Actinobacteria
Transcription
Actinobacteria
Zur Homepage der Dissertation Diversität und Dynamik von Bakteriengemeinschaften in vier ausgewählten Seen der Mecklenburgischen Seenplatte Diversity and Dynamics of Bacterioplankton Communities in four selected Lakes of the Mecklenburg Lake District Dissertation Von der Fakultät für Mathematik und Naturwissenschaften der Carl von Ossietzky Universität Oldenburg zur Erlangung des Grades und Titels eines Doktors der Naturwissenschaften (Dr. rer. nat.) angenommene Dissertation von Martin Allgaier geboren am 20.12.1976 in Böblingen Oldenburg, August 2006 Erstreferent: PD Dr. Hans-Peter Grossart Erster Koreferent: Prof. Dr. Meinhard Simon Tag der Disputation: 06. Oktober 2006 Die Untersuchungen zu vorliegender Arbeit wurden am Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB), Abteilung Limnologie Geschichteter Seen in Neuglobsow durchgeführt. Meinen Eltern Erklärung Teilergebnisse dieser Arbeit sind als Beiträge bei den genannten Fachzeitschriften erschienen (Kapitel III), für die Publikation akzeptiert (Kapitel II) oder wurden als Manuskripte zur Publikation eingereicht (Kapitel IV, V). Mein Beitrag an der Erstellung der Manuskripte wird im Folgenden erläutert: ALLGAIER, M., AND GROSSART, H.-P. (2006) Seasonal dynamics and phylogenetic diversity of free-living and particle-associated bacterial communities in four lakes of Northeastern Germany. Aquatic Microbial Ecology, accepted. Konzeptentwicklung und Durchführung der praktischen Arbeiten durch M. A. mit Ausnahme der Bestimmung der limnologischen Parameter (Mitarbeiter der Abteilung III des IGB). Erstellung des Manuskriptes durch M. A., Überarbeitung durch H.-P. G. und M. A. ALLGAIER, M., AND GROSSART, H.-P. (2006) Diversity and seasonal dynamics of Actinobacteria in four lakes in Northeastern Germany. Applied and Environmental Microbiology 72:3489-3497. Konzeptentwicklung und Durchführung der praktischen Arbeiten durch M. A. Erstellung des Manuskriptes durch M. A., Überarbeitung durch H.-P. G. und M. A. ALLGAIER, M., BRÜCKNER, S., JASPERS, E., AND GROSSART, H.-P. (2006) Intra- and interlake variability of free-living and particle-associated Actinobacteria populations. Submitted to Environmental Microbiology. Konzeptentwicklung durch M. A. Durchführung der praktischen Arbeiten zu gleichen Teilen durch M. A. und S. B. (S. B.: DGGE, Clusteranalysen, Klonbibliotheken; M. A.: phylogenetische Analysen, Statistik, NMS). Die limnologischen Parameter wurden von Mitarbeitern der Abteilung III des IGB bestimmt. Erstellung des Manuskriptes durch M. A., Überarbeitung durch H.-P. G., S. B., E. J. und M. A. ALLGAIER, M., AND GROSSART, H.-P. (2006) Abundance and phylogenetic diversity of freeliving and particle-associated epilimnetic Actinobacteria of Lake Kinneret (Israel) – A case study. Submitted to Environmental Microbiology. Konzeptentwicklung und Durchführung der praktischen Arbeiten durch M. A. Erstellung des Manuskriptes durch M. A., Überarbeitung durch H.-P. G. und M. A. vii Weitere Veröffentlichungen ALLGAIER, M., AND GROSSART, H.-P. (2005) Bacterial diversity and seasonal dynamics in 2 lakes of the Mecklenburg Lake District, Northern Germany. IGB Annual Report 2004, 88100. GROSSART, H.-P., LEVOLD, F., ALLGAIER, M., SIMON, M., AND BRINKHOFF, T. (2005) Marine diatom species harbour distinct bacterial communities. Environmental Microbiology 7:860873. GROSSART, H.-P., ALLGAIER, M., PASSOW, U., AND RIEBESELL, U. (2006) Testing the effect of CO2 concentration on dynamics of marine heterotrophic bacterioplankton. Limnology and Oceanography 51:1-11. GROSSART, H.-P., KIØRBOE, T., TANG, K.W., ALLGAIER, M., YAM, E.M. AND PLOUG, H. (2006) Interactions between marine snow and heterotrophic bacteria: Aggregate formation and microbial dynamics. Aquatic Microbial Ecology 42:19-26. Tagungsbeiträge ALLGAIER, M., AND GROSSART, H.-P. (2004) Bacterial dynamics and diversity in four lakes of the Brandenburg-Mecklenburg Lake District, Northern Germany. Jahrestagung der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM), 28.03.-31.03.2004, Braunschweig, Deutschland (Poster). ALLGAIER, M., AND GROSSART, H.-P. (2004) Bacterial community structures in two adjacent but very different lakes in Northern Germany. 10th International Symposium on Microbial Ecology (ISME-10), 22.08.-27.08.2004, Cancun, Mexico (Poster). ALLGAIER, M., AND GROSSART, H.-P. (2004) Bacterial community structures in two adjacent but very different lakes in Northern Germany. Jahrestagung der Deutschen Gesellschaft für Limnologie (DGL), 20.09.-24.09.2004, Potsdam, Deutschland (Poster). Weitere Tagungsbeiträge GROSSART, H.-P., ALLGAIER, M., PASSOW, U., ENGEL, A., SCHULZ, K., AND RIEBESELL, U. (2004) The effect of different CO2 concentrations on bacterial abundance and activity in the course of a diatom bloom. Jahrestagung der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM), 28.03.-31.03.2004, Braunschweig, Deutschland (Vortrag). GROSSART, H.-P., LEVOLD, F., ALLGAIER, M., SIMON, M., AND BRINKHOFF, T. (2004) Dynamics of phytoplankton-bacteria interactions. 10th International Symposium on Microbial Ecology (ISME-10), 22.08.-27.08.2004, Cancun, Mexico (Poster). RIEBESELL, U., ALLGAIER, M., AVGOUSTIDI, V., BELLERBY, R., CARBONNEL, V., CHOU, L., DELILLE, B., EGGE, J., ENGEL, A., GROSSART, H.-P., HUONNIC, P., JANSEN, S., JOHANESSEN, viii T., JOINT, I., KRINGSTAD, S., LOVDAL, L., MARTIN-JEZEQUEL, V., MOROS, C., MÜHLING, M., NIGHTINGALE, P.D., PASSOW, U., ROST, B., SCHULZ, K., SKJELVAN, I., TERBRÜGGEN, A., AND TRIMBORN, S. (2004) Pelagic ecosystems in a high CO2 ocean: the mesocosm approach. SOLAS Open Science Conference, 13.10.-16.10.2004, Halifax, Canada (Poster). GROSSART, H.-P., ALLGAIER, M., PASSOW, U., ENGEL, A., SCHULZ, K., AND RIEBESELL, U. (2004) The effect of different CO2 concentrations on bacterial abundance and activity in the course of a diatom bloom. SOLAS Open Science Conference, 13.10.-16.10.2004, Halifax, Canada (Poster). PASSOW, U., ARNOSTI, C., ALLGAIER, M., AND GROSSART, H.-P. (2004) Hydrolysis rates of specific polysaccharides in mesocosm with high or low atmospheric CO2 concentrations. SOLAS Open Science Conference, 13.10.-16.10.2004, Halifax, Canada (Poster). EGGE, J., GROSSART, H.-P., ALLGAIER, M., AND ENGEL, A. (2004) Assimilation, organic production and release of carbon. SOLAS Open Science Conference, 13.10.-16.10.2004, Halifax, Canada (Poster). BRÜCKNER, S., ALLGAIER, M., GROSSART, H.-P., AND JASPERS, E. (2006) Assessment of inter- and intra-lake variability of Actinobacteria populations by using specific primers. Jahrestagung der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM), 19.03.-22.03.2006, Jena, Deutschland (Poster). ALLGAIER, M., RIEBESELL, U., AND GROSSART, H.-P. (2006) Response of marine bacteria to CO2 enrichment in mesocosm perturbation studies. European Geoscience Union (EGU) General Assembly, 02.04.-07.04.2006, Wien, Österreich (Poster). ix Abkürzungsverzeichnis ANOSIM analysis of similarity ANOVA analysis of variance BAC bacterial artificial chromosome (Inserts bis 200 kb möglich) BL Breiter Luzin BLAST Basic Local Alignment Search Tool BPP Bakterielle Proteinproduktion CARD-FISH catalyzed reporter deposition FISH COSMID Plasmid, in das cos-Stellen des λ–Phagen eingebaut wurden und die daher in vitro in eine Phagenhülle verpackt werden können DAPI 4,6-diamidino-2-phenylindole DGGE Denaturierende Gradienten Gelelektrophorese DNA deoxyribonucleic acid DOC dissolved organic carbon DOM dissolved organic matter et al. et alii FISH Fluoreszenz in situ Hybridisierung FNE bzw. FU-NE Große Fuchskuhle (Nordost-Becken) FOSMID low-copy-number COSMID, das sich von dem F-Faktor aus E. coli ableitet (Inserts bis 40 kb möglich) FSW bzw. FU-SW Große Fuchskuhle (Südwest-Becken) NMS non-metric multidimensional scaling PCR polymerase chain reaction POC particulate organic carbon POM particulate organic matter PP Primärproduktion RDP Ribosomal Database Project rRNA ribosomal ribonucleic acid ST Stechlinsee STE Stechlinsee (Epilimnion) STM Stechlinsee (Metalimnion) STH bzw. ST-HL Stechlinsee (Hypolimnion) TOC total organic carbon TW Tiefwarensee v.s. versus x Zusammenfassung In der vorliegenden Arbeit wurde die Bakterioplanktongemeinschaften in vier Diversität und Dynamik heterotropher limnologisch unterschiedlichen Seen der Mecklenburgischen Seenplatte (Stechlinsee, Große Fuchskuhle, Breiter Luzin und Tiefwarensee) bestimmt und miteinander verglichen. Dazu wurden die Seen von April 2003 bis März 2004 ein Jahr lang monatlich beprobt und hinsichtlich mikrobieller und limnologischer Veränderungen untersucht. Anhand Denaturierender Gradienten Gelelektrophorese (DGGE) und Klonbibliotheken von 16S rRNA-Genfragmenten wurde die phylogenetische Diversität der Bakteriengemeinschaften bestimmt und deren saisonale Veränderungen untersucht. Dabei wurde zwischen frei-lebenden und partikelassoziierten Bakterien unterschieden, um eine höhere phylogenetische Auflösung zu erlangen. Bei der molekularbiologischen Charakterisierung der Bakteriengemeinschaften wurden die Actinobacteria als eine der dominanten Bakteriengruppen in allen vier Seen identifiziert. Dies führte im Weiteren zu gezielten Studien an dieser Bakteriengruppe, in denen die Diversität, Abundanz, Saisonalität und Verbreitung limnischer Actinobacteria detailliert untersucht wurde. Als mögliche Einflussfaktoren für die Bakterien- gemeinschaften wurden für alle Gewässer eine Vielzahl an limnologischen Parametern bestimmt (z.B. Temperatur, gelöster organischer Kohlenstoff (DOC), Stickstoff, Phosphor, Primärproduktion oder Phytoplanktonbiomasse) und statistisch mit der Diversität bzw. Abundanz der gesamten Bakteriengemeinschaften und Actinobacteria in Verbindung gebracht. Die wichtigsten Ergebnisse dieser Arbeit können wie folgt zusammengefasst werden: • Die Bakterioplanktongemeinschaften der vier Untersuchungsgewässer unterschieden sich signifikant voneinander. Phylogenetische Analysen von 16S rRNA-Gensequenzen deuteten auf das Vorkommen von α-, β-, γ-Proteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, Verrucomicrobia, Planctomycetes und Vertretern des Candidate Division OP10 in den Seen hin. • Die getrennte Analyse von frei-lebenden und partikel-assoziierten Bakteriengemeinschaften ergab deutliche Unterschiede in der Struktur und phylogenetischen Diversität der beiden Bakterienfraktionen. Klonbibliotheken von frei-lebenden Bakteriengemeinschaften wurden von Sequenzen der Actinobacteria, Bacteroidetes, α- und β-Proteobacteria dominiert, wohingegen sich xi die partikel-assoziierten Bakteriengemeinschaften hauptsächlich aus Vertretern der Bacteroidetes, α-Proteobacteria und Planctomycetes zusammensetzten. • Vertreter der Actinobacteria wurden in allen Seen mit Abundanzen von 30-58 % als eine der dominanten Bakteriengruppen nachgewiesen. Etwa 80 % aller Actinobacteria konnten dem erst kürzlich beschriebenen acI-Cluster zugeordnet werden. Durch umfangreiche phylogenetische Analysen konnten innerhalb der limnischen Actinobacteria neue Cluster (acSTL) und Subcluster (scB 1-4, acIV D-E) beschrieben werden. Ein Vergleich von Actinobacteria-Sequenzen der vier Untersuchungsgewässer mit Sequenzen aus dem subtropischen See Genezareth (Israel) zeigte keine signifikanten Unterschiede in der phylogenetischen Zusammensetzung limnischer Actinobacteria verschiedener Klimazonen. Dies unterstützt die Annahme einer globalen Verbreitung limnischer Actinobacteria. • Mittels spezifischer Nachweisverfahren (DGGE) konnte gezeigt werden, dass sich die Actinobacteria-Populationen der vier Untersuchungsgewässer signifikant voneinander unterscheiden. Im Stechlinsee wurden sogar Unterschiede zwischen den Actinobacteria-Populationen des Epi-, Meta-, und Hypolimnions nachgewiesen. Die getrennte Analyse von frei-lebenden und partikel-assoziierten Actinobacteria ergab deutliche Unterschiede in der Struktur der beiden Actinobacteria-Fraktionen. Die phylogenetische Analyse partikel-assoziierter Actinobacteria deutete dabei auf eine spezifische Anpassung bestimmter phylogenetischer Linien an Partikel hin. • Sowohl die gesamten Bakteriengemeinschaften wie auch Vertreter der Actinobacteria zeigten ausgeprägte saisonale Veränderungen hinsichtlich ihrer Diversität und Abundanz. Für die Actinobacteria-Populationen der vier Untersuchungsgewässer wurden relativ einheitliche saisonale Muster mit Maxima im Sommer und Spätherbst nachgewiesen. Generell waren die saisonalen Veränderungen innerhalb der frei-lebenden Bakterien meist stärker ausgeprägt als bei den partikel-assoziierten Bakteriengemeinschaften. • Der statistische Vergleich zwischen der Diversität und Abundanz der gesamten Bakteriengemeinschaften Umweltparametern Temperatur, bzw. erbrachten Alkalinität, DOC, Actinobacteria starke Korrelationen Stickstoff, xii Phosphor, und bei verschiedenen Parametern wie: Exoenzymaktivitäten, Primärproduktion und Phytoplanktonbiomasse. In allen Analysen konnten jedoch keine übereinstimmenden Korrelationsmuster zwischen den Seen identifiziert werden – weder für die gesamten Bakteriengemeinschaften noch für die Actinobacteria. Dies deutet auf die Anpassung der jeweiligen Bakteriengemeinschaften an die entsprechenden Umweltbedingungen in ihrem Habitat hin. Bei den Actinobacteria kann aufgrund der phylogenetischen Ähnlichkeiten zwischen den Actinobacteria-Populationen der vier Seen von einer Mikrodiversität gesprochen werden. xiii Summary The diversity and dynamics of heterotrophic bacterioplankton communities was investigated in four limnological different lakes of the Mecklenburg Lake District, Northeastern Germany (Lake Stechlin, Lake Grosse Fuchskuhle, Lake Breiter Luzin, and Lake Tiefwaren). For this purpose all lakes were sampled monthly between April 2003 and March 2004 and characterized regarding to their microbial and limnological changes. Denaturing gradient gel electrophoresis (DGGE) and clone libraries were used to determine the phylogenetic diversity and seasonal dynamics of the bacterial communities. To obtain higher phylogenetic resolutions, free-living and particle-associated bacteria were investigated separately as two different entities. Actinobacteria were found to be one of the most dominant bacterial groups within bacterioplankton communities of all lakes. Therefore, particular studies of this thesis were focused on the description and characterization (e.g. phylogenetic diversity, seasonality, abundances, and distribution) of freshwater Actinobacteria. Several limnological variables were determined for the studied lakes (e.g. temperature, dissolved organic carbon (DOC), nitrogen, phosphorous, primary production, phytoplankton biomass) to test statistically their influence on changes in diversity and abundance of total bacterial communities and Actinobacteria, respectively. The major findings of this thesis can be summarized as follows: • Bacterioplankton communities of the four studied lakes were significantly different. Phylogenetic inferences of 16S rRNA gene sequences indicated the occurrence of α-, β-, γ-Proteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, Verrucomicrobia, Planctomycetes, and members of the Candidate Division OP10 in almost all lakes. • Separate analyses of free-living and particle-associated bacterial communities revealed significant differences in the community structure and phylogenetic diversity of both bacterial fractions. Phylogenetic analyses of clone libraries indicated that free-living bacteria were dominated by Actinobacteria, Bacteroidetes, α-, and β-Proteobacteria, whereas particle-associated bacterial communities consists predominantly of Bacteroidetes, α-Proteobacteria, and Planctomycetes, respectively. • Members of the Actinobacteria were found to be one of the most dominant bacterial groups within the bacterioplankton of all lakes which accounted for up to xiv 30-58 % of all DAPI stained cells. About 80 % of all Actinobacteria were phylogenetically related to the recently described freshwater cluster acI. Throughout extensive phylogenetic analyses of actinobacterial 16S rRNA gene sequences several new clusters (acSTL) and subclusters (scB 1-4, acIV D-E) were described within the phylogenetic tree of freshwater Actinobacteria. A comparison between actinobacterial sequences of the four studied lakes with sequences derived from subtropical Lake Kinneret (Israel) indicated no differences between freshwater Actinobacteria of different climatic zones and, thus, supporting the idea of a global distribution of freshwater Actinobacteria. • The specific investigation of freshwater Actinobacteria (DGGE) showed significant differences between Actinobacteria populations of the four studied lakes. In Lake Stechlin additionally intra-lake differences occurred between Actinobacteria populations of the epi-, meta-, and hypolimnion. Separate analyses of free-living and particle-associated Actinobacteria revealed clear differences between both actinobacterial fractions. Phylogenetic analyses of particle-associated Actinobacteria suggest that distinct actinobacterial lineages exclusively occur on particles. • Total bacterioplankton communities and members of the Actinobacteria showed pronounced seasonal changes in respect to their community structure and abundances. Actinobacteria exhibited uniform seasonal patterns in all lakes with maximal abundances in late spring and fall/winter. In general, seasonal dynamics were more pronounced for free-living bacteria than for particle-associated bacterial communities. • Statistical analyses between diversity and abundances of total bacterial communities and Actinobacteria, respectively, and several environmental parameters indicated strong correlations to parameters such as: temperature, alkalinity, DOC, nitrogen, phosphorous, ectoenzyme activities, primary production and phytoplankton biomass. However, no consistent correlation patterns could be identified between the four studied lakes - neither for total bacterial communities nor for Actinobacteria. This suggests a potential adaptation of bacterial communities to their respective environment. Due to high phylogenetic similarities between Actinobacteria populations of the four studied lakes, Actinobacteria are proposed to exhibit a distinct microdiversity. xv Inhaltsverzeichnis Zusammenfassung xi Summary I II III IV xiv Einleitung 1 Die ökologische Bedeutung des heterotrophen Bakterioplanktons in aquatischen Systemen Untersuchung und Charakterisierung komplexer Bakteriengemeinschaften Phylogenie und Biogeographie aquatischer Bakterien Saisonale Dynamik von Bakteriengemeinschaften Aggregate als Lebensraum für aquatische Bakterien Das Untersuchungsgebiet: Die Mecklenburgische Seenplatte Zielsetzung der Arbeit Literatur 5 7 10 11 12 17 19 Seasonal dynamics and phylogenetic diversity of free-living and particle-associated bacterial communities in four lakes of Northeastern Germany 29 Abstract Introduction Materials and Methods Results Discussion Literature cited Figures and Tables 32 32 33 37 41 46 51 Diversity and seasonal dynamics of Actinobacteria populations in four lakes of Northeastern Germany 59 Intra- and inter-lake variability of free-living and particle-associated Actinobacteria populations 71 Summary Introduction Results Discussion Experimental procedures References Figures and Tables 74 74 75 77 81 87 90 xvi 3 V VI Abundance and phylogenetic diversity of free-living and particle-associated epilimnetic Actinobacteria of Lake Kinneret (Israel) – A case study 95 Summary Introduction Results and Discussion References Figures 98 98 99 102 104 Gesamtbetrachtung und Ausblick 107 Gesamtbetrachtung Die Bakterienpopulationen in den Untersuchungsgewässern Limnische Actinobacteria Phylogenetische Diversität Verbreitung, Dynamik und ökologische Anpassung limnischer Actinobacteria Verknüpfung von Struktur und Funktion aquatischer Bakteriengemeinschaften Aktuelle Projekte und Ausblicke Literatur 109 109 111 111 112 114 116 118 Danksagung 121 Lebenslauf 123 Erklärung 125 Anhang 127 xvii I Einleitung Kapitel I Einleitung Die ökologische Bedeutung des heterotrophen Bakterioplanktons in aquatischen Systemen Mikroorganismen sind eine wichtige Komponente in aquatischen Nahrungsnetzen, die auf eine Vielzahl physikalischer, chemischer und biologischer Änderungen reagieren. Heterotrophe Bakterien leisten in aquatischen Ökosystemen einen signifikanten Anteil am Abbau organischer Kohlenstoffverbindungen (Cotner & Biddanda, 2002). Sie erfüllen in erster Linie die Funktion der Mineralisation, d.h. der Überführung organischer Substanz in mineralische, anorganische Substanz. Diese kann von den autotrophen Organismen zur Neusynthese von Biomasse genutzt werden. Ihre wichtige Rolle in der Natur, besonders in den Gewässern, wurde lange übersehen. Noch bis Ende der siebziger Jahre des letzten Jahrhunderts ging man davon aus, dass der größte Teil der Primärproduktion als partikuläres Material über die einzelnen Trophiestufen einer linearen Nahrungskette („grazing food chain“; Abbildung I.1) weitergegeben wird (Steele, 1974). Durch die Entwicklung radiochemischer Analyseverfahren wurde jedoch zunehmend die zentrale Rolle heterotropher Bakterien in aquatischen Stoffkreisläufen erkannt und anstelle der linearen Nahrungskette ein komplexes Nahrungsnetz postuliert (Parsons & Strickland, 1962; Wright & Hobbie, 1966). Im freien Wasserkörper (Pelagial) der Ozeane, großer Fließgewässer und Seen finden sich große Mengen an organischem Kohlenstoff, dessen Hauptquelle die Primärproduktion planktischer Algen und Cyanobakterien ist (Schwoerbel, 1999). In den Ozeanen liegen etwa 91 % des gesamten organischen Materials in gelöster Form (dissolved organic matter; DOM) vor (Hedges, 1992). Zu den DOM-Quellen zählen neben den Exsudaten des Phytoplanktons und dem durch „sloppy feeding“ freigesetzten DOM des Zooplanktons (Lampert, 1978; Jumars et al., 1989) auch organische Materialen, die durch virale Lyse von Phyto- und Bakterioplankton (Bratbak et al., 1992; Fuhrman, 1999) sowie der Hydrolyse partikulären organischen Materials (POM) durch Bakterien freigesetzt werden (Smith et al., 1992; Grossart & Simon, 1998). Gelöste organische Materialien sind für Organismen höherer Trophiestufen nicht direkt zugänglich, können aber von heterotrophen Mikroorganismen genutzt werden. Aufgrund ihrer effektiven Aufnahmesysteme und eines hohen Oberflächen-Volumen-Verhältnisses gelten Bakterien als wichtige Konsumenten des gelösten organischen Kohlenstoffs (DOC). Durch die Überführung der gelösten organischen Substanz in die partikuläre Fraktion der Bakterienzellen wird eine Weitergabe an Organismen höherer Trophiestufen möglich. Über die Ingestion von Bakterien durch heterotrophe Nanoflagellaten und Ciliaten können 30-60 % der autochthonen Primärproduktion durch den „microbial loop“ höheren 3 Kapitel I Einleitung Trophiestufen zugeführt werden (Azam et al., 1983; Cole et al., 1988; Sherr et al., 1989). In oligotrophen Systemen kann der Abbau organischen Kohlenstoffs durch heterotrophe Bakterien die Primärproduktion sogar um ein Vielfaches übersteigen. Dabei schleusen heterotrophe Bakterien allochthonen Kohlenstoff in den pelagischen Kohlenstoffkreislauf ein und führen dem Nahrungsnetz so zusätzliche Nährstoffe zu (Findlay et al., 1991; del Giorgio et al., 1997). Bakterien spielen jedoch nicht nur im Kohlenstoffkreislauf eine zentrale Rolle. Durch ihre große Vielfalt an Stoffwechseleigenschaften (u.a. Nitrifizierung, Denitrifizierung, Sulfatreduktion) sind Bakterien an weiteren Stoffkreisläufen verschiedener Elemente entscheidend beteiligt (Schlegel, 1992; Madigan et al., 2000). Gasaustausch (u.a. O2, CO2) Sonnenlicht (hν und UV) „grazing food chain“ „sinking flux“ Phytoplankton Zooplankton Fische POM DOM Protozoen Viren Aggregation Bakterien Sedimentation „microbial loop“ SEDIMENT Abbildung I.1: Vereinfachte schematische Darstellung des aquatischen Nahrungsnetzes (nach Azam, 1998). 4 Kapitel I Einleitung Untersuchung und Charakterisierung komplexer Bakteriengemeinschaften Wie in dem vorangegangenen Kapitel dargestellt, spielen Mikroorganismen eine entscheidende Rolle in vielen Stoffkreisläufen. Trotzdem wissen wir heute noch sehr wenig über die Identität der beteiligten Arten und über die Populationsdynamik einzelner Bakteriengruppen in natürlichen Systemen. Für das bessere Verständnis eines Ökosystems ist es aber notwendig, die Struktur der Bakteriengemeinschaften möglichst genau zu kennen (Cottrell & Kirchman, 2002; Pernthaler & Amann, 2005). Aufgrund ihrer geringen Größe und der wenig ausgeprägten morphologischen Merkmale (z.B. Kokken, Stäbchen, Spirillen, Vibrionen oder Spirochäten) ist es nur in Ausnahmefällen möglich, Bakterien anhand ihrer Morphologie zu unterscheiden (Sieburth et al., 1978, Schlegel, 1992). Noch bis in die 80er Jahre des letzten Jahrhunderts wurden deshalb Bakteriengemeinschaften oft als funktionelle Einheit (black box) zusammengefasst (Pinhassi et al., 1997), in der nicht zwischen einzelnen phylogenetischen Gruppen unterschieden wurde. Es ist jedoch nicht nur die geringe morphologische Vielfalt, die eine Charakterisierung natürlicher Bakteriengemeinschaften nahezu unmöglich macht, sondern auch die schwierige Kultivierbarkeit vieler Mikroorganismen. Da sich bislang nur etwa 1 % aller Bakterien erfolgreich im Labor kultivieren lässt (Amann et al., 1995), ist eine zuverlässige Erfassung der Diversität natürlicher Bakteriengemeinschaften anhand klassischer Anreicherungs- und Kultivierungsexperimente so gut wie ausgeschlossen. Gegenwärtig gibt es ca. 6900 gültig beschriebene Bakterienarten, denen eine geschätzte ≥ 109 möglicherweise existierenden Bakterienspezies gegenübersteht Zahl von (Dykhuizen, 1998). Dieses Phänomen der geringen Kultivierbarkeit vieler Bakterien trotz hohen Abundanzen in den natürlichen Ökosystemen wurde von Staley & Konopka (1985) als „great plate count anomaly“ (Plattenanomalie) bezeichnet. Die Gründe für die „Unkultivierbarkeit“ vieler Bakterien sind vermutlich in den physiologischen Zuständen und spezifischen Anforderungen der Bakterien selbst, so wie den angewandten Kultivierungsmethoden zu suchen (Bloomfield et al., 1998; Rappé et al., 2002; Stevenson et al., 2004). Durch die Einführung molekularbiologischer Techniken in die aquatische mikrobielle Ökologie wurde die Bakteriengemeinschaften Erforschung entscheidend der phylogenetischen vorangetrieben (Olsen Diversität et al., natürlicher 1986). Im Mittelpunkt der molekularbiologischen Analysen stand dabei die Verwendung von 16S rRNA-Gensequenzen als „molekulare Chronometer“ (Woese, 1987). Der Vergleich von 16S rRNA-Gensequenzen lässt eine relativ sichere und zuverlässige phylogenetische 5 Kapitel I Einleitung Klassifizierung einzelner Bakteriengruppen und –arten zu. Durch die Anwendung verschiedener molekularbiologischer Techniken wie Denaturing Gradient Gel Electrophoresis (DGGE) (Muyzer et al., 1993), Terminal Restriction Fragment Length Polymorphism (TRFLP) (Clement et al., 1998), Automated Ribosomal Intergenic Spacer Analysis (ARISA) (Fisher Bakteriengemeinschaften & ohne Triplett, 1999) aufwändige oder Klonbibliotheken Kultivierungsansätze direkt können in ihren natürlichen Habitaten untersucht werden. Auf diese Weise wurden in den letzten Jahren verschiedenste aquatische Bakteriengemeinschaften untersucht und beschrieben (z.B. Giovannoni et al., 1990; Rappé et al., 2000; Urbach et al., 2001; Van der Gucht et al., 2005; Newton et al., 2006). Diese, rein zur Bestimmung der phylogenetischen Diversität ausgelegten Methoden, erlauben jedoch keine Aussagen über die in situ Abundanz einzelner Bakteriengruppen. Anhand von Klonbibliotheken kann zwar ein erster Eindruck über das Auftreten einzelner Bakteriengruppen gewonnen werden, doch müssen diese Ergebnisse durch quantitative Analysen bestätigt werden (vgl. Kapitel III). Diese Lücke wurde durch die Fluoreszenz in situ Hybridisierung (FISH) geschlossen, mit deren Hilfe Bakterien in ihrem natürlichen Habitat nachgewiesen und quantifiziert werden können (Amann et al., 1995; Glöckner et al., 1999). Bei der FISH werden zur 16S oder 23S rRNA komplementäre Oligonukleotid-Sonden verwendet, die mit einem Fluoreszenzfarbstoff markiert sind. Je nach Spezifität der Sonde kann so die Abundanz ganzer Bakteriengruppen oder spezifischer Cluster in einer Probe mikroskopisch bestimmt werden. Die Einführung der Molekularbiologie in die mikrobielle Ökologie brachte einen riesigen Fortschritt bei der phylogenetischen Beschreibung natürlicher Bakteriengemeinschaften. Da jedoch von den phylogenetischen Informationen nur eingeschränkt auf die Physiologie der Bakterien geschlossen werden kann, blieb die Frage nach der Funktion oft ungeklärt. Dies führte zu einem Umdenken in der mikrobiellen Ökologie. So wurden neben den rein phylogenetischen Analysen wieder vermehrt Anstrengungen unternommen, die physiologischen und ökologischen Eigenschaften der Bakterien zu untersuchen. Aus diesem Grund wurde in den letzten Jahren wieder verstärkt kultiviert (z.B. Jaspers et al., 2001; Rappé et al., 2002; Hahn et al., 2003; Schauer et al., 2005; Gich et al., 2005), da die physiologische Charakterisierung von Bakterienisolaten immer noch die zuverlässigsten Ergebnisse über die Physiologie und biochemischen Eigenschaften der Bakterien liefert. Man versuchte vor allem, die Bakterien zu isolieren, die anhand der molekularbiologischen Analysen in den jeweiligen Habitaten als dominant identifiziert wurden (z.B. marines SAR11 Cluster, Rappé et al., 2002 oder limnische Actinobacteria des acI Clusters, Gich et al., 2005). 6 Kapitel I Einleitung Auch auf der molekularbiologischen Seite wurden neue Methoden entwickelt, um die physiologischen Eigenschaften unkultivierter Bakterien zu untersuchen. Eine Reihe von Methoden richtet sich dabei auf den in situ Nachweis von Stoffwechseleigenschaften bestimmter Bakteriengruppen in ihrer natürlichen Umgebung (Lee et al., 1999; Borneman, 1999; Lebaron et al., 2002; Nercessian et al., 2005). Durch die Verknüpfung von Mikroautoradiographie und FISH (MAR-FISH) kann beispielsweise gezielt die Aufnahme spezifischer Substrate durch bestimmte Bakterien untersucht werden (Lee et al., 1999; Ouverney & Fuhrman, 1999; Cottrell & Kirchman, 2000b). Von einem rein genetischen Ansatz gehen die in neuerer Zeit populär geworden Genom- bzw. Metagenom-Analysen (z.B. BAC oder FOSMID libraries) aus (Béjà et al., 2002; Venter et al., 2004; Béjà, 2004). Bei diesen Verfahren werden ganze Bakteriengenome oder Teile davon sequenziert und auf funktionelle Gene untersucht. Durch das Vorhandensein bestimmter Gene können so Rückschlüsse auf mögliche physiologische Eigenschaften der jeweiligen Bakterien gezogen werden. Diese genetischen Ansätze werden zunehmend mit funktionellen Analysen gekoppelt, in dem auf mRNA bzw. Proteinebene die Expression einzelner funktioneller Gene unter natürlichen Bedingungen untersucht wird (z.B. Nazaret et al., 1994; Nogales et al., 2002; Rodriguez-Valera, 2004; Wilmes & Bond, 2004; Schulze et al., 2005; Uchiyama et al., 2005). Da sowohl die klassischen mikrobiologischen Ansätze als auch die molekularbiologischen Methoden ihre Stärken und Schwächen haben, ist in der mikrobiellen Ökologie zunehmend der Trend zu einem polyphasischen Ansatz zu beobachten. Bei dieser Herangehensweise werden Kultivierungstechniken und molekularbiologische Untersuchungen miteinander kombiniert, um so möglichst genaue Informationen über die phylogenetische Diversität und Physiologie von Bakteriengemeinschaften zu erhalten (Gillis et al., 2002; Hahn et al., 2003; Gich et al., 2005; Schauer et al., 2005; Wu & Hahn, 2006). Phylogenie und Biogeographie aquatischer Bakterien Die Einführung kultivierungsunabhängiger Methoden in die Mikrobielle Ökologie ermöglichte ganz neue Einblicke in die phylogenetische Zusammensetzung aquatischer Bakteriengemeinschaften (Rappé & Giovannoni, 2003). Anhand der Analyse von 16S rRNA-Gensequenzen wurde in den letzten Jahren eine Vielzahl limnischer und mariner Bakteriengemeinschaften eingehend untersucht (z.B. Glöckner et al., 1999; Crump et al., 1999; Rappé et al., 2000; Urbach et al., 2001; Nasreen & Hollibaugh, 2002; Van der Gucht et al., 2005; Stevens et al., 2005; Lindström et al., 2005; Newton et al., 2006). 7 Kapitel I Einleitung Dennoch ist unser gegenwärtiges Bild von der phylogenetischen Diversität aquatischer Bakteriengemeinschaften immer noch lückenhaft. Dies wird eindrücklich durch eine erst kürzlich veröffentlichte Studie gezeigt, bei der in einer einzelnen Wasserprobe aus der Sargassosee mehr als hundert neue und bislang unbekannte 16S rRNA-Gensequenzen identifiziert wurden (Venter et al., 2004). Etwa 80 % der bislang bekannten 16S rRNA-Gensequenzen aus dem marinen Bakterioplankton lassen sich neun distinkten Gruppen zuordnen (Giovannoni & Rappé, 2000). Vergleichende Analysen von 16S rRNA-Gensequenzen aus limnischen Habitaten hingegen führten zu der Unterscheidung von 34 phylogenetischen Gruppen (Zwart et al., 2002). Diese phylogenetische Aufteilung limnischer und mariner Bakterien darf aber nicht als endgültig angesehen werden, da sie sich durch das Hinzukommen neuer Sequenzen signifikant ändern kann. So wurden beispielsweise innerhalb der limnischen Actinobacteria durch spezifische Analysen weitere phylogenetische Gruppen identifiziert, die bei den vorangegangenen Analysen aufgrund fehlender Sequenzinformationen nicht erkannt werden konnten (Warnecke et al., 2004). Mittels spezifischer in situ Nachweisverfahren Bacteroidetes in (z.B. FISH) limnischen konnten Systemen Actinobacteria, als die β-Proteobacteria dominanten und Bakteriengruppen nachgewiesen werden (Glöckner et al., 2000; Pernthaler et al., 2004; Warnecke et al., 2005). Aber auch andere Gruppen, wie die α-Proteobacteria, Verrucomicrobia oder Planctomycetes können bedeutende Anteile an limnischen Bakteriengemeinschaften ausmachen (Zwart et al., 2002, 2003; Eiler & Bertilsson, 2004). In marinen Habitaten hingegen zählen α-Proteobacteria, γ-Proteobacteria und Bacteroidetes zu den dominanten Bakteriengruppen (Cottrell & Kirchman, 2000; Morris et al., 2002; Pernthaler et al., 2002; Kirchman et al., 2003). Neben den Unterschieden in der Verbreitung und Abundanz einzelner Bakteriengruppen deuten vergleichende phylogenetische Analysen von 16S rRNA-Gensequenzen auch auf Unterschiede zwischen limnischen und marinen Bakteriengemeinschaften hin (Crump et al., 1999; Glöckner et al., 1999; Rappé et al., 2000; Selje & Simon, 2003). Der Nachweis identischer Phylotypen (z.B. α-Proteobacteria, β-Proteobacteria, Actinobacteria, Bacteroidetes) in beiden Habitaten lässt zunächst Ähnlichkeiten zwischen limnischen und marinen Bakterien vermuten, doch die genauere Analyse der phylogenetischen Beziehungen widerlegt diesen Eindruck deutlich (Glöckner et al., 1999; Rappé et al., 2000). So finden sich innerhalb der α-Proteobacteria, Actinobacteria und Bacteroidetes neben Gruppen, denen Bakterien beider Habitate angehören, auch spezifische Cluster, die ausschließlich aus limnischen bzw. marinen Sequenzen bestehen (Giovannoni et al., 8 Kapitel I Einleitung 1990; Teske et al., 1994; Bahr et al., 1996; Crump et al., 1999; Zwart et al., 1998, 2002; Rappé et al., 2000; Warnecke et al., 2004) Mit der steigenden Bakteriengemeinschaften Zahl an verschiedener phylogenetischen Habitate rückte Beschreibungen die Frage nach von der geographischen Verbreitung (Biogeographie) einzelner Bakteriengruppen bzw. –arten in den Fokus der mikrobiellen Ökologie (Staley, 1999; Finlay, 2002; Fenchel, 2003; Hughes Martiny et al., 2006; Ward & Bora, 2006). Der Niederländer L.M.G. Baas-Becking war einer der ersten Mikrobiologen, der sich mit diesem Thema auseinander gesetzt hat. Mit seiner Hypothese: „Alles is overal: maar het milieu selecteert“ (Alles ist überall, aber die Umwelt selektiert) (Baas-Becking, 1934) postulierte er, dass Bakterien kosmopolitisch verbreitet sind und nicht den gleichen geographischen Schranken unterworfen sind wie höhere Organismen. Er stützte seine Hypothese dabei auf die Eigenschaft von Bakterien, leicht durch Wasser, Luft und Tiere verbreitet werden zu können (Griffin et al., 2002). Lediglich die jeweiligen Standortbedingungen wie Temperatur, Salinität oder Nährstoffverfügbarkeit steuern die Struktur der Bakteriengemeinschaften und selektieren die vorherrschenden Bakterienarten. Aufgrund dieser Annahme sollten ähnliche Habitate auch ähnliche Bakteriengemeinschaften beherbergen. Tatsächlich scheint sich der zweite Teil der Hypothese von Baas-Becking („maar het milieu selecteert“) zu bestätigen (Hughes Martiny et al., 2006). So wurden beispielsweise in limnischen und marinen Habitaten unterschiedliche Bakteriengemeinschaften nachgewiesen, die an die jeweiligen Umweltbedingungen angepasst zu sein scheinen (Mullins et al., 1995; Glöckner et al., 1999; Rappé et al., 2000; Zwart et al., 2002; Crump et al., 2004; Hahn & Pöckl, 2005; Wu & Hahn, 2006). Der erste Teil der Hypothese („Alles is overal“) von Baas-Becking wird hingegen noch kontrovers diskutiert (Fenchel et al., 1997; Staley, 1997; Finlay, 2002; Fenchel, 2003; Hughes Martiny et al., 2006). Es gibt zwar eine ganze Reihe von Arbeiten, die auf eine globale Verbreitung von Mikroorganismen hindeuten (z.B. Glöckner et al., 1999; Rappé et al., 2000; Zwart et al., 2002; Warnecke et al., 2004; Hahn & Pöckl, 2005; Ward & Bora, 2006), doch reichen die gegenwärtig bekannten Informationen nicht für eine fundierte Bestätigung der Hypothese aus. Generell fehlt es an größeren vergleichenden Studien, die gezielt das Auftreten und die Verbreitung einzelner Bakteriengruppen in bestimmten Habitaten unterschiedlicher geographischer Regionen untersuchen (Hughes Martiny et al., 2006). Des Weiteren müssen auch noch diverse methodische Limitationen überwunden werden, da mit den heutigen molekularbiologischen Methoden nicht hundertprozentig ausgeschlossen werden kann, dass nicht nachgewiesene Bakterien auch wirklich nicht in dem untersuchten Habitat vorkommen (Staley, 1999). 9 Kapitel I Einleitung Saisonale Dynamik von Bakteriengemeinschaften Aquatische Bakteriengemeinschaften werden von einer Vielzahl an Umweltfaktoren beeinflusst, die zu einer ausgeprägten räumlichen und zeitlichen Dynamik der jeweiligen Bakterienpopulationen führen (Muylaert et al., 2002). Während die saisonale Dynamik des Phyto- und Zooplanktons bereits eingehend untersucht wurde (Sommer, 1989), ist über die Dynamik von Bakteriengemeinschaften bislang nur wenig bekannt (Kent et al., 2004). Studien an aquatischen Bakteriengemeinschaften haben mehrfach ausgeprägte saisonale Veränderungen in der Struktur der Bakteriengemeinschaften gezeigt (z.B. Höfle et al., 1999; Bosshard et al., 2000; Van der Gucht et al., 2001; Crump et al., 2003; Zwisler et al., 2003; Yannarell et al., 2003; Kent et al., 2004). Dabei wurde deutlich, dass die Dynamik der Bakteriengemeinschaften nicht nur starren saisonalen Mustern folgt, sondern auch Veränderungen zwischen den einzelnen Jahren vorkommen können (Yannarell et al., 2003; Kent et al., 2004; Newton et al., 2006). Generell gibt es zwei Regulationsmechanismen, die das Wachstum von aquatischen Bakteriengemeinschaften beeinflussen und somit grundlegend für Veränderungen in der Struktur der Bakteriengemeinschaften verantwortlich sind. Zum einen wird das bakterielle Wachstum durch die Verfügbarkeit von Nährstoffen (bottom up) limitiert (z.B. Coveney & Wetzel, 1992; Schweitzer & Simon, 1995; Fisher et al., 2000) und zum anderen durch Grazer und Phagen (top down) reguliert (z.B. Šimek et al., 1995, 2001; Hahn & Höfle, 2001; Vrede et al., 2003; Jacquet et al., 2005). Jahreszeitliche Veränderungen in den Bakteriengemeinschaften sind daher eng an die saisonale Dynamik des Phyto- und Zooplanktons gekoppelt (Muylaert et al., 2002). Die durch das Phytoplankton produzierten gelösten organischen Materialien (Exsudate) sind wichtige Nahrungsquellen für heterotrophe Bakterien, die insbesondere in der Folge einer Frühjahrsblüte zu erheblichen Wachstums- bzw. Produktionsraten der Bakterien führen können (Baines & Pace, 1991). Auf der anderen Seite unterliegen die Bakteriengemeinschaften einem erheblichen Fraßdruck durch Protozoen wie heterotrophe Nanoflagellaten (HNF) und Ciliaten (z.B. Sanders et al., 1989; Šimek et al., 1995; Adrian & Schneider-Ort, 1999; Hahn & Höfle, 2001). Neben diesen biologischen Prozessen wurden auch physiko-chemische Parameter identifiziert (z.B. Temperatur, pH, PO4-P), die einen Steuerungseinfluss auf die Struktur der Bakteriengemeinschaften zeigen (Lindström, 2001; Muylaert et al., 2002; Stepanauskas et al., 2003; Yannarell & Triplett, 2005; Lindström et al., 2005). So führen beispielsweise niedrige Wassertemperaturen oder der Mangel an anorganischen Nährstoffen zu einer Limitation des bakteriellen Wachstums (Chrzanowski et al., 1995; Schweitzer & Simon, 1995; Pomeroy & Wiebe, 2001; Šimek et al., 2003). Es sind aber 10 Kapitel I Einleitung nicht nur die gewässerinternen Prozesse, die maßgeblich für die saisonalen Veränderungen in den Bakteriengemeinschaften verantwortlich sind, sondern auch allochthone Prozesse, wie z.B. der Eintrag von externen Nährstoffen (Crump et al., 2003). Des Weiteren können durch Zuflüsse Bakterien in bereits bestehende Systeme eingespült werden, die zu beachtlichen Änderungen in den Bakteriengemeinschaften führen können (Lindström & Bergström, 2004). Aufgrund der Komplexität und Vielzahl an limnologischen Prozessen ist unser gegenwärtiges Wissen über den Einfluss einzelner Umweltparameter auf die Dynamik aquatischer Bakteriengemeinschaften sehr begrenzt. Vor allem fehlt es an gezielten Studien zur saisonalen Dynamik einzelner Bakteriengruppen. Wie molekulare Analysen von Bakteriengemeinschaften gezeigt haben, können einzelne Bakteriengruppen sehr unterschiedliche saisonale Dynamiken aufweisen (Pernthaler et al., 1998; Glöckner et al., 2000; Crump et al., 2003). Neben diesen „dynamischen“ Bakterienpopulationen gibt es aber auch Bakteriengruppen, die nahezu keinen saisonalen Veränderungen unterliegen und unverändert das ganze Jahr über vorkommen (Crump et al., 2003; Selje & Simon, 2003). Aggregate als Lebensraum für aquatische Bakterien Im Pelagial limnischer und mariner Habitate spielen Aggregate eine besondere Rolle für heterotrophe Bakterioplanktongemeinschaften (Simon et al., 2002). Die aus autochthonem und allochthonem partikulären Material bestehenden Aggregate gelten aufgrund ihrer erhöhten Nährstoffkonzentrationen im Vergleich zum Umgebungswasser als „hot spots“ für die Mikroorganismen (Pedrós-Alio & Brock, 1983; Gotschalk & Alldredge, 1989; Herndl, 1992). Das gute Nährstoffangebot auf den Aggregaten führt bei partikel-assoziierten Bakterien zu deutlich höheren Wachstumsraten, zellspezifischen Aktivitäten und Aufnahmeraten von Zuckern und Aminosäuren als bei Bakterien aus der Freiwasserfraktion (Middelboe et al., 1995; Grossart & Simon, 1998; Friedrich et al., 1999; Grossart & Ploug, 2001; Grossart et al., 2003). In pelagischen Systemen sind partikelassoziierte Bakterien durchschnittlich an ca. 10-15 % der gesamten bakteriellen Produktion und Abundanz beteiligt (Griffith et al., 1994; Turley & Mackie, 1994; Grossart & Simon, 1998). Unter bestimmten Bedingungen können sie sogar über die Hälfte der gesamten bakteriellen Biomasse oder Aktivität ausmachen (Smith et al., 1995; Middelboe et al., 1995; Zimmermann, 1997). Durch die hydrolytische Aktivität partikel-assoziierter Bakterien werden oft mehr Substrate freigesetzt als von den Bakterien selber verwertet werden (Smith et al., 1992; Grossart & Simon, 1998). Diese gelösten Substanzen werden in das Umgebungswasser abgegeben und dienen so frei-lebenden Bakterien als wichtige 11 Kapitel I Einleitung Nährstoffquelle. Aufgrund der hohen mikrobiellen Aktivitäten können sich auf den Aggregaten sehr spezifische physikalische, chemische und hydrodynamische Bedingungen einstellen (Alldredge et al., 1987; Fletcher, 1991; Simon et al., 2002). Stark erhöhte Respirationsraten können beispielsweise zu sehr niedrigen Sauerstoff- konzentrationen auf den Aggregaten führen, bis zur Entstehung anoxischer Bereiche (Alldredge et al., 1987; Ploug et al., 1997; Ploug, 2001). Partikel-assoziierte Bakteriengemeinschaften unterscheiden sich jedoch nicht nur hinsichtlich ihrer physiologischen Aktivitäten von frei-lebenden Bakterien, sondern auch in ihrer phylogenetischen Zusammensetzung (DeLong et al., 1993; Crump et al., 1999; Riemann & Winding, 2001; Selje & Simon, 2003; Stevens et al., 2005). Verschiedene Studien lassen vermuten, dass bestimmte Bakteriengruppen an das Wachstum auf Partikeln angepasst sind (Fandino et al., 2001; Riemann & Winding, 2001; Kirchman, 2002; vgl. Kapitel II, IV und V). So wurden in limnischen Systemen beispielsweise Cytophaga-Flavobacteria, α- und β-Proteobacteria als dominante Vertreter auf Partikeln gefunden, wohingegen in marinen Systemen Cytophaga-Flavobacteria, α- und γ-Proteobacteria partikel-assoziierte Bakteriengemeinschaften dominieren (Weiss et al., 1996; Böckelmann et al., 2000; Kirchman, 2002; Schweitzer et al., 2001; Simon et al., 2002). Auch wenn viele Studien auf phylogenetische Unterschiede zwischen frei-lebenden und partikel-assoziierten Bakterien hindeuten, dürfen die beiden Bakteriengemeinschaften aber nicht als strikt getrennte Fraktionen angesehen werden. Wie eine neuere Studie zeigt, kann es durch bewegliche Bakterien zu hohen Austauschraten zwischen freilebenden und partikel-assoziierten Bakterien kommen (Kiørboe et al., 2002). Die partikelassoziierten Bakteriengemeinschaften können dabei sehr stark von den frei-lebenden Bakterien geprägt werden (Grossart et al., 2006). Das Untersuchungsgebiet: Die Mecklenburgische Seenplatte Die Mecklenburgische Seenplatte bildet den zentralen und südlichen Teil des Bundeslandes Mecklenburg-Vorpommern, im Nordosten Deutschlands. Sie ist ein Teil des Baltischen Landrückens (Marcinek, 1981) und erstreckt sich zwischen dem ElbeLübeck-Kanal im Westen und der Uckermark im Osten. Der größte Teil der Seenplatte liegt in Mecklenburg-Vorpommern, Ausläufer reichen aber bis nach Niedersachsen und Brandenburg hinein. So wird die Mecklenburgische Seenplatte immer wieder auch als Mecklenburgisch-Brandenburgische Seenplatte bezeichnet. Die Entstehung der Mecklenburgischen Seenplatte ist auf Vorgänge in der letzten Eiszeit Nord- bzw. Mitteleuropas (Weichseleiszeit, ca. 70.000-10.000 vor heute) und dem anschließenden 12 Kapitel I Einleitung Holozän zurückzuführen. Dabei führten mit Moränenmaterial überschüttete Eisblöcke und subglaziale Rinnen mit Schmelzwasser zur Bildung der zahlreichen Seen (Marcinek & Nietz, 1973; Krausch & Zühlke, 1974; Casper, 1985; Schmidt, 1997). Durch die unterschiedliche Entstehungsgeschichte der einzelnen Seen (z.B. Abflussrinnen oder Abschmelzen von Toteisblöcken) findet man in der Mecklenburgischen Seenplatte auf engsten Raum eine Vielzahl z.T. sehr unterschiedlicher Seen. Für diese Arbeit wurden vier Seen der Mecklenburgischen Seenplatte ausgewählt, die sich in ihrer Morphometrie, physikochemischen und biologischen Beschaffenheit deutlich voneinander unterscheiden: Stechlinsee, Große Fuchskuhle, Breiter Luzin und Tiefwarensee (Tabelle I.1 und Abbildung I.2). Der Stechlinsee und die Große Fuchskuhle liegen im nördlichen Teil Brandenburgs und gehören zum Rheinsberger Seengebiet. Der Breite Luzin und der Tiefwarensee hingegen liegen in Mecklenburg-Vorpommern im Feldberger Seengebiet (Breiter Luzin) bzw. bei Waren an der Müritz (Tiefwarensee). Tabelle I.1: Übersicht über die grundlegenden morphometrischen und limnologischen Parameter der vier Untersuchungsgewässer. Stechlinsee Große Fuchskuhle Breiter Luzin Tiefwarensee N 53° 10’ E 13° 02’ N 53° 10’ E 13° 02’ N 53° 20’ E 13° 28’ N 53° 31’ E 12° 42’ Fläche [km2] 4,3 0,02 3,57 1,4 maximale Tiefe [m] 69,5 5,6 58,5 24 mittlere Tiefe [m] 22,8 3,5 25,2 8,2 Volumen [x 10 m ] 96,9 0,05 67,5 12,9 Uferlinie [km] 16,1 0,5 13,2 k.A. 26,0 0,005 14,0 17,5 6,5 – 10,5 0,9 – 2,2** 1,6 – 3,8 3,1 – 8,9 oligotroph (NO) eutroph ; dystroph(SW) mesotroph eutroph 8,5 6,5(NO); 4,7(SW) 8,5 8,3 geographische Position 6 3 2 Einzugsgebiet [km ] Sichttiefe [m]* Trophie pH* k.A. keine Angaben; *diese Angaben beziehen sich auf Werte, die im Rahmen der monatlichen Probennahmen zwischen April 2003 und März 2004 ermittelt wurden: **Südwest-Becken: 0,9 – 1,5 m, Nordost-Becken: 1,0 – 2,2 m; (NO) Nordost-Becken; (SW) Südwest-Becken. Im Folgenden werden die vier Untersuchungsgewässer im Einzelnen kurz dargestellt und beschrieben. Weitere Informationen zu physikalischen, chemischen, biologischen und mikrobiologischen Eigenschaften der vier Seen sind in den Kapiteln II, III und IV aufgeführt. 13 Kapitel I Einleitung Stechlinsee Der Stechlinsee ist einer der klarsten Seen Norddeutschlands. Die Wasseroberfläche umfasst 4,3 km2 bei einer maximalen Tiefe von 69,5 m (Casper, 1985; Schlegel et al., 1998). Der Stechlinsee ist ein mono- bis dimiktischer, oligotropher See, dessen planktische Primärproduktion Phosphor-limitiert ist (Koschel, 1976). Die geringe Stoffproduktion führt unter den gegebenen morphometrischen Bedingungen zu einer günstigen Sauerstoffbilanz, die sich im Hypolimnion durch eine ganzjährige Sauerstoffsättigung von über 60 % äußert. Stechlinsee Große Fuchskuhle N N N 1 km Breiter Luzin Tiefwarensee Nordsee Ostsee Hamburg Berlin Deutschland N Frankfurt (M) München N W 1 km 1 km Abbildung I.2: Die vier Untersuchungsgewässer der Mecklenburgischen Seenplatte. Große Fuchskuhle Die Große Fuchskuhle ist ein huminstoffreiches Kleingewässer, das komplett von Wald umgeben ist und im Westen an ein Torfmoor grenzt. Die Wasseroberfläche umfasst ca. 0,02 km2 bei einer maximalen Tiefe von 5,6 m (Kasprzak, 1993). Trotz der geringen Tiefe ist der See während der Sommermonate geschichtet, wobei das Hypolimnion meist anoxisch wird (Casper, 1985). In den Jahren 1986 und 1990 wurde die Große Fuchskuhle 14 Kapitel I Einleitung für Biomanipulationsexperimente mittels Plastikplanen in zwei bzw. vier Kompartimente (Südwest (SW), Nordwest (NW), Südost (SO), Nordost (NO)) unterteilt (Kasprzak, 1993; Koschel, 1995). Durch die Teilung wurden die beiden Ostbecken, im Gegensatz zu den Westbecken, vom Moorkörper abgetrennt. Dies führte in der Folge zu deutlichen limnologischen Unterschieden zwischen Ost- und Westbecken. Während die beiden Westbecken ihren ursprünglichen dystrophen Charakter weitestgehend beibehielten, entwickelten die beiden Ostbecken einen mehr mesotrophen Charakter. Aufgrund der ausgeprägten limnologischen Unterschiede (Koschel, 1995; Bittl & Babenzien, 1996; Šimek et al., 1998; Hehmann et al., 2001; Sachse et al., 2001) wurden im Rahmen dieser Arbeit das Nordost- und das Südwest-Becken untersucht. Breiter Luzin Der Breite Luzin ist mit einer Oberfläche von 3,57 km2 und einer Tiefe von 58,5 m einer der größten und tiefsten Seen des Feldberger Seengebietes (Landkreis MecklenburgStrelitz). Ursprünglich hatte der Breite Luzin einen oligotrophen Charakter, ist jedoch durch den erhöhten Eintrag von Nährstoffen der umliegenden landwirtschaftlichen Nutzflächen gegenwärtig als mesotroph einzustufen. Wie der Stechlinsee zeichnet sich der Breite Luzin ebenfalls durch hohe hypolimnische Sauerstoffkonzentrationen aus. Als Relikt aus der Eiszeit hat sich im Breiten Luzin die Eiszeitgarnele Mysis relicta erhalten (Waterstraat, 1988). Durch Mysis relicta wird in der Nahrungskette eine zusätzliche trophische Ebene zwischen Zooplankton und planktivoren Fischen eingeschaltet. Tiefwarensee Der Tiefwarensee ist ein dimiktischer Hartwassersee mit eutrophem Charakter (Koschel et al., 1998). Der See liegt am nordöstlichen Stadtrand von Waren (Müritz) und hat eine Fläche von ca. 1,4 km2 bei einer maximalen Tiefe von 24 m. In den 80er Jahren des letzten Jahrhunderts verschlechterte sich innerhalb kürzester Zeit die Wasserqualität des Tiefwarensees sehr stark. Die Gründe hierfür lagen in menschlichen Aktivitäten Nährstoffbelastung wurde wie der Industrie und Landwirtschaft. See teilweise sogar Durch hypertroph. die starke Eingeleitete Sanierungsmaßnahmen konnten die externe Phosphor-Last um etwa 90 % senken (Koschel et al., 2006). Durch eine kombinierte hypolimnische Phosphor-Fällung mit Aluminat und Calciumhydroxid (Gonsiorczyk et al., 2002) konnte die Wasserqualität des Tiefwarensees zwischen 2001 und 2005 erheblich verbessert werden. Der See kann daher heute wieder als eutroph eingestuft werden. 15 Kapitel I Einleitung Der See Genezareth (Israel) Zusätzlich zu den vier oben genannten Seen der Mecklenburgischen Seenplatte wurde im Rahmen einer Fallstudie zur Abundanz und Phylogenie von Actinobacteria (vgl. Kapitel V) der See Genezareth (Israel) im Oktober 2004 beprobt. Der meso-eutrophe See Genezareth liegt im Norden Israels am Fuße der Golanhöhen im Ostafrikanischen Grabensystem, dass sich von Syrien bis zum Sambesi erstreckt. Der See liegt 209 m unter dem Meeresspiegel und hat eine Fläche von 170 km2 mit einer maximalen Tiefe von 43 m (durchschnittliche Seetiefe: 24 m). Mit seinem Volumen von 4 x 106 m3 ist der See Genezareth der größte Trinkwasserspeicher Israels. Aufgrund seiner geographischen Lage ist der See Genezareth als subtropischer See einzuordnen. Das Epilimnion des von April bis November stabil geschichteten Sees kann sich daher auf bis zu 30 °C erwärmen. Mit Beginn der Schichtung im April wird das Hypolimnion relativ schnell anoxisch und weist Sulfidkonzentrationen von 5,0 – 9,0 mg l-1 auf und Ammoniumkonzentrationen von 0,5 – 1,3 mg l-1 (Berman et al., 2004). Durch die leichte Durchmischung der Wassersäule zwischen Dezember und Februar wird der See Genezareth als monomiktisch eingestuft. Die jährliche Netto-Primärproduktion beträgt 610 g C m-2 (Bermann et al., 1995). 16 Kapitel I Einleitung Zielsetzung der Arbeit Aus mikrobiologischer Sicht sind an den Seen der Mecklenburgischen Seenplatte bislang wenige Untersuchungen durchgeführt worden. Vor allem fehlt es an vergleichenden Studien, die Rückschlüsse auf das Vorkommen, die Verbreitung und Anpassung einzelner Bakteriengruppen an die Gewässer dieser Region ermöglichen. Frühere Studien waren meist auf einzelne Seen oder Bakteriengruppen fokussiert und liefern nur begrenzt Informationen hinsichtlich der Zusammensetzung und Dynamik der entsprechenden Bakterioplanktongemeinschaften (Babenzien, 1991; Sass et al., 1996, 1997; Glöckner et al., 1998, 2003; Burkert et al., 2003; Warnecke et al., 2004, Babenzien & Cypionka, 2005; Babenzien et al., 2005). Diese Arbeit hatte daher das Ziel, systematisch die Diversität und Dynamik heterotropher Bakterioplanktongemeinschaften im Pelagial von vier limnologisch unterschiedlichen Seen der Mecklenburgischen Seenplatte (Stechlinsee, Große Fuchskuhle, Breiter Luzin und Tiefwarensee) zu bestimmen und miteinander zu vergleichen. Dabei sollten die dominanten Bakteriengruppen identifiziert und ihre Verbreitung und Abundanz mittels spezifischer Nachweissysteme eingehend untersucht werden. In einem weiteren Schritt sollte versucht werden, die Struktur der Bakteriengemeinschaften mit limnologischen Parametern in Verbindung zu bringen (Verknüpfung von „Struktur und Funktion“), um so Aussagen über die Anpassung und Ökologie der entsprechenden Bakterien- gemeinschaften machen zu können. Die Ziele können im Einzelnen wie folgt zusammengefasst werden: I) Charakterisierung der Bakterioplanktongemeinschaften in den vier Untersuchungsgewässern: Stechlinsee, Große Fuchskuhle, Breiter Luzin und Tiefwarensee. II) Identifizierung und Charakterisierung dominanter Bakteriengruppen. III) Verknüpfung von Struktur und Funktion – Identifizierung von Umweltfaktoren, die einen Steuerungseinfluss auf die Diversität und Dynamik der untersuchten Bakteriengemeinschaften zeigen. Voraussetzung für diese Arbeit war eine „generelle Bestandsaufnahme“, bei der die phylogenetische Zusammensetzung und saisonale Dynamik der Bakteriengemeinschaften der vier ausgewählten Seen bestimmt wurde. Im Rahmen des Forschungsprogramms des Leibniz-Institutes für Gewässerökologie und Binnenfischerei (IGB) in Neuglobsow wurden dazu von den vier Untersuchungsgewässern ein Jahr lang monatlich Proben genommen 17 Kapitel I Einleitung und mittels verschiedener molekularbiologischer Methoden analysiert. Um eine höhere phylogenetische Auflösung zu erlangen, wurde dabei zwischen frei-lebenden und partikelassoziierten Bakterien unterschieden. Die Ergebnisse aus der molekularen Charakterisierung der Bakteriengemeinschaften und deren Vergleich sind in Kapitel II ausführlich dargestellt und wurden bereits als Manuskript bei Aquatic Microbial Ecology zur Publikation eingereicht. Die durch die molekulare Charakterisierung der Bakteriengemeinschaften identifizierten dominanten Bakteriengruppen wurden im Weiteren qualitativ und quantitativ hinsichtlich ihrer Diversität, Abundanz und geographischen Verbreitung untersucht. Durch die Anwendung und Entwicklung spezifischer Nachweissysteme wurden einzelne Bakteriengruppen und Cluster hochauflösend charakterisiert. Die Ergebnisse dieser Untersuchungen sind in den Kapiteln III, IV und V aufgeführt. Das Manuskript mit den Ergebnissen aus Kapitel III wurde bereits bei Applied and Environmental Microbiology veröffentlicht (Allgaier & Grossart, 2006). Die Manuskripte aus den Kapiteln IV und V wurden bei Environmental Microbiology zur Publikation eingereicht und befinden sich gegenwärtig in der Begutachtung. In der heutigen aquatischen mikrobiellen Ökologie spielt die Verknüpfung von Struktur und Funktion natürlicher Bakteriengemeinschaften eine zentrale Rolle. Durch experimentelle oder rein statistische Ansätze wird dabei der Einfluss einzelner Umweltparameter auf Veränderungen in den Bakteriengemeinschaften untersucht. Im dritten Teil dieser Arbeit sollte daher versucht werden, mittels verschiedener statistischer Verfahren Veränderungen in den Bakteriengemeinschaften bzw. dominanten Bakteriengruppen mit einzelnen Umweltparametern in Verbindung zu bringen. Durch die Ergebnisse sollten mögliche Rückschlüsse auf die Physiologie bzw. ökologische Anpassung der Bakterien an die entsprechenden Umweltbedingungen gezogen werden können. Die Ergebnisse aus den statistischen Analysen sind in den Kapiteln II und IV aufgeführt und zur Publikation eingereicht (s.o.). Die nicht in den Manuskripten enthaltenen Ergebnisse zur statistischen Verknüpfung von Struktur und Funktion der Bakteriengemeinschaften sind im Anhang zusammengefasst. 18 Kapitel I Einleitung Literatur ADRIAN, R., AND SCHNEIDER-ORT, B. (1999) Top-down effects of crustacean zooplankton on pelagic microorganisms in a mesotrophic lake. J. Plankton Res. 21:2175-2190. ALLDREDGE, A.L., AND COHEN, Y. (1987) Can microscale chemical patches persist in the sea? Microelectrode study of marine snow, fecal pellets. Science 235:689-691. ALLGAIER, M., AND GROSSART, H.-P. (2006) Diversity and seasonal dynamics of Actinobacteria in four lakes in Northeastern Germany. Appl. Environ. Microbiol. 72:3489-3497. AMANN, R., LUDWIG, W., AND SCHLEIFER, K.-H. (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59:143-169. AZAM, F., FENCHEL, T., GRAY, J.S., MEYER-REIL, L.A., AND THINGSTAD, F. (1983) The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10:257263. AZAM, F. (1998) Microbial control of oceanic carbon flux: the plot thickness. Science 280:694-696. BAAS-BECKING, L.G.M. (1934) Geobiologie of Inleiding Tot de Milieukunde. The Hague, Van Stockkum & Zoon. p. 12-15. BABENZIEN, H.-D. (1991) Achromatium oxaliferum and its ecological niche. Zentralbibliothek für Mikrobiologie 146:41-49. BABENZIEN, H.-D., AND CYPIONKA, H. (2005) Genus V. Nevskia. In: Bergey’s manual of Systematic bacteriology. 2nd Ed. Volume 2; Brenner, D.J., Krieg, N.R., and Staley, J.T. (eds). Springer, New York, USA, p.104ff. BABENZIEN, H.-D., GLÖCKNER, F.O., AND HEAD, I.M. (2005) Genus II. Achromatium. In: Bergey’s manual of Systematic bacteriology. 2nd Ed. Volume 2; Brenner, D.J., Krieg, N.R., and Staley, J.T. (eds). Springer, New York, USA, p.142ff. BAHR, M., HOBBIE, J.E., AND SOGIN, M.L. (1996) Bacterial diversity in an arctic lake: a freshwater SAR11 cluster. Aquat. Microb. Ecol. 11:271-277. BAINES, S.B., AND PACE, M.L. (1991) The production of dissolved organic matter by phytoplankton and its importance to bacteria – patterns across marine and freshwater systems. Limnol. Oceanogr. 36:1078-1090. BÉJÀ, O., SUZUKI, M.T., HEIDELBERG, J.F., NELSON, W.C., PRESTON, C.M., HAMADA, T., EISEN, J.A., FRASER, C.M., AND DELONG, E.F. (2002) Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature 415:630-633. BÉJÀ, O. (2004) To BAC or not BAC: marine ecogenomics. Curr. Opin. Biotechnol. 15:187190. BERMAN, T., STONE, L., YACOBI, Y.Z., KAPLAN, B., SCHLICHTER, M., NISHRI, A., AND POLLINGHER, U. (1995) Primary production and phytoplankton in Lake Kinneret: a long-term record (1972-1993). Limnol. Oceanogr. 40:1064-1076. BERMAN, T., PARPAROV, A., AND YACOBI, Y.Z. (2004) Planktonic community production and respiration and the impact of bacteria on carbon cycling in the photic zone of Lake Kinneret. Aquat. Microb. Ecol. 34:43-55. BITTL, T., AND BABENZIEN, H.-D. (2001) Microbial activities in an artificially divided acidic lake. Arch. Hydrobiol. Spec. Issues. Advanc. Limnol. 48:113-121. BLOOMFIELD, S., STEWART, G., DODD, C., BOOTH, I., AND POWER, E. (1998) The viable but non-culturable phenomenon explained? Microbiology 144:1-3. BÖCKELMANN, U., MANZ, W., NEU, T.R., AND SZEWZYK, U. (2000) Characterization of the microbial community of lotic organic aggregates („river snow“) in the Elbe River of Germany by cultivation and molecular methods. FEMS Microbiol. Ecol. 33:157-170. BORNEMAN, J. (1999) Culture-independent identification of microorganisms that respond to specific stimuli. Appl. Environ. Microbiol. 65:3398-3400. BOSSHARD, P.P., STETTLER, R., AND BACHOFEN, R. (2000) Seasonal and spatial community dynamics in the meromictic Lake Cadagno. Arch. Microbiol. 174:168-174. 19 Kapitel I Einleitung BRATBAK, G., HELDAL, M., THINGSTAD, F., RIEMANN, B., AND HASLUND, O.H. (1992) Incorporation of viruses into budget of microbial C-transfer. A first approach. Mar. Ecol. Prog. Ser. 83:273-280. BURKERT, U., WARNECKE, F., BABENZIEN, H.-D., ZWIRNMANN, E., AND PERNTHALER, J. (2003) Members of a readily enriched β-proteobacterial clade are common in surface waters of a humic lake. Appl. Environ. Microbiol. 68:6550-6559. CASPER, S.J. (ed.) (1985) Lake Stechlin - A temperate oligotrophic lake. Dr. Junk b. v. Publ., Dordrecht - Boston – Lancaster. CHRZANOWSKI, T.H., STERNER, R.W., AND ELSER, J.J. (1995) Nutrient enrichment and nutrient regeneration stimulate bacterioplankton growth. Microb. Ecol. 29:221-230. CLEMENT, B.G., KEHL, L.E., DEBORD, K.L., AND KITTS, C.L. (1998) Terminal restriction fragment patterns (TRFPs), a rapid, PCR-based method for the comparison of complex bacterial communities. J. Microb. Methods. 31:135-142. COLE, J.J., FINDLAY, S., AND PACE, M.L. (1988) Bacterial production in fresh and saltwater: a cross-ecosystem overview. Mar. Ecol. Prog. Ser. 43:1-10. COTNER, J.B., AND BIDDANDA, B.A. (2002) Small players, large role: microbial influence on biogeochemical processes in pelagic aquatic ecosystems. Ecosystems 5:105-121. COTTRELL, M.T., AND KIRCHMAN, D.L. (2000) Community composition of marine bacterioplankton determined by 16S rRNA gene clone libraries and fluorescence in situ hybridization. Appl. Environ. Microbiol. 66:5116-5122. COTTRELL, M.T., AND KIRCHMAN, D.L. (2000 b) Natural assemblages of marine Proteobacteria and members of the Cytophaga-Flavobacter cluster consuming lowand high-molecular weight dissolved organic matter. Appl. Environ. Microbiol. 66:1692-1697. COVENEY, M.F., AND WETZEL, R.G. (1992) Effects of nutrients on specific growth rate of bacterioplankton in oligotrophic lake water cultures. Appl. Environ. Microbiol. 58:150-156. CRUMP, B.C., ARMBRUST, E.V., AND BAROSS, J.A. (1999) Phylogenetic analysis of particleattached and free-living bacterial communities in the Columbia River, its estuary, and the adjacent coastal ocean. Appl. Environ. Microbiol. 65:3192-3204. CRUMP, B.C., KLING, G.W., BAHR, M., AND HOBBIE, J.E. (2003) Bacterioplankton community shifts in an arctic lake correlate with seasonal changes in organic matter sources. Appl. Environ. Microbiol. 69:2253-2268. CRUMP, B.C., HOPKINSON, C.S., SOGIN, M.L., AND HOBBIE, J.E. (2004) Microbial biogeography along an estuarine salinity gradient: combined influence of bacterial growth and residence time. Appl. Environ. Microbiol. 70:1494-1505. DEL GIORGIO, P.A., COLE, J.J., AND CIMBLERIS, A. (1997) Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systems. Nature 385:148151. DELONG. E.F., FRANKS, D.G., AND ALLDREDGE, A.L. (1993) Phylogenetic diversity of aggregate-attached vs. free-living pelagic bacterial assemblages. Limnol. Oceanogr. 38:942-943. DYKHUIZEN, D.E. (1998) Santa Rosalia revisited: why are there so many species of bacteria? A. v. Leeuwenhoek. 73:25-33. EILER, A., AND BERTILSSON, S. (2004) Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes. Environ. Microbiol. 6:1228-1243. FANDINO, L.B., RIEMANN, L., STEWART, G.F., LONG, R.A., AND AZAM, F. (2001) Variations in bacterial community structure during a dinoflagellate bloom analyzed by DGGE and 16S rDNA sequencing. Aquat. Microb. Ecol. 23:119-130. FENCHEL, T., ESTEBAN, G.F., AND FINLAY, B.J. (1997) Local versus global diversity of microorganisms: cryptic diversity of ciliated protozoa. Oikos 80:220-225. FENCHEL, T. (2003) Biogeography for bacteria. Science 301:925-926. 20 Kapitel I Einleitung FINLAY, B.J. (2002) Global dispersal of free-living microbial eukaryote species. Science 296:1061-1063. FINDLAY, S., PACE, M.L., LINTS, D., COLE, J.J., CARACO, N.F., AND PEIERLS, B. (1991) Weak coupling of bacterial and algal production in a heterotrophic ecosystem: The Hudson River estuary. Limnol. Oceanogr. 36:268-278. FISHER, M.M., AND TRIPLETT, E.W. (1999) Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl. Environ. Microbiol. 65:4630-4636. FISHER, M.M., KLUG, J.L., LAUSTER, G., NEWTON, M., AND TRIPLETT, E.W. (2000) Effects of resources and trophic interactions on freshwater bacterioplankton diversity. Microb. Ecol. 40:125-138. FLETCHER, M. (1991) The physiological activity of bacteria attached to solid surfaces. Adv. Microb. Physiol. 32:53-85. FRIEDRICH, U., SCHALLENBERG, M., AND HOLLIGER, C. (1999) Pelagic bacteria-particle interactions and community-specific growth rates in four lakes along a trophic environment. Microb. Ecol. 37:49-61. FUHRMAN, J.A. (1999) Marine viruses and their biogeochemical and ecological effects. Nature 2:191-201. GICH, F., SCHUBERT, K., BRUNS, A., HOFFELNER, H., AND OVERMANN, J. (2005) Specific detection, isolation, and characterization of selected, previously uncultured members of the freshwater bacterioplankton community. Appl. Environ. Microbiol. 71:5908-5919. GILLIS, M., VANDAMME, P., DE VOS, P., SWINGS, J., AND KERSTERS, K. (2002) Polyphasic taxonomy. In: Bergey’s manual of Systematic bacteriology. Krieg, R., and Holt, J.G. (eds). Baltimore: The Williams and Williams Co., p.43ff. GIOVANNONI, S.J., BRITSCHGI, T.B., MOYER, C.L., AND FIELD, K.G. (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature 345:60-63. GIOVANNONI, S.J., AND RAPPÉ, M.S. (2000) Evolution, diversity, and molecular ecology of marine prokaryotes. In. D.L. Kirchman (ed.), Microbial ecology of the oceans. WileyLiss, New York. pp47-84. GLÖCKNER, F.O., BABENZIEN, H.-D., AND AMANN, R. (1998) Phylogeny and identification in situ of Nevskia ramosa. Appl. Environ. Microbiol. 64:1895-1901. GLÖCKNER, F.O., FUCHS, B.M., AND AMANN, R. (1999) Bacterioplankton composition of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl. Environ. Microbiol. 65:3721-3726. GLÖCKNER, F.O., ZAICHIKOV, E., BELKOVA, N., DENISSOVA, L., PERNTHALER, J., PERNTHALER, A., AND AMANN, R (2000) Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of Actinobacteria. Appl. Environ. Microbiol. 66:5053-5065. GONSIORCZYK, T., WAUER, G., CASPER, P., AND KOSCHEL, R. (2002) Restaurierung des Tiefwarensee (Mecklenburg-Vorpommern), Erste Ergebnisse einer hypolimnischen Al- und CaCO3-Fällung. DGL-Tagungsbericht 2002 (Braunschweig). GOTSCHALK, C., AND ALLDREDGE, A.L. (1989) Enhanced primary production and nutrient regeneration within aggregated marine diatoms. Mar. Biol. 103:119-129. GRIFFIN, D.W., KELLOGG, C.A., GARRISON, V.H., AND SHINN, E.A. (2002) The global transport of dust - An intercontinental river of dust, microorganisms and toxic chemicals flows through the Earth's atmosphere. Am. Sci. 90:228. GRIFFITH, P., SHIAH, F.-K., GLOERSEN, K., DUCKLOW, H.W., AND FLETCHER, M. (1994) Activity and distribution of attached bacteria in Chesapeake Bay. Mar. Ecol. Prog. Ser. 108:1-10. GROSSART, H.-P., AND SIMON, M. (1998) Bacterial colonization and microbial decomposition of limnetic organic aggregates (lake snow). Aquat. Microb. Ecol. 15:127-140. 21 Kapitel I Einleitung GROSSART, H.-P., AND PLOUG, H. (2001) Microbial degradation of organic carbon and nitrogen on diatom aggregates. Limnol. Oceanogr. 46:267-277. GROSSART, H.-P., KIØRBOE, T., TANG, K., AND PLOUG, H. (2003) Bacterial colonization of particles: growth and interactions. Appl. Environ. Microbiol. 69:3500-3509. GROSSART, H.-P., KIØRBOE, T., TANG, K.W., ALLGAIER, M., YAM, E.M., AND PLOUG, H. (2006) Interactions between marine snow and heterotrophic bacteria: aggregate formation and microbial dynamics. Aquat. Microb. Ecol. 42:19-26. HAHN, M.W., AND HÖFLE, M.G. (2001) Grazing of protozoa and its effect on populations of aquatic bacteria. FEMS Microbiol. Ecol. 35:113-121. HAHN, M.W., LÜNSDORF, H., WU, Q.L., SCHAUER, M., HÖFLE, M.G., BOENIGK, J., AND STADLER, P. (2003) Isolation of novel ultramicrobacteria classified as Actinobacteria from five freshwater habitats in Europe and Asia. Appl. Environ. Microbiol. 69:14421451. HAHN, M.W., AND PÖCKL, M. (2005) Ecotypes of planctonic Actinobacteria with identical 16S rRNA genes adapted to thermal niches in temperate, subtropical, and tropical freshwater habitats. Appl. Environ. Microbiol. 71:766-773. HEDGES, J.L. (1992) Global biogeochemical cycles: progress and problems. Mar. Chem. 39:67-93. HEHMANN, A., KRIENITZ, L., AND KOSCHEL, R. (2001) Long-term phytoplankton changes in an artificially divided, top-down manipulated humic lake. Hydrobiologia 448:83-96. HERNDL, G.J. (1992) Marine snow in the northern Adriatic Sea: possible causes and consequences for a shallow ecosystem. Mar. Microb. Food Webs 6:149-172. HÖFLE. M.G., HAAS, H., AND DOMINIK, K. (1999) Seasonal dynamics of bacterioplankton community structure in a eutrophic lake as determined by 5S rRNA analysis. Appl. Environ. Microbiol. 65:3164-3174. HUGHES MARTINY, J.B., BOHANNAN, B.J.M., BROWN, J.H., COLWELL, R.K., FUHRMAN, J.A., GREEN, J.L., HORNER-DEVINE, M.C., KANE, M., KRUMNIS, J.A., KUSKE, C.R., MORIN, P.J., NAEEM, S., OVREÅS, L., REYSENBACH, A.-L., SMITH, V.H., AND STALEY, J.T. (2006) Microbial biogeography: putting microorganisms on the map. Nat. Rev. Microbiol. 4:102-112. JASPERS, E., NEUHAUS, K., CYPIONKA, H., AND OVERMANN, J. (2001) Multitude and temporal variability of ecological niches as indicated by the diversity of cultivated bacterioplankton. FEMS Microb. Ecol. 36:153-164. JACQUET, S., DOMAIZON, I., PERSONNIC, S., RAM, A.S.P., HEDAL, M., DUHAMEL, S., AND SIME-NGANDO, T. (2005) Estimates of protozoan- and viral-mediated mortality of bacterioplankton in Lake Bourget (France). Freshwater Biol. 50:627-645. JUMARS, P.A., PENRY, D.L., BAROSS, J.L., PERRY, M.J., AND FROST, B.W. (1989) Closing the microbial loop: dissolved carbon pathway to heterotrophic bacteria from incomplete ingestion, digestion, and adsorption in animals. Deep Sea Res. 36:483495. KASPRZAK, P. (1993) The use of an artificially divided bog lake in food-web studies. Verh. Internat. Verein. Limnol. 25:625-656. KENT, A.D., JONES, S.E., YANNARELL, A.C., GRAHAM, J.M., LAUSTER, G.H., KRATZ, T.K., AND TRIPLETT, E.W. (2004) Annual patterns in bacterioplankton community variability in a humic lake. Microb. Ecol. 48:550-560. KIØRBOE, T., GROSSART, H.-P., PLOUG, H., AND TANG, K. (2002) Mechanisms and rates of bacterial colonization of sinking aggregates. Appl. Environ. Microbiol. 68:3996-4006. KIRCHMAN, D.L. (2002) The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microb. Ecol. 39:91-100. KIRCHMAN, D.L., YU, L.Y., AND COTTRELL, M.T. (2003) Diversity and abundance of uncultured Cytophaga-like bacteria in the Delaware Estuary. Appl. Environ. Microbiol. 69:6587-6596. 22 Kapitel I Einleitung KOSCHEL, R. (1976) Der Einfluss des Phosphorangebotes auf die Primärproduktion des Phytoplanktons in einem geschichteten Klarwassersee (Stechlinsee, DDR). Limnologica 10:325-346. KOSCHEL, R. (1995) Manipulation of whole-lake ecosystems and long-term limnological observations in the Brandenburg-Mecklenburg Lake District, Germany. Int. Revue Ges. Hydrobiol. 80:507-518. KOSCHEL, R., GONSIORCZYK, T., ANWAND, K., AND CASPER, P. (1998) Machbarkeitsstudie. Maßnahmen zur Sanierung und Restaurierung, des Tiewarensees. Nachhaltiger Seenschutz. Stadt Waren, Mecklenburg-Vorpommern. 35 S. + Anhang KOSCHEL, R., CASPER, P., GONSIORCZYK, T., ROSSBERG, R., AND WAUER, G. (2006) Hypolimnetic Al- and CaCO3-treatments and aeration for restoration of a stratified eutrophic hardwater lake (Lake Tiefwarensee, Mecklenburg-Vorpommern, Germany). Verh. Internat. Verein. Limnol. in press. KRAUSCH, H.-D., AND ZÜHLKE, D. (1974) Das Rheinsberger-Fürstenberger Seengebiet. (Werte unserer Heimat Bd. 25). Akademie-Verlag, Berlin. LAMPERT, W. (1978) Release of dissolved organic carbon by grazing zooplankton. Limnol. Oceanogr. 23:831-834. LEBARON, P., SERVAIS, P., BAUDOUX, A.C., BOURRAIN, M., COURTIES, C., AND PARTHUISOT (2002) Variations of bacterial-specific activity with cell size and nucleic acid content assessed by flow cytometry. Aquat. Microb. Ecol. 28:131-140. LEE, N., NIELSEN, P.H., ANDREASEN, K.H., JURETSCHKO, S., NIELSEN, J.L., SCHLEIFER, K.H., AND WAGNER, M. (1999) Combination of fluorescent in situ hybridization and microautoradiography – a new tool for structure-function analyses in microbial ecology. Appl. Environ. Microbiol. 65:1289-1297. LINDSTRÖM, E.S. (2001) Investigating influential factors on bacterioplankton community composition: results from a field study of five mesotrophic lakes. Microb. Ecol. 42:598-605. LINDSTRÖM, E.S., AND BERGSTRÖM, A.K. (2004) Influence of inlet bacteria on bacterioplankton assemblage composition in lakes of different hydraulic retention time. Limnol. Oceanogr. 49:125-136. LINDSTRÖM, E.S., KAMST-VAN AGTERVELD, M.P., AND ZWART, G. (2005) Distribution of typical freshwater bacterial groups is associated with pH, temperature, and lake water retention time. Appl. Environ. Microbiol. 71:8201-8206. MADIGAN, M.T., MARTINKO, J.M., AND PARKER, J. (2000) Brock Biology of Microorganisms. 9th ed. Prentice-Hall International, Inc. New Jersey, USA. MARCINEK, J., AND NIETZ, B. (1973) Das Tiefland der Deutschen Demokratischen Republik. Leipzig, Hermann Haack Verlag, 288 S. MARCINEK, J. (1981) Kleiner Exkursionsführer für das Rheinsberger Becken (Als Manuskript gedruckt). Leipzig. MIDDELBOE, M., SØNDERGAARD, M., LETARTE, Y., AND BORCH, N.H. (1995) Attached and free-living bacteria: production and polymer hydrolysis during a diatom bloom. Microb. Ecol. 29:231-248. MORRIS, R.M., RAPPÉ, M.S., CONNON, S.A., VERGIN, K.L., SIEBOLD, W.A., CARLSON, C.A., AND GIOVANNONI, S.J. (2002) SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420:806-810. MULLINS, T.D., BRITSCHGI, T.B., KREST, R.I., AND GIOVANNONI, S.J. (1995) Genetic comparison reveal the same unknown bacterial lineages in Atlantic and Pacific bacterioplankton communities. Limnol. Oceanogr. 40:148-158. MUYLAERT, K., VAN DER GUCHT, K., VLOEMANS, N., DE MEESTER, L., GILLIS, M., AND VYVERMAN, W. (2002) Relationship between bacterial community composition and bottom-up versus top-down variables in four eutrophic shallow lakes. Appl. Environ. Microbiol. 68:4740-4750. MUYZER, G., DEWAAL, E.C., AND UITTERLINDEN, A.G. (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain 23 Kapitel I Einleitung reaction-amplified genes coding for 16S ribosomal-RNA. Appl. Environ. Microbiol. 59:695-700. NASREEN, B., AND HOLLIBAUGH, J.T. (2002) Phylogenetic composition of bacterioplankton assemblages from the Arctic Ocean. Appl. Environ. Microbiol. 68:505-518. NAZARET, S., JEFFREY, W.H., SAOUTER, E., VON HAVEN, R., AND BARKAY, T. (1994) merA gene expression in aquatic environments measured by mRNA production and Hg(II) volatilization. Appl. Environ. Microbiol. 60:4059-4065. NERCESSIAN, O., NOYES, E., KALYUZHNAYA, M.G., LIDSTROM, M.E., AND CHISTOSERDOVA, L. (2005) Bacterial populations active in metabolism of C1 compounds in the sediment of Lake Washington, a freshwater lake. Appl. Environ. Microbiol. 71:6885-6899. NEWTON, R.J., KENT, A.D., TRIPLETT, E.W., AND MCMAHON, K.D. (2006) Microbial community dynamics in a humic lake: differential persistence of common freshwater phylotypes. Environ. Microbiol. 8:956-970. NOGALES, B., TIMMIS, K.N., NEDWELL, D.B., AND OSBORN, A.M. (2002) Detection and diversity of expressed denitrification genes in estuarine sediments after reverse transcription-PCR amplification from mRNA. Appl. Environ. Microbiol. 68:5017-5025. OLSEN, G.J., LANE, D.J., GIOVANNONI, S.J., AND PACE, N.R. (1986) Microbial ecology and evolution: a ribosomal RNA approach. Ann. Rev. Microbiol. 40:337-365. OUVERNEY, C.C., AND FUHRMAN, J.A. (1999) Combined microautoradiography 16S rRNA probe technique for determination of radioisotope uptake by specific microbial cell types in situ. Appl. Environ. Microbiol. 65:1746-1752. PARSONS, T.R., AND STRICKLAND, J.D.H. (1962) On the production of particulate organic carbon by heterotrophic processes in the sea. Deep-Sea Res. 8:211-222. PEDRÓS-ALIO, C., AND BROCK, T.D. (1983) The importance of attachment to particles for planktonic bacteria. Arch. Hydrobiol. 98:354-379. PERNTHALER, J., GLÖCKNER, F.O., UNTERHOLZNER, S., ALFREIDER, A., PSENNER, R., AND AMANN, R. (1998) Seasonal community and population dynamics of pelagic Bacteria and Archaea in a high mountain lake. Appl. Environ. Microbiol. 64:4299-4306. PERNTHALER, A., PERNTHALER, J., AND AMANN, R. (2002) Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl. Environ. Microbiol. 68:3094-3101. PERNTHALER, J., ZÖLLNER, E., WARNECKE, F., AND JÜRGENS, K. (2004) Blooms of filamentous bacteria in a mesotrophic lake: identity and potential controlling mechanisms. Appl. Environ. Microbiol. 70:6272-6281. PERNTHALER, J., AND AMANN, R. (2005) Fate of heterotrophic microbes in pelagic habitats: focus on populations. Microbiol. Mol. Biol. Rev. 69:440-461. PINHASSI, J., ZWEIFEL, U.L., AND HAGSTRÖM, Å. (1997) Dominant marine bacterioplankton species found among colony-forming bacteria. Appl. Environ. Microbiol. 63:33593366. PLOUG, H., KÜHL, M., BUCHHOLZ-CLEVEN, B., AND JØRGENSEN, B.B. (1997) Anoxic aggregates - an ephermal phenomenon in the pelagic environment? Aquat. Microb. Ecol. 13:285-294. PLOUG, H. (2001) Small-scale oxygen fluxes and remineralization in sinking aggregates. Limnol. Oceanogr. 46:1624-1631. POMEROY, L.R., AND WIEBE, W.J. (2001) Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria. Aquat. Microb. Ecol. 23:187-204. RAPPÉ, M.S., VERGIN, K., AND GIOVANNONI, S.J. (2000) Phylogenetic comparison of a coastal bacterioplankton community with its counterparts in open oceans and freshwater systems. FEMS Microbiol. Ecol. 33:219-232. RAPPÉ, M.S., CONNON, S.A., VERGIN, K.L., AND GIOVANNONI, S.J. (2002) Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418:630-633. RAPPÉ, M.S., AND GIOVANNONI, S.J. (2003) The uncultured microbial majority. Annu. Rev. Microbiol. 57:369-394. 24 Kapitel I Einleitung RIEMANN, L., AND WINDING, A. (2001) Community dynamics of free-living and particleassociated bacterial assemblages during a freshwater phytoplankton bloom. Microb. Ecol. 42:274-285. RODRIGUEZ-VALERA, F. (2004) Environmental genomics, the big picture? FEMS Microbiol. Lett. 231:153-158. SACHSE, A., BABENZIEN, H.-D., GINZEL, G., GELBRECHT, J., AND STEINBERG, C.E. (2001) Characterization of dissolved organic carbon (DOC) in a dystrophic lake and adjacent fen. Biogeochemistry 54:279-296. SANDERS, R.W., PORTER, K.G., BENNETT, S.J., AND DEBIASE, A.E. (1989) Seasonal patterns of bacteriovory by flagellates, ciliates, rotifers, and cladocerans in a freshwater planktonic community. Limnol. Oceanogr. 34:673-687. SASS, H., CYPIONKA, H., AND BABENZIEN, H.-D. (1996) Sulfate-reducing bacteria from the oxic layers of the oligotrophic Lake Stechlin. Arch. Hydrobiol. Spec. Issues Advanc. Limnol. 48:241-246. SASS, H., CYPIONKA, H., AND BABENZIEN, H.-D. (1997) Vertical distribution of sulfatereducing bacteria at the oxic-anoxic interface in sediments of the oligotrophic Lake Stechlin. FEMS Microbiol. Ecol. 22:245-255. SCHAUER, M., KAMENIK, C., AND HAHN, M.W. (2005) Ecological differentiation within a cosmopolitan group of planktonic freshwater bacteria (SOL cluster, Saprospiraceae, Bacteroidetes). Appl. Environ. Microbiol. 71:5900-5907. SCHLEGEL, H.G. (1992) Allgemeine Mikrobiologie. 7. Aufl., Thime Verlag, Stuttgart. SCHLEGEL, I., KOSCHEL, R., AND KRIENITZ, L. (1998) On the occurrence of Phacotus lenticularis (Chlorophyta) in lakes of different trophic state. Hydrobiologica 370:353361. SCHMIDT, W. (1997) Das Feldberger Seengebiet. (Werte der deutschen Heimat, Bd. 57). Verlag Hermann Böhlhaus Nachfolger Weimar. SCHULZE, W.X., GLEIXNER, G., KAISER, K., GUGGENBERGER, G., MANN, M., AND SCHULZE, E.D. (2005) A proteomic fingerprint of dissolved organic carbon and of soil particles. Oecologia 142:335-343. SCHWEITZER, B., AND SIMON, M. (1995) Growth limitation of planktonic bacteria in a large mesotrophic lake. Microb. Ecol. 30:89-104. SCHWEITZER, B., HUBER, I., AMANN, R., LUDWIG, W., AND SIMON, M. (2001) Alpha- and betaproteobacteria control the consumption and release of amino acids on lake snow aggregates. Appl. Environ. Microbiol. 67:632-645. SCHWOERBEL, J. (1999) Einführung in die Limnologie. 8. Aufl., Gustav Fischer Verlag, Stuttgart-Jena-Lübeck-Ulm. SELJE, N., AND SIMON, M. (2003) Composition and dynamics of particle-associated and free-living bacterial communities in the Weser Estuary, Germany. Aquat. Microb. Ecol. 30:221-237. SHERR, B.F., SHERR, E.B., AND PEDROS-ALIO, C. (1989) Simultaneous measurement of bacterioplankton production and protozoan bacterivory in estuarine water. Mar. Ecol. Prog. Ser. 54:209-219. SIEBURTH, J.M., SMETACEK, V., AND LENZ, J. (1978) Pelagic ecosystem structure; heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol. Oceanogr. 23:1256-1263. ŠIMEK, K., BOBKOVA, J., MACEK, M., NEDOMA, J., AND PSENNER, R. (1995) Ciliate grazing on picoplankton in a eutrophic reservoir during the summer phytoplankton maximum: a study at species and community level. Limnol. Oceanogr. 40:1077-1090. ŠIMEK, K., BABENZIEN, H.-D., BITTL, T., KOSCHEL, R., MACEK, M., NEDOMA, J., AND VRBA, J. (1998) Microbial food webs in an artificially divided acidic bog lake. Internat. Rev. Hydrobiol. 83:3-18. ŠIMEK, K., PERNTHALER, J., WEINBAUER, M.G., HORNÁK, K., DOLAN, J.R., NEDOMA, J., MAŠIN, M., AND AMANN, R. (2001) Changes in bacterial community composition and 25 Kapitel I Einleitung dynamics and viral mortality rates associated with enhanced flagellate grazing in a mesotrophic reservoir. Appl. Environ. Microbiol. 67:2723-2733. ŠIMEK, K., HORŇÁK, K., MAŠIN, M., CHRISTAKI, U., NEDOMA, J., WEINBAUER, M.G., AND DOLAN, J.R. (2003) Comparing the effects of resource enrichment and grazing on a bacterioplankton community of a meso-eutrophic reservoir. Aquat. Microb. Ecol. 31:123-135. SIMON, M., GROSSART, H.-P., SCHWEITZER, B., AND PLOUG, H. (2002) Microbial ecology of organic aggregates in aquatic ecosystems. Aquat. Microb. Ecol. 28:175-211. SMITH, D.C., SIMON, M., ALLDREDGE, A.L., AND AZAM, F. (1992) Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature 359:139-142. SMITH, D.C., STEWART, G.F., LONG, R.A., AND AZAM, F. (1995) Bacterial mediation of carbon fluxes during a diatom bloom in a mesocosm. Deep-Sea Res. II 42:75-97. SOMMER, U. (1989) Plankton Ecology: Succession in plankton communities. SpringerVerlag, New York. STALEY, J.T. (1997) Biodiversity: are microbial species threatened? Curr. Opin. Biotechnol. 8:340-345. STALEY, J.T. (1999) Bacterial biodiversity: a time for place. ASM News 65:681-687. STALEY, J.T., AND KONOPKA, A. (1985) Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu. Rev. Microbiol. 39:321-346. STEELE, J.H. (1974) The structure of marine ecosystems. Harvard University Press, Cambridge, Mass., USA. STEPANAUSKAS, R., MORAN, M.A., BERGAMASCHI, B.A., AND HOLLIBAUGH, J.T. (2003) Covariance of bacterioplankton composition and environmental variables in a temperate delta system. Aquat. Microb. Ecol. 31:85-98. STEVENS, H., BRINKHOFF, T., AND SIMON, M. (2005) Composition of free-living, aggregateassociated and sediment surface-associated bacterial communities in the German Wadden Sea. Aquat. Microb. Ecol. 38:15-30. STEVENSON, B.S., EICHORST, S.A., WERTZ, J.T., SCHMIDT, T.M., AND BREZNAK, J.A. (2004) New strategies for cultivation and detection of previously uncultured microbes. Appl. Environ. Microbiol. 70:4748-4755. TESKE, A., ALM, E., REGAN, J.M., TOZE, S., RITTMANN, B.E., AND STAHL, D.A. (1994) Evolutionary relationships among ammonia- and nitrite-oxidizing bacteria. J. Bacteriol. 176:6623-6630. TURLEY, C.M., AND MACKIE, P.J. (1994) Biogeochemical significance of attached and freeliving bacteria and the flux of particles in the NE Atlantic Ocean. Mar. Ecol. Prog. Ser. 115:191-203. UCHIYAMA, T, ABE, T., IKEMURA, T., AND WATANABE, K. (2005) Substrate-induced geneexpression screening of environmental metagenome libraries for isolation of catabolic genes. Nat. Biotechnol. 23:66-74. URBACH, E., VERGIN, K.L., YOUNG, L., MORSE, A., LARSON, G.L., AND GIOVANNONI, S.J. (2001) Unusual bacterioplankton community structure in ultra-oligotrophic Crater Lake. Limnol. Oceanogr. 46:557-572. VAN DER GUCHT, K., SABBE, K., DE MEESTER, L., VLOEMANS, N., ZWART, G., GILLIS, M., AND VYVERMAN, W. (2001) Contrasting bacterioplankton community composition and seasonal dynamics in two neighbouring hypertrophic freshwater lakes. Environ. Microbiol. 3:680-690. VAN DER GUCHT, K., VANDEKERCKHOVE, T., VLOEMANS, N., COUSIN, S., MUYLAERT, K., SABBE, K., GILLIS, M., DECLERK, S., DE MEESTER, L., AND VYVERMAN, W. (2005) Characterization of bacterial communities in four freshwater lakes differing in nutrient load and food web structure. FEMS Microbiol. Ecol. 53:205-220. VENTER, J.C., REMINGTON, K., HEIDELBERG, J.F., HALPERN, A.L., RUSCH, D., EISEN, J.A., WU, D.Y., PAULSEN, I., NELSON, K.E., NELSON, W., FOUTS, D.E., LEVY, S., KNAP, A.H., 26 Kapitel I Einleitung LOMAS, M.W., NEALSON, K., WHITE, O., PETERSON, J., HOFFMAN, J., PARSONS, R., BADEN-TILLSON, H., PFANNKOCH, C., ROGERS, Y.H., AND SMITH, H.O. (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:6674. VREDE, K., STENSDOTTER, U., AND LINDSTRÖM, E.S. (2003) Viral and bacterioplankton dynamics in two lakes with different humic contents. Microb. Ecol. 46:406-415. WARD, A.C., AND BORA, N. (2006) Diversity and biogeography of marine Actinobacteria. Curr. Opin. Microbiol. 9:1-8. WARNECKE, F., AMANN, R., AND PERNTHALER, J. (2004) Actinobacterial 16S rRNA genes from freshwater habitats cluster in four distinct lineages. Environ. Microbiol. 6:242253. WARNECKE, F., SOMMARUGA, R., SEKAR, R., HOFER, J.S., AND PERNTHALER, J. (2005) Abundance, identity, and growth state of Actinobacteria in mountain lakes of different UV transparency. Appl. Environ. Microbiol. 71:5551-5559. WATERSTRAAT, A. (1988) Zur Verbreitung und Ökologie der Reliktkrebse Mysis relicta (Loven), Pallasea quadrispinosa (Sars) und Pontoporeia affinis (Lindstrom). Arch. Naturschutz. Landsch. Forsch. 28:121-137. WEISS, P., SCHWEITZER, B., AMANN, R., AND SIMON, M. (1996) Identification in situ and dynamics of bacteria on limnetic organic aggregates (Lake Snow). Appl. Environ. Microbiol. 62:1998-2005. WILMES, P., AND BOND, P.L. (2004) The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. Environ. Microbiol. 6:911-920. WOESE, C.R. (1987) Bacterial evolution. Microbiol. Rev. 51:221-271. WRIGHT, R.T., AND HOBBIE, J.E. (1966) Use of glucose and acetate by bacteria and algae in aquatic ecosystems. Ecology 47:447-464. WU, Q.L., AND HAHN, M.W. (2006) High predictability of the seasonal dynamics of a species-like Polynucleobacter population in a freshwater lake. Environ. Microbiol. doi:10.1111/j.1462-2920.2006.01049.x YANNARELL, A.C., KENT, A.D., LAUSTER, G.H., KRATZ, T.K., TRIPLETT, E.W. (2003) Temporal patterns in bacterial communities in three temperate lakes of different trophic status. Microb. Ecol. 46:391-405. YANNARELL, A.C., AND TRIPLETT, E.W. (2005) Geographic environmental sources of variation in lake bacterial community composition. Appl. Environ. Microbiol. 71:227239. ZIMMERMANN, H. (1997) The microbial community on aggregates in the Elbe Estuary. Aquat. Microb. Ecol. 13:37-46. ZWART, G., HIORNS, W., METHÉ, B., KAMST-VAN AGTERVELD, M.P., HUISMANS, R., NOLD, S., ZEHR, J., AND LAANBROEK, H. (1998) Nearly identical 16S rRNA sequences recovered from lakes in North America and Europe indicate the existence of clades of globally distributed freshwater bacteria. FEMS Microbiol. Ecol. 25:159-169. ZWART, G., CRUMP, B.C., KAMST-VAN AGTERVELD, M.P., HAGEN, F., AND HAN, S.-K. (2002) Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat. Microb. Ecol. 28:141-155. ZWART, G., VAN HANNEN, E.J., KAMST-VAN AGTERFELD, M.P., VAN DER GUCHT, K., LINDSTRÖM, E.S., VAN WICHELEN, J., LAURIDSEN, T., CRUMP, B.C., HAN, S.K., AND DECLERCK, S. (2003) Rapid screening for freshwater bacterial groups by using reverse line blot hybridization. Appl. Environ. Microbiol. 69:5875-5883. ZWISLER, W., SELJE, N., AND SIMON, M. (2003) Seasonal patterns of the bacterioplankton community in a large mesotrophic lake. Aquat. Microb. Ecol. 31:211-225. 27 II Seasonal dynamics and phylogenetic diversity of free-living and particle-associated bacterial communities in four lakes of Northeastern Germany Kapitel II Diversity and dynamics of bacterioplankton communities Aquatic Microbial Ecology (accepted) Seasonal dynamics and phylogenetic diversity of free-living and particle-associated bacterial communities in four lakes of Northeastern Germany Martin Allgaier and Hans-Peter Grossart* Leibniz-Institute of Freshwater Ecology and Inland Fisheries Department Limnology of Stratified Lakes Alte Fischerhütte 2 D-16775 Stechlin-Neuglobsow Germany Running title: Diversity and dynamics of freshwater bacterioplankton Key words: bacterioplankton communities, phylogenetic diversity, seasonal dynamics, freshwater bacteria, DGGE, clone libraries *Corresponding author: Leibniz-Institut für Gewässerökologie und Binnenfischerei; Abteilung Limnologie geschichteter Seen; Alte Fischerhütte 2; D-16775 StechlinNeuglobsow; Phone: +49 33082 69991; Fax: +49 33082 69917; email: hgrossart@igbberlin.de 31 Kapitel II Diversity and dynamics of bacterioplankton communities ABSTRACT: The phylogenetic diversity and seasonal dynamics of free-living and particleassociated bacterial communities was investigated in the epilimnion of four limnological different lakes of the Mecklenburg Lake District, Northeastern Germany. Bacterial community structure and seasonal dynamics were analyzed by denaturing gradient gel electrophoresis (DGGE) and clone libraries of 16S rRNA gene fragments. Communities of free-living and particle-associated bacteria greatly differed among the lakes. In addition, significant differences occurred between both bacterial fractions within each single lake. Seasonal changes were more pronounced within free-living compared to particleassociated bacterial communities. Several strong correlations were found between freeliving and particle-associated bacteria by non-metric multidimensional scaling (NMS) analyses (e.g. pH, dissolved organic carbon (DOC), phytoplankton biomasses, or primary production). Phylogenetically, all cloned and sequenced 16S rRNA gene fragments belonged to already known freshwater clusters. Clone libraries of free-living bacteria were dominated by sequences of β-Proteobacteria, Actinobacteria, and Bacteroidetes, whereas those of particle-associated bacteria predominantly consist of Bacteroidetes and Cyanobacteria sequences, respectively. Other freshwater phyla, such as α-, and γ-Proteobacteria, Verrucomicrobia, Planctomycetes, or members of the Candidate Division OP10 were found in low proportions. These differences may indicate an adaptation of distinct bacterioplankton communities to the respective environmental conditions in each lake. INTRODUCTION Heterotrophic bacteria are known to play a key role in biogeochemical processes and are responsible for the break-down of organic matter and the remineralisation of nutrients (Cotner & Biddanda 2002). Until the late 1980ies, aquatic bacteria have been considered as an entity or black box without any further differentiation in respect to their taxonomic composition. An important first step towards understanding the role of aquatic bacterial communities is the determination of the phylogenetic diversity of the appropriate bacterioplankton communities (Cottrell & Kirchman 2000). The introduction of molecular methods into aquatic microbial ecology has facilitated the study of bacterioplankton community structure (Morris et al. 2002). Currently several studies have characterized bacterial community composition and dynamics of different aquatic habitats by cultureindependent methods such as denaturing gradient gel electrophoresis (DGGE) or sequence analyses of 16S rRNA gene fragments (e.g. Glöckner et al. 1999, Rappé et al. 2000, Trusova & Gladyshev 2002, Zwart et al. 2002, Van der Gucht et al. 2005). However, 32 Kapitel II Diversity and dynamics of bacterioplankton communities there are fewer studies on freshwater than on marine bacterial communities. In general, bacterial communities in freshwater are dominated by β-Proteobacteria, Actinobacteria, and members of the Bacteroidetes, whereas pronounced differences and variations were found between free-living and particle-associated bacterial communities (Weiss et al. 1996, Rappé et al. 2000, Schweitzer et al. 2001, Zwart et al. 2002, Selje & Simon 2003). Nevertheless, so far no comprehensive seasonal study on free-living and particleassociated bacterioplankton communities of different freshwater habitats exists. Although many studies focus on the composition of freshwater bacterioplankton communities, surprisingly few examine the temporal and seasonal dynamics of bacterial communities in detail (Pinhassi & Hagström 2000, Van der Gucht et al. 2001, Zwisler et al. 2003, Kent et al. 2004). Thus, seasonal and spatial dynamics of complex freshwater bacterioplankton communities is yet poorly understood. It has been shown, however, that changes in environmental conditions significantly influence bacterial community structure throughout distinct seasons and periods (e.g. Fisher et al. 2000, Langenheder & Jürgens 2001, Hahn & Höfle 2001, Crump et al. 2003, Kent et al. 2004). Various parameters, such as dissolved organic carbon, grazing by heterotrophic nanoflagellates, or phytoplankton biomass were found to affect freshwater bacterial communities (Methé & Zehr 1999, Pernthaler et al. 2001, Muylaert et al. 2002). In this study we have compared the seasonal dynamics and phylogenetic diversity of freeliving and particle-associated bacterial communities of four selected lakes of the Mecklenburg Lake District, Northeastern Germany, to test: I) whether both bacterial fractions consistently differ from each other, II) whether there are pronounced seasonal and spatial patterns in community structure of both fractions, and III) whether the observed patterns can be linked to environmental variables. MATERIALS AND METHODS Study sites and sampling collection. Four limnological different lakes were selected for this study. All lakes are located in the Mecklenburg Lake District (Northeastern Germany) which was formed after the last ice age (Weichselian stage). Oligotrophic Lake Stechlin and mesotrophic Lake Breiter Luzin are among the deepest lakes in this area (68.5 m and 58.5 m, respectively) and are both characterized by high hypolimnetic oxygen concentrations (up to 60 % O2 saturation). Lake Stechlin is situated in the middle of a mixed forest mainly composed of beech and pine trees, whereas the catchment area of Lake Breiter Luzin consists of natural forests and farm land. 33 Kapitel II Diversity and dynamics of bacterioplankton communities In comparison, eutrophic Lake Tiefwaren is strongly influenced by anthropogenic activities. Extensive agriculture and industry in the late 1980s resulted in a formerly hypertrophic state. A restoration approach by a combination of aluminate and calcium hydroxide precipitation between 2001 and 2005 (Koschel et al. 2006) yielded in its present eutrophic state. The relatively small Lake Grosse Fuchskuhle is situated in a mixed forest and was artificially divided into four compartments (southwest (SW), northwest (NW), northeast (NE), and southeast (SE)) for biomanipulation experiments by large plastic curtains in the 1990ies (Kasprzak 1993, Koschel 1995). Due to their great differences in limnological parameters (Bittl & Babenzien 1996, Hehmann et al. 2001) the NE and SW compartments were selected for this study. The dystrophic SW compartment is the most acidic compartment of the lake (pH 4.7) since it is strongly influenced by the high input of humic matter from the adjacent bog area. The mesotrophic NE compartment receives less humic acids and, hence, is more neutral (pH 6.5). A summary of the most important physicochemical and biological parameters of all studied lakes are given in Table 1. All lakes were sampled monthly between April 2003 and March 2004, except during ice coverage in December (Lake Breiter Luzin), January (all lakes), and February (Lake Grosse Fuchskuhle). Composite water samples representing the epilimnion were collected with a Ruttner sampler at the deepest point of each lake. Based on the thermal stratification sub-samples were taken from 0, 5, and 10 m depth (April-May and OctoberMarch) or 0, and 5 m depth (June-September) in Lake Stechlin, Lake Breiter Luzin, and Lake Tiefwaren, respectively, and mixed in sterile glass flasks in equal volumes. Epilimnetic samples of the two compartments of Lake Grosse Fuchskuhle were collected as mixed samples from 0 and 2 m depth (April and October-March) or as surface samples (May-September) due to the relatively shallow epilimnion. All water samples were taken into the lab in dark cooling boxes and processed 2-4 h after sampling. DNA extraction and PCR amplification of 16S rRNA gene fragments. Particleassociated bacteria were retained by filtering 150-300 ml of sample from each assay onto a 5.0 µm Nuclepore membrane. Free-living bacteria were collected by filtering 100-150 ml of the 5.0 µm filtrate onto a 0.2 µm Nuclepore membrane. Extraction of genomic DNA was performed using a standard protocol with phenol/chloroform/isoamylalcohol, SDS, polyvinylpyrrolidone, and zirconium beads (Allgaier & Grossart 2006). For DGGE analysis, a 550 bp fragment of the 16S rRNA gene was amplified using the primer pair 341f (5’ – CCT ACG GGA GGC AGC AG – 3’) and 907r (5’ – CCG TCA ATT CMT TTG AGT TT – 3’) (Muyzer et al. 1998). At the 5’-end of the primer 341f an 34 Kapitel II Diversity and dynamics of bacterioplankton communities additional 40 bp GC-rich nucleotide sequence (GC-clamp) was added to stabilize migration of the DNA fragment in the DGGE (Muyzer et al. 1993). The PCR reaction mixture contained: 2-5 µl template DNA, each primer at a concentration of 200 nM, each deoxyribonucleoside triphosphate at a concentration of 250 µM, 2 mM MgCl2, 5 µl of 10 x PCR reaction buffer, and 0.5 U of BIOTAQ Red DNA Polymerase (Bioline) in a total volume of 50 µl. PCR amplification was performed with a Gradient Cycler PT-200 (MJ Research) using the following conditions: initial denaturation at 95 °C (3 min), followed by 30 cycles of denaturation at 95 °C (1 min), annealing at 55 °C (1 min), and extension at 72 °C (2 min). A final extension at 72 °C for 10 min completed the reaction. For clone libraries the almost complete 16S rRNA gene was amplified using the primer pair 8f (5’ – AGA GTT TGA TCM TGG CTC AG – 3’) and 1492r (5’ – GGY TAC CTT GTT ACG ACT T – 3’) specific for the domain bacteria (Muyzer et al. 1995). PCR reaction and conditions were used as described previously (Allgaier & Grossart 2006). DGGE analysis of PCR products. PCR products were analyzed by using the INGENY PhorU DGGE-System (Ingeny) according to the protocol of Brinkhoff & Muyzer (1997). The DGGE was performed in a 7 % (v/v) polyacrylamide gel with a denaturing gradient from 40 to 70 % of urea and formamide. For better comparability of different DGGE profiles, PCR products were quantified on agarose gels using a quantitative DNA ladder (Low DNA Mass Ladder, Invitrogen) and similar amounts of DNA were loaded onto the DGGE gels. The DGGE was run in 1 x TAE electrophoresis buffer (40 mM Tris-HCl (pH 8.3), 20 mM acetic acid, 1 mM EDTA) for 20 h at a constant voltage of 100 V and a constant temperature of 60 °C. The gels were stained with 1 x SYBR Gold (Molecular Probes) and documented using an AlphaImager 2200 Transilluminator (Biozym). A mixture of DNA from three isolates derived from the studied lakes was used for external standardisation of the gels. Analyses of DGGE profiles and multivariate statistics. Analyses of the DGGE banding patterns were done using the Software GelCompar II, Version 3.5 (Applied Maths). We applied 5-15 % background subtraction depending on the signal-to-noise ratio of the gels. A band based binary presence/absence table was calculated applying Dice similarity coefficient which was imported into the ordination software PC-ORD, Version 4.0 (MJM Software Design). We used non-metric multidimensional scaling (NMS) ordinations instead of constrained ordination techniques (e.g. canonical correspondence analysis (CCA)) to avoid distortions originating from the non-normal distribution of our species data obtained from the DGGE profiles (McCune & Grace 2002). NMS uses only rank order 35 Kapitel II Diversity and dynamics of bacterioplankton communities information of a similarity matrix of the samples rather than the original data matrix. In a first step NMS searches for the best model describing differences in bacterial community structure and in a second step, limnological variables are fitted independently to this model by means of multiple regression criteria. In contrast, constrained ordination techniques directly search for the most suitable model describing relationships between community data and environmental variables accounting for both data sets at the same time. Primary NMS analyses of all gels were done by a standard setup using relativise Sørensen distance measures, random starting coordinates, a step-down from six to one dimension, an instability criterion of 0.0001, 300 iterations to reach stability, 50 runs with real data sets, and 100 runs with the Monte Carlo permutation test (Mehner et al. 2005). The final run was performed with the optimum number of dimensions (2-5 dimensions) and the appropriate configurations as starting coordinates. Varimax rotation was applied to find corresponding groups and sample units. For the identification of particular environmental parameters explaining changes in bacterial community composition within the epilimnion of the lakes Pearson’s product moment correlations of limnological parameters and the DGGE profiles were calculated on the significant ordination axes. Analysis of similarity (ANOSIM, Clarke & Green 1988) was used to test statistically the significance of differences between the DGGE banding patterns within each single lake and between all lakes. ANOSIM generates a test statistic (R) which is an indication of the degree of separation between groups. A score of 1 indicate complete separation whereas a score of 0 indicates no separation. Equal to NMS analyses, ANOSIM is based on a similarity matrix and not on the original data matrix. ANOSIM analyses were performed with the software PRIMER 5, Version 5.2.9 (PRIMER-E Ltd). To test the significance of differences between absolute numbers of DGGE bands of the lakes, ANOVA with post-hoc test (Scheffé) was performed using the SPSS program, Version 9.0 (SPSS). Construction of clone libraries. Cloning of the almost complete 16S rRNA gene fragments of free-living and particle-associated bacteria was done using the pGEM-TEasy Vector System II (Promega) according to the manufacturer’s protocol. Clone libraries were constructed for samples from May 2003 (only Lake Stechlin) and November 2003 (all lakes). A total of 19-29 clones of each clone library were picked and sequenced as described previously (Allgaier & Grossart 2006). 36 Kapitel II Diversity and dynamics of bacterioplankton communities Phylogenetic analyses. Partial sequences were assembled and corrected manually using the software Chromas, Version 1.45 (Griffith University). Phylogenetic reconstructions were performed using the ARB software package (http://arb-home.de). 16S rRNA gene sequences of the clone libraries were first checked and classified by BLAST (http://www.ncbi.nlm.nih.gov/BLAST/) and the RDP-classifier of the Ribosomal Database Project (http://rdp.cme.msu.edu/). Sequences were then imported into the ARB database of ca. 52,000 reference sequences including the closest related sequences determined by BLAST. The sequences were aligned automatically using the integrated alignment module within the ARB package and subsequently corrected manually. For stability of the phylogenetic trees first backbone trees were calculated comprising only sequences of ≥ 1400 nucleotides. Consistence of branching patterns of the trees was checked applying the three phylogenetic reconstruction methods – neighbor-joining, maximum parsimony, and maximum likelihood to the appropriate sets of sequences. Sequences ≤ 1400 nucleotides were added afterwards to the trees according to maximum parsimony criteria. This tool does not correct for evolutionary distances and does not allow changes in the overall tree topology. Nucleotide sequence accession numbers. Obtained 16S rRNA gene sequences were deposited in GenBank with the following accession numbers: DQ501285-DQ501378. RESULTS Numbers of DGGE bands Highest numbers of DGGE bands of free-living and particle-associated bacteria were found in Lake Breiter Luzin with seasonal means of 40 ± 2 and 41 ± 5.7 DGGE fragments, respectively, and lowest numbers within Lake Tiefwaren (24 ± 4.2 and 15 ± 7, respectively). Seasonal means of absolute numbers of DGGE bands in Lake Stechlin and the two (NE and SW) compartments of Lake Grosse Fuchskuhle ranged from 27 ± 4.9 (SW compartment of Lake Grosse Fuchskuhle) to 35 ± 3 (Lake Stechlin) for free-living bacteria and from 24 ± 3.8 (SW compartment of Lake Grosse Fuchskuhle) to 30 ± 7.1 (NE compartment of Lake Grosse Fuchskuhle) for the particle-associated fractions, respectively. ANOVA revealed that the number of DGGE bands of free-living bacteria of Lake Breiter Luzin and Lake Stechlin were significant different from those of Lake Tiefwaren and the two compartments (NE and SW) of Lake Grosse Fuchskuhle (Table 2). Within particle-associated bacteria number of DGGE bands of Lake Breiter Luzin and Lake Tiefwaren were statistically significant different from each other and from all other 37 Kapitel II Diversity and dynamics of bacterioplankton communities lakes, whereas no significant differences were found between Lake Stechlin and the two compartments (NE and SW) of Lake Grosse Fuchskuhle (Table 2). No significant differences were found between the numbers of DGGE bands of free-living and particleassociated bacteria within each single lake. Analyses of DGGE banding patterns The DGGE banding patterns of free-living and particle-associated bacteria showed distinct differences in regard to bacterial community composition and seasonal dynamics (for example see Figure 1). Free-living and particle-associated bacterial communities were different among the four lakes as indicated by the formation of lake-specific clusters of DGGE profiles throughout NMS analyses (Figure 2A). Except for particle-associated bacteria from Lake Stechlin and the SW compartment of Lake Grosse Fuchskuhle all differences were statistically significant as determined by ANOSIM (Table 3A). Within free-living bacteria DGGE profiles of Lake Breiter Luzin, Lake Stechlin, and the two compartments (NE and SW) of Lake Grosse Fuchskuhle exhibited clearly separated clusters, whereas DGGE banding patterns of Lake Tiefwaren showed particular overlaps with those of the NE compartment of Lake Grosse Fuchskuhle (Figure 2A). Although the formation of lake-specific clusters within particle-associated bacteria was statistically significant, it was less obvious than for free-living bacterial communities (Figure 2A). The comparison of the DGGE profiles of each single lake revealed significant differences between free-living and particle-associated bacterial communities (Figure 2B). Except for the NE compartment of Lake Grosse Fuchskuhle all observed differences were statistically significant (Table 3B). Additionally, NMS analyses indicated seasonal changes in bacterial community composition as depicted by the formation of season-specific clusters of samples within NMS plots (Figure 2B). Season-specific clusters varied between lakes and bacterial fractions. In general, winter and spring samples of free-living bacteria clustered together and were clearly separated from samples related to summer and fall. Formation of seasonal clusters within particle-associated bacteria, however, was less pronounced compared to free-living bacterial communities. Sequence analyses of clone libraries To obtain more detailed informations on the phylogenetic diversity of free-living and particle-associated bacteria of the studied lakes, clone libraries of 16S rRNA gene fragments were constructed and sequenced. Altogether, 12 clone libraries from May (only Lake Stechlin) and November (all lakes) resulted in a total of 277 clones (Table 4). As determined by BLAST and the RDP classifier, 16S rRNA gene sequences of free-living 38 Kapitel II bacteria Diversity and dynamics of bacterioplankton communities belonged to α-Proteobacteria (8.3 %), β-Proteobacteria (10.4 %), γ-Proteobacteria (0.7 %), δ-Proteobacteria (1.4 %), Actinobacteria (44.4 %), Bacteroidetes (14.6 %), Candidate Division OP10 (1.4 %), Cyanobacteria (10.4 %), and chloroplasts (3.5 %). Other bacterial phyla such as Chlorobi, Thermomicrobia or Acidobacteria were present only at a low percentage (4.9 %). Excluding sequences of chloroplasts of eucaryotic algae 16S rRNA gene sequences from clone libraries of particle-associated bacteria were affiliated to α-Proteobacteria (8.1 %), β-Proteobacteria (3.2 %), γ-Proteobacteria (3.2 %), Actinobacteria (1.6 %), Bacteroidetes (24.2 %), Candidate Division OP10 (1.6 %), Planctomycetes (4.8 %), Verrucomicrobia (3.2 %), and Cyanobacteria (43.5 %). In general, clone libraries of free-living bacteria were dominated by Actinobacteria, members of the Bacteroidetes, and β-Proteobacteria. Actinobacteria sequences occurred in consistently high numbers in all four lakes. Members of the Bacteroidetes were found mainly in Lake Stechlin (May and November), Lake Tiefwaren, and the SW compartment of Lake Grosse Fuchskuhle. However, no Bacteroidetes were found within free-living bacteria of Lake Breiter Luzin. Sequences of β-Proteobacteria occurred in relatively high numbers in Lake Stechlin (only November), Lake Breiter Luzin, and the NE compartment of Lake Grosse Fuchskuhle (Table 4). Cyanobacterial 16S rRNA gene sequences were almost exclusively from the May 2003 clone library of free-living bacteria of Lake Stechlin. When excluding sequences of chloroplasts of eucaryotic algae, clone libraries of particleassociated bacteria were dominated by sequences of Cyanobacteria and members of the Bacteroidetes. Clones of the Bacteroidetes were found in Lake Tiefwaren, Lake Stechlin (May), Lake Breiter Luzin, and the NE compartment of Lake Grosse Fuchskuhle (Table 4). Sequences of Cyanobacteria were almost present in Lake Breiter Luzin, Lake Tiefwaren, and Lake Stechlin (May and November). Phylogenetic lineages such as Verrucomicrobia or Planctomycetes occurred in low proportions. Detailed phylogenetic reconstructions of the free-living and particle-associated bacterial 16S rRNA gene sequences confirmed the phylogenetic classification retrieved by BLAST and RDP (Figure 3A-C). Because this study was focused on heterotrophic bacteria no phylogenetic trees were constructed for the Cyanobacteria and the chloroplast sequences. In general, free-living and particle-associated bacteria were equally distributed throughout the constructed phylogenetic trees and no distinct lake-specific or bacterial fraction-specific clusters appeared. A further separation into classes within the Bacteroidetes was clearly shown by the phylogenetic tree presented in Figure 3B. The majority of the 16S rRNA gene sequences of the Bacteroidetes belonged to the class 39 Kapitel II Diversity and dynamics of bacterioplankton communities Sphingobacteria. Only 8 sequences were affiliated to the class Flavobacteria and 3 sequences to the class Bacteroidetes, respectively. Actinobacterial 16S rRNA gene sequences were phylogenetically affiliated to the freshwater clusters acI, acII, acIV, and acSTL, and to the clusters Soil I-III and Microthrix. Detailed descriptions of the diversity and phylogenetic relationship of actinobacterial sequences of this study are given in Allgaier & Grossart (2006). Relationship between DGGE profiles and environmental variables Identification of potential correlations between limnological parameters and seasonal changes within free-living and particle-associated bacterial communities were performed by non-metric multidimensional scaling (NMS) analyses because of the non-normal distribution of the species data. Fifteen limnological parameters were used for these analyses: secchi depth, temperature, conductivity, pH, total nitrogen, total phosphorous, oxygen concentration, dissolved organic carbon (DOC), total bacterial numbers, bacterial protein production (total, free-living, and particle-associated), biomasses of phytoplankton and zooplankton, as well as total primary production. NMS analyses were separately performed for free-living and particle-associated bacteria of each single lake and with a combined data set composed of both bacterial fractions. In addition, two comprehensive data sets of free-living and particle-associated bacteria were used comprising DGGE profiles and limnological variables of all studied lakes. Pearson’s product moment correlations of the combined data sets of free-living and particleassociated bacteria of the single lakes revealed only weak correlations (Pearson’s r ≤ 0.7, data not shown). In contrast, separate analyses of free-living and particle-associated bacterial communities exhibited several distinct correlations to environmental parameters, such as temperature, pH, dissolved organic carbon (DOC), bacterial production, primary production, or phytoplankton biomass (Table 5). However, no consistent patterns could be observed between the lakes and both bacterial fractions. Comprehensive statistical analyses including all epilimnetic samples revealed solely a strong correlation between free-living bacteria and pH (r 0.785, Table 5). As indicated in Figure 2A, pH was highly correlated with free-living bacteria of Lake Breiter Luzin. 40 Kapitel II Diversity and dynamics of bacterioplankton communities DISCUSSION Differences in the community structure of free-living and particle-associated bacteria To our knowledge this is one of the first comprehensive studies on seasonal changes in bacterial community structure and dynamics in freshwater systems which consistently separates free-living from particle-associated bacteria. Our DGGE analyses revealed significant differences between both bacterial fractions in all lakes. This is in accordance to previous studies using a ≥ 5.0 µm filtration step to differentiate between free-living and particle-associated bacteria (e.g. Crump et al. 1999, Riemann & Winding 2001, Selje & Simon 2003, Stevens et al. 2005). Our own microscopical examination revealed that freeliving and particle-associated bacteria were indeed reliably separated by 5.0 µm Nuclepore membranes. The formation of lake-specific clusters within NMS analyses of DGGE banding patterns of all lakes was more pronounced for free-living than for particle-associated bacteria (Figure 2A). Smaller differences between particle-associated bacterial communities may be due to more stable environmental conditions on particles and, suggest specific adaptation of particle-associated bacteria to these specific microenvironments (Weiss et al. 1996, Grossart & Simon 1998, Brachvogel et al. 2001, Schweitzer et al. 2001). For example, lake snow aggregates are nutrient rich “hot-spots” for limnetic bacteria leading to higher bacterial abundances, biomasses, and activities than in the ambient water (Grossart & Simon 1993, Middelboe et al. 1995, Crump & Baross 1996, Schweitzer et al. 2001, Simon et al. 2002). Seasonal dynamics of freshwater bacterioplankton communities For analyses of bacterial diversity and seasonal dynamics we have used DGGE of PCR amplified 16S rRNA gene fragments and subsequent NMS analyses. It has been shown that DGGE analyses are biased by several methodological limitations (Rainey et al. 1994, Murray et al. 1996, Cottrell & Kirchman 2000). For example, amplification of 16S rRNA gene fragments can cause selective amplifications of specific bacterial lineages depending on the primer set used and may exclude minor members of the respective bacterial community (Suzuki & Giovannoni 1996, Wintzingerode et al. 1997). In addition, formation of heteroduplex or chimeric molecules and the occurrence of bacteria with multiple 16S rRNA operons can cause an overestimation of the actual bacterial diversity (Liesack et al. 1991, Cilia et al. 1996, Ferris & Ward 1997, Klappenbach et al. 2000). On the other hand, bacterial diversity may be underestimated since single DGGE bands can 41 Kapitel II Diversity and dynamics of bacterioplankton communities comprise several different 16S rRNA gene fragments with similar running behaviour (Sekiguchi et al. 2001). However, sequencing of particular DGGE bands indicates that the vast majority of bands consist of a single phylotype and, thus, our DGGE profiles have the potential to reveal valuable insights into diversity and dynamics of bacterioplankton communities. Several studies show pronounced seasonal changes within bacterioplankton communities in various aquatic systems (Pernthaler et al. 1998, Van der Gucht et al. 2001, Dang & Lovell 2002, Zwisler et al. 2003, Crump et al. 2003, Kent et al. 2004, Stevens et al. 2005). Seasonal changes may be linked to numerous environmental factors, such as phytoplankton succession, protozoan grazing, and viral lysis (Shiah & Ducklow 1994, Van Hannen et al. 1999, Hahn & Höfle 1999, Pinhassi & Hagström 2000, Fandino et al. 2001, Yager et al. 2001, Brussaard et al. 2005). Because phytoplankton blooms and grazing events are generally restricted to distinct seasonal time periods, our monthly sampling may have considerable effects on the observed patterns. Due to the large time intervals between the individual samplings we probably missed the full development of phytoplankton blooms or their subsequently break down. Temporal variations within phytoplankton blooms, periods of elevated grazing, or increased leaf litter input may explain the formation of different season-specific clusters in each lake. Artificially derived changes of bacterial communities throughout impacts of inlet bacteria as shown previously (Crump et al. 2003, Lindström & Bergström 2004) can be excluded unambiguously because all lakes are independent from external water inflow. The lakes are generally maintained by autochthonous processes except during fall and early winter, when leaf litter leads to a significant input of allochthonous carbon into the lakes. For Lake Stechlin it has been shown that carbon input throughout leafs can contribute to almost a quarter of the total annual organic carbon input which leads to significantly increased 14 C-glucose uptake by heterotrophic bacteria (Babenzien pers. com.). Changes of bacterial community composition in relation to environmental variables The seasonal clusters formed by the DGGE banding patterns of free-living bacteria of Lake Breiter Luzin, Lake Stechlin, and the NE compartment of Lake Grosse Fuchskuhle seem to be related to stratification and mixing events of the lakes (Figure 2B, Table 1). During mixing bacterial communities consist of bacteria of the entire water column, whereas distinct bacterial communities developed in the epi- and hypolimnion during the summer stratification. In addition, our results of NMS analyses and Pearson’s product moment correlations indicated strong correlations (Pearson’s r ≥ 0.800) between free- 42 Kapitel II Diversity and dynamics of bacterioplankton communities living bacteria (Lake Breiter Luzin and the NE and SW compartments of Lake Grosse Fuchskuhle) and the following parameters: secchi depth, temperature, and total bacterial production (Table 5). Furthermore, particle-associated bacteria were strongly correlated with conductivity, total phosphorous, and phytoplankton biomass in Lake Breiter Luzin and Lake Stechlin (Table 5). Statistically significant relationships of these parameters have been previously shown for total bacterial communities of different freshwater habitats (Lindtsröm 2000, 2001, Muylaert et al. 2002, Crump et al. 2003, Stepanauskas et al. 2003, Yannarell & Triplett 2004, 2005, Schauer et al. 2005, Lindtsröm et al. 2005). Our observed lake-specific correlation-patterns may indicate the adaptation of distinct bacterial communities to specific environments. However, it still remains speculative which limnological parameters control the respective bacterial community structure. Therefore, their ecological and physiological relevance has to be investigated in more detail and should also include a high phylogenetic resolution (Lindström et al. 2005). The application of presence/absence data of DGGE banding patterns for our multivariate statistical analysis may limit its interpretation since the use of presence/absence data significantly influences statistical relationships between community structure and environmental variables (Muylaert et al. 2002, Yannarell & Triplett 2005). The application of semi-quantitative or quantitative data of DGGE banding patterns is more robust towards preferential amplification of certain genotypes and, hence, overestimation of these species over others as it can occur in presence/absence analyses. Thus, quantitative data sets are generally more suitable for multivariate statistical analysis (Muylaert et al. 2002). Because quantifications of PCR products for our DGGE analyses were not precise enough to generate quantitative data sets we rather used presence/absence transformations in our statistical analyses to circumvent potential artefacts derived from the application of deficient community data. Nevertheless, multiple linear regression analyses and application of other multivariate statistical methods confirm our NMS results. Phylogenetic diversity of freshwater bacterial communities Diversity determined by the numbers of DGGE bands was relatively high for both bacterial fractions compared to other studies (Riemann & Winding 2001, LaMontagne & Holden 2003, Stevens et al. 2005, Van der Gucht et al. 2005). Even though absolute numbers of DGGE bands of free-living and particle-associated bacteria were similar our DGGE profiles and clone libraries indicate distinct phylogenetic differences between both bacterial fractions. The retrieved 16S rRNA gene sequences belonged to already known freshwater clusters and are predominantly related to yet uncultured bacteria (Hiorns et al. 1997, Crump et al. 1999, Glöckner et al. 2000, Zwart et al. 2002). Clone libraries of free- 43 Kapitel II Diversity and dynamics of bacterioplankton communities living bacteria were dominated by members of the Actinobacteria, Bacteroidetes, and β-Proteobacteria, whereas particle-associated bacterial communities mainly comprised sequences of Cyanobacteria and members of the Bacteroidetes, respectively. However, the number of sequenced clones was too low to draw general conclusions on the quantitative proportion of distinct bacterial lineages. Furthermore, our clone libraries were restricted to two selected time points: May (Lake Stechlin) and November 2003 (all lakes) and, hence, may be rather limited in their phylogenetic information. The close phylogenetic relationship of the obtained 16S rRNA gene sequences to already known freshwater clusters suggest that the retrieved sequences most likely represent the “real” bacterial community composition. In addition, actinobacterial clusters were distributed in a similar manner as found by quantitative CARD-FISH analyses (Allgaier & Grossart 2006). Members of the Bacteroidetes were found as a dominant phylogenetic group within clone libraries of all lakes and bacterial fractions. Bacteria of the Bacteroidetes are common in freshwater habitats but also occur in other aquatic environments (Glöckner et al. 1999, Crump et al. 1999, Cottrell & Kirchman 2000b, Kirchman 2002, Sekiguchi et al. 2002, Zwisler et al. 2003, Eiler & Bertilsson 2004). They are known to play an important role in the turnover of organic matter (Cottrell & Kirchman 2000b) and are capable to degrade polymeric substrates such as cellulose and chitin (Kirchman 2002, Jam et al. 2005). Sequences of α- and β-Proteobacteria were predominantly found within clone libraries of free-living bacteria. In general, α-Proteobacteria belong to the dominant bacterial group within marine environments but also occur regularly in freshwater habitats (Glöckner et al. 1999, Rappé et al. 2000, Bouvier & del Giorgio 2002, Simon et al. 2002). The low numbers of β-Proteobacteria in our clone libraries of particle-associated bacteria are in contradiction to previous studies (Weiss et al. 1996, Grossart & Simon 1998, Schweitzer et al. 2001) and may be an artefact caused by the high numbers of Cyanobacteria and chloroplasts sequences in clone libraries of particle-associated bacteria. Sequences of the Actinobacteria were found as the most dominant phylogenetic group within clone libraries of free-living bacteria (Allgaier & Grossart 2006). Phylogenetic analyses of the actinobacterial 16S rRNA gene sequences revealed several new clusters (acSTL) and subclusters (scB 1-4, acIV C-D) within the phylogenetic tree of freshwater Actinobacteria. Bacteria of the γ-Proteobacteria, δ-Proteobacteria, Candidate Division OP10, Chlorobi, Fibrobacteres, Thermomicrobia, Chloroflexi, Candidate Division TM7, and Acidobacteria occurred only in low proportions and obviously represent minor members of the bacterial communities in the studied lakes. Sequences of Verrucomicrobia and Planctomycetes were randomly found in our clone libraries of particle-associated bacteria. The occurrence 44 Kapitel II Diversity and dynamics of bacterioplankton communities of Verrucomicrobia was described for several lakes (Zwart et al. 2003, Kolmonen et al. 2004, Eiler & Bertilsson 2004). Even though all sequences of Verrucomicrobia were found on particles, it is uncertain whether they are exclusively adapted to these microenvironments as it has been shown for Planctomycetes (Neef et al. 1998). In summary, our results show clear seasonal dynamics within free-living and particleassociated bacteria of all studied lakes. Significant differences were found between both fractions in respect to community structure and phylogenetic diversity. Bacterial communities were strongly correlated with limnological parameters such as secchi depth, temperature, conductivity, phosphorous, bacterial production, and phytoplankton biomass. However, no uniform correlation-patterns between bacterial communities and the measured limnological parameters were found for all lakes. This may indicate an adaptation of individual bacterial communities to specific lake conditions. Phylogenetically, almost all cloned and sequenced 16S rRNA gene fragments belonged to already known freshwater clusters. Members of the Bacteroidetes occurred in both bacterial fractions whereas Actinobacteria, α-, and β-Proteobacteria were mainly found within the free-living bacteria. To obtain further informations on relationships between bacterioplankton communities and environmental variables, more specific studies on distinct phylogenetic lineages and/or defined seasonal periods are needed. Acknowledgements. We thank E. Mach for technical assistance during sampling and in the lab. R. Koschel, L. Krienitz, and P. Kasprzak are thanked for providing data on chemistry, phytoplankton and zooplankton biomasses and community composition, respectively. We also thank K. Pohlmann for her helpful comments on statistical analyses and writing. This study was supported by the Leibniz foundation and by a grant of the Studienstiftung des deutschen Volkes given to M. Allgaier. 45 Kapitel II Diversity and dynamics of bacterioplankton communities LITERATURE CITED Allgaier M, Grossart H-P (2006) Diversity and seasonal dynamics of Actinobacteria in four lakes of Northeastern Germany. Appl Environ Microbiol 72:3489-3497 Bittl T, Babenzien H-D (1996) Microbial activities in an artificially divided acidic lake. Arch Hydrobiol Adv Limnol 48:113-121 Bouvier TC, del Giorgio PA (2002) Compositional changes in free-living bacterial communities along a salinity gradient in two temperate estuaries. Limnol Oceanogr 47:453-470 Brachvogel T, Schweitzer B, Simon M (2001) Dynamics and bacterial colonization of microaggregates in a large mesotrophic lake. Aquat Microb Ecol 26:23-35 Brinkhoff T, Muyzer G (1997) Increased species diversity and extended habitat range of sulfur-oxidizing Thiomicrospira spp. Appl Environ Microbiol 63:3789-3796 Brussaard CPD, Mari X, Van Bleijswijk JDL, Veldhuis MJW (2005) A mesocosm study of Phaeocystis globosa (Prymnesiophyceae) population dynamics II. Significance for the microbial community. Harmful Algae 4:875-893 Cilia V, Lafay B, Christen R (1996) Sequence heterogenities among 16S ribosomal RNA sequences, and their effect on phylogenetic analyses at the species level. Mol Biol Evol 13:451-461 Clarke KR, Green RH (1988) Statistical design and analysis for a “biological effects” study. Mar Ecol Progr Ser 46:213-226 Cotner JB, Biddanda BA (2002) Small players, large role: microbial influence on biogeochemical processes in pelagic aquatic ecosystems. Ecosystems 5:105-121 Cottrell MT, Kirchman DL (2000) Community composition of marine bacterioplankton determined by 16S rRNA gene clone libraries and fluorescence in situ hybridization. Appl Environ Microbiol 66:5116-5122 Cottrell MT, Kirchman DL (2000 b) Natural assemblages of marine Proteobacteria and members of the Cytophaga/Flavobacteria cluster consuming low- and highmolecular weight dissolved organic matter. Appl Environ Microbiol 66:1692-1697 Crump BC, Baross JA (1996) Particle-attached bacteria and heterotrophic plankton associated with the Columbia River estuarine turbidity maxima. Mar Ecol Prog Ser 138:265-272 Crump BC, Armbrust EV, Baross JA (1999) Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia river, its estuary, and the adjacent coastal ocean. Appl Environ Microbiol 65:3192-3204 Crump BC, Kling GW, Bahr M, Hobbie JE (2003) Bacterioplankton community shifts in an arctic lake correlate with seasonal changes in organic matter source. Appl Environ Microbiol 69:2253-2268 Dang H, Lovell CR (2002) Seasonal dynamics of particle-associated and free-living marine Proteobacteria in a salt marsh tidal creek as determined using fluorescence in situ hybridization. Environ Microbiol 4:287-295 Eiler A, Bertilsson S (2004) Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes. Environ Microbiol 6:1228-1243 Fandino LB, Riemann L, Steward GF, Long RA, Azam F (2001) Variations in bacterial community structure during a dinoflagellate bloom analyzed by DGGE and 16S rDNA sequencing. Aquat Microb Ecol 23:119-130 Ferris MJ, Ward DM (1997) Seasonal distribution of dominant 16S rRNA-defined populations in a hot spring microbial mat examined by denaturing gradient gel electrophoresis. Appl Environ Microbiol 63:1372-1381 Fisher MM, Klug JL, Lauster G, Newton M, Triplett EW (2000) Effects of resources and trophic interactions on freshwater bacterioplankton diversity. Microb Ecol 40:125138 46 Kapitel II Diversity and dynamics of bacterioplankton communities Glöckner FO, Fuchs B, Amann R (1999) Bacterioplankton composition of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl Environ Microbiol 65:3721-3726 Glöckner FO, Zaichikov E, Belkova N, Denissova L, Pernthaler J, Pernthaler A, Amann R (2000) Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of Actinobacteria. Appl Environ Microbiol 66:5053-5065 Grossart H-P, Simon M (1993) Limnetic macroscopic organic aggregates (lake snow): abundance, characteristics, and bacterial dynamics in Lake Constance. Limnol Oceanogr 38:532-546 Grossart H-P, Simon M (1998) Bacterial colonization and microbial decomposition of limnetic organic aggregates (lake snow). Aquat Microb Ecol 15:127-140 Hahn MW, Höfle MG (1999) Flagellate predation on a bacterial model community: interplay of size-selective grazing, specific bacterial cell size, and bacterial community composition. Appl Environ Microbiol 65:4863-4872 Hahn MW, Höfle MG (2001) Grazing of protozoa and its effect on populations of aquatic bacteria. FEMS Microbial Ecol 35:113-121 Hehmann A, Krienitz L, Koschel R (2001) Long-term phytoplankton changes in an artificially divided, top-down manipulated humic lake. Hydrobiologia 448:83-96 Hiorns WD, Methé BA, Nierzwickibauer SA, Zehr JP (1997) Bacterial diversity in Adirondack mountain lakes as revealed by 16S rRNA gene sequences. Appl Environ Microbiol 63:2957-2960 Jam M, Flament D, Allouch J, Potin P, Thion L, Kloareg B, Czjzek M, Helbert W, Michel G, Barbeyron T (2005) The endo-β-agarases AgaA and AgaB from the marine bacterium Zobellia galactinovorans: two paralog enzymes with different molecular organizations and catalytic behaviour. Biochem J 385:703-713 Kasprzak P (1993) The use of an artificially divided bog lake in food web studies. Verh Int Verein Limnol 25:652-656 Kent AD, Jones SE, Yannarell AC, Graham JM, Lauster GH, Kratz TK, Triplett EW (2004) Annual patterns in bacterioplankton community variability in a humic lake. Microb Ecol 48:550-560 Kirchman DL (2002) The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol Ecol 39:91-100 Klappenbach JA, Dunbar JM, Schmidt TM (2000) rRNA operon copy number reflects ecological strategies of bacteria. Appl Environ Microbiol 66:1328-1333 Kolmonen E, Sivonen K, Rapala J, Haukka K (2004) Diversity of cyanobacterial and heterotrophic bacteria in cyanobacterial blooms in Lake Joutikas, Finland. Aquat Microb Ecol 36:201-211 Koschel R (1995) Manipulation of whole lake ecosystems and long term limnological observations of the Brandenburg-Mecklenburg lake district. Int Rev Gesamten Hydrobiol 80:1-12 Koschel R, Casper P, Gonsiorczyk T, Rossberg R, Wauer G (2006) Hypolimnetic Al- and CaCO3-treatments and aeration for restoration of a stratified eutrophic hardwater lake (Lake Tiefwarensee, Mecklenburg-Vorpommern, Germany). Verh Internat Verein Limnol in press LaMontagne MG and Holden PA (2003) Comparison of free-living and particle-associated bacterial communities in a coastal lagoon. Microb Ecol 46:228-237 Langenheder S, Jürgens K (2001) Regulation of bacterial biomass and community structure by metazoan and protozoan predation. Limnol Oceanogr 46:121-134 Liesack W, Weyland H, Stackebrandt E (1991) Potential risks of gene amplification by PCR as determined by 16S rDNA analysis of a mixed-culture of strict barophilic bacteria. Microb Ecol 21:191-198 Lindström ES (2000) Bacterioplankton community composition in five lakes differing in trophic status and humic content. Microb Ecol 40:104-113 47 Kapitel II Diversity and dynamics of bacterioplankton communities Lindström ES (2001) Investigating influential factors on bacterioplankton community composition: results from a field study of five mesotrophic lakes. Microb Ecol 42:598-605 Lindström ES, Bergström AK (2004) Influence of inlet bacteria on bacterioplankton assemblage composition in lakes of different hydraulic retention time. Limnol Oceanogr 49: 125-136 Lindtsröm ES, Kamst-van Agterveld MP, Zwart G (2005) Distribution of typical freshwater bacterial groups is associated with pH, temperature, and lake water retention time. Appl Environ Microbiol 71:8201-8206 McCune B, Grace JB (2002) Analysis of Ecological Communities. MjM Software Design, Glenden Beach, OR Mehner T, Diekmann M, Brämik U, Lemcke R (2005) Composition of fish communities in German lakes as related to lake morphology, trophic state, shore structure, and human-use intensity. Freshwater Biol 50:70–85 Methé BA, Zehr JP (1999) Diversity of bacterial communities in Adirondack lakes: do species assemblages reflect lake water chemistry? Hydrobiologia 401:77-96 Middelboe M, Søndergaard M, Letarte Y, Borch NH (1995) Attached and free-living bacteria: production and polymer hydrolysis during a diatom bloom. Appl Environ Microbiol 59:3916-3921 Morris CE, Bardin M, Berge O, Frey-Klett P, Fromin N, Girardin H, Guinebretière M-H, Lebaron P, Thiéry JM, Trousselier H (2002) Microbial biodiversity: approaches to experimental design and hypothesis testing in primary scientific literature from 1975 to 1999. Appl Environ Microbiol 66:592-616 Murray AE, Hollibough JT, Orrego C (1996) Phylogenetic composition of bacterioplankton from two California estuaries compared by denaturing gradient gel electrophoresis of 16S rDNA fragments. Appl Environ Microbiol 62:2585-2595 Muylaert K, Van der Gucht K, Vloemans N, de Meester L, Gillis M, Vyverman W (2002) Relationship between bacterial community composition and bottom-up versus topdown variables in four eutrophic shallow lakes. Appl Environ Microbiol 68:4740-4750 Muyzer G, Dewaal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes coding for 16S ribosomal-RNA. Appl Environ Microbiol 59:695-700 Muyzer G, Teske A, Wirsen CO, Jannasch HW (1995) Phylogenetic relationship of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch Microbiol 164:165-172 Muyzer G, Brinkhoff T, Nübel U, Santegoeds C, Schäfer H, Wawer C (1998) Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. In: Akkerman ADL, van Elsas JD, Bruijn FJ (eds) Molecular microbial ecology manual. Kluwer Academic Publishers, Dordrecht Neef A, Amann R, Schlesner H, Schleifer K-H (1998) Monitoring a widespread bacterial group: in situ detection of Planctomycetes with 16S rRNA-target probes. Microbiology 144:3257-3266 Pernthaler J, Glöckner FO, Unterholzner S, Alfreider A, Psenner R, Amann R (1998) Seasonal community and population dynamics of pelagic bacteria and archaea in a high mountain lake. Appl Environ Microbiol 64:4299-4306 Pernthaler J, Posch T, Šimek K, Vrba J, Pernthaler A, Glöckner FO, Nübel U, Psenner R, Amann R (2001) Predator-specific enrichment of Actinobacteria from a cosmopolitan freshwater clade in mixed continuous culture. Appl Environ Microbiol 67:2145-2155 Pinhassi J, Hagström Å (2000) Seasonal succession in marine bacterioplankton. Aquat Microb Ecol 21:245-256 Premazzi G, Chiaudani G (1992) Ecological quality of surface waters – Quality assessments schemes for European Community lakes, JRC Report EUR 14563 EN, Brussels 48 Kapitel II Diversity and dynamics of bacterioplankton communities Rainey FA, Ward N, Sly LI, Stackebrandt E (1994) Dependence on the taxon composition of clone libraries for PCR amplified, naturally occurring 16S rDNA, on the primer pair and the cloning system used. Experientia 59:796-797 Rappé MS, Vergin K, Giovannoni SJ (2000) Phylogenetic comparison of a coastal bacterioplankton community with its counterparts in open ocean and freshwater systems. FEMS Microbiol Ecol 33:219-232 Riemann L, Winding A (2001) Community dynamics of free-living and particle-associated bacterial assemblages during a freshwater phytoplankton bloom. Microb Ecol 42:274-285 Schauer M, Kamenik C, Hahn MW (2005) Ecological differentiation within a cosmopolitan group of planktonic freshwater bacteria (SOL cluster, Saprospiraceae, Bacteroidetes). Appl Environ Microbiol 71:5900-5907 Schweitzer B, Huber I, Amann R, Ludwig W, Simon M (2001) α- and β-Proteobacteria control the consumption and release of amino acids on Lake Snow aggregates. Appl Environ Microbiol 67:632-645 Sekiguchi H, Tomioka N, Nakahara T, Uchiyama H (2001) A single band does not always represent single bacterial strains in denaturing gradient gel electrophoresis analysis. Biotechnology Letters 23:1205-1208 Sekiguchi H, Watanabe M, Nakahara T, Xu B, Uchiyama H (2002) Succession of bacterial community structure along the Changjiang River determined by denaturing gradient gel electrophoresis and clone library analysis. Appl Environ Microbiol 68:5142-5150 Selje N, Simon M (2003) Composition and dynamics of particle-associated and free-living bacterial communities in the Weser estuary, Germany. Aquat Microb Ecol 30:221237 Shiah FK, Ducklow HW (1994) Temperature regulation of heterotrophic bacterioplankton abundance, production, and specific growth rate in Chesapeake Bay. Limnol Oceanogr 39:1243-1258 Simon M, Grossart H-P, Schweitzer B, Ploug H (2002) Microbial ecology of organic aggregates in aquatic ecosystems. Aquat Microb Ecol. 28:175-211 Stepanauskas R, Moran MA, Bergamaschi BA, Hollibaugh JT (2003) Covariance of bacterioplankton composition and environmental variables in a temperate delta system. Aquat Microb Ecol 31:85-98 Stevens H, Brinkhoff T, Simon M (2005) Composition of free-living, aggregate-associated and sediment surface-associated bacterial communities in the German Wadden Sea. Aquat Microb Ecol 38:15-30 Suzuki MT, Giovannoni SJ (1996) Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol 62:625-630 Trusova MY, Gladyshev MI (2002) Phylogenetic diversity of winter bacterioplankton of eutrophic Siberian reservoirs as revealed by 16S rRNA gene sequences. Microb Ecol 44:252-259 Van Hannen EJ, Zwart G, Kamst-van Agterveld MP, Gons HJ, Ebert J, Laanbroek HJ (1999) Changes in the bacterial and eukaryotic community structure after mass lysis of filamentous cyanobacteria associated with viruses. Appl Environ Microbiol 65:795-801 Van der Gucht K, Sabbe K, De Meester L, Vloemans N, Zwart G, Gills M, Vyverman W (2001) Contrasting bacterioplankton community composition and seasonal dynamics in two neighbouring hypertrophic freshwater lakes. Environ Microbiol 3:680-690 Van der Gucht K, Vandekerckhove T, Vloemans N, Cousin S, Muylaert K, Sabbe K, Gills M, Declerk S, De Meester L, Vyverman W (2005) Characterization of bacterial communities in four freshwater lakes differing in nutrient load and food web structure. FEMS Microb Ecol 53:205-220 Weiss P, Schweitzer B, Amann R, Simon M (1996) Identification in situ and dynamics of bacteria on limnetic organic aggregates (Lake Snow). Appl Environ Microbiol 62:1998-2005 49 Kapitel II Diversity and dynamics of bacterioplankton communities Wintzingerode FV, Göbel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213-229 Yager PL, Connelly TL, Mortazavi B, Wommak KE, Band N, Bauer JE, Opsahl S, Hollibaugh JT (2001) Dynamic bacterial and viral response to an algal bloom at subzero temperatures. Limnol Oceanogr 46:790-801 Yannarell AC, Triplett EW (2004) Within- and between lake variability in the composition of bacterioplankton communities: investigations using multiple spatial scales. Appl Environ Microbiol 70:214-223 Yannarell AC, Triplett EW (2005) Geographic environmental sources of variation in lake bacterial community composition. Appl Environ Microbiol 71:227-239 Zwart G, Crump BC, Kamst-van Agterveld MP, Hagen F, Hans S (2002) Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat Microb Ecol 28:151-155 Zwart G, van Hannen EJ, Kamst-van Agterveld MP, Van der Gucht K, Lindtsröm ES, Van Wichelen J, Lauridsen T, Crump BC, Han S-K, Declerck S (2003) Rapid screening of freshwater bacterial groups by using reverse line blot hybridization. Appl Environ Microbiol 69:5875-5883 Zwisler W, Selje N, Simon M (2003) Seasonal patterns of the bacterioplankton community composition in a large mesotrophic lake. Aquat Microb Ecol 31:211-225 50 Kapitel II Diversity and dynamics of bacterioplankton communities TABLE 1: Limnological characteristics of the sampled lakes. Parameter Geographical position Max. depth [m] Surface area [km2] Catchment area [km2] Characteristics of catchment area Stratification (2003) Secchi depth [m] Trophy pH PO4-P [µg l-1] DOC [mg l-1] Bacterial numbers [106 ml-1] Primary production [µgC l-1 d-1] Bacterial production [µgC l-1 d-1] Lake Stechlin (ST) Lake Grosse Fuchskuhle northeast basin southwest basin (FNE) (FSW) Lake Breiter Luzin (BL) Lake Tiefwaren (TW) N 53° 10’ E 13° 02’ 69.5 4.3 26.0 mixed forest N 53° 10’ E 13° 02’ 5.6 0.02 0.005 mixed forest; bog area N 53° 20’ E 13° 28’ 58.5 3.57 14.0 forest and agriculture June-October 1.6 - 3.8 mesotrophic 8.5 ±0.2 3 ±4 5.8 ±0.6 1.93 ±0.49 103 ±44 51 ±58 N 53° 31’ E 12° 42’ 24 1.4 17.5 forest; small town June-September 3.1 - 8.9 eutrophic 8.3 ±0.2 2 ±1 10.6 ±5.3 2.21 ±0.47 114 ±99 35 ±37 June-October 6.5 - 10.5 oligotrophic 8.5 ±0.2 2 ±0.9 4.3 ±1.1 1.35 ±0.58 31 ±11 22 ±15 May-September 1.0 - 2.2 eutrophic 6.5 ±0.6 5 ±2 10.3 ±1.3 2.74 ±1.0 182 ±156 39 ±21 May-September 0.9 - 1.5 dystrophic 4.7 ±0.2 7 ±2 24.8 ±5.1 1.93 ±0.69 512 ±863 63 ±101 data for pH, PO4-P, DOC, bacterial numbers, primary production, and bacterial production are average values of epilimnetic samples from April-November 2003 and March 2004; trophic status was determined following the guideline EUR 14563 EN of the Commission of the European Communities (Premazzi & Chiaudani 1992). TABLE 2: Significance levels (p) of ANOVA statistics of the absolute numbers of DGGE bands of free-living and particle-associated bacteria. Significance values (p ≤0.05) are highlighted by grey boxes. BL vs. ST BL vs. FNE BL vs. FSW BL vs. TW ST vs. FNE ST vs. FSW ST vs. TW FNE vs. FSW FNE vs. TW FSW vs. TW free-living particle-associated 0.106 ≤0.001 ≤0.001 ≤0.001 ≤0.01 ≤0.001 ≤0.001 0.967 0.055 0.224 ≤0.01 ≤0.05 ≤0.001 ≤0.001 0.994 0.665 ≤0.001 0.387 ≤0.001 ≤0.05 ANOVA revealed degrees of freedom of df = 4 for both, free-living and particle-associated bacteria with F values of F = 37.604 (free-living) and F = 24.4 (particle-associated), respectively. The abbreviations for the lakes are given in Table 1. 51 Kapitel II Diversity and dynamics of bacterioplankton communities TABLE 3: ANOSIM statistics of comparison of DGGE profiles of free-living and particleassociated bacteria. (A) Comparison of free-living and particle-associated bacteria of all lakes. (B) Comparison of free-living and particle-associated bacteria within each single lake. Significance values with p ≤0.05 are shaded grey. A free-living bacteria BL vs. FNE BL vs. FSW BL vs. ST BL vs. TW FNE vs. FSW FNE vs. ST FNE vs. TW FSW vs. ST FSW vs. TW ST vs. TW particle-associated bacteria Sample statistic (R) Significance level (p) Sample statistic (R) Significance level (p) 0.748 0.982 0.969 0.664 0.553 0.684 0.28 0.924 0.59 0.68 ≤0.01 ≤0.001 ≤0.001 ≤0.001 ≤0.001 ≤0.001 ≤0.001 ≤0.01 ≤0.001 ≤0.001 0.408 0.695 0.661 0.508 0.29 0.307 0.408 0.141 0.315 0.455 ≤0.001 ≤0.001 ≤0.001 ≤0.001 ≤0.001 ≤0.001 ≤0.001 0.052 ≤0.01 ≤0.001 Sample statistic (R) Significance level (p) 0.462 0.245 0.475 0.459 0.289 ≤0.001 0.08 ≤0.001 ≤0.001 ≤0.001 B BL (FL vs. PA) FNE (FL vs. PA) FSW (FL vs. PA) ST (FL vs. PA) TW (FL vs. PA) The global test revealed a sample statistic of 0.499 with a significance level of p ≤0.001. FL: free-living; PA: particleassociated. The abbreviations for the lakes are given in Table 1. TABLE 4: Phylogenetic classification of 16S rRNA gene sequences derived from 12 clone libraries of free-living and particle-associated freshwater bacterial communities. α-Proteobacteria β-Proteobacteria γ-Proteobacteria δ-Proteobacteria Actinobacteria Bacteroidetes Cand.Div. OP10 Planctomycetes Verrucomicrobia other phyla* Cyanobacteria Chloroplasts ST (M) (FL / PA) n = 29 / 20 2/1/-/2 -/7/1 3/3 1/-/-/-/12 / 2 3 / 12 ST (N) (FL / PA) n = 23 / 19 -/3 3/1 -/1/13 / 4/-/1 -/1 -/1 1/1/3 -/9 BL (N) (FL / PA) n = 27 / 28 2/1 4/-/-/16 / -/3 1/-/2 -/2/2 2 / 17 -/3 FNE (N) (FL / PA) n = 20 / 20 -/1 5/1 -/1/11 / 2/2 -/-/-/1/-/- / 16 FSW (N) (FL / PA) n = 20 / 25 2/-/-/-/7/9/1 -/-/-/-/-/2 / 24 TW (N) (FL / PA) n = 25 / 21 6/2/1/-/10 / 3/6 -/-/-/1 3/2 -/5 -/7 ∑ (FL / PA) n = 144 / 133 12 / 5 15 / 2 1/2 2/64 / 1 21 / 15 2/1 -/3 -/2 7/4 15 / 27 5 / 71 * Chlorobi, Fibrobacteres, Thermomicrobia, Chloroflexi, Cand.Div. TM7, Acidobacteria (see also phylogenetic trees); (M) (N) FL: free-living bacteria; PA: particle-associated bacteria; : samples from May 2003; : samples from November 2003. 52 Kapitel II Diversity and dynamics of bacterioplankton communities TABLE 5: Results of NMS ordinations and Pearson’s product moment correlations of DGGE profiles of free-living (A) and particle-associated (B) bacterial communities and limnological parameters. Pearson’s r values ≥0.7 are given for the three significant ordination axes. Limnological parameters with correlations r ≤0.7 were excluded from this table. The first column shows the results of the comprehensive analyses of epilimnetic samples of all lakes. A B (1) (2) free-living Secchi depth Temperature O2 [mg l-1] pH Conductivity Total N Total P DOC BPP (total) PP (total) PP (≤3.0 ≥0.2µm) Phytoplankton particle-associated Secchi depth Temperature Conductivity Total P PP (≤3.0 ≥0.2µm) Zooplankton Phytoplankton Epilimnion (all lakes) BL FNE FSW ST TW 0.785 (2) - -0.877 (1) 0.895 (1) -0.705 (1) - 0.738 (2) -0.800 (1) - 0.773 (2) -0.818 (1) - -0.846 (1) 0.772 (1) 0.797 (1) - 0.704 (1) -0.787 (1) 0.790 (3) -0.720 (3) - -0.747 (2) 0.713 (2) -0.722 (2) 0.701 (3) - - -0.846 (3) -0.831 (3) - - - 0.757 (3) -0.725 (1) 0.821 (1) -0.745 (1) -0.750 (1) - - (3) , , correlations to ordination axes 1, 2, and 3, respectively; PA particle-associated; DOC dissolved organic carbon; BPP bacterial protein production; PP primary production. The abbreviations for the lakes are given in Table 1. particle-associated ST D AP R M A JU Y N JU L AU SE G P O C N T O D V EC M A ST R D ST D AP R M AY JU N JU L AU G SE P O C NT O D V EC M A ST R D free-living STD: standard FIGURE 1: Inverted DGGE profiles of amplified 16S rRNA gene fragments of free-living and particle-associated bacteria of the NE compartment of Lake Grosse Fuchskuhle between April 2003 and March 2004. 53 Kapitel II Diversity and dynamics of bacterioplankton communities A free-living BL FNE FSW ST TW particle-associated Axis 2 pH stress = 21.33 stress = 19.34 Axis 1 B BL SEP AUG NOV FEB FNE APR AUG AUG NOV JUN FSW APR AUG JUL SEP DEC JUL MAR MAR OCT MAY MAY SEP APR JUN MAY MAR JUN NOV JUL APR JUL NOV JUN MAR OCT NOV APR APR JUL NOV MAR SEP MAY MAR JUN OCT SEP MAY FEB JUN DEC JUL SEP Axis 2 MAY AUG AUG OCT stress = 15.61 stress = 9.12 ST APR stress = 14.02 TW JUN MAY APR MAY NOV JUN DEC AUG JUN OCT APR MAY FEB FEB JUL MAR MAR AUG JUL NOV OCT DEC MAR OCT NOV AUG FEB AUG NOV OCT DEC FEB DEC MAY SEP SEP JUL APR JUN JUL MAR stress = 13.35 stress = 12.43 Axis 1 FIGURE 2: Results of NMS ordinations of DGGE banding patterns of free-living and particle-associated bacterial communities of the four studied lakes. The results of the first two ordination axes are given. (A) Results of comprehensive NMS analyses of all lakes. Within NMS plot of free-living bacteria pH is displayed as strongly correlated limnological variable. (B) NMS plots of the single lakes. Open symbols: free-living bacteria; solid symbols: particle-associated bacteria. The abbreviations for the lakes are given in Table 1. 54 Kapitel II Diversity and dynamics of bacterioplankton communities Lake Tiefwaren clone TW11-8 (DQ501378) Antarctic bacterium R-7724 (AJ440986) Lake Breiter Luzin clone BL11-26 (DQ501292) Rhodoferax ferrireducens T118 (AF435948) uncultured beta proteobacterium SW72 (AJ575699) 58 Lake Grosse Fuchskuhle (NE) clone FNE11-27 (DQ501307) particle-associated Lake Stechlin clone ST11-2 (DQ501330) uncultured bacterium L013.11 (AF358003) uncultured bacterium (AY662010) 100 Lake Grosse Fuchskuhle (NE) clone FNE11-4 (DQ501311) uncultured beta proteobacterium (AY622262) beta proteobacterium F1021 (AF236005) 76 Lake Grosse Fuchskuhle (NE) clone FNE11-10 (DQ501302) Lake Grosse Fuchskuhle (NE) clone FNE11-19 (DQ501305) unidentified bacterium LWSR-25 (AY345542) uncultured beta proteobacterium TLM05 (AF534429) Lake Grosse Fuchskuhle (NE) clone FNE11-20 (DQ501306) Lake Stechlin clone ST11-17 (DQ501328) Lake Stechlin clone ST11-23 (DQ501332) Pavin Lake clone P38.4 (AY752086) 100 uncultured bacterium 220ds20 (AY212668) 100 Lake Breiter Luzin clone BL11-10 (DQ501285) 65 uncultured beta proteobacterium 08 (AF361193) Lake Stechlin clone ST11-40 (DQ501338) 100 uncultured bacterium oc35 (AY491578) beta proteobacterium MWH-MoK1 (AJ550652) beta proteobacterium MWH-JaW7 (AJ550658) 100 beta proteobacterium MWH-CaK1 (AJ550667) Lake Grosse Fuchskuhle (NE) clone FNE11-15 (DQ501303) 72 Polynucleobacter necessarius(T) (X93019) Lake Stechlin clone ST5-21 (DQ501346) uncultured freshwater bacterium LD28 (Z99999) Pavin Lake clone P38.29 (AY572096) Lake Breiter Luzin clone BL11-25 (DQ501291) Lake Breiter Luzin clone BL11-11 (DQ501286) 100 Lake Tiefwaren clone TW11-11 (DQ501356) 75 unidentified bacterium GLSR-10 (AY345583) 100 gamma proteobacterium HTB082 (AB010842) uncultured bacterium p-261-05 (AF371859) Lake Stechlin clone ST5-34 (DQ501349) 100 Lake Stechlin clone ST5-44 (DQ501353) 100 Lake Tiefwaren clone TW11-18 (DQ501358) Methylobacter psychrophilus(T) (AF152597) 73 uncultured bacterium FukuN13 (AJ290055) Lake Tiefwaren clone TW11-2 (DQ501359) Lake Stechlin clone ST5-4 (DQ501352) uncultured freshwater bacterium LD12 (Z99997) Pavin Lake clone P38.43 (AY752103) uncultured bacterium S9JU-44 (AB154321) Lake Tiefwaren clone TW11-7 (DQ501377) Lake Tiefwaren clone TW11-10 (DQ501355) Lake Tiefwaren clone TW11-22 (DQ501361) 100 Lake Breiter Luzin clone BL11-19 (DQ501288) 100 Lake Tiefwaren clone TW11-3 (DQ501366) Lake Stechlin clone ST11-41 (DQ501339) Lake Stechlin clone ST11-42 (DQ501340) Caedibacter caryophila str. 221 (X71837) 74 Lake Breiter Luzin clone BL11-53 (DQ501298) 99 uncultured alpha proteobacterium GWS-K33 (AY515452) 100 Rhodobacter sphaeroides IL106 (D16424) Lake Tiefaren clone TW11-20 (DQ501360) 84 uncultured eubacterium GKS59 (AJ224988) 100 alpha proteobacterium A0902 (AF236003) 100 Lake Grosse Fuchskuhle (NE) clone FNE11-30 (DQ501309) Lake Stechlin clone ST5-16 (DQ501344) Lake Breiter Luzin clone BL11-21 (DQ501289) alpha proteobacterium AP-9-1 (AY145547) 100 Lake Stechlin clone ST11-24 (DQ501333) 100 alpha proteobacterium AP-6 (AY145544) uncultured alpha proteobacterium SW32 (AJ575704) 100 uncultured alpha proteobacterium SW22 (AJ575705) Lake Grosse Fuchskuhle (SW) clone FSW11-5 (DQ501324) 100 Lake Grosse Fuchskuhle (SW) clone FSW11-10 (DQ501315) uncultured delta proteobacterium JG37-AG-118 (AG518799) 100 uncultured bacterium Q3-6C17 (AY048892) 89 Lake Stechlin clone ST11-13 (DQ501327) uncultured delta proteobacterium S15B-MN10 (AJ583187) 100 Lake Grosse Fuchskuhle (NE) clone FNE11-18 (DQ501304) Syntrophus sp. (AJ133796) A β-Proteobacteria γ-Proteobacteria α-Proteobacteria δ-Proteobacteria 0.10 FIGURE 3: Maximum likelihood trees of cloned and sequenced 16S rRNA gene fragments of free-living and particle-associated bacteria. Solid lines indicate sequences that were included in the primary analyses (sequences ≥1400 nucleotides), whereas dotted lines indicate partial sequences (≤1400 nucleotides) added by maximum parsimony criteria. Sequences of this study are shown in bold letters. Sequences of particleassociated bacteria are marked by grey boxes. GenBank accession numbers are given in parentheses. The scale bar corresponds to 10 base substitutions per 100 nucleotide positions. Bootstrap values at the main branching points are given. (A) Proteobacteria; (B) Bacteroidetes; (C) overall phylogenetic tree of 16S rRNA gene sequences which occur only in low numbers in the clone libraries. 55 Kapitel II Diversity and dynamics of bacterioplankton communities 85 100 96 69 100 0.10 56 Bacteroidetes Sphingobacteria 67 63 99 Bacteroidetes 84 Flavobacteria B Lake Grosse Fuchskuhle (SW) clone FSW11-14 (DQ501319) Lake Stechlin clone ST11-9 (DQ501342) uncultured bacterium BA2 (AF087043) uncultured Cytophagales bacterium PRD01a005B (AF289153) uncultured Bacteroidetes clone Flo-53 (AY684349) uncultured bacterium NB-12 (AB117716) Lake Grosse Fuchskuhle (NE) clone FNE11-34 (DQ501310) 100 Lake Stechlin clone ST5-17 (DQ501345) uncultured Cytophagales bacterium O6 (AF361205) 99 Lake Stechlin clone ST11-7 (DQ501341) Lake Stechlin clone ST11-19 (DQ501329) Lake Stechlin clone ST5-36 (DQ501350) Lake Stechlin clone ST5-37 (DQ501351) Pavin Lake clone P38.17 (AY752092) uncultured bacterium FukuN36 (AJ289998) 100 uncultured bacterium 167ds20 (AY212618) 64 Lake Grosse Fuchskuhle (NE) clone FNE11-29 (DQ501308) uncultured bacterium WCHB1-32 (AF050543) uncultured bacterium L15 (AY444993) Uncultured bacterium clone BSV85 (AJ229229) Lake Tiefwaren clone TW11-43 (DQ501371) uncultured Lake Michigan sediment bacterium LMBA49 (AF320926) uncultured Cytophaga Sva1038 (AJ240979) 98 Lake Tiefwaren clone TW11-41 (DQ501370) 99 uncultured bacterium PK91 (AY555796) Lake Grosse Fuchskuhle (SW) clone FSW11-17 (DQ501321) Lake Grosse Fuchskuhle (SW) clone FSW11-8 (DQ501326) Lake Grosse Fuchskuhle (SW) clone FSW11-3 (DQ501323) Lake Grosse Fuchskuhle (SW) clone FSW11-15 (DQ501320) Bacteroidetes bacterium LC9 (AY337604) Cytophagales str. MBIC 4147 (AB022889) 100 Sphingobacterium like sp. PC1.9 (X89912) Lake Stechlin clone ST11-20 (DQ501331) uncultured Sphingobacteriaceae bacterium LiUU-5-303 (AY509378) uncultured bacterium oc26 (AY491570) 100 Sphingobacterium comitans (X91814) Lake Tiefwaren clone TW11-46 (DQ501373) Lake Tiefwaren clone TW11-58 (DQ501376) 99 uncultured Bacteroidetes bacterium LiUU-11-161 (AY509379) Lake Tiefwaren clone TW11-26 (DQ501363) 75 Lake Breiter Luzin clone BL11-58 (DQ501300) uncultured bacterium TLM10 (AF534434) 100 Lake Tiefwaren clone TW11-36 (DQ501369) 91 uncultured bacterium D136 (AY274142) Lake Grosse Fuchskuhle (NE) clone FNE11-7 (DQ501313) Sep Reservoir clone S4.12 (AY752114) Lake Tiefwaren clone TW11-14 (DQ501357) uncultured bacterium TLM09 (AF534433) Lake Grosse Fuchskuhle (NE) clone FNE11-5 (DQ501312) Lake Grosse Fuchskuhle (SW) clone FSW11-22 (DQ501322) uncultured bacterium FukuS59 (AJ290042) Lake Grosse Fuchskuhle (SW) clone FSW11-6 (DQ501325) uncultured Bacteroidetes bacterium SW36 (AJ575722) Lake Tiefwaren clone TW11-23 (DQ501362) 100 Sep Reservoir clone S10.17 (AY752128) Lake Grosse Fuchskuhle (SW) clone FSW11-11 (DQ501316) Lake Grosse Fuchskuhle (SW) clone FSW11-12 (DQ501317) Lake Grosse Fuchskuhle (SW) clone FSW11-13 (DQ501318) uncultured bacterium FukuN23 (AJ290011) uncultured Bacteroidetes bacterium BIti15 (AJ318185) 53 Lake Stechlin clone ST5-32 (DQ501348) 100 uncultured bacteriumGKS2-217 (AJ290034) Lake Tiefwaren clone TW11-54 (DQ501375) uncultured bacterium s22 (AY171331) Lake Stechlin clone ST5-10 (DQ501343) Pavin Lake clone P38.16 (AY752091) 100 uncultured Bacteroidetes bacterium NE60 (AJ575728) Lake Breiter Luzin clone BL11-39 (DQ501293) 98 Flectobacillus speluncae GWF20C (AY065625) 100 Lake Stechlin clone ST5-25 (DQ501347) unidentified bacterium GLBR-3 (AY345577) Flexibacter roseolus IFO 16707 (AB078063) Thermonema rossianum SC-1 (Y08957) Lake Breiter Luzin clone BL11-44 (DQ501295) uncultured bacterium PK349 (AY555809) uncultured bacterium PK329 (AY555805) 100 uncultured bacterium PK54 (AY555788) Lake Stechlin clone ST11-35 (DQ501337) Lake Tiefwaren clone TW11-48 (DQ501374) Lake Breiter Luzin clone BL11-22 (DQ501290) uncultured Fibrobacteres bacterium LiUU-9-330 (AY509521) Lake Tiefwaren clone TW11-29 (DQ501365) uncultured sludge bacterium A12b (AF234699) uncultured bacterium KD4-114 (AY218625) uncultured bacterium #0319-6E22 (AF234130) uncultured soil bacterium S1220 (AF507716) Chlorobi Fibrobacteres Kapitel II Diversity and dynamics of bacterioplankton communities C 79 100 84 91 100 100 100 63 99 74 Lake Tiefwaren clone TW11-35 (DQ501368) uncultured soil bacterium 12-1 (AY326633) uncultured bacterium sipK52 (AJ307949) Lake Breiter Luzin clone BL11-13 (DQ501287) uncultured Crater Lake bacterium CL500-11 (AF316759) 100 Lake Breiter Luzin clone BL11-54 (DQ501299) uncultured bacterium SJA-35 (AJ009460) uncultured bacterium C2-12 (AJ387902) Lake Tiefwaren clone TW11-28 (DQ501364) uncultured bacterium KD4-96 (AY218649) 100 uncultured Chloroflexi bacterium Gitt-GS-136 (AJ582210) Lake Grosse Fuchskuhle (NE) clone FNE11-8 (DQ501314) uncultured bacterium HTH4 (AF418964) 100 green non-sulfur bacterium B1-5 (AB079645) uncultured soil bacterium S095 (AF507694) uncultured bacterium TM7LH20 (AF269006) Lake Tiefwaren clone TW11-30 (DQ501367) uncultured soil bacterium S1197 (AF507689) 100 metal-contaminated soil clone K (AF145815) uncultured Crater Lake bacterium CL0-84 (AF316751) Lake Stechlin clone ST5-7 (DQ501354) uncultured bacterium 177up (AY212628) Lake Breiter Luzin clone BL11-9 (DQ501301) Lake Stechlin clone ST11-34 (DQ501336) uncultured bacterium HTB7 (AF418946) uncultured bacterium CH21 (AJ271047) planctomycetes str. 467 (AJ231174) uncultured bacterium Dpcom 231 (AY453243) 100 Lake Stechlin clone ST11-26 (DQ501334) Lake Breiter Luzin clone BL11-51 (DQ501297) Planctomycetes sp. Schlesner 642 (X81950) uncultured bacterium HTA2 (AF418943) 100 Lake Breiter Luzin clone BL11-5 (DQ501296) uncultured Crater Lake bacterium CL120-56 (AF316766) Lake Stechlin clone ST11-29 (DQ501335) Sep Reservoir clone S4.13 (AY752115) 100 uncultured Verrucomicrobium DEV005 (AJ401105) uncultured Crater Lake bacterium CL500-85 (AF316731) Lake Tiefwaren clone TW11-44 (DQ501372) 100 uncultured bacterium 147ds20 (AY212598) uncultured Verrucomicrobia bacterium SW59 (AJ575730) uncultured Acidobacteria bacterium S15A-MN55 (AJ534690) Geothrix fermentansT (U41563) 100 Lake Breiter Luzin clone BL11-4 (DQ501294) uncultured epsilon proteobacterium FTLM50 (AF529126) 0.10 57 Thermomicrobia Chloroflexi Cand.Div TM7 CandDiv. OP10 Planctomycetes Verrucomicrobia Acidobacteria III Diversity and seasonal dynamics of Actinobacteria populations in four lakes in Northeastern Germany Kapitel III Diversity and dynamics of freshwater Actinobacteria 61 Kapitel III Diversity and dynamics of freshwater Actinobacteria 62 Kapitel III Diversity and dynamics of freshwater Actinobacteria 63 Kapitel III Diversity and dynamics of freshwater Actinobacteria 64 Kapitel III Diversity and dynamics of freshwater Actinobacteria 65 Kapitel III Diversity and dynamics of freshwater Actinobacteria 66 Kapitel III Diversity and dynamics of freshwater Actinobacteria 67 Kapitel III Diversity and dynamics of freshwater Actinobacteria 68 Kapitel III Diversity and dynamics of freshwater Actinobacteria 69 IV Intra- and inter-lake variability of free-living and particle-associated Actinobacteria populations Kapitel IV Variability of freshwater Actinobacteria populations submitted to Environmental Microbiology (June, 2006) Intra- and inter-lake variability of free-living and particle-associated Actinobacteria populations Martin Allgaier1, Sarah Brückner1, Elke Jaspers2, and Hans-Peter Grossart1* 1 Leibniz-Institute of Freshwater Ecology and Inland Fisheries; Department Limnology of Stratified Lakes; Alte Fischerhütte 2; D-16775 Stechlin-Neuglobsow; Germany 2 mikroLogos; Augustastr. 58; D-47198 Duisburg; Germany Running title: Variability of freshwater Actinobacteria communities Key words: Actinobacteria, free-living and particle-associated, phylogenetic diversity, seasonal dynamics, DGGE *Corresponding author: Leibniz-Institut für Gewässerökologie und Binnenfischerei; Abteilung Limnologie geschichteter Seen; Alte Fischerhütte 2; D-16775 StechlinNeuglobsow; Phone: +49 33082 69991; Fax: +49 33082 69917; email: hgrossart@igbberlin.de 73 Kapitel IV Variability of freshwater Actinobacteria populations Summary We analysed the inter- and intra-lake variability of free-living and particle-associated freshwater Actinobacteria populations in four limnological different lakes of the Mecklenburg Lake District, Northeastern Germany. Denaturing gradient gel electrophoresis (DGGE) specific for Actinobacteria was used to investigate phylogenetic differences and seasonal dynamics of actinobacterial communities in the epilimnion of all lakes (inter-lake variability) and to assess differences between Actinobacteria populations of the epi-, meta-, and hypolimnion of a single lake (intra-lake variability), respectively. DGGE banding patterns showed significant differences between free-living and particleassociated Actinobacteria populations within all analysed samples. Phylogenetic inferences of 16S rRNA gene sequences suggest that particular members of particleassociated Actinobacteria were exclusively affiliated to certain actinobacterial lineages. Non-metric multidimensional scaling (NMS) ordination analyses revealed distinct interand intra-lake differences between Actinobacteria populations of the studied lakes and water layers with obvious seasonal changes. In an attempt to relate these changes to environmental variables, several strong correlations were found between Actinobacteria and limnological variables, such as conductivity, total phosphorous, alkalinity, phytoplankton biomass, primary production, or ectoenzyme activities. However, no uniform correlation-patterns were found between the lakes and water layers indicating a potential adaptation of distinct Actinobacteria communities to their respective environment. Introduction Bacterioplankton communities are known to play a key role in biogeochemical processes of aquatic ecosystems (Cotner and Biddanda, 2002). Several studies on freshwater bacterioplankton communities indicated a core group of bacterial phylotypes which commonly occur in diverse limnetic habitats (Zwart et al., 2002). Recently, Actinobacteria were found to be one of the most dominant fraction within freshwater bacterioplankton communities (Glöckner et al., 2000; Van der Gucht et al., 2005; Warnecke et al., 2005; Allgaier and Grossart, 2006). Actinobacteria are well known from soil environments (Goodfellow and Williams, 1983; Rheims et al., 1999) but it has been shown that they are also part of the autochthonous bacterioplankton of different aquatic habitats (Warnecke et al., 2004). Phylogenetic analyses based on the comparison of 16S rRNA gene sequences revealed distinct freshwater actinobacterial lineages which were clearly separated from Actinobacteria of other environments (Warnecke et al., 2004; Allgaier and Grossart, 74 Kapitel IV Variability of freshwater Actinobacteria populations 2006). The majority of the recently determined freshwater actinobacterial sequences belong to yet uncultured bacteria. Due to the lack of isolates almost nothing is known about their physiological and ecological role. Results from grazing experiments indicated that some aquatic Actinobacteria are better protected from protistan grazing than other members of the heterotrophic bacterioplankton (Pernthaler et al., 2001; Jezbera et al., 2005). Furthermore, solar UV radiation (Warnecke et al., 2005), phytoplankton-derived dissolved organic materials (DOM) (Stepanauskas et al., 2003), and pH (Lindtsröm et al., 2005) were proposed to affect actinobacterial community structure. Distinct relationships between Actinobacteria and particular environmental parameters are supported by pronounced seasonal dynamics of various freshwater Actinobacteria communities (Glöckner et al., 2000; Allgaier and Grossart, 2006). The majority of the currently known freshwater Actinobacteria were found within the freeliving bacterioplankton and seem to be less abundant on particles (Allgaier and Grossart, 2006; Allgaier and Grossart, unpublished). Our present knowledge on the abundance and phylogenetic diversity of particle-associated Actinobacteria is rather scarce. So far, no study exists which systematically investigate differences between free-living and particleassociated freshwater Actinobacteria in detail. We therefore examined the phylogenetic differences of free-living and particle-associated Actinobacteria populations by using DGGE and clone libraries of 16S rRNA gene sequences. The observed phylogenetic patterns were statistically related to various limnological parameters to receive closer informations on microenvironment. potential adaptation of Because quantitative Actinobacteria analyses of to their freshwater respective Actinobacteria populations indicated differences between Actinobacteria communities of different habitats (Warnecke et al., 2005; Allgaier and Grossart, 2006) we characterized Actinobacteria populations of several lakes and water layers to obtain further informations on the interand intra-lake variability of freshwater Actinobacteria populations. Results Analyses of DGGE banding patterns of free-living and particle-associated Actinobacteria populations DGGE banding patterns of free-living and particle-associated Actinobacteria revealed significant differences (p ≤ 0.001) between both actinobacterial fractions within each single lake (Figure 1). The absolute numbers of DGGE bands varied between 4.3 ±2.6 and 17.4 ±3.6 for free-living Actinobacteria and between 3 ±1.6 and 13.1 ±6.3 for the particle-associated fractions for each lake, respectively (Table 1). Both, free-living and 75 Kapitel IV Variability of freshwater Actinobacteria populations particle-associated Actinobacteria showed relatively high diversity determined by the number of DGGE bands, however, with distinct differences in their respective banding patterns. Due to problems with DNA extraction and PCR amplification of 16S rRNA gene fragments no DGGE results were available for free-living Actinobacteria from September 2003 (Lake Stechlin) and for particle-associated Actinobacteria from August, October, and November 2003 (NE compartment of Lake Grosse Fuchskuhle), and from October and December 2003 (SW compartment of Lake Grosse Fuchskuhle), respectively. As indicated by the phylogenetic affiliations of actinobacterial 16S rRNA gene sequences retrieved from two clone libraries of Lake Tiefwaren, distinct phylogenetic differences occurred between free-living and particle-associated Actinobacteria (Figure 2). The majority of the 28 sequenced clones of free-living Actinobacteria belonged to the freshwater cluster acI, whereas 5 of the 11 sequences of particle-associated Actinobacteria were phylogenetically affiliated to Mycobacteriaceae, Microsphaera, or Microthrix (Figure 2). Three sequences obtained from the clone libraries belonged to the Verrucomicrobia and, thus, not to the class Actinobacteria (Figure 2). Comparison of Actinobacteria populations of different lakes and water layers The inter- and intra-lake variability of freshwater Actinobacteria populations was investigated by comparison of DGGE profiles of Actinobacteria from all studied lakes and water layers. Studies of inter-lake variability compared epilimnetic Actinobacteria populations of all lakes whereas those of the intra-lake variability had calculated only for epi-, meta-, and hypolimnion of Lake Stechlin. Non-metric multidimensional scaling (NMS) analyses of the DGGE banding patterns of free-living and particle-associated Actinobacteria revealed significant differences between epilimnetic Actinobacteria populations of all lakes and actinobacterial fractions (Figure 3). The formation of lakespecific clusters within NMS analyses was statistically significant as determined by ANOSIM (Table 2 A). In general, samples of Lake Breiter Luzin, Lake Stechlin, and Lake Tiefwaren were more similar to each other than to samples of the two compartments (NE and SW) of Lake Grosse Fuchskuhle (Figure 3). The comparison of DGGE profiles of the epi-, meta-, and hypolimnion of Lake Stechlin indicated significant differences between Actinobacteria populations in the three water layers for both actinobacterial fractions (Figure 4, Table 2 B). As depicted in the NMS ordination plots epi- and hypolimnetic Actinobacteria populations were more similar to each other than to Actinobacteria of the metalimnion (Figure 4). All free-living and particle-associated Actinobacteria communities showed obvious seasonal changes as indicated by the formation of distinct season-specific clusters within 76 Kapitel IV Variability of freshwater Actinobacteria populations NMS plots (Figure 1 and 4). For example, in the hypolimnetic samples of Lake Stechlin two clearly separated seasonal clusters occurred in both actinobacterial fractions which represented fall/winter and spring/summer, respectively (Figure 4). However, seasonspecific clusters varied between lakes, water layers, and actinobacterial fractions and thus no consistent pattern could be observed. Statistical relationships between diversity of Actinobacteria populations and environmental variables Because of the non-normal distribution of the species data non-metric multidimensional scaling (NMS) analyses and Pearson’s product moment correlations were performed to identify potential relationships between DGGE profiles of the Actinobacteria and the measured limnological parameters. Statistical analyses for the combined data sets of freeliving and particle-associated Actinobacteria of each individual lake revealed only weak correlations (Pearson’s r ≤ 0.7, data not shown). However, separate analyses of free-living and particle-associated Actinobacteria exhibited several correlations between Actinobacteria populations and limnological parameters, e.g. temperature, conductivity, PO4-P, silicate, primary production, bacterial production, and protease activity (Table 3). High numbers of strong correlations to biological parameters (e.g. primary production, bacterial production, and ectoenzyme activities) were found especially for free-living and particle-associated Actinobacteria of Lake Tiefwaren and the NE compartment of Lake Grosse Fuchskuhle, respectively (Table 3). Although comprehensive analyses of freeliving and particle-associated Actinobacteria of epilimnetic samples of all lakes revealed strong correlations to pH, conductivity, alkalinity, total and dissolved organic carbon (TOC, DOC), and iron, no consistent correlation-patterns were found between distinct environmental variables and Actinobacteria populations of any single lake (Table 3). As indicated by the arrows in the NMS ordination plots of epilimnetic samples of all lakes, free-living Actinobacteria of Lake Breiter Luzin and Lake Tiefwaren were strongly influenced by pH, conductivity, and alkalinity (Figure 3). Particle-associated Actinobacteria of the SW compartment of Lake Grosse Fuchskuhle, Lake Breiter Luzin, and Lake Stechlin were influenced by pH, alkalinity, iron, TOC, and DOC, respectively (Figure 3). Discussion Application and evaluation of Actinobacteria specific primers for DGGE This study was focused on the phylogenetic diversity and seasonal dynamics of Actinobacteria populations in four limnological different lakes of the Mecklenburg Lake 77 Kapitel IV Variability of freshwater Actinobacteria populations District, Northeastern Germany. We separated between free-living and particle-associated Actinobacteria communities to obtain a higher phylogenetic resolution and to receive more detailed informations on potential adaptations of distinct actinobacterial lineages to specific microenvironments. For characterization of the Actinobacteria communities we applied DGGE of PCR amplified 16S rRNA gene fragments and NMS analyses. We used a primer set specific for the class Actinobacteria (HGC236F/HGC664R, Glöckner et al., 2000) and optimized it for DGGE. As it has been shown previously DGGE comprises several potential limitations such as selective PCR amplification of specific bacterial lineages (Suzuki and Giovannoni, 1996; Wintzingerode et al., 1997), formation of heteroduplex and chimeric molecules (Liesack et al., 1991), or the occurrence of bacteria with multiple 16S rRNA operons (Cilia et al., 1996; Klappenbach et al., 2000). Because the primers HGC236F and HGC664R had never been used for DGGE analyses before we compared their phylogenetic resolution with a second actinobacterial primer set published elsewhere (GC-517f/AB1165r, Gich et al., 2005). The direct comparison of both primer sets revealed a significant higher phylogenetic resolution for primers HGC236F and HGC664R (12 DGGE bands) compared to the primer pair GC-517f/AB1165r (3 DGGE bands). Sequencing of several DGGE bands confirmed the specificity of both primer sets for Actinobacteria (data not shown). However, our clone libraries obtained using the primers HGC236F and HGC664R revealed 3 sequences belonging to the Verrucomicrobia. This artefact most likely derived from the fact that the primer HGC236F has also the potential to bind to particular verrucomicrobial 16S rRNA gene sequences. So far, we were not able to circumvent this bias but we estimated it of lower importance because the vast majority of the sequenced DGGE bands exclusively belonged to the Actinobacteria. Differences between free-living and particle-associated Actinobacteria communities Our DGGE analyses revealed significant differences between free-living and particleassociated Actinobacteria of all lakes and water layers indicating a potential adaptation of distinct phylotypes to their respective microenvironment. This suggestion is supported by our statistical analyses which showed different correlation-patterns between free-living and particle-associated actinobacterial communities (Table 3). As it has been shown previously distinct bacterial communities can develop on particles (DeLong et al., 1993; Crump et al., 1999; Fandino et al., 2001; Riemann and Winding, 2001). To our knowledge no study exists which has specifically examined the abundance and phylogeny of particleassociated Actinobacteria. Semi-quantitative microscopic examinations of particles in 78 Kapitel IV Variability of freshwater Actinobacteria populations combination with CARD-FISH, however, indicated generally low abundances of particleassociated Actinobacteria in the studied lakes (Allgaier and Grossart, unpublished). The phylogenetic diversity observed within DGGE banding patterns of particle-associated Actinobacteria was surprisingly high compared to a previous study on bacterial community structure of the four studied lakes, where Actinobacteria occur almost exclusively in the free-living stage (Allgaier and Grossart, 2006). These discrepancies are most likely linked to methodological artefacts, such as the application of two different primer sets in both studies (universal primers versus Actinobacteria specific primers), the low numbers of sequenced clones, or the preferential amplification of distinct phylotypes during PCR. Nevertheless, our results clearly show that the application of specific primers is more suitable to investigate the phylogenetic diversity of a specific bacterial lineage than universal primer sets. Specific primers reveal a much higher phylogenetic resolution of distinct bacterial groups and enable the study of less abundant bacteria which would be not detected by PCR using universal primers only (e.g. particle-associated Actinobacteria). The differences found between free-living and particle-associated Actinobacteria populations within our DGGE analyses were supported by two clone libraries of the November 2003 sample of Lake Tiefwaren which indicated particular phylogenetic differences between both actinobacterial fractions. For example, sequences belonging to the Mycobacteriaceae, Microsphaera, Sporichthya, or Microthrix were predominantly derived from particle-associated Actinobacteria, whereas members of the acI cluster were mainly free-living (Figure 2). We are aware of the fact that the number of sequenced clones was too low to obtain quantitative data on the phylogenetic distribution of Actinobacteria. However, similar investigations on Lake Kinneret bacterioplankton supported our results that free-living and particle-associated Actinobacteria may show distinct phylogenetic affiliations to different actinobacterial lineages (Allgaier and Grossart, in prep.). Inter- and intra-lake differences of freshwater Actinobacteria populations The significant formation of lake-specific clusters within NMS ordination analyses indicated clear differences between actinobacterial communities of all lakes. A previous study on the phylogenetic diversity of the Actinobacteria communities had shown that Actinobacteria of the studied lakes belong to similar phylogenetic lineages, such as the freshwater clusters acI, acII, acIV, or acSTL (Allgaier and Grossart, 2006). Because we did not sequence DGGE bands in this study we are not able to draw any convincing conclusions which actinobacterial lineages are represented by particular bands. We, thus, 79 Kapitel IV Variability of freshwater Actinobacteria populations speculate that the high diversity found within DGGE banding patterns provide more detailed insights into the intra-cluster diversity of already known actinobacterial lineages. The occurrence of intra-cluster differences between Actinobacteria of the studied lakes has been shown previously by the presence of lake-specific clusters (e.g. scB1-4) (Allgaier and Grossart, 2006). Differences between bacterial communities of various freshwater habitats have been shown previously including the here studied lakes (e.g. Lindström, 2000; Van der Gucht et al., 2005; Allgaier and Grossart, submitted) and are most likely derived from the adaptation of bacterioplankton communities to their respective environment (Kritzberg et al., 2006). In addition, in Lake Stechlin pronounced intra-lake differences occur between actinobacterial communities of the epi-, meta-, and hypolimnion. As shown by the NMS analyses of the DGGE profiles distinct Actinobacteria populations developed in the three water layers. Specific limnological conditions in the metalimnion (e.g. high O2 concentrations, accumulation of organic nutrients, or increased primary production) may lead to the development of separate actinobacterial communities which were significantly different from those of the epi- and hypolimnion. Due to the lack of detailed measurements of limnological parameters in the metalimnion of Lake Stechlin we were not able to obtain closer informations on potential relationships between the respective Actinobacteria populations and changes in distinct limnological variables. Seasonal dynamics and ecological potential of freshwater Actinobacteria populations Actinobacteria populations of the studied lakes showed distinct seasonal changes in their abundance with maxima in late spring and fall (Allgaier and Grossart, 2006). Similar seasonal variations were found for Actinobacteria in Lake Gossenköllesee (Glöckner et al., 2000). However, our recent knowledge on seasonal dynamics in respect to changes in phylogenetic diversity of distinct Actinobacteria populations is rather scarce (Newton et al., 2006). Our results strongly suggest that there are also seasonal variations in the phylogenetic diversity of freshwater Actinobacteria as indicated by the formation of season-specific clusters within NMS analyses. Seasonal changes of aquatic bacterial communities are commonplace and may be linked to numerous environmental factors, such as phytoplankton succession, protozoan grazing, or viral lysis (Van Hannen et al., 1999; Hahn and Höfle, 1999; Brussaard et al., 2005; Newton et al., 2006). For Actinobacteria it has been proposed that phytoplankton-derived dissolved organic materials (DOM) (Stepanauskas et al., 2003), pH (Lindtsröm et al., 2005), or grazing (Pernthaler et al., 2001; Jezbera et al., 2005; Newton et al., 2006) affect changes in their 80 Kapitel IV Variability of freshwater Actinobacteria populations community structure. Our Pearson’s product moment correlations revealed several strong correlations between physical, chemical, and biological parameters and the respective Actinobacteria communities (Table 3). The general inconsistency of the correlation patters between the lakes and actinobacterial fractions may indicate the development of distinct Actinobacteria populations depending on the respective environmental conditions. The close phylogenetic relationship between the actinobacterial communities of the studied lakes (Allgaier and Grossart, 2006), thus, leads to the suggestion that Actinobacteria of similar phylogenetic affiliations may inhabit different ecological niches (Moore et al., 1998; Jaspers and Overmann, 2004). To elucidate the significance of distinct relationships between Actinobacteria and limnological variables further studies are necessary. In summary, our results showed significant differences between free-living and particleassociated Actinobacteria communities. Phylogenetic analyses of 16S rRNA gene sequences suggest that particular members of particle-associated Actinobacteria were specifically affiliated to certain actinobacterial lineages. As indicated by our DGGE and NMS analyses, free-living and particle-associated Actinobacteria showed distinct seasonal changes within both actinobacterial fractions. The inter- and intra-lake comparison of Actinobacteria populations revealed distinct differences between Actinobacteria of the studied lakes and water layers. All actinobacterial communities were strongly correlated to certain limnological parameters, such as conductivity, total phosphorous, alkalinity, phytoplankton biomass, primary production, and ectoenzyme activities. However, no consistent correlation-patterns were found between the lakes and actinobacterial fractions. This may indicate that Actinobacteria of different lakes or water layers are adapted to their respective environment and may inhabit different ecological niches. Experimental Procedures Lake description and sampling Four lakes of the Mecklenburg Lake District (Northeastern Germany) were selected for this comparative study on freshwater Actinobacteria populations: Lake Breiter Luzin, Lake Stechlin, Lake Grosse Fuchskuhle, and Lake Tiefwaren. All lakes show different physical, chemical, and biological properties with trophic states ranging from oligotrophic to eutrophic and dystrophic, respectively. The main limnological characteristics of the lakes are summarized in Table 4. Lake Grosse Fuchskuhle was artificially divided into four compartments by large plastic curtains for biomanipulation experiments in 1990 (Kasprzak, 1993; Koschel, 1995). In this study, only the northeast (NE) and the southwest 81 Kapitel IV Variability of freshwater Actinobacteria populations (SW) compartments were investigated because of their great limnological differences (Bittl and Babenzien, 1996; Hehmann et al., 2001). At the time of this study, Lake Tiefwaren was restored by a combination of aluminate and calcium hydroxide precipitation (Koschel et al., 2006). More detailed descriptions on morphometry, limnology, and microbiology of the studied lakes are published in Allgaier and Grossart (2006). All lakes were sampled monthly between April 2003 and March 2004, except during ice coverage in December (Lake Breiter Luzin), January (all lakes), and February (Lake Grosse Fuchskuhle). Water samples of 1 litre were taken at the deepest points of the lakes using a Ruttner sampler. Depending on the thermal stratification, epilimnetic samples were obtained by taking sub-samples in 0, 5, and 10 m depth (April-May and October-March) or in 0 and 5 m depth (June-September) in Lake Stechlin, Lake Breiter Luzin, and Lake Tiefwaren. The sub-samples were mixed in sterile glass flasks in equal shares. The epilimnetic samples of the NE and SW compartments of Lake Grosse Fuchskuhle were taken as mixed samples from 0 and 2 m depth (April and OctoberMarch) or as surface samples (May-September) due to their shallow epilimnion. For the investigation of the intra-lake variability of Actinobacteria communities additionally metalimnetic (7-15 m) and hypolimnetic (40 m) samples were taken from Lake Stechlin. The metalimnion was only sampled during stratification of the lake between June and October 2003. Incubations for measurements of primary production and bacterial production were carried out under in situ conditions during sampling. Water samples for molecular and chemical analyses were taken to the lab in dark cooling boxes and processed for further analyses within 2-4 h after sampling. Measurement of limnological variables To elucidate specificity and ecological adaptations of Actinobacteria populations a set of various physical, chemical, and biological parameters was determined. The following physico-chemical parameters were determined by electrode measurements: temperature (WTW Oxi 197-S), pH (WTW pH 197), conductivity (WTW LF 197-S), oxygen concentration, and oxygen saturation (both WTW Oxi 197-S). Alkalinity down to a pH of 4.3 was determined by titration with 1N hydrochloric acid using a Metrohm 686 Titriprocessor (Metrohm). Secchi depth was measured using a secchi disk (d = 0.25 m). The chemical parameters comprised of: total organic carbon (TOC), dissolved organic carbon (DOC), total nitrogen, NO2-N, NO3-N, NH4-N, total phosphorous, PO4-P, calcium, iron, silicate, and calcium carbonate. TOC and DOC were analyzed using a Shimadzu total organic carbon analyzer TOC-5050 by standard methods as described in Wetzel and Likens (1991). Inorganic nutrients, such as the different nitrogen and phosphorous 82 Kapitel IV Variability of freshwater Actinobacteria populations species and calcium, iron, and silicate were analyzed photometrically by a Tecator FIAstar 5010 Analyzer following standard protocols (Strickland and Parsons, 1978; Wetzel and Likens, 1991) and the manufacturer’s instructions. Calcium carbonate was determined indirectly by transforming calcium carbonate into CO2 by acidification with 10 % hydrochloric acid. The resulting CO2 was measured by a Saxon Junkalor Infralyt 1211 and subsequently recalculated into calcium carbonate concentrations. The biological parameters comprised of: total bacterial numbers, ectoenzyme activity of β-D-glucosidase and protease, bacterial protein production (BPP), primary production (PP), zooplankton abundances (only crustaceans), and phytoplankton community structure and biomasses. Bacterial numbers were determined by epifluorescence microscopy after staining of the bacterial cells with 4,6-diamidino-2-phenylindole (DAPI; 1mg/100ml) on a 0.2 µm Nuclepore polycarbonate membrane. Hydrolytic ectoenzyme activities were determined using the fluorescent substrate analogues L-leucinemethylcoumarinyl amide (leu-MCA) and methyl-umbelliferyl-β-D-glucoside (β-D-glc-MUF) (Hoppe, 1983). BPP and PP were determined by Azam, 1989) and H CO3- 14 14 C-leucine incorporation (Simon and uptake (Wetzel and Likens, 1991), respectively. Both, BPP and PP were determined for different size fractions obtained by filtration. BPP was determined for the fractions ≥ 5.0 µm (particle-associated bacteria), ≤ 5.0 ≥ 0.2 µm (free-living bacteria), and ≥ 0.2 µm (total bacteria), and PP for the fractions ≥ 0.6 µm (total), ≤ 20.0 ≥ 0.6 µm, ≥ 3.0 µm, and ≤ 3.0 ≥ 0.2 µm. Phytoplankton as well as zooplankton community structure were determined microscopically. Biomasses were determined with a calibrated imaging analysis system (Analysis). DNA extraction and PCR amplification of 16S rRNA gene fragments Particle-associated and free-living Actinobacteria were separated by sequential filtration of the water samples throughout 5.0 and 0.2 µm Nuclepore polycarbonate filters, respectively (see also Allgaier and Grossart, 2006). Extraction of genomic DNA was performed, using a standard protocol with phenol/chloroform/isoamylalcohol, SDS, polyvinylpyrrolidone, and zirconium beads as described previously (Allgaier and Grossart, 2006). For DGGE analysis, a 428 bp fragment of the 16S rRNA gene was amplified using a primer pair specific for the class Actinobacteria: HGC236F: 5’ – AAC AAG CTG ATA GGC CGC – 3’ and HGC664R: 5’ – AGG AAT TCC AGT CTC CCC – 3’ (Glöckner et al., 2000). At the 5’-end of the primer HGC236F, an additional 40 bp GC-rich nucleotide sequence (GC-clamp) was added to stabilize migration of the DNA fragment in the DGGE (Muyzer et al., 1993). The reaction mixtures for the PCR amplification contained: 2-5 µl template 83 Kapitel IV Variability of freshwater Actinobacteria populations DNA, 200 nM of each of the appropriate primers, 250 µM of each deoxyribonucleoside triphosphate, 2 mM MgCl2, 5 µl 10x PCR buffer, and 0.5 U BIOTAQ Red DNA Polymerase (Bioline) in a total volume of 50 µl. PCR reactions were performed in a Gradient Cycler PT-200 (MJ Research) using an initial denaturation step at 95°C (10 min), followed by 30 cycles of denaturation at 95°C (1 min), annealing at 52°C (1 min), and extension at 72°C (2 min). A final extension at 72°C (10 min) and subsequent cooling at 15°C completed the reaction. For clone libraries the same primer sets and PCR conditions were used, however, without the GC-clamp at the 5’-end of the HGC236F primer. DGGE analysis of PCR products DGGE was performed as described previously (Allgaier and Grossart, 2006) in a 7 % (v/v) polyacrylamide gel with a modified denaturing gradient from 55 to 70 % of urea and formamide. Prior loading of PCR products onto DGGE gels, DNA was quantified on agarose gels using a quantitative DNA ladder (Low DNA Mass Ladder, Invitrogen). After electrophoresis of 18 h, DNA bands were stained with 1x SYBR Gold (Molecular Probes) and documented using an AlphaImager 2200 Transilluminator (Biozym). Analyses of DGGE profiles and statistics DGGE banding patterns were analyzed by non-metric multidimensional scaling (NMS) ordinations using the software packages GelCompar II, Version 3.5 (Applied Maths) and PC-ORD, Version 4.0 (MJM Software Design). Within GelCompar II a band based binary presence/absence table was calculated applying Dice similarity coefficient. This presence/absence table was imported into PC-ORD and used for the NMS ordination analyses. The advantage of NMS over other multivariate statistical methods (e.g. canonical correspondence analysis, CCA) is that this method uses rank order information of a similarity matrix of the samples rather than the original data matrix. Thus, NMS avoids distortions originating from the non-normal distribution of the species data of the DGGE gels (McCune and Grace, 2002). Primary analyses of all gels were done by a standard setup using relativise Sørensen distance measures, random starting coordinates, a step-down from six to one dimension, an instability criterion of 0.0001, 300 iterations to reach stability, 50 runs with real data sets, and 100 runs with the Monte Carlo permutation test. The final run was performed with the optimum number of dimensions (2-6 dimensions) and the appropriate configurations as starting coordinates. Varimax rotation was applied to find corresponding groups and sample units. 84 Kapitel IV Variability of freshwater Actinobacteria populations For the identification of correlations between environmental variables and the DGGE profiles of the Actinobacteria populations Pearson’s product moment correlations were calculated for the significant axes of the NMS ordinations. Pearson’s product moment correlations were performed separately for free-living and particle-associated bacteria of each single lake and with a combined data set composed of both bacterial fractions. In addition, two comprehensive data sets of free-living and particle-associated Actinobacteria were used comprising DGGE profiles and limnological variables of the epilimnia of all lakes. To test the significance of differences between the DGGE banding patterns analysis of similarity (ANOSIM) (Clarke and Green, 1988) was applied using the software PRIMER 5, Version 5.2.9 (PRIMER-E Ltd.). ANOSIM generates a test statistic (R) which is an indication of the degree of separation between groups. A score of 1 indicates complete separation whereas a score of 0 indicates no separation. Construction of clone libraries and sequencing Cloning of the actinobacterial 16S rRNA gene fragments derived from PCR with the specific primer set HGC236F/HGC664R was done using the pGEM-T-Easy Vector System II (Promega) according to the manufacturer’s protocol. Two clone libraries were constructed for the November 2003 sample of Lake Tiefwaren - one clone library for freeliving Actinobacteria and one for the particle-associated fraction. A total of 60 clones (30 clones of each clone library) were picked and sequenced with the primers M13F (5’ – GTT TTC CCA GTC ACG AC – 3’) and M13R (5’ – CAG GAA ACA GCT ATG AC – 3’) as described previously (Allgaier and Grossart, 2006). Phylogenetic analysis Phylogenetic analyses of the partial 16S rRNA gene sequences were done using the ARB software package (http://arb-home.de). The retrieved sequences were imported into an ARB database of 52,000 reference sequences including the closest related sequences determined by BLAST (http://www.ncbi.nlm.nih.gov/BLAST/). Sequences were first aligned automatically by the integrated alignment module within the ARB package and subsequently corrected manually. For stability of the phylogenetic tree a backbone tree was calculated comprising only sequences of ≥ 1400 nucleotides. Consistence of branching patterns was checked applying the three phylogenetic reconstruction methods: neighbor-joining, maximum parsimony, and maximum likelihood to the appropriate set of sequences. Sequences ≤ 1400 nucleotides were added afterwards to the tree according to maximum parsimony criteria. To exclude highly variable positions within the 16S rRNA 85 Kapitel IV Variability of freshwater Actinobacteria populations gene sequences a 50 % base frequency filter specific for Actinobacteria was calculated. This filter uses only those sequence positions of the alignment for phylogenetic reconstructions, where 50 % of the analyzed sequences have identical entries. Thus, the phylogenetic calculations become more robust and potential alignment errors are excluded. The final tree was calculated using the maximum likelihood algorithm. Nucleotide sequence accession numbers The partial sequences of 16S rRNA gene fragments obtained in this study were deposited in GenBank with the following accession numbers: DQ662857-DQ662895. Acknowledgement We thank E. Mach for technical assistance during sampling and for the measurement of several limnological parameters. R. Koschel, L. Krienitz, and P. Kasprzak are thanked for providing data on chemistry, phytoplankton and zooplankton biomasses and community composition, respectively. K. Pohlmann is warmly acknowledged for help in statistical analyses and her many fruitful comments on this manuscript. This study was supported by the Leibniz foundation and by a grant of the Studienstiftung des deutschen Volkes given to M. Allgaier. 86 Kapitel IV Variability of freshwater Actinobacteria populations References Allgaier, M., and Grossart, H.-P. (2006) Diversity and seasonal dynamics of Actinobacteria in four lakes in Northeastern Germany. Appl Environ Microbiol 72: 3489-3497. Bittl, T., and Babenzien, H.-D. (1996) Microbial activities in an artificially divided acidic lake. Arch Hydrobiol Adv Limnol 48: 113-121. Brussaard, C.P.D., Mari, X., Van Bleijswijk, J.D.L., and Veldhuis, M.J.W. (2005) A mesocosm study of Phaeocystis globosa (Prymnesiophyceae) population dynamics II. Significance for the microbial community. Harmful Algae 4: 875-893. Cilia, V., Lafay, B., and Christen, R. (1996) Sequence heterogenities among 16S ribosomal RNA sequences, and their effect on phylogenetic analyses at the species level. Mol Biol Evol 13: 451-461. Clarke, K.R., and Green, R.H. (1988) Statistical design and analysis for a “biological effects” study. Mar Ecol Progr Ser 46: 213-226. Cotner, J.B., and Biddanda, B.A. (2002) Small players, large role: microbial influence on biogeochemical processes in pelagic aquatic ecosystems. Ecosystems 5: 105-121. Crump, B.C., Armbrust, E.V., and Baross, J.A. (1999) Phylogenetic analysis of particleattached and free-living bacterial communities in the Columbia river, its estuary, and the adjacent coastal ocean. Appl Environ Microbiol 65: 3192-3204. DeLong, E.F., Franks, D.G., and Alldredge, A.L. (1993) Phylogenetic diversity of aggregate-attached vs. free-living marine pelagic bacterial assemblages. Limnol Oceanogr 38: 924-934. Fandino, L.B., Riemann, L., Steward, G.F., Long, R.A., and Azam, F. (2001) Variations in bacterial community structure during a dinoflagellate bloom analyzed by DGGE and 16S rDNA sequencing. Aquat Microb Ecol 23: 119-130. Gich, F., Schubert, K., Bruns, A., Hoffelner, H., and Overmann, J. (2005) Specific detection, isolation, and characterization of selected, previously uncultured members of the freshwater bacterioplankton community. Appl Environ Microbiol 71: 5908-5919. Glöckner, F.O., Zaichikov, E., Belkova, N., Denissova, L., Pernthaler, J., Pernthaler, A., and Amann, R. (2000) Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of Actinobacteria. Appl Environ Microbiol 66: 5053-5065. Goodfellow, M., and Williams, S.T. (1983) Ecology of Actinomycetes. Annu Rev Microbiol 37: 189-216. Hahn, M.W., and Höfle, M.G. (1999) Flagellate predation on a bacterial model community: interplay of size-selective grazing, specific bacterial cell size, and bacterial community composition. Appl Environ Microbiol 65: 4863-4872. Hehmann, A., Krienitz, L., and Koschel, R. (2001) Long-term phytoplankton changes in an artificially divided, top-down manipulated humic lake. Hydrobiologia 448: 83-96. Hoppe, H.G. (1983) Significance of exoenzymatic activities in the ecology of brakish water: measurements by means of methylumbelliferyl-substrates. Mar Ecol Prog Ser 11: 299-308. Jaspers, E., and Overmann, J. (2004) Ecological significance of microdiversity: Identical 16S rRNA gene sequences can be found in bacteria with highly divergent genomes and ecophysiologies. Appl Environ Microbiol 70: 4831-4839. Jezbera, J., Horňák, K., and Šimek, K. (2005) Food selection by bacterivorous protists: insight from the analysis of the food vacuole content by means of fluorescence in situ hybridization. FEMS Microbiol Ecol 52: 351-363. Kasprzak, P. (1993) The use of an artificially divided bog lake in food web studies. Verh Int Verein Limnol 25: 652-656. Klappenbach, J.A., Dunbar, J.M., and Schmidt, T.M. (2000) rRNA operon copy number reflects ecological strategies of bacteria. Appl Environ Microbiol 66: 1328-1333. 87 Kapitel IV Variability of freshwater Actinobacteria populations Koschel, R. (1995) Manipulation of whole lake ecosystems and long term limnological observations of the Brandenburg-Mecklenburg lake district. Int Rev Gesamten Hydrobiol 80: 1-12. Koschel, R., Casper, P., Gonsiorczyk, T., Rossberg, R., and Wauer, G. (2006) Hypolimnetic Al- and CaCO3-treatments and aeration for restoration of a stratified eutrophic hardwater lake (Lake Tiefwarensee, Mecklenburg-Vorpommern, Germany). Verh Internat Verein Limnol in press. Kritzberg, E.S., Langenheder, S., and Lindström, E.S. (2006). Influence of dissolved organic matter source on lake bacterioplankton structure and function – implications for seasonal dynamics of community composition. FEMS Microbiol Ecol 56: 406417. Liesack, W., Weyland, H., and Stackebrandt, E. (1991) Potential risks of gene amplification by PCR as determined by 16S rDNA analysis of a mixed-culture of strict barophilic bacteria. Microb Ecol 21: 191-198. Lindström, E.S. (2000) Bacterioplankton community composition in five lakes differing in trophic status and humic content. Microb Ecol 40: 104-113. Lindtsröm, E.S., Kamst-van Agterveld, M.P., and Zwart, G. (2005) Distribution of typical freshwater bacterial groups is associated with pH, temperature, and lake water retention time. Appl Environ Microbiol 71: 8201-8206. McCune, B., and Grace, J.B. (2002) Analysis of Ecological Communities. MjM Software Design, Glenden Beach, OR. Moore, L.R., Rocap, G., and Chisholm, S.W. (1998) Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 393: 464-467. Muyzer, G., Dewaal, E.C., and Uitterlinden, A.G. (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S ribosomal-RNA. Appl Environ Microbiol 59: 695-700. Newton, R.J., Kent, A.D., Triplett, E.W., and McMahon, K.D. (2006) Microbial community dynamics in a humic lake: differential persistence of common freshwater phylotypes. Environ Microbiol 8: 956-970. Pernthaler, J., Posch, T., Šimek, K., Vrba, J., Pernthaler, A., Glöckner, F.O., Nübel, U., Psenner, R., and Amann, R. (2001) Predator-specific enrichment of Actinobacteria from a cosmopolitan freshwater clade in mixed continuous culture. Appl Environ Microbiol 67: 2145-2155. Premazzi, G., and Chiaudani, G. (1992) Ecological quality of surface waters – Quality assessments schemes for European Community lakes, JRC Report EUR 14563 EN, Brussels. Rheims, H., Felske, A., Seufert, S., and Stackebrandt, E. (1999) Molecular monitoring of an uncultured group of the class Actinobacteria in two terrestrial environments. J Microbiol Methods 36: 65-75. Riemann, L., and Winding, A. (2001) Community dynamics of free-living and particleassociated bacterial assemblages during a freshwater phytoplankton bloom. Microb Ecol 42: 274-285. Simon, M., and Azam, F. (1989) Protein content and protein synthesis rates of planktonic marine bacteria. Mar Ecol Prog Ser 51: 201-213. Stepanauskas, R., Moran, M.A., Bergamaschi, B.A., and Hollibaugh, J.T. (2003) Covariance of bacterioplankton composition and environmental variables in a temperate delta system. Aquat Microb Ecol 31: 85-98. Strickland, J.D.H., and Parsons, T.R. (1978) A practical handbook of seawater analysis. 2. ed., Ottawa, Canada, Fish. Res. Bd. Can. Bull., 311p. Suzuki, M.T., and Giovannoni, S.J. (1996) Bias caused by template annealing in the amplification of mixture of 16S rRNA genes by PCR. Appl Environ Microbiol 62: 625630. 88 Kapitel IV Variability of freshwater Actinobacteria populations Van der Gucht, K., Vandekerckhove, T., Vloemans, N., Cousin, S., Muylaert, K., Sabbe, K., Gillis, M., Declerk, S., De Meester, L., and Vyverman, W. (2005) Characterization of bacterial communities in four freshwater Lakes differing in nutrient load and food web structure. FEMS Microbiol Ecol 53: 205-220. Van Hannen, E.J., Zwart, G., Kamst-van Agterveld, M.P., Gons, H.J., Ebert, J., and Laanbroek, H.J. (1999) Changes in the bacterial and eukaryotic community structure after mass lysis of filamentous cyanobacteria associated with viruses. Appl Environ Microbiol 65: 795-801. Warnecke, F., Amann, R., and Pernthaler, J. (2004) Actinobacterial 16S rRNA genes from freshwater habitats cluster in four distinct lineages. Environ Microbiol 6: 242-253. Warnecke, F., Sommaruga, R., Sekar, R., Hofer, J.S., and Pernthaler, J. (2005) Abundance, identity, and growth state of Actinobacteria in mountain lakes of different UV transparency. Appl Environ Microbiol 71: 5551-5559. Wetzel, R.G., and Likens, G.E. (1991) Limnological Analyses, 2nd ed. Springer-Verlag, New York, Inc. Wintzingerode, F.V., Göbel, U.B., and Stackebrandt, E. (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21: 213-229. Zwart, G., Crump, B.C., Kamst-van Agterveld, M.P., Hagen, F., and Han, S.-K. (2002) Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat Microb Ecol 28: 141-155. 89 Kapitel IV Variability of freshwater Actinobacteria populations TABLE 1: Absolute numbers of DGGE bands of free-living and particle-associated Actinobacteria of the sampled lakes. Lake Lake Breiter Luzin Lake Stechlin (epilimnion) Lake Stechlin (metalimnion) Lake Stechlin (hypolimnion) Lake Grosse Fuchskuhle (NE) Lake Grosse Fuchskuhle (SW) Lake Tiefwaren free-living 17.4 ±3.6 13.5 ±2.6 17 ±2.9 14.2 ±1.4 8.2 ±2.9 4.3 ±2.6 13.7 ±1.4 particle-associated 10.8 ±2.5 12.9 ±2.5 13 ±1.9 8.9 ±4.4 6 ±1.6 3 ±1.6 13.1 ±6.3 NE northeast compartment; SW southwest compartment TABLE 2: Results of ANOSIM statistics from the comparison of DGGE banding patterns of free-living and particle-associated Actinobacteria of the epilimnetic samples of all four lakes (A) and of epi-, meta-, and hypolimnetic samples of Lake Stechlin (B). Significance values with p ≤0.05 are given in grey. free-living bacteria A BL vs. FNE BL vs. FSW BL vs. ST BL vs. TW FNE vs. FSW FNE vs. ST FNE vs. TW FSW vs. ST FSW vs. TW ST vs. TW particle-associated bacteria Sample statistic (R) Significance level (p) Sample statistic (R) Significance level (p) 0.469 0.674 0.666 0.622 0.271 0.500 0.480 0.583 0.651 0.688 ≤0.001 ≤0.001 ≤0.001 ≤0.001 ≤0.001 ≤0.001 ≤0.001 ≤0.001 ≤0.001 ≤0.001 0.403 0.397 0.375 0.309 0.444 0.454 0.290 0.574 0.298 0.350 ≤0.001 ≤0.001 ≤0.001 ≤0.001 ≤0.01 ≤0.001 ≤0.05 ≤0.001 ≤0.05 ≤0.001 0.953 0.684 0.965 ≤0.001 ≤0.001 ≤0.001 0.522 0.452 0.855 ≤0.05 ≤0.001 ≤0.001 B STE vs. STM STE vs. STH STM vs. STH The global tests revealed sample statistics of 0.509 (free-living) and 0.326 (particle-associated) within epilimnetic samples, and 0.783 (free-living) and 0.417 (particle-associated) within samples of the three water layers of Lake Stechlin, respectively. Significance levels of all global tests were p ≤0.001. BL Lake Breiter Luzin; STE Lake Stechlin (epilimnion); STM Lake Stechlin (metalimnion); STH Lake Stechlin (hypolimnion); FNE Lake Grosse Fuchskuhle (NE compartment); FSW Lake Grosse Fuchskuhle (SW compartment); TW Lake Tiefwaren. 90 Kapitel IV Variability of freshwater Actinobacteria populations TABLE 3: Results of Pearson product moment correlations of NMS analyses of free-living (A) and particle-associated (B) Actinobacteria communities of the lakes and the measured limnological parameters. Pearson’s r values ≥0.7 are given for the three significant ordination axes. Limnological parameters with correlations r ≤0.7 were excluded from this table. The first column shows the results of the comprehensive analyses of epilimnetic samples of all lakes. A BL FNE FSW ST STH TW -0.728 (2) -0.728 (2) -0.714 (2) - 0.719 (2) -0.832 (2) -0.731 (3) 0.741 (3) -0.940 (2) 0.733 (1) 0.715 (1) -0.721 (2) 0.705 (2) 0.794 (1) 0.784 (1) 0.715 (2) 0.792 (2) N.D. - 0.771 (2) N.D. - 0.744 (1) 0.761 (1) - -0.865 (1) N.D. N.D. N.D. N.D. N.D. N.D -0.931 (3) 0.800 (3) -0.830 (3) -0.890 (3) -0.740 (3) -0.856 (3) -0.872 (3) -0.845 (3) -0.896 (3) -0.807 (3) 0.726 (2) -0.763 (1) -0.809 (3) - -0.786 (2) 0.867 (2) -0.721 (2) -0.749 (2) 0.717 (2) - -0.859 (2) -0.818 (2) - 0.776 (3) -0.708 (1) 0.730 (3) 0.773 (3) 0.872 (1) 0.933 (1) -0.867 (2) 0.811 (3) -0.855 (2) 0.849 (3) -0.715 (3) -0.854 (3) N.D. -0.757 (1) 0.737 (3) -0.839 (3) -0.729 (2) -0.702 (2) N.D. - 0.700 (3) -0.741 (3) - -0.796 (3) -0.817 (3) -0.819 (3) -0.796 (2) -0.837 (3) N.D. N.D. N.D. N.D. 0.701 (3) -0.768 (1) N.D. N.D. -0.742 (2) -0.753 (2) - free-living DOC Temperature pH Conductivity β-D-glc. activity Protease activity BPP (FL) BPP (total) PP (total) PP (<20 µm) PP (>3.0 µm) PP (<3.0 >0.2µm) NO2-N PO4-P Total P Calcium Iron Silicate TOC Alkalinity Zooplankton Phytoplankton B Epilimnion (all lakes) particle-associated Bacterial numbers DOC Temperature O2 [mg/l] O2 [%] pH Conductivity β-D-glc. activity Protease activity BPP (FL) BPP (total) PP (total) PP (<20 µm) PP (>3.0 µm) PP (<3.0 >0.2µm) NH4-N PO4-P Total P Calcium Iron Silicate TOC Alkalinity Zooplankton Phytoplankton (1) (2) (3) , , correlations to ordination axes 1, 2, and 3, respectively; PA particle-associated; FL free-living; DOC dissolved organic carbon; β-D-glc. β-D-glucosidase; BPP bacterial protein production; PP primary production; TOC total organic carbon; N.D. not determined; abbreviations for the lakes are given Table 2. 91 Kapitel IV Variability of freshwater Actinobacteria populations TABLE 4: Main limnological characteristics of the studied lakes. Parameter Lake Stechlin Lake Grosse Fuchskuhle northeast basin southwest basin Lake Breiter Luzin Lake Tiefwaren N 53° 10’ E 13° 02’ 69.5 4.3 26.0 6.5 - 10.5 oligotrophic 8.5 (± 0.2) N 53° 10’ E 13° 02’ 5.6 0.02 0.005 N 53° 20’ E 13° 28’ 58.5 3.57 14.0 1.6 - 3.8 mesotrophic 8.5 (± 0.2) N 53° 31’ E 12° 42’ 24 1.4 17.5 3.1 - 8.9 eutrophic 8.3 (± 0.2) Geographical position Max. depth [m] Surface area [km2] Catchment area [km2] Secchi depth [m] Trophy pH 1.0 - 2.2 eutrophic 6.5 (± 0.6) 0.9 - 1.5 dystrophic 4.7 (± 0.2) data for pH are average values of epilimnetic samples from April-November 2003 and March 2004; trophic status was determined following the guideline EUR 14563 EN of the Commission of the European Communities (Premazzi & Chiaudani, 1992). FEB SEP MAR MAR NOV MAR OCT DEC NOV MAR JUL SEP DEC OCT JUN NOV AUG JUN JUN JUL APR AUG MAY AUG AUG APR SEP OCT MAY NOV JUL APR JUN MAR AUG JUL JUL FEB SEP OCT SEP DEC SEP JUN NOV Axis 2 MAR BL FNE MAY APR MAY MAY JUL JUN FSW APR stress = 13.285 stress = 14.498 stress = 4.538 APR APR MAY MAY MAR JUL FEB OCT APR SEP JUN DEC AUG OCT FEB NOV MAY NOV JUN DEC NOV JUL MAR SEP JUL FEB MAY AUG AUG MAR SEP JUN AUG DEC OCT JUN JUL MAR APR STE stress = 6.713 APR MAY OCT NOV TW FEB DEC stress = 10.35 Axis 1 FIGURE 1: NMS ordination plots of free-living and particle-associated Actinobacteria populations of the studied lakes. Open symbols: free-living Actinobacteria; solid symbols: particle-associated Actinobacteria. The abbreviations for the lakes are given in Table 2. 92 Kapitel IV Variability of freshwater Actinobacteria populations Actinobacteria particle-associated 100 100 100 100 99 100 Swedish lake clone LiUU-9-93; AY496998 Columbia River clone CR-FL3; AF141389 uncultured bacterium S9F-17; AB154306 Lake Tiefwaren clone TWAC-40; DQ662890 Lake Tiefwaren clone TWAC-3; DQ662878 Lake Tiefwaren clone TWAC-7; DQ662893 Lake Tiefwaren clone TWAC-9; DQ662895 Lake Tiefwaren clone TWAC-35; DQ662884 Lake Blankaart clone BKB7; AJ310373 Zwischenahner Meer clone Z35; AF488670 86 Lake Tiefwaren clone TWAC-30; DQ662879 Lake Tiefwaren clone TWAC-2; DQ662868 70 Lake Tiefwaren clone TWAC-14; DQ662862 Lake Tiefwaren clone TWAC-29; DQ662877 Lake Tiefwaren clone TWAC-5; DQ662891 Delaware River clone Sta2-35; AY562338 Lake Tiefwaren clone TWAC-22; DQ662871 Pavin Lake clone P38.5; AY752087 Swedish lake clone LiUU-9-249; AY496996 uncultured actinobacterium clone FNE11-3; DQ316345 uncultured actinobacterium; AJ629849 uncultured actinobacterium R3; AJ575499 Lake Tiefwaren clone TWAC-15; DQ662863 Lake Tiefwraen clone TWAC-20; DQ662869 97 Changjiang River clone; AY071878 uncultured actinobacterium N3; AJ575530 uncultured actinobacterium S8; AJ575509 Lake Tiefwaren clone TWAC-25; DQ662874 99 uncultured actinobacterium clone FNE11-12; DQ316339 Lake Tiefwaren clone TWAC-11; DQ662859 Zwischenahner Meer clone Z38; AF488673 Lake Tiefwaren clone TWAC-26; DQ662875 Lake Tiefwaren clone TWAC-4; DQ662889 Lake Tiefwaren clone TWAC-23; DQ662872 Lake Tiefwaren clone TWAC-12; DQ662860 Lake Tiefwaren clone TWAC-24; DQ662873 Lake Tiefwaren clone TWAC-17; DQ662865 Lake Tiefwaren clone TWAC-18; DQ662866 Lake Tiefwaren clone TWAC-19; DQ662867 Lake Tiefwaren clone TWAC-13; DQ662861 Lake Tiefwaren clone TWAC-6; DQ662892 Delaware River clone B30e; AY562270 Lake Tiefwaren clone TWAC-10; DQ662858 86 Lake Tiefwaren clone TWAC-28; DQ662876 Lake Tiefwaren clone TWAC-33; DQ662882 uncultured bacterium S9A-11; AB154300 73 uncultured actinobacterium clone BL11-23; DQ316328 100 100 Lake Tiefwaren clone TWAC-8; DQ662894 Swedish lake clone LiUU-5-233; AY496989 100 Lake Soyang clone SY2-69; AF107512 Lake Tiefwaren clone TWAC-34; DQ662883 41 Mycobacterium sp. DhA-55; AJ011510 Mycobacterium sp. BPC5; AF494537 100 Mycobacterium sp. M0183; AF055322 55 Lake Tiefwaren clone TWAC-37; DQ662886 uncultured actinobacterium S15A-MN29; AJ534679 76 Lake Tiefwaren clone TWAC-36; DQ662885 68 uncultured bacterium PeM41; AJ576407 Sporichthya polymorpha; AB025317 uncultured bacterium ARFS-32; AJ277698 uncultured bacterium 7; AF513101 Lake Tiefwaren clone TWAC-39; DQ662888 Lake Tiefwaren clone TWAC-31; DQ662880 uncultured actinobacterium clone ST5-24; DQ316370 uncultured actinobacterium NM2; AJ575535 uncultured actinobacterium S1; AJ575504 Lake Tiefwaren clone TWAC-1; DQ662857 uncultured actinobacterium clone STH5-14; DQ316384 uncultured bacterium ARFS-6; AJ277690 Lake Tiefwaren clone TWAC-32; DQ662881 Microthrix parvicella; X89560 uncultured Crater Lake bacterium CL120-133; AF316730 uncultured Verrucomicrobia bacterium VC12; AY211073 Lake Tiefwaren clone TWAC-38; DQ662887 uncultured bacterium PK291; AY555799 Lake Tiefwaren clone TWAC-16; DQ662864 100 Lake Tiefwaren clone TWAC-21; DQ662870 uncultured bacterium PK286; AY555797 acI Mycobacteriaceae Microsphaera Sporichthya acIV Microthrix Verrucomicrobia 0.10 FIGURE 2: Maximum Likelihood tree of cloned and sequenced 16S rRNA gene fragments of free-living and particle-associated Actinobacteria. Solid lines indicate sequences ≥ 1400 nucleotides, whereas dotted lines mark partial sequences (≤ 1400 nucleotides) which were added to the tree by maximum parsimony criteria. Sequences of this study are shown in bold letters. Sequences of particle-associated Actinobacteria are marked by grey boxes. GenBank accession numbers are given. The scale bar corresponds to 10 % base substitutions. Bootstrap values at the main branching points are given. 93 Kapitel IV Variability of freshwater Actinobacteria populations free-living particle-associated BL FNE FSW ST TW pH pH ALK ALK Axis 2 COND IRON TOC DOC stress = 16.328 stress = 17.976 Axis 1 FIGURE 3: Joint plot of the results of the comprehensive NMS analyses of the epilimnetic samples of all lakes and limnological variables with a correlation strength of a Pearson’s r ≥ 0.7. ALK: alkalinity; COND: conductivity; TOC: total organic carbon; DOC: dissolved organic carbon. free-living MAY DEC APR particle-associated AUG DEC MAR OCT NOV OCT FEB JUL MAY JUN AUG JUN MAR NOV APR AUG DEC FEB FEB MAR APR JUL MAR OCT AUG JUN JUL DEC OCT JUN MAY JUL APR FEB NOV NOV SEP Axis 2 OCT AUG MAY JUL OCT epilimnion JUN metalimnion hypolimnion JUL AUG JUN SEP stress = 5.399 stress = 8.434 Axis 1 FIGURE 4: NMS ordination plots of the intra-lake comparison of free-living and particleassociated actinobacterial communities of the epi-, meta-, and hypolimnion of Lake Stechlin. 94 V Abundance and phylogenetic diversity of free-living and particleassociated epilimnetic Actinobacteria of Lake Kinneret (Israel) – A case study Kapitel V Actinobacteria of Lake Kinneret (Israel) submitted to Environmental Microbiology (July, 2006) Abundance and phylogenetic diversity of free-living and particle-associated epilimnetic Actinobacteria of Lake Kinneret (Israel) – A case study Martin Allgaier and Hans-Peter Grossart* Leibniz-Institute of Freshwater Ecology and Inland Fisheries Department Limnology of Stratified Lakes Alte Fischerhütte 2 D-16775 Stechlin-Neuglobsow Germany Running title: Abundance and phylogeny of Actinobacteria in Lake Kinneret Key words: Actinobacteria, free-living and particle-associated, phylogenetic diversity, CARD-FISH, Lake Kinneret *Corresponding author: Leibniz-Institut für Gewässerökologie und Binnenfischerei; Abteilung Limnologie geschichteter Seen; Alte Fischerhütte 2; D-16775 StechlinNeuglobsow; Phone: +49 33082 69991; Fax: +49 33082 69917; email: hgrossart@igbberlin.de 97 Kapitel V Actinobacteria of Lake Kinneret (Israel) Summary We studied the abundance and phylogenetic diversity of free-living and particleassociated Actinobacteria in the epilimnion of Lake Kinneret in October 2004. Actinobacteria communities were characterized by CARD-FISH and clone libraries of actinobacterial 16S rRNA gene fragments. Actinobacteria accounted for 45 % of total bacterial numbers. Phylogenetically, all retrieved 16S rRNA gene sequences belonged to known actinobacterial lineages (e.g. Mycobacteriaceae, Corynebacteriaceae, acI cluster) and indicated no phylogenetic differences to freshwater Actinobacteria populations of other climatic zones. However, separate phylogenetic analyses of free-living and particleassociated Actinobacteria revealed distinct differences between both fractions suggesting a potential adaptation of certain actinobacterial lineages to specific microenvironments. Introduction The class Actinobacteria comprises a variety of gram-positive bacteria with a high genomic G+C content which are best described for soil environments (Goodfellow and Williams, 1983; Rheims et al., 1999). Recent studies have shown that Actinobacteria also occur in the epilimnion of freshwater habitats and frequently belong to the dominant fraction of bacterioplankton communities (Glöckner et al., 2000; Warnecke et al., 2005; Allgaier and Grossart, 2006). Freshwater Actinobacteria clusters in distinct phylogenetic lineages which are clearly separated from Actinobacteria of other environments (Warnecke et al., 2004). Their phylogenetic separation and in situ activity suggest that Actinobacteria are an autochthonous component of limnetic habitats (Warnecke et al., 2005). Nevertheless, almost nothing is known about their physiology and ecological role. Lake Kinneret is a subtropical monomictic lake in northern Israel covering an area of ca. 170 km2 with a maximum depth of 43 m. The lake is considered as mesotrophic-eutrophic with an annual net primary production of 610 g C m-2 (Berman et al., 1995). The lake is strongly stratified from April to November with an anoxic hypolimnion. Several studies have investigated the role of heterotrophic bacteria in Lake Kinneret (Hart et al., 2000; Berman et al., 2001; 2004; Pinhassi and Berman, 2003). However, currently no studies exist examining the community structure of the entire bacterioplankton or single phylogenetic lineages of this lake. Due to their global distribution and high abundances in freshwater habitats we assessed the abundance and phylogenetic diversity of Actinobacteria in the epilimnion of Lake Kinneret to test, whether Actinobacteria are also a dominant bacterial group in a subtropical lake and whether Lake Kinneret harbour distinct 98 Kapitel V Actinobacteria of Lake Kinneret (Israel) phylogenetic lineages which are different from actinobacterial communities of other known freshwater systems. We differentiated between free-living and particle-associated Actinobacteria to reveal higher resolutions in their community structure and to obtain additionally insights into potential ecological adaptations of distinct phylogenetic lineages to specific microenvironments. Results and Discussion This study was conducted in October 2004 when the thermal stratification of Lake Kinneret was well developed and stable. A single water sample was taken close to the central lake station (Station A; 32°82’N, 35°61’E) 1 m above the thermocline in 16 m depth at the 8th of October. Abundances of total and particle-associated Actinobacteria were determined by catalyzed reporter deposition fluorescent in situ hybridization (CARD-FISH) (Sekar et al., 2003). As determined by the probe mix EUB I-III (Daims et al., 1999) hybridization efficiencies were around 94 % (total Bacteria) and 75 % (particle-associated Bacteria). The quantification of Actinobacteria by the oligonucleotide probe HGC69a (Roller et al., 1994) revealed high abundances of total Actinobacteria in the analyzed water sample (Figure 1). Also particle-associated bacterial communities showed relatively high proportions of Actinobacteria (Figure 1). Around 62 (total) and 29 % (particleassociated) of all Actinobacteria belonged to the freshwater cluster acI (Warnecke et al., 2004) indicating a dominance of this cluster within actinobacterial communities of Lake Kinneret. Due to high standard deviations within particle-associated Actinobacteria we were not able to calculate reliable proportions of free-living Actinobacteria by subtracting the numbers of particle-associated Actinobacteria from those of total Actinobacteria. The absolute cell numbers, however, revealed a numerical dominance of free-living compared to particle-associated Actinobacteria (data not shown). In general, our results of the CARD-FISH approach indicated that Actinobacteria belong to the dominant fraction of bacterioplankton communities in the lower epilimnion of Lake Kinneret in October 2004. We are aware of the fact that our results are restricted to a single water sample from a particular sampling date and that additionally studies are needed to draw any convincing conclusions on the occurrence and abundance of Actinobacteria in Lake Kinneret. Nevertheless, the obtained data are well comparable to studies on epilimnetic Actinobacteria of several temperate lakes (Glöckner et al., 2000; Warnecke et al., 2005; Allgaier and Grossart, 2006) indicating that Actinobacteria abundances in freshwater systems of different climatic zones are not substantially different. 99 Kapitel V Actinobacteria of Lake Kinneret (Israel) Cloning and sequencing of free-living and particle-associated actinobacterial 16S rRNA gene fragments resulted in a total of 47 clones (29 free-living, 18 particle-associated). The majority of the sequences were phylogenetically affiliated to the acI cluster (Figure 2) and support our results of the CARD-FISH approach. Furthermore, several sequences of Mycobacteriaceae and Corynebacteriacea were found. In general, no significant phylogenetic differences were observed between actinobacterial communities of Lake Kinneret and freshwater habitats of other climatic zones (Hiorns et al., 1997; Methé and Zehr, 1999; Urbach et al., 2001; Warnecke et al., 2004; Allgaier and Grossart, 2006). Despite these phylogenetic similarities it can not be excluded that Actinobacteria of Lake Kinneret are ecophysiologically adapted to their respective subtropical environmental conditions. For example, Hahn & Pöckl (2005) showed that phylogenetically identical Actinobacteria isolates from different climatic regions are well adapted to their prevailing thermal conditions and, thus, represent different ecotypes. Even though no significant phylogenetic differences were found between Actinobacteria populations of Lake Kinneret and other freshwater habitats, distinct differences occurred between free-living and particle-associated Actinobacteria of Lake Kinneret. Phylogenetic lineages such as Mycobacteriaceae, Propionibacteriaceae, or Micrococcaceae exclusively comprise particle-associated Actinobacteria, whereas Corynebacteriaceae, the acI, and the acIV cluster contain mainly free-living Actinobacteria (Figure 2). This notion suggests a potential adaptation of distinct actinobacterial lineages to specific microenvironments. To our knowledge, currently no other study exists showing these phylogenetic differences between free-living and particle-associated Actinobacteria. However, differences between both actinobacterial fractions seem to be not a peculiarity of Lake Kinneret since similar differences were also observed in Lake Tiefwaren (northeastern Germany) (Allgaier et al., submitted). At present, the ecological relevance of the adaptation of distinct actinobacterial phyla to specific microenvironments is largely unknown. Several Actinobacteria of the genera Mycobacterium and Corynebacterium are known as pathogens, e.g. Mycobacterium tuberculosis or Corynebacterium diphtheriae but both genera also comprise nonpathogenic members derived from various natural habitats, such as soils, plants, and aquatic environments (Padgitt and Moshier, 1987). A distinct adaptation to particles is most likely for members of the Micrococcaceae because bacteria of this group occur in high abundances on mammalian skins (Kocur et al., 1992). However, it remains speculative why distinct phylogenetic lineages of Actinobacteria predominantly occur on particles and others mainly in the free-living form. To further elucidate this topic more detailed analyses are necessary. 100 Kapitel V Actinobacteria of Lake Kinneret (Israel) In summary, our case study indicates that Actinobacteria are the dominant epilimnetic bacterial fraction of Lake Kinneret in October 2004 with proportions similar to other freshwater habitats. Our phylogenetic analyses suggest no substantial differences between Actinobacteria communities of subtropical Lake Kinneret and other freshwater systems of the temperate zone. The differentiation between free-living and particleassociated Actinobacteria revealed distinct differences between both bacterial fractions and suggest an adaptation of certain actinobacterial lineages to specific microenvironments. Nevertheless, our results give only first insights into abundance and phylogeny of Actinobacteria in Lake Kinneret. Therefore, further studies are necessary to obtain more detailed informations on the phylogenetic diversity and ecology of Actinobacteria populations in this lake. Acknowledgement We thank all participants of the German Israeli Minerva School at the Yigal Allon Kinneret Limnological Laboratory (KLL), Israel, in October 2004, especially the members of the organization committee O. Hadas, A. Sukenik, H. Baumert, and K.-P. Witzel. We also would like to thank the staff of the KLL for their great help during sampling and in the lab. P. Corredor and K.-P. Witzel is thanked for their support performing DNA extraction. Further we would like to thank F. Warnecke and J. Pernthaler for the introduction into CARD-FISH and for providing the oligonucleotide probes. This study was supported by the Minerva foundation. 101 Kapitel V Actinobacteria of Lake Kinneret (Israel) References Allgaier, M., and Grossart, H.-P. (2006) Diversity and seasonal dynamics of Actinobacteria in four lakes in Northeastern Germany. Appl Environ Microbiol 72: 3489-3497. Berman, T., Stone, L., Yacobi, Y.Z., Kaplan, B., Schlichter, M., Nishri, A., and Pollingher, U. (1995) Primary production and phytoplankton in Lake Kinneret: a long-term record (1972-1993). Limnol Oceanogr 40: 1064-1076. Berman, T., Kaplan, B., Chava, S., Viner, Y., Sherr, B.F., and Sherr, E. (2001) Metabolically active bacteria in Lake Kinneret. Aqaut Microb Ecol 23: 213-224. Berman, T., Parparov, A., and Yacobi, Y.Z. (2004) Planktonic community production and respiration and the impact of bacteria on carbon cycling in the photic zone of Lake Kinneret. Aquat Microb Ecol 34: 43-55. Daims, H., Bruhl, A., Amann, R., Schleifer, K.-H., and Wagner, M. (1999) The domainspecific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22: 434444. Glöckner, F.O., Zaichikov, E., Belkova, N., Denissova, L., Pernthaler, J., Pernthaler, A., and Amann, R. (2000) Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of Actinobacteria. Appl Environ Microbiol 66: 5053-5065. Goodfellow, M., and Williams, S.T. (1983) Ecology of Actinomycetes. Annu Rev Microbiol 37: 189-216. Hahn, M.W., and Pöckl, M. (2005) Ecotypes of planktonic Actinobacteria with identical 16S rRNA genes adapted to thermal niches in temperate, subtropical, and tropical freshwater habitats. Appl Environ Microbiol 71: 766-773. Hart, D., Stone, L., and Berman, T (2000) Seasonal dynamics of the Lake Kinneret food web: the importance of the microbial loop. Limnol Oceanogr 45: 350-361. Hiorns, W.D., Methé, B.A., Nierzwicki-Bauer, S.A., and Zehr, J.P. (1997) Bacterial diversity in Adirondack mountain lakes as revealed by 16S rRNA gene sequences. Appl Environ Microbiol 63: 2957-2960. Kocur, M., Kloos, W.E., and Schleifer, K.-H. (1992) The Genus Micrococcus, p. 13001311. In A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer (ed.), The Prokaryotes, 2nd ed., vol. 2. Springer, New York, N.Y. Methé, B.A., and Zehr, J.P. (1999) Diversity of bacterial communities in Adirondack lakes: do species assemblages reflect lake water chemistry? Hydrobiologia 401: 77-96. Padgitt, P.J., and Moshier, S.E. (1987) Mycobacterium poriferae sp. nov., a scotochromogenic, rapidly growing species isolated from a marine sponge. Int J Syst Bacteriol 37: 186-191. Pinhassi, J., and Berman, T. (2003) Differential growth response of colony-forming α- and γ-Proteobacteria in dilution culture and nutrient addition experiments from Lake Kinneret (Israel), the eastern Mediterranean Sea, and the Gulf of Eilat. Appl Environ Microbiol 69: 199-211. Rheims, H., Felske, A., Seufert, S., and Stackebrandt, E. (1999) Molecular monitoring of an uncultured group of the class Actinobacteria in two terrestrial environments. J Microbiol Methods 36: 65-75. Roller, C., Wagner, M., Amann, R., Ludwig, W., and Schleifer, K.-H. (1994) In situ probing of gram-positive bacteria with high DNA G+C content using 23S rRNA targeted oligonucleotides. Microbiology 140: 2849-2858. Sekar, R., Pernthaler, A., Pernthaler, J., Warnecke, F., Posch, T., and Amann, R. (2003) An improved protocol for the quantification of freshwater Actinobacteria by fluorescence in situ hybridization. Appl Environ Microbiol 69: 2928-2935. 102 Kapitel V Actinobacteria of Lake Kinneret (Israel) Urbach, E., Vergin, K.L., Young, L., Morse, A., Larson, G.L., and Giovannoni, S.J. (2001) Unusual bacterioplankton community structure in ultra-oligotrophic Crater Lake. Limnol Oceanogr 46: 557-572. Warnecke, F., Amann, R., and Pernthaler, J. (2004) Actinobacterial 16S rRNA genes from freshwater habitats cluster in four distinct lineages. Environ Microbiol 6: 242-253. Warnecke, F., Sommaruga, R., Sekar, R., Hofer, J.S., and Pernthaler, J. (2005) Abundance, identity, and growth state of Actinobacteria in mountain lakes of different UV transparency. Appl Environ Microbiol 71: 5551-5559. 103 % of total DAPI counts Kapitel V Actinobacteria of Lake Kinneret (Israel) Actinobacteria (probe HGC69a) acI cluster (probe AcI-852) 70 60 50 40 30 20 10 0 TOTAL PA FIGURE 1: Relative abundance of members of the class Actinobacteria (probe HGC69a, Roller et al., 1994) and the acI cluster (probe AcI-852, Warnecke et al., 2005) in the lower epilimnion (16 m) of Lake Kinneret derived from CARD-FISH. Error bars represent standard deviations determined from 10 (total) and 25 (particle-associated) independently counted microscopic fields, respectively. (TOTAL) total Actinobacteria, (PA) particleassociated Actinobacteria. For CARD-FISH water samples of 5 ml were filtered through 0.2 µm Nuclepore polycarbonate filters (total Actinobacteria) and 10 ml through 5.0 µm filters (particle-associated Actinobacteria). CARD-FISH was performed as described previously (Sekar et al., 2003; Allgaier and Grossart, 2006). 104 Kapitel V Actinobacteria of Lake Kinneret (Israel) Mycobacterium sp. Myc399 (AF491284) Lake Kinneret clone LKAC-10; DQ675143 Lake Kinneret clone LKAC-29; DQ675152 Lake Kinneret clone LKAC-27; DQ675150 Lake Kinneret clone LKAC-5; DQ675174 Lake Kinneret clone LKAC-4; DQ675164 Mycobacterium peregrinum ; AF058712 Mycobacterium sp. DSM3803; AY147261 Lake Kinneret clone LKAC-26; DQ675149 Mycobacterium sp. HE5; AJ012738 Mycobacterium chitae; X55603 Mycobacterium sp. MCRO16; X93027 100 Lake Kinneret clone LKAC-2; DQ675144 Lake Kinneret clone LKAC-7; DQ675187 Lake Kinneret clone LKAC-22; DQ675146 Mycobacterium sp. KMS; AY083217 91 Mycobacterium sp.; U46146 uncultured corynebacterium MTcory21R; AF115944 Corynebacterium imitans; AF537597 Lake Kinneret clone LKAC-57; DQ675182 Corynebacterium sp. 2002-2300500; AY244775 Corynebacterium sp. 1 ex sheep; Y13427 Lake Kinneret clone LKAC-46; DQ675170 Lake Kinneret clone LKAC-50; DQ675175 Corynebacterium jeikeium ; X82062 uncultured corynebacterium MTcory14R; AF115940 Lake Kinneret clone LKAC-24; DQ675147 100 Lake Kinneret clone LKAC-39; DQ675163 97 uncultured actinobacterium APe2_64; AB074644 Pseudonocardia zijingensis; AF325725 uncultured bacterium #0649-1I18; AF234120 Pseudonocardia thermophila; AJ252830 100 90 Lake Kinneret clone LKAC-45; DQ675169 Lake Kinneret clone LKAC-28; DQ675151 Lake Kinneret clone LKAC-30; DQ675154 uncultured bacterium a2b011; AF419680 100 Lake Kinneret clone LKAC-1; DQ675142 98 Propionibacterium propionicum ; AJ003058 uncultured bacterium PeM19; AJ576388 100 Lake Kinneret clone LKAC-21; DQ675145 Nocardioides sp. NSP41; AF005024 Micrococcus luteus HN2-11; AF057289 Micrococcus sp. 98TH11322; AY159889 Micrococcus sp. MN81d1c; AJ313024 Lake Kinneret clone LKAC-6; DQ675185 bacterium str. 71381; AF227843 100 Lake Kinneret clone LKAC-3; DQ675153 Lake Kinneret clone LKAC-8; DQ675188 uncultured actinobacterium R6; AJ575502 uncultured bacterium S9F-07; AB154305 Lake Kinneret clone LKAC-53; DQ675178 Lake Kinneret clone LKAC-54; DQ675179 98 Lake Kinneret clone LKAC-56; DQ675181 95 Lake Kinneret clone clone LKAC-36; DQ675160 uncultured actinobacterium clone FSW11-20; DQ316352 Lake Kinneret clone LKAC-25; DQ675148 97 uncultured actinobacterium clone FNE11-11; DQ316338 78 uncultured actinobacterium clone FNE11-12; DQ316339 92 Lake Kinneret clone LKAC-35; DQ675159 uncultured actinobacterium clone BL11-23; DQ316328 Lake Kinneret clone LKAC-32; DQ675156 Lake Kinneret clone LKAC-34; DQ675158 98 Lake Kinneret clone LKAC-31; DQ675155 99 Lake Kinneret clone LKAC-51; DQ675176 uncultured bacterium S9A-07; AB154299 uncultured actinobacterium NM1; AJ575534 Lake Kinneret clone LKAC-49; DQ675173 Lake Kinneret clone LKAC-43; DQ675167 Lake Kinneret clone LKAC-44; DQ675168 Lake Kinneret clone LKAC-52; DQ675177 Lake Kinneret clone LKAC-33; DQ675157 Lake Kinneret clone LKAC-42; DQ675166 100 Lake Kinneret clone LKAC-48; DQ675172 Lake Kinneret clone LKAC-59; DQ675184 uncultured actinobacterium clone TWAC-34; DQ662883 Swedish lake clone LiUU-5-233: AY496989 95 Lake Soyang clone SY2-69; AF107512 Lake Kinneret clone LKAC-40; DQ675165 Lake Kinneret clone LKAC-60; DQ675186 uncultured actinobacterium FBP218; AY250865 Sporichthya polymorpha; X72377 Lake Kinneret clone LKAC-55; DQ675180 Lake Kinneret clone LKAC-58; DQ675183 Lake Kinneret clone LKAC-47; DQ675171 uncultured actinobacterium clone BL11-20; DQ316327 Crater Lake clone CL120-38; AF316671 Crater Lake clone CL120-45; AF316672 Lake Kinneret clone LKAC-37; DQ675161 Lake Kinneret clone LKAC-38; DQ675162 Actinobacteria particle-associated 98 59 99 41 80 88 97 83 100 100 Mycobacteriaceae Corynebacteriaceae Pseudonocardiaceae Propionibacteriaceae Nocardioidaceae Micrococcaceae acI Sporichthya acIV 0.10 FIGURE 2: Maximum likelihood tree of 16S rRNA gene sequences derived from clone libraries of free-living and particle-associated Actinobacteria. At first a backbone tree was calculated including sequences ≥ 1400 nucleotides (solid lines). In a second step, partial sequences (≤ 1400 nucleotides) were added to this tree according to maximum parsimony criteria (dotted lines). Sequences of this study are shown in bold letters. GenBank accession numbers are given. The scale bar corresponds to 10 % base substitutions. Bootstrap values at the main branching points are given. For more details on sequence alignments and phylogenetic reconstructions see Allgaier and Grossart (2006). Cloning and sequencing of actinobacterial 16S rRNA gene fragments were performed as described previously (Allgaier and Grossart, 2006). For DNA extraction water samples of 100-150 ml were filtered sequentially through 5.0 and 0.2 µm Nuclepore polycarbonate membranes to separate free-living and particle-associated bacteria. Actinobacterial 16S rRNA gene fragments were PCR amplified with primers specific for Actinobacteria (Warnecke et al., 2004). For each actinobacterial fraction one clone library was constructed. 105 VI Gesamtbetrachtung und Ausblick Kapitel VI Gesamtbetrachtung und Ausblick Gesamtbetrachtung Aquatische Lebensräume sind hochkomplexe Ökosysteme, in denen eine Vielzahl biologischer Prozesse miteinander vernetzt ist. Viele der Prozesse werden von Mikroorganismen bzw. Bakterien gesteuert, die signifikant am Stoffumsatz in diesen Systemen beteiligt sind (Cotner & Biddanda, 2002). Trotz ihrer biogeochemischen Bedeutung ist bislang relativ wenig über die phylogenetische Diversität und Dynamik vieler aquatischer Bakteriengemeinschaften bekannt. Die Mehrzahl der Untersuchungen an aquatischen Bakterien wurde in marinen Habitaten durchgeführt (Giovannoni, 2004). Da zum Teil deutliche Unterschiede zwischen limnischen und marinen Bakterien existieren (Methé et al., 1998; Glöckner et al., 1999; Rappé et al., 2000; Zwart et al., 2002), erscheint das Studium limnischer Bakteriengemeinschaften aus heutiger Sicht umso notwendiger. In limnischen Systemen mangelt es vor allem an vergleichenden Studien, die detaillierte Rückschlüsse auf generelle Muster und Anpassungen von Bakteriengemeinschaften oder einzelnen Bakteriengruppen an ihre Umwelt ermöglichen. In der hier vorliegenden Arbeit wurde daher gezielt der Ansatz verfolgt, Bakteriengemeinschaften aus limnologisch unterschiedlichen Seen hinsichtlich ihrer phylogenetischen Diversität, saisonalen Dynamik und ökologischen Anpassungen zu charakterisieren und miteinander zu vergleichen. In einem ersten Schritt wurden dazu mittels verschiedener molekularbiologischer Verfahren die Bakteriengemeinschaften in vier ausgewählten Seen der Mecklenburgischen Seenplatte im jahreszeitlichen Verlauf untersucht (vgl. Kapitel II). Die offensichtliche Dominanz von Vertretern der Actinobacteria in den Untersuchungsgewässern führte im Folgenden zu gezielten Studien an dieser Bakteriengruppe. Die dabei erzielten Ergebnisse lieferten neue und detaillierte Einblicke in die phylogenetische Diversität, saisonale Dynamik und Anpassung spezifischer Actinobacteria-Populationen an ihre Habitate (vgl. Kapitel III-V). Die Bakterienpopulationen in den Untersuchungsgewässern Wie die DGGE-Profile zeigten, gab es signifikante Unterschiede zwischen den Bakteriengemeinschaften der vier untersuchten Seen (vgl. Kapitel II). Diese Unterschiede wurden sowohl zwischen frei-lebenden wie auch partikel-assoziierten Bakteriengemeinschaften gefunden. Dass sich die beiden Fraktionen nicht immer voneinander unterscheiden, wurde mehrfach gezeigt (Hollibaugh et al., 2000; Riemann & Winding, 2001; Stevens et al., 2005). Bewegliche Bakterien können durch aktives Anheften und Verlassen von Partikeln zu erheblichen Austauschraten zwischen den beiden Bakterienfraktionen führen (Kiørboe et al., 2002). Auf Ebene der 16S rRNA waren 109 Kapitel VI die Gesamtbetrachtung und Ausblick Unterschiede zwischen den Bakteriengemeinschaften der vier Untersuchungsgewässer weniger stark ausgeprägt als bei den DGGE Analysen. Die phylogenetischen Vergleiche von 16S rRNA-Gensequenzen deuteten auf das Vorkommen meist identischer Phylotypen in den Seen hin. Da in dieser Arbeit keine DGGE-Banden sequenziert wurden, kann die phylogenetische Diversität der DGGEProfile nicht mit den Ergebnissen aus den Klonbibliotheken verglichen werden. Es ist durchaus möglich, dass die DGGE-Banden auf Sequenzebene eine ähnliche phylogenetische Diversität darstellen wie sie durch die Klonbibliotheken gezeigt wurde. Die durch die Klonbibliotheken identifizierten Bakterien konnten alle phylogenetisch bereits bekannten Süßwasser-Clustern zugeordnet werden (Zwart et al., 2002). Die Klonbibliotheken wurden vor allem von Sequenzen der Actinobacteria dominiert, gefolgt von Vertretern der Bacteroidetes, α- und β-Proteobacteria (vgl. Kapitel II und III). Während nahezu keine phylogenetischen Unterschiede zwischen den Seen erkennbar waren, gab es deutliche Unterschiede in der phylogenetischen Zusammensetzung von frei-lebenden und partikel-assoziierten Bakteriengemeinschaften. Frei-lebende Bakteriengemeinschaften wurden von Actinobacteria, Bacteroidetes, α- und β-Proteobacteria dominiert, wohingegen sich die partikel-assoziierten Bakteriengemeinschaften überwiegend aus Vertretern der Bacteroidetes, α-Proteobacteria und Planctomycetes zusammensetzten. Besonders auffällig war die Tatsache, dass bis auf eine Sequenz alle Actinobacteria-Sequenzen aus der frei-lebenden Bakterienfraktion stammten (vgl. Kapitel II). Durch die gezielte Analyse der partikel-assoziierten Bakterien konnte jedoch gezeigt werden, dass Actinobacteria trotz ihrer geringen Abundanz auf Partikeln eine ähnliche phylogenetische Diversität aufweisen können wie frei-lebende Actinobacteria (vgl. Kapitel IV und V). Phylogenetische Unterschiede zwischen frei-lebenden und partikel-assoziierten Bakterien sind aus früheren Studien bekannt (Weiss et al., 1996; Grossart & Simon, 1998; Brachvogel et al., 2001; Schweitzer et al., 2001). Sie lassen auf die Anpassung bestimmter Bakteriengruppen an die spezifischen Lebensbedingungen auf den Partikeln schließen. Aufgrund der begrenzten Anzahl an sequenzierten Klonen können mit den vorliegenden Daten jedoch keine quantitativen Aussagen über das Vorkommen einzelner Bakteriengruppen gemacht werden. Wie bereits in Kapitel II und III diskutiert wurde, geben die erhaltenen Sequenzen dennoch einen grundlegenden Einblick in die phylogenetische Diversität der untersuchten Bakteriengemeinschaften. 110 Kapitel VI Gesamtbetrachtung und Ausblick Limnische Actinobacteria Phylogenetische Diversität Vertreter der Actinobacteria wurden in allen Untersuchungsgewässern als eine der dominanten Bakteriengruppen identifiziert (vgl. Kapitel III). In den letzten Jahren hat sich mehrfach gezeigt, dass Actinobacteria neben den β-Proteobacteria einen wesentlichen Bestandteil limnischer Bakteriengemeinschaften ausmachen können (Hiorns et al., 1997; Burkert et al., 2003; Van der Gucht et al., 2005). Dennoch ist über diese Bakteriengruppe bislang nur wenig bekannt. Die hier vorliegende Arbeit konnte grundlegend dazu beitragen, neue Erkenntnisse über die phylogenetische Diversität und Dynamik limnischer Actinobacteria, so wie deren Verbreitung und Anpassung an bestimmte Habitate zu gewinnen (vgl. Kapitel III-V). Die Actinobacteria der vier Untersuchungsgewässer konnten phylogenetisch überwiegend bereits bekannten Clustern zugeordnet werden (z.B. acI, acII, oder acIV) (Warnecke et al., 2004). Durch die umfangreichen Sequenzinformationen wurden aber auch neue Cluster (acSTL) und Subcluster (scB 1-4, acIV D-E) entdeckt (vgl. Kapitel III). Wie in Kapitel IV ausführlich dargestellt, gab es signifikante Unterschiede zwischen den ActinobacteriaPopulationen der vier untersuchten Seen. Im Stechlinsee konnten sogar Unterschiede in den Actinobacteria-Populationen von Epi-, Meta- und Hypolimnion nachgewiesen werden. Weitaus überraschender war jedoch die Entdeckung, dass sich frei-lebende und partikelassoziierte Actinobacteria-Populationen deutlich voneinander unterscheiden und dass innerhalb der partikel-assoziierten Actinobacteria eine große phylogenetische Diversität existiert (vgl. Kapitel IV und V). Nachdem in den universellen Klonbibliotheken (vgl. Kapitel II und III) Actinobacteria fast ausschließlich frei-lebend gefunden wurden, deuteten die spezifischen Analysen der Actinobacteria-Populationen eine bislang nicht gezeigte phylogenetische Diversität innerhalb der partikel-assoziierten Actinobacteria an. Anhand von vier 16S rRNA-Gen-Klonbibliotheken frei-lebender und partikel-assoziierter Actinobacteria aus dem Tiefwarensee und dem See Genezareth konnte gezeigt werden, dass partikel-assoziierte Actinobacteria teilweise anderen phylogenetischen Linien angehören als frei-lebende Actinobacteria. Frei-lebende Actinobacteria wurden beispielsweise mehrheitlich den beiden Clustern acI und acIV zugeordnet, wohingegen partikel-assoziierte Actinobacteria innerhalb der Mycobacteriaceae, Microsphaera, Microthrix, und Micrococcaceae vorkamen (vgl. Kapitel IV und V). Die Unterschiede zwischen den Actinobacteria-Populationen der untersuchten Seen und Bakterienfraktionen deuten auf eine spezifische Anpassung der entsprechenden Actinobacteria-Populationen an ihre Umweltbedingungen 111 hin. Durch die enge Kapitel VI Gesamtbetrachtung und Ausblick phylogenetische Verwandtschaft der identifizierten Actinobacteria kann hier sogar von einer Mikrodiversität gesprochen werden (Moore et al., 1998; Jaspers & Overmann, 2004). Für eine genaue Klärung sind jedoch weiterführende Untersuchungen notwendig. Die vorgeschlagene Mikrodiversität wird von den Ergebnissen aus verschiedenen statistischen Analysen unterstützt, in denen seenspezifische Korrelationsmuster zwischen Actinobacteria und bestimmten Umweltparametern gefunden wurden (vgl. Kapitel IV und Anhang). Bei Actinobacteria-Isolaten aus Gewässern verschiedener klimatischer Zonen wurde bereits eine ausgeprägte Mikrodiversität nachgewiesen (Hahn & Pöckl, 2005). Wie die Ergebnisse der Studie zeigten, gab es eine deutliche Anpassung der jeweiligen Actinobacteria an die klimatischen Bedingungen ihrer Ursprungshabitate. Verbreitung, Dynamik und ökologische Anpassung limnischer Actinobacteria Limnische Actinobacteria wurden weltweit bereits in verschiedenen Gewässern nachgewiesen (z.B. Semenova & Kuznedelov, 1998; Urbach et al., 2001; Hahn & Pöckl, 2005; Haukka, et al., 2005; Van der Gucht et al., 2005). Den heute bekannten Sequenzinformationen zur Folge gibt es offensichtlich keine phylogenetischen Unterschiede zwischen den bislang untersuchten Actinobacteria-Populationen. Nach der Hypothese von Staley & Gosink (1999) können limnische Actinobacteria demnach als kosmopolitisch angesehen werden, da sie keine geographischen Subcluster aufweisen. Durch die in dieser Arbeit vorgestellte Fallstudie zur Abundanz und Diversität von Actinobacteria im subtropischen See Genezareth (vgl. Kapitel V) konnte der kosmopolitische Charakter der Actinobacteria weiter unterstützt werden. Die dort identifizierten Actinobacteria wiesen keine phylogenetischen Unterschiede zu Actinobacteria-Populationen aus limnischen Systemen temperenter Klimazonen auf. Die globale Verbreitung und phylogenetische Ähnlichkeit von Actinobacteria-Populationen verschiedener Gewässer und geographischer Regionen steht nicht im Widerspruch zu der angenommenen Mikrodiversität innerhalb limnischer Actinobacteria (s.o.). Vielmehr wird durch diese Annahme die Hypothese von Staley & Gosink (1999) unterstützt, da sich deutlich zeigt, dass phylogenetisch identische Actinobacteria in der Lage sind, verschiedene Habitate zu besiedeln. Gegenwärtig existieren nur wenige Studien, in denen die relative Abundanz von Actinobacteria in limnischen Systemen bestimmt wurden (Glöckner et al., 2000; Warnecke et al., 2005). Bislang ist nur eine Studie bekannt, in der die saisonale Dynamik limnischer Actinobacteria untersucht wurde (Glöckner et al. 2000). In der hier vorliegenden Arbeit wurden erstmals vergleichende Untersuchungen zur jahreszeitlichen Dynamik limnischer Actinobacteria verschiedener Seen durchgeführt. Durch die Entwicklung hochspezifischer 112 Kapitel VI Gesamtbetrachtung und Ausblick Oligonukleotidsonden (Warnecke et al., 2005) konnten nicht nur die Actinobacteria als Großgruppe, sondern auch Vertreter verschiedener limnischer Cluster und Subcluster quantifiziert werden (vgl. Kapitel III). Unabhängig vom Untersuchungsgewässer zeigten die Actinobacteria-Populationen relativ einheitliche saisonale Muster mit Maxima im Sommer und Spätherbst (vgl. Kapitel III). Diese ausgeprägte Saisonalität lässt eine Kopplung zwischen Actinobacteria und bestimmten limnologischen Prozessen annehmen. Die Maxima im Sommer und Herbst deuten stark auf einen selektiven Vorteil der Actinobacteria in Phasen erhöhten grazings in den Gewässern hin (Pernthaler et al., 2001; Jezbera et al., 2005, 2006). Der direkte Einfluss von grazing auf die Saisonalität und Abundanz limnischer Actinobacteria konnte hier jedoch nicht untersucht werden, da entsprechende Daten zu möglichen „Grazern“ (z.B. heterotrophe Nanoflagellaten) fehlten. Ausführliche statistische Analysen sollten dennoch Einblicke in mögliche Abhängigkeiten zwischen Actinobacteria und verschiedenen Umweltparametern liefern. Die Anwendung linearer Regressionsanalysen und multivariater statistischer Verfahren (non-metric multidimensional scaling, NMS) erbrachte eine Vielzahl unterschiedlicher Korrelationen zwischen der Abundanz und Diversität von Actinobacteria und verschiedenen limnologischen Parametern (vgl. Kapitel IV und Anhang). Es konnten jedoch keine Schlüsselparameter identifiziert werden, die einen generellen Steuerungseinfluss auf die Struktur und Dynamik limnischer Actinobacteria-Populationen vermuten lassen. Die Ergebnisse der statistischen Analysen zeigten vielmehr seenspezifische Korrelationsmuster zwischen Actinobacteria und bestimmten Umweltparametern, welche die Hypothese der physiologischen und ökologischen Anpassung limnischer Actinobacteria an ihre Umwelt unterstützen (Hahn & Pöckl, 2005; vgl. Kapitel IV und Anhang). Dass es Unterschiede in den Ergebnissen der beiden statistischen Verfahren (linear vs. multivariat) und Spezies-Datensätzen (Abundanz vs. Diversität) geben wird, war vorhersehbar. Sie sind auf die jeweilige statistische Methode bzw. verwendeten Spezies-Datensätze Abhängigkeiten zurückzuführen. zwischen zwei Während Variablen lineare aufzeigen, Regressionen berücksichtigen nur direkte multivariate statistische Analysen auch Interaktionen zwischen einzelnen Parametern (McGarigal et al., 2000). Zusammenfassend bleibt festzuhalten, dass es innerhalb der limnischen Actinobacteria eine große phylogenetische Diversität mit einer ausgeprägten saisonalen Dynamik gibt. Die vergleichenden Untersuchungen der Actinobacteria-Populationen zwischen den Untersuchungsgewässern und die statistischen Analysen deuten auf eine offensichtliche ökologische Anpassung der jeweiligen Actinobacteria an ihre Umgebung hin. Mittels der statistischen Analysen war es jedoch nicht möglich, grundlegende Informationen zu 113 Kapitel VI Gesamtbetrachtung und Ausblick physiologischen Eigenschaften der Actinobacteria zu erhalten. Für eine detaillierte physiologische und ökologische Beschreibung limnischer Actinobacteria ist daher die erfolgreiche Isolierung von Vertretern dieser Bakteriengruppe unumgänglich. Verknüpfung von Struktur und Funktion aquatischer Bakteriengemeinschaften Durch die Entwicklung kultivierungsunabhängiger Nachweisverfahren für Bakterien in der mikrobiellen Ökologie kann heute die Struktur von Bakteriengemeinschaften relativ einfach und zuverlässig bestimmt werden. Probleme treten erst bei dem Versuch auf, von den molekularbiologischen Daten auf die Physiologie der Bakterien zu schließen. Molekularbiologische Studien sind rein beschreibende Analysen der genetischen Diversität von Bakteriengemeinschaften und lassen in der Regel nur begrenzt Rückschlüsse auf ökophysiologische Eigenschaften der Bakterien zu. Da bislang nur ein Bruchteil aller bekannten Bakterien kultiviert werden konnte, gibt es nur wenige Informationen zu physiologischen Eigenschaften verschiedener Bakteriengruppen (Amann et al., 1995; Suzuki et al., 1997). Mittels hochspezifischer in situ Methoden (z.B. Mikroautoradiographie gekoppelt mit Fluoreszenz in situ Hybridisierung; MAR-FISH) wird daher seit einiger Zeit versucht, Informationen zur Ökologie bislang unkultivierter Mikroorganismen zu erhalten (Alonso et al., 2005, 2006; Horňák et al., 2006). Neben diesen experimentellen Studien gibt es aber auch eine ganze Reihe von Untersuchungen, die mittels statistischer Verfahren auf die ökologische Funktion von ganzen Bakteriengemeinschaften oder einzelnen Bakteriengruppen zu schließen versuchen (Lindström, 2001; Muylaert et al., 2002; Van der Gucht et al., 2005; Lindström et al., 2005; Yannarell & Triplett, 2005; Newton et al., 2006). So wurden in der hier vorliegenden Arbeit verschiedene statistische Methoden angewendet, um die Struktur und Dynamik der Bakteriengemeinschaften und Actinobacteria der vier untersuchten Seen mit limnologischen Parametern in Verbindung zu bringen (vgl. Kapitel II und IV). Die erzielten Ergebnisse erlaubten jedoch keine konkreten Aussagen über Zusammenhänge zwischen der Diversität und Abundanz der Bakterien und bestimmter limnologischer Variablen. Die Gründe hierfür können vielerlei Ursprung sein und sind im Detail zu klären. Vor allem hat sich aber gezeigt, dass eine höhere phylogenetische und zeitliche Auflösung notwendig ist, um detaillierte Ergebnisse bezüglich der Zusammenhänge zwischen Bakterien und Umweltparametern zu erhalten. Durch die gezielte Anwendung der statistischen Verfahren auf die Actinobacteria konnten beispielsweise zahlenmäßig mehr und stärkere Korrelationen zu bestimmten limnologischen Parametern gefunden 114 Kapitel VI Gesamtbetrachtung und Ausblick werden als bei den Analysen mit den gesamten Bakteriengemeinschaften (vgl. Kapitel II, IV und Anhang). Ähnliches konnte auch bei den statistischen Analysen innerhalb der Actinobacteria beobachtet werden. Durch die getrennte Analyse von frei-lebenden und partikel-assoziierten Actinobacteria-Populationen konnten deutlich mehr Korrelationen festgestellt werden als bei Analysen mit Datensätzen, die beide Bakterienfraktionen enthielten (vgl. Kapitel IV und Anhang). Die Problematik statistischer Ansätze zur Klärung physiologischer und ökologischer Eigenschaften aquatischer Bakterien wurde mehrfach beschrieben und diskutiert (Muylaert et al., 2002; Yannarell & Triplett, 2005; Newton et al., 2006). Auch wenn die hier vorliegenden Ergebnisse durch ihre Heterogenität keine konkreten Rückschlüsse auf die Ökologie der untersuchten Bakteriengemeinschaften zulassen, können statistische Analysen generell gute Einblicke in die Physiologie und ökologische Rolle aquatischer Bakteriengemeinschaften liefern (Stepanauskas et al., 2003; Yannarell & Triplett, 2005; Lindström et al., 2005; Newton et al., 2006). Diese Erkenntnisse müssen jedoch durch experimentelle Nachweise bestätigt werden. Detaillierte Kenntnisse über die ökologischen Nischen einzelner Bakteriengruppen können letztendlich dazu genutzt werden, gezielt Strategien zur Isolierung bislang unkultivierter Mikroorganismen zu entwickeln. 115 Kapitel VI Gesamtbetrachtung und Ausblick Aktuelle Projekte und Ausblicke Im Rahmen dieser Arbeit konnten neue Erkenntnisse über die Struktur und Dynamik limnischer Bakteriengemeinschaften und einzelner Bakteriengruppen gewonnen werden. Dennoch sind einige Fragen offen geblieben, die es in Zukunft zu beantworten gilt. Eine der größten Herausforderungen wird vor allem die Verknüpfung von Struktur und Funktion aquatischer Bakteriengemeinschaften sein. Aufbauend auf dieser Arbeit soll durch zwei weiterführende Projekte die Rolle der Actinobacteria in den untersuchten Seen und anderen aquatischen Ökosystemen näher beleuchtet werden. Die beiden Projekte verfolgen dabei zwei unterschiedliche Herangehensweisen, um weitere Informationen über die physiologische und ökologische Rolle limnischer Actinobacteria zu erhalten. In Kooperation mit dem Max-Planck-Institut für Marine Mikrobiologie in Bremen und dem DOE Joint Genome Institute (USA) sollen im ersten Projekt FOSMID libraries von Actinobacteria aus dem Stechlinsee und der Grossen Fuchskuhle hergestellt und analysiert werden. Diese FOSMID libraries sollen gezielt auf funktionelle Gene untersucht werden, um so Informationen über mögliche Stoffwechseleigenschaften limnischer Actinobacteria zu erhalten. Neben diesem rein molekularbiologischen Ansatz soll im zweiten Projekt versucht werden, Vertreter der Actinobacteria zu isolieren und physiologisch zu charakterisieren. In Zusammenarbeit mit Dr. Lasse Riemen von der Universität Kalmar (Schweden) sollen dazu neue Isolierungsstrategien entwickelt werden, die auf eine erfolgreiche Isolierung der bislang unkultivierten limnischen Actinobacteria hoffen lassen. Auch wenn über die Phylogenie und Verbreitung limnischer Actinobacteria mittlerweile viel bekannt ist, gibt es in diesem Bereich noch weiteren Informationsbedarf. Hierbei sollte vor allem die detaillierte Untersuchung partikel-assoziierter Actinobacteria im Vordergrund stehen. Ein wichtiger Punkt im Zusammenhang mit der Untersuchung der Phylogenie und Biogeographie limnischer Actinobacteria ist die Weiterentwicklung spezifischerer Nachweisverfahren, wie z.B. FISH-Sonden oder real time quantitative PCR (RTQ-PCR). Wie bereits bei den Ergebnissen zur Abundanz und saisonalen Dynamik der Actinobacteria zu sehen war, können mit den bislang etablierten FISH-Sonden etwa 60-91 % der Actinobacteria des acI Clusters detektiert werden (vgl. Kapitel III). Es bleibt also immer noch ein Prozentsatz von 9-40 %, der nicht nachgewiesen werden kann. Ähnliches gilt auch für andere Cluster innerhalb der Actinobacteria, für die gegenwärtig nur wenige oder keine FISH-Sonden existieren. Trotz der hohen Abundanz von Actinobacteria darf die Charakterisierung anderer Bakteriengruppen nicht vernachlässigt werden. Wie die Klonbibliotheken von frei- 116 Kapitel VI Gesamtbetrachtung und Ausblick lebenden und partikel-assoziierten Bakterien der Untersuchungsgewässer zeigten, bilden Vertreter der Bacteroidetes und diverser Gruppen der Proteobacteria weitere dominante Fraktionen innerhalb des heterotrophen Bakterioplanktons. Diese Bakteriengruppen wurden in der hier vorliegenden Arbeit nicht weiter untersucht, so dass über ihre Abundanz, phylogenetische Diversität und saisonale Dynamik in den vier Untersuchungsgewässern nur wenig bekannt ist. Durch die kontinuierliche Weiterführung der Probennahmen in den vier untersuchten Seen von 2004 bis heute liegen Proben vor, mit denen die hier erzielten Ergebnisse bestätigt und ergänzt werden können. Mit diesem Datensatz soll ein noch umfangreicherer Einblick in die Diversität, Dynamik und Ökologie limnischer Bakteriengemeinschaften möglich werden. Ausgehend von diesen Ergebnissen können neue Strategien entwickelt werden, wie aquatische Bakteriengemeinschaften oder bestimmte Bakteriengruppen besser nachgewiesen und charakterisiert werden können. Aufgrund der großen Diversität an Mikroorganismen erscheint es jedoch als sinnvoll, zukünftige Studien auf einzelne und dominante Bakteriengruppen zu fokussieren. Weiterhin sollten jahreszeitliche Untersuchungen durch mehrere kleinere Studien ergänzt werden, die detaillierte Einblicke in die Veränderungen und Anpassungen limnischer Bakteriengemeinschaften zu bestimmten Zeitpunkten (z.B. Algenblüten) liefern. 117 Kapitel VI Gesamtbetrachtung und Ausblick Literatur ALONSO, C., AND PERNTHALER, J. (2005) Incorporation of glucose under anoxic conditions by bacterioplankton from coastal North Sea surface waters. Appl. Environ. Microbiol. 71:1709-1716. ALONSO, C., AND PERNTHALER, J. (2006) Concentration-dependent patterns of leucine incorporation by coastal picoplankton. Appl. Environ. Microbiol. 72:2141-2147. AMANN, R., LUDWIG, W., AND SCHLEIFER, K.-H. (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microb. Rev. 59:143-169. BRACHVOGEL, T., SCHWEITZER, B., AND SIMON, M. (2001) Dynamics and bacterial colonization of microaggregates in a large mesotrophic lake. Aquat. Microb. Ecol. 26:23-35. BURKERT, U., WARNECKE, F., BABENZIEN, H.-D., ZWIRNMANN, E., AND PERNTHALER, J. (2003) Members of a readily enriched β-proteobacterial clade are common in surface waters of a humic lake. Appl. Environ. Microbiol. 68:6550-6559. COTNER, J.B., AND BIDDANDA, B.A. (2002) Small players, large role: microbial influence on biogeochemical processes in pelagic aquatic ecosystems. Ecosystems 5:105-121. GIOVANNONI, S.J. (2004) Oceans of bacteria. Nature 430:515-516. GLÖCKNER, F.O., FUCHS, B., AND AMANN, R. (1999) Bacterioplankton composition of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl. Environ. Microbiol. 65:3721-3726. GLÖCKNER, F.O., ZAICHIKOV, E., BELKOVA, N., DENISSOVA, L., PERNTHALER, J., PERNTHALER, A., AND AMANN, R. (2000) Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of Actinobacteria. Appl. Environ. Microbiol. 66:5053-5065. GROSSART, H.-P., AND SIMON, M. (1998) Bacterial colonization and microbial decomposition of limnetic organic aggregates (lake snow). Aquat. Microb. Ecol. 15:127-140. HAHN, M.W., AND PÖCKL, M. (2005) Ecotypes of planktonic Actinobacteria with identical 16S rRNA genes adapted to thermal niches in temperate, subtropical, and tropical freshwater habitats. Appl. Environ. Microbiol. 71:766-773. HAUKKA, K., HEIKKINEN, E., KAIRESALO, T., KARJALAINEN, H., AND SIVONEN, K. (2005) Effect of humic material on the bacterioplankton community composition in boreal lakes and mesocosms. Environ. Microbiol. 7:620-630. HIORNS, W.D., METHÉ, B.A., NIERZWICKI-BAUER. S.A., AND ZEHR, J.P. (1997) Bacterial diversity in Adirondack mountain lakes as revealed by 16S rRNA gene sequences. Appl. Environ. Microbiol. 63:2957-2960. HOLLIBAUGH, J.T., WONG, P.S., AND MURELL, M.C. (2000) Similarity of particle-associated and free-living bacterial communities in northern San Francisco Bay, California. Aquat. Microb. Ecol. 21:103-114. HORŇÁK, K., JEZBERA, J., NEDOMA, J., GASOL, J.M., AND ŠIMEK, K. (2006) Bacterial leucine incorporation under different levels of resource availability and bacterivory in a freshwater reservoir. FEMS Microbiol. Ecol. submitted JASPERS, E., AND OVERMANN, J. (2004) Ecological significance of microdiversity: Identical 16S rRNA gene sequences can be found in bacteria with highly divergent genomes and ecophysiologies. Appl. Environ. Microbiol. 70:4831-4839. JEZBERA, J., HORŇÁK, K., AND ŠIMEK, K. (2005) Food selection by bacterivorous protists: insight from the analysis of the food vacuole content by means of fluorescence in situ hybridization. FEMS Microbiol. Ecol. 52:351-363. JEZBERA, J., HORŇÁK, K., AND ŠIMEK, K. (2006) Prey selectivity of bacterivorous protists in different size fractions of reservoir water amended with nutrients. Environ. Microbiol. in press 118 Kapitel VI Gesamtbetrachtung und Ausblick KIØRBOE, T., GROSSART, H.-P., PLOUG, H., AND TANG, K. (2002) Bacterial colonization of aggregates: mechanisms and rates. Appl. Environ. Microbiol. 68:3996-4006. LINDSTRÖM, E.S. (2001) Investigating influential factors on bacterioplankton community composition: results from a field study of five mesotrophic lakes. Microb. Ecol. 42:598-605. LINDTSRÖM, E.S., KAMST-VAN AGTERVELD, M.P., AND ZWART, G. (2005) Distribution of typical freshwater bacterial groups is associated with pH, temperature, and lake water retention time. Appl. Environ. Microbiol. 71:8201-8206. MCGARIGAL, K., CUSHMAN, S., AND STAFFORD, S. (2000) Multivariate Statistics for Wildlife and Ecology Research, Springer-Verlag, New York, Inc. METHÉ, B.A., HIORNS, W.D., AND ZEHR, J.P. (1998) Contrasts between marine and freshwater bacterial community composition – analyses of communities in Lake George and six other Adirondack lakes. Limnol. Oceanogr. 43:368-374. MOORE, L.R., ROCAP, G., AND CHISHOLM, S.W. (1998) Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 393:464-467. MUYLAERT, K., VAN DER GUCHT, K., VLOEMANS, N., DE MEESTER, L., GILLIS, M., AND VYVERMAN, W. (2002) Relationship between bacterial community composition and bottom-up versus top-down variables in four eutrophic shallow lakes. Appl. Environ. Microbiol. 68:4740-4750. NEWTON, R.J., KENT, A.D., TRIPLETT, E.W., AND MCMAHON, K.D. (2006) Microbial community dynamics in a humic lake: differential persistence of common freshwater phylotypes. Environ. Microbiol. 8:956-970. PERNTHALER, J., POSCH, T., ŠIMEK, K., VRBA, J., PERNTHALER, A., GLÖCKNER, F.O., NÜBEL, U., PSENNER, R., AND AMANN, R. (2001) Predator-specific enrichment of Actinobacteria from a cosmopolitan freshwater clade in mixed continuous culture. Appl. Environ. Microbiol. 67:2145-2155. RAPPÉ, M.S., VERGIN, K., AND GIOVANNONI, S.J. (2000) Phylogenetic comparison of a coastal bacterioplankton community with its counterparts in open ocean and freshwater systems. FEMS Microbiol. Ecol. 33:219-232. RIEMANN, L., AND WINDING, A. (2001) Community dynamics of free-living and particleassociated bacterial assemblages during a freshwater phytoplankton bloom. Microb. Ecol. 42:274-285. SCHWEITZER, B., HUBER, I., AMANN, R., LUDWIG, W., AND SIMON, M. (2001) α- and βProteobacteria control the consumption and release of amino acids on Lake Snow aggregates. Appl. Environ. Microbiol. 67:632-645. SEMENOVA, E.A., AND KUZNEDELOV, K.D. (1998) A study of the biodiversity of Baikal picoplankton by comparative analysis of 16S rRNA gene 5’-terminal regions. Mol. Biol. 32:754-760. STALEY, J.T., AND GOSINK, J.J. (1999) Poles apart: biodiversity and biogeography of sea ice bacteria. Annu. Rev. Microbiol. 53:198-215. STEPANAUSKAS, R., MORAN, M.A., BERGAMASCHI, B.A., AND HOLLIBAUGH, J.T. (2003) Covariance of bacterioplankton composition and environmental variables in a temperate delta system. Aquat. Microb. Ecol. 31:85-98. STEVENS, H., BRINKHOFF, T., AND SIMON, M. (2005) Composition of free-living, aggregateassociated and sediment surface-associated bacterial communities in the German Wadden Sea. Aquat. Microb. Ecol. 38:15-30. SUZUKI, M.T., RAPPÉ, M.S., HAIMBERGER, Z.W., WINFIELD, H., ADAIR, N., STRÖBL, J., AND GIOVANNONI, S.J. (1997) Bacterial diversity among small-subunit rRNA gene clones and cellular isolates from the same seawater sample. Appl. Environ. Microbiol. 63:983-989. URBACH, E., VERGIN, K.L., YOUNG, L., MORSE, A., LARSON, G.L., AND GIOVANNONI, S.J. (2001) Unusual bacterioplankton community structure in ultra-oligotrophic Crater Lake. Limnol. Oceanogr. 46:557-572. 119 Kapitel VI Gesamtbetrachtung und Ausblick VAN DER GUCHT, K., VANDEKERCKHOVE, T., VLOEMANS, N., COUSIN, S., MUYLAERT, K., SABBE, K., GILLIS, M., DECLERK, S., DE MEESTER, L., AND VYVERMAN, W. (2005) Characterization of bacterial communities in four freshwater lakes differing in nutrient load and food web structure. FEMS Microbiol. Ecol. 53:205-220. WARNECKE, F., AMANN, R., AND PERNTHALER, J. (2004) Actinobacterial 16S rRNA genes from freshwater habitats cluster in four distinct lineages. Environ. Microbiol. 6:242253. WARNECKE, F., SOMMARUGA, R., SEKAR, R., HOFER, J.S., AND PERNTHALER, J. (2005) Abundance, identity, and growth state of Actinobacteria in mountain lakes of different UV transparency. Appl. Environ. Microbiol. 71:5551-5559. WEISS, P., SCHWEITZER, B., AMANN, R., AND SIMON, M. (1996) Identification in situ and dynamics of bacteria on limnetic organic aggregates (Lake Snow). Appl. Environ. Microbiol. 62:1998-2005. YANNARELL, A.C., AND TRIPLETT, E.W. (2005) Geographic and environmental sources of variation in lake bacterial community composition. Appl. Environ. Microbiol. 71:227239. ZWART, G., CRUMP, B.C., KAMST-VAN AGTERVELD, M.P., HAGEN, F., AND HANS, S. (2002) Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat. Microb. Ecol. 28:151-155. 120 Danksagung An erster Stelle möchte ich mich bei Hans-Peter Grossart bedanken, der mir diese Arbeit überhaupt erst ermöglicht hat. Sein Vertrauen in meine Fähigkeiten und die Freiräume, die er mir bei der Ausgestaltung des Themas gelassen hat, weiß ich sehr zu schätzen. Dankbar bin ich auch für den immer freundschaftlichen Umgang, die vielen interessanten Diskussionen und den inhaltlichen Ratschlägen, wann immer sie nötig waren. Mein Dank gilt auch der von ihm geförderten Internationalität unserer Arbeitsgruppe. Der Austausch mit unseren ausländischen Gästen und die Teilnahme an internationalen Forschungsprojekten haben mir immer große Freude bereitet und sehr zur Bereicherung meines Arbeitsalltages beigetragen. Meinhard Simon danke ich für das stets große Interesse am Fortgang meiner Arbeit und seiner Hilfsbereitschaft und Unterstützung bei allen wissenschaftlichen und organisatorischen Fragen, die sich im Zusammenhang mit dieser Arbeit ergeben haben. Vielen Dank auch für die freundliche und unkomplizierte Übernahme des zweiten Gutachtens dieser Arbeit! Bedanken möchte ich mich auch ganz herzlich bei den vielen Kolleginnen und Kollegen, die mich in den letzten Jahren begleitet und unterstützt haben. Mein besonderer Dank gilt dabei unserer technischen Assistentin Elke Mach, die mit ihrer stets guten Laune immer für eine angenehme und entspannte Arbeitsatmosphäre in unserem Labor gesorgt hat. Danke auch für die vielen schönen und unterhaltsamen Stunden bei den Probennahmen und für die Messung der unterschiedlichsten limnologischen Parameter! Ein großer Dank geht auch an meine ehemalige Diplomandin Sarah Brückner, die bei der Entwicklung der Actinobacteria-spezifischen DGGE und verschiedenen molekularbiologischen Analysen eine große Hilfe war. Prof. Dr. Rainer Koschel, Dr. Lothar Krienitz und Dr. Peter Kasprzak möchte ich ganz herzlich für die Bereitstellung der chemischen Daten so wie der Daten zum Phytoplankton und Zooplankton danken, die für meine statistischen Analysen unerlässlich waren. unerschöpflichen Prof. Dr. Bemühungen Rainer Koschel danken, möchte trotz ich zudem manchmal für seine komplizierter Finanzierungssituationen immer einen Weg für die Fortsetzung dieser Arbeit geschaffen zu haben. Ein großes Dankeschön gilt auch allen Kolleginnen und Kollegen in Neuglobsow. Vielen Dank für eure Hilfe und Unterstützung in (fast) allen Lebenslagen. Es war eine sehr schöne Zeit mit euch zusammen am Stechlinsee, an die ich sicherlich noch lange zurückdenken werde! 121 Ein herzliches Dankeschön möchte ich Kirsten Pohlmann aussprechen, die mir bei allen statistischen Fragen und Problemen immer mit Rat und Tat helfend zur Seite stand. Vielen Dank auch für das Korrekturlesen meiner Manuskripte! Falk Warnecke und Jakob Pernthaler möchte ich ganz herzlich für die Einführung in die CARD-FISH und die Bereitstellung der verschiedenen Oligonukleotidsonden danken. Eure Unterstützung war eine große Hilfe für mich und hat sicherlich mit zum Gelingen dieser Arbeit beigetragen. Der Studienstiftung des deutschen Volkes und der Leibniz-Stiftung danke ich für die Finanzierung dieser Arbeit. Ein ganz besonderer Dank gilt meinen Eltern. Ihr habt immer zu mir gehalten und mich unterstützt, wo es notwendig war. Ihr seid sehr wichtig für mich! Nicht auszusprechen vermag ich den Dank an meine Verlobte Silke. Ihre Liebe und Zuversicht haben mir immer wieder neue Kraft und Mut gegeben, so manches Tief zu überstehen und diese Arbeit erfolgreich zu bewältigen. Danke Silke! Zu guter Letzt danke ich meinen beiden Schwestern und allen meinen Freunden und Bekannten, die mir während der gesamten Zeit immer zur Seite standen! 122 Lebenslauf Persönliche Angaben: Name: Vorname: Geburtstag: Geburtsort: Familienstand: Staatsangehörigkeit: Allgaier Martin 20.12.1976 Böblingen ledig deutsch Schulausbildung: 1983-1984 1984-1996 Michael Bauer Schule in Stuttgart (Freie Waldorfschule) Freie Waldorfschule am Bodensee in Überlingen-Rengoldshausen, Erhalt der Allgemeinen Hochschulreife Zivildienst: 1996-1997 Zivildienst in der Altenpflege im Hesse-Diederichsen-Heim in Hamburg Universitätsausbildung: 10/1997-09/1999 09/1999 10/1999-12/2001 01/2002-10/2002 10/2002 Grundstudium der Biologie an der Technischen Universität Braunschweig Vordiplom in Biologie an der Technischen Universität Braunschweig Hauptstudium der Biologie an der Technischen Universität Braunschweig. Hauptfach: Mikrobiologie; Nebenfächer: Genetik, Zoologie Diplomarbeit im Fach Mikrobiologie an der Gesellschaft für Biotechnologische Forschung (GBF) in Braunschweig. Titel der Arbeit: „Anreicherung, Kultivierung und molekularbiologische Charakterisierung phototropher mariner Proteobakterien“ Abschluss als Diplom-Biologe an der Technischen Universität Braunschweig Berufstätigkeit: Seit 02/2003 03/2004-03/2006 26.04.-27.05.2003 03.-15.10.2004 09.05.-15.06.2005 Wissenschaftlicher Angestellter am Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB) an der Außenstelle in Neuglobsow Promotionsstipendiat der Studienstiftung des deutschen Volkes Teilnahme am „2nd Pelagic Ecosystem CO2 Enrichment Experiment“ (PeECE II) in Bergen/Norwegen. Teilnahme an der German-Israeli Minerva School: „Identification and quantification of metalimnetic processes in a subtropical lake – Lake Kinneret as a case study“, am Yigal Allon Kinneret Limnological Laboratory KLL (See Genezareth, Israel) Teilnahme am „3rd Pelagic Ecosystem CO2 Enrichment Experiment“ (PeECE III) in Bergen/Norwegen. 123 Erklärung Hiermit bestätige ich, dass ich die vorliegende Dissertation selbstständig verfasst und nur die angegebenen Quellen und Hilfsmittel verwendet habe. Neuglobsow, den 03. August 2006 125 Anhang Anhang Anhang Im Folgenden sind die Ergebnisse aus den statistischen Analysen zusammengefasst, die in den Manuskripten (vgl. Kapitel II-V) nicht weiter aufgeführt wurden. Tabelle A1 gibt einen Überblick über alle in dieser Arbeit durchgeführten statistischen Berechnungen. Neben Unterschieden in der statistischen Methode (lineare Regressionen vs. non-metric multidimensional scaling, NMS) unterschieden sich die einzelnen Analysen hauptsächlich in den jeweiligen Spezies-Datensätzen. So wurden zum einen absolute Abundanzen (DAPI, CARD-FISH) von Bakterien bzw. einzelner Bakteriengruppen verwendet und zum anderen Ergebnisse aus Diversitätsanalysen (DGGE-Profile). Die statistischen Analysen wurden für alle Seen bzw. Wasserschichten separat durchgeführt. Zusätzlich wurden vergleichende Datensätze verwendet, die Spezies-Daten und die entsprechenden limnologischen Parameter der Epilimnia aller Seen enthielten. Mit diesen Analysen sollte geklärt werden, ob es allgemeingültige Abhängigkeiten zwischen verschiedenen Bakteriengemeinschaften und einzelnen limnologischen Parametern gibt. Die Ergebnisse aus diesen vergleichenden Analysen sind in den Tabellen in der ersten Spalte unter „EPIL“ dargestellt. Für alle Ergebnistabellen gilt, dass nur die Parameter aufgeführt sind, die signifikante Abhängigkeiten zu den entsprechenden Spezies-Datensätzen zeigten. Alle weiteren Parameter wurden der Übersicht halber nicht dargestellt. Tabelle A1: Übersicht über alle in dieser Arbeit durchgeführten statistischen Analysen. Statistik Datensätze Ergebnis Spezies-Daten Limnologische Parameter Lineare Regressionen Bacteria - Abundanzen (DAPI) alle Parameter* Anhang; Tabelle A4 NMS Bacteria - Diversität (DGGE) 15 Parameter** vgl. Kapitel II; Tabelle 5 Lineare Regressionen Actinobacteria - Abundanzen (CARD-FISH) alle Parameter* Anhang; Tabelle A2 NMS Actinobacteria - Abundanzen (CARD-FISH) alle Parameter* Anhang; Tabelle A3 NMS Actinobacteria - Diversität (DGGE) alle Parameter* vgl. Kapitel IV; Tabelle 3 * vgl. Kapitel IV; ** vgl. Kapitel II; NMS non-metric multidimensional scaling Analysen 129 Anhang Tabelle A2: Lineare Regressionsanalysen zwischen Actinobacteria-Abundanzen und den gemessenen limnologischen Parametern. In der Tabelle sind die R2-Werte mit den entsprechenden Signifikanzniveaus (* P ≤ 0.05; ** P ≤ 0.01; *** P ≤ 0.001) aufgeführt. Es wurden separate statistische Analysen für die: (A) gesamten Actinobacteria (HGC69a), (B) Actinobacteria des acIClusters (AcI-852), (C) Actinobacteria des acI-A-Subclusters (AcI-840-1) und (D) acI-B-Subclusters (AcI-840-2) durchgeführt. A AcI-852 (acI) AcI-840-1 (acI-A) AcI-840-2 (acI-B) Gesamtzellzahl Temperatur Leitfähigkeit β-D-Glc.-Aktivität NO2-N NH4-N Gesamt-N Eisen Silikat Alkalinitätª B FNE FSW ST ST-HL TW 0.966*** 0.244** 0.767*** 0.162* 0.479*** 0.978*** 0.795** 0.696* - 0.995*** 0.903*** 0.911*** 0.896*** 0.726* 0.788** 0.769* 0.645* 0.637* N.D. 0.901*** 0.746** 0.780* N.D. 0.927*** 0.714* 0.739* 0.993*** 0.970*** 0.972*** - 0.935*** 0.720* 0.699* 0.571* 0.966*** 0.303*** 0.761*** 0.185* 0.452*** 0.978*** 0.754* 0.716* - 0.995*** 0.916*** 0.934*** 0.653* 0.875** 0.636* 0.722* 0.784** 0.772* N.D. 0.913*** 0.852** 0.718* N.D. 0.932*** 0.823** 0.717* 0.830** 0.994*** 0.956*** 0.971*** N.D. - 0.944*** 0.689* 0.715* 0.674* 0.742* 0.691* 0.641* 0.529* 0.235** 0.292*** 0.135* - 0.664* 0.667* 0.681* 0.850** 0.737* 0.989*** 0.646* 0.887*** 0.895*** 0.836** 0.555* 0.864** 0.657* 0.863** N.D. 0.766* N.D. 0.733* - 0.961*** 0.937*** 0.920*** N.D. N.D. - - 0.772*** 0.765*** 0.162* 0.163* 0.146* 0.471*** 0.790** 0.742* 0.797** - 0.903*** 0.924*** 0.847** 0.787** 0.867** 0.635* N.D. 0.704* 0.806** N.D. 0.776* 0.850** 0.775* 0.704* 0.980*** 0.977*** 0.957*** - - (AcI-840-1) HGC69a AcI-852 (acI) AcI-840-2 (acI-B) Temperatur O2 [%] Leitfähigkeit β-D-Glc.-Aktivität BPP (PA) BPP (gesamt) PP (≥3.0 µm) PP (≤3.0 ≥0.2 µm) NO2-N NH4-N Gesamt-N Alkalinitätª D BL (AcI-852) HGC69a AcI-840-1 (acI-A) AcI-840-2 (acI-B) Gesamtzellzahl Temperatur Leitfähigkeit β-D-Glc.-Aktivität Protease-Aktivität PP (gesamt) NO2-N NH4-N Gesamt-N TOC Alkalinitätª C EPIL (HGC69a) (AcI-840-2) HGC69a AcI-852 (acI) AcI-840-1 (acI-A) Gesamtzellzahl Temperatur Leitfähigkeit NH4-N Gesamt-N Alkalinitätª N.D. nicht bestimmt; ªAlkalinität wurde nur für den Stechlinsee, Breiten Luzin und Tiefwarensee bestimmt; β-D-Glc. β-DGlukosidase; BPP bakterielle Proteinproduktion; PA partikel-assoziierte Bakterien; PP Primärproduktion; TOC gesamter organischer Kohlenstoff; EPIL Epilimnion; BL Breiter Luzin; FNE Große Fuchskuhle (Nordost-Becken); FSW Große Fuchskuhle (Südwest-Becken); ST Stechlinsee (Epilimnion); ST-HL Stechlinsee (Hypolimnion); TW Tiefwarensee. 130 Anhang Tabelle A3: Ergebnisse der non-metric multidimensional scaling (NMS) Analysen zwischen Actinobacteria-Abundanzen und den gemessenen limnologischen Parametern. In der Tabelle sind nur Parameter mit einem Pearson Produkt-Moment-Korrelationskoeffizienten von r ≥ 0.7 für die ersten drei signifikanten Ordinationsachsen aufgeführt. Es wurden separate statistische Analysen für die: (A) gesamten Actinobacteria (HGC69a), (B) Actinobacteria des acI-Clusters (AcI-852), (C) Actinobacteria des acI-A-Subclusters (AcI-840-1) und (D) acI-B-Subclusters (AcI-840-2) durchgeführt. A HGC69a AcI-852 (acI) Sichttiefe Gesamtzellzahl DOC O2 [mg/l] pH PP (gesamt) PP (≤20 µm) PP (≥3 µm) NO3-N Gesamt-N PO4-P Gesamt-P Eisen Silikat TOC Alkalinität Zooplankton B BL FNE FSW ST ST-HL TW - -0.733 (1) -0.707 (1) -0.726 (1) -0.717 - (3) (1) -0.848 N.D. - (1) 0.756 (3) -0.759 N.D. - (3) -0.765 (2) -0.715 (2) -0.712 (2) 0.780 (1) 0.800 (3) 0.716 (2) 0.717 N.D. N.D. N.D. N.D. (2) -0.807 (2) -0.814 (1) -0.862 N.D. (2) -0.706 (2) -0.785 (2) -0.725 (2) 0.854 - - 0,740 (3) 0,701 (1) -0,719 (1) 0,765 (1) 0,765 (3) (2) 0,770 (2) 0,776 (2) 0,828 (2) 0,716 (3) 0,727 (2) -0,784 - (1) -0,747 - (3) 0,748 - (1) 0,745 (1) -0,863 (2) 0,722 N.D. (3) -0,838 N.D. (1) 0,830 (2) 0,724 (2) 0,723 (1) -0,838 - - (2) 0,753 (2) -0,739 (3) 0,703 - (1) 0,725 (1) -0,772 (3) 0,720 (3) 0,718 (1) -0,755 (1) -0,779 (1) -0,785 (3) -0,755 (1) 0,705 - (2) 0,939 (1) 0,761 (1) 0,738 (2) 0,782 - -0,738 (2) -0,729 (2) -0,732 (2) -0,703 N.D. (2) 0,715 (3) -0,745 (2) -0,729 (3) -0,740 (3) 0,736 N.D. (2) (3) -0,740 - (AcI-852) HGC69a AcI-852 (acI) AcI-840-1 (acI-A) Temperatur O2 [mg/l] O2 [%] β-D-Glc.-Aktivität Protease-Aktivität BPP (PA) PP (≤20 µm) NO2-N NO3-N NH4-N PO4-P Calzium Eisen Zooplankton C EPIL (HGC69a) (AcI-840-1) HGC69a AcI-852 (acI) AcI-840-1 (acI-A) AcI-840-2 (acI-B) Sichttiefe DOC Temperatur O2 [%] pH BPP (FL) BPP (PA) BPP (gesamt) NH4-N Gesamt-N PO4-P Gesamt-P Calzium Zooplankton 131 Anhang D EPIL BL FNE - (1) 0,783 (1) 0,711 (1) -0,712 (1) -0,766 (1) -0,718 (2) 0,722 (1) -0,788 0,708 (1) 0,718 (3) -0,726 N.D. - FSW ST ST-HL TW (3) -0,702 (1) -0,722 (3) 0,748 (3) 0,722 N.D. - (1) 0,789 (1) 0,766 (1) 0,916 (1) -0,702 (2) -0,787 - (2) 0,738 (2) 0,745 (2) 0,754 (1) -0,729 (2) 0,742 (2) 0,790 (2) 0,802 N.D. N.D. (2) -0,725 N.D. N.D. (3) 0,714 (1) -0,714 - (AcI-840-2) AcI-852 (acI) AcI-840-2 (acI-B) Gesamtzellzahl DOC Temperatur O2 [mg/l] O2 [%] pH ß-D-Glc.-Aktivität BPP (FL) BPP (PA) BPP (gesamt) PP (gesamt) PP (≤3.0 ≥0.2 µm) NO3-N PO4-P Gesamt-P Calzium Alkalinität Zooplankton Phytoplankton (1) (2) (1) (3) Ordinationsachse 1; Ordinationsachse 2; Ordinationsachse 3; N.D. nicht bestimmt; DOC gelöster organischer Kohlenstoff; BPP bakterielle Proteinproduktion; PP Primärproduktion; FL frei-lebende Bakterien; PA partikel-assoziierte Bakterien; β-D-Glc. β-D-Glukosidase; Abkürzungen für die Seen siehe Tabelle A2. Tabelle A4: Ergebnisse aus den linearen Regressionsanalysen zwischen den absoluten Bakterienzahlen und den gemessenen limnologischen Parametern. Die Tabelle zeigt die jeweiligen R2-Werte mit den dazugehörigen Signifikanzniveaus (* P ≤ 0.05; ** P ≤ 0.01; *** P ≤ 0.001). Sichttiefe DOC pH O2 [mg/l] O2 [%] β-D-Glc.-Aktivität Protease-Aktivität BPP (FL) PP (≥3.0 µm) NO2-N NH4-N Gesamt-N Eisen Silikat Alkalinitätª EPIL BL FNE FSW ST ST-HL TW 0.188* 0.415** - 0.928*** N.D. N.D. 0.791* - 0.647* 0.769* 0.741* 0.699* 0.758* 0.709* 0.632* N.D. 0.671* 0.797** 0.710* 0.714* 0.661* 0.682* - N.D. nicht bestimmt; ªAlkalinität wurde nur für den Stechlinsee, Breiten Luzin und Tiefwarensee bestimmt; DOC gelöster organischer Kohlenstoff; β-D-Glc. β-D-Glukosidase; BPP (FL) bakterielle Proteinproduktion der frei-lebenden Bakterienfraktion; PP Primärproduktion. Abkürzungen für die Seen siehe Tabelle A2. 132