the analysis of carbon fluxes in land-atmosphere

Transcription

the analysis of carbon fluxes in land-atmosphere
THE ANALYSIS OF CARBON FLUXES IN LAND-ATMOSPHERE-HYDROSPHERE
SYSTEM OF YENISEY RIVER CATCHMENT
A.S. PROKUSHKIN1,2, A.V. PANOV1, A.V. KIRDYANOV1, A.V. RUBTSOV2, M.A. KORETS1,
Yu.A. KURBATOVA3, A.V. VARLAGIN3, N.I. TANANAEV4, R. AMON5, M. HEIMANN6
1V.N. Sukachev Institute of Forest, SB RAS, Akademgorodok 50/28, Krasnoyarsk 660036, Russian Federation
2Siberian Federal University, Svobodny 79, 660041 Krasnoyarsk, Russian Federation
3A.N. Severtsov Institute of Ecology and Evolution, Leninskiy pr., 33, 119071 Moscow, Russian Federation
4Igarka Geocryological Laboratory of P.I. Melnikov Institute of Cryolythozone SB RAS, 663200 Igarka, Russian Federation
5Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, Texas 77553, USA
6Max Planck Institute for Biogeochemistry, Hans-Knoell str. 10, 07745 Jena, Germany
Email: prokushkin@ksc.krasn.ru
1
1
Overarching goals of RSF
“support lab” project
•  To determine controls and links in spatio-temporal
variations of atmospheric and hydrological fluxes of C in
Central Siberia
•  To analyze trends of concentrations of GHG in
atmosphere and riverine C release to the Arctic Ocean
•  To get an insight into the geographic and biotic origin of
atmospheric and riverine C through isotopic and
biochemical fingerprints
•  To estimate the C sink strengths and its inter-annual
variability within the major vegetation types.
2
Rationale
• 
The Yenisey River basin is among most unique
regions of Siberia to analyze biogeochemical
processes due to high climatic, geomorphologic
and biological diversity.
• 
In particular, left tributaries of Yenisey River drain
West Siberian Plain with large extent of peatbog
complexes. The right tributaries drain Central
Siberian Plateau with elevations up to 1,700 m
a.s.l. and further East cold and arid continental
regions of Eastern Siberia, which also show
drastic changes in permafrost extent and its types
varying from island to continuous.
• 
Not least important advantage of great Siberian
rivers, and particularly the Yenisey River, is the
large extension of basin from South to North,
which allows studies of temperature effects using
temperature gradient (i.e. from ca. 0 to -11oC for
study region selected for this project).
3
Structure of study
•  1. GHG and aerosols in the atmosphere of Yenisey River
basin: sources, temporal trends, long-distance transport
and net ecosystem exchange in major bioclimatic zones
•  2. Riverine C flux to the Arctic Ocean from Yenisey
basin: linking terrestrial and aquatic systems through C
composition, stability to degradation and temporal
evolution.
•  3. Integration and synthesis of spatio-temporal variability
of land cover and atmospheric C sequestration in
terrestrial ecosystems of Yenisey basin.
4
KRASFLUX NETWORK
Ocean-land
exchange
100
Forested areas
Spatial extent, % of territory
90
hydrosphere
Tundra
70
60
50
40
30
20
10
atmosphere
0
Siberia
Yenisey
basin
ZOTTO
Deciduous Needle-leaf Forest
Evergreen Dark Needle-leaf Forest
Evergreen Light Needle-leaf Forest
Deciduous Broadleaf Forest
Mixed Forest
100
Spatial extent, % of forested area
Footprint
area
Wetlands
80
90
80
Tura key site Igarka key
site
94
72
70
60
57
57.1
50
50
45
40
30
20
10
9 1010
19.0
14.7
13
8 6 6 9
6
5
0
Siberia
Integration sites
NEE and river flux
sites at major
bioclimatic types
Yenisey
basin
ZOTTO
Tura key site Igarka key
site
5
KrasFlux NEE network
sites
Site
Coordinates
Status
Vegetation
type / dominant
tree species
ZOTTO
“pine” site
60o 48’N
89o 22’E
existing
ZOTTO
“bog” site
ZOTTO
“dark taiga”
site
Tura
“larch” site
60o 48’N
89o 22’E
61o 01’N
89o 49’E
existing
64o 12’N
100o 27’E
existing
67o 28’N
86o 29’E
73o 28’N
81o 48’E
planned
in 2015
planned
in 2016
Evergreen
conifer/Pinus
sylvestris
Olygotrophic
peatbog
Evergreen
conifer/Abies
sibirica
Deciduous
conifer
forests/Larix
Tundra-forest
ecotone
Tundra
Igarka
“palsa” site
Dixon
“high arctic”
site
planned
in 2015
Portion of
vegetation
type in the
basin, %
4.5
MAAT,
o
C
MAP,
mm
-3.3
558
6.0
-3.3
558
6.0
<-3.3
>558
48.0
-8.5
347
∼13.0
-7.8
481
∼5.0
-11.1
344
Planned sites will be equipped with Li-Cor products:
•  CO2/CH4,H2O by GHG-2: LI-7700, LI-7200
•  Meteoparameters by Biomet System 4 - Tower
Schedule:
June 2015 – ZOTTO “dark taiga” site
July 2015 – Igarka “palsa” site…
6
11
Data base: «Lower Yenisey»
•  Climate parameters: temperature, precipitation (daily,
monthly). sources: NOAA, Roshydromet, CRU TS v. 3.22,
own measurements in key sites (KrasFlux network)
•  River discharges (daily, monthly) and hydrochemistry.
sources: R-Arctic.net, PARTNERS, Roshydromet
•  Vegetation types (TerraNorte, Bartalev et al., 2011),
phytomass (e.g. BIOMASAR II, 2010)
•  Dendrochronology network (IF data base + own)
•  Soil types and SOC stocks: Hugelius et al. 2013, Rojkov
et al. 2003, “grey” and “white” literature, own inventories
done in past and planned
•  Permafrost (Brown et al., 1998, 2002)
•  Geology (geological maps)
• Remote sensing products (MODIS, Landsat etc.)
7
Hydrosphere integration site:
Yenisey at Igarka
Tasks:
•  Intra- and inter-annual
variability in quantity and
quality of dissolved
(including dissolved GHG)
and particulate C
•  Links to source biomes by
biomarkers and isotopes
8
Recent estimates of carbon in rivers…
Dolman et al. 2013 Biogeosciences (based on Meybeck et al., 2006)
East Kara sea (Yenisey)
West Kara sea (Ob)
13%
19%
East Laptev sea (Kolyma)
West Laptev sea (lena)
!
17%
28%
35%
39%
DIC flux
DIC flux
DIC flux
DOC flux
DOC flux
DOC flux
DOC flux
POC flux
POC flux
POC flux
POC flux
DIC flux
31%
56%
22%
61%
42%
37%
7.7 TgC/a
11.1 TgC/a
9.6 TgC/a
2.4 TgC/a
McGuire et al. 2009, Ecol Monogr (based on numerous sources)
Yenisey
1%
Ob
4%
Kolyma
Lena
6%
!
16%
33%
29%
41%
35%
59%
58%
67%
51%
9.9 TgC/a
12.8 TgC/a
9.9 TgC/a
2.3 TgC/a
Hydrosphere integration site:
Yenisey at Igarka
Yenisey River characteristics
800
800
700
700
600
Discharge, km3/a
500
400
y = 1.6971x - 2769.7
2
R = 0.2048
y = -1.6565x + 3801.3
2
R = 0.2028
300
500
400
300
200
200
100
100
0
1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
Год
0
1935
1945
1955
1965
1975
Year
1985
1995
2005
2015
120
А
12
Поток РОУ, х1000 Мг/день
Концентрация РОУ, мгС/л
14
10
8
6
4
y = 3.5184Ln(x) - 28.515
2
R = 0.9172
2
0
20000
40000
60000
100
Б
80
60
40
20
1.4924
y = 4.4505x
2
R = 0.9878
0
0.00
0
80000 100000 120000 140000
2.00
2.5
6.00
8.00
10.00
2.5
В
Экспорт РОУ, гС/м2/год
2.0
1.5
1.0
0.5
0.0
1998
4.00
Расход воды, км3/день
Расход воды, м3/с
Экспорт РОУ, гС/м2/год
Сток, км3/год
600
2.0
Г
y = 0.004x - 0.473
2
R = 0.7208
1.5
1.0
0.5
2000
2002
2004
2006
Год
2008
2010
2012
0.0
500
550
600
650
700
Сток, км3/год
Q – ROSHYDROMET, http://www.r-arcticnet.sr.unh.edu/v4.0/.
DOC - http://www.arcticgreatrivers.org.
750
800
10
Megagrant
June 2012…
Too late… for
freshet sampling
11
Gymnosperm vegetation (“the middle” of boreal
belt) is the primary source of DOC
DOC concentration [mgC/l]
Boreal deciduous
conifer forests
Evergreen taiga and
mixed boreal forests
Forest-tundra, tundra
High labile C
Hydromorhism
Permafrost
Climate change
Retention in soil
Mineralization
50
55
60
65
o
Latitude [ N]
Low productivity
Low labile C
Mineralization
70
75
12
Tracing the Source: Dissolved Lignin
1000
L ignin S8 [ug/L]
100
NT
10
KO
Ob'
Yenisey
Lena
Kolyma
1
0
5
10
15
NPOC [mgC/L]
20
25
Source: ArcticGRO, PARTNERS (
http://www.arcticgreatrivers.org/data.html)
Prokushkin et al unpublished
Seasonal discharge and lignin
phenol concentrations in major
Arctic rivers between 2003 and
2007. Amon et al 2011
Dissolved phenols as fingerprints:
Vegetation type
(gymnosperm! / angiosperm / bryophytes
Source
Organic layer! / Mineral soil
Testing the hypothesis
• 
- 
- 
- 
Yenisey river cruises - 2015
Winter
Spring
Summer
•  Tunguskas cruises
-  NT May 2015
-  PT May 2015
14
Yenisey March 2015:
winter “autocruise”
WEST
EAST
15
0
Rivers
Turukhan
Yeloguy
Dubches
Tugulan
Sym
Kas
Kem'
Kureyka
N Tunguska
Miroedikha
S Tunguska
Komsa
Bakhta
P Tunguska
Vorogovka
N Surnikha
Garevka
Tis
Kiya
B Pit
Angara
Dissolved CO2, ppm
May 2015 Yenisey cruise:
“easy” data
4000
3500
3000
2500
2000
1500
1000
500
16
August 2015 cruise…
approaching
Ship is prepaid
650 kRubles
17
23
N Tunguska cruise: May 2015
Tasks:
•  to analyze hot spots of terrigenic C
release
•  Fingerprints of riverine C of different
environments
Yenisey River
Nizhnyaya Tunguska River
4
permafrost
Gravijka
80
60
TOC flux
3
Nizhnyaya
Tunguska
2
40
Dubches
TOC flux g/m2/June
Continuous permafrost, %
100
1
20
0
0
-12
-10
-8
-6
MAAT, oC
-4
-2
0
18
P Tunguska
•  Hope for 2016…
19
Atmospheric integration site:
ZOTTO (since 2006)
Inlet at 300 m
above ground
Trace gases - CO2/CH4/CO
and isotopes
Aerosols – concentration,
composition (anhydrosugars,
lignin…)
20
12
ZOTTO
21
Atmospheric integration site:
ZOTTO
Tasks:
440
•  Intra- and inter-annual
variability of GHG and
aerosols in atmosphere
Концентрация СО2 , ppm
430
420
410
400
390
380
370
360
350
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
•  Links to source biomes
420
mean summer
mean winter
400
y = 1.8422x + 375.21
R² = 0.9698
390
380
370
y = 2.2224x + 350.25
R² = 0.9692
360
350
340
330
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
320
1998
•  CO2 sequestration
СО2 concentration, ppmv
410
22
2015
Aerosols : Fire detection and fingerprints
5
35
(Ad/Al)V Ratio
Levoglucosan
30
25
3
20
15
2
10
1
5
0
0
15-Jun-12 20-Jun-12 25-Jun-12 30-Jun-12 5-Jul-12 10-Jul-12 15-Jul-12 20-Jul-12 25-Jul-12 30-Jul-12 4-Aug-12
01.07
01.08
01.09
23
Levoglucosan ug/m3
(Ad/Al)V Ratio
4
Hydromorphic
landscapes: ZOTTO area
DOC concentration, mgC/l
40
Fall storm event
Snowmelt
35
30
25
20
15
10
5
0
0
10
20
30
40
Peatbog coverage, %
50
DOC concentrations in rivers correlated
with peatbog area in the basin
However, lignin composition of riverine
DOM indicates conifer origin and links to
forest vegetation/deep peat layers
Fire disturbances decrease DOC efflux
Tura key site
25
Central Siberian River basins and
study goals
Central Siberian Plateau
river basins
Gradients:
Climate, permafrost,
vegetation,
SIMILAR parent rocks
(Siberian basalts)
Stream basins within
Nizhnyaya Tunguska
river watershed
Gradients:
Fire history (burned 0, 4, 20,
50 and >100 years), ALT,
vegetation, size,
SIMILAR: climate, parent
rocks (Siberian basalts)
Central Siberian Plateau rivers
2005-20…:
-15
Nizhnyaya Tunguska
Discharge [m3/s]
20000
-17
-19
DOC
45
DIC
40
35
15000
30
25
10000
20
15
-21
5000
10
5
-23
0
28.05.2005
22.02.2008
06.07.2009
18.11.2010
01.04.2012
0
14.08.2013
N Tunguska (at Tura)
Kochechum
-27
5.10.05
10.10.2006
1.8.06
28.5.07
18000
23.3.08
17.1.09
13.11.09
9.9.10
6.7.11
1.5.12
25.2.13
22.12.13 18.10.14
Date
Freshet (May-June)
55–71% for water runoff
64–82% for DOC
37–41% for DIC
50
Kochechum
16000
Discharge
14000
DOC
45
DIC
40
35
12000
30
10000
25
8000
20
6000
15
4000
10
2000
5
0
28.05.2005
10.10.2006
22.02.2008
06.07.2009
18.11.2010
01.04.2012
Concentrations [mgC/l]
-25
Discharge [m3/s]
d18O, per mill
50
Discharge
Concentrations [mgC/l]
25000
0
14.08.2013
Temporal and Spatial variation of DOC, DIC:
Dominance of snowmelt season, and increased
flux in wet years is essential
Large differences in amounts of DIC, DOC
among rivers
River Dissolved C:
annual values
8
30
а)
25
DIC
b)
DOC
10
-1
-2
15
(gC m a )
Annual C export
6
20
4
2
Rivers of Arctic Ocean basin
Rivers of Arctic Ocean basin
Decreasing trend of concentrations and annual fluxes from
West to East and from South to North for both DOC&DIC
Positive correlation with MAAT, forested areas
(Prokushkin et al 2011, ERL)
Yukon
Mackenzie
Аmguema
Kolyma
Yana
Indigirka
Lena
Olenek
Anabar
Ob
Tembenchi
Nidym
Kochechum
P.Tunguska*
N. Tunguska**
Yukon
Mackenzie
Аmguema
Kolyma
Yana
Indigirka
Lena
Olenek
Anabar
Khatanga
Ob
Yenisey
Tembenchi
Kochechum
Nidym
P.Tunguska*
0
Khatanga
0
Yenisey
5
N. Tunguska**
-1
(mgС l )
Mean annual C concentrations
Gordeev et al 1996, 2009, Raymond et al 2007, Striegl et al 2007, Cai et al 2008, Cooper et al
2008, McGuire et al 2009, Holmes et al 2011, Prokushkin et al 2011, Amon et al 2011
What can modulate the flux:
higher precipitation = higher runoff
7
Nizhnyaya Tunguska
400
6
Q
300
6
5
250
4
200
3
150
2
100
50
1
0
0
DOC/DIC flux [gC/m2/a]
Specific runoff [mm/a]
DIC
DOC/DIC flux [gC/m2/a]
DOC
350
DOC
DIC
7
y = 0.017x + 0.4546
2
R = 0.9666
5
4
3
y = 0.0095x + 0.23
2
R = 0.9076
2
1
0
2006
2007
2008
2009
0
150
2010
300
450
Specific runoff [mm/a]
Year
Southern part of Central Siberian Plateau
6
Kochechum
DOC
600
DIC
6
5
Q
y = 0.0131x - 1.0817
2
R = 0.9852
5
400
4
300
3
200
2
100
1
0
0
DOC/DIC flux [gC/m2/a]
Specific runoff [mm/a]
DIC
DOC/DIC flux [gC/m2/a]
DOC
500
4
3
2
y = 0.002x + 0.976
2
R = 0.8358
1
0
2006
2007
2008
2009
2010
0
150
300
Specific runoff [mm/a]
Year
Northern part of Central Siberian Plateau
450
600
There are two contemporary limitations for river export of
terrigenous C across Siberia:
(1)  low productivity of ecosystems with respect to
potentially mobilizable organic C, slow weathering
rates with concomitant small formation of bicarbonate
limit the pools of organic and inorganic C that can be
mobilized for transport in rivers (source-limited), and
(2)  mobilization of available pools of C is constrained by
low precipitation in the severe continental climate of
interior Siberia (transport-limited).
Projection of C export from
Central Siberian Plateau
N Tunguska River: the Southern
part of Central Siberian Plateau
Kochechum River: the Northern
part of Central Siberian Plateau
Only projected increase in water flux to 2100 (e.g. 0.33 km3/year/year for N Tunguska River) may almost double terrestrial C
export to rivers
Together with an increase in NEP/terrestrial C accumulation of Northern territories it may increase total C flux up to 700% of
current values (e.g. Gordeev and Kravchishina, 2009, Frey and Smith, 2005)
Prokushkin et al 2011, Doklady Earth Sciences
Indicators of permafrost
degradation
1000
N10
-
Cl (mg/l)
100
10
N2
N15
1
N13 N9 N14
0.1
0.01
1
10
100
1000
10000
2
Basin area (km )
100000 1000000
Evaporite signal as NaCl/CaCl2 appeared in river
waters through “through taliks”
What can modulate the flux: Wildfire effects
(ca. 1% of territory burned annually)
MODIS (modeled GPP)
Major Siberian Rivers:
Central Siberian streams
Fire year of 2003
burned 4, 20, 65 and >100
years ago
Central Siberian Rivers
Fire scars demonstrate lower GPP:
territories have potentially higher DOC production at no fire scenario
Long-term dynamics of annual mean
concentrations of major anions in stream waters
after a fire
1000
1200
-0.7527
y = 37.981x
2
R = 0.94
1000
800
[DIC], umol/l
2-
[SO4 ], umol/l
100
10
600
400
1
200
0.1
-10
10
30
50
70
90
110
Time elapsed since fire, years
Sulfate-ion is good indicator of
recent fire effect (ca. 20 years)
0
-10
0
10
20
30
40
50
60
70
80
90
100
110
120
Hydrocarbonate-ion follows increasing soil
ALT and indicates enhanced geochemical
(weathering) and/or biological (i.e. SOM
decomposition) processes
Dissolved organic carbon in
streams
3000
Portion of 110 year old basin,
%
100
2500
DOC umol/l
2000
1500
80
60
40
20
0
0
20
40
60
80
100
Time since last fire, years
1000
500
0
-10
10
30
50
70
90
110
Years since fire
Dissolved organic C in streams
follows dynamics of soil organic
layer accumulation
130
120
Igarka key site…
36
Research task
•  NEE in major biomes
annual variation and links to
climate/ANPP/riverine C
release
Dark conifer
taiga: ?-270-? gC/
m2/year
(2000)
Pine forest:
Peatbog:
-154 ±13
gC/m2
-53 ±13
gC/m2
(1999-00)
!
(1999-00)
!
Larch taiga:
-66±26 gC/m2
(2004-08)
Palsa:
?
gC/m2/year
37
Thanks!
38