Saggitarius dwarf - Max-Planck

Transcription

Saggitarius dwarf - Max-Planck
Dark Matter Search
in TeV energy scale
M.Teshima
MPI für Physik, München
(Werner-Heisenberg-Institut)
On behalf of MAGIC collaboration
MAGIC has
started the operation!!
(Major Atmospheric Gamma Imaging Cherenkov Telescope)
Preliminary Observation
Mrk421 in Feb (100mins)
by MAGIC
The MAGIC Collaboration
(14 INSTITUTIONS, ~100 PHYSICISTS)
Institut de Física d'Altes Energies, Barcelona:
Oscar Blanch, Juan Cortina, Eva Domingo, Enrique Fernández, Josef Flix, Markus Gaug, Javi López, Manel Martínez
Universitat Autònoma de Barcelona:
Carmen Baixeras, Carles Domingo, Lluis Font, Raul Orduna, Alejandro Sánchez, Andreu Torres
Crimean Astrophysical Observatory:
Arnold Stepanian
University of California, Davis:
Daniel Ferenc, Alvin Laille
Division of Experimental Physics, University of Lodz:
Maria Giller, Piotr Jacon, Dorota Sobczynska, Tadeusz Wibig
Universidad Complutense, Madrid:
Luis José Contreras, Victoria Fonseca, Marcos López, Emma Oña, Raquel Reyes
Max-Planck-Institut für Physik, München:
Rudolf K. Bock, José Antonio Coarasa, Markus Garczarczyk, Jurgen Gebauer, Florian Goebel, Eckart Lorenz, Keiichi Mase,
Razmick Mirzoyan, Satoko Mizobuchi, David Paneque, Kenji Shinozaki, Masahiro Teshima, Nadia Tonello, Vincenzo Vitale,
Robert Wagner, Wolfgang Wittek
Dipartimento di Fisica, Università di Padova:
Laura Alciati, Denis Bastieri, Ciro Bigongiari, Nicola Galante, Mosè Mariotti, Abelardo Moralejo, Donatella Pascoli, Luigi
Peruzzo, Antonio Saggion, Villi Scalzotto
Space Research Unit, Potchefstroom University:
Okkie C. de Jager
Fachbereich Physik, Universität-GH Siegen:
Thomas Hengstebeck, Nikolaj Pavel, Ralf Stiehler, Serguei Volkov
Dipartimento di Fisica, Università di Siena:
Mario Meucci, Riccardo Paoletti, R.Pegna, A.Piccioli, Antonio Stamerra, Nicola Turini
Tuorla Observatory, Pikkiö:
Aimo Sillanpää, Leo Takalo
Universität Würzburg:
Thomas Bretz, Eduardo Colombo, Tanja Kneiske, Karl Mannheim, Martin Merck
Yerevan Physics Institute, Cosmic Ray Division, Yerevan:
Ashot Chilingarian
MAGIC Physics Objectives
Pulsars
Origin of
Cosmic Rays
SNRs
AGNs
Cosmological
γ-Ray Horizon
Quantum Gravity
GRBs
Cold Dark Matter
By Kolb, 2003
Total Photon Spectrum from Neutralino
annihilation
(Bergstroem et al. 1998)
Best Candidate; LSP Neutralino
R-Parity conservation
(100 GeV ≤ mχ ≤ 1TeV )
Neutralino Annihilations
Æ gamma rays
χχ → γγ
χχ → γZ
χχ → q q
Φγ (Ω) =
γ-line Eγ = mχ
γ-line Eγ = mχ− mΖ2/4 mχ
γ continuum
Nγ vσ
⋅ ∫ ρDM (l )dl(Ω)
2
4π ⋅ M χ
2
Atmospheric Imaging
Cherenkov Telescope
Gamma
ray
Observe Cherenkov light from
gamma ray showers
Particle
shower
~ 10 km
~ 1o
C he
re n
k ov
ligh
t
Effective area ~ 105m2
~ 120 m
Calorimetric !!
ΔE/E~20% @ 100GeV
Gamma/Hadron separation
Gamma
300 GeV
Height in km
Height in km
MC Simulation of Shower
Angle in degrees
Angle in degrees
Gamma
20 km
Radius in m
Radius in m
Angle in degrees
Proton
1 TeV
Hadron Rejection by Image ~99%
Angle in degrees
Hadron
Alpha (Orientation angle)
distribution
Hadron rejection by orientation α~90%
Gamma Rays
C.R. Protons
Before Image/Orientation cut
After Image/Orientation cut
NS/NB ~1/1000
NS/NB ~1/1
IACT vs. Satellite
Complimentary
Base
Satellite
Ground
Gammaray
detection
Direct
(pair creation)
Indirect
(atmospheric
Cherenkov)
Energy
< 30 GeV
(→ 100 GeV)
>300 GeV
(→ 30 GeV)
Pros
High S/N
Large FOV
Large area
Good ⊿θ
Cons
Small area
High cost
Low S/N (CR bkgd.)
(but imaging
overcomes this!)
Small FOV
Signature of WIMP
annihilation
Preliminary
Single telescope 50hrs
Two telescopes 1000hrs
Anatoly Klypin
Dark Matter density profile
SIS profile
∝r -2
Moore profile ∝r -1.5
NFW profile ∝r -1.0
Galactic Center distribution of DM
Stoehr et al. 2003
Subhalo mass function
~10 degrees
Annihilation rate
S/N ratio
Galactic Center is
crowded
- Galactic Center: all kinds of H.E. sources
It´s just too crowded
Most brilliant
unid. EGRET source
Central Black Hole
X-ray flares!
IACT Angular
resolution
Sgr A
East non
-thermal filaments (radio
X-rayobjects
sourcemay
SNR
Astronomical
produce
serious
backgrounds!!
Max-Planck Institute (Munich) – 11/9/2003 – Josep Flix (jflix@ifae.es)
Today’s signal becomes B.G. in tomorrow!!
Signals from G.C.
perhaps these are B.G. for Dark matter search
CANGAROO
Whipple
Energy Spectrum and time
variation
CANGAROO: Possible Time variation
Whipple: No time variation
CANGAROO observation suggests
pion decay spectrum
Nearby Dwarf Galaxies
Sagittarius(South)
Distance
M/L
Mass
24 kpc
100 M/L
5-20x108 M◎
Draco (North)
Distance
M/L
Mass
79 kpc
440±240M/L
8x107 M◎
Clumping dark matter
(A. Tasitsiomi and A. Olinto PRD2002)
~10% DM Æ clumps
Clump M = 108M◎
Continuum Gamma
Line Gamma
Threshold Energy Dependence
(A. Tasitsiomi and A. Olinto PRD2002)
Extrapolation to 30GeV MAGIC
Draco Dwarf Galaxy
C.Tyler 2002
Summary
Low threshold energy MAGIC is very effective to dark matter search.
Dark Matter at the galactic center
„
„
We are very close to the detection!!
But not easy!!
Normal astronomical sources
DM density profile -- flatter than NFW?
FOV of cherenkov telescope is too narrow? Æ Wide angle telescope is more
effective!!
Clumping Dark Matters
„
„
„
Nearby dwarf galaxies, globular clusters are good candidates
Compact and less background than G.C.
High M/L Draco, Sagittarius dwarf galaxies are very interesting
We have started the construction of second telescope (MAGIC II).
Construction will be completed in 2006. It will improve the sensitivity
and increase the flexibility of observation
„
Dedicated program; search for Dark matter, AGNs patrol
MAGIC and MAGIC II will observe G.C. and dwarf galaxies to
search for dark matters