containing rough and sharp grains. It is explained
by the fact that in the second case, the bond of the aggregate with cement rock is stronger
because of the grain surface properties, and to a certain extent due to the shape of the grains
themselves.>7,8,9@.
The influence of the type of coarse aggregate on the strength of concrete changes depending on the water cement factor. When the water cement factor is lower than 0,4 then the
application of the crushed rock aggregate may contribute to the increase of strength up to
38% in comparison to the concrete mixes made with the natural gravel. However, it was
marked that with the increase of water cement factor, the influence of the aggregate type
decreases. Thus, for instance, at concretes with he water cement factor higher than 0,65 there
is practically no difference in terms of the strength, irrespective of the type of aggregate. >10@.
With respect to the stated facts, when selecting the rock material, which can be of igneous, sediment and metamorphic origin, that is alluvial origin, one must consider the end
purpose of the aggregate, that is the type of concrete for the making of which it will be
used.
147
2 EXPERIMENTAL PART
When making the concrete mixtures, the starting point was to obtain as representative
spectrum of various mixtures in terms of the type of crushed mineral aggregate. The
method of making of concrete mixtures was the same: the type of mixer, sequence of
component dosing, duration of mixing, manipulation of fresh concrete. Thermohygrometric conditions in the course of making of fresh concrete and measuring of its
properties were in accordance with the regulations and they varied within permissible
range. All the planned measuring of fresh concrete was performed by the same apparatuses.
Two variants of concrete in respect to the type of the aggregate were produced.
Variant A represents the concrete mixes which contain only one type of crushed mineral
aggregate in their composition.
Variant B represents the concrete mixes which contain fine river aggregate, while the
coarse one is from crushed mineral aggregate. In this way, the goal was to find out how the
fine crushed aggregate affects some properties of concrete. The maximum aggregate grain
dmax = 16 mm was adopted. Experimental research were conducted in the laboratory for
concrete and building materials of the Faculty of Civil Engineering and Architecture of Nis.
The adopted constant amount of cement was 380 kg per test. The river aggregate used was
from the Juzna Morava river, separated in three fractions 0 4 , 4 8, 8 16 mm. For the
experiment four types of crushed mineral aggregate were chosen: limestone from the quarry
sKorenis of Nishor near Pirot, andesite from the quarry sVelika Bisinas near Rashka,
diabase from the quarry sTavanis near Ruma, basalt from the quarry sZebrniks near Kumanovo, Macedonia. The total amount of aggregate per 1m3 of concrete was also constant and
amounted to 1850 kg.
The same particle size distribution of the aggregate was adopted for all the concrete
mixtures (figure 2).
Sieve passage percentage (%)
100
99
100
90
80
70
70
60
50
B
M
46
40
A
35
30
25
20
14
10
0 0
dno
1
0.125
3
0.25
0.5
1
2
4
8
11.2
16
31.5
Sieve opening (mm)
Figure 2 - Limit curves A and B and assimilated particle size curve
for benchmark concrete mixes
For each type of the aggregate, three water cement factors were varied: 0.45, 0.55, 0.65.
The values of water cement factor were chosen so as to cover all the types of consistency,
from the liquid to stiff. For each fraction of the aggregates, the tests of certain properties
were conducted, so in the table 1 there are results of the volumetric mass of the aggregate
grains, water absorption established by the piknometer and hydrostatic balance methods, as
well as the contents of fine particles.
148
From the table 1 it can be seen that for the concretes made with only one type of
aggregate, the highest content of fine particles is in the limestone aggregate, and the lowest
in the river aggregate. The highest percentage of water absorption is recorded for the
andesite aggregate, and the lowest water absorption is found for limestone aggregate.
Among the mixtures made from the fine river and coarse crushed aggregate the highest
percentage of fine particles and water absorption has the mixture with diabase.
Table 1. Grain density, water absorption, fines content
Fraction
>mm@
0–4
4–8
8 – 16
Mix R
0–4
4–8
8 – 11.2
11.2 – 16
Mix K
Mix KR
0-2
2-4
4-8
8 – 11.2
11.2 - 16
Mix A
Mix RA
0-4
4-8
8 – 11.2
11.2 - 16
Mix B
Mix BR
0-2
2-4
4-8
8 – 11.2
11.2 - 16
Mix DR
River aggregate “MORAVAC“
Grain density
Water absorption
>kgem3@
>@
2539
2.100
2577
1.479
2576
1.268
2562
1.647
LIMESTONE, crushed
2524
2.805
2708
0.584
2710
0.583
2837
0,435
2647
1.579
2653
1.254
ANDESITE, crushed
2541
2.672
2565
2.344
2742
2.897
2698
1.565
2757
2.655
2650
2.527
2646
2.302
BASALT, crushed
2720
2.299
2862
2.134
2806
2.433
2830
1.912
2782
2.235
2700
2.145
DIABASE, crushed
2636
2.298
2633
2.353
2636
1.455
2808
0.580
2833
0.594
2664
2.411
149
Fines content
>@
1.598
0.378
0.242
0.798
13.582
0.380
0.186
0.264
6.389
0.878
7.730
1,528
1.492
0.453
0.292
3.343
1.203
12.727
1.174
0.678
0.464
6.167
1.159
4.085
0.502
0.635
0.270
0.364
2.092
In the tables 2 and 3 the values of consistencies measured by slump and Vebe method.
Table 2: Consistency values measured by slump and Vebe methods for concrete mixes A
Aggregate
river R
limestone K
andesite A
basalt B
Mixture
wc
R/0.45
R/0.55
R/0.65
K/0.45
K/0.55
K/0.65
A/0.45
A/0.55
A/0.65
B/0.45
B/0.55
B/0.65
0.45
0.55
0.65
0.45
0.55
0.65
0.45
0.55
0.65
0.45
0.55
0.65
Slump
value
[cm]
0
4
23
0
2.5
17
0
2
18
0
1
5
Vebe
>sec@
18.0
4.4
1.0
32.3
9.2
1.0
51.8
7.8
1.0
57.7
16.4
7.1
Consistency
Stiff
Semi - plastic
Liquid
Stiff
Semi - plastic
Liquid
Stiff
Semi - plastic
Liquid
Stiff
Stiff
Semi - plastic
Table 3: Consistency values measured by slump and Vebe methods for concrete mixes B
Aggregate
river R
R +
limestone KR
R +
andesite AR
R +
basalt BR
R +
diabase DR
Mixture
wc
R/0.45
R/0.55
R/0.65
KR/0.45
KR/0.55
KR/0.65
AR/0.45
AR/0.55
AR/0.65
BR/0.45
BR/0.55
BR/0.65
DR/0.45
DR/0.55
DR/0.65
0.45
0.55
0.65
0.45
0.55
0.65
0.45
0.55
0.65
0.45
0.55
0.65
0.45
0.55
0.65
Slump
value
[cm]
0
4
23
0
7
23
0
5.5
24
0
3
19
0
10
25
Vebe
>sec@
18.0
4.4
1.0
18.9
4.3
1.0
14.4
5.1
1.0
16.0
8.1
1.0
13.7
2.0
1.0
Consistency
Stiff
Semi – plastic
Liquid
Stiff
Semi – plastic
Liquid
Stiff
Semi – plastic
Liquid
Stiff
Semi – plastic
Liquid
Stiff
Plastic
Liquid
The concrete was in the first 24 hours cured in molds in laboratory conditions, and the
remaining time until testing in the water at 20 qC according to the standard SRPS ISO
27361 and SRPS ISO 27362. The compressive strength after 2, 7, 28 and 90 days
according to SRPS ISO 4012. In the table 4 was given a summary review of the
compressive strengths for all the concrete mixtures.
150
Table 4. Summary table of strengths by concrete types
No
Mixture
Zc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
R/0.45
R/0.55
R/0.65
K/0.45
K/0.55
K/0.65
A/0.45
A/0.55
A/0.65
B/0.45
B/0.55
B/0.65
R1/0.45
R1/0.55
R1/0.65
KR/0.45
KR/0.55
KR/0.65
AR/0.45
AR/0.55
AR/0.65
DR/0.45
DR/0.55
DR/0.65
BR/0.45
BR/0.55
BR/0.65
0.45
0.55
0.65
0.45
0.55
0.65
0.45
0.55
0.65
0.45
0.55
0.65
0.45
0.55
0.65
0.45
0.55
0.65
0.45
0.55
0.65
0.45
0.55
0.65
0.45
0.55
0.65
Compressive strength > Mpa@
2
7
28
90
days
days
days
days
26.11
36.56
52.98
60.43
15.56
27.78
40.66
46.21
8.33
18.00
29.77
40.88
25.77
35.77
44.21
55.11
17.66
25.77
35.99
42.66
9.33
19.99
26.88
36.44
22.77
36.66
41.33
48.22
11.66
27.75
33.25
41.25
6.66
16.88
26.66
36.88
21.77
34.88
40.41
58.44
15.55
25.55
37.77
51.44
9.22
19.33
27.55
45.10
12.88
27.77
46.44
52.55
7.05
20.17
39,10
41.99
3.22
14.44
25.66
34.88
18.99
36.77
50.88
65.10
10.33
21.77
34.44
53.55
4.775
15.55
25.11
40.44
17.33
30.10
53.77
61.33
7.77
19.33
41.75
47.77
5.55
13.10
26.55
39.77
18.44
41.77
55.55
73.77
9.99
26.22
35.77
55.99
5.77
13.99
29.99
39.66
18.44
38.22
57.77
74.66
9.77
25.99
45.77
61.77
6.77
15.99
27.22
48.21
Strengths ratio fp,t /fp,28
2 / 28
7 / 28
90 / 28
0.493
0.382
0.279
0.583
0.491
0.347
0.551
0.351
0.249
0.539
0.412
0.335
0.277
0.180
0.125
0.373
0.299
0.190
0.322
0.186
0.209
0,332
0.279
0.192
0.319
0.213
0.249
0.690
0.683
0.605
0.809
0.716
0.744
0.887
0.835
0.633
0.863
0.676
0.702
0.598
0.516
0.562
0.723
0.632
0.619
0.560
0.463
0.493
0.752
0.733
0.466
0.661
0.568
0.587
1.141
1.136
1.373
1.246
1.185
1.356
1.167
1.241
1.356
1.446
1.362
1.637
1.131
1.074
1.359
1.279
1.555
1.610
1.140
1.144
1.497
1.328
1.565
1.322
1.292
1.349
1.771
3 DISCUSSION OF OBTAINED RESULTS
Consistency measured by Abrams cone in function of water – cement ratio shows that
for Zc = 0.45 (concrete mixes made of fine and coarse crushed aggregate, variant A)
consistency was stiff, figure 3.
For Zc = 0.55 the stiffest consistency had concrete with basalt B, slump value was 1
cm, and the least stiff consistency had concrete with river aggregate R, slump value was 4
cm. There was no significant deviation in results for this water – cement ratio and different
aggregate sorts.
For Zc = 0.65 the lowest slump had concrete with basalt B, slump value was 5 cm.
This was the most significant deviation slump value was from 17 to 23 cm.
151
25
23
20
18
w =0.45
w = 0.55
w = 0.65
Slump test [cm]
17
15
10
5
4
5
2.5
2
0
R
1
0
0
0
K
0
A
B
Type of aggregate
Figure 3 - Aggregate influence on concrete consistency measured by Slump method in
function of water – cement ratio (Variant A)
For Zc = 0.65 the lowest slump had concrete with basalt B, slump value was 5cm. This
wasthe most significiant deviation slump value was from 17 to 23 cm.
For water-cement ratio 0.45 (concrete mixes made of fine river and coarse crushed
aggregate, variant B) figure 4, consistency was stiff for all concrete mixes, without
distinction of aggregates.
For water- cement ratio 0.55 concrete mix DRe0.55 (mix of river aggregate and diabase)
had the highest slump value 10 cm concrete mix BR e0.55 (mix of river aggregate and
basalt) had the lowest slump value 3 cm. Aggregate influence dominates for this watercement ratio.
For water-cement ratio 0.65 slump values are almost the same. For high water-cement
ratio water quantity dominates aggregate.
30
Slump test [cm]
25
24
23
25
23
w = 0.45
w = 0.55
w = 0.65
19
20
15
10
10
7
5,5
4
5
3
0
0
0
0
R
KR
0
0
AR
DR
BR
Type of aggregate
Figure 4: Aggregate influence on concrete consistency measured by slump method
depending on water-cement ratio variant B
152
Compressive strenght (MPa)
Comparing obtained results for consistence for both variants of concrete mixtures, it can
be concluded that fine crushed aggregate reduces workability of fresh concrete. The extent
of the influence of fine crushed mineral aggregate on the consistency of concrete, depends
on the type of crushed aggregate. For the concrete mixtures made with crushed aggregate
(concrete mixtures under numbers, 1 to 12, table 4), the compressive strengths obtained are
not a logical consequence of he aggregate type property. The influence was due to the fine
crushed aggregate. By substituting the fine crushed aggregate by the river one, the
compressive strengths which were in the function of the properties of the type of coarse
crushed aggregate were obtained (concrete mixtures under numbers 13 to 27, table 4).
For the value of water cement factor Zc = 0.45 out the concrete mixtures made of fine
river aggregate and coarse crushed mineral aggregate (figure 5), the concrete mixture with
coarse aggregate of basalt BRe0.45 and the concrete mixture with coarse aggregate of
diabase DRe0.45 had the highest values of compressive strengths and their correlation
curves almost coincide. The concretes made with fine river aggregate and coarse limestone
aggregate KRe0.45 and the concretes with fine river and coarse andesite aggregate
ARe0.45 have correlation curves which also almost coincide, where these concretes had
slightly lower strengths in comparison to the previous two types of concrete. The lowest
values of compressive strength were recorded for the benchmark concrete made with the
river aggregate Re0.45, around 52.5 MPa at the age of 90 days.
80
75
70
65
60
55
50
45
40
35
30
25
20
15
10
DR/0.45
BR/0.45
KR/0.45
AR/0.45
R1/0.45
W = 0.45
0
10
20
30
40
50
Time(days)
60
70
80
90
Figure 5 – Dependency of compressive strength on the type of aggregate for Zc = 0.45
The concrete mixtures of plastic consistency (Zc = 0.55) with fine river aggregate and
coarse basalt aggregate BRe0.55 have the highest strengths, figure 6. The curves
corresponding to the concretes made with coarse aggregate of andesite ARe0.55, limestone
KRe0.55 and diabase DRe0.55 are almost equal. The benchmark concrete still had the
lowest strengths.
The concretes of liquid consistency (Zc = 0.65), figure 7, concretes with fine river
153
aggregate and the coarse basalt aggregate BRe0.65 still had the highest values of
compressive strength. The other concretes, with the coarse aggregates of diabase, limestone
and andesite have almost equal compressive strengths. The lowest values of compressive
strengths here has the benchmark concrete, around 35 MPa at the age of 90 days.
65
60
Compressive strenght (MPa)
55
DR/0.55
50
BR/0.55
45
AR/0.55
KR/0.55
40
R1
35
30
25
20
W = 0.55
15
10
5
0
0
10
20
30
40
50
Time(days)
60
70
80
90
Figure 6 – Dependency of compressive strength on the type of aggregate for Zc = 0.55
55
Compressive strenght (MPa)
50
45
40
35
KR/0.65
BR/0.65
30
DR/0.65
R/0.65
AR/0.65
25
20
15
W = 0.65
10
5
0
0
10
20
30
40
50
60
70
80
90
Time(days)
Figure 7 – Dependency of compressive strength on the type of aggregate for Zc = 0.65
154
4 CONCLUSIONS
On the basis of the obtained results, the following conclusions can be drawn:
With the increase of water cement factor from 0.45 to 0.65 the consistency changes
from rigid to liquid, regardless of aggregate type.
In the case of concrete mixtures mad only of crushed mineral aggregate, an unfavorable
influence of fine crushed mineral aggregate on consistency of fresh concrete mixture is
observed. By substituting the fine crushed aggregate with the river one, the deficiencies of
the mixture with fine crushed aggregate were removed. At the mixtures for the water
cement factor 0.55 tested for consistency, the type of the aggregate has a significant
influence on it. For the water cement factor 0.65 the type of the aggregate has a small
influence on consistency of concrete mixtures. In concrete mixtures produced with the fine
river aggregate and coarse crushed aggregate, with the increase of the water cement factor,
the influence of the type of aggregate on the concrete consistency decreases.
On the basis of comparison of obtained values of compressive strength it can be
concluded that by substituting the first fraction of crushed aggregate with the river one, the
higher values of compressive strengths are obtained. This increase is particularly prominent
at the concretes wit the water cement factor 0.55 which has plastic and weak plastic
consistency.
With the increase of water cement factor, the influence of the type of aggregate on the
concrete compressive strengths decreases. By comparing the obtained data for different
water cement factors, no single conclusion in terms of the increment of strength by concrete
mixtures types can be found.
Concrete mixtures made with the first fraction of the river aggregate and other fractions
of crushed mineral aggregate proved to be applicable in the high-rise building construction
and civil engineering construction, because the adverse influence of fine crushed mineral
aggregate was eliminated.
In the contemporary concrete production conditions, the application of plasticizers is
almost unavoidable. Introduction of this influential parameter is the subject of further
research. It could yield results showing a different influence of the aggregate type on the
concrete consistency.
The initiated research of concrete consistency and compressive strength with crushed
mineral aggregates creates a possibility of further research of application of fine crushed
mineral aggregate in the composition of SCC with the goal of obtaining a good
performance concrete. The obtained results open the possibility of application of these
concretes for production of concrete prefabricated elements such as: concrete curbs,
concrete slabs and high compressive strength concretes, as well as FOR concrete road
paving production.
155
REFERENCES
>1@
>2@
>3@
>4@
>5@
>6@
>7@
>8@
>9@
>10@
Prilog izuavanju korelacione zavisnosti fiziko mehanikih karakteristika betona
od koliine cementne kaše i od karakteristika komponenti / Z. Grdi”// doktorska
disertacija, Niš, 2000.
Osnovi teorije i tehnologije betona / M. Muravljov // Gra{evinska knjiga, Beograd,
1991.
Uticaj vrste mineralnog drobljenog agregata na vrstou pri pritisku ovrslog
betona / G. Topli•i” ªur•i”, Z. Grdi” //Zbornik radova sa internacionalnog nau•no
stru•nog skupa- ''Gra{evinarstvo – nauka i praksa'', Žabljak 03.-07.03.2008.
Effect of limestone fines content in manufactured sand on durability of low- and
high-strength concretes / Li Beixing Wang Jiliang, Zhou Mingkai // Construction
and Building Materials 23 (2009) 2846–2850
Effect of absorption of limestone aggregates on strength and slump loss of concrete /
Abdulrahman M. Alhozaimy // Cement & Concrete Composites 31 (2009) 470–4
Properties of concrete / A.M Neville // Pearson Education Limited, England, 2005
Uticaj fiziko mehanikih karakteristika razliitih vrsta drobljenog mineralnog
agregata na svojstva betona sa posebnim osvrtom na vrstou / G. Topli•i” ªur•i” //
doktorska disertacija, Niš,februar 2009.
Uticaj fiziko mehanikih karakteristika razliitih vrsta drobljenog mineralnog
agregata na svojstva betona sa posebnim osvrtom na vrstou / G. Topli•i” ªur•i” //
doktorska disertacija, Niš,februar 2009.
Influence of crushed stone aggregate sort on concrete consistency / G. Topli•i”ªur•i”, Z. Grdi”, I. Despotovi”, N. Risti” // Facta Universitatis, Series Architecture
and Civil Engineering, Vol.8, No 1, 2010 pp. 99 – 109, UDC
691.212:691.214(045)=111
DOI: 10.2298/FUACE1001099T, University of Nish, 2010
The Influence of Addmixture on Cement Paste Texture Changes / Z. Grdi”, S.
¡or{evi”// Facta Universitatis, Series Architecture and Civil Engineering, Vol.1,
No.1//University of Nish, 1995.
ACKNOWLEDGEMENTS
The work reported in this paper is a part of the investigation within the research project
TR 36017 "Utilization of by-products and recycled waste materials in concrete composites
in the scope of sustainable construction development in Serbia: investigation and
environmental assessment of possible applications", supported by the Ministry for Science
and Technology, Republic of Serbia. This support is gratefully acknowledged.
156
[! !!1, W Z2
" : !
!
. ‰
, , . (
!
-
) , .
‡ . &
, .
: &
, , EXPLOSION PROTECTION MEASURES IN CIVIL ENGINEER
CONSTRUCTION
Summary: To implement protection measures, the main task in design phase and the
first step of explosion protection should be providing of good preconditions. So far in
practice, this problem in design phase has been resolved only by Electrical Engineer. Nonparticipation of other Engineers (designers of construction part, mechanical and tehnological equipment) in designing of Danger Zone Study, makes the explosion protection
incomplete.From the point of explosion protection, project documentation control should be
performed by professionals with necessary multidisciplinary approach.This point is clear if
we consider that total security in affected area depends on, not only electrical, but all
undertaken precautions.
Key words: affected area, explosive mixture, explosion protection.
1
2
ƒ. # G" 2"", .&.
. ‚ +
ƒ, . &. !. % ‚ +
157
* , , !
!
.
3
&, !
. *
&
, " "
.
$
, ,
, !
. $ , , ,
&
, , . $ &
, " , , , !
. ! . * ! , , , ! .
" + ! (
) :
- ! - &
- - - %
– &
, :
) ;#% ;+%'#;'> 0 - , &
.
;#% ;+%'#;'> 1 – , " , !
.
;#% ;+%'#;'> 2 – , , !
.
158
) :
;#% ;+%'#;'> 20:
(% 11)
ƒ & .
;#% ;+%'#;'> 21:
(% 11)
ƒ "
.
;#% ;+%'#;'> 22:
(% 12)
ƒ "
, , "
.
: , , , (
), , &
, (, , .). $
......
" -
* !
- :
1. 2. %
, , " .
3. ƒ
"
! 4. *
() 5. *
&
6. %
(,
, )
7. *
8. %
! &
(
,
)
9. * , ! &
10. G
! ! (&
, !, &
)
11. *
, .
12. .
$ ''Ex'' &
&
" " ! "
159
! . '
! &
, &, & .
!
& "
&.
ƒ
1902.
.# "
( #
ATEX 137 ICOP 1-7).
'
!
– .
' " , .
#
, , , , " " ! !
( #
ATEX 137) ICOP 1-7 (2).
$ "
: &=>$}# '>$\<, '>%>}= &=>$*>>, \]%$
[$;%, \|#}= ''>, =%>;]#% %~>>%, #]\=*<%, '\+$+;<$%@
#%'>%&^ +;|%, ?#>&%*< ( +$$;]#% ?<~>%}=%), |\]'= `%=>;$,...>].
' . , !
, , , , .
'
!
.
* !
, !
( IECEx )
ƒ
!
‡
$
( "
&
''x'' ).
ƒ
, .
ƒ!
''Ex'' .
160
&, &. &
, ''
'',
" ,
(/, ,
.), (,
"
, .)
G
. ( , -
).
* , " !
. , , !
.
!
,
!
, ,
, "
.
! % 426 G
! (IEV),
1. &=>$;>^#}= \${%< % ='+&;?#\ %>;'`$\ – +$;>?='+&;?#;
%~>z# &=>$}# \${%<
! .
2. + %~>> (&=>$}#;[ \${%<% % ='+&;?#\ %>;'`$\)
$
! 3. $\+% (&=>$}#;[ \${%<% % ='+&;?#\ %>;'`$\)
‡ ! !
, :
 I – !  II – ! , .
161
4. %='%&#% >+$%>\$% +;?$~#
' &
! , "
, !, .
5. +$%>\$#% =&%'% (&=>$}#;[ \${%<% % ='+&;?#\ %>;'`$\)
‡ ! 6. +$%>\$% +%|@% ='+&;?# [%';?> %>;'`$
'& , ,
.
7. ='+&;?#% %>;'`$%
$
( , , , , , , .
8. ='+&;?#% [%';?>% %>;'`$%
$
, , , , , .
9. ='+&;?#% %>;'`$% '% +$%~#;
$
, , , , .
10. ;@% [$%#*% ='+&;?#;'> - DGE
' , .
11. ;$@% [$%#*% ='+&;?#;'> - GGE
'
" , .
12. %='%&# ='+$#>%&# JJ<]#;'# %;$ – MEBZ ($%'+;$)
G ! ! , &
25
13. #%&#% '>$\<% +%|@% - MSP
'
" 1000 24 V , 95 mH . ‹
MSP mA, " MSP MSP .
162
14. ='+&;<% (='+&;?# %>;'`$)
' "
.
15. +$%>\$% '>?%$%@% %+%|? '<~ – >+$%>\$% %+%|?;'>
'& !
,
.
16. ;<%?% +;?z%@% +$>'=%
ƒ ", ".
17. O+%'# +$;'>;$ (J;[ +$'\'>?% ='+&;?# [%';?> %>;'`$)
ƒ , &
, , , !.
18. ;+%'# +$;';>$
ƒ , !.
19. ;#% 0 (\ =&%'`=%*< ;+%'#^ +$;'>;$%)
ƒ &
, .
20. ;#% 1 (\ =&%'`=%*< ;+%'#^ +$;'>;$%)
ƒ " "
, .
21. ;#% 2 (\ =&%'`=%*< ;+%'#^ +$;'>;$%)
ƒ "
, , , , "
.
.
22. ?;$ ;+%'#;'>; <'>; '+\~>%@%
„ , , " ,
&
.
23. $$;]#% ?#>&%*<%
‡
& 24. +~>% ?<~>%}=% ?#>&%*<%
‡
, , & .
163
25. ;=%&#% ?<~>%}=% ?#>&%*<%
‡
&
, , .
26. \z~> (&=>$}#;[ \${%<%)
$ & ! "
, , , , .
27. >+# %~>> =;< ;JJ<{\< =\z~> (&=>$}#;[ \${%<\%)
G
" ! :
- , , (
") ! ).
- ! " .
28. $=>%# \?;] (\ &=>$}# \${%<)
G
! " " ".
29. #]$=>%# \?;] (\ &=>$}# \${%<)
G
! " ".
30. '+>?%@ >+% (\${%<%)
!, !
!
,
&
!
,
.
31. '+>?%@ +;<]#^ \${%<%
!, , ! .
32. +$;+%|?; =\z~> ''d'' (e&=>$}#^ \${%<% % ='+&;?#\ [%';?>\
%>;'`$\) – #+$;];$# ;=&;+
„ ! – ! – "
& ", "
, ". $ &
"
.
33. +$;+%|? '+;< – $%'+;$
G
"
"
&
"
.
164
34. %;$ (#+$;+%|?;[ '+;<%) – ~$#% +$;*<+% – ~$#% $%'+;$%
! " , ! .
35. %='%&#; ];?;|# %;$ - $%'+;$
'
" ! " & .
36. \_#% #+$;+%|?;[ '+;<% – ]\_#% $%'+;$%
'" ".
37. +$;+%|? +$;&%# ;&%>;$ – +$;?;]# ;&%>;$
!
, , ", " .
38. \@@ +<'=; ‘’q'' (e&=>$}#;[ \${%<% % ='+&;?#\ [%';?>\
%>;'?$\)
„ ! "
, ,
!
, , ", "
.
39. ;?z%#% JJ<]#;'> ‘’’’ (% &=>$}# \${%< % ='+&;?#\ [%';?>\
%>;'`$\) – +;?z%#% '[\$#;'>
„ , &
"
" " ! .
40. $%#}#% >+$%>\$% (% &=>$}# \${%< >+% ‘’’’)
G ! ! & !
:
) " ) " .
41. $< tE (% &=>$}# \${%< >+% ‘’’’)
‹
, (
) lA, &
"
.
42. ;?z%# +$>'%= ''p'' (e&=>$}#^ \${%<% % ='+&;?#\ [%';?>\
%>;'`$\ – #%]+$>'%=)
„ ! &
" " & "
.
165
43. \=~> '% +;?z%# +$>'=; – #%]+$>'%=
‡"
, " , .
44. $;]\?%?%@ – +$]?#>&%*<%
ƒ "
! , & .
45. %~>># [%' (% &=>$}# \${%< >+% ''p'')
2 &
" &
&
. % &
, .
46. ;>%+%@ \ \| '';'' (&=>$}#^ \${%<% % ='+&;?#\ [%';?>\
%>;'`$\)
„ ! ! !
! "
&
".
47. ;&% '% '?;<'>?#; JJ<]#;~z\ – '%;'[\$#;'>
‡ , , , .
48. &=>$}# \${%< '% '?;<'>?#; JJ<]#;~z\ – '%;'[\$#;~z\
! ".
49. $];]%> &=>$}# \${%< (=;&% '% '?;<'>?#; JJ<]#;~z\)
! ", .
50. &=>$}# \${%< ''i%''
! " &
:
, , .
51. &=>$}# \${%< ''ib''
! " &
.
52. J<]#;'#% J%$<$% – %~>>#% J%$<$%
' ! " , " "
.
166
KISEONIK
IZ VAZDUHA
EKSPLOZIJA
IZVOR
PALJENJA
ZAPALJIVA
SUPSTANCA
1.: Z ,% Figure 1.:Represents elements, explosion inducements
ELEKTROPROVODLJIV
LEPAK
UGAONA LETVA
ANTISTATIK PODNA
OBLOGA
PODLOGA
UZEMLJENJE
BAKARNA TRAKA
10x0,08 mm
2. "% Figure2: The antistatic floor
167
0%
0% DGE
DGE
GGE
100%
100% DGE
'
'
3: $% Figure 3: Graphic display of explosion boundaries
1. G. 3: ƒ
, *
‚
“‹”, ˆ
,
‚
1996. .
2. G. 3, 0
#. ƒ": , ‚
, 1996. .
3. G. 3, 0
#. ƒ", 3 G. : G
! , ‚
, 1996.
4. ‡ : ƒ , % , ‚
1995. .
5. G. 3, ‡
ƒ. ': ƒ &
, “‹”, ˆ
, ‚
, 1994. .
6. G. 3, 0
#. ƒ", $ ‹. 3":
G
! , %
,
*
‚
, “‹”, ˆ
, ‚
1996. .
7. $ $", 3, 0
ƒ": ƒ&, , ‚
, 1998. .
8. #. G ‹": ƒ& &
, Fahrenheit, ‚
1995. .
9. ƒ ($. $3 24./71 26/71).
10. ƒ ($. $3 20/71 23/71).
11. ƒ & &
($. $3
45/67).
12. ƒ & .
168
#
[! 1, [
! 2, {U :! 3, \
Q! 4, [
Z
! 5, * ' 6
! ‚ : * "
&
1000 ‡, $. & 25.000 m2. G
!
0‚ , 15,5 m . $
" , &, ' 1994-1-1 .
': G, , MAIN DESIGN OF OPENED MULTISTOREY PUBLIC CAR-PARK
IN KHARTOUM
Summary: In this paper, main design of opened multistory car-park with capacity for
1000 vehicles in Khartoum, Sudan, is shown. It has rectangular layout with seven stories
and gross area of 25.000 m2. Floor structure consists of reinforced concrete slab on
corrugated steel plate, composite steel beams with span of 15.5 m, and floor cross beams.
Head stud shear connectors are used, and design of composite beams is done according to
European design codes for composite steel-concrete structures: EN1994-1-1. Plastic design
is used for all composite floor beams.
Key words: car-park, composite structures, Eurocode
1
ƒ. , . !. &, 2!
*
‚
G, . !. &, 2!
*
‚
3
G, . !. &, 2!
*
‚
4
G, . !. &, 2!
*
‚
5
. !. &, 2!
*
‚
6
. !. &, 2!
*
‚
2
169
1 3
&
. G : , & , , .
„!
, (&
&
). '
" &
.
1 – W
% ! G
Figure 1 – Different traffic arrangements
ƒ & & . * , , &
"
. ƒ
& "
! 3000 5000 . ‡
"
:
- , , "
,
170
-
"
", , ,
,
- , , "
"
,
- & &
,
- &,
- " &
,
- .
&
: " , , & , " & , , , (
, ), .
, "
(
2). $ , 2,3 m x 5,0 m, , " 6,50 m. ' "
.
‹
( 1), " " . G 3,5 m, 7,0 m .
' ( 2,10 m). $ "
, !, " &. *
"
1:6 1:10. . ‡ " & " . „!
, , " , ! !
.
‹
" !
&
"
& " "
2,50 kN/m2, & 3,13
t , " &
(1
2 t).
" !
(& ) !, , . % "
(). * , 0‚ . „!
.
" , 171
. * ( 2,3 m 2,5 m).
( 15,5 m 16,5 m) , , . * " „
"“, " ( 7,5-10 m), - . ‡ , , . '
"
HEA, HEB HEM , !
.
2 – W
% Figure 2 – Possible layouts of parking places
!
, &
(
) .
ƒ &
0‚ , 0‚ , „hollow core“ ,
& 0‚ . % I
, & &. ‚
0‚ , 20% . ‡ , 172
&
. '
"
1/2 "
. „
, " &
S355 S420.
2
! ‚ - ‹
& $, ‡, 1000 &
2,5 t.
+ ‡ .
: 41,582,8m (3436 m2).
%
! 2,10 m, 2,63 m (2,10+0,40 +0,13). &
3, .
2& (
+ 6 ). $ ! , "
& " , "
, ( 4). ' 13,15%. #
2,35,0 m. * 143+156 6=1079. % " !
.
3 – G : – (
)
Figure 3 – View of public Car-Park in Khartoum
173
&
. ƒ &
&
. # &
(
5 6).
2.1 '+;*;#; $~@
'
" !
,
"
" . ƒ& ! 2,3 m. ƒ 15,5 m (Lmax = 5,0 + 5,5 +5,0 = 15,5 m), " "
. ‡ , "
, , !
.
4 – ! „
„ G
Figure 4 – Traffic layout and parking places arrangement in ground floor
ƒ 0‚ , a 130 mm (60+70 mm). ƒ
" " .

2,5 m, .
*
, . % " "
S355JR. *
&
4,
& 5 6.
#
&
" $ƒ$ , 4 .
‡ "
3 kN/m2, (") "
2,5 kN/m2 , "
(a a 19 m/s)
.
174
2.2 {\'+$%>#% =;#'>$\=*<%
,
, " , .
5 – ZG $ Figure 5 – Elevation of facade and in the middle axis
# ,
( 7), : EN 1994-1-1:2004: Z% %
#
1-1: .
ƒ
, 1 2. ƒ
&
: " " .
(15,5 m), (
!
).
‚" & & , , !
" . * " & , , ! .
175
& & &
"
, &, & , &
& .
6 – Z% %
% Figure 6 – Cross section of steel structure in ramp zone
, . &
, , " „I“ . & . " & . ‡ &
&
, .
7- Z
% Figure 7 – Composite section plastic resistance
176
% 15,5 m IPE 400 (S355JR). "
"
78%. ‡ & ‡16
mm 175 mm ( ). , (") "
. % "
, " 13 cm.
‡ "
(­=2,3 m) , " . ƒ 9,2 m . # &
, HEB450
(S355JR). ' & ‡16/250 mm, !
.
$
175/60/1 mm 7,0 cm, 13,0 cm. ƒ & 2‡6mm (RA 400/500-2) , & Q188. 2,3 m.
2.3 >\J;? '+$[;?
$ !
.
. ‡ . $
HEB &
, HE0
.
$ !
. % & ‡133/4 mm (S355JR). #
"
.
2.4 ;#'>$\=>?# ]>%| ?;{@
* ! (
), . $
"
8.8, .
% " ,
& ( 8). ‹
! , !
, . ' "
(CNC – ) .
177
% !
$, $ BelKhart &
‚
. ƒ $
ƒ $, .
) { % ! U% a) Joint of floor beams and column with angle cleats
) { , % b) Joint of floor beam, brace and column
8 – :% U Figure 8 – Characteristic joint details
178
' !
! . & 800 , &, .
, .
G" , , , " , & , ! .
3 "
(NC – )
. „
&
, ! .
2.5 \#]$%@ ;J<=>%
‡, " ƒ ‚
' & 20 ÷ 30 m, 2
. $
& "
. ƒ
, , " , "
. *!
80% 7 m 0,1 mm. ' & 30 m (' ), !
15 m .
‡, , " &. ƒ
&, $ & , &
$
,
. ‡ , 160 mm .
ƒ, "
, . " , & & , 2,5 m .
$ &
2,30 m, 2,50 ÷
3,85 m, 1,40 ÷ 4,00 m, .
G
!, , "
, . ‡ , & .
„ & &
& , 179
&. ' !
, ! , 25 cm. $ , , !. ' , . * ,
&
.
3 $ , .
2 ‡ , . * , , !
" . &
, ". '
, , . ƒ
, &
.
' & & $, !
, "
.
ƒ !
, . „!
, . $
& 32 kg/m2. $
!
, , 3000 , .
ƒ
, " , , .
[1] 
G – : () /
#
&
// ‚
, 2010.
[2] * 1993-1-1:2005 3 – Z% %
% ; Q 1-1 // 2!
*
‚
, ‚
, 2006.
[3] * 1993-1-8:2005: 3 – Z% %
% Q 1-8:
Z% , 2!
*
‚
, 2006.
[4] * 1994-1-1: 4 – Z% %
; Q 1-1- // 2!
*
‚
, ‚
, 2006.
[5] [
/ #. ‚!
, %. G", #. ‚, #. „" //
2!
*
‚
, ‚
, 1999. .
180
{
{!1
‚
: * , &
., (
) 3 , (, ,
, – !
.)
: % G, , % ,
$ .
WHAT IS NOWADAYS IMPLIED BY THE CONCEPT OF
GEOTECHNICAL ENGINEERING
Summary: In default of precise scientific and technical definitions and interpretations,
what is nowadays implied by the concept of geotechnical engineering etc., the author makes
an attempt to present his own standpoints, as well as those of other experts from our
country and from all parts of former Yugoslavia. This applies particularly to the field of
geotechnics (concepts, interpretation, connotation, modeling – forecast or process etc.).
Key words: geotechnical engineering, geotechnics, geotechnical modeling, definitions and
concepts.
1
G , .&.
., &
0
$
,
% , , .. – ‚
, ‡ 257
181
1. (
, "
), , :
- , , . ! , [;>^#}=% '?;<'>?% >$#%, , „“
(feasibility), . !
. $, & , ,
- , , !
& .
* , ?%$<%#>#;[ - ;+>%&#;[ (
) $~@%. „ , , !
, !
,
, !
- , , ,
!
– !
. 2
& , !
, %~>> _?;># '$]#, (), ,
" , ;J<=%> - >$#, &
& „
“ ( ), ( ), &
, , – , +$;<=>;?%@\ [$%{@\ ;J<=%>%, , & – , !
, „;>^#}=; #_@$'>?;“, , '\~>#, , #_@$'=; [;&;[<;, , , ;J&%'> [;>^#= ( . 1).
* , – , ,
„
&
“, „
“ ( , - ),
( , ), () , &
, , , ( ), "
, +$^?%>%<\ +$@\<\.
1. ‚, ?
1.1. `#*<, +;<;? >\%}@%
# – (&
) , "
, "
"
, :
;>^#}=; #_@$'>?;, !
, , , , !
(R. L. Handy – 1995).
182
$ !
!
(
) , , !
.
„ (), , ":
- # &
?
- ‡ , " ?
- "
, ?
- # " ? , ?
- ‡
?
- * , ?
- ‡ "
?
- # !
? # ? *
, ?
ƒ
. G
!,
, &
&,
. ' , , -
.
'
, , , () , [;>^#}=;[ #_@$'>?%
#_@$- '=; [;&;[<;, (D.P. Coduto, R.L. Handy). 3
, (
) , !, " , (
!
) , (
), [;>^#=%.
1. – % G
U &, G .
Figure 1. – Geotechnical engineering is a
branch of civil engineering, while
engineering geology is a branch of geology
183
# [;>^#}= ;'#;? % +$;<=>;?%@,
&
, !
, , , , . G , , & , () .
‰
, , , , . , , , . ,
" &
– , , , ! , . „ ,
: ƒ. +, #. $", #. 3
", ‹.
‹" ™. " ( ), 1997. . () %&[;$>%, .
2, & [;>^#=, '$;]#
#%\=%%.
ŠG30
2+230 2%‡0
G0„G0„‡0
GŠ0'‡0
2. - (: Z.€, Q.!, Q. \!, {.{!, `. W!)
Figure 2. - Relation of geotechnics toward other sciences
(according to: P.Lokin, D.Sunari, D. Jevremovi, V.Vujani, LJ. Roki)
184
„Š'‡0
(!
)
ƒ
%‡0
G, ", (
), – , , () , , . , : G.„. +", ‚. $
", G. 3", 3. ƒ
", ‚. ‡&", #.
‚&", 3. Œ", . 3", ‹. 3", '. ƒ", . $", '.
'", $. $
", ƒ. 0, #. ˆ
", G. G", 3. 3",
#. 2", G. 3
", . ", '. + . 0 , & " . ƒ. $
, .‹. ƒ, .G. $
, 2.$. %
, '.0. ˆ,
T.W. Lambe-a, R.V. Whitman-a, F. Ruter-a, K. Klengel-a, J. Pašek-a, M. Matulu, D.P. Codut-a,
R.L. Handy-a, J. Burlend-a i dr.
'
, , (
) , .
, : [;>^#=% \&>]'*+&#%$#% , : &
, , , , , &
, &
, &
,
. !
, ! , , (!
, ), ., . , , &
+$@# [;&;[<, $\]%$'= [$%{?#'= >^#= (ƒ. +, ‹. ‹").
* , & - %>%>=, '>%>'>=,
^<, `=, ^%#= ]$.
# , &,
. $
&
: !
.
2
:
& (& , , !
"
);
(
);
( - , !
"
). (ƒ. +, ‹.
‹");
(
, , , , .);
(
, . ,
- , .,
- , ).
, , [;>^#}=% '>$%_?%@%,
& , ,
185
, , , "
(ƒ. +, ‹. ‹"
.). '"
, ! , . ;&;[<% ,
, >^#}= #%\= .
;&;~=% '$]#% , - " ! . „ "
, & &
, (G. G, ƒ.
+, ‹. ‹" .).
$# ( ), , !
, & . '
, $|` (G. G, ƒ. +, ‹. ‹" .).
* , !
( " ), >&;, , , , (T. W. Lambe, R. V. Whitman).
$ , &
(G. 3", ‚. ‡›", ƒ. +, #. ‚&" .).
„
, +$$;]# =;#'>$\=*< (
), (
). 0 , . 3
,
, .
„
, $%]# '$]#, : , , , ,
., .
#_@$'=% [;&;[<% ( ), , , "
( ), &
" , (. G. $
).
#_@$'=; – [;&;~=% '>$%_?%@%, , , & (ƒ. +, ‹. ‹" .).
‡ , &
, [;&;~=% #%\=%,
(2!
), , (2. $.
%
).
* &
(F. Reuter, K. Klengel, J. Pašek),
]; ;>^#=, " : !
(
, "), , (
!
), (
, , ), ( ,
"
), &
.
186
1.2. ;>^#}=; #\$}=; ;]&$%@ – !
* &
, , ƒ
- 3 ‚ (3ohn Birlend), › + 1987.. * , &
: & $
/ ,
& /
- . 3
, ; .
‚ . ƒ
‚ , "Ground Engineering" ('
1999.), a . 3.
2
/ 2
ƒ
/ & / , ,
, ƒ
G
+ / ,
, % .
‡
, 3. – Z }
(* 1999. .)
Figure 3. – Expanded Burland Triangle (Anonymous 1999.).
‚ !
& , !
, , "
. ‹& & & :
+$?;, ]$\[;, .
‹& , !
&
. „ 187
, &
"
(
) & " .
ƒ
& ,
‚ , !
, . ‡ &
, & & &
. š &. %, , & &
. G &
&
.
' & (1990.) : “[% / . Y (
), % ”!! ‡ . 4, : ! G $% ! % , G %/.
G0„G0„‰‡
$$„G
%‰‡
$$„G
'*G‰‡
$$„G
4. – \ $ Figure 4. – Simple definition of modelling
&;_#;'> ;]&$%@%
G
, , +$;*' " &
. * - ( ), &
.
* &
, , , !
. $ , . #
, &
, " &
.
188
G !
, &
. ƒ
( ); $ ( / ), ( / ") $
( ). $ &
&
, .
ƒ &
, &
.
$#% ;]&%
*!" &
, . ‡
? Œ , , ?
G"
"
, >$
;+~> =%>[;$<:
x
Y%: . ' , & " ;
x
Z% / Z: ƒ , !
, !
;
x
Z&: ‡, , "
! .
$
" , &
"
- !
, , / !. ƒ
&
( /
), (
), .
+~>% >;];&;[<% ;]&$%@%
ƒ . „ & G
 (1981.), . '&]z =;$%=:
x
(ƒ ).
x
ƒ
(G
).
x
"
, , , ('
).
189
, , =%; ~>; '\:
x
ƒ : 2
,
x
#
: ƒ
,
x
: '
,
x
: ,
x
„: ƒ, .
># ;]$]#*
ƒ & & . &
"
&
.
‹& , , , &
. # &
/ .
W G G % , ! G, , U .
'>$%<#;'> \ <]#;'>%?#;'>
$?% +;\=% < : % , G. & . %
. ' , . ' ,
"
- , .
ƒ
" . ‹
.
# "
&
, , .
" &
. G . 2
! &
/ &
.
3
, je (
), . 190
&
. ‡ , .
$\[% +$]#;'>, &
, , !
. ‹ !
" , , . &
.
' , , !. ƒ
" , &
$%
. ƒ
, &
&
i &
" o
&
! "
!.
3. ;>^#}=; #_@$'>?;, &
, .
;>^#=% +$]'>%?|%, &
, &
, .
;>^#=% '%]$_, , &
, , . 2
, &
, &
( !
).
ƒ
^%#= >&%, ^%#= '>#% (
&
,
), ^%#=% `&\]% , – , [;>^#= [;>^#}=;[ #_@$'>?%.
* +$$;]#% - [;&;~=% ?~>%}=% =;#'>$\=*<%, &
, . % , " >%}#; ]`#'%@ +$$;]#
=;#'>$\=*<, .
\$}=; (
) ;]&$%@, ( &
), &
!
.
$#% [;>^#=, !
, : , , , .
ƒ , , ;>^#}=; #_@$'>?;, [;>^#=%, , , () , ,
, , %\\ +$%?&%# '>%? ; >;.
191
- ƒ. +, ‹. ‹": [
& %
G , & – I $, , ‚
, 1996.
- ƒ. +, #. $", #. 3
", ‹. ‹", ™. ": , „2
“ –
, $„$, ‚
, 1997.
- ™. ", ‹. ‹", ‚. 3
, G. 3": [
!,
$
„‚
– & 3“, ‰, 1997.
- Gudelines for geotechnical reports, technical buletin, Ministry of Transportatiom and
Highways, Canada, 1998.
- V. Vujani”, P. Lokin, LJ. Roki”: Geotechnical investigations in road engineering, Zbornik
referatov (1 del), 6 Slovenski kongres o cestah in prometu, Portorož, 2002.
- S. Lee Barbour and John Krahn, Geotecnical News, Richmond, 2004.
- $ , .., ‚
.
192
Z [!1, } \
2, [
!3
‚ ! „ “,
-2, ‚ – .!
: 2 „G
‡“ ! $
ˆ
2
.  G-2 20 m - 16 m, &
155 m 40 m. ƒ a, . ' , & " : , , &
,
, , .
: % , , , GEOTECHNICAL INVESTIGATIONS AND SLOPE REPAIR ON
THE BORDER CROSSING POST „MEHOV KRŠ“,
ON M-2 ROAD, ROŽAJE – K. MITROVICA
Summary: Border crossing post „Mehov krs“ is located between the Republic of Serbia
and the Republic of Montenegro at the entrance of Ibar river gorge. It was formed by the
widening of M-2 road by the construction of anchored gabions structure 16 m high and by
building a steep slope in dolomite limestone. As the built slope being 155 m long with the
hight within the range of 5 to 40 m was very cracked and potetially unstable, thus requiring
geotechnical surveys of cracks and faults. Based on analyses of labile blocks, a series of
repair measures were undertaken such as: retaining wall, anchors, nets, wire cables, sprayed
concrete and perimeter channel.
Key words: border crossing point, road widening, slope, repair measures
1
# .&.!, $ % , - ‚
.&.
., % , , .. - ‚
3
.&.
., 2 &
% , , .. - ‚
2
193
1. * „G
‡“ ! $
ˆ
2
, G-2, &
– ‡ G, km 1168+310 - km 1168+650, 1, !
"
20 m 12 m ( ), 8
m ( ).
ȱʂɯʒʅɪȱɼʇʘȱ
1. – $ G G Figure 1. – Geographic location of the investigation area
ƒ
„ “ ‚
,
!
, 10:1, 16 m & & .
, 2009 , „G
– Œ“ .
!
, „2
&
“ ‚
. * & , ,
, . ' 30 m. ' &
,
" .
' , , ! , & &
194
. %
" :
- & - & "
&
;
- "
, ;
- &
;
- & - !
, "
: , .
1. " ! ƒ
& & 45 - 70q. ‹ , ,
. "
Œ. ƒ , 785 – 850 m, : , !
.
ƒ
"
& 155 m, , (‡). 2009 . ƒ GN-200 VI
. 5 – 30 m ,
"
50 - 80q.
ɫʇɧʃɸʕʃɸ ʆʇɯʁɧɶ
ʂɯʒʅɪȱɼʇʘ
2. – Z Figure 2. – Panoranic view of Ibar canyon
195
#
- , ( ).
$- .
3. – : Figure 3. – Rupture contour plot
* Y
1. Y
2.
 - .
1. – ' #' Table 1. – Basic crack properties
% Z% 1
2
3
114/51
308/43
224/87
1,0 – 5,0 m
2,0 – 10,0 m
10,0 – 30,0
m
0,0 – 2,0 cm
QG (m)
10,0 – 20,0 m
Z [$
Š "
:
0 – 10,0 cm
196
3,0 – 5,0 m
10,0 – 20,0 m
0,0 - 10 cm
2. – ! % " Table 2. – Input parametars for geostatical analysis
Z"W"[YW
\Q*‡
J
kN/m3
E
MPa
Q
Vz
MPa
c
MPa
1,80
®
(o)
47
cr
MPa
®r
(o)
Q
%
26
10.000 0,28
0,12
%, 0,06* 35*
Z
0,05
20
% !
" & , 4.
ƒ
, 6, 27 1, Ep=114/41, Fs = 1,08 !
&
.
4. – "
! G Figure 4. –Kinematic shear analysis along one crack
5. – % Figure 5. – Stability analysis along fault
197
2. ! ƒ & & , , , !
.
% &
, 15.2
mm "
1770 kN. #& 13 m, 6.00
m, 7.00 m, $ 6.
6. – QU % Figure 6. – Detail of the prestressed geotechnical anchor
7. – Z % Figure 7. – Panoramic view of the border crossing
198
ƒ 4.493 m2. ' !
115 &
13 m. "
" , !
&.
ƒ
" :
ƒ 0,50 0,75 % . ' . . $
" . % &
. * .
ƒ
&
('Le), "
('Lt).
'Le
Z
LS
,
E˜F
:
Z
;
F
;
.
0 ('Lt) &
&
('Le), "
"
. % &
.
ƒ
, " ,
.
ƒ ƒ
& " :
ƒ
" . ƒ
, " :
- &" 10% !
;
- 10%, &" " 30% !
&
15 ;
- "
10%;
- " 60% !
, 15 ;
- "
10%;
- " &" 90% &
15 .
- "
10%;
- 50 - 75%, "
.
199
ƒ
, !
, , " "
.
-
'$‹$„ ‡0‚+0
1.
' :
r 0,10m1 ;
R 1, 20 u r 1, 20 u 0,10
La duzina.sidra
0,12m1 ;
6, 00m1
Am arhezija.cem.masa.tlo
350kN / m1 ;
IM ugao.trenja, tlo cementni.valjak
VV
h u J ST
VN
V V u cos 30$
15 u 22,50
47(iz.geot.elab.)
Fs
47
1,3
36$ ;
337,50kPa,
337,50 u 0,866
292, 28kPa
$ ! :
T
R1 ˜ S ˜ La ˜ ª¬ Am V N ˜ tgIM º¼ 0,12 ˜ 3,14 ˜ 6, 00 ˜ >350 292, 28@ 1452.kN / sidru
2.
*
.
‡ a &
, ‡ 15,20 mm, 0, "
1770
kN
kN/mm2, Z = 413 kN/.
3 x Z= 3x413 kN/ = 1239 kN/ < „=1452
kN/
3.
ƒ
:
La ˜ R1 ˜ S ˜ a 6, 00 ˜ 0,14 ˜ 3,14 ˜ 680
FCUPANJA
1, 448 ! FCUP.DOZ 1, 400
Z
1239
a o i.& , %
/ .
4.
*
Ls = 7,00 m
5.
* & : 6,00+7,00 = 13,00 m
6.
&
$ 7,00 m;
G : 2,10 x 10 kN/m2;
ƒ
& 0,0152
ƒ 420 x 10-6;
&
200
'L
Z ˜ LS
E˜F
413 ˜ 7, 00
2,10 ˜108 u 420 u 106
2891, 00
88200
0, 032m1
7.
ƒ , 75% x Z = 0,75 x 413,00 = 310
kN. .
8
‡ &
! , :
– ! , : 350
kN/m2
LA
T ˜ FS
Rc ˜ S ˜ a
590,49 ˜ 1,6
0,24 ˜ 3,14 ˜ 350
944,78
# 3,50m1
263,76
. $ "
km: 1168+435 km: 1168+470 km: 1168+535 km: 1168+555. 2
3 m, „-“
. ƒ , , , & . ƒ
ƒ
' !.
# &
&
. ƒ
!
& " : & "
550 kN/mm2; &
3 mm; 270 g/m2; & (), ! . G
&
! , 3.3 mm, 270 g/m2, 20
mm. ‰
& 1 mm3. š & , . . 
&
&
" .
ƒ , , . # & & & " , . .

&
" . 0
&
! ,
! " .
0
!
0 400/500-2, 19 mm. 270 g/m2. *
150 . #& 100 cm , & . 0
2-4 m. ‰
&
& &
. ! , & "
" , " :
"
550 kN/mm2; 12 mm; 201
270 g/m2. & &
( ).
ƒ
&
&
, (
30 cm), .
# , , !
, "
.
3. $ G
‡, , . $
!
, ,
!, !
.
ƒ
, „G
‡“, $.
-
„. – ‚: Z & & ,
Q $ }
[, ISHEBECK TITAN, Z ATLAS COPCO, Z Q „[ “,
# 1986.
202
W ! 17
: &
!
. % "
!
.
': :
, & , & .
PM IN PUBLIC PROJECTS BUILDING:
THE PROCESS OF PROJECT GUIDANCE
Summary: In this work is shown the role of project manager in public buillding project
guidance. The project-team working technology is sistematicaly presented, with special
consideration of the role of project manager, who direkts the organization as well as the
realization project of public objekts building programme.
Key words: key word: public building , project guidance, management
1
[, .G.&., % { G :, colaboratore del Dipartimento
di Ingegneria Civile Universita' di Firenze; e-pošta: spaicr@yahoo.com, spaicr@dicea.unifi.it
203
1 (
, ), , ( ) (
" " ).
" !
. % , &
, " !
, , , . [8]
2. "
1. ‹! " (
) . G&
, . & !
. ƒ -
( ).
2. ‹! , . %
&
" () & , & .
3. '
& ! ( ).
4. ‹! () .
5. ‹! (
) !
() ; , .
6. ' , ,
.
7. *!
& , .
8. #
, , , -
.
9. ‡
!
!
, , "
.
10. * !
!
!
:
( ),
, &, ,
204
, .
11. ‡ :
- & ,
- !, ,
! ,
- ! ,
- , , , .
12. ƒ
& !
, .
13. ƒ
!
.
14. () "
.
15. ‹ () .
16. * !
&
& .
17. *!
.
18. ƒ
!
( ).
19. ‡ & & , , ‹! .
20. & ( ) .
21. ‡ ().
22. $ (
).
23. ! ( ).
24. ‹ , -
.
25. ƒ
, .
26. ƒ .
27. ‡ ,
" .
28. ƒ : !
.
29. ‹! !
.
30. ƒ
!
.
31. $ .
205
32. ‹ ,
.
33. * ( ) .
34. ‡
! - (..., , , ,
...).
35. ‹! ()
.
36. $ , , !, ( ).
37. ƒ
&
– - ,
!
, !
.
38. „& (#
. ) &
( ) .
39. *!
!
,
.
40. ƒ
! (
) &
(
,
!
).
41. % !
, &
,!
.
42. #
.
43. # () !
"
.
44.* " !
& &
.
45. % ( ) ! () ( . 3 5 ).
46. % ( &) ! ( , ) &
.
47. !
.
48. ‹ .
49. * ( ).
50. .
51. ‡ ( . ' ) !
! .
52. , ! , " .
206
53. % () 10%
.
54. ƒ , !
(
,
, ,...) " .
55. ƒ!
!
.
56. % !, !
! .
57.
!
.
58. *!
, , .
59. ƒ
&
! .
60. ƒ
&
.
61. # "
(
).
62. #
, " &
.
63. $ "
.
64. $ & (
) !
( , ).
65. ƒ
!
, "
.
66. #
!.
67. 0 ! , !
"
.
68. ' &
.
69. * ! – "
.
70. #
&
& !.
71. "
.
72. &
( , , .) .
73. # .
74. „ .
75. ‡ 207
.
76. ƒ
! & .
77. * !
, , &
" .
78. % (
) .
79. 0 , .
80. ‡ , ,
!
.
81. ' .
82. ‡
() " .
83. ƒ .
84. ƒ
, ! " .
85. ‡ !
.
86. $ " .
87. * & .
88. ‡ ! .
89. ƒ!
"
.
90. $ ( ).
91. ƒ
, .
92. ƒ (
, ).
93. # .
94. , , ,
95. ƒ
!
.
96. !
"
& ,
97. 0 " .
98. * " ! - .
99. 0 , , , ! ; & ! &
.
100. ‡ ! .
208
3. $*<>* !
?*@* D
E
F ?<HH< @
JL*
!<
M** H $H*E
M N,<*9L
"
{Z
1
2
*.,
,
, ,
,
3
4
5
6
7
.&
«
«
,
„
., .
,
,
8
9
10
11
12
.&.
.
.
,
,
,
13
,
,
14
15
,
,
,
16
.
. &
17
18
.
.&
,
19
,
20
21
.&
($)
(
)
%
209
{
!
.,
ƒ
.
ƒ
&
$&
ƒ
,
.,
.
22
.
.&
,
.
", ,
,
23
24
25
,
26
27
28
29
30
31
. . &
32
33
34
w
35
. 36
37
38
39
40
41
42
43
44
45
,
.
. . &
.
.&
.
.&
.
.&
&
!
.
..,
. „
.&.
.
-&
.
. .
,
,
210
,
,
,
,
,
‚
ƒ
%.
. %
.
(
)
.
ƒ
‚
ƒ
%
ƒ
,
"
46
47
48
.
.
.
!
!
49
. 50
. !
51
!
52
!
53
!
54
!
55
!
56
57
58
!
!
!
59
!
60
!
,!,
&
. ..
.,.
.,
.
.&
,
. ,
!
,!
.,!
,!
.,
!
., !
61
!
62
!
63
!
64
65
!
!
66
67
!
!
68
!
69
!
"
!
*,
,
,
,
ƒ
,
!
. . &
. .&
. . &
,!
211
‚
!.
&
,
,
,
,
,
‚
'
ƒ
.
"
ƒ
70
71
!
!
72
!
73
!
'
74
!
75
!
,
!
'
/
G
76
77
!
!
,
,
78
79
!
!
80
!
,
,
,,
,
81
82
!
!
,
83
!
84
!
.
‡
85
!
,
'
86
!
,
ƒ
87
!
ƒ
88
!
89
90
91
!
!
!
,
,
,
,
,
, 92
!
#
,
&
,
,,
!
-« #
,
!
,
!
,
!
,
!
,
!
,
!
"
&
, , &
212
,
,
,
'
ƒ
ƒ
‚
93
94
95
96
97
98
99
100
!
(
.).
. &
,
213
ƒ
*. .
#.
'
4. ! " - 214
215
216
5. ISO 10013 »Guida per lo sviluppo di un sistema qualità«,Tipografia del Genio
Civile, Roma, 2003;
[2] Patrone P., Piras V.: » Construction Management » Alinea, Bologna, 1997;
[3] ƒ
", š.: » G &«, 2!
, ‚
, 1992;
[4] $" ., „
" G.: »Criteria for chosing tunnels as a possible corridor for
urban public instalation«, Third International Conference on the Sustainable
City, Siena (Italy), 2004;
[5] $" .:«Z $«, % »« . 2-84, ‚
, 1984;
[6] $" ., £!" G.: »|U $«, , *
›
»‚" ‡"« »«, ‚
, 1999;
[7 $" . : »Optimization of dynamic plan of annual program of public
utilities«, 4th World Congress ICEC, Cape Town (South Africa), 2004;
[8] $" . : „*
: !
“, II '- „2'ƒ 2008“, 2!
*
ˆ2, š, 2008;
[9] „
" G., $" ..: «Z U
», «„
-G
›
» .1/05,
‚
, 2005;
[10] „
" ‚.: »Z & & «, 2!
, ‚
, 1992;
[1]
217
*& [U!1
! " !
: * &
‚ +. . !
. ƒ " . #
&.
': ‡ &, , .
PRICE OF CONSTRUCTION AND THE RISK OF CHANGE IN
PRICE OF A BUILDING CONSTRUCTION
Summary: The paper describes the construction planning and project management for
construction of a residential building for the real-estate market in Banja Luka. Optimal
planning and management strategies are based on modern methods of planning and the
process of multicriteria optimization in construction planning and management of a
building construction. The risk caused by the change in price of construction was taken into
consideration as well as the strategy as a response to the risks of the construction of a
building. The paper also shows the planning model and management model of a building
construction, as well as the considered possibilies of model improvement. Finally, some
directions in the further research are given.
Key words: construction price, the difference in price, the risk in building construction
1
G. .!.&. G !
, !
, ‚ +
219
1. ƒ
“
PMI-(Project management institute)2 [12] &
. 2
. $
- G
3" 7 ‚ +.
1.1.
, ! ‚
* !
"
! !
. # " „ADHOCK“ : MS Project 3, ƒ
, G, , 2!
, 02 r. . '
" !
!
(Cost engennering) [7]. 0
& o
!
!
–
(„Cost – benefit“ ). .
ˆ & &
" " !
&
" ( ) :
&
"
":
2
3
-
!
,
!
!
,
-
$
"
!
.
PMI ( Project management institute ) - 0
ƒ
›
MS Project – $
220
2. 2.1. ƒ & [5], [6],[7], [12].
G
:
x
G
(Activity base costing),
x
G
(Bills of
Quantities),
x ƒ („Monte Carlo“method ),
x ( ).
":
x
, , , ,
x
.
2.1.1. >$\=>\$% *<# [$%{?#'=^ $%];?%
ˆ
!
" ›
f ! !
[1], [5], [19], [21].
n
Cg
¦
( p pi m pi u pi a pi ) * f
(1)
i 1
Cg
p pi
m pi
u pi
a pi
f
,
,
,
,
,
›
.
2.1.2. &%#;? % [$%]@\ ;J<=%>%
ƒ
!
CPM (Critical Path Method4)
presedence & !
MS Project 2007 [5], [14], [23], [24],
4
CPM (Critical Path Method) presedence – „
& (
)
221
[25]. ‡
" !
&
[3], [12], [19], [21]. 0 :
(project faze),
OBS (Organizational Breakdown Strukture) ,
WBS (Work Breakdown Strukture) ,
(Resource Breakdown Strukture),
(account codes)
*!
!
, !
!
[4], [5], [8], [9], [10], [17], [20], [22]. * ! &
!
.
1. [G -
}
€, [ \! 7. - { 1
Figure 1. Construction Network Plan for a residential and office building in
Banja Luka, Street: Majke Jugovica 7 - illustration of a part of the plan ,Option 1.
ƒ
!
" !
, !
.
2. Z % -
} €, [ \! 7. - Figure 2. Estimated bill of quantities of a residential and office building in
Banja Luka, Majke Jugovica 7. - review
222
2.1.3. ~=$>$<\'=% o+>%*<% \ J;$\ +&%#;?%
* “„ƒ$$“
(“TOPSIS“method). Kao (
) [Š, 2006], [15]:
% !
A^a1 , a 2 ,..., a n ` . $
k f 1 , f 2 ,..., f k .
‹
A
f
*
*
1
*
, f 2 ,...., f k
*
(2)
:
f j*
max a A f j ( a i )
‡
(3)
f j (x) (). ƒ
, .
* &
. % d p ( a i ) +ƒ G.
1
d p (ai )
§ n
·p
p
¨ ¦ w j ( f j * f j (ai )) p ¸
©i1
¹
(4)
:
A^a1 , a 2 ,..., a n ` ,
ai ( i 1,....n) ,
f j ( j 1,....., k ) ,
k
wj ( j
1,...k ) ,
¦w
j
1 &
(
),
j 1
p = 1,2 ...± .
ƒ
.
# &
:
D p (ai )
d p (ai ) /(d p * (ai ) d p (ai )
(5)
!
" :
1. 0 d D p ( a i ) d 1 ,
2.
D p ( A* ) 1 ,
3.
D p ( A) 0
223
% p .
' :
D O1 D O 2 D O3 Df
(6)
Oi , i 1,2,3
D p p " "
. ‹
. * -
:
,
,
,
.
" .
' 3. -
. ‹
– & &
, , . ‡ { 1 .
3. { „ YZ“
-
} €, [ \! 7.
Figure 3. Multi-criteria optimization method "TOPSIS" for a residential and
office building in Banja Luka, Majke Jugovica 7
224
2.1.4. $;<#% *<# [$%{@% (%&=% \ *<# )
* FIDIC5-a (Adjustment for Changes in Cost), :
Pn
ab
Ln
E
M
c n d n ...
L0
E0
MO
(5)
:
- &-
! ,
Pn
a
- ,
b, c, d ... - " ,
Ln , E n , M n ,.... - " n ,
L0 , E0 M 0 ,... - .
„
, "
" . $ , ,
"
&
. ‡G € &
, .
2.2. ƒ [6], [7], [11], [16],
[18], [21]:
n
Pi
¦ Pi
min
D Prisk
(6)
i 1
:
Pi
Pi min
D
Prisk
.
(),
,
.
5
FIDIC –Federation Internationale des Ingenieurs-Consels - G
! &
225
4.
4. Figure 4. The general model of planning and income control
2.3.
* . ‚ !
.
ƒ
"
"
[21]:
n
Pi ,min ¦ randPI 'Pi(rand ( p( x) i , j ))
randPi
(7)
i 1
n
Pk
¦ randP
(8)
i
i 1
Pmax - Pmin
&
.
G
- ‡ („ Monte Carlo“ )
&
&
!
[12], [13], [21],
5. [
U Figure 5. Risk control and risk management model
" 3 . 226
!, . | „MS Projectu“ &
& .
ƒ
!
. , " ! .
6. "
$ “ Pr risk“ } €, [ \! 7.
Figure 6. Risk analysis in software "Pr risk" for a residential and
office building in Banja Luka, Majke Jugovica 7.
!
:
0 - ( 3%) . *
. 2
.
B – ( 10%) !. * !
, !
.
C – ( -7% ) *
"
,
D – ( -10,6%) , E - (
32,7% ) *
.
227
3
ƒ 2 !
&
.
ƒ !
, !
, ". * " , , "
".
7. :$ [ -
} €, [ \! 7.
Figure 7. Quantification of planned risks in the building construction
Qualitative risk analysis matrix for a residential and office building
in Banja Luka,Majke Jugovica 7.
2.4.
! !
"
! & ( ƒ „ˆ
“8 ). * ! , , .
2.4.1. [;?%$%@ [$%]@ >+;? \[;?;$#^ ;]#;'%
‡ &
. *
"
!
* "
:
6
„Centris“ – ƒ 228
 (Tradicional)
 (Bills of Quantities Contract)
 „ “ (turn –key),
 (hibridni ugovori)
 (Shedule Contracts) . , a
!
.
2.4.2. +$%?|%@ \[;?;$; ; [$%{@\ –+$;*'# +$'>\+
ƒ
& [2]:
 I. - (Contract Planning),
 II. - (Contract Formation),
 III. - !
.
G
&
:
 - ,
 - .
& :
 , & ,
 ,
 ,
 .
3. ‚
"
& &
& .
ƒ & 3 & MS Project
.
ƒ
&
"
!
" !
. % & " ƒ
, !
!
" !
!
!
!
[4], [7].
„
& &
" . „ " . 0 . " !
, "
, .
229
* , " ! !
. ‡ ( ). ‹!
, , " , . % .
ƒ
!
, !
!
. &
!
(
0‚ ), . * -
. $
! (
) . ‡ „„ƒ$$“.
* & .
3.1. * . & !
!
. ,
"
" & & "
.
ƒ &
:
,
!
e,
"
!
"
&,
,
!
,
!
,
" !
,
&
& " .
"
, !
& ,
230
-
3.2.
& "
.
"
!
!
.
‚
* &
:
 & !
, !
!
: – ,
 & !
,
 &
,
 &
& ,
 & ,
 &
,
 &
!
.
ƒ&
"
& !
& *
, &
, & & $ ‚Š , :
 #
!
!
!
, , , ($),
 " , , , "
" ,
 " ,
 "
"
& "
,
 & "
" ,
 &
,
, ,
 !
.
231
5. ' " " &
.

:
 & "
,
 !
ƒ
"
;
"
!
"
ƒ
.
$
– ". ƒ
"
- ,
. # " , &
!
&.
*
!
"
!
MS Project. *3 "
& "
.
6. [1]
‚
, $., (2003): "$ !
" 2!
“, %
,
[2]
‚", #., (2008): "ƒ
&
",2!
, %
[3]
ˆ
", %., (2004): "G
›
!
" 2‡ ‚
232
[4]
©", 2., +", ., (1994): "' o
"‚
[5]
©", 2., (2005): "ƒ
!
" ‹ 2!
-
‚
[6]
©", 2., +", . (2005): " !
"‹ 2!
-
‚
[7]
©", 2., (2005): "
&
!
" 2!
‚
.
[8]
©", 2., ƒ
, #. (2005): "2 !
“
# &, ‚
[9]
©", 2., G" $. (2008): "„
!
" ‚
[10]
©", 2., +"-‹", $, #. (2004): "
!
"‚
[11]
Engineering and Ekonomics, (1993) " Risk and Uncertainty" +
[12]
", ‚., ƒ", š., (2005): "*
!
" 2‡ ‚
[13]
", %., ‚
", #., (1996) "‹
" "
'‡ ‚
[14]
‡, ‡., (2007): "G
!
"
2‡ ‚
.
[15]
‡
, $., ‰", G., ‡
"-‹", ‹., G", G.,
‹
", M., (2004): "
&", 
‚
[16]
‡, #., ", G., (2006): "ƒ
" ‚
[17]
G, G., ", $., ", ‚., (1993): "$
!
"‚
,
[18]
ƒ
", š., ©", 2., (1995): "$
!
"‚
[19]
$", $., (2008): "‡
!
", 2‡ ‚
[20]
", G., (2000.): " " 2!
%
[21]
", G., ‚
, +., (2005): "ƒ
!
"2!
, %
233
[22]
", G., G", #., #
-0, %., (2007): "*
!
"2!
%
[23]
„
", ‚., (1983): " !
" '‡ ‚
[24]
„
", ‚., (1983): "ƒ
!
!
"'‡ ‚
[25]
š", ‚., (1997): "ƒ
, !
",
$
- www.fileguru.com , Project Risk Analysis by Katmar
- www.palisade-br.com .
- www.projectvare.com.au –Rob Jeges.
‡
:
 '
! G
" „ƒ
‚ +“, - , 0
-!
‚ +, 2009. .
 "ƒ !
, , !
‚ +-$
, 1999. .
 ƒ
!
(
1.-7.) 2!
, ‚
, 1995. 2002-2008. ,
 ƒ
!
"+ &
" ...
$
2007. .
 ‡, ‡., ‡", 2., $", G., ƒ "ƒ
›
!
"
 ‚
+. "ƒ !
"- , 2!
$
%
,2004..,
 Š, „., (2006): "‡
›
" , 
‹&,
 +
", ., "+ !
" %
,
 % .:
 % !
!
"$.$" 55/10,
 ƒ "$. $" 7/4.
 ƒ "$. $" 87/4.
%^?%&#;'>:
 ƒ
" "0
" .. . ‚ + „2ƒ ‹“ ... ‚ +
& " .
234
{U W
!1, W Z!2
! „“ ! : ƒ
„3“ Š
-'. & &
, . , , &
!
, " , .
': ,, RECONSTRUCTION OF AN OPEN SWIMMING POOL
AT THE ŠKVER IN HERCEG NOVI
Summary: The matter concerned presents the design reconstruction process of an open
swimming pool of the Sports Club „Jadran“ from Herceg-Novi. This memory and ambiance
important city location is marked by the complex and, at the same time, very attractive
urban status, which makes it a great architectural challenge. Sensitive perspective, various
physical context, the complexity of natural conditions for building construction, and its
great identity potential in the future urban image of the city, have defined the platform of
the design activity.
Key words: context, construction, architectural identity
1
G , 0
ƒ
2
# !
, 2!
ƒ
235
1. , , !
Œ
Š
-'. 20. . '
&
& ƒ‹‡
«3», , .
1 – 30- 70- 20- Figure 1- Picture of location from the thirties and sewenties of the 20. century
ƒ
20. «Œ
», , !
,
" . G ƒ
", 20. . $ ' #"
Š
-'. #", , , & , ƒ
", & .
2 – * [
Z!, 1951.
Figure 2 - The new club facility designed by Milorad Petijevic,1951
236
 , , «ƒ
#», ,
& 7 . 3.50 , &
%
-$
.
3 – 7 «7»
Figure 3- The wider situation plan
' 21. ƒ‹‡ «3» , 90- 20. , 2008. , G. 3
, " , "
.
ƒ !
,
&. & ‹
" ‚ 2
", . !
"
, , «
» , "
, "
. 2 « !
», 2!
ƒ.
"
, , 237
«Œ
» Š
-'. * , & , " . ‡ . ‹ƒ , .
4 – Z «7»
Figure 4- (Spatial view on open pool in Skver
‡
"
, . $
& , , &. ƒ , 1 . , "
.
5 – Z% Figure 5 - Crossection of facility
238
* 780 " , "" & , . * &
, .
ƒ
!" , .
6 – Figure 6- The higer part of seating area
ƒ&
!
, "
. † "
, Š
-'.
7 – Y Figure 7 - Actual status of building development
239
2. !
-
. "
& , & . „
60 . 35 . #
.
ƒ
, . * ( 12 ). ø800 15 , 2 3 .
Œ 4.30 , !
. ƒ
. * 0‚ ,
. ƒ
0‚ 20
.
0‚ . '
, , 0‚ , !
. % " .
% "
, 0‚ !
. * 0‚ & , & . ‹
! 0‚
, & , "
,
.
240
8 – Figure 8- Construction plan
241
†G {. Z!1
: !, !, !
(!)
: * , , &, &. .
: , , , $,
FACADE DETERIORATION UNDER THE INFLUENCE OF
EXTERNAL FACTORS: CAUSES, EFFECTS, PREVENTION
(REHABILITATION)
Summary: Using several practical examples, the negative effects of sun energy, wind
carrying desert sand, low-quality construction and fire action are presente. Also, some
prevention procedures are described.
Key words: high temperature, sand, styrofoam, facade deterioration, prevention
1
#.&.
, . . 2!
‚
, . . 0
-!
‚ +, . ‚
, ‡
‡
39, $.
243
1 "'
, & " $0'*, . ' Š. „
, , . ", 2, &
, , .
%
, , , &
, , . , "
. , , , " " "
.
2 2.1 1
' ' ‚
!
, ,
, & "
" ( ).
ƒ -.
' &
(* 3'0) 2!
- G‡ - . * . : , ",
, , .
2.2 2
0
0.. , , -
G, , "
.
ƒ
:
-
, . , .
2.3 3
) '
‚
, &
. '
!
, .
2
‹.: ‹., G.G
: "* ", ‡
: "%
- , ", ‚
, . 2010.
% . 15 passim
244
) &
‹.#. -
, !
, SIPOREX- (
YTONG-), .
2.4 4
$ !
, , ,
, , , ,
!
. G
, &
, &
. „ , , , !
; ,
, , , , , , "
" , .
2.5 5
% G ‚
-
(‡
G
) (
). * , ", !
1999. , & , ,
, . ƒ 40 , & , 1 ,
" .
3 3.1 1
%
"
" !
& G$ (š
&
) , , " , "
.
, . , , , &
! . +
, , , ( 14
), , (
), , , "
" .
ƒ !
" " , ("" " - ).
245
U $
(Lever House, NY 1952.
arh:
S.OM.)3
9
Q $
16 %..
$
( - ).
3.2 2
‚-
G . *
& - , - " , .
3.3 3
)  &
, . "
". G
!, "
, " . ‡
, .
) SIPOREX-, , , ! . ', , "" .
39
‹: š& ƒ" %20#0$„‹, . 223
246
3.4 4
$
, &
&!
&
", . & , " (
),
. *
"
" &, "
, ,
"
.
3.5 5
ƒ& G , & 800$, &, , , !
, , .
3 ! !
4.1 1
% "
" G‡ & "
:
ƒ "
, , (
) " - - - L , "
. .
„!
&
.
' , .
‡
&
*$# J;< , , ;-. ƒ "
- ,
" .
4.2 2
Œ " -
. G
!, , ,
! -
, " . * -
, ,
, .
4.3 3
) "$"- "
, , !
. ƒ ! 247
, .
) '
,
!
, .
4.4 4
% !
: , & ( , ) , , "
, ", , &
.
4.5 5
ƒ&
, & : , . ƒ
&
&, & & , " .
5 !
!
, ! , , !
, & "
&
.
248
†U #1
!
! ! - II
: ƒ
„2“ – Š „
II !
„
. ‡
, , je „$ 2“, !
& . ‡ ,
"
" .
: , G , .
REHABILITATION PROBLEMS OF PERCOLATION WATERS ON
PROFILE OF DAM GORICA – TREBINJE II
Summary: Problem with water percolation from Gorica lake is an actual topic in
management of system of hydroelectric power plants on the river Trebisnjica. Quantity of
water penetration beneath and through grouting curtain has constant growing . As the result
of huge investigation, project „ Consolidation of water penetration from reservoir Gorica“
was made. It is planned to build up a new part of grouting curtain and repair part of old
curtain. In this case, water loss will became minimum or will completely disappear.
Keywords: water penetration, investigative work, building of grouting curtain.
1
# &
; % ƒ
"
„Š
„
“ ; +
‹" 2 , 89101 „
; zzubac@het.ba
249
1. ‚ "2" „
. " 15,6 m³
. „ !
Š „
I, ! 2
- 2, , Š
#, Š „
II ƒŠ ‰. ‚ 2 13,5 km
2
3 „
, ‚
Š
.
1 - $ G $
e „ “
Figure 1 - Geographical location of dam and artifical lake of „Gorica“
2!
2 33,5 m, & 185 m. ‚ . ' , „
, .
ƒ "2", , .
#& 55 m (
„12) !
II .
* &
200 m 67,5 m. %
. * !
&
cca 400 m.
250
& 170 m.
.
2 . ‹
! ‹$ „2“ 4,80 m³/s.
‹
, 1964. 2009. " ! 1,8 m³/s 4,80 m³/s. '
1979. # + ‚ ƒ . $
!
, 600 m 2. + , .
'=&%]\ '% '? +;#\>, +&%#$%# < #%'>%?%= [$%]@ @=*;#
%?<' \ J;=;?% '+;] ><&% J$%# ;$*%. '#;?# *| +&%#$%#^ $%];?% < '+$}%?%@ [\J>%=% ?;] %=\\&%*< > @^;?; #$[>'=; '=;$~z@, %& '%@@ #[%>?#;[ \>*%<% #% '>%J&#;'> J$%# „;$*%“.
2. ‚ * & „2“ , , !
,
& , " "
! . * & :
"2" „
540 m . .
ƒ 33 kg Na-
23 cm
‹$ 0" . ‡
, ", 10-15 l/s.
‚ " :
- 20 2
- - 4 - - II ƒ
- # ™ ƒ ()
- %
G
251
# 25 kg Na - 277 mnm. ‹ 2.5 m.
' , ,
!
:
- -1 -3
- 3 (& 0+090, 0+120 0+216)
- - 2 - 6 - ‚ + ƒ - .
2 – „“
Fig. 1. - results of colouring of estavelle „Gorica“
ƒ Š # &
0+216 276.30 mnm. ƒ "
!
274.60 275.90 mnm. ‡
3 .
252
3 – „ – Š Q“
Fig. 3. - results of colouring of cavern in the tunnel „Gorica – HPP Dubrovnik“
‡ 1980. &
"2" ,
150 m , "
. 310º.
4 – „“
Fig. 4. - results of colouring of swallow hole at the right side of dam „Gorica“.
253
3. /$/ 1958.
ƒ 2 1958. . ƒ
/$/- . 40 30 !
3 , . * 5 km².
G-5 G-6.
ƒ !
200 ..., .
„!
, /$/ !
.
65 !
& 5
, & 3 , & . G
!
250 m.
& 9 &
3 km. ƒ ! 125 m ($ 5).
' , " , . " 100 150 m. ‡
&
. ‚ „
, "
. . ‡ „
& .
&
.
254
5 – $% G & „“
Fig. 5. - results of geophysical investigation behind estavella „Gorica“.
' 'ƒ‹, ,
"
" .
# &
& , 1984. . ‡ 'ƒ‹ GK-1 GK-2 cca 15m & .
# !
, „
. ƒ .
' 'ƒ‹ (#
, & , Œ
‹")
&
( ) "
, ! G-12 G-15 &
255
. $
! 'ƒ‹ GK-3, 150 m .
ƒ 'ƒ‹ , 340m 20m !
2
( 293,30) „
, "+"
ƒ "" . + , .
„!
, !
„2“, -
.
' &
. ƒ , , !
& .
' !
& , ! , , Š #, & 300m + 200m ( ), " .
ƒ
! 6 m, , . ƒ , " " . * , !
„$ ! 2“ ( 6 ).
256
6 – Z „“
Fig. 6. - Display of plan for grouting curtain - location dam „Gorica“
# , & ( Š „‚† II Š
', #) , "
:
0. 0#‹ '0 †‡„0†* $ƒ# „3+0 ‚0'
‚. 0#‹ '0 %0# %0‹3$ * +3‹G %0‚0™*
‹. 0#‹ '0 %0# %0‹3$ * #$'G %0‚0™*
2 !
"2" , & , "2".
"2" "
, "
257
. $ "
.
„!
, !
, "
& ( ).
% , & , "
.
;}>%= +$;<=>; +&%#$%#^ $%];?% < +$]?{# % +;&;?#\ %<% 2011.
[;]#.
Š Y – G } . , %
1962.
2. Z U  (
4)
3. Y% G ,
2
& , %
1960. 2
4. G $
.
Š„, „
, 2003.
5. } „“ – 
- – 
G – 2.
, $
1960.
6. Š Y – : $% .
2
&- , %
. 1964.
7. } 2  .
, $
1962.
8.
} „0 + 216“ . , $
1963.
% „ “.
% &, ‚
, 1965. .
9. ƒ
„ $ ! 2 “,
ƒ
„Š
„
“;
G 2009. , „
.
10. Š
G, Z Y. [
!
Š
Y, 1979. 
11. : % Š % U, Z Y. [
!
}, 2006.
1.
258
Q {
1, !2
: ƒ
. $
" (
, !
). ƒ
. * , "
: . * & .
: , , , RENEWABLE SOLAR ENERGY IN CONTEMPORARY DESIGN
Summary: Application of renewable energy sources is imperative for the ecological
development of cities today. Solar energy is ideal solution for increasing needs of urban
structures (heating of the space and water, cooling). The needs of urban areas for energy
amounts to almost half of today's total energy consumption. In contemporary design, there
are two approaches to the use of solar energy in buildings that are based on: active and
passive systems. The basic principles of sustainable modern design are developped and
analysed in this paper, through the striking examples of European practices.
Key words: solar energy, renewable energy, contemporary design, the cities of Europe
1
2
# # ‹, , 
›
, 0
, ‚
# $
$
", , 
›
, ‚
259
1. ‰
, , ƒ
. * , .
ƒ
. ƒ ,
:
- - , , , , , ,
, , , - - , , ' (
) "
, CO2 (International Energy
Agency, 2007:3). ƒ
( ) . ‹
& . ƒ
"
, "
"
, , ( ,2006.:12). 3
& "
" " , & (‚!, 2002.:7).
(
,
!
) . $ ", , . $
.
2. $ .
&
, , . '
, " , , , ": , , . '
.
$ , !
.
. $ &
:
- ƒ "
;
- ƒ ;
260
- ƒ & ;
- ƒ ;
- ƒ "
;
- %
!
;
- %
, , ;
- %
" ";
- %
" -
;
- *
.
3. ! ‡"
"
(€!, 1994:34). % , , , &,
&
, .
. 0
& +
6500. 5500. . . . ( 1), #,
. , . " "
(!, 1969). '
0 ‡, 1300. 1200. . ., . $ ", , . * "
. ‡ , . , , "
. * 0
"
& , ".
1: € (6500. - 5500.. ...)
Fig.1: Lepenski vir (6500. - 5500. bc)
261
* 20. , , , (Frank Lloyd Right). $
"
: (Robie House), „
(Taliesen East house) 3 (Jacobs House), 2. * !: , .
ƒ
, . # " , " . 3& , . +
.
2: '.€. W !: W, Y
\
Fig.2: Frank Lloyd Right: Robie House, Taliesen East house, Jacobs House
$
+
‡
(Le Corbusier) : "ƒ
‹, ƒ", . ƒ ,
"
18. . †
,
" ƒ, 1 ,
. +
‡
"
", !
!
"
. „
"
" , . ‹ ". +
‡
, & , 3.
3: € :: Vila Savoja
Fig. 3: Le Corbusier: Villa Savoye
262
$ , &
, " " . ƒ " ( 4) 1939. 0
‚ . ‹
, , "
,
.
‡"
, "
, . $
.
4: Z !, 1937., }, |"
Fig.4: The first Solar House, 1937., Boston, USA
* ({
, !: 2009), "
, .
Z , " " , . !. $ (
, !
, ) " . $ . ‹
" "
. ƒ
, !
(
). ‡
, &
, (!, {
, 2008: 267-274). 2 (!,
{
, 2010:22).
0 , , &
. 0 :
$ - ,
263
 - ( ).
 "
. ƒ
"
' , " .
' &
(. ! & ) (. & ). ' , . ƒ
' - &
, !
& (‹, $
":2009). ƒ
:
‹
,
* - &
,
‹
& .
& 25% ($
",
‹, 2009).
4. ‚" . 0
"
({
, !:2009.). , !
. & !
:
&
, & "
"
‡ & "
,
!
"
. * "
!
, !
!
. * 0 !
, 20%, 264
. * ‰
, !
"
, &. * . ' ‚
!
, "
&
. ƒ , , !
, "
.
4.1. (VAUBAN DISTRICT), , 2  ! '
, & , . # , "
"
, ‹ (Rieselfeld), (Solar City).
‹ 41 . * "
. ƒ & . G
!, " , (sharing servis) , &
&, . ‹
" & (
160 2), (baugruppen) . 2
!
, , . ƒ
"
(15
kUh/m2/y) ", !
, . "
, &. ‡
5000 ( ), 5 (Forum Vauban:
2000.).
5: {, ', *%
Fig. 5: Vauban District, Freiburg, Germany
265
4.2. (RIESELFELD DISTRIKT),
, ' 70 , !
4 200 10.000/12.000 . '
"
: " & , ,
(Stadt Freiburg im Breisgau: 2003).
6: W
$
, ', *%
Fig. 6: Rieselfeld District, Freiburg, Germany
2
" & " . !
&
, , , , . * "
. . ƒ
6.
‚" &
": . , " &
, 30 / h. *
&
(Aa.Vv.: 2003).
4.3. !- (LINZ – PICHLING), $ (SolarCity) 6 000 , , 7.
266
7: €-Z
, "
Fig. 7: Linz - Pichling, Austria
% 630 ƒ, + , 0# (Renewable
Energy in Architecture and Design - ), ! . * , & . ‡ !
, , . ' !
, & .
4.4. - (GWL-TERREIN), , 2‹+-„
. ‹
, 600 (Aa.Vv., 2000:44). ƒ
. „
&
:
- ‡"
- !
. „ " , , " . 2 & ", . % , . * ,
!
, ( ) .
- 
; , .
- ‡
" : ! , &
. „
267
: 57% , (
), 73% (
2-6 ), 39% , 10% & car-sharing . *
&
!
- & 400
. ƒ
, 100
, 8 (Cerreta, Salzano,2009: 207-221).
8: {€ Y, ", Š
Fig. 8: GWL-Terrein, Amsterdam, Netherlands
4.5. , (LYON), !
"
" . 20%  . + 305 7 +,
. ƒ ! 18% 45%. G
99W/2. *
: , , " &
. 1997. '
9.
9: U, €, '
Fig. 9: Solar village, Lyon, France
268
5. , . !"
,
&
%
. ‡ , , " , " " . „ ,
. ' , ! , "
" " . †
" - "
%
. , . 2 "
" &
,
, , , & , "
,
&
, (‹, $
": 2010). $ , , .
1.
2.
3.
4.
5.
6.
7.
8.
9.
Aa.Vv.: Gwl-Terrein, Amsterdam: Carfree Public Housing, Urban Ecology,
Innovations in Housing Policy and the Futures of Cities, Amsterdam, 2000.
Aa.Vv.: The New District of Rieselfeld, Freiburg, 2003.
Badenova: Verbunden Geschäftsbericht, Dinner Druck, Schwanau, 2003.
Cerreta, Maria; Salzano, Ilaria: ‘Green Urban Catalyst’: An Ex Post Evaluation of
Sustainability
Practices,
REAL
CORP
2009,
Sitges.
Spain,
http://www.corp.at:207-221
£", '
: G , ‚
, 2002,
ISBN 86- 7352- 081- 9
Forum Vauban: A Journey through the Model District Vauban, Freiburg im
Breisgau, Freiburg, 2000.
International Energy Agency: U ; ƒ !
, ˆ#, 2007.:3.
+", G: , ' , ‚
, 1994.
, ƒ
$
,
‚
, 2006.
Solarsiedlung GmbH: The solar community in Freiburg im Breisgau, Freiburg im
Breisgau, 2003.
269
10. $
", #.š. (1969) € { - ZU, ‚
: $ &
/ $‡%
Stadt Freiburg im Breisgau: Quartier Vauban, Freiburg im Breisgau, 2003.
11. $
", $. ‹, #. 2008: $ U , ' , -
, ‚
, ISBN 978- 86- 907727- 4- 2
12. $
", $
; ‹, #: % U $ &, G
!

G , ‚
, Ecologica, .54.
. XVI, (2009a). YU ISSN 0354 – 3285:155 – 157, www.ecologica.org.yu
13. $
", $., ‹, #. 2010.: G , %&
0
", ‚
, ISBN 978-86-7244-836-8, UDK 502.131.1:71/72
14. Vasilski, D., Stevovi”, S.: Increasing energy efficiency through contemporary
solutions of passive house, Gš#*'0#'0 ‡''ˆ¦
"ƒ$„0'$„‹„ ‹ ‹ƒ§$‡0„0 0Š„‡„*0 - „0#ˆ¦
'‹0„$„‹", 3 - 5 ¶ 2009a. ., ‚, ‚¦ , ISBN 978-9549430-43-1, : 206-212, www.vfu.bg
15. Vasilski, D., Stevovi”, S.: Daylighting and PV panels in function of sustainable
architecture, Conference in Lozenec, Bulgaria, 2009.b, ISSN 1313-7735: 184 –
187
16. Vasilski, D., Stevovi”, S.: Energy-efficiency and solar renewable energy through
minimalism, 14th International Conference on Urban Planning and Regional
Development in the Information Society, GeoMultimedia 2009c, Sitges, Spain,
2009. www. realcorp.at ISBN 978-39502139-6-6 (CD rom), ISBN 978-395021397-3 (print):97-103.
17. ‹, #., $
", $.: [
G , ‚
+, $
, .3, 2010. : 072-080 ‚ +,
UDK 621.244:725.4, www. zibl.net
270
!1, [
!2, * }3
‚ - : Š
"
#
& . #
, % " #
$, . ‹
"
: , , , , , &
, , , .
: Q Q, G , , .
SUSTAINABLE HYDRO-ENERGY AND WATER MANAGEMENT
SOLUTION OF LOWER DRINA
Summary: Hydropotential water development of Lower Drina is analysed in the
contects of sustainable development. Optimal parameters selection and concept definition
of hydropower facilityes, from Zvornik to Drina mauth in to Sava, are incorporated in the
function of integral water management solution. Multipurpose resource utilization: power
production, flood control, navigation, agriculture impruvment, stabilization of underground
water level, environmental protection, development of turism and sport, are conflict of
interest and criteria of goal function, which solution is presented in this paper.
Key words: Lower Drina, sustainable development, dams, hydropower plants.
1
2
3
ƒ. $
$
", D.Sc.Civ.Eng,
Faculty of Construction Magament, Union University, Belgrade
ƒ. G $", D.Sc.Ch.Eng,
Faculty of Gnagement, University of Metropolitan, Belgrade
ƒ. '
‚, D.Sc.Biol.
Faculty of ecology and environmental protection, Union University, Belgrade
271
1. # , . „ , " "
, .
 , , , [16] ! [1], , &
.
# ,
. #
14.2 Wh/., "
4 Wh/. #
. # # 1.6 Wh/. "
, ,
# G
(
) $
(
).
" , #
, !
"
#
% " [13], !
, " , .
2. ! !
‚ , "
#
" , , "
& [7].
"
& #
, "
& #
$ Š
"
#
% " [2]. "
#
% ", "
, ,
. !
‹
#
.
Š
&
#
, .
† & , ! " :
- G 272
-
ƒ
& ƒ
" $ G $
ƒ
" , !
- - % &
ƒ
, . [4]. % , & !
. G
&
[5], , , . #
. ƒ
. " . ƒ
& [6], &
& , , " .
$ G $
, , &
, . ‡
"
#.
$
2010. #
. „
& , , #
!
, " !
. #
, "
[9], , , & [10].
3. ‚ Š
& , , ,
[11]. Š
, . $ , , !
& .
‡
& !
" #
, ! . 273
!
, "
&
, "
, "
#
. [17].
, &
[15] , , &, "
. $
& [12], & , & , " .
‹
, , . * & "
% " #
$, .
4. ! ƒ
#
"
, - "
". ! , &
!
"
", , &
, & .
4.1. %#%&'=% ?%$<%#>%
* &
!
. G
, !
&. ! :
$-G, Š +
Š Œ, $-$
, Š ‚
. ‡ . . * #
.
4.2. }#% ?%$<%#>%
. Š
, " &
. * . # G $
, ! , &, , "
- . 274
, .
‡
(
) !
, & " - , , . ‚
, , & !
, ! "
. „
"
1%. ƒ
"
#
! % " "
,
!
, !
#
, +
,
& .
5. ! : ‡, # I,
# II # III, " , &
.
* , . $ -
. ' . ƒ
. 0 % , :
- Š ‡, ‡'* = 135.00 ..., & 64+150
- Š # I, ‡'* = 121.00 ..., & 46+800
- Š # II, ‡'* = 107.00 ..., & 31+140
- Š # III, ‡'* = 93.00 ..., & 10+960
. "
" #
% ", , , & , . , & .
* # %. : ‡, # I, # II # III
"
. # & " , G
$
, " !
. ‡ #, !
!
, ‡, # I, # II # III („
1.), " & #
.
275
1: , D " " Table 1: The main caracteristic of the possible HPP on the analyzed river section
Š ‡
Š
# I
Š # II
Š # III
$&
‡'*
Hbr
Qinst
Ninst
Egod
60+200
43+600
28+200
8+800
135
121
107
93
13.3
13.3
13.3
13.3
3/
800
800
800
800
MW
93.4
93.4
93.4
93.4
GWh
396.5
396.5
396.5
396.5
Qprel.
‡'*
3/
8000
4075
4075
4075
Š ‡ # I, # II # III, ‡ , 8000 3/. * ‡ Š
%, Š # III $
( " #
$; # $).
ƒ . ƒ & 160 , , . #
"
: * , . ƒ
, . ' 20 8.6 ‡'*.
' ‡ , # I, # II # III, .
$ . ' ‡ , # I, #
II # III , . „
& .
2: " %& Table 2: Basic elevation on hydropower plants layout
DRINA I DRINA II
DRINA III
HE KOZLUK
‡ 122.50
108.50
94.50
136.50
‡ 99.35
85.35
71.35
113.35
‡ & 115.50
101.50
87.50
129.50
‡ 94.50
80.50
66.50
106.50
!
‡ 95.05
81.05
67.05
109.05
‡ 99.35
85.35
71.35
113.35
‡ 96.70
83.60
69.60
111.60
‡ 115.50
101.50
87.50
129.50
276
Š
#
. ' .
&
" . ƒ
! , ", " . 0
. * , , .
% , , " &
&, , . †
G
$
.
# I , " . &
! , , " . 0 , G
$
.
0 &
! , ( ) #
/ ‡, # I, II III / G
$
" . ƒ
& " , , , / .
% G $
" !
, "
. % !
, !
. * , +
!
#
I.
' ˆ
‚
, ‚ ‚ , , . „
.
6. $ !
, !
, "
, #
& , " , , &, !
, , "
, . ‡ &
, &
, 277
, , . % & , " & &
, , .
$ : & , !
& !.
& ‡= 2 x 10-3 /. 2 !
H = const (#) H = const ( ) . * , 3 , & (H =
const).
„
& #
III, !
, & &
.
' , , 5-9
& . $ &, "
&
. ƒ
&
&
& , . #& 1.5-2.5 .
G
!
,
, , , & . $ 70-80 ,
200 70 . ƒ
& 3 .
G
!
&
(q) (Q) !. ' & . &
3.
278
3: <" ( )
Table 3: Results of mathematical models (according to finite elements model)
ƒ
‡ ()
#
&
‡ # ‡ q (//)
+
#& ()
Q+ (/)
#
#& ()
Q# (/)
Q = Q+ + Q# (/)
‡ - Gx. .
#'0 I
121,0
114,8
#'0 II
107,0
100,6
#'0 III
93,0
88,0
3,5
113,5
0,500
3 500
1,748
15 000
7,492
9,240
117,0/115,28
4,0
99,0
0,849
11 200
9,509
11 200
9,509
19,018
103,0/101,55
4,5
86,5
0,825
16 000
13,198
16 000
13,198
26,396
91,0/89,16
' # I # II & (3,5 4 ) & " . #& # III
4,5 , 5 , . $ "
, &
& 7 4,5 , .
7. „ " & #
,
& .
2
!
, &
Š # I, II III. „
, #
I &
500 , " , +
, . 0
‡, #
I, II III . #&
: ‡, 8.5 ,
# I 4,4 , 11.6 , # II 10.4 , 9.8 # III 11.5 13.0 . ‡ " : () ‡'* + 1.5 , ‡'* =
() ‡'* + 0.5 , ‡'* = .
8. (93,4 GW) " (‡, # I, II III) . G" 279
40-
. * , 1 , . ‚ 75 3/ & #
III. $
13,3 .
800 3/ !
[14] Š %, " 640 3/ 800 3/
. $
(‡, # I, II III) Š % % . Š
%, . * 396,49 2W, 213,66 GWh
. * "
&
, "
20 . G 2 .
‚ " , , &
20 . % "
"
0,7. ‡ , " , 90% & 20 . „ 34,84 GW, 58,56 GW. &
.
9. - , .4.
4:
#'- "
Table 4: Main financial and economical parameters
Š ‡%+*‡
Š #'0 I
Š #'0 II
Š #'0 III
$
299.75
113.42
125.12
126.67
$
. $/‡W
3315.98
1384.86
1527.72
1546.64
280
. $/‡Wh
0.83
0.33
0.37
0.40
10. "
#
% " #
$, &
" , !&, , , . #
. ƒ " , , , & , - &
. ƒ , & . , #
, , & , #.
$
Š
"
#
% " (!
Š&
) ' & 35030, G $
.
1.
2.
3.
4.
5.
6.
7.
Fillip Wiliams, Ecological and Environmental Quality Studies, Fifth International
Symposium and Exhibition on Environmental Contamination in Central and
Eastern Europe, Prague, September 2000.
Gert A.Shultz&Martin Hornbogen, Sustainable development of water resources
systems with regard to long term changes of design variables, Modelling and
Management of Sustainable Basin - scaleWater Resource Systems, Boulder
Simposium, July 1999.
Hanley N., Shogreen J.A. and White B., Environmental Economics in Theory and
Practice, Palgrave-Macmillan, Houndmills Hampshire UK and New Jork, 2002.
IFC Environmental Operational Policies, Environmental Assessment Report for a
Hydro Project, 2000.
Nansy C. Banner, Environmental Compliance Policies & Tools, Environment
2000, October, 2000, Orlando, Florida
Perace D. (ed.), Perace C. and Palmer C., Valuing the Environment in Developing
Countries, Edward Elgar, Chaltenham UK, 2002.
$
" $., ›
, %&
0
", ‚
2006.
281
8.
9.
10.
11.
12.
13.
14.
15.
16.
$
" $., G G., –
, ‡
: $
, „
", ‚ Š
, 2001.
$
" $., G" '., G
, ‡
: $
, „
", ‚ Š
, 2001.
$
" $., G
, II ‡
3#‹‚ – ‡, 2003.
$
" $., Optimization and evaluation of Hydro Development, Millenium
Congress on Energy and Environment, Clean Energy, Geneve, 2000, January
2000.
$
" $., ƒ $
‚
, ‡
‹
2002, ‹
‚, 3, 2002.
$
" , $a Š
"
#
% ", -Š&
, ‚
,
1999.
$
" $., Š # ! $
2&
, -Š&
, ‚
, 2000.
$
" $., #
&
, ‰ „
, ‚
2008.
$
" $., $
&
!
#
, $
, ‚ +, 2010.
282
1 – W% – G $
Q Š #
! Figure 1 – Solution along the river – Drina longitudinal cros section betwen HPP Zvornik
and mouth to Sava
2 – Š Q I, Š Q II Š Q III – %
% Figure 2 – HPP Drina I, HPP Drina II HPP Drina III - Layout and tipical cros sections
283
Q €!1, "
Z!2, $ #
!3
! ! : !
& . !
&
.
&, , "
" . * .
: , , ,
REHABILITATION AND RECONSTRUCTION WORKS
ON ROAD STRUCTURES
Summary: Rehabilitation works on road structures are a part of maintenance measures,
considerably differing from reconstruction works. Rehabilitation means both a new layer
coating of certain bearing capacity within a total width of a road surface and a pavement
shape correction, with an aim of a serviceability period prolongation. By reconstruction
works, the pavement is being upgraded within a full length and width, as well as, shoulders
and drain channels are being reconditioned, mostly along the existing alignment and by
changing the road geometrical elements. In the scope of this paper, common principles and
techniques of rehabilitation and reconstruction works of non-urban roads and associated
structures are presented.
Key words: rehabilitation works, reconstruction works, non-urban road structure,
__________________________
1
2
3
ƒ. ..&. 2!
$
ƒ. ..&. 2!
$
. ..&. 2!
-
'
285
1. !
" (
,
.) & &
, . ' &
&
, &
, " " [1].
" "
&
, , [2].
!
& ( , ) .
0 & ( !
) , , !
& , . ƒ
& :
. &
. &
. !
&
(
) ‹.0! [2] 1.
1. G [2]
Figure 1. Systematization of concepts in the travel Engineering [2]
286
: () , (
)
( " ) . ,
&
, & .
G
!, !
" " !
, , &
& , " . „ 1 " :
2. Z G
Figure 2. Expanded systematization of concepts in the travel Engineering
287
2. ! ! ?
, "
& &
&
(
3). G&
, & . & & "
, ! & .
3. "
G [2]
Figure 3. Algorithm deciding the level of intervention on the road network [2]
* , , . *!
"
, . 4.
288
4. 7 & [1]
Figure 4. Schematic view of determining the level of reconstruction [1]
ƒ
" &
!
, &
&
"
! . ' & & , , & (& 10-12
&
" ).
5. Z% G [1]
Figure 5. Research field of hazardous places [1]
289
3. ! & , "
, "
, "
, .
3.1 ! ! * " !" &
$
. G
:
3.1.1 ;#'>$\=*< =;< %<\ ?&=\ $]\%&#\ #;'?;'>
% "
"
:
a) +\=;># +;$=&; +;?$~#'=^ '&;<?% =;&;?;# =;#'>$\=*<
„
" "
& . %
, . „!
&
, &
, .
%
&
. „
, , &
" , & . %
& , . „ "
"
"
.
b) =;&;>$% =;< +;>}\ %'`%&>#^ '&;<?%
ƒ , &
. ‡ (", ) , "
, , "
!
, &
.
c) $`&=>;?%# +\=;>#
. 3
" . ‹ 290
&
. : "
.
d) #];'>%* +;?$~# ^%J%<\z[ '&;<%: '+&?%?%@ J>\#%, '+;&$%#;'> =%#;[ %>$<%&% %'`%&># ~%?# & }\+%@ $#% %[$[%>%.
0 "
, &
.
"
, !
"
"
.
3.1.2. ;#'>$\=*< =;< %<\ %&\ $]\%&#\ #;'?;'>
‡ "
&
" :
• +;<%}%@ '>$\=>\$ =;&;?;% $%]; #;?^ '&;<?%
0 "
!
" . ƒ
. „ &
("
"
), , .
% &
!
.
G
!, "
. * "
, &
. ' &
, , "
, & . &
"
.
• $=;#'>$\=*<% =;&;?;% – ]&}#% & +;>+\#%
* "
.
!
.
Œ "
( ), & & "
. „
, , " !
. ‡ " " , . %
291
&
"
. ‡ , " .
3.2 ! ! * "
.
ƒ (
&) 1991. . "
& .
/ !
. '
"
&
5 . '
" (
) "
& ( )
. ! - &
, , " & . ' , (
- ) &
" . 80 85 % " , .
$ &
, , , . * &
>;+&; ^&%]#; +;'>\+=\, (
) , .
* >;+& +$$%] \ '>%J&# +;'>$;<@% - ( ), !
.
„ (+$$%]% #% &*\ '>%) &
- , , & , .
Š (
'>%J&# +;'>$;<@%) ,
.
Š (+$$%]% #% &*\ '>%) , " " 15 , , ( ), .
292
$$%]% %'>;$% "
6 . , " (
" ). $ &
(
&
) "
, . ƒ
&
. Z &
,
, , , . ( 2.5 ). ƒ
"
" , , "
. '
" .
ƒ
. ƒ
! .
: , (
! ).
3.2.1. $$%]% %'`%&>#^ %'>;$% #% &*\ '>% +; >;+&; +;'>\+=\
0 "
, " . ƒ "
, " , , " ( " ) " ( & ). :
x
x
- x
&
x
( )
x
!
x
&
, (
)
ƒ " :
x
( 4 6 )
x
50 % x
5 x
&
293
x
, & 60 % !
!
60 % ( )
6. Z $
Figure 6. Manufacture of asphalt surfacing on the site of hot procedure
3.2.2 J#;?% =;&;?;#^ =;#'>$\=*<% +; ^&%]#; +;'>\+=\
ƒ - &
" .
„!
, "
: , , ,
"
. ƒ
& , . ƒ
!
. ‡ !
. ‡ !
.
294
7. 7 $
Figure 7. Schematic processing machine asphalt surfacing
ƒ
&
- " , , , , . ', . $" &
. ƒ
"
:
x
x
x
x
3 (
)
x
" x
" x
(
50%)
#
&
!
"
2.5 7.5 . * , " 20 40 %. ƒ
(
) 40 50 %.
295
4. ! ƒ , . * !
, . '
" " "
. " !
.
4.1 ! ! ‹. 0! sA
!
s [1]:
s]<# +$;<=%> $=;#'>$\=*< & "
, , !
.
* "
!
, .
&%?# +$;<=%>, , & !
, !
.
$^?'= +$;<=%> & &
. "
(X,,Y,Z).
#%&% "+$ +;'&" ( ) , , " .s
4.2 " !
' !
. !
, . , ". '
& "
!
. (
, ) . ƒ
" !
. ' " .
296
4.3 ! ƒ , & " (, , .) : , " – . ƒ
. $ . , &, !
. '
&
.
5. ! ƒ
!
(
, , .).
% !
, "
.
5.1 ! " ‡ !
‚
‚
‚
' $, &
. #
‚ – ‚
" . !
.(
8 9)
8. #
& 9. Z & Figure 8. Sealed cracks newly built bar
Figure 9. Cracks in the newly built bar
297
' (
" ). ‡ " . "
!
!
&
, , ( 10) ( , , , " ..)( 11), " (+",
0, 2010)[6]
10. 11. { Figure 10. The organization of construction of
the undercarriage
Figure 11. Weather conditions of
construction of the undercarriage
*
!
( "). „!
, &
!
!
. '
&
& . '
, , " "
.
5.2 ! >*%< |;>$'% "
", , " & . G&
" &
&
. #
"
, 298
&
&
. ƒ
" "
, , . ' 12 "
.
12. ! U
Figure 12. Damage of roads, the earthquake impacts
0
=&~>% &
"
(
, , "
). ƒ
. * ", .
* . ƒ
"
" .
13. Posledica klizišta. Prekinut i alociran deo puta.
Lokacija: Bogdanje, Trstenik.
Figure 13. The consequence of landslides. Discontinued and allocated part of the road.
Location: Bogdanje, Trstenik
299
;+&%? "
. "
, . ƒ
, , , . ƒ
", ,
!
". $
s s &
.
14. ! Most u selu Ljubera—a na putu M9, 12.2007.
Figure 14. Damage to the bridge as a result of flooding. Most in the village on the road
Ljuberaa M9, 12.2007.
6. ƒ
, , , . 3" &
$
, 2007 , &
$ [7]:
s , &
, " " :
1. '
, , "
, "
"
, , . &, " "
, 300
, . ƒ
, &
, , &
!
, , &, ,
, &
&
, ;
2. ƒ
, &
" . '
“
”, !
, , ! .
$ , " &
"
“ ” ,
"
& (&
, “
”, ) " , , !
" "
. „!
,
, . ,
" , , ;
3. # . #
, !
. #
, ()
! /
, , , ;
4. " ,
&
, &
. ‹
",
a & , !
!
&
"
, , . &
, ". '&, , , , , . * , " "
;
5. " ! , ". ‹
" ! " o , ›
"
301
. G " & " "
. G
20 &, , !
. ‰
!
. ƒ !
" $ . ,
. G
!, ! , , , !
;
6. %
, , , &. &
, " , . "
"
" & . * , "
.
„!
, & &
, . „ ! &
, , " & &
.s
ƒ
, &
, & & . *
&
" , .
# " &
:
!
! „!
, :
&
‡ &
&
.
'
&
( & ) . $
&
, &,
"
.
302
[1] "
! / ‹.0! // 2!
‚
[2] / ‹.0! //
'- , %
2007
[3] [
, / ‹.0!
// $
!
2004, „' - 2, ' $, 2004, . 131138
[4] |
& G, / $. // ' , % 2007
[5] Z
& & ! /£.*
// ƒ ", 3-4/1985, ‚
, . 10-15
[6]  ! /#. +", ƒ. 0// ›
, , ‚
, 2010
[7] W
? [! &
! / .3"// ' , % 2007
[8] Pavement Recycling Executive Summary and Report, Federal Highway
Administration, Report No. FHWA-SA-95-060, Washington, DC, 1995.
[9] [
, /‹.0!, G.G
, %. " //
‚
, 2!
, 1993.
[10] } , , , BCEOM,
, FINNROAD, , G$, $, 2004-2005.
'
: " G $
, '
22-26 (ƒ
„ 36043)"
303
‚& *!1, {
ZG2, €!3
! : * " . ˆ & !
! " , !" : (shadow map) "
(ray
trace). &
!
.
: 3Q ; ; ; ray trace; CAAD
USE OF COMPUTER GENERATED SHADOWS IN
ARCHITECTURAL PRESENTATIONS
Summary: This study examines use of light and diverse shadow types in computer
generated architectural presentations. The aim of the study is to detect differences between
the existing models of computer generated shadows, using an example of two dominant
models of shadow generating in architectural practice: shadow map and ray trace.
Conclusion points to the necessity of precise selection of methods for the development of
shadows, dependant on characteristics of the architectural object and decision to describe a
virtual space in a certain way.
Key words: 3D virtual object; shadow; shadow map; ray trace; CAAD
1
... , *
‚
- 0
, ‚. 0
73, $
djuk@sezampro.rs
2
...-.arch. ,*
‚
- 0
, ‚. 0
73,
$
3
... ,*
‚
- 0
, ‚. 0
73, $
305
1. $
. ƒ
3 0
, . $
& " . ‚
& . „ & () .
ƒ
Š
. 0 +
‹ +
($ 1).
1 - : (€ {%)
: (€) 0
&
0. „ ($ 2). 0 .
2- % 0
,
, 306
"
, , ($ 3).
3- 0
‡ !
, () (). ƒ
() , . . * , .
2. %" ! . ‡ & &
.
4- * , !
. „ ($ 4) &
307
!
.
5- *!
($ 5), , !
, .
„
, .
ƒ" "
.
6- ! (! "., *! [., *! ‚.: , [%, 2007.)
' ($ 6), & "
.
*!
" , .
308
3. 3# (2#) , . ƒ , & ",
(
.
wire-frame) , &
"
.
# , , "
(
. real-time render) "
(
. walk-thru).
3.1. (#[. SHADOW MAP)
G 0 0.
ƒ
:
(
)
(
. sample range)
(
. bias)
ƒ
Š
. 0 , . .
% , ($ 7) .
7- €: . Q: 0
. ƒ
! " &
, . * , . ‚ .
309
'
‹ 0. 0 " : (
. aliasing) 0. #
&
"
. '
"
.
3.2. (#[. RAY TRACE)
Ray tracing 0. ‚ "
!
0. ' !
!
" .
Ray trace , & , " . 0 , . ' (
). * , . $
( , ) ,
!
(
"
).
3.3. (#[. SINGLE SAMPLE SOFT SHADOWS)
. „ "
. % () (
), " ! . ƒ
ƒ
. 0 , ‚
. 0 .
' " , , ($ 8).
310
8- % % 0
4. ' ($ 9) "
. 110.000 .
9- Z Š }
(*! [., *! [., *! ‚.: I , , 2005.)
$
, . , . ƒ
& 311
, . . G
.
#
. ‹
„
1. $
Intel , 4G‚ 0G Nvidia 8600
.
4.1. 10- % % 128 ,
1 $
($ 10) "
. ' , , . , " &
& "
& .
'
"
"
"
($ 11). $
, . 3 &
.
312
11- % % 512 ,
4 12- % % 5000 ,
10 313
$
($ 12) "
, , " . ƒ . , " &
" .
4.2. 13- ! $
($ 13) , " . ƒ
. ƒ
, " "
&
. '
"
, "
:
314
1- " " (rendering time for diverse shadow types)
Shadow map
128 px
1 Shadow map
512 px
4 Shadow map
5000 px
10 Ray trace
5 7 9 2:43
5. ƒ , . ƒ
!
. %
"
(
) 100.000 , ". %
, "
" . % , &
! "
! ! . „
"
, " & .
0 , ! , &
, "
. ‰
&
, "
, " , (
.
software) (
. hardware).
315
1.
2.
3.
4.
5.
6.
7.
8.
Brabec S., Seidel H.-P.: Single sample soft shadows using depth maps, Graphics
Interface, 2002, . 219–228
Fernando R., Fernandez S., Bala K., Greenberg D.: Adaptive shadow maps,
Computer Graphics (Proceedings of SIGGRAPH 2001) Annual Conference Series,
2001, . 387-390
Hasenfratz J.-M., Lapierre M., Holzschuch N., Sillion F.: A Survey of Real-time
Soft Shadows Algorithms, Computer Graphics Forum 22 (4), 2003, . 753-774
Owens J., Luebke D., Govindaraju N., Harris M., Krüger J., Lefohn A., Purcell T.:
A Survey of General-Purpose Computation on Graphic Hardware, Computer
Graphics Forum 26 (1), 2007, . 80-113
Parker S., Shirley P., Smits B.: Single Sample Soft Shadows, Technical Report
UUCS-98-019, Computer Science Department, University of Utah, 1998, . 1-6
Whitted T.: An improved illumination model for shaded display, Communications
of the ACM, 23 (6), 1980, . 343-349
Williams L.: Casting Curved Shadows on Curved Surfaces, Computer Graphics
(Proceedings of SIGGRAPH 78) 12 (3), 1978, . 270-274
Yonas A.: Attached and cast shadows, Perception and Pictural Representation,
Praeger, 1979, . 100-109
316
[
ZGU1
– "
: ‹
, &
" , , .
* , , .
‰ & , , .
: , , , , , .
BRIDGES, SYMBOLS AND UTILITARIAN BUILDINGS
Summary: The more than two million bridges in the world are utilitarian buildings that
serve their fundamental purpose – traffic – and they need to be functional, durable,
beautiful and in harmony with the surroundings.
In the history of civilisation, some bridges were so important that they have become
symbols of cities, empires and development.
The article contains an introduction, bridges, symbols, general discussions about bridges
and the principles of evaluating bridges.
Keywords: Bridges, Symbols, Utilitarianism, Evaluation, Durability, Aesthetics.
1
ƒ.. G
ƒ&, DDC svetovanje inženiring d.o.o., ‡ 40, ™
317
1. G !
, , !
& !
.
ˆ
, , . , , ,
, !
!
!
.
$ , .. .
, , ". 0
&
&
, 40 –
50 % "
. $ " " "
. ‡ , .
# 80
% !
.
š
! & " "
. * " " 60- "
ˆ .
* , !
. G !
&
" .
2. , ! ƒ , . G , , , "
.
2 G "
, 1452. . G & &
. ‡
!
1566. , Š, ‡›
G $, .
G , "
" . $ G . ' 1 '
G.
318
1. : % [
Figure 1: Stone arch Bridge in Mostar
‡
#
‹
»' # "«
!
1571. 1577. & . * 430 !
. $ &
" # .
& . G !, !
.
2. * Q ! {
Figure 2: Bridge over Drina in Višegrad
„ G $
: ‡ "
, ˆ
" + " !
16. ", !
G & ,
&
. 0
0 1914. + " , ! & .
319
3. € ! (Z ) Figure 3: Latin Bridge in Sarajevo
$ ™
„
, , " ™
3&
ƒ
. !
™
!
& .
4. Y `U
Figure 4: Three Bridges in Ljubljana
$
ƒ $
$
. $ . 2!
, !
. 0
.
5. "
Z
Figure 5: Alexander Bridge on river Siena in Paris
320
' & " "
, . Pont Du Gard Nimesa ƒ !
50 ‡. G, &
270 2 49 .
6. Pont Du Gard u '
Figure 6: Pont Du Gard in France
‹
" , !
„ 15. 16. " ƒ
.
7. $ & 1596. Figure 7: Bridge in Isfahan built in 1596
G & , . ‰
The Forth Bridg
, &
1890. . 2 5000 7 ". * + 0
ƒ , &
, !
.
321
8. Y ' } 7
Figure 8: The Forth Bridge in Scotland
3. ƒ
& " &
& , . ‹
, , !
& & !.
‚
!
š
&
" " . '
& .
9: } Q } 210 Figure 9: Concrete Bridge over Danube in Beška with record span of 210 m
G , "
!
. *
, . $ .
G !
: , . G & " , . # ,
322
, . ™
, , , , .
* &
"
"
. "
&
1/10 1/1. G " &
, .
10: Z G 8000 kN 600 kN
Figure 10: Special Transport weight 8.000 kN over the Bridge designed for
Vehicles 600 kN
' .
‹
, !
, " , & & "
.
(
, , , " ) . ƒ
80 % !
.
‹
, &, , 100 .
ƒ
, , , , .
: " , & , !
.
G&
, , . & , & , .
323
[$%]@% ;'>;?% ?<%]\=%>% ;] ;#>%_#^ #;'%}% J =;#>#\$%@% '+$%@% '% %.J. +&;}; +;+$}# #;'%}% J>;#$%# #% &*\ <'>% \
?z J$;<\ %|% #< ?z ];?;|#%.
*
!
!
, & , "
!
!
.
% &
80 (100) m .
– &. , &, . "
"
,
, &. „ & ,
" . &
"
.
11: * & .. 44 m
Figure 11: Overpass built as integral prestressed construction with span of 44 m
ƒ
.
12: * .. Figure 12: Overpass designed as integral construction with sickle shaped arch
324
' ,
.
' + ™-G & . ‹
& !
, . $
" "
.
13: YU Figure 13: Pier Foundation of slope viaduct
„
. &
, . &
. '
.
14: Z €% 11 70 –125 ,
G 870 Figure 14: Slope viaduct Loica with 11 spans from 70 to 125 m with total length 870 m
325
, , 30 . ‡ $
!
30 .
, . * !
10-12 %. ƒ
!
50 m &
3000 m. &
20–30 m , &, ! .
, , !
. %
!
! &
. %
" "
, ! . % !
, , , .
15: { & Figure 15: Viaduct built with launching method
* 50 & , . ' „ . 2,0 m , & &
. „ " , & .
3
!
. $ „ “ !
&
326
, &
"
. ‹
! &, .. . &
, . † &
200 , , &
.
16: Z% Y %
Figure 16: Bridge Cross section made of T beams
4. ! ƒ
, , & .'
" " .
% , . „
:
;J<=>?#;'> +$ =;#*+$%@\ \'?%<%@\ ]'+;*< ;'>%, `\#=*;#%&#;'>, +;\]%#;'> >$%<#;'>, $%*;#%&#;'>, >$;~=;? [$%]@ ;]$_%?%@%,
'>>=% ^%$;#<% '% ;=;&#;
$
!
&
& .
4.1 J<=>?#;'> +$ =;#*+$%@\ \'?%<%@\ +$;<=>% ;'>%
, " . . * &
" . G & . ‡ .
327
ƒ
, , , . +
.
4.2 \#=*;#%&#;'> ;'>;?%
 "
"
.  !
. '
,
& .
 &
"
, .
4.3 ;\]%#;'> >$%<#;'> ;'>%
ƒ & ,
. ƒ
. " .
* , " & 80 – 120 .
„ , & , " . „ &, , . ' ( ,
, , , ) !
. „, , ,
. &
&
& "
. , , &
"
& .
4.4 %*;#%&#;'>, >$;~=;? [$%]@ ;]$_%?%@% ;'>;?%
ƒ& , , . * "
&. ‹
, , &"
, !
.
328
G
!
. 3
, &.
4.5 '>>=% ^%$;#<% '% ;=;&#;
.
$, .
$ , . , , & .
G &
.. . G & . ' .
$ . „
! !
. G & . ' . „
& !
.
„ % & "', "
, ' ' ; ' '
.“ (!. ?').
+
" " &
, . * 20.
" !
. #
.
$ , , &
!
. ‚
"
, . ' !
, .
17: [ \
% .
Figure 17: Bridge over Jablanca Lake is a part of surrounding ant it makes it
329
[1] ‚. š
&
, 3,
[2] '
!
,9/76
[3] ‚. š
&
, Il ponte sul Danubio a Beska in Jugoslavia, L'industria Italiana del
ˆ
2/1981
[4] G. „", $
,
‚
, 1984
[5] G. „", ‚
II., % ›
, ‚
, 1964
[6] ‡. „", G, *›
%
, 1981
[7] 3. ", G , Š , %
2007
[8] ‹. ‰", ƒ , ˆ
, %2,
‹. 34, . 6 7, 1988
[9] G. ƒ&, 0 . $, , # 89
[10] G. ƒ&, , 9. , ƒ&, 2009
330
{ "%*,1 ` :*,2 [U ZGU**,3 Q
‰
*,4
*5
! "": ! .. VC, !
: ' Vc ‚
-
-$
-ƒ
3 – ‹ - $
. ƒ
‚
0.ƒ. $
Vc. * ‚
& , " ‚ "
.
' – &
1.993 m 19.935 m2. %
, , , 23 m 35 m 1,40 m !
- .
': , , , G, THE BUTILA JUNCTION ON SARAJEVO BYPASS
Summary: On the Vc corridor of the Budapest-Osijek-Sarajevo-Plo•e motorway, the
Jošanica-Vlahovo-Sarajevo bypass is being constructed. The Butila Junction represents a
contact between the municipal motorway with the Vc corridor via Sarajevo. In the main
design of the junction, the fundamental geometry of a three-level junction with prestressed
reinforced concrete structures remains unchanged; these structures are bridging the Bosna
River as well as the space foreseen for the future communications on the right river bank.
The total length of the six bridges – ramps amounts to 1,993 metres, while their total area is
19,925 square metres. They are designed as prestressed reinforced concrete semi-integral
structures of spans of 23 to 35 metres. The superstructures are slabs of constant depth of
1.40 metres. The width of carriageway slab cantilevers is variable since it has to fit the
required y.
Key words: bridge , prestressed concrete, integral structures, bearing, x ________________________
* ..&.!., 20#$, ‚ G ..., +
3, G,
@-.
**. . G
ƒ&, ..&.!., DDC svetovanje inženiring, d.o.o., ‡ 40, 1000
™
331
1. ' Vc ‚
-
-$
-G-ƒ
, 3-‹ ‚, $
Vc. ƒ
‚ 6 0, ‚, ˆ, # ‚
"
.
!
0‚ 23 35 m. 2 1.4 .
‚ " 1990 Vc. ƒ
" ‚ „0$ $
( 1).
1: [ }
* $
, "
INOSCA INGENIERING G ‚. %
, , ! $ˆ„ ™
. ƒ
!
20#$ ‚ G, 2008 2009 , !
.
332
2. ! ! !
»«
‚ !
" Vc " $
‚
.
$" $
%
" ‚
"
#. ‹
, G " ‚
"
‚. $" & (G) $
" 0 ‚
"
, (%
) $
" ˆ ‚
"
( 2 3).
‡ , ‚, "
"
, (
) , , () .
2: U% ".Z. U }
333
3: Y
U }
x 0 9 : 23,01 + 32,70 + 30,00 + 5 × 32,70 + 23,50 = 272,71 m.
x ‚ 15 : 24,17 + 30,00 + 6 × 34,35 + 33,00 + 33,00 + 32,22 +
30,73 + 30,67 + 27,75 + 21,97 = 470,21 m.
x ˆ 18 : 20,94 + 5 ×30,00 + 33,30 + 2 × 35,00 + 33,30 + 7 ×
30,00 + 25,00 = 542,54 m.
x # 5 : 24,50 + 30,00 + 2 × 33,30 + 24,57 = 145,67 m.
x ‚
"
11 : 28,85 + 5 × 34,35 + 33,30 + 3 ×
30,00 + 23,00 = 346,90 m.
x ‚
"
7 : 29,71 + 34,19 + 34,35 + 33,30+ 2
× 30,00 + 23,00 = 214,55 m.
3. ! 3.1 !
' -
, 120 cm &. #& ! .$ 0 # 334
4 &
25,20 m, . 5,2 × 5,2 × 1,5 m 6,2 ×
6,2 × 1,5 m ‚. ‡ – 2, 3 4 &
. ‚ .
$ ‚ 4 5 &
25,2 m 32,0 m,
. 5,2 × 5,2 × 1,5 m, 6,2 × 6,2 × 1,5 m 6,7 × 6,7 × 1,5 m. ‡
‚
"
6 &
32,0 25,20 m.
$ ˆ 4 5 &
25,2 . 27,7 m . 5,2 × 5,2 × 1,5 m 6,7 × 6,7 × 1,5 m. ‡ ‚
"
6 &
25,20 m.
4: Z $ ƒ
‚
"
6
&
25,20 m , 27,70 . 8,80 × 5,20 × 1,5 m. ‡ 3 &
27,70 m.
3.2 !
$ !
. &
&, .
‡ &
" &, !
.
$
!
". $ ‚
"
.
335
5: | }!
6: | }
3.3 $ , , :
* I. 150 cm . $ . $ ‚ (. 7). * II. 150 cm !
& (. 8).
* III. . 1,20 x 2,20; 1,20 ×
3,80 m 1,20 × 4,30 m. $ . 0, ‚ # 3 , ˆ ‚
"
4
. (. 9).
* . 1,20 × 2,20 m;
1,20 × 3,80 ; 1,20 × 4,30 m 1,20 × 6,20 m. 0 3 , ‚ 7 ,
ˆ 11 , ‚
10 ‚
"
6 (. 10).
336
7
8
9
10
‹
. ‡ 0 2,8 9,05 m, ‚ 4,10 9,30 m, ˆ 4,75 16,70 m, # 7,30 9,40
m ‚
"
7,30 8,90 m 6,95 9,20 m . Œ
!
.
% 0 ˆ ‚
"
.
'
, . $ "
&.
337
11: Z
‡
12: &
, , . *!
"
& . * , !
, !
&. $ &
338
(. 12). ‡ 13, 12.
13: #% »X«
4. !
, "
, 1,40 m 339
» « . 10 cm . ‚
" .
Œ , ! .
14: : 15: :% 340
!
»0«
»‚«
»ˆ«
»#«
‚
"
– ‚
"
– Š1
Š2
\_#%
;?$~#%
(m)
(m)
(m)
(m2)
6,40 – 6,90
9,90
9,00
6,90
11,40 –
14,11
11,40 –
13,55
2,10
4,10
4,10
2,10
4,60 –
8,60
4,30 –
8,22
272,71
470,21
542,54
145,67
1.850,60
4.655,12
5.371,14
1.005,12
346,90
4.468,80
214,55
2.583,70
1.992,58
19.934,48
Y
1: Z ‡ 0 9 &
23,0 32,87 m, ‚ 15 &
21,97 34,35 m, ˆ 18 &
21,0 – 35,0 m, # 5 &
24,70 33,50 m, ‚
"
– 11 &
23,0 34,35 ‚
"
– 7 &
23,0 34,35 m. $
..
, & .
4.1. !
»
« 8,0 m . *
, . ‡ " , &
. ' &
8,0 m. * , .
0 !
.
"
, "
. ‹!
!
. * 50 % , 50 % .
341
16: ‰
% ! ‡ !
»
« !
&. ' !
&, !
&.
#&, , &. $ &
& . !
& . !
&, & ( 12).
17: Z
342
18: * G%
5. % & 3# „#‹ 2006. ƒ
CUBUS 5.
2 !
, "
"
.
0 !
Fachberichte, FB 101, FB 102 FB 103. # !
Eurocode 8/2.
19: Z
3 343
6. [1] 2 !
‚, 20#$
‚ G, 2008, 2009.
[2] $
!
‚Š, ##ˆ ™, 2005.
[3] ‹ , #0$, 2004.
[4] G. ƒ&: $
– , 5.
$
, ‚
, 2000
344
[
|
!!1
“” ! - !, "
<": ‡ , , 0‚/ƒ' . G 160 24.20 . $
145 , 2.60 . ‡ 57 : , " . .
': , "} % , MILLENNIUM BRIDGE OVER MORA‹A RIVER IN PODGORICA
- CONCEPT, DESIGN AND EXECUTION
Summary: As a response to the urban-plan, ambient and topography conditions, a cable
stayed RC bridge with a single tower has designed. The bridge is 160 m long and 24.20 m
wide. Clear span is 145 m long and the deck (closed RC box with cantilever plates) is 2.60
m depth. The inclined tower (57 m height) is located on the left river side and it supports
the three-dimensional stay system: the span fan shaped cable stays are positioned in the
plane of deck symmetry while two group of the backstays are anchored in the
counterweights on the river side and they generate two hyperbolic paraboloids. This
solution is first prize awarded on the anonimous competition.
Key words: cable stayed bridge, RC box section, inclined pylon
1
#, .&.!, , 2!
*
ˆ
2
, ƒ
345
1. * &
ƒ
G
"
. \
Z
! 13. G
- , 3&
* 2003.
, & & " .
' 1999.. ƒ, ! 29 ,
. G
*"
", "
G
j.
0 G , ", . „!
, &
"" G
. * , ,
, &.
2. !
' & &
: , ( 20 ). #
, , "
350 850 '/2, "
32-36. „!
, . .
'
-
!
, 1350 /, , ! 550 890 Gƒ. ‡
.
3. !, ƒ
&
: , ";
&
, ! 30 40 , G
&.
346
1 - Q Figure 1- Picture 1 - Bridge elevation
347
#& ! 150
. '
"
, 20 , & 0.3 %. ƒ
2%
, 1%.
% "
(4x3.5 ), (2x3.0 ) 2.0 , 4.80 .
4. 4.1. , ! 0 G
, " " . % 2.60 ,
57 , , ( 1).
2 - Z% Figure 2 - Cros section of span structure
$ ( 2) , , G
. # - , "" & ,
, "
.
ƒ
. ' , &
&
. & , ( 3), .
348
3 - - % Figure 3 - The pylon - eastern view
ƒ . "
, ". ‹ ( ) " , . '
&
, .
& , - , &.
!"
&
"image" , ( 4). &. , - "
" & . „
"
" 349
, "
" .
4 - Figure 4 - Bridge fance
ƒ
- . ‡ 2.0 % , 10 . & ", & G. Š !
" , " " . 0 !
, 4 - " 3.0 . ƒ
!
3 , .
# (
) " &
±80 .
350
‚
60 , !
" .
, , . ƒ
, ". ‚ , " "
( 5).
5 - !
Figure 5 - The bridge by night
‚
, " G
. G& , !
*‹ .
* & , , 160 .
351
4.2. !
22.30 2.60 , ( 1). ƒ
20 30 , 35 , -
10.0 . „
& "
&
.
$
145.00 , & .
ƒ 2.0 6.0 3.0 x. 5.6 , ( 6). ƒ
, (
). ƒ , 75,
, " , !
"
. ‹ 57 , .
127
109
109
91
91
91
91
73
73
61
61
61
6 - ZG % Figure 6 - Pylon elevation and cross sections
352
ƒ (fan shape) ! 10.0 . † 78 190.5 2 , . . % (2x12)
, . * , &
. ƒ
, & , .
, 6.2x14.0 ,
3.20 . ' & & . $ &
" &. ‰
40/260 , .
$& . $ 0‚ &
5 (=30 ) .
$-
10.80/(9.27-11.50) 6.50 . ƒ
3.0 . „
20x18 3.5 . ‹
0‚ &
5 30 .
ƒ& , ( 7), 5600 3. „
“” . ‡
4.0x3.5 , - &
63
7 - Z% Figure 7 - Cross section of the counterweight
353
" . * . #
!
. # .
5. !
5.1. ! !
% "
. 2 FRAME SAP 2000, ( 8),
( ) SHELL ( ) SOLID ().
8 - Z% Figure 8 - Bridge structural models
‡ FRAME . $ , !
P- . „!
, . 0 & 3 %, . .
$
" , , 0
&
, !
(
). 1.54 sec, .
$
. ƒ, (time history) "
&
, " . „354
!
!
, 5 %.
ƒ !
" 00G "
. *
, .
5.2. 0‚/ƒ' , "
. ƒ , &. &
.
G &
& , . , , . *
G‚ 40, ‹-8, G-100.
„
. ƒ G‚ 50, ‹-8, G-100, & . * , " . Š
"
DYWIDAG &
, , FREYSSINET "
1860 Gƒ.
*
G‚ 50, ‹-8,
G-100. 2 0 400/500, &
FREYSSINET "
1860 Gƒ. ƒ
7ˆ15.
‡ FREYSSINET "
1770 Gƒ "
1„15$, " . $
".
‡ "
Š#ƒ , , &
.
‡
G‚ 30. ' -
1800 /3. 2
.
355
6. “G
” 2004. 2005. .
G " 13. 2005.
, # & ˆ
2
. ƒ 0
! Joint venture “ƒ
”,
$
& “Freyssinet International”, . 2 , , "
2!
*
ˆ
2
, .
9 - Figure 9 - Downstream view to the bridge
* ! &, , , !
. * ,
! !
“ƒ”
&
, $
, !
. * !
! , !
, . ‡
. „!
, !
.
356
Q Y!1
!
: $" , , , !
. * , & , , &
, - , , , !
. 0, , !
, -
.
G
, , . , , , . , !
, , . $" , " .
: !, %, , , U
THE TRAFFIC INFRASTRUCTURE AS AN SHAPIN CREATOR
OF TOWNS CENTRS
Abstract: Traffic flows, willingly or unwillingly have their influence on the decision about a
location, and so, on the form of a town too. As a whole, the street network in every town's zone
make its basic skeleton, and with respect on the function of the network within the nature of needs
for movement and parking, this phenomenon has its influence on shaping of street, and so partly
determine the physiognomy of a town, as a whole. But, in this changing world, the form of our
towns is changing too, now as a result of the new socio-economic influences. The frame of the
form of a town is its Master plan, while the picture of a town depends on the creative interpretation
of its micro wholes. Hence, it is needed a new strategy for town's development incorporating
simultaneously function and aesthetic in a coherent whole. The effects of road types on the shaping
of an environment are also shown, particularly, through the optical vision in movement. The traffic
within a town's center in the context of shaping is considered at a macro levels giving their stamp
on the urban quality representing creative answers at several levels, and which can result only from
agreed intentions, common approaches and an integration of efforts.
Key words: traffic, decision, influence, shaping, creator
1
#, , .&.., $
, ‚
357
1. % &
" , - , , .
$ " - , , , "
&
" "
!
.
ƒ
, " , " !
(
, , &
, ) . , "
&
! " . G
! : , , .
0 - , " !
, - . 3
, : , , , , , &
.
$
"
!
,
" (
&, ), !
,
Œ &
: "‡
& , &
". >1] „
" " , . * "" &, ". [2]
„ &
&"
. +
, & "
".
2
, & , , , &
"
"
" -
, !
.
, . ƒ& , & " , - & . 358
. (3)
# , -
, " !
. „ , . $ ,
, . „ 21. & 2. " , . ‡ , , .
. 2
. ƒ
. "
"
" . ƒ & !
, , . 3
: "
"?" #
: &
? $
& .
' &
! : -
-
. # , . ƒ .
'
, , & , , .
„ - , & , . * , " , .
„ 21. . * ‚3‡0„ 20# , ƒ#G„ -
$+‡ " & . „
! :
359
x .
x - , " - (4).
* !
& -
. †
&
""
, , .

. ƒ , . " . , ! . : &
, "
( ) , ( ). ‹.
‚
: "
, - ". (5)
#
&
#‹3'2 .
& . #
- (). $
&
: " :
& & (mimezis),
& &, &, . (6)
0, , (mimezis poiezis) , & . „ "
"
:
• ƒ
(
, , .) , .
• * : ( , ‡), " & !, .
• * , . - , , mimezisa poiezisa, . $ , . „ & . „ & : .
360
• * . * Š "ƒ , , &
, , , , ." (7)
• 3 . „ "
, " ! ,
.
• ‰
"" . !
" ": (
"
), . & . (8)
3. : $" !, .

- - " , , , , .
- `=%> =;J#%*< +$%?;[ =$?;&#<'=;[ '%;J$%z%<#;[ ''>%
, & , !
, , , !
-
.
- `=> ;$>;[;#%&#;[ ;]&%
„ - . . "" , , , , .
- `=> ;+>}= ?< \ =$>%@\
:
• %, "
;
• , , .;
• .
ƒ " !
. „ .
'
: (
), (
) " (). (.1.)
361
1. Z ( )
2. ! 3. ! %
„ . . „ : , ( ) , (
,
, ) ", . (. 4.)
4. 362
,
" %, &
(. 5).
5. * 0 &
&
3
!
"
. (.6)
6. :% U: G * " . (. 7)
7. : 3
&
(. 8).
363
8. G : 4. ! %) %=$; #?;
ƒ & . * % , , "
. , &
&& , , . G
!, " ". „, , , -
, ! &. , , .
ƒ
‰ !
. # &
. „
, , & , ,
, , , , , , ,
, , .
, "
!
"
" ". *
" , !
", , , . , . ƒ
'
‡
(Salt Lake City)
. ( 9.).
364
9. ‡ :
: :G ! ‚&
! , &
. * "
, .
0
, - " "
. " - , , "
, , , : , , , , .
‡
. * &
, .
' , , & . G&
: # " "
? 0 , " ? ƒ
‡"
‚
.
% !
. ƒ! "
" . * . * , , , . &
. ƒ
365
. G , , . 3 &
. 0 " . (. 10)
10. Y . Z . }%, . Shepherd, Epstein i Hunter
ƒ
. „ " , . !
&
, , " .
J) =$; #?;
*
() , "
& . ! !
&. +
2
‚ & , ! , & .
# !
, &
&. + " 10 m "
& "
200 m .
* &
& , . „ .
366
3
! &
".
* , &
&
!
. $ .
‹
! . ƒ
" & .
3
&
" !
&
. "
. „ , . " &
&
. ƒ
, "
, .
5. &
" !
. „
, " , , & . '
&
. „!
, , & a &. , , . ‚
, .
* , &
& . 3
, !
& .
, & & , . „
, . ‡ . $ , & " &
, , , .
* , . 0 "
& & . „ () . .
367
# &
, "
- . , & - - &. „ "
, & , "
" .
„ & "
. '"
, "
!
. „ . & !
&.
ƒ
.
‹
" . ‡ , , , . „ , !
.
0 . G
! . 3
, "
" " .
ƒ & . ƒ : , , . $ , , , . ƒ
: ‡ ?, " : , ? " , !? ! ! . |! .
, , , , , 1. 2. (
, ) . * ()- ,
&
, &
.
368
1.
2.
3.
4.
5.
6.
7.
8.
‡.'. Œ: "2%$„'ˆ30, ƒ$„, 0Š„‡„*0". 2!
, ‚
, 1974.
Van Eyck: Team 10 Primer, Alison Smithson ed London, Architectural Design,
1964.
$, .: "$„0„230 *‚0'%G0"
$ , ‚
, 0*$, 1998.
‚
, ‹.: "‚'‹0 +‡0 20#0 ‡0 2+#0+ *‚0'$„‰‡ #+0„'$„" G $ , ‚
, 0*$, 1998.
ƒ
", $.: "$„„‡0", ‰ , ‚
, 1996.
Š, '.: "$„„‡0", ‡, ‚
, 1968.
Dessoir, M. : 1) "„30 ƒ$‹„™†0, 2) „30 '„'%‹0†0 3) „30 ƒ%'0‹0†0
„Š'‡", $; #
„" "*‚0' #%03'", 2000,
‚ +.
369
} [
!1
11 ! – <":W % 11 } Š (Y
!, [! , :
{, :G, {U, :, Q, [, } :,
{
:
}G) U Z (GAP) USAID Sida, U & U U &, ! $ & & W
' } Š.
': , , PILOT PROJECT OF ZONNING IN 11 MUNICIPALITIES IN
BOSNIA AND HERZEGOVINA- ATTACHMENT TO THE NEW
METHOLOGY OF PLANNING
Summary: Work represents recently completed a pilot project of zoning in test areas in
eleven municipalities in Bosnia and Herzegovina (Teslic, Mrkonjic Grad, Kotor Varos,
Knezevo, Vukosavlje, Kostajnica, Drvar, Sanski Most, Bosanska Krupa, Velika Kladusa i
Buzim) under the patronage of Governance Accountability Project (GAP), by USAID and
Sida, which scopes, among the other things, where to improve methodology of planning
zoning and to provide training of staff in urban departments, giving support to the definition and implementation of new lows of spatial planning and building in Republic of
Srpska and Federation of Bosnia and Herzegovina.
Key words: pilot project, planning methodology, legislation
1
. ‚ G
", . &.
, 0
-!
*
‚ +
371
1. *
% !
!
$ 2010. . # & , , " "
!
, . !
!
. ‹
" ( %) "
!
, , " , " .
* , % " , . *!
- , " &
. (. 25. %), & &
, "
, !
. & %, " , & &.
# G !
,
!
$
- , & , , . ƒ G , , , , -
& , &" !
, " $.
2 !
, , , , "
. %
$ !
, & .
372
$ 
‚Š. * , , " 3
2010. , !
, .
$
!
!
‚Š. 3
-
"
, & & & , ,
&
- .
% ‚Š !
!
USAID Sida ƒ
(GAP) , , , -
, &, "
2$-, " . ƒ , , 50 ‚Š, !
!
GAP-,
2.
2. ! ƒ &
&
-, -
. ƒ & &
&
.
% &
&
, , & , , 2
* , I GAP-, ‚Š, ! ‚
, !
2
‚
* $
, &
11 GAP- .
373
&
. * , !
, , !
, , , .
!
, & , , -
" , & , !
, " .
‡, &
, " , , . , , , , " ! , .

, &
, .
Œ !
? *
$, " , &,
"
, ,
, " . $&
&, , "
" . *
( !
) , %,
, , & !
, &
, (
, , , , .) &.
$ 
‚Š. *
*
2010. & "
,
, ", , & .
„ , &
374
, , , .
3.1. ƒ ‚Š ((„
", G" 2, ‡ ‹, ‡
&
, ‹
, ‡, #, $ G, ‚ ‡,
‹
‡ ‚&) !
2010. . "
, . „
‹
‡, # ‚ ‡ ( ) !
, " .
ƒ " , , . $ GIS- (
, , ), " "
!
"
GIS-. *! &
. (. 1., 2., 3., 4. 5.).
?. 1. '
– {
:
( %
U &)
Fig 1 Final report –detail from Pilot Project of zoning in Velika Kladusa
(report design by staff of urban department in Velika Kladusa)
375
?. 2. '
– Q
( U &)
Fig. 2 Final report-detail from Pilot project of zoning in Drvar
(report design by staff of urban department in Drvar)
?. 3. '
– } :,
U
\ ( %
G &
)
Fig. 3 Final report –detail from Pilot Project of zoning in Bosanska Krupa, settlement
Jezersko
(report design by staff of urban department in Bosanska Krupa)
376
‹
" , " . ‡ , " , &
, , , !
. " " "
&
, !
.
* Exellu !
GIS-, & ( % ) (. 6.).
& !
, !
, GIS GIS- (
GAP-) , .
?. 4. '
– [,
†U% U ( %
U &)
Fig. 4 Final report – detail from Pilot Project of zoning in Sanski Most, Railway Village
(report design by staff of urban department in Sanski Most)
377
?. 5. '
– [! ,
'% U [% ( U &)
Fig. 5 Final report-detail from Pilot Project of zoning in Mrkonjic Grad, Factory Village
Manjaca,(report design by staff of urban department in Mrkonjic Grad
378
?. 6. Y
(
&) ,
$ (: }. [
!)
Fig. 6 Table of regulation elements (building rules) in zones, defined pilot project
(author B. Milojevic)
379
3.2. ƒ . , , , !
"
&
, -, .
ƒ , &
, !
, (
) GIS-. „
, , , &, !
&
(", , , "
/
, .) "
-
.
$ , " , &
, " .
0 &
, ,
, & , "
- .
*
!
0
-!
ƒG--
ƒ *
‚ +, 0
$
‚Š, !
, .
4. !
#
$ 
‚Š &
& !
(
& & , , ) &
.
‚Š !
ƒ
(GAP), 380
USAID Sid, , "
.
1.
2.
3.
4.
5.
6.
7.
8.
9.
‹
", G. * , $
, ‚
, 2004.
‚", #. U
% , ,
*
‚
, ƒ , , ‚
1988., .81
G
", ‚. * –
}Š ‰ W
, % ' -, # ‚
, ‚
2007.
G
", ‚. Z $ –
G , % - $
, %‚+, ‚, 2010.
ƒ, G. }
U , $
, ‚
2006.
#
", $.  , ! !, * $, ‚ 1999.
# & & W, . . W 55-10
Z
G , . . W, $ 2003.
| '}Š (
. *. '.}Š. 872/10)
381
W
&!-!1
- !
: * "
!
. # e "e, . ‹ , . 3
"
. „!
"
" , "
.
': %!,%! , %! HIGH STRENGTH CONCRETE – MATERIAL FOR
CONTEMPORARY CONSTRUCTIONS
Summary: This paper analyzes the approach by which high strength concrete as
contemporary material is introduced into the construction practice. We summarize the main
parameters that influence high strength, as well as other improved properties of concrete.
The analysis of modern design codes, with special emphasis on European regulations is
performed. One of the aspects of analysis is the relationship between compressive and
tensile strength of concrete. It also analyzes the shear strength of beams and minimum of
shear reinforcement concerning the use of high strength concrete.
Key words: high strength concrete, tension strength, shear reinforcement
1
#, , 2!
, ƒ
383
1. ‚
" !
. , , . ' -
".
1.1 & " "
. 3
& " , , . *
, , "
. „!
, . ƒ
"
. " , -
, & .
"
, &
. $ "
. G&
"
&
" " .
T 30- "
je "
"
20 MPa, 80- "
"
.
G
!, " 60- " ", a,
"
. *
!
"
. * ‰ !
60- "
42 MPa, G
„Place Victoria“ 190 m. „ 70- " 60-70 MPa, !
, ”Water Tower Place“ ‰,
&
3, .
G
!, 80- 90- "
, "
"
" . „ 58-
, „Two Union Square“ $
, , 384
, 3 m, "
130 GP. " &
216 m, &
. ƒ 50 GP. + " " 130
MP, "
, "
fc¹ =90 MPa [1].
‚
"
130 MPa !
“Pacific Frst Center“ $
(1989), “Gatway Tower“, !
$
, (1990) !
"
117
MPa. * 68- “Scotia Plaza“ „ !
"
70 MPa, 65- 311 „South Wacker Drive“ ‰, "
83 MPa. %
, !
2000. , “Bankers Hall 2“ (53 ) „TCPL Tower“ (35 ) ‡ “Pantages Place“ (46) „ "
80-85 MPa.
1 – “Two Union Square“ „311 South Wacker Drive“ ‰
(„Two Union Square“ in Seattle and „311 South Wacker Drive“ in Chicago)
*
"
, , , "
, "
, . 3
"Confederation Bridge" Prince Edvard Island New Brunswick ‡
. $ & 13 km ! &
-
250 m & & 7500 . G , !
". ‰" , 28-
" 385
50-80 MPa, " &
100 MPa. &
&
, 100- .
2 - [ "Confederation Bridge" G („Confederation Bridge" is one of the longest bridges of the world)
1.2 1.2.1 ;<% “J>;# ?';= }?$'>;z”
‚
"
"
"
HSC , High
Strength Concrete. ‰
High
Performance Concrete (HPC) Ultra High Performance Concrete (UHPC). High Performance Concrete "
. „ &
" a , , HPC !
, . !" (Self Compacting Concrete SCC). &
" " , &
.
$ , &
HSC HPC-. „ !
ACI 1998. , HPC , ! . ‚
,
386
, "
, .
„
&
" (ƒ‚0‚ 87) "
50 GP. „ (
) "
. ‚
"
50 GP , "
.
, & , " f cc =50 MPa.
' EC2 (EN 1992-1-1: 2004) ! " "
C90/105, EN 206-1: 2000 C100/115.
EC2 - "
fck ‘50 MPa "
50<fck‘90 MPa. * ,
-
!
, "
.
ƒ
Russell (1999) "
"
:
!
0.35;
" 4 21 MPa,
24 34 MPa 28 69 MPa.
1.2.2 ;J<%@ J>;#a ?';= }?$'>;z
"
"
: , . % "
, . $
"
, , "
. % ,
"
, & .
ƒ "
. , , , & , , .
% "
"
( 42.5 52.5). ƒ &
"
, !
"
.
‡ , " "
, !
& . ‡ " " , " . ‡ "
, " 387
&
, !
" . * " ,
&
" "
.
. ‰
"
&
"
. $ &
! , "
.
2. !
2.1 -
! "
, " &
, . *
e &
"
, "
. G&
, ,
. 3
& , "
"
, . $
"
"
50 MPa "
. * EC2 fc¼>50
MPa "
, &
"
!
&
"
50 MPa, .
2.1.1 %?'#;'> #%+;#-]`;$%*<% +$ <]#;%='<%&#; +$>'=\
"
-
"
. ' 3 &
-
"
.
388
3 - # -$ ! %! (Stress-strain curves with increasing compressive strength of concrete)
- ! "
& "
% "
,
- "
"
,
- "
.
0 -
, 150/300 mm f cc , & "
, (1), Aïtcin 1998,
Collins, Mitchell, MacGregor 1993, Wong i Vecchio 2002, [1,5,7].
fc H c
n
(1)
u
nk
f cc H cc
§ Hc ·
n 1 ¨¨ ¸¸
© H cc ¹
:
f cc ,
H cc f cc ,
n, k .
‡
k " &
"
"
. % & H c H cc 1 k=1, H c H cc t 1 k>1.
389
Collins Porasz (1988), Collins Mitchell (1991) Collins, Mitchel McGregor
(1993) [5,6] & "
n k
H c H cc t 1 :
fc
n 0.8 c ( MPa)
(2)
17
fc
k 0.67 c ( MPa)
(3)
62
U relaciji (1) figurišu •etiri konstante: f cc , H cc , n i k koje se mogu odrediti iz odgovaraju”eg dijagrama napon-deformacija. Me{utim, u ve”ini slu•ajeva je poznata samo
•vrsto”a cilindra f cc , pa je potrebno odrediti ostala tri parametra. Parametri n i k se mogu
odrediti pomo”u relacija (2) i (3), dok je deformaciju H cc mogu”e odrediti ukoliko je poznat
po•etni modul elasti•nosti betona Ec, pomo”u jedna•ine (4):
f cc n
˜
H cc
(4)
Ec n 1
Ispitivanja su tako{e pokazala da je beton visoke •vrsto”e osjetljiviji na popre•ne
deformacije nego beton niže •vrsto”e. Prora•un napona u popre•nom pravcu može se
sprovesti pomo”u jedna•ine (5) (Collins, Porasz, 1988) [6]:
f cc H c 2
n
u
u
fc2
(5)
nk
O H cc
§ H c2 ·
¸¸
n 1 ¨¨
© H cc ¹
­ " :
O
(0.8 0.34
H1
)(0.9 0.0045 f cc) t 1.0
H cc
(6)
ƒ
EN 1992-1-1: 2004 "
"
" C50/60, [2].
2.1.2 ;]\& &%'>}#;'> J>;#%
G - . G "
"
"
, " "
, !
. ‹
"
, , , "
.
G
!, , "
, . „ EN 1992-1-1: 2004 ! &
"
:
390
Ecm
§ f ·
22¨ cm ¸
© 10 ¹
0.3
(GPa)
(7)
fcm = fck+8 MPa,
fck "
.
„!
! .
3
"
(Aïtcin 1998) Baalbaki (1997), [1]. ' "
Baalbaki :
E c K 0.2 f c (GPa)
(8)
c
0
c
* (8) K0 . „ K0 = 9.5GPa, K0 = 19GPa K0 = 22GPa. , 60GPa, 50GPa 30GPa, (Aïtcin
1998) [1]. , "
: 95MPa, 130 MPa 155 MPa. B
" " a "
, "
. * " "
"
, " "
"
&
, , . ‡ "
, , !
.
‡ (CSA) & (8) .
2.1.3 ?$'>;z% J>;#% +$ %>%@\
#
"
&
, " !
- "
"
. " " , ! "
"
. ƒ
, , "
. '
, [1,3]:
(9)
Comité Euro-International du béton CEB-FIP (1978) f sp 0.273 f cc2 3 (MPa)
Carrasquillo, Nilson i Slate (1981) f sp
ACI Committee 363 (1984) f sp
0.54 f cc1 2 (MPa)
0.59 f cc0.55 (MPa)
391
(10)
(11)
Burg i Ost (1992) f sp
0.61 f cc0.5 (MPa)
(12)
(10) (11) &
21< f cc < 83 MPa, (12) & 85< f cc < 130 MPa.
ƒ
EN 1992-1-1:2004 !
! "
, fctm, "
. % "
"
, fck, "
"
, fcm.
% "
, ‘ C50/60
f ctm 0.30 f ck2 3 (MPa)
(13)
% "
, >C50/60
f ctm 2.12 ln1 f cm 10 (MPa)
(14)
' + 2!
ƒ, "
( 45 MPa 107 MPa 15 cm), (15), [8, 11]:
f sp 0.5 f cc0.5
(MPa)
(15)
fsp " ,
f cc " 15/30 cm.
' 4 ! "
"
, (9) – (15).
ƒ
EN 1992-1-1 (EC2) "
"
"
, & . ƒ "
"
[8,11], 4.
8
vrstoa pri zatezanju (MPa)
7
6
CEB-FIP (9)
5
ACI (11)
CNS (10)
4
GFP (15)
3
EC2 (13,14)
2
BO (12)
1
0
0
20
40
60
80
100
120
140
vrstoa pri pritisku (MPa)
4 – ‰! $ %! (Splitting strength as a function of the compressive strength
according to the given relationships)
392
3.1 ! ƒ
, "
"
, " , .
5 – | %! %! (Influence of concrete
compressive strength on shear strength of beams)[9]
' 5 & "
, &
, "
. ' "
"
" &
. ƒ
& "
"
"
"
. 2 .
% "
"
" .
ƒ
EC2 " , " :
U w Asw sbw sin D (16)
:
U w, min
0.08
f ck
f
(17)
yk
Asw "
,
s ,
bw ! ,
fyk "
.
393
ƒ
EC2 ! " . #
6 ! "
"
, CSA 2004, ACI 318-02, EC2
2004, AASHTO 2001 Concrete Society Technical Report 49
(1998).
0,900
0,800
U w fy (MPa)
0,700
0,600
0,500
0,400
EC2 2004
0,300
CSA 2004
0,200
ACI318-02
AASHTO
0,100
CSTR 98
0,000
10
20
30
40
50
60
70
80
90
fck (MPa)
6 – [
%! % (Minimum of
shear reinforcement according to different design codes) [11]
ƒ
& "
!
"
. Yoon, Cook i Mitchell (1996) " CSA-94 CSA-2004 "
, [10]. G
!,
Ozcebe (1999) "
, (0.25mm).
4 ‚
"
, &
. †
" &
!
.
#
"
, ", . "
394
!
.
„
"
&. ‹
" "
.
ƒ "
o je &
, "
"
.
[1] High-Performance Concrete / P.C. Aïtcin // E&FN Spon, London 1998, 591pp
[2] EN 1992-1-1:2004- Evrokod 2, ƒ – #
1-1 –
, ‚
, 2006.
[3] State-of-the-Art Report on Hgh-Strength Concrete / ACI Committee 363 //
American Concrete Institut, 1992, Reapproved 1997, 55 pp.
[4] A State-of-the-Art Review of High Performance Concrete Structures Built in
Canada 1990-2000 / J.A. Bickley, D. Mitchell // Publication printed in Canada,
2001, 114pp.
[5] Structural Design Considerations for High-Strength Concrete / M.P. Collins, D.
Mitchell, J.G. MacGregor //, Concrete International, Vol 15, No.5, May 1993,
pp.27-34
[6] Shear design for high strength concrete / M.P. Collins, A. Porasz //, 26th Plenary
session of CEB, Dubrovnik 1988
[7] VecTor2&FormWorks User's Manual / P.S. Wong, F.J. Vecchio //
http://www.civ.utoronto.ca/vector/ August 2002, pp. 213
[8] Tensile and Shear Strength of High-Strength Concrete / R. Sin{i”-Grebovi” // The
5th Central European Congress on Concrete Engineering, Innovative Concrete
Technology in Practice, 2009, Baden, Austria, pp 285-289.
[9] Simplified Shear Design of Structural Concrete Members - Appendixes / N.M.
Hawkins, D.A. Kuchma, R.F. Mast, L.M. Marsh, K.H. Reineck // NVHRP WebOnly Document 78, July 2005, 338 pp.
[10] Minimum shear reinforcement in normal, medium and high-strength concrete
beams / Y.S. Yoon, W.D. Cook, and D.Mitchell //, ACI Structural Journal, Vol.
93, No.5, September-October 1996, pp.576-584
[11] | %! %! / . $!"–2
" //, # , 2!
ƒ, 2009. . 263
395
[
#
1
:* !
, . # , , !
.
, & !. 2 !
" . ƒ
..
': , /& , MATERIALS USED IN EUROCODES APPLICATION
Summary:To satisfy essential requirements for civil works material properties shall
be well defined. Special emphasis is given to mechanical resistance and stability.
Suitably selected materials in conjunction with quality construction should assure civil
works complying assumptions defined in the design.
Definition of suitable properties of concrete and reinforcement steel is discussed.
These properties shall be given in the design, shall be identified on the market and
applied by the manufacturer. Neccessary system of construction product conformity
assessment at the national level is discussed as procedures for fulfilling and application
of European legislation. An example is given for concrete structures.
Key words: eurocodes, materials/ construction products, fulfillment of requirements
1
.. G
%, ..!., „
%
397
1. ‡
. # , .
ƒ
!
.
‡ !
!
, "
. ƒ &
, !
, & !
.
‡ "
!
, , , , , .
"
, .
2 * , . $ , ( EN 1992, EN
1993, EN 1994, EN 1995, EN 1996, EN 1999 EN 1998 &
), .
2.1 !
% , EN
1992-1-1 EN 1998-1.
2.1.1 >;# – %^><? #;$ EN 1992-1-1
# . % %! EN 206-1 "
, fck / fck,cube ( (5 %-
) "
/ ).
* EN 1992-1-1 ( 1) "
fck "
&
. ' " ,
, .
„ " , . " " fck, !
398
28 " Cmax &
NA2, " C90/105.
{
% %! "
"
. $
" " ( 1) .
' "
. 0 " !
> 28
, acc act !
3.1.6 (1)ƒ 3.1.6 (2)ƒ EN
1992-1-1 . ‹
NA, 0,85. * RH Dcc=1,00.
.1 - N' #' ( 3.1 EN 1992-1-1)
fck (MPa)
fck, cube
(MPa)
fcm (MPa)
fctm (MPa)
fctk,0,05
(MPa)
fctk, 0,95
(MPa)
Ecm (GPa)
Hc1 ( 0 00)
Hcu1 ( 0 00)
12
16
20
25
"
30
35
40
45
50
55
60
70
80
15
20
25
30
37
45
50
55
60
67
75
85
95
20
1,6
24
1,9
28
2,2
33
2,6
38
2,9
43
3,2
48
3,5
53
3,8
58
4,1
63
4,2
68
4,4
78
4,6
88
4,8
90
10
5
98
5,0
1,1
1,3
1,5
1,8
2,0
2,2
2,5
2,7
2,9
3,0
3,1
3,2
3,4
3,5
2,0
2,5
2,9
3,3
3,8
4,2
4,6
4,9
5,3
5,5
5,7
6,0
6,3
6,6
27
29
30
31
33
34
35
36
37
38
39
41
42
44
1,8
1,9
2,0
2,1
2,2
2,25
2,3
2,4
2,45
2,5
2,6
2,7
2,8
2,8
3,5
3,2
3,0
2,8
2,8
2,8
Hc2 ( 0 00)
Hcu2 ( 0 00)
2,0
2,2
2,3
2,4
2,5
2,6
3,5
3,1
2,9
2,7
2,6
2,6
n
2,0
1,75
1,6
1,45
1,4
1,4
Hc3 ( 0 00)
Hcu3 ( 0 00)
1,75
1,8
1,9
2,0
2,2
2,3
3,5
3,1
2,9
2,7
2,6
2,6
% $ , .
‹
EN 1992-1-1 " . G
!, !
(. ! . % 10 %, 30 % , " 20 %).
‹
. ƒ 0,2
0 . „ 10·10-6 ‡-1.
‹
NA.
Z U , , "
"
. „ "
0,45·fck(t0) 0, 2
399
"
. 0 0 0,45·fck(t0) .
- $ "
. ( 3.2 EN
1992-1-1).
{ % % % %! !
&
, ˆ , ", acc act
fcd
D cc fck / J C
f ctd
D ct f ctk,0,05 / J C
‹
NA. ƒ
1,0.
- $ EN 1992-11, – .
1 – - $ (
3,3 3,4,
3.6 EN 1992-1-1)
% , ( ), "
"
"
. ' EN 1992-1-1 "
"
.
$ " . ƒ
EN 206-1 !
!
&
, !
( 0.1 EN 206-1), ,
2.1.2 &= % %$$%@ - %^><? #;$ EN 1992-1-1
‰
, , & . *
EN 10080, , 3.2.2 3.2.6 # ˆ , .
' EN 10080 Re, , " . fyk !
. '
! fyk Re.
G
! EN 10080
400
!
fyk. ƒ
! EN 1992-1-1 ( 2, . " , ).
* EN 1992-1-1 fyk = 400 600 MPa.
2 $y NA.
* # ˆ EN 1992-1-1 ( 2), $ (
), . $ - 40 C + 100 C. $ !
EN 13670.
‰! - 2 fy " ft "
"
"
, .
‹
š fyk NA. ƒ
C.2N EN 1992-1-1, š 0,6.
2 - ?' ( C.1 9 C EN 1992-1-1).
Œ
0
‚
‡
fyk
f0,2k (MPa)
C
%
(%)
G
&
0
‚
C
400 600
5,0
' k = (ft/fy)k
¾
1,05
¾
1,08
¾
1,15
<
1,35
¾
1,05
¾
1,08
¾
1,15
<
1,35
10,0
‡
" ,
›uk ( 0 00)
¾ 2,5
¾ 5,0
¾ 7,5
¾ 2,5
¾ 5,0
¾ 7,5
10,0
$ -
-
0,25 A fyk
(" &
)
ƒ "
( kN)
401
'
'
"
(
&
)
(%)
'
()
‘8
>8
5,0
± 6,0
± 4,5
‹
fyk, euk 2 . ' EN
10080 . $ !
2:
- , ( "
fyk )
- fy ! "
, M t Cv + , : „Cv„ , „“ '0.
ƒ
fyk 10 MPa, 0.
'
"
fy, NA, C.3N EN 1992-1-1. # "
" "
$y,x 1,3 fyk.
$ EN 10080 EN ISO 15630-1.
Q
"
(ft/fy)k " , . ƒ
- !
( 2).
2 - Q – $ –
$ %
( % % ) (
3.7 3.8 EN 1992-1-1)
% EN 10080, "
(
& "
, & ), EN ISO 17660.
402
‰" , , EN
10080. ƒ # C EN 1992-1-1.
ƒ . % " ( 2):
) " k·fyk/gS
, k=(ft/fy)k,
) ‹
eud '0, 0,9·. ‹
(ft/fy)k # ˆ 2. $
"
7850 kg/m3, , , 200 GPa.
2.1.3 >;# }&= % %$$%@ – ];]%># %^><? +$% #;$ EN 1998-1
% &
(DCM) C 16/20.
* (
), B C, ˆ.1 EN 1992-1-1 ( 2). G&
& ( ).
‚
(DCH) "
C 20/25. 0 !
C.‹
(95%) , fyk 0.95, 25%.
3. '
. G
!, . "
3 : , !
(NA) .
3.1 CPD (
89/106/EEZ)
ƒ
CPD &
, !
CE . #
! !
!
() ( ). & (
) 403
(!
)
!
! . ' &
&
() !
! , .
' (
) !. ' . * & ! , Š ! (2+) !
. ƒ
!
, HRN EN 206-1 HRN 1128 .
% EN 10080 !
. '
, Š !
, HRN EN
10080 HRN 1130 (&, , &
).
(
, .)
! .
3.2 !
* !
!
(!
) . %
!
!
, & .
% !
!
EN 13670. *
Š "
!
. ,
.
3.3 ! ! (#[. National Annex, NA)
* 2, , " !
. % . %, NA " , . ' "
, .
404
4. ƒ
" "
!
, !
. „ !
.
# , ! , &
! #
!
. G
! .
ƒ
" () . # ! " & , ! , !
.
1
2
3
4
5
6
7
8
EN 1992-1-1 (
3. ˆ)
EN 1998-1 (
5.3.2, 5.4 5.5)
#
89/106/EZZ (ˆPD)
' Š
HRN EN 206-1
HRN 1128
HRN EN 10080
HRN 1130
405
[
€1, * Z! 2
! - !
! : , " , , & , „ “. , &
& , " - 21. . , , , , , " "
, !.
: , ,
&
NEW SPACE CONCEPTS – INNOVATIONAL
CENTRE BANJA LUKA
Summary: The Twenthieth century architectural object, using the principle elements of
an architectural object, bases, facades and a roof, has had for an aim the tendency to express
the architectural object’s function through its form, which coincides with the concept that
the form pursues the function. The main elements of The Innovational Centre, as an
architectual object, do not tend to express a completely new contents of that object, but,
they tend to express the character of the space corresponding to the sociocultural context at
the beginning of The Twentyfirst century. The elements of The Innovational Centre, as an
architectual object, base, facade, roof, motion, function, merge into a bigger whole thus
becoming the active segments transforming the architectural object into a singular dinamic
space event.
Key words – open space concept, singular architectural object, event
1
2
‡. G +, ... , 0
*
‚
.
'
ƒ
", ... ƒ
, „ƒ
“,.. ‚ +.
407
1. ‚ -
1.1. ‚
- ‚
+ (ˆ‚+) *
‚ + 2007. ,
!
2 ‚ +
, %
‚ +. *
‚
+, ‚
ƒ
‚", .. . 710/17 .. ‚
+ ( ), .. . 1623/4 .. ‚ + 6 ( ).
‹ *
‚
+.
ƒ
„$
“
, " ƒ+2, &
2.226,4 m2. ƒ
!
”$
" , -
!
3, " ! , !
, "
"
, 5. " "
, &.
' ˆ‚+, !
‚ +
*
.
!
2009. 2010.
„ƒ
“, .. ‚ +. 0 G +. *
: 1. – G +, $ ‹", $" !
™ 0" 3 ©
", 3D – 0
‡"; 2. – !
&
% ", G 3
" 3
"; 3. – !
&
G G
" ‹
$; 4. – &
G Š, G $" „ ‡
"; 5. – &
% 3".
$ ‚ +.
408
1.2. ! ! + *
‚
+
. , ", ‚
ƒ
‚"
, ‚
š G" &
, ‹ . + " *
‚
ƒ
‚" "
&. ƒ
‚
ƒ
‚" ‚
š
G" "
, , , &
. , ‹,
.
ƒ
*
‹, 156 m, , ƒ !
500 , 9° MCS, Ks=0,100.
1.3. ! ! ' .. 1623/4, .. ‚ 6 , 187.017 m2 , " *
, " !
. ' !
" &, ! . ƒ
, !
.
ƒ
, 4.914,71 m2. ", " , " &
. ‡ !
" " , " , .
*-
, "
:
- 79,0 24,5 m, !
e
e.
- ƒ+ƒ+3 (, )
409
- 4.000 m2
- !
.
- &
.
2. ‚
2. 1. ! ! " "
, - , & : , , , , ,
-
, , .
, ƒ+2, ƒ+3, 4.000 m2, &
!
, *-
. 2 , ". ƒ & !
, -3.00 m . # !
. $ &
!
, " .
2.2 !
! ƒ
-
‚ +, ‹
$
‹
'
. ‡
ˆ‚+ , $
" $
G
‹
$
‹
'
. ‚ +, *, " . „start up“ ˆ‚+ " $ *, &, " & " ,
, , . ƒ
410
:
- - - - - "
" - "
"
-&
*
- ƒ
,
ˆ‚+- $
" $
.
2.3. !
ƒ
, !
&
(PPP – Public and Private Partnership). 3
, ‹ $
, 2 ‚
+, *
‚ + ‹ ‡
'
XI„ ˆ
(ˆ
), , ".
‡ „“ ˆ‚+-, ,
"
, & . „ " !
, “start-up” , " , “spin-off” *
-& ˆ
, &-
. ‡ "
&
, , &, “outsourcing“, , . ƒ
!
! "
ˆ‚+-, "
&, !
" , ˆ
. *
"
ˆ‚+- -&
, , "
* -& , . + &
411
"
ˆ‚+ ! & , , IT
, , , *. & & "
ˆ‚+ , & ! & , !
&. 3 "
& &
.
ƒ
, &
ˆ‚+: -
, $
! &, , *, : , , ,
" &- „Know-How“, , &
, “seed fund“ $.
3. ! ! 3.1. 0
"
", , ! . ƒ
, , !
. ' !
, , , .[1]
$ , , &
. ƒ
, , . ƒ
"
, . , , " . $
&
, " , & .
412
2 ‚ + , - & ‚
, %
, ™, ‚
‚
. *
&
, , ‚ +
$
.
3.2. „
\ š ‚ (Jean Baudrillard) Q& /vent Theory/.
ƒ
, „“ , " . ƒ
, ‚, !
, " [2] .
‚" , ‚, , „
"
, "
“.[3] ƒ , "
!
"
" " -
. , " "
. #
!
&
! : ! "
". #! , , . #! , & , , .
3.3. ! ! !
0
, , , .[7] ‡
, ,
" , &
!
. . ' , , , , , " ! & .
413
$
, ! ! - , . „
&
", -&[4] "
-
.
, „ ", ,
- “
„ " &
"
“. „!
, ˆ‚+- "
: „“state-of-art” , , , , , , , &
“.
"
& , . G
, ‚, „
„0““[5] , &
„
„““. ƒ , , , ˆ‚+- „“ &
!. ,
" , ,
& , „
“. , &
,
, & , " - . [6] * , ,
, , , /
, "
, !.
ƒo- ‚ + & , .
414
4. – ! !
! ! 4.1. ! ‚
ƒ . ƒ
!
4.000 2 , :
1. -
2. ›
3. 4.2. -! * &
. &. ƒ
: , , & , , -
. *
, , , -. * "
, .
4.2.1. !#>$%&# ^;&
ˆ
, , &
! . ˆ
!
, !
" , - . Š , . * & &
, &" . ‡ , & – , , . , ""
, , -
415
. * !
" &:
- - - – - - &
- - “Press releases” – !
- - 4.2.2. #=\J%>;$ *#>%$ >$##[ ;]&@
, . „ ˆ‚+-
"
ˆ‚+-,
ˆ
. " " " , & , "
, & .
! . ƒ
!
,
!
, ˆ
, . & , ,
"
!
.
* !
" &:
-*
“e-learning” – "" e-learning . #
12 " , ", 24 " .
- – & “e-learning” . *
15 " .
- – !
, .
- e-learning – & elearning .
, start-up . ƒ
!
, " „kno416
wledge-based“ , &
. # , !
start-up -&
, , ,
, &
&
"
. " !
" " . ƒ
, . * !
"
:
1. ‡
„start-up“ 26 - 1-3 .
- 3–6 , ,
›
.
- , , ›
.
2. $
– , 15
" .
3. +
– , ›
.
4. %
- "
, . ‹
, " -&
*
.
5. ˆ
– !
.
4.2.3. ;#'%&>#[ ;]&@ #%‘#> *#>$%
›
, !
. * ›
. ‡
&, &, &, ›
" &
.
1. ‡ - - - IT
417
- !
– Hot Desk
- 10 - – 15 " - -
2. G
›
ˆ
- - 5 ›
- - – 20 " 4.2.4. ;#`$#*<'= *#>%$
‡
- , &, ! . ˆ
, & . ‡
" ( 12,0 m), - . ƒ
!
&
. * 225 " , , , , " . ƒ& " . *
!
, ! , "
-
, .
ƒ &, , & !
,
, , , &
.
5. ! ! 5.1. ! ! !
-
15 20 cm,
. &
"
5.60/6.00 m, "
, 5.80/12.00 m, . '
"
-
!
, & &
418
& ¿ 55 cm, 50/50 cm. G
! -
18 cm,
-
20/70, 30/70, 50/70 50/100 cm.
-
60 cm 60 cm.
* !
" .
'
,
. ƒ , , , "" "
›
. ƒ
!
. 2 .
# , !"
" . ƒ" , , !
&. ƒ
!
-
& .
# -
, . ƒ
!
PROTAN SE 1,6 mm 01 „, , . , , .
5.2. ! ! !
ƒ
" Sto Ventec, , 15 cm. % , Stolit, , , + 2, & , . ‹
6-14-6, 0 90% Ug=1,1 W/m2K. ‡ SCHUCO FW50
SI+, . ‹
" 150
mm, 155 mm, Uf=1,2 W/m2K. * Ucw=1,3 W/m2K. ' !
8 mm, - 14 cm. * 419
!
Schuco
AWS 120 SK, "" . !
, , !
.
1 – U } €
Fig. No. 1 - The Innovational Centre Banja Luka – ground floor base
2 – |
$ } €
Fig. No. 2 - The Innovational Centre Banja Luka – the principal facade
420
3 – }% $ } €
Fig. No. 3 - The ICBL – the flank facade and the facade overlooking the courtyard
4 – Z } €
Fig. No. 4 - The Innovational Centre Banja Luka - panoramic view
421
6. [1]
[2] [3] [5]
[4]
[6]
[7]
Lefebvre, Henri. The producion of space (1974). Translated by Donald
Nicholson-Smith. Oxford: Blackwell Publishing Ltd, 1991.
Baudrillard, Jean i Nouvel, Jean. The Singular Objects of Architecture,
(2000). Minneapolis: University of Minnesota Press, 2002.
Tschumi, Bernard. Arhitektura i disjunkcija (1996). Prevod S. Kal•i”.
Zageb: AGM, 2004.
Hayes, Michael K. ed. Architecture Theory since 1968. New York: MIT
Press, 1998.
Colomina, Beatriz, Privacy and Publicity: Modern Architecture as Mass
Media, (1994), The MIT Press, Cambrige, Mass, 1996.
422
[
W!1, [
!2, `U Z
!3
!
: ‹ "
, " , . *!
1 10 cm.
!
, !
.
': {, , , cija
COMPOSITES BASED ON THE WOOL FOR THERMAL
AND SOUND INSULATION
Summary: Wool is a precious natural fiber used in the shoe and home textiles production and recently in the production of technical textile and composite materials for insulation. Composite materials are made of wool with the polypropylene and bicomponent
polyester fibers from 1 to 10 cm thickness. Characteristics of these composites, insulating
properties and certain optimal composite combination for insulating materials are determined also.
Key words: Wool, polymers, composite materials, thermal insulation
1
ƒ. G ", . &. , „
, ‚ +, ‹. $. $
" 73,
78000 ‚ +,
2
G
", . &. , „
, ‚ +, ‹. $. $
" 73, 78000
‚ +,
3
™ ƒ", $% „G“, 29. '
, 79101 ƒ
423
1. ƒ .
# " "
, " , (
, , !
.).
* . !
, , . ƒ 160 ºC . G
&.
3
!
. ' !
& & &
.
1. Figure 1. From nature to thermal insulation
2. ‹ & , , . , , !
, . ƒ
& , .
424
$ &
, À-
, :
R – CH – COOH
I
NH2
,
, :
... – CH – CO – NH – CH – CO – NH – CH - CO – NH - ...
I
I
I
R1
R2
R3
,,R“ &
, .
‹ :
80%;
17%;
1,5% 1,5%.
% & . ‹ . ‹ &
.
* ›
, .
' & &
, & , "
. * ,
, .
2. $$ Figure 2. Electric microphotography of the wool fiber
425
‹ &
. ‹ & .
'
" , &
.
3. ‡ :
" ;
(ƒƒ) (ƒ$).
* , 35x35 cm. ' &
ƒƒ ƒ$
, &
. † 5 20%. , 1 10
cm. pod ' " 160 ºC, "
.* . ‹
. „ 1 cm, 5 "
3 kg. % 3cm 10 "
5 kg. 0
5 7 cm, 15 "
7 kg. 10 cm, 20 "
7 kg. ' "
" .
3 . Figure 3. Final sample appearance of the composite materials
426
4. * ƒƒ ƒ$ &
. ƒ
ƒƒ ƒ$ 5 20%. $ !
, &
"
"
. ' 8%. „ , , & .
* , & !
/ƒƒ /ƒ$. ' &
&
, ,
.
, "
!
(
),
‡ . ‹
1.
1. #' " '
Table 1. Thermal conductivity coefficient of the insulating materials
$'> %>$<%&%
O [W/mK]
‡ 0.0360
‡
0.0346
ƒ
0.0324
' &
" . $ , 4% , . 10% , &
. „!
.
427
5. ‡ . ƒ
, , &
. ‹ "
" . ƒ . ‹
!
.
‹
!
" , 4% 10% . ! , ,
, .
4. Z %
Figure 4. Composite materials application based on the wool as thermal and sound
insulation
6. 1.
G. ": „‹- $ $ „
“, *
‚
+, „
, ‚ +, 2000.
2.$. ƒ": „G
“,
*
‚
, „
-
, ‚
, 2006.
3. G. ˆ
: „0
“, 3
! 28
4/1988 . 20-26, ‹-, +
4. A. S. Blicblau, R. S. P. Coutts, A. Sims: „Novel composites utilizing raw wool and
polyester resin“, Journal of Materials Science Letters 16 (1997) 1417-1419
5. Jong-Kyo Kim, Yin-wing Mai: „Enfineered Intefaces in Fiber Reinforad
Composites“, Elsevier, Oxford, UK, 1998.
428
[
7!1 , W ! 2, Q : 3
E : # () 2 ‚ +, . ƒ
, !
, " " , , "
, .
: a , $
, U U .
BUILDING PROBLEMS OF WATER SUPPLY IN
RURAL AREAS IN BANJALUKA CITY
Summary: The work presented reviews of the current ways of water supply in rural
areas in Banjaluka municipality, as well as activities that are planned and implemented in
order to improve the quality of water supply during the year.
Among other activities in order to provide sanitary and non-bacterial water to rural
areas, it is planned to introduce the technology of self-rinsing quick filters at the sources,
water disinfection, installation of appropriate equipment for automatic operation, remote
control and central management of water systems in rural areas.
Keywords: springs water, self rinsing quick filters, remote monitoring and control
systems.
1
. , ˆ
!
, ‚ +
. .&.!., *‚$ ˆ'„0, ..., ‚ +
3
.&.!., ˆ
!
, ‚ +
2
429
1. (
) 2 ‚ +
. 2 & &
ˆ
!
. ƒ
, " , "
( &
) , &, ( ). ƒ
'
, (
ƒ – ƒ
– ‹
"), 3
, ƒ, ‚
, $ ( š). 2 ‚ +, &
( ) . % &
, !
:
o
" 2
‚ + 24 , ;
o
&
!
;
o
*
!
.
2. % ( &
) $ :
- % !
!
("$&
$
",
. 55/10),
- % ("$&
$
", . 50/06, 92/09),
- % ("$&
$
", .
11/95, 51/02),
- % ("$&
‚
Š
", . 49/04),
- ƒ "
("$&
$
", . 40/03),
- ƒ , ! & , , ("$&
$
", .
07/03),
- ƒ !
, ("$&
$
", . 44/01),
430
- ƒ ("$&
$
", . 68/01),
- ($&
2 ‚
+
. 25/07).
% ‹ $ $
#
, 2 ‚ +.
3. % 2 ‚ +, !
30 " ˆ
!
(
4 , $ 2 ‚ + .16/03,
19/06) .
' " !
" !
: (&), (
50 1200 3), (
4 ‡W 75 ‡W), , ( , ‡ 20 ‡300 ).
' & ˆ
!
, "
: , , .
% !
" ( & ˆ
!
) 1.
1 – N " ' Table 1 - Summary data on water supply facilities built
‚
*
‚
‚
!
40
6485 3
23
49
*
&
&
430077 ‚
–
"
5929
'
!
1. G&
!
&
!
: , , ,
, , , (
).
431
. 1. * & Figure 1. Some of the facilities built for water supply systems
" !
„2" “ „
“ ( 3), ( & ) 2 ‚ + (‡, , ‡
, 0 , ™
, 943 ), 3 ‡
&
G
" ‰
. ‡
70 /
. * , . (
) (). G 40
/
"
. PLC-a4, "
SCADA5. ƒ
. ƒ
!
, , "
, "
, .
„
2" 2, 3.
4
PLC – Programmable Logic Controller - ! &
SCADA – Supervisori Control And Data Acquisituon - 5
432
2: } $
! Figure 2: Fast filters at the source Gasica vrelo
* „$“ ( 4), 1908.
‚ +
. ‡
25 /
. $ " &
: 2
(69 ), # ‡ (25 ),
ƒ, Œ, $ (
315 ).
3: 7 ! Figure 3: Scheme of water supply system Gasica vrelo
* "
: „‚"“ (
520 ), „“ „„“ G
G Š (
128
433
131 ), „2 ƒ“ (
220 ), „ƒ
“
(
392 ), „‚ G“ (
319 ),
„‡ – “ (
362 ), „‹
"“ (
356 ), ‡ (
300 ). % "
( "
), (
). % &
, !
.
4: 7 Figure 4: Scheme of water supply system Subotica
% G
‚ " : „£" “ (
244 ) „‚" “ (
141 ). -.
%"
( 10 ‡W 4 ‡W) (
200 3) & .
% ‚ „ ‚. % , : 30 ‡W „, 37 ‡W . ' ( ) 227 ("). * "
"
, .
434
4. $
2 ‚ + &
(
) & ˆ
!
, 75% .
'
!
" , . (‹, ƒ", 1, # ‡,
, 3
, ƒ, $).
' , (‚", ‹
", 2 ƒ, ƒ
,...).
% " ,
. G
!
!
, (‹
", ‚", ƒ
, ‡, G Š, ƒ, „ƒ
"“ G.%. Œ, 2" ). 0
, .
% . % & ˆ
!
, , , "
&a
. ƒ
& &
( & , ,
" ).
5. * , 2 ‚ +, , "
: , ", ", ; , (, , &), (
, , ); ; (
= 1,50, = 1,65).
$
" ( ) 2, 3.
435
2 – !' Table 2 - The average amount of water required per household
‹ ‰ "
‡ $
š
G ƒ 150
60
10
1,50
40
*
2 12%
* "
.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
6
‚
3,8
4
15
50
3,8
* 570
240
150
75
152
1187
142,44
1330
3 – !'& " ' Table 3 - The estimated amount of water needed for certain settlements
'
‚ G 20066 2010
2030
2006 2010 2030
0 $
655
629
642
3,98
3,82
3,90
‚
415
410
444
2,52
2,49
2,70
‚
1396
1368
1424
8,48
8,31
8,65
‚
1328
1301
1367
8,07
7,91
8,31
‚"
876
854
889
5,33
5,19
5,40
‚ G
718
700
736
4,36
4,25
4,47
ˆ
84
82
86
0,51
0,50
0,52
‰
126
124
129
0,77
0,75
0,78
#
50
48
50
0,31
0,30
0,31
#
2342
2333
2578
14,22 14,17 15,66
#
135
129
134
0,82
0,80
0,81
2
450
441
459
2,73
2,68
2,79
3
1292
1310
1419
7,85
7,96
8,62
‡
"
221
214
219
1,34
1,30
1,33
‡
1637
1604
1737
9,94
9,74
10,55
‡ #
723
728
805
4,40
4,42
4,90
‡
653
633
652
3,97
3,85
3,96
‡ ‹
1463
1457
1547
8,89
8,85
9,40
+
140
134
140
0,85
0,82
0,85
+"
152
146
152
0,93
0,89
0,93
™
482
470
490
2,93
2,85
2,98
G
789
765
789
4,79
4,65
4,79
G
2150
2204
2534
13,10 13,39 15,40
ƒ
( )
436
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
ƒ"
ƒ
#
ƒ
2
ƒ
ƒ
ƒ
()
ƒ
ƒ G
"
()
$"
$
$"
$
Œ"
Œ
‹
"
‹
%
569
321
423
239
2761
40
555
308
412
232
2733
39
572
321
429
239
2902
42
3,46
1,95
2,57
1,45
16,77
0,24
3,37
1,87
2,50
1,41
16,60
0,24
3,47
1,95
2,61
1,45
17,63
0,26
3267
3241
3510
19,84
19,69
21,32
590
207
0
319
1633
838
231
270
90
36
0
1177
148
60
25898
587
203
0
311
1600
818
223
260
87
35
0
1167
142
57
25626
648
211
0
324
1733
851
232
276
89
38
0
1239
146
60
27567
3,58
1,26
0
1,94
9,92
5,10
1,40
1,64
0,55
0,22
0
7,15
0,90
0,36
157,3
3,57
1,23
0
1,89
9,72
4,97
1,35
1,58
0,53
0,21
0
7,09
0,86
0,35
155,7
3,94
0
1,97
10,53
5,17
1,41
1,68
0,54
0,23
0
7,53
0,89
0,36
167,5
6. ‚ ˆ
!
&
&
2 ‚ +.
* (24-) " ( ) .
* !
&
,
& 2 ‚ +. ƒ
(
) , !
. 3 , , , , , , & " , .
437
# 2 ‚ +, " (
5):
ƒ
„‚“ ( 7) G. ƒ ‹, ƒ", $", ‡, ‡ %
,
# ‡.
ƒ
„ˆ “ ( 8) "
‚ G, ‚", $", , ƒ, ƒ
.
ƒ
" – ƒ – G
Š – ƒ
– ‹
" ( 9), "
.
ƒ ƒ, 3
‡.
438
5. % 
Figure 5. The situation of major water systems in the City
439
6. QU „}“
Figure 6. Details of the implementation of water supply system Banjica
7. 7 }
Figure 7. Scheme of water supply system Banjica
440
8. 7 ‡ Figure 7. Scheme of water supply system Crno vrel
9. 7 W! - {!
Figure 8. Scheme of water supply system Ramici - Verici
7. !
‡ 2 ‚ +, &
"
:
- ]$_%?%@ +;>$J#;[ =?%&>>% ?;] #% ?;$~>%. ?; < '>%&#%
+$?#>?#% <$% \ }<\ $%&%*<\ >$J% ]% J\] \=|\}#% ~$% ]$\~>?#%
%<]#*% #% }&\ '% #%]&_# #'>%$'>?%.
- %?$~>%= [$%]@ '>%?|%@ \ `\#=*<\ ;J<=%>% $[;#%&#^ ?;];?;]#^ ''>% „!$#; ?$&;“, „%@*%“ „%~z% ?$&;“.
441
- %?$~>%= [$%]@ ?;];?;]% % '#%J]<?%@ ?;]; ';'=^ #%'|% '%
?;];?;]#;[ ''>% $%]% %@% \=%: #%'|% #% +$%?*\ %z, ~# %#,
;>=;%$<, $z, =%; +$[$%]'=% #%'|% ;#$, %[%$, %$%#;?%*, ];
#%'|% ;>=.
- +;$]; '% [$%]@; $[;#%&#^ ?;];?;]%, +;'>;<z ?;];?;] (=;< z
J> #>[$'%# \ ?&= ?;];?;]# ''>) ;]$_%?%> #% '%]%~@ #?;\
(~>; '=\< #%}%<#% `#%#'<'=% '$]'>?%).
- %<#% ];>$%<%&^ *<?;?;]% ;+$, =%; '%#%*<% [$%{#^ ;J<=%>% (=%+>%_%, +\+#^ '>%#*%, $$?;%$% >$%`;'>%#*%) < >%=;{$ %=>\&%# +$;J& =;< \?&=; \>} #% =?%&>> \ '#%J]<?%@\ ?;];.
- %'>%?%= %=>?#;'> #% ''>%>'=; ;>=$?%@\ ;>=&%@%@\ =?%$;?%
#% ]'>$J\>?#;< $_ \ *|\ '%@@% [\J>%=% +;J;|~%@% '#%J]<?%@% ?;];.
- ;#$%@% ]'>$J\>?# $_ \'+;'>%?|%@ =;#>#\$%#^ <$@%
+$;>;=% +$>'%=% \ *|\ +;J;|~%@% =?%&>>% '+;$\= ?;] +;>$;~%}%. [$%]> ?;];<$ =;] '?^ +;>$;~%}%.
- %|@ $%?;< #%];$#;-\+$%?|%}==;[ #>[$%&#;[ #`;$%*;#;[ ''>% #% ?;];?;]#;< $_.
[1] 0 2 ‚ + // ˆ
!
, „Š
“, ...
‚ +, * $
, .. ‚ +, „*
“, ... ‚ +, ‡‹-, ... ‚+, „ƒ
&
“
+;
[2] % % } € // #.ƒ.
* ‚ +, ... „Š
“ ‚ +, 1991., ‚ +;
[3] II ' $ , ZZ „*
2“ / ƒ
// #3‡ƒ
„‹“ ‚ +, „Š
“ , ... ‚ +, ‚
&
‚
, 2002., ‚ +
[4] Z } € 1986 - 2005/. // * $
, .. ‚ +// , 1990., ‚ +
[5] $ %  } € ! U //
ˆ
!
‚ + // 2010 (
$ 2010. )
442
{U ‚!1
: * - "
. (+2) . % &
" !
,
, "
. ƒ
"
(
& ) , " .
': , , G U
THE POSSIBILITY OF REUSING THE OLD WASTE
DUMPING SITE
Summary: In this paper, rehabilitation technologies for waste dumping sites are discussed where the biological and mechanical in-situ stabilization of a waste dump as well
as the redevelopment of an old landfill are realized.Waste dumps and old landfills are
causing severe environmental impacts due to the formation of leachates and landfill gas
(LFG) during decomposition of organic materials. Therefore the rehabilitation of waste dumping sites has become a matter of omportance for controlling adverse effects like groundwater pollution, differential surface settling, odor problems and damage to surrounding
vegetation. Especially if redeveloping of land (land- recycling) is planned later on for
construction of buldings, the adequate rehabilitation of old waste dumping sites is a must.
Key words: ld waste dumping, landfill gas, land-recycl
1
#.‹
£", , ƒ
0ƒ' ‚ +
443
1 * .
% "
& . ƒ
&
. ‰ "
& !
. % , " .
- &
.
„ & !
[1]:
- ,
- !
,
- .
0 "
&
.
1- * (€') ! -
Figure 1 -The emergence of leachate and landfill gas anaerobic digestion of domestic
waste at the landfill reactor-type
444
2. ‡ !
. ƒ
(CH4), (CO2) . „ 1.
1- ? ' (' ')
1- Composition of landfill gas (average concentration)
!! (%)
G
(CH4)
*
(CO2)
‡
(O2)
0 (N2)
‹ (H2)
'
-
38-58
30-48
1-2
2-10
0-1
<1
=1
$ (H2S)
G
0
‹ (mg/m3)
0-150
10-1000
0-800
0-100
0-15
ppm ppb * " , , (LFG) "
" . ‡
, &
. „!
. ƒ
. 3
.
„G
“ . G
[2]:
445
LFG = 2 x L0 x R(e+kc – e–kt)
(1)
:
LFG – " (m3/a),
L0 - (m3/kg),
R - &
& (kg/a),
k - (l/a),
t - (),
c - ().
ƒ
L0, "
kg . ‡ k, ! kg . * L0 ( 0.14 – 0.18 3 CH4/kg ), k-
(& :0.1 – 0.35 l/a, & : 0.02 -0.10
l/a). % k L0, ± 50%.
% , &
6 3
.
#
& . & ( &
&) ; &
.
‡
&
&
. LFG !
, "
&
. CH4 „
“ ( 18.4%) . „ LFG .
3 ! ƒ
30 , . &
. ‚ , & .
* .
* ! 2 9.5 3 &
[3]. % , "
!
.
* !
!
. „ !
178 . .
446
ƒ
U.S.EPA [4], (LFG) . , ! . ‚ !
!- 60 . ƒ , 4.000 2 . # , ! 10 18 . * SAD EPA , " 75% , " " .
ƒ
! 1 0,6 " 0.1 0.15 .
ƒ-Š# . "
"
, (. ) . ' "
. "
. ' 2. .
2-{
Figure 2- Vertical well for the degassing of old landfills
447
% . ‡ & +2.
2 " ƒ-Š# . ƒ &
, .
% . # & 2-30. * , +2 ( ) 70% . * , "
.
% "
"
:
- 1 ,
- 10 ,
- ,
- ( )
- 100 .
'
"
. % "
"
.
30-50% CH4. + &
( ) , (. ). # " , &
&. % "
, (
30
2000 W) / (500 W 10 MW).
0 . . „ . #
: , "
. * , !
"
. ƒ
(=0.28 ) , 2.5 . ‡, . 950 m3/h 30% CH4. % CH4 (30-40%) 15-20 MJ/m3. $ &.
448
ƒ &
, "
. ‡ , . * !
"
, ( 14 ) . $
, , .
3.1 - ! $
"
" & . 2
, & .
3.1.1 ;&;~=% '>%J&%*<% #-'>\ +$>'# +$;$%}?%@
* Feldbach, "
. ‡
" .
ƒ
"
" . ‚-ƒ*$„ . 0
, "
"
( 35% 2). ƒ
‚-ƒ*$„ (0
‚-
) : , 3.)
3-Z }-Z|YW - Figure 3-Display BIO-PUSTER system for a biological in-situ stabilization
449
ƒ
"
, !
. "
(2-6 ) . „ &
. „ . * . ‡
&
!
. ' , .
G ‚-ƒ*$„ . # "
"
. # 50% &
" . * , (
) . '
&
&
.
3.2 ! !
!
ƒ
"
, !
, &
. ƒ
"
.
SOILFRAC ( ) . ƒ
!
"
(. ) , "
(
, .
) .
ƒ &
, , , , , . &
.
4 ‹
" -
& . ƒ
!
.
# & (LPG) " . %
SOILFRAC . , 450
(. ) „nd of pipe“ ".
>1@ G / ‹. £"/ ƒ
0ƒ' ‚ +,2008., ‚ +.
[2] Landfill Gas,Aglobal Resource/ R.A.Watts/ Report presented at the 13th International Conference on Solid Waste Technology and Management, Philadelphia,USA,1997.
[3] Altdeponien: sanierung, Nachsorge und Nutzung/Publication series od OWAV,
journal Nr.118, national Solid Waste Conference in Bregenz, Austrija, 1999.
[4] Superfund Innovative Technology Evaluation program/ U.S.Environmental Protection Agency, Office of Research and Development,/ Washington, 1995.
451
W Šœ!1, [U !2
<": . #
, , !
:
L – H – (f)
B – 44,08m
24,00m
2 u 0,75+3,95m
': , , ,...
SPATIAL STABILITY OF IDENTITY SYSTEM OF METAL
SCAFFOLD THE BRIDGE PROFILES THROUGH ARCH
Summary: This work includes a static analysis of technological systems bridge
construction scaffolding. The bridge scaffolding is made of heavy elements and light steel
sections. These combination of light and heavy construction scaffolding is applied via a
specified port profile to interact with the location of the bridge, where the dimensions of the
default:
L – length
H – arrows vault (f)
B – width
44,08m
24,00m
2 u 0,75+3,95m
Key words: spatial stability, reprezntativni system, metal bridge scaffolding,...
1
2
ƒ.., . !.&, 2!
$
$ , .!.&, 2!
$
453
1. " „2!
&
. !
& , !
"
. ˆ !
"
, " "
, +;'J# ;'?$>; #% ''> ;+&%>% '=&%.
3 %'?# =;#'>$\=*< ;'>;?% [$%]& '\ ' #% '=&%%,
" . , . % !
, &
. G
- , " .
* , & & , !
"
, &
. ƒ , , "
. #, , . ' - !
- .
$ !
, . () !
, "
. ‡ , . #
,
!
. ‡ . ‡ , "
"
.
$ 1. 0-
‡ !
‡
,$ 1955-1958.
!
(
Š). ƒ
:
( &\=;?% =;] &\$;`.]$. $\#;'&%? ;#=;?z > 2 @
}#^ ;'>;?%), "
Figure 1. Reinforced concrete bridge above
!
,
river Korana, Slunj 1955-1958, (Croatia) Desing:
. * Ph.d. Krunoslav Tonkovi’
454
! &
( ) .
‡ !
, !
&
. ‚ (
) (
) . ƒ !
, !
, !
.“ ($ 1) >1 @
2. ! $
&
!
. * :
1. #
– ;
2. G
– ;
3. ‚
, , , " .
#
&
, !
, !
. % .
„% , "
, ! , ! – , . ‡
, , , , . „ !
–
"
, , &
. ,
"
, 2. &
.“ > 3 @
:, Y > 5 @
ƒ ! Figure 2. Staging made of timber, system
– Koraj, river Tara
, 455
, &
! .
# !
&
, . %, & ‡ !
„
(1938-1940. ),
ˆ
2
#!
„‹ , , : 803,67-662,40=141,27m.
$
„
657,00. ‡ 805,94, 805,94-657,00=148,94m „
, 148,94+1,15=150,09m.“ ($ 2)
* – &
!
!
.
G
&
(
). ‡ , .
%" , – ! , , . # , , , !
. G&
, !
, – , , &
15 .
„‰
, !
, .
G
, , ,
, – – (
).
‰
, , , :
a) , !
 48.
3
, ;
b) , 193mm , .
"
.
ƒ
. G –
!
. ƒ
, ( " ! ). , &. ‰
, , – .“ > 5 @
456
‚
!
– . 2
– & . $
&
.
$
– . ƒ , , – " . $
.
‡, '=&% +$]'>%?|% <]#\ +$;'>;$#\ $~>=%'>\ =;#'>$\=*<\ =;<%
+$% ;+>$z@% ;] =;#'>$\=*< ;'>% +$#;' ^ #% >&;. +$#*+\ '
'%>$% ]% '? '& =;#'>$\=*< ;'>%, ]; >$#\>=% ;>+\~>%@% '=&, +$#;'
'%% '=&%, % >%=? '& < +;>$J#; ]#;#'%> '=&\, ~>; ' $];?#; }#. ; < +$;$%}\# ]#;#'%@ +;] \>*%< >^#;&;[< [$%{@% ]%>;[
+;]#J|%.
3. % . „ „£!
" „
“ ˆ 2.
„G 5,50+2x0,50m. ‡ 805,94-811,28. „
657,00. ƒ
,
150,00m.
' , , () ( Rh 500 m) 2%.
116,00m, 1/4,89; ()
44,08m, 1/1,84.
#
: 74/210, 120/300cm, : 75/92, 75/150cm. ($ 3)
* ‡ 141,00m. (
2)
457
3. "- Y Q 1938-1940.
(W
‡ ) Z: !#.. $' '
Figure 3. Reinforced bridge above river Tara, below mountain Surmitor 1938-1940
(Montenegro) Desing: Ph.d. Mijat Trojanovi]
$
G £!
" „, ,
l=116m }>$ %@% l=44,08m. ‚ 150m „
. ($ 3)“ > 4 @
, , &
. %" , , , , , &
!
" "
. "
(
"
), ( "
) !
" .
, , , & .
' ! ‡, !
!
!
.
„$<#; >~= [$%{?#'= '=& J&; J %#|?; [$%]> %& &\=;? ?<%]\=>% ;'>%. 50m, "
" , : ~>; <]#;'>%?#< &%=~ [$%]@ ;'>%. * "
. „%& &\=“ – (
) .“ > 6 @
458
‹ " !
.
G
! 47m.
„# , 4,70m ( ), . ($ 4)
4. 7 ( % G!)
Figure 4. Scheme of the bridge with spans of arches
(arch representative highlighted circle)
$ 5,30m. 2 35/120cm. $
22cm.
% , ! , & 2 , &
, , (
22cm) ! , .
% (160cm!) . „ & "
&
( 1 U & ).
459
G , 50/190cm, 17m, . ($
5)“ > 4 @
„‰
( )
, .
($ 6)
5. „
“ Figure 5. The appearance of "small arcs" bridge
6. 1.
Figure 6. The appearance of the staging variant 1.
460
ƒ
( !
, .
($ 7)
7. 2.
Figure 7. The appearance of the staging variant 2.
„
, ) 159 150 mm ,
&
.
G& . ‡ , 2x IPE 30 . ƒ
&
) 159 150 mm "
) 48,3 47,6 mm . ' 20 30 cm . ƒ
, " 20 5 cm . ‚ , 4, ! 20cm.
ƒ , 2 m h 1, " 3 . * "
"
1 2. ‡ " 2 3 "
&
.“ > 6 @ ‹
& , : #;'>;?'> l '>%J&#;'>!
461
4. $ „%&;[ &\=%“
$ "
• „
& • „
& • „
& )159 / 150
• „
& ) 48,3 / 47,6
g opl
0,2 kN mc
g rem
8 u 0,05 ˜ 0,20 u 7,0
g159
0,00218 u 78,5 17,15 kN mc
g 48,3
1,05 ˜ 10 4 u 78,5 0,008 kN mc
0,6 kN mc
‡ "
• „
& &
b
­4,15 ˜ 0,75 u 25 77,8 kN mc oslonac
®
¯0,92 ˜ 0,75 u 25 17,25 kN mc sredina
• Š &
Ÿ hsr
h
­1 ˜ 0,75 u 25 ˜ 0,70 13,125 kN m
®
¯3 ˜ 0,75 u 25 ˜ 0,70 39,375 kN m
26,25 kN m
ƒ
"
• p
2,0 kN mc
$ "
• ‹
"
• ‹
"
Wmax
0,159 u 1,6 u 2,5 0,64 kN mc
Wmin
0,159 u 1,6 u 1,5 0,38 | 0,40 kN mc
‡
"
$ "
G
g opl g rem g cijevi
0
F1 hsr ,1 b1 , F 2 hsr , 2 0,5 ˜ hsr ,1 b1 b2 ,
F 3 hsr ,3 0,5 ˜ hsr , 2 b1 b2 b3 ,
F4
hsr , 4 0,5 ˜ hsr ,3 b1 b2 b3 b4 ,
F6
hsr , 67 0,5 ˜ hsr ,5 b1 b2 b3 b4 b5 b6 b7
F7
hsr ,811 0,5 ˜ hsr , 67 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11
F5
hsr ,5 0,5 ˜ hsr , 4 b1 b2 b3 b4 b5
F 8 0,5 ˜ hsr ,811 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12
"
"
max W
"
"
G Wmax
min W
462
G ANEVEL P Wmin
$
:
# • ‹
)159 / 150
1. Q xW
2. Q xW
463
3. Q W
4. Q W
A 21,84 cm 2
ix
li
iy
Iy
652,27 cm 4
Wx
O
li
i
180
5,465
O
Wy
82,05 cm3
5,465 cm
180 cm
Ÿ N
Ix
32,94
0,9652
464
O
Ov
32,94
92,9
0,35
N max
192 kN
N max
A
VN
192
21,84
8,80
kN
V i ,dop
cm 2
N ˜ V dop
0,9652 ˜ 16,0 15,44 kN cm 2
622 kNcm
M max
M max
622
kN
7,58 2 V dop 16,0 kN cm 2
W
82,05
cm
18,97 kN
N 18,97
kN
VN
0,87 2 V i ,dop 0,9652 ˜ 16,0 15,44 kN cm 2
A 21,84
cm
VM
N
x
Š
) 48,3 / 47,6
A 0,527 cm 2
ix
li
Iy
O
li
i
1,515 cm
4
Wx
Wy
0,6275 cm3
1,695 cm
iy
200 cm
N max
Ix
200
1,695
117,99
O
O
Ov
117,99
92,9
1,27
Ÿ N
0,57
25 kN
VN
N max
A
25
0,527
47,44
kN
V i ,dop
cm 2
N ˜ V dop
0,57 ˜ 16,0 9,12 kN cm 2
'
! !
x + Š‚ 300
"7" Q W
465
"8" # W
A 149 cm 2
iy
Ix
25 170 cm 4
Iy
Wx
1 678 cm3
Wy
8 563 cm 4
570,87 cm3 ix
13,0 cm
7,58 cm
M max 8897
kN
5,30 2
W
1678
cm
N 1220
kN
N 1220 kN
VN
6,29 2
A 194
cm
V M V N 5,30 6,29 11,59 kN cm 2 V dop 24,0 kN cm 2
M max
8897 kNcm
N max
-452 kN
M
VM
VN
VM
1537,5 kNcm
M max
W
N 452
kN
2,33 2
A 194
cm
1537,5
kN
0,91 2
1678
cm
IPE300
"9" Q W
"10" Q W
A 65,9 cm 2
Wx
686,27 cm3
Ix
10 500 cm 4
Iy
728 cm 4
Wy
99,05 cm3
ix
12,62 cm
466
iy
3,32 cm
VN
152 kN
N
11,10 2,30 13,40 kN cm 2 V dop
VM VN
24,0 kN cm 2
VN
-586 kN
N max
VM
2186 kNcm
M
M max
7613
kN
11,10 2
W
686,27
cm
N 152
kN
2,30 2
A 65,9
cm
VM
7613 kNcm
M max
M max
W
8,90 3,19 12,09 kN cm 2 V dop
VM VN
2186
686,27
N
A
586
65,9
kN
3,19 2
cm
8,90
kN
cm 2
24,0 kN cm 2
#
"11" Q W
A 15,62 cm 2
ix
li
Iy
238,82 cm 4
Wx
Wy
O
li
i
224
3,91
O
O
Ov
41,535 cm3
3,91 cm
iy
224 cm
N max
Ix
57,29
57,29
92,9
0,60
Ÿ N
0,89
267 kN
VN
N max
A
267
15,62
17,09
kN
V i ,dop
cm 2
N ˜ V dop
0,89 ˜ 24
21,36 kN cm 2
EC-3 . „ ! „ “ ($ 9)
467
8. 7 $% “1“-“11“.
9.
"
„
“
5. G
– "
$%&;?%> [$%]@\ ;'>% 'J;&% [$%]>|'= J%~># ?$#% 1938-1940.
[;]#!
‰
. () „ “ , !
. !
!
.
, – !
:
- ' - $;'>;$# '>%J&#;'>, !
$;'>;$#% '>%J&#;'> " , „ “. "
: , ,
, ‡ . >; #%} \ '? `%%% >;=; ;#>%_ =;$~>@% '=&. ; #%}, % ?$< #%#;~@% ;+>$z@%, ;]#;'#; \ >;=\ J>;#$%@%, =%; >;=; ];#>$%@% '=&. $
"
– &
, &
– . , "
468
, – " , "
, ! , " , –
!
.
ƒ
&:
a) !
,
, ;
b) !
;
c) , " , & – , .
; < '\~>#% %];?;|%?%@% \'&;?% +$;'>;$# '>%J&#;'> ]%> '=&! (
$ 9)
‡, &
;< #%~ +$;`';$ +;=;<# <%> $;<%#;?z $\#;'&%?
;#=;?z #=% < '&%?% ^?%&%!
% :
[1] $ : G, 2!
– $
$, $
[2] ‡ „": , Œ , %
, 1985.
[3] G 2: #
, 2!
, ‚
, 1988.
[4] <%> . $;<%#;?z: G 1960, % ›
$ $
, ‚
, 1960.
[5] Š. Š›": „
!
, , 2!
$
, $
, 2008.
[6] G ‹. ": „
!
:+ -
£!
" „
, (
, .. Š›"), 2!
$
, $
, 2011.
469
[ ‚&! Y, W
‡ 
ur—evia Tara bridge, Montenegro
470

Z!1
!
: % (
, &
, , , .), !
– FLI-MAP
400. % U % $
3 cm.
. G
!,
"
" " . *
PERGFLIMAP " &
# % 0,5-1 cm.
': , , U %.
POSSIBILITIES OF LASER SCANNING OF ASPHALT ROADS
FROM AIRBORNE
Summary: For the purpose of corridor scanning (includes roads, railways, transmission
lines, water streams and the like) a laser-scanning technique from a helicopter – FLI-MAP
400 - has been developed. The standard accuracy for heights of scanned points on asphalt
surfaces is 3 cm. This accuracy level satisfies a number of geodetic works in civil
engineering. However, it is possible to achieve a better accuracy for scanned points of built
surfaces. To this end one presents here a new method, PERGFLIMAP, which makes it
possible to achieve an accuracy for heights of points on asphalt surfaces of roads of
0,5-1 cm.
Key words: roads, laser scanning, accuracy improving.
1
ƒ
, , . &. ., 2!
, ‚
471
1. ! FLI-MAP ƒ FLI-MAP % $
, % . " " , " – , !
, . 1. , FLI-MAP "
Fast Laser Imaging and Mapping Airborne Platform " ' & " .
. 1 – Z ! FLI-MAP-.
(Fig. 1 - Principle of FLI-MAP laser scanning)
G
GPS () 15-25 km & . ' GPS (Global Positioning System) INS (Inertial Navigation System) . 3# & , . ' &
% 39
% U.
% , , , FLI-MAP 400 % , , , , GU, , % a, $ (#„G) , ., .
472
* FLI-MAP 400 GPS (KGPS),
- LiDAR ( .: Light Detecting and Ranging),
- INS ( .: Inertial Navigation System) , software FLIP7 .
2. FLI-MAP FLI-MAP 400 ''>% '\ (FUGRO, 2005, $;?z,
2007):
- U % ~ 150 000,
- 5 - 400 m,
- '& - (1Â)
1 cm,
- U %
20 – 70 /m2,
- G U 200 km,
- & 5 - 25 km.
„ 3# , (X,Y,H), FLI-MAP
400 GPS- , . „ (X,Y) "' (FUGRO,
2005, ƒ
", 2005, 2007):
- "
" WGS 84 '&:
3 cm,
- "
" 6 ' 6:
5 cm,
=%; - %
3 cm,
+$ }\ < ?%_#; #%[&%'> ]% < ;?; >%}#;'> \ ;]#;'\ #% ]%> – J%# >%}=.
3. %
;J$%]\
& software FLIP7, ! $ ; $ ! $ G & .
&
& , FUGRO, . : U & & & % .
FLI-MAP :
- (
, , IMU, GPS) ,
473
- 3# FLI-MAP . ! , - , , .
4 PERGFLIMAP % ?z#\ %]%>%=% >%}#;'> #%?]#% \ +;[&%?|\ 2 < %];?;|%?<\z%. %
+$$, % '#%@ %'`%&>#^ +\>?% % $%]\ #=^ +$;<=%>%, \ $J< '
%^>?% >%}#;'> ;] 3 cm, \ #[&'=;< ;] 3,5 cm, '&. &, % #= %]%>= %^>?%
' ?z% >%}#;'> ?'#% =;<% ' '>%#]%$]# '#%@ '% ''>; FLI-MAP
400 # ;_ ];J>.
FLI-MAP 400 ! ! " , , ,
, PERGFLIMAP ! FLI-MAP . G
‚ ƒ – $, & 80 km,
"
" ‚
"FUGRO" Š
.
4.1 PERGFLIMAP FLI-MAP 400 6 %, ''PERGFLIMAP U % FLI-MAP ''.
#
PERGFLIMAP ' ! % :
x Z:
x Q:
Z , FLI-MAP &,
$ % ! 1 2 km, $
.
Z " ! 1-2 km .
Q & . #
0, 2 m u 20 m
0,5 m u 20 m , 0, 2 m u 10 m 0,5 m u 10 m , ., & .
' !
FLI-MAP
.
474
4.2 , . 0 & 0,5 m u 500 m – (‚ ƒ – $), . 2.
. 2 – W$ % C G .
(Fig. 2 - Reference height point C as the centroid of reference rectangle).
4.3 ! ƒ
FLI-MAP L , H & . # 3, : C1 C2 – , D C1 - C2 .
. 3 – Q , L H .
(Fig. 3. Disposition of heights, ellipsoidal L and orthometric H ).
475
$ $ L i i – ! C1 C2 , H i H ic
Li L 2 L1 H 2 H1 D
D
i
L1 H1 .
(1)
4.4 ‡ PERGFLIMAP –
% !
(1) .
‡
PERGFLIMAP ‚
ƒ – $, &
80 km.
* PERGFLIMAP – !
630 . !
„
(1) “ %
% ! % , .
ƒ ! " FLIMAP 400 3 cm, FLI-MAP 400 , &
PERGFLIMAP FLI-MAP 400 6 % $
0,5 cm 1 cm.
AA
>1@ FLI-MAP 400 System Characteristics / FUGRO-INPARK B. V. // 2005,
Leidschendam.
>2@ PERGFLIMAP method possibilities of increasing the absolute vertical accuracy of
the laser scanned points obtained by FLI-MAP syste applied on hard topography
/ G. Perovi” // International Symposium "Modern Technologies, Education and
Professional Practice in Geodesy and Related Fields", 09-10 November, 2006,
Sofia, Proceedings, pp. 370-377.
>3@ Z / 2. ƒ
" // *
‚
,
2!
, 2007, ‚
.
476
W
[!1 , * [!2, } [!3
! <": ƒ
"
!
.
„!
" „“ , . 0
&
#.
': $, , $
ANALYSIS OF POSSIBILITIES OF RECONSTRUCTION AND
IMPROVEMENT OF THE ENERGY CHARACTERISTICS OF
BUILDINGS USING THERMOGRAPHY
Summary: Study is aimed at the demonstration and usage thermal imaging in analysis
of thermal characteristics of the particular object. Also is presented potential for a solution
to "keep warm" facility as well as claddings reconstruction and application of energy
efficient system and their implementation. Study includes proposals for reconstructive
procedures and the demonstration solutions of reconstruction of experimental model of
administrative services building in Doboj.
Key words: thermgraphy, reconstruction, energy efficiency
1
#..
, , !
, #
#..
, , '-
, ‚
3
#.., ..., $" , #
2
477
1. 2
" # !
1960.
, & .
* , &:
60- &
#
(
) "
" / " .
1.1 ‚ / # ( 54 ). #
0
&
o
#j
(o
# ). 0
. *
, , , . " „
“ $
. ‹
" # , "
!
. ,
# 3'0 #, " , "
, !
. !
60- , . # "
, &
,
- , 478
"
. # & "
" . * , "
!
. * , .
2. „
„# “ #. $ . $ . „
" (-273.16$) , &
.
G
!, , . , .
$ " :
- (IRLS – Infra Red Line Scaning)
- (FPA – Focal Plane
Array).
ƒ
, , " . ˆ (
) & ! . ƒ" , "
, & . G" . ƒ
" , (
) !
. * , , & , . & ! &. $ &
479
. 0
!
" 50-80%. # , , , "
" &
, .
3. . '
!
, , , , – „# ‹
“, #. !
1963.
3
. * 5432,02. ƒ 1355,02, 4077,02. 2!
.
& /
, , "
/
(& , ).
Š &
.
ƒ
& / , &
/ . ‡ !
1970.
, . '
, , " , , "
. ‡ . ' "
, . 0 !
. '
" 0‚ . „ 0‚ , 25 38. !
!
.
30. " 3*$- 2-2.5 . 7-15°$. $
&
16-17°$. #
* 2002/91/ˆ *, & .
480
1 – Z! «Q {» Q, $
.[! W. (The current state of the analyzed object " Dom Vojske" in Doboj).
4. " "
, " " „
“ ". Š .
‡ , , &, & &
. 0 " . ' !
" .
4.1 ! ":
*„ƒ+„ ƒ#G„' ‚3‡0„
ƒ
, &
. " , , , . * (, .) . ƒ
"
, (
481
) . 5-8 . ' , " . * !
, ( ).
ƒ‚™Œ0† 230†0 ‚3‡„0
$
" "
.
$+0%0ˆ30 %20#
ƒ
. * & . ' & "
. ƒ
. ‡
" "
&
. „!
,
" & „ .
„ , , , . * . 3
.
#20#„ $„0‡+'‡
' "
& . $ , & ¾ &
, &
#. . , ".
2 – Z , . (U , ),
:http://www.greenbuilding.ca/gbc98cnf/studies/n
orway/st-n4.htm (Transfer of cold air from the warm
parts of the building, ie. from rooms oriented to the
north side of the building (summer treatment, while in
winter the other way around).
482
' $ 2. "
. Š &. ' (
) . #
, ›
! .
4.2 A !
“
”, G
& ( ) , " :
- G
, !
Y Y,
- *!
Y , " Flir i50.
' 3, 4 5 : , . % . ' "
& , . „
.
„!
.
3 – Y
Flir i50, $$ http://www.thermalcamerarentals.com/rentalcameras.html (Thermal camera which was performed thermal imaging of the
object, Flir i50).
483
4 5 – , $ $ %
% , $: .[! W. (from left to right,
Image of the facade wall of the entrance area of the building in the thermographic image of
the same object with the characteristic points and temperature values).
(Y - Y) , &
Ÿ W/(2:) ( ) Q/" W/2. Ÿ 8 W/2:. Q/" &
(Y - Y) . '
&
"
:
(1)
484
1 - <" #' " #
& (') # ' „9 @'“ 9'
' &
"
:
. G
. !
.
4.3 ! " "
, . ƒ , , 485
. 80% , . ‡
= 3,2 4,2 W/2:, 320
:W/2 . „ 210 :W/2 .
6. "
$ ,
: www.domis.rs (Aluminium windows with a minimum coefficient of heat release)
ƒ
(, , , ) !
. *
1,8 W/2: 1,4 W/2:, 16 , ., low emission . ‹
& , &
, .
$ :
- 16 (
#ƒ+ 16) - 4+16 +6,
= 1.2 1.4 W/2:.
- , 16.
$ 60% 70%, 250 :Wh/2 70-80 :Wh/2.
ƒ , !
486
-
!
!
.
!
"
" !
.
4.3 ƒ
# !
20 , , . „ , " 250 :Wh/2. 
!
, .
7. { /$
, $: . [! W.(Visible traces of water /
atmospheric inside the building are the result of the poor condition of the flat roof building)
'
" ,
"
, . "
. ƒ
!
(
) ", "
& . -
" . , "
487
" 10 13 . # "
15% 20% , 60% 70%.
5 ƒ
"
, " , " "
. ‚
!
, " . ƒ
, " , & & . ƒ
, , !
, .
8. Z , $: .[!
W. (The spatial model of the reconstruction of the bject)
* # , !
!
.
ƒ&
& " , & &
, " , , . 3
, , . ƒ
„# “ # !
, !
#.
488
5.1 * 50 , & . 2 " , , U 1,40 W/2:. ' "
2,00-3,50 W/2: , " 1,401,80 W/2:. ƒ a *. O 1,3 W/2: . ƒ (low emission) . „ , . *
, " 50% . 20%, "
.
9. Z , $: .[!
W. (The spatial model of the reconstruction of the bject)
$ , . $
. % , &
, ! (.
!
) !
.
489
>1@ [! % / $. +" / 1987., ‚
, . 18-27.
>2@ :|* #W"Q" :|* ‡Y / ' / "Š
ƒ&" / 2001., %
>3@ W
/ «Z G * « / . ƒ
, ‚. $
/
, / 2008., ' $, . 4-12
>4@ [ % $ / 3*$
*.35.510-23.12. / 1987., ‚
>5@ Y
- Y% &
/ 3*$ *.35.600-23.12. / 1987., ‚
>6@  / , Œ
/ 2!
, 1984.,
‚
490
CIP - Каталогизација у публикацији
Народна и универзитетска библиотека
Републике Српске, Бања Лука
711.4(082)
ИНТЕРНАЦИОНАЛНА конференција Савремена теорија и
пракса у градитељству (2011 ; Бања Лука)
Савремена теорија и пракса у градитељству,
Бања Лука, 14. и 15. април 2011 = Contemporary
Theory and Practice in Building Development /
[едиторс Мирко Аћић, Рајко Пуцар]. - Бања Лука :
Завод за изградњу = Institute for Construction,
2011 (Бања Лука : Независне новине). - 490 стр.
: илустр. ; 24 цм
Текст ћир. и лат. - Радови на енгл. и срп. језику.
- Тираж 600. - Библиографија уз сваки рад.
ISBN 978-99955-630-6-6
COBISS.BH-ID 1946648
На располагању смо инвеститорима за све фазе грађења,
од припреме земљишта до техничког пријема
FCL
FABRIKA CEMENTA LUKAVAC
Povjerenjem do uspjeha
Success trought trust
D.D. FABRIKA CEMENTA LUKAVAC
Lukavačkih brigada bb, 75300 Lukavac, Bosna i Hercegovina
Telefon
Centrala: +387 (0)35 554 502
Sekretarijat: +387 (0)35 553 215
Služba nabave: +387 (0)35 553 748
Služba prodaje: +387 (0)35 553 251
Fax
Sekretarijat: +387 (0)35 553 580
Služba nabave: +387 (0)35 553 405
Služba prodaje: +387 (0)35 550 225
E-mail: info@fclukavac.ba
Web: www.fclukavac.ba
www.vodovod-bl.com
ОДРЖАВАЊЕ
Булевар војводе
Живојина Мишића 24
Телефон: (051) 310-811
факс: (051) 307-647
e-mail: vodovodt@teol.net
ПРОИЗВОДЊА И
ДИСТРИБУЦИЈА
ВОДЕ
Новоселија
Тел./факс: (051) 413-190
(051) 413-194
e-mail: pitkavoda@blic.net
Ул. 22. Априла бр. 2
Телефон: (051) 212-316,
Факс: (051) 212-380,
e-mail: vodovod@blic.net
Fortis Group
Mješoviti Holding
HET
„Elektroprivreda Republike Srpske“
Trebinje
Zavisno preduzeće
"Hidroelektrane na Trebišnjici"
akcionarsko društvo, Trebinje
Adresa: Obala Luke Vukalovića 2, 89101 Trebinje, Republika Srpska / BiH
www.het.ba, e-mail het@het.ba
Tel: +387 (59) 260 213
Faks: +387 (59) 260 782
Osnovna djelatnost proizvodnja električne energije
Registrovano kod Osnovnog suda u Trebinju, reg. Ul. Br. Ru-1-777-00
Matični broj 1050834
JIB 4401355020001
PIB 401355020001
Kaldera company d.o.o.
Karađorđeva bb.
78250 Laktaši
Republika Srpska / Bosna i Hercegovina
Telefon:
+ 387 51 580 654,
+ 387 51 580 625,
+ 387 51 580 371,
+ 387 51 580 286
Fax:
+387 51 580 624
Mail:
info@kalderacompany.com
Prodaja:
sales@kalderacompany.com
DVD
Banja Luka
Kralja Petra I Karađorđevića 94
Tel/fax: 051/316-360
INŽINJERING - DVD
d.o.o.
ПРОЈЕКТОВАЊЕ, КОНСАЛТИНГ, ИНЖЕЊЕРИНГ
Бања Лука Његошева 5д, тел: 051/303 777 факс 051/303 242
Д.O.O. БАЊА ЛУКА
ХT ХИДРОТЕХНИКА
“Hidro-kop” d.o.o. hidrogradnja i građevinarstvo
Ive Andrića 14, Banja Luka, Republika Srpska, BiH
Telefoni: (051) 220-170, 216-985, 213-500, 213-501;
Fax: 213-499; e-mail: hidro-kop@blic.net, hidrokop@teol.net
РЕГУЛАЦИОНИ ПЛАН АДА-
заштита животне средине
d.o.o.
PROJEKTOVANJE, SERVIS I MONTAŽA LIFTOVA
Ul.Rakovačkih rudara br.4, Banja Luka
Telefon: +387 (51) 358 700; fax: +387 (51) 358 701; e-mail: duolift@teol.net; web:www.duolift.si
Osnovna djelatnost preduzeća je projektovanje, montaža i servisiranje liftova,
u skladu sa važećim propisima i standardima.
Našu ponudu čini široka paleta proizvoda:
hidraulični liftovi
(putnički, teretni, auto-liftovi)
električni liftovi sa mašinskom
prostorijom
liftovi bez mašinske prostroije
(električni i hidraulični)
panoramski liftovi
maloteretni liftovi
platforme za invalide
teretne platforme.
Nudimo idejna rješenja i stručne savjete
u ranoj fazi projektovanja objekata.
Izvodimo projekte za dobivanje građevinske dozvole kao i izvedbene projekte.
Naša poslovna politika zasniva se na
proizvodima visokog kvaliteta, brzoj isporuci i konstantnoj tehničkoj podršci.