the analysis of carbon fluxes in land-atmosphere
Transcription
the analysis of carbon fluxes in land-atmosphere
THE ANALYSIS OF CARBON FLUXES IN LAND-ATMOSPHERE-HYDROSPHERE SYSTEM OF YENISEY RIVER CATCHMENT A.S. PROKUSHKIN1,2, A.V. PANOV1, A.V. KIRDYANOV1, A.V. RUBTSOV2, M.A. KORETS1, Yu.A. KURBATOVA3, A.V. VARLAGIN3, N.I. TANANAEV4, R. AMON5, M. HEIMANN6 1V.N. Sukachev Institute of Forest, SB RAS, Akademgorodok 50/28, Krasnoyarsk 660036, Russian Federation 2Siberian Federal University, Svobodny 79, 660041 Krasnoyarsk, Russian Federation 3A.N. Severtsov Institute of Ecology and Evolution, Leninskiy pr., 33, 119071 Moscow, Russian Federation 4Igarka Geocryological Laboratory of P.I. Melnikov Institute of Cryolythozone SB RAS, 663200 Igarka, Russian Federation 5Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, Texas 77553, USA 6Max Planck Institute for Biogeochemistry, Hans-Knoell str. 10, 07745 Jena, Germany Email: prokushkin@ksc.krasn.ru 1 1 Overarching goals of RSF “support lab” project • To determine controls and links in spatio-temporal variations of atmospheric and hydrological fluxes of C in Central Siberia • To analyze trends of concentrations of GHG in atmosphere and riverine C release to the Arctic Ocean • To get an insight into the geographic and biotic origin of atmospheric and riverine C through isotopic and biochemical fingerprints • To estimate the C sink strengths and its inter-annual variability within the major vegetation types. 2 Rationale • The Yenisey River basin is among most unique regions of Siberia to analyze biogeochemical processes due to high climatic, geomorphologic and biological diversity. • In particular, left tributaries of Yenisey River drain West Siberian Plain with large extent of peatbog complexes. The right tributaries drain Central Siberian Plateau with elevations up to 1,700 m a.s.l. and further East cold and arid continental regions of Eastern Siberia, which also show drastic changes in permafrost extent and its types varying from island to continuous. • Not least important advantage of great Siberian rivers, and particularly the Yenisey River, is the large extension of basin from South to North, which allows studies of temperature effects using temperature gradient (i.e. from ca. 0 to -11oC for study region selected for this project). 3 Structure of study • 1. GHG and aerosols in the atmosphere of Yenisey River basin: sources, temporal trends, long-distance transport and net ecosystem exchange in major bioclimatic zones • 2. Riverine C flux to the Arctic Ocean from Yenisey basin: linking terrestrial and aquatic systems through C composition, stability to degradation and temporal evolution. • 3. Integration and synthesis of spatio-temporal variability of land cover and atmospheric C sequestration in terrestrial ecosystems of Yenisey basin. 4 KRASFLUX NETWORK Ocean-land exchange 100 Forested areas Spatial extent, % of territory 90 hydrosphere Tundra 70 60 50 40 30 20 10 atmosphere 0 Siberia Yenisey basin ZOTTO Deciduous Needle-leaf Forest Evergreen Dark Needle-leaf Forest Evergreen Light Needle-leaf Forest Deciduous Broadleaf Forest Mixed Forest 100 Spatial extent, % of forested area Footprint area Wetlands 80 90 80 Tura key site Igarka key site 94 72 70 60 57 57.1 50 50 45 40 30 20 10 9 1010 19.0 14.7 13 8 6 6 9 6 5 0 Siberia Integration sites NEE and river flux sites at major bioclimatic types Yenisey basin ZOTTO Tura key site Igarka key site 5 KrasFlux NEE network sites Site Coordinates Status Vegetation type / dominant tree species ZOTTO “pine” site 60o 48’N 89o 22’E existing ZOTTO “bog” site ZOTTO “dark taiga” site Tura “larch” site 60o 48’N 89o 22’E 61o 01’N 89o 49’E existing 64o 12’N 100o 27’E existing 67o 28’N 86o 29’E 73o 28’N 81o 48’E planned in 2015 planned in 2016 Evergreen conifer/Pinus sylvestris Olygotrophic peatbog Evergreen conifer/Abies sibirica Deciduous conifer forests/Larix Tundra-forest ecotone Tundra Igarka “palsa” site Dixon “high arctic” site planned in 2015 Portion of vegetation type in the basin, % 4.5 MAAT, o C MAP, mm -3.3 558 6.0 -3.3 558 6.0 <-3.3 >558 48.0 -8.5 347 ∼13.0 -7.8 481 ∼5.0 -11.1 344 Planned sites will be equipped with Li-Cor products: • CO2/CH4,H2O by GHG-2: LI-7700, LI-7200 • Meteoparameters by Biomet System 4 - Tower Schedule: June 2015 – ZOTTO “dark taiga” site July 2015 – Igarka “palsa” site… 6 11 Data base: «Lower Yenisey» • Climate parameters: temperature, precipitation (daily, monthly). sources: NOAA, Roshydromet, CRU TS v. 3.22, own measurements in key sites (KrasFlux network) • River discharges (daily, monthly) and hydrochemistry. sources: R-Arctic.net, PARTNERS, Roshydromet • Vegetation types (TerraNorte, Bartalev et al., 2011), phytomass (e.g. BIOMASAR II, 2010) • Dendrochronology network (IF data base + own) • Soil types and SOC stocks: Hugelius et al. 2013, Rojkov et al. 2003, “grey” and “white” literature, own inventories done in past and planned • Permafrost (Brown et al., 1998, 2002) • Geology (geological maps) • Remote sensing products (MODIS, Landsat etc.) 7 Hydrosphere integration site: Yenisey at Igarka Tasks: • Intra- and inter-annual variability in quantity and quality of dissolved (including dissolved GHG) and particulate C • Links to source biomes by biomarkers and isotopes 8 Recent estimates of carbon in rivers… Dolman et al. 2013 Biogeosciences (based on Meybeck et al., 2006) East Kara sea (Yenisey) West Kara sea (Ob) 13% 19% East Laptev sea (Kolyma) West Laptev sea (lena) ! 17% 28% 35% 39% DIC flux DIC flux DIC flux DOC flux DOC flux DOC flux DOC flux POC flux POC flux POC flux POC flux DIC flux 31% 56% 22% 61% 42% 37% 7.7 TgC/a 11.1 TgC/a 9.6 TgC/a 2.4 TgC/a McGuire et al. 2009, Ecol Monogr (based on numerous sources) Yenisey 1% Ob 4% Kolyma Lena 6% ! 16% 33% 29% 41% 35% 59% 58% 67% 51% 9.9 TgC/a 12.8 TgC/a 9.9 TgC/a 2.3 TgC/a Hydrosphere integration site: Yenisey at Igarka Yenisey River characteristics 800 800 700 700 600 Discharge, km3/a 500 400 y = 1.6971x - 2769.7 2 R = 0.2048 y = -1.6565x + 3801.3 2 R = 0.2028 300 500 400 300 200 200 100 100 0 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 Год 0 1935 1945 1955 1965 1975 Year 1985 1995 2005 2015 120 А 12 Поток РОУ, х1000 Мг/день Концентрация РОУ, мгС/л 14 10 8 6 4 y = 3.5184Ln(x) - 28.515 2 R = 0.9172 2 0 20000 40000 60000 100 Б 80 60 40 20 1.4924 y = 4.4505x 2 R = 0.9878 0 0.00 0 80000 100000 120000 140000 2.00 2.5 6.00 8.00 10.00 2.5 В Экспорт РОУ, гС/м2/год 2.0 1.5 1.0 0.5 0.0 1998 4.00 Расход воды, км3/день Расход воды, м3/с Экспорт РОУ, гС/м2/год Сток, км3/год 600 2.0 Г y = 0.004x - 0.473 2 R = 0.7208 1.5 1.0 0.5 2000 2002 2004 2006 Год 2008 2010 2012 0.0 500 550 600 650 700 Сток, км3/год Q – ROSHYDROMET, http://www.r-arcticnet.sr.unh.edu/v4.0/. DOC - http://www.arcticgreatrivers.org. 750 800 10 Megagrant June 2012… Too late… for freshet sampling 11 Gymnosperm vegetation (“the middle” of boreal belt) is the primary source of DOC DOC concentration [mgC/l] Boreal deciduous conifer forests Evergreen taiga and mixed boreal forests Forest-tundra, tundra High labile C Hydromorhism Permafrost Climate change Retention in soil Mineralization 50 55 60 65 o Latitude [ N] Low productivity Low labile C Mineralization 70 75 12 Tracing the Source: Dissolved Lignin 1000 L ignin S8 [ug/L] 100 NT 10 KO Ob' Yenisey Lena Kolyma 1 0 5 10 15 NPOC [mgC/L] 20 25 Source: ArcticGRO, PARTNERS ( http://www.arcticgreatrivers.org/data.html) Prokushkin et al unpublished Seasonal discharge and lignin phenol concentrations in major Arctic rivers between 2003 and 2007. Amon et al 2011 Dissolved phenols as fingerprints: Vegetation type (gymnosperm! / angiosperm / bryophytes Source Organic layer! / Mineral soil Testing the hypothesis • - - - Yenisey river cruises - 2015 Winter Spring Summer • Tunguskas cruises - NT May 2015 - PT May 2015 14 Yenisey March 2015: winter “autocruise” WEST EAST 15 0 Rivers Turukhan Yeloguy Dubches Tugulan Sym Kas Kem' Kureyka N Tunguska Miroedikha S Tunguska Komsa Bakhta P Tunguska Vorogovka N Surnikha Garevka Tis Kiya B Pit Angara Dissolved CO2, ppm May 2015 Yenisey cruise: “easy” data 4000 3500 3000 2500 2000 1500 1000 500 16 August 2015 cruise… approaching Ship is prepaid 650 kRubles 17 23 N Tunguska cruise: May 2015 Tasks: • to analyze hot spots of terrigenic C release • Fingerprints of riverine C of different environments Yenisey River Nizhnyaya Tunguska River 4 permafrost Gravijka 80 60 TOC flux 3 Nizhnyaya Tunguska 2 40 Dubches TOC flux g/m2/June Continuous permafrost, % 100 1 20 0 0 -12 -10 -8 -6 MAAT, oC -4 -2 0 18 P Tunguska • Hope for 2016… 19 Atmospheric integration site: ZOTTO (since 2006) Inlet at 300 m above ground Trace gases - CO2/CH4/CO and isotopes Aerosols – concentration, composition (anhydrosugars, lignin…) 20 12 ZOTTO 21 Atmospheric integration site: ZOTTO Tasks: 440 • Intra- and inter-annual variability of GHG and aerosols in atmosphere Концентрация СО2 , ppm 430 420 410 400 390 380 370 360 350 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 • Links to source biomes 420 mean summer mean winter 400 y = 1.8422x + 375.21 R² = 0.9698 390 380 370 y = 2.2224x + 350.25 R² = 0.9692 360 350 340 330 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 320 1998 • CO2 sequestration СО2 concentration, ppmv 410 22 2015 Aerosols : Fire detection and fingerprints 5 35 (Ad/Al)V Ratio Levoglucosan 30 25 3 20 15 2 10 1 5 0 0 15-Jun-12 20-Jun-12 25-Jun-12 30-Jun-12 5-Jul-12 10-Jul-12 15-Jul-12 20-Jul-12 25-Jul-12 30-Jul-12 4-Aug-12 01.07 01.08 01.09 23 Levoglucosan ug/m3 (Ad/Al)V Ratio 4 Hydromorphic landscapes: ZOTTO area DOC concentration, mgC/l 40 Fall storm event Snowmelt 35 30 25 20 15 10 5 0 0 10 20 30 40 Peatbog coverage, % 50 DOC concentrations in rivers correlated with peatbog area in the basin However, lignin composition of riverine DOM indicates conifer origin and links to forest vegetation/deep peat layers Fire disturbances decrease DOC efflux Tura key site 25 Central Siberian River basins and study goals Central Siberian Plateau river basins Gradients: Climate, permafrost, vegetation, SIMILAR parent rocks (Siberian basalts) Stream basins within Nizhnyaya Tunguska river watershed Gradients: Fire history (burned 0, 4, 20, 50 and >100 years), ALT, vegetation, size, SIMILAR: climate, parent rocks (Siberian basalts) Central Siberian Plateau rivers 2005-20…: -15 Nizhnyaya Tunguska Discharge [m3/s] 20000 -17 -19 DOC 45 DIC 40 35 15000 30 25 10000 20 15 -21 5000 10 5 -23 0 28.05.2005 22.02.2008 06.07.2009 18.11.2010 01.04.2012 0 14.08.2013 N Tunguska (at Tura) Kochechum -27 5.10.05 10.10.2006 1.8.06 28.5.07 18000 23.3.08 17.1.09 13.11.09 9.9.10 6.7.11 1.5.12 25.2.13 22.12.13 18.10.14 Date Freshet (May-June) 55–71% for water runoff 64–82% for DOC 37–41% for DIC 50 Kochechum 16000 Discharge 14000 DOC 45 DIC 40 35 12000 30 10000 25 8000 20 6000 15 4000 10 2000 5 0 28.05.2005 10.10.2006 22.02.2008 06.07.2009 18.11.2010 01.04.2012 Concentrations [mgC/l] -25 Discharge [m3/s] d18O, per mill 50 Discharge Concentrations [mgC/l] 25000 0 14.08.2013 Temporal and Spatial variation of DOC, DIC: Dominance of snowmelt season, and increased flux in wet years is essential Large differences in amounts of DIC, DOC among rivers River Dissolved C: annual values 8 30 а) 25 DIC b) DOC 10 -1 -2 15 (gC m a ) Annual C export 6 20 4 2 Rivers of Arctic Ocean basin Rivers of Arctic Ocean basin Decreasing trend of concentrations and annual fluxes from West to East and from South to North for both DOC&DIC Positive correlation with MAAT, forested areas (Prokushkin et al 2011, ERL) Yukon Mackenzie Аmguema Kolyma Yana Indigirka Lena Olenek Anabar Ob Tembenchi Nidym Kochechum P.Tunguska* N. Tunguska** Yukon Mackenzie Аmguema Kolyma Yana Indigirka Lena Olenek Anabar Khatanga Ob Yenisey Tembenchi Kochechum Nidym P.Tunguska* 0 Khatanga 0 Yenisey 5 N. Tunguska** -1 (mgС l ) Mean annual C concentrations Gordeev et al 1996, 2009, Raymond et al 2007, Striegl et al 2007, Cai et al 2008, Cooper et al 2008, McGuire et al 2009, Holmes et al 2011, Prokushkin et al 2011, Amon et al 2011 What can modulate the flux: higher precipitation = higher runoff 7 Nizhnyaya Tunguska 400 6 Q 300 6 5 250 4 200 3 150 2 100 50 1 0 0 DOC/DIC flux [gC/m2/a] Specific runoff [mm/a] DIC DOC/DIC flux [gC/m2/a] DOC 350 DOC DIC 7 y = 0.017x + 0.4546 2 R = 0.9666 5 4 3 y = 0.0095x + 0.23 2 R = 0.9076 2 1 0 2006 2007 2008 2009 0 150 2010 300 450 Specific runoff [mm/a] Year Southern part of Central Siberian Plateau 6 Kochechum DOC 600 DIC 6 5 Q y = 0.0131x - 1.0817 2 R = 0.9852 5 400 4 300 3 200 2 100 1 0 0 DOC/DIC flux [gC/m2/a] Specific runoff [mm/a] DIC DOC/DIC flux [gC/m2/a] DOC 500 4 3 2 y = 0.002x + 0.976 2 R = 0.8358 1 0 2006 2007 2008 2009 2010 0 150 300 Specific runoff [mm/a] Year Northern part of Central Siberian Plateau 450 600 There are two contemporary limitations for river export of terrigenous C across Siberia: (1) low productivity of ecosystems with respect to potentially mobilizable organic C, slow weathering rates with concomitant small formation of bicarbonate limit the pools of organic and inorganic C that can be mobilized for transport in rivers (source-limited), and (2) mobilization of available pools of C is constrained by low precipitation in the severe continental climate of interior Siberia (transport-limited). Projection of C export from Central Siberian Plateau N Tunguska River: the Southern part of Central Siberian Plateau Kochechum River: the Northern part of Central Siberian Plateau Only projected increase in water flux to 2100 (e.g. 0.33 km3/year/year for N Tunguska River) may almost double terrestrial C export to rivers Together with an increase in NEP/terrestrial C accumulation of Northern territories it may increase total C flux up to 700% of current values (e.g. Gordeev and Kravchishina, 2009, Frey and Smith, 2005) Prokushkin et al 2011, Doklady Earth Sciences Indicators of permafrost degradation 1000 N10 - Cl (mg/l) 100 10 N2 N15 1 N13 N9 N14 0.1 0.01 1 10 100 1000 10000 2 Basin area (km ) 100000 1000000 Evaporite signal as NaCl/CaCl2 appeared in river waters through “through taliks” What can modulate the flux: Wildfire effects (ca. 1% of territory burned annually) MODIS (modeled GPP) Major Siberian Rivers: Central Siberian streams Fire year of 2003 burned 4, 20, 65 and >100 years ago Central Siberian Rivers Fire scars demonstrate lower GPP: territories have potentially higher DOC production at no fire scenario Long-term dynamics of annual mean concentrations of major anions in stream waters after a fire 1000 1200 -0.7527 y = 37.981x 2 R = 0.94 1000 800 [DIC], umol/l 2- [SO4 ], umol/l 100 10 600 400 1 200 0.1 -10 10 30 50 70 90 110 Time elapsed since fire, years Sulfate-ion is good indicator of recent fire effect (ca. 20 years) 0 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 Hydrocarbonate-ion follows increasing soil ALT and indicates enhanced geochemical (weathering) and/or biological (i.e. SOM decomposition) processes Dissolved organic carbon in streams 3000 Portion of 110 year old basin, % 100 2500 DOC umol/l 2000 1500 80 60 40 20 0 0 20 40 60 80 100 Time since last fire, years 1000 500 0 -10 10 30 50 70 90 110 Years since fire Dissolved organic C in streams follows dynamics of soil organic layer accumulation 130 120 Igarka key site… 36 Research task • NEE in major biomes annual variation and links to climate/ANPP/riverine C release Dark conifer taiga: ?-270-? gC/ m2/year (2000) Pine forest: Peatbog: -154 ±13 gC/m2 -53 ±13 gC/m2 (1999-00) ! (1999-00) ! Larch taiga: -66±26 gC/m2 (2004-08) Palsa: ? gC/m2/year 37 Thanks! 38