Quaco. Leven in slavernij - Belgische Maritieme Liga

Transcription

Quaco. Leven in slavernij - Belgische Maritieme Liga
INSERE 28/04/16
BOEKEN LIVRES
ENLEVE 28/05/16
“Quaco. Leven in slavernij”
B O E K B E S P R E K I N G door : Frank NEYTS
In juni 2015 verscheen bij uitgeverij Walburg Pers te Zutphen het stripverhaal ‘Quaco.
Leven in slavernij’ van Eric Heuvel en Ineke Mok. ‘Quaco. Leven in slavernij’ is het eerste
stripverhaal over het Nederlandse slavernijverleden. Quaco, de hoofdpersoon, heeft
werkelijk geleefd. Hij was een Akan en kwam uit een gebied dat nu in Ghana of Ivoorkust
zou liggen. Na zijn ontvoering leefde hij eerst in West-Afrika in slavernij, daarna in
Suriname en Nederland. Quaco was een van de miljoenen Afrikanen die slachtoffer werden
van de trans-Atlantische mensenhandel, waarbij ook Nederlanders betrokken waren.
Quaco wordt als 8-jarige rond 1770 ontvoerd. Terwijl zijn broer achterblijft in de cellen van
het fort aan de kust, wordt Quaco verkocht aan de kapitein van een slavenschip. Met het
meisje Afua weet hij de ontberingen aan boord te doorstaan. Ze komen beiden in
Paramaribo terecht bij de rijke planter en bestuurder Walter Kennedy. De oudere Olijf, die
ook op het erf woont, ontfermt zich over Afua en Quaco. Quaco wordt Kennedy’s
persoonlijke bediende, ofwel foetoeboi. Maar dan geeft Kennedy Quaco aan legerkapitein
John Gabriël Stedman, die in Suriname is om ten strijde te trekken tegen de weggelopen
slaven. Onderweg naar het binnenland kijkt hij uit naar zijn broer en wordt hij
geconfronteerd met het harde leven op de plantages. De militaire missies plaatsen Quaco
vervolgens voor onmogelijke dilemma’s. Als Stedman Quaco na vier jaar meeneemt naar
Nederland, zal hij zijn vrijheid verwerven. Maar de prijs is hoog. Hij voelt zich ontheemd.
Steeds vaker doemen beelden uit zijn verleden op. Dan neemt hij een drastisch
besluit.“Quaco. Leven in slavernij” (ISBN 978-90-5730-959-5) telt 64 pagina’s, werd als
stripverhaal uitgegeven, en kost 8.95 euro. Aankopen kan via de boekhandel of
rechtstreeks bij Uitgeversmaatschappij Walburg Pers, Postbus 4159, 7200BD Zutphen. Tel.
+32(0)575.510522, Fax +31(0)575.542289. . In België wordt het boek verdeeld door
Agora
Uitgeverscentrum,
Aalst/Erembodegem.
Tel.
0032(0)53.78.87.00,
Fax
0032(0)53.78.26.91, www.boekenbank.be , E-mail: admin@agorabooks.com.
INSERE 28/04/16
NIEUWS NIEUWS
ENLEVE 28/05/16
AGREEMENT ON WRECK REMOVAL MV
FLINTERSTAR OFF BELGIAN COAST
Flinterstar III BV, the owner of the Dutch freighter MV FLINTERSTAR, has entered into a
contract with a consortium of Belgian marine contractors to remove the wreck of the vessel
which sank in the North Sea off the coast of Zeebrugge following a collision last October.
The consortium will be headed by
SCALDIS, a joint company of DEME,
Jan De Nul and Herbosch-Kiere. Mr
Bart Otto, Director of Flinterstar lll BV,
said: “Our primary concern has been
that the wreck removal operation
should be undertaken in the safest and
most
environmentally
sensitive
manner possible. With that in mind, we
have been impressed throughout the
tender process with the professional
approach adopted by SCALDIS and
their joint venture partners. We are confident tha now the operation has been placed in
their capable hands, it will go forward smoothly and be completed on schedule this
summer. Mr Martin Ockier, Board Member of SCALDIS: “We are very pleased to be awarded
this contract. As SCALDIS was involved in the successful wreck removal of the TRICOLOR,
we will apply the valuable experience gained to execute the optimum, bespoke method to
the retrieval of MV Flinterstar. Our approach will be the most effective, safest and
environmentally sensitive. The methodology will ensure that the duration of the offshore
operation is kept as short as possible and causes the minimum possible interference to the
shipping traffic. Environmental concerns were also fully evaluated in organising the
appropriate disposal method of the wreck sections and cargo ashore.” Now the contract
has been awarded, SCALDIS will start the detailed preparation and mobilisation phases in
order to commence on-site operations as quickly as possible in the coming weeks. At
present, although the wreck is upright on the seabed, it is separated into two sections. In
brief, the overall methodology is based on lifting the two sections from the seabed and
placing each section onto a barge. It is SCALDIS’ intention to first remove the cargo.
Simultaneously, the lifting points and/or lifting chains/slings will be installed underneath
the wreck.
Each wreck section
will be lifted by
SCALDIS’ powerful,
3300 tonne capacity
RAMBIZ heavy lift
vessel
and
positioned onto a
transport barge then
transported
for
appropriate disposal.
It is anticipated the
wreck
removal
operation will be completed this summer - weather permitting. ‘FLINTERSTAR’ is a 2002
built Dutch flagged cargo/container ship, which had a collision with LNG tanker mv “AL
ORSAIQ” in the buoyed fairway “Scheur, in theapproaches to Zeebrugge, in the early
morning hours of October 6th 2015. Shortly after the collision MV “FLINTERSTAR’, partly
loaded with construction steel and crane parts, grounded outside the channel, to the
southeast of buoy“Scheur 3. Since November 2nd, a “guard vessel”, operated by the
Authorities, has remained permanently on scene.In January 2016, the Authorities issued a
wreck removal order, as the vessel was perceived to present a potential danger to shipping
and the environment.
INSERE 30/04/16
DOSSIER
ENLEVE 30/05/16
Wall wash is dead. Long live washing water
samples
As I wrote in Tanker Operator in the August/September 2014 issue, the wall wash
inspection prior to loading chemical cargoes is starting to suffocate the operational
flexibility of chemical tankers.*
This is not just for the owners and operators of these vessels, but also for the charterers,
who suffer unnecessary delays while vessels are cleaning to a standard that is firstly
completely unjustifiable in many cases and secondly - does not actually guarantee that the
next loaded cargo can be loaded successfully and within specification.
In this same article, I noted that historically
only a handful of cargoes used to demand a
wall wash inspection, typically methanol,
ethanol, MEG, HMD, etc. However, today, the
list is out of control, ncluding recently, a cargo
of jet fuel, which granted, requires the cargo
tanks to be perfectly clean and dry, but was
only loaded prior to a wall wash inspection in
all cargo tanks for the following criteria:
Wall wash with DI water to test for a
maximum sodium content of 1 ppm.
Wall wash with Hexane to test for a maximum
NVM
content
of
10
ppm.
Wall wash with Methanol to test for a
maximum organic chlorine content of 1 ppm
and a UV scan through a 5 cm cell (smooth
curve).
The charterers of the vessel later admitted
that they were ‘unaware the vessel had
stainless steel cargo tanks’ and ‘perhaps a wall wash inspection was not required’. This
surprising lack of understanding sadly reflects the reality that owners/operators of tankers
are consistently and unnecessarily expected to over-clean cargo tanks to a level of
cleanliness that is just not required to load the vast majority of cargoes.
There are many
negative
consequences
related toovercleaning and/or
cleaning to a
standard that
does
not
guarantee that
the next cargo
can be loaded
successfully,
but one of the
most serious is
also generally
one of the most overlooked; and that is confined space entry.
Each time a cargo is fixed to a wall wash specification, there are numerous confined space
entries, not only for the vessel’s personnel, but also for the third part inspectors and
sometimes also, the terminal operators.
The only reason for multiple cargo tank entries during tank cleaning operations is to ensure
compliance with pre-loading inspection specifications and, if this is a wall wash
specification, generally there will be a minimum of two additional entries per cargo tank
per tank cleaning operation.
Thus, for a vessel with 20 cargo tanks, this equates to 40 tank entries for the crew, plus
20 tank entries for the surveyors, plus another 20 tank entries for the crew member
accompanying the surveyors. A total of 80 separate confined space entries. And all for
what? To pass a wall wash inspection that does not actually guarantee that the next cargo
can be loaded successfully.
According to all of the oil and chemical majors, confined space entry is one of the most
unsafe practices, whether it is on board a tanker, or inside a refinery. Indeed, the new
SOLAS regulation III/19 noted in the January/February 2015 edition of Tanker Operator
only adds more gravitas to the risks associated with this practice, yet this is seemingly
being widely ignored for commercial benefit.
Moreover, when
the new rules
surrounding the
inerting
of
chemical
tankers
are
implemented
from January,
2016,
it
is
inevitable that
the vessels will
have to deal
with
tank
cleaning from a
mixture of the
previous cargo
and nitrogen. Consider that nitrogen is invisible, has no smell and is commonly referred to
as the silent killer and it is clear that the risks associated with cargo tank entry will only
become even more serious.
Over the years, there has been a heavy clamp-down on manual tank cleaning with
flammable/toxic chemicals on safety grounds, but it should be clear that the only reason
why vessels have to even consider cleaning with these types of materials is to meet preloading inspection specifications, that as noted, have no direct influence on the ability of
the vessel to loaded the next nominated cargo successfully.
Perhaps a better way of dealing with this situation would be to remove the need to use
flammable / toxic chemicals in the first place?
The safety risks associated with carrying out the wall wash inspection now appear to far
outweigh the significance of the wall wash results, meaning there is a clear and defined
need for an alternative process that will allow shipowners/operators and charterers to
determine cargo tank suitability prior to loading, without having to resort to confined space
entry.
This process is Washing Water Analysis; identifying how much of the previous cargo has
been removed from the cargo tanks, as opposed to measuring what has been left behind
on the walls after tank cleaning. The process allows for dynamic measurement of cargo
tank quality using the L&I WAVE II UV/Vis spectrophotometer, which not only significantly
reduces cargo tank entry, it also measures the cleanliness of the entire internal surface
area of the cargo tanks and the cargo lines, unlike the wall wash inspection which only
measures the lower 10 – 15% of the internal surface area and none of the cargo lines.
cleaning operations, live, without having to stop the cleaning, gas free the cargo tanks,
enter a confined space and take a wall wash sample, to decide whether additional tank
cleaning needs to be carried out or not.
This not only saves time (which has a positive influence on rest hours), it also creates the
potential to reduce fuel consumption (by allowing the vessel to stop cleaning when a
specific cleaning step ceases to be effective) and to save cleaning chemicals, based on the
simple fact that if all of the previous cargo residues have been removed, there is no need
to use chemicals for the tank cleaning. This process is not possible without instrumentation
that generates instant data that directly influences the tank cleaning process.
Essentially, tank cleaning can continue, under fully inerted conditions, without any need
for cargo tank entry, until the cargo tanks are free from the previous cargo.
The graph on the previous page shows the results of a cleaning operation from styrene
monomer. It can be seen that the last sample washing), shows that the washing water
contained a little over 1 mg/L of styrene monomer. The vessel successfully loaded MEG FG
afterwards.
The process can also be used to assist vessels cleaning from Annex I to Annex II cargoes,
as evidence that the oil residues have been removed from the cargo tanks:
The process of washing water analysis is currently being carried out by a number of
chemical tanker owners and is being evaluated by some of the leading chemical and oil
majors not only because it is a relevant method of determining cargo tank suitability, but
also because it has a direct and positive impact on the environment and on the safe working
conditions of seafarers.
Confined space entry is one of the most unsafe practices associated with the chemical
tanker business. This situation has to be corrected.
*This article is another in the series written by Guy Johnson, L&I Maritime (UK) Ltd;
Tel - +44 1909 532003; Email - guy.johnson@limaritime.com
INSERE 02/05/16
NIEUWS NIEUWS
ENLEVE 02/06/16
AMSA: Verifying Container Weight
amendments
AMSA has issued a discussion paper to explore and guide discussion on practical solutions
to the implementation of upcoming SOLAS Convention amendments relating to verifying
container weight.These requirements will come into effect internationally from 1 July 2016.
AMSA is seeking feedback on the impact these amendments will have on the whole logistics
supply chain, along with possible solutions that may lessen any impact. Incorrectly
declared containers can cause problems for ships and for workers at container terminals.
For ships, accurate weight is required so that containers are placed and stowed evenly to
maintain the stability of the ship during the whole voyage. Additionally, for loading and
unloading ships and workers safety, the adequacy of securing devices used to attach
containers to vessels and the selection of suitable lifting/loading equipment is reliant on
knowing the correct weight of containers. The impact of individual errors in weight
declaration can be significant when considered on a vessel with thousands of containers.
For example, the investigation into the incident with the container ship MSC Napoli found
that 1 in 10 containers far exceeded their declared weights. In fact, noting that the ship
carried 2318 containers, it was found that the difference between the calculated and actual
deadweight of the ship at departure was some 1250 metric tonnes. What needs to change?
Under section 10 and 11 of
the current Marine Order 42
(Cargo,
stowage
and
securing) 2014 (MO42) the
shipper is already required to
provide
the
master
information about cargo to be
loaded in sufficient time for
the information to be used in
the stability, stowage and
securing calculations. This
includes the gross mass of the cargo or the cargo units. However, while MO42 requires
that shippers ensure the actual gross mass of a container matches the gross mass provided
on shipping documents it does not stipulate the method, or methods, for verifying the
gross mass of a container.From 1 July 2016, revisions to the SOLAS Convention, adopted
by the International Maritime Organization (IMO), and applied as law for Australia under
the Navigation Act 2012, and subordinate Marine Orders will come into effect. These SOLAS
amendments will provide that: The shipper will be responsible for verifying the weight of
the container and providing the verified gross mass to the Master on the shipping
documents. To do this the shipper can use either:
•Method 1 Weighing the packed container
•Method 2 Weighing all the cargo and all other material loaded into the container then and
adding the weight of the empty container (marked tare weight) to calculate the gross mass.
Weighing of packed containers, or weighing of
cargo and other materials if method 2 is used,
is to be carried out using calibrated and
certified equipment (such as weighbridges,
platform scales, pallet or industrial scales) to
obtain accurate measurements.What the
international standards have not done is to
specify the accuracy standards to be applied.
This is left to the government of the country of
shipment to determine. However, to assist
shippers and involved industry members
understand how to comply with these SOLAS
requirements, the IMO has published; ‘Guidelines Regarding the Verified Gross Mass of a
Container
Carrying
Cargo’
(MSC.1/Circ.1475)
How this will be implemented in Australia?
AMSA considers that it can meet its international obligations by amending Marine Order 42
(Cargo, stowage and securing) 2014 (MO42) to reflect the SOLAS amendments. Principally
the
amendments
could
include
the
following:
• Shippers will be responsible for verifying the weight of the container on shipping
documents.
• Such weight verification is to be carried out using equipment meeting the requirements
of:
– the Australian National Measurement Act 1999 and supporting guidelines and regulation
;
or
– An equivalent standard accepted by AMSA – initially a suitable standard for the weighing
device accuracy could be based on the NMI guidelines: NITP 6.1 to 6.4 National Instrument
Test Procedures for Non-automatic Weighing InstrumentsAMSA believes that equipment
meeting the above requirements in Australia will meet the definition of ‘calibrated and
certified equipment’ in the IMO guidelines.
INSERE 04/05/16
DOSSIER
ENLEVE 04/06/16
Low sulphur solutions, fresh propulsion
problems
Distillate fuels, despite their premium pricing, have rapidly become the default choice for
the majority of owners and operators now facing the 0.1% ECA sulphur cap*.
Distillates, such as marine gas oil (MGO) are arguably the most convenient low sulphur
solution for existing ECA bound vessels.
As, unlike abatement technologies or LNG power, they require no major up-front
investment nor costly modification or retrofitting of the vessel.
So what’s the problem? On paper there isn’t one, as just like less expensive residual fuels,
distillates need to meet the owners’ predetermined specifications and the latest ISO 8217:
2012 standards.
Unfortunately, issues have a habit of showing themselves in the engine room, rather than
a meeting room, and what looked good on a spec sheet may in fact end up blocking fuel
lines, damaging fuel pumps and injectors and even contribute to the loss of engine power
(LOP).
A quick glance at the US Coast Guard’s 2014 statistics for loss of propulsion incidents in
California will illustrate a worrying trend. Of the 93 LOP incidents, 15 were directly related
to fuel switch overs. We wait anxiously for the figures from the freshly regulated European
ECAs.
But, before you reach for that exhaust gas cleaner spec sheet, the problems, which can
occur when using distillate fuels, can easily be avoided with a little help, according to Jonas
Ostlund, product marketing manager marine chemicals, Wilhelmsen Ships Service (WSS).
“If you are aware of the fuel’s basic properties and limitations, and are prepared to treat
your distillates systematically in order to manage and maximise their performance, they
pose few challenges.”
Typically, issues with distillate fuels are distinct from those of their residual relations, and
they revolve around lubricity and degradation.
Both the makeup of the source crude oil, and the refining processes that oil undergoes,
can have an impact on the lubricity of any finished distillate fuel. This is because the
lubricity enhancing compounds that are naturally present in all diesel fuels are also affected
by the refinery process.
The hydro treating refining process reduces the sulphur and aromatic content of crude, but
it also removes the polar components that aid lubrication. This is the reason the lubricity
of distillate fuels is difficult to predict, as it is not solely related to the sulphur level.
Nevertheless, the general trend is that there are lower levels of lubricity in unfinished low
sulphur distillate fuels than intermediate or heavy fuel oil.
Rapidly increasing the wear of fuel and injector pumps at best, and causing the potentially
catastrophic loss of power at worst, the effects of poor lubricity in low sulphur diesel fuels
was well documented during their adoption by the car industry in the early 90s. It was a
disaster, and it is one we don’t want to recreate at sea.
An accepted limitation of low sulphur distillates, minimum lubricity levels now feature in
the latest ISO 8217: 2010 marine distillate fuel specifications. A requirement for marine
distillate fuels with a sulphur level of less than 500 ppm (0.05%) the ISO 8217:2012 WSD
limit is currently fixed at 520μm.
Typically, finished, on-spec, low sulphur distillate fuels will dip within this limit with the
help of lubricity-improving additives. But, from that point on it then comes down to how
the fuel is managed, manipulated or maintained prior to its arrival alongside vessels for
bunkering.
Familiar questions come into play here regarding fuel quality, the consistent availability of
on spec fuel, and of course cost. Ostlund believed this uncertainty regarding distillates is
easily eliminated. “For many customers working within the constraints of the 0.1% ECA
sulphur cap this added complexity is totally unwanted and unnecessary, and instead they
are choosing to fall back on additional fuel treatments.”
WSS has focused on developing a condensed range of marine distillate-specific, fuel oil
treatment products. Released towards the end of 2014 in anticipation of the regulatory
changes concerning emissions, WSS’ range has proved to be popular and Ostlund said the
reason is simple. “Using tried and tested, proven products such as DieselPower Lubricity
from WSS as a matter of course, will significantly improve the lubricity of low sulphur
distillate fuel, reducing component wear.”
Typically requiring a dosage of 15 litres per 100 tonnes, its effectiveness is documented in
independent HFRR, SOBOCLE and additional pump rig tests**.
Limited shelf life
Low sulphur diesels tend to be more stable than high sulphur fuels as hydro treating
typically destroys the precursors to insoluble organic particulates. However, along with
lubricating compounds, hydro treating also eliminates naturally occurring antioxidants.
This is why refineries treat distillate fuels with stabilisers to prevent deterioration and the
formation of peroxides, the forerunners to soluble gums.
Unfortunately, such additives actually have a limited shelf life and six months down the
line the fuel, now being pumped on board and into storage tanks, is unprotected from
deterioration. A mixture of different hydrocarbons that can deteriorate over time,
temperature, the availability of an oxygen supply, and access to sunlight also play an
important role in accelerating the fuel’s decline.
Experiencing a change in colour along with gum and sediment formation, a distillate fuel
that is undergoing degradation through reactions with oxygen will, if unchecked, tend to
go on to form deposits, especially on the fuel injectors. The reason the deposits end up on
the fuel injectors is that when a degrading fuel leaves the injector to be atomised it tends
to coke on the nozzle. The coaking starts to build and the spray pattern from the injection
nozzle is affected reducing fuel economy and engine durability and actually increasing
emissions.
Working in tandem with lubricity issues to make an already awkward situation, even more
difficult, distillate fuel deterioration can also be addressed with additives. Treatments such
as WSS’ DieselPower Enhancer are multifunctional, maintaining both fuel stability and
improving lubricity.
With a recommended dosage of 3 litres per 100 tonnes, usage of such fill and forget, do it
all products ensure that ongoing concerns regarding the differing lubricity and stability of
low sulphur distillate fuels should disappear.
In addition to distillate fuels’ unique lubricity and degradation issues, unfortunately they
are also prone to suffering from a problem shared by all diesel fuels, microbiological
contamination.
Thriving in hot and humid conditions and if non-dissolved water is present in the fuel, just
100 ppm (0.0001%) of water is all that’s required for bacteria to grow in a fuel system.
Microbes in small quantities pose few problems, however if their numbers increase (>106
cfu/ml; CFU –colony forming units) then they start to form biofilms in the systems, leading
to sludge formation. Once established, microbial growth will start to block filters, corrode
tanks and even wear injectors.
Simple tasks such as regularly draining water from the bottom of the tank, along with
frequent, and at the very least annual, fuel testing, can help reduce the impact of microbes.
However, the routine use of additional fuel treatments may be the only consistent solution
to persistent microbial contamination.
While Biocides have been around for many years, products such as WSS’ DieselPower MAR
71 are specifically designed to work within distillates’ distinct parameters. Eliminating the
potentially corrosive microbes often found within diesel fuel systems, when pro-actively
used as preventative measure, the typical dosage is 20 litres per 100 tonnes.
Experiencing an obvious surge in interest, linked to the upswing in ECA-driven MGO use,
fuel treatments have historically been greeted with a degree of scepticism, frequently
viewed as ‘snake oil’.
However, when it comes to lubricity improving products and stabilising agents, such as
DieselPower Lubricity and DieselPower Enhancer, the results speak for themselves, and so
seemingly do the owners.
A recent development, it seems that the fine detail contained in an increasing number of
charterparty agreements are being amended to stipulate the systematic use of such
products, reflecting both their effectiveness and importance.
That is of course an easy decision for owners and operators to make, when they are not
the ones footing the fuel bill. But, the costs of maintaining a structured fuel treatment
regime are insignificant when measured against the sizeable financial penalties, which
could be incurred as a result of engine damage, reduced fuel economy or even a LOP
incident.
An established technology and the direct result of the car industry’s experiences with low
sulphur diesel fuels, fuel treatment, along with ECAs, and the use of distillates, is here to
stay.
*This article was taken from a paper written by Jonas Ostlund, product marketing manager
marine chemicals, Wilhelmsen Ships Service (WSS).
**Pump rig testing is the main alternative to field testing for the evaluation of lubricity
additives. Independent data generated by APL, Germany, using a Bosch VE rotary injection
fuel pump, operated for 1, 000 hours according to the Bosch recommended cycle and rated
by Robert Bosch GmbH, clearly demonstrates the lubricity improving performance of
DieselPower
Lubricity.
Using a severe Swiss low sulphur fuel, which had been shown to cause significant wear to
pumps of this kind (Bosch rating 6-7), dosing 100 mg/l DieselPower Lubricity resulted in a
Bosch rating of 3, ‘acceptable wear’.
INSERE 04/05/16
BOEKEN BOOKS LIVRES
ENLEVE 04/06/16
"De Spelverdelers"
docu-roman over de scheepsreparatiewereld.
Door : Cees van der Jagt
'Een
jonge
succesrijke
ondernemer
koopt
de
Russische carferry 'Odessa
Sky', huurt een afbouwkade
met dok bij een werf in
Bremerhaven
en
geeft
opdracht om het schip in drie
maanden te verbouwen tot
modern
cruisepaleis'.
Eindelijk een boek dat de
rauwe achterkant weergeeft
van
de
internationale
scheepsreparatie. Niet alleen
de intriges bij het spel tussen
opdrachtgevers,
werven,
verzekeraars
en
experts
tijdens het verwerven en
uitvoeren van een mega
opdracht komen goed uit de
verf. Ook de oplopende
spanning in het management
- team en het vakmanschap
van de mannen op de vloer
die 'last minute' wijzigingen
tijdig weten te realiseren
krijgen een diepgang die zou
hebben ontbroken als de
schrijver zelf niet decennia
lang in het vak had gezeten.
Boeiend wordt beschreven hoe enkele vrouwen in deze 'mannenwereld van staal' , heel
origineel, de situatie naar hun hand weten te zetten. "De Spelverdelers", 393 blz.
uitgevoerd in full color soft cover, kost ecl. verzendkosten € 19.95. Te verkrijgen via
website: www.despelverdelers.tk
INSERE 06/05/16 HISTORIEK HISTORIQUE
White Cross Line
ENLEVE 02/06/16
A full account of a little-known Belgian-flag company without which the story of the
development of the steamer in relation to the North Atlantic would not be complete. In this
fully documented article the author has drawn liberally on the files of the " New York Herald
" and the " Shipping and Mercantile Gazette "
by N. R. P. Bonsor
In 1852 a young man named Daniel Steinmann emigrated from his In native town of St.
Gall, Switzerland, to Antwerp and there, two. rears later, founded the firm of Steinmann
and Cie., emigration agents. k steady stream of emigrants was passing through Antwerp
from various parts of Belgium, Germany, Holland and Switserland en route to New York,
and elsewhere in the New World and before long a considerable number entrusted
themselves to the care of Steinmann and Cie., whose responsibility it was to engage
passages for them in he first available ship—nearly always a sailing ship. In this connection,
few of the shipowners had any satisfactory organisation of heir own for booking passengers
and in consequence they were fully prepared to come to terms with an emigration agent—
in this case Steinmann and Cie., who paid them an agreed fare for each and every
passengers booked. The ships of course carried cargo as well as passengers, and by
degrees the firm built up a large cargo-handling business in addition.
Steinmann and Cie. had been in existence for 11 years before they lecided to branch out
as shipowners. It was in 1865 that a 213-ton ailing ship, built in 1857; was purchased and
renamed Helvetia in honour of Mr. Steinmann's country of birth. Few details are available
>f her activities, but it is believed that most of her subsequent life vas spent on the North
Atlantic and this is borne out to some extent by the announcement : " New York. Arrivals
July 15th 1877. Ship Helvetia (Belgian), Antwerp 46 days with merchandise." In due ourse
two further sailing ships, the Princess Royal and Duc de Brabant, were acquired, the latter
having a tonnage of 806.
The acquisition of the Helvetia made it desirable for the firm tob introduce a distinguishing
houseflag and trade name. What could have been more appropriate than Mr. Steinmann's
decision to copy or the purpose the Swiss national flag, which consisted of a white ross on
a red background ? The line was known henceforth as the White Cross Line.
In order to put the activities of the White Cross Line into some sort of perspective, it is
relevant to mention that in 1870 there were only nine major steamship lines running
passenger services across the North Atlantic—six British, two German and one French, the
regular eastern terminals of the British lines being Liverpool or Glasgow and those of the
German lines Bremen or Hamburg. The French Line terminated at Havre, which was a port
of call for the German lines, one of which also called at Southampton. Thus, there was no
Belgian North Atlantic steamship line in existence, although there were occasional sailings
from Antwerp to New York by the British-owned Inman Line.
It must not be inferred from this that there had been any lack of enterprise in Belgian
steam shipping circles as, in fact, a service which began under the Belgian flag in 1842
between Antwerp, Southampton and New York had the distinction of being the first nonBritish steamship service on the North Atlantic although, as it happened, the ship
concerned—the wooden paddle-steamer British Queen—was withdrawn after only three
round voyages.
A much more serious attempt to establish a Belgian line was made in 1855 when in
December of that year the 2,000-ton iron screw Belgique left. Antwerp on her maiden
voyage to Southampton and New York. Unfortunately she had to return to Southampton a
few days later for major repairs and in consequence her first arrival at New York did not
take place until October 1856. She was then joined by two sister ships, the Constitution
and Leopold I, but the service was discontinued about 12 months later owing to a severe
trade depression. The fleet, including two further steamers then under construction, was
sold. To what extent, if any, the firm of Steinmann and Cie. was concerned with the
activities of this line is not known, but it is obvious, in the light of subsequent events, that
they must have watched its rise and fall with great interest coupled perhaps with some
misgiving.
The decade of the 1870s was the most prolific in the history of North Atlantic steam
navigation for the introduction of new services. There were many reasons for this but it
will be sufficient to mention here only three—the spectacular increase in emigration from
Europe to the United States and Canada ; the trade boom which succeeded the FrancoPrussian War ; and, last but not least, the introduction of the compound engine which was
responsible for halving the coal consumption of steamships and increasing their carryingcapacity by something like 25 per cent.
In 1871 Mr. Hermann Ludwig became a partner in the firm of Steinmann and Cie., which
changed its name to Steinmann and Ludwig. It had been decided to concentrate in future
on steam rather than sail, and the first move to this end was the placing of an order with
Richardson of Newcastle on Tyne for the iron screw-steamer Steinmann. She was a vessel
of 1,263 gross tons with dimensions of 223 ft. x 30 ft. x 23 ft., and was propelled by
compound engines having cylinders 27 and 53 in. in diameter by 36 in. stroke, supplied by
Thompson, Boyd and Company. Although of but modest tonnage it will be noted that her
propelling machinery was of the newly-introduced compound type.
The Steinmann sailed from Antwerp on October 11, 1872 under the command of Capt.
Knudsen and arrived at New York on the 31st "with merchandise and 85 passengers ". Her
second westbound voyage started from Antwerp on December 17 and almost from the
moment she reached the open sea she experienced appalling weather conditions which
compelled her to put into Queenstown (Cobh) for repairs. She was not ready to leave again
until February 18, 1873 and on March 4 encountered a gale even more severe than the
previous one, with the result that her lifeboats were stove in and her rudder house
damaged. She eventually arrived at New York on March 982 days after leaving Antwerp.
Her third westbound voyage was much more placid and was completed in 19 days; a total
of 338 passengers were carried on this occasion.
The 1,501-ton iron screw-steamer Alps had been launched by Key of Kinghorn (Scotland)
on January 9, 1871. After about two years' employment in the Mediterranean trade she
was purchased by the White Cross Line, renamed C. F. Funch and despatched from Antwerp
to New York on May 15, 1873 with cargo and 256 passengers. The company's New York
agents were Funch, Edye and Company (whose senior partner was C. F. Funch—hence the
name chosen for the ship), of 27, South William Street. Both steamers docked at Harbeck's
Stores, Brooklyn. First-class and steerage passengers were carried, the eastbound fare
being $70 (Steinmann) or $75 (C. F. Funch) first-class and $30 steerage.
A third steamer, the 1,472-ton Auguste Andre, was ordered from Forges and Chantiers de
la Mediterranée, La Seyne (Toulon), and was named after the company's loading broker at
Antwerp. Her maiden voyage started from Marseilles on May 29, 1874, she left Menton on
June 2, passed Gibraltar on June 6 and arrived at New York on June 21, with merchandise
but, as far as can be ascertained, no passengers. Eastbound, she proceeded to Antwerp
and on her second homeward voyage, in August, called at London (Millwall Dock). An
advertisement stated that she would sail from London for New York punctually on
September 17 "with liberty to call at Antwerp ". The broker on this occasion was shown as
David Brown of 146, Leadenhall Street, London, E.C., but the majority of later
advertisements quoted the London agents as Best, Ryley and Company of 122, Cannon
Street, E.C. It should be added that a similar London call was made regularly by the
company's steamers on their eastbound voyages during the next year or two.
The White Cross Line only preceded another Belgian North Atlantic line, the Red Star Line,
by a few months as this company's Vaderland, an iron screw-steamer of 2,748 tons, sailed
from Antwerp for Philadelphia on January 19, 1873. She was joined by a sister ship, the
Nederland, in the following November and for several years subsequently these two
steamers undertook a regular service on the Antwerp-Philadelphia route. Direct
competition between the two lines started in March 1874 when the 2,000-ton Cybele was
chartered from the Donaldson Line and despatched from Antwerp to New York, followed a
month later by the Switzerland, a newly-completed sister ship of the Vaderland. During
the remainder of 1874 and throughout 1875 the Switzerland and another chartered
steamer (the Colina or the State of Nevada) sailed on the New York route and must have
proved very serious competitors as they were considerably larger than the White Cross
ships.
The C. F. Funch sailed from New York on August 10, 1876 and on the 24th was reported
aground and on fire on the Kalvo Bank, a few miles to the north-west of the island of
Walcheren, in 2 1/2 fathoms of water. She became a total loss, but her crew and the one
and only passenger were saved. An account of the disaster stated : " The owners of the
ship were Funch, Edye and Company, New York ; Steinmann and Ludwig, Antwerp ; and
Auguste André, Antwerp, each firm representing one-third of the ownership"'. There is a
temptation to assume that the company's other ships were owned in a similar manner, but
unfortunately no further information is available.
The same newspaper gave a detailed summary of the cargo carried by the C. F. Funch on
her fatal voyage, namely, 3,000 bushels of grain consigned to Bergen, 3,000 bushels to
Antwerp, 2,000 bushels to the East coast of Ireland, 3,700 bushels to order, 2,600 bushels
to Cardiff, 3,000 bushels to order, 3,000 bushels to order, 19,985 bushels of wheat to
order, 3,630 tierces of lard, 58 hogsheads of tobacco, 23 three-quarter boxes, 29 cases
and 11 one-quarter boxes of manufactured tobacco, 84 cases of tobacco cuttings, 250 bags
of cocoa, 75 bags of coffee, 285 barrels of flour, 40 boxes of dry salted meats, 161 hogsheads of tallow, 6 cases of cigars, 19 bales of dry hides, 14 bales of leather, 11 packages
of
sundries,
8
barrels
of
castings
and
6,000
staves.
On December 17, 1876 the Auguste Andre sailed from Antwerp on a voyage that turned
out to be of considerably longer duration than the second west-bound voyage, already
referred to, of the Steinmann. She was towed into Halifax, Nova Scotia, on January 17,
1877 in a leaking and badly-damaged condition by the rival Red Star Line steamer
Switzerland. Repairs detained her at Halifax until March 25 and she eventually arrived at
New York on March 28-101 days after leaving Antwerp. Her voyage lasted more than twice
as long as that of the sailing ship Helvetia later in the same year (see the second paragraph
of this article).
The Steinmann's last round voyage to New York started from Antwerp on February 8, 1877
and upon return to her home port she was involved in an interesting exchange between
her owners and
A. Smyers and Cie., of
Antwerp. The latter placed
the Steinmann in commission
as the Alexandre Smyers and
in return handed over their
steamer Khedive, which had
been built by Cockerill of
Antwerp in the Baltic trade,
for which it was stated that
she had proved too large.
This may or may not have
been so, but at any rate she
was frozen in at Kronstadt (Leningrad) during the winter of 1875-76 and when released
returned to and was laid-up at Antwerp until the time of the exchange. The White Cross
Line renamed her Daniel Steinmann and it must be supposed that they made also a
substantial payment in cash or kind as her tonnage was 1,790 in comparison with the
Steinmann's 1,263, her length 277 ft. as against 223 ft. and she had been built in 1875
instead of 1872. Her first White Cross voyage started from Antwerp on March 9, 1877 for
New York.
The loss of the C. F. Funch was made good by the purchase of a sister ship, the 1,505-ton
Andes, which had been built by Key of Kinghorn in 1870 and was renamed Hermann
Ludwig. Her first voyage for her new owners was an experimental one from Antwerp to
South America and as far as can be ascertained this was their only steamship sailing on
the South Atlantic. No details of the early stages of the voyage are available, but the
Hermann Ludwig left Rio de Janeiro on May 12, 1877, put in at Norfolk, Virginia, to coal,
sailed again on June 7 and arrived at New York on the 9th. The remainder of her career
was spent on the North Atlantic, her first eastbound sailing from New York for Antwerp
taking place on June 20, 1877.
In 1878, for the first time, some of the company's steamers called at Boston en route to
New York. This arrangement continued spasmodically for several years and from 1884
onwards became a regular feature of the service. During the same year (1878) there were
a number of homeward calls at Southampton in place of London, but the latter call was not
discontinued in its entirety ; similar arrangements applied during the next year or two.
From time to time one of the steamers called at Halifax, N.S., on the outward voyage.
A report, dated Antwerp, October 23, 1878, stated that on the 15th of that month the Red
Star Nederland had passed "a three-masted steamer, schooner-rigged and funnel painted
black, making four miles an hour". A further report a few days later confirmed that the
steamer was the Hermann Ludwig and stated that her engines were disabled: She was
bound from New York for Antwerp. What happened to her subsequently is uncertain, but
it would appear that she went ashore on the Scilly Isles on October 23, was refloated at
some later date but did not resume service for the company.
For the second time the fleet
was reduced to two ships—
the Auguste André and
Daniel Steinmann. Tt seems
that Mr. Auguste André
severed his connection with
the company in 1878-79, and
in the latter year the Auguste
André was renamed Helvetia,
the sailing ship of that name
having disappeared from the
fleet a short while previously.
It was at this time that the
2,417-ton Henry Edye was
completed for the company by Doxford of Sunderland and sailed from the latter port on
June 2, 1879 in ballast for New York. She arrived there 12 days later and then joined the
other units of the fleet in the Antwerp-New York trade. She was named after the junior
partner in the firm of New York Agents.
The company had never made any attempt to despatch their steamers at evenly-spaced
intervals. For example, the actual sailing dates from Antwerp during the summer of 1880
were :—
June
10
Henry
Edye
23
Daniel
Steinmann
July
24
Henry
Edye
Aug.
11
Daniel
Steinmann
18
Helvetia
Sept.
8
Henry
Edye
30
Daniel
Steinmann
The 1881 departure dates are not available in similar detail, but it is evident that during
the first half of the year they were on much the same scale. It is difficult therefore to
reconcile the foregoing with the following advertisement which appeared in April 1881: "
WHITE CROSS LINE. £4 18s. reduced 3rd class fare to America from Hull and London
weekly. Apply to the Managers (Passenger Department), J. Cowley and Co., Princes Dock,
Hull ". An advertisement of the same firm in the following July mentioned that there were
departures. from Hull every Saturday and from London every Monday. Although on the
face of it, it would appear that the company's New York steamers were calling weekly at
Hull and London, there is no evidence that they were, in fact, calling at all at the former
port and it is known that they did not always call at the latter. A likely explanation is that
there were feeder services from Hull to Antwerp every Saturday and from London to
Antwerp every Monday and that passengers were trans-shipped at Antwerp into the White
Cross steamers. As these sailed at irregular intervals and certainly nothing like once a week
the advertisements were, to say the least, misleading, the more so owing to the curtailment
of the New York service by the despatch of the Helvetia (ex-Auguste André) on at least
one round voyage between Antwerp and Montreal in 1881. It could however be argued
that this did not really affect the issue as the advertisements referred to " America " and
Canadian sailings could be considered to come within this description.
The year 1881 ended on an unhappy note as it was announced on December 23 : "
Considerable uneasiness is felt for the safety of the steamship Henry Edye, now 33 days
out from Antwerp, bound to Boston. The agents say that they have no advices of any
passengers being aboard. The cargo consists of 940 tons of beet sugar, being the first
importation of the article into this country. It is understood that twenty-five per cent
premium insurance was offered on her cargo yesterday and refused ". The premonitions
proved to be only too true and the Henry Edye was never heard of again. To make matters
worse, the Daniel Steinmann had put into Queenstown in distress on December 10, 1881
during the course of a voyage from Antwerp to New York and was detained there for repairs
for an appreciable time.
In spite of the loss of the Henry Edye, the White Cross fleet still consisted of three ships
as the 2,879-ton Hermann was delivered by the Sunderland Shipbuilding Company and
was appreciably larger than any predecessor in the fleet in both tonnage and dimensions
; she had dimensions 322 ft. x 40 ft. x 22 ft. Leaving Antwerp on February 15, 1882 (this
was probably her second or third voyage) with merchandise and 121 passengers, she
arrived at New York on March 8 after a passage of 21 days. This was a better performance
than it appeared to be for she experienced " northwesterly winds and high seas with stormy
weather the first part of the passage, during which she lost two blades of her propeller ;
then to March 4th variable winds with a heavy N.W. gale, during which she had to heave
to and lost the last blade of the propeller ; she proceeded under sail for 220 miles with
variable winds. On March 12th-12 miles off the lightship—she was taken in tow by two
steam tugs ". During 1882 the Hermann and Daniel Steinmann ran to New York ; the
Helvetia to Montreal.
The last acquisition of the company took place in 1883 when they commissioned the 3,087ton Ludwig, which had been built by Caird and Company of Greenock in 1861 as the
Norddeutscher Lloyd Hansa. Thus, she was not only the earliest-built but also the largest
steamer ever owned by the company; her dimensions were 328 ft. x 42 ft. x 18 ft. The
Hansa made her last New York voyage for her German owners in March 1875 and in 1879
was sold to Bates Bros., of London, retaining her name. In May 1881, after being fitted by
J. Howden and Company of Glasgow with compound engines constructed by Cairds as long
previously as 1877, she was chartered to Adamson and Ronaldson for their London-Boston
service, in which she made six round voyages, the last being completed in April 1882.
The first record of the Ludwig under the White Cross flag is the following report: " Quebec,
July 25th 1883. Grave fears are entertained here for the safety of the Belgian steamer
Ludwig, from Antwerp for Montreal. She is now out 23 days, and nothing has been heard
of her since sailing. Among her cargo are 444 head of cattle, intended for western ranches
". A fortnight later it was stated: "Steamer Ludwig, from Antwerp for Montreal, before
reported overdue, had between 70 and 80 persons on board, 24 of whom were passengers.
The vessel and cargo are understood to be covered for $500,000 insurance. The Ludwig
was formerly called the Hansa and owned in Bremen ".
The mystery of the Ludwig was never solved, but it was generally believed that she
foundered after colliding with an iceberg. The absence of any earlier information about her
White Cross activities adds justification for the belief that her fatal voyage may have been
her first as well as her last. An interesting point that will be referred to again is that with
the commissioning of the Ludwig the company were running two steamers—the Daniel
Steinmann and the Hermann—to New York, and two to Montreal ; the Ludwig's consort
was the Helvetia.
Thus the losses of White Cross steamers in 1876, 1878, 1881 and 1883 have been
recorded. A fifth disaster occurred on April 3, 1884 when the Daniel Steinmann foundered
near Halifax, N.S. The following detailed statement was made by the captain, Henry
Schoonhoven, who was the only survivor among the ship's officers : " We sailed from
Antwerp on the afternoon of March 20th, bound to Halifax and New York with a cargo of
general merchandise and 90 immigrant German passengers and a crew numbering 34 men
on board. We had a fine voyage until we reached the Banks of Newfoundland. Thence
almost continuous fog and rain were experienced until the coast of Nova Scotia. At about
9.15 in the evening (of April 3rd) I observed through the thick mist a faint light about two
points on the starboard bow. It disappeared out of sight at times for four or five minutes
and taking it for Chedabucto Head light I steered towards it.
"At that time I sounded and found 30 fathoms of water. Twenty minutes later sounding
and finding only 10 fathoms, I saw it was the fixed light of Sambro appearing clear. At the
same moment I observed a faint glimmer of what I took to be Chedabucto light, about four
points on the starboard. I sounded again and found 26 fathoms. Then I put the wheel hard
a port. It was too late. The ship struck on the rocks. Just before we heard twice a Sambro
fog whistle. The first shock was light, but the second one was very severe and the steering
gear was carried away. After this the engines could not be got to work. We drifted over the
rocks and anchored, the ship lying to pretty steadily and the sea running but little.
"I ordered the chief and second mates to lower the boats and get the children and female
passengers in them first. One boat was already in the water and the crew working with a
will. I then noticed the ship coming nearer the breakers. I ran forward to see whether the
chain cable was not broke. Before I could reach the forecastle an immense sea broke over
the poop and in the twinkling of an eye every passenger on deck, men, women and
children, were swept off. A fearful crash immediately followed and the ship plunged
beneath the water, going down stern first. Everybody remaining on deck and on the bridges
went down with the ship as she sank. I ran up the forerigging, but before getting half way
was washed out.
"Afterwards, however, I succeeded with great difficulty in reaching the topsail yard, which
rose just above the sea. After securing myself I was joined by one of the passengers. About
5 o'clock in the morning I could make out the land several hundred yards off. I was just
about preparing partly to strip myself and swim toward it when I saw one of my steamer's
boats make out from the shore. I then divined that some of my crew had reached the land
in safety and the boat reaching me I ascertained that such was really the case. The
passenger who had spent the peril-fraught night at my side and I were taken safely off,
and landed at Sambro Island. The number of passengers lost was 90, and of the crew 33,
leaving six of the crew, including myself, and three passengers the only survivors. The
steamer had a full cargo, aggregating about 1,400 tons, and was drawing 26 ft. 6 in. aft
and 19 ft. forward."
The Hermann made a special call at Halifax a few days later to pick up the survivors of the
Daniel Steinmann's crew and take them back to Antwerp.
The only other steamer remaining to the White Cross Line was the Helvetia which, in the
summer of 1884, as in previous years, was running between Antwerp and Montreal. She
arrived at Quebec, westbound, on August 4, 1884 and this is the last record that so far has
been found of her activities; her name did not appear in subsequent issues of Lloyd's
Register. It rather looks as if she may have been lost on her succeeding homeward voyage
or, at any rate, later in 1884. Time will probably tell.
The Hermann remained the only unit of the fleet for a period of about 10 years and sailed
between Antwerp, Boston and New York until she was sold in 1894. Mr. Hermann Ludwig
retired from the firm in 1889 and simultaneously it reverted to its original title of Steinmann
and Cie. In Lloyd's Register for 1893-94, for the first time, the fleet (that is to say the
Hermann) was shown under "Steinmann & Co. (see also Engels) ". The 1892-93 register
and the two succeeding ones also showed " Theodore C. Engels & Co., White Cross Line
(see also Steinmann & Co.) " and included one steamer, the De Ruyter. This vessel
disappeared without trace in March 1894 and the company thereupon suspended
operations ; the Hermann had already been sold. From the foregoing it would seem that
in or about 1892 the firms of Steinmann and Engels were either amalgamated or came to
a close working arrangement with one another, but both were on their last legs and the
arrangement, whatever it was, can only have lasted for two or three years.
The Engels Line had begun steamship operations between Antwerp and New York in 1875
with the 2,280-ton steamer De Ruyter. The Mercator and Plantyn, the latter of
approximately similar tonnage, were completed in 1877 and 1880 respectively and the
3,400-ton Jan Breydel and Pieter de Coninck in 1880-81. As far as can be ascertained the
Engels Line discontinued carrying passengers after 1884 and in 1888 the two last-named
units of the fleet were sold to the Thingvalla Line (Danish) and renamed. The only other
steamer then remaining to the line was the De Ruyter and she, as already intimated,
continued
in
service
until
the
time
of
her
loss
in
1894.
It will now be appropriate to refer in greater detail to the passenger carrying activities of
the White Cross Line. Available information is limited, but it is clear that on many occasions
the company's ships carried quite large complements of passengers. The following are a
few examples :—Steinmann 338 and 204 and C. F. Funch 256 (all in 1873) ; Henry Edye
718 (the largest number noted for any ship) in 1881 ; Hermann 121 (in 1882). Further, it
was stated that the Daniel Steinmann could accommodate " 900 passengers in her between
decks,
while
her
cabin
accommodations
were
ample
".
In 1892 the Norddeutscher Lloyd published what was stated to be a summary of the total
number of passengers landed at New York by each individual North Atlantic line during
each year between 1881 and 1891 inclusive. The White Cross figures were :Number
ofCabin Steerage voyages
1881
48
6,576
27
1882
54
6,787
31
1883
67
3,157
30
1884
16
511
11
No White Cross figures were quoted after 1884 and this is explained by the fact that the
company apparently discontinued carrying passengers to New York soon after the loss of
the Daniel Steinmann.
It is by no means easy to reconcile these figures for 1881-84. In 1881, for example, the
Helvetia and Daniel Steinmann were running throughout the year, the Henry Edye until
she was lost in November, at about which time the Hermann took her place. The implication
is that these ships accounted for 27 arrivals at New York during the year. Now, in 1880
also the company had the use of three steamers and the writer has records to show that
they made a minimum of 17 arrivals at New York—namely seven each by the Daniel
Steinmann and Henry Edye and three by the Helvetia. The records for the former pair are
undoubtedly complete but those for the Helvetia may not be and she could conceivably
have undertaken anything up to four more voyages.
Thus, the maximum possible total for the three ships during 1880 could not have exceeded
21 arrivals and there is nothing to suggest that the 1881 total could have been any higher.
In fact, it is almost certain to have been lower than 21 as the Helvetia is known to have
made at least one round voyage to Montreal during that year and may well have made
several. In other words it would have been impossible for the company to have had a total
of 27 arrivals at New York during 1881, as stated in the German summary.
The explanation seems to be that the figures credited to the White Cross Line were really
those of the White Cross and Engels Lines combined. In this connection it has already been
stated that these two lines were amalgamated or ran a joint service during the final year
or years of their existence and this would be a sufficient excuse for such an anomaly in the
White Cross figures particularly as, rather surprisingly, the Engels Line does not appear
anywhere in the summary.
The correct White Cross figures for the years 1881-84 can only be a matter of conjecture.
There is, however, a fair amount of material to serve as a guide and it seems reasonable
to suggest that in 1881 the White Cross figures were actually about one-half of those stated
and in 1882-84 about one-quarter or one-third.
There have already been references to the early activities of the rival Red Star Line between
Antwerp and Philadelphia and, later, between Antwerp and New York. In order to make the
White Cross picture as complete as possible it will be necessary to give some further information about the Red Star Line, whose fleet at the beginning of 1877 consisted of four
steamers, averaging about 2,700 gross tons. Two new steamers of 3,700 tons were
completed in 1879 and by 1884 the fleet consisted of 10 steamers, the largest of 5,700
tons and five more of over 3,500 tons, whereas the largest steamer ever owned by the
White Cross Line only slightly exceeded 3,000 tons. By 1882 the Red Star was running a
regular weekly service between Antwerp and New York in addition to an occasional service
to Philadelphia and during that year landed 1,939 cabin and 23,872 steerage passengers
at New York, whereas White Cross sailings to New York averaged about one every three
weeks and there was no attempt to despatch the ships at regular intervals. As has been
seen, their passenger figures were trifling in comparison with those of their rival. In other
words, the Red Star Line had gone ahead by leaps and bounds to become the premier
Belgian North Atlantic line and the White Cross Line had to be content to occupy a very
secondary position.
Ample evidence has already been given of the misfortunes experienced by various units of
the White Cross fleet and during eight years between 1876 and 1884 either five or,
probably, six ships were lost or damaged beyond reinstatement. Only the Steinmann,
which was exchanged for a larger steamer, and the Hermann kept free from disaster. These
losses must have had an even more serious effect on the fortunes of the company than
did the competition of the Red Star Line and they can certainly be considered the principal
reason for its downfall. Whether it would have survived without them is however extremely
doubtful.
First, because another line comparable in many ways, the Engels Line, did steer fairly clear
of disaster but was compelled by 1888 to sell the principal units of its fleet and a few years
later succumbed altogether. Second, because it was probably on account of Red Star
competition that the White Cross Lines decided, during the early 1880s, to divert a number
of sailings from New York to Canada. And third, because the Red Star Line, although for
many years its ships flew the Belgian flag, was financed largely in the U.S.A. The real
owners were the International Navigation Company which early in the present century
became the International Mercantile Marine Company and is now the United States Lines.
In other words, the Red Star Line had ample capital at its disposal from its earliest days
whereas there is a good deal of justification for the view that the reverse was the case with
the White Cross Line. It would certainly seem that in the long run the White Cross Line
stood little chance against its more prosperous rival, which itself faded into oblivion during
the difficult years of the 1930s.
The reason for the choice of the name " White Cross Line " has already been explained and
it is clear that the name had been in use for some years before the Red Star Line was even
thought of. One cannot help suspecting that the decision to use the name " Red Star " was
what might be described as a colourful compromise between " White Cross Line ", which
was destined to be a close rival, and " White Star Line ", which, although a comparative
newcomer in the steamship trade, had already gained for itself a very enviable reputation.
There has already been a
reference to the fact that in
1878 the Hermann Ludwig
had a black funnel and all
available
evidence
suggests that this was the
arrangement in effect from
1872 for a number of
years. However, Maginnis
in " The Atlantic Ferry "
(1892) quotes the White
Cross funnels as being
yellow with black top, so it
seems probable that a change was made at some stage or other in the company's career—
perhaps when the line joined forces with the Engels t Line, whose funnel is believed to
have been white with a black top. Although the White Cross Line was subjected to all sorts
of trials and tribulations during much of its existence, the story is one that can be said to
have a happy ending as the eventual failure of the line did not by any means " put paid "
to the firm of Steinmann and Cie., which to this day is still in existence in Antwerp and is
now a large and flourishing concern. Even more interesting is the fact that the present
head of the firm, Mr. Georges Steinmann, is a grandson of the founder, Mr. Daniel
Steinmann.
*
*
*
FLEET
LIST
Steamer
built
acquired
tons
Remarks
Steinmann
1872 1872
1,263 1877 became Alexandre Smyers (Belgian).
C. F. Funch
1871 1873
1,501 Built 1871 as Alps Destroyed by fire in River
Scheldt,
August
24,
1876.
Auguste
André
1874
1874
1,472
Renamed
in
1879.
Helvetia
(renamed)
1879
Hermann Ludwig 1870 1877
1,505 Built 1870 as Andes. Believed to have been
wrecked on Scilly Isles ; later
refloated but took no further
part
in
the
service.
Daniel Steinmann 1875 1877
1,790 Built 1875 as Khedive. Wrecked near Halifax,
N.S.,
April
3,
1884.
Henry Edye
1879 1879
2,417 Last voyage began November 19, 1881 AntwerpNew York ;
disappeared without trace.
Hermann
1881 1881
2,879 1894 became Hero (Norwegian) ; 1907 (approx.)
Success (U.S.);
1908 (approx.) Jacob Luckenbach (U.S.). Lost during First World
War.
Ludwig
1861 1883
3,087 Last voyage began July 2, 1883 Antwerp- Montreal;
disappeared without
trace.
INSERE 08/05/16
NIEUWS NIEUWS
ENLEVE 08/06/16
The future of positioning
Knowledge that the accuracy and availability of satellite based positioning systems can be
compromised by solar radiation, interference, jamming, ionospheric anomalies and many
other effects has been known ever since the early days of GPS and GLONASS, back in the
1980s.
Consequently, training for professional navigators and guidelines for casual users highlight
the problems of overreliance on GNSS and the strategies that should be employed to
always maintain safe navigation. This is true in all sectors, not just maritime.
The lack of significant incidents attributable to these weaknesses, at least to date, perhaps
contributes to a low political interest in establishing a technology based solution that will
remove the need for constant user diligence.
In any case, getting agreement on a globally common system is probably not achievable.
The ideal backup heavily depends on the specific application, the required minimum
accuracy and also on local factors, such as the general topology of the area in which it is
to be used.
This is unfortunate for the maritime world because a good technological solution that would
generally meet its global requirements is embedded within enhanced low frequency (LF)
hyperbolic positioning systems, such as eLoran.
LF hyperbolic systems
The major advantage of LF is the long distances that can be achieved from a base
transmitter. This means that relatively few ground stations are required – but unfortunately
hugely more than the few tens of satellites required to give global GNSS coverage.
Appropriately enhanced, it can give an accuracy of 10 metres in critical areas such as port
approaches, around 20-100 metres in non-enhanced coastal areas and generally about 1
NM mid-ocean. All this can be achieved from land-based stations.
Such a performance is very matched to the practical
requirements for a maritime positional back-up
system.
However, its base stations require relatively
expensive high powered transmitters and extremely
tall radio masts. Although their spacing could be
approaching 1,000 kilometres, it would require much
international cooperation to get even a regional
service underway.
Very importantly, the optimum positioning of
transmitting masts may be entirely unacceptable to
close-by residents for visual reasons and the fear of
high powered electromagnetic radiation, both
politically sensitive issues.
Where 10 metres accuracy is required, additional
differential stations are needed, although their cost
and environmental impact is significantly less than
that of a base station.
Nevertheless, LF systems are also potentially
appealing to many other navigational sectors because
of two particular characteristics. The first is that high
accuracy timing is a built-in feature, enabling them to truly meet the requirements of a
position, navigation and timing (PNT) system.
Secondly, the low frequencies used have quite different strengths and weaknesses to the
microwave transmissions of GNSS – in particular they are ground hugging and can also
penetrate buildings, both aspects making LF systems an attractive option for many landbased requirements.
Unfortunately, despite the apparent advantages of an LF hyperbolic system, especially for
maritime use, it is unlikely that there will ever be international support for its introduction
– it does not solve the issues for all sectors, the infrastructure is relatively expensive and
there are perceived environmental issues.
Alternative systems
The difficulties of getting international acceptance of an LF hyperbolic system into the
maritime world is accelerating the exploration of other potential solutions.
In particular, these include the use of automatic radar-based positioning systems and also
automatic fixing on ‘signals of opportunity’, such as existing radio, TV and
telecommunications transmissions.
It will be interesting to see if these studies lead to viable alternatives, although there do
appear to be significant practical drawbacks when compared to an LF hyperbolic system.
Particularly in the military field, there is an increasing interest in the possible use of high
accuracy lightweight inertial sensors. They are perhaps poised to provide an optimum
answer if they can be shown to give affordable accuracy.
For example, the US Defense Advanced Research Projects Agency announced in April that
they were studying the possibility of using micro-sized ‘atomic’ inertial orientation sensors
to work in conjunction with existing inertial chips, specifically as a backup to GPS.
Inertial systems are not reliant on any outside communications, making them impervious
to jamming and interference. Also, apart from physical damage, they appear to be very
resistant to all naturally occurring and human initiated effects.
Unfortunately, it is likely to be many years before these can be made viable and available
to the commercial marine market.
In fact, the timescales to get any serious positional backup in place are really quite long,
when taking into account technical issues and the necessary international processes.
It would therefore not be at all surprising to find in 10 years time that most ships do not
have a second positional source, other than a multiple GNSS capability.
What is more likely within these timescales is that many ships would have an integrated
navigation system (INS) fitted as part of the initial implementation of IMO’s e-Navigation
programme. It is this technology that may provide the pragmatic solution for the
immediate future.
E-Navigation INS
In some minds, INS is mainly a system that can show various optimally designed displays
to suit the immediate navigational situation, but a main purpose is to provide integrity
information concerning essential navigational data, such as position, speed, course,
heading and even depth.
This particular function of an INS effectively compares the inputs from all the vessel’s
navigational sensors, including log and gyro, and highlights any discrepancies to the
navigator.
It can accept inputs from any navigational sensor, including from future positional systems
such as those previously mentioned.
Importantly, it would immediately improve the integrity and functionality of today’s basic
navigational fit, without needing additional positional sensors.
A significant GNSS inaccuracy would be automatically highlighted to the user by such a
system, although it is true that a more slowly evolving positional error could remain
undetected.
In fact, using today’s technology and understanding it is not particularly difficult for GNSS
receivers to be designed to recognise many of the situations that cause positional
problems, and to automatically alert the user – and the INS – to any possible problem.
Perhaps the fitting of such intelligent GNSS receivers should also become a shorter term
objective of the legislators.
If GNSS becomes unavailable or very inaccurate, the system would be able to help the
navigator maintain safe navigation but it would require regular radar and optical LOPs to
be manually or semiautomatically input into the INS.
This is where a second positional source would certainly help matters. It would also assist
the INS to quickly identify discrepancies in position, although the human navigator may
still need to asses which positional source was in error.
The navigator’s role
With the increased use of ECDIS there is a fear that many navigators will accept the ship’s
indicated position on the chart without questioning its veracity.
Ironically, acceptance of this position will be an increasingly correct assumption when
multi-system GNSS receivers in a redundant configuration are in common use on vessels.
This inevitable tendency can be countered by an appropriately designed INS operating in
conjunction with an intelligent GNSS, which would generally be able to automatically alert
an unaware navigator to a potential problem.
The INS would subsequently considerably help the OOW with the safe navigation of the
vessel, using automatic estimated position techniques, assisted by userprovided visual and
radar LOPS.
The OOW will have to remain a ‘navigating’ navigator and not a ‘monitoring’ navigator, at
least until there are two backup sources to GNSS available that cover the whole route –
which is a long way into the future.
An INS, supplemented by intelligent multi-system GNSS receivers, certainly appears to be
a viable route for the more immediate future. Its implementation is technically and
politically straightforward and it appears to be generally future proof.
When alternatives to GNSS position eventually become available, the INS will be better
able to determine whether there is a positional problem and then continue to provide a
useable position to the navigator and the ship’s systems.
Conversely, a strategy based on initially achieving a backup system to GNSS appears to
have insurmountable probbems, at least for the foreseeable future.
ns
INSERE 10/05/16
Dossier
ENLEVE 10/06/16
Ballast Tank Protection
According to the CTX spill database, by far the single most important cause of spills is
structural failure, much of which is caused by ballast tank corrosion. Ballast tank area is
the Achilles heel of the double hull. Most owners did a lousy job of protecting less than
40,000 square meters of ballast tank coated area in the old single hull VLCC's. Now these
same organizations are supposed to properly protect more than 250,000 square meters in
a double hull VLCC.
There is no magic coating that will solve this problem. Using waterborne zinc silicate or a
really well-designed solvent free epoxy might be a substantial help, but, unless the yards
are forced to completely change their coating procedures, -- a very good idea, by the way
-- we will be forced to continue to use "application friendly" coatings which in longevity are
little better than the coal tar epoxies of 25 years ago -- and in some cases worse. No paint
vendor will guarantee these coatings for more than ten years and these guarantees are a
bit of a joke. They typically allow progressive breakdown which starts at 2% year at age 1
rising to 5 or 6% at age five.1. Even 1% breakdown in a salt water tank will quickly lead
to severe localized corrosion and dangerous cracks and holes between the cargo tanks and
the double hull spaces. There have been numerous reports of double hull tankers less than
five years old requiring massive coating repair. The best that an owner of a double hull
VLCC relying on coating can hope for is to put off a 15 million dollar reblast and recoat for
ten or so years. The problem for the regulator of course is that most owners will put off
this kind of expenditure too long, which will generate a series of casualties, some of which
may only involve spillage, but some of which will involve the loss of a crew.
We have other steel protection tools at our disposal. We can handle the ballast leg with
anodes. But this has to be done properly and currently most tanker owners do a putrid job
of maintaining cathodic protection in ballast tank. The method of choice is a superintendent
periodically inspects a tanks, kicks the anodes, and pontificates that the anode is or is not
still effective. I don't know how many times I've gone into a tank and watched somebody
kick an anode and write down 30% wasted, and then the next guy come along and write
60% wasted, and then I write down something else. Nearly useless. Our superintendent
may replace a few anodes, the amount depending on his budget and the overall state of
the tanker market and his reading of the owners mind. He knows it's nearly impossible to
justify an unusual anode expense while there is no problem in justifying "necessary" steel
replacement. 2. The overall result is that the great majority of all ballast tanks that are
more than three or four years old are underprotected cathodically. Many of them are
essentially unprotected.
The proper approach is not anode kicking but monitoring the tank's polarization. Whenever
a tank is ballasted, the crew should measure the potentials on a daily basis. If the tank is
not up to 800 mV (against a Al-AlCl half-cell) in four days, then more anodes should be
added. If this policy is followed, there will be nil corrosion on the ballasted leg even where
the coating is broken down. This will be evident in the color of the tank. When you go in
an anoded tank, you want to see white, all white; no red or brown where the coating is
broken down. The white is a calcium precipitate which occurs if and only if the steel is
acting as a cathode. If and only if we see white everywhere, we know the tank is properly
protected. The issue here for regulators is whether or not to enforce proper cathodic
protection.
But anodes at best can only solve half the problem; the easy half. When a ballast tank is
empty, we have ideal conditions for atmospheric corrosion: lots of moisture, lots of salt.
This is why uncoated SBT tanks don't work (witness Erika, Prestige, Castor, etc, etc), why
localized corrosion is so rapid in way of coating breakdown in coated tanks, and why ballast
tanks corrode from the top down (while cargo tanks corrode from the bottom up). In an
empty ballast tank, we can't control moisture or salt, but we can control the third
requirement for corrosion: oxygen. No oxygen; no corrosion. This suggest inerting the
ballast tanks but this in turns means solving the sulphur problem.
In 1990, Tankship Transport and then Hellespont Shipping began experimenting with
double scrubbing of inert gas. To our surprise we found that by running two normal
scrubbers in series, we were able to reduce SO2 levels inthe inert gas from 50 ppm (a good
number for a well-operated single scrubber system) to less than 2 ppm at cargo discharge
rates and less than 0.3 ppm at deballast rates. This is a largely a product of the fact that
the extra scrubber cools the gas to about 3C above ambient as opposed to the 17C plus at
the outlet of the first scrubber. Far more of the water vapor condenses and takes the
sulphur with it. Uncondensed water vapor cannot remove sulphur. You will get more than
0.3 ppm on a winter day in New York with an inversion. In fact, to measure these levels,
we had to use instrumentation developed for atmospheric pollution.
In 1993, we installed the first full scale ballast tank inerting system on a ULCC. This
involves treating the ballast tanks just like cargo tanks. The ballast tanks have their own
deck seal, P/V breaker, P/V valves etc. We intentionally damaged 240 spots on the coating,
measured the thickness in those spots, and began inerting. In the next seven years, we
were not been able to measure any wastage in way of the damaged spots. Moreover, we
have noted that where there had been existing rust in the tank it has been converted from
Fe3O4 back to black magnetite Fe3O2. In short, we had created reducing conditions in the
tank. 3.
If you inspect a properly inerted, properly anoded ballast tanks, in way of the coating
breakdown, you will see only black (magnetite) and white (calcareous deposits), no red or
brown. As long as that it is the case, there will be no loss in steel.
In short, the twin keys to protecting double hull ballast space are proper anodes and proper
inerting. Inerting ballast tanks not only protects the steel on loaded legs but also avoids
the risk of an explosion in the event of a leak from the cargo space. It also allows us to
purposely transfer cargo from a damaged tank into a ballast tank safely. Finally, an
important by product of double scrubbing is that the gas that is being injected into the
cargo tanks is also very low in SO2. The weak acid etching sometimes observed in way of
cargo tank IG inlets does not occur in these tanks.
However, in inerting the ballast tanks with very clean gas, a difficult crew safety problem
has been created. This gas is so clean that you cannot see it -- there is no smoke -- you
cannot smell it, you cannot taste it. Yet tanks inerted with this deadly gas must be
inspected and maintained. The double hull ballast spaces are a warren of steel. Attempting
to blow them out using normal methods is a non-starter.
To this end, Hellespont developed a system for thoroughly and quickly purging and inerting
double hull ballast spaces. The key is to treat the double hull space as a series of
longitudinal ducts formed by the stringers in the double sides, and the longitudinal girders
and bulkheads in the double bottom. An injection pipe is fitted at one end of the tank. This
pipe runs vertically downward from the deck to the bottom and then transversely to just
inboard of the inboard most longitudinal girder/bulkhead in the double bottom. Orifices are
drilled into this pipe in each of the ducts. The idea is that the great bulk of the air/gas from
each orifice will flow longitudinally throught its duct to the other end of the tank and then
exhaust upward and outward. To this end, openings in the longitudinal members in the
double hull spaces are kept to an absolute mininum except in the forwardmost and aftmost
web frames. At the same time, openings in the transverse members must be made large
enough to direct most of the flow in each duct longitudinally.
To properly size the injection pipe, the injection pipe orifices, and the opening in the double
bottom structure, Mike Kennedy, the Technical Director of Hellespont wrote a program
called VENT2D to model gas flows in double hull ballast spaces. VENT2D divides the ballast
tank space into a number of cells formed by the webs running tranversely and the stringers
and inner bottom girders longitudinally. The program takes as input the size of the
openings between each cell and the pressure drop between the inlet and the outlet. The
program can also model an injection pipe with outlets into one or more of the cells. The
output of VENT2D is the resulting flows into and out of each cell for a given injection pipe
and pressure drop.
This program was successfully used in 1999 in designing both a class of double hull VLCC's
and a class of ULCC's. The program indicated that with proper design the worst case tanks
in a double hull could be safely purged in four or five hours. Full scale tests proved that
the VENT2D results were conservative. In fact, the worst cell in the worst tank had an O2
content of more than 20% in less than two hours. The flow is essentially displacement.
These numbers are far better than those that can be achieved in a conventional box-like
tank. You can actually feel the airflow on your face when you are in the tank. It's very
comforting. Hellespont and Kennedy have generously made VENT2D available to one and
all under the Gnu Public License.
Notice that this system works when a tank is partially flooded. This is an obvious
requirement but not true of some of the other systems we've seen.
The goal of this project will be to promulgate these results both to owners and regulators.
To owners in the hope that it will induce better ballast tank protection. To regulators in the
hope that they will enforce better ballast tank protection. CTX feels strongly that all double
hull ballast spaces must be properly inerted except when they are bing inspected.
Otherwise, the double hull experiment will turn out to be a massive debacle as these ships
age.
The outputs of the Ballast Tank Protection (BTP) project will be :
1. A model newbuilding specification for double hull ballast tank inerting system.
2. An operating manual for maintaining both ballast tank cathodic systems and double bull
ballast tank inerting systems.
3. A better user interface and manual for VENT2D. Currently, unless your name happens
to be Mike Kennedy, VENT2D is not real easy to use.
Footnotes
1. These solvent-borne epoxy coatings have a Glass Transition Temperature (GTT) in the
range of 5O to 60C. This is the temperature at which the coating becomes partially plastic.
If an epoxy coating is cycled through the GTT, it quickly loses its strength and flexibility
and ages rapidly. But the temperature on a red (or worse, green) tanker deck can reach
65C in the tropics. This is why epoxy ballast tank coating start breaking down from the top
down.
2. Most tanker owners these days hire third party ship managers on the basis of which
manager can offer the lowest operating budget and keep to it. Anodes count against that
budget; "non-routine" steel renewal does not. In additions, most owners do not want to
hear about bad news, so most third party superintendents oblige and report that the tank
is OK regardless. It is not until the tank gets in such desperate condition that even Class
on one of its five year visits can no longer stomach it that the owner finds out he has a
massive steel repair job. The other alternative is that we all find out about it a la Erika.
3. We did see some brown and red and some corrosion in the underdeck area in the very
top of the tank on this older ULCC after inerting. This was caused by our failure to always
maintain low O2 in this area due tank breathing. There are two solutions to this problem:
1. Continuously moniter tank inert gas pressure, and top off whenever that pressure gets
below 500 mm WG (at 0200) or 200 mm WG (immediately).
2. Paint the decks and topsides pure white. This effectively eliminates tank breathing while
at the same time keeping the tank steel temperatures in this area below 45C on even the
hottest June day in the Persian Gulf. This is below the Glass Transition Temperature of the
epoxy paint greatly extending the life of the coating. It also essentially eliminates cargo
evaporative losses to the environment and drastically reduces fuel used for topping off.
Both these measures were implemented on the Hellespont ULCC's effectively eliminating
underdeck corrosion.
INSERE 12/05/16
BOEKEN LIVRES BOOKS
ENLEVE 12/06/16
Jubileumboek 100 jaar Koninklijke
Belgische Redersvereniging
Zopas verscheen het jubileumboek van de Koninklijke
Belgische Redersvereniging. Het beschrijft het bewogen
verhaal van de Belgische koopvaardij en haar
professionele organisatie, die werd opgericht in 1909.
Mede dankzij de succesrijke herinvlagging zijn de
Belgische reders vandaag internationaal belangrijke
spelers. Het prachtig geïllustreerde boek verscheen in het
Nederlands en het Engels. De auteurs zijn prof. em. Greta
Devos en, voor de laatste twintig jaar, onze voorzitter. De
Redersvereniging en de Antwerpse maritieme uitgeverij
Pandora (die recent nog de Antwerpse uitgever Artus
overnam) zijn beide bij Watererfgoed Vlaanderen
aangesloten. Je kan het boek aanschaffen bij de betere
boekhandel of via info@pandorapublishers.eu.
INSERE 12/05/16
NIEUWS NIEUWS
ENLEVE 12/06/16
ICEBERG AHEAD
By : Mark Clark Operations Director navigateresponse.
A team from Navigate Response visited Russia recently and delivered some media training
to a Russian client. During the day, a small exercise got underway which reflected a recent
collision in the Laptev Sea involving two small tankers which collided whilst following a
nuclear ice breaker in convoy.The exercise engendered wide ranging discussions about the
increasing use of the Northern Sea Route and whether the IMO Polar Code will limit the
risks of an accident in polar waters.The route between Europe and Asia extends through
3,800 nautical miles of ice packed waters off Russia’s northern coast from the Barents Sea
in the West to the Bering Strait in the East. The route represents a significant cost and
time saving shortcut for shipowners and charterers globally.Looking to the future, as sea
ice begins to recede (as we have seen with the Northwest Passage across Canadian waters)
and as technology improves, traffic along the Northern Sea Route will only increase,
making this region one of significant strategic importance for an East West axis.In
September 2013 the first large vessel, the 75,603 dwt ice-strengthened Danish bulk carrier
MS ‘Nordic Orion’ sailed from the Port Metro Vancouver, Canada with a cargo of 73,500
tons of coking coal through the Northwest Passage and reached her destination, the Port
of Pori, in Finland on 9 October 2013.The opening of the Northwest Passage shortened the
distance between Vancouver and Pori by 1,000 nautical miles compared to the traditional
route via the Panama Canal.Similar to the Russian perspective on the legal status of the
Northern Sea Route, Canada views the Northwest Passage as an internal waterway, going
so far as to call it “the Canadian Northwest Passage.” However, the international
community views the route as an international passage.In addition to international legal
questions, increased use of the Northwest Passage raises infrastructure challenges. As with
Russia, maritime experts have urged the Canadian government to increase its capabilities
along the passage, including improving Arctic surveillance, port infrastructure, search and
rescue preparedness, and environmental response capacities.Currently the Russian
Northern Sea Route is only available between June and November due to near impassable
winter ice conditions. This very short time frame limits the benefits (and risks) from the
increased traffic to these 26 weeks.The arguments about the use of navigable polar waters
continue to rage amongst environmental groups. Two events are immediately cited by
campaigners seeking to limit the use of ice free waters during certain months of the
year.Firstly, the catastrophic grounding of the ‘Exxon Valdez’ in March 1989 when she was
employed to transport crude oil from the Alyeska consortium's pipeline terminal in Valdez,
Alaska, to the lower 48 states of the United States. The loss of oil from the vessel amounted
to 257,000 barrels or roughly the contents of 17 Olympic-sized swimming pools.Secondly,
of much smaller magnitude, was the sinking of the MV Explorer cruise vessel which was
carrying more than 100 holidaymakers, when it struck an iceberg in freezing Antarctic
waters in December 2007. All passengers escaped safely but the bunker oil was lost with
the vessel, and passengers afloat for hours on end in open lifeboats in polar waters cast a
chilling image.Despite these concerns commercial operations are in the ascendancy and
2014 was a record year for the tonnage that moved through the Northern Sea Route.
Whilst the Russian shipping industry remains comfortable with an icebreaker escort
through the route, pressure has mounted for Russia to increase search and rescue (SAR)
bases and develop additional disaster response arrangements in the Arctic. From 1 January
2017 the IMO-adopted Polar Code will come into effect regularising shipping within polar
waters.The Polar Code is intended to cover the full range of shipping-related matters
relevant to navigation in waters surrounding the two poles – ship design, construction and
equipment; operational and training concerns; search and rescue; and, equally important,
the protection of the unique environment and eco-systems of the polar regions.Whether
such a Code can overcome human error and delay or prevent another major sinking or oil
related disaster remains to be seen.
Source: navigateresponse.
INSERE 14/05/16
Dossier
ENLEVE 14/06/16
e-Navigation – where are we going?
To know where we are going requires us firstly to consider where we were, and have a
good idea of where we are now, including the whys and wherefores, causes and effects,
and the challenges and opportunities which arise.
It’s tempting to take the issue of navigation, with or without the ‘e’, back to the days of
the astrolabe, but I’ll resist that temptation and consider the recent past only – well, recent
to someone of my years anyway.
I confess that I learned to navigate using paper charts, gyro and magnetic compasses,
sextants and chronometers, plus a few books of tables including logarithms (remember
those?) and, of course, pencil and paper.
It sounds rather quaint today, and reflected the same skills and equipment as Captain Cook
used to such great effect.
My skills, I should stress, were much more prosaic, but even in my days there was already
a good bit of ‘é in the navigation – in the form of echosounders, some X-band radar, Loran
type C, and the red green and purple of Decca.
Later, satnav systems appeared on ships, depending either on the generosity of the
shipowner or perhaps his or her faith in new technology, or desperation with the old – I’m
never sure which.
Taking the 1970s as a base, some 2,500 million tonnes of cargo were being transported
annually on ships around the world at that time – a figure which has climbed steadily to
over 8,000 million tonnes today. At the same time, the number of ships that are 100 gross
tonnes and over has doubled in the same period.
Despite the addition of more electronic equipment, in the form of improved satellite
navigation, ECDIS, AIS, LRIT, SARTs, INS – pick your acronym – which we might assume
would improve performance, the percentage of ship losses due to navigational accidents
has stayed persistently around the 30 per cent mark for the last 30 years. This is a figure
based on total losses recorded by Lloyd’s originally, and IHS Fairplay subsequently.
I think we might remember this when considering why we are engaged in e-Navigation
and what it will do for the navigator and safety at sea, including the costs of navigational
accidents to the environment, cargo and shipowner, which sadly are met largely by the
insurance industry, and thus all of us eventually.
Staying with the 1970s, on the radio side some ships still relied on VHF, MF and HF radio
for all communications – which was fine, as long as the weather was good, the timing right,
and the radio office competent and sober.
Telegrams were still in daily use, with faxes making an appearance and NAVTEX relied
upon. Or, if you were on the UK coast, Radio 4 for the shipping forecast.
Satellite communications were making an appearance, and the only broadband was
arguably television. The incredibly rapid development of communications technology,
particularly of course the internet, was the stuff of dreams or the Starship Enterprise.
Starships, I think, are definitely here today, with many ships’ bridges becoming control
centres of spaceship-type proportions, and handheld communicators doing everything
today that was done on the Starship Enterprise – apart from the ‘Beam me up’ button of
Star Trek fame.
Where we are now
So where are we now?
At the risk of highlighting how the word ‘now’ can be stretched, bearing in mind that the
original proposal of e-Navigation saw the light of day at MSC 81 in May 2006, more or less
eight years ago, the relevant IMO subcommittees on safety of navigation, and
communications, search and rescue (which, of course, have just been combined in to one)
were tasked with developing a strategic vision, and at the outset the importance of
developing a clear definition and objectives for the concept were fully recognised.
IMO was identified as the lead, with support from IALA, IHO and many others as
appropriate. Interestingly, early on training and education requirements were identified as
a key issue in the development of the strategy. A clear wish was expressed for the
development to be user driven rather than technology-driven.
As is often the case at IMO, a correspondence group was established to flesh out some of
the ideas in more detail. That work, and the related work in the relevant subcommittees
and their working groups of course, continues.
The original main objectives for e-Navigation in the minds of the proposers, at least as I
understand it from reading the reports so it’s a personal view, was that it aimed to minimise
navigational errors, incidents and accidents through the transmission and display of
positional and navigational information in electronic formats, to improve the monitoring
capability of coastal states and hence security too, and, of course, the wish for the holy
grail – to reduce costs.
This was to be achieved through the use of up-to-date charts to a common datum, to
facilitate route, position and other related information, making full use of electronic charts
and electronic position fixing systems.
Access to information, through the display of relevant data in an integrated way, was also
seen to be of benefit, as was the ability to exchange data ship-to-shore, and vice versa.
Much progress has been made, I think, in achieving or defining some of the key enablers
of this aim of e-Navigation, including agreeing to use the IHO S-100 standard to facilitate
global data exchange, identifying systems for resilient positioning, navigation and timing
(PNT), and indeed for some form of quality assurance, or perhaps even insurance, for
software systems, including their updating.
An important issue, that is, putting the human at the centre of the design, is very much
on the agenda – and one that shouldn’t be forgotten, though maybe it is a little.
In meeting the demand for user-driven equipment and systems, partner organisations,
including IHO, IALA and manufacturers through CIRM and other NGOs, have also taken on
board the need to develop or provide related functionality and infrastructure.
However, and of course therés always a ‘however’, a dispassionate observer might wonder
what’s really been achieved in concrete terms in the eight years since the idea was first
floated.
As is often the case in IMO, with such a broad canvas of opinions from governments,
industry and seafarers, it’s taken some time to really clarify what is important.
The last meeting at the navigation subcommittee (its last as well) tackled this task and
identified the five prioritised potential e-Navigation solutions.
They are: improved, harmonised and user friendly bridge design; means for standardised
and automated reporting; improved reliability, resilience and integrity of bridge equipment
and navigational information; integration and presentation of available information, in
graphical displays, received by communication equipment; and improved communication
with the shore.
These priorities were based on the need for seamless transfer of data between the various
items of equipment on board and seamless transfer of electronic information or data
between the ship and shore, and vice versa.
However, having revisited the work done to date and identified these priorities, are we now
on the right track? I think so – but perhaps only partly.
Progress has been made on the key issues of bridge design, reporting, reliability,
integration and communication, and in the further development of the stated guidelines –
human centred design, usability evaluation of navigation equipment, software quality
assurance, and harmonisation of test bed reporting. All of which is positive and supportive
of meeting some of the aims of the original proposals, as I understood them.
Where we are going
So where are we going?
I might have given the impression that I am not perhaps the biggest fan of the word ‘eNavigation’ – there is some truth in this, but it relates not to the things that are being
done, or are scheduled to be done, but rather of where we are putting our efforts under
the banner of ‘e-Navigation’.
It might be argued that some of this work, such as improved resilience, is merely
motherhood and apple pie – we would expect to do it anyway. Others, such as user friendly
bridge design, is just a rehash of work done before under another banner called
‘ergonomics’.
That’s not to say it’s work that should not be done, or not needed – more whether it is
helping at all by badging it as ‘e-Navigation’.
Keeping to the ‘é issue, I believe that one of the significant outcomes from the work done
in seeking to get machines of all types to talk to each other – apart from, of course,
agreeing the necessary standards – has been the identification of the gap that currently
exists in our arrangements for approval of equipment, particularly equipment based on
software – with all its inherent issues.
Addressing this issue should help us to avoid what might best be described as ‘the ECDIS
problem’ in equipment in the future.
But at the heart of the e-Navigation strategy has been the transfer of data and improving
navigational information. Taking this idea of improving further, and recalling the stubbornly
consistent rate of navigational accidents and incidents despite newer and more reliable
technology, where is the possibility for gaining the most improvement?
Does it lie, for example, in the ‘one button’ concept, the S Mode? Or in the combining of
data in one display?
Or are we being technology led when we should be concentrating on that human in the
loop, to improve training and mentoring? Will better presentation of more, or perhaps less,
data help the navigator to always do the right thing at the right time, in the right place,
and avoid navigational accidents and incidents?
If we didn’t ask that question at the outset, should we now be monitoring the effects of
these e-Navigation developments – and if so, how?
Turning to the broad issue of transfer of data – within the ship, between ships, between
ship and shore, and vice versa – is this really all related to navigation?
Access to timely and relevant information on board is, of course, important to safe
navigation, there’s little doubt about that. But information, in this sense, is not necessarily
just more data. Navigation can be performed safely and successfully with the information
available to Captain Cook, perhaps with the useful addition of radar.
The display and access to information of importance to the navigator in some electronic
form is, arguably, the crux of navigation with its preceding ‘e’, whereas information
exchange is arguably a communications issue. Perhaps we should be addressing it as such.
If, as I personally tend to think, the word e-Navigation is a little confusing and is something
of a misnomer, though I readily admit that all involved have happily worked towards the
objectives I referred to earlier under the banner of e-Navigation, it might be appropriate
now to look elsewhere for a home for work on seamless transfer of data between ship and
shore, and start to think about declaring victory on the technical side of ‘Navigation with
an e’.
There’s no doubt in my mind that there is, whether we welcome it or not, a lot more data
being collected and transmitted from ship to shore, and vice versa. This certainly does
nothing to reduce the administrative burden on ships’ Masters and officers. Some way of
seamless, maybe even automatic, transfer of data from where it is to where it is needed
is clearly of benefit.
Some of this may also be navigational data, in the proper sense of the word – that is,
information necessary, and I stress the ‘necessary’, for safer navigation.
Notices to Mariners is a good example. It might be interesting to consider in the context of
the administrative workflow of Masters these days how much of the data flowing between
ship and shore meets the navigational safety test of ‘need to have’ rather than just ‘nice
to have’.
The need to feed the ‘data monster’ is definitely not going to go away, so we should clearly
continue working on finding ways to make this as efficient as possible.
I believe that the right avenue for this lies in the ongoing work of the World
Radiocommunication Conference (WRC), in the context of requirements for high speed data
transfer with minimum human input. This work fits closely within the ongoing review of
the GMDSS, and is clearly closely related to other communications requirements.
Outstanding work under e-Navigation that addresses data transfer in the widest sense
ought, perhaps, to be dealt with at IMO in the context of that work (the GMDSS review
and the WRC).
But to go back to navigation, electronic equipment, with software at its heart, is here for
the foreseeable future and we need to ensure that it delivers what is required for safe
navigation.
Guidelines on its usability and design are being developed, the IHO S-100 standard has
been adopted, and we’re starting to address the software issue. So now, I suggest, it is
perhaps time to back to one of the key issues identified at the beginning of the road to the
land of e-Navigation that I mentioned earlier – training and education requirements.
The still persistently unacceptable level of ship losses due to accidents attributable to
navigational errors (collisions and groundings) has not been addressed by the addition of
‘e’ systems and tools so far.
We need to get back to the human in the equation if we are to successfully reduce incidents
and accidents resulting from navigational failures. We know we can make the kit work –
now we need to make the human work too. ns
This article is an abridged transcript of Andy Winbow’s ‘e-nav... where are we going?’
keynote address to the e-~avigation Underway 2014 conference on board the DFDS ferry
Pearl Seaways, sailing from Copenhagen to Oslo, jointly organised by the Danish Maritime
Authority and IALA
INSERE 16/05/16
HISTORIEK HISTORIQUE
ENLEVE 16/06/16
RED STAR LINE
J. F. VAN PUYVELDE
Le « Vaderland » inaugure
la ligne Anvers-Philadelphia
La RED STAR LINE a généralement été
considérée comme une Compagnie
belge parce que durant les 25
premières années de son existence
ses navires battant pavillon belge et
étaient enregistrés au nom de la S.A.
de
Navigation
Belge-Américaine,
Anvers. Cependant il appert d'un
article publié dans la « Philadelphie
North American and United States
Gazette » du 13 janvier 1873 que les
vapeurs
«
appartenaient
principalement
à
des
intérêts
de Philadelphia » et qu'ils naviguaient
sous pavillon belge « du fait qu'ils
avaient été construits à létranger ». Une raison supplémentaire était qu'il coûtait moins
cher d'exploiter des navires sous pavillon étranger que sous pavillon américain.
La Pennsylvania Railroad avait fait construire une nouvelle tête de ligne océanique à
Philadelphia et l'avait équipée de hangars et d'élévateurs à grains. Près de là un
appontement avait été aménagé pour le chargement de pétrole à bord des navires en
partance. Les navires de la Red Star Line ne devaient pas payer de droits de quai à la
Pennsylvania Raidroad, mais rien ne prouve que cette dernière ait possédé des intérêts
financiers quelconques dans la Red Star Line.
Le pionnier de la flotte fut le Vaderland de 2748 tx.,navire en fer à une hélice, lancé chez
Palmers, Newcastle, le 21 août 1872. En fait c'était le premier vapeur aménagé pour le
transport de pétrole en vrac. Sa silhouette ressemblait étrangement à celle de pétroliers
que nous voyons encore de nos jours. A l'origine ses emménagements comprenaient des
couchettes pour 30 passagers de 1 e Classe et 800 d'entrepont. Plus tard les 1ères Classe
furent portées à 70. L'armement avait prévu le transport de passagers et marchandises
diverses vers les U.S.A. et de passagers et pétrole vers l'Europe.
Le premier départ d'Anvers se fit le 19 janvier 1873. Après une brève escale à Falmouth le
30 le Vaderland s'élança dans l'Atlantique. Le temps très inclément du mois de février le
força à faire escale à Halifax pour Bouter. II arrive finalement à Philadelphie le 17 février
avec à bord 105 passagers et une cargaison de diverses embarquée à Newcastle et Anvers.
Le 25 février fut entamé le voyage retour direct sur Anvers. Quoique nous ne possédions
pas de détails exacts il apparaît assez clairement que le Vaderland transportait à la fois
des passagers et du « Liquid freight ».
Assez rapidement, si ce ne fut pas à l'occasion de ce voyage, les autorités américaines
s'opposèrent à la combinaison assez peu orthodoxe de passagers et de pétrole, si bien que
désormais seules des marchandises non liquides furent embarquées.
12 mai 1873 L' « Abbotsford » inaugure la ligne LiverpoolPhiladelphie
Pendant près de 8 mois le Vaderland fut seul à assurer le service en attendant l'achèvement
de deux sister-ships: Nederland et Switzerland. Le Nederland fit son premier voyage
d'Anvers à Philadelphie vers le 25 novembre 1873. Entretemps un navire affrété, le Rydal
Hall de 2.114 tx., avait assuré deux départs, respectivement le 12 août et le 12 octobre.
A la date du 27 mai 1875 nous voyons paraître dans le journal de Philadelphia cité plus
haut: « Le nouveau vapeur Abbotsford inaugurant le service de Liverpool de la Red Star
est arrivé hier de Liverpool et Queenstown. Pour son premier voyage le vapeur avait 294
passagers à bord. II est consigné à Peter Wright & Sons. La traversée de Queenstown à
Philadelphie s'est effectuée en 12 jours ». Ce navire avait été lancé en mars 1875 par
Gourlay, Dundee, et était destiné au service vers l'Amérique du Sud.
II ressort clairement de ceci
que le nouveau service de
la Red Star avait été
improvisé
assez
rapidement et il semble
bien qu'il était destiné à
entrer
directement
en
compétition
avec
I'«
American Steamship Cy ».
En effet le premier départ
de
Philadelphia
pour
Liverpool effectué par cette
Compagnie se fit le 23 mai 1875 avec le s.s. Pennsylvanie. Le retour de Liverpool se fit le
25 juin. Ainsi I'Abbotsford était parvenu à devancer légèrement son collègue américain. La
rivalité entre les deux compagnies ne semble cependant pas avoir été très sérieuse: à
Philadelphie elles avaient les mêmes agents qui étalant Peter Wright & Sons. Rejoint par
un sister-ship, le Kenitworth, I'Abbotsford continua à assurer le service jusqu'en mars
1874. A partir de cette date nous les voyons assurer le même llaison transatlantique mais
sous les couleurs de I'American Line, qui sera elle-même absorbée 10 ans plus tard par le
groupe financier contrôlant la Red Star.
En fait les deux compagnies s'étalant partagé le marché. A partir de cette date la Red Star
Line assurait la ligne Anvers/Philadelphie au moyen des vapeurs Vaderland, Nederland,
Switzerland de quelque 2800 tx.b., tandis que I'American Line reliait Liverpool à
Philadelphie au moyen des ex-Red Star liners Abbotsford et Kenilworth et de quelques
autres navires sous pavillon américain. Ce transfert entre compagnies continua à se
pratiquer sur une sérieuse échelle jusqu'en 1925 et ce chassé-croisé de navires passant
d'un service à l'autre rend assez difficile la tâche de l'historien maritime.
11 mars 1874 Le « CYBELE » inaugure la ligne Anvers-New York
A l'époque où s'effectuait ce
premier
transfert,
exactement le 11 mars
1874, la Red Star Line
inaugura
son
service
Anvers/New York au moyen
du s.s. Cybele de 1989 tx.
affrété de la Donaldson Line
qui venait d'en prendre
livraison deux mois plus tôt.
II y avait place pour 16
passagers
de
première
classe et 284 d'entrepont. Le
coût de la traversée valait de
£ 18 à 6 guinées suivant le degré de confort, ou plutôt d'inconfort. Le 15 avril 1874 le
Switzerland assura le départ suivant et aurait dû être suivi un mois plus tard par le
Nederland. Ce dernier fut remplacé par le Colina, sister-ship du Cybele, également affrété
de la Donaldson Line, et qui maintint le service Anvers/New York pour 5 voyages
consécutifs. A l'expiration de la charte-partie le Colina fut remplacé par un vapeur de 250o
tx.b., le State of Nevada qui effectua 7 voyages vers New York en 1875.
Début 1876 nous voyons rentrer en scène le Kenilworth sur la ligne Anvers/New York, qu'iI
assure durant le reste de l'année 1876 avec le Switzerland. Au départ de son 8e voyage
son nom fut changé en celui de Russland. Douze jours plus tard, le 17 mars 1877, il
s'échoua à Long Branch, New Jersey. D'abord considéré comme facilement renflouable le
Russland ne put être remis à flot et dût finalement être abandonné comme perte totale. II
semble bien qu'avec le changement de nom le navire était passé sous pavillon belge.
II est malaisé de dire comment le Russland fut remplacé clans l'immédlat, mais en avril
1878 nous voyons que le Switzerland est rejoint sur la ligne de New York par le Java de
2866 tx. construit 13 ans plus tôt pour la Cunard Line. Rentré de son troisième voyage
pour le compte de la Red Star son nom fut changé en Zeeland, ce qui implique sans doute
qu'il passa par la même occasion sous pavillon belge. En effet Jusqu'au tournant du siècle
les noms en ...land étainent réservés aux navires belges.
Durant les années 70 la Red
Star Line était loin d'être
seule à relier régulièrement
Anvers
au
Nouveau
Continent. Nous avons vu
également
que
grâce
surtout
aux
capitaux
étrangers seule la Red Star
Line sortit victorieusement
de cette période assez difficile. Celà lui permet d'entamer l'année 1880 qui s'annonçait
sous un jour excellent, avec deux nouveaux navires de 3700 tx.: Belgenland et Rhynland.
Lancés respectivement le 24 déc. 1878 et le 10 mars 1879 ils avaient l'étrave droite et une
cheminée jaune à étoile rouge surmontée d'une bande noire. Ces couleurs resteront en
usage de 1880 à 1895. Avant celà la cheminée était noire, avec une bande blanche frappée
d'une étoile rouge.
Notons en passant que lorsque la Red Star Line fut reprise en 1935 par Bernstein de
Hambourg ces couleurs de cheminée que l'on avait abandonnées depuis 55 ans firent leur
réapparition. Etait-ce par hasard ou à dessein, nous l'ignorons.
Le s.s. « Perugla » sous pavillon belge
Aux environs de 1879 la Red Star Line acheta un vieux vapeur de 2.717 tx. qui avait servi
une vingtaine d'années pour divers armateurs. C'était le Nemesis qu'elle rebaptisa
Perugla, faisant ainsi une exception à la règle qui voulait que tous les noms de navires
belges de la Cla. se terminent en « ...land ». Fait encore plus étonnant: l'on ne retrouve
pas trace que ce navire ait été mis en service sur l'Atlantique Nord par la Red Star. Une
explication assez valable semble être la suivante: le nom d'une ville itallanne avait été
donné parce que le Perugla était destiné à amener les émigrants itallans de leur pays à la
tête de ligne transatlantique d'Anvers. Ainsi il ne faisait fonction que de « tender ».
Toujours est-il que le navire ne resta pas Iongtemps à la. Red Star et reprit son nom de
Nemisis un ou deux ans plus tard.
Intensification des services
En janvier 1881 les annonces de la Red Star faisalant mention d'un navire « neuf »
Waesland qui n'était autre que le Russla de la Cunard Line construit en 1867. C'était un
beau navire de 4257. tx. qui avait été allongé de 25 mètres pour les besoins de la cause.
Un quatrième mât fut ajouté et ainsi transformé il pouvait embarquer 100 passagers de 1ère classe et 1000 d'entrepont. Il fut suivi l'année d'après par le Pennland, ex-Algerla de
la Cunard.
Tous ces nouveaux-venus
permirent à la Red Star non
seulement
d'assurer
un
service hebdomadaire entre
Anvers et New York mais
également
un
service
occasionnel entre Anvers et
Philadelphia.
Ce
dernier
allait
devenir
bihebdomadaire
Lorsqu'en
1884 deux navires vraiment
« neufs » cette fois-ci furent mis en ligne. Construits par Laird à Birkenhead le Westernland
et le Noordland jaugealant respectivement 5736 et 5212 tx.b. C'étaient les premlers
navires en acier de la Compagnia et le Westernland était aussi le premier navire à deux
cheminées sur la ligne.
Malgré tout le service le plus important restait celui d'Anvers à New York, aussi lui
réservait-on les meilleures unités de la flotte. C'est ainsi qu'à partir de 1884 ce service
hebdomadaire fut assuré par les Westernland et Noordland tout neufs, les Belgenland et
Rhynland vieux de 5 ans, et les deux ex-Cunarders Waesland et Pennland. Les quatre
navires restants assuraient les départs tous les 15 jours vers Philadelphia. Ainsi en 10 ans
de temps la Red Star Line était devenue un armement important, doté d'une belle flotte et
de deux services réguliers vers l'Amérique.
L'International Navigation Company tentaculaire
Entre les années 1884 et 1886 l'InternationaI Navigation Company, groupe financier dont
dépendait la Red Star Line, absorba divers concurrents et de ce fait renforça
considérablement sa position sur l'Atlantique Nord. C'est ainsi que ce groupe financier
contrôlait dès lors directement:
1. la Red Star Line, ou S.A. de Navigation Belge-Américaine, Anvers, dont les navires
battant pavillon belge « for reasons of convenlance ».
2. I' American Line dont les 4 navires de construction américaine battant, pour raison de
prestige, les « stars and stripes ». Quelques bâtiments affrétés naviguant cependant sous
pavillon anglais.
3. I'Inman and International Line sous le « red ensign ».
II est assez piquant de
noter que les pavillons
belge
et
anglais
ne
constituaiant
que
des
pavillons de convenance
pour la grande compagnie
américaine. Le fait s'est
reproduit en 1939 lorsque
les navires de la United
States Line furent transféré
sous pavillon belge. Par
contre
les
Anglais
témoignent
actuellement
d'une jalousie féroce vis-à-vis des pavillons de convenance alors que le Red Ensign a si
souvent joué lui-même ce rôle autrefois.
Les affaires étaient florissantes pour la Red Star Line. De 1881à 1889 elle débarqua en
moyenne 25.000 passagers par an à New York. Alors que le nombre de passagers
d'entrepont était relativement constant, celui des passagers de première passa de 1 500 à
4000 par an. En 1889 le pionier de la ligne, le vieux Vaderland, fut vendu, de même que
le Zeeland qui comptait près de 25 ans de bons et loyaux services, dont 11 sous pavillon
de la Red Star. Leur place fut prise en décembre de la même année par le Frlasland,
paquebot à 4 mâts et étrave à guibre qui venait d'être achevé. Jaugeant 7100 tx.b. il
pouvait embarquer 226 premières classes, 102 secondes et 600 entreponts. L'année 1891
fut une année record: 41.374 passagers débarqués à New York, chiffre dépassé seulement
par deux compagnies anglaises et deux allemandes.
Démembrements et regroupements
L'année 1893 vit un chassé-croisé effarant de navires entre les trois compagnies contrôlées
par le même groupement financier. L'International Navigation Cy de Philadelphia ellemême fut dissoute pour être immédlatement reconstituée dans l'état de New Jersey avec
un capital soclal de $ 15.000.000. Une fillale fut créée à Liverpool, qui reçut également le
nom d'InternationaI Navigation Cy. Les deux compagnies se partagèrent le pool de navires
résultant de la fusion de I'Inman & International Line avec I'American Line. De I'American
Line on retint le nom tandis que le I. & I.L. on ne retint que la cheminée noire à bande
blanche.
Que devint la Red Star
Line dans ce chassécroisé'? Tout d'abord elle
adopta également le style
de cheminée ci-dessus
qui lui restera jusqu'en
1935.
Ensuite
deux
vapeurs de 3340 tx. et
vieux de 20 ans, le
Pennsylvanie et l'Illinois
furent
transférés
au
service Red Star d'Anvers
à Philadelphia. Ils continuèrent à battre le pavillon américain. En 1895 quatre autres
navires, cette fois-ci sous pavillon anglais, furent transférés de l'American Line à la Red
Star Line. Ils restèrent sous le « red ensign ». En échange la Red Star dut céder les
Belgenland, Pennland, Rhynland et Waesland qui. furent versés au service
Liverpool/Philadelphie de l'American Line. Finalement en octobre 1895 le service
Anvers/New York reçut la consécration officielle de « Service Postal » ce qui signifiait un
subside de $ 4 par mille de traversée ouest/est alloué par le Gouvernement Américain.
Récapitulons la flotte de la Red Star fin 1895
Ligne d'Anvers/New York: Southwark, Kensington et Berlin anglais; Friesland, Westernland
et Noordland belges; Ligne d'Anvers/Philadelphia: Pennsylvania et Illinois américains;
Chester anglais; Nederland et Switzerland belges;soit en tout 11 vapeurs jaugeant
ensemble 58.000 tx.b.
Ce qui précède indique suffisamment que la Red Star Line était loin d'être une Compagnie
de navigation belge. Dirigée d'outre atlantique par un puissant groupement financier la
Red Star Line se ménageait des facilités aux ports des trois pays qu'eIla desservait et pour
celà les trois pavillons nationaux différents constitualant certainement trois atouts dans
son jeu...
Essor entravé par la guerre hispano-américaine
Lorsqu'éclata la guerre hispano-américaine les deux navires sous pavillon américain furent
réquisitionés. Un an plus tard, en 1898, ce fut le tour aux deux navires britanniques Berlin
et Chester à passer au service de I'U.S. Navy. On voit que dans les destinées de la Red
Star Line l'influence du capital américain était prépondérante. Faute de navires le service
Anvers/ Philadelphie fut supprimé, tandis que celui d'Anvers à New York était assuré à
grand'peine, ne possédant plus d'unité de réserve. C'est pour palier cet inconvénlant qu'en
1899/190o le s.s. Aragonla de la H.A.P.A.G. fut affrété pour quatre voyages sur New York.
Achevé en 1897 ce navire de 5446 tx. pouvait accommoder 59 premières, décrites comme
« cabin class » dans les annonces de l'époque, et quelques centaines d'entreponts.
1901-1902: 4 nouveaux paquebots de 12.000 t
A partir du tournant du siècle
nous voyons les affaires de
la Red Star Line évoluer
rapidement.
Un
premier
grand paquebot de 11.900
tx., le Vaderland fut lancé
chez
John
Brown,
Cyldebank, le 12 juillet
1900. Long de 561' et large
de
60'
il
pouvait
accommoder 542 passagers en première, 194 en deuxième et 626 en troisième classe. Ses
deux machines à quadruple expansion permettaient d'assurer une vitesse de croisière de
15 noeuds. La photo montre la silhouette classique de cette époque, 4 mâts et deux
cheminées, apparue pour la première fois sur le Westernland mis en service 17 ans plus
tôt. Prêté pour son m a i d e n trip à I'American Line il ne passa sous contrôle de la Red
Star que vers la fin de 1901. Entretemps son sister-ship le Zeeland était entré en service
en avril 1901. Tous deux étalant inscrits sous le nom de l'Int. Nay. Cy. de Liverpool et par
conséquent battant pavillon britannique. Ce n'est qu'aux environs de 1903 qu'ils passèrent
sous pavillon belge.
En 1902 une seconde paire,
plus grande et plus rapide,
était achevée aux EtatsUnis,
chez
Cramp
à
Philadelphie: Kroonland et
Finland de 12.760 tx. Ils
resteront
sous
pavillon
américain, sauf pendant 3
ans à partir de 1909 où ils
navigueront sous pavillon
belge.
Ainsi un quartette de navires splendides suffisait à la Red Star Line pour assurer un service
hebdomadaire entre Anvers et New York.
L'International Mercantile Marine Cy prend le contrôle
L'année 1902 vit la création de la fameuse International Mercantile Marine Company qui
remplaçait avec un capital 8 fois plus élevé l'International Navigation Company établla en
1893 à New Jersey. Mais ceci est une histoire à part. Disons simplement que cet énorme
colosse absorba les White Star, Dominion, Atlantic Transport et Leyland Lines, qu'il posséda
la moitié du capital et la Holland Amerika Lijn et qu'il visa à un moment donné la H.A.PA.G.
et la N.D.L. allemandes.
Durant les quatre années
qui suivirent la création du
nouveau colosse financier la
Red Star Line se trouva
moins affectée par ces
changements survenus au
niveau de la haute finance
que par la mise en ligne du
nouveau quartette entre
Anvers et New York. Les
anclans
Westernland,
Noordland et Frlasland furent transférés au service entre Liverpool et Philadelphie de
I'American Line tandis que le Kensington et le Southwark passèrent au service
Liverpool/Canada de la Dominion Line. Pour la Red Star tout se passait de nouveau comme
avant sauf que l'escale de Southampton, qui avait servi pendant 4 ans, fut abandonnée au
profit de Douvres. Ce changement semble avoir donné satisfaction puisqu'iI continua
jusqu'en 1914.
Restalant encore les trois vétérans Nederland, Switzerland et Rhynland. Ils furent vendus
aux Itallans ce qui pour une courte période rendit précaire I'exploitation de la ligne
Anvers/Philadelphia. Aussi en 1906 I'Atlantic Transport Line céda-t-elle à la Star Star son
Mississippi de 7900 tx. Mis en service comme transport d'émigrants il prit nom de Samland
et quitte New York pour Anvers le 23 juiIlat 1906. En 1907 l'ex White Star liner Gothic (le
7700 tx. rejoignit également la flotte de la Red Star sous le nom de Gothland. Ajoutons
que de 1911 à 1913 nous les retrouvons tous deux à la White Star Line sous les noms de
Belgic et Gothic, après quoi ils reprirent laur nom et paviIIon belge. Nous n'irons pas plus
loin clans ce chassé-croisé de navires passant d'un Compagnie à une autre au sein de la
toute puissante International Mercantile Marine Cy. Seuls nous intéressent ceux qui
naviguèrent pour compte de la Red Star ou passèrent sous pavillon belge.
Apogée de la Red Star Line sous pavillon belge
On peut dire qu'entre les années 1909 à 1913 la S.A. de Navigation BeIge-Américaine, qui
exploitait les navires Red Star battant pavillon belge, vécut ses plus belles années. En effet
à cette époque le quartette de paquebots de 12.000 tx. Vaderland, Zeeland (Le Zeeland
passa cependant la plus grande partla de 1909-11 sous pavillon anglais sur la ligne
Liverpool/Boston de la White Star Line.), Kroonland et Finland était passé entièrement sous
pavillon belge, tandis qu'en 1909 la nouveau Lapland de 18.000 tx. était mis en service.
Ce dernier avait également la silhouette classique de l'époque: 4 mâts et deux cheminées.
Chose curlause, à cette époque le concurrent la plus direct fut la Holland Amerika Lijn dont
cependant la moitié du capital appartenait aux commettants mêmes de la Red Star Line.
Coup sur coup ils venalant de mettre en service entre Rotterdam et New York: en 1906 la
Nlauw Amsterdam de 17.000 tx., et en 1908 la Rotterdam de 24.00o tx. La Red Star Line
sembla hésiter à damer la pion à son rival hollandais et finalement commanda un paquebot
de 27.000 tx., le Belgenland qui ne fut lancé à Belfast que le jour de la Saint Sylvestre de
l' an 1914. Entre-temps la guerre avait éclaté et le nouveau « flagship » ne battit jamais
le pavillon belge.
1914: « Gothland » et « Samland » restent seuls sous pavillon
belge
Devant l'invasion allemande
les bureaux de la Red Star
avaient quitté Anvers pour
s'installer à Liverpool et c'est
Ià que fut pris la décision de
faire passer tous les navires
de la flotte sous pavillon
britannique.
Dorénavant ils seraient gérés
par l'International Navigation
Cy.
de
Liverpool.
Cette
décision permettait aux chargeurs de bénéficlar des conditions britanniques d'assurance «
war -riks » Cependant deux navires, les plus petits de la flotte, Gothland et Samland furent
réquisitionnés pour la fameuse « Commission for Rellaf of Belgium » et restèrent sous
pavillon belge jusqu'à leur démolition, respectivement en 1926 et 1951.
Quoiqu'ici se termine le chapitre « pavillon belge » de la Red Star Line jetons un coup d'oeil
sur le sort des navires qui avaient navigué sous notre pavillon national.
Ce que devinrent les autres navires de la Red Star belge.
Du quartette de paquebots de 12.00o tx. le Vaderland fut le seul à disparaître. Pour des
raisons de consonnance faciles à comprendre son nom avait été changé au printemps de
1915 en celui du Southland, tandis que le Zeeland devenait le Northland. Le premier
nommé fut torpillé en mer Egée en septembre 1915 mais parvint à s'en tirer sans trop de
mal. Sa fin survint en 1917 lorsqu'il fut torpillé et coulé au large de la côte irlandaise.
Quant au Northland en 1920 il reprit son anclan nom ainsi que son service pour la Red
Star. En 1927 il devint le Minnesota de l'Atlantic Transport Line et fut démoli en 1930.
La paire Kroonland et Finland qui était sous pavillon américain en 1914 fut réquisitionnée
en 1917 par les U.S.A. au moment de leur entrée en guerre contre l'Allemagne. En 1920
ils retournèrent à la Red Star Line mais furent transférés en 1923, toujours sous pavillon
américain, à l'American Line et plus tard dans la même année à la Panama Pacific Line.
Tous deux furent démolis en 1927.
Le Lapland, flagship de la Red Star au moment de l'invasion de la Belgique, avait vu son
pavillon
belge
remplacé par la «
red duster ». Le 3
octobre 1914 le
Zeeland
et
lui
partaient
du
Canada avec un
convoi
de
30
autres
navires
transportant
en
Angleterre la «
First
Canadlan
Expeditionary
Force ». Après celà
il
effectua
la
navette LiverpooI
/ New York pour le
compte
de
la
White Star Line.
Ce n'est qu'en 1920 que nous le voyons reprendre son service à la Red Star Line pour être
vendu et démoli au Japon en 1923.
Le « Belgenland »
Quoique le Belgenland n'ait jamais navigué sous pavillon belge nous croyons intéressant
de retracer la carrière de ce paquebot à 3 cheminées, certainement le plus connu de tous
ceux qui visitèrent régulièrement Anvers. Lancé fin décembre 1914 Belfast, chez
Harland Wolff, le Belgenland fut finalement achevé comme transport de troupes. Mis en
service en 1917 il avait un aspect bizarre avec ses 2 cheminées, 3 mâts et ses deux ponts
supélaurs inachevés. II navigua jusqu'au début de 1921 entre Liverpool et New York pour
le compte de la White Star Line sous le nom de Belgic. Malgré celà dès 1919 les couleurs
de ses deux cheminées étalant redevenues celles de la Red Star: noires à bande blanche.
En mars 1923 la ville d'Anvers était en émoi: le Belgenland, 9e plus grand navire du monde
avec ses 27.132 tx.b.,
remontait l'Escaut pour la
première fois. Sa silhouette
imposante
était
méconnaissable de celle de
l'anclan
Belgic.
La
combinaison peu orthodoxe
de 3 mâts et 2 cheminées
avait été remplacée par 2
mâts et 3 cheminées qui
dominaient fièrement la
hauteur des 6 ponts, si bien
que par temps clair on apercevait déjà le paquebot alors qu'il n'était encore qu'à hauteur
de Llafkenshoek. L'évolution en rade d'Anvers était une merveille de précision. Mettant la
barre tout à tribord et travaillant des hélices, le pilote échouait légèrement le mastodonte
sur le seuil de la rive gauche. Le courant de flot et les remorqueurs l'aidalant à pivoter sur
son nez, puis en battant en arrière il glissait en eau profonde et venait se remettre dans
l'axe du fleuve. Le nez vers l'aval et la marée montante il se rapprochait très doucement
des quais de l'Escaut.
Ce spectacle merveilleusement orchestré ne manquait certes pas de grandeur. Long de
670' le Belgenland pouvait embarquer 500 passagers de première, 500 de deuxième et
1500 de troisième classe. En 1924 la 2e classe et les meilleures cabines de 3e classe furent
amalgamées pour créer la nouvelle classe touriste qui est encore en usage un peu partout
de nos jours. Ses trois hélices étalant entraînées par une combinaison de machines à triple
expansion et de turbines basse-pression qui lui donnalant une vitesse de croisière de 17
noeuds. Sa troisième cheminée était fausse mais remplaçait avantageusement le mât qui
se trouvait planté en cet endroit.
Le voyage inaugural d'Anvers vers New York débuta le 4 avril 1923 et dès lors le Belgenland
fit régulièrement la navette, sauf durant l'été 1924. En effet cette année-Ià il fut dérouté
3 fois sur Londres, les eaux de l'Escaut étant trop basses pour permettre son accès
jusqu'Anvers. Ses armateurs étalant l'InternationaI Navigation Company de Liverpool et
par conséquent son pays d’immatriculation était la Grande-Bretagne. En hiver, ils
l’envoyaient généralement effectuer une croisière autour du monde. Durant les années
1932 et 1953 le Belgenland resta la plus grande partia du temps à Anvers en compagnie
de douzaines d'autres navires désarmés. Finalement fut transféré à I'Atlantic Transport C°
de West Virginla et rebaptisé Columbla. Quelques essais de croisières furent effectués mais
sans grand succès. Le paquebot avait été peint entièrement en blanc et était vraiment en
beauté malgré ses tâches de rouille lorsqu'en1936 ,il fut trainé aux démolisseurs dans le
Fith of Forth.
Le boom d'après guerre
Après la guerre 1914-18, les deux dernières unités à rester sous pavillon belge furent le
Gothland de 1893, démoli en 1926, et le Samland de 1903, démoli en 1931. La Red Star
Line sous pavillon belge était réduite à sa plus simple expression, alors que sous pavillon
britannique elle allait reprendre son essor précisément sur la ligne Anvers/New York.
En 1922 la position de la Red Star n'avait jamais été plus forte. Tant du point de vue
financier que du point de vue pertes devant l'ennemi eIla avait traversé victorlausement
la guerre. Seul le Southland (ex-Vaderland) de 11.900 tx.b. avait été perdu par torpillage.
Quant aux actions de la puissante International Mercantile Cy., qui contrôlait la Red Star,
leur valeur en bourse était tombée en 1915 de 172 à 26 millions de doIlars. Mais la
demande de tonnage par suite de la guerre ainsi que la gestion avisée du controleur Mr.
P. Franklin firent tant et si bien qu'en 1916 leu valeur boursière était remontée à 165
millions de dollars. Mr. Franklin y gagna le poste de Président de I'I.M.M.Cy.
C'est lui qui se rendit en Belgique dès août 1919 afin de remettre sur place le service
paquebots Anvers : New York. Entretemps le service émigrants avait repris avec le
Gothland et le Samland et quelques cargos disparates.
Les résultats de la visite de Mr. P. Franklin ne se firent pas attendre et c'est le 3 janvier
1920 que le Lapland toujours sous pavillon anglais quitta Anvers pour Southampton et New
York Pendant quelque trois mois des départs intermédlaires furent assurés par le Manchurla
et la Mongolla, jusqu'à la remise en ligne en avril de la même année des paquebots
Kroonland et Fintand, tous deux sous pavillon américain. En août le Zeeland sous pavillon
anglais rejoignit le trio. Au départ vers l'Amérique l'escale de Douvres utilisée avant guerre
avait fait place à Southampton, avec une escale supplémentaire à Cherbourg à partir de
1921. Le voyage retour se faisait par l'itinéraire suivant: New York, Plymouth, Cherbourg,
Anvers.
Voici
comment
se
présentait
la
flotte
Service
postal
paquebots
Lapland
anglais
(1909)
Zeeland
anglais
(1901)
Kroonland
américain
(1902)
Finland américain (1902) 12.760 tx.b.,
Red
Star
Anvers/New
7.540
11.905
12.760
fin
1920:
York:
tx.b.,
tx.b.,
tx.b.,
Service
cargos
émigrants
Libau/Dantzig/Hambourg/
New
York:
Gothland
belge
(1893)
7.755
tx.b.,
Samland
belge
(1903)
7.915
tx.b.,
Poland anglais (1905) 6.849 tx.b., qui repassa en avril 1922 à un service sur le Canada.
Lorsqu'un an plus tard le Belgenland de 27.132 tx.b. entra finalement en service les deux
paquebots sous pavillon américain quittèrent la Red Star Line tandis que les deux navires
sous pavillon belge vinrent occasionnellement renforcer la ligne Anvers/New York En 1925
la service fut renforcé par deux White Star liners, le Pittsburgh et l'Arabic. Ce dernier n'était
autre que l'ancien Berlin construit en 1908 pour la Norddeutscher Lloyd et passé en 1921
à la White Star Line. Il demeura jusqu'en 1929 sur la ligne Anvers/New York. Quant au
Pittsburgh beaucoup de nos lecteurs la reconnaîtront de suite lorsque nous dirons qu'en
1926 il fut rebaptisé Pennland. Jaugeant 16.322 tx.b. ce navire à trois hélices avait été
construit en 1922 pour le compte de I'American Line, mais navigua dés le début sous les
couleurs de la White Star.
C'est à cette époque que les deux plus vieux navires de la flotte furent retirés du service:
le Zeeland effectua son dernier voyage en novembre 1926 tandis que le Gothland était
vendu à la casse. Ne restaient donc en service que les trois paquebots anglais Belgenland,
Lapland et Pennland exploités par l'International Navigation Cy. de Liverpool et le seul
navire belge Samland exploité par la S.A. Belge Américaine d'Anvers.
L'international Navigation Cy. de Liverpool cesse d'exister
Début décembre 1927 nous voyons deux navires de la Leyland Line, la Winifredlan de
10.400 tx.b. et le Devonlan de 13.500 tx.b. faire pluslaurs voyages Anvers/New York pour
le compte de la Red Star Line. La chose paraissait d'autant plus étrange que la trafic
montrait des signes évidents de ralentissement.
Le mystère s'éclaircit peu après lorsque Frederick Leyland & C° Ltd annonça que I'I.N.Cy.
de Liverpool était dissoute et que les trois navires sous pavillon anglais avaient été repris
par Leyland & C°. Le quatrième navire, I'Arabic, n'était qu'en time-charter. Aussi fut-il
remplacé en 1930 par une nouvelle acquisition, la Regina, acheté à la Dominion Line et
rebaptisé Westernland. Celui-ci n'était autre que le sister ship du Pennland cité plus haut.
La crise
C'est ainsi que 1930, première année de la crise mondiale, voyait rassemblés sous l'égide
de Leyland & C° Ltd., mais sous le pavillon Red Star, les 4 navires que nous avons si bien
connus à Anvers:
Belgenland
(1917)
Lapland
(1909)
17.540
tx.b.,
Pennland
(11)
(1922)
Westernland (II) (1918) 16.314 tx.b.,
27.132
(plus
tard
16.322
tx.b.,
18.565)
tx.b.,
Mais alors, demanderez-vous, que faisait le pavillon Red Star en tête de mât? L'explication
est très simple. Il suffit de se rappeler que Leyland et Red Star Lines étaient encore toutes
deux contrôlées par l'InternationaI Mercantile Marine Cy., le colosse anglo-américain aux
plieds d'argile. C'était deux têtes sous le même bonnet. Une troisième tête sous ce bonnet
était l'Atlantic Transport Line et c'est ce qui explique l'apparition en 1.932 sur la ligne
Anvers/New York de deux mastodontes récemment construits: le Minnewaska (1923),
21.716 tx.b. et le Minnetonka (1924), 21.998 tx.b. Ces deux navires avaient été achevés
en pleine euphorie d'après-guerre pour le service Londres/New York des Atlantic Transport
Lines. Malgré leurs emménagements pour 369 passagers de première classe c'étaient
avant tout de gigantesques cargos pouvant charger le volume inouï pour l'époque de 1
million de pieds cubes de cargaison.
Quand on sait qu'en 1934 le total des passagers transportés par la Red Star ne dépassait
pas les 4000 et que le fret était pour ainsi dire inexistant l'on se demande ce que ces
mastodontes venalant faire sur la ligne Anvers/New York. Les premières classes furent bien
transformées en touristes,rien n'y fit. Entretemps le Belgentand et le Laptand étalant
essayés sans grand succès à des croisières d'été. Quant à la paire Pennland et Westernland
elle avait vu également la suppression de ses premières classes, puis l'uniformisation à la
classe touriste. En vain. La fin était imminente.
LA DEBANDADE
Le premier à disparaître de la scène fut le vieux Lapland à 4 mâts et 2 cheminées. En 1932
et 1933 il avait fait une sérla de croisières de Londres en Méditerranée mais avec de piètres
résultats financiers. En octobre 1933 il fut vendu au Japon pour aller à la ferraille, après
24 ans de service.
Les suivants à disparaître furent assez paradoxalement les deux navires les plus récents:
Minnetonka et Minnewaska. Ce dernier quitta une dernière fois Anvers le 30 septembre
1933 et le Minnewaska aurait dû le suivre 15 jours après. Le départ fut annulé et les deux
navires restèrent désarmés à Anvers jusqu'à l'automne 1934. Ils finirent à la casse en
Ecosse à l'âge extraordinairement jeune de 10 et 11 ans.
Restaient encore le flagship Belgentand désarmé et les deux sister ships Pennland et
Westernland dont les voyages s'espaçaient de plus en plus.
C'est ici que se place l'intervention d'un groupe financier britannique dirigé par le major
Frank Bustard. Ce groupe désirait, à l'aide de subventions gouvernementales, racheter les
5 paquebots en vue de leur exploitation ultra-économique sur l'Atlantique Nord. Le prix de
la traversée serait extrêmement réduit et les repas se prendraient selon un système de
cafeteria.
Mais le Trésor Britannique se fit tirer l'oreille pour l'exceIlente raison qu'à ce moment il
s'était déjà engagé à prêter de fortes sommes en vue de la construction des deux géants
qui devaient plus tard prendre nom de Queen Mary et Queen Elisabeth. II craignait qu'un
prêt supplémentaire pourrait concurrencer et compromettre les chances de la Cunard
White Star dont I'avenir ne paraissait pas trop rose en ces années de crise.
Le projet échoua donc et 1935 vit la liquidation des 3 paquebots désarmés. Quant à la
paire Pennland et Westernland elle fut vendue début 1935 à Arnold Bernstein, de
Hambourg, qui les remit en service sur la ligne Anvers/Southampton/New York sous le
vocable de « Bernstein (Red Star) Line ». Ils furent transformés en vue de transport
d'automobiles dans le sens ouest-est et les emménagements touristes furent améliorés.
Très heureusement les cheminées noires reçurent une bande blanche plus large sur
laquelle fut peinte une belle étoile rouge à cinq branches. Ainsi, après 55 ans d'interruption,
les couleurs de cheminée redevenalant telles que probablement elles avaient été au
moment de la création de la Red Star Line en 1873.
Malheureusement pour lui, M. Arnold Bernstein était un non-aryen et sans doute les nazis
crurent-ils que l'étoile de la Compagnie était celle de David car ils la jetèrent en prison
sous la prétexte, si nos souvenirs sont exacts, de fraude de devises. Inutile d'ajouter que
son activité d'armateur fut stoppée net. C'est sans doute avec un certain plaisir qu'il aura
repris cette activité pendant la guerre, mais cette fois-ci sous pavillon américain. Sa
dernière création date de 1958: le service transatlantique des American Banner Lines, dont
les paquebots ont fait escale à Zeebrugge cet été. Petite astuce: les lettres « AB » des
American Banner cachent en réalité les initlales de l'armateur.
Pennland et Westernland ainsi que les droits de trafic furent achetés par la Holland Amerika
Lijn qui continua le service Anvers/New York sans que les deux navires fussent
extérlaurement modifiés.
Lorsqu'en mai 1940 la Hollande fut envahla les deux sisterships furent affrétés par la British
Ministry of War Transport qui en confla l'exploitation à la Cunard White Star. Le Pennland
fut bombardé et coulé fin april 1941 à quelque 6o milles au sud d'Athènes lors des
opérations d'évacuation dela Grèce. Quant au Westernland, l'Amirauté le reprit courant
1942, et le transforma en « repair ship ». Sa fin vint en 1947 lorsqu'il fut vendu pour la
démolition.
Avec le Westernland disparaissait le dernier représentant de l'anclanne flotte de la Red
Star Line.
Actuellement il ne subsiste plus que le droit de trafic Anvers/New York repris en 1939 par
la Holland Amerika Lijn, ce qui lui permet encore d'utiliser le vocable « Red Star » dans sa
publicité.
CONCLUSIONS
Pratiquement la période d'activités de la Red Star Line s'est étendue sur 62 années, de
1873 à 1935. Depuis sa fondation jusqu'en 1914 dix-neuf de ses navires, si l'on inclut le
Perusla acquis en 1879, avaient arboré le pavillon belge. Le plus grand d'entr'eux fut sans
conteste la Lapland de 17.540 tx.b. Avec la vente en 1931 du Samtand les activités de la
fillale belge de l'International Mercantile Marine C°, la S.A. de Navigation Belge Américaine,
furent virtuellement terminées.
Pendant la plus grande partie de son existence la Red Star Line a pu être considérée comme
l'un des ténors parmi les compagnies de navigation sur l'Atlantique Nord, transportant en
1913 jusqu'à 117.000 passagers. En outre elle a pu s'ennorgueillir d'un record de sécurité
très enviable: aucun des navires opérant sur ses lignes n'eut à déplorer la perte d'une
seule via humaine par fortune de mer en temps de paix. En effet, lorsque la Waesland se
perdit par collision en 1902 il opérait pour l'American Line. Quand on se rappelle les
désastres maritimes de la seconde moitié du 19e siècle, ce record est certainement très
enviable.
Mais il y a mieux encore. En effet la Red Star Line avait toujours été la raison d'être du
plus puissant consortium maritime de tous les temps, la fameuse International Mercantile
Marine C° de New Jersey. Lorsque celle-ci vit que la Dillingham Act allait limiter
l'immigration aux Etats-Unis à des proportions négligeables, elle chercha par tous les
moyens à limiter les dégâts, soit en vendant ses navires, soit en vendant ses fillales. Nous
avons vu comment elle liquida successivement ses intérêts belges et anglais. Avec les
capitaux ainsi accumulés elle s'intéressa uniquement à l'exploitation de paquebots sous
pavillon américain. Mais ceci est une autre histoire. Disons simplement qu'en mai 1943
l'I.M.M.C° acquit les United States Lines of Nevada et qu'elle en profita pour reparaître
sous la nom universellement connu de United States Lines of New Jersey, détenteurs
actuels du ruban bleu de l'Atlantique Nord avec leur fameux United States. Ainsi l'on peut
considérer que la Red Star Line a été l'un des ancêtres, sans doute le principal, de a très
importante Compagnie américaine.
Ainsi nous voyons que la prédominance des capitaux américains, dans la Red Star Line, si
elle l'aida à surmonter toutes ses crises de croissance et à évincer les autres compagnies
belges du trafic nord-atlantique, fut la cause principale de sa débandade en 1935. Dès que
ces capitaux furent retirés par suite du Dillingham Act et de la crise mondiale, la Red Star
se retrouva dans les limbes. Comme entretemps l'attitude plus compréhensive du
gouvernement américain encourageait l'exploitation de paquebots sous les « stars and
stripes » les pavillons de convenance anglais et belge furent progressivement abandonnés.
C'est évidemment dommage pour la Belgique, mais l'on se demande ce que pourrait encore
faire une Red Star Line nationale en 1960-61 si elle avait continué d'exister. En effet dans
deux cas l'utilisation quasi généralisée d'avions turbo-réacteurs sur l'Atlantique Nord
permettra de transporter plus de 3 millions de passagers par an. En 1958 la total de
passagers-avion au dessus de l'Atlantique Nord n'était « encore » que de 1 million. D'où
viendront les quelques deux millions restants, si ce n'est de couches nouvelles de
voyageurs et surtout de la concurrence, en l'occurrence les compagnies Maritimes
INSERE 18/05/16
NIEUWS NIEUWS
ENLEVE 18/06/16
Remote maritime telemedicine business
ClipperTelemed+™launches partnership
with Sailors’ Society
Maritime telemedicine business ClipperTelemed+™and global maritime charity, Sailors’
Society are to jointly promote health and well-being at sea through a series of dedicated
events ClipperTelemed+ provides enhanced remote medical care to seafarers globally, and
Sailors’ Society aims to transform the lives of seafarers in port, at sea and at home. Clipper
Telemed’s medical service and Sailors’ Society’s Wellness at Sea programme both serve to
enhance the well-being of the world’s shipping industry. The new partnership was unveiled
at a reception alongside the ClipperTelemed+ branded yacht which will soon compete in
the Clipper Round the World Yacht Race, leaving London on August 30The
ClipperTelemed+™ team will use the Clipper Race’s global platform to take the business to
many influential shipping and yachting hubs Sailors’ Society Wellness at Sea is a coaching
programme for officers and cadets aimed at improving seafarers’ on board health and wellbeing. Wellness at Sea seeks to address two mutually dependent industry-wide concerns;
seafarer welfare and crew attrition rates. Tom Bettle, ClipperTelemed+ Business
Development Manager, said: “ClipperTelemed+ provides remote primary and emergency
medical care to seafarers the world over. Our unique approach not only enhances crew
well-being, but in so doing brings crew reassurance and confidence along with remarkable
economic benefits to the ship operator. Wellness at Sea from the Sailors’ Society works
absolutely in parallel with what we are able to provide. “Officers who have completed a
Wellness at Seacoaching programme should be able to spot the early signs of illness in
their crew and ClipperTelemed+ can diagnose and treat or advise on a course of care.
”Working alongside Sailors’ Society, ClipperTelemed+will run a number of receptions,
sailing days and other events to introduce ship operators and others working within the
maritime environment to both organisations and explain how a healthy, happy crew will
make for an efficient vessel and truly enhance the bottom line. Jan Webber, Sailors’
Society’s Director of Fundraising, said: “Sailors’ Society’s Wellness at Sea programme aims
to help seafarers look after their health and well-being on-board ship, addressing the issue
of poor mental health and the associated risks that can arise as a result of a life at sea.
The health and welfare of our seafarers is vital to a thriving shipping industry and we’re
delighted to be working with Clipper Telemed to jointly promote this
issue. “ClipperTelemed+™ is a joint venture between Clipper Race organisers Clipper
Ventures Plc and its Global Medical Emergency Support Partner, PRAXES Medical Group.
Launched in April 2015, ClipperTelemed+™ provides fast emergency and general medical
support from PRAXES Medical Group physicians based in Canada, to all seafarers, no matter
how remote their location. Crew on yachts, superyachts, commercial ships and exploration
rigs can benefit from the service which uses the latest telecommunications technologies to
provide access to fully qualified emergency physicians within five minutes, wherever the
casualty is located, in any language.
INSERE 20/05/16
NIEUWS NIEUWS
ENLEVE 20/06/16
Besana Davide
Éditeur : Zeraq
Publié le : 28 mars 2015
ISBN : 979-10-93860-07-7
Description : 191 pages; (22 x 15 cm
Prix : 16,00 €
Cent histoires vraies, des accidents, des bévues, des incidents maladroits en bateau à
voile. Une hilarante anthologie de gaffes nautiques avec les dessins de Davide Besana. «
En bateau, il existe des règles aussi vieilles que l'humanité, elles doivent être respectées
mais ne le sont jamais assez. Il y en a trop, personne ne peut s'en sortir sans commettre
d'erreurs. Ces erreurs sont cueillies et semées aux quatre vent par l'équipage qui, attentif
et fraternel tant qu'il navigue, se révèle bavard et irrévérencieux dès qu'il se lâche et que
les premiers verres se vident ». Il croyait qu'il y avait une avarie en réalité il n'avait pas
largué les amarres. Il largua les amarres mais emporta avec lui la borne électrique. Il jeta
l'ancre où sa femme avait voulu et le matin ils se retrouvent dans une ferme. Tous les
petits marins commettent de petites erreurs. Et si ce sont de grands marins, ils font parfois
de grandes conneries. Ce livre les raconte sans pitié pour personne, qu'il s'agisse d'un
avocat de province ou d'un skipper Néozélandais. Cent bêtises incroyables, cent anecdotes
réellement survenues qui font blêmir les aventures de Trois hommes dans un bateau. La
démonstration que l'être humain qui comme nous le savons tous descend du singe, essaie
parfois d'y remonter
Librairie Maritime Outremer
26, rue Jacob
F-75006 PARIS
Tél : +33 1 42 34 96 60
Email : librairieoutremer@wanadoo.fr
INSERE 20/05/16
NIEUWS NIEUWS
ENLEVE 20/06/16
Look to your seafarers
At the recent Singapore and Hamburg conferences how to manage the human element
both on board ship and onshore dominated proceedings.
For example, speaking in Singapore, Arvind Sharma, Managing Director, Platinum Ship
Management and formerly with Bernhard Schulte Shipmanagement posed the questions Do the crew add to the complexity or are they the victims? Are we really utilising our
human resources effectively? Can we harness the ‘power of many’ to reduce complexity
and make our lives easier?
He said that increasing complexity is normal. Complexity on board ship and in every part
of life, has been increasing from ancient times and will continue to grow. We need to
facilitate increased capabilities in our people to better handle this increasing complexity,
so that inefficiencies are avoided.
He described efficiency as the sustained delivery of services of high quality, using the
minimum money, resources, and time. “It means reducing operating costs in every area
of ships operations without compromising on quality or standards,” he said.
“If we agree that the critical cog in the wheel in our drive for greater efficiency and
reliability, is the human element and can we also agree that it is vital that we learn how to
motivate and manage that vital resource to get the best out of it ?” he asked the audience.
There is a tight relationship between employee motivation and organisational efficiency.
Employee motivation is enhanced by empowerment and recognition, he said. A good
organisational culture, driven directly by the top leadership, positively impacts staff
retention, motivation, ownership and the desire for continuous improvement.
A positive and no blame culture of respect, empowerment and recognition will lead to
transparency, trust, dedication and ownership in employees and results in 
Long term retention.

High staff satisfaction rates.

Improved job performance.

Improved safety and loss prevention. Once created, a positive culture needs to be
maintained with continuous monitoring and intervention.

It requires high retention and increasing number of staff rising through the ranks.

It requires continuous education, of ship and shore staff, not only in technical
subjects, but also in soft skills.

It requires conscious empowerment of employees in every position.

Finally, it requires regular recognition and positive reinforcement of jobs well done.
To increase efficiency and cost effectiveness in today’s increasingly complex environment,
skilled, experienced and motivated staff on board and ashore are essential.
The starting point is a positive culture in the organisation, which respects and empowers
their employees at every level and gives recognition and reward for good results.
Once created, this culture needs continuous efforts to maintain its level, including regular
interventions to improve attitude and soft skills of both ship and shore staff.
“Our challenge as managers and operators is not to manage the ships directly, but to
manage the seafarers. These motivated, capable and committed seafarers will then
manage the vessels in the best way possible,” he concluded.
In Hamburg, Martin Shaw, managing director of Marine Operations and Assurance
Management Solutions (MOAMS) explained the dangers of over complexity.
He said that a complex organisation would reduce revenue, increase costs, thus reduce
profitability. In addition the risk factor is increased and complexity will also cause confusion
and de-motivate the staff, possibly leading to a company collapse.
He then asked - can you deal with complexity?
The oil market, tanker market and regulatory structure are complex - you have to deal
with it. You have choices and options at the company level.
Leaders need to think strategically and maintain situational awareness, so leave the space
to think and direct, lead and manage.
In dealing with complexity, manage the external parts and structure your business for
simplicity, designing it into the organisation. You need to be able to change things quickly,
so you need resilience, good communications and understanding and importantly, get the
right people, train them, retain them, motivate them, believe in them.
Finally, take a look at yourself - are you adding complexity?
Involve the crew
Serving officer, Pascal Geisen, who has been o Chief Officer on board oil and
chemical/product tankers since 2011, posed the question in Hamburg- can we involve the
ship’s crew in drafting new procedures and improving the ISM system? He advised the use
of cloud-based systems offshore and facilitating communications with head office and avoid
prejudices.
It is often heard that - ‘managers don’t know the reality on board’ and conversely ‘seafarers don’t care enough’.
Taking the shore staff, Geisen asked; “How many of your Captains and senior officers do
you know personally? Do you know the daily routine on board? Do you know the hierarchy
of ranks on board and their responsibilities?
What is your preferred means of communication?”
Turning to seafarers, he posed the questions; “Do you know the key personnel in the office?
Do you know how standard processes are handled ashore? Do you know how the office is
organised (departments)? What is your preferred means of communication?”
When new procedures are introduced, shipboard operations manuals tend to grow and
result in an increase in administrative workload. Procedures are often designed to comply
with regulations and to provide evidence of compliance. He described this as - procedures
versus seamanship and common sense.
He thought that the acceptance of newly introduced procedures among seafarers was often
very low, as they were not included in the original drafting. Crew feedback is often too
late, as the procedures have already been approved.
Geisen recommended that the crew should review new procedures on board during
operations. The involvement of seafarers could be established during meetings ashore,
superintendent
visits
on
board
and/or
via
electronic
media.
Communications is a key issue due to the crew’s different backgrounds. There are often
difficulties in communication in a non-native language. The processes, structure and
responsible persons ashore are often not well known by the seafarers. Another problem is
a loss of motivation due to responses taking too long, while the crew is sometimes scared
of reporting problems to the office or superiors on board.
The means of communication can also cause problems, such as email where there is limited
access, the exchange of larger data packages often failing or only usually accessed by the
Master. By phone there can be language barriers, different time zones/weekends and it is
often very expensive at sea. Instant messaging is rarely used, usually on private devices
but is the first choice for private communications with relatives/friends.
By using cloud-based communications a seafarer can work offline and synchronise
whenever a connection becomes available. Different modules/applications can be
implemented and by using this method, the user can create the content, as well as reducing
paperwork. There is a risk of redundancy when not properly incorporated in a company’s
ISM and it also depends on powerful IT infrastructure/broadband internet.
There are many modules in use that can be saved in a cloud-based infrastructure,
including:

Noon reports.

Bunker orders.

Crew list and planning.

Crew assessment reports.

Rest hours records.

Payroll.

Disturbance reports.

Near miss reports.

Risk assessments.

Blogs.
Useful functions include:

Purchase orders and stock control.

Weather reports and routeing.

Rest hours with overtime records and watch planner.

Risk assessments with work permit.

Forum or port database.

Document archive.

Instant messaging and/or chat function.
SMS problems
In both Singapore and Hamburg, Alex Kahl, of Chemical Marine highlighted the problems
with the Safety Management System (SMS).
SMS procedures and policies were of a reasonable size at the beginning but have since
been growing, he said. Illustrating the growth pattern he outlined adding procedures,
inspections, management reviews, audits and new regulations.
An SMS is compiled by the shore team but when was the last time that person sailed on a
company’s vessel to verify that procedures were correct and practical?
When writing or updating an SMS, use easy and simple language. It must be taken into
consideration that an SMS is written for the people on board company vessels and not for
a third party. Avoid duplications - duplications have been noted in many SMS, which makes
updating of procedures very difficult and will cause contradictions over time. Avoiding
contradictions - contradictions and conflicting statements must be avoided as they will
force the crew to deviate from the procedures.
If the crew is forced to deviate from a procedure because it is not correct, you are loosing
control over the SMS, he warned. There is a danger in just copying and pasting, as some
important items might be copied and included in the SMS. However, in general it is
important to include the company’s interpretation into the SMS, rather than just a simple
copy/paste of the documents, also due to the wording.
Likewise, copy and pasting of industry guidelines should be avoided for the same reasons,
while the copying/pasting of others and third party procedures should also be eradicated
as it is essential to understand that procedures are written for the individual company's,
vessels and trade. Although similar procedures might be applicable to a certain extent,
they will never completely fulfill your company requirements, he warned.
Electronic SMS can be a great system if it is user-friendly and if it is controlled. If not, the
system becomes out of control, leading to contradictions and duplications. What about the
size? It might be useful to print it out annually to measure its size. If it looses focus then
there is a need to conduct a risk assessment. In addition, a company circular has only a
short time value if not embedded in the SMS.
Why are procedures not followed?

Manuals and procedures are too complex.

Procedures are disconnected from the work on board.

Wrong interpretation of industry guidelines.

Too many forms or poor layout of forms.

Too many changes of the SMS, due to inspections, audits, reviews, etc.

Lack of training in the company’s SMS.

Procedures are too difficult to understand.

Lack of adopting guidance from the seafarers.
The following could be taken into consideration to refresh the SMS:
o
Masters’ review.
o
Consolidating procedures.**
o
Simplify and reduce forms.**
o
Embedding circular letters in the SMS.
o
Third party management review.**
o
Re-write the SMS.**
o
Keep it simple.**
o
A company hazard register.**
o
**Might require support from a consultant A Master’s SMS review,
performed annually, is a very valuable input to the SMS if done correctly
(unfortunately, it is not always undertaken seriously).
During the time that more and more procedures are included in the SMS, a review of the
system and consolidating procedures could reduce the SMS by some 100 or so pages in
some cases. In addition, simplify forms in order that they can be completed and understood
easily and review the forms annually to see if they are still needed. Circular letters are a
popular method of including new guidance and processes in a short space of time. However,
after 12 months the circulars should be either embedded in the SMS or removed.
A third party management review performed by a consultant might provide an independent
view of the SMS. After a couple of years, the SMS has been updated several times and at
a certain point in time, a company might consider re-writing it.
Keep it simple with procedures covering a couple of pages, Kahl advised.
Operating risks
Capt Kuzman Popov, MSQ& operations manager, DS Tankers outlined some of the risks
involved in operating vessels. He started his list with the Polar Code before moving on to
ECDIS being used as the primary means of navigation. He stated that the training
standards are an area of risk, as is data misinterpretation and an over reliance on enavigation. He said that manual navigational aids and the skills to use them were still
crucial today.
Another problem looming was cyber security, which, if a vessel’s technical systems were
attacked, could lead to a catastrophic disaster. Ports and terminals were also potential
targets, Capt Popov said. Companies must identify appropriate strategies to ensure their
business continuity.
As for best practice, he said that embarking on a comprehensive company restructuring
project was usually not practical. Success can be achieved by adding ad hoc measures of
good practice.
In a recent survey, some 77% of the respondents claimed that they were implementing
organisational or structural changes, while 90% said they were actively seeking best
practice. Two thirds of the companies were comparing operations with their competition,
while 38% were hiring external consultants.
He then gave examples of best management practice in crewing, saying that investment
should be made in culture and teamwork and in crew welfare packages. Successful safety
culture projects are essential in providing the highest safety standards on board. Such
projects may become successful only after good training and an understanding of the crew.
Proactive crew with regards to implementing highest safety standards is the key to success.
Therefore, the shipmanagers should develop a strategy and best practice to organise
training, seminars, conferences and briefings for the crew, in order to verify their
compliance to the market and oil majors’ demands, plus the right knowledge and
proactiveness in implementing the best safety culture standards on board.
Appraisal and training should be integrated and management systems developed. Training
should be undertaken by using a combination of personal and CBT systems. Finally, he
said that an integrated crewing solution should be adopted both on board and onshore.
As for technical issues, Capt Popov said they should be organised around processes, such
as a state-of-the-art planned maintenance system. Master data should be harmonised and
centralised. Managing drydockings is a key element of a maintenance budget, as is paying
attention to hull maintenance and the embracing of condition based monitoring.
Other Key elements for success of the shipowners and management companies today are
positive outcomes of SIRE inspections on board and office TMSA audits. Positive results are
achievable after implementing the best management practices and prioritising the
enhanced safety culture standards on board and in the office. Proactiveness and motivation
are the key words and elements for this. Proactive and motivated crew on board and
proactive and motivated office personnel will succeed in satisfying any standard imposed
by the oil majors and international or local legislations. Such personnel will succeed in
achieving high maintenance standards and positive vetting and PSC inspection results even
on old ships and within the available budgets.
Owners and managers just need to respond to the challenges of the market in an
appropriate way. It is the same way of thinking as the old Samurais -‘The Sword has to be
more than a simple weapon, it has to be an answer to life’s questions!’
INSERE 22/05/16
NIEUWS NOUVELLES NEWS
ENLEVE 22/06/16
BALLAST WATER MANAGEMENT UPDATE
The recent ratifications of the Ballast Water Management (BWM) Convention during
November 2015 has brought the numbers close to the required percentage of the world
tonnage for entry into force. The number of IMO member states that have ratified the
Convention now stands at 47, well above the required 35.The world tonnage figures are
derived from data supplied to the IMO Secretariat by IHS Maritime & Trade.
The data is normally provided to IMO twice each year, as at 31 December for treaty
purposes, and as at 30 June for determining IMO Member States’ financial assessments.
Those assessments are based, in part, on fleet tonnage figures supplied to IHS Maritime &
Trade by IMO Member States, who have until October 31st each year to confirm their
tonnage. Because of stringent IMO deadlines for determining financial assessments, those
tonnage figures sometimes can't be verified prior to submission to the IMO Secretariat.The
compiled 2015 assessment tonnages, released to IMO’s Member States on 16 December
2015, contained some unverified data, but also revealed that the conditions for entry into
force of the BWM Convention might have been met, by a very small margin. The IMO
secretariat was aware that between June and November 2015, some Parties to the BWM
Convention gained tonnage and others lost tonnage. In light of this, IMO Secretary-General
requested a complete verification of tonnage data as at the time of the deposits by
Morocco, Indonesia and Ghana prior to determining whether or not the BWM Convention
had indeed met the entry-into-force requirements.
IHS Maritime & Trade has worked on verify the tonnage figures since that request and the
verification process has not yet concluded. The precise figures will be announced after the
verification process is complete, which is likely to be early next year (2016). If the
ratifications up to November 2015 add sufficient tonnage to reach the 35% of the world
tonnage then the BWM Convention would enter into force on 24 November 2016. The IMO
Secretary-General calls on the shipping industry to take action to install necessary
equipment and establish operational procedures in accordance with IMO regulations and
standards, so that the BWM Convention can be effectively implemented upon entry into
force.
Contact marine@bimco.org
INSERE 24/05/16
NIEUWS NIEUWS
ENLEVE 24/06/16
Manning - A foreign employers perspective
With manning and training in almost every shipowners and managers thoughts at present,
we look at a few pointers as to way ahead from an employers viewpoint and at the Indian
seafarer in particular.*
Aseafarer’s employers expectations are competitive costings; a certificated, qualified and
well trained person meeting all the statutory requirements; of a good quality and able to
meet various industry requirements; a motivated and committed person able to help
maintain and operate the vessel safely, efficiently and economically. He or she also needs
to the loyal to the employer, who will achieve a good retention rate.
Today there are risks, such as violation of the company’s drugs and alcohol policy and
MARPOL; accidents/incidents which result in financial claims and reputation damage; theft
of cargo and/or bunkers and on board disharmony and dismissals, due to personal issues
and lack of team work.
There are also challenges in the availability of quality crew, such as lack of practical
training; a reduced frequency of machinery maintenance, due to technology
advancements, resulting in reduced hands on and real time experience on board, also the
level of training should be taken into account, as well as work practices, cultural and social
issues in the case of a mixed nationality crew.
The
perceived
imbalance
in
supply
and
demand drives up
wages, leads to
faster promotions
and
the
consequential
reduction
in
experience,
leading to a drop
in quality. Another
problem is that a
false sense of job
security leads to
an
indifferent
attitude and a
drop
in
commitment and
loyalty.
It is important for
an employer to position him or herself correctly in the market in terms of wages. Spiralling
wages, due to shortages and poaching needs to be kept under control. An efficient use of
the experience matrix should be engendered through forward rotation, planning and well
though out promotions.
It is recommended that officers holding a COC, but without experience in rank, may be
appointed as junior watch keeping officers where an extra navigating or engineering OOW
is required on board, over and above the safe manning requirement and/or normal working
complement. A talent pipeline and a sense of belonging will positively impact on retention.
It is advisable to plan any crew changes at economical ports, as it can be expensive in
some locations, especially if long distances are involve. Expensive medical treatment and
repatriation can occur if the pre joining medical is inadequate. There may be a need to
strengthen the PEME in line with P&I club recommendations.
Loyalty to an organisation involves loyalty to its values, policies and people. An
organisational culture that wins the loyalty has to be built. Leaders build the culture by
consistently exemplifying and communicating the culture’s high values and right purposes.
Senior leadership is committed to compliance. Only when those at the top lead by example
will an organisation successfully implement a new policy. Policies are to be strictly enforced
at all times and specially in testing times.
Everyone understands the business implications of what a major ethical violation can do
to an organisation.
However, most people don't turn it around to understand the positive impact ethics can
have on employee loyalty.
As for personal growth opportunities, one of the major reasons officers leave a company
is because they are not promoted when that promotion is due. Seafarer promotions in a
timely manner are crucially important to achieve his or her steady career graph, as well as
to improve the retention rate. Formal mechanisms/procedures need to be in place to
arrange seafarers’ promotion at reasonable notice when the industry criteria of seatime,
along with the required recommendation, has been met.
Once the notion that seafarers are a company’s greatest assets, a commitment to their
career development becomes that company’s utmost responsibility. This also valid for
offering seafarers positions ashore.
Today, every seafarer going to sea is very particular about ensuring that he is joining a
safe ship. Substandard vessels directly adversely affect a seafarer’s retention. A company
needs to be vigilant and careful while choosing vessels under its management.
While aggressively seeking growth of the business, the quality of the clients & vessels we
choose to work with must also not be ignored. This will go long way in gaining trust of the
seafarers.
Loyalty
Recognition and appreciation of loyalty is also necessary as knowing and staying in touch
with seafarers is extremely important. A letter of recognition and honour, signed by the
CEO/president of the company should be sent to all those seafarers who have completed
10 years with the company.
Considering today’s seafarer’s working span at sea, this is an achievement which should
be recognised. A felicitation with a token of recognition and respect will go long way in
keeping the thread of loyalty intact.
As
a token of
management’s
recognition of the
importance of the
seafarer’s personal
and family life, a
company
might
bear the cost of
insurance required
for the families of
those on board.
Send greetings on
important
days,
such
as
birthdays/anniversaries, etc.
The problem with trying to win loyalty through ownership and retention programmes is
that these are attempts at buying what must be earned and built. Loyalty should be an
integral part of a person’s personality, developed through trust and mutual respect.
Understood this way, then loyalty cannot be bought. It is given to those organisations,
persons, that have earned it by their commitment to worthwhile values, purposes or
policies.
As for seafaring as a career option for aspiring Indian youngsters, this is losing it’s
popularity in the main cities, as there is alternative career options in these cities and a lack
of awareness in the smaller cities.
Another problem is that here is oversupply of pre-sea training with little or no availability
of ‘on board’ training slots (cadets) for those candidates who are not sponsored by a
shipping company.
There is also the negative publicity surrounding seafarer criminalisation and the threat of
piracy.
Quality important
The quality of pool seafarers is also important.
For example, know your staff’s stengths and weaknesses ashore and at sea; assess job
performances against key performance requirements; identify strengths and areas
requiring improvement; introduce training and personal development to improve
performance and/or prepare for promotion; provide reliable/valuable sources to decide on
promotions; involve ship and shore management to improve safety, compliance and
personnel seagoing standards and have access to well-equipped training centres for
practical/hands on training imparted by a quality faculty.
V Ships operates its own resource management training and its objectives are to
understand the causes of accidents, the factors that contribute to quality performance and
the relationship between them in the operational context; to gain an increased appreciation
of the relevance of human factors in the maritime workplace and to gain an understanding
of the necessity for communications, leadership and teamwork, situational awareness,
planning and decision making and appreciate the interdependent relationships between
these elements.
Mentoring
There is a need for on board mentors as according to the experts, up to 70% of skill is
learnt through experience. It is believed that the maritime skill pool is not being passed on
in the way it used to be, that is by mentoring.
A typical reaction by senior officers is - “All this mentoring business is all very well but how
am I going to find time for it? I am so busy that I just don't have time to sit and teach the
officers, primarily what they should already know.”
Mentoring can have a significant effect on team building. It leads to confidence between
individuals, as they come to understand others capabilities and needs. It is excellent at
breaking down barriers between individuals and this in turn leads to the cohesion of a
stronger team. Successful mentoring and transfer of knowledge also leads to a reduction
in accidents and incidents.
In conclusion, to increase efficiency and cost effectiveness on today’s technologically
advanced vessels, it is necessary to have dedicated, experienced and motivated staff on
board and ashore.
This can only be achieved when a positive culture driven by the high quality management
exists in the organisation.
Continuous efforts are required to maintain this culture by focusing on the attitude and
soft skills of both ship and shore staff.
All the training, motivation and positivity can give results only if the shore staff’s approach
towards the seafarers is blame free.
TO
* This article was taken from a presentation made by By Capt Vaibhav Dalvi of V Ships at
Tanker Operator’s January Mumbai tanker conference.
INSERE 26/05/16
HISTORIEK HISTORIQUE
ENLEVE 26/06/16
Nos armements de navires de mer au
XlXème et au XXème siècle à Ostende et à
Nieuport
Armements ostendais et à Nieuport au XXème siècle
Ostende de 1870 à la fin du siècle
Nouveaux bassins
Déjà en 1857, notre futur roi
Léopold II, qui était souvent à
Ostende où le gouvernement avait
pratiquement mis une ancienne
malle à sa disposition, s'était plaint
au Sénat de la lenteur des
améliorations du port. Cette année
fut entreprise la démolition de
l'enceinte de Nieuport, ce qui
permit de développer les plans de
la future Nieuport-Bains. Mais il
faudra attendre le début de son
règne en 1865, pour que l'on commence à démolir les fortifications autour d'Ostende. En
décembre 1868, on put combler le fossé Est et détruire les ponts qui avaient été érigés
dans la continuation des rues principales, entre les murs d'enceinte et la digue du chenal.
On put ainsi doter l'avant-port d'un nouveau bassin pour les bateaux de pêche, en
remplacement de l'ancien bassin à flot, totalement atrophié et dont un bras ne servait plus
qu'aux écluses menant aux bassins du commerce. Il fut baptisé Bassin des Pêcheurs ou
Visserijdok et tout au long fut créée une large avenue, le Quai des Pêcheurs. Penchonsnous sur un plan de cette époque ainsi qu'une carte des rues et de leurs changements de
noms qui nous ont aimablement été fournis par le chercheur Mr Claude Declercq. En 1870,
l'ensablement était à nouveau tel que les malles qui n'avaient alors pourtant que 7 pieds
de tirant d'eau ne parvenaient plus à atteindre le port et devaient embarquer et débarquer
leurs passagers en rade ! Par ailleurs, le port commença à recevoir ses premiers chalutiers
à vapeur dont le tirant d'eau était trop profond pour le bassin à marée; on leur attribua
temporairement quelques places au bassin de commerce. On trouva enfin aux budgets de
1871 et 1872 des crédits destinés à améliorer le port, la gare et le nouveau quai pour les
paquebots. Le creusement du Bassin des Pêcheurs ne fut possible que grâce au
déplacement simultané du Quai des Paquebots à l'est du premier bassin. Or, pour ce faire
et rendre possible un lien direct entre le chemin de fer et les malles, il fallut obtenir l'accord
des autorités militaires pour détruire non seulement une série de bastions au sud de la
ville mais aussi l'ancien arsenal. Leurs terrains au sud-ouest du troisième bassin furent eux
aussi mis à la disposition du chemin de fer On combla alors la crique américaine et une
nouvelle gare fut construite au sud du deuxième bassin , les voies furent prolongées le
long du premier bassin, en passant devant l'entrepôt, jusqu'à une nouvelle station
maritime construite sur la rive du chenal de l'avant-port, là où une bande de terre séparait
l'ancienne crique américaine du bassin à flot. La Zeestation' fut inaugurée le 20 février
1871 et les voies de chemin de fer furent prolongées en juin de cette année. Les nouveaux
bassins du commerce et de l'estacade constituaient des lieux de promenade pour les
touristes en 1873-75; leurs emménagements ne furent définitivement terminés qu'en
1885. Les toutes premières photos de type 'carte postale' témoignent de cette époque. Les
chantiers navals furent déménagés à l'ouest du troisième bassin du fait de toutes ces
transformations. La rue qui les longeait fut baptisée rue de Stockholm. Le quai Sud du
deuxième bassin devint la Place de la Station et celui au sud du premier, le Quai de
l'Entrepôt. Le Quai de l'Empereur qui bordait au nord les trois bassins garda son nom et
fut prolongé à l'ouest par le Boulevard du Midi (actuellement l'Alfons Pieterslaan). Au sud
du premier bassin, on élargit sérieusement le bras d'eau (afleidingskanaal) qui menait au
Verbindingsdokken, le long de la nouvelle `Zeestation' ou station maritime, où fut installé
le débarcadère pour les paquebots. Notons encore pour nous y retrouver, que la Rue du
Carénage ou Werfkaaistraat est aujourd'hui la Hendrik Serruyslaan et que le Kielkaai n'était
pas un vrai quai mais la Kalfateerstraat au nord- ouest du troisième bassin, derrière le
Quai de l'Empereur Le coin qui avait servi pendant longtemps aux huîtrières deviendra le
Brandarisdok, suivi du Verbindingsdok. De 1877 à 1879 fut encore créée une nouvelle
minque, au sud du Bassin des Pêcheurs et une ligne de chemin de fer fut posée, qui
contournait le Werfdok pour y aboutir en longeant le Keizerskaai. En dépit des problèmes
récurrents de tirant d'eau, les journaux font régulièrement état de grands navires qui font
escale au port comme ceux qui revenaient d'Amérique du Sud chargés de nitrates. En
1879, à la demande de Rau, Van den Abeele & C°, on fit construire cinq hangars entre le
Keizerskaai et l'Amsterdamstraat pour servir de dépôts de guano; ils furent par la suite
loués ce 1887 à 1912 à Deweert, importateur de bois. Quand en 1912 ce dernier
déménagea au Houtkaai les hangars furent démolis après une décision du 20 mai 1913.
On trouve à ce moment un certain Auguste Pede, actif dans le domaine de la pêche à
Ostende. En 1876, il s'associa avec les Lauwereins et nous avons trouvé un nombre
croissant de bateaux de pêche enregistrés par la maison Aug. Pede-Lauwereins entre 1876
et 1881 , c'est ainsi que le 28 juillet 1879 les journaux firent état de l'acquisition par cette
maison du trois-mâts goélette russe Medea, amarré au deuxième bassin à Ostende. Mais
en 1880, le problème de l'ensablement restait le plus crucial et n'était toujours pas résolu;
et nos malles devaient toujours se contenter d'arrivées en rade. Ce n'est qu'en 1886 que
des études de rénovation du port furent entreprises par le Bestuur der Bruggen en Wegen'
Mais en termes de réalisations, on ne peut qu'enregistrer en 1889 le déplacement du
Westerstaketsel plus à l'ouest pour l'élargissement de l'accès au port; cette estacade fut
appelée également 't Hoofd' par les Ostendais. Les estacades se prolongeant loin dans la
mer datent donc de cette époque.
Au cours de la première
partie de cette étude, nous
avons
longuement
présentée
la
Mathilde;
rappelons que ce troismâts fut désarmé en 1880
et rayé des listes au cours
du premier semestre de
1881. Dès lors, il ne
navigua plus et fut utilisé
comme
navire-école
stationnaire,
sans
gréement,
amarré
au
deuxième
bassin
du
commerce; il y était encore
en
1896.
Notons
les
bourgmestres
qui
se
succédèrent après le décès
de Van Iseghem, de 1882 à
1912. Deux noms nous
interpellent
car
ils
appartiennent
à
des
familles
d'armateurs
Charles Janssens, de 1882
à
1887;
Jacques
Montangie, de 1888 à
1892; et Alphonse Pieters
de 1892 à 1912. En 1890,
un schéma du port montre
l'existence d'un petit `Zeewezendok' en face de la minque, au sud du `Spuikom'; les
bâtiments de cet établissement s'échelonnaient jusqu'à la route qui passait maintenant par
l'écluse Demey, à l'entrée du nouvel avant-port. En 1893, on approuva enfin une série de
nouveaux grands travaux, mais des palabres incessantes suivirent et ce n'est qu'en février
1898 qu'eut lieu la première adjudication. Une convention avait cependant déjà été signée
le 10 octobre 1894 entre la Ville d'Ostende et l'État, qui définissait les grands travaux à
entreprendre. Ils étaient ambitieux et comprenaient entre autres la suppression de l'ancien
`Spuikom français', de son écluse, et de l'écluse militaire; la création d'un arrière-port et
de nouveaux quais pour les paquebots; un nouveau `Spuikom'; le creusement du Vlotdok'
, une écluse de mer à créer entre le chenal et le nouveau Vlotdok; un `Houtdok'; un
`Zwaaidok' au sud du Vlotdok; et enfin une écluse de bassin entre le 2waaidok' et le canal
d'Ostende à Bruges. Les premiers travaux furent entamés à la fin de 1897 et le 19 juin
1898 le roi Léopold II posa la première pierre des nouvelles installations maritimes. La
première pierre de la nouvelle écluse maritime, l'écluse Demey, du nom de l'ingénieur, fut
elle aussi encore posée en 1898. On pouvait ensuite s'attaquer à l'estuaire, au creusement
du nouveau `Spuikom' et des docks dans l'arrière-port. C'est Emile Coppieters qui fut
engagé dès 1890 pour mener à bien ces grands chantiers portuaires. Il fut associé pendant
huit ans à trois autres entrepreneurs mais allait continuer à travailler à l'amélioration du
port jusqu'à l'aube de la première guerre mondiale.
Relevons quelques chiffres en fin de siècle, datant de 1897 Cette année, 7.253 navires
entrèrent dans nos ports pour un total de 7 186.355 tonnes. Évidemment, c'est Anvers qui
détenait le record absolu avec 5.110 navires pour 6.182.274 tonnes. Gand était notre
deuxième port le plus important avec 106 voiliers pour 36.590 tonnes et 873 navires à
vapeur pour 566.772 tonnes, chiffres assez comparables à ceux d'Ostende avec 95 voiliers
pour 30.589 tonnes et 698 vapeurs pour 293.707 tonnes, sans toutefois compter le trafic
généré par le service Ostende-Douvres. Par ailleurs, le rapport de la Ville fait fièrement
état, en 1898, de deux navires entrés avec un tirant d'eau de 64 dm et deux de 65 dm;
c'étaient des barques ou trois-mâts d'une portée de 1.500 tonnes environ.
De 1900 à 1922
Le 4 septembre 1905, Léopold II vint inaugurer le nouveau port. Un plan datant de cette
année montre l'ampleur des transformations et en particulier des agrandissements, qui
dataient de 1904, dont le `Vlotdok', le `Houtdok', le Quai Cockerill et la nouvelle écluse.
On parlait dès lors des 'nouveaux bassins de commerce' à l'arrière du pont de Smet de
Naeyer Vu l'ampleur des transformations, une deuxième convention avait été signée en
1902, qui fut encore suivie d'une troisième en 1912, deux ans après l'érection de nouveaux
murs de quais. Les derniers plans que nous avons analysés pour cette période sont ceux
de 1894 et un dessin de 1906 intitulé 'Ostende, Reine des plages' On y voit l'enfilade des
nouveaux bassins de l'arrière-port, plus à l'est que les anciens, et longés par le chemin de
fer qui mène à la 2eestation' Le nouveau `Spuikom' viendra tout à l'est du complexe
portuaire, là où on trouvait auparavant un petit réseau de ruisseaux longeant le canal de
Bruges. Relevons encore l'existence du bassin Brandaris, enfin prêt en 1908. Consultons à
nouveau un almanach, celui de 1913, pour y rechercher quelques adresses. On y remarque
que le nouveau bourgmestre d'Ostende était Auguste Liebaert (25/7/1912-6/1919); depuis
1901, le chantier de Jan Borrey est situé au n° 109 de la Langestraat (et non plus au
Boulevard du Midi); les armateurs Edouard Verbiest, rue du Cercle, 33 et Léopold Verbiest,
Quai des Pêcheurs, 42; la veuve d'Emile Nefors, armateur qui vivait toujours en 1908, au
Quai des Pêcheurs, 28; Auguste Janssens, armateur, habitant au n° 6 de l'avenue de Smet
de Naeyer; l'armement Albert Vroome, au n° 21 du Parvis SS Pierre it Paul , John Bauwens,
avenue Henri Serruys, 62 , Henri Deweert, conseiller communal, installé Boulevard
Alphonse Pieters; l'armement Handel 8s Scheepvaart au n° 42 de la rue Euphrasine
Beernaert; et enfin. Eugène Rau, armateur et conseiller communal, au n° 71 de la rue de
l'Est, mais dont les bureaux de l'armement étaient au n° 57 En 1913 fut encore achevé un
grand dock de réparations de 210 mètres de long, mais le projet de 1912 ne sera
entièrement exécuté qu'en 1922. Dans l'almanach de cette année, on trouve mention de
l'armement Veuve Emile Nefors au Quai des Pêcheurs. Curieusement, à la même adresse,
on trouve aussi un nom orthographié `Peere' que nous pensons être les deux armateurs
Auguste et Léopold Pede. En 1918, on trouve encore l'adresse de l'armement S.A. Belge
de Transports Maritimes, au n° 5 du Quai Brandaris.
Dans notre chronologie de la vie des armements, nous relatons les affres de la première
guerre mondiale. Analysons ici plus en détail quelles furent les conséquences pour nos
ports côtiers. En 1919, les responsables du port d'Ostende espéraient lui rendre sa vocation
première de port de vitesse vers l'Angleterre, et de pouvoir reprendre au plus vite les
importations de charbons anglais , mais encore celles des nitrates et des céréales, dont le
maïs d'Argentine comme c'était encore le cas en 1913, ainsi que de glace norvégienne. À
ce sujet, mentionnons à nouveau le fait que la barque Valentine de l'armement anversois
de Decker-Cassiers était passée en mains norvégiennes en 1877, et navigua ainsi encore
pendant 35 ans pour la Stabbestad Ice C° de Kragerô. Cet armement assura le transport
de glace naturelle de Kragerô à Ostende, qu'il livrait initialement à la maison Desforges
puis chez Casteels-De Coene. En 1904, on fêta la centième arrivée du navire à Ostende;
en 1912, son 150ième voyage ! Les registres du Bureau Veritas ne le mentionnent plus
après 1913 sinon comme 'allège' La fin de la Valentine fut donc misérable, mais après une
carrière bien remplie de non moins de 48 ans, fait exceptionnel pour une barque de cette
époque.
Le
premier
bourgmestre
d'Ostende
après
la guerre fut
Edouard
Moreaux, qui
remplit cette
fonction du 7
janvier 1920
au 18 mai
1940.
Il
s'attaqua par
priorité à la
reconstruction. Une brochure du Touring Club de Belgique (la Mer, guide du touriste et du
villégiateur au littoral belge') nous montre l'état de nos ports d'Ostende, Zeebruges et
Nieuport après la guerre, en 1922, et en particulier les destructions nombreuses qui eurent
lieu dans ce dernier port. Dans un texte ajouté à la liste officielle de 1920, on pouvait lire
qu'à Ostende les installations portuaires, bien qu'elles eussent été sérieusement
endommagées pendant la guerre, étaient déjà entièrement reconstruites et que de
nouveaux murs de quai étaient encore prévus; le mouillage maximum autorisé était de 8
mètres. Cependant, à Nieuport qui « n'avait cessé d’être dans la ligne de feu d'octobre
1914 à octobre 1918 », le port n'était « pas encore en état de reprendre son trafic d'avantguerre ». Nos feux de Nieuport et d'Ostende avaient été détruits pendant la guerre; les
autres, à La Panne, Blankenberge et Knokke, étaient en ordre de marche en 1922 , à
Knokke, les feux du phare n'étaient pas encore rallumés en 1921. Nous avions également
en service les bateaux-phares Wandelaar au large de Blankenberge, et Wielingen à la passe
du même nom et au Ribzand, au large de Heist et Zeebruges. Les dégâts les plus
irrémédiables et catastrophiques eurent lieu à la cité balnéaire de Westende-Bains qui était
pratiquement rayée de la carte. À Zeebruges, les travaux de déblaiement entrepris depuis
1919 n'en finissaient pas. Ce n'est qu'à partir de 1921 que l'on put ouvrir le port à une très
timide navigation maritime; le tonnage total du trafic ne fut que d'environ 200.000 tonnes
cette année. Remarquons sur la carte le banc formé dans la rade, les ports d'échouage et
de carénage et la darse au canal de Bruges. Nieuport était encore en fort piteux état et
toujours réduit à la pêche seulement, impraticable par gros temps. De plus, l'entrée du
port qui n'était large que de 80 mètres entre les musoirs des estacades était fort
dangereuse à marée basse, du fait de hauts-fonds dans le chenal et une barre au large.
Les écluses au fond du port étaient toujours en reconstruction et on ne pouvait donc plus
pratiquer de 'chasses' Enfin, des dragages étaient toujours en cours dans le chenal,
encombré d'épaves.
À Ostende, les chasses n'étaient plus pratiquées non plus mais l'épave du Vindictive avait
été amenée le long du quai. On avait 2,5 pieds d'eau aux bassins d'échouage, de carénage
et de la Marine, 3 au bassin à flot et respectivement 5,6 4,7 et 3 pieds dans les anciens
bassins. On remarque sur la carte que le premier bassin, par celui de Brandaris, donne
dans le canal de Bruges et son écluse; l'avant-port et le nouvel avant-port avec le Quai
des Paquebots qui s'étend jusqu'au bassin de chasse et l'arrière-port, puis le canal. La gare
maritime dans l'avant-port était intacte. On remarque aussi l'enfilade des bassins à flot
avec une profondeur de 8,5 pieds, suivis du Bassin au Bois et du Bassin d'Évolution avec
son slipway. Ce dernier bassin aboutit au canal de Bruges. Enfin, le bassin à sas avec ses
2 écluses donne lui aussi dans le canal. La brochure officielle vante en 1922 les espaces
réservés au trafic du bois deux quais au bassin à flot, avec des terre-pleins de 100 mètres
de large; et un dégagement de 300 mètres au Bassin au Bois. Un article de l'Écho d'Ostende
rapporte en 1919 l'entrée du navire brésilien Jonzeiro, venant de Russie chargé de bois
pour Snauwaert; il mesurait 350 pieds de long pour une charge de plus de 6.000 tonnes;
il fut le premier de cette taille en consignation d'un seul destinataire et dont la cargaison
était fournie par un seul chargeur Le Vindictive était toujours dans le chenal mais on
pouvait passer sans problèmes , notre grand navire fut déchargé au nouveau bassin à flot.
À la fin de cette période, en 1922, fut prise la décision d'en finir avec le fameux
`afleidingsvaart' et le bassin Brandaris ne sera comblé qu'en 1937.
De 1923 à nos jours
Notons encore deux adresses d'armements en 1923 et 1927 la maison Ramet & C°, dont
les bureaux étaient sis Rue du Quai, 53 et la S.A. Noordzee qui était établie au n° 31 de la
Rue Sébastien. Les discussions relatives au comblement du troisième des anciens bassins
datent de 1926 et en 1928 le port d'Ostende fut encore agrandi. Immédiatement après la
fin de la première guerre mondiale, on commença à creuser un nouveau Vissersdok et une
nouvelle minque fut construite du côté du phare. Mais ce n'est qu'en 1934 que ce nouveau
port de pêche fut opérationnel et qu'en 1936 qu'on construisit une écluse à caissons pour
l'accès au bassin à flot, qui fut agrandi (terminé en 1938). Les déménagements des
chantiers ne se firent qu'après la guerre. Du 18 mai 1940 jusqu'en 1952, c'est Henri
Serruys qui fut bourgmestre d'Ostende avec cependant une interruption d'octobre 1941 à
septembre 1944 durant laquelle se succédèrent deux 'bourgmestres de guerre', Albert Van
Laere et Honoré Loones. La deuxième guerre mondiale entraîna de nombreuses
destructions et il fallut attendre 1947 pour que le port d'Ostende fût enfin remis en état.
Après la seconde guerre mondiale, nous trouvons quelques noms nouveaux du fait des
extensions présentées ci-dessus; essayons de comprendre à quoi ils correspondent. Le
nouveau Bassin des Pêcheurs est bordé à l'est par le Rederij Kaai; au nord est installé un
slipway et au sud se trouvent les nouveaux chantiers. La nouvelle minque se trouve à
l'entrée du bassin, entre un petit bassin à flot et le bassin des Pêcheurs. Le `Zeewezendok'
a été allongé et l'ancien Bassin des Pêcheurs a changé de nom et est devenu le bassin
Montgomery, qui sert toujours de `schuildok' La Werfstraat ou Carenagestraat est
maintenant l'Hendrik Serruyslaan. Nous avons déjà indiqué que c'est à la fin des années
1940 qu'intervinrent les déménagements de tous les anciens chantiers du Werfkaai au
Nieuwe Werfkaai Richard Panesi au n° 8, suivi des chantiers de Borrey, Hillebrant, Loy et
Deweert. J. Deneye a son siège Kapellestraat, 82 tandis que Seghers est installé au
Rederijkaai. Mais le chantier le plus important était alors Béliard-Crighton, au Zwaaidok'
Les modifications ultérieures au port d'Ostende furent relativement peu nombreuses entre
1950 et 1990. Notons cependant sur un plan de 1955, les modifications de l'immédiat
après-guerre comme le comblement de l'ancien troisième bassin du commerce qui avait
été réalisé en 1948 et sur lequel on érigera en 1956 le nouvel hôtel de ville; l'enfilade des
bassins à flot, au bois, `Zwaaidok' et `Verbindingsdok', communique donc avec l'avantport au pont de Smet de Naeyer, au sud du nouveau quai des paquebots avec sa station
Oostende Kaai , les anciens canaux de dérivation qui partaient du premier bassin de
commerce ont donc tous été comblés le quai Brandaris et l'entrepôt ont disparu; il n'y a
plus de bassin de carénage. En 1971, l'estacade Est fut reconstruite et rehaussée. Enfin,
en 1989-91 intervient un nouveau plan de renouvellement des installations, en partie dicté
par les exigences relatives à la mise en service prévue de jumbo-ferries par la RTM. Les
décisions de rénovation furent les suivantes • de faire du `Zeewezendok' un bassin à marée
en lui enlevant son écluse; de creuser le Quai Cockerill jusqu'à une profondeur de 6 mètres;
d'approfondir le chenal d'entrée jusqu'au Binnenstroombank; d'enfin enlever les dernières
épaves datant de la guerre; d'élargir le port extérieur; de faire disparaître le `drydock' de
la RTM (ce qui fut fait suite à sa vente); d'offrir un tirant d'eau de 8,5 mètres entre les
jetées. En septembre 1989 fut inauguré un nouveau bâtiment, en construction depuis
janvier 1987, pour nos services de pilotage, administratifs et techniques. Les priorités de
1990 furent l'accès aux grands ferries et la construction d'une écluse maritime de 10.000
tdw ainsi que la rénovation des infrastructures dites `de base' qui n'avaient plus été
renouvelées depuis 100 ans !!! Un certain mécontentement se fit jour en avril 1990, car
les travaux n'avaient pas encore été approuvés bien que décrits en 1989 et que les crédits
nécessaires avaient été prévus, tant à Ostende qu'à Nieuport, en février Finalement, les
autorités donnèrent leur approbation pour la rénovation du port de la RTM mais pas pour
le port de commerce !
A. Delporte (f)
Neptunus
INSERE 28/05/16
BOEKEN LIVRES BOOKS
ENLEVE 28/06/16
Antwerpse militaire onderwaterzettingen
van 1914
Het Waterbouwkundig Laboratorium publiceerde net het
intrigerende
boek
De
Belgische
militaire
onderwaterzettingen rond de Versterkte Plaats van
Antwerpen in augustus en september 1914. Een
historisch-geografische reconstructie. In het verleden
verschenen tientallen studies over het militaire belang van
de fortengordels rond Antwerpen in 1914. Een aspect dat
honderd jaar na de feiten onaangeroerd bleef, is het
verhaal van de uitgestrekte onderwaterzettingen rond
Antwerpen. De nieuwe studie is niet alleen een poging om
aan de hand van een unieke kaartenset een geografische
reconstructie te presenteren. Zij schept ook een beeld van
het deskundige werk dat de Belgische militaire ingenieurs
en hun pontonniers verwezenlijkten in de maanden
augustus en september van 1914. Het boek bevat een
kritische evaluatie van het samenspel van de
onderwaterzettingen met de fortengordel. De auteur is Paul Van Pul die verschillende
gelijkaardige studies op zijn naam heeft staan. Het mooi geïllustreerde boek kan hier gratis
worden gedownload.
INSERE 28/05/16
NIEUWS NIEUWS
ENLEVE 28/06/16
Vessel manoeuvring affected by the use of
ultra-low sulphur fuel
US Coast Guard: Ultra Low Sulfur Fuel Oil & Compliance with MARPOL requirements before
entering and while operating within ECA This safety alert updates Safety Alert 2-15, dated
March 3, 2015, by adding two additional recommendations highlighted in redThe Coast
Guard has confirmed several reports it has received stating that main engines may not
attain the expected speed when using ultra low sulfur fuel oil. As such, the Coast Guard
has revised its list of recommendations to vessel owners and operators about the
importance of establishing effective fuel oil changeover procedures to comply with MARPOL
Annex VI emission regulationsThe Coast Guard strongly recommends that vessel owners
and operators ensure the following measures are completed as part of their fuel oil
switching procedures:
• Ensure fuel oil switching is accomplished outside of busy traffic lanes and the ECA.
Generally the ECA is 200 nm from the North American Coast and 50 miles from the U.S.
Caribbean coast (e.g., the Commonwealth of Puerto Rico and the U.S. Virgin Islands);
• Utilize their technical resources to develop safe operations and maintain full compliance
with emission requirements;
• Consult with engine and boiler manufacturers for fuel oil changeover guidance and to
determine if system modifications or additional safeguards are necessary;
• Consult fuel suppliers for proper fuel selection;
• Ensure all sensors, controls and alarms (e.g., pressure, temperature, viscosity,
differential pressure, and flow indicators) are operational and function as designed;
• Ensure system piping, seals, gaskets, flanges, fittings, brackets, etc., are maintained;
• Ensure detailed system schematics are available;
• Review and update fuel oil changeover procedures as needed;
• Establish a fuel oil system inspection and maintenance schedule;
• Remember that the energy content of a given volume of ULS fuel oil may differ from
residual fuel, such that existing throttle settings may not give the desired propeller shaft
RPM or generator loads; performance and speed trials on ULS fuel oil may need to be
conducted;
• (New) As part of the master-pilot information exchange (as required by 33 CFR
164.11(k)), discuss the vessel’s maneuvering characteristics, including any change in RPMs
associated with ULS fuel oil;
• (New) Determine if using ULS fuel necessitates amendments to the pilot card (see IMO
RES A.601(15) and NVIC 7-89); Review and update fuel changeover procedures based on
lessons learned;
• Provide initial and periodic crew training for accomplishing safe, effective and leak-free
fuel switching; and
• Anticipate that there may be many technical challenges for operators when beginning to
use ULS fuel oil as a matter of routine and compliance. These range from excessive
leakages of fuel system components, increased wear and tear on these components, lack
of lubricity of the fuels, and the need for possible changes in maintenance schedules,
operational methods, etc.
This Safety Alert is provided for informational purposes only and does not relieve any
domestic or international safety, operational or material requirement
Source: US Coast Guard
INSERE 30/05/16
DOSSIER
ENLEVE 30/06/16
E-navigation Underway 2016
Keynote address by Kitack Lim Secretary-General, International Maritime
Organization
Ladies and gentlemen,
Let me first of all thank you for the opportunity to participate in this conference and to
deliver this keynote speech. A special thank you goes to IALA Secretary-General Mr Francis
Zachariae and to Mr Andreas Nordseth, the Director General of the Danish Maritime
Authority. This is the first major external event that I have been invited to address in my
new role as Secretary-General of IMO, and I must say how appropriate it is that the
conference should take place on board a ship. One of my most important objectives at IMO
is to ensure that the Organization continues to draw on the experience and the knowledge
of those involved in shipping at the operational level, so being here on a ship has a symbolic
resonance, in that respect, that I really appreciate.
One advantage of a ship as a conference venue is that the organizers really do have a
captive audience – but in this case, I think the subject matter alone is enough to ensure
full houses at every session.
E-navigation is the future; but it has been "the future" for a long time now. Through
conferences such as this, and through the continuing work at IMO and by all the other
stakeholders we will hear from during this conference, the challenge now is to turn "the
future" into "the present" so that all the much heralded benefits and advantages of enavigation can be fully realized. Having said that, e-navigation has indeed already been
realized in some way, as I will explain to you later. E-navigation includes a wide range of
concepts and has been the subject of a long and continuing effort at IMO. During the course
of this conference you will hear and see a number of fascinating presentations about
technical developments and far-reaching initiatives to build such developments into viable
solutions for the shipping industry. Both shipboard and shore-side technologies will be
showcased, as well as the related training and human-element aspects that are essential
if they are to be effective.But I want to begin this keynote by taking a step backwards.
What do we mean by e-navigation? What is it that all these innovations and developments
are leading towards? There is, of course, the formal definition of e-navigation, which was
adopted by IMO back in 2008 and which, I am sure, you all know off by heart. I don't
intend to go over that again now. But I think it is worth recalling, once again, the aims and
the overall goals that were adopted at the same time, as these provide a timely reminder
of the journey we are undertaking.So: the aim of e-navigation is to meet present and
future user needs through the harmonization of marine navigation systems and supporting
shore services; and the overall goal is to improve safety of navigation and to reduce errors
by equipping users, on ships and ashore, with modern, proven tools, optimized for good
decision-making, to make maritime navigation and communication more reliable and userfriendly.At the same time as adopting these aims and objectives, a strategy for the
development and implementation of e-navigation was also approved. That strategy
identified IMO as the one, single, institution having the technical, operational and legal
competences needed to define and enforce the overarching framework for the
implementation of e-navigation.
Of course, that doesn't mean that IMO has to carry out all the relevant tasks in-house –
as this conference will clearly show, there are other stakeholders which are quite properly
taking the lead in many different areas, according to their competence and expertise.
The development of e-navigation is clearly a collective task. IMO may play a central and
co-ordinating role but that also brings with it a number of important responsibilities, for
example:
• developing and maintaining the vision • defining the services, including their scope in
terms of users, geography, and operational concept
• identifying responsibilities for the design, implementation, operation and enforcement of
e-navigation – and it is important in this to acknowledge the rights, obligations and limits
of flag States, coastal States, port States and the various authorities within those States
• defining the phased transition to e-navigation in a way that enables early benefits to be
realized and existing and emerging equipment, systems and services to be re-used
• taking the lead in setting appropriate performance standards for e-navigation, covering
all dimensions of the system – shipborne equipment, shore-side systems and the
communications that link them • ensuring that the concept accommodates and builds on
existing systems – and funding programmes
• facilitating access to funding from international agencies, such as the World Bank, the
regional development banks as well as international development funding
• assessing and defining the training requirements associated with e-navigation and
assisting the relevant bodies to develop and deliver the necessary training programmes
• monitoring implementation to ensure that contracting States are fulfilling their obligations
and ensuring that e-navigation users are also complying with requirements; and, last but
not least,
• leading and coordinating the external communications effort necessary to support the
case for e-navigation.
This is clearly something of a juggling act, and it requires successful input not just from
IMO but from all the organisations involved in e-navigation if it is to succeed. Indeed, I
cannot emphasize enough the need to cooperate – this also goes for IMO and IALA, and
indeed for IHO.
So, where we are right now on the collective journey towards meeting the aims and
objectives underpinning the development of e-navigation?The development and
implementation strategy for e-navigation called for a gap analysis, which was duly
undertaken and completed in 2012. This gave rise to the identification of nine potential enavigation solutions. Further analysis led to five of these being given the highest priority,
based on seamless transfer of data between various equipments on board and between
ship and shore – in all directions.
These
five
priority
solutions
are,
as
you
are
aware:
• improved, harmonized and user-friendly bridge design • the means for standardized and
automated reporting • improved reliability, resilience and integrity of bridge equipment
and navigation information
• integration and presentation of available information in graphical displays, received via
communication
equipment
• and improved communication of the VTS service portfolio Although not prioritized at this
stage the remaining identified potential e-navigation solutions would, it was agreed, be
addressed in the future, as e-navigation evolves and develops.
The five prioritized e-navigation solutions formed the basis of the e-navigation Strategy
Implementation Plan, or SIP, which was finalized in 2013 and later approved by the
Maritime
Safety
Committee
in
2015.
The SIP contains a list of 17 tasks emanating from the five prioritized e-navigation
solutions. These, it has been agreed, should be implemented between 2016 and 2019. Last
year, the Maritime Safety Committee considered a number of proposals and agreed to
include five new outputs in IMO's High-level Action Plan under the heading "Development
and implementation of e-navigation".
The three first are:
• Additional modules to the Revised Performance Standards for Integrated Navigation
Systems relating to the harmonization of bridge design and display of information
•
Revised
Guidelines
and
criteria
for
ship
reporting
systems
• Guidelines for the harmonized display of navigation information received via
communications equipment Each of these three is to be considered at the IMO SubCommittee on Navigation, Communications and Search and Rescue in March this year.
Of vital importance here is the need for harmonization in all of these areas – for example,
harmonization of data formats, of the symbols used, and harmonization between
equipment, systems and interfaces. This will, of course, require a coordinated approach
between international organizations and the industry. Indeed the important role of the
industry in the design and development of equipment and systems cannot be
overestimated. The fourth and fifth outputs of the five new outputs in IMO's High-level
Action Plan – which are Guidelines on standardized modes of operation, or S-mode, and
Revised General requirements for shipborne radio equipment forming part of the Global
Maritime Distress and Safety System (GMDSS) and for electronic navigational aids relating
to Built-In Integrity Testing for navigation equipment, both are planned for a 2018-2019
timeframe. In all these endeavours, it is clear that the software developed for the
equipment and systems of the future is absolutely vital. Good software can help ensure
proper harmonization across platforms and holds the key to cyber-security – securing and
protecting the information that is being processed.
So, as you can see, there is a great deal to be done – but these outputs address most of
the tasks contained in the SIP. The development of other tasks will require further outputs
or are tasks required to be conducted either by the industry or by organizations other than
IMO. For example, we expect the Maritime Safety Committee in May to consider a revised
proposal for a new output related to the implementation of Maritime Service Portfolios, or
MSPs. This output will require inputs from different organizations involved in the
implementation of MSPs such as IALA, IHO and WMO.Other significant documents already
approved by the Committee include Guidelines on Harmonization of test beds reporting;
and Guidelines on Software Quality Assurance and Human Centred Design for enavigation.So, we are engaged on a long and continuing voyage towards e-navigation, but
we have already come a considerable distance and I think we have charted a good course
ahead for the future. Let me take this opportunity to encourage continued participation –
greater participation if possible – in the implementation of e-navigation and, in particular,
the work associated with the five new outputs approved by the Organization.
Let me also highlight the need to review the list of gaps and to address the remaining
potential e-navigation solutions that were not initially prioritized, so that we can identify
further tasks and then incorporate them in the SIP, as and when required. And, in this
context, let me stress once again how important it is that this whole process is driven by
clearly identified user requirements, and not by technology; and that the user needs are
addressed in a cost-effective manner. We must not lose sight of the fact that the end-user
needs to see some real value emerging from all this effort.
I would also like to highlight the vital importance of conducting technical cooperation and
capacity-building activities in various parts of the world, to promote and provide
information on the status of the implementation of e-navigation initiatives. This conference
is a good example but I think this is one area in which considerably more could be done.
Ladies and gentlemen, the development of e-navigation is clearly a team effort, and any
good team is built on good communication between the individual players. Once again,
conferences such as this help to promote the exchange of information and ideas between
all stakeholders, including IMO, its Member States, the industry and the various other
organizations that are playing an active role in bringing this concept to reality, and I thank
and commend the organizers of this event for putting together such a timely and relevant
programme.
In conclusion, it is interesting to note that the "e" in "e-navigation" can be used in several
connotations. Does it stand for "electronic" navigation? Well, perhaps, although electronic
navigation has been with us for a very long time and the array of related acronyms such
as AIS, ECDIS, IBS, INS, ARPA, LRIT and GMDSS are all very familiar. And e-navigation
also looks at issues that are clearly not electronic, such as operational procedures,
familiarization, documentation and manuals and, of course, training. Perhaps the "e"
stands for "enhanced" navigation – there is certainly a clear understanding that enavigation should deliver an improvement on what we already have.
Of course, back in 2008, when the first proposal on this subject was presented to IMO, "e"
was the fashionable prefix to indicate something advanced and ground-breaking; maybe if
that proposal was initiated today, it would talk about "i-navigation" – "i" for integrated, or
perhaps "i" for improved.But what we have is e-navigation: and I think the most
appropriate way to define this might actually be "evolved" navigation. Because there are
so many ways in which e-navigation can offer enhanced safety, better environmental
protection, improved traffic management and commercial benefits. And, as our journey
continues, there is no doubt that both the technological advances and the advantages they
can bring are continuing to evolve. Our challenge is to make sure the vision and the
strategy for e-navigation allows that evolving potential to be fully realized.
INSERE 01/06/16
NIEUWS NOUVELLES NEWS
ENLEVE 01/07/16
Court finds U.S. jurisdiction over foreign
vessel
In a decision issued on September 15, 2015, the U.S. District Court for the Southern
District of Alabama followed precedents from a number of courts that hold that the U.S.
has criminal jurisdiction over violations of the Act for the Prevention of Pollution from Ships,
even though the underlying actions – allegedly wrongful discharges of oily wastes and
plastics and false entries in records books – were committed on the high seas.
United States courts continue to uphold prosecutions of non-U.S.-flag vessels for pollution
incidents beyond U.S. waters when the pollution is covered up with false records presented
to U.S. officials.In a decision issued on September 15, 2015, the U.S. District Court for the
Southern District of Alabama followed precedents from a number of courts that hold that
the U.S. has criminal jurisdiction over violations of the Act for the Prevention of Pollution
from Ships, even though the underlying actions – allegedly wrongful discharges of oily
wastes and plastics and false entries in records books – were committed on the high
seas.DSD Shipping A.S. and certain of its crewmembers from DSD’s tank vessel
STAVANGER BLOSSOM are facing charges in federal court in Mobile, Alabama, for criminal
violations of the U.S. Act for the Prevention of Pollution from Ships. The charges stem from
the alleged wrongful discharge of oil-contaminated bilge water and plastic bags at sea and
the failure of the ship’s crew to document those discharges in the vessel’s Oil Record Book
and Garbage Record Book. Unlike the vast majority of defendants in similar cases, the
company and crewmembers here have decided to fight the charges in court rather than
accept a plea agreement. With trial currently set for October 2015, the defendants argued
that the U.S. lacks jurisdiction to charge them for alleged violations of maritime pollution
regulations occurring outside of U.S. waters on a foreign flag vessel. However, the court
disagreed, noting that the charged offenses are based on the entry of the vessel into U.S.
waters with a knowingly inaccurate oil record book and not on the conduct on the high
seas. The court pointed out that the charges are not for the pollution or even the making
of false entries, but rather for the misrepresentation in U.S. ports resulting from bringing
the false record book into the U.S. The court then went even further, ruling that even if
the offenses were the making of the false entries on the high seas, the APPS prohibitions
against that conduct apply extraterritorially, because the harm protected against – the
misleading of Coast Guard investigators – effects matters in the U.S. and the crimes do
not depend on where they are committed.In its ruling, the court also held that separate
charges for bringing the same false oil record book into different ports was not an improper
multiplication of the charges. The defendants had been charged with similar offenses for
bringing the allegedly false record books into Mobile, Alabama, and into Lake Charles,
Louisiana. In their pre-trial motion, the defendants argued that the charges violated the
Constitutional prohibition against double jeopardy by charging them with multiple criminal
counts for the same alleged misconduct. However, the court pointed out that the offenses
were not the alleged pollution itself or the making of the allegedly false oil record book
entry, but separate incidents of bringing inaccurate books into multiple U.S. ports.
Source: Winston & Strawn
INSERE 03/06/16
DOSSIER
ENLEVE 03/07/16
The Consequences of Providing and
Refusing Refuge
Jack
Center for Tankship Excellence, USA, djw1@c4tx.org
Devanney
Abstract
This paper examines all the coastal state refusals and provisions of refuge of stricken
vessels in the Center for Tankship Excellence Tanker and Bulk Carrier Casualty database.
According to this set of data, there is only one case where provision of refuge resulted in
a sizable (2000 ton) spill to the refuge provider. On ther other hand, we have two cases
where failure to provide refuge turned smallish to moderate spills into two gargantuan
spills totalling 160,000 tons. In both cases, almost all the oil came ashore on the refusing
country’s coast. We have identified at least 10 casualties in which provision of refuge very
likely prevented a 200,000 ton plus spill. Most of the spillage would have come ashore on
the refuge provider. It appears that enlightened self-interest can be a strong reason for
providing refuge.
1 Background
The purpose of this note is not to discuss the legality or morality of providing or refusing
refuge to distressed vessels, but rather to examine the actual consequences. The Center
for Tankship Excellence (CTX) maintains a tanker and bulk carrier casualty data base
(CDB). This is a public, freely available, event centric data base. It can be accessed on the
CTX web site. Each casualty is described as a sequence of events, and each event can be
described in considerable detail. See The CTX Casualty Database, Version 4.0. for a full
description.
Among the possible events are Coastal State Refuses Refuge and Coastal State Provides
Refuge. In this paper, we pick out the casualties in which these events occurred, and then
examine the following events to see how these decisions worked out.
2 Refusals of Refuge
Table 1 lists the coastal state refusals currently in the CDB. We cannot of course claim that
this list is complete.1 It is simply the ones the CTX’s knows about. The spill volumes shown
are Known Volume, In the case of the Castor, we know there was some spillage, but we
don’t know how much. Let’s see how these refusals worked out.
2.1 Urquiola
The URQUIOLA was an unmitigated disaster.2 This fully loaded 110,000 dwt tanker touched
bottom on an uncharted ledge entering La Coruna. The extent of the damage is unclear,
but at least the FP tank, one center tank, and the starboard bunker tank was breached. It
is probable all the center cargo tanks were holed on the flat bottom. But the crew
transferred fuel from holed bunker tank, and hydrostatic balance was quickly achieved in
the cargo tanks. The engine room and pump room were operational. Weather was calm
and clear. At that point, no further significant spillage was possible without another screw
up. The ship could easily have been brought into sheltered waters, ballasted down, and
then lightered using salvage pumps for the breached tanks.
However, the Port Captain immediately ordered Urquiola 200 miles offshore without even
the most cursory survey.[6]. He explicitly required the ship to go out the same channel
she had come in, despite the fact that a deeper channel was available. At this point, the
ship’s draft forward was 1.5 meter more than it was on its way in due to the flooding
forward, and the tide was lower. The ship stranded in almost the same place she touched
earlier. This time she hit hard with massive venting forward. She was abandoned by all but
the pilot and the master. Two hours later the non-inerted tanker exploded, killing the
captain, and creating one of the largest spills in history. In all some 110,000 m3 of oil was
spilled into the ocean or burned into the atmosphere. Almost all the oil came ashore in the
La Coruna region.
2.2 Argo Merchant
In the case of the Argo Merchant, The ARGO MERCHANT a very poorly operated and
maintained 30,000 ton tanker went aground at low speed on Georges Bank about 29 miles
from Nantucket. She was 24 miles off course. The ship was not badly damaged at the time.
The US Coast Guard refused the master’s request to jettison 6,000 tons of fuel oil to refloat
the ship. Instead the USCG invoked the Intervention Convention —— the first time this
had been done —— and took charge of the salvage operations. These operations failed. A
week later the ship broke up spilling 29,000 m3 of heavy fuel oil. The winds and current
kept the oil offshore.
In this case, no shoreline was impacted by the spill, but it is quite possible that the coastal
state’s actions injected an additional 23,000 tons of oil into a prolific fishing grounds.
2.3 Andros Patria
The ANDROs PATRiA was a loaded VLCC which suffered a massive structural failure just off
the north-west corner of Spain. She quickly lost 50,000 tons of her 208,000 ton cargo; but
then the situation stabilized, and salvors were able to take her under tow. Spain, Portugal,
France and the U.K are known to have refused refuge. The Andros Patria was towed to an
area 200 mile south ofthe Azores, and eventually completed lightering north of the
Canaries, as the salvors moved ever southward in an attempt to find better weather.
In this case, the ship’s survival indicates she could have been brought into sheltered waters
where the probability of a successful lightering would have been a lot higher. But
fortunately little if any additional pollution resulted from the four refusals,
2.4 Assimi
The Assimi, loaded with 52,500 tons of Iranian crude from Iran to Aden suffered an engine
room fire off the coast of Oman, cause unknown. The crew abandoned, the fire spread to
the cargo, but salvors were able to take the ship under tow. Oman refused permission to
enter the Straits of Hormuz and the ship was towed to deep water with the intention of
sinking her. However, before that happened the ship suffered more explosions, and sank
herself.
In this case, the inability to get the fires under control indicates the coastal state’s decision
almost certainly did not cause any additional pollution, and moved the pollution away from
shore.
2.5 Starfish
The STARFisH was a bulk carrier in very poor condition. Crossing the Indian Ocean she
suffered flooding in two of her seven holds and diverted to Mauritius. She was refused
refuge, escorted offshore, the crew taken off, and allowed to sink.
Given the poor condition of the ship and the limited salvage resources available, it is not
clear that the ship could have been saved, in which case the coastal state’s action moved
the bunker spill offshore and prevented a possible blockage of the harbor.
2.6 Sea Empress
On the evening of 15th of February, 1996, the Suezmax tanker SEA EmPREss was entering
Milford Haven with 130,000 tons of light crude on board. The pilot misjudged the tidal set
and the ship grounded on her starboard side, and then floated free, drifting into deeper
water. 7 of her 14 cargo tank were damaged, but all the damage was very low. After losing
about 5000 tons, hydrostatic balance was quickly established, and spillage stopped. The
flooding of three ballast tanks further improved the hydrostatic balance. At that point she
could have been brought into sheltered waters, with little or no additional spillage. [9]
However, the Harbor Master effectively refused entry, the weather worsened (as had been
predicted), the tugs lost control of the ship, and over the next six days the ship re-grounded
and re-floated at least four more times. The final grounding was in very shallow water at
the peak of the tide. Most of the total of the 72,000 tons spilled was lost on the subsequent
ebb tide. Almost all this oil came ashore on the Welsh coast. The Harbor Master’s policy
turned a 5,000 ton spill into a 72,000 ton spill.
2.7 Treasure
The TREAsURE is an example of a rare, and rather puzzling refusal of refuge by South
Africa. The Treasure was a Capesize bulk carrier in lousy condition which experienced
flooding in her Number 4 hold. She sought refuge in Cape Town, but was denied and
ordered 50 miles off shore. However, less than 10 miles offshore she sunk near Robbins
Island, a penguin rookery. The crew was rescued but the resulting 1300 ton bunker spill
oiled thousands of penguins.
The key issue here is could the ship have been saved. Cape Town is well equipped with
salvage resources. However, the fact that the ship sank so quickly after being denied
suggests that she might not have been. In any event, the coastal state gained little from
the refusal.
2.8 Bear G
The BEAR G was an OBO loaded with 75,000 tons of gasoline. When she attempted to
enter New York in October, 2000, the USCG found gasoline leaking into at least two double
bottom tanks and turned her away. The ship diverted to Point Tupper for repairs. Not clear
what would have happened if the Canadians |— perhaps unwittingly |— had not taken her
in.
2.9 Eastern Power
The fully loaded VLCC EASTERN POWER, bound for Come-by-Chance in Newfoundland
developed hull cracks low in 1S. The ship transferred enough oil out of the tank to establish
hydrostatic balance and requested refuge. The Canadians initially refused and then several
days later said the ship could come in if 1S were completely emptied of cargo, which was
both unnecessary and probably impossible without illegally putting cargo into ballast tanks.
[4, pages 507-508] The damaged ship diverted 3000 miles to the Caymans where she was
lightered.
The Canadians took a big, unnecessary risk of a 250,000 ton spill, but got away with it.3
2.10 Castor
The CASTOR, a 31,000 ton product tanker loaded with gasoline suffered a massive main
deck crack in the western Med on New Year’s Eve 2001. She was refused refuge by just
about every country in the western half of the Mediterranean in part because of the volatile
nature of the cargo. She was towed around the Med for 40 days before finally being
lightered in open waters well off Malta.4 Subsequent inspection of the ship revealed the
steel in the area of the deck failure was in horrible condition despite the fact that she had
successfully passed all her Class surveys.[1]
In this case, none of the coastal states suffered as a result of the refusal. But the safety
argument is bogus. It is true that there was an obvious argument for not bringing the ship
into a port, but refuge in semi-protected waters several miles offshore, preferably
downwind, could have been provided without any risk to people ashore. In any event, the
successful lightering of the ship in totally unprotected water pretty much proves it could
have been done in semi-protected waters.
2.11 Front Tobago
The single screw VLCC FRONT TOBAGO, was loaded with 249,000 tons of crude when it
suffered a massive crankshaft failure off Japan her destination on 2nd May 2002. The ship
was taken under tow by the twin screw, 13,500 hp tug Smitwijs Singapore. The Japanese
refused refuge. The ship was towed to Taiwan which also refused refuge. Eventually, the
ship was lightered in open waters and towed to Singapore.
Coastal state authorities appear to be unaware of the fact that once a single screw ship is
under the control of a well-found multi-screw tug, she is less likely to have a problem
entering port than when under her own power. [7]
2.12 Prestige
The PRESTIGE was carrying 72,000 tons of fuel oil in the Bay of Biscay suffered a side shell
failure in ballast tank, 3S, in heavy weather. 3S, originally a cargo tank, was converted to
a segregated ballast tank without coating it. CTX would be surprised if it were not badly
wasted. The flooding also extended into 2AS, an original ballast tank. The ship took on a
24 degree list, taking the main engine off-line. The list was so high that cargo was leaking
from the tank lids and butterworth openings. The list was corrected by counter-flooding
2AP and 3P, but this put the sagging moment 50% over the legal limit. However, the ship
still had sufficient strength to withstand the stresses if there were no substantial wastage.
The ship asked for refuge, but this was not only denied by Spain and Portugal, but the ship
was forced further offshore.
It is not clear exactly when the ship started leaking again. Some Spanish sources claim
that the cargo tanks were holed early in the process. This appears to be based on the areal
extent of the original slick combined with an unrealistically high estimate of the spill
thickness. Other sources claim she did not start leaking again until well into the tow offshore.
In any event six days into the tow, the ship failed in sag and sank creating a 72,000 ton
spill. Oil seeping from his wreck will probably contaminate European shores for a decade
or more.
Unlike most of the casualties in this paper, this is not an easy call, even in hindsight. Given
that the ship survived six days, she almost certainly would have survived the short tow to
sheltered waters. On the other hand, few would predict that a ship, whose steel was
probably in bad condition and had already started to fail, could handled stresses 50% over
legal limits for any length of time. Forcing such a ship offshore, practically guaranteed a
72,000 ton spill; but one whose impact would be spread over a wide area. The courageous
decision would have been to bring the ship in, but it would have been risky for the
immediate area.
3 Provisions of Refuge
To balance the books a little, Table 2 lists the casualties in which a coastal state’s provision
of refuge was important in mitigating the casualty.5
We know this list is woefully incomplete. In the case of South Africa alone, there are
something like 100 tanker casualties, Table 3, between 1966 and 1984 which can be
construed to be provision of refuge.6
The problem is that in almost all these cases the coastal state response was so successful
in preventing a spill, that the casualty received so little attention that we have insufficient
data to enter it in the CDB.
Nonetheless the CDB does contain some instructive examples of a coast state providing
refuge.
3.1 Esso Essen
The ESSO ESSEN, was a loaded 48,000 ton tanker which grounded rounding Cape Point in
April, 1968. Clearly, she was not 12 miles offshore as required by the legislation of the
time. We don’t know why. Six of her 12 cargo tanks were breached. Thousands of seabirds
were oiled. She did not strand and was allowed into False Bay. Sources vary, but the most
likely spillage was 4000 tons, which would have occurred very quickly after the grounding.
The ship was pretty obviously in no condition to proceed. We know very little about the
damage; but there is a good chance that, if she had not found immediate refuge, the ship
would have sunk somewhere near the South African coast a la Treasure, releasing another
40,000 tons.
3.2 Oswego Guardian
After ramming and sinking the Texanita in August, 1972 with a loss of 44 lives and 8,000
to 10,000 tons of oil, the loaded 100,000 ton tanker OSWEGO GUARDIAN, was allowed
into Cape Town, lightered, and dry docked. She suffered massive damage to her bow, but
apparently the damage did not extend into the cargo area. There is no record of any further
spillage.
3.3 OBO Queen
Repeat of Oswego Guardian two years later. Loaded 103,000 dwt OBO QUEEN, cut into the
centerline of Tekton which eventually sank. Ship with massive bow damage was allowed
into Port Elizabeth, apparently without further spillage.
3.4 Princess Ann Marine
Loaded 70,000 ton tanker PRINCESS ANN MARIE had a major side shell failure in eastern
Indian Ocean in May, 1975. and lost 15,000 tons of crude from at least two cargo tanks.
CTX suspects ballast tank wastage. She was allowed into the Dampier Archipelago and the
cargo lightered with nil further spillage.
3.5 Pacific Colocotronis
Perhaps the most dramatic provision of refuge in the CDB involved the PACIFIC
COLOCOTRONIS. The Pacific Colocotronis, loaded with 72,000 tons of volatile Algerian
crude for Wilhemshaven, was off the Dutch coast on the 28th of September, 1975 when
she started leaking cargo in way of 3P. The weather was good, but inspection by the Dutch
Coast Guard revealed the damage was much worse than the ship had reported with at
least two very large side shell cracks. Colocotronis ships had a habit of getting into trouble.
The CTX is confident that the root problem was a badly wasted port segregated ballast
tank. We can also be confident that the starboard ballast tank was in no better condition.
The weather was forecast to worsen. The ship was in no condition to proceed. On 1st of
October, Ijmuiden allowed the still leaking ship into its harbor. In all the Pacific Colocotronis
spilled about 1,800 m3. But Ijmuiden’s courageous action almost certainly prevented a
further 85,000 m3 of toxic light crude spilling into the North Sea. Much of that oil would
have ended up on Dutch shores.
3.6 Norse Queen
Fully loaded VLCC adrift off South Africa after major machinery failure. She was towed to
Algoa Bay and lightered. 225,000 ton spill averted.
3.7 Venoil/Venpet
On 16 December 1977, two 325,000 ton tankers the VENOIL. and VENPET collided 40 miles
off South Africa. The Venoil was loaded with 312,000 tons of crude. Both ships were holed,
spilled oil, caught fire and were abandoned. Both ships were taken under tow, allowed to
drift in the Agulhas Current until the fires were out and they had stopped leaking, and then
towed into Algoa Bay, where the remaining 289,000 tons of oil on the Venoil was lightered.
3.8 World Horizon
The WORLD HORIZON was another fully loaded VLCC off South Africa. In this case, the
badly wasted forepeak tank simply fell off in bad weather. Ship was only six years old.
There was some cargo leakage. She apparently proceeded to St Helena Bay (some say
False Bay) under her own power and was lightered. Another 220,000 ton spill averted.
3.9 Christos Bitas
The CHRISTOS BITAS is a combination of staggeringly bad ship performance and
remarkably professional coastal state response. The Christos Bitas, loaded with 35,000
tons of crude, was proceeding north in the Irish Sea, bound for Belfast. One radar had not
been working for two years, the RDF had not been calibrated for four years. [3] On entering
the Irish Sea, she lost her other radar. Dense fog, but she proceeded blind, not even
slowing down. She grounded on rocks off Milford Haven holing at least half of her 12 cargo
tanks. Three hours later the Christos Bitas refloated herself, and the Master blithely
proceeded toward Belfast with the ship leaking and sinking.
She was intercepted by the Royal Navy. With the weather deteriorating, the Christos Bitas
was towed toward the Irish coast where lightering could proceed in the lee of the land. In
an difficult, complex ten day operation, the salvors managed to off-load almost all the
cargo, before towing the ship out to deep water, and sinking her 300 miles off Ireland.
This should have been a 35,000 ton spill in the Irish Sea. Thanks to the intelligent,
courageous response the actually spillage was about 4,000 tons.
3.10 Turgut Reis
The TURGUT REIS is an interesting casualty if only because of the contrast in coast state
performance with the Prestige 22 years later. Here’s Hooke’s description:
The Turkish motor tanker Turgut Reis was on a voyage from Le Havre to the Mediterranean,
carrying 18,000 tons of diesel oil, when she sustained a major hull fracture in very heavy
seas about 105 miles north of Corunna in lat 45.05N, long 07.50W on December 15, 1979.
With oil seeping out and water entering in, the 37 crew requested immediate assistance
but, due to the atrocious weather, none of the vessels that proceeded to the area could
get close enough to transfer them until eight hours later when the weather abated slightly.
The Turgut Reis was then towed to position off Algeciras, where she was anchored until
being towed to Gibraltar on January 28, 1980. After being declared a constructive total
loss, she was towed to Aliaga, near Izmir, in May 1980, to be scrapped. [8,]
The similarities to the Erika and Prestige are obvious. But the coastal state reaction was
entirely different and the resulting spill, according to Etkin, was only 300 m3. It may have
been a bit more, but the fact remains courageous coastal state reaction turned an Erika
into an event no one remembers.
3.11 Energy Endurance
The ENERGY ENDURANCE is yet another case of a loaded VLCC suffering serious damage
to a badly corroded forepeak tank off South Africa. In this case, the damaged involved the
forward bunker tank. Despite the fact that the ship was leaking, the South Africans allowed
the ship to be towed into Algoa Bay and lightered. The ship was in such bad condition, she
was scrapped. It is quite possible a 250,000 ton spill was averted.
3.12 Almizar
The ALMIZAR a 110,000 ton tanker was fully loaded, Venezuela to Rotterdam, when the
side shell failed in way of the midship ballast tanks in heavy weather off Portugal, resulting
in an 8 m by 4 m hole. There was no spill, but the tank flooded, and the ship was adrift for
reasons unknown. She was towed to Sines, discharged, then towed to Setubal. The ship
was in such bad condition she was scrapped. This is almost certainly another case of
segregated ballast tank corrosion.
It would not have taken much for the damage to spread to the neighboring cargo tanks.
The Portugese response may have averted as much as a 100,000 ton spill.
3.13 Charalambos
The CHARALAMBROS is another case of midship ballast tank wastage. This loaded 57,000
ton tanker suffered severe side shell damage off the Yucatan in heavy weather; but the
damage apparently did not extend into the cargo tanks. She diverted to Freeport, Bahamas
discharged her cargo and was towed to the scrap yard.
3.14 Enrico Dandolo
The ENRICO DANDOLO a 28,000 ton product carrier, was loaded with gas-oil Amsterdam
to the US Gulf, when she encountered heavy weather in the Bay of Biscay. She made it
into La Coruna on 2nd of February, 1984 where she was found to have a warped deck and
a badly damaged hull. The damage was so bad that she was declared a CTL on the spot
and scrapped.
Another precursor of the Erika and Prestige, but thanks to the provision of refuge the lucky
crew survived and apparently there was no spill.
3.15 Kowloon Bridge
The KOWLOON BRIDGE was a sister ship to the Derbyshire and a deeply flawed vessel. On
18 November 1986, this 169,000 ton OBO was loaded with iron ore when she experienced
a major deck failure in the North Atlantic off Ireland. She was allowed into Bantry Bay and
received some repairs. But three days later she managed to lose her anchor, and decided
to head for open water. But then she lost her steering, stranded near the entrance to the
bay, and split in two forward of the bridge. The ship had 2000 tons of bunkers on board.
There is no mention of any recovery. Several local sources claim the wreck leaked oil over
a multi-year period. CTX is assuming a 2000 ton BFO spill. This is a rare case in which the
coastal state suffered a sizable spill as a result of providing refuge. Of course, there’s a
decent chance the ship would have fetched up on the Irish coast if she had not been
provided refuge.
In 2005, there was an attempt to salvage the wreck and the iron ore. Dive groups
bemoaned the loss of a spectacular dive site and the damage to the marine life that
flourished around the wreck.
3.16 Dodsland
The nearly new, OBO DODSLAND was in bound to Quebec loaded when the master reported
flooding into double hull ballast tanks. The ship was diverted to Halifax where divers found
large cracks in the bilge area. The 75,000 ton cargo of crude was lightered and the vessel
dry-docked. There was an attempt to blame ice for the damage but the bilge on a loaded
75,000 ton tanker is 10 m below the waterline.
3.17 Kition
The KITION was a loaded 169,000 ton tanker whose engine room flooded in heavy weather
off Cape Town in October 1988, cause unknown. She was towed into Table Bay, and then
to Saldanha Bay and lightered. She was in such bad condition, she was scrapped in a rising
market.
3.18 Tribulus
The TRIBULUS was a 127,000 ton bulk carrier loaded with iron ore, when she had a massive
side shell failure in way of Hold 8 southwest of Ireland in heavy weather. The ship was
allowed into Bantry Bay where she stayed for three months repairing. There was some
spillage. Hold 8 was the aftmost hold. Apparently the damage, a 21 m by 10 m hole,
involved the starboard fuel oil tank. The ship had 550 tons of bunkers on board, probably
half of which was in this tank. The spill appears to have taken the form of a slow leak which
was largely contained by booms. CTX has assigned a nominal spill volume of 50 m3 to this
casualty.
The Tribulus was alternate hold loaded with No. 8 empty. This means she was in serious
danger of sinking as many bulk carriers have done in this situation. In fact, most of the
crew was helicoptered off the ship well offshore. The Irish decision to allow the Tribulus in
probably saved the ship and most of the bunkers at the cost of some inshore spillage.
3.19 Mimosa
The MIMOSA was a 357,000 ton ULCC which had a long history of problems. Here’s a first
hand account of what happened to her in August, 1991.
I was on the Mimosa in the summer of 1991, when we ran into heavy seas at south tip of
Africa. We were fully loaded on the way to Rotterdam when this happened.
First we had a steering gear break down. A non-return valve in the valve block between
the two cylinders cracked, the pipe connected could not take the pressure, and, all the oil
in the system went on the flooring. The rudder slammed from side to side as the outside
sea would drive it. The noise and the speed with which the rudder went from side to side
was tremendous. We managed to some how secure the cylinder in a fixed position with
everything we could find of chain blocks. Then we sealed off the steering gear room. The
bridge was then able to go dead slow astern for some 12 hours, and we went in a circle in
the hurricane. This probably saved us from ending up on the South African rocks. After 12
hours, there was a loud bang from the steering gear room, and the rudder was ”free”
again. By then the seas had subsided and we got tug boat assistance.
When it was safe to go out on deck, we saw a 340 m2 hole in ballast tank 5S. The shell
plate was nowhere to be found. And yes, corrosion did play a major role in this.
Fortunately, the ballast tank damage did not extend into the neighboring cargo tanks. The
South Africans towed the Mimosa into Algoa Bay where she was lightered averting a
350,000 ton spill.
3.20 Atlas Pride
The Atlas Pride was a 249,000 ton ore-oiler fully loaded with crude when she lost her badly
corroded Forepeak tank off South Africa in heavy weather. The tank simply fell off. The
ship was towed to Algoa Bay and lightered. A 250,000 ton spill was averted.
3.21 Trave Ore
The Trave Ore was a 108,000 ton bulk carrier alternate hold loaded with iron ore when the
bulkhead between Hold 8 and Hold 9 collapsed off Norway. Earlier the crew had gone to
ITF complaining about the condition of the structure, something crews only do in the most
extreme situations. The ship was able to make it into Kristiansund.
3.22 Kamari
The Kamari was a Capesize bulk carrier loaded with iron ore when she suffered extensive
structural failures off southern Brazil. She put into the Rio Plata. On inspection, her steel
was in such bad shape they could not even safely discharge the cargo. She was towed out
to sea and sunk with the cargo still on board.
3.23 Arima
The Arima, another Capesize bulker, got a bit further. She also was loaded with iron ore,
Brazil to the Far East when she suffered a 47 meter long crack in her side shell off Cape
Town. She was allowed into False Bay and repaired.
3.24 Tochal
The TochaL was a 300,068 ton Iranian ULCC which had suffered both war damage and bad
maintenance during the Iran-Iraq War. In June, 1996 her badly corroded Forepeak tank
fell off 90 miles northwest of Cape Town. She was fully loaded. The forward fuel oil tank
was involved and there was some BFO spillage. The condition of the forepeak tank was so
bad, the decision was made to tow her stern first to False Bay, where she was lightered. A
300,000 ton spill narrowly averted.
3.25 Mimosa
In January, 1995, we renew acquaintances with our old friend the Mimosa. This time the
fully loaded 357,000 ton ULCC suffers massive forepeak tank damage off Scotland. She
was allowed into Lyme Bay, not the safest of places, and lightered. This was a very risky
decision on the part of the UK, but, given the alternatives, probably the right one.
3.26 Kraka
The Kraka was a sister ship to the Mimosa. She had a major machinery failure fully loaded
off South Africa. She was towed to False Bay, lightered, and then towed to Dubai. Another
350,000 ton spill averted, not that they had much choice.
3.27 OBO Venture
The 70,000 ton OBO Venture was loaded with 59,000 tons of gasoline when she suffered
a major machinery failure off South Africa. She was towed into Cape Town.
3.28 Eurydice
The fully loaded 95,000 ton tanker EuRyDice was about to enter Sydney when she started
leaking cargo. Divers discovered a 15 cm flat bottom crack in 3C. They applied a magnetic
patch, and she was escorted into port.
3.29 Genmar Kestrel
Two 150,000 dwt tankers, the Genmar Kestrel and the Trijata both loaded, and on nearly
parallel courses somehow managed to get into a collision north of Port Said after leaving
the Suez. The double sided Kestrel was holed in three starboard tanks, spilled about 1000
m3 of cargo, took on a big list, which shut down her main engine. She was towed to Cyprus
and lightered in the lee of the island.
3.30 Front Vanguard
The part-loaded 300,000 ton tanker Front Vanguard had a blackout in the Suez Canal,
grounded, holing at least one ballast tank, but there was no spill. She was towed to Cyprus
and lightered in the lee of the island.
4 Summary
It will come as no surprise that in an issue like this there are no hard and fast rules. But it
is also surprisingly clear that on the whole the countries that provided refuge have fared
better, from a purely selfish point of view, than the countries that refused refuge. There is
no case in our admittedly small sample where a country suffered grievous harm from allowing refuge. The worst that we can find is the 2000 ton bunker spill from the Kowloon
Bridge that might have happened anyway if refuge had been refused. There are at least
two cases, the Urquiola and the Sea Empress, where the country that refused refuge did
suffer massive damage from unnecessary 70,000 ton plus spills. And there are many cases
where it is quite likely that the country that provide refuge would have suffered grievous
harm if she had done the opposite. As Table 3 indicates, if South Africa had not followed a
policy of providing refuge, there is good chance that she would have suffered a score of
200,000 ton plus spills. Conversely, the only major casualty in which you can plausibly
argue that the refusing country came out ahead is the Prestige, and even then the case is
a weak one, and a 72,000 ton spill that turned out to be preventable was not prevented.
So why have refusals become the norm? The major reason of course is the dichotomy
between the risk/reward for the refusing authority and the risk/reward for society as whole.
In the past this was balanced by the professionalism of the maritime authorities and their
concern for crew safety. The authorities have become increasingly politicized and the crews
can always be taken off by helicopter.
But there is one technical thread in our refusals, that perhaps we can do something about
and that is a lack of understanding of the efficacy of hydrostatic balance on the part of
coastal state authorities. Once a tank reaches hydrostatic balance and stops leaking, which
normally is very quickly, especially in groundings, that tank is not going to leak any more
unless the ship is stranded and the tide goes out or someone starts discharging the intact
tanks first. And if the ship can be ballasted down, so much the better.7 If the refusing
authorities understood hydrostatic balance, then there is a chance that some of the more
egregious mistakes, such as the the Canadians handling of the Eastern Power could be
avoided.
1 Conspicuously missing from this list is the ERIKA. While it is true the Donges harbor
master told the ship she could not enter the Loire if she was leaking, the ship continued
on a basically eastward course, until she broke up. The French may have been about to
refuse refuge; but, if so, they never got the chance.
2 If you are viewing this paper on line, the ship names in SMALL CAPS are links to the
casualty’s precis file in the CTX database. There you will find descriptions of the casualty
drawn from various sources and/or links to such descriptions.
3 Transport Canada spins this incident slightly differently, claiming the owner diverted to
the Caribbean “due to inclement weather concerns”. This is highly implausible.
4 She was offer refuge by Cyprus, but did not take advantage of this, presumably because
of the distance. [5]
5 The KIRKI is not on this list. This is a judgement call. After the Kirki lost her forepeak
tank 23 miles off the southwest coast of Australia, the Australian required the ship to be
towed 700 miles north to an area north of the Dampier Archipelago that could hardly be
called a place of refuge. During the tow, the ship lost another 10,000 tons of cargo. On the
other hand, the ship was in horrible condition, 64,500 tons was successfully lightered, and
the Australians could have towed the Kirki straight offshore and sunk her.
Nor have we included the TANIO. After the Tanio broke in two off the north coast of
Brittany, the stern section was towed aroung the English Channel for several days before
before being allowed into Le Havre.
If your definition of provision of refuge is broad enough to include these two casualties,
the basic conclusions of this paper would not be changed.
6 Table 3 was extracted from Brookes [2]. The full list is at the NCS web site.
7 Often the ship will ballast herself down by flooding ballast tanks. This happened in the
case of both the Urquiola and the Sea Empress.
References
1. ABS. Investigation into the damage sustained by the m.v. castor on 30 december
2000, final report. Technical report, ABS, October 2001.
2. Colyn Brookes. Marine casualty database southern african coast. Technical report,
NCS, 2008.
3. R. Cahill. Strandings and their Causes. The Nautical Institute, 2002.
4. A. Chircop and O. Linden. PLaces of Refuge for Ships. Martinus Nijhoff Publishers,
2005.
5. A. Constantinou. Places of refuge, a myth or reality. Technical report, International
Conference on Martime safety and Protection, 2007.
6. Sindicato Libre de la Marina Mercante. Urquiola, la verdad de una catastrofe.
Technical report, SLMM, September 1976.
7. Jack Devanney. The argument for twin screw tankers. WMU Journal of Maritime
Affairs, pages 353–380, April 2008.
8. Norman Hooke. Maritime Casualties, 1963 to 1987. Lloyds of London Press, 1989.
9. P. B. Marriott. Report on the grounding of the tanker sea empress at milford haven
between 15 and 21 feb 1996. Technical report, Marine Accident Inventigation
Branch, 1997.
Table 1: Coastal State Refused Refuge
Based on CTX Casualty Data Base as of 20090216
Table 2: Coastal State Allowed Refuge
Based on CTX Casualty Data Base as of 20090216
Table 3: South Africa Provisions of Tanker Refuge
INSERE 05/06/16
BOEKEN LIVRES BOOKS
ENLEVE 05/07/16
Jubileumboek 100 jaar Koninklijke
Belgische Redersvereniging
Zopas verscheen het jubileumboek van de Koninklijke
Belgische Redersvereniging. Het beschrijft het bewogen
verhaal van de Belgische koopvaardij en haar
professionele organisatie, die werd opgericht in 1909.
Mede dankzij de succesrijke herinvlagging zijn de
Belgische reders vandaag internationaal belangrijke
spelers. Het prachtig geïllustreerde boek verscheen in het
Nederlands en het Engels. De auteurs zijn prof. em. Greta
Devos en, voor de laatste twintig jaar, onze voorzitter. De
Redersvereniging en de Antwerpse maritieme uitgeverij
Pandora (die recent nog de Antwerpse uitgever Artus
overnam) zijn beide bij Watererfgoed Vlaanderen
aangesloten. Je kan het boek aanschaffen bij de betere
boekhandel of via info@pandorapublishers.eu.
INSERE 05/06/16
HISTORIEK HISTORIQUE
ENLEVE 05/07/16
Nos armements de navires de mer au
XlXème et au XXème siècle à Ostende et à
Nieuport
La Première Guerre Mondiale :1914-18
Au 1er janvier 1913, la 'flotte' belge
comptait 109 navires de mer, dont 1
'motorship', 98 'steamers' et 10
voiliers. Parmi les voiliers, notons les
cutters mixtes enregistrés à Ostende
Avenir, Ibis III, et Ibis IV Durant
l'année 1913, il y eut 26 gains, dont
22 steamers et 4 voiliers; et 10
pertes, dont 9 steamers et 1 voilier
Cette année, notre flotte de pêche
nationale comportait 30 vapeurs, 19
navires à moteur, 425 voiliers et 177
canots pontés. Au 1er janvier 1914,
notre flotte marchande comptait donc 125 navires de mer, dont 13 voiliers. Cependant, au
Lloyd's Register, on trouve beaucoup plus de navires car ces listes incluent tout bateau de
plus de 100 tonnes brutes, comprenant également les unités non marchandes; en plus des
navires marchands, le Lloyd inclut ainsi les 29 unités de l'État et 32 `steamtrawlers', pour
un total de 173 unités à la fin de l'année 1914. À cette date la Belgique comptait 21
armements établis, mais dont seulement 5 étaient réellement belges à 100% ! Au cours
de l'année, les gains furent d'un motorship, 8 steamers et 2 voiliers; mais on déplora la
perte de 24 steamers et 9 voiliers, y compris des transferts sous pavillons étrangers. Au
1er juillet 1914, notre flotte comportait encore 126 navires de mer dont seulement 69
déclarés `disponibles' Certains transferts se firent juste avant la guerre, entre le 15 juillet
et le 4 août, comme ceux de certains paquebots de la Red Star Line; d'autres suivirent
encore plus tard, en 1914. La mobilisation
générale fut décrétée le ler août 1914. Le
lendemain, le pays reçut l'ultimatum
allemand pour obtenir le libre passage à
travers la Belgique... et nows entrâmes en
guerre, le 4 août, déjà envahis par les
troupes allemandes. À cette date, notre
flotte marchande comptait 132 navires.
Voyons ce qu'il en était à la côte. Au 1er
janvier 1914, notre marine marchande
était réduite à la côte à un seul voilier,
l'Avenir et aux caboteurs de Cockerill
Topaze, Rubis et Saphir, ainsi que les Clara, Martha et Paul de Nieuport. N'oublions pas
d'ajouter à cette courte liste les unités-écoles Ibis III, IV, V et VI. Cette liste doit cependant
encore être complétée par les navires de l'État, à savoir les trois voiliers Ville d'Anvers,
Ville d'Ostende et Ville de Bruges et les malles Ostende-Douvres La Flandre, Léopold II,
Marie Henriette, Jan Breydel, Pieter De Coninck, Stad Antwerpen, Princesse Clémentine,
Princesse Élisabeth, Princesse Henriette, Princesse Joséphine, Ville de Liège et le Rapide,
auxquelles il faut ajouter des unités telles que le Grand Remorqueur et les Remorqueurs I,
II et IV à Ostende et le Remorqueur III à Nieuport. Mentionnons encore le cutter mixte
Charles-Yvonne et les chalutiers à vapeur Gaby et J. Baels-Mauricx cités dans ce texte,
ainsi que la Belgica, toujours le seul yacht enregistré à Ostende. Nous en suivrons
l'évolution au cours de ce chapitre. Notons que la Gaby 082, de 69 tonnes, fut construite
par Cockerill en 1909 et entra en ligne le 29 septembre de cette année.
Voici la chronologie de quelques
dates
marquantes
après
la
déclaration de guerre du 4 août. Le
22 août, date de l'occupation de
Bruxelles, notre 'Défense côtière et
fluviale' se replia à Dunkerque avec
ses blessés à bord de la malle Stad
Antwerpen et le 28 septembre
commença le siège d'Anvers, qui
sera évacuée le 10 octobre, après
une résistance héroïque. À cet effet,
le génie avait construit un pont de
bateaux et de pontons sur l'Escaut
pour faciliter l'évacuation d'Anvers à la Tête de Flandre. Du 5 au 8 octobre eut lieu
l'évacuation anglaise de Zeebruges, suivie de celle d'Ostende le 10. Le 14 eut lieu la
suspension du service des malles Ostende-Douvres alors que les troupes allemandes
arrivaient à Zeebruges; Gand et le nord des Flandres furent alors occupés. Mais cette
progression fut stoppée net à Nieuport, du fait du jeu des écluses. En effet, le complexe
des six écluses de la Gansen Poot avait été prévu pour empêcher l'inondation de nos
polders par l'eau de mer, celle-ci étant plus haute que l'arrière-pays. Mais leur opération
fut inversée et les zones inondées. Les navires de la côte 'perdus' en 1914 furent les
suivants, par date lorsque celle-ci est connue. P/s Émeraude, sabordé le 8 octobre; cette
ancienne malle Ostende-Douvres était déclassée. P/s La Flandre, abandonné à Ostende le
14 octobre; c'était également une ancienne malle Ostende-Douvres, déclassée. P/s Marie
Henriette le 24 octobre, alors qu'elle avait quitté Anvers le 20 , elle s'échoua sur les
Casquets et y fit naufrage, en cours d'évacuation. Les p/s Belgique de l'Armée et p/s
Léopold I de la Zeevaartschool furent capturés, mais nous n'en connaissons pas la date
précise. Et enfin le s/v Ville d'Anvers de l'État, qui parvint cependant à se sauver, alors que
nous ne retrouverons plus l'Avenir de Janssens et Mestdagh, tandis que l'Ibis III se réfugia
en Angleterre comme sans doute l'Ibis IV, mais au sujet desquels nous n'avons pu
retrouver de détails. En 1914, aucun navire appartenant à un armement de la côte ne
passa sous pavillon étranger, ne fut retrouvé 'coincé en eaux ennemies' comme ce fut le
cas pour plusieurs autres, ni fut confisqué par l'Allemagne. Un seul de nos navires
'ostendais' resta bloqué à Anvers, le p/s de l'État Émeraude, déclassé, tandis que restèrent
bloqués à Ostende les voiliers stationnaires Ville d'Ostende et Ville de Bruges. Le Gabriella,
en chantier à l'Antwerp Engineering C° au moment de l'invasion, fut démonté et les pièces
éparpillées de telle manière qu'il put être remis en chantier en 1919 ! Notons encore que
notre futur vapeur Général Leman de 963 tonnes de jauge brute et construit en 1896 fut
saisi Ostende sous pavillon allemand le 4 août 1914 , il était alors le Mina d'une maison de
Danzig , il fut pris le lendemain de la prise du Croatia à Anvers, mais ce dernier ne devint
jamais belge récupéré par les Allemands le 14 octobre après l'occupation de la ville, il resta
à la chaîne pendant toute la guerre pour enfin quitter notre port de destination de la
Hollande en novembre 1918. Le Général Leman fut transféré de la Régie de la Marine en
1923 à Coppée & De Corte qui le revendit le 10 octobre 1924 la Société Belgo-Irlandaise
de Navigation qui le vendit le 7 novembre 1927; le navire eut encore une longue carrière
et ne sera finalement démoli qu'en 1949 sous le nom City of Antwerp. Cette année connut
en Belgique la liquidation de nombreux armements ou leur cessation d'activités; beaucoup
de navires furent vendus et d'autres changèrent temporairement de pavillon. En octobre
1914 avait donc eu lieu l'évacuation d'Ostende d'où de nombreux pêcheurs dont Raymond
Bauwens, alors âgé de 14 ans, mirent le cap sur Milford Haven. L'enfant était à bord de
l'082 Gaby avec sa famille, accompagné d'une dizaine d'autres chalutiers en route pour la
même destination; notons que l'Ibis III faisait partie de ce convoi. C'est cette petite flottille
qui fut la base, en 1915, de la participation de nos chalutiers belges, armés, depuis la rade
de Milford Haven à des campagnes de pêche organisées en 'convois' par l'Amirauté, dont
John Bauwens fit partie de l'état-major Nos chalutiers eurent également à leur actif des
sauvetages fréquents d'aviateurs et marins tombés à l'eau en maintes circonstances. Ne
confondons pas le Gaby des Bauwens ni le Raymond d'Eugène Rau avec ceux enregistrés
en 1909/10 aux Pêcheries à Vapeur Un doute subsiste cependant pour le premier, du fait
que c'est Bauwens qui était le directeur de cette société.
Le 18 octobre, nos troupes du génie
firent sauter le Vierboete', le phare de
Nieuport qui datait de 1284. Avant la
fin du mois, un Corps de Marine
allemand s'était installé à Bruges,
Zeebruges et à Ostende. Notre côte
était tombée sous leur contrôle
jusqu'à Nieuport et les ports de
Bruges
et
Zeebruges
servirent
bientôt de base navale aux sousmarins de la Flandernflottille. La
veille, 17 octobre, une escadre
anglaise constituée de vieux navires
poussifs (3 monitors, 4 croiseurs
légers et 7 torpilleurs) était cependant arrivée au large de Nieuport pour 'appuyer la bataille
de l'Yser'; ces navires lents et lourds ouvrirent le feu le 18 et restèrent dans les parages
jusqu'en décembre.
Au ler janvier 1915, notre flotte comptait 103 navires de mer, dont 2 à moteur, 95
steamers et 6 voiliers. On n'enregistra cette année qu'un seul gain, pour 16 pertes dont
un motorship et un voilier Mais nos armateurs de la côte n'enregistrèrent aucune perte.
Notons simplement que le Badi passa de l'Armement Belge à Louis Hermans et devint son
Marcel, premier du nom. Les Allemands atteignirent Nieuport en 1915, qui ne sera plus
accessible aux navires avant 1921, par suite d'une destruction vengeresse pratiquement
totale de la ville et de ses environs. Zeebruges fut bombardée à son tour, le 28 août. Bien
que le plus grand danger pour la navigation vînt de Zeebruges, d'où opéraient les sousmarins mouilleurs de mines, c'est à Ostende que s'en prit l'escadre anglaise en 1915.
Zeebruges devint donc un port de guerre allemand. Les sous-marins qui y étaient basés
envoyèrent plus de 2.500 navires marchands par le fond au cours de la guerre. Il faudra
attendre le 22 avril 1918 avant que les Alliés ne mettent enfin une opération en route pour
tenter de se libérer de cette menace incessante.
Notre Ville d'Anvers rejoint Lowestoft en 1914 et rallie Calais en 1917; à noter que le navire
fut commandé pendant toute la guerre par un capitaine de la marine marchande, Depierre.
Il était accompagné par le remorqueur Blankenberghe, son 'annexe' et remorqueur de
cibles. Le Dépôt des Équipages l'avait réceptionné le 18 juin 1917; ce petit remorqueur
avait quitté Nieuport pour Calais le 14 octobre 1914 et fait du service sur le canal de Fumes
depuis janvier 1915 pour ensuite se retrouver à Calais où il fut mis à la disposition des
Français. Il rentra pour de bon en Belgique en novembre 1918. Le 7 septembre 1915 eut
lieu une opération des monitors anglais contre Ostende, mais ils durent fuir du fait de la
longue portée et de la précision des canons allemands. En particulier, la 'batterie Tirpitz' à
l'ouest d'Ostende, qui consistait en quatre canons matelots sur la princesse Josepnine de
280 capables de tirer à 29 km !!! Et c'est cette date que choisirent les Allemands pour faire
sauter le phare d'Ostende. La `patrouille de Douvres' revint le 25 et resta jusqu'au 6
octobre le long de notre côte, mais fut encore repoussée. Notons encore en 1915 la création
du Bureau du Fret, au moins de mai. Au 1er janvier 1916, notre flotte était réduite à 88
navires de mer, dont 1 motorship et 5 voiliers. Il n'y eut toujours pas de gain cette année,
mais 8 pertes furent enregistrées, dont un voilier Cette fois, les pertes incluent deux
navires de nos armateurs côtiers le Marcel (ex-Badi) d'Hermans, torpillé par l'UB 18 le 5
septembre; et le 28 décembre, la 'disparition' de la Ville d'Ostende, emmenée de notre
port vers une destination inconnue, à la traîne du remorqueur allemand Wilhelm.
Au 1er janvier 1916, les Allemands avaient déjà installé 120 canons sur notre côte, dont
32 batteries de pièces de 280 à 380 donc équivalentes à celles des cuirassés de l'époque,
et la Flandernflottille était maîtresse de la Manche. Le 5 février eut lieu la réquisition de
tous les navires belges par le gouvernement, suivie par l'institution de la Commission for
Relief in Belgium créée aux USA. En conséquence, la flotte marchande belge ne se
composait plus que de 80 navires de mer au 1er janvier 1917; mais cette année furent
enfin enregistrés 6 gains, tandis que 22 navires furent encore perdus, dont notre
motorship, mais -heureusement pour celui-ci- non pas par fait de guerre, mais comme
suite à sa reconversion en steamer, les moteurs n'ayant pas donné satisfaction. Le nombre
très élevé des pertes fut en particulier le prix à payer comme suite de la guerre sousmarine à outrance décrétée par l'Allemagne dès le ler février Mais celles-ci ne comportent
pas de navires appartenant à un armateur de la côte, qui avaient d'ailleurs presque tous
déjà disparu. Remarquons qu'en 1917, seule une toute petite partie de notre territoire
national n'avait pas encore été envahie, autour de La Panne. C'est la raison pour laquelle
l'armateur anversois Emile Deckers, en quête de navires, ne put trouver autre que le
chalutier Charles-Yvonne, datant de 1913 et que nous avons déjà présenté comme
appartenant à Eugène Rau; il fut promptement reconverti en caboteur et Deckers, qui
espérait toujours trouver plus de tonnage, créa une nouvelle compagnie, l'Armement Belge
Côtier Le premier navire de cette maison fut ainsi l'ancien Charles-Yvonne, rebaptisé
Moucheron. D'autres suivront plus tard, de même que quelques chalutiers armés par une
autre maison créée par E. Deckers, les Pêcheries E. Deckers & C° Ces armements sont
présentés en fin de chapitre. En avril 1917, c'est toute notre côte qui fut arrosée par les
tirs des monitors et destroyers anglais. Nous avons également déjà présenté le bateau
d'excursion La Marguerite acheté en Angleterre en 1909 par Gustave Boyet et revendu en
1912 à J Buylaert. Or, en octobre 1914, au moment de l'occupation d'Ostende par les
Allemands, La Marguerite avait pris la fuite en Angleterre. Mais pendant la traversée du
détroit de Douvres, elle fut abordée par un navire de la Royal Navy et gravement
endommagée. Remorquée à Rochester où elle fut déclarée irréparable, elle y resta
désarmée jusqu'en 1917 Un autre de nos armateurs anversois, également en quête de
tonnage, la racheta le 26 septembre dans cet état pour la faire transformer en petit cargo
à Newport. Et c'est ainsi que la maison J. B. Van Hemelryck d'Anvers, qui avait constitué
un armement dès 1917, put mettre en service en janvier 1918 la Suzanne, qui entama son
premier voyage de Newport à Swansea, chargée de charbon, sous les ordres du capitaine
Peel-man. Malheureusement, la Suzanne chavira à quai le 14 septembre 1918 lors d'un
chargement de tonneaux en pontée; elle fut relevée et envoyée à Marseille pour réparation
et vendue en janvier 1919 à un armateur du Pirée. Relevons le fait qu'un autre navire du
nom La Marguerite, mais n'ayant rien à voir avec le précédent, fit régulièrement escale à
Ostende au début du siècle. Cette dernière Marguerite fit l'objet de cartes postales
erronément intitulées 'la malle'; mais à l'époque, le photographe sans doute fort peu au
courant de notre ligne Ostende-Douvres, devait sans doute présenter comme malle tout
bateau à aubes d'un certain tonnage. Cette Marguerite, anglaise, avait été conçue comme
navire d'excursions pour la Tamise en vue de son exploitation par la Victoria Steamboat
Association. Elle fut armée par son constructeur, la Fairfield Shipbuilding & Engineering
Company de Govan qui la livra en 1894. Son tonnage de 2.205 tonnes brutes et sa longueur
de 330 pieds fit que le navire se retrouva pour un temps en exploitation 'cross channel'
entre Tilbury et Ostende, mais il n'était pas assez rapide et fut transféré en 1904 de ce
service à celui de Liverpool et le pays de Galles du Nord sur lequel le navire resta opérer
jusqu'en 1925 sans plus jamais revenir à Ostende. Fermons donc cette parenthèse pour
parler à nouveau d'un navire belge. Rappelons en effet que c'est en 1917 que le vapeur
Paul de J. Huyghebaert, établi à Nieuport, passa à l'armement L. Hermans, de Bruges, sans
changer de nom.
La présence allemande pendant les années de guerre fut donc plus marquée à Zeebruges
qu'à Ostende; y étaient basés principalement des U-Boote de petites dimensions mais aussi
des unités de type Vorpostenbote de la Vorpostenflotille Flandern, en particulier huit
navires de soutien aux sous-marins et des vedettes lance-torpilles, qui servirent aussi de
patrouilleurs et au déminage. Du fait de l'action des U-Boote en 1917, il ne nous restait
plus que 64 navires de mer au ler janvier 1918, dont 4 voiliers; cette année, cinq gains
furent enregistrés, mais on déplora encore la perte de 11 navires. En conséquence, au
moment de l'armistice, la flotte belge était réduite à 60 navires dont 4 petites unités
achetées récemment. Et plusieurs de nos navires se trouvaient encore éparpillés partout
en Europe, comme la Reine Elisabeth, coulée à Petrograd, des pétroliers et un cargo
naviguant toujours pour l'Amirauté russe et un autre pétrolier devenu anglais, ainsi que
l'Ursula Fischer, qui n'était autre que l'épave saisie à Bruges en novembre, d'un navire
sabordé par les Allemands le 2 octobre. Par ailleurs, plusieurs de nos navires furent
récupérés dans un état pitoyable à Swansea, Stettin, en Autriche, à Anvers même, ou
même en mer Le 22 avril 1918, une force d'assaut anglaise avec blockships' se mit en
route pour Zeebruges; elle arriva au môle avant l'aube du 23. Les blockships furent
effectivement sabordés pour empêcher les sous-marins allemands de gagner la mer, et
l'explosion volontaire d'un sous-marin anglais détruisit le viaduc reliant la terre au môle
pour empêcher ainsi l'arrivée des renforts allemands sur le môle où avaient débarqué le
plus grand nombre de commandos. Le môle avait été littéralement pris à l'abordage, les 3
blockships furent coulés comme prévu, et une brèche de 66 mètres avait été faite à
l'emplacement du viaduc par le sous-marin anglais. Mais en dépit de tous ces efforts et de
la perte de nombreuses vies, le port n'était pas réellement bloqué et les Allemands ne
mirent pas longtemps avant de le dégager et de reprendre les opérations de leurs sousmarins. Le 10 mai suivant, une attaque similaire fut organisée sur Ostende. Celle-ci fut
décrite comme 'ratée', bien que le Vindictive, qui avait participé à l'action sur Zeebruges,
fût sabordé dans le chenal, mais sans toutefois l'obstruer efficacement (il sera relevé le 16
août 1920 et sa proue conservée en mémorial).
La morale de ces deux tentatives est
que les sous-marins, le pire ennemi
de notre shipping, n'étaient toujours
pas bloqués ! Le 7 mars, la Martha
de Handel 8v Scheepvaart avait été
torpillée par l'UB80; et le 26 septembre, ce fut le tour du Paul
appartenant alors à L. Hermans
d'être torpillé par l'UB21 . Mais le
blocage réel eut lieu quelques mois
plus tard, lors de la retraite
allemande. A cette occasion, un
grand nombre de navires fut en effet
sabordé à Bruges, Zeebruges et
Ostende, dont deux appartenant à ce dernier port Princesse Joséphine, ancienne malle
Ostende-Douvres déclassée, capturée en octobre 1914 et sabordée le 4 octobre 1918 à
Bruges; La Flandre, ancienne malle Ostende-Douvres déclassée, sabordée le 4 octobre
dans le chenal d'Ostende; Ursula Fischer (État) sabordé à Bruges le 3 octobre; Midlands
sabordé à Bruges le 3 octobre; Niobé (capturé par l' U36 en 1915, relâché à Zeebruges
mais repris en 1917 par l'U17) sabordé à Bruges le 3 octobre 1918 (et qui sera relevé en
1919); Gelderland sabordé à Zeebruges, à l'écluse du canal maritime le 4 octobre;
Zandstroom sabordé à Zeebruges le 5 octobre; Rio Pardo sabordé à Zeebruges, l'écluse du
canal maritime le 4 octobre; Westland, sabordé à Zeebruges le 5 octobre 1918; et le
Lestris, sabordé à Bruges le 3 octobre.
Le 6 octobre 1918, les dernières
troupes allemandes avaient quitté la
côte. Nieuport fut libérée le 15,
Ostende le 18 et Bruges le 19. La
guerre avait détruit Nieuport et les
raids puis les sabotages avaient fait
des ravages à Zeebruges et à
Ostende. Lors de la retraite des
Allemands, le môle de Zeebruges,
jonché de débris, était en très mauvais état et partiellement détruit. Certains de nos plus
beaux voiliers avaient 'disparu' au cours de cette guerre Mathilde, Ville de Bruges et Ville
d'Ostende. En Belgique, pendant la période du ler janvier 1914 au 31 décembre 1918, 22
navires furent acquis ou récupérés après passage sous pavillon étranger, pour 89 perdus,
dont 45 par faits de guerre, 11 par suite de fortunes de mer dont 2 suspectes (explosions),
26 ventes et 7 passages sous pavillon étranger, en charter pour l'Amirauté anglaise ou
pour la Marine russe. Trois des fortunes de mer sont antérieures à l'entrée en guerre de la
Belgique, de même que le plus grand nombre de ventes. D'après les 'bilans' publiés à
l'époque, la guerre coûta la vie à 42.000 de nos militaires (dont 14.000 disparus !!) et
9.000 civils. 292 vies de nos marins furent sacrifiées, nombre qu'il faut encore augmenter
des 74 morts parmi nos pêcheurs, 7 chaloupes à vapeur et 126 chaloupes de pêche à voiles
ayant également été détruites pendant la guerre, les mines seules ayant encore coûté 40
unités en 1919, neuf en 1920, douze en 1921 et encore une en 1922 !!! Pour ce qui
concerne les chalutiers ostendais, les journaux publièrent les chiffres suivants 133
chaloupes à voiles en 1914, réduites à 106 unités en 1919; pour celles à vapeur, des 29
unités de 1914 seules 20 étaient encore en service en 1919. Pour en terminer avec les
chiffres, 867 croix de guerre maritime furent décernées, dont plusieurs à titre posthume,
422 marins et officiers de pont, 146 des services généraux et de cabine et 299 au personnel
des machines.
Mise à part la petite Suzanne de Van Hemelrijck, présentée plus haut, nous n'avons trouvé
matière à une monographie d'armement pour cette affreuse période que les navires
enregistrés dans les ports de la côte du groupe d'Émile Deckers.
Les armements du groupe Emile Deckers L'armement Emile Deckers & C° avait été créé le
ler septembre 1905 par la reprise de la maison C. W Twelves de 1883. Hormis les maisons
créées par ce groupe à Anvers, notons dans le cadre de notre histoire, que l'Armement
Belge Côtier, qui fut créé à La Panne en 1917, avait repris alors le Charles Yvonne (018)
de Rau et rebaptisé Moucheron. La Panne en resta le port d'attache jusqu'en 1918, puis le
navire fut transféré à Ostende, libérée. Il resta au service de cette maison jusqu'en
décembre 1923, quand le navire fut vendu à une maison écossaise. En 1919, cet armement
acquit encore quelques petites unités, enregistrées à Anvers, telles un autre ancien
chalutier, Libellule, construit en France en 1918, et que notre maison revendra en février
1920. De ce fait, leur acquisition suivante, un petit navire d'un port en lourd de 110 tonnes
à peine, fut lui aussi baptisé Libellule, deuxième du nom; il fut revendu en décembre 1923.
L'Armement Belge Côtier disposa encore de navires un peu plus importants, enregistrés à
Anvers. Ce fut le cas pour le vapeur Eigen Hulp VI de la N.V Stoomvaart Mij. Excelsior, de
Rotterdam, acquis en 1919 par la l'Armement Jenny Pry d'Anvers. Ce caboteur construit
en 1918, de 497 tonnes brutes et 750 tonnes de port en lourd, fut baptisé Irène Pry et
cédé en 1919 à l'Armement Belge Côtier qui le rebaptisa Irena. En 1922, il devint le Marnix
de la Compagnie Maritime de l'Escaut à Anvers, du même groupe, qui le vendit le 28 mars
1924 à une compagnie anglaise. En 1919, l'Armement Belge Côtier à Anvers acquit encore
un caboteur de 380 tonnes brutes, le Condor de 1918, qui fut transféré le 30 avril 1923 à
E. Deckers & C° qui le cédera enfin en 1931 à Deckers Frères & Wirtz; mais le navire resta
à la chaîne jusqu'à sa vente en 1934. L'Armement Belge Côtier arma encore, avec Ostende
comme port d'attache, les Zwaluw et Abeille. Le premier avait été construit en 1910 à
Hoogezand. C'était une goélette deux mâts de 148 tonnes nettes. Le 26 juillet 1916, le
navire fut acquis, toujours sous le nom Zwaluw, par la Maatschappij Schoenerschip Zwaluw
de Terneuzen, sous pavillon hollandais pour rester 'neutre' Or, les gérants de cette société
n'étaient autres que François Bernard De Meijer et Raymond Gaston Emile Nolson. C'est le
20 mai 1918 que le navire fut acquis par l'Armement Belge Côtier, avec Ostende comme
port d'attache. En août 1918, le navire fut doté d'un moteur auxiliaire de 4 cylindres et
d'une puissance de 90 chevaux dans un chantier de Boom. Il fut vendu le 5 juin 1920 à
une compagnie anglaise d'Ipswich. Enfin, l'Abeille acquise la fin de 1918, était un voilier
mixte gréé en koff de 66 tonnes nettes, 97 tonnes brutes et d'un port en lourd de 130 tdw,
construit à Delfzijl en 1905. Il fut revendu le 24 novembre 1922 et eut encore une longue
carrière; il sera rayé des listes allemandes en 1959. Entre-temps avait encore été constitué
à la côte l'armement Pêcheries E. Deckers & C°, en 1920, qui fut pour le groupe une
'section' de pêche hauturière qui arma 5 chalutiers à voiles avec Blankenberge comme port
d'attache. Ce sont le B37 Ianira qui devint en novembre 1921 le H48 Ianira par suite de
son transfert à Heist-sur-mer; le B36 Marie-Sophie; le B22 Achille qui fut lui aussi transféré
à Heist en novembre 1921 et devint le H32 Achille; enfin les B4 Stella Maris et B21 Belarma
dont le nom était l'adresse télégraphique de la Société Belge d'Armement. Mais cette
section fut liquidée en 1922. En 1920, l'Armement Belge Côtier et les Entreprises Maritimes
Belges déménagèrent à la Beursstraat, n° 21 à Anvers. L'année suivante, ces maisons
furent pour un temps 17, Lange Nieuwstraat. En 1922, cinq des plus petits navires du
groupe furent vendus et le Marnix des Entreprises Maritimes Belges fut transféré à la
Compagnie Maritime de l'Escaut, nouvellement créée par J. Vander Veken et qui acheta un
nouveau navire, le Lambermont. C'est donc cette année que furent vendus tous les
chalutiers des Pêcheries E. Deckers & C° Au 1er janvier 1923, l'Armement Belge Côtier
avait encore trois navires et co-louait les bureaux de la Lange Nieuwstraat, mais dans le
courant de l'année, cinq navires furent encore vendus et l'Armement Belge Côtier fut
liquidé. Cette année, les Entreprises Maritimes Belges et toutes ses filiales furent absorbées
par la Banque Centrale de Bruxelles, qui promut l'explorateur bien connu Adrien de
Gerlache comme directeur-gérant, bien que la gestion des navires restât aux mains de la
compagnie Emile Deckers & C° À ce moment, toutes les sociétés furent établies ensemble
(Entreprises Maritimes Belges, Armement Belge Côtier et la Société Belge d'Armement
Maritime) au n° 11 du Léopoldplein, à Anvers.
A. Delporte (f)
Neptunus
INSERE 07/06/16
NIEUWS NOUVELLES NEWS
ENLEVE 07/07/16
Internet access for crew – no excuses
Online communications remains a key element of crew welfare, with half the ships in the
global fleet still not providing any online access to crew. According to the Sailors’ Society,
seafarers want some form of internet access on board to contact families through e-mail
and social media. This is one of a number of welfare needs they have, including improved
rest hours, more time ashore and access to social support services. “Communications
should be easily available on board ships for internet services,” says Sailor’s Society
chaplain Marc Shippers. “But on half of the vessels worldwide, crew have no access. When
it is available, it can be slow and expensive. So, all chaplains have modems for seafarers
to use for internet access.” To help chaplains get on board more ships, Sailors’ Society has
introduced the Chapplaincy application for their mobile phones that indicates vessels that
are in the ports they work in. This applies vessel tracking data from Marine Traffic to
provide voyage and port arrival information. Chaplains can then plan their time to
maximise the number of seafarers they can meet. For some shipowners, providing the
right level of communications at low prices is an important part of crew welfare. In the
recently published article on marinemec.com, owners Saga Shipholding and Torm explain
how they provide free internet services to seafarers to improve crew retention. Saga
Shipholding technical manager Niles Otto Bjørhovde says crew use the internet for social
media and downloading pictures of their family and friends. He goes on to say: “We have
had positive feedback and retention rates are increasing on these vessels.” Torm head of
systems and technical matters Walter Hannemann says the tanker owner can allocate
bandwidth fairly around the fleet and crews to ensure there is online access on each ship.
One of the biggest issues for owners is the high costs of satellite communications, which
discourages then from offering online services to crews. There are a number of crew
welfare solutions available for vessels with limited bandwidth connectivity. Some of these
are included in a recent feature, including services by Satmind, Telemar Scandinavia and
Navarino. Last week, Singapore Telecommunications (Singtel) launched its All-in-One
(AIO) SmartBox and Mobile applications for crew welfare and onboard connectivity. The
AIO SmartBox is an on board centralised control box that allows IT managers to control
firewall settings and connectivity remotely. It comes with crew prepaid solution that allows
captains to issue voice and data PIN numbers and vouchers that seafarers can use to
access online services in ships. The AIO Mobile application for smartphones enables
seafarers to use their own devices on vessels to use voice and data services. With all of
these solutions available to vessel owners there are no excuses for not offering some form
of internet access to crew at what the majority of people would consider reasonable cost.
But when owners do not offer internet access then seafarers can rely on charities such as
Sailors’ Society to be there in ports to offer brief solutions.
Source: marinemec
INSERE 09/06/16
DOSSIER
ENLEVE 09/07/16
The Impact of Mega-Ships
by : Olaf Merk
Ever bigger container ships inspire awe and fascination, and are one of the hottest topics
in maritime transport. They are also a headache for ports and terminals – mainly because
of their vast size.
A new publication by the International Transport Forum (ITF) at the OECD assesses the
impacts of these giant container ships. First of all, let’s get a hook on how big these ships
really are. They are big! Mega-big! These are true giants, bigger than houses, bigger than
apartment buildings and bigger than skyscrapers. They are bigger indeed than whole urban
neighbourhoods. Now at up to 400 metres long, these ships are longer than Eiffel Tower
(301 metres). This size increase has been exponential; ships doubled in volume in 20 years
between 1975 and 1995, and then almost doubled again in the following decade, doubling
yet again between 2005 and 2015. And it ain’t over yet! Plans are afoot to continue increase
size to 21 100 TEU* by 2017. (TEU: twenty foot equivalent unit – a small transport
container – is a standard volumetric transport measurement)
When is big too big?
Although economies of scale allow vessel costs per volume transported to decrease with
bigger ships, the on-land costs of handling those volumes increase. Together, these two
costs determine the total costs for the transport chain. At a certain point increasing ship
size becomes sub-optimal as cost savings become marginal. While a doubling of container
ship size reduces costs by a third (vessel costs per TEU), making sea transport cheaper,
the savings decrease with increased size. To find out where we are on the cost curve, we
tried a thought experiment. Imagine that instead of ordering 19 000 TEU ships, shipping
companies had ordered 14 000 TEU ships giving the same total fleet capacity. In that
scenario, land-side costs would have been approximately $50 lower per transported
container. This might seem little, but it is actually substantial when compared to freight
rates for transporting a container from Shanghai to Rotterdam – now at less than $400
and the thousands of containers ships can carry. Hence, as ship sizes continue to increase
we find ourselves heading towards overall increasing costs
Do we really need this capacity?
Our research casts serious doubts over whether this capacity can in fact be filled. We found
a disconnect between what is going on in the boardrooms of shipping lines and the real
world. The growth of containerised seaborne trade is no longer in line with the growth of
the world container fleet. And shipping companies have created alliances (only four in total
worldwide) which dominate container shipping. So the little guys can get to the big toys,
but this has also leads to overcapacity.
There are also several supply chain costs and risks related to mega-ships. There are
adaptations needed to infrastructure and equipment: the ships are longer, wider and
deeper which has consequences for cranes, quays, access channels and all that. Megaships stay on average 20% longer in ports – quite an achievement for most ports as this
requires massive efforts to accommodate these longer-stay guests. The higher risks
associated with mega-ships are linked to difficulties in insuring and salvaging in case of
accidents. Furthermore, mega-ships mean that more cargo is concentrated on a single
ship, leading to lower service frequencies and lower supply chain resilience – all your eggs
in one basket.Mega-ships have redefined the meaning of the word “peak”. Massive truck
movements, train movements and yard occupancy are all related to the arrival of a megaship. There is a requirement to manage this huge capacity on arrival which may lead to
more port congestion.
Where are we heading?
We looked at three scenarios: one in line with market demand growth projections, two
others above these growth projections, one with 50, another with 100 ships with a 24 000
TEU capacity (and a length of 430 metres), which currently do not exist or have not been
ordered – but that could be operational by 2020. The results are pretty scary. We could
see 24 000 TEU ships in Europe – both in Northern Europe and the Mediterranean. All other
regions would be impacted as ships what used to be the biggest ships serving Europe are
reassigned to other routes. So we might see 19,000 ships in North America, 14,000 ships
in South America and Africa in a few years. Whatever the scenario, mega-ships will be the
new normal in Northern Europe very soon. In just a few years 19 000 TEU ships will be
seen every day in major ports. One thing is sure – this will lead us to a decade of port
gridlock if nothing is done.
What needs to be done?
Mega-ships are a fact of life, so there should be policy support to use them effectively: for
innovation, for more labour flexibility, optimisation of existing infrastructure (spreading
use over day and night), releasing peaks (e.g. by “dry ports” – inland transshipment
centres), and upsizing of hinterland transport units (larger trains, trucks and barges).
On a more fundamental level, decision-making by ports and countries should be more
balanced. Many public policies stimulate mega-ship use, but public benefits are limited
whereas public costs can be high. This should change, first by aligning incentives to public
interests. For example, not to have port tariffs that cross-subsidise mega-ships, to clarify
state aid rules for ports, increase their financial transparency and possibly link state aid
for shipping companies to commitments to share in certain costs (e.g. dredging). Another
way would be to increase collaboration at regional level, between countries, ports and
regulators. This might include coordination of port development and investment, possibly
port mergers and more national or supra-national planning and focus. For example, the
number of core ports in EU trans-Europe transport network (TEN-T) corridor networks
could be reduced. Finally, there should be a discussion on what the future direction should
be. A forum for liners, terminals, ports and other transport actors should be facilitated to
discuss about the desirable container ship size in the future. The International Transport
Forum (ITF) at the OECD is there and willing to facilitate such a discussion.
The first mega containership of CMA CGM to call at the port of Antwerp was the CMA
CGM ALASKA. She is pictured in the Pass of Bath on the river Scheldt at the
Belgian/Dutch border.
MAERSK KLAIPEDA seen underway to APM Terminal 2nd Maasvlakte
INSERE 11/06/16
NIEUWS NOUVELLES NEWS
ENLEVE 11/07/16
Man overboard fatality from Hyundai
Dangjin
ATSB has issued Transport Safety Report regarding crew fatality onboard HYUNDAI
DANGJIN on July 10, 2015. According to the report, in the early hours of the accident, the
vessel was in the final stages of loading its cargo of iron ore at Port Walcott, Western
Australia. The ship was starboard side alongside the wharf and the chief mate and draught
surveyor were on the wharf to check the ship’s draught. They could see the forward and
aft draught marks but not the midships marks.
At 0450, 1 the chief mate asked
the second mate, via UHF radio, to
read the midships draught on the
ship’s port (outboard) side. The
ship’s crew had already rigged a
rope ladder adjacent to the
draught marks there.
In preparation to climb down the
rope ladder, the second mate donned a life vest (non-inflatable flotation aid). The able
seaman (AB) on duty offered to go down the ladder instead of the second mate, who was
a large and heavy man. The second mate declined the AB’s offer (mates are trained to
read draught marks) Just after 0455, the chief mate and draught surveyor returned from
the wharf to the ship’s office. The chief mate the called the second mate and asked for the
midships draught. The second mate did not reply.At that time, the second mate was near
the bottom of the ladder, about 7 m below the ship’s deck. He called out to the AB for help
and said he was having difficulty. When the AB checked, he saw the second mate struggling
to hold on to the ladder. As the AB looked around for a rope to throw down, the second
mate fell into the water. The AB threw a nearby lifebuoy to the second mate and it landed
a few metres away.The second mate tried to swim to the lifebuoy, but was not able to
reach it. The sea was rough (1.4 m sea on a 0.4 m swell) and the water temperature was
about 22 °C
Rescue attempts
At about 0458, the AB called the third mate on the radio and told him that the second mate
had fallen into the water. The AB then climbed down the ladder and entered the water. At
this time, the second mate was about 4 m from the ladder and drifting further away. The
AB had difficulty breathing and swimming in the rough, cold seawater. He was unable to
reach the second mate and returned to the ladder. The third mate reported the man
overboard to the chief mate, before hurrying to the rope ladder. When he arrived there,
he saw the second mate about 20 m from the ladder. His arms were moving slowly and he
was not getting any closer to the lifebuoy about 3 m away. The third mate then went aft
to get a lifebuoy with a lifeline attached
ATSB comment
The rope ladder had been rigged upside down. With their wrong side up, the ladder steps
(folded aluminium) did not provide a flat surface to stand on comfortably. Further, the
steps were not good handholds. The sole precaution taken by the second mate while
reading the draught marks was his life vest. No fall prevention measures were put in place
or used.The life vest’s specifications could not be determined but similar types provide
around 7 to 10 kg of buoyancy. While the AB was standing by on deck, man overboard
response measures (such as a lifebuoy with light and line near the ladder) were not in
place. Fortunately, his well-intentioned but impulsive descent of the ladder in an attempt
to rescue the second mate did not result in another casualty. The second mate’s initial post
mortem examination report stated the cause of death as ‘undetermined (pending further
investigation)’.However, the report noted that some findings of the examination ‘could be
seen with drowning’. The report stated that the body was of a man of large build and
included his height and weight. This is consistent with the attending police officer’s report,
which noted that the second mate ‘was a man of large overweight build’.
Source: safety4sea
INSERE 13/06/16
BOEKEN LIVRES BOOKS
ENLEVE 13/07/16
Unseen Mauretania (1907) : The Ship in
Rare Illustrations
Showcasing photographs and illustrations from a
variety of collectors archives, The Unseen
Mauretania 1907 reveals the Cunard company’s
most luxurious ocean liner of the early twentieth
century as you have never known her before.
When the Mauretania took to the North Atlantic
for the first time in November 1907, she was the
largest and fastest ship in the world, serving with
her sister ship, the Lusitania, for nearly eight
years. Although the Lusitania’s life was cut short
during the First World War, the Mauretania
continued to have an impressive presence at sea,
holding the Blue Riband for the fastest
transatlantic crossing until 1929. This evocative
visual history by maritime expert J. Kent Layton
follows her glorious career, which spanned four decades of the twentieth century.
ISBN9780750959575 Image © History Press (2015)
Author Layton, J Kent
Format HB
Publisher History Press (2015)
Price £25.00
Availability In stock
INSERE 13/06/16
DOSSIER
ENLEVE 13/07/16
The ISM Code from a tanker perspective
The ISM Code has been in force since 1st July, 1998*.
It was adopted under SOLAS following several high profile accidents, including the 1987
foundering of the Herald of Free Enterprise and the 1994 sinking of the Estonia, both with
a heavy loss of life.
Under the Code, most vessels of 500 gt and above, including tankers, need to have Safety
Management Systems (SMS) installed, developed, implemented and maintained by
shipowners and managers. The SMS must be implemented both ashore and afloat.
While the Code required companies to develop SMS for their vessels, it was left broadly
open as to as to the terms applied and was deliberately intended to be sufficiently flexible
to allow adoption by varying sized companies and spanning all industry sectors.
However, at times, the Code has been treated as a form filling and check list exercise. It
is seen by many as an administrative burden on vessels without the desired positive effect
on safety, which is the wrong impression.
The Code not only provides the basis on which companies can develop essential safety
systems, along with the procedures to allow these to be checked and followed up, but
compliance is also often required under charterparties, as well as for insurance coverage.
Tanker owners/operators/managers is one industry sector that has had particular reason
to be keenly aware of the necessity for compliance, as well as the consequences of a failure
to comply.
Today, tankers operate in a stringent environment where their employment is directly, or
otherwise, down to ‘oil major approval’. Since a raft of highly publicised incidents down the
years, culminating with the Prestige and Erika sinkings, the oil majors know of the financial
and reputational impact of a major incident.
As a result, the Oil Companies International Marine Forum (OCIMF)- the voice of the oil
majors- developed the Ship Inspection Report Programme (SIRE), which was introduced
in 1994 to create a database about the condition of tankers with the aim of improving
quality and safety standards.
It should come as no surprise to learn that ISM compliance is one of the things that a SIRE
inspector will look for when boarding a vessel.
One of the key issues that has often arisen is the shipping company management’s concern
over addressing:

Achieving ISM compliance.

Concern about creating documents that result in SIRE VIQ ‘observations’.

Legal advice that suggests limiting the creation of a paper trail, which may
subsequently become subject to legal discovery, or disclosure obligations.
The concerns and misunderstandings of how to address these appropriately, can lead to
under performance in critical ISM areas, only increasing the physical and legal risks. It is
not easy to gain a complete overview of tanker ISM issues, as well as casualty data, as
there is no central repository for collecting and analysing Section 9 non-conformity (NC)
reports, or a central or autonomous agency that collects, evaluates and disseminates
tanker incident information.
Lagging behind
In this regard, shipping lags behind the airline industry when it comes to accident
investigation and the lessons learned. Part of the reasons are set out by Jack Devanney in
his paper ‘Uses and Abuses of Ship Casualty Data’. Often the underlying reason will be a
fear
of
embarrassment
coupled
with
concerns
over
legal
prejudice.
This can lead to the following suppression of information;

Ratings not reporting problems to the officers.

Crews not reporting problems to their owners/managers.

Some owners/managers may prefer not to learn in writing about perceived minor
shipboard issues and are concerned about a paper trail being created that could be
discovered during a SIRE inspection or incident investigation.
Regrettably this form of approach still exists today.
An example of such an issue being tested in a New York arbitration case, led to a finding
of neglect by the management and an award in favour of the claimant cargo owners. The
vessel apparently had an SMS certificate for several years, but there was no single fully
completed NC report or any evidence of a management review of a report in the owner’s
records. That issue, combined with a seeming lack of proper planning and management
oversight of voyages and repairs, led to the arbitrators reaching their conclusion.
In 2014, a formal survey of ISM compliance was conducted by David Corkish and presented
in a dissertation - The Effectiveness of ISM Implementation’ - to Liverpool’s John Moores
University.
The findings of this survey were;
1. Some vessels and organisations had a ‘culture of (avoiding) embarrassment among
their managers and crew.
2. Official statements about embracing ISM were not followed through in practice,
including a verified check on a particular company stating it was compliant but
having been found to routinely violate STCW work and rest hours with no NC ever
being filed.
3. Using the ‘5 whys’ technique of incident review often leads to issues of management
practices being the root cause.
4. Section 12 of the ISM Code requires audits and annual reviews, but these may be
neglected in practice.
5. Less than half of respondents were able to state that they had a ‘buy in’ to ISM’s
philosophy and practice.
6. Over two thirds of respondents felt that the paperwork generated by ISM
compliance requirements was excessive, distracting from other duties and
contributed to fatigue on board.
7. Some respondents felt that IT support was insufficient to assists with this
administrative burden.
8. Less than one third felt that an adequate and confidential NC system was in place
and a similar low number did not express confidence in their employers to respond
to issues in a timely fashion.
9. Less than half of the respondents felt that accident and near miss reports were
being taken seriously by their organisations and even more of a concern was that
30% thought the reports were not taken seriously.
10. Overall, there was a perception that paperwork was being over relied upon to
achieve ISM compliance, which led to frustration on the part of those who had to
complete these tasks - with potential ship to shore attitudes being the root cause.
From 1998-2008, John Dudley- the co-author of Skuld’s loss prevention bulletin, from
which this article is taken - was the primary vetting reviewer for a large international oil
trader. He examined between 400-500 OCIMF SIRE VIQ reports annually and in around
5,000 reports, he saw:
■ Only an occasional statement that a VIQ observation ‘would be raised as a nonconformity
and reviewed according to the owner’s ISM process.
■ Only one company who repsonded to SIRE VIQ observations by raising a NC for every
observation. The company submitted a copy of their management NC review status report
as its response to the vessel’s SIRE VIQ observations.
■ Only one example of a fully completed NC report form, with management- of- change
follow through and sign off, as a VIQ observation response.
In one case, an owner’s refusal to submit any kind of written report regarding an incident
that occurred while the vessel was in operation resulted in the tanker not completing a
vetting successfully for two years until finally the situation was properly addressed.
One thing that
Dudley
was
particularly
looking out for
as
a
vetting
manager was to
read
a
SIRE
inspector’s VIQ
observation that
‘during
the
previous
six
months, 12 nonconformities
were raised by
the
crew
or
during
management
visits and all were shown to be suitably closed out by management review and SMS
changes.
“Such statements were considered to be evidence of a well working SMS process on board
and ashore with due reporting and follow up. So the quandary for owners and managers is
- How can I create NC records of deficiencies in the operation of my vessels without the
NC records becoming uncorrected observations recorded by SIRE inspectors in their VIQ
report, leading to possible vetting rejections and loss of income, or creating a documented
history of apparent errors and omissions that will be used against me in an arbitration or
court proceedings?” he said.
Strong defence
The answer is
that a diligent
programme
of
continuous
improvement,
including
a
rigorous
nonconformity
process,
will
significantly
reduce
the
opportunity for
an event that
will produce a
legal or arbitral
consequence
and the ability to
demonstrate
thorough
implementation
of ISM is a
strong defence
against claims of
negligence Of the greatest importance, the most important step is for management to
realise the importance of ISM compliance and then ensure this is translated into proper
adoption, as well as continued review and appraisal. This will mean a lot of work, but the
consequence of failing to comply could lead to a loss of oil major approval, insurance
coverage prejudice, as well as legal consequences- both civil litigation and authority led
action.
One key area to check is compliance with ISM Section 9, as this can be an easy target
when passed into the hands of the lawyers. This section covers reports and analysis of
non-conformities, accidents and hazardous occurrences.
The question of what constitutes an adequate number of NCs, as outlined in this section,
to demonstrate compliance, is a contentious one. Owners’ responses differ greatly when
asked this question. It has been suggested that there should be a basic expectation of at
least some issues being reported periodically.
This would allow an easy follow up on vessels that report nothing to see whether all is well
or whether there may be an issue with under reporting which needs addressing
There are some owners/managers that continue to resist full implementation of the
continuous improvement mandate and ISM NC mechanism out of a possible concern over
the creation of documentary evidence that could adversely affect vetting, arbitration or
court outcomes.
However, this concern should be replaced by an even greater concern of being found to
have not initiated ad maintained a vigorous flow of ISM issue reports from a fleet and a
return flow of change management actions for continuous improvement.
On the legal and insurance side, if deficiencies are detected, serious consequences can
follow. For example, the Australian Maritime Safety Agency (AMSA) has a strong track
record of highlighting deficiencies and a demonstrated willingness to take robust action,
including the banning of vessels found to be in non-compliance with codes and regulations.
Should a significant accident occur and subsequent investigations reveal that there was a
systematic ISM compliance failure on board, ashore or both, it may lead to potential legal
action by authorities, including criminal prosecutions. In civil liability, this could lead to a
loss of limitations and defences that could be otherwise available under contract or law.
It must be remembered that vessel insurance coverage is dependent upon the vessel being
fully ISM compliant. For example, Skuld changed its rules in 1998, expressly to make ISM
Code compliance a condition for cover from the P&I club.
Tanker Operator
*This article was taken from a dissertation presented by David Corkish in his final year of
an honours degree undertaken at Liverpool John Moore's University, UK. John Dudley of
Tankerisk assisted by providing advice and information during the data collection phase,
as a primary source.
The dissertation has since been published by Norwegian P&I Club Skuld under the title ISM Compliance for Tankers - from which this article is taken.
INSERE 15/06/16
HISTORIEK HISTORIQUE
ENLEVE 15/07/16
Les débuts de la Navigation à Vapeur
Peu d'inventions ont eu, sur le rythme de la vie humaine, une influence aussi décisive que
celle de la « machine à feu ». Si l'imprimerie inaugura l'ère 'dite « moderne », en offrant
à la pensée humaine des possibilités de diffusion prodigieuses, la machine à vapeur allait
bouleverser le rythme même de la vie quotidienne de l'individu. Elle allait marquer de son
sceau — et nul ne sait encore pour combien de siècles — une forme nouvelle de civilisation.
Denis Papin
C'est au Français Denis Papin, médecin de profession', physicien et mécanicien de vocation,
que revient la gloire d'avoir découvert le principe fondamental de la machine à vapeur et
d'en avoir, le premier, réalisé l'application pratique dans le domaine de la locomotion.
Né à Blois en 1647, Papin, comme beaucoup d'autres Protestants, fut chassé de France
par la Révocation de l'Édit de Nantes.
Réfugié en Allemagne, il publia à Leipzig, en 1690, la première description d'une « machine
à piston » dont la montée était assurée « par la production de la vapeur et la descente par
le poids de l'atmosphère après condensation ».
Ces deux mouvements étaient obtenus d'une manière très simple par le placement et le
retrait successifs d'un réchaud sous un cylindre contenant, à sa base, une petite quantité
d'eau.
Mais l'inventeur ne se contenta pas de ce succès de laboratoire. Son génie lui fit deviner
immédiatement tout le profit que l'on pourrait tirer de sa découverte dans le domaine de
la locomotion. C'est à Leipzig encore qu'il rédigea son célèbre projet d'un « bateau à vapeur
pouvant naviguer contre le vent ».
Ce document capital vaut qu'on le reproduise.
Je veux dire ici, écrit l'inventeur, sous combien de rapports la force motrice de la vapeur
serait préférable à celle des rameurs ordinaires pour imprimer le mouvement aux
vaisseaux.
1° Les rameurs ordinaires surchargent le vaisseau de tout leur poids et le rendent moins
propre au mouvement;
2° Ils occupent un grand espace et, par conséquent, embarrassent beaucoup sur le
vaisseau;
3°On ne peut pas toujours trouver le nombre d'hommes nécessaires;
4° Les rameurs, soit qu'ils travaillent en mer, soit qu'ils se reposent dans le port, doivent
toujours être nourris, ce qui n'est pas une petite augmentation de dépense.
Nos tubes, au contraire, ne chargeraient le vaisseau que d'un poids très faible ; ils
occuperaient peu de place ; on pourrait se les procurer en quantité suffisante, s'il existait
une fois une fabrique pour les confectionner, enfin, ces tubes ne consommeraient du bois
qu'au moment de l'action et n'entraîneraient aucune dépense dans le port.
Mais comme des rames ordinaires seraient mues moins commodément par des tubes de
cette espèce, il faudrait employer des roues à rames telles que je me souviens d'en avoir
vu dans la machine construite à Londres, par l'ordre du sérénissime Prince Palatin Rupert.
Cette machine était mise en mouvement par des chevaux à l'aide de rames de cette espèce
et laissait de bien loin derrière elle la chaloupe royale, qui avait cependant seize rameurs
Il n'est pas douteux que nos tubes puissent inspirer un mouvement de rotation à des rames
fixées à un axe, si les tiges des pistons étaient armées de dents qui s'engrèneraient
nécessairement dans des roues également dentées et fixées à l'axe des rames. Il serait
nécessaire, seulement, que l'on adaptât trois ou quatre tubes au même axe, pour que son
mouvement pût continuer sans interruption. En effet, tandis qu'un piston toucherait au
fond de son tube, on pourrait, au moment même, éloigner l'arrêt d'un autre piston qui, en
descendant, continuerait le mouvement de l'axe.
Un autre piston serait ensuite poussé de la même manière et exercerait sa force motrice
sur le même axe, tandis que les pistons abaissés en premier lieu seraient de nouveau
élevés par la chaleur et se retrouveraient ainsi en état de mouvoir le même axe, de la
manière précédemment décrite.
D'ailleurs, un seul fourneau et un peu de feu suffiraient pour élever successivement tous
les pistons.
Papin construisit, selon ce principe, un bateau qu'il expérimenta avec succès en 1707, à
Cassel, sur la Fulda, affluent de la Weser.
L'inventeur vit malheureusement se dresser aussitôt contre lui tous les bateliers de la
région, qui craignaient de voir le nouvel engin leur enlever la source de leurs revenus.
Comme Papin entreprenait, dans la même année, un second voyage sur la Weser, ces
bateliers se saisirent de l'embarcation et, en dépit des protestations et de la résistance
désespérée de son propriétaire, ils la détruisirent complètement.
Découragé, Papin alla se réfugier en Angleterre ; mais totalement ruiné par ses
expériences, et n'ayant pu trouver les fonds nécessaires pour en entreprendre de
nouvelles,
il
ne
put
y
reprendre
ses
essais
de
navigation.
Miné par la maladie et le désespoir, le malheureux inventeur mourut quelques années plus
tard dans le plus pénible dénuement. Son nom ne fut même pas retenu par ses
contemporains qui nous ont laissé ignorer jusqu'à la date de son décès.
Jonathan Hulls
Mais l'idée qu'il avait lancée survécut. Quelques années plus tard, en effet, plusieurs
ingénieurs anglais la reprirent avec des variantes et, en 1736, l'un d'entre eux, un certain
Jonathan Hulls, se vit accorder une patente pour un bateau à vapeur mû à l'aide d'une
roue à aubes, fixée à l'arrière du bâtiment.
En 1763, ce fut au tour d'un ingénieur américain, William Henry, d'équiper d'une machine
à vapeur un petit bateau à roues ; mais l'embarcation sombra avant qu'un résultat positif
eût été atteint.
En
France
Entretemps, quelques esprits curieux avaient poursuivi, en France également, les
recherches entreprises par le malheureux émigré et ce fut finalement dans la patrie de
l'infortuné précurseur que, par une tardive compensation du sort, on vit réaliser et évoluer
avec succès le premier modèle vraiment pratique de bateau à vapeur.
La construction en fut commencée en 1772 par deux officiers français originaires de
Besançon : le comte de Follenay et le comte d'Auxiron.
Mais, comme il en était advenu de Papin en Allemagne, les deux gentilshommes se
heurtèrent aussitôt à l'hostilité déclarée de la corporation des bateliers, qui exigea la
destruction immédiate de l'embarcation.
Les deux officiers ayant refusé de se soumettre, quelques hommes parvinrent, une nuit, à
tromper la surveillance établie autour du chantier et sabordèrent le bateau qui coula à
fond.
Auxiron en conçut un désespoir si violent que sa santé n'y résista pas. Il mourut quelques
années plus tard, laissant à son ami de Follenay le soin de poursuivre les expériences.
Celui-ci s'associa avec un autre gentilhomme, le comte Claude de Jouffroy d'Abbans, qui
fit construire une machine d'après les dessins laissés par Auxiron, et la monta sur un petit
bateau qu'il fit évoluer avec succès sur le Doubs en 1778.
Encouragés par cette réussite, les deux associés décidèrent alors de frapper le coup décisif.
Il s'agissait de démontrer aux incrédules et aux sceptiques que la machine à vapeur avait
dépassé le stade des expériences capables seulement d'exciter l'intérêt ou la curiosité des
hommes de science, et qu'elle était devenue un instrument de travail déjà puissant,
susceptible d'un rendement économique avantageux.
Dans ce but, Jouffroy fit commencer en 1782, à Ecully, près de Lyon, la construction d'un
grand bateau destiné au transport des marchandises' et des passagers. Il devait avoir une
longueur de 45 mètres, une largeur de 4,50 mètres, un tirant d'eau d'un mètre environ et
déplacer 182 tonnes.
La coque et la machine entraient dans ce poids pour 53 tonnes seulement, ce qui donnait
au bâtiment la possibilité d'emporter près de 130 tonnes de charge utile.
Poussée avec énergie, la construction fut achevée en quelques mois et les essais officiels
furent entrepris le 15 juillet 1783 sur la Saône, devant une foule considérable accourue de
tous les points de la région. Ce fut un véritable triomphe. Pendant quinze minutes, le
bateau remonta le violent courant de la rivière sous les applaudissements enthousiastes
de l'assistance.
Jouffroy n'estima pas devoir prolonger les essais au-delà de ce temps, car la chaudière et
la machine, construites en matériaux trop légers, commençaient à donner des signes de
fatigue.
Il projetait de remédier à ces défectuosités, lorsqu'il se brouilla avec son associé de
Follenay, qui s'occupait plus particulièrement du financement de l'entreprise. Un procès
s'ensuivit qui ruina les plaideurs, puis la Révolution survint, qui les força tous deux à
émigrer.
La démonstration n'en était pas moins concluante. Le bateau à vapeur avait définitivement
vaincu les préventions et les préjugés qui s'étaient opposés jusque là à son essor, et c'est
au tenace Jouffroy que revient légitimement tout l'honneur de cette victoire.
Pour être juste, on ne peut manquer de signaler, néanmoins, qu'une dizaine d'années plus
tôt, en 1775, un certain Jacques Périer, ayant travaillé, lui aussi, en collaboration avec le
comte d'Auxiron, avait réalisé également un petit bateau à roues qui avait évolué avec
succès à Chaillot, ainsi qu'en témoigné un procès-verbal officiel. Mais la machine qui
l'équipait s'était révélée insuffisante pour lui permettre de remonter le courant du fleuve.
Papin ayant dû recourir à la force musculaire de quelques membres de son équipage pour
suppléer à l'insuffisance de la machine pendant les évolutions de son bateau, l'embarcation
de Périer fut donc la première qui se révéla capable de se mouvoir sous la seule impulsion
d'une « machine à feu », tandis que le bateau de Jouffroy fut, de son côté, le premier assez
puissant pour remonter le courant d'une rivière.
La postérité doit au courage et à la persévérance des pionniers de rendre, à chacun d'eux,
l'hommage qui lui revient légitimement.
Les temps troublés de la Révolution n'étant guère propices au développement de la
navigation à vapeur en France, c'est en Angleterre et en Amérique que nous voyons alors
les ingénieurs marquer à la nouvelle invention l'intérêt
le plus actif.
En Angleterre, tout d'abord, un certain Patrick Miller, spécialisé depuis quelques années
dans la construction de bateaux à roues actionnées par la force musculaire, décida, en
1788, de monter sur ses embarcations une machine à vapeur. Ces bateaux avaient un
aspect assez étrange : ils possédaient deux coques, l'une portant la machine et l'autre la
chaudière, la roue à aubes étant fixée entre les deux. Ils évoluèrent avec un succès complet
sur la Clyde, à la vitesse de 7 noeuds, remarquable pour l'époque.
Presque au même moment, en Amérique, Samuel Morey remontait sur plusieurs milles la
rivière Connecticut avec un petit bateau à vapeur muni de roues à aubes fixées à l'arrière
du bâtiment.
John Fitch
C'est à cette époque aussi qu'il faut placer les multiples expériences réalisées par le fameux
John Fitch, esprit original et ingénieux, auquel la postérité n'a rendu justice que trop
tardivement ; il organisa notamment le premier service régulier de navigation à vapeur, à
la vitesse moyenne de 6 à 8 noeuds, sur les 38 milles qui séparent Philadelphie de Newton.
Esprit véritablement prophétique, Fitch fut l'un des premiers, sinon le premier, à voir dans
la machine à vapeur le principe d'une révolution économique qui allait bouleverser le
monde et devait être l'origine du prodigieux développement de la richesse de son pays.
« Le grand et principal objet de la navigation à vapeur, écrivait-il vers 1790, ne sera pas
seulement de sillonner les fleuves et les rivières, comme on le croit généralement, mais il
sera l'Océan Atlantique lui-même, qui sera bientôt la route par laquelle on viendra peupler
les forêts désertes de l'Amérique et faire de nous l'empire le plus opulent de la terre ».
Mais
les
financiers
américains de l'époque
ne voyaient pas aussi
loin que leur original
compatriote. En dépit
du
succès
constamment
renouvelé
de
ses
expériences,
ils
lui
refusèrent
systématiquement leur
appui. Désespérant de
l'intelligence
et
de
l'esprit d'entreprise des individus, le bon Fitch décida alors de s'adresser aux pouvoirs
publics de plusieurs Etats, convaincu que ceux-ci; ne pouvant avoir en vue que le seul
intérêt de la nation, seraient forcés de le soutenir. Mais le naïf inventeur ne reçut partout
que de belles paroles ou des fins polies de non recevoir.
Il eut alors une idée géniale, ou du moins, il la crut telle. Puisque les pouvoirs publics des
pays respectueux de la tradition se montraient aussi lamentablement adversaires du
progrès, il s'embarquerait pour la France ; il irait à Paris offrir ses services aux hommes
qui venaient de proclamer la naissance de l'ère de la raison. Ces hommes de progrès qui
affirmaient avoir pour but essentiel de réaliser la fraternité universelle, ne pourraient
manquer de réserver à l'inventeur américain l'accueil le plus enthousiaste.
Celui-ci ne manquerait pas, pour le surplus, d'insister sur le fait que tout en facilitant
puissamment les échanges entre les hommes, l'emploi de la machine à bord des navires
aurait l'avantage de rendre la vie des marins infiniment moins pénible. Fraternité !
Humanité ! Ces mots magiques devaient lui conquérir l'adhésion chaleureuse des hommes
de la Révolution !
Ayant réuni ce qui lui
restait d'argent, Fitch, le
coeur tout enflammé des
plus
magnifiques
espérances, prit donc le
bateau pour la France, où il'
débarqua à la fin de 1793.
On s'y trouvait, hélas ! en
ce moment en pleine
Terreur
!
Les
Révolutionnaires
étaient
bien plus préoccupés de se
débarrasser en masse de
leurs adversaires que de rechercher les moyens d'instaurer le règne promis de la Fraternité
universelle...
En dépit du brevet qu'il avait pu obtenir quelques mois plus tôt du consul des Etats-Unis à
Lorient, l'inventeur ne trouva auprès des pouvoirs publics qu'un accueil distrait. Pour lasser
sa patience, on le renvoya de bureau en bureau et d'incompétence en incompétence.
S'étant adressé finalement aux financiers, il les trouva plus occupés du souci de se tailler
de rapides fortunes par les fournitures aux armées que de favoriser la réalisation des
grandes idées de la Révolution.
Découragé, il ne restait plus au malheureux Fitch, complètement ruiné, qu'à regagner sa
patrie.
Après avoir épuisé ses dernières ressources en ultimes démarches, il s'engagea comme
matelot sur un navire en partance pour l'Amérique où il fut de retour vers le milieu de
1794.
Sa santé était compromise ; quelques années de vie misérable achevèrent de la ruiner.
Ayant perdu définitivement sa foi dans l'intelligence et la bonté des hommes, l'infortuné
précurseur se suicida en 1798.
Comme la mort de Papin en France, celle de Fitch passa inaperçue aux yeux de ces
compatriotes. Il a fallu un siècle pour que la postérité tirât sa mémoire de l'oubli.
Robert Fulton et le Triomphe de la Vapeur
L'injustice du sort à l'égard du malheureux Fitch est le lot de presque tous les précurseurs.
Les foules sont plus sensibles aux grandes réalisations spectaculaires qu'aux travaux de
laboratoire et aux expériences des novateurs. En quoi, elles ne diffèrent d'ailleurs pas
tellement des pouvoirs publics... Il suffit de rappeler les conditions lamentables dans
lesquelles les savants français contemporains les plus notoires furent obligés le plus
souvent de travailler : le misérable laboratoire d'un Curie ; la vie étroite d'un Branly, en
lutte avec la gêne jusqu'à la fin de son existence.
C'est aussi que le savant, le chercheur, l'homme de science, est rarement doublé d'un
réalisateur. L'inventeur travaille pour la seule joie de la découverte ; c'est un homme
désintéressé, un visionnaire, un idéaliste qui vit en dehors et au-dessus des réalités
immédiates. Parfaitement maître de soi et de sa pensée dans son laboratoire, il perd toute
assurance dès qu'il lui faut courir les bureaux pour obtenir l'appui des pouvoirs publics ou
pour solliciter le concours des banques et des grands trusts financiers. Conscient des
difficultés qu'il lui reste à surmonter avant de pouvoir entrer dans la phase des réalisations
pratiques ou industrielles, il expose timidement ses projets, ne dissimule pas les obstacles
qu'il faudra surmonter, avoue honnêtement ses soucis.
Une telle attitude n'est pas faite, évidemment, pour convaincre les hommes d'affaires. Il
s'en trouve parfois cependant, par hasard, l'un ou l'autre qui, s'élevant au-dessus de la
considération mesquine des intérêts immédiats, pressente dans l'invention dont
l'exploitation lui est proposée, la source de plus grands profits dans l'avenir. Mais il est
bien rare, dans ce cas, que l'inventeur ne fasse pas figure de dupe dans l'association qui
lui est proposée.
Toute règle présente néanmoins des exceptions, et dans l'histoire de la navigation à
vapeur, la réussite dé Robert Fulton en est certes une des plus brillantes.
Né en 1765 à Little Britain, aux Etats-Unis, Fulton partagea sa prime jeunesse entre l'art
et la mécanique, sans pouvoir se décider à choisir définitivement entre ces deux activités.
Le hasard et la chance lui firent rencontrer le fameux James Watt à une époque où celuici s'était déjà rendu célèbre par la construction de nombreuses machines à vapeur utilisées
avec succès dans diverses branches de l'industrie.
Cette rencontre fut décisive pour Fulton.
Watt, qui possédait lui aussi quelques notions d'art, fit la moue devant les dessins et les
peintures que lui présenta le jeune homme ; il s'intéressa par contre très vivement-à ses
projets d'application de la machine à vapeur dans la navigation.« Tu ne seras jamais qu'un
artiste médiocre, lui dit-il, avec sa franchise coutumière, mais tu as l'étoffe d'un grand
constructeur. Abandonne sans regrets tes pinceaux, mon ami, tu n'auras pas trop de tout
ton temps pour apprendre la mécanique ».
Fulton avait confiance dans le jugement de Watt, il obéit.
Dans la suite, les rapports entre les deux hommes furent toujours empreints de la plus
franche cordialité. Bien que ne manifestant personnellement aucun intérêt particulier pour
la navigation, le « grand » James n'en encouragea pas moins constamment les projets de
son jeune admirateur et lui prodigua sans cesse d'utiles conseils qui furent toujours
attentivement écoutés.
Comme Fitch, Fulton crut, lui aussi, devoir trouver à Paris, auprès des hommes de la
Révolution, de meilleures chances d'être entendu et soutenu que dans son propre pays.
Hommes de bonne foi et de grand coeur, la plupart des courageux chercheurs qui avaient
mis leur foi dans la machine n'avaient pas seulement vu en elle un instrument capable
d'améliorer le rendement économique des industries et des moyens de transport. Ils
étaient convaincus aussi qu'en rendant le travail plus facile, la machine serait « l'instrument
de la libération du peuple, dont la servitude avait pour cause essentielle l'abrutissement
auquel le condamnait depuis des siècles un travail quotidien exagéré et trop pénible. »
Illusions d'hommes sincères qui versaient dans l'idéologie de l'époque, et qui ne se
doutaient certes pas que cette machine, perfectionnée par eux avec tant d'amour et
d'inlassable persévérance, allait finalement asservir à la puissance irrésistible de son
rythme forcené ceux mêmes qu'elle aurait dû libérer.
Fulton, donc, s'embarqua pour la France. C'était en 1797, l'époque du Directoire.
L'atmosphère était moins tragique que celle où vécut Fitch, mais si la paix commençait à
s'établir à l'intérieur, la situation extérieure n'allait pas sans donner de graves soucis à la
jeune République. L'Angleterre avait juré de ruiner l'œuvre des hommes de 1789. Elle
disposait pour cela d'une puissante marine à laquelle la France ne pouvait opposer que des
escadres mal commandées, complètement désorganisées par l'émigration à l'étranger de
la plupart des officiers.
L'Américain Bushnell, un sincère idéaliste lui aussi, que Fulton avait rencontré dès son
débarquement sur le continent, exposa la situation à son compatriote sous le jour le plus
sombre. Il y avait une œuvre plus urgente à accomplir pour le salut de l'humanité que celle
d'embarquer des machines sur les navires : c'était de sauver la liberté. Point de règne
possible de la liberté dans le Inonde, tant que la faculté d'aller et venir sur mer ne serait
pas assurée au préalable. Avant toutes choses, il fallait donc détruire la flotte anglaise.
Comme il s'avérait naturellement impossible de construire, d'équiper et d'armer en
quelques années une flotte de haut bord capable de battre les escadres anglaises, Bushnell
proposa à Fulton de l'aider à mettre au point un petit bâtiment sous-marin porte-torpille
qu'il avait imaginé et de l'offrir ensuite au gouvernement français.
L'idée séduisit Fulton. Remettant à plus tard ses grands projets de navigation, il se mit
aussitôt au travail. A la fin de l'année, il présentait déjà au Directoire un projet de création
d'une Compagnie devant assurer la construction sur une grande échelle de navires sousmarins. Le projet était accompagné d'une description sommaire du prototype, baptisé «
Nautilus » .
La proposition fut tout d'abord favorablement accueillie. Le Ministre de la Marine fit
cependant remarquer qu'on ne pourrait accorder la qualité de « combattants » aux
hommes qui prendraient place dans ces bâtiments, lesquels useraient de moyens de guerre
considérés comme « illicites » ; les Anglais auraient donc le droit de traiter ces équipages
comme
de
vulgaires
pirates.
Fulton objecta que le nouvel engin de destruction n'était pas plus inhumain que d'autres,
dont l'usage était parfaitement admis, et notamment les « brûlots » dont les Anglais
avaient fait un usage courant. Pour le surplus, il suffirait de faire savoir au gouvernement
ennemi que, dans le cas où il refuserait de considérer les hommes manœuvrant les sousmarins comme des équipages de la marine de guerre régulière, « des représailles seraient
exercées au quadruple sur les prisonniers anglais ».
Ces considérations n'arrivèrent pas à convaincre le Directoire qui finit par se rallier à l'avis
du Ministre de la Marine et refusa le projet.
Fulton ne perdit point courage. Le Ministre de la Marine ayant été remplacé, il renouvela
sa proposition à son successeur, M. Bruix.
Le Directoire, cependant, hésitait toujours. Il fallut l'arrivée au pouvoir de Bonaparte pour
qu'une décision fût enfin prise.
Celui-ci ordonna de mettre immédiatement en chantier à Rouen un Nautilus et le 24 juillet
1800, le tenace inventeur put enfin assister à la mise à l'eau de son engin.
Les essais ayant donné pleine satisfaction, Fulton obtint aussitôt les subsides nécessaires
pour transporter son bateau à Cherbourg où il tenta, mais sans succès, une première
attaque contre deux bricks anglais.
Entretemps, le Ministère de la Marine avait une fois de plus changé de titulaire. Son
nouveau chef, l'amiral Decrès, profondément pénétré des nobles traditions du combat
d'escadres, était hostile au projet de Fulton et intervint personnellement auprès de
Bonaparte pour l'inciter à renoncer à l'emploi d'une arme « pour laquelle les vrais marins
ne pourraient jamais avoir que du mépris, et qui s'était, pour le surplus, révélée inefficace
dans la pratique ».
En vain l'Américain, reçu par le Premier Consul, essaya-t-il de plaider « la cause sacrée de
la liberté » et de combattre les arguments présentés par l'amiral, Bonaparte se rangea
finalement à l'avis de son ministre.
L'inventeur continua alors les essais pour son propre compte. Après avoir réussi une
attaque à la torpille contre une vieille chaloupe, il essaya de nouveau d'attaquer des navires
anglais. Mais pas plus que la première fois, ceux-ci ne se laissèrent approcher et le tenace
Américain, qui avait espéré pouvoir en fin de compte lever les hésitations du gouvernement
par une attaque couronnée de succès, se vit contraint de regagner le port en attendant
une occasion plus favorable.
Celle-ci ne devait plus se représenter. Craignant les représailles des Anglais, le
gouvernement du Premier Consul donna l'ordre formel à l'intrépide inventeur d'abandonner
immédiatement et définitivement ses tentatives.
Il ne restait à Fulton qu'à s'exécuter, non sans déplorer toutefois de voir la « cause suprême
de la liberté » s'effacer, dans l'esprit de ceux qui avaient accepté la mission d'en assurer
le triomphe, derrière des considérations accessoires et pusillanimes.
Tant pis donc pour ces Français timides et indécis. Le fougueux Américain les abandonnait
à leurs scrupules et à leurs arguties juridiques. Il avait eu tort de suivre les conseils de son
ami Bushnell et de s'occuper de choses qui, au fond, ne le regardaient pas. « Laissons la
France faire la guerre de la manière qui lui plaît, dit-il, et retournons à nos bateaux à feu
».
Ayant construit à Chaillot, en 1802, un bateau doté d'une machine de 8 chevaux actionnant
deux roues latérales, Fulton obtint qu'une commission de savants assistât à ses évolutions.
Le rapport rédigé à l'issue des essais fut des plus élogieux.
Les savants reconnaissaient loyalement « les grands avantages que pouvait avoir cette
invention » et proposaient son adoption « pour la navigation sur les fleuves et les rivières
de France. » Le gouvernement, hélas ! témoigna moins d'enthousiasme et il méprisa le
bateau à vapeur de l'Américain comme il avait méprisé son sous-marin.
Découragé, Fulton songeait à regagner sa patrie, lorsqu'un beau jour, il reçut la visite d'un
envoyé du Ministre anglais Pitt, qui lui proposa de se rendre à Londres où on lui promettait
l'appui nécessaire tant à la continuation de ses expériences sur l'emploi des torpilles qu'à
la construction de ses navires à vapeur.
L'inventeur, qui n'avait rencontré qu'indifférence et incompréhension lorsqu'il voulait
mettre ses découvertes au service de son idéal ; l'homme qui avait cru à la sincérité, au
désintéressement et aux promesses de ceux qu'il admirait naïvement de sa lointaine
Amérique ; le réalisateur audacieux qui n'avait pas hésité à dépenser sa fortune au service
de ceux qu'il appelait « ses amis », ne pouvait se résoudre ainsi, du premier coup, à
accepter son salut des mains de ceux qu'il avait voulu combattre.
Il essaya donc encore de se faire entendre des Français. Ce fut en vain.
Après plusieurs mois de vaines et pressantes démarches, acculé à la ruine il se résigna à
sacrifier ses idées politiques à la cause supérieure de la science, et se décida enfin, en
1804, à franchir le Détroit.
Les Anglais l'accueillirent avec la plus grande courtoisie. Contrairement à ce qui s'était
passé en France, les marins de Sa Majesté Britannique s'étaient prodigieusement
intéressés aux expériences de navigation sous-marine. Malgré l'échec de l'attaque à la
torpille que Fulton avait tentée au large de Cherbourg, ils avaient compris tout le danger
que cette invention pouvait faire courir à leurs puissants vaisseaux. Pour en mesurer toute
l'importance, ils proposèrent à l'ingénieur américain d'exécuter une attaque contre un
vieux brick désaffecté, le Dorothee. Touché en plein par une torpille de 180 livres, le
bâtiment sauta et disparut en quelques secondes.
L'expérience était concluante. Le gouvernement offrit aussitôt à Fulton de racheter ses
plans pour une très grosse somme d'argent, s'engageant à ne s'en servir ni contre la France
ni contre aucune autre puissance et proposant même de les détruire sous ses yeux !
L'inventeur ayant refusé avec indignation, il lui fut envoyé une « gratification » de 15.000
livres « pour lui donner le loisir d'examiner plus favorablement la proposition de Sa Majesté
».
Mais l'Américain avait l'esprit trop indépendant pour se résoudre à obéir aux ordres d'une
puissance qui n'avait pu, malgré toutes ses avances, conquérir sa sympathie. Il refusa
obstinément, dans la suite, toutes les sommes qui lui furent encore offertes et, en 1806,
mécontent de lui-même et maudissant la gêne qui l'avait obligé à se faire pendant deux
ans l'hôte d'un Etat dans lequel il continuait à voir malgré tout l'obstacle essentiel au
développement des idées qui lui étaient chères, il s'embarqua et regagna sa patrie.
Ayant rapidement réuni quelques associés, il reprit sans désemparer ses projets de
navigation et fit mettre en chantier un vaste bâtiment, le Clermont, qui entreprit ses essais
le 9 août 1807 sur l'East River et appareilla, le 17 du même mois, pour son premier voyage,
avec une quarantaine de personnes à bord.
Destiné à assurer le service régulier entre New-York et Albany, le bateau couvrit les 150
milles du trajet, soit environ 240 kilomètres, en 32 heures, en remontant le courant de la
rivière, et en 30 heures dans le sens inverse, en dépit d'un vent contraire assez violent
pendant les deux voyages.
Le bâtiment maintint régulièrement une vitesse moyenne d'environ 5 milles, soit plus de 8
kilomètres à l'heure, en y comprenant la durée des arrêts, dont certains atteignirent au
moins une heure.
Ce résultat tout à fait remarquable fit tomber d'un seul coup toutes les préventions du
public contre la navigation à vapeur, du moins pour ce qui était du trafic sur les rivières.
L'affluence des passagers fut bientôt telle que Fulton fut obligé de remettre son bateau en
chantier pour l'agrandir, tandis qu'il recevait en même temps plusieurs commandes de
bâtiments destinés non seulement à l'établissement de lignes de navigation sur les grands
fleuves américains, mais aussi dans l'Inde, sur le Gange, et en Russie, sur la Néva.
La cause de la vapeur était cette fois définitivement gagnée. Sollicité par le gouvernement
pour concourir à la défense du territoire menacé par les Anglais.
Fulton entreprit aussi, en 1812, la construction d'un bâtiment de guerre à vapeur destiné
à la défense du port de New-York.
C'était un assez curieux bateau. Les deux roues latérales y étaient remplacées par une
roue centrale, mieux à l'abri des coups de l'ennemi. En plus d'une grosse batterie protégée,
constituant son armement principal, le navire était muni aussi de multiples engins destinés
à l'abordage et notamment de faulx mécaniques ainsi que de dispositifs ingénieux pour le
lancement de jets d'eau bouillante.
Fulton connut à la fois la gloire et la richesse. Mais il ne devait pas bénéficier longtemps
des profits que lui laissaient ses constructions ainsi que l'exploitation des lignes de
navigation qu'il avait créées. I Tsé par un labeur incessant, il mourut prématurément, le
24 février 1815, âgé seulement de cinquante ans.
La question de savoir à qui revient la gloire d'avoir construit le premier bateau à vapeur
capable d'assurer un service régulier a été longuement discutée. Elle l'est encore
aujourd'hui.
Pour le grand public, cet honneur revient à Fulton ; pour l'historien, il revient à John Fitch.
C'est que les grands voyages du majestueux Clermont ont fait, sur l'esprit du peuple, une
impression profonde, alors que les modestes déplacements du petit bateau de Fitch
passèrent presque inaperçus des contemporains.
Au lieu d'opposer les deux hommes, le jugement de l'Histoire serait plus équitable, en les
réunissant dans un même hommage, car si l'on peut considérer, à juste titre, Robert Fulton
comme le père glorieux de la navigation à vapeur moderne, on ne peut méconnaître que
l'honneur d'avoir construit, le premier, un bateau capable d'effectuer un service régulier
sur les rivières revient, sans conteste, à l'infortuné John Fitch.
Le succès remporté en Amérique par les bateaux de Fulton encouragea les ingénieurs
européens à poursuivre leurs tentatives, en dépit de l'hostilité que le grand public
continuait de témoigner à l'invention nouvelle.
Moins audacieux que les hommes du Nouveau Monde ; moins pressés aussi d'accélérer le
rythme des échanges et de gagner ainsi, plus vite, beaucoup plus d'argent, les gens du
Continent estimaient qu'il n'y avait aucune raison d'abandonner ce qui avait, depuis tant
de siècles, donné toute satisfaction à leurs ancêtres.
« Quoi de plus confortable, et surtout de plus sûr, disaient-ils, que notre bon » vieux coche
d'eau »?
Tiré par un cheval, sur les rivières et les canaux, à la modeste allure de trois milles à
l'heure, le « coche » avait, certes, un aspect plus rassurant que ces machines
extraordinaires qui passaient dans un bruit infernal en vomissant feu et fumée. Les gens
des campagnes, qui les considéraient avec effroi, n'étaient pas loin d'y voir une
manifestation diabolique ; ils affirmaient que ces effrayantes machines à feu causeraient
des ravages terribles dans les troupeaux en faisant avorter les vaches et tourner leur lait
!
En dépit de ces sombres prédictions, on vit cependant se créer en Angleterre un premier
service régulier sur la Clyde, en 1812. 11 était assuré par un petit bateau, la Cornet, muni
d'une machine de 3 chevaux, construite par un certain John Robertson. La Cornet fit
régulièrement le trajet entre Glasgow et Grecnock. En 1815, une trentaine de bateaux
faisaient déjà le service des rivières en Angleterre.
La. France ne tarda pas à suivre. En 1816, le marquis de Jouffroy lança sur la Seine le
Saint-Philippe et des chantiers s'élevèrent un peu partout, construisant des bateaux à
passagers, des remorqueurs et des bateaux de charge.
Le Continent n'en montra pas moins, pendant un temps assez long, une hésitation plus
grande que l'Angleterre à généraliser le nouveau moyen de locomotion. Tandis que la flotte
britannique des vapeurs de rivière dépassait déjà 500 unités en 1835, elle ne comptait
encore en France, à ce moment, que 80 petits bâtiments. Mais l'impulsion était donnée.
En peu d'années, l'Allemagne, l'Autriche, la Russie, la Hollande et la Belgique furent
acquises à l'idée nouvelle.
Il ne restait plus à la vapeur qu'à conquérir l'océan.
INSERE 17/06/16
NIEUWS NOUVELLES NEWS
ENLEVE 17/07/16
Keel laying for the largest sailing boat in the
world
On
9
December
2015, a keel was
laid on slipway 2 for
Hull 483 at the
Shipbuilding
Industry Split Inc. It
is
the
largest
square-rigged ship
that is being built in
the world and is
contracted for the
Company
Star
Clippers Ltd. from Monaco. - This project is a great challenge for all of us, we have to build
a new ship based on the designs of 100 years old sailing boat and to comply with all safety
regulations at the same time. Brodosplit Design Department did a phenomenal job without
any flaws for which they were commended by Classification Society DNV GL. We will be so
proud once we build the largest sailing ship in the world, Tomislav Debeljak, Brodosplit
Chief Executive Officer, pointed out.
- Star Clippers Ltd. is present on European and American markets and is known for ships
that are truthful replica of classic sailing ships. The new ship that is being built at Brodosplit
is built according to the ship "France II" from 1911. Brodosplit has been recognized as one
of the few shipyards that are capable for building such unique ship, from the design phase,
building and fitting it with complex equipment and luxury interiors, as said by Mikael Krafft,
owner of Star Clippers Ltd. from Monaco.It will be 162 meters long and 18.5 meters wide,
with deadweight of 2000 tons, five masts and sails with overall surface of 6.347 square
meters. The type of Clipper sailing boat with such sail-plan is called barque. Marine
platform that will be at the the stern will be equipped with the mechanism for opening and
lowering until the sea level so that the passengers will have the direct sea access. The ship
will have steel construction while the deck will be fully covered by the highest quality teak.
- The
touch
rules.
class,
ship will be completely modern with top comfort of the highest level, yet with the
of old times, and will comply with the strictest requirements, i.e. for noise and class
It will be envisaged for sail in all world seas, even in ice area, so it will be built in ice
as pointed out by Radovan Načinović, Brodosplita Project Manager.
Three
swimmingpools with
fresh or sea
water
and
underwater
lights,
heating and
bubbles are planned on the ship as well. One of the pools could be used for diving, 50 cubic
meters of water will be the volume of the largest swimming pool. There will be five decks,
with accommodation for 450 persons, 300 passengers in 150 luxury cabins, and 74 crew
cabins for 150 crew members. It will be decorated in a luxury-style, but with style and
atmosphere reminding of old sailing boats, there will be a library, large salons, one of which
will extend over three decks with rails and piano. The most state of the art navigation and
communication equipment will be installed on the clipper, each cabin will have Internet
access, telephone, television, music and other entertainment facilities, the entire ship will
be covered with Wi-Fi signal. There will be three bars on the open decks and galley
extending over three decks. Air conditioning on the ship will be executed in accordance
with high quality standards in order to satisfy the comfort of passengers in all climate
conditions. Specificity of the ship are its sails that will be operated by only few crew
members, but also by passengers if they wish. The ship is intended exclusively for sailing
although it will have two fully independent electric propulsion engines. It will have the Safe
Return to Port system that will be installed in Croatia for the first time. This is a novelty in
Croatian market and there have been new standards for increased safety of passenger
ships, passengers and crew since 2010. This system actually means that all key equipment
on the ship will be duplicated therefore there will be two engine rooms built with all electric
energy and water supply plants and all fuel and oil systems with additional bridge.
Everything will be literally doubled on the ship so that in case of any defect, fire or flooding
of any space or zone on the ship, the ship will be able to return safely to port from the
distance of almost 2000 NM which is the farthest point from land to sea. The ship's speed
with the sails will be about 16 knots, and it is envisaged that it will be able to navigate up
to 20 knots under the favourable weather conditions and operated by capable crew. It will
navigate at 16 knots of speed powered by its two engines, it will have pitch propellers, bow
thruster and two rudders enabling it with extreme manouevring abilities. There will be six
life boats that will be used as tender boats for transport of passengers to smaller ports or
beaches, eight rafts, four sports boats and two smaller boats
INSERE 19/06/16
DOSSIER
ENLEVE 19/07/16
Energy saving opportunities available today
Energy saving opportunities for existing ships were outlined by Indra Bose, head of vessel
performance management department, Great Eastern Shipping at Tanker Operator’s
recent Mumbai conference.
He explained that last year, the company had set up this independent department to look
at vessel efficiency for both newbuildings and retrofits on existing ships.
Some of Great Eastern’s vessels have been fitted with a Becker Marine Mewis Duct. There
will be a need to conduct model and tank tests and full scale trials, as a means of validation,
but the costs can be spread over a fleet’s sister vessels, he said. Retrofitting takes around
four days.
The return on investment in fitting a Mewis Duct is strongly dependant on the number of
vessels in the series, the prevailing bunker prices and the operational profile of the vessel,
ie sailing days and speed.
He also pointed out that manufacturers including Becker Marine, were building up a
database of standard ship types, which could benefit the most from the fitting of ducts. As
a result of using the database, the costs involved in the purchase and fitting of the
equipment would be less, as the design work had already been conducted.
There are other energy saving devices, such as the Schneekluth WED and spoilers, plus
the Mitsui OSK propeller boss cap fin (PBCF), which he said was easy to fit and maintain
and validated through CFD. MOL has fitted more than 1,700 PBCFs, the company claimed.
Bose warned that occasionally, the PBCF blades can fall off so it is important to ensure that
they are fitted properly.
Others include the Kappel propeller, which is now part of MAN Diesel & Turbo’s portfolio,
which Great Eastern fitted to some of its vessels last year with good results and the CLT
propellers developed by Sistemar of Spain - the evolution of the tip vortex propeller (TVP).
Propeller efficiency reaches the highest value when thrust generated on a propeller blade
continuously increases from the boss to the tip. In a CLT propeller (contracted and loaded
tip propeller) this theoretical principle is realised by fitting an end plate at the blade tips.
This results in a higher efficiency of between 4-8%, fuel savings = reduced emissions,
higher top speed = greater operational flexibility, inhibition of cavitation and of the tip
vortex, less noise & vibration, lower pressure pulses, lower area ratio, greater thrust,
smaller optimum prop diameter and better manoeuvrability, Bose said.
Finally, the TIP propellers are compatible with most of the propulsion improvement devices
currently offered, thereby allowing even further efficiency gain.
Also important are hull and propeller maintenance, he stressed.
Hull frictional resistance is governed by the wetted surface (main dimensions and trim)
area and the surface roughness of the hull consisting of the steel, coatings, added
roughness due to fouling and coating degradation.
Bose explained that the initial roughness is taken as 120 μm, which is the approximate
roughness value for a typical newbuilding although some ships are delivered with a very
low surface roughness of around 75 μm.
Typically, an average hull roughness (AHR) of ≈5 μ is very good, an AHR of 150 μ is
standard and an AHR > 200μ is sub-standard, he explained.
Historical records have shown that even with good maintenance practices, average hull
roughness can increase by 10 to 25μm per year, depending on the hull coating system,
even when fouling is not included.
As a rule, every 25 μ (25/1,000 mm) of hull roughness increase corresponds to 0.7-1% of
increased fuel consumption, due to the additional propulsion power requirement to move
a larger volume of water.
The AHR is calculated by dividing the hull into 10 equal sections with10 measurements for
each division - five each side of the vessel. This gives 50 readings on each side - 30 on the
vertical sides and 20 on the flats.
From the 100 measuring locations, the AHR is calculated and roughness distribution
plotted.
Efficiency losses
Several companies have measured the efficiency losses between drydockings, due to biofouling and mechanical damage on the underwater hull. For example, Marintek measured
the drop in propulsion efficiency as around 15%; Propulsion Dynamics (tankers) of 20%
and Jotun (taking an average of over 60 months) of 18%.
When selecting a coating, a checklist should be used to evaluate longevity, suitability,
product features, efficacy, maintenance - repainting and repairing, fuel saving,
environmental concerns, costs and manufacturer’s guarantees.
Bose also advised that the propeller should be polished every six months and a vessel’s
hull blasted and painted every second drydocking- around once every 10 years. For
propeller polishing, he advised the use of a service provider active in one of the main
shipping centres, rather than an unknown concern based in a smaller port.
Turning to vessel performance management, he described it as measuring, monitoring and
managing. He explained that Great Eastern had selected a Marorka power management
system, which gathers data related to ship operations, ie, trim, draft, main engine,
auxiliary engines, steam plant, voyages, navigation, etc.
The data is categorised the same for differing operating conditions, such as while berthed,
manoeuvring, during a sea passage and at anchor/waiting, etc.
TankerOperator
INSERE 21/06/16
BOEKEN BOOKS LIVRES
ENLEVE 21/07/16
Chasing Conrad : A Tale of the Sea and a
Glimpse into the Abyss
Simon Hall's second book is set in the mid-1970s during
the closing years of the golden age of British shipping,
when cargo carriage at sea saw radical change and the
romance of being at sea in old-style cargo ships came to
an end. Hall's account is of five years during which he
worked as a junior officer in the Far East and South
Pacific. This is no ordinary memoir; the prose is vividly
expressed, often shocking, often elegiac as evidenced by
his description of a night watch in the Indian Ocean:
alone on the bridge wing in the warm tropical night, I
heard the wind sing through the stays as an Aeolian harp
and I felt anointed by my good fortune.
On loading rubber and timber in Sarawak he writes: The
whole pace of life slowed, it felt as torpid as the idle
Rajang river itself and we all slowed with it. Everything
was so still, so unmoving, as if the whole world had lain
down and gone to sleep. His descriptions of jaunts in
forgotten parts of the world are strikingly expressed and there is added poignancy from
the charting of Hall's decline into alcohol abuse, expressed in a way that is in turn both sad
and shocking: I ordered another cold beer and lit another cigarette, then sat with the ghost
of my past dreams while the afternoon died around us and we surveyed the wreckage of
all my hopes.
This is an important work that captures an age now vanished, written in a style too rarely
encountered.
ISBN9781849951555 Image © Whittles Publishing (2015)
Author Hall, Simon J
Format PB
Publisher Whittles Publishing (2015)
Price £16.99
INSERE 21/06/16
NIEUWS NOUVELLES NEWS
ENLEVE 21/07/16
New Requirements for Installing and
Operating Inert Gas Systems on Oil and
Chemical Tankers Enter Into Force 1
January, 2016
New statutory requirements for fixed inert gas systems enter into force on 1 January, 2016,
as a result of changes to SOLAS, the Fire Safety Systems (FSS) Code and the International
Bulk Chemical (IBC) Code.
Summary of the main changes
The fitting of a fixed inert gas system will be required for tankers of 8,000 tonnes
deadweight (dwt) and over, constructed (keel laid) on or after 1 January, 2016. Previously,
this applied only to tankers of 20,000 tonnes dwt and over. Tankers 8,000 dwt and over,
carrying low-flashpoint cargoes, and constructed (keel laid) on or after 1 January, 2016,
must be provided with a fixed inert gas system complying with Chapter 15 of the amended
FSS Code (or an equivalent system – subject to acceptance by the flag administration).
The existing clause in SOLAS Regulation II-2/4.5.5.2 for waiving the requirements for a
fixed inert gas system still applies to all gas carriers, but for chemical tankers it now only
applies to those constructed before 1 January, 2016. This means that chemical tankers
constructed (keel laid) on or after 1 January, 2016, and carrying flammable cargoes such
as those listed in the IBC Code chapters 17 and 18, will be required to have a fixed inert
gas system, regardless of cargo tank size and tank washing machine capacities.
Operational requirements for chemical tankers
New SOLAS regulation II-2/16.3.3 clarifies the operational requirements for inert gas
systems, and the sequence of applying the inerting medium into the cargo tanks.
Regulation II-2/16.3.3 allows chemical tankers the option to begin inerting their cargo
tanks after the cargo tank has been loaded, but before commencing unloading, but only if
nitrogen is used as the inerting medium. In this instance, the nitrogen inerting should
continue until the cargo tank has been purged and freed of all flammable vapours prior to
gas freeing.The changes to the IBC Code clarify the operational procedures for new and
existing chemical tankers.
Chemical tankers which carry products containing oxygen-dependent inhibitors Operators
of chemical tankers that are required to be inerted and carry products containing oxygendependent inhibitors should note the following requirement, specified in Chapter 15.13.5
of the amended IBC Code: “application of inert gas shall not take place before loading or
during the voyage, but shall be applied before commencement of unloading”. IMO circulars
MSC.1/Circ.1501 and MSC-MEPC.5/Circ.10 should be read in conjunction with this
requirement. These circulars state that when a product containing an oxygen-dependent
inhibitor is carried on a ship for which inerting is required, the inert gas system shall be
operated to maintain the oxygen level in the vapour space of the tank at or above the
minimum level of oxygen required under paragraph 15.13 of the IBC Code and as specified
in the cargo’s Certificate of Protection.
Changes to the Lloyd’s Register Class Rules
The changes to the FSS Code incorporate many of the requirements that were previously
contained in the Lloyd’s Register Rules for Ships; therefore the Rules will be amended in
January 2016 to directly refer to the FSS Code Chapter 15 requirements.
Relevant IMO resolutions
The changes to SOLAS, the FSS Code and the IBC Code are contained in the following IMO
resolutions: •Amendments to SOLAS regulations II-2/4.5.5 and 16.3.3: MSC.365(93)
•Amendments
to
Chapter
15
of
the
FSS
Code:
MSC.367(93)
•Amendments to the IBC Code: MSC.369(93)
Source: LR
INSERE 23/06/16
DOSSIER
ENLEVE 23/07/16
Low sulphur problems are emerging
More problems are coming to light with low sulphur fuel oil, which if not addressed could
lead to costly vessel breakdowns and even severe damage to the engine.
BIMCO, courtesy of the Britannia P&I Club, has warned of paraffin being formed when using
low sulphur gasoil (MGO) in northern European waters during the winter.
The reports state that MGO blend DMA 0.1%, which was analysed to be within the
specifications for ISO 8217, has been forming large amounts of paraffin in the MGO tanks,
which has caused problems.
The cloud point for this MGO was 32 deg C, which is the temperature where paraffin starts
to form, but the cloud point is not part of the ISO 8217 specification.
Operators are advised to find out the cloud point, as well as the pour point prior to the
bunkering operation. They should also think about whether it is necessary to stem DMX
grade MGO, if they are trading in the Baltic or other areas where traditionally there are low
sea temperatures.
This would enable any operator to obtain the cloud point beforehand, since it is part of the
DMX specification, the report explained.
Paraffin problems
Skuld, in association with Chris Fisher of Brookes Bell, has also warned of bunkering ultralow sulphur gas oils for use in ECAs, particularly noting the presence of a considerable
quantity of paraffin in the product offered for supply and forming in the product post supply,
following criticisms from its members.
This may be partly due to the demand for MGO since 1st January, 2015. This has been
such that it is now being sourced from a wider field and that quality standards are under
pressure. The blending of biodiesel with conventional diesel fuel could also in part explain
this problem.
Agreeing with BIMCO, Skuld said that it could also be a seasonal factor, due to low
temperature conditions accelerating the formation of paraffin wax. This particular issue
may cause excessive build-up of sludge in the engine system and even a possible loss of
power.
Gas oils, as well as alternative 0.1% sulphur content fuels, available in the market are
‘paraffinic’ and if mixed with regular heavy fuels, an unstable mixture may follow.
Sludge build up
As there will be a certain amount of mixing, following a switch over between fuel types, in
the lines to the engines (unless completely separate lines are available), it is important for
the engineers to carefully check against the build-up of sludge. An excessive amount could
block fuel lines leading to a power loss.
It may be necessary to ensure that gas oil is placed into a tank with heating coils. However,
some vessels with designated MDO/MGO tanks do not have heating coils installed, the
report noted.
IBIA’s Peter Hall said at the Navigate/IPTA Product and Chemical Tanker Conference last
month that that marine fuel supply was a changing scene. He explained that the HFO to
MGO split has narrowed to about 60:40 and there were more distillates being presented
for testing- around 15%.
He said that the challenges were the new fuels with wider formula variations and the fuel
switching problems. Since the new regulations came into force, sampling has become a
“whole new ball game” to get the correct fuel.
Suppliers tend to blend to the upper limit of the specification due to financial reasons.
Another problem is what is described in the contract and what Port State Control says upon
an inspection may be totally different interpretations of the same fuel.
Testing in a credited laboratory could give one answer, but the same test in another
laboratory could give a different result, due to the chemistry involved giving a range of
results in different circumstances.
He said that often it was a case of the ISO Standard versus MARPOL, which can lead to
ambiguity due to conflicting parameters. “This breeds uncertainty and it hasn’t been
addressed properly,” Hall said. He pointed to the high costs associated with de-bunkering
and the commercial issues that could arise from such an operation.
Partnerships
IBIA has what it calls a ‘twin track approach’ to work in partnership with stakeholders. One
example is a ports charter. Thus far Singapore, Rotterdam, Antwerp and Gibraltar have
joined, but Hall called for more ports to sign up.
The association has written a questionnaire for the IMO correspondence group on fuel
quality. Proposals were put to both MEPC 66 and 67 to the effect that the fuel should
contain nothing that wasn’t fit for purpose and a paper will be submitted to MEPC 68.
He argued that the Note of Protest should be used to look at why a stem went wrong and
to get to the root cause of any problems that had occurred. Hall thought that Port State
Control could undertake this task as a rogue delivery will cause a supplier and the port a
bad reputation.
Hall also warned that refineries would need five years to reach the specification for the
2020/2025 cap. He said that the fuel characteristics were “all over the place- a warning for
2020/2025.”
He argued by saying that the industry was on a learning curve, which will take time.
Tanker Operator
INSERE 25/06/16
HISTORIEK HISTORIQUE
ENLEVE 25/07/16
Évolution des U-boots allemands pendant la
Première Guerre mondiale
Tomas Termote
Lorsque nous examinons la carte marine actuelle des bancs de Flandre, nous voyons bon
nombre d’indications, telles que des profondeurs, des noms de bancs de sable, des voies
de navigation et des balises. L’aspect le plus frappant et peut-être aussi le plus intriguant
est la présence d’obstructions, d’écueils et d’épaves, indiqués en guise d’avertissement
pour la navigation. Dans les eaux territoriales belges se trouvent les restes de 277 épaves,
dont la plupart ont été identifiées. Près d’un tiers (32%) de ces restes concernent des
épaves militaires des deux guerres mondiales. Il s’agit notamment de petites unités telles
que des Vorpostenboots, Sperrbrechers, Kriegsfischkutters, Motorlaunches, remorqueurs
portuaires, contre-torpilleurs, mais aussi des sous-marins. Près de 3% des épaves, soit un
total de 8 épaves, sont des U-boots perdus. Dans ce qui suit, nous allons dresser une étude
typologique des sous-marins allemands employés durant la 1ère GM à l’aide des épaves
d’U-boots trouvées dans les eaux territoriales belges .
La durée de vie d’une épave
L’influence de l’homme et de la nature
Les
matériaux
non-naturels
qui reposent
au fond de la
mer, comme
les bateaux
qui ont coulé,
finissent par
se
décomposer
avec
le
temps. Cela
est dû à l’influence de la vie sous-marine (faune et flore), de forces mécaniques comme
les courants et les tempêtes et de processus chimiques tels que la corrosion (« rouille »).
L’influence des activités humaines telles que le dragage, le renflouement, la pêche et
l’extraction de sable met les épaves à nu, accélérant leur décomposition. Chaque type
d’épave a une durée de vie donnée. Une fois cette durée écoulée, l’épave s’effondrera et
les restes seront enterrés. Les vestiges de bateaux et avions en bois ont le plus souffert,
surtout durant la période qui a suivi la 2ème Guerre mondiale. Cette époque a vu l’essor
de la pêche au chalut de fond, qui fut fatale à bon nombre d’épaves. La durée de vie d’un
bateau en métal, comme un navire marchand, est estimée à un demi-siècle. Elle varie
selon que l’épave est protégée ou non par une couverture de sable et en fonction de la
profondeur à laquelle repose le bateau. En effet, plus la profondeur est grande, plus il est
protégé contre l’action de la houle et des tempêtes. Le père de l’auteur, Dirk Termote, a
été témoin de ce processus de décomposition grâce à son activité de plongeur qu’il a
poursuivie pendant plusieurs décennies sur différentes épaves au niveau des bancs de
Flandre. L’épave du paquebot MV Queen of the Channel, qui a coulé en 1940 près du
Middelkerkebank, était relativement intacte lorsqu’elle a été découverte en 1987. La proue
était debout, et on pouvait clairement reconnaître les ancres relevées, le treuil et le pied
de mât. L’auteur peut confirmer qu’à peine 20 ans plus tard, les parois de la proue du MV
Queen of the Channel avaient éclaté, et que le treuil, les ancres et la superstructure étaient
éparpillés et enterrés.
Épaves de sous-marins: solides, mais pas invulnérables
Avec
leur
structure
robuste,
généralement
composée
d’une double
coque, les Uboots
font
partie
des
épaves
les
plus
résistantes à
l’action
de
l’homme et de
la nature. On
peut attribuer
à ces épaves
une durée de
vie de 100
ans,
voire
plus. Elles sont aussi aisément reconnaissables. Avec leur « forme en cigare » proéminente
et leur tourelle centrale, il est possible de les identifier même sans faire de plongée, en
utilisant des images acoustiques basées sur le sonar à balayage latéral et le sondeur
multifaisceaux .
La vulnérabilité des épaves de sous-marins a été constatée au cours de l’été 2005.
En effet, cette année-là, un eurocotre d’IJmuiden a accroché ses filets sur les restes de
l’épave d’un U-boot de classe UC-II à hauteur du Fairy Bank. L’un des filets était
manifestement profondément enchevêtré dans l’épave, si bien qu’il a fallu huit heures pour
le dégager avec difficulté. Pour l’auteur, cela constituait une occasion unique d’étudier en
détails l’influence d’une traction de 3000 CV sur une épave. Le filet était manifestement
resté suspendu sur la poupe, à hauteur de la salle des machines du sous-marin. Étant
donné qu’il restait peu d’éléments saillants sur la coque, le filet et les chaînes de touage
se sont accrochées autour de l’écoutille arrière de chargement de torpilles. Cette écoutille
pesait 300 kg, faisait 2m sur 1m, et était munie de deux lourdes charnières et de huit
doubles boulons de fixation (de 4cm de diamètre) afin d’assurer une fermeture étanche.
Malgré cela, cette écoutille métallique ovale a été entièrement arrachée et a été retrouvée
dans la fosse d’érosion derrière l’épave, à hauteur des hélices. À l’intérieur, tout semblait
intact, on pouvait voir deux moteurs diesel, une torpille arrimée dans la partie centrale et
un établi avec toutes sortes d’outils. La nature a rapidement fait son œuvre et à peine trois
mois plus tard, la salle des machines était remplie de sable jusqu’au bord supérieur de
l’ancienne écoutille.
Types d’U-boot pendant la 1ère Guerre mondiale
En août 1914, à la veille de l’éclatement de la Grande Guerre, la marine allemande ne
disposait que d’une petite flotte de 28 U-boots. Il s’agissait de grands submersibles à
double coque qui naviguaient la plupart du temps en surface et ne s’immergeaient que
lorsqu’un danger se présentait ou lorsqu’ils devaient mener une attaque. Techniquement,
il s’agissait de torpilleurs pouvant s’immerger. Lorsque la côte flamande tomba aux mains
des Allemands en octobre 1914, cela mena au développement d’un nouveau type de sousmarin. Il fallait un sous-marin qui soit facile à manœuvrer dans les eaux traîtresses de la
Mer du Nord, entre les bas- fonds et les bancs de sables, et qui puisse se rapprocher d’un
port ennemi sans être vu. Ce sous-marin devait aussi sortir de cale plus rapidement que
l’U-boot d’avant-guerre, dont la construction durait une année entière. C’est ainsi que fut
développé l’U-boot de type UB-I ou Küstenpatrouille, qui allait ensuite laisser la place au
type UB-II de taille moyenne, et aux UB-III de grande taille.
Le type UB
UB-I
Le premier UB-I
sortit de cale en
février 1915 à
Kiel, le premier
d’une série de
17 sous-marins
similaires.
Il
avait
une
longueur
de
28,10 m, une
largeur de 3,15
m
et
un
déplacement de
127
tjb.
En
raison de sa
taille, ce sousmarin était muni
d’une
seule
coque épaisse et
d’une
seule
hélice. Il pouvait
atteindre
une
vitesse de 6,5
nœuds
en
surface et de
5,5 nœuds sous
l’eau.
Même
avec une simple
propulsion,
il
possédait
une
vitesse
de
plongée
remarquable:
22
secondes
pour atteindre
une profondeur
test de 50 m.
L’armement
était limité à deux tubes lance-torpilles 45 cm à l’avant et à une mitrailleuse 8 mm. Les
conditions de vie et de travail à bord de l’U B-I étaient très limitées, l’équipage constitué
d’un officier et de 13 soldats devant se contenter d’une cabine pour deux. Ces petits Uboots firent parler d’eux non seulement parce qu’ils étaient les plus petits U-boots jamais
produits durant la 1ère Guerre mondiale, mais aussi parce qu’ils furent transportés vers le
front par le rail. Une fois terminés sur un chantier allemand, les UB-I étaient démontés et
chargés en quinze parties dans différents wagons. Les quatre plus grandes parties étaient
la proue, la partie centrale, la tourelle et la poupe. Après un voyage de cinq jours, ils
arrivaient sur le chantier maritime de Hoboken, où ils étaient réassemblés.
Ces sous-marins avaient une puissance et un rayon d’action limités et un stock de
seulement deux torpilles. De ce fait, leur capacité opérationnelle était également restreinte.
Les UB-I attaquaient les bateaux dans une zone qui s’étendait du banc de sable
Noordhinder à la côte est britannique, de l’embouchure de la Tamise à la région de Calais.
Malgré une durée de patrouille maximale de trois jours, l’équipage se voyait imposer des
exigences strictes. Un UB-I passait en moyenne 150 jours en mer pendant une durée de
service de 7 mois. Sur la flotte des U-boots UB-I, six ont été perdus, dont deux en territoire
belge. Le plus connu et celui qui a remporté le plus de succès était l’UB-10, commandé par
le Kapitiinleutnant Otto Steinbrinck, qui coula un total de 37 bateaux. L’UB-10 fut aussi le
seul de la flotte UB-I à survivre à quatre années de guerre et à être sabordé en octobre
1918 devant Heist lors de la retraite allemande. L’UB-10 a été redécouvert devant Heist
lors des travaux de dragage et d’extension du port de Zeebruges en 1980. La Tijdelijke
Vereniging voor Bergingswerken (association temporaire pour travaux de renflouement)
est parvenue, à l’aide du navire de sauvetage Norma, à sortir l’épave de l’eau quasi intacte.
Hormis la tourelle et la coque extérieure qui manquaient, elle était remarquablement bien
conservée. En raison d’un manque de temps et d’intérêt, il a fallu faire disparaître l’épave
le plus rapidement possible. Elle a été enterrée sous 15 m de sable, du côté extérieur du
Môle de Zeebruges. Il existe aujourd’hui un projet visant à relocaliser l’UB-10 et si possible
à renflouer et conserver l’épave.
L’UB-I était
un
bâtiment
assez
fragile
et
subissait
souvent
des pannes
de moteur,
des
dérèglements du compas une perturbation de l’assiette lorsqu’une torpille était tirée. Il
était normalement équipé d’un système qui devait compenser la perte soudaine d’une
torpille de 770 kg une fois tirée. Mais ce système ne fonctionnait pas toujours comme
prévu, si bien que la proue pouvait remonter vers la surface en cas de remplissage tardif
du tube, ou plonger vers le bas en cas d’excès d’eau dans le tube. L’un de ses commandants
comparait le comportement irrégulier de l’UB-I à une « machine à coudre » lorsqu’un «
têtard en fer » (= torpille) était tiré.
La vie à bord devait être un véritable enfer, surtout vu le temps imprévisible et orageux
de la Mer du Nord. L’Oberleutnant z. See Werner Furbringer, commandant de l’UB-2, a
décrit ce qui s’est passé lorsque son bateau s’est retrouvé dans une tempête de nord-ouest
de force 10 à hauteur de Den Helder. Le sous-marin tanguait et était secoué violemment
et par moments, le haut de la tourelle battait de biais la surface de l’eau. Les deux compas
étaient hors service et Furbringer n’eut pas d’autre choix que de faire descendre l’U B-2
jusqu’au
fond
pour attendre que la tempête se calme avant de reprendre son voyage. Même à 28 m de
profondeur, le sous-marin était balloté par l’effet des lames de fond.
UB-II
L’amirauté allemande reconnut l’utilité de développer un bateau UB plus grand, avec plus
d’armement, d’espace, et un plus grand rayon d’action. Un an après la mise en service du
premier UB-I (le 16 février 1916), l’UB-18 fut le premier sous-marin de type UB-II à entrer
au port de Zeebruges. L’arrivée de ce nouveau type influa fortement sur les résultats de la
Flandern Flottille. Il avait une longueur de 36 m, une largeur de 4,36 m et un déplacement
de 263 tjb. Sa double propulsion lui permettait d’atteindre une vitesse de 9 nœuds en
surface et de presque 6 nœuds sous l’eau. L’armement principal se composait toujours de
deux tubes lance-torpilles et d’une pièce d’artillerie de 8,8 cm sur le pont, placée juste
devant la tourelle. Bien que ce sous-marin fût presque deux fois plus grand que l’UB-I, il
pouvait atteindre une vitesse de plongée de 30 secondes. À bord, les 23 membres de
l’équipage avaient davantage de place et disposaient de leur propre cabine. Près de 30
exemplaires de ce type d’U-boot allaient être en service au milieu de la guerre. Depuis les
bases flamandes, ces U-boots avaient désormais un rayon d’action qui s’étendait jusqu’à
la côte écossaise et l’extrémité occidentale de la Manche.
Le type UB-II remporta de grands succès, principalement contre les navires marchands et
les transports de troupes entre la Grande-Bretagne et la France. Mais ces U-boots avaient
également leurs limites en termes de distance et subirent de plein fouet les contre-mesures
alliées. Sur la dizaine d’UB-II partant des ports flamands, huit ne revinrent jamais de leurs
patrouilles. L’un de ces U-boots était l’UB-20, qui sombra avec tout son équipage le 28
juillet 1917 lors d’un voyage d’essai depuis Ostende. L’UB-20 était sous les ordres de
l’Oberleutnant z. See Glimpf et devait effectuer un voyage d’essai de 4 heures, avec du
personnel de chantier et quelques officiers de l’armée de terre, à hauteur du Westhinder.
Initialement, il
fut
supposé
que
l’UB-20
avait
été
bombardé par
un
avion
britannique,
mais il s’avéra
ultérieurement
qu’il s’était retrouvé dans un champ de mines ennemi. Le corps de Glimpf fut rejeté trois
mois plus tard sur la côte du Jutland et fut enterré près de l’église de Loddenbjerg
(Danemark).
L’épave de l’UB-20 fut retrouvée en 1989 au nord du Kwintebank, près de la balise A-zuid,
et identifiée grâce à la numérotation sur l’hélice tribord. L’épave est en assez bon état de
conservation, si l’on exclut le fait que la partie arrière au niveau de la salle des machines
a été entièrement déchirée par une explosion de mine.
UB-III
Au printemps 1916, l’inspection des U-boots commanda le type U B-III. Il s’agissait d’une
version améliorée et plus manœuvrable du type U d’avant-guerre avec un déplacement
d’eau de 300 tjb. Par rapport au type U, ce sous-marin était de construction plus légère,
sortait de cale en six mois et avait la même durée de plongée que le type UB-II. Il avait
une longueur de 55 m, une largeur de 5,8 m et un équipage de 34 hommes. L’UB-III avait
aussi une double propulsion et pouvait atteindre des vitesses légèrement supérieures à
celle du type de taille moyenne UB-II.
Son
rayon
d’action
était
également plus
important:
il
pouvait
facilement
atteindre
la
Mer d’Irlande,
le nord des îles britanniques et le Golfe de Gascogne. Son armement était remarquable:
cinq tubes lance-torpilles et une pièce d’artillerie sur le pont. L’UB-54 fut le premier U-boot
de type UB-III à entrer à Zeebruges. Il fut suivi par 30 autres sous-marins de ce type.
L’UB-57, sous les ordres de l’Oberleutnant z. See Johannes Lohs, est celui qui a remporté
le plus de succès: il est parvenu à détruire 17 bateaux lors de cinq patrouilles. Cette flotte
finira également par subir de lourdes pertes: 16 bâtiments au total ne revinrent jamais,
dont l’UB-57 et l’UB-54.
L’une
des
épaves les plus
curieuses
se
trouve
au
sommet
du
Fairy Bank. Le
site
proprement dit
se limite à une
grande tourelle
s’élevant
audessus du fond
marin,
une
partie du haut
de la coque,
ainsi
que
quelques
bombonnes
d’air comprimé empilées. Au-dessus le la tourelle se trouvent les supports de périscope
avec périscopes rétractés, et une écoutille d’accès ouverte. Le site est remarquable parce
qu’il s’agit d’un grand bâtiment de type UB-III qui est ensablé à 90%. Cet U-boot n’a pas
encore été identifié avec certitude, mais il pourrait s’agir de l’UB-54, de l’UB-56 ou de l’UB58.
Het UC-type
Les U-boots n’ont pas été développés pour porter uniquement les tubes lance-torpilles
classiques. Étant donné que le théâtre des opérations allait se jouer dans des eaux peu
profondes, le long de voies de navigation et d’accès portuaires, l’amirauté allemande
estima que les mines auraient plus d’effet. Le gros problème était que les poseurs de mines
de surface ne pouvaient pas atteindre leurs cibles en zone ennemie sans être vus. La seule
manière
était
de
concevoir
un
sous-marin
poseur
de
mines,
l’UC.
Le type UC-I avait une longueur de 34 m, une largeur de 3,15 m et un déplacement d’eau
de 168 tjb. Il comptait un équipage de 14 hommes, et les conditions de vie à bord étaient
comparables à celles du type UB-I. 15 unités furent achevées au total. Leur proue était
équipée de six puits ayant chacun une capacité de deux mines. Le 26 mai 1915, l’UC-11
fut le premier poseur de mines à entrer au port de Zeebruges. Plus tard, onze autres
bâtiments de ce type allaient opérer depuis des bases flamandes, après avoir été
transportés en train depuis l’Allemagne.
Cette
petite
arme eut
un
grand
impact: les
alliés
perdirent
pas moins de 284 bateaux à cause de ces mines. Les douze U-boots de type UC-I furent
finalement tous perdus: cinq en territoire néerlandais, six dans les eaux britanniques et un
sabordé devant Zeebrugge, l’UC-4.
Le
type
UC-I
prouva son
efficacité
en
1915,
mais
ne
possédait
pas d’arsenal d’armes offensives, à la grande frustration de ses commandants. C’est
pourquoi fut développé le type d’U-boot le plus efficace, combinant tous les éléments des
modèles précédents: le type UC-II. Cet U-boot avait une longueur de 53 m, une largeur
de 5,2 m et un déplacement d’eau de 417 tjb. Il pouvait toujours atteindre une profondeur
de 50 m en 40 secondes. Sa proue était en outre équipée d’une partie rehaussée abritant
six puits verticaux, pour une capacité totale de 18 mines. L’avantage était que les mines
étaient stockées à sec, contrairement au type UC-I où les mines se trouvaient à l’extérieur
de la coque épaisse. Le type UC-I présentait également un autre problème: le réglage de
la profondeur devait être effectué avant le départ et ne pouvait plus être adapté. Avec le
type UC-II, celle-ci pouvait être ajustée pendant le voyage, permettant de décider sur
place où et à quelle profondeur poser un champ de mines. Le type UC-II était également
équipé de trois tubes lance-torpilles et d’un canon de pont 8,8 cm. Les premiers U-boots
UC-II furent déployés en Flandre en 1916, et à la fin de la guerre, une vingtaine opéraient
depuis les bases flamandes. Les pertes furent importantes puisque 17 bâtiments UC-II
furent perdus au cours des deux dernières années de la guerre. La plupart furent minés ou
coulés par des navires de guerre britanniques, comme l’UC-62 qui repose sur le
Thorntonbank.
Pour
conclure
L’U-boot
a
connu
une
énorme
évolution
pendant
la
1ère
Guerre
mondiale: ce
submersible
d’abord
insignifiant a
fini
par
devenir
une
arme redoutée qui mit presque la Grande-Bretagne à genoux. Cette évolution a été ultrarapide, transformant un bateau expérimental en une arme efficace pouvant porter aussi
bien des tubes lance-torpilles que des mines ou de l’armement de pont de différents
calibres. L’occupation de la côte flamande et le développement d’une grande base a joué
un rôle crucial à cet égard. Les opérations de guerre ont laissé de nombreuses épaves d’Uboots dans nos eaux territoriales. Celles-ci nous offrent aujourd’hui encore une opportunité
unique d’étudier la typologie des sous-marins. Les recherches en mer combinées à l’étude
de nombreux ouvrages de référence ont permis de confirmer, de réfuter ou de corriger des
théories. L’archéologie maritime va nous permettre d’éclaircir à l’avenir de nouveaux
mystères sur les U-boots disparus. Cela sera rendu possible grâce aux efforts conjoints de
personnes privées, comme des plongeurs, et de certains services publics (Agentschap
Onroerend Erfgoed, Vlaamse Hydrografie).
Bibliographie

Bendert H. (2000). Die UB-Boote der Kaiserlichen Marine 1914-1918. Einsátze –
Erfolge – Schicksal, Mittler.

Bendert H. (2001). Die UC-Boote der Kaiserlichen Marine 1914-1918. Minenkrieg
mit U-Booten, Mittler.

Brooks G. (ed.). Fips. Legendary U-Boat Commander 1915-1918, Barnsley, 1999.

Bundesarchiv/Militárarchiv: RM 104/236: Kaiserliche Werft Allgemeine Geheime
Angelegenheiten bd.

Friedman N. (1992). German Warships of World War I, Londres.

Gibson R. &M. Prendergast (1931). The German Submarine war 1914-1918,
Londres.

Groner E. (1985). Die deutschen Kriegsschiffe 1815-1945, Band 3, U-Boote,
Hilfskreuzer, Minenschiffe, Netzleger und Sperrbrecher, Coblence.

Public Records Office: PRO ADM 53/46075 (1917): Diary of H.M. Submarine E-45,
October 1917.

Termote T. (1999). Verdwenen in de Noordzee. De geschiedenis van de Duitse Uboten aan de Belgische kust in de Eerste Wereldoorlog, Erpe-Mere.

Termote T. (2009). Schatten & Scheepswrakken. Boeiende archeologie in de
Noordzee, DavidsfondsLouvain.
Revue De Grote Rede
INSERE 27/06/16
NIEUWS NOUVELLES NEWS
ENLEVE 27/07/16
Study: New ships 10% less fuel efficient
than those built in 1990
A new and first-time study of the historical development of the efficiency of new ships
shows that, in fact, the efficiency of new ships has actually deteriorated since 1990 by 10%
on average. This finding is relevant in three ways. First, it once more demonstrates the
failure of market forces to reduce ship and shipping emissions and emphasizes the need
for regulation. More specifically, it demonstrates the need for tighter 2020 standards for
new ships. The International Maritime Organisation (IMO) is currently reviewing whether
the efficiency standard for new ships in 2020 in still appropriate. This study shows that the
current standard, a 20% improvement of efficiency compared with the 1999-2008 average,
does little more than bringing the efficiency of new ships in 2020 back to levels seen around
1990. This would imply a 30-year stagnation of efficiency improvement, meaning that
reducing shipping volumes would be the only avenue for net reductions of emissions.
Thirdly, the evident deterioration in average ship efficiency over the past decade and the
expected 30-year standstill between 1990 and 2020 stands in marked contrast to other
transport modes. New cars, for instance, are subject to legislation and currently are
becoming around 2% more fuel efficient per year and are expected to use around 30%
less fuel in 2020 than they did in 1990.
Acceptable in the 80s… and 90s but downhill after
A study by CE Delft for T&E and Seas at Risk analysed the development of the design
efficiency of new ships (as measured by their efficiency indicator values (EIV)) built over
the last 50 years. The analysis shows that ships built in the 1970s were characterised by
deteriorating or constantly poor design efficiency. Design efficiency improved considerably
for all ship types and all size categories in the 1980s, reaching an optimum in the
1990s.However, in the 2000s, design efficiency deteriorated again, wiping out much of the
gains of the 1980s. This analysis suggests that significant swings in design efficiency have
occurred within a relatively short time frame. The study shows very large variations in
design efficiency between the best and worst years for individual ship types. For instance,
the best-designed bulkers built around 1990 were some 14% better than those built today.
For tankers the best designs for new builds around 1988 were 10% better than those built
today. The difference for container ships was far greater.
Those built in 1985 were about 25% better than those built in 2013. However, this does
not reflect the large reductions in CO2/TEU/mile for containers due to increasing ship size
and improving engine efficiency over this period.
Are IMO’s design efficiency standards fit for purpose?
There is a growing interest in the fuel efficiency of ships because of rising oil prices, climate
change, and energy security issues. From 2013, new ships need to meet the IMO’s Energy
Efficiency Design Index (EEDI) targets, which become more stringent over time. Currently,
the IMO is reviewing these targets and one of the main questions being addressed is their
effectiveness and stringency.
Factors affecting ship efficiency
Depending on the ship type or size, this study shows that ship design efficiency improved
in the decade of the 1980s by 22% to 28%. This trend seems to have been purely market
driven, principally by a combination of sharply increasing oil prices and constant or low
freight rates. Looking more deeply at the factors that contributed to improvements in the
1980s shows that in some, but not all cases, efficiency improvements were brought about
by reductions in design speed. In other cases, the size of the ships has increased. However,
these two developments cannot fully explain the improvements. In many cases, the
evidence points to improvements in hull design and propulsion efficiency as having
contributed significantly to efficiency improvements. Likewise, the deterioration after the
1990s appears to be due, at least in part, to designs in which cargo capacity or capital
costs were given more importance than fuel efficiency. This is a potentially important
finding given current lower oil prices.
More stringent design efficiency standards within reach
The relevance of this study for the review of the IMO’s design efficiency standards is that
it suggests that ships can improve their design efficiency by 5% to 15% on average just
by going back to 1990s designs. Analysis of the design efficiency of ships that have entered
the fleet since 2009 would appear to show this has in fact been happening. And since hull,
rudder and propeller and engine designs have likely improved in the past 25 years because
of technological progress, such as the development of computational fluid dynamics, much
larger efficiency improvements are probably within reach. Lower design speeds could
improve design efficiencies even more where appropriate.
Source: European Federation for Transport and Environment, Seas At Risk
INSERE 29/06/16
BOEKEN BOOKS LIVRES
ENLEVE 29/07/16
“De Damse Vaart”
B O E K B E S P R E K I N G door : Frank NEYTS
Eind juli stelden de Provincie West-Vlaanderen en de stad Damme het boek ‘De Damse Vaart’ voor. De Vlaamse
Zwinstreek is één van de meest bijzondere landschappen in West-Vlaanderen. De Provincie bouwt daarom niet
alleen aan een nieuw Zwin Natuur Park, ze is ook (samen met de Vlaamse Overheid) medebeheerder van de
Damse Vaart en bouwt actief aan een belevingsvol landschap in de regio. Tweehonderd jaar geleden bouwde
Napoleon vanaf de stad Brugge de waterweg richting Schelde. Het project stokte in Sluis. De Franse keizer legde
de vaart aan in het kader van zijn plannen om vanaf het vasteland Engeland te veroveren. Naar aanleiding van die
200e verjaardag van de Damse Vaart besloot de Provincie in haar boekenreeks over de Zwinstreek een boek over
de Damse Vaart te publiceren. Het is een eigentijds belevingsboek dat uitnodigt om de vaart en de Zwinstreek te
ontdekken. Het bevat andere nieuwe historische inzichten over de vaart aan de hand van luchtfoto’s, plannen en
kaartjes die nog niet eerder gepubliceerd werden. Verder komen ook de variëteiten van de feeëriek overhellende
populieren en de natuurwaarden in of op de vaart aan bod.‘ De Damse Vaart’ werd als softback uitgegeven en tel
176 pagina’s. Het boek kost 15 euro.Het is te verkrijgen in het Provinciaal Tolhuis, Jan Van Eyckplein 2 in Brugge,
bij Toerisme Damme, Jacob van Maerlantstraat 3in Damme of via de website www.west-vlaanderen.be/webshop
, per email via provincie@west-vlaanderen.be of telefonisch op het nummer +32(0)800.20.021
INSERE 29/06/16
DOSSIER
ENLEVE 29/07/16
Operation ‘Oil Tanker’ – The Phantom
Menace
What kind of damage can you do by opening an e-mail attachment? In this case study
involving an oil tanker company the result was a systematic, targeted attack designed to
steal information and credentials for defrauding oil brokers – something which could be
potentially catastrophic, writes Luis Corrons, technical director of Panda Security
Everything started on a cold January day in a coastal town in the North East of England,
an area with a strong presence of petrochemical companies.
The day began normally in one of these companies, a firm specialising in, among other
things, maritime oil transportation. Let’s call this company “Black Gold”.
John, the head of Black Gold’s IT department knows that we live in a dangerous world, and
that companies face thousands of cyber-attacks every day. And although Black Gold is not
included in the Fortune 1000 company list, John knew that taking all possible safety
precautions is a must and that, in addition to having a corporate antivirus, they must
maximise all other security measures.
That’s why when given the opportunity to take part in a pilot programme involving a new
service that monitors all applications running on endpoints, reporting the security status
of the network and providing forensic information in the event of infections, he didn’t think
twice. After completing a series of controlled tests, John decided to deploy the small agent
across the company’s network in October 2013.
The information he received during the first three months helped to identify computers at
risk where vulnerable applications were found. Apart from that, nothing worth mentioning
really happened.
One day, however, while Susan, a secretary with more than 20 years of experience at
Black Gold, was checking her email as she did every Monday morning, she came across an
email message with an attached document.
The document appeared to be a PDF file of approximately 4MB in size, with information
about the oil market. Nothing suspicious. Besides, the message in question had gone
through every security filter in place. Neither the mail server antivirus nor the antivirus on
her workstation had found anything anomalous in it.
Susan double-clicked the attachment. A blank PDF opened. “This must be a mistake. I
hope they realize it and send us the correct file again,” Susan thought, moving on to the
next unread message.
Meanwhile, 1,700 km away from Susan’s computer, an alarm was triggered. An unknown
threat had just been detected and blocked when it tried to steal credentials from Susan’s
computer and send them out.
Today, most computer threats are designed to steal information from target systems, so
this just looked like thousands of cases we examine in the laboratory every day. However,
it caught our attention that no antivirus engine had been able to detect it, although this
shouldn’t be so surprising if you take into consideration that every day over 250,000 new
malware files are put in circulation. There was something really unique about this threat:
it didn’t use any kind of malware. That’ s why we decided to call it the ‘Phantom Menace’.
Attack analysis
The file that Susan received and opened looked like what you can see in Figure 1. It actually
was an executable file that used the icon typically used by Adobe Acrobat Reader
documents to trick users. Figure 2 illustrates the execution flow.
The file is just a selfextracting file. Once
run, it creates a
folder and extracts
six files into it. It
then runs one of
them –stat.vbs– and
does not take any more actions.
There is no malicious activity, so the file goes unnoticed by behaviour-based detectors.
The stat.vbs file simply runs another file –deca.bat– in the background. This file in turn
opens the pic.pdf file (the blank PDF document that opened on Susan’s computer) and runs
a file called dcp.exe, a free tool to encrypt files.
This utility is used to decrypt another two files – unzip2.exe, which becomes unzip.exe,
and bare.zip, which becomes bar.zip.
Next, it uses the unzip.exe program to extract the content of the bare.zip file (12 files) into
a different folder. Then, it runs one of the files: sai.vbs.
None of these actions are anomalous, and actually are very different from what we
normally see in other types of attacks. From there, the second part of the attack begins,
as shown in Figure 3
The .vbs file runs a .bat file that modifies the Windows registry to ensure that a file called
aagi.bat is run every time the system starts. Then, it makes a copy of the four files with
the extension .abc, and changes their extension to .exe. These are all legitimate
applications that anybody could use: the first three are designed to collect the credentials
(user names and passwords) stored in the local mail client and Internet browser, and save
them to a text file.
The fourth one is an application designed to run another application every ‘x’ seconds. This
is very useful for computers that need to run an application at all times, like a browser or
any other specific software, so that if the application closes unexpectedly for some reason
it will open again. In this case the application is configured to run another .bat file every
3,600 seconds (every hour).
Then, the ici.bat file uses the ATTRIB system command to hide the two folders it created,
disables the Windows firewall, and renames the text files containing the credentials to
PIC_%d_%t, where %d is the current date and %t the current time. This is done to indicate
when the information they contain was obtained.
Finally, it uses the FTP command to upload those files to an external FTP server controlled
by the attackers. Additionally, it runs the file iei.bat every hour, which takes the actions
shown in Figure 4 ).
It renames the .abc files back to .exe, in case they were deleted. It then deletes all the
text files with credentials that were already uploaded to the FTP server, restores the
Windows registry key in case it was deleted, runs the applications designed to collect
credentials, renames the resulting files and uploads them to the FTP server.
As you can see, no malware is ever used in the attack, the hack makes use of legitimate
tools and different scripts to perform the aforementioned actions.
But, is this type of attack really effective? As mentioned before, no antivirus was capable
of detecting it. Furthermore, its peculiarities seem to indicate that the proactive protection
layers included in most antivirus solutions would not be able to detect its apparently
harmless behaviour.
This was confirmed when we accessed the FTP server that the stolen data was sent to, and
found that the oldest files dated back to August 2013. That is, the attack had been
underway for almost six months completely undetected.
Once we accessed the FTP server, the first thing we did was look for credentials belonging
to Black Gold, since, despite being able to neutralise the attack on Susan’s computer,
another employee could have fallen victim to it. The result was negative, no credentials
had been stolen from the company.
However, we were surprised by the large number of files stored on the FTP server: over
80,000 text files with stolen credentials from other firms. This didn’t look like a targeted
attack, where the number of victims is usually low.
However, after opening three files at random, we found that they belonged to three
companies all in the same industrial sector that Black Gold belongs to.
As mentioned in the previous section, the attack took place recurrently every hour. This
means that stolen credentials were sent to the FTP server every hour. We discarded
duplicate files and ended up with 860 unique files.
That was still too many files for a targeted attack. The only thing left to do was manually
process all these files and try to identify the victims.
The files belonged to some ten companies, all of them in the oil and gas maritime
transportation sector.
It was clear that the hack was indeed a targeted attack, but we still didn’t know what the
attackers were really after, what their final objective was.
Finding the attacker
The so-called Nigerian scams have been a constant presence on the Internet since its
inception, and even before that, when fraudsters used postal mail to defraud victims.
In the most popular one, the scammer passes themselves off as an important figure in the
Nigerian government or some other institution, and contacts the victim offering them a
share in a large sum of money that they want to transfer out of the country.
However, the Nigerian scam industry is large and varied. Some variants are almost
unknown and affect all kinds of sectors, including the oil industry.
The Nigerian town of Bonny is well-known in oil production circles as the oil produced there,
known as Bonny Light Crude Oil (BLCO), has a very low sulphur content, which makes it a
highly desired grade for its low corrosiveness.
The fact that this particular type of oil is in such high demand has given rise to a particular
type of scam aimed at oil brokers, indi-viduals who arrange transactions involving crude
oil between buyers and sellers.
In Nigeria, every gas and oil transaction is supervised by the NNPC (Nigerian National
Petroleum Corporation), a government-owned company. Anybody who wants to trade with
oil in Nigeria must be registered with the NNPC.
In short, the scam works like this: the scammer contacts a broker/middleman and offers
them a large amount of BLCO, one to two million barrels, at a very competitive price.
If the potential buyer is interested, they will ask for documentary evidence that the product
exists (Proof of Product). There are different types of documents that can be provided: a
quality certificate, a certificate of origin, a cargo manifest, or the letter of ATS (Authority
to Sell) issued by the NNPC.
To close the deal, the buyer must pay a significant amount of money -from $50,000 to
$100,000- in advance. However, once they pay the money they are met with the nasty
surprise that there is no oil.
The weakest link in the scam is the documentation that the scammer must pro-vide to
convince the buyer. Even though all of these documents can be forged, the fraudster runs
the risk of being discovered by the broker.
To make it more plausible, scammers attempt to use real documents so that if the broker
wishes to check their legitimacy, they will see that they are real.
However, how difficult is it to obtain these documents? It is very complicated. The only
way to do it is from companies in the sector. Oil transportation companies, for example.
This was just a theory, at that time we didn’t have any evidence to prove that that was the
objective of those responsible for the ‘Phantom Menace’ attack.
In most cases, getting to know who is behind a cyber-attack is very complex, sometimes
impossible. In this case we were fairly pessimistic. To make it worse, the fact that no
malware had been used in the attack ruled out the possibility of finding a signature to
examine. However, there was a weak spot in the attack: the FTP connection used to send
out the stolen credentials.
The information was transmitted using the FTP command, and as that command was called
by one of the scripts, it was pos-sible to see the connection used, from where it was
established and the credentials used.
The FTP server belonged to a free service that the attacker had signed up to, so we were
able to access it and see the information entered when opening the account. Yes, we were
aware that the information would probably be false, but it was still worth checking.
The name used was false; googling it returned zero results. The country selected was the
United States, which could be false as well.
Then we had a look at the city information. The name in this field was unknown to us:
“Ikeja”.
It turns out that Ikeja is the name of a suburb in Lagos, the capital city of Nigeria, also
known as the “Computer Village” as it hosts the nation’s largest market cluster for
technology products. This information could also be false, but the fact that who-ever
opened the account was familiar with that name meant that they were from Nigeria
themselves or knew the country very well.
Then came the e-mail address. This was the only element that we knew for sure had to be
real and valid, as it is the address at which users receive the service activation message,
password reset messages, etc.
In this case it was a Gmail address: *********5@gmail.com
The password was unknown, they had-n’t used the same one as for the FTP serv-ice. We
took the 9 characters that made up the e-mail address and started combining them to see
if we could form an alias, a first name, a last name or similar. And we got it.
We googled what looked like a first name and last name and got a hit. It was the name of
a person with Nigerian nationality and Twitter, Facebook and LinkedIn accounts, which
allowed us to obtain some more information about him.
All those accounts belonged to a person living in... Ikeja, and who is the owner of a goods
transport company.
Too many coincidences. So, even though all the evidence seems to indicate that this is the
person responsible for the attack, there is no way for us to prove it. It would require the
police to launch an investigation and obtain information about the FTP connections, etc.,
in order to get the IP address of the person who signed up to the service and find the
culprit.
Conclusions
With all the information we had in our hands, the idea of what to do next was clear: inform
the police so that they could start an investigation and apprehend whomever was
responsible for the hack.
Since one of the affected companies was from Spain, we contacted the Spanish Civil Guard,
a police force that we have collaborated with in the past and which has a very good
reputation in the fight against cyber-crime.
Unfortunately, they face a difficult-to-solve problem: to start an investigation they need a
victim who reports the crime. It looks simple, but it isn’t: none of the victims of this attack
is willing to report it.
Why? If our theory is correct, the information stolen from these companies has not been
used against them, but to defraud other people, oil buyers. It is for that reason that the
companies which have had their credentials compromised prefer not to report the attack
for fear of having their name in the spotlight. They prefer to keep a low profile, change
their credentials and continue to operate just as if nothing had happened.
Some countries have laws that force companies to report every hacking intrusion where
information is stolen. However, that obligation is usually limited to incidents in which the
stolen information belongs to a third party (customers, partners, etc.). In this case, the
stolen credentials belonged to the company under attack, which therefore is not forced by
law to report the theft.We started this article by calling this case ‘The Phantom Menace’,
due to the nature of the attack and the absence of malware to perpetrate it. Continuing
with the homage to Star Wars, it is time to move on to ‘The Force Awakens’: all major
companies must awake to their vulnerability and realise that absolute security doesn’t exist
and behaviour-based protection is limited.
They need to go one step further, performing regular audits in order to assess and address
potential weaknesses in their network security. Despite traditional security solutions being
still a necessity, they are no longer enough.
It is important to understand that our defence systems must adapt to the level of attack
received, and so it is necessary to implement new protection strategies that give
organisations total control and visibility over their networks.
DS
This article has been adapted from the white paper Operation “Oil Tanker” – The Phantom
Menace published by IT security company Panda Security www.pandasecurity.com
INSERE 01/07/16
DOSSIER
ENLEVE 01/08/16
The future of new builds
Cancellations and delays plague the market, with companies pushing finalisation on North
Sea projects, in an effort to substantiate investments
As we are heading towards the final quarter of 2015, the oil price has stabilised at levels
over US$55 per barrel, but the hope for a revitalisation before the end of the year is fading
away. As this new reality dictates adjustments in capital management, the industry’s
priorities have changed, with many developments being cancelled or delayed. The drilling
market, a significant subsector of the oil and gas industry has been hit dramatically and
with it, the golden years of rig construction have now passed. Offshore drilling rig demand
is expected to drop even lower, decreasing by 8.4% over the next few years. On the supply
side, 55% of the floaters, currently under construction and to be delivered during the next
two years, remain without contracts. In this context, drilling companies and shipyards are
trying to cancel, delay or renegotiate their deals.
Since 2008, there has been a massive rise in the supply of rigs, boosting the offshore
construction market, with Asian shipyards accounting for almost 92.6% of the total rig
deliveries in 2013 and Keppel FELS emerging as a leading force. Currently there are 218
offshore drilling rigs under construction, the majority with delivery dates during 2017.
However, even before the collapse of the oil price, there were signs that demand was
slowing down, while oversupply was imminent. The new market conditions, with the start
of 2015, saw many drilling companies in financial distress. Some of them have tried to
alter their contracts, with George Economou of Ocean Rig trying to swap one of the new
build drillships, ordered with eight tankers, as the company is struggling to find contracts
even for the current existing fleet. Some others, like Seadrill, which has currently 16 rigs
under construction, announced that they will refrain from new offshore rig orders for the
next few years. While Diamond Offshore recently made six rig contracts worth over US$700
million. This was questioned by their clients and the company is now trying to delay the
deliveries from the shipyard.
Another emerging issue closely related to new builds is the deployment of the older rigs.
The older rigs have managed to remain busy the past few years due to high demand,
providing companies with a good revenue stream. But now, with the new rigs expecting to
come online and the rates significantly being reduced, the profit from these offshore
constructions is now questionable. As a result, it has become a regular occurrence to see
older rigs remaining inactive, costing companies from US$1 to US$5 million per year.In
terms of the North Sea, the situation is more complicated, as the low price of oil and the
cut in exploration and production expenditure, is combined with the emergence of the
region as one of the most expensive areas to operate. However, with many projects in the
North Sea heading towards their final stage and a huge capital already spent, it is unlikely
to see oil and gas companies cancelling these capital intensive developments. Moreover,
the breakeven price for the major upcoming fields is estimated at around US$45 per barrel
(Brent), which further confirms the validity of the already signed construction contracts.An
example is the US$31 billion Johan Sverdrup field, which according to the final investment
decision announced in February 2015, Wood Mackenzie values at US$11.2 billion with a
Brent breakeven of US$41/bbl. In June 2015, Statoil, the operator of the Johan Sverdrup
awarded a US$888 million contract to Samsung Heavy Industries for the construction of
two platform decks for the project. Furthermore, two of the first modules for the massive
Clair Ridge project have already been delivered from Hyundai Heavy Industries, while in
the case of the Goliat platform, the largest cylindrical platform ever built, the FPSO is now
ready for departure to the Eni Norge-operated Goliat field.In general, the floating
production market is one of the sectors that could stimulate growth. According to the,
“World Floating Production Market Forecast” published by Douglas-Westwood, it is
predicted that during the period 2015 – 2019, approximately US$81 billion will be invested
on FPS units, which is an increase of 73% in comparison to 2010 – 2014; FPSOs represent
the largest segment, with TLPs following. The majority of this investment stems from
contracts that have already been signed and are unlikely to be cancelled. There are also
new opportunities in the FPSO market, for example with Alpha’s Petroleum Cheviot field,
as the re-evaluation of its hydrocarbon potential increased the estimated recoverable
reserves and the Field Development Plan now includes the option of the deployment of a
new FPSO.
On the other hand, the vessel construction market is following a different path, one
characterised by stability and emerging opportunities. 2015 saw the Norwegian shipyard,
Havyard, sealing a US$90 million deal for the design and construction of a new Havyard
858 L WE subsea vessel, scheduled for delivery by the end of 2017, while Vard Holdings
recently signed a contract to build new diving and construction vessels for Kreuz Subsea.
Additionally, in January 2015, DEME ordered two new vessels; the multipurpose vessel
Living Stone and the self-propelled vessel, Apollo. The contracts have been awarded to the
Spanish shipyard La Naval and the Croatian Uljavik. Heerema has also signed a contract
with Jurong for delivery of a semi-submersible crane vessel, while Subsea 7 ordered a new
heavy construction vessel, Seven Arctic, from Hyundai Heavy Industries in South Korea,
with delivery expected in late 2016.
Finally, the emergence of LNG as a vital source of energy and the fact that there are many
LNG projects expected to come online in the next two years, has forced companies to
invest in new technologies and especially focus on LNG transportation. GTT, a French
designer for the marine transportation and storage of LNG, received a new order for two
new LNG carriers. The ships will be constructed by Hyundai Sambo Heavy Industries and
will be owned and operated by Teekay Offshore, providing transportation services for BP’s
LNG business.It is evident that due to a gap between demand and supply forces, the drilling
market cannot drive traffic to the shipyards at this point, leading to a lack of new
opportunities, in terms of rig new builds. However, it is unlikely to see a high number of
the already signed contracts cancelled, especially when a huge capital has already been
invested. Vessel construction and FPSOs are two subsectors that companies have shown
interest in, while the dominance of the LNG market has prompted them to consider
investing in further development of the transportation and storage services, by ordering
new carriers.
Written by: Red Mist Media's Ioannis Tzelepis