Laser Ranging to GNSS - ESA Conference Bureau
Transcription
Laser Ranging to GNSS - ESA Conference Bureau
Laser Ranging to Galileo (LR2G) Dell’Agnello S. (INFN-LNF & ASI-CTS) and Bianco G. (ASI-CGS & INFN-LNF) For the Research Teams of: SCF_Lab, INFN – Laboratori Nazionali di Frascati (Rome), Italy MLRO, ASI – Centro di Geodesia Spaziale, Matera (MT), Italy 5th Galileo International Colloquium – Scientific and Fundamental Aspects of the Galileo Programme Braunschweig, Germany – October 27-29, 2015 Outline • Satellite Laser Ranging to GNSS • MLRO laser station @ASI-Matera, Italy • SCF_Lab reflector test facility @INFN-Frascati, Italy • Research Project “Laser Ranging Galileo” • Performance of GNSS Retroreflector Arrays • Benefits of Laser Ranging to GNSS Dell’Agnello-Bianco et al 28/10/15, 5th Galileo Colloquium 2 Satellite Laser Ranging (SLR) to Galileo IOV Position/distance measurement to cube corner retroreflectors (CCR) with short laser pulses and a time-of-flight technique, time-tagging with H-maser clocks at ground stations MW LRA • PRECISE POSITIONING Normal points at mm level, orbits at cm level • ABSOLUTE ACCURACY Defines Earth geocenter and the scale of length • PASSIVE, MAINTENANCE-FREE GNSS Retroreflector Array (GRA) Dell’Agnello-Bianco et al 28/10/15, 5th Galileo Colloquium 3 International Terrestrial Reference System (ITRS) • Geocenter from SLR - LAGEOS • Scale from SLR and VLBI • Orientation from VLBI • Distribution w/GNSS • Also DORIS For Geodesy, GNSS, Gravity, Earth Observation LAGEOS Dell’Agnello-Bianco et al SLR CONSTELLATION Low orbits to the Moon 28/10/15, 5th Galileo Colloquium 4 Co-location of SLR & GNSS positioning Galileo IOV or GPS Co-location at GNSS satellite (space-tie) Laser positioning of GNSS is referenced to geocenter thanks to laser ranging to LAGEOS I & II, whose orbits define geocenter Dell’Agnello-Bianco et al LAGEOS SLR 532 nm MW Co-location at geodesy station (ground tie) 28/10/15, 5th Galileo Colloquium WETZELL GRAZ, … 5 SCF_Lab @Frascati, Italy, next to ESA-ESRIN “AFFILIATION” Partnership with NASA-SSERVI Visit of JPL Director, C. Elachi, & ASI Chief Scientist, Flamini SCF_Lab website & Team/authors http://www.lnf.infn.it/ esperimenti/etrusco/ Dell’Agnello-Bianco et al 28/10/15, 5th Galileo Colloquium 6 SCF_Lab: retroreflector characterization • Two Optical Ground Support Equipment (OGSE) • SCF (top right); also lunar and altimetry • SCF-G (bottom right) dedicated to GNSS • Two AM0 sun simulators, IR thermometry • Optical testing: Far Field, Fizeau interferometry • J. Adv. Space Res. 47 (2011) 822–842 AM0 sun simulator Dell’Agnello-Bianco et al 28/10/15, 5th Galileo Colloquium 7 Matera Laser Ranging Observatory Led by G. Bianco, also Director of CGS, Space Geodesy Center Telescope diameter = 1.5 m SLR. LLR since 2010 GNSS = Global Navigation Satellite System Towards ~100 satellites with laser retroreflectors Indian IRNSS: ~7+4 Now ILRS tracks ~35 Japanese QZSS: 3 regional satellites regional satellites European Galileo: 30 satellites IOV SCF-Tested SCF-Tested US GPS: 24 global satellites Chinese Compass/ Beidou: ~20 global, +5 regional satellites Russian GLONASS: 24 global satellites: SCF-Tested Dell’Agnello-Bianco et al 28/10/15, 5th Galileo Colloquium 9 Project “Laser Ranging to Galileo” (2015-17) • Funded by Italian Ministry of Research (MIUR) • SCF_Lab characterizes on ground reflectors that MLRO laser-tracks in orbit • MLRO (ASI) station upgrades – KHz laser, refurbished optics, improved control software • SCF_Lab (INFN) facility upgrade – Larger laser test aperture for arrays, Fizeau interferometry Dell’Agnello-Bianco et al 28/10/15, 5th Galileo Colloquium 10 Project “Laser Ranging to Galileo” Laser ranging and SCF-Test of • Galileo IOV flight model by China, property of ESA, Left • LAGEOS Sector EM by NASA-GSFC, Center • GRA = GNSS Retroreflector Array by INFN-ASI-ILRS, Right ! Dell’Agnello-Bianco et al 28/10/15, 5th Galileo Colloquium ! 11 Degradations of laser return of GLO<115, GPS, GIOVE Al back-coating of old laser retroreflector design de-qualified by ground SCF_Lab & space ILRS measurements Optical far field diffraction pattern (FFDP) measured while reflector cools down in the simulated space environment at SCF_Lab TREFLECTOR(K) i.e. laser return signal back on ground on an area of few km by few km vs. time (sec) 28/10/15, 5th Galileo Colloquium Dell’Agnello-Bianco et al 12 SCF-Test of LAGEOS & GLO<115/GPS/GIOVE LAGEOS IS THE ILRS REFLECTOR STANDARD Dell’Agnello-Bianco et al Laser return (FFDP) intensity LAGEOS “Sector” EM of NASA-GSFC SCF-Tested @300K at INFN LAGEOS: unperturbed laser return LAGEOS: ~10% degradation of laser return after 3 hr exposure to Sun simulator GLO<115/GPS/GIOVE: ~ 87% degradation * 28/10/15, 5th Galileo Colloquium 13 Retroreflector performance in SCF_Lab simulated “critical” space conditions • GNSS Critical Orbit (GCO) • Critical thermal degradations of optical performance • Sunrise-Eclipse-Sunset over laser reflector probes its thermal and optical behavior in a critical way Dell’Agnello-Bianco et al 28/10/15, 5th Galileo Colloquium 14 GCO test: GRA thermal behavior ! Earth shadow 300 K Temperature [K[ Metal (Al) Metal (Al) Glass (IR T) Glass (IR T) 200 K T = 0 hr (sunrise) Dell’Agnello-Bianco et al Time (s) 28/10/15, 5th Galileo Colloquium T = 7 hr (sunset) ½ orbit 15 GCO test: GRA optical performance No optical degradation within ±15% errors ! Dell’Agnello-Bianco et al 28/10/15, 5th Galileo Colloquium 16 GCOTestofGalileoIOVEM,ESA-INFNcontract CCR7 CCR1 (center) EM ready for test in the SCF 28/10/15, 5th Galileo Colloquium Dell’Agnello-Bianco et al 17 CCRFrontFaceIRTemperatureandGradients Infrared Image of GALILEO IOV retroreflectors during SCF-Test at 0°C, heating phase Optical performance is mainly affected by internal gradients, in particular axial. Front-face gradients are also figure of merit, in particular to evaluate the CCR mount conductance and its degree of thermal insulation 28/10/15, 5th Galileo Colloquium Dell’Agnello-Bianco et al 18 GCO test: thermal behavior of CCR1&CCR7 Dell’Agnello-Bianco et al 28/10/15, 5th Galileo Colloquium 19 GCO test: optical performance ofCCR1 Dell’Agnello-Bianco et al 28/10/15, 5th Galileo Colloquium 20 GCO test: optical performance ofCCR7 Dell’Agnello-Bianco et al 28/10/15, 5th Galileo Colloquium 21 Performance: GRA vs. Galileo IOV CCR1, CCR7 • GRA by INFN-ASI-ILRS: lighter/smaller than Galileo IOV No degradations within errors (left) • Galileo IOV by China: performance degradations (right). But better than old generation GLONASS/GPS/GIOVE reflectors ! Dell’Agnello-Bianco et al 28/10/15, 5th Galileo Colloquium 22 Benefits of SLR to GNSS • SLR provides independent validation of GNSS orbits – Good radial orbit accuracy to calibrate clocks – Detection of systematic errors (inter-system biases) – Verification and diagnostics of orbit models (e.g. solar radiation pressure, albedo, attitude effects, vs. eclipses …) • Combining (not just comparing) GNSS and SLR measurements provides more accurate and stable GNSS orbits, with absolute reference to the geocenter and the scale of the ITRS. In fact, SLR: – Almost uniquely defines the geocenter of ITRF with LAGEOS, ETALON, … – Gives important contribution to definition of scale together with VLBI Dell’Agnello-Bianco et al 28/10/15, 5th Galileo Colloquium 23 ILRS workshops on SLR tracking of GNSS Previously: 2012, Frascati, Italy: 1-day workshop 2009 Metsovo, Greece: 5-day workshop Dell’Agnello-Bianco et al 28/10/15, 5th Galileo Colloquium 24 Conclusion: maximizing benefits of SLR to GNSS • Need high-performance GRAs to get more SLR data for better GNSS-SLR combined geodesy products • Need optimized ILRS stations procedures & instrumentation for GNSS altitudes • Need dedicated SLR campaigns of Galileo/Multi-GNSS • Need all of the above for a growing GNSS – Ultimately, order of: 27 Galileo, 24 GLONASS, 16 GPS-III, 3 QZSS, ~10 (?) IRNSS, ~20 (?) Compass/Beidou => ~100 ! – While now ILRS tracks ~35 satellites (lower than GNSS) • Galileo V2: boost performance of Retroreflector Arrays – Made in Europe not made in China/Russia (IOV/FOC) Dell’Agnello-Bianco et al 28/10/15, 5th Galileo Colloquium 25 Acronyms and definitions 1. 2. 3. 4. 5. 6. 7. 8. AM0: Air Mass Zero ASI: Agenzia Spaziale Italiana CCR: Cube Corner Retroreflector ESA: European Space Agency FFDP: Far Field Diffraction Pattern FOC: Full Orbit Capability GCO: GNSS Critical Orbit GMES = Global Monitoring for Environment and Security 9. GNSS : Global Navigation Satellite System 10. GPS: Global Positioning System 11. GRA: GNSS Retroreflector Array 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. Dell’Agnello-Bianco et al GTRF: Galileo Terrestrial Reference Frame ILRS: International Laser Ranging Service IOV: In Orbit Validation IPR: Intellectual Property Rights ITRF: International Terrestrial Reference Frame ITRS: International Terrestrial Reference System KPI: Key Performance Indicator OCS: Optical Cross Section LAGEOS: LAser GEOdynamics Satellite SCF: Satellite/lunar/GNSS laser ranging and altimetry Characterization Facility SCF-G: Satellite laser ranging Characterization Facility optimized for GNSS SLR: Satellite Laser Ranging WI: Wavefront Interferogram 28/10/15, 5th Galileo Colloquium 26 Some Reference Documents • • • • • • • • • • [RD-1] Dell’Agnello, S., et al, Creation of the new industry-standard space test of laser retroreflectors for the GNSS and LAGEOS, J. Adv. Space Res. 47 (2011) 822–842. [RD-2] P. Willis, Preface, Scientific applications of Galileo and other Global Navigation Satellite Systems (II), J. Adv. Space Res., 47 (2011) 769. [RD-3] D. Currie, S. Dell’Agnello, G. Delle Monache, A Lunar Laser Ranging Array for the 21st Century, Acta Astron. 68 (2011) 667-680. [RD-4] Dell’Agnello, S., et al, Fundamental physics and absolute positioning metrology with the MAGIA lunar orbiter, Exp Astron, October 2011, Volume 32, Issue 1, pp 19-35 ASI Phase A study. [RD-5] Dell’Agnello, S. et al, A Lunar Laser Ranging Retro-Reflector Array for NASA's Manned Landings, the International Lunar Network and the Proposed ASI Lunar Mission MAGIA, Proceedings of the 16th International Workshop on Laser Ranging, Space Research Centre, Polish Academy of Sciences Warsaw, Poland, 2008. [RD-6] International Lunar Network (http://iln.arc.nasa.gov/), Core Instrument and Communications Working Group Final Reports. [RD-7] Yi Mao, Max Tegmark, Alan H. Guth, and Serkan Cabi, Constraining torsion with Gravity Probe B, Physical Review D 76, 104029 (2007). [RD-8] March, R., Bellettini, G., Tauraso, R., Dell’Agnello, S., Constraining spacetime torsion with the Moon and Mercury, Physical Review D 83, 104008 (2011). [RD-9] March, R., Bellettini, G., Tauraso, R., Dell’Agnello, S., Constraining spacetime torsion with LAGEOS, Gen Relativ Gravit (2011) 43:3099–3126. [RD-10] ETRUSCO-2: An ASI-INFN project of technological development and “SCF-Test” of GNSS LASER Retroreflector Arrays, S, Dell’Agnello, 3rd International Colloquium on on Scientific and Fundamental Aspects of the Galileo Programme, Copenhagen, Denmark, August 2011 Dell’Agnello-Bianco et al 28/10/15, 5th Galileo Colloquium 27 The SCF-Test (background IPR of INFN) • Accurately laboratory-simulated space conditions. Concurrent/integrated: – – – – Dark/cold/vacuum, Sun/albedo (AM0, 1/5 AM0) and Earth (IR) simulators Non-invasive IR and contact thermometry Payload orbit/attitude simulation via roto-translations and thermal control Laser interrogation and sun perturbation at varying angle • Deliverables / Retroreflector Key Performance Indicators (KPIs) – Thermal behavior • Thermal relaxation time of retroreflector (τCCR) – Optical response • Far Field Diffraction Pattern (FFDP) • (Near Field) Wavefront Fizeau Interferogram (WFI) • Invariant Optical Cross Section, OCS – OCS also in air/isothermal conditions • Note: reduced, partial, incomplete tests (compared to the full space SCF environment) are randomly misleading (either optimistic or pessimistic) Dell’Agnello-Bianco et al 28/10/15, 5th Galileo Colloquium 28