Dynamic characterization of olfactory receptors in the fruit fly
Transcription
Dynamic characterization of olfactory receptors in the fruit fly
Dynamic characterization of olfactory receptors in the fruit fly Drosophila melanogaster ! $###% (&'& Dynamic characterization of olfactory receptors in the fruit fly Drosophila melanogaster Dissertation for obtaining the degree doctor of natural sciences (Dr. rer. nat.) Presented to the department of biology Universität Kassel by Julia Schuckel Kassel 2010 Accepted as dissertation by Fachbereich 18 Universität Kassel First Referee: Prof. Dr. Monika Stengl Second Referee: Prof. Andrew French PhD (Dalhousie University, Halifax) Day of the oral examination: 2010 Contents ERKLÄRUNG: EIGENE BEITRÄGE UND VERÖFFENTLICHTE TEILE DER ARBEIT .......................ii SUMMARY ............................................................................................................................................1 ZUSAMMENFASSUNG I ...................................................................................................................... 3 AUSFÜHRLICHE ZUSAMMENFASSUNG II ........................................................................................5 Kapitel 1…………………………………………………………………………………………………………..8 Kapitel 2…………………………………………………………………………………………………………..9 Kapitel 3……………………………………………………………………………………….…………………11 Fazit 1-3 .……………………………………………………………………………………………………… 13 References…………………………………………………………………………………………………….. 14 INTRODUCTION ...............................................................................................................................17 The antennal olfactory system………………………………………………………………………….17 Sensillum structure…………………………………………………………………………………………. 19 Olfactory receptors…………………………………………………………………………………………. 19 Olfactory transduction………………………………………………………………………………….…. 22 Odor plumes………………………………………………………………………………………………….. 24 Odor stimulation…………………………………………………………………………………………….. 25 Analysis methodology……………………………………………………………………………………… 26 Aims of the thesis…………………………………………………………………………………………… 28 Literature………………………………………………………………………………………………………. 29 ABBREVIATIONS ..............................................................................................................................33 Chapter 1: Dynamic properties of Drosophila olfactory electroantennograms INTRODUCTION ...............................................................................................................................37 MATERIALS AND METHODS ...........................................................................................................38 Stimulation……………………………………………………………………………………………………..38 Stimulus and response measurements……………………………………………………………… 39 Experimental control and data processing………………………………………………………….39 Experimental protocols…………………………………………………………………………….…….. 39 RESULTS ...........................................................................................................................................39 DISCUSSION .....................................................................................................................................41 Different fruit odors produced characteristically different dynamic responses………..41 The basis of the time delay…………………………………………………………………..………….42 Why do Drosophila need such rapid responses to fruit odors………………………….……42 REFERENCES ....................................................................................................................................43 Chapter 2: A digital sequence method of dynamic olfactory characterization INTRODUCTION ...............................................................................................................................47 MATERIALS AND METHODS ...........................................................................................................48 Stimulator design…………………………………………………………………………………………….48 Stimulus measurements…………………………………………………………………………………..48 Electrophysiological measurements …………………………………………………………………. 48 Experimental control and data processing………………………………………………………….49 RESULTS ...........................................................................................................................................49 Frequency response and coherence functions of the stimulating system…………………………………………………………………………………………. 49 Reliability of stimulation parameters at the sensory organ…………………………………..49 Effects of flow velocity on stimulation bandwidth and odorant concentration…….…. 50 Experimental demonstration……………………………………………………………………………. 50 DISCUSSION .....................................................................................................................................51 Methods of dynamic olfactory stimulation………………………………………………………….51 Construction and operation………………………………………………………………………………51 Frequency range and receptor adaptation………………………………………………………….51 Other system characteristics…………………………………………………………………………….51 Conclusions……………………………………………………………………………………………………. 52 REFERENCES ....................................................................................................................................52 Chapter 3: Two Interacting Olfactory Transduction Mechanisms Have linked Polarities and Dynamics in Drosophila melanogaster Antennal Basiconic Sensilla Neurons INTRODUCTION ...............................................................................................................................55 MATERIALS AND METHODS ...........................................................................................................56 Animal preparation and electrophysiology………………………………………………………….56 Olfactory stimulation………………………………………………………………………………………. 56 Experimental control and data processing………………………………………………………….57 RESULTS ...........................................................................................................................................57 Types of sensilla recorded………………………………………………………………………………..58 Excitatory and inhibitory responses…………………………………………………………………..59 Responses to mixed excitatory and inhibitory odorants……………………………………….60 Dose-response estimation………………………………………………………………………………..60 Responses of smaller units……………………………………………………………………………….61 DISCUSSION .....................................................................................................................................61 Physiological basis of the dynamic parameters…………………………………………………..61 Differences to previous data…………………………………………………………………………….63 Mechanisms of excitatory and inhibitory responses in single neurons…………..…….. 63 REFERENCES ....................................................................................................................................63 Erklärung: Eigene Beiträge und veröffentlichte Teile der Arbeit Kapitel 1: Dynamische Eigenschaften von olfaktorischen Elektroantennogrammen an Drosophila (Dynamic properties of Drosophila olfactory electroantennograms) · · · · Durchführung aller Ableitungen mit Pheromonstimulation und einem Teil der Ableitungen mit Duftstimulation bei 28 Fliegen. Auswertung und Analyse aller Experimente Verfassen des Manuskripts in Zusammenarbeit mit Prof. Andrew French, PhD und Prof. Päivi Torkkeli, PhD Dieses Kapitel wurde in der vorliegenden Form im Journal of Comparative Physiology A veröffentlicht. (Dynamic properties of Drosophila olfactory electroantennograms Schuckel J, Meisner S, Torkkeli PH, and French AS. J Comp Physiol A 194:483–489, 2008) Kapitel 2: Eine digitale Sequenz -Methode zur dynamischen olfaktorischen Charakterisierung (A digital sequence method of dynamic olfactory characterization) · · · · · · Planung und Umbau des Ableitstandes Entwicklung des Stimulationsystems in Zusammenarbeit mit Prof. Andrew French, PhD Durchführung aller Experimente Auswertung und Analyse aller Experimente Verfassen des Manuskripts in Zusammenarbeit mit Herrn Prof. Andrew French, PhD Dieses Kapitel wurde in der vorliegenden Form im Journal of Neuroscience Methods veröffentlicht. (A digital sequence method of dynamic olfactory characterization. Schuckel J and French AS J Neurosci Methods 171: 98–103, 2008) Kapitel 3: Zwei miteinander interagierende Transduktionsmechanismen in basikonischen Sensillen von Drosophila melanogaster zeigen einen Zusammenhang zwischen Polarität und Dynamik (Two Interacting Olfactory Transduction Mechanisms Have Linked Polarities and Dynamics in Drosophila melanogaster Antennal Basiconic Sensilla Neurons) · · · · Durchführung aller Experimente Auswertung und Analyse aller Experimente Verfassen des Manuskripts in Zusammenarbeit mit Prof. Andrew French, PhD und Prof. Päivi Torkkeli, PhD Dieses Kapitel wurde in der vorliegenden Form im Journal of Neurophysiology veröffentlicht. (Schuckel J, Torkkeli PH, and French AS. Two Interacting Olfactory Transduction Mechanisms Have Linked Polarities and Dynamics in Drosophila melanogaster Antennal Basiconic Sensilla Neurons. J Neurophysiol 102: 214–223, 2009) Summary Summary Temporal changes in odor concentration are vitally important to many animals orienting and navigating in their environment. How are such temporal changes detected? Answering these questions requires accurate methods of delivering dynamically changing temporal-spatial odor stimuli and quantitatively characterizing the resulting neural responses. Within the scope of the present work an accurate stimulation and analysis system was developed to examine the dynamics of physiological properties of Drosophila melanogaster olfactory receptor organs. Subsequently a new method for delivering odor stimuli was tested and used to present the first dynamic characterization of olfactory receptors at the level of single neurons. Initially, recordings of the whole antenna were conducted while stimulating with different odors. The odor delivery system used was a servo controlled system allowing the dynamic characterization of the whole fly antenna, including its sensilla and receptor neurons. Based on the obtained electroantennogram data a new odor delivery method called digital sequence method was developed. In addition the degree of accuracy was enhanced, initially using electroantennograms, and later performing recordings of odorant receptor cells at the single sensilla level. In this work I could show for the first time that different odors evoked different responses within one neuron depending on the chemical structure of the odor. Two distinguishable responses were observed. The two types of responses differed in their polarity, i.e. they were inhibitory or excitatory, and in their dynamics. Excitatory responses were observed when stimulating with the aliphatic odors ethyl acetat, ethyl butyrate and hexanol. Inhibitory responses were observed stimulating with the aromatic substances phenylethyl acetate and methyl salicylate. Further experiments with a mixture of inhibitory and excitatory odor could not be differentiated from responses of the inhibitory odor alone. In addition different models for drosophila olfactory transduction in fruit odors were proposed. The present work offers new insights into the dynamic properties of olfactory transduction in Drosophila melanogaster and describes time dependent parameters underlying these properties. 1 Zusammenfassung I Zusammenfassung Für viele Tiere sind zeitliche Änderungen der Duftkonzentration von essentieller Bedeutung bei der Orientierung in ihrer Umwelt. Luft-Turbulenzen beeinflussen die Verteilung von Düften in Raum und Zeit. Aufgrund der Luftbewegungen entstehen komplexe Strukturen, sogenannte Duftfilamente, in denen vielfältige Konzentrationsänderungen und Frequenzen eines Duftes vorkommen können. Diese spezifische raum-zeitliche Struktur der Duftfilamente ist von entscheidender Bedeutung. Wie werden diese Änderungen wahrgenommen? Um diese Fragen beantworten Stimulationsapparat sowie zu ein können, wurde in Analyseverfahren der vorliegenden entwickelt, um Arbeit ein olfaktorische Rezeptororgane der Taufliege Drosophila melanogaster auf ihre dynamischen Eigenschaften hin zu untersuchen. Zu Beginn der Arbeit wurden Ableitungen der ganzen Antenne, Elektroantennogramme, durchgeführt. Die Stimulation mit verschiedenen Düften erfolgte mittels eines servo-kontrollierten Stimulationssystems. Basierend auf den Ergebnissen der Elektroantennogramme wurde die Methode in zweierlei Hinsicht weiterentwickelt. Zum einen wurde die neu entwickelte digitale Sequenz-Methode zur Stimulation eingesetzt und zum anderen wurde die Untersuchungsebene hin zu Einzelsensillenableitungen verfeinert. Im Rahmen der Arbeit wurde diese neue Methode getestet und angewendet um, zum ersten Mal, dynamische Charakterisierungen von olfaktorischen Rezeptororganen auf Neuronenebene zu zeigen. Es konnte gezeigt werden, dass Düfte abhängig von ihrer chemischen Struktur innerhalb eines Neurons unterschiedliche Antworten erzeugen. Zwei verschiedene Antworttypen konnten beobachtet werden. Diese unterschieden sich in ihrer Polarität, exzitatorische Antworten konnten bei aliphatischen Düften und inhibitorische Antworten bei aromatischen Düften beobachtet werden. Des weiteren waren Unterschiede in ihrer Dynamik, den Eigenschaften bei verschiedenen Änderungsraten der Duftkonzentration, zu erkennen. Experimente mit einer gleichanteiligen Mischung aus aromatischem und aliphatischem Duft zeigten, dass die Antworten auf das Duftgemisch nicht von denen auf die aromatischen Düfte allein zu unterscheiden waren. Anschliessend wurden verschiedene mögliche Modelle für die Transduktion vorgestellt, welche diese Ergebnisse erklären könnten. Die vorliegende Arbeit präsentiert neue Einsichten in die dynamischen Eigenschaften der olfaktorischen Transduktion bei Drosophila melanogaster und beschreibt zeitabhängige Parameter, die diesen Eigenschaften zugrundeliegen. 3 Zusammenfassung II Zusammenfassung: Die Welt besteht aus einer unzählige Fülle physikalischer und chemischer Strukturen und Substanzen. Ihre Sinnessysteme sind für Tiere Grundvoraussetzung, um ein stimmiges Abbild ihrer Umwelt zu abzubilden. Jedes für Tiere durch ihre Sinne wahrnehmbare Phänomen kann potentiell zur Orientierung und Navigation dienen. Der olfaktorische Sinn spielt bei vielen Verhaltensweisen eine wichtige Rolle, unter anderem bei der Lokalisation von Nahrungsquellen oder bei der innerartlichen Kommunikation durch Pheromone. Zum Beispiel wird die Taufliege Drosophila melanogaster besonders stark von dem Duft von Essigsäure oder fermentierendem Obst angelockt. Luft-Turbulenzen beeinflussen die Verteilung von Düften in Raum und Zeit. Aufgrund der Luftbewegungen entstehen komplexe Strukturen, sogenannte Konzentrationsänderungen Duftfilamente und oder Frequenzen Duftwolken, eines Duftes in denen vorkommen vielfältige können. Die spezifische raum-zeitliche Struktur dieser Duftfilamente ist entscheidend für das Verhalten verschiedener Insektenarten. Beispiele sind die Orientierung von Gelbfiebermücken anhand der Duftwolkenstruktur von CO2 beim Auffinden von Säugetieren (Geier et al. 1999), oder die Flugorientierung von Triatoma infestans, einer blutsaugenden Wanzenart, in Richtung von (ein- und aus-) atmenden Menschen (Barrozo und Lazzari 2006). Die Flugroute von männlichen Schwärmern, die der Pheromonspur von weiblichen Schwärmern folgen, ist ebenfalls dadurch bestimmt, wie die Struktur der Duftwolke bzw. Pheromonwolke charakterisiert ist (Justus et al. 2005; Mafra-Neto und Cardé 1995; Willis und Baker 1984, Murlis et al. 1992). Um erfolgreich navigieren zu können, ist offensichtlich entscheidend, wann, wo und wie Gerüche wahrgenommen und verarbeitet werden. Bei Untersuchungen an Schwärmern wurden Gehirnareale gefunden, welche eine wesentliche Rolle bei der Informationsverarbeitung von Duftwolken spielen (Vickers et al. 2001). Über die Transduktion der Informationen aus Duftwolken auf der Ebene der olfaktorischen Rezeptorneurone, die ganz am Anfang des Verarbeitungsprozesses dieser dynamischen Duftinformationen stehen, ist jedoch wenig bekannt. Deshalb ist es äußerst wichtig herauszufinden, wie diese Konzentrationsänderungen detektiert werden und welche Komponenten der olfaktorischen Transduktion zeitabhängig sind. Primäres Ziel dieser Arbeit war es zunächst, dynamische Antworteigenschaften der Antenne und später auch einzelner Sensillen der Taufliege D. melanogaster auf sich schnell verändernde Duftkonzentrationen hin zu charakterisieren. Um diese Fragestellung untersuchen zu können, ist es zum einen wichtig, dass die verwendete Methode es ermöglicht, olfaktorische Stimuli zu präsentieren, 5 Zusammenfassung II deren Konzentration sich zeitlich dynamisch verändert, und zum anderen, dass die resultierenden neuronalen Antworten quantitativ ausgewertet werden können. Elektrophysiologische Ableitungen: Bei den Ableitungen von der Antenne (Elektro- antennogramme: EAGs) wurden Glaselektroden verwendet. Die Öffnung einer mit Elektrolyt gefüllten Glaskapillare wurde über die Antennenspitze gestülpt. Bei den extrazellulären Einzelableitungen der Sensillen wurden elektrochemisch angespitzte Wolframelektroden verwendet, welche durch die Kutikula in das Haar eingestochen wurden. Die EAGs bzw. Einzelsensillenableitungen wurden in der späteren Auswertung als Ausgangssignal verwendet. Stimulusgabe und –messung: Zeitlich veränderliche Duftstimuli wurden zunächst mit Hilfe eines servo-kontrollierten Windtunnels und später mit einem Windtunnel erzeugt, dessen wesentlicher Bestandteil ein Ventil war, durch das ein Luft-Duft-Gemisch strömte und welches sich Software-gesteuert digital öffnen und schließen ließ. Die verschiedenen Trägergaskonzentrationen Photoionisationsdetektor (relative (PID), Duftkonzentrationen) welcher wurden Gaskonzentrationen mit mit einem einem zeitlichen Auflösungsvermögen im Millisekundenbereich messen konnte, möglichst nah an der Antenne gemessen. Die Besonderheit des PIDs im Vergleich zu anderen Gasmessgeräten ist die Eigenschaft, auch besonders schnelle Gaskonzentrationsänderungen (0 – 330 Hz) noch auflösen und detektieren zu können. Innerhalb des PIDs wird das Gas hohen Intensitäten von ultraviolettem Licht ausgesetzt. Das Licht ionisiert die Moleküle des Gases. Darauffolgend verteilen sich die Ionen an positiven und negativen Elektroden. Die so entstandene Ionenverteilung erzeugt einen Strom, welcher proportional der Gaskonzentration ist. Frequenzanalyse: Die Frequenzanalyse ist eine Technik zur Charakterisierung dynamischer Eigenschaften eines unbekannten Systems. Voraussetzung ist, dass die Eingangs- und Ausgangssignale des Systems als Funktionen der Zeit repräsentiert werden können. Die am häufigsten verwendete und hier eingesetzte Art der Frequenzanalyse basiert auf der Annahme, dass das zu analysierende Input/Output-System linear und stationär ist. Linear bedeutet, dass die Verdoppelung des Eingangssignals eine Verdoppelung des Ausgangssignals zur Folge hat. Stationär bedeutet, dass die Eigenschaften des Systems sich nicht mit der Zeit verändern. Die Frequenzanalyse basiert auf der Fourier-Theorie, die besagt, dass fast alle einfachen Funktionen der Zeit durch die Zusammensetzung von mehreren Sinus- und Cosinusfunktionen der Zeit dargestellt werden können. Eine Zusammenfassung II Eigenschaft von linearen Systemen ist, dass eine Sinuskurve im Eingangssignal immer auch eine Sinuskurve derselben Frequenz im Ausgangssignal erzeugt. Sowohl die Amplituden der Sinuskurve im Ausgangssignal als auch die Maxima und Minima der Kurve des Ausgangssignals ändern sich gewöhnlich im Vergleich zum Eingangssignal. Diese Veränderung wird auch als Phasenverschiebung bezeichnet. Um Frequenzantworten eines unbekannten Systems messen zu können, werden sinusoidale Eingangssignale verschiedener Frequenzen erzeugt und die entstandenen Ausgangssignale gemessen. Daraus wird die Änderung von Amplitude und Zeitverschiebung, des Eingangsgegenüber dem Ausgangssignal, in Abhängigkeit von der Frequenz berechnet. Die Stimulation eines unbekannten Systems mit einem Rauschsignal, also der Summe aller denkbaren Frequenzen eines bestimmten Frequenzbereiches, ermöglicht die Messung der kompletten Frequenzantwort in einem einzigen Experiment. Dazu werden sowohl das Rauschsignal (Eingangssignal) als auch das Ausgangssignal mit Hilfe der schnellen FourierTransformation in deren einzelne Frequenzanteile zerlegt. Um Frequenzantwortanalysen zu generieren, wurden die gemessenen Konzentrationsunterschiede des PIDs als Eingangssignal (Input) und die neuronalen Antworten der Antenne oder Sensillen als Ausgangssignal (Output) betrachtet. Die gemessenen Frequenzantworten sowohl der gesamten Antenne als auch einzelner Rezeptorneurone ließen sich gut mit Hilfe von Filterfunktionen beschreiben. Die Parameter der Filterfunktionen (Amplitude, Zeitkonstanten und Zeitverzögerung) waren jeweils charakteristisch für die getesteten Düfte. Dabei ist die Amplitude (α) ein Maß für die Antwortstärke, die Zeitkonstanten (τx) beschreiben die Grenzfrequenzen der Filterfunktion G(f). Die Zeitverzögerung (∆t) ist ein Maß für die Phasenverschiebung zwischen Eingangs- und Ausgangssignal. Aus den Frequenzantworten wurde außerdem die Informationskapazität (R) berechnet. R gibt die maximale Datenrate an, die über einen Informationskanal (in diesem Fall die Antenne oder die Rezeptorneurone) übertragen werden kann. R wurde aus der Kohärenzfunktion bestimmt, welche die lineare Korrelation zwischen Eingangs- und Ausgangssignal angibt. Die Arbeit gliedert sich in drei Kapitel: 7 Zusammenfassung II Kapitel 1: Dynamische Eigenschaften von olfaktorischen Elektroantennogrammen an Drosophila (Dynamic properties of Drosophila olfactory electroantennograms) Die dynamische Charakterisierung von Photo- und Mechanorezeptoren konnte in der Vergangenheit dazu beitragen, Aufschluss über funktionelle Komponenten und die quantitative Repräsentierung sensorischer Informationen in diesen Sinnessystemen zu geben (Juusola und French 1997, Juusola et al. 2003). Um das olfaktorische System von Drosophila melanogaster besser untersuchen zu können, wurde ein servo-kontrolliertes laminares Luftstrom-System verwendet und mit einem Photoinonisationsdetektor zum Messen von Gaskonzentrationen kombiniert, um Elektroantennogramme zu charakterisieren. Die Antenne von Fliegen beider Geschlechter wurde mit den vier verschiedenen Fruchtdüften Butylbutyrat, Isoamylacetat, Hexylacetat und Phenylethylalkohol (Stensmyr et al.2003) bei insgesamt 42 Tieren und dem Aggregationspheromon (Z)- 11-octadecenylacetat (Hedlund et al. 1996) bei 24 männlichen Tieren stimuliert. In den gemessenen Elektroantennogrammen konnten keine signifikanten Unterschiede in den Frequenzantworten auf die verschiedenen Fruchtdüfte zwischen den Geschlechtern gefunden werden. Frequenzantwortfunktionen wurden über eine Bandbreite von 0 bis 100 Hz gemessen und konnten gut mit Tiefpassfilterfunktionen ersten Grades beschrieben werden. Für alle verwendeten Düfte wurden jeweils verschiedene Parameter berechnet. Die verschiedenen berechneten Zeitkonstanten (Zeitverzögerung (∆t) und die Zeitkonstante (τ)), Amplituden (α) und Informationskapazitäten R, waren für jeden Duft individuell und die Werte variierten bis zum Zehnfachen voneinander. Die mittlere Zeitkonstante (τ) für die vier Fruchtdüfte reichte von 4,40 ms bei Isoamylacetat bis zu 35,5 ms bei Phenylethylalkohol. Die Grenyfrequenzen liegen also zwischen 36,3 Hz (Isoamylacetat) und 4,5 Hz (Phenylethylalkohol). Der Wert für die Amplitude (α) war ebenfalls für die verschiedenen Düfte unterschiedlich und lag zwischen 3,64 pA/ppm für Isoamylacetat und 1,47 pA/ppm für Phenylethylalkohol. Die Zeitverzögerung (∆t: Phasenverschiebung zwischen Eingangs- und Ausgangssignal) war für alle Fruchtdüfte niedrig und war bei den verschiedenen Düften nicht signifikant verschieden. Das negative Vorzeichen des Wertes der Zeitverzögerung (∆t) bei den Fruchtdüften konnte durch die Zeit erklärt werden, die beim Einsaugen des Gases durch die PID-Nadel vergeht. Die Antworten auf das Pheromon hatten wesentlich niedrigere Amplituden (α) und Informationskapazitäten (R) als die, die bei den restlichen getesteten Zusammenfassung II Düften vorkamen. Bei beiden Parametern Amplitude (α) und Informationskapazität (R) waren die gemessenen Werte beim Pheromon im Vergleich zu den niedrigsten gemessenen Parameterwerten für die Fruchtdüfte (Phenylethylalkohol) um ~60% kleiner. Die Werte der Zeitkonstanten (τ) lagen für das Pheromon im gleichen Bereich wie die der Fruchtdüfte. Der Zeitverzögerungswert (∆t) war jedoch im Gegensatz zu dem bei den Fruchtdüften gemessenen Werten positiv. Eine mögliche Erklärung für die längere Zeitverzögerung beim Pheromon könnte die Größe der Moleküle sein, die beim Pheromon im Vergleich zu den getesteten Fruchtdüften wesentlich kleiner war. Die deutlichen Unterschiede zwischen den Werten der Zeitkonstanten der verschiedenen Düfte inklusive des Pheromons deuten darauf hin, dass vermutlich verschiedene Chemotransduktionsmechanismen nebeneinander, abhängig jeweils vom getesteten Duft, in der Antenne existieren. Die Ergebnisse warfen die Frage auf, welche zeitabhängigen Schritte in der Transduktion die verschiedenen Parameter beschreiben könnten. Mögliche Kandidaten waren Diffusion durch die Kutikulaporen, Bindung an Duftbindemoleküle oder second-messenger-Kaskaden. Die Ergebnisse legten nahe, weitere Experimente an einzelnen Sensillen durchzuführen. Kapitel 2: Eine digitale Sequenz-Methode zur dynamischen olfaktorischen Charakterisierung (A digital sequence method of dynamic olfactory characterization) Um olfaktorische Rezeptoren dynamisch zu untersuchen, gab es bis zum Zeitpunkt der Publikation unterschiedliche methodische Ansätze. Zum einen wurde die Art der Duftstimulation weiterentwickelt, hierzu führten Bau et al. (2005) Untersuchungen mit einem Windtunnel durch, in den sie einen gepulsten Duftstimulus entließen. Ein anderer Ansatz war, einen Pheromonreiz in einen turbulenten Luftstrom strömen zu lassen, um unterschiedliche randomisierte Duftkonzentrationen zu generieren (Justus et al. 2005). Zum anderen wurden Systeme entwickelt, um die Detektion des gegebenen Stimulus besser messen zu können. Photoionisationsdetektoren (PIDs) ermöglichten die Messung von sich in hoher Geschwindigkeit verändernden Gaskonzentrationen von Gasen mit niedrigem Ionisationspotential, welche mit verschiedenen Düften vermischt werden konnten (Justus et al., 2005; Vetter et al., 2006). Später wurde eine Methode entwickelt, die eine verbesserte 9 Zusammenfassung II Kontrolle des Stimulus und eine genauere Messung der Gaskonzentration mit Hilfe des PIDs bot. Bei dieser Methode wurde der Duftstimulus mit einem servo-gesteuerten System generiert, welches Düfte kontinuierlich und variabel präsentieren konnte (French und Meisner, 2007). In der vorliegenden Arbeit wurde eine neue, alternative Methode entwickelt, die eine Weiterentwicklung der oben beschriebenen servo-gesteuerten Methode ist. Dabei wurde ein Duft-Tracergas- Gemisch mit Hilfe eines Magnetspulenventils in einen Luftstromkanal entlassen. Es wurde ein Ventil verwendet, welches sich durch pseudorandomisierte binäre Signale (M-Sequenzen) steuern ließ, die von einer Software generiert wurden. Um die dynamischen Eigenschaften des entwickelten Stimulationssystems zu überprüfen wurden Frequenzantwortanalysen vorgenommen, bei denen als Eingangssignal die softwaregenerierte binäre Sequenz (das bedeutet, entweder geöffnetes oder geschlossenes Ventil) und als Ausgangssignal die vom PID gemessene Gaskonzentration dienten. Es zeigte sich, dass die Frequenzantwortfunktion G(jω) sich gut mit einem zuvor verwendeten Modell von French und Meisner (2007) für laminaren Luftstrom entlang einer Röhre erklären ließ: 2 G(jω)=α exp(jω∆t) exp (-ω/ωc) 1/(1+jωτ) Bei diesem war Omega (ω) die Kreisfrequenz, j= √-1, Alpha (α) die Amplitude der Frequenzantwort, und Delta t (∆t) die Zeitverzögerung zwischen Öffnung des Ventils und Ankunft des Tracergases am PID. Omegac (ωc) war die Grenzfrequenz einer Gauss´schen Funktion, welche die Diffusion des Tracergases beschreibt. Tau (τ) war die Zeitkonstante einer Tiefpassfilterfunktion für die Reibung des Gases an der Röhrenwand. Um die positionsabhängige Zuverlässigkeit der Stimulation am sensorischen Organ gewährleisten zu können, wurde überprüft, ob es Effekte bei unterschiedlichen Horizontalund Vertikalpositionen des PIDs vor der im Durchmesser 5 mm großen Mündung des Luftkanals gab. Innerhalb der 5 mm waren die Effekte der Positionsänderung des PID in 1 mm Schritten um den Mittelpunkt herum zu vernachlässigen. Die Parameter ∆t und ωc waren gänzlich unabhängig von der Position, die Amplitude (α) war im Zentrum maximal und nahm von innen nach außen hin bis zu einem Minimum von 55% ab. Die Zeitkonstante (τ) nahm von innen (~ 2,5 ms) nach außen (~6 ms) hin zu. Um die experimentelle Anwendbarkeit des Stimulationssystems zu demonstrieren, wurden Elektroantennogramme an der Antenne von D. melanogaster durchgeführt. Es wurden Zusammenfassung II Frequenzantwort- und Kohärenzfunktionen gemessen, bei denen mit den Fruchtdüften Butylbutyrat und Hexylacetat stimuliert wurde. Das Eingangssignal war die vom PID gemessene Gaskonzentration, während das Ausgangssignal das gemessene neuronale Signal der Antenne war. Die gemessenen Frequenzantwortfunktionen ließen sich gut mit einer Tiefpassfilterfunktion ersten Grades erklären. Vorteile der digitalen Methode im Vergleich zu der servo-kontrollierten Stimulationsmethode waren vor allem eine grössere Stimulusbandbreite, aber auch die unkompliziertere Baukonstruktion des Systems und die Tatsache, dass durch den binären Charakter der Stimulation duftfreie Phasen entstanden, eine Eigenschaft, die besonders bei der Stimulation von schnell adaptierenden Rezeptoren wichtig ist. Kapitel 3: Zwei miteinander interagierende Transduktionsmechanismen in basikonischen Sensillen von Drosophila melanogaster zeigen einen Zusammenhang zwischen Polarität und Dynamik (Two Interacting Olfactory Transduction Mechanisms Have Linked Polarities and Dynamics in Drosophila melanogaster Antennal Basiconic Sensilla Neurons) Wie der olfaktorische Transduktionsmechanismus in Drosophila melanogaster im Detail funktioniert, konnte bisher nicht eindeutig geklärt werden. Es existieren verschiedene Modelle zur Transduktion, welche jeweils auf physiologischen und genetischen Experimenten basieren (Wicher et al. 2008, Sato 2008, Nakagawa und Vosshall 2009). Die dynamische Charakterisierung von olfaktorischen Rezeptorneuronen eröffnet eine weitere Möglichkeit, funktionelle Komponenten der Transduktion zu untersuchen. In dieser Arbeit wurden Frequenzantwortfunktionen zwischen Fruchtdüften und den neuronalen Antworten olfaktorischer Rezeptorneuone auf diese Düfte berechnet. Als Eingangssignal (Input) diente hierbei die Fruchtduftkonzentration und als Ausgangssignal (Output) Aktionspotentiale von einzelnen basikonischen Sensillen der Antenne von Drosophila. Es wurde eine Methode benutzt, die zufällig variierende Duftkonzentrationen mit schneller kontinuierlicher Messung der Konzentration, möglichst nah an der Antenne, mit Hilfe eines PIDs ermöglichte (digitale Sequenz-Methode; Schuckel und French 2008). Um zu überprüfen, ob sich die verschiedenen Duftkonzentrationen während der Experimente in einem Bereich befanden, in dem sie keine Sättigung hervorrufen, wurden Dosis-AntwortBerechnungen erstellt. Bei der grafischen Darstellung von Antwortamplituden (α) und 11 Zusammenfassung II Duftkonzentrationen war zu erkennen, dass die verwendeten Duftkonzentrationen ungefähr in linearen Regionen der Dosis-Antwort-Beziehung lagen. Das wichtigste Ergebnis dieser Arbeit war, dass zwei klar voneinander unterscheidbare Antwortmuster existieren: Exzitatorische Bandpassfilterantworten bei Ethylacetat, Ethylbutyrat und Hexanol, und inhibitorische Tiefpassfilterantworten bei Methylsalicylat und Phenylethylacetat. Das Maximum der Bandpassfrequenzantworten lag bei einer Frequenz von 1-10 Hz. Alle gemessenen Frequenzantworten ließen sich gut mit linearen Filterfunktionen erklären. Die gefitteten Parameter (Amplitude (α), Zeitkonstanten (τx) und Zeitverzögerung (∆t)) stimmten jeweils bei den zwei verschiedenen Antworttypen miteinander überein. Das Vorkommen von zwei verschiedenen Antworttypen warf die Frage auf, ob es möglicherweise verschiedene Transduktionswege innerhalb desselben olfaktorischen Neurons geben könne, und ferner, wie diese verschiedenen Antworten moduliert werden. Um dies weiter zu untersuchen, wurden Experimente durchgeführt, in denen mit einer Mischung aus zwei Düften stimuliert wurde. Die Mischung bestand jeweils zu gleichen Teilen aus inhibitorischem und exitatorischem Duft. Bei Stimulation der Neurone mit der Duftmischung wurden Antworten gemessen, die charakteristisch für die Antworten auf inhibitorische Düfte waren. Eine mögliche Erklärung ist, dass die Interaktion während der Stimulation bewirkte, dass inhibitorische Düfte die exzitatorischen Düfte unterdrücken. Des weiteren wurde für jede Ableitung die Informationskapazität (R) aus der Kohärenzfunktion berechnet. Obwohl die Kohärenz relativ hoch war, ein Hinweis auf ein gutes Signal-Rausch-Verhältnis, war die Informationskapazität (R), verglichen mit Werten aus der visuellen oder der Mechanotransduktion, wesentlich kleiner. Die kleineren Werte der Informationskapazität könnten eine Folge der im Vergleich zu den anderen Systemen limitierten Bandbreite des olfaktorischen Stimulus sein. Des weiteren wurden auf der Basis der Ergebnisse der Arbeit verschiedene mögliche Transduktionsmodelle vorgeschlagen. Ein Modell war die Mehrfachbindung von exzitatorisch und inhibitorisch wirkenden Duftmolekülen an einen Rezeptor mit jeweils gegensätzlichem Effekt auf die Transduktionsionenkanäle, ein weiteres Modell die Möglichkeit mehrerer Rezeptoren für die unterschiedlichen Düfte, die je nach Rezeptor gegensätzliche Effekte auf die Inonenkanäle ausüben. Des weiteren könnten auch Kaliumkanäle, die an der Basis des Rezeptorneurons liegen und nicht mit dem Sensillenlymphraum in Verbindung stehen, das Öffnen und Schließen der Ionenkanäle beeinflussen. Weiterhin könnten auch verschiedene Schließungsgrade der Transduktionskanäle existieren. Zusammenfassung II Fazit aus Kapitel 1-3 In den Arbeiten im Rahmen meiner Dissertation wurde eine präzise Stimulations- und Auswertungsmethode entwickelt, um physiologische Rezeptororgane der Taufliege Drosophila melanogaster Eigenschaften olfaktorischer dynamisch zu untersuchen. Anschließend wurde diese Untersuchungsmethode auf ihre Anwendbarkeit geprüft und verwendet, um die erste dynamische Charakterisierung von olfaktorischen Rezeptoren auf Einzelneuronenebene zu präsentieren. Die Grundlage der Arbeit waren die Ableitungen der ganzen Antenne mit verschiedenen Düften mit Hilfe eines servo-gesteuerten Systems, die eine Beschreibung der dynamischen Antworten der ganzen Antenne, einschließlich aller ihrer Sensillen und olfaktorischen Rezeptorneurone, lieferte. Darauf aufbauend wurde zum einen die digitale Sequenz-Methode zur Duftstimulation entwickelt. Zum anderen wurde die Untersuchungsebene von Ableitungen der ganzen Antenne hin zu Einzelsensillenableitungen verfeinert, was eine detailliertere Charakterisierung auf neuronaler Ebene ermöglichte. Bei den EAGs wurden deutlich voneinander unterscheidbare Zeitkonstanten zwischen allen getesteten Düften inklusive des Pheromons gemessen. Besonders gross war der Unterschied der Zeitverzögerungs (∆t). ∆t war bei den verwendetet Fruchtdüften negativ und beim Pheromon positiv, dies bedeutet dass zwischen Eingangs- und Ausgangssignal beim Pheromon mehr Zeit vergangen war. Dies könnte zum einen physikalische Gründe haben, wie die Größe der Molekühle und daraus resultierende unterschiedliche Geschwindigkeiten im Luftstrom. Zum anderen könnten aber auch unterschiedliche Transduktionmechanismen zu den unterschiedlichen Zeitparametern führen. Bei den Sensillenableitungen wurde ausschließlich mit Fruchtdüften stimuliert. Bei den Sensillenableitungen konnte ich zum ersten Mal zeigen, dass es zwei verschiedene Duftantworten innerhalb eines Rezeptorneurons auf unterschiedliche Fruchtdüfte mit verschiedener chemischer Struktur gab. Die beiden Antworttypen auf die Fruchtdüfte unterschieden sich sowohl in ihrer Polarität, waren also inhibitorischer oder exzitatorischer Natur, als auch in ihrer Dynamik, den Eigenschaften bei verschiedenen Änderungsraten der Duftkonzentration. Exzitatorische Antworten wurden bei Stimulation mit den aliphatischen Düften Ethylacetat, Ethylbutyrat und Hexanol beobachtet. Inhibitorische Antworten konnten bei Stimulation mit den aromatischen Düften Phenylethylacetat und Methylsalicylat gemessen werden. Weitere Experimente mit einer Duftmischung aus inhibitorischem und exzitatorischem Duft zeigten, dass die Duftantworten nicht von denen der inhibitorischen allein unterscheidbar waren. Außerdem wurden auf der Basis der vorliegenden Daten hypothetische Modelle für 13 Zusammenfassung II verschiedene mögliche Wege der olfaktorischen Transduktion bei Fruchtdüften vorgeschlagen. Eine über den Rahmen dieser Arbeit hinausgehende Frage ist, welcher Transduktionsweg (metabotrop oder ionotrop) oder welche Kombination von verschiedenen Transduktionswegen bei Drosophila vorkommen? Es wird vermutet, daß ORs mit OR83b Heterodimere bilden. Aber wirken diese heterodimeren Komplexe als Liganden gesteuerte Ionenkanäle oder werden sie G-protein aktiviert? Ionenkanäle haben eine besonders schnelle Reaktionszeit und second messenger Transduktionswege sind besonders empfindlich für geringe Konzentrationen von Duft. Beide Eigenschaften sind bei der Verfolgung einer Duftspur vermutlich von Wichtigkeit. Aufbauend auf meinen bisherigen Arbeiteiten wäre es interessant dynamische Charakterisierungen von OSNs durchzuführen, die „loss of function” . Mutationen der G proteine oder second messenger aufweisen. Die zeitlichen Parameter könnten im Vergleich zum Wildtyp Auskunft über die Kinetik der Transduktion geben. Bei einem rein ionotropen Mechanismus würde kein Unterschied sichtbar werden, bei einer ionotropen/metabotropen Mischform würde in den niedrigeren Frequenzen eine Veränderung der zeitlichen Parameter auftreten, aber in den höheren Frequenzen nicht. Die vorliegende Arbeit bietet neue Erkenntnisse zu den dynamischen Eigenschaften der olfaktorischen Transduktion bei Drosophila melanogaster und beschreibt zeitliche Parameter, die ihr zugrunde liegen. Literatur: Barrozo RB, Lazzari CR. Orientation response of haematophagous bugs to CO2: the effect of the temporal structure of the stimulus. J Comp Physiol A 2006; 192(8): 827-31. Bau J, Justus KA, Carde RT. Antennal resolution of pulsed pheromone plumes in three moth species. J Insect Physiol 2002; 48(4): 433-442. Bau J, Justus KA, Loudon C, Carde RT. Electroantennographic resolution of pulsed pheromone plumes in two species of moths with bipectinate antennae. Chem Senses 2005; 30(9): 77180. French AS, Meisner S. A new method for wide frequency range dynamic olfactory stimulation and characterization. Chem Senses 2007; 32(7): 681-8. Geier M, Bosch OJ, Boeckh J. Influence of odour plume structure on upwind flight of mosquitoes towards hosts. J Exp Biol 1999; 202 (Pt 12): 1639-48. Hedlund K, Bartelt RJ, Dicke M, Vet LEM. Aggregation pheromones of Drosophila immigrans, D. Zusammenfassung II phalerata, andD. subobscura. Journal of chemical ecology 1996; 22(10): 1835-1844. Justus KA, Carde RT, French AS. Dynamic properties of antennal responses to pheromone in two moth species. J Neurophysiol 2005; 93(4): 2233-9. Juusola M, French AS. The efficiency of sensory information coding by mechanoreceptor neurons. Neuron 1997; 18(6): 959-68. Juusola M, Niven JE, French AS. Shaker K+ channels contribute early nonlinear amplification to the light response in Drosophila photoreceptors. J Neurophysiol 2003; 90(3): 2014-21. Mafra-Neto A, Cardé RT. Influence of plume structure and pheromone concentration on upwind flight of Cadra cautella males. Physiol Entomol 1995; 20: 117-133. Murlis J, Elkinton JS, Cardé RT. Odor plumes and how insects use them. J Comp Physiol A 1992; 189: 221–230. Nakagawa T, Vosshall LB. Controversy and consensus: noncanonical signaling mechanisms in the insect olfactory system. Curr Opin Neurobiol 2009; 19(3): 284-92. Sato K, Pellegrino M, Nakagawa T, Nakagawa T, Vosshall LB, Touhara K. Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 2008; 452(7190): 1002-6. Schuckel J, French AS. A digital sequence method of dynamic olfactory characterization. J Neurosci Methods 2008; 171(1): 98-103. Stensmyr MC, Giordano E, Balloi A, Angioy A, Hansson BS. Novel natural ligands for Drosophila olfactory receptor neurones. J Exp Biol 2003; 206(Pt 4): 715-24. Vetter RS, Sage AE, Justus KA, Carde RT, Galizia CG. Temporal integrity of an airborne odor stimulus is greatly affected by physical aspects of the odor delivery system. Chem Senses 2006; 31(4): 359-69. Vickers NJ, Christensen TA, Baker TC, Hildebrand JG. Odour-plume dynamics influence the brain's olfactory code. Nature 2001; 410(6827): 466-70. Wicher D, Schafer R, Bauernfeind R, Stensmyr MC, Heller R, Heinemann SH, Hansson BS. Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 2008; 452(7190): 1007-11. Willis M, Baker T. Effects of intermittent and continuous pheromone stimulation on the flight behaviour of the oriental fruit moth, Grapholita molesta. Physiological Entomology 1984; 9: 341-358. 15 Introduction Introduction Introduction The world comprises an abundance of odorants in space and time, creating a physical, and chemical substances, and range of chemical concentrations and structures with a similarly wide range of structures such as filaments and plumes. properties. For animals, their sensory Animals detect varying concentrations and systems are the key to creating a valid durations of odors while encountering or conception of the external world. Any following property of the external world that an Successful navigation depends crucially on animal can perceive and possibly measure when, where, and how these chemical may also be used as a directional guiding cues are encountered and processed. cue to orient the animal and navigate in its environment. The number of possible chemical cues that animals can perceive is unknown. In addition to various inorganic odor sources, almost every organism emits a range of odors. The sense of smell allows animals to use these chemical cues to interact with their environment in order to locate food sources, avoid harmful such turbulent structures. The fruit fly, Drosophila melanogaster, provides a useful and established model animal that uses odor as a major sensory input to its behavior. The primary aim of this thesis was to investigate the dynamic responses of the Drosophila antenna and its olfactory receptors to rapidly changing odor concentrations in time. environments, find mating partners, and perform numerous other behaviors. Chemical cues may be pheromones that play different roles in the interactions between members of the same species, or they are more general odors like food odors. For example, fruit flies are strongly attracted to the smell of vinegar or fermenting fruit and male moths are highly sensitive to the pheromone signal emitted by female moths. Movements of the air influence the distribution of The antennal olfactory system Fruit flies smell with their antennae and maxillary pulps. I focused my work on the antenna. Each antenna comprises three segments, two basal segments, the scapus and pedicellus, and a third distal segment, the flagellum. The antenna surface is covered with specialized sensory hairs, known as sensilla (Fig 1). All about 410 olfactory sensilla of the antenna are 17 Introduction located on sensillum the third segment. Each contains olfactory sensory al. 1999). Trichoid sensilla are sensitive to pheromones, coeloconic sensilla are neurons (OSNs). In turn a given OSN has sensitive to food odors, water vapor, defined molecules ammonia, and a breakdown product of (ORs) in its cell membrane. Olfactory amino acids: putrescine. Basiconic sensilla sensilla fall into three major classes that are sensitive to food odors and CO2. The differ in size, morphology, and their different types of sensilla are innervated distribution patterns on the antenna: by characteristic sets of olfactory receptor trichoid, coeloconic and basiconic sensilla neurons and hence a characteristic set of (Venkatesh and Singh 1984; Shanbhag et ORs (Fig. 1). olfactory receptor al. 1999). These distribution patterns are highly conserved. The three major types of sensilla are further divided into subtypes: three different subtypes of trichoid sensilla (antennal trichoid 1-3), three different large basiconic sensilla (antennal basiconic 1-3), seven thin and small basiconic sensilla (antennal basiconic 4-10), and the four types of coeloconic sensilla (antennal coeloconic 14). Within a given sensillum the OSNs are simply differentiated as neuron A and B, and continuative C, D, if they contain more than two OSNs. In an electrophysiological recording the different OSNs can be distinguished according to Figure 1: OSN classes in large basiconic sensilla. Or genes expressed in each OSN class are indicated. All are Or genes except Gr10a and Gr21a. ab: antennal basiconic; Gr: gustatory receptor; OSN: Olfactory sensory neuron; Or: Olfactory receptor. (Couto et al. 2005, modified). their different spike heights. The neuron with the larger spike amplitudes is referred to as neuron A, the neuron with the next smaller amplitudes as neuron B and so forth (deBruyne et al. 2001). A given stimulus activates a distinct subset of OSNs that converge on defined glomeruli in the antennal lobes of the brain (Vosshall et al. 2000; Gao et In the fruit fly the different classes of al. 2000), which are the primary odor hairs are sensitive to different types of processing centers of the insect brain, substances (Stocker 1994; Shanbhag et comparable to the olfactory bulb in Introduction vertebrates (Hildebrand 1995; Hildebrand and Shepherd 1997). Second order neurons which innervate the glomeruli project to higher brain centers, such as the lateral horn or the mushroom body calyx (Stocker 1994). Sensillum structure Most of the olfactory sensilla house two OSNs, some contain only one, but others up to four (de Bruyne et al. 1999, 2001). The bipolar OSNs extend their dendrites into the sensillum lymph of the sensory hair where they interact with odors (Fig. 2). At the other pole the neurons Figure 2. Cartoon of a basiconic sensillum containing two olfactory neurons (OSN) and their supporting cells: the thecogen (Th), trichogen (Tr), and tormogen cells (To). (E) epidermal cell, (ly) lymph space (Park 2002, modified). project axons to the olfactory glomeruli. The identity, intensity and the temporal Olfactory receptors profile of an olfactory stimulus are all represented in the activities of those The D. melanogaster odorant receptor OSNs. There are approximately about family is encoded by 60 genes that 1200 OSNs in each antenna (Stocker produce 2001). In insects OSNs are surrounded by alternatively spliced (Clyne et al. 1999; thecogen, tormogen, and trichogen cells Vosshall et al. 1999; Couto et al. 2005). (Sanes et al. 1976; Keil 1989; Shanbhag Individual ORs are expressed in different et al. 2000), sometimes called supporting subsets of OSNs (Tab. 1). Each OR or auxiliary cells, which secrete sensillum exhibits an individual receptive range lymph and keep each sensillum electrically when stimulated with a wide range of insulated from its neighbor (Vosshall et al. odors. These ranges vary from narrowly 2007). Odorants are thought to enter the tuned, where the receptor is responsive to sensillum lymph of a hair via pores in the just a few odors, to broadly tuned where cuticle (Keil 1982; Steinbrecht et al. 1997; the receptor responds to many different Rutzler et al. 2005). odors. 62 ORs, two genes are 19 Introduction Table 1: Molecular and functional organisation of D. melanogaster antennal receptors. OR: olfactory receptors; OSN: olfactory sensory neuron; +: excitatory; (-): inhibitory; *:no data available (Laissue and Vosshall 2008, modified). OR Or Or Gr Or Gr Or Or Or OSN 7a 9a 10a 10a 21a 22a 22b 33b ab ab ab ab ab ab ab ab ab Or 42b ab Or 43b ab Or 47a ab Or 49a ab Or 49b ab Or 56a ab Or 59b ab Or 67a ab Or 67b ab Or 67c ab Or 69aA ab Or 69aB ab Or 82a ab Or 85a ab 4A 8 1D 1D 1C 3A 3A 5B 2B 1 8A 5B 10 6B 4B 2A 10 9 7 9 9 5A 2B odor evoking responses (of 110 tested) + (-) strongest ligand 19 (30) E2-hexenal 21 (0) 2-pentanol * * * 9 (27) ethyl benzoate * * carbon dioxide 29 (0) methyl hexanoate * * * 0 (6) no strong ligand * 14 11 * 3 * 6 31 * 8 * * 1 4 * (0) (0) * (19) * (0) (6) * (9) * * (5) (31) Or 85b ab 3B 22 (1) Or Or Or Or ab 10 ab 1 ab 7A ab6Bx 0 (4) * * 21 (8) * * 85f 92a 98a 98b * ethyl butyrate propyl acetate * 2-methylphenol * methyl acetate phenylethyl alcohol * ethyl lactate * * geranyl acetate ethyl3-hydroxybutyrate 6-methyl-5hepten-2-one no strong ligand * ethyl benzoate * determines the receptive range of the OSN (Sato and Touhara 2009). In contrast to the “one neuron, one receptor” rule that is valid in the mouse olfactory system (Serizawa et al. 2003) the rule is not tenable in the fruit fly (Sato et al. 2008). One of the ORs, Or83b, is expressed in all OSNs that are housed in basiconic and trichoid sensilla (Vosshall et al. 1999; Vosshall and Stocker 2007). In addition Or83b is also expressed in the OSNs of coeloconic sensilla that express OR35a (Yao et al. 2005). In some cases two or even three ORs are co- expressed alongside with Or83b (Vosshall and Stocker 2007). Both vertebrate and fly olfactory receptor genes encode receptor proteins with seven transmembrane spanning domains. Vertebrate ORs are members of the G-protein-coupled receptor super family. For the two fruit fly ORs (OR83b and OR22a) it was shown, and for the rest of the ORs assumed, that their topology is inverted compared to this family (Lundin et al. 2007; Smart et al. 2008) with their N-termini located in the cytoplasm and their C-termini located extracellularly (Benton 2006a, 2006b, 2009a). In addition, the sensitivity to each The ORs function as heteromeric individual odor can vary over a wide complexes of an odor binding OR and the concentration 2003, co receptor OR83b that possibly form an The odor gated ion channel. ORs that detect combination of co-expressed ORs, which (lipid-derived) pheromones, additionally to is always the same for a given OSN, OR83b, require the function of a sensory Hallem and range (Robertson Carlson 2006). Introduction neuron membrane protein (SNMP). SNMPs Using are related to the CD36 receptor family, stimulation, the responses of different ORs lipid-binding cell surface receptors that act to a panel of ~100 diverse odors were in immune recognition in other organisms tested (Hallem and Carlson 2006). Almost including mammals (Benton et al. 2007, all of these odors (97%) elicited either an 2009a, 2009b). excitatory or an inhibitory response from With the exception of the OR35a/OR83b– at least one of the tested receptors. The expressing neurons, OSNs in coeloconic existence sensilla do not express OR83b or the single of pulse two method response for modes, excitation and inhibition, among many members of the OR or gustatory receptor receptors (GR) gene families. Benton et al. (2009c) available to the receptor. Inhibition may characterized of also function in suppressing noise in (alongside certain channels that signal the presence an chemoreceptive additional receptors group expands they called ionotropic receptors (IRs). IRs importance. are ionotropic glutamate receptor (iGluR) trichoid related receptors and are expressed in pheromones sensory neurons in antennal coeloconic and Carlson 2007) but inhibited by fruit sensilla. electrical odors (Hallem et al. 2004). Both excitatory properties of insect olfactory receptors, and inhibitory responses have also been previous studies concentrated on stimulus observed presentations that were not representative cockroach some sensilla containing two of the rapid odor fluctuations encountered neurons responded with both excitation in natural environments, mostly because and inhibition to lemon oil (Tichy et al. of the complicated nature of the stimulus. 2005). Also in Manduca sexta a few Dynamic insect olfactory sensilla responded both ways to has primarily a range of odors (Shields and Hildebrand maximum frequency olfactory characterization receptors concentrated discrimination on using of pulsatile For sensilla in of space of characterize odorants coding olfactory and gustatory receptors) which To specific the Drosophila example were biological excited by (van der Goes van Naters other insects. In the 2001). stimuli Receptors must be able to detect stimuli (Barrozo and Kaissling 2002; Bau et al. that persist in time while at the same time 2005), thus much of what is known is retaining the ability to respond to further derived from studies that used steady changes. Adaptation is known as the exposure to single odors. reversible decrease in sensitivity of a 21 Introduction sensory cell after prolonged or repeated temporal kinetic patterns differ for odor stimulation (Stengl et al. 1992). When an stimuli of different quality and quantity odor stimulus is presented for a longer across the receptor repertoire. In some duration of time, there is a decline in the receptors phasic responses terminated sensory response, despite the presence of quickly the odor, an effect that was called continued well beyond the end of the odor desensitization. Zufall and Leinders-Zufall stimulus. In five tested receptors the (2000) showed evidence that there are duration of the odor pulse were encoded. three different forms of odor adaptation More present Short-term prolonged responses (Hallem and Carlson and 2006). in adaptation, single OSNs. desensitization, long in others prolonged Possible tonic pulses responses evoked more mechanisms for adapting adaptation in Drosophila olfactory neurons responses that detect changes of an odor could include time-dependent gating of stimulus are called phasic responses. odorant receptors, intracellular signaling, Where a receptor fires APs throughout or or adaptation of action potential encoding. lasting adaptation. Quickly continues firing even after the duration of Olfactory transduction the odor stimulus, it is called tonic response (Randall 1997). Cockroach olfactory receptors respond with lower Olfactory transduction is the creation of sensitivity to slow changes compared to an electrical signal in the membrane of a fast changes of odor concentration (Tichy sensory cell in response to the arrival of et al. 2005). Little is known about the an odorant molecule. The nomenclature adaptation properties in D. melanogaster varies OSNs. DeBruyne et al. (2001) observed transduction may refer to an initial graded both fast off responses and slow off change in membrane conductance or to responses in two OSNs housed in the the complete process leading to action same sensillum stimulated with the same potentials in the axon. Nevertheless, the odor. two crucial initial step in olfactory transduction may is always binding of the odor to an They different speculated response that the modes in the literature, so that simultaneously present a phasic and tonic olfactory receptor (OR). representation of selected features of the In odor environment. Studies with a larger Caenorhabditis elegans, binding of an number of different odors revealed that appropriate ligand to a G-protein-coupled vertebrates and the nematode Introduction receptor changes the conformation of the 2008). receptor of different G proteins or G protein subunits second were shown (Boto et al. 2010; Chatterjee messengers (Ha and Smith 2008). In et al. 2009; Laue et al 1997; Schmidt et insects al.1998; Talluri et al. 1995; Tanoue et al. and G-proteins leads and the to activation generation mechanisms of of signal transduction are under debate. There are In addition the presence of 2008) similarities It is thought that OR83b combines with between the fruit fly’s ORs and other G- other ORs to function as heteromeric protein-coupled receptors. complexes, but it remains unclear whether However, mutations affecting different these heteromers operate independently second messenger pathways (cAMP, IP3) as direct ligand gated ion channels, or if lead to a change in olfactory perception they are also G-protein activated (Fig. 3). only moderate sequence (Wicher et al. 2008, 2009; Kain et al. Figure 3: Models of olfactory transduction. (a) Direct ligand‐gated model (Sato et al. 2008). Direct ligand gated nonselective cation channels are activated rapidly by stimulation with very high concentrations of odor in the absence of G‐protein signaling. (b) G‐protein‐coupled model (Wicher et al. 2008). In this model ORx is a G‐ protein‐coupled receptor and OR83b is a cyclic nucleotide gated ion channel. Odor activation leads to a faster ionotropic pathway and a slow pathway that involves G‐protein‐coupling of ORx, leading to the production of intracellular cAMP, which activates OR83b. Abbreviations: AC, adenylate cyclase; Gs, stimulatory G‐protein; cAMP, cyclic adenosine monophosphate; OR, olfactory receptor (Nakagawa 2009, modified) Introduction A direct ion channel gated (ionotropic) system (Touhara and Vosshall 2009). pathway has the advantage of a very fast Chemical molecules become airborne as reaction, while dependent provides a a second messenger they are released from their solid or liquid (metabotropic) pathway structures. In a stable atmosphere without higher sensitivity to the turbulence an odor concentration gradient system. forms around the source and could lead Another important feature of odorant animals to the odor source by simply receptors are a set of proteins in the following the gradient. In the natural receptor lymph that are essential for environment structurally complex odor odorant-receptor binding. Relatively little plumes are created as the wind takes is known about the detailed functional volatile odor molecules away from their properties sources (Murlis et al. 1992). These time of these odorant binding proteins in OSNs that detect fruit odors. dependent They insects in finding odor sources. are probably essential for transferring odorants across the properties are crucial for hydrophobic to hydrophilic interface and have been hypothesized to play important roles in olfactory neuron dynamics (Kaissling 2009). In OSNs that detect pheromone (11-cis vaccenyl acetate) the neurons are not directly activated by the volatile ligand, but instead are activated by the pheromone- pheromone binding protein complex. A mutation in the lush gene that Figure 4: Paired laser -induced fluorescence of an odor jet. Image is false colored so that concentration increases from blue (lowest) to red (highest) (Weissburg 2000, modified). leads to a lack of the odorant binding protein LUSH the flies are behaviorally and electrically unresponsive to the pheromone (Xu et al. 2005). Inside an odor plume, filaments of low and high concentrations, and all ranges in between, intersperse with areas in the plume where odor is totally absent (Vetter et al. 2006) (Fig. 4). Odor plumes In addition to these biophysical properties An odor is a chemical compound that described animals can perceive with their olfactory influences the spatiotemporal sequences above, the insect itself Introduction of odors that are detected by the OSNs. In physiological moth it was found that the wing beat aspect of the odor plume and only frequencies are also playing a role in odor characterize the responses as functions of detection. Each down stroke of the wings odor accelerates the airflow over the antennae commonly used approach to stimulating and olfactory receptors is to deliver short odor therefore the sensilla as well (Tripathy et al. 2010). experiments identity and ignore this concentration. A pulses and observe the responses during Hence, in order to find odor sources animals need to be able follow these spatiotemporal sequences of low and high odor concentration. the stimulus and for a short time afterwards. Because of the difference between this type of stimulus and a natural odor stimulus, which may include rich spatiotemporal information, it is very likely that such experiments do not reveal the whole dynamic repertoire of OSN Odor stimulation responses. Some insects are known to rely on the The time dependent properties of odor plumes concentration has meant that even those to find the odor source. For example, male studies that attempt to include dynamic moths trace information have usually relied on brief leading to a female will only follow a pulsatile stimuli. Time duration of those plume that contains rapid concentration stimuli ranged from 100ms to 5 sec changes (Justus et al. 2005; Vickers et al. (Hallem and Carlson 2006). However, 2001; Vickers 2006). Other examples are recent blood feeding insects that follow CO2 measurements plumes to find mammalian hosts. The resultant concentration changes at the structure of an odor plume influences the animal may be very different from those up wind flight behavior of mosquitoes, that were anticipated (Vetter et al. 2006). following a pheromone and some haematophagous insects only followed an odor plume when the CO2 pulsations were similar to those of the human breathing range (Geier et al. 1999; difficulty of advances have measuring in gas shown odor phase that the In this work, recent advances in gas phase instrumentation (photo ionization detector: PID) were used to stimulate Barrozo and Lazzari 2006). olfactory receptive organs with rapidly Creating such changing, but as accurately as possible complex spatiotemporal stimuli is so sufficiently difficult that many measured, odor concentrations to 25 Introduction investigate odor responses to stimuli with an unknown input-output system (see strongly yellow highlight in Fig. 5). time dependent properties. Stimuli measured by the PID ranged between 0 and 330 Hz. Analysis methodology A technique called linear system analysis (LSA) provides an established general method of properties measuring of the dynamic input–output systems (Bendat and Piersol 1980). LSA has been used in previous studies to investigate dynamic properties of different types of receptors e.g. mechano-, photo- and chemoreceptors (Juusola and French 1997; Justus et al. 2005). In this work LSA was used to examine the dynamic responses Drosophila melanogaster of antenna and olfactory sensilla, respectively. Figure 5: Visualization of steps necessary to calculate frequency response and view them in a bode plot. When a linear system receives a sinusoidal input it produces a sinusoidal output of the same frequency, but possibly differing in amplitude (Gain) and time shift (Phase). Any linear completely dynamic system characterized can by be the measurement of these amplitude and phase changes, known as its frequency response function. Frequency response analysis (FRA) is a technique for characterizing the dynamic properties of The exact physical nature of the system is not important, only that its input and output signals can be represented as single-valued functions of time. Examples would be the height of water in a bathtub (the output signal) versus the rate of water flowing into the bathtub (the input signal), or the electrical charge on a capacitor (output signal) as a function of net current flowing into and out of it in an electronic circuit (the input signal). In a Introduction manner that depends not only on the unknown system can simply be done by input (which can also vary with time) but subjecting it to a series of sinusoidal on the properties of the physical system inputs at different frequencies, measuring (e.g. shape of the bathtub) and the the resultant outputs and calculating the memory of the system (e.g. how fast change in amplitude and time shift versus water was flowing into the bathtub at all frequency. times in the past). The simplest and most system with “white noise” (a random common response unpredictable signal containing sinusoids analysis assumes that the system is linear of all possible frequencies within a certain and frequency type stationary. of frequency Linearity means that Stimulating band) an allows unknown the entire doubling the input signal will double the frequency response to be measured from output signal. Stationary means that the a properties of the system (e.g. shape of sinusoidal frequencies in the input and the bath) do not change with time. output signals are then separated by the Almost any single valued function of time (such as the height of water in the bath versus time) can be represented by the single experiment. The different Fourier transform and the changes from input to output compared as if they had each been used separately. sum of a set of sinusoidal functions of An example for a low-pass frequency time (the Fourier theory). A sinusoid in response would be a bath, where rapid the input signal will always produce a sinusoidal sinusoid of the same frequency in the flowing into the bath (e.g. 100 cycles per output, although the amplitude of the second) would make very small changes output sinusoid and the times of its peaks in the height of the bath water versus and troughs (the phase) relative to the time. Slow fluctuations (e.g. 0.001 cycles input will usually be different. Since any per second) would produce large changes signal can be considered to be a sum of in the height versus time. The bath different sinusoids, and any sinusoidal frequency input produces a sinusoidal output, it output follows each frequency response is a representation of in the system's response to a sinusoidal amplitude and phase will allow to predict input at different frequencies. The output the output signal for any input signal. of the system to the input is a sinusoid of Measuring the frequency response of an the same frequency but possibly with a sinusoidal that measuring frequency is how affected as fluctuations response the of giving frequency the a water smaller rises. The 27 Introduction different magnitude and phase. One way over a range of frequencies and then to view the frequency response of a becomes system is via a Bode plot (Fig. 5). frequencies. A band pass filter response In the present work the unknown system was the fly. How does the antenna or single sensilla respond to odor stimulation at different frequencies? less sensitive at higher indicates that the sensitivity of the system peaks at certain frequencies and is lower at lower and higher frequencies. The filter function time constants indicate at which frequencies the changes in the rising or To investigate this question random noise falling of the response occurs. The lower was used as the input signal and the part of the Bode plot shows the phase recorded biological signal (EAGs or action shift (time shift) between input (stimulus) potentials, respectively) as the output and the output (action potential) signal. signal. To potentials avoid were aliasing digitally the action filtered by Aims of the thesis convolution with a sinc function (sin(x)/x) (French and Holden 1971). To limit the bandwidth, the signal was down sampled to 100 Hz. The sampled data (tracer gas concentration as input and action potentials as output) were transferred from the time domain into the frequency domain via the Fast Fourier transform (FFT) (Cooley and Tukey 1965) into segments of sample pairs. Response functions between the PID voltage and action potentials were calculated by direct spectral estimation and plotted as Bode plots of phase and log gain versus log It is clear that temporal changes in odor concentration are vitally important to many animals, but this raises many questions. How are such temporal changes detected? How does temporal sensitivity vary amongst the large number of odors that an animal may detect? Which stages of the cascade are odor detection time-dependent? Which stages limit the temporal changes that can be detected? How are dynamic signals coded into action potentials and processed in higher centers? frequency (Bendat and Piersol 1980). The upper part of the Bode plot shows the Answering these relation of the output to the input signal. accurate methods It shows how strong the response is at dynamically changing spatiotemporal odor different frequencies. A response that is stimuli and quantitatively characterizing fitted by a low the resultant neural responses. My thesis pass filter function indicates that its power remains the same describes how an questions of accurate requires delivering dynamic Introduction odorant stimulation and analysis system was developed and tested in the fruit fly. Then the system was used and to provide an initial characterization of primary odorant receptor cells of D. melanogaster at the single neuron level. These are early, but crucial, steps in answering some of the important questions about kinetics in insect odor detection posed above. Literature Barrozo RB, Kaissling KE. Repetitive stimulation of olfactory receptor cells in female silkmoths Bombyx mori L. J Insect Physiol 2002; 48(8): 825-834. Barrozo RB, Lazzari CR. Orientation response of haematophagous bugs to CO2: the effect of the temporal structure of the stimulus. J Comp Physiol A 2006;192: 827-31. Bau J, Justus KA, Loudon C, Carde RT. Electroantennographic resolution of pulsed pheromone plumes in two species of moths with bipectinate antennae. Chem Senses 2005; 30: 771-80. Bendat JS, Piersol AG. Engineering applications of correlation and spectral analysis. New York: John Wiley, 1980; 1–302. Benton R, Sachse S, Michnick SW, Vosshall LB. Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol 2006a; 4(2): 20. Benton R. On the ORigin of smell: odorant receptors in insects. Cell Mol Life Sci 2006b; 63(14): 1579-85. Benton R, Vannice KS, Vosshall LB. An essential role for a CD36-related receptor in pheromone detection in Drosophila. Nature 2007; 450(7167): 289-93. Benton R. Molecular basis of odor detection in insects. Ann NY Acad Sci 2009a; 1170: 478-81. Benton R. Eppendorf winner. Evolution and revolution in odor detection. Science 2009b; 326(5951): 382-3. Benton R, Vannice KS, Gomez-Diaz C, Vosshall LB. Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell 2009c; 136(1): 149-62. Boto T, Gomez-Diaz C, and Alcorta E. Epression analysis of the 3 G-protein subunits, Gα, Gβ, Gγ, in the olfactory receptor organs of adult Drosophila melanogaster. Chem Senses 2010; 35, 183-193. Chatterjee A, Roman G, and Hardin PE. Go contributes to olfactory reception in Drosophila melanogaster. BMC Physiol 2009; 9(22): 1-7. Clyne PJ, Warr CG, Freeman MR, Lessing D, Kim J, Carlson JR. A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 1999; 22(2): 327-38. Cooley JW, Tukey JW. An algorithm for the machine calculation of complex Fourier series. Mathematics of computation JSTOR 1965; 19(90): 297-301. Couto A, Alenius M, Dickson BJ. Molecular, anatomical, and functional Drosophila organization of the olfactory system. Curr Biol 2005; 15(17): 1535-47. De Bruyne M, Clyne PJ, Carlson JR. Odor coding in a model olfactory organ: the Drosophila maxillary palp. J Neurosci 1999; 19(11): 4520-32. De Bruyne M, Foster K, Carlson JR. Odor coding in the Drosophila antenna. Neuron 2001; 30(2): 537-52. French AS, Holden AV. Alias-free sampling of neuronal spike trains. Kybernetik 1971; 8(5): 165-71. Gao Q, Yuan B, Chess A. Convergent projections of Drosophila olfactory neurons to specific glomeruli in the antennal lobe. Nat Neurosci 2000; 3(8): 780-5. Geier M, Bosch OJ, Boeckh J. Influence of odour plume structure on upwind flight of mosquitoes towards hosts. J Exp Biol 1999; 202 (Pt 12): 1639-48. 29 Introduction Ha TS, Smith DP. Insect odorant receptors: channeling scent. Cell 2008; 133(5): 761-3. Hallem EA, Ho MG, Carlson JR. The molecular basis of odor coding in the Drosophila antenna. Cell 2004; 117(7): 965-79. Hallem EA, Carlson JR. Coding of odors by a receptor repertoire. Cell 2006; 125(1): 143-60. Hildebrand JG. Analysis of chemical signals by nervous systems. Proc Natl Acad Sci U S A. 1995; 92:67-74. Hildebrand JG, Shepherd GM. Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu Rev Neurosci 1997; 20: 595-631. Justus KA, Carde RT, French AS. Dynamic properties of antennal responses to pheromone in two moth species. J Neurophysiol 2005; 93(4): 2233-9. Juusola M, French AS. The efficiency of sensory information coding by mechanoreceptor neurons. Neuron 1997; 18(6): 959-68. Kain P, Chandrashekaran S, Rodrigues V, and Hasan G. Drosophila mutants in phospholipid signaling have reduced olfactory responses as adults and larvae. J Neurogenet 2008; 23(3): 303-312. Kaissling K. Olfactory perireceptor and receptor events in moths: a kinetic model revised. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2009; 195(10): 895-922. Keil TA. Contacts of pore tubules and sensory dendrites in antennal chemosensilla of a silkmoth: demonstration of a possible pathway for olfactory molecules. Tissue Cell 1982; 14(3): 451-62. Keil TA. Fine structure of the pheromonesensitive sensilla on the antenna of the hawkmoth, Manduca sexta. Tissue Cell 1989; 21(1): 139-51. Laue M, Maida R, and Redkozubov A. Gprotein activation, identification and immunolocalization in pheromonesensitive sensilla trichoidea of moths. Cell Tissue Res. 1997; 288: 149-158. Laissue PP and Vosshall LB. The Olfactory Sensory Map in Drosophila. Adv Exp Med Biol 2008; 628: 102-114. Lundin C, Käll L, Kreher SA, Kappd K, Sonnhammerb EL, Carlson JR, von Heijnea Membrane G, Nilssona IM. topology of the Drosophila OR83b odorant receptor. FEBS Lett2007; 581: 5601–4. Murlis J, Elkinton JS, Cardé RT. Odor plumes and how insects use them. Annual Review of Entomology 1992; 37: 505-532. Nakagawa T, Vosshall LB. Controversy and consensus: noncanonical signaling mechanisms in the insect olfactory system. Curr Opin Neurobiol 2009; 19(3): 284-92. Park S, Shanbhag SR, Dubin AE, de Bruyne M, Wang Q, Yu P, Shimoni N, D'Mello S, Carlson JR, Harris GL, Steinbrecht RA, Pikielny CW. Inactivation of olfactory sensilla of a single morphological type differentially affects the response odors. of Drosophila to J Neurobiol 2002; 51(3): 248-60. Randall D, Burggren W, French K. Eckert Animal Physiology. Mechanisms and Adaptations, 4th Ed. WH Freeman and Company, New York. Cap_tulos, 1997. Robertson HM, Warr CG, Carlson JR. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc Natl Acad Sci U S A 2003; 100 Suppl 2: 14537-42. Rutzler M, Zwiebel LJ. Molecular biology of insect olfaction: recent progress and conceptual models. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2005; 191(9): 777-90. Sanes JR, Hildebrand JG. Structure and development of antennae in a moth, Manduca sexta* 1. Developmental Biology 1976; 51(2): 282-299. Sato K, Pellegrino M, Nakagawa T, Vosshall LB, Touhara K. Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 2008; 452(7190): 1002-6. Sato K, Touhara K. Insect olfaction: receptors, signal transduction, and behavior. Results Probl Cell Differ 2009; 47: 121-38. Schmidt CJ, Garen-Fazio, S, Chow YK, and Neer EJ. Neuronal expression of Drosophila a newly identified melanogaster G protein alpha o subunit. Cell Regul 1998; 1(1): 125134. Serizawa S, Miyamichi K, Sakano H. Introduction Negative feedback regulation ensures the one neuron-one receptor rule in the mouse olfactory system. Chem Senses 2003; 30 Suppl 1: i99-100. Shanbhag SR, Muller B, Steinbrecht RA. Atlas of olfactory organs of Drosophila melanogaster:: 1. Types, external organization, innervation and distribution of olfactory sensilla. International Journal of Insect Morphology and Embryology 1999; 28: 377-397. Shanbhag SR, Muller B, Steinbrecht RA. Atlas of olfactory organs of Drosophila melanogaster 2. Internal organization and cellular architecture of olfactory sensilla. Arthropod Struct Dev 2000; 29(3): 211-29. Shields VDC, Hildebrand JG. Recent advances in insect olfaction specifically regarding the morphology and sensory physiology of antennal sensilla of the female sphinx moth Manduca sexta. Microscopy research and technique 2001; 55(5): 307-329. Smart R, Smart R, Kiely A, Vargas MBE, Carraher C, Kralicek AV, Christie DL, Chen C, Newcomb RD, Warr CG. Drosophila odorant receptors are novel seven transmembrane domain proteins that can signal independently of heterotrimeric G proteins. Insect Biochem Mol Biol. 2008; 38: 770–780. Steinbrecht RA. Pore structures in insect olfactory sensilla: a review of data and concepts. International Journal of Insect Morphology and Embryology 1997; 26(3-4): 229-245. Stengl M, Hatt H, Breer H. Peripheral processes in insect olfaction. Annu Rev Physiol 1992; 54: 665-81. Stocker RF. The organization of the chemosensory system in Drosophila melanogaster: a review. Cell Tissue Res 1994; 275(1): 3-26. Stocker RF. Drosophila as a focus in olfactory research: mapping of olfactory sensilla by fine structure, odor specificity, odorant receptor expression, and central connectivity. Microsc Res Tech 2001; 55(5): 284-96. Talluri S, Bhatt A, and Smith DP. Identification of a Drosophila G protein alpha subunit (dGq alpha-3) expressed in chemosensory cells and central neurons. PNAS USA 1995; 92: 1147511479. Tanoue S, Krishnan P, Chatterjee A, and Hardin PE. G protein-coupled receptor kinase 2 is required for rhythmic olfactory responses in Drosophila. Curr. Biol. 2008; 18, 787– 794. Tichy H, Hinterwirth A, Gingl E. Olfactory receptors on the cockroach antenna signal odour ON and odour OFF by excitation. Eur J Neurosci 2005; 22(12): 3147-60. Touhara K, Vosshall LB. Sensing odorants and pheromones with chemosensory receptors. Annu Rev Physiol 2009; 71: 307-32. Tripathy S, Peters OJ, Staudacher EM, Kalwar FR, Hatfield MN, Daly KC. Odors pulsed at wing beat frequencies are tracked by primary olfactory networks and enhance odor detection. Front Cell Neurosci 2010; 4: ahead of print. Van der Goes van Naters W, Carlson JR. Receptors and neurons for fly odors in Drosophila. Curr Biol 2007; 17(7): 606-12. Venkatesh S, Singh N, et al. Sensilla on the third antennal segment of Drosophila melanogaster Meigen (Diptera: Drosophilidae). International Journal of Insect Morphology and Embryology 1984; 13(1): 51-63. Vetter RS, Sage AE, Justus KA, Carde RT, Galizia CG. Temporal integrity of an airborne odor stimulus is greatly affected by physical aspects of the odor delivery system. Chem Senses 2006; 31(4): 359-69. Vickers NJ, Christensen TA, Baker TC, Hildebrand JG. Odour-plume dynamics influence the brain's olfactory code. Nature 2001; 410(6827): 466-70. Vickers NJ. Winging it: moth flight behavior and responses of olfactory neurons are shaped by pheromone plume dynamics. Chem Senses 2006; 31(2): 155-66. Vosshall LB, Amrein H, Morozov PS, Rzhetsky A, Axel R. A spatial map of olfactory receptor expression in the 31 Introduction Drosophila antenna. Cell 1999; 96(5): 725-36. Vosshall LB, Wong AM, Axel R. An olfactory sensory map in the fly brain. Cell 2000; 102(2): 147-59. Vosshall LB, Stocker RF. Molecular architecture of smell and taste in 2007. Drosophila. Weissburg MJ. The fluid dynamical context of chemosensory behavior. Biol Bull 2000; 198(2): 188-202. Wicher D, Schafer R, Bauernfeind R, Stensmyr MC, Heller R, Heinemann SH, Hansson BS. Drosophila odorant receptors are both ligand-gated and cyclic-nucleotideactivated cation channels. Nature 2008; 452(7190): 1007-11. Wicher D, Schafer R, Bauernfeind R, Stensmyr MC, Heller R, Heinemann SH, Hansson BS. Or83b--receptor or ion channel? Ann NY Acad Sci 2009; 1170: 164-7. Xu P, Atkinson R, Jones DNM, Smith DP. Drosophila OBP LUSH is required for activity of pheromone-sensitive neurons. Neuron 2005; 45(2): 193200. Yao CA, Ignell R, Carlson JR. Chemosensory coding by neurons in the coeloconic sensilla of the Drosophila antenna. 2005. Zufall F and Leinders-Zufall T. The Cellular and Molecular Basis of Odor Adaptation. Chem Senses 2000; 25: 473-481. Abbreviations Symbols and abbreviations Symbols: amplitude of frequency response α ω radial frequency τ time constant of filter function R information capacity ∆t time delay between input and output Abbreviations: ab antennal basiconic ac antennal coeloconic AC adenylate cyclase; at antennal trichoid cAMP cyclic adenosine monophosphate E epidermal cell EAG electroantennogram FFT Fast Fourier transform FRA Frequency response analysis Gr gustatory receptor gene Gr gustatory receptor gene iGluR ionotropic glutamate receptor IRs ionotropic receptors LSA linear system analysis LUSH odor binding protein called lush ly lymph space OR olfactory receptor OR olfactory receptor gene ORN olfactory receptor neuron (synonym for OSN) OSN olfactory sensory neuron (synonym for ORN) PID photoionization detector ppm parts per million SNMP sensory neuron membrane protein Th thecogen cell To tormogen cell Tr trichogen cell 33 Chapter I Dynamic properties of Drosophila olfactory electroantennograms Chapter I J Comp Physiol A (2008) 194:483–489 DOI 10.1007/s00359-008-0322-6 Chapter I ORIGINAL PAPER Dynamic properties of Drosophila olfactory electroantennograms Julia Schuckel Æ Shannon Meisner Æ Päivi H. Torkkeli Æ Andrew S. French Received: 3 December 2007 / Revised: 5 February 2008 / Accepted: 20 February 2008 / Published online: 5 March 2008 Ó Springer-Verlag 2008 Abstract Time-dependent properties of chemical signals are probably crucially important to many animals, but little is known about the dynamics of chemoreceptors. Behavioral evidence of dynamic sensitivity includes the control of moth flight by pheromone plume structure, and the ability of some blood-sucking insects to detect varying concentrations of carbon dioxide, possibly matched to host breathing rates. Measurement of chemoreceptor dynamics has been limited by the technical challenge of producing controlled, accurate modulation of olfactory and gustatory chemical concentrations over suitably wide ranges of amplitude and frequency. We used a new servo-controlled laminar flow system, combined with photoionization detection of surrogate tracer gas, to characterize electroantennograms (EAG) of Drosophila antennae during stimulation with fruit odorants or aggregation pheromone in air. Frequency response functions and coherence functions measured over a bandwidth of 0–100 Hz were well characterized by first-order low-pass linear filter functions. Filter time constant varied over almost a tenfold range, and was characteristic for each odorant, indicating that several dynamically different chemotransduction mechanisms are present. Pheromone response was delayed relative to fruit odors. Amplitude of response, and consequently signal-tonoise ratio, also varied consistently with different compounds. Accurate dynamic characterization promises to provide important new information about chemotransduction and odorant-stimulated behavior. J. Schuckel S. Meisner P. H. Torkkeli A. S. French (&) Department of Physiology and Biophysics, Dalhousie University, B3H 1X5 Halifax, NS, Canada e-mail: andrew.french@dal.ca Keywords Antenna Chemosensory Noise Odor Frequency response Abbreviations PID Photoionization detector EAG Electroantennogram ppm Parts per million OR Odorant receptor Introduction Time-dependent properties of chemoreception are crucially important for many functions, but poorly understood. For example, the flight path of a male moth is determined by the temporal-spatial structure of the female pheromone plume (Justus et al. 2002; Mafra-Neto and Cardé 1995; Willis and Baker 1984), and plume temporal structure signals distance to the source (Justus et al. 2002; Murlis et al. 1992). Neural substrates for decoding this information have been proposed in moth CNS (Vickers et al. 2001), but little is known about the dynamic responses of antennal sensory neurons that initially detect the odorant. Dynamic plume sensitivity also controls mosquito orientation to CO2 from mammalian hosts (Geier et al. 1999), and Triatoma infestans, a hematophagous insect, is selectively attracted to CO2 pulsations in the human breathing range (Barrozo and Lazzari 2006). Dynamic characterization has helped to identify functional components, and quantitative representation of information, in mechanoreceptors and photoreceptors (Juusola and French 1997; Juusola et al. 2003), but this approach has been very limited in chemoreceptors (Justus et al. 2005). The major experimental limitation to studying 37 Chapter I chemosensory dynamics is in controlling the concentration of chemical delivered to the sensory structure. A common method is to release short pulses of chemical into a stream of air or other fluid passing over the sensory organ (Barrozo and Kaissling 2002; Bau et al. 2002), but this limits stimulation to relatively low frequencies (typically below about 30 Hz), and concentration at the sensory receptor is difficult to estimate because of diffusion during transit from stimulator to preparation. In contrast, mechanical or light stimulation can be delivered at frequencies several orders of magnitude higher, their physical intensity at the sensory receptor can be measured accurately, and they can be delivered with a wide bandwidth of frequencies, allowing techniques such as direct spectral analysis (Bendat and Piersol 1980), nonlinear systems analysis (Marmarelis and Marmarelis 1978) and naturalistic stimulation (Karmeier et al. 2006). Wide bandwidth dynamic odorant stimulation was achieved by turbulent flow in a wind tunnel (Justus et al. 2005) combined with photoionization measurement of a surrogate tracer gas. This approach allowed both linear and nonlinear systems analysis of moth pheromone receptors at higher frequencies than achieved previously. However, turbulent stimulation does not allow accurate control of the amplitude and frequency ranges of the stimulus. Additionally, odorant concentration versus distance is unpredictable in turbulent flow, raising the possibility that concentration measured even a short distance from the sensory receptor may not accurately estimate the actual stimulus. Drosophila antennal olfactory neurons vary in the rate of decay of their responses to step odorant presentations, and this variation is related to the type of odorant receptor involved (Hallem et al. 2004). Defined wide bandwidth olfactory stimulation of Drosophila has recently been achieved using servo-controlled release of odorant and surrogate gas into a small laminar flow wind tunnel (French and Meisner 2007). Here, we used this system to record the first full frequency response measurements of Drosophila electroantennograms (EAG) to a series of fruit odors and to aggregation pheromone. Materials and methods Stimulation Olfactory stimulation was performed by a laminar air flow system (Fig. 1) whose operational parameters have been described before (French and Meisner 2007). Primary airflow was produced by a small fan (Proten DFC601512M, Cooler Guys, Kirkland, WA) at one end of a 90 mm square plexiglas box. The fan was driven by a 9 V DC power 123 484 supply. Air flowed through a honeycomb (30 mm long 9 5 mm pitch) to give laminar flow and then entered a circular plexiglas flow tube (22 mm internal diameter, 110 mm long). The fly was positioned at the far end of the flow tube, within 2–3 mm of the exit and 2–3 mm of the tube center line. Secondary flow from a cylinder of compressed air containing 1,000 ppm propylene tracer gas (BOC, Halifax, NS, Canada) was regulated to 20 kPa initial pressure. It flowed through an odorant cartridge made from the shaft of a 5 ml transfer pipet (Fisher Scientific, Ottawa, ON, Canada), containing a rectangular piece of filter paper Fig. 1 Drosophila antennal recording and stimulation system. Laminar air flow, created by a 60 9 25 mm computer fan pushing air through a 5 mm pitch honeycomb, flowed through a circular plexiglas tube 115 mm long and 22 mm internal diameter (flow tube). Odorant chemicals were introduced by air flowing over a rectangular piece of filter paper (45 9 15 mm) in a cartridge made from a 5 ml transfer pipet. The air source contained 1,000 ppm propylene as a tracer gas. Air with mixed odorant and propylene tracer flowed through the tip of a Pasteur pipet in the center of the flow tube, with the tip variably occluded by the flat surface of a 5 mm silicone elastomer bead, moved by a servo-controlled electromagnetic pusher. The fly was positioned in the center of the circular tube and 3 mm from its mouth. Tracer propylene was detected by a photoionization detector (PID), with the mouth of the aspirating needle (0.76 mm internal diameter) located about 1 mm above the fly Chapter I 485 (45 9 15 mm), into a Pasteur pipet whose tip was located in the center of the flow tube, and 10 mm from its origin. The tip of the pipet was variably occluded by a bead of silicone elastomer (Mastercraft tub and tile silicone sealant, Canadian Tire Corporation, Toronto, ON Canada), driven by a servo-controlled electromechanical stimulator. Odorant chemicals and mineral oil were purchased from Sigma (Oakville, ON, Canada). Odorants were mixed with mineral oil at 20% v/v and pheromone at 50%. Volumes of 50 ppm were loaded into separate cartridges for each mixture. Stimulus and response measurements Tracer gas concentration was measured by a miniature photoionization detector (mini-PID, Model 200A, Aurora Scientific Inc, Aurora, ON, Canada), whose needle inlet probe tip was located directly above and within 1 mm of the fly antenna. The PID had a frequency response of 0–330 Hz and a concentration range of 0.05–500 ppm propylene. The typical measurement range used here was 1–20 ppm. The PID needle probe was 57 mm long with an internal diameter of 0.76 mm, giving a volume of 0.0259 ml. PID pump speed was 660 ml/min giving a time delay of 2.35 ms. Primary air flow velocity was estimated from the flow tube dimensions and the delay between movements at the pipet tip and the resulting PID signal, after subtracting the PID needle delay, to be 2.37 m/s, giving a volume flow of 900 ml/s. Secondary airflow relative to primary airflow was estimated from the mean concentration of propylene at the PID to be 1:100, giving a secondary air flow rate of 9 ml/s. Flies (Drosophila melanogaster, Oregon R #2376, Bloomington Drosophila stock center, Bloomington, IN) were maintained in the laboratory. Flies of both sexes were used within two days of hatching. Procedures for recording EAG were similar to those described previously (Alcorta 1991). Animals were held in the cut end of a 100 ll plastic pipet tip. A reference glass microelectrode (*1 lm tip diameter) was inserted into one eye, while a larger glass microelectrode (*20 lm tip diameter) was pushed against the distal end of one antenna. Both electrodes were filled with Drosophila saline (Hazel et al. 2003). EAG were recorded as electrical current with a List EPC-7 patch clamp amplifier (ALA Scientific Instruments, Westbury, NY). Current recordings are proportional to voltage recordings but give lower noise levels (Minor and Kaissling 2003; Yao et al. 2005). All experiments were performed at room temperature (20 ± 2°C) and humidity *40%. Pseudorandom Gaussian white noise was generated by the computer via a 33-bit maximum length binary sequence algorithm (Golomb 1967) driving a 12-bit digital-to-analog convertor into the position servo control. The PID voltage and EAG current were digitized via a 16-bit analog-todigital convertor and sampled at 5 ms intervals. Sampled time domain data were transferred to the frequency domain using the fast Fourier transform (Cooley and Tukey 1965) in segments of 512 sample pairs. Frequency response functions (amplitude and phase) between PID voltage (input) and EAG current (output) were calculated by direct spectral estimation and plotted as Bode plots of phase and log amplitude versus log frequency. Coherence functions (Bendat and Piersol 1980) were calculated from the same data. Frequency response functions were fitted by a coherence-weighted minimum square error process to a first-order low-pass filter function (Justus et al. 2005): Gðjf Þ ¼ a expðj2pf DtÞ 1=ð1 þ j2pf stÞ ð1Þ where G(jf) is the complex gain of the frequency response, a is a constant amplitude, Dt is a pure time delay, s is the pffiffiffiffiffiffi ffi time constant of the linear filter and j2 ¼ 1: Coherence functions, c2(f) were used to estimate the information capacity of the antennal response (Shannon and Weaver 1949): Z R ¼ log2 1=1 c2 ðf Þ df : ð2Þ Experimental protocols Experiments used natural fruit odorants that stimulate Drosophila antennal chemoreceptors: butyl butyrate, isoamyl acetate, phenylethyl alcohol, and hexyl acetate (Stensmyr et al. 2003), and the Drosophila aggregation pheromone, (Z)-11-octadecenyl acetate (Hedlund et al. 1996). In the fruit odorant experiments each fly, of either sex, was stimulated with all four odorants, in turn, using a random number sequence to create a different order of stimulation for each animal. Total stimulation time for each odor was 100 s. Between different odors, flies received 100 s of air flow without odor. In pheromone experiments, male flies were stimulated for 100 s. The experimental apparatus was flushed with clean air for periods of at least 10 min between experiments. Ambient air at the apparatus was removed by a direct connection to the building exhaust system. Statistical analysis was performed by Prophet 6.0 software (AbTech Corporation, Charlottesville, VA). Experimental control and data processing Results All experiments were controlled by custom-written software via a personal computer and a data acquisition board (NI6035E, National Instruments, Austin, TX). Fruit odorant experiments were conducted on a total of 42 different animals; pheromone experiments on 24 animals. 39 Chapter I Odorant cartridge concentration (see ‘‘Materials and methods’’) was chosen to approximate the final concentrations at the animal used previously in Drosophila experiments (Yao et al. 2005), taking into account the ratio of primary to secondary air flows and the filter paper dimensions. Preliminary experiments showed that EAG signals dropped significantly at lower concentrations but tended to saturate with increased concentrations. A typical frequency response function is shown for stimulation by hexyl acetate (Fig. 2). The fitted parameters of Eq. 1 were used to draw the solid lines through the amplitude and phase data. True amplitude units of the frequency response cannot be given because the ratio of odorant molecules to tracer gas was unknown. They are shown as antennal Fig. 2 Frequency response function between tracer gas concentration (input) and electroantennogram current (output) for hexyl acetate stimulated Drosophila. Amplitude values represent the ratio of electroantennogram current from the patch clamp amplifier to tracer gas concentration. Amplitude and phase data were fitted by Eq. 1 (solid lines) with the following parameters: a = 4.44 pA/ppm, s = 7.06 ms, Dt = -1.78 ms. Fitted amplitude and time constant values are indicated by arrows; first-order filter asymptotic slope is also shown. Note that the phase relationship lags (decreasing phase value) at low frequencies due to the filter function, but the negative delay caused by the PID needle causes it to lead (increasing phase values) at frequencies above *40 Hz. Inset shows 2 s of original recordings of PID output of tracer gas concentration (upper) and the resulting Drosophila electroantennogram current (lower) during pseudorandom stimulation 123 486 current versus tracer gas concentration (pA/ppm propylene). The amplifier reported positive current flowing outwards from the electrode, or into the antenna, and positive current increased with olfactory stimulation. Olfactory frequency response functions were reliable, and well-fitted by Eq. 1, with high coherence function values (near unity) over a wide bandwidth. Initial experiments suggested a reduction in sensitivity, or adaptation, during the first few seconds of stimulation. To quantify this effect, recorded data were separated into consecutive sets of 2,048 input–output data pairs (10.24 s) and frequency response functions calculated for each set. Plotting the fitted data versus time showed that adaptation was mild, and complete within 50 s of initial stimulation (Fig. 3). Therefore, all further analysis was performed using data collected between 50 and 100 s of initial stimulation, including the data shown in Fig. 2. All further data analysis was applied to experiments where complete responses were obtained for the full 100 s to all four odorants or pheromone. Four parameters, a, s, Dt (Eq. 1) and R (Eq. 2) were calculated for each compound. The relatively constant response observed during 50 s (Fig. 3) also indicates that the concentration of the odorants at the animal was approximately constant during the Fig. 3 Electroantennogram responses adapted slightly for about 30 s after the onset of odorant stimulation. Sampled data was divided into five consecutive sets of 2,048 input–output pairs, giving mean time values of 5.12, 15.36, 25.6, 35.84, and 46.08 s. Frequency response functions were estimated for each set of data and fitted with Eq. 1, as in Fig. 2. Data (mean ± standard error) are shown for normalized amplitude (a/a0, where a0 was the amplitude at 5.12 s and for time constant, s, for the four odorants used. Numbers of experiments are indicated next to the labels Chapter I 487 Fig. 4 Fitted experimental parameters for experiments on 52 flies. Four fruit odorants were used in random order to stimulate each of 28 flies. Pheromone was used to stimulate a different set of 24 flies. Amplitude, a, time constant, s, and delay, Dt, were obtained from frequency response functions (Fig. 2) fitted by Eq. 1. Information capacity, R, was obtained from corresponding coherence functions via Eq. 2. Data are shown as mean values ± standard error experiments. This could be due to the high ratio (*100) of primary to secondary air flow (see ‘‘Materials and methods’’), so that evaporation was limited by the relatively slow secondary air flow. In preliminary experiments, response amplitude remained approximately constant for periods of at least 500 s (data not shown). To test for gender differences in fruit odorant sensitivity, statistical analysis was applied to eight experiments on female flies and nine experiments on male flies. Mann– Whitney rank sum tests (2-sided) failed to show any significant differences between male and female flies for any of the sixteen groups tested (4 odorants by 4 parameters). Therefore, all further fruit odorant tests used combined data from both sexes. Pheromone experiments were all conducted on male flies. The four fitted parameters (Fig. 4) were measured from 28 flies that all received the four different fruit odorants in random order. Parameter values were compared by Friedman’s all pairwise test, using the null hypothesis that all estimates of each parameter were from the same population. The hypothesis was rejected for all measurements of time constant, s (P = 0.0001) and information capacity, R, (P = 0.0001). For the amplitude parameter, a, the hypothesis was rejected for the group (P = 0.0001), but not between the effects of isoamyl acetate and hexyl acetate (P[0.05). For the delay parameter, Dt, the hypothesis was not rejected (P = 0.0523) although there was a significant difference between the effects of butyl butyrate and hexyl acetate (P \ 0.05). In summary, the four fruit odorants each gave significantly different dynamic responses, with mean time constant varying from 4.40 (isoamyl acetate) to 35.5 ms (phenylethyl alcohol). Amplitude also varied with odorant from 3.64 (isoamyl acetate) to 1.47 pA/ppm (phenylethyl alcohol) and was matched by variation in information capacity. Time delay was small and negative with no consistent evidence that it varied with different odorants. Pheromone responses had much lower amplitude than fruit odor responses (Fig. 4), which made the experiments more difficult and strongly reduced the estimated information capacity. Pheromone experiments were conducted separately on 24 male flies. Amplitudes, a, and information capacities, R, were about one third of the lowest fruit odorant parameters (phenylethyl alcohol). Time constant values, s, were within the range of the fruit odorants (mean 21.1 ms) but the delay parameter, Dt, was now positive (mean 4.8 ms) instead of negative. Discussion Different fruit odors produced characteristically different dynamic responses The four odorants gave different time constants, amplitudes and information capacities (indicating different signalto-noise ratios). What is the basis for these differences? Frequency response functions were well fitted by a firstorder low-pass filter function (Eq. 1) that also fitted moth EAG responses to pheromones (Justus et al. 2005). For moths it was argued that the filter occurs between odorant arrival at the antennal surface and opening of ion channels to produce receptor current in the chemosensory neuron. A similar argument can be made for Drosophila, because some time constant measurements were much longer than expected for cell membranes, and adaptation during action potential encoding tends to cause high-pass behavior (Carlsson and Hansson 2002). Time-dependent steps could include odorant diffusion through cuticular pores, binding to extracellular proteins, binding to membrane odorant receptor molecules, or intracellular second messenger cascades (Benton 2007). The relatively long time constant 41 Chapter I for phenylethyl alcohol suggests that molecular size and/or aromaticity may be limiting factors. Previous work linked initial firing rates and adaptation rates to olfactory receptor molecules (ORs), rather than neuron type, when receptor molecules were expressed in different Drosophila neurons (Hallem et al. 2004), but the ORs corresponding to the four odorants used here are not yet well defined. Stensmyr et al. (2003) identified eight major functional types of Drosophila antennal sensilla, each containing 1–4 action potential producing neurons, although morphological characterization was not possible. Using their nomenclature, the four odorants used here would be expected to excite neurons S3-A (butyl butyrate and isoamyl acetate), S4-A (butyl butyrate and isoamyl acetate), S4-B (isoamyl acetate), S5-B (isoamyl acetate and hexyl acetate) and S8-B (phenylethyl alcohol), suggesting that at least three ORs were stimulated here. Hallem et al. (2004) mapped 13 Drosophila ORs to different receptor neurons in antennal basiconic sensilla. Their map indicates that isoamyl acetate would stimulate the OR10a and OR22a receptors in ab1D and ab3A neurons, as well as the OR19a receptor in an unknown neuron. The other three odorants were not tested. None of the four odorants were tested in coeloconic sensilla recordings (Yao et al. 2005). There is evidence of sexual differences in the density of some odorant receptors in Drosophila (Dobritsa et al. 2003) but no differences in EAG responses to fruit odors were observed here. Therefore, the available evidence indicates that several different ORs were stimulated by the four odorants, and that some of the odorants stimulated more than one type of OR. However, there was no evidence for multiple filter time constants in the frequency response functions. Therefore, if dynamic behavior is determined by ORs, the data suggest that different ORs responding to a single odorant have similar time constants. Linkage of dynamic properties to an OR does not necessarily mean that the OR function itself determines the time constant, which could also be due to associations between ORs and different groups of odorant binding proteins or second messenger pathways. The finding that dynamic behavior follows ORs into different neurons (Hallem et al. 2004) makes it less likely that penetration through the cuticle or diffusion to the receptor neuron is controlling dynamics. Adaptation of olfactory response was small for all odorants and did not seem to affect the time constant (Fig. 2). This agrees with single unit recordings of both basiconic (Dobritsa et al. 2003) and coeloconic (Yao et al. 2005) sensilla. Single unit recordings to step olfactory stimuli showed some adaptation during the initial second, which would probably not have been detected by the frequency response measurements if it occurred with random stimulation. 123 488 The basis of the time delay The negative delay in fruit odor responses (Fig. 4) can be explained by the experimental arrangement. Flow through the PID sampling needle should give a measurement delay of about -2.5 ms, so observed values of -1 to -2 ms imply a maximum EAG delay of less than 1 ms for fruit odors and *7 ms for pheromone. The origin of EAG current is not clearly established. Electrical models have been proposed that include several current sources (Kapitskii and Gribakin 1992), and any contribution of action potentials to EAG has been challenged by experiments using chemical treatment to block action potentials (Lucas and Renou 1992). Although the basis of the delay in olfactory responses cannot yet be identified, it is interesting that significant delay was seen in both moth (Justus et al. 2005) and Drosophila pheromone responses, but not in Drosophila fruit odor responses. This could be related to molecular size because the pheromone used here was much larger than any of the fruit odors. It is difficult to interpret the dependence of frequency response amplitude, a, or information capacity, R, on the different odorants. EAG amplitude could be affected by receptor current amplitude, number of active neurons and positions of the active neurons relative to the recording electrode. Information capacity is directly dependent on signal-to-noise ratio in a linear system. There is no significant evidence for nonlinearity in the Drosophila EAG recordings, and R clearly varied with a (Fig. 4), suggesting that all recordings included a similar background noise level. Why do Drosophila need such rapid responses to fruit odors? The time constant of *4.5 ms for isoamyl acetate transduction was three times faster than moth pheromone transduction, and would allow detection of odorant changes up to *50 Hz. Pheromone responses were much more delayed than those of fruit odors. Are these differences behaviorally important? Why is there such a wide range of time constants for different odorants? Which stages of chemotransduction are rate limiting? The present study has raised several interesting questions about olfactory dynamics, and must be followed by detailed analysis of single olfactory neuron responses. However, it has already provided a simple, quantitative dynamic model that can be used to test hypotheses about chemotransduction. Accurately characterizing the dynamic properties of these neurons should provide important new information about the physiology and ethology of chemosensation. 489 Acknowledgments Supported by the Canadian Institutes of Health Research and the Dalhousie Medical Research Foundation. The experiments complied with the ‘‘Principles of animal care’’, publication No. 86-23, revised 1985 of the National Institute of Health, and were approved by the Dalhousie University Committee on Animal Care. References Alcorta E (1991) Characterization of the electroantennogram in Drosophila melanogaster and its use for identifying olfactory capture and transduction mutants. J Neurophysiol 65:702–714 Barrozo RB, Kaissling KE (2002) Repetitive stimulation of olfactory receptor cells in female silkmoths Bombyx mori L. J Insect Physiol 48:825–834 Barrozo RB, Lazzari CR (2006) Orientation response of haematophagous bugs to CO2: the effect of the temporal structure of the stimulus. J Comp Physiol A 192:827–831 Bau J, Justus KA, Cardé RT (2002) Antennal resolution of pulsed pheromone plumes in three moth species. J Insect Physiol 48:433–442 Bendat JS, Piersol AG (1980) Engineering applications of correlation and spectral analysis. Wiley, New York, pp 1–302 Benton R (2007) Sensitivity and specificity in Drosophila pheromone perception. Trends Neurosci 30:512-519 Carlsson MA, Hansson BS (2002) Responses in highly selective sensory neurons to blends of pheromone components in the moth Agrotis segetum. J Insect Physiol 48:443–451 Cooley JW, Tukey JW (1965) An algorithm for the machine calculation of complex Fourier series. Math Comput 19:297–301 Dobritsa AA, van der Goes van Naters W, Warr CG, Steinbrecht RA, Carlson JR (2003) Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron 37:827–841 French AS, Meisner S (2007) A new method for wide frequency range dynamic olfactory stimulation and characterization. Chem Senses 32:681–688 Geier M, Bosch OJ, Boeckh J (1999) Influence of odour plume structure on upwind flight of mosquitoes towards hosts. J Exp Biol 202:1639–1648 Golomb S (1967) Shift register sequences. Holden-Day, San Francisco, pp 1–224 Hallem EA, Ho MG, Carlson JR (2004) The molecular basis of odor coding in the Drosophila antenna. Cell 117:965–979 Hazel MH, Ianowski JP, Christensen RJ, Maddrell SH, O’Donnell MJ (2003) Amino acids modulate ion transport and fluid secretion by insect Malpighian tubules. J Exp Biol 206:79–91 Chapter I Hedlund K, Bartelt RJ, Dicke M, Vet LEM (1996) Aggregation pheromones of Drosophila immigrans, D. phalerata, and D. subobscura. J Chem Ecol 22:1835–1844 Justus KA, Schofield SW, Murlis J, Cardé RT (2002) Flight behaviour of Cadra cautella males in rapidly pulsed pheromone plumes. Physiol Entomol 27:59–66 Justus KA, Cardé RT, French AS (2005) Dynamic properties of antennal responses to pheromone in two moth species. J Neurophysiol 93:2233–2239 Juusola M, French AS (1997) The efficiency of sensory information coding by mechanoreceptor neurons. Neuron 18:959–968 Juusola M, Niven JE, French AS (2003) Shaker K+ channels contribute early nonlinear amplification to the light response in Drosophila photoreceptors. J Neurophysiol 90:2014–2021 Karmeier K, van Hateren JH, Kern R, Egelhaaf M (2006) Encoding of naturalistic optic flow by a population of blowfly motionsensitive neurons. J Neurophysiol 96:1602–1614 Kapitskii SV, Gribakin FG (1992) Electroantennogram of the American cockroach: effect of oxygen and an electrical model. J Comp Physiol A 170:651–663 Lucas P, Renou M (1992) Electrophysiological study of the effects of deltamethrin, bioresmethrin, and DDT on the activity of pheromone receptor neurones in two moth species. Pest Biochem Physiol 43:103–115 Mafra-Neto A, Cardé RT (1995) Influence of plume structure and pheromone concentration on upwind flight of Cadra cautella males. Physiol Entomol 20:117–133 Marmarelis PZ, Marmarelis VZ (1978) Analysis of physiological systems: the white-noise approach. Plenum Press, New York Minor AV, Kaissling KE (2003) Cell responses to single pheromone molecules may reflect the activation kinetics of olfactory receptor molecules. J Comp Physiol A 189:221–230 Murlis J, Elkington JS, Cardé RT (1992) Odor plumes and how insects use them. Annu Rev Entomol 37:505–532 Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana Stensmyr MC, Giordano E, Balloi A, Angioy AM, Hansson BS (2003) Novel natural ligands for Drosophila olfactory receptor neurones. J Exp Biol 206:715–724 Vickers NJ, Christensen TA, Baker TC, Hildebrand JG (2001) Odourplume dynamics influence the brain’s olfactory code. Nature 410:466–470 Willis MA, Baker TC (1984) Effects of intermittent and continuous pheromone stimulation on the flight behaviour of the oriental fruit moth, Grapholita molesta. Physiol Entomol 9:341–358 Yao CA, Ignell R, Carlson JR (2005) Chemosensory coding by neurons in the coeloconic sensilla of the Drosophila antenna. J Neurosci 25:8359–8367 43 Chapter II A digital sequence method of dynamic olfactory characterization Chapter II Journal of Neuroscience Methods 171 (2008) 98–103 Chapter II Journal of Neuroscience Methods journal homepage: www.elsevier.com/locate/jneumeth A digital sequence method of dynamic olfactory characterization Julia Schuckel, Andrew S. French ∗ Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5 a r t i c l e i n f o Article history: Received 11 January 2008 Received in revised form 23 February 2008 Accepted 25 February 2008 Keywords: Olfaction Drosophila Antenna Sensory receptor Frequency response Photoionization a b s t r a c t Measurements of system dynamics, such as input–output frequency response estimation, have been widely used in neuroscience. Dynamic characterization of sensory systems has been particularly useful because both the amplitude and time-dependent properties of sensory input signals can often be accurately controlled. However, chemoreceptors have proved less amenable to these approaches because it is often difficult to accurately modulate or measure chemical concentration at a sensory receptor. New methods of dynamic olfactory stimulation have recently been introduced that combine controlled mechanical release of odorant with detection by photoionization of surrogate tracer gas mixed with the odorant. We have developed a modified version of this approach based on rapid binary switching of odorant flow using pseudo-random binary signals (maximum-length sequences, or M-sequences) generated by a software shift register. This system offers several advantages over previous methods, including higher frequency range stimulation, experimental simplicity and the possibility of computational efficiencies. We show that there is predictable dynamic odorant concentration at the sensory receptor and we explore the stimulation parameters as functions of total air flow rate and spatial location. A typical application of the system is shown by measuring the frequency response function of a Drosophila electroantennogram. © 2008 Elsevier B.V. All rights reserved. 1. Introduction Systems analysis provides an established general method of measuring the dynamic properties of input–output systems (Bendat and Piersol, 1980). Both linear and nonlinear systems analysis have been used to characterize a wide variety of physiological systems (Marmarelis and Marmarelis, 1978), and have become particularly important in neuroscience (French et al., 1972; French and Marmarelis, 1999; Karniel and Inbar, 1999). In the case of linear systems, a complete dynamic characterization, such as the frequency response function or impulse response function, can be used to predict the response of the system to any other stimulus. Systems analysis often employs a random, or approximately random, signal that is sometimes called “white noise” or “pseudorandom noise”. White noise stimulation can be used to characterize linear, and many nonlinear, biological systems (Marmarelis and Marmarelis, 1978). Practical generation of pseudorandom noise is commonly achieved by deriving an analog signal from an M-sequence shift register (Golomb, 1981), where the term “M-sequence” is derived from “maximum length sequence”. Msequences are generated by applying a feedback loop to a binary shift register so that repeated shift operations cause the binary number stored in the shift register to cycle through every possi- ∗ Corresponding author. Tel.: +1 902 494 1302; fax: +1 902 494 2050. E-mail address: andrew.french@dal.ca (A.S. French). 0165-0270/$ – see front matter © 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.jneumeth.2008.02.013 ble value, giving the maximum length sequence of binary numbers. M-sequence shift registers can be implemented from physical components or as computer software. Although not truly random, the order of binary numbers appearing in an M-sequence is sufficiently complex to create a pseudorandom signal, for example, by driving the inputs in parallel to a digital-to-analog converter. Alternatively, the binary digits appearing at one end of the Msequence shift register can be used as the input to an unknown system. Because these values are either one or zero, it is possible to perform very efficient computation on the resulting output signals from the system by techniques such as the Walsh–Hadamard transform (French and Butz, 1974). This approach has been utilized for rapid characterization of visual function, where multiple receptors and lateral interactions between receptors produce large numbers of parallel output signals from a single input (Sutter, 2001). Systems analysis of chemoreceptors has proved more difficult than other sensory modalities because of the nature of the stimulus. The basic requirements for linear and nonlinear systems analysis of sensory receptors are the abilities to modulate the signal in a controlled manner over a wide range of frequencies, and to accurately measure both the input stimulus signal and the output neural signal with appropriate time resolution. Dynamic measurements of some insect olfactory receptors have been achieved using pulsed release of chemicals in wind tunnels (Bau et al., 2005). Another approach used randomly varying pheromone concentration produced by turbulent flow in a wind tunnel (Justus et al., 2005). There has also been progress in detecting rapidly changing airborne 47 Chapter II J. Schuckel, A.S. French / Journal of Neuroscience Methods 171 (2008) 98–103 chemical concentration by photoionization of tracer gas with low ionization potential added to the chemical stimulant (Justus et al., 2005; Vetter et al., 2006). Continuously variable release (CVR) of odorant into a wind tunnel by a servo-controlled system, combined with photoionization detection of tracer gas, was able to provide a range of controlled olfactory stimuli, including pseudorandom signals suitable for systems analysis (French and Meisner, 2007). Here, we describe an alternative method of pseudorandom olfactory stimulation in which odorant and tracer gas are released into a flow tube by a solenoid valve switched by the single binary digits emerging from a an M-sequence. This method offers several important advantages over the CVR method, including wider stimulus bandwidth and simpler construction. We demonstrate use of the system to measure a Drosophila electroantennogram frequency response function. 2. Materials and methods 2.1. Stimulator design The stimulating system consisted of a Plexiglas box (100 mm long by 70 mm square) divided into two compartments (Fig. 1). A 40 mm × 10 mm fan (EVERCOOL EC4010M12CA, Cooler Guys, Kirk- 99 land, WA) raised the air pressure in the first compartment (pressure chamber), which then flowed along a plexiglas tube to its open exit projecting from the second compartment. The fan (nominally 12 V dc) was driven by a variable voltage dc power supply. The flow rate could be varied by changing the driving voltage from 6 to 12 V. The fly was positioned at the far end of the tube, within 2–3 mm of the exit and 2–3 mm of the tube center line. Secondary air flow came from a cylinder of compressed air containing 1000 ppm propylene tracer gas (BOC, Halifax, NS, Canada), regulated to 20 kPa initial pressure. It flowed through an odorant cartridge made from the shaft of a 5 ml transfer pipet (Fisher Scientific, Ottawa, ON, Canada), containing a rectangular piece of filter paper (45 mm × 15 mm), through a two-way (open or closed) solenoid valve (Cole-Parmer 01340-02, Montreal, QC) into a 16 gauge hypodermic needle with its tip located in the center of the flow tube and 42 mm from the exit. The solenoid valve used PTFE materials in contact with the gas, and was driven by a 24 V dc power supply via a photovoltaic relay (Fig. 1) to be either fully open or fully closed. The valve had a specified switching time of 5 ms, but this was not the limiting factor in determining the overall dynamic performance. Odorant cartridge design was similar to that described previously (French and Meisner, 2007), but the concentrations of odorants were reduced to account for the lower ratio of primary to secondary air flow (Fig. 4). Actual odorant concentration depended on evaporation rate from the filter paper, which was unknown and probably different for each odorant. Odorant chemicals and mineral oil were purchased from Sigma (Oakville, ON, Canada) and mixed at 20% (v/v) before final dilution. 10 l volumes of each mixture were loaded into separate cartridges. Fresh cartridges were prepared for each experiment. 2.2. Stimulus measurements Since the solenoid valve was either open or closed, this signal was treated as a binary value of either zero or one. Tracer gas concentration was measured by a miniature photoionization detector (mini-PID, Model 200A, Aurora Scientific Inc., Aurora, ON, Canada). The PID samples the gas through an inlet needle probe. The tip of the probe was located directly above and within 1 mm of the fly antenna. The PID has a frequency response of 0–330 Hz and a concentration range of 0.05–500 ppm propylene. The PID inlet needle is 57-mm long with an internal diameter of 0.76 mm, giving a volume of 0.0259 ml. We used a gas sampling rate of 1150 ml/min, giving a time delay of 1.35 ms. Additional delay must occur as the gas passes through the ionizing chamber, so we assumed a total delay between the gas reaching the PID sample tube and the PID output signal of 2 ms. 2.3. Electrophysiological measurements Fig. 1. Experimental apparatus. Upper: flow system was constructed from plexiglas. A variable speed fan compressed the air in the pressure chamber, driving the primary air flow through the plexiglas flow tube (60-mm long, 6.4 mm internal diameter). Secondary air flow containing odorant chemical mixed with tracer gas passed through the solenoid valve into a 16 gauge stainless steel hypodermic needle with its opening at the center of the flow tube and located 42 mm from the tube exit. The experimental animal and photoionization detector (PID) tip were approximately 3 mm from the exit of the flow tube. Middle: electronic circuit to control the solenoid valve used a photovoltaic relay (PVG612) with its light emitting diode driven by a transistor (2N5192) in the emitter follower configuration. Lower: cartoon of the binary shift register implemented in software to generate the M-sequence of valve on–off signals. Each bit shifted to the left on a regular clock sequence, with the new value of the first bit derived from the exclusive OR of the 13th and 33rd bits. Flies, Drosophila melanogaster, Oregon R #2376 (Bloomington Drosophila stock center, Bloomington, IN) were raised and maintained in the laboratory using a standard diet (Lewis, 1960) at a temperature of 22 ± 2 ◦ C under a 13 h light/11 h dark cycle. Flies of either sex were used within 2 days of hatching. Procedures for recording electroantennograms were similar to those described previously (Alcorta, 1991). Animals were held in the cut end of a 100 l plastic pipet tip. A reference glass microelectrode electrode (∼1 m tip diameter) was inserted into one eye, while a larger glass microelectrode (∼20 m tip diameter) was pushed against the distal tip of one antenna. Both electrodes were filled with Drosophila saline (Hazel et al., 2003). Electroantennograms were recorded as electrical current with a List EPC-7 patch clamp amplifier (ALA Scientific Instruments, Westbury, NY). All experiments were performed at room temperature (20 ± 2 ◦ C) and in a 100 J. Schuckel, A.S. French / Journal of Neuroscience Methods 171 (2008) 98–103 Chapter II controlled humidity chamber (<40%). The animal preparation was mounted on an air driven anti-vibration table. The stimulating system was mounted separately, and mechanically isolated from the preparation. 2.4. Experimental control and data processing All experiments were controlled by custom-written software via a personal computer and a data acquisition board (NI6035E, National Instruments, Austin, TX). Binary M-sequences were generated by the computer using a 34-bit binary shift register with feedback from the logical exclusive OR of the 13th and 33rd bits (Fig. 1). The PID voltage and electroantennogram current were digitized via a 16-bit analog-to-digital converter and sampled at 5 ms intervals. Sampled time domain data (20,000 input–output pairs) were transferred to the frequency domain using the fast Fourier transform (Cooley and Tukey, 1965) in segments of 512 sample pairs. Frequency response functions between the binary M-sequence (input) and PID voltage (output), or between PID voltage (input) and electroantennogram current (output) were calculated by direct spectral estimation and plotted as Bode plots of phase and log gain versus log frequency. Frequency response functions were fitted by a coherence-weighted minimum square error process. Note that the segment length combined with sample interval (512 and 5 ms here) fixes the lowest frequency measurement (1000/(512 × 5) ms = 0.39 Hz here), whereas sample interval alone fixes the highest frequency measurement (100 Hz here). Longer segments can be used if lower frequencies are of interest, but this usually requires longer experiments. The coherence function is a normalized measure of linear correlation between the input and output signals (Bendat and Piersol, 1980). A value of unity indicates that all of the output signal at a given frequency can be produced by a linear transformation of the input at that frequency. Values below unity mean either that some uncorrelated signal (noise) was added between the input and output, or that the system behaved at least partially nonlinearly. Coherence functions were calculated from the same data as the frequency response functions. Coherence was used to estimate the information capacity, R, of the stimulating system (Shannon and Weaver, 1949): R= log2 1 1 − 2 (ω) dω (1) 3. Results 3.1. Frequency response and coherence functions of the stimulating system Dynamic performance of the stimulation system was evaluated from frequency response and coherence function measurements between the M-sequence input and the tracer gas concentration at the PID (Fig. 2). Frequency response functions, G(jω), were well fitted by a relationship used previously to model laminar air flow along a tube (French and Meisner, 2007): 2 1 (2) (1 + jω) √ where ω is radial frequency, j = − 1, ˛ is a constant amplitude factor, t is the time delay between valve opening and tracer gas reaching the PID, ωc is the half amplitude frequency of a Gaussian function that approximates three-dimensional diffusion of the gas as it flows, and is the time constant of a first-order low-pass filter function that approximates frictional drag between gas flow and the tube walls. This equation was fitted to the amplitude and phase data in Fig. 2 as solid lines. G(jω) = ˛ exp(jω t) exp − ω ωc Fig. 2. Frequency response function between solenoid valve position and propylene tracer gas concentration measured by the PID, presented as a Bode plot of log amplitude and log phase versus log frequency. Solid lines show Eq. (1) fitted to the data with values: Fc = 2ωc = 35.41 Hz, = 2.66 ms, t = 38.72 ms. The amplitude parameter, ˛, was normalized to unity (0 dB) at low frequency. Flow volume and velocity, from t, were: 39.46 ml/s and 1.23 m/s, respectively. Mean propylene concentration was 104.3 ppm, giving a ratio of primary to secondary air flow of 9.59. The coherence function for the same data is shown below on the same frequency axis. Information capacity, from Eq. (2), was: R = 70.0 bits/s. These data were based on 50 s of recorded data at 10 V fan voltage using 5 ms sampling interval and an M-sequence switching interval of 20 ms. Inset is shown a section of the original recordings of valve switching (open—up, closed—down), and propylene concentration measured by the PID. Note the delay between valve switching and propylene concentration change, as well as periods of zero propylene concentration (arrow). Part of the raw data used to create the frequency response function is shown inset Fig. 2. Note the delay between valve opening or closing and tracer gas concentration rising or falling. Also, note that longer valve closing caused the tracer gas concentration to approach zero (arrow). Since the input signal was a binary number, the amplitude parameter, ˛, which represents output divided by input at zero frequency, does not have meaningful dimensions. For illustration, it was normalized to unity (0 dB) in Figs. 2 and 3. The coherence function, 2 (ω), was close to unity over a wide frequency range (Fig. 2), indicating a linear, noise-free relationship between valve position and tracer gas concentration. 3.2. Reliability of stimulation parameters at the sensory organ The difficulty of measuring odorant, or tracer gas, concentration at the actual sensory receptor makes it crucial that the dynamic properties of odorant stimulation be predictable and reliable within a reasonable distance around the animal. To test this we measured frequency response functions and coherence functions similar to those of Fig. 2 at different positions around the center line of the flow tube (Fig. 3). Following Poiseuille’s law, laminar flow of gas through a tube produces a radial distribution of gas velocities around the center line, with the highest velocity in the center (upper panel, Fig. 3). Tracer gas concentration during M-sequence opening and closing of the solenoid valve was measured by the PID at the center of the flow tube exit, and at distances of 1 and 2 mm around the center in the horizontal and vertical directions. Fitted parameters of Eq. (2) were plotted versus position (Fig. 3, lower graphs). 49 Chapter II J. Schuckel, A.S. French / Journal of Neuroscience Methods 171 (2008) 98–103 101 Fan speed affects primary air flow, rather than secondary air flow, so we also measured the ratio of primary to secondary air flow to indicate the required concentration of odorant at different fan speeds. Frequency at 1% power increased linearly with fan speed to a maximum of 46 Hz. Information capacity more than doubled over the same range, reflecting the increasing frequency range, and indicating lack of turbulence. Ratio of primary to secondary airflow increased linearly, as expected. We also tested the effect of different M-sequence switching rates on stimulator performance (Fig. 4). More rapid transitions between open and closed valve positions would be expected to increase the available stimulation frequency, but the valve switching time of 5 ms placed an upper limit on the range. There was no significant difference between any measured parameters for switching rates of 5 and 10 ms, while 20 ms produced a small reduction in frequency range. 3.4. Experimental demonstration Frequency response and coherence functions were measured for a Drosophila electroantennogram during M-sequence stimulation with hexyl acetate (Fig. 5). Input was propylene concentration measured by the PID, while output was antennal current. The frequency response function was fitted by the first-order low-pass filter function: Fig. 3. Effects of lateral position in the air flow on dynamic odorant stimulation parameters, as estimated from tracer gas concentration. Upper and middle figures show side and end views of the flow tube approximately to scales shown. Frequency response functions similar to Fig. 2 were obtained at 1 mm spaced positions around the center line of the air flow (dots in middle figure). Identical M-sequence signals were used for each recording to remove any variation due to finite signal duration. Each experiment was repeated four times and fitted by Eq. (1). Mean values of the fitted parameters are plotted as functions of horizontal and vertical positions (X and Y) in the lower graphs. Standard deviation bars are within the plotted symbols. Inset traces show sections of three separate original PID recordings using the same input sequence to the valve but measured at three of the nine positions. G(jω) = ˇ exp(jω u) 1 (1 + jω) (3) where ˇ is the response amplitude at zero frequency, u is a time delay and is the filter time constant (French and Meisner, 2007; Justus et al., 2005). Note the high value of the coherence function. Part of the original recording (inset) shows that the electroantennogram closely followed the trace gas concentration during the M-sequence stimulation. Parameters t and ωc did not vary significantly with position. (Note that ωc has been converted to temporal frequency, Fc = 2ωc in Hz, for clarity in Fig. 3.) Amplitude, ˛, was maximal at the center line and decreased to a minimum of 55% of the center value at 2 mm. Time constant, , also varied with distance, increasing from a minimum of ∼2.5 ms at the center to a maximum of ∼6 ms at 2 mm from the center. 3.3. Effects of flow velocity on stimulation bandwidth and odorant concentration Selection of flow velocity in a dynamic olfactory stimulator requires a compromise between several factors. Increased velocity reduces the time available for diffusion, which increases the maximum frequency of concentration changes that can be delivered to the animal. However, increased velocity also increases the possibility of turbulence, reduces the time for diffusion to a homogenous concentration, and can interfere with experimental recording from delicate preparations. Changes in velocity also affect the thickness of the boundary layer of air at the surface of the animal and thus the effective concentration of odorant. To assess the available stimulation frequency we measured the power spectrum of the PID signal during M-sequence switching at a range of fan speeds and recorded the frequency at which the spectrum fell to 1% of its maximum value (Fig. 4). Information capacity, R, provided another measure of available frequency range because it is obtained from integration over frequency (Eq. (1)). Information capacity also provided a check of laminar flow, since turbulence would cause incoherent concentration fluctuations and reduce R. Fig. 4. Effect of fan speed and M-sequence timing on dynamic odorant stimulation parameters estimated from tracer gas concentration. Fan voltages were 6, 8, 10 and 12 V, as indicated. Frequency response functions similar to Fig. 2 were obtained at each voltage and fitted by Eq. (1). Air flow rate and velocity were estimated from the fitted values of t and tube dimensions (Figs. 1 and 3). Information capacity was calculated from coherence (Eq. (2)). The power spectrum of the tracer gas signal was inspected manually to locate the frequency at which it dropped to 1% of its maximum value. Ratio of primary to secondary air flow was calculated from the mean concentration of tracer gas throughout each recording, based on a secondary flow concentration of 1000 ppm propylene. Three recordings at 12 V were made with M-sequence switching times of 20, 15 and 10 ms (marked A, B, and C, respectively). Other recordings used 20 ms. 102 J. Schuckel, A.S. French / Journal of Neuroscience Methods 171 (2008) 98–103 Chapter II an elastomeric bead (French and Meisner, 2007). Assembly of the system is relatively complex and requires analog servo-control electronics, whereas solenoid valves are commercially available with a wide range of properties, and can be driven by digital signals. Physical size is also an issue because the upper frequency limit is partly controlled by the distance between odorant gas release and the animal. We found it difficult to fit a mechanical actuator and position detector close to the exit of the flow tube, whereas the solenoid valve outlet port could easily be located in this position. This problem might be overcome with lever systems, but at the cost of added size and complexity. More importantly, the CVR method required frequent adjustment of the elastomeric bead position to ensure a suitable movement amplitude range, whereas the solenoid valve required no adjustment or other intervention. Another significant operating advantage was that the solenoid valve closed completely when the signal is removed, so it was not necessary to disconnect tracer gas supply between experiments. The binary driving signal makes it easy to produce identical repeated stimulation signals, as used in Fig. 3. This can be an important feature for testing the reliability of a sensory receptor, and provides the basis for methods of estimating signal to noise ratio and entropy that have been used to measure information transmission through neural systems (Juusola and French, 1997). 4.3. Frequency range and receptor adaptation Fig. 5. Experimental test of M-sequence stimulation system by electroantennogram recording from Drosophila stimulated with hexyl acetate odorant. Fan voltage was 10 V and the signals were sampled at 5 ms, with an M-sequence switching interval of 20 ms. Frequency response function is shown from 8704 data points (43.52 s), fitted by Eq. (3) with parameters: ˇ = 0.195 pA/ppm, u = 0.87 ms, = 23.74 ms. Inset shows part of the original data. Amplitude units are shown as pA/ppm propylene, assuming that actual concentration of odorant at the animal was unknown, but proportional to tracer gas concentration. Note the high value of the coherence function over a broad frequency range. Similar results were obtained from experiments on 10 different flies, using both butyl butyrate and hexyl acetate as odorants. 4. Discussion 4.1. Methods of dynamic olfactory stimulation Use of surrogate tracer gas to track odorant concentration changes has provided a major improvement in our ability to measure rapidly changing input signals to olfactory receptors (French and Meisner, 2007; Justus et al., 2002, 2005; Vetter et al., 2006). It has also shown that traditional methods relying on pulsed release at a distance from the animal are unreliable and depend on experimental design (Vetter et al., 2006). Generation of controlled olfactory stimulation with suitable dynamic properties has proved more challenging. Turbulent flow is relatively simple to produce and can generate a wide range of stimulus frequencies (Justus et al., 2005), but it is uncontrolled, unrepeatable and spatially complex, so that measurements made even close to the animal may not reflect the concentration at the sensory structure. Continuously variable release (CVR) into a flow tube provides a controlled dynamic signal (French and Meisner, 2007), but the M-sequence method offers several additional advantages for linear or nonlinear systems analysis, as described below. 4.2. Construction and operation The CVR method uses an electromagnetic actuator and a position detector to variably occlude the aperture of a glass pipet by The M-sequence method produced a slightly higher frequency range of stimulation than CVR. The limiting factor is solenoid valve switching time, so the frequency range could be extended if faster valves were available. We chose the valve with the most rapid response of those available from standard laboratory supply companies, but faster valves may exist. Note that the 1% power spectrum criterion we used (Fig. 4) was an arbitrary measurement. Frequency components were present above this value and were still adequate for system identification, but this will generally depend on the preparation and particularly the system noise level. Also note that the frequency range increased with flow velocity, but the velocities used here were much lower than the value of 2.4 m/s used in the CVR system (French and Meisner, 2007). An important property of the M-sequence method was that tracer gas and odorant concentrations fell to zero about 70 ms after the valve closed (Fig. 2), so adapting sensory receptors could be tested by stimulus patterns that allow recovery from adaptation. This is a limitation of the CVR method because it requires a continuous mean gas flow modulated around the mean. While both methods could be modified to include periods of zero stimulation, it is much easier to accomplish using a solenoid valve, and occurs naturally in M-sequences. 4.4. Other system characteristics Spatial distribution of odorant concentration is an important issue for dynamic stimulation (Vetter et al., 2006). The present system was designed for small animals, such as Drosophila, so the tested spatial range of about 5 mm diameter around the center line was more than adequate. Within this range the major effects were a reduction in amplitude, ˛, and an increase in time constant, , with distance from the center line. Neither would prevent the off-center signal from being useful for dynamic system characterization, although the frequency range would be slightly reduced. Clearly, the most important thing is to have the PID probe located as close as possible to the sensory receptor that is being examined, to faithfully record the local gas concentration. However, the PID actively removes air, which should be 51 Chapter II J. Schuckel, A.S. French / Journal of Neuroscience Methods 171 (2008) 98–103 considered in estimating flow rates arriving at and leaving the receptor. The observed variation of ˛ and with position from the center line (Fig. 3) support the interpretation of the parameters in Eq. (2) (French and Meisner, 2007). Diffusion of tracer gas from the release site in the center of the tube will give maximum concentration in the center line, while the temporal filtering effect of frictional drag will increase closer to the tube wall. Adherence and later release of odorant or tracer gas molecules to the tube wall may also occur in this, or any other tube-based stimulation system. The characterizations and experimental test used here did not require the binary properties of the M-sequence to increase computational efficiency. However, this feature could be useful for experiments requiring multiple parallel computations (Sutter, 2001), such as recording from an array of electrodes placed across an olfactory bulb, or for nonlinear analysis based on higher order kernels (French and Marmarelis, 1999). The concentration of odorant delivered to the sensory receptor is not itself an Msequence, but has a simple linear relationship to the sequence (Eq. (2)), which could be deconvolved from any system characteriza tion. Stimulation techniques that flow a carrier gas over a volatile odorant can be affected by a reduction in odorant concentration as it evaporates from the substrate. Varying the carrier flow rate, as done here and in the CVR method, can also cause odorant concentration variation by changing the time available for evaporation. This issue was not addressed directly here, but methods of reducing these effects have been developed (e.g. Grant et al., 1995) and could be incorporated into the newer stimulation techniques. 4.5. Conclusions M-sequence olfactory stimulation offers significant advantages over the CVR approach for several reasons. It is simpler to construct, operate and control, while offering comparable or better frequency range of stimulation. The ability to provide odorant-free periods within a rapidly changing stimulus signal should be particularly useful for the large number of olfactory receptors that adapt to a steady concentration. Acknowledgments This work was supported by grants from the Canadian Institutes of Health Research. Shannon Meisner provided expert technical assistance and animal care. 103 References Alcorta E. Characterization of the electroantennogram in Drosophila melanogaster and its use for identifying olfactory capture and transduction mutants. J Neurophysiol 1991;65:702–14. Bau J, Justus KA, Loudon C, Cardé RT. Electroantennographic resolution of pulsed pheromone plumes in two species of moths with bipectinate antennae. Chem Senses 2005;30:771–80. Bendat JS, Piersol AG. Engineering applications of correlation and spectral analysis. New York: John Wiley & Sons; 1980. pp. 1–302. Cooley JW, Tukey JW. An algorithm for the machine calculation of complex Fourier series. Math Comput 1965;19:297–301. French AS, Holden AV, Stein RB. The estimation of the frequency response function of a mechanoreceptor. Kybernetik 1972;11:15–23. French AS, Butz EG. The use of Walsh functions in the Wiener analysis of nonlinear systems. IEEE Trans Comput 1974;23:225–32. French AS, Marmarelis VZ. Nonlinear analysis of neuronal systems. In: Windhorst U, Johansson H, editors. Modern techniques in neuroscience research. Berlin: Springer; 1999. p. 627–40. French AS, Meisner S. A new method for wide frequency range dynamic olfactory stimulation and characterization. Chem Senses 2007;32:681–8. Golomb SW. Shift register sequences. Walnut Creek, CA: Aegean Park Press; 1981. pp. 1–251. Grant AJ, Wigton BE, Aghajanian JG, O’connell RJ. Electrophysiological responses of receptor neurons in mosquito maxillary palp sensilla to carbon dioxide. J Comp Physiol A 1995;177:389–96. Hazel MH, Ianowski JP, Christensen RJ, Maddrell SH, O’Donnell MJ. Amino acids modulate ion transport and fluid secretion by insect Malpighian tubules. J Exp Biol 2003;206:79–91. Justus KA, Murlis J, Jones C, Cardé RT. Measurement of odor-plume structure in a wind tunnel using a photoionization detector and a tracer gas. Environ Fluid Mech 2002;2:115–42. Justus KA, Cardé RT, French AS. Dynamic properties of antennal responses to pheromone in two moth species. J Neurophysiol 2005;93:2233–9. Juusola M, French AS. The efficiency of sensory information coding by mechanoreceptor neurons. Neuron 1997;18:959–68. Karniel A, Inbar GF. Linear systems description. In: Windhorst U, Johansson H, editors. Modern techniques in neuroscience research. Berlin: Springer; 1999. p. 589–625. Lewis EB. A new standard food medium. Drosoph Inform Serv 1960;34:117–8. Marmarelis PZ, Marmarelis VZ. Analysis of physiological systems: the white-noise approach. New York, NY: Plenum Press; 1978. pp. 1–487. Shannon CE, Weaver W. The mathematical theory of communication. Urbana, Chicago, London: University of Illinois Press; 1949. pp. 1–117. Sutter EE. Imaging visual function with the multifocal—sequence technique. Vision Res 2001;41:1241–55. Vetter RS, Sage AE, Justus KA, Cardé RT, Galizia CG. Temporal integrity of an airborne odor stimulus is greatly affected by physical aspects of the odor delivery system. Chem Senses 2006;31:359–69. Chapter III Two Interacting Olfactory Transduction Mechanisms Have Linked Polarities and Dynamics in Drosophila melanogaster Antennal Basiconic Sensilla Neurons Chapter III Chapter III Chapter III Chapter III Chapter III Chapter III Chapter III Chapter III 61 Chapter III Chapter III 63 Chapter III Acknowledgments First of all I would like to thank Andrew French and Päivi Torrkeli for offering me the opportunity to join their lab and work on this very interesting and yielding topic. They would always take the time to offer support when it was needed. And let me work independently otherwise. I would like to thank you for giving me a very nice start in Halifax both at home and in the lab. Thanks for having a good sense of humor which was very appreciated. We will always have a funny story to tell about bikes. Many thanks to Monika Stengl for not only giving me the chance to go abroad and still stay rooted in Marburg/Kassel, but also encourage me strongly to do so. Thank you for the inspiration and all the support over the years. Many thanks to Christine Nowack and Mireille Schäfer the other members of the committee, for being kind enough and agree to be part of my dissertation . Thank you also to Keram Pfeiffer, Ulli Höger, Izabel Panek and Shannon Meisner for creating a nice atmosphere in the lab. Special thanks to Ulli who would always, always help to figure things out and many times would offer hot glue as the most obvious of all solutions. Also special thanks to Shannon, who started the olfaction project in the lab and taught me how to do EAGs and was always supportive in many other ways. Thank you to the lab in Marbug/Kassel especially Nico Funk, Christian Flecke and Achim Werkenthin and Wolf Hütteroth for keeping connected and exchanging about science and a lot of science unrelated things. Thank you to the Wednesday Tupper-Henry house crew and the “dancers” for all the fun we had. Thank you to my roomies Steph Glover, Ross Soward, Jonah Bernstein, and the neighbors for making Sarah Street a great place to be. Thank you to Anita Hopes, Bettina Westerheider, Miriam Schulz, Doro Barth, Tamara Münkemüller, Matthias Schleuning, Alex Bolen, Katie McKay, Angela Carlsen, Chriz Eickhorst, Jessie Litven, Sofie Gragdmann, Dawn Kellett, Konstanze Stübner, Annette Kollar, in random order for being the way you are and for the support and caring you gave me in various ways I can’t appreciate it enough and feel very lucky to know you. Very special thanks to Keram Pfeiffer, who supported and helped me in countless ways and without whom this work would look very differently. It all meant a lot to me. Thank you to my father who always knew “it” and who was the greatest supporter of curiosity since I was a child. And thank you to Ingrid who supported me in many ways for half of my life now. Erklärung Ich versichere, dass ich meine Dissertation Dynamic characterization of olfactory receptors in the fruit fly Drosophila melanogaster (Dynamische Charakterisierung olfaktorischer Rezeptoren der Tauflige Drosophila melanogaster) selbstständig, ohne unerlaubte Hilfe angefertigt und mich dabei keiner anderen als der von mir ausdrücklich bezeichneten Quellen und Hilfen bedient habe. Die Dissertation wurde in der jetzigen oder ähnlichen Form noch bei keiner anderen Hochschule eingereicht und hat noch keinen sonstigen Prüfungszwecken gedient. Kassel, (Julia Schuckel)