campylobacter spp., yersinia spp. and salmonella spp. as zoonotic
Transcription
campylobacter spp., yersinia spp. and salmonella spp. as zoonotic
Aus dem Institut für Tierzucht und Tierhaltung der Agrar- und Ernährungswissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel CAMPYLOBACTER SPP., YERSINIA SPP. AND SALMONELLA SPP. AS ZOONOTIC PATHOGENS IN PIG PRODUCTION Dissertation zur Erlangung des Doktorgrades der Agrar- und Ernährungswissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Master of Science TANJA WEHEBRINK aus Rahden, Nordrhein-Westfalen Dekan: Prof. Dr. Joachim Krieter Erster Berichterstatter: Prof. Dr. Joachim Krieter Zweiter Berichterstatter: Prof. Dr. Edgar Schallenberger Tag der mündlichen Prüfung: 3. Mai 2007 Die Dissertation wurde mit dankenswerter finanzieller Unterstützung der H. Wilhelm Schaumann Stiftung, dem Ministerium für Soziales, Gesundheit, Familie, Jugend und Senioren des Landes Schleswig-Holstein und der Arbeitsgruppe Lebensmittelqualität und -sicherheit (QUASI) der Agrar- und Ernährungswissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel angefertigt TABLE OF CONTENTS GENERAL INTRODUCTION ………………………………………………………………………………………………… 1 CHAPTER ONE Campylobacter spp. und Yersinia spp. beim Schwein: ein Überblick ………………………………………………………………………………………………… 3 CHAPTER TWO Prevalence of Campylobacter spp. and Yersinia spp. in the pig production ………………………………………………………………………………………………. 19 CHAPTER THREE Campylobacter spp.: Risk factor analysis in fattening farms ………………………………………………………………………………………………. 37 CHAPTER FOUR Simulation study on the epidemiology of Salmonella spp. in the pork supply chain ………………………………………………………………………………………………. 53 GENERAL DISCUSSION ………………………………………………………………………………………………. 73 GENERAL SUMMARY ………………………………………………………………………………………………. 85 ZUSAMMENFASSUNG ………………………………………………………………………………………………. 89 GENERAL INTRODUCTION Any disease and/or infection which is naturally "transmissible from vertebrate animals to man" is classified as a zooanthroponosis according to EU-directive 92/117 (1992). To date, over 200 zooanthroponoses have been described, involving all types of agents bacteria, parasites and viruses (Krauss et al., 2004). The main part of zoonotic agents is represented by bacterial pathogens. Every year millions of people become sick because of food-borne zoonoses such as salmonellosis, campylobacteriosis or yersiniosis causing fever, diarrhoea, abdominal pain, malaise and nausea. Other bacterial zoonoses are: anthrax, brucellosis, E. coli-infections, leptospirosis, plague, shigellosis and tularaemia. The second group of zooanthroponoses causing pathogens are parasites. In Latin America for example, 100 out of 100,000 inhabitants are estimated to suffer from cysticercosis (World Health Organisation, 2007). Other parasitical zoonoses are echinococcosis/hydatidosis, toxoplasmosis and trematodosis (Heeschen, 2005). The third class of zoonotic pathogens are viruses. Rabies is a disease of carnivores and bats mainly transmitted to humans by bites. Almost all persons severely exposed to rabid animals will die if left untreated. An estimated number of 55,000 persons, mainly children, die of this disease in the world every year (World Health Organisation, 2007). Other viral zoonoses are avian influenza, Crimean-Congo haemorrhagic fever, ebola and Rift Valley fever (Krauss et al., 2004). As bacterial pathogens are mainly responsible for zoonoses the following thesis concentrates on this important group, especially gram-negative enterobacteriaceae. Zooanthroponoses even though the estimated number of unreported cases is much higher than of the reported ones. These zooanthroponoses affect hundred thousands of people especially in developing countries, although most of them can be prevented. The aim of the present thesis was to contribute to a better understanding of the bacterial zoonotic pathogens Campylobacter spp., Yersinia spp. and Salmonella spp. causing disease in humans and animals and to use this information to assess and manage the risk to animals and humans. CHAPTER ONE summarises several studies emphasising the importance of Campylobacter spp. and Yersinia spp. as widespread pathogens in the pig production chain. First, the taxonomy and the pathogen character are described, and second, prevalence in the pig production is reported. 1 The objective of CHAPTER TWO was to gather further information about the prevalence of Campylobacter spp. and Yersinia spp. at different stages of the pig production chain via cultural isolation. Samples were taken from sows, suckling piglets, growing and finishing pigs, carcasses, raw meat, forage and their environment (separating plate, feeding trough). A further purpose in CHAPTER THREE was to increase the knowledge about the sources of infection from Campylobacter spp. and their qualitative and quantitative importance in pig production. Analysis of the data from questionnaires from the corresponding pig farms provided first indications of factors which may influence the prevalence of Campylobacter spp. in herds. CHAPTER FOUR includes an exploration of possible measures that can be implemented in farrowing and fattening units to control the introduction and reduce the prevalence of Salmonella in finishing pigs. A stochastic state-transition simulation model was established to gather further information about the influence of the risk factors in the different pig production stages on the Salmonella spp. prevalence in fattening pigs. Furthermore, the influence of preventive arrangements of the immunisation of sows, and additionally, of pathogen-free purchased gilts on the Salmonella spp. prevalence in the farrowing and fattening unit were determined. References EU-directive 92/117 EWG des Rates vom 17. Dezember 1992 über Maßnahmen zum Schutz gegen bestimmte Zoonosen bzw. ihre Erreger bei Tieren und Erzeugnissen tierischen Ursprungs zur Verhütung lebensmittelbedingter Infektionen und Vergiftungen. Amtsblatt L62 vom 15.3.1993. Heeschen, W.H., 2005. Zoonosen und lebensmittelbedingte Erkrankungen. Systematische Übersicht der wichtigsten Bakterien, Viren und Parasiten. Behr’s Verlag, Hamburg. Krauss, H., Weber, A., Appel, M., Enders, B., Graevenitz, v.A., Isenberg, H.D., Schiefer, H.G., Slenczka, W., Zahner, H., 2004. Zoonosen. Von Tier zu Mensch übertragbare Infektionskrankheiten. 3. Auflage, Deutscher Ärzte-Verlag GmbH, Köln. WHO, 2007. World Health Organisation, http://www.who.int/en. 2 Chapter One Campylobacter spp. und Yersinia spp. beim Schwein: ein Überblick TANJA WEHEBRINK1, NICOLE KEMPER1, ELISABETH GROSSE BEILAGE2 and JOACHIM KRIETER1 1 Institute of Animal Breeding and Husbandry Christian-Albrechts-University D-24118 Kiel, Germany 2 University of Veterinary Medicine Hannover Fieldstation for Epidemiology D-49456 Bakum, Germany Accepted for publication in Züchtungskunde 3 1. Einleitung Campylobacter spp.- und Yersinia enterocolitica- Infektionen zählen neben den Salmonella spp.- Infektionen zu den häufigsten gemeldeten Infektionskrankheiten des Menschen, die durch Lebensmittel übertragbar sind und Darminfektionen hervorrufen können. Im Jahr 2006 führten laut Robert Koch-Institut (2007) Infektionen durch Campylobacter spp. zu 51.764 Erkrankungsfällen in Deutschland. Bei Yersinia spp. lag die Höhe der Erkrankungsfälle im gleichem Jahr bei 5.135. Besondere Bedeutung kommt hier vor allem den thermophilen Spezies Campylobacter (C.) jejuni und C. coli zu, welche am häufigsten von an Enteritis erkrankten Personen isoliert wurden. Yersinia (Y.) enterocolitica ist neben Y. pestis und Y. pseudotuberculosis eine der drei humanpathogenen Yersinia-Spezies. Hier ist das Bioserovar 4/O:3 von besonderer Bedeutung, da dieses die Hauptursache humaner Yersiniosen im europäischen Raum ist. Beide Erkrankungen sind vor allem Kleinkindererkrankungen, bei der Campylobacteriose ist eine zweite Erkrankungshäufung im frühen Erwachsenenalter zu erkennen. Hauptsächlich äußern sich die Erkrankungen mit Durchfällen, aber auch schwere oder klinisch inapparente Verläufe sind zu beobachten. Ebenso sind Spätfolgen, wie beispielsweise das Erythema nodosum (Neubauer et al., 2001a), möglich. Bei Campylobacter spp. ist die geringe Infektionsdosis von 500-800 Keimen noch hervorzuheben (Black et al., 1988). Für beide Keime besteht seit Inkrafttreten des Infektionsschutzgesetzes im Jahr 2001 Meldepflicht. Da beide Infektionen beim Schwein in der Regel symptomlos verlaufen (Bätza, 1996) und somit weder im Bestand noch auf dem Schlachthof bei der Schlachttier- und Fleischuntersuchung erkannt werden, ist es möglich, dass diese Zooanthroponosenerreger in die Lebensmittelkette gelangen. Der vorliegende Artikel liefert eine Literaturzusammenfassung über diese zwei wichtigen Zooanthroponosenerreger, verdeutlicht die Erregereigenschaften und liefert einen Überblick über die Prävalenzen in der Schweineproduktion. 2. Geschichte und Taxonomie 2.2 Campylobacter-Spezies Der Kinderarzt Theodor Escherich beschrieb 1886 spiralig gewundene Bakterien, welche er aus dem Darminhalt von Säuglingen mit Diarrhoe isoliert hatte. Zwei Jahre später gelang ihm die Isolierung von ebenfalls spiralförmigen Darmbakterien von an Durchfall erkrankten Katzen, welche er Vibrio felinus nannte (Escherich, 1886). Im Jahre 1919 wurden diese 4 Bakterien auch bei abortierten Rinderfeten nachgewiesen und als Vibrio fetus bezeichnet (Smith und Taylor, 1919). Jones et al. (1931) fanden Vibrionen bei an Winterdysenterie erkrankten Kälbern und nannten sie aufgrund ihrer Ähnlichkeit zu Vibrio fetus, aber dem Vorhandensein von andere Antigeneigenschaften, Vibrio jejuni. Weitere mikroaerophile Mikroorganismen wurden im Colon von dysenterischen Schweinen gefunden und wegen ihrer Vibrionenähnlichkeit mit der Bezeichnung Vibrio coli versehen (Doyle, 1944). King fand 1957 zwei Gruppen von Vibrionen in Blutkulturen von Patienten, die an einer hämorrhagischen Darmentzündung erkrankt waren. Die eine Gruppe war Vibrio fetus sehr ähnlich, die andere Gruppe beschrieb er als „related Vibrios“. Sebald und Veron (1963) stellten fest, dass sich die DNA dieser beiden Gruppen von der DNA der Gattung Vibrio im Guanin- und Cytosingehalt unterschied. Aufgrund dieser Erkenntnis wurde dieser neuen Spezies der Genusname Campylobacter gegeben, der aus dem Griechischen stammt und „gebogener Stab“ bedeutet. Die ersten Isolierungen aus Stuhlproben von an Durchfall erkrankten Patienten gelangen Anfang der siebziger Jahre (Butzler et al., 1973). Die Entwicklung verbesserter Nachweisverfahren für Campylobacter spp. führte zunehmend zu einer weltweiten Wahrnehmung insbesondere von C. coli und C. jejuni als bakterielle Enteritiserreger beim Menschen (Kist, 2002). 2.3 Yersinia-Spezies Im Jahre 1934 wurde die erste anerkannte Beschreibung von Yersinia enterocolitica in den USA durch MCiver und Pike (1934) verfasst. Sie berichteten unter den Namen Flavobacterium pseudomallei über einen kleinen gramnegativen Kokkobazillus, welcher aus zwei Gesichtsabzessen einer Farmbewohnerin isoliert worden war. Sie hielten es aber für wahrscheinlicher, es mit einer atypischen Form eines bereits bekannten Erregers zu tun zu haben als mit einer neuen Spezies. Fünf Jahre später schenkten Schleifstein und Coleman (1939) der Beschreibung von MCiver und Pike Beachtung, als sie einen Keim untersuchten, der Ähnlichkeit mit Actinobacillus lignieresii und Pasteurella pseudotuberculosis hatte. Der Keim wurde aus dem Darminhalt isoliert, deshalb schlugen sie den Name Bacterium enterocoliticum vor. Der Gattungsname Yersinia wurde im Jahre 1944 durch Van Loghem zu Ehren von Alexandre Yersin, welcher 1894 in Hongkong während einer Pestepidemie den Erreger der Pest (ehemals Pasteurella pestis, heute Yersinia pestis) entdeckte, begründet. Im Jahre 1964 wurde das Bacterium enterocoliticum in Y. enterocolitica umbenannt und in die Familie der Enterobacteriaceae eingegliedert (Fredriksen, 1964). Im Jahr 1980 wurden vier Yersinia-Spezies etabliert: Y. enterocolitica, Y. intermedia, Y. frederiksenii und Y. kristensinii 5 (Brenner et al., 1980). Um eine Einteilung hinsichtlich Pathogenität und Epidemiologie der Y. enterocolitica-Isolate zu erhalten, wurde eine Zuordnung zu Biovaren geschaffen. Wauters et al. (1987) nahmen, aufgrund unterschiedlicher Substratverwertung, die Einteilung in sechs Biovare vor: 1A, 1B, sowie Biovar 2 bis 5. Biovar 1A fasst den überwiegenden Teil der bis dahin als apathogenen eingeschätzten Isolate zusammen. Die Biovare 2, 3, 4 und 5 enthalten die pathogenen europäischen, die Biovare 1B die pathogenen in Amerika isolierten Stämme. Die tierpathogenen Stämme gehören stets zu den Biotypen 3 oder 5 (Aleksic und Bockemühl, 1990). Zusätzlich zur Einteilung in Biovare wird in der Routinediagnostik eine Einteilung in Serovare vorgenommen. Die Serotypisierung basiert überwiegend auf O-Antigenen (Oberflächenantigen), seltener auf den H- (Geißel-) oder F- (Fimbrien) Antigen. Für YersiniaSpezies wurden bis heute 60 O- Gruppen gefunden, wovon 28 auf Y. enterocolitica entfallen (Aleksic und Bockemühl, 1990). Während bestimmte O- Antigene bei verschiedenen Spezies vorkommen, sind die H- Antigene Spezies-spezifisch und können daher auch zur direkten Identifizierung der Yersinia - Arten herangezogen werden. Bislang wurden 18 H- Faktoren bei Y. enterocolitica definiert. Hier sind bestimmte Kombinationen von H- Antigenfaktoren signifikant für pathogene Serotypen und können bei der Unterscheidung pathogener und apathogener Stämme hilfreich sein. Nach Befunden von Aleksic und Bockemühl (1990) sind die pathogenen Serotypen O:3, O:9 und O:5,27 von Y. enterocolitica stets mit den HAntigenen a,b; a,b,c; a,b,c,v; a,c; c oder b,c kombiniert. Der H- Antigenkomplex H: b,e,f,i kommt hingegen bei den fast ausschließlich in den USA auftretenden pathogenen Serovaren O:8; O:4,32; O:18; O:20 und O:21 von Y. enterocolitica vor (Aleksic und Bockemühl, 1990). 3. Spezifische Eigenschaften 3.1 Campylobacter-Spezies Nach Garrity et al. (2002) untergliedert sich die Familie der Campylobacteriaceae in Gattung I Campylobacter, Gattung II Arcobacter und Gattung III Sulfurospirillum. Zur Zeit sind 16 Spezies und 6 Subspezies von Campylobacter spp. anerkannt (On et al., 2001). Die humanpathogenen Campylobacter können in zwei Hauptgruppen eingeteilt werden: in die Durchfallerreger wie C. jejuni, C. coli, C. lari, C. upsaliensis und in die Erreger extraintestinaler Infektionen wie C. fetus (Hu und Kopecko, 2003). Bakterien der Gattung Campylobacter sind gramnegative, schlanke, kommaförmige, sporenlose Stäbchenbakterien, die ca. 0,2-0,5 µm breit und 0,5-5 µm lang sind (Rolle und Mayr, 2002). Sie können eine oder mehrere helikale Windungen besitzen und maximal bis zu 6 acht µm Länge erreichen. Die Bildung kurzer Ketten ist ebenfalls möglich. Sie erscheinen auch s-förmig und in älteren Kolonien können kokkoide Zellen auftreten. Charakteristisch ist die korkenzieherartige Bewegung, die durch die polare monotriche Begeißelung entsteht. Campylobacter spp. haben einen respiratorischen Stoffwechsel, verwerten Kohlenhydrate weder fermentativ noch oxidativ (d.h. sie sind „asaccharolytisch“) und ernähren sich von Zwischenprodukten aus dem Tricarbonsäurezyklus und von Aminosäuren (Anonymus, 1994). Eisen wird ebenfalls von Campylobacter spp. als essentieller Nährstoff benötigt (PARK, 2002). Die Vermehrung findet in Temperaturbereichen von 32°C bis 46°C bei mikroaerophilem Klima mit ca. 5% O2, 10% CO2 und 85% N2 statt (Hunt et al., 2001). Vermutlich ist die Mikroaerophilie auch ein Resultat der Adaption von Campylobacter spp. an die atmosphärische Zustände im Darm von warmblütigen Tieren und Vögeln (Park, 2002). Die minimale Wachstumstemperatur liegt bei thermophilen Campylobacter spp. bei 31°C bis 32°C. Unter 30°C sind die Keime nicht mehr wachstumsfähig. Somit ist eine Multiplikation während der Handhabung oder Lagerung von Lebensmitteln bei Zimmertemperatur ausgeschlossen (Jacobs-Reitsma, 2000). Die Ursache für die fehlende Vermehrung außerhalb des Tierkörpers und unterhalb von 30°C kann möglicherweise an der fehlenden Produktion von Kälteschockproteinen liegen (Parkhill et al., 2000). In kontaminierten Substraten haben thermophile Campylobacter spp. bei niedrigen Temperaturen eine höhere Überlebensfähigkeit als bei höheren Temperaturen. Während sie bei 4°C mehrere Wochen lebensfähig sind, sterben sie bei Temperaturen von 55°C ab (Wundt und Kasper, 1982). Die Keime sind sehr empfindlich gegenüber Trockenheit. Sie überleben nur kurze Zeit in trockener Atmosphäre. Bei aW-Werten kleiner als 0,97 sterben die Keime schnell ab. Lebensfähige Keime können nur von feuchten Oberflächen isoliert werden. Die Kombination aus Temperatur und Luftfeuchtigkeit scheint eine essentielle Rolle für das Überleben der Keime zu spielen (Doyle und Roman, 1982). Der pH-Wert des umgebenden Milieus beeinflusst das Überleben von Campylobacter spp. in Abhängigkeit von der Zeit und der Temperatur. Das pH-Optimum liegt bei Werten zwischen 6,5 und 7,5, das Maximum bei pH 9. Werte von über pH 9 und unter pH 4 führen zum raschen Absterben, besonders bei höheren Temperaturen (Gill und Harris, 1983). Campylobacter spp. lassen sich leicht durch ultraviolette Strahlen und Röntgenstrahlen abtöten. Gegen UV-Strahlen ist C. jejuni empfindlicher als Escherichia coli und Y. enterocolitica (Butler et al., 1987). Thermophile Campylobacter spp. können unter schwierigen Umgebungsbedingungen einen besonderen Zustand einnehmen, in dem sie lebensfähig aber nicht kultivierbar sind. Dieses 7 viable-but-nonculturable-Stadium (VBNC) ist auch bei anderen humanpathogenen Erregern wie z.B. Escherichia coli, Salmonella enteritidis, Vibrio cholerae und Legionella pneumophila bekannt (Tholozan et al., 1999). Einige Autoren beschreiben diese Form als eine Art Schutzzustand, bei dem sich die Keime in einem Ruhestadium befinden und später, unter besseren Bedingungen, wieder wachsen können. Andere Verfasser bezeichnen dieses Stadium als eine degenerative Form des beginnenden Zelltodes. Die Bakterien bleiben in diesem Zustand aber infektionsfähig. Bei der Identifizierung der unterschiedlichen Campylobacter-Spezies wird zwischen genotypischen und phänotypischen Methoden unterschieden (Nachamkin et al., 2000). Bei den phänotypischen Methoden handelt es sich um relativ einfache, oft angewandte Tests, die auf dem Nachweis von biochemischen Reaktionen, verschiedenen Wachstumsparametern, Resistenzprofilen gegenüber Antibiotika und serologischen Verfahren beruhen. Jedoch verhalten sich Campylobacter spp. biochemisch inert, was die Differenzierung und Unterscheidung der Spezies erschwert. Die einzige Reaktion zur biochemischen Reaktion der beiden Spezies C. jejuni und C. coli ist die Hippurathydrolyse. Genotypische Methoden basieren auf dem Nachweis stabiler chromosonaler Unterschiede, die reproduzierbar und stark diskriminierend sind. Vor allem für die Typisierung von Stämmen und für die epidemiologische Fragestellung eignen sich diese Methoden gut. 3.2 Yersinia-Spezies Yersinia ist eine Gattung innerhalb der Familie der Enterobacteriaceae und umfasst derzeit elf verschiedene Spezies. Yersinia pestis, der Erreger des „schwarzen Todes", einer Infektion, die im Mittelalter epidemisch auftrat, ist heute aus unseren Breitengraden verschwunden (Kayser et al., 1993), während Y. pseudotuberculosis und vor allem Y. enterocolitica als Erreger der menschlichen Yersiniose in den letzten Jahren zunehmend an Bedeutung gewonnen hat (Bottone, 1999). Yersinia enterocolitica ist jedoch nicht ausschließlich als humanpathogener Erreger einzustufen. Neben pathogenen Vertretern dieser Spezies existieren noch eine Reihe von apathogenen Umweltisolaten, die diagnostisch abgegrenzt werden müssen (Neubauer et al., 2001b). Yersinia enterocolitica ist ein gramnegatives, fakultativ anaerobes, pleomorphes, peritrich begeißeltes Stäbchenbakterium, das eine Länge von 1,0-5,0 µm erreicht. Yersinien sind oxidasenegativ, katalasepositiv und reduzieren Nitrat und Nitrit (Aleksic und Bockemühl, 1990). Sie kommen ubiquitär vor und bilden keine Kapseln oder Sporen (Knapp, 1988). 8 Bei unter 28°C sind sie beweglich, darüber jedoch nicht, da die Geißeln in der Regel nur bei Temperaturen unter 30°C gebildet werden (Rolle und Mayr, 2002). Yersinia enterocolitica ist psychrotrop, das bedeutet, dass eine Vermehrung bei Kühlungstemperaturen bis 0°C möglich ist. Die optimale Wachstumstemperatur beträgt +30°C, wobei die Obergrenze der Vermehrungsfähigkeit bei +43°C liegt. Zur Bestimmung des Serotys sind zwischenzeitlich kommerzielle Test erhältlich, die auf einer Agglutinationsreaktion beruhen. In der Diagnostik des weltweit am häufigsten beim Menschen isolierten Serovars Y. enterocolitica Serotyp O:3 ist eine biochemische Charakterisierung zusätzlich zur Serotypisierung unumgänglich, um eine sichere Aussage über die klinische Relevanz eines Isolates (insbesondere bei klinischem Material und Umweltproben) treffen zu können, da dieses Serovar auch bei anderen verwandten YersinienSpezies oder Stämme des Biotyps 1A anzutreffen ist (Hoofar und Holmvig, 1999). Die bakteriologische Diagnostik pathogener Y. enterocolitica-Isolate ist bis heute mit hohem zeitlichen Aufwand verbunden, und mögliche Diagnosen können aufgrund mangelnder Spezifität und Sensitivität der zur Zeit verfügbaren Testsysteme immer nur unter Vorbehalt gestellt werden oder bedürfen in ihrer Interpretation eines hohen Maßes an Expertise. Bis heute ist trotz der hohen zoonotischen Bedeutung des Erregers keine einheitliche Methode zum bakteriologischen Nachweis pathogener Y. enterocolitica-Isolate beschrieben. Erschwerend kommt hinzu, dass allein die Vielzahl der bis heute beschriebenen Untersuchungen zu widersprüchlichen Ergebnissen führt (Arnold, 2002). 4. Prävalenzen und epidemiologische Aspekte in der Schweineproduktion 4.1 Campylobacter spp. und Yersinia spp. beim Schwein Thermophile Campylobacter spp. scheinen keine Bedeutung für Erkrankungen bei Schweinen zu haben (Altekruse und Swerdlow, 2002). Der Keim ist wahrscheinlich der normalen Darmflora zuzurechnen (Görgen et al., 1983). Beim Schwein ist C. coli die verbreitetste Spezies mit Nachweisraten von bis zu 100%. Einzelne Untersuchungen zeigen aber auch, dass C. jejuni in bestimmten Beständen sehr häufig isoliert werden kann (Young et al., 2000). Viele Untersuchungen belegen, dass sich Campylobacter spp. häufig aus dem Kot gesunder Schweine isolieren lassen. Zu diesem Ergebnis kam auch Gaull (2002), der bei der Beprobung von Mast- und Schlachtschweinen Nachweisraten zwischen 70% und 93% ermittelten. Ähnliche Prävalenzen stellte auch Weijtens (1996) in einer Studie fest, in der er Mastschweine im Verlauf einer Mastperiode auf Campylobacter spp. untersuchte. Dabei 9 wurde bei 98% der elf Wochen alten Schweine Campylobacter spp. aus dem Kot isoliert, wobei ein Rückgang auf 85% zum Zeitpunkt der Schlachtung zu verzeichnen war. Die Ursache für den Rückgang liegt möglicherweise in der stabileren Darmflora älterer Tiere, die das Wachstum von Campylobacter spp. behindert. Aber auch ein Futterwechsel während der Mast könnte als Erklärung hierfür angeführt werden. Es konnte beobachtet werden, dass einzelne Tiere an aufeinander folgenden Beprobungsterminen unterschiedliche Untersuchungsergebnisse aufwiesen. Dass Schweine während der Mast eine CampylobacterFreiheit erlangen und sich anschließend reinfizieren, scheint jedoch unwahrscheinlich. Vielmehr ist von einer intermittierenden Ausscheidung auszugehen, die auf einer heterogenen Verteilung des Erregers infolge chemischer Anziehungskräfte beruht. Da sowohl Untersuchungen von Weijtens (1996) und Gaull (2002) gezeigt haben, dass Schweine schon zu Beginn der Mastperiode Campylobacter spp. im Kot aufweisen, ist der primäre Infektionszeitpunkt bereits im Ferkelalter zu suchen. Sauen in Ferkelerzeugerbetrieben weisen häufig hohe Infektionsraten von bis zu 100% auf und können durch erregerhaltige Ausscheidung einen massiven Infektionsdruck in ihrer Umwelt aufbauen (Weijtens, 1996). Während die Ferkel zum Zeitpunkt der Geburt noch Campylobacter-frei sind, steigen die Prävalenzen schon in den ersten Lebenswochen erheblich an. Wenn auch die Aufstallung der Ferkel zunächst einen Einfluss auf die Höhe der Prävalenz in den ersten Lebenswochen zu haben scheint (Ferkel in Ställen mit Fußbodenheizung weisen geringere Belastungen auf), relativieren sich die Unterschiede am Ende der Aufzuchtphase und erreichen Nachweisraten von 90% und mehr (Gaull, 2002). Das Schwein ist seit langem als Reservoir von humanpathogenen Yersinia enterocolitica der Serovare O.3, O:9 und O:5,27 bekannt (Johannessen et al., 2000). Beim Schwein selbst tritt die Yersiniose überwiegend bei Jungtieren klinisch apparent auf. Ältere Tiere gelten als asymptomatische Träger des Keims (Neubauer et al., 2001b). Serologische Untersuchungen in Norwegen zeigen, dass 86% der untersuchten reinen Mastbestände positiv waren, wohingegen die Herdenprävalenz bei geschlossenem System mit 53,1% erheblich niedriger lag (Skjerve et al., 1998). Die Yersinia spp.-Infektion wird durch Zukauf und anschließender fäkal-orale Kontamination sowie durch infiziertes Sperma oder Abortmaterial nach intrauteriner Infektion verbreitet. Nach Ansicht der Autoren ist das Transportfahrzeug eine wichtige Kontaminationsquelle. Auch der Einsatz von Stroheinstreu birgt nach ihrer Auffassung ein erhöhtes Risiko. Dagegen konnte nach ihrer Auswertung die Herdenprävalenz durch den Einsatz einer Unterdruckventilation sowie einer manuellen Fütterung gesenkt werden. Skjerve et al. (1998) kamen zu dem Schluss, dass die Risikominimierung für eine Y. 10 enterocolitica-Infektion durch die strikte Trennung von infizierten und nicht-infizierten Beständen zu erreichen ist. Bottone (1997) isolierte von klinisch gesunden Schweinen pathogene Y. enterocolitica. Dabei lag die Isolationsrate aus dem Rachen weit höher als jene aus dem Kot. Im Jahr 2000 wurden in Süddeutschland an einem Schlachthof 50 Schlachtschweine untersucht, hierbei konnten in 60% der Tonsillen und 10% der Kotproben Y. enterocolitica 4/O:3 nachgewiesen werden (Fredriksson-Ahomaa et al., 2000). Weitere Daten, die aus Deutschland stammten, wurden 2004 erfasst. Dabei waren 45,5% der untersuchten Schweinemastbestände in Bayern serologisch positiv (Hensel et al., 2004). Verlaufsuntersuchungen vom Ferkel bis zum adulten Tier liegen bislang noch nicht vor, aber es ist bekannt, dass bei Sauen viel seltener Y. enterocolitica aus den Tonsillen zu isolieren ist. So untersuchten Korte et al. (2004) Tonsillen von Mastschweinen und Sauen von sieben verschiedenen Schlachthöfen. Während bei den Mastschweinen 56% positiv waren, konnte bei den Sauenproben nur bei 14% der Erreger nachgewiesen werden. 4.2 Campylobacter spp. und Yersinia spp. im Schweinefleisch In Lebensmittelproben wurden in Deutschland im Jahr 2001 nach Mitteilung von elf Bundesländern in einer von insgesamt 159 untersuchten Schweinefleischproben Campylobacter spp. nachgewiesen. Von 16 Anlassproben wies keine ein positives Ergebnis auf (Hartung, 2002). In den USA untersuchten Zhao et al. (2001) Fleischprodukte aus 59 Fleischtheken verschiedener Supermarktketten auf das Vorkommen von Campylobacter spp.. Dabei war in 1,7% der Proben vom Schwein der Erreger nachweisbar. Oosterom et al. (1985) gehen davon aus, dass positive Campylobacter-Nachweise am Schlachtkörper weniger durch den ursprünglichen Keimgehalt im Darm der Tiere hervorgerufen werden, sondern vielmehr Kreuzkontaminationen durch Oberflächen und Arbeitsgeräte in der Schlachthalle darstellen. Deutlich stärker als das Fleisch dieser Tierart sind ihre Lebern belastet. So konnten Kramer et al. (2000) in 71,1% der Schweinelebern thermophile Campylobacter nachweisen. Als Ursache für diese hohe Prävalenz vermuteten sie eine Kreuzkontamination, da die Lebern zu mehreren Kilogramm in jeweils einem Paket unter Luftabschluss verpackt wurden. Die Nachweisrate von Y. enterocolitica in rohem Schweinefleisch ist mit Ausnahme von Schweinezungen und –innereien gering (Beer, 1995), die Prävalenz im Hackfleisch, für welches in manchen Regionen Kopffleisch und Tonsillen verwendet werden, ist jedoch hoch (Tauxe et al. 1987). Über das Vorkommen von Y. enterocolitica in hitzebehandelten Schweinefleischprodukten liegen nur wenige Studien vor (Hank, 2003). Bisher wurden keine pathogenen Stämme aus hitzebehandelten Produkten isoliert. Dennoch wurden apathogene Y. 11 enterocolitica Stämme nachgewiesen. Dies zeigt, dass bei mangelhafter Hygiene eine Kreuzkontamination von rohen zu hitzebehandelten Produkten möglich ist. 5. Schlussfolgerung Wie die gezeigten Studien verdeutlichen, sind Campylobacter spp. und Yersinia spp. Keime, die in Schweinebeständen in Europa weit verbreitet sind und daher ein Risiko für die Gesundheit des Menschen darstellen. Daher sind weitere infektionsepidemiologische Studien notwendig, um das vom Schwein ausgehende Gefahrenpotential für die menschliche Campylobacter spp.- und Yersinia spp. -Infektion abschätzen zu können. Hierbei sind Langzeitstudien erforderlich, um offene Fragen bezüglich der Epidemiologie und der Eintragsquellen beider Erreger zu klären. Auch fehlen Informationen über die Erregerprävalenz in der gesamten Produktionskette beim Schwein. Diese sind notwendig, um festzustellen, auf welcher Produktionsstufe eine Erregerbekämpfung sinnvoll ist, um den Eintrag zu minimieren. Es sollte geklärt werden ob der Einsatz einer Impfung zur Erregerreduktion auf Bestandsebene praktikabel ist, oder eine Änderung der Schlachttechnik einen positiven Einfluss hat. Da Campylobacter-Keime in der Lage sind, den VBNC-Status einzunehmen, kann die Frage des Überlebens des Erregers auf der Schlachttierkörperoberfläche nicht völlig geklärt werden. Über die Mechanismen und Bedeutung des VBNC-Status bei Campylobacter spp. sollten weitere Untersuchungen vorgenommen werden. Zur Zeit gibt es weder für Campylobacter spp. noch für Yersinia spp. einen „Gold Standard“ in der Analysetechnik. Dies erschwert die Vergleichbarkeit der verschiedenen Studien untereinander. Somit ist zusätzlich die Entwicklung für eine sichere, schnelle, einfach durchführbare und kostengünstige Erregerdiagnostik unabdingbar. Zusammenfassung Die vorliegende Arbeit diente als Literaturübersicht über Campylobacter spp. und Yersinia spp. in der Schweineproduktionskette. Es wurde zum einen die Systematik und die Erregereigenschaften dieser zwei weltweit bedeutenden Zooanthroponoserreger dargestellt. Zum anderen wurde über die herrschende Prävalenzen in der Produktionskette beim Schwein berichtet. Es wird deutlich, dass Schweine häufig Träger humanpathogener Campylobacter spp. und Yersinia spp. sind und eine Kontamination ihres Fleisches während des Schlachtprozesses möglich ist. Allerdings sind humanpathogene Campylobacter spp. und Yersinien spp. relativ selten im Fleisch nachweisbar. Eine größere Gefahr stellen Innereien 12 dar. Um Schweinefleisch noch sicherer zu machen, sollte in Zukunft versucht werden, die Epidemiologie des Erregers genauer aufzuklären, um somit die Ursache der Erregerausbreitung zu erkennen und geeignete Gegenmaßnahmen ergreifen zu können. Schlüsselwörter: Campylobacter spp., Yersinia spp., Schwein, Literaturübersicht Abstract This review summarises several studies emphasising the importance of Campylobacter spp. and Yersinia spp. in the pig production chain as widespread pathogens. First, taxonomy and pathogen character of these world-wide important pathogens were described, and second, prevalence in the pig production was reported. Obviously, pigs are often carriers of Campylobacter spp. and Yersinia spp. causing infections in humans. Contamination during the slaughtering process is possible. However, pathogenic Campylobacter spp. and Yersinia spp. are comparatively infrequently isolated from meat. A bigger health risk is represented by entrails. Concluding, to increase pork safety, further epidemiological studies are urgently needed to determine the origin of pathogens and to take counteractive measures. keywords: Campylobacter spp., Yersinia spp., pigs, review article Literatur Aleksic, S., Bockemühl, J., 1990. Mikrobiologie und Epidemiologie der Yersiniosen. Immun. Infekt. 18, 178-185. Altekruse, S.F., Swerdlow, D.L., 2002. Campylobacter jejuni and related organisms. In: Cliver DO, Riemann HP, editors. Foodborne Diseases. Amsterdam: Academic Press, an imprint of Elsevier Science, 103-112. Anonymus, 1994. Bergey´s Manuel of Determinative Bacteriology. Ninth edition; Verlag Williams&Wilkins 41, 58-61. Arnold, T., 2002. Nachweis von Salmonella und Yersinia enterocolitica im persistent infizierten Schwein. (Diss. med. vet.). Univ. Leipzig. Bätza, H.J., 1996. Bakterielle Zoonosen. H. Hoffmann-Verlag Berlin. Beer, D., 1995. Isolation of Yersinia enterocolitica from foods. Contr. Microbiol. Immunol. 13, 71-73. 13 Black, R.E., Levine, M.M., Clements, M.L., Hughes, T.P., Blaser, M.J., 1988. Experimental Campylobacter jejuni infection in humans. I. Infect. Dis. 157, 472-479. Bottone, E.J., 1999. Yersinia enterocolitica: the charisma continues. Clin. Microbiol. Rev. 10, 257-267. Brenner, D.J., Bercovier, H., Ursing, J., Alonso, J.M., Steigerwalt, A.G., Fanning, G.R., Carter, G.P., Mollaret, H.H., 1980. Yersinia intermedia: a new species of Enterobacteriaceae composed of rhamnose-positive, melobiose-positive, raffinosepositiv strains (formerly called atypical Yersinia enterocolitica or Yersinia enterocolitica-like). Curr. Microbiol. 4, 207-212. Butler, R.C., Lund, V., Carlson, D.A., 1987. Susceptibility of Campylobacter jejuni and Yersinia enterocolitica to UV radiation. Appl. Environ. Microbiol. 53, 375-378. Butzler, J.P., Dekeyser, P., Detrain, M., Dehaen, F., 1973. Related vibrio in stools. J. Pediatr. 82, 493-495. Doyle, L.P., 1944. A vibrio associated with swine dysentery. Am. J. Vet. Res. 5, 3-5. Doyle, M.P., Roman, D.J., 1982. Sensitivity of Campylobacter jejuni of drying. J. Food Prot. 45, 507-510. Escherich, T., 1886. Beiträge zur Kenntnis der Darmbacterien. II Vibrio felinus. Münch. med. Wschr. 33, 759-763. Fredriksen, W., 1964. A study of some Yersinia-pseudotuberculosis-like bacteria („Bacterium enterocoliticum“ and Pasteurella X). Proceedings of the XIV Scandinavian Congress an Pathology and Microbiology, Oslo, Norwegian Universities Press., 103-104. Fredriksson-Ahomaa, M., Bucher, M., Stolle, A., 2000. Prävalenz von Yersinia enterocolitica Bioserotype 4/O:3 in Tonsillen bei Schlachtschweinen in der Region München. 41 Tagung des Arbeitsgebietes Lebensmittelhygiene der DVG, Garmisch-Partenkirchen, Teil I Vorträge, 116-122. Gattity, G.M., Johnson, K.L., Bell, J., Searles, D.B., 2002. Taxonomic outline of the Bergey´s Manual © of Systematic Bacteriology, 2nd edition, Release 30 July 2002. Gaull, F., 2002. Vorkommen von Campylobacter coli und Campylobacter jejuni bei Schweinen im Bestand und nach der Schlachtung sowie in weiteren Lebensmitteln tierischen Ursprungs – Typisierung der Isolate und Vergleich mit humanen Isolaten. (Diss. med. vet.). Univ. Leipzig. 14 Gill, C.O., Harris, L.M., 1983. Limiting conditions of temperature and pH for growth of „thermophilic“ Campylobacters on solid media. J. Food Prot. 46, 767-768. Görgen, M., Kirpal, G., Bisping, W., 1983. Untersuchung zum Vorkommen von Keimen der Gattung Campylobacter beim Schwein. Teil I: Kulturelle Untersuchungen von Kot, Darminhalt und Gallenblasen. Berl. Münch. Tierärztl. Wschr. 96, 86-89. Hank, C., 2003. Ein Beitrag zum Vorkommen von Yersinia enterocolitica in Hackfleisch und Fleischerzeugnissen vom Schwein im Hinblick auf die eingesetzten Kultur- und Isolierungsverfahren. (Diss. med. vet.). Univ. München. Hartung, M., 2002. Mitteilungen der Länder über Campylobacter Nachweise in Deutschland. In: Hartung, M. (Hrsg.) Bericht über die epidemiologische Situation der Zoonosen in Deutschland für 1999. www.bgvv.de/zoonosen/referenzlaboratorien/nrl- e/files/zoober99.pdf, 105-115. Hensel, A., Nikolaou, K., Bartling, C., Petry, T., Arnold, T., Rösler, U., Czerny, C.P., Truyen U., Neubauer, H., 2004. Zur Prävalenz von Anti-Yersinia-Outer-Protein-Antikörpern bei Schlachtschweinen in Bayern. Berl. Münch. Tierärztl. Wochenschr. 117, 30-38. Hoofar, J., Holmvig C.B., 1999. Evaluation of culture methods for rapid screening of faecal samples for Yersinia enterocolitica O:3/biotype 4. Zbl. Vet. Med. (B) 46, 189-198. Hu, L., Kopecko, D.J., 2003. Campylobacter species. In: Miliotis MD, Bier JW, editors. International handbook of foodborne pathogens. Marcel Dekker, 181-98. Hunt, J.M., Abeyta, C., Tran, T., 2001. Campylobacter. In U.S. Food & Drug Administration (Hrsg.), Bacteriological Analytical Manual Online, www.cfsan.fda.gov/~ebam/bam7.html, chapter7. Jacobs-Reitsma, W.F., 2000. Campylobacter in the food supply. In: Nachamkin, I. und Blaser, M. J. (Hrsg.), Campylobacter, 2 nd edition, ASM Press, Washington, D. C., 467481. Johannessen, G.S., Kapperud, G., Kruse, H., 2000. Occurrence of pathogenic Yersinia enterocolitica in Norwegian pork products determined by a PCR method and traditional culturing method. Int. J. Food. Microbiol. 54, 75-80. Jones, F.S., Orcutt, M., Little, R.B., 1931. Vibrios (Vibrio jejuni n. sp.) associated with intestinal disorders of cows and calves. J. Exp. Med. 53, 853-863. 15 Kayser, F.H., Bienz, K.A., Eckert, J., Lindemann, J., 1993. Medizinische Mikrobiologie. Georg Thieme Verlag, Stuttgart, New York, 209-213. King, E.O., 1957. Human infections with Vibrio fetus and a closely related vibrio. J. Infect. Dis. 101, 119-128. Kist, M., 2002. Lebensmittelbedingte Infektionen durch Campylobacter. Bundesgesundheitsbl. -Gesundheitsforsch. -Gesundheitsschutz 45, 497-506. Knapp, W., 1988. Die Gattung Yersinia – Yersiniose. III. Yersinia enterocolitica. In: Brandis, H., Pulverer, J. (Hrsg.), Lehrbuch der Medizinischen Mikrobiologie, Gustav Fischer Verlag Stuttgart, 355-358. Korte, T., Fredriksson-Ahomaa, M., Niskanen, T., Korkeala, H., 2004. Low prevalence of yadA-positive Yersinia enterocolitica in sows. Foodborne Pathogens and Disease. 1, 4552. Kramer, J.M., Frost, J.A., Bolton, F.J., Wareing, D.R., 2000. Campylobacter contamination of raw meat and poultry at retail sale: identification of multiple types and comparison with isolates from human infection. J. Food. Prot. 63, 1654-1659. McIver, M.A., Pike U.R.M., 1934. Chronic glander-like infection of face caused by an organism resembling Flavabacterium pseudomallei Whitemore. Clin. miscelly. 1, 1621. Nachamkin, I., Engberg, J., Aarestrup, F.M., 2000. Diagnosis and antimicrobial susceptibility of Campylobacter species. In Nachamkin, I., und Blaser, M. J., (Hrsg.), Campylobacter, 2 nd edition, ASM Press, Washington, D.C., 45-66. Neubauer H., Sprague, L.D., Scholz, H., Hensel A., 2001a. Yersinia enterocoliticaInfektionen: 2. Bedeutung bei Menschen. Berl. Münch. Tierärztl. Wschr. 114, 81-87. Neubauer H., Sprague, L.D., Scholz, H., Hensel, A., 2001b. Yersinia enterocolitica-Infektion: 1. Bedeutung bei Tieren. Berl. Münch. Tierärztl. Wschr. 114, 8-12. On, S.L., 2001. Taxonomy of Campylobacter, Arcobacter, Helicobacter and related bacteria: current status, future prospects and immediate concerns. J. Appl. Microbiol. 90, 1-15. Oosterom, J., 1985. Survival of Campylobacter jejuni during poultry processing and pig slaughtering. J. Food Prot. 46, 702-706. Park, S.F., 2002. The physiology of Campylobacter species and its relevance to their role as foodborne pathogens. Int. J. Food Microbiol. 74, 177-188. 16 Parkhill, J., Wren, B.W., Mungall, K., Ketley, J.M., Chrucher, C., Basham, D., Chillingworth, T., Davies, R.M., Feltwell, T., Holroyd, S., Jagels, K., Karlyshev, A.V., Moule, S., Pallen, M.J., Penn, C.W., Quail, M.A., Rajandream, M.A., Rutherford, K.M, Van Vliet, A.H., Withehead, S., Barrell B.G., 2000. The genome sequence of the foodborne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403, 665-668. Rolle, M., Mayr A., 2002. Medizinische Mikrobiologie, Infektions- und Seuchenlehre, 7. Auflage, Enke-Verlag, 417-488. Robert Koch-Institut, 2007. Epidemiologisches Bulletin Nr. 3. Schleifsten, J., Coleman, M.B., 1939. An unidentified microorganism resembling B. lignieri and Past. pseudotuberculosis and pathogenic for man. NY State J. Med., 39, 1749-1753. Sebald, M., Véron, M., 1963. Teneur en bases de l’ADN et classification des vibrions. Ann. Inst. Pasteur 105, 897-910. Skjerve, E., Lium, B., Nielson, B., Nesbakken, T., 1998. Control of Yersinia enterocolitica in pigs at a herd level. Int. J. Food Microbiol. 45, 195-203. Smith, T., Taylor, M.S., 1919. Some morphological and biological characters of the Spirilla (Vibrio fetus n. sp) associated with disease of the fetal membranes in cattle. J. Exp. Med. 30, 299-311. Tauxe R.V., Wauters, G., Goossens, V., Van Noyen, R., Vandepitte, J., Martins, S.M., De Mol ,P., Their, S.G., 1987. Yersinia enterocolitica infections and pork: The missing link. The Lancet, 1129-1132. Tholozan, J.L., Cappelier, J.M., Tissier, J.P., Delattre, G., Federighi, M., 1999. Physiological characterization of viable-but-nonculturable Campylobacter jejuni cells. Appl. Environ. Microbiol. 65, 1110-1116. Wauters, G., Kondolo, K., Janssens, M., 1987. Revised biogrouping scheme of Yersinia enterocolitica. Contr. Microbiol. Immunol. 9, 14-21. Weijtens, M.J.B., 1996. The transmission of Campylobacter in piggeries; an epidemiological study. J. Appl. Microbiol. 83, 693-698. Wundt, W., Kasper G., 1982. Die Diagnose der Infektion durch Campylobacter fetus subsp. jejuni. Ärztl. Lab. 28, 42-46. Young, C.R., Harvey, R., Anderson, R., Nisbet, D., Stanker, L.H, 2000. Enteric colonisation following natural exposure to Campylobacter in pigs. Res. Vet. Sci. 68, 75-78. 17 Zhao, C., De Villena, G.E.B.J., Sudler, R., Yeh, E., Zhao, S., White, D.G., Wagner, D., Meng, J., 2001. Prevalence of Campylobacter spp., Escherichia coli, and Salmonella serovars in retail chicken, turkey, pork, and beef from the Greater Washington, D.C. area. Appl. Environ. Microbiol. 67, 5431-5436. 18 CHAPTER TWO Prevalence of Campylobacter spp. and Yersinia spp. in the pig production TANJA WEHEBRINK1, NICOLE KEMPER1, ELISABETH GROSSE BEILAGE2 JOACHIM KRIETER1 1 Institute of Animal Breeding and Husbandry Christian-Albrechts-University D-24118 Kiel, Germany 2 University of Veterinary Medicine Hannover Fieldstation for Epidemiology D-49456 Bakum, Germany Submitted for publication in Berliner und Münchner Tierärztliche Wochenschrift 19 Abstract The aim of this study was to determine the prevalence of Campylobacter spp. and Yersinia spp. in a total of 1,040 faecal samples taken from animals at different ages from four farrowing and twelve fattening herds. In the farrowing unit, faeces were collected from 68 sows (faecal samples) and 256 suckling piglets (rectal swab samples). Further samples were collected from 362 growing and 354 finishing pigs (rectal swab samples). Additionally, 56 feed and environmental samples were collected. During the slaughtering process, 122 pigs and their carcasses respectively, were sampled three times. First, rectal samples were taken with swabs during the lairage. Second, the samples were taken from the carcass before entering the chilling room. The same method was repeated in the chilling room twelve hours after starting the chilling. Finally, 86 raw meat samples were taken from 34 retail stores. Campylobacter spp. were isolated in sows (33.8%), piglets (80.9%), growing (89.2%) and finishing (64.7%) pigs. Yersinia spp. were detected in growing (15.2%) and finishing (13.3%) pigs only. During lairage, Campylobacter spp. were identified from pig faeces from all farms whereas Yersinia spp. were detected in pigs from just two herds. After twelve hours of chilling neither Campylobacter spp. nor Yersinia spp. were detected. In raw meat samples, Campylobacter spp. were isolated from one liver sample and Yersinia enterocolitica from two meat samples (mince and cutlet). Common slaughter techniques and hygiene procedures may be effective tools to reduce the risk of contamination and recontamination of meat products since Campylobacter spp. and Yersinia spp. were found only sporadically in raw meat samples. keywords: Campylobacter spp., Yersinia spp., cultural isolation, pig production chain, zoonotic pathogens 20 1. Introduction Campylobacter (C.) spp. are among the most common bacterial causes of enteric diseases worldwide. Members of the genus Campylobacter colonize the gastrointestinal tract of a broad range of animals as commensals. In contrast, they are associated with disease in humans. In Germany, the Robert Koch-Institute registered 61,823 cases of people suffering from campylobacteriosis in 2005 (Robert Koch-Institut, 2006). Out of the 16 species within the genus Campylobacter, the thermophilic species C. jejuni and C. coli are of special importance as zoonotic agents with regard to human health. Infections with C. spp. in humans are mainly related to consumption of contaminated food, especially chicken products. Another important source of food-borne infections is raw or insufficiently cooked pork. Furthermore, surface water used for drinking purposes can serve as a source of infection. Besides Salmonella spp. and Campylobacter spp., Yersinia (Y.) spp. is another important zoonotic pathogen from the list of human diseases (Aleksic and Bockemühl, 1990) with 5,600 registered infections in Germany in 2005 (Robert Koch-Institut, 2006). Together with Y. pestis and Y. pseudotuberculosis, Y. enterocolitica represents pathogenic Yersinia species with a certain risk to human health. Most cases of yersiniosis in Europe are related to bioserovar 4/O:3 Y. enterocolitica is thought to be a significant food-borne pathogen, although pathogenic isolates have been isolated from food infrequently, except from edible pig offal (De Boer, 1995). In case-control studies, a correlation has been demonstrated between the consumption of raw or undercooked pork and yersiniosis (Satterthwaite et al., 1999). The main infection source for Y. enterocolitica bioserovar 4/O:3 is raw pig meat, for pigs serving as natural carriers of this bioserovar (Fredriksson-Ahomaa et al., 2001). Both infections are infant diseases with a clear infection peak in children up to two years and a second incidence peak for campylobacteriosis in early adulthood. Diarrhoea is symptomatic for both campylobacteriosis and yersiniosis, but severe or clinically unapparent courses of disease are possible as well. In contrast to its importance as a human pathogen, the understanding of the pathomechanisms of Campylobacter spp.-associated diseases is still relatively poor (Vlient and Ketley, 2001). In the same way, this applies for the epidemiology of Y. enterocolitica infections, as it is complex and poorly understood (Fredriksson-Ahomaa and Korkeala, 2003). The objective of this study was to gather further information about the prevalence of Campylobacter spp. and Yersinia spp. at different stages of the pig production chain via cultural isolation. Samples were taken from sows, suckling piglets, growing and finishing pigs, carcasses, raw meat, forage and their environment (separating plate, feeding trough). 21 2. Materials and Methods 2.1 Materials Table 1 shows the number of herds at every stage of the production chain and the number of samples taken. Table 1 Study design production stage number farrowing units fattening units slaughterhouse retail 4 herds 12 herds 4 herds 34 retail stores of samples sows 68 - - - 256 - - - pigs - 716 366 - forage 8 26 - - 10 12 6 - - - - 86 piglets environment raw meat samples 2.1.1 Farrowing and fattening units During the period from November 2004 till June 2005 data were collected from four farrowing and twelve fattening herds. The ZNVG (Vermarktungsgemeinschaft für Zucht- und Nutzvieh, Neumünster) supplied a list of several farms. The herds for the present study were selected based on the herd size and the relationships between farrowing and fattening. Due to practical limitations, the study design was arranged in the following way: The number of sows in the farrowing herds was between 150 to 650 sows and the fattening herds had fattening places for 350 to 2000 animals. In three cases, a supply relationship between farrowing and fattening unit existed. In all herds, pigs were kept under conventional conditions. The sampling size for each herd was calculated on the herd size and expected prevalence according to the formula from Noordhuizen et al. (1997). The expected prevalence of Campylobacter spp. and Yersinia spp., taken from literature, was appointed by the sows and 22 fattening pigs with 80% and 60% respectively and in the retails with 0.2% or rather 2%. The absolute accuracy was 14% and the probability of error was 5%. In the farrowing unit, faeces were collected in the farrowing house from 68 sows (faecal samples) and 256 suckling piglets (rectal swab samples). In three herds, 17 sows and additionally 85 or 86 suckling piglets (five or six piglets per litter) per herd were sampled and in one herd only 17 sows. The selection of piglets was random and the time of sampling the piglets was before weaning. Every pig was given a numbered ear tag enabling individual identification at all times. In the fattening unit, samples (rectal swab samples) were collected from 362 growing and 354 finishing pigs. In twelve herds, between 29 and 31 animals were sampled per herd. Eight pigs died during the fattening period. The observation of 91 pigs from the farrowing unit could be continued over the whole fattening period. Additionally, 56 environmental and feed samples were collected in both production stages. The environmental samples were taken from the separating plate and the feeding trough. Feed samples consisted of forage for piglets, for sows in early and late pregnancy, and for pigs at the beginning or end of fattening, respectively. 2.1.2 Slaughterhouse All investigations concerning slaughter pigs and carcasses were carried out at a commercial abattoir. The slaughterhouse was visited four times for samplings in the period from April until June 2005. Four herds, sampled at different times, were the origin of the pigs investigated at the slaughterhouse. Altogether, 122 pigs were sampled three times during the slaughtering process. First, rectal samples were taken with swabs during the lairage. Second, for the carcass surface, swabs moistened with a 0.9% NaCl dilution were used to sample an at least 100cm2 large sampling field on the belly by rubbing with the necessary compression. The samples were taken from the carcass before entering the chilling room. Third, the same method was repeated in the chilling room twelve hours after beginning the chilling process. During the slaughter process environmental samples were taken from diverse equipment (knives, saws etc.). Twenty-nine out of the 122 pigs at slaughterhouse level had also been sampled as piglets and as fatting pigs representing a complete sampling passage at every step of the production chain. 23 2.1.3 Retail From June till July 2005, 86 raw meat samples were taken from 34 retail stores in two different towns. In 13 butcher’s shops, twelve mince 13 escalope and two liver samples were bought. In 21 discount shops, the sample material composed on the one hand of 16 mince, 19 escalope, one liver and one kidney portion from the self-service counter, and on the other hand of eleven mince and eleven escalope samples from the sales counter. 2.2 Methods After collection, samples were stored at 4°C and taken to the laboratory (Zentrale Einrichtung Medizinaluntersuchungsamt und Krankenhaushygiene, Hygiene-Institut, Kiel) within four hours and processed directly after arrival. Cultural methods were used to test all samples for Campylobacter spp. and Yersinia spp., including differentiation of subspecies. 2.2.1 Detection of Campylobacter spp. To isolate Campylobacter species, 1g of faeces or the swab sample was inoculated in 9ml Preston broth (Oxoid). After incubation for 24 hours in a microaerophilic atmosphere (5% oxygen, 10% carbon dioxide, 3% hydrogen and 82% nitrogen) at 37°C, a loop of the enriched suspension was plated on Preston agar (Oxoid) and incubated for 48 hours under the abovementioned microaerobic conditions at 37°C. Campylobacter-like colonies were analysed by Gram staining and catalase and oxidase tests (Hippurathydrolysis: ISO 10272, 1995, modified), and biochemical reactions were assessed (ApiCampy; bioMerieux). 2.2.2 Detection of Yersinia spp. Cultural isolation of Yersinia spp. was performed by adding 1g of faeces or the swab sample to 9ml of Gram-negative broth (Becton & Dickinson) and incubating for 48 hours at 21°C. One loop of broth was then plated on Yersinia-selective agar (Difco, CIN-Agar; CIN = Cefsulodin-Irgasan-Novobiocin) and incubated for another 48 hours at 21°C. Colonies with the typical bull’s eye appearance were subcultured on blood agar and Gram-stained and biochemical tests were subsequently carried out by using API 20E (bioMerieux). Serum agglutination was performed with isolates identified as Y. enterocolitica to detect serovars O:3 and O:9 (ISO 10273, 1994, modified). 24 2.2.3 Statistical evaluation Calculation of the animal prevalence and the 95% confidence intervals within the production stage was performed with the PROC SURVEYMEANS procedure from the software package SAS® (2002). 3. Results 3.1 Farrowing unit In three of the four herds at the farrowing level, Campylobacter spp. was isolated from the sow samples. Overall, Campylobacter spp. (total) were isolated in 33.8% (n = 23) of the sows and in 80.9% (n = 207) of the piglets (Table 2). In six cases (2.3%), both pathogens, C. coli and C. jejuni, were simultaneously isolated from the piglet samples and one sow (1.5%) was infected with both subspecies too. No Yersinia spp. were detected in any of these samples in the farrowing unit. Table 2 Prevalence of Campylobacter spp. and Yersinia spp. in sows and suckling piglets sows (n = 68) Campylobacter coli Campylobacter jejuni Campylobacter total 2 Yersinia spp. 1 95% Confidence Interval suckling piglets (n = 256) % 95% C.I.1 % 30.9 19.6-42.1 71.1 65.5-76.7 4.4 0-9.4 12.1 8.1-16.1 33.8 22.3-45.4 80.9 76.0-85.7 0 2 0 95% C.I. - Campylobacter total = C. coli and/or C. jejuni Regarding the risks of vertical infection, Figure 1 points out that an infected sow does not necessarily lead to infected piglets or that an uninfected sow automatically means a pathogenfree piglet. For example, in herd ‘3’ sows (n = 17) were free from Campylobacter spp. and Yersinia spp., but in the piglets (n = 85) C. coli was isolated in 21.2% (n = 18) and C. jejuni in 36.5% (n = 31) of cases. 25 C. coli prevalence (%) 100 C. jejuni C. total¹ 80 60 40 20 0 sow piglet sow herd 1 piglet sow herd 2 piglet herd 3 sow herd 4 farrowing unit 1 C. total = C. coli and/or C. jejuni Figure 1 Prevalence of the different pathogens in farrowing unit section (total sampled: 17 sows and 85 piglets per farm) Additionally, Figure 2 shows the relationship between infected or non-infected sows and their piglets in detail on the basis of the litters. Out of the 68 regarded litters, in 1.5% of the cases neither sows nor piglets were infected. In 23.5%, Campylobacter spp. was detected in sows and the whole tested piglets per litter. Notable is the fact that non- infected sows have nevertheless infected piglets so piglets from non-infected sows were positive for Campylobacter spp.. rel. frequency (%) 35 30 infected sow 25 not infected sow 20 15 10 5 0 0 1 2 3 4 5 6 number of infected piglets Figure 2 Relationship between Campylobacter total (C. coli and/or C. jejuni) infected sows and infected piglets (n = 68 litters) 26 Campylobacter spp. and Yersinia spp. were not isolated neither in feed nor in environmental samples. 3.2 Fattening unit Campylobacter spp. were detected in all herds in growing and finishing pigs. Yersinia enterocolitica O:3 were detected in the faeces of growing pigs in three of the twelve herds only. Yersinia spp. were isolated in finishing pigs in six of the twelve herds. The prevalence of Campylobacter spp. (total) and Yersinia spp. (total) in growing pigs were 89.2% (n = 323) and 15.2% (n = 55), respectively (Table 3). While the prevalence of Campylobacter spp. was slightly lower (64.7%; n = 229) in finishing pigs, that of Yersinia spp. was nearly the same (13.3%; n = 47) as in growing pigs. Table 3 shows the decrease in prevalence of C. coli and C. jejuni and Yersinia spp. during the fattening period. Furthermore, it illustrates the minor role of Yersinia spp. in fattening herds. Table 3 Prevalence of Campylobacter spp. and Yersinia spp. in growing and fattening pigs growing pigs (n = 362) finishing pigs (n = 354) % 95% C.I.1 % 71.3 66.6-76.0 28.0 23.3-32.7 Campylobacter jejuni 25.7 21.2-30.2 42.1 36.9-47.3 2 89.2 86.0-92.4 64.7 59.4-69.4 Yersinia enterocolitica O:3 11.1 7.8-14.3 12.2 8.7-15.6 Yersinia enterocolitica O:9 0.3 0-0.8 0 - 0 - 1.1 0-2.2 3.9 1.9-5.9 0 - 15.2 11.5-18.9 13.3 9.7-16.8 Campylobacter coli Campylobacter total Yersinia paratuberculosis Yersinia enterocolitica Yersinia total3 95% C.I. 1 2 95% Confidence Interval Campylobacter total = C. coli and/or C. jejuni Yersinia total = Y. enterocolitica O:3 and/or Y. enterocolitica O:9 and/or Y. paratuberculosis and/or Y. enterocolitica 3 In 28 cases (7.7%), both pathogens, C. coli and C. jejuni, were simultaneously isolated from the piglet samples at the beginning of the fattening period. Twenty finishing pigs (5.6%) were infected with both subspecies, too. 27 Campylobacter spp. total (C. coli and/or C. jejuni) was detected at both sampling times from 206 (28.8%) pigs and Yersinia spp. total (Y. enterocolitica O:3 and/or Y. enterocolitica O:9 and/or Y. paratuberculosis and/or Y. enterocolitica) from two pigs (0.3%) during the whole fattening period. Campylobacter spp. and Yersinia spp. were not isolated neither in feed nor in environmental samples. 3.3 Slaughterhouse During lairage, Campylobacter spp. were isolated from faeces of pigs (n = 68) from all farms but Yersinia spp. were detected in pigs (n = 7) from two herds only. Before chilling Campylobacter spp. were isolated from swabs taken from the carcass surface of pigs (n = 24) from three farms. Yersinia spp. were detected in pigs (n = 1) from only one herd. After twelve hours of chilling, neither Campylobacter spp. nor Yersinia spp. were isolated from swabs. The prevalence of Campylobacter spp. (total) decreased during the three sampling phases from 55.7% (lairage) to 19.7% (before chilling) to 0% (after 12 h chilling), and those of Yersinia (total) fell from 5.7% to 0.8% to 0% (Table 4). Table 4 Prevalence of Campylobacter spp. and Yersinia spp. in the slaughterhouse lairage n = 122 before chilling after chilling % 95% C.I.1 % 95% C.I. % 95% C.I. Campylobacter coli 27.9 19.8-35.9 10.7 5.1-16.2 0 - Campylobacter jejuni 36.9 28.2-45.6 9.8 4.5-15.2 0 - Campylobacter total2 55.7 46.8-64.7 19.7 12.5-26.8 0 - Yersinia enterocolitica O:3 5.7 1.6-9.9 0.8 0-2.4 0 - Yersinia total3 5.7 1.6-9.9 0.8 0-2.4 0 - 1 2 95% Confidence Interval Campylobacter total = C. coli and/or C. jejuni Yersinia total = Y. enterocolitica O:3 and/or Y. enterocolitica O:9 and/or Y. paratuberculosis and/or Y. enterocolitica 3 In lairage, eleven pigs (9.0%) were carriers of C. coli and C. jejuni and before chilling one animal (0.8%). During both sampling times (lairage and before chilling), Campylobacter total 28 was detected in 13 pigs (5.3%). Campylobacter spp. and Yersinia spp. were not isolated in equipment samples. 3.4 The production chain from the piglet to the carcass after chilling From 91 pigs, it was possible to obtain information from the farrowing to the fattening unit. Out of these, data from 29 animals were acquired at the different stages of the pig production chain. Figure 3 illustrates the declining tendency of Campylobacter spp. in the whole production chain and the low prevalence of Yersinia spp. in fattening herds. prevalence (%) 100 80 C. total¹ 60 Y. total² 40 20 0 piglets growing pigs finishing pigs lairage³ before chilling³ after chilling³ production chain 1 C. total = C. coli and/or C. jejuni Y. total = Y. enterocolitica O:3 and/or Y. enterocolitica O:9 and/or Y. paratuberculosis and/or Y. enterocolitica 3 n = 29 2 Figure 3 Prevalence of the different pathogens in the whole pig production chain (n = 91) In the farrowing unit, C. coli was detected in 69.2% (n = 63) and C. jejuni in 12.1% (n = 11) of cases. During the fattening period, the prevalence of C. coli decreased from 54 growing pigs (59.3%) to eleven finishing pigs (12.4%). The prevalence of C. jejuni rose from 15 growing pigs (16.5%) to 43 finishing pigs (48.3%). In the same period, three growing pigs (3.3%) were carriers of Y. enterocolitica and four finishing pigs (4.5%) were carriers of Y. enterocolitica O:3. 29 In lairage, eleven pigs (37.9%) were infected with C. coli and five pigs (17.2%) with C. jejuni. Additionally C. coli was detected on two carcasses before chilling (6.9%). Only in four piglets (4.4%), four growing (4.4%) and five finishing pigs (5.5%) were both pathogens C. coli and C. jejuni detected simultaneously. From the 91 pigs, Campylobacter spp. total could be identified in 33 (36.3%) animals during the farrowing and fattening unit. Seven pigs (24.1%) were carriers of Campylobacter spp. total as piglet, growing and finishing pigs and as living pigs in lairage. From only one pig could Campylobacter spp. be isolated in all steps of the production chain from piglet to carcass before chilling. 3.5 Retail Campylobacter coli was isolated from only one liver sample, and Y. enterocolitica, from two meat samples (mince and cutlet). The pathogens could not be detected in the other 83 samples. 4. Discussion The aim of this study was to gather further information about the prevalence of Campylobacter spp. and Yersinia spp. at the different stages of the pig production chain by using culture isolation methods. The results from the farrowing unit point out that compared with sows (33.8%) the prevalence of their piglets is very high (80.9%). Alter et al. (2005) did not find such a high detection rate. Whereas no Campylobacter spp. was detectable in the faeces of piglets on the day of birth, Campylobacter spp. incidence rose within seven days to 32.8%. After transfer to the nursery unit, the prevalence increased to 56.6%. Jensen et al. (2006) detected high prevalence of Campylobacter spp. in organic outdoor pigs. All pigs (n = 47) shed Campylobacter (103-107 CFUg-1 faeces) from the age of 8-13 weeks. C. jejuni was found in 29% of pigs in three consecutive trails and always in minority to C. coli (0.3%-46%). On the basis of the results from the present project, it becomes obvious that there is no relationship between infected sows and the infection of their piglets with Campylobacter spp.. This fact clarifies that sampling of sows alone is useless without taking the piglets into account. Yersinia spp. seems to play a negligible role in farrowing herds. This is in accordance with another study detecting Yersinia spp. only during the fattening period but not in sows and piglets (Kasimir, 2005). The fact that Y. enterocolitica was not isolated in the farrowing unit but first at the beginning 30 of the fattening period is evidence that the cause of infection has to be looked for in the fattening unit. On the basis of the results in the fattening unit, it becomes obvious that a stable gut flora from older pigs can cause a decrease in prevalence. Other studies e.g. from Weijtens et al. (1993; 1999) approve this effect. In this study, the amount of Campylobacter was at 104 cfu/g excrement at the beginning of the fattening period and about 102 cfu/g excrement at the end of the fattening period. Also Young et al. (2000) detected a higher prevalence in 14-day-old piglets compared to gilts. In the present project, the detection rates from Y. enterocolitica in growing and finishing pigs are moderate (15.2% vs. 13.3%). The low Yersinia-prevalence in this production stage can be attributed to the persistence of Yersinia spp. in the palatine tonsil and intermittent shedding. A robust gut flora in older pigs might be the reason for lower pathogen prevalence due to competition. Pilon et al. (2000) sampled faeces from 20 different farms. The prevalence of Y. enterocolitica were between 0% and 46.9%. Bush et al. (2003) detected 12.8% Y. enterocolitica in 2664 faecal samples and Kasimir (2005) described isolation rates between 0% and 65.4%. However, factors influencing the shedding of pathogens can rarely be determined definitely, but pigs carrying certain pathogens are consequently an infection source. Neither in the environmental nor in the feed samples were Campylobacter spp. and Yersinia spp. isolated. One reason therefore can be found in the method of detection. Especially for environmental and animal feed samples, the cultivation method seems to be inferior compared to Polymerase-Chain-Reaction (PCR), because the low numbers of pathogenic strains in these samples can often be suppressed by a distinct satellite flora (Fredriksson-Ahomaa and Korkeala, 2003). Despite the high prevalence in lairage (Campylobacter total: 55.7%) at the slaughterhouse, none of the examined pathogens was detected after chilling. Apparently, the chilling of carcasses and the associated dehydration of the surface area reduce the number of Campylobacter spp. In this way, an effective minimisation of the infection risk via the food store chains is possible. But a residual risk attributed to the VBNC status (viable but non culturable) status could not be denied, enabling certain strains to be still viable without being identifiable through cultivation. Malakauskas et al. (2006) showed that 28 (63.6%) of the 44 samples collected at the slaughterhouse were contaminated by Campylobacter spp. 23.4% (28 of 120) isolates were identified as C. jejuni (19 from carcasses and nine from slaughter line surface) and 76.6% (92 of 120) isolates as C. coli (28 from faeces, 47 from carcasses and 17 from slaughter line surfaces). The results suggest that cross-contamination originated in the 31 gastro-intestinal tract of the slaughtered pigs and that the cross-contamination happened during the slaughter process (Malakauskas et al., 2006). The prevalence of Yersinia spp. in the slaughterhouse were low (lairage: 5.7% vs. before chilling: 0.8%). One reason for this effect is that Yersinia spp. persists in the tonsils and will be shed with the faeces discontinuously. For consumer protection purposes it is noteworthy that in the present project C. coli was isolated from one liver sample only. The prevalence of Yersinia spp. in raw meat samples were very low, too. Further studies confirm this result. For example, Arnold et al. (2004) detected the pathogen in 0.5% of mince samples and Fredriksson-Ahomaa et al. (2001) in 12%. A higher rate was detected only in samples from offal, tongues and palatine tonsils (Fredriksson-Ahomaa et al., 2001). The low detection rate of Yersinia spp. in raw meat can also be due to methodological difficulties. In food samples, analysed by cultivation methods and PCR, the PCR technology recorded a higher prevalence (Fredriksson-Ahomaa and Kokkeala 2003). Other detection methods are for example DNA hybridisation, immunofluorescence tests and serotyping. In conclusion, it has to be stated that none of the methodologies published hitherto is sufficient regarding the reliable detection of pathogenic Yersinia spp. strains. Therefore, only conditionally fast and safe enrichment and cultivation methods are available at the moment to detect yersiniosis. With regard to hygiene, one major point of concern is the ability of Yersinia spp. to survive in raw meat for a long time because they are viable at temperatures of 4°C. Lack of reasonable care in kitchen hygiene, especially in private households, can easily lead to cross-contaminations. Besides C. coli, C. jejuni was laboratory-confirmed in this examination. The isolation of C. jejuni from pig samples was described by other studies as well. For example, Stich-Groh (1982) and Young et al. (2000) identified 23.4% and 76.3% respectively, Campylobacter spp. as C. jejuni. In these assays, hippurathydrolysis served as a confirmation method. This technique is based on the ability of C. jejuni to hydrolyse hippurat, a biochemical reaction C. coli is not capable of. One major problem of this method is the possible loss of this ability during the life span of C. jejuni, causing false positive results with regard to C. coli. But it can be possible that in some farms or in geographical regions C. jejuni is described as common in pigs (Kasimir, 2005). 5. Conclusion The aim of this study was to analyse the prevalence of Campylobacter spp. and Yersinia spp. at the different stages of the pig production chain via cultural examination. Samples were 32 taken from sows, suckling piglets, growing and finishing pigs, carcasses, raw meat, forage and their environment (separating plate, feeding trough). High prevalence of Campylobacter spp. were found in suckling, growing and finishing pigs. The observed prevalence from the farrowing unit confirm the conclusion that a pathogen-free sow does not necessarily mean pathogen-free piglets. Yersinia spp. infections in farrowing units can be neglected. Additionally it can be pointed out that the prevalence of both pathogens decrease with the increasing age of animals in the fattening unit. The fact that both examined pathogens were found only sporadically in food indicates that common slaughter techniques and hygiene procedures are effective tools to reduce the risks for contamination or recontamination of meat products. The most important risk factors responsible for the spread of Campylobacter spp. and Yersinia spp. in the farrowing and fattening unit should be identified in further studies. Acknowledgements This research was financially supported by the H. Wilhelm Schaumann Stiftung, the Ministerium für Soziales, Gesundheit, Familie, Jugend und Senioren des Landes SchleswigHolstein and the Arbeitsgruppe Lebensmittelqualität und -sicherheit (QUASI) from the Faculty of Agricultural and Nutritional Science, Christian-Albrechts-University, Kiel. References Aleksic, S., Bockemühl, J., 1990. Mikrobiologie und Epidemiologie der Yersiniose. Immun. Infekt. 18, 178-185. Alter, A., Gaull, F., Kasimir. S., Gürtler, M., Mielke, H., Linnebur, M., Fehlhaber, K., 2005. Prevalence and transmission routes of Campylobacter spp. strains within multiple pig farms. Vet. Microbl. 108, 251-261. Arnold, T., Hensel, A., Hagen, R., Aleksic, S., Neubauer, H., Scholz, H.C., 2004. A highly specific one-step PCR-assay fort he rapid discrimination of enteropathogenic Yersinia enterocolitica from pathogenic Yersinia pseudotuberculosis and Yersinia pestis. Syst. Appl. Microbiol. 24, 285-289. Bush, E. J., Wesley, I., Bhaduri, S., 2003. Risk factors for Yersinia enterocolitica on U.S. swine farms in 2000. Safe Pork-Proceedings of the 5th international symposium on the epidemiology and control of foodborne pathogens in pork. Kreta, Griechenland, 54-56. 33 De Boer, E., 1995. Isolation of Yersinia enterocolitica from foods. Contrib. Microbiol. Immunol. 13, 71-73. Fredriksson-Ahomaa, M., Bucher M., Hank C., Stolle A., Korkeala H., 2001. High prevalence of Yersinia enterocolitica 4:O3 on pig offal: a slaughtering technique problem. Syst. Appl. Microbiol. 24, 457-463. Fredriksson-Ahomaa, M., Korkeala, H., 2003. Low occurrence of pathogenic Yersinia enterocolitica in clinical, food and environmental samples: a methodological problem. Clin. Microbiol. Reviews Apr., 220-229. International Organization for Standardization 1994. International Standard 10273. International Organization for Standardization 1995. International Standard 10272. Jensen, A.N., Dalsgaard, A., Baggesen, D.L., Nielsen, E.M., 2006. The occurrence and characterization of Campylobacter jejuni and C. coli in organic pigs and their outdoor environment. Vet. Microbiol. 116, 96-105. Kasimir S., 2005. Verlaufsuntersuchungen zum Vorkommen potentiell humanpathogener Yersinia enterocolitica und Campylobacter spp. in Schweinebeständen von der Geburt bis zur Schlachtung sowie Genotypisierung ausgewählter Isolate. (Diss. med. vet.). Univ. Leipzig. Malakauskas, M., Jorgensen, K., Nielsen, E.M., Ojeniyi, B., Olsen, J.E., 2006. Isolation of Campylobacter spp. from pig slaughterhouse and analysis of cross-contamination. Int. J. Food Microbiol. 108, 295-300. Noordhuizen, M., Frankena, K., Graat, E., 1997. Animal health care and public health issues. World Congress on Food Hygiene. The Hague/Netherlands, Proc., 59. Pilon, J., Higgins, R., Quessy, S., 2000. Epidemiological study of Yersinia enterocolitica in swine herds in Quebec. Can. Vet. J. 41, 383-387. Robert Koch-Institut 2006. Epidemiologisches Bulletin Nr. 3. SAS Institute Inc., 2002. User’s Guide (release 8.1.), Cary, NC, USA. Satterthwaite, P., Pritchard, K., Floyd, D., Law B., 1999. A case-control study of Yersinia enterocolitica infections in Auckland. Aust. N.Z. Public Health 23, 482-485. Sticht-Groh, V., 1982. Campylobacter in healthy slaughter pigs: a possible source of infection for man. Vet. Rec. 110, 104-106. 34 Weijtens, M.J.B., Bijker P.G., van der Plas, J., Urlings, H.A., Biesheuvel, M.H., 1993. Prevalence of Campylobacter in pigs during fattening; an epidemiological study. Vet. Q. 15, 138-143. Weijtens, M.J.B., Reinders, R.D., Urlings, H.A., van der Plas, J., 1999. Campylobacter infections in fattening pigs; excretion pattern and genetic diversity. J. Appl. Microbiol. 86, 63-70. van Vlient, A.H.M., Ketley, J.M., 2001. Pathogenesis of enteric Campylobacter infection. J. Appl. Microbiol. 90, 45-56. Young, C.R., Harvey, R., Anderson, R., Nisbet D., Stanker, L.H., 2000. Enteric colonisation following natural exposure to Campylobacter in pigs. Res. Vet. Sci. 68, 75-78. 35 36 CHAPTER THREE Campylobacter spp.: Risk factor analysis in fattening pig farms TANJA WEHEBRINK1, NICOLE KEMPER1, ELISABETH GROSSE BEILAGE2 and JOACHIM KRIETER1 1 Institute of Animal Breeding and Husbandry Christian-Albrechts-University D-24118 Kiel, Germany 2 University of Veterinary Medicine Hannover Fieldstation for Epidemiology D-49456 Bakum, Germany Accepted for publication in Archives of Animal Breeding 37 Abstract There is a lack of information about the prevalence and origins of the important zoonotic pathogen Campylobacter spp. in the different stages of the pig production chain. The aim of this study was to gather further information about the sources of infection with Campylobacter spp. and their qualitative and quantitative importance in pig production. For statistical analysis, 1,040 results from the bacteriological examination for Campylobacter spp. were evaluated with questionnaires from four farrowing and twelve fattening units. The prevalence was determined via faeces and swab samples with regard to certain farm production parameters. Thereby 30.8% of the sows and 80.9% of their piglets were carriers of Campylobacter spp.. In the fattening unit, the prevalence at the beginning of the fattening period was 89.2% and at the end 64.7%. As a result of the small sample size in the farrowing unit it was not possible to perform a risk analysis which yielded significant conclusions. In the fattening stage, the following risk factors had a significant effect (p≤0.05) on Campylobacter spp. prevalence: sampling time, number of fattening places per herd, mixed farming, floor space design, feed origin, antibacterial and anthelmintic treatment. These results show that housing and management have a possible influence on the Campylobacter spp. prevalence and should be investigated further. keywords: Campylobacter coli / jejuni, pig, fattening units, risk analysis, odds ratio Zusammenfassung Titel der Arbeit: Campylobacter spp.: Risikoanalyse in Schweinemastbetrieben Über die Prävalenzen und Eintragsquellen des Zoonosenerregers Campylobacter spp. in den verschiedenen Produktionsstufen der Schweineerzeugung existieren bisher nur wenige Informationen. Die vorliegende Studie soll zur Aufdeckung produktionsspezifischer Risikofaktoren und ihrer Analyse hinsichtlich der qualitativen und quantitativen Bedeutung beitragen. Für die statistische Analyse wurden 1.040 Ergebnisse der bakteriologischen Untersuchung auf Campylobacter spp. im Zusammenhang mit den Informationen aus einem Fragebogen aus vier Ferkelerzeuger- und zwölf Mastbetrieben ausgewertet. Die Prävalenzen des Erregers wurden mit Hilfe von Kot- und Abstrichtupferproben vor dem Hintergrund verschiedener Betriebsbedingungen ermittelt. Dabei wurden bei 33,8% der Sauen und bei 80,9% der Ferkel Campylobacter spp. nachgewiesen. In der Produktionsstufe Mast betrug die Prävalenz am Mastanfang 89,2% und am Mastende 64,7%. Aufgrund des geringen Datenmaterials konnte auf der Produktionsstufe Ferkelerzeugung keine Risikoanalyse durchgeführt werden. Folgende Faktoren hatten auf den Mastbetrieben einen signifikanten 38 Einfluss (p≤0,05) auf die Campylobacter Prävalenz: Zeitpunkt der Probeentnahme, Anzahl Mastplätze, Mischbetrieb, Bodengestaltung, Futterherkunft, Einstallbehandlung und anthelminthische Behandlung. Die Ergebnisse veranschaulichen, dass eine Reduzierung der Campylobacter spp. Prävalenz durch betriebliche Haltungs- und Managementfaktoren möglich ist. Dieses Phänomen sollte weiter untersucht werden. Schlüsselwörter: Campylobacter coli / jejuni, Schwein, Mastbetriebe, Risikoanalyse, Odds Ratio 1. Introduction Infections caused by Campylobacter spp. (C.) are prevalent worldwide. Campylobacter jejuni and C. coli are by far the most common Campylobacter species infecting humans. Both species are associated with clinically indistinguishable diarrhoea in humans (Nachamkin, 2003). In Germany, the Robert Koch-Institute registered 61,823 cases of humans suffering from such an infection in 2005. However, C. jejuni is implicated in about 85% of the cases of human campylobacteriosis, with the remaining cases being primarily caused by C. coli (Friedman et al., 2000). Campylobacter spp. are part of the normal gut microflora in many food-producing animal species, including chickens, turkeys, swine, cattle and sheep (Blaser, 1997). For instance, C. jejuni is more commonly isolated from chickens and cattle, while C. coli is more common among swine (Young et al., 2000). Transmission to humans appears to occur primarily through the consumption of contaminated poultry products, unpasteurised milk products and meat products (Effler et al., 2001; Friedman et al., 2004). In addition to the consumption of undercooked meat, cross-contamination to other food products may play a significant role in the number of illnesses observed. The infective dose (number of organisms sufficient to cause infection) in humans can be very low. Only 800 colony-forming units of specific strains can lead to Campylobacter infection (Black, 1988). According to the regulations of the “White Paper on Food Safety” (Europäisches Weissbuch zur Lebensmittelsicherheit, 2000), the farmer and the participating manufacturing industry in the food production should have the main responsibility for food safety. Now and in future, this adds up to the demand for preventive measures in primary production following the principle “from the producer to the consumer”. This leads to a consolidated need for the detection of relations between pathogen prevalence in the herds and the herd management and husbandry. Determination of various important entry routes and spreading factors provides useful decision guidance for all production units in the meat production chain to minimise the 39 transmission of zoonotic pathogens. For these reasons, this study was conducted with the aim to determine the prevalence of Campylobacter spp. in farrowing and fattening units by the collection of faeces and rectal swabs. Further risk factors for the occurrence of Campylobacter spp. in farrowing and fattening units should be observed via environmental and feed samples from the checked herds and questionnaires in the corresponding pig farms. 2. Material and Methods Four farrowing and twelve fattening farms provided the basis for the present study. The sampling size on every farm was calculated according to the formula from Noordhuizen et al. (1997). In total, 1.040 faecal or swab samples respectively from pigs of all ages from farrowing and fattening units were analysed. Additionally, 56 environmental and feed samples were collected. Cultural methods were used to test all samples for Campylobacter spp., including the differentiation of subspecies. The bacterial detection of Campylobacter spp. proceeds from ISO 10272 (1995) with following biochemical differentiation of C. coli and C. jejuni. Calculation of the intraherd and animal prevalence and the 95%-confidence intervals within the production stage was performed with the PROC SURVEYMEANS procedure from SAS® (2002). On every farrowing and fattening farm, data collection was carried out with the aid of a questionnaire. Besides the general farm information, detailed data about the housing system, management, state of health and aspects of disease surveillance were acquired. In consideration of the bacteriological results, these data contributed to a hazard analysis to detect the origin and spread of Campylobacter spp. infections. The statistical analysis was performed with a generalised linear model. At first the management-specific parameters were tested respectively with the χ2-test regarding the influence on the pathogen prevalence. Every parameter having a value p<0.3 in the χ2-test and an adequate distribution was included in the generalised linear model. The GENMOD procedure from the software package SAS® (2002) was reviewed for significance (p≤0.05). For the estimation, a binomial distribution and a logistic link function (i.e. logistic regression) were assumed. As a result of the small sample size in the farrowing unit, it was not possible to perform a risk analysis which yielded significant conclusions. From the fattening unit, the following fixed effects were considered in the model: sampling time (growing pigs, finishing pigs), herd organisation (number of fattening places, mixed farming), housing system and 40 forage (floor space design, feed origin) and health (antibacterial and anthelmintic treatment). The estimates (ê) from the risk factors were transformed into odds ratios (OR = exp (ê)) and the 95%-confidence intervals were calculated. A low absolute frequency in the least sub classes from some factors did not allow a statistical analysis with logistic regression. For the factors having a p-value ≤0.05 in the χ2-test, the odds ratios and 95%-confidence intervals were calculated separately. 3. Results 3.1 Prevalence 3.1.1 Sows and suckling pigs Campylobacter (C.) spp. were isolated in 33.8% of the sows and in 80.9% of the piglets (Figure 1). Neither pathogen was isolated from the environmental and feed samples. sows (n = 68) suckling pigs (n = 256) prevalence (%) 100 80.9 71.1 80 60 40 33.8 30.9 20 4.4 12.1 0 C. coli C. jejuni C. total¹ pathogen 1 C. total = C. coli and/or C. jejuni Figure 1 Prevalence of Campylobacter spp. in sows and suckling pigs (Prävalenz von Campylobacter spp. bei Sauen und Saugferkeln) Table 1 shows the prevalence of Campylobacter spp. in pigs of the farrowing unit at herd level. Notable is the fact that in herd 4 no sows are carriers of the pathogen but some of their piglets are. In herd 3, no piglets were sampled, therefore no results for this production stage appear in Table 1. 41 Table 1 Prevalence of Campylobacter spp. in pigs of the farrowing unit at herd level (Prävalenz von Campylobacter spp. in der Ferkelerzeugung auf Betriebsebene) sows1 herd 1 herd 2 herd 3 herd 4 suckling pigs2 prevalence (%) 95% C.I.3 23.5 1.1-46.0 C. coli - prevalence (%) 96.5 92.5-100.0 C. jejuni - C. total4 23.5 1.1-46.0 96.5 92.5-100.0 C. coli 94.1 81.6-100.0 95.3 90.8-99.9 - C. total 81.6 81.6-100.0 C. coli 5.9 0-18.4 - - C. jejuni 17.6 0-37.9 - - C. total 17.6 0-37.9 - - C. coli not sampled not sampled 21.2 12.3-30.0 C. jejuni not sampled not sampled 36.5 26.0-46.9 C. total not sampled not sampled 50.6 39.7-61.4 n = 17 per herd 3 95% Confidence Interval 2 4 - - C. jejuni 1 - - 95% C.I. 95.3 90.8-99.9 n = 85 or 86 per herd C. total = C. coli and/or C. jejuni 3.1.2 Fattening pigs The prevalence of Campylobacter spp. in growing pigs was 89.2% and in finishing pigs slightly lower with 64.7% (Figure 2). Neither pathogen was isolated from the environmental and feed samples. 42 growing pigs (n = 362) finishing pigs (n = 354) prevalence (%) 100 80 89.2 71.3 64.7 60 40 42.1 28.0 25.7 20 0 C. coli C. jejuni C. total¹ pathogen 1 C. total = C. coli and/or C. jejuni Figure 2 Prevalence of Campylobacter spp. in growing and finishing pigs (Prävalenz von Campylobacter spp. am Mastanfang bzw. Mastende) Campylobacter spp. were detected on all farms in growing and finishing pigs (Figure 3). Herd 10 was the farm with the lowest Campylobacter spp. prevalence (54.8% in growing pigs and 19.4% in finishing pigs). In herd 9, no growing pig was pathogen-free (n = 29). There was still a high prevalence at the second sampling time in comparison to the other herds with 81.5%. Nearly the same results were achieved by herd 12 with 100% (n = 31) carriers of Campylobacter spp. at the beginning of fattening period and 80.6% at the end of growing time. In every herd the prevalence decreased from the first sampling time to the second. Only in herd 3 did the prevalence increase from 75.9% to 86.2%. 43 growing pigs finishing pigs prevalence (%) C . total1 100 80 60 40 20 0 1 2 3 4 5 6 7 8 9 10 11 12 herd2 1 C. total = C. coli and/or C. jejuni 2 herd = 29 to 31 sampled pigs per herd Figure 3 Prevalence of Campylobacter spp. in the fattening pigs at herd level (Prävalenz von Campylobacter spp. bei Mastschweinen auf Betriebsebene) 3.2 Risk factors For the statistical risk factor analysis in the fattening unit, 716 results from the bacteriological examination were evaluated in context with the questionnaire data from the twelve fattening herds. Twenty factors were tested regarding their influence on the prevalence of Campylobacter. Significant effects were shown for the following factors: sampling time, number of fattening places, mixed farming, floor space design, feed origin, antibacterial and anthelmintic treatments (Table 2). 44 Table 2 Significant risk factor and further risk factors: fattening unit (Signifikante Risikofaktoren und weitere Einflussfaktoren bei Mastschweinen) prevalence (%) OR1 95% C.I.2 89.2 64.7 4.64 1 3.11-6.93 - 80.0 74.3 1.44 1 1.00-2.08 - 74.6 82.0 0.61 1 0.41-0.92 - 74.4 74.8 84.7 0.35 0.56 1 0.20-0.95 0.32-0.97 - 70.3 79.4 0.41 1 0.24-0.68 - 74.6 79.7 0.66 1 0.45-0.96 - 83.9 74.8 1.99 1 1.25-3.18 - source3 own piglets steadier farrowing herds purchase breeding herds 73.3 76.1 90.3 0.26 0.32 1 0.09-0.75 0.13-0.76 - feed consistency3 meal granule pellets 70.3 81.0 78.0 0.63 1.23 1 0.42-0.96 0.60-2.54 - blank dwell time3 >10 days <10 days 90.5 74.5 3.53 1 1.82-6.86 - risk factor p-value date sampling time growing pigs finishing pigs <.0001 herd organisation number of fattening places < 1000 places > 1000 places mixed farming stall separated stall not separated housing system and forage floor space design fully slatted floor <50% slatted floor plan floor without bedding feed origin own forage purchase forage health antibacterial treatment yes no anthelmintic treatment yes no 1 odds ratio 2 0.052 0.015 0.001 0.001 0.028 0.003 3 95% Confidence Interval 45 further risk factor in the fattening unit Over the fattening period the Campylobacter spp. prevalence decreased. At the beginning the odds ratio increased by a factor of 4.46 (Table 2). The risk factor fattening places per herd was differentiated between farms size under 1000 pigs and alternatively over 1000 pigs. The bacteriological results show that pigs from farms with less than 1000 fattening places had a prevalence of 80.0% and those from larger farms a prevalence of 74.3%. The chance to isolate Campylobacter spp. from pigs from smaller herds increased by a factor of 1.44. Housing in separated stalls is another preventive influence. When the animals on mixed farms were kept in separated stalls the chance of a positive bacteriological result decreased (OR = 0.61). Pigs which were kept on a plan floor without bedding had the highest prevalence in comparison to the other flooring systems. In this housing system, the chance of obtaining a positive result was highest. An antibacterial treatment at the beginning of the fattening period was implemented on seven herds. The following antibiotics were used for this treatment: Amoxicillin, Tetracycline and Sulfonamide. The chance of a positive finding decreased when the animals were treated with antibacterial substances during this time period (OR = 0.66). On four herds, anthelmintics were used at the beginning of fattening period. The appliance of Ivermectin, Flubendazol and Levamisolhydrochlorid was adopted for deworming. The chance of obtaining a positive result rose by a factor of 1.99 when anthelmintics were administered. Further risk factors ‘source of piglets’, ‘feed consistency’ and ‘blank dwell time’ had an influence on the prevalence of Campylobacter spp., too. The chance of obtaining a positive result from the bacteriological investigation was smaller from fattening pigs in a closed herd system (OR = 0.26). Furthermore, the following cases were preventive: feeding meal (OR = 0.63) instead of granule or pellets and blank dwell time under 10 days. 4. Discussion The results from the present study prove that Campylobacter spp. are of increasing importance in farrowing and fattening units: high prevalence of Campylobacter spp. were found in suckling, growing and finishing pigs (Wehebrink, 2006). Other studies also confirm these results (Kasimir, 2005; Gaull, 2002). The occurrence of Campylobacter spp. in subsequent samples of pigs and sows was often variable in this analysis. As known from further studies the Campylobacter spp. prevalence may vary because the physiological status of the animal and external factors can influence the 46 intestinal flora. The ability of Campylobacter spp. to colonise the intestinal tract of pigs is probably subject to the various factors influencing the colonisation resistance of the gut (Ruckebusch et al., 1991). Furthermore, the virulence of the Campylobacter spp. strains (re)infecting the pigs may also alter the bacteriological results (Weijtens et al., 1999). The prevalence estimates on basis of bacterial findings must be questioned critically. Because of the intermittent shedding at animal level the bacterial detection in faecal samples can create a false image of the prevalence at herd level. Additionally, during sampling and laboratory processing, the pathogen’s sensibility to environmental influences can decrease the detection rate. The bacteriological analysis showed that in some herds as far as 100% of the pigs had contact with Campylobacter spp.. In contrast to Young et al. (2000), a successful abatement strategy can be doubted due to high general prevalence and the infection of piglets during the first weeks of life. Based on the zoonotic directive (Nr. 2160/2003), a monitoring for Campylobacter spp. is mandatory. It should take place at an adequate stage of the food chain. Control has to be directed primarily at the prevention of colonisation of farm animals by means of the implementation of Good Hygienic Practice (GHP), biosecurity measures and husbandry practices incorporating Hazard Analysis Critical Control Point (HACCP) based on risk management systems (Whyte et al., 2002). Because of this, the objective of this study was to obtain more information about the risk factors influencing the prevalence of this pathogen. As a result of the small sample size in the farrowing unit, it was not possible to perform a risk analysis which yielded significant conclusions. In the fattening unit the attention was focused additionally on risk factors which do not reach the significant limitation of the 5% probability error because of the small sample size. Effects which exceeded the housing and management factors were not acquired in the questionnaire and could not consequently be regarded in the evaluation. Because of this the results should only be regarded as tendencies. One important influencing factor could be the sampling time. Because of the steady state of immunity the chance of a positive Campylobacter spp. result is higher in growing pigs than to finishing pigs. Additionally, transport stress, changing the forage and status conflicts can raise the faecal shedding of this pathogen in growing pigs. In contrast to recent studies, risk factor analysis in the fattening unit demonstrated a significant influence on the Campylobacter spp. detection rate for the ‘number of fattening places’. The chance of obtaining a positive Campylobacter spp. result is higher when animals are held in smaller herds (<1000 places). This result did not conform to Gaull (2002). He 47 detected that the factor ‘number of animals’ hardly has any influence on Campylobacter spp.positive animals. Separating the herds in ‘mixed farming’ is a useful method to decrease pathogen transmission. In contrast to our study, Boes et al. (2005) could not assert this effect: investigation of the occurrence and diversity of C. jejuni infections in finisher pigs in herds with combined cattle or poultry production and herds only producing pigs showed no evidence of transmission of C. jejuni from cattle or poultry to pigs in mixed production herds. Herd prevalence of C. jejuni was 8.3%, whereas C. jejuni and C. coli were isolated from 0.8% and 92.0% of pigs, respectively. In mixed production herds, C. jejuni predominated in cattle (42.7%) and poultry (31.6%), whereas C. jejuni was only isolated from 1.3% to 2.5% of pigs in these herds. A lower Campylobacter spp. detection rate is not promoted by a plan floor without bedding and purchase forage. One reason for the higher prevalence in housing systems with plan floor is the intensive contact of the pigs with their faeces for a longer time. With regard to purchased forage, the origin is often uncertain: whether the forage comes directly from the forage producer or whether several forage chandlers are interposed, increasing the risk of contamination, remains often unknown. A further result from the questionnaire analysis was that an arranged antibacterial treatment but no anthelmintic treatment was preventive against Campylobacter spp. infections. These results must be questioned critically because it is not known first which health status in detail can be found in the different herds and, second, what the antimicrobial resistance of Campylobacter spp. is. Further studies will be needed to explain these two risk factors. Despite the fact that forage in granule form is heated during the manufacturing process, the chance of obtaining a positive Campylobacter spp. result rose by a factor of 1.23 in this form of forage feeding. The fact that a blank dwell time under ten days is better for the pathogen prevalence than a blank dwell time over ten days can be related to recontamination after disinfection and cleaning. Other studies found risks factors which could not be proven in this study. For example, Gaull (2002) discovered that a factor such as different ‘husbandry’ hardly has any influence on Campylobacter spp.-positive animals. ‘Feed’ and ‘number of pig delivering farms’ are not risk factors either (Weijtens et al., 1993). Schuppers et al. (2005) detected that important risk factors contributing to the prevalence of resistance strains were shortened tails, lameness, skin lesions, feed without whey, and ad libitum feeding. Multiple antimicrobial resistance was more likely in farms which only partially used an all-in all-out system, or a continuous-flow 48 system compared to a strict all-in all-out animal-flow. Presence of lameness, ill-thrift, and scratches at the shoulder in the herd also increased the odds for multiple resistance. Thus, the results from Schuppers et al. (2005) showed that on finishing farms which maintained a good herd health status and optimal farm management the prevalence of antimicrobial resistance was also more favourable. In the present study, only a few factors could be identified as potential risk factors. For further clarification of risk factors comprehensive assessment and transmission devolution studies are required. Acknowledgement This research was financially supported by the H. Wilhelm Schaumann Stiftung, the Ministerium für Soziales, Gesundheit, Familie, Jugend und Senioren des Landes SchleswigHolstein and the Arbeitsgruppe Lebensmittelqualität und -sicherheit (QUASI) from the Faculty of Agricultural and Nutritional Science, Christian-Albrechts-University, Kiel. References Black, R.E.; Levine, M.M., Clements, M.L., Hughes, T.P., Blaser, M.J., 1988. Experimental Campylobacter jejuni infection in humans. J. Infect. Dis. 157 (3), 472-479. Blaser, M.J., 1997. Epidemiologic and clinical features of Campylobacter jejuni infections. J. Infect. Dis. 176 (Suppl. 2), 103-105. Boes, J., Nersting, L., Nielsen, E.M., Kranker, S., Enøe, C., Wachmann, H.C., Baggesen, D.L., 2005, Prevalence and Diversity of Campylobacter jejuni in Pig Herds on Farms with and without Cattle or Poultry. J. Food Prot. 68, 722-727. Effler, P., Ieong, M.C., Kimura, A., Nakata, M., Burr, R., Cremer, E., 2001. Sporadic Campylobacter jejuni infections in Hawaii: associations with prior antibiotic use and commercially prepared chicken. J. Infect. Dis.183 (7), 1152-1155. Friedman, C.R., Neimann, J., Wegener, H.C., Tauxe, R.V., 2000. Epidemiology of Campylobacter jejuni infections in the United States and other industrialized nations. In: Nachamkin, I.; Blaser, M.J.: Campylobacter. 2nd ed. Washington, D.C., American Society for Microbiology Press., 121-138. 49 Friedman, C.R., Hoekstra, R.M., Samuel, M., Marcus, R., Bender, J., Shiferaw, B., 2004. Risk factors for sporadic Campylobacter infections in the United States: a case-control study in FoodNet sites. Clin. Infect. Dis. 38 (Suppl. 3), 285-296. Gaull, F., 2002. Vorkommen thermophiler Campylobacter spp. bei Schweinen im Betrieb und auf dem Schlachthof, auf Putenschlachttierkörpern und in Lebensmitteln tierischen Ursprungs – Typisierung der Isolate mit molekularbiologischen Fingerprintingmethoden und Vergleich der Isolate untereinander und mit humanen Isolaten. (Diss. med. vet.). Univ. Leipzig. International Organization for Standardization, 1995. International Standard 10272. Kasimir, S., 2005. Verlaufsuntersuchungen zum Vorkommen potentiell humanpathogener Yersinia enterocolitica und Campylobacter spp. in Schweinebeständen von der Geburt bis zur Schlachtung sowie Genotypisierung ausgewählter Isolate. (Diss. med. vet.). Univ. Leipzig. Nachamkin, I., 2003. Campylobacter and Arcobacter. In: Murray, P.R., Baron, E.J., Pfaller, M.A., Jorgensen, J.H., Yolken, R.H.: Manual of clinical microbiology, ASM Press, Washington, DC, 902-914. Noordhuizen, M., Frankena, K., Graat, E., 1997. Animal health care and public health issues. In: World Congress on Food Hygiene, The Hague/Netherlands, Proc., 59. Robert Koch-Institut, 2006. Epidemiologisches Bulletin Nr. 3. Ruckebusch, Y., Phaneuf, L.P., Dunlop, R., 1991. Microflora and immunology of the digestive tract. In Physiology of Small and Large Animals ed. Ruckebusch, Y.; Phaneuf, L.P., Dunlop, R., Philadelphia: Becker, 198-208. SAS Institute Inc., 2002, User’s Guide (release 8.1.), Cary, NC, USA. Schuppers, M.E., Stephan, R., Ledergerber, U., Danuser, J., Bissing-Choisat, B., Stärk, K.D.C., Regula, G., 2005. Clinical herd health, farm management and antimicrobial resistance in Campylobacter coli on finishing pig farms in Switzerland. Prev. vet. Med. 69, 189-202. Verordnung (EG) NR. 2160/2003, des Europäischen Parlaments und des Rates vom 17. November 2003 zur Bekämpfung von Salmonellen und bestimmten anderen durch Lebensmittel übertragbaren Zoonoseerregern. 50 Wehebrink, T., Kemper, N., grosse Beilage, E., Krieter, J. (2006). Prevalence of Campylobacter spp. and Yersinia spp. in the pig production. Prev. Vet. Med. (submitted). Weijtens, M.J.B., Bijker, P.G.H., van der Plas, J., Urlings, H.A.P., Biesheuvel, M.H., 1993. Prevalence of Campylobacter in pigs during fattening; an epidemiological study. Vet. Quart. 15, 138-143. Weijtens, M.J.B., Reinders, R.D., Urlings, H.A.P., van der Plas, J., 1999. Campylobacter infections in fattening pigs; excretion pattern and genetic diversity. J. Appl. Microbiol. 86, 63-70. Weissbuch zur Lebensmittelsicherheit, 2000. Kommission der Europäischen Gemeinschaft; Brüssel, KOM (1999) 719 endg.. Whyte, P., Bolton, D., O’Mahony, H., Collins, J.D., 2002. Development and Application of HACCP in Broiler Production and Slaughter, University College Dublin. Young, C.R., Harvey, R., Anderson, R., Nisbet, D., Stanker, L.H., 2000. Enteric colonisation following natural exposure to Campylobacter in pigs. Res. Vet. Sci. 68 (1), 75-78. 51 52 CHAPTER FOUR Simulation study on the epidemiology of Salmonella spp. in the pork supply chain TANJA WEHEBRINK, NICOLE KEMPER and JOACHIM KRIETER Institute of Animal Breeding and Husbandry Christian-Albrechts-University D-24118 Kiel, Germany 53 Abstract Pork can be regarded as an important source of food-borne salmonellosis. The objective of this research was to gain insight into the epidemiological effects of different strategies in the farrowing and finishing units to improve the food safety of pork with respect to the prevalence of Salmonella spp. in finishing pigs. Therefore a stochastic transition model was designed depending on prevalence in the population (sows = 0.5% to 65%; rearing pigs = 2% to 95%), infection risks (farmer = 0% to 10%; rodents = 0% to 5%; feed = 0% to 10%; and dust = 0% to 5%), the immunisation schedule of sows (yes/no) and the purchase of pathogenfree gilts (yes/no). The simulation model generated an integrated pig production chain with linkages between the stages farrowing, rearing and fattening. Within each herd, dynamic patterns of Salmonella infections were simulated. The simulation covered a time interval of 24 months. The results in the present study showed that preventive measures must first be introduced in the fattening unit because at this production stage preventive measures regarding the different risk factors had the highest influence on the prevalence of Salmonella spp.. The risk factor ‘farmer’ represented an exception as the influence of this factor was higher in the rearing unit (22.8% vs. 17.1%). The distribution over management interventions in the finishing stages was in the following order: farmer (p-value: 0.0004-0.0443), feed (p-value: 0.03-0.46), dust (p-value: 0.33-0.66) and rodents (p-value: 0.71-0.92). Immunisation against Salmonella spp. in sows represents a good strategy to decrease prevalence of Salmonella spp. in the fattening unit. keywords: farrowing and fattening unit, Monte Carlo Simulation, risk factors, Salmonella spp. 54 1. Introduction In industrialised countries, Salmonella enterica is a frequent cause of food-borne infections (Gebreyes et al., 2006). About 15-25% of all human salmonellosis cases worldwide can be attributed to the consumption of contaminated pork and pork products (van Pelt and Valkenburgh, 2001). Up to now, more than 2,500 serovars of Salmonella enterica have been recognized (Farmer, 1999). Two non-host-adapted serovars common in animals and humans are S. (Salmonella) Enteritidis and S. Typhimurium, which have been reported as two of the top food-borne infections in developed countries (Poppe et al., 2002). In Germany, 52,245 salmonellosis cases were registered in 2005. Compared with cases in 2004, a decrease of 8.3% was assessed. Salmonella Enteritidis was analysed in 68% and S. Typhimurium in 25% of the infections (Bätza, 2006). Contamination of pork products is related to asymptomatic intestinal carriage of Salmonella spp. by living pigs arriving at the slaughterhouse. To reduce the risk of pork contamination, some countries have established monitoring programs to identify pig farms with a high proportion of market hogs carrying Salmonella spp., followed by steps towards the reduction of the on-farm prevalence (Christensen et al., 2002). These actions will be mandatory in the future and especially in Europe, where several laws have recently been announced. In this context, directive 92/117/EEC was abolished and replaced by directive 2003/99/EC on the monitoring of zoonoses and zoonotic agents (Anonymous, 2003). Furthermore, a regulation for the control of Salmonella spp. in pig production was established (Anonymous, 2007). Control of Salmonella spp. in pork can be accomplished at all levels of production including pre-harvest (farm level). In order to limit and control Salmonella spp. occurrence in a swine herd, it is initially necessary to conduct epidemiological studies, first to determine the prevalence of Salmonella spp. and identify possible risk factors, and consequently to implement and monitor control programs (Mousing et al., 1997). Since it is not possible to test all individual interventions in practice, computer simulation is an attractive way to explore the effect of prevalence variations (Dijkhuizen and Morris, 1997). The present research included an exploration of possible measures that can be implemented in a farrowing and fattening unit to control the introduction and reduce the prevalence of Salmonella in finishing pigs. A stochastic state-transition simulation model was established to gather further information about the influence of the risk factors in the different pig production stages on the Salmonella spp. prevalence in fattening pigs. Furthermore, the influence of preventive arrangements of the immunisation of sows, and additionally, of 55 pathogen-free purchased gilts on the Salmonella spp. prevalence in the farrowing and fattening unit were determined. 2. Materials and Methods 2.1 General conception In accordance with Krieter (2004), the simulation model includes an integrated pig production chain with vertical linkages between the three stages farrowing, rearing and fattening of pigs. Herd size at the farrowing stage was set to 210 productive sows, at the fattening level 1,500 places per farm were assumed implying 2.7 production cycles per year. In the farrowing stage, feeder pigs were produced, which are passed on to the fattening stage at a live weight of 28 kg. Animals were slaughtered at a live weight of 115 kg. The model starts with the generation of the sows’ performance. The production cycle was 150 days, based on the gestation of 115 days, lactation length of 28 days and seven days from weaning to breeding. Because of these facts, the number of litters per sow and year was 2.3. Litter size and piglet mortality was simulated over ten litters with non-linear patterns for litter size born alive and piglet mortality (Brandt, 1984). An average of 10.2 piglets were born alive and piglet mortality varied between 13.3% and 18.1%. The culling percentage of sows was defined by a 40% replacement rate. The purchased gilts were integrated into the herd with 180 days. Postweaning mortality was 1%, during fattening the mortality rate rose to 3%. The simulation model includes possible crowding effects (e.g. stress, higher infection risk) between the different stages of the production chain. After weaning, three litters were housed in one large group within the farrowing farm at one time. In the fattening unit, the piglets were split into two batches after transport. As shown by van der Wolf (2000), the in-herd Salmonella spp. prevalence fluctuates within a given period. To make allowances for this variation, the duration of the simulation was extended to 24 months. 2.2 Entry and spread of Salmonella spp. in the farrowing and fattening unit The model considered several alternatives for Salmonella spp. entry in the production chain (Table 1). The assumptions were based on literature about Salmonella spp. in the pork chain (van der Wolf, 2000; Stege et al., 2001; Meyer et al., 2005). The probability of an infection due to the risk factors varied between stages and depended on the prevalence in the population. An important source of Salmonella spp. entry of all stages was the acquisition of infected animals from the preliminary stage. Latently infected animals entering the herd 56 unnoticed due to the lack of clinical symptoms can intermittently shed Salmonella spp. via their faeces. The farmer himself is the highest risk factor. For example, he can introduce Salmonella spp. in the barn via boots, overalls and other implements and he is additionally responsible for the spread of the pathogen in the herd. The feasibility of an infection due to the farmer was simulated from 0% to 15%. Another living vector are rodents. In the model, it was assumed that rodents mainly initialise and maintain the contamination cycle at the farm. The probability of an infection due to rodents ranged from 0% to 5 %. The occurrence of Salmonella spp. in feed is mostly a consequence of recontamination during production, transport or storage. The probability of an infection due to feedstuff ranged from 0% to 10%. The concluding risk factor in the simulation program is dust. The pathogen Salmonella spp. is able to survive in dust at room temperature for four years (Selbitz, 2002). Thus, dust is responsible for a re-infection of a cleaned and disinfected barn. The chance of a positive result from the pigs ranged from 0% to 5% (Table 1). These four assumed risk factors were higher in breeding farms compared to finishing farms (due to e.g. all-in all-out, cleaning and disinfection). Table 1 Description of the model inputs Description of variables mean Production farrowing unit sows piglet number born alive per litter1, piglet mortality (piglets), % lactation period, days weaning-to-oestrus interval, days litters per sow and year, n replacement rate, % rearing unit (7 to 28kg live weight) mortality, % production cycle finishing unit (>28 to 115kg live weight) mortality, % production cycle 57 210 10.2 15.3 28 7 2.3 40 1 6.1 3 2.7 min max 8.6 13.3 11.5 18.1 Table 1 Description of the model inputs (cont.) Salmonella spp. introduction farrowing unit sows prevalence replacement gilts, % probability of an infection due to, % biotic vector: farmer rodents abiotic vector: feed dust rearing unit (weaning piglet) probability of an infection due to, % biotic vectors: farmer rodents abiotic vectors: feed dust fattening unit probability of an infection due to, % biotic vectors: farmer rodents abiotic vectors: feed dust -2 0 90 -2 -2 -2 -2 0 0 0 0 15 5 10 5 -2 -2 -2 -2 0 0 0 0 10 1 2 2 -2 -2 -2 -2 0 0 0 0 10 2.5 10 5 10 20 95 90 Salmonella spp. transmission farrowing unit sows, piglets – suckling period probability – excretion of S. spp. via faeces by infected sows probability – infection of piglets by sows infected rearing unit crowding, no. litters per pen crowding factor, c3 probability for the infection from pen to pen, % fattening unit crowding, no. pen per pen (weaning) crowding factor, c3 probability for the infection from pen to pen, % 1 2 -2 -2 3 0.50 30 2 0.80 60 depending on parity, weighted with frequency of parity distribution 3 depending on the prevalence explanation, see text In the stochastic state-transition model, groups of pigs move through the pork supply chain and may become infected with Salmonella spp.. A pig can have two states with respect to Salmonella spp. over the expected 24 months with four transitions respectively: free stays free, free changes to infected, infected changes to free or infected stays infected. The transmission of Salmonella spp. in the vertical production chain depends on the Salmonella spp. status of the sow at the farrowing unit. Suckling piglets can be infected by perinatal 58 contamination and the faeces of the sow. The probability that infected sows excreted Salmonella spp. with the faeces ranged between 10% and 95%, depending on the general Salmonella status of the farm. The risk of a piglet becoming infected by the contaminated faeces of the sow varied from 20% to 90%. Each alteration of the stage caused an increase in prevalence due to crowding. Crowding was considered from lactation to weaning and from weaning to finishing. Two patterns of the spread of infection within units were taken into account. First, if a pen had a known number of animal infected (nj) after arrival, the proportion of infected animals (pui) was updated with: pui = ni/N+c[ni/N(1-exp-(1-ni/N))] N is the total number of animals per pen and c the weighting factor depending on the stage considered. Parameter c diminishes the probability of spreading the infection at the weaning stage (0.50) and increases the risk at the fattening level (0.80). Secondly, infections spread from adjacent pen to adjacent pen within a barn due to faeces and other vectors (e.g. boots, overalls and other implements). The probability of pen-to-pen transmission was set at 30% at weaning and 60% at finishing. The Salmonella transmission from barn to barn was neglected in the model. 2.3 Simulation scenarios The data in Table 2 represent the different scenarios of Salmonella spp. introduction, e.g. by sows, weaning piglets and fattening pigs. The basic scenario has approximately the same values as the ‘low scenario’. Additionally, ‘middle scenarios’ and ‘high scenarios' of a probability of infection due to biotic and abiotic vectors were simulated. 59 Table 2 Parameters of simulation scenarios parameter low Salmonella spp. introduction probability of an infection due to, % farrowing unit sow biotic vectors: farmer rodents abiotic vectors: feed dust immunisation schedule (sows) purchase of gilts rearing unit weaning piglet biotic vectors: farmer rodents abiotic vectors: feed dust fattening unit pig biotic vectors: farmer rodents abiotic vectors: feed dust 2.4 value middle high 0.50 0.25 0 0.30 10.00 10.00 7.00 1.50 5.00 2.50 15.00 4.00 10.00 4.90 0.50 0.25 0.05 0.07 5.00 0.75 1.00 1.75 10.00 1.00 2.00 1.90 0.80 0.15 0.50 0.13 6.50 1.75 5.50 3.50 9.50 2.50 10.00 5.0 Statistical analysis The significance of systematic environmental effects on the prevalence of Salmonella spp. was investigated in a generalized linear model. The following risk factors were considered in the model: farmer, rodents, feed and dust with four classes respectively and two fixed effects were additionally assumed: immunisation of sows (yes/no) and purchase of pathogen-free gilts (yes/no) (see Table 2). The analysis was performed with the SAS procedure GENMOD (SAS® 2002). For the estimation, a gamma distribution and a logistic link function (i.e. logistic regression) were assumed. In total, 100 farms were simulated with 100 replicates. 60 3. Results 3.1 Basic situation Figure 1 presents the prevalence of the animals from the farrowing to the fattening unit in consideration of the baseline parameters. In the farrowing unit, the prevalence from sows prevalence (%) (17.1%) and suckling piglets (14.4%) was higher than in the following production stages. 20 Salmonella spp. 17.1 14.4 15 12.3 11.9 * 10 5 0 suckling piglets sows weaning pigs fattening pigs pig production *standard error Figure 1 Prevalence (LS-Means) of Salmonella spp. in the basic situation 3.2 Simulation scenarios Farmer The risk factor ‘farmer’ is a synonym for a very complex introduction- and spread-risk. For example, a farmer can introduce Salmonella spp. in the barn via boots, overalls and other implements. Additionally, he can be responsible for the spread of the pathogen in the herd because he is a biotic vector for cross-contaminations. Figure 2 shows the farmer’s influence with different probability of infection (0.5%-15.0%) in the farrowing / rearing / fattening unit on the prevalence of Salmonella spp. in fattening pigs. 61 prevalence fattening pigs (%) farrowing unit rearing unit fattening unit 30 22.8 25 17.1 20 15 11.2 11.7 17.1 15.0 11.8 * 13.7 12.7 10 5 0 low middle high probability of an infection (%) *standard error Figure 2 Salmonella spp. prevalence (LS-Means) in fattening pigs depending on the risk factor ‘farmer’ at the different production stages In total, the increasing of Salmonella spp. from the fattening pigs during the different scenarios was moderate (11.7% vs. 12.7% vs. 13.7%) when the infection source was in the farrowing unit. A huge influence on the pathogen prevalence was when the introduction happened in the rearing unit. In this case, the prevalence rose from 11.2% over 17.1% to 22.8%. In every production stage, the farmer was a significant risk factor (p-value = 0.0055 farrowing unit; p-value = 0.0004 rearing unit; p-value = 0.0443 fattening unit) on the Salmonella spp. prevalence in fattening pigs. Rodents Another biotic vector are rodents. In the model, it was assumed that rodents mainly initialise and maintain the contamination cycle at the farm. Rodents had no significant influence on the prevalence in fattening pigs (p-value: 0.71-0.92). Figure 3 shows that the Salmonella spp. prevalence of fattening pigs only varied slightly during the different scenarios (between 11.1% to 12.8%). Apparently, there is no impact as to where the introduction takes place and with which tendency (0.25%-4.0% probability of an infection). 62 prevalence fattening pigs (%) farrowing unit 14 12 10 8 6 4 2 0 rearing unit fattening unit 11.7 11.1 11.3 11.8 11.6 12.3 12.4 11.9 12.8 * low middle high probability of an infection (%) *standard error Figure 3 Salmonella spp. prevalence (LS-Means) in fattening pigs depending on the risk factor ‘rodents’ at the different production stages Feed The occurrence of Salmonella spp. in feed is mostly a consequence of recontamination during production, transport or storage. Feed only had a significant influence (p-value = 0.03) in the fattening unit. The highest prevalence was reached in the scenario when the fattening pigs were contaminated with feed (Figure 4). Although the sows had nearly the same infection probabilities in the middle (5.0% vs. 5.5%) and high scenarios (10.0% vs. 10.0%), the prevalence in fattening pigs was at 12.1% (middle infection probability) and 13.0% (high infection probability) not as high as when the infection happened in the fattening unit. The Salmonella spp. prevalence reached in this case 15.6% and 17.1%. 63 prevalence fattening pigs (%) farrowing unit rearing unit 20 15 fattening unit 17.1 15.6 11.5 11.5 10.5 12.1 11.9 * 13.0 13.2 10 5 0 low middle high probability of an infection (%) *standard error Figure 4 Salmonella spp. prevalence (LS-Means) in fattening pigs depending on the risk factor ‘feed’ at the different production stages Dust The pathogen Salmonella spp. is able to survive in dust at room temperature for four years. Thus, dust is responsible for a re-infection of a cleaned and disinfected barn. Dust had no significant influence on the prevalence in fattening pigs (p-value: 0.33-0.66). Figure 5 points out that the highest prevalence (14.3%) was reached when the barn was not strictly cleaned in the fattening unit. 64 prevalence fattening pigs (%) farrowing unit 16 14 12 10 8 6 4 2 0 11.5 10.7 11.5 low rearing unit 12.7 13.3 12.1 fattening unit 14.3 12.3 middle 12.9 * high probability of an infection (%) *standard error Figure 5 Salmonella spp. prevalence (LS-Means) in fattening pigs depending on the risk factor ‘dust’ at the different production stages Preventive measures Additionally, in the farrowing unit, it was simulated which preventive measure is more effective. Figure 6 clarifies that the sow immunisation is more crucial than the purchase of pathogen-free gilts. The prevalence in animals in the scenario with ‘purchase of pathogen-free gilts’ were between 2.6% and 4.3% higher compared to the scenario ‘sow immunisation’. Neither the immunisation nor the purchase of pathogen-free gilts had a significant influence (p-value = 0.76 vs. p-value = 0.85) on the Salmonella spp. prevalence in the pig production. 65 immunisation prevalence (%) 20 pathogen free gilts 15.6 13.0 15 11.8 10 10.3 10.4 7.5 7.0 7.3 * 5 0 suckling piglets sows weaning pigs fattening pigs production stage *standard error Figure 6 The effects of immunisation and purchase of pathogen-free gilts (LS-Means) 4. Discussion The simulation model generates an integrated production chain starting with the purchase of sows at the farrowing unit and closing with the finishing pig in the fattening unit. At each stage, Salmonella spp. may enter the production chain by different vectors (e.g. latently infected animals, feed etc.), the transmission is affected be the status of the sow, crowding effects and pen-to-pen infections. Assumptions about the entry and spread of Salmonella spp. were derived from the literature. Due to the lack of further information in the literature about the different parameters and their infection probabilities, for instance the crowding effect, various scenarios were simulated within biological limits. Based on the simulation of best- and worst-case scenarios, parameters representing the most important effects influencing or lowering the prevalence in fattening pigs were determined. Finally, these parameters were adjusted to the prevalence at the different production stages as known from the literature. The estimated prevalence in the basic scenario is confirmed by numerous prevalence studies. For instance, in a Lower-Saxonian study by Quante (2000), in 79 out of 88 examined farms, less than 20% of the sows were serologically tested positive, in seven 20%-40% and on two farms more than 40% were positive. Meyer et al. (2005) analysed 1,498 blood samples of sows serologically, showing positive results for 17.1% of the samples. Regarding fattening 66 pigs, on 96 farms Stege et al. (2000) showed at least one positive serological sample in 65.6% of the farms. The average intraherd prevalence was 2%, the highest Salmonella spp. prevalence was reached with 32% positively tested animals. In another study, 11% of 1,760 tested blood samples from fattening pigs reacted ELISA positive (van der Wolf, 2000). Meyer et al. (2005) reported 301 (11.4%) positive serological results out of 2,642 blood samples from fattening pigs. The aim of the present paper focused on further information about the influence of the risk factors (biotic vectors = farmer, rodents; abiotic vectors = forage, dust) in the different pig production stages on the Salmonella spp. prevalence in fattening pigs. Furthermore, the influence of preventive arrangements of immunisation of sows, and additionally, of pathogenfree purchased gilts on the Salmonella spp. prevalence in the farrowing and fattening unit were determined. The results in the present study clarify that the greatest influence on the Salmonella spp. detection rate is in the fattening unit. This conforms with an expert survey in the Netherlands and Denmark by van der Gaag (2002). The ranking of the management interventions in the primary stages shows that most of the emphasis is placed on reducing or preventing the spread of Salmonella spp. within the farm. Two stages in the chain (finishing and slaughtering) are expected to be able to most effectively improve the food safety of pork with respect to Salmonella spp. (van der Gaag, 2002). The interaction between Salmonella spp., host, and environment is influenced by various factors. Thus, especially in the rearing unit, the farmer plays a major role in Salmonella spp. transmission in this unit and later Salmonella spp. prevalence in the fatting unit (11.2%22.8%). One reason for this has to be seen in the incompletely developed immune response in the pigs at an age between 21 and 80 days. Maternal immunoglobulines transferred to the piglets with the colostrum are supposed to have vanished at this point of time while the individual antibody production is only slowly increasing. Especially in the fattening unit, the crowding effect has to be regarded, implicating a higher infection risk between the different stages of the production chain. Entry of pathogens can be brought about via abiotic factors such as contaminated equipment and other vectors. Additional spreading of Salmonella spp. is provoked by crosscontamination during daily work processes (Blaha, 1993). This fact is confirmed by other and the presented research. Barber et al. (2002) and Rajic et al. (2005) reported that Salmonella spp. were detected in 11% and 39% of boot samples, respectively. However, as part of 67 hygienic-lock facilities combined with all-in all-out production (Lo Fo Wong et al., 2004), clean farmers’ boots might contribute to reducing the risk of Salmonella spp. infections. Further potential risk factors for Salmonella spp. are rodents and wild birds (Zheng et al., 2007). Wild fauna as well as other domestic animals living on the farm or in the surrounding environment may introduce and transmit Salmonella spp. through direct contact with pigs, or by faecal contamination of feed or farm equipment. Rodents are known to be carriers of Salmonella spp. (Leirs et al., 2004). Reported prevalence of Salmonella spp. positive rodents were between 4% and 30% (Böhm, 1993). Contrary to these facts, in the present simulation rodents had hardly any influence on the prevalence The Salmonella spp. prevalence in fattening pigs was in every scenario at a low level (11.7%-12.8%) and there were no high variations. The prevalence in fattening pigs rose with the respected increase in the infection probability in the fattening unit from 11.5% over 15.6% to 17.1%. The reason for this has to be seen in the estimated low entry risk and the impact at a relatively late stage of the simulation. In addition to the presented Monte Carlo simulation, many studies have shown that the type of feed appears to be strongly associated with the presence of Salmonella spp.. For example, Cook and Miller (2005) reported that farms feeding home-mixed rations had a lower seroprevalence of Salmonella spp. (OR = 0.77) in a study including 1,806 farms. On the other hand, Harris et al. (1997) found a higher prevalence of Salmonella spp.-contaminated homemade feed than purchased feed on farm. The quality and hygiene of homemade feed might vary in the studies, and furthermore, Harris et al. (1997) investigated only 30 farms. Purchased feed might constitute a risk of introducing Salmonella spp. in the herd. The importance of the risk factor feed could be confirmed in the present study. Another risk factor is dust. It can be responsible for re-infection of cleaned and disinfected barns because the pathogen is able to survive in dust at room temperature for four years (Selbitz, 2002). In the present study, dust had a higher influence on the prevalence in fattening pigs than rodents, stressing the fact that strict cleaning of barns is a basis for good health management. The immunity scenario showed that the immunisation of sows is an opportunity for Salmonella spp. abatement. The Salmonella-Typhimurium-alive vaccine is well established and effective due to the fact that 70% of Salmonella infections in pigs are related to S. Typhimurium (Enneking, 2005). In this scenario, immunisations are the preferable method of reduction of infections. In practice, in most cases these measures are not economically justifiable and only appropriate in problem herds. 68 The results of the simulation show that the purchase of pathogen-free gilts is only reasonable with the simultaneous improvement of hygiene and management conditions. The presented Monte Carlo simulation takes into consideration the multi-factorial sources of Salmonella spp. infection. In order to control Salmonella spp. in pigs, quantified possible risk factors are needed to develop effective management strategies in pig herds (Zheng, et al. 2007). Additionally the simulation study indicated that most single intervention and control measures are not effective enough to reduce or remove a Salmonella spp. infection or contamination from a herd. It is therefore recommended that a herd-specific intervention and control strategy be formulated, based on a combination of measures which are both practically and economically feasible in a herd. A multi-factorial infection such as a Salmonella spp. infection requires a multi-level approach of intervention and control, i.e. between and within herds, as well as between and within pigs. The results from the presented study suggest that improvements to all steps from stable to table need to be considered, and the most economically optimal solution should be chosen. To identify this, an economic optimisation model should be carried out, probably individually for each production stage. 5. Conclusion A stochastic state-transition simulation model was established to gather further information about the influence of the risk factors at the different pig production stages on the Salmonella spp. prevalence in fattening pigs. The results in the present study showed that preventive measures must first be introduced in the fattening unit because at this production stage preventive measures regarding the different risk factors had the highest influence on the prevalence of Salmonella spp.. The risk factor ‘farmer’ represented an exception as the influence of this factor was higher in the rearing unit. The distribution over management interventions in the finishing stages was in the following order: farmer, feed, dust and rodents. Immunisation against Salmonella spp. in sows represents a good strategy to decrease the prevalence in the fattening unit. The results of this simulation emphasise once more the outstanding importance of optimised hygiene management. 69 Acknowledgements This research was financially supported by the H. Wilhelm Schaumann Stiftung, the Ministerium für Soziales, Gesundheit, Familie, Jugend und Senioren des Landes SchleswigHolstein and the Arbeitsgruppe Lebensmittelqualität und -sicherheit (QUASI) from the Faculty of Agricultural and Nutritional Science, Christian-Albrechts-University, Kiel. References Anonymous, 2003. Directive 2003/99/EC of the European Parliament and of the Council of 17. November 2003 on the monitoring of zoonoses and zoonotic agents, amending Council Decision 90/424/EEC and repealing Council Directive 92/117/EEC. Official Journal L 325, 12/12/2003 P. 0031-0040. Anonymous, 2007. Verordnung zur Verminderung der Salmonellenverbreitung durch Schlachtschweine (Schweine-Salmonellen-Verordnung), Bundesgesetzblatt Jahrgang 2007 Teil I Nr. 10, ausgegeben zu Bonn am 23. März 2007. Barber, D.A., Bahnson, P.B., Isaacson, R., Jones, C.J., Weigel, R.M., 2002. Distribution of Salmonella in swine production ecosystems. J. Food Prot. 65, 1861-1868. Bätza, H.J., 2006. Salmonellenbekämpfung – Staatliche Maßnahmen. Zentralverband der Deutschen Schweineproduktion e.V. ZDS-Fachtagung: Neue Erkenntnisse zur Tierseuchenbekämpfung Schweinepest / Salmonellen. Kassel. Blaha, T., 1993. Die Ausbreitungsdynamik von Salmonellen in Tierbeständen. Dtsch. tierärztl. Wochenschrift 100, 278-280. Böhm, R., 1993. Verhalten ausgewählter Salmonellen in der Umwelt. Dtsch. tierärztl. Wochenschrift 100, 275-278. Brandt, H., 1984. Konstruktion optimaler Selektionskriterien für Sauenvermehrungsbetriebe mit eigener Bestandsremontierung. (Dr. agr.) Univ. Göttingen. Christensen, J., Baggesen, D.L., Nielsen, B., Stryhn, H., 2002. Herd prevalence of Salmonella spp. in Danish pig herds after implementation of Danish Salmonella Control Program with reference to a pre-implementation study. Vet. Microbiol. 88, 175-188. Cook, A.J.C., Miller, A., 2005. Risk factors a positive meat juice ELISA result – an analysis of routine data from Britain. Proceedings of the 6th International Symposium on the 70 Epidemiological and Control of Foodborne Pathogens in Pork, California, Sep 6-9, pp. 24-26. Dijkhuizen, A.A., Morris, R.S., 1997. Animal health economics; principles and applications. Australia: University of Sydney. Enneking, H., 2005. Salmonellen: wie können Betriebe mit hohem Erregerdruck reagieren? ISN-schweine.net. http://www.schweine.net/isn_scripte.de. Farmer, J.J., 1999. Enterobacteriaceae. Introduction and identification. Manual of clinical microbiology. Ameri. Soc. Microbiol., Washington DC. Gebreyes, W.A., Altier, C., Thakur, S., 2006. Molecular epidemiology and diversity of Salmonella serovar Typhimurium in pigs using phenotypic and genotypic approaches. Epidemiol. Infect. 134, 187-198. Harris, I.T. Feorka-Cray, P.J., Gray, J.T., Thomas, L.A., Ferris, K., 1997. Prevalence of Salmonella organisms in swine feed. J. Am. Vet. Med. Assoc. 210, 382-385. Krieter, J., 2004. Evaluation of Salmonella surveillance in pigs using a stochastic simulation model. A. of Anim. Breeding, 47, 337-349. Leirs, H., Lodal, J., Knorr, M., 2004. Factors correlated with the presence of rodents in outdoor pig farms in Denmark and suggestions for management strategies. NJAS_Wageningen J. Life Sci. 52, 145-161. Lo Fo Wong, D.M.A., Dahl, J., Stege, H., van der Wolf, P.J., Leontides, L., von Altrock, A., Thorberg, B.M., 2004. Herd-level risk factors for subclinical Salmonella infection in European finishing-pig herds. Prev. Vet. Med. 62, 253-266. Meyer, C., grosse Beilage, E., Krieter, J., 2005. Untersuchungen zur SalmonellaSeroprävalenz in unterschiedlichen Produktionssystemen beim Schwein. Tierärtztl. Prax. 33, 104-112. Mousing, J., Jensen, P.T., Halgaard, C., Bager, F., Feld, N., Nielsen, B., Nielsen, J.P., BechNielsen, S., 1997. Nation-wide Salmonella enterica surveillance and control in Danish slaughter swine herds. Prev. Vet. Med. 29, 247-261. Poppe, C., Ziebell, K., Martin, L., Allen, K., 2002. Diversity in antimicrobial resistance and other characteristics among Salmonella Typhimurium DT104 isolates. Microbiol. Drug Resist. 8, 107-122. 71 Quante, U., 2000. Untersuchungen zum Vorkommen von Salmonellen bei Zuchtschweinen. (Diss. med. vet.). Tierärztl. Hochschule Hannover. Rajic, A., Keenliside, J., McFall, M.E., Deckert, A.E., Muckle, A.C., O’Conner, B.P., Manninen, K., Dewey, C.E., McEwen, S.A., 2005. Longitudinal study of Salmonella species in 90 Alberta swine finishing farms. Vet. Microbiol. 105, 47-56. SAS Institute Inc., 2002. User’s Guide (release 8.1.), Cary, NC, USA. Selbitz, H.J., 2002. Bakterielle Krankheiten der Tiere. In: Rolle, M., und A. Mayr (Hrsg.): Medizinische Mikrobiologie, Infektions- und Seuchenlehre. 7 Aufl. Verlag Enke, Stuttgard. Stege, H., Christensen, J., Nielsen J.P., Baggesen D.L., Enøe, C., Willenberg, F., 2000. Prevalence of subclinical Salmonella enterica infection in Danish finishing pig herds. Prev. Vet. Med. 44, 175-188. Stege, H., Jensen, T.K., Møller, K., Bækbo, P., Jorsal, S.E., 2001. Risk factors for intestinal pathogens in Danish finishing pig herds. Prev. Vet. Med. 50, 135-146. van der Gaag, M.A., Huirne, R.B.M., 2002. Elicitation of expert knowledge on controlling Salmonella in pork chain. Chain and network science, 135-147. van der Wolf, P.J., 2000. Salmonella in the pork production chain: feasibility of Salmonellafree pig production. Department of Pig Health of the Animal Health Service, Utrecht, The Netherlands, PhD Thesis. van Pelt, W., Valkenburgh, SM., 2001. Zoonoses and zoonotic agents in humans, food, animals and feed in the Netherlands. Available: www.keuringsdienstvanwaren.nl. Zheng, D.M., Bonde, M., Sørensen, J.T., 2007. Associations between the proportion of Salmonella seropositive slaughter pigs and the presence of herd level risk factors for introduction and transmission of Salmonella in 34 Danish organic, outdoor (nonorganic) and indoor finishing-pig farms. Liv. Sci. 106, 189-199. 72 GENERAL DISCUSSION Introduction Pork can be regarded as an important source for food-borne campylobacteriosis, yersiniosis and salmonellosis. All these agents are carried by pigs without any clinical signs, food products represent a potential source of human infections. In order to control these pathogens in pigs a quantification of possible risk factors and the development of effective management strategies in pig herds is needed. The aim of the present thesis was to contribute to a better understanding of these bacterial pathogens causing disease both in humans and animals and to use this information to assess and manage the risk to animals and humans. A purpose of this thesis was to increase the knowledge about the epidemiology of the occurrence of Campylobacter spp. and Yersinia spp. in farrowing and fattening herds with particular emphasis on bacteriological findings. Analysis of the data from questionnaires provided first indications of factors which may influence the prevalence of Campylobacter spp. and Yersinia spp. in herds. Another objective of this thesis was to gain insight into the epidemiological effects of different strategies in the farrowing and finishing units to improve the food safety of pork with respect to the prevalence of Salmonella spp. in finishing pigs. Therefore a stochastic transition model was designed depending on farm size, prevalence in the population, rearing, infection risks, the immunisation schedule of sows and the purchase of pathogen-free gilts. The simulation model generates an integrated pig production chain with linkages between the stages farrowing, rearing and fattening with Monte Carlo methods. The outline of the GENERAL DISCUSSION is focused in the first section on the results from the bacteriological analysis of Campylobacter spp. and the indicated risk factors. In the second section, the main emphasis is laid on the prevalence of Yersinia spp. and in the third section on the different measures to prevent the spread of Salmonella spp. simulated with a stochastic transition model. Campylobacter spp. The results from the thesis (CHAPTER TWO) prove that Campylobacter spp. are of increasing importance in farrowing and fattening units. High prevalence of Campylobacter spp. were found in suckling (80.9%), growing (89.2%) and finishing pigs (64.7%). Other studies also confirm these results (Görgen et al., 1983; Weijtens et al., 1993; Gaull, 2002). 73 In the farrowing unit the prevalence of piglets (80.9%) was very high compared with the prevalence of sows (33.8%). One explanation could be the stable gut flora from older animals. The same effect was observed by Weijtens et al. (2000). They described a sow herd with a minor Campylobacter spp. status (0-22% during 22 month). This farm started breeding with SPF-animals (specific pathogen-free), but the hygienic regime was not strict enough to avoid pathogen contamination. However, the prevalence remained at a low level. The main infection route is the transmission from animal to animal. Gaull (2002) showed that an infection from sow to piglet is possible, showing 100% prevalence in piglets within 24 hours after birth. This fact cannot be confirmed however. On the basis of the results from the present thesis, it becomes obvious that there is no relationship between infected sows and the infection of their piglets with Campylobacter spp.. This fact clarifies that sampling of sows alone is useless without taking the piglets into account. On the basis of the results in the fattening unit, it becomes obvious that a stable gut flora from older pigs can cause a decrease in prevalence (89.2% vs. 64.7%). Other studies e.g. from Weijtens et al. (1993; 1999) confirm this effect. Furthermore, it could be noticed that in every herd in the fattening unit Campylobacter spp. excretion was intermittent. This path of excretion was described in other studies, too (Gaull, 2002; Kasimir, 2005). The occasionally pathogen-free status and the following re-infection could be one explanation for these effects. Weijtens et al. (1999) stated that the pigs are not pathogen-free when there is no detection rate. They suspected that the pathogen further existed in the intestinal villi. A total pathogen eradication in pig herds seems to be utopian, however for chicks several studies and strategies for pathogen reduction have been described (Kasimir, 2005). Immunisation seemed to be successful (Rice et al., 1997). Another opportunity for chicks is Competitive Exclusion. There are no studies on Competitive Exclusion in pigs, but this method may be successful in that species, too (Weijtens, 1996). As an alternative, Weijtens et al. (2000) demonstrated that it is possible to keep Campylobacter spp. at a low level or to arrange a pathogen-free pig herd. The principle is based on Campylobacter spp.-free sows (from specific pathogen-free herds) in solidly cleaned and disinfected cots, which have been, when possible, vacant for some time. Sows are, as a result of their robust gut flora, less susceptible for the pathogen compared to piglets. Additionally, frequently practised housing in crates prevents coprophagy. The negative sows cannot infect their piglets. Despite the high prevalence in the faeces, low detection rates on carcasses between 2.9% and 36.5% are described in the literature (Nesbakken et al., 2002; Pearce et al., 2003; Kasimir, 74 2005). In the present thesis, the detected Campylobacter spp. prevalence decreased from 55.7% in the lairage to over 19.7% on the carcasses before chilling to 0% after twelve hours chilling. In most of the literature, Campylobacter spp. is mostly not detectable after chilling, too (Chang et al., 2003; Pearce et al., 2003). Other studies have shown that after chilling equally high prevalence are possible. For example, Gebreys et al. (2003) isolated Campylobacter spp. from 29% of the carcasses after chilling. It is known that Campylobacter spp. can survive the chilling process on chicken skin because the skin is sulcate, clammy and the follicles feature the opportunity to survive it (Kasimir, 2005). A high prevalence of Campylobacter spp. on pig carcasses is implausible because pig skin with its relatively flush surface wipes off during the chilling process. For consumer protection purposes it is noteworthy that in the present project C. coli was isolated from one liver sample only. Besides C. coli, C. jejuni were laboratory-confirmed in this examination. The isolation of C. jejuni from pig samples has been described by other studies as well. For example, Stich-Groh (1982) and Young et al. (2000) identified 23.4% and 76.3% respectively, Campylobacter spp. as C. jejuni. In these assays, hippurathydrolysis served as a confirmation method. This technique is based on the ability of C. jejuni to hydrolyse hippurat, a biochemical reaction C. coli is not capable of. One major problem of this method is the possible loss of this ability during the life span of C. jejuni, causing false positive results with regard to C. coli. But it can be possible that in some farms or in some geographical regions C. jejuni is described as common in pigs (Kasimir, 2005). As a result of the small sample size in the farrowing unit (CHAPTER THREE) it was not possible to perform a risk analysis which yielded significant conclusions in this production stage. Thus, further risk factors for the occurrence of Campylobacter spp. in fattening units should be observed via environmental and feed samples from the checked herds and questionnaires in the corresponding pig farms. Neither in the feed nor in the environmental samples was Campylobacter spp. detected. In the fattening stage, the following risk factors had a significant effect (p≤0.05) on Campylobacter spp. prevalence: sampling time, number of fattening places per herd, mixed farming, floor space design, feed origin, antibacterial and anthelmintic treatment. These results show that housing and management have a possible influence on Campylobacter spp. prevalence and should be investigated further. Weijtens et al. (2000) found out that feed, water and biotic vectors including humans are permanent risk factors for piglets. As a result of the low moisture content, feed can be excluded as a risk factor (Altekruse and Swerdlow, 2002). The risk of introducing the pathogen via water can be 75 reduced by using chlorinated water. The combination of keeping away birds, rodents and insects with a strict hygiene management routine should prevent or at least limit the risk factors at the farrowing and fattening units. Furthermore, Kasimir (2005) found that the age of the cots and the corresponding infection-pressure have no influence on pathogen incidence. Recapitulating, it can be mentioned that many facts are known about Campylobacter spp. epidemiology. It seems to be possible to hold the pathogen prevalence at a low herd level. Other methods to create a pathogen-free herd with SPF-animals (specific pathogen-free) and with a really strict hygiene regime are associated with high costs for the farmers. Because of the probably low impact on human health, such arrangements, such as herd decontamination, make no sense. Against this background, the discussion of general Campylobacter spp. abatement is essential, especially with regard to effective preventive adoption at a certain stage of the production chain. One point speaking against such an implementation is the fact that human campylobacteriosis is caused by C. jejuni in only 90% of cases. Only 5% to 10% of the cases are caused by C. coli (Tam et al., 2003). The main source for C. jejuni is chicken meat, while the infection source for human C. coli-infection is unclear. This pathogen is often isolated from pigs but also from turkey hens (Kramer, 2000). Despite the high isolation rate in pig tonsils and faeces samples, pork (besides offal) is hardly contaminated with Campylobacter spp.. One reason for this is the effective chilling of the carcasses in combination with drying the skin after slaughtering. Campylobacter infections are often sporadic single-diseases, so the search for the infection source is very difficult. The advantage of abatement is the reduction of the potential health risk for humans, because at the moment it cannot be estimated how often the VBNC status (viable-but-not-cultivable) is present on the carcasses and in the meat. Further studies are urgently needed to gather further information on the VBNC mechanism of Campylobacter spp.. With regard to Campylobacter spp., consumer education is important. There is a crosscontamination risk from chicken and maybe from pig meat in combination with bad kitchen hygiene because the infection dose is very low with 500 to 800 pathogens (Black et al., 1988). Yersinia spp. Yersinia spp. seems to play a negligible role in farrowing herds because neither in suckling piglets nor in sows was the pathogen detected. This is in accordance with another study detecting Yersinia spp. only during the fattening period but not in sows and piglets (Kasimir, 2005). Whereas Korte et al. (2004) in contrast reasoned from their study that sows are an important infection source for the pig herd. 76 The fact that Y. enterocolitica was not isolated in the farrowing unit but could not be isolated until the beginning of the fattening period is evidence that the cause of infection has to be looked for in the fattening unit. In this production stage, the prevalence of Y. enterocolitica were between 0% and 46.9%. Bush et al. (2003) detected 12.8% Y. enterocolitica in 2,664 faecal samples and Kasimir (2005) described isolation rates between 0% and 65.4%. The prevalence at farm level arranged variably. Some farms had a prevalence of 0% at the beginning of fattening period and at the end nearly 100% or vice versa. It is ambiguous as to why the pathogen diffuses in some herds at a high level and not in other herds in turn, although some pigs are infected there, too. It is described in the literature that the pathogen can only be separated in a certain period after infection (Nielsen et al., 1996). Furthermore, a re-infection of the pigs is impossible, because of the gut-generated immunity (Fukushima, 1983). This is the reason why the prevalence decreased from the first (15.2%) to the second (13.3%) sample time in the fattening unit. The prevalence of Yersinia spp. in the slaughterhouse was low (lairage: 5.7% vs. before chilling: 0.8%). One reason for this effect is that Yersinia spp. persists in the tonsils and will be shed with the faeces discontinuously. Anderson (1988) described the influence of different eviscerate techniques in relation to carcass contamination in the slaughterhouse. By the manual gut cut down, he found on the medial hind leg significantly more (26.3%) Yersinia enterocolitica O:3 than by the use of the bung cutters (13.4%). The contamination was lowest when behind the bung cutter the rectum was closed with a plastic bag. Nesbakken et al. (1994) produced similar results. The faeces has no influence on carcass contamination. Bornadi et al. (2003) could not isolate Yersinia spp. on 150 carcass samples while the rectum was not closed with a plastic bag. The detection rate in the faeces was very low with 4.0%. The tonsils contaminate the carcasses only marginally. Of higher significance is the contamination of the pluck per tonsils (Fredriksson-Ahomaa et al., 2001). The authors found that the pluck had a higher prevalence than the kidney. Neither in the environmental nor in the feed samples were Yersinia spp. isolated. One reason therefore can be found in the method of detection. Especially for environmental and animal feed samples, the cultivation method seems to be inferior compared to Polymerase-ChainReaction (PCR), because the low numbers of pathogenic strains in these samples can often be suppressed by a distinct satellite flora (Fredriksson-Ahomaa and Korkeala, 2003). Yersinia spp. is only sporadically found in meat samples. One reason is that it is not easy for the pathogen to flourish against the natural meat micro-flora. But the pathogen is able to survive in raw pig meat for a long time (Fukushima and Gomyoda, 1986). A higher risk factor 77 is offal. Bucher et al. (2001) were able to isolate Yersinia enterocolitica 4/O:3 from 75% of tongues, 70% of hearts and 25% of livers. When these contaminated offal are further processed at home and the knives or the workplace are not cleaned correctly, the carry-over risk to other food exists. As a result of the small pathogen detection rate in the farrowing and fattening unit it was not possible to perform a risk analysis which yielded significant conclusions. But in the literature there is research about the risk factors. For example, a Norwegian study about risk factors of Yersinia spp. in pig production shows that herds with only fattening pigs have a higher prevalence than farrowing-to-finishing herds (Skjerve et al., 1998). The purchase of animals and the associated animal assortment are the highest risk factor for pathogen diffusion in the herd. Also cats and straw litter raise the infection risk. A pathogen decrease was realised with low-pressure aeration, hygienic methods such as a disinfected mat in the entrance area and feeding per hand. When the pathogen is in the herd it is persistent. It is not really known how eradication methods have an influence of Yersinia status. The elimination from carrieranimals inside a herd is not effective (Skjerve et al., 1998). During 2001, a Swiss study dealt with the prevalence of Yersinia spp. in pork herds with different animal husbandries. In this case, the application of medicine feed as a prophylaxis for pigs at the beginning of the fattening period was a high risk factor for occurrence of Yersinia spp. in the herd (Ledergerber et al., 2003). In a Canadian study, 1,944 environmental samples were analysed (Pilon et al., 2000). From only 17 (0.6%) could Yersinia spp. be isolated. Per farm only one genotype was isolated. Because of this fact the authors came to the conclusion that external causes of a pathogen risk factor are only of little importance. Pathogen isolation from environmental samples is very difficult, because the pathogen concentration is very low and the concentration of company flora is very high (Fredriksson-Ahomaa and Korkeala, 2003). In conclusion, knowledge about the epidemiology of Yersinia spp. is currently very limited. Concrete arrangements do not exist, but the purchase of pigs from different herds, the application of herd-specific vaccination in problem herds and the forceful compliance of hygiene methods seem to be steps into the right direction. A monitoring implementation can help define high-contaminated herds from low-contaminated. The main focus has to be placed on the slaughterhouse. Herds with a high prevalence should be slaughtered separately at the end of a slaughter day and their co-products should only be brought to the market heattreated. Furthermore, the slaughter technique discontinuing the had completely with tongue and tonsils, is a preventive method (Christensen and Lüthje, 1994). Likewise, the improvement of hygiene standards at the slaughterhouse is very important for a generation of 78 safety food. Regular education is important to improve the hygienic awareness of the assistants (Bucher, 2001). In addition, consumers have to be educated about the contact risk of pig meat, mainly offal. Especially the risk from cross-contamination in their own kitchens is often underestimated. Stochastic transition model for the epidemiology of Salmonella spp. in the pork supply chain Besides the importance of Salmonella spp. for public health, another aspect is the cost generated by human salmonellosis. A working document of the European Commission estimated that costs linked to food-borne salmonellosis ranged between 560 millions and € 2.8 billion in Europe, where Salmonella spp. was estimated to be responsible for nearly 166,000 cases in 1999 (Anonymous, 2001). However, indirect incentives such as the increased interest in food safety and the large competition on the (international) market for pork, are of increasing importance, since 1.25 million tons of pork are exported annually (ZMP, 2007). Therefore, it is important to obtain more insight into the trade-off between prevalence reduction and associated costs. Currently, the most common perspective on food safety and human salmonellosis is the stable-to-table concept, acknowledging that each link in the food production chain has a share in the responsibility of reducing the risk of food-borne disease. Hence, for an effective control resulting in a satisfying reduction in the end product, the entire supply chain must be involved (Lammerding and Fazil, 2000). The presented thesis (CHAPTER FOUR) includes an approach for possible measures that can be implemented in the farrowing and fattening unit to control the introduction and reduce the prevalence of Salmonella spp. in finishing pigs. A stochastic state-transition simulation model was established to gather further information about the influence of the risk factors in the different pig production stages on the Salmonella spp. prevalence in fattening pigs. Furthermore, the influence of preventive arrangements of the immunisation of sows, and additionally, of pathogen-free purchased gilts on the Salmonella spp. prevalence in the farrowing and fattening unit were determined. The application of risk analysis methods in the assessment of microbial contamination of foods is relatively new. It offers a potential overview of the interrelationship between the different processes which influence the contamination of food items. This is in contrast to more specific detailed experiments which only provide information about selected area. However, risk analysis models depend on data preferably from such studies, in order to provide reliable estimates. All models are reduced 79 explanations of the real world. The more sophisticated the model, the more precisely the real world may be explained. The results in the present thesis showed that preventive measures must be affected in the fattening unit because at this production stage the risk factors have the highest influence on the prevalence of Salmonella spp.. Van der Gaag et al. (1999) identified the fattening farm as the most important stage to achieve a reduction in Salmonella spp. prevalence, too. There are several ways to reduce the Salmonella prevalence in a herd. For example, changes in feeding practise, installation of adequate rodent control and improvements in hygiene (Alban and Stärk, 2005). The model simulated the following distribution over management interventions to reduce the prevalence of Salmonella spp. in fattening pigs: farmer (p-value: 0.0004-0.0443), feed (p-value: 0.03-0.46), dust (p-value: 0.33-0.66) and rodents (0.71-0.92). Immunisation against Salmonella spp. in sows results in a good effect on the prevalence reduction in the pig production. The exact quantitative effects of separated interventions on the introduction and spread of Salmonella spp. and the course of infection are very difficult to quantify precisely. Still, it is known that a package of multiple interventions leads to a reduction of Salmonella spp. prevalence (Bagger and Nielsen, 2001). In conclusion, the (pre-) harvest stages of the pork supply chain cannot ensure a zero prevalence of contaminated carcasses (van der Gaag, 2004). Thus, the next stages (processing, storage at retail and storage and preparing the pork by the consumer) are also important. For instance, the consumer can reduce the risk of food-borne salmonellosis by cool storage and thorough heating of the pork and avoiding cross-contamination in the kitchen (Gorman et al., 2002). Nevertheless, by reducing the prevalence of contaminated carcasses, the risk for the consumer should be decreased since less contaminated pork enters the consumer’s kitchen. References Alban, L., Stärk, K.D.C., 2005. Where should the effort be put to reduce the Salmonella prevalence in the slaughtered swine carcass effectively? Prev. Vet. Med. 68, 63-79. Altekruse, S.F., Swerdlow, D.L., 2002. Campylobacter jejuni and related organisms. In: Cliver, D.O., Riemann, H.P. editors. Foodborne Diseases. Amsterdam: Academic Press, an imprint of Elsevier Science., 103-112. Anonymous, 2001. Proposal for a Directive of the European Parliament and of the Council on the monitoring of zoonoses and zoonotic agents, amending Council Decision 80 90/424/EEC and repealing Council Directive 92/117/EEC/COM/2001/0452 final – COD 2001/0176. Official Journal C 304 E, 30/10/2001 P. 0250-0259. Andersen, J.K., 1988. Contamination of freshly slaughtered pig carcasses with human pathogenic Yersinia enterocolitica. Int. J. Food Microbiol., 193-202. Bagger, J., Nielsen, B., 2001. Salmonella reduction in chronic Salmonella infected Danish swineherds by use of special task force. In: Van der Wolf, P.J., (Ed.), Proceedings of the 4th international symposium on the epidemiology and control of Salmonella and other food borne pathogens in Pork. Leipzig, Germany. Black, R.E, Levine, M.M., Clements, M.L., Hughes, T.P. Blaser, M.J., 1988. Experimental Campylobacter jejuni infection in humans. I. Infect. Dis. 157, 472-479. Bornadi, S., Brindani, F., Pizzin, G., Lucidi, L., D’Incau, M., Liebana, E., Morabito, S., 2003. Detection of Salmonella spp., Yersinia enterocolitica and verocytoxin-producing Escherichia coli O157 in pigs at slaughter in Italy. Int. J. Food Microbiol. 85, 101-110. Bush, E.J., Wesley, I., Bhaduri, S., 2003. Risk factors for Yersinia enterocolitica on U.S. swine farms in 2000. Safe Pork-Proceedings of the 5th international symposium on the epidemiology and control of foodborne pathogens in pork. Kreta, Griechenland, 54-56. Bucher, M., 2001. Ein Beitrag zur Epidemiologie von Yersinia enterocolitica in Schlachtnebenprodukten vom Schwein unter besonderer Berücksichtigung methodischer Aspekte. (Diss. med. vet.). Univ. München. Chang, V.P., Mills, E.W., Cutter, C.N., 2003. Reduction of bacteria on pork carcasses associated with chilling method. J. Food Prot. 66, 1019-1024. Christensen, H., Lüthje, H., 1994. Reduced spread of pathogens as a result of changed pluck removal technique. Proc. Int. Cong. Meat Sci. Technol., The Hague, Holland. Fredriksson-Ahomaa, M., Bucher M., Hank C., Stolle A., Korkeala H., 2001. High prevalence of Yersinia enterocolitica 4:O3 on pig offal: a slaughtering technique problem. Syst. Appl. Microbiol. 24, 457-463. Fredriksson-Ahomaa, M., Korkeala, H., 2003. Low occurrence of pathogenic Yersinia enterocolitica in clinical, food and environmental samples: a methodological problem. Clin. Microbiol. Reviews Apr., 220-229. Fukushima, H., Gomyoda, M., 1986. Inhibition of Yersinia enterocolitica serotype O:3 by natural microflora of pork. Appl. Environ. Microbiol. 51, 990-994. 81 Fukushima, H., Nakamura, R., Ito, Y., Saito, K., Tsubokura, M., Otsuki, K., 1983. Ecological studies of Yersinia enterocolitica. I. Dissemination of Y. enterocolitica in pigs. Vet. Microbiol. 8, 469-483. Gaull, F., 2002. Vorkommen thermophiler Campylobacter spp. bei Schweinen im Betrieb und auf dem Schlachthof, auf Putenschlachttierkörpern und in Lebensmitteln tierischen Ursprungs – Typisierung der Isolate mit molekularbiologischen Fingerprintingmethoden und Vergleich der Isolate untereinander und mit humanen Isolaten. (Diss. med. vet.). Univ. Leipzig. Gebreyes, W.A., Bahnson, P.B., Funk, J.A., Morgan Morrow, W.E., Thakur, S., 2003. Campylobacter prevalence and diversity in antimicrobial free and conventionally reared market swine. Safe pork-Proceedings of the 5th international symposium on the epidemiology and control of foodborne pathogens in pork. Kreta, Greece. Görgen, M., Kirpal, G., Bisping, W., 1983. Untersuchung zum Vorkommen von Keimen der Gattung Campylobacter beim Schwein. Teil I: Kulturelle Untersuchungen von Kot, Darminhalt und Gallenblasen. Berl. Münch. Tierärztl. Wschr. 96, 86-89. Gorman, R., Bloomfield, S., Adley, C.C., 2002. A study of cross-contamination of food-borne pathogens in the domestic kitchen in the Republic of Ireland. Int. J. Food Microbiol. 76, 143-150. Kasimir S., 2005. Verlaufsuntersuchungen zum Vorkommen potentiell humanpathogener Yersinia enterocolitica und Campylobacter spp. in Schweinebeständen von der Geburt bis zur Schlachtung sowie Genotypisierung ausgewählter Isolate. (Diss. med. vet.). Univ. Leipzig. Korte, T., Fredriksson-Ahomaa, M., Niskanen, T., Korkeala, H. 2004. Low prevalence of yadA-positive Yersinia enterocolitica in sows. Foodborne Pathogens and Disease. 1, 4552. Kramer, J.M., Frost, J.A., Bolton, F.J., Wareing, D.R., 2000. Campylobacter contamination of raw meat and poultry at retail sale: identification of multiple types and comparison with isolates from human infection. J. Food. Prot. 63, 1654-1659. Lammerding, A.M., Fazil, A., 2000. Hazard identification and exposure assessment for microbial food safety risk assessment. Int. J. Food Microbiol. 58(3), 147-157. 82 Ledergerber, U., Regula, G., Danuser, J., Bissig-Choisat, B., Jemmi, T., Stärk, K.D.C., 2003. Prävalenz latenter Zoonosenerreger in tierfreundlicher Schweineproduktion. Arch. Lebensmittelhyg. 54, 90-96. Nesbakken, T., Ecknner, K., Hoidal, H.K., Rotterud, O.J., 2002. Occurrence of Yersinia enterocolitica and Campylobacter spp. in slaughter pigs and consequences for meat inspection, slaughtering, and dressing procedures. Int. J. Food Microbiol. 80, 231-240. Nesbakken, T., Nerbrink, E., Rotterud, O.J., Borch, E., 1994. Reduction of Yersinia enterocolitica and Listeria spp. on pig carcasses by enclosure of the rectum during slaughter. Int. J. Food Microbiol. 23, 197-208. Nielsen, B., Heisel, C., Wingstrand, A., 1996. Time course of the serological response to Yersinia enterocolitica O:3 in experimentally infected pigs. Vet. Microbiol. 48, 293303. Pearce, R.A., Wallace, F.M., Call, J.E., Dudley, R.L., Oser, A., Yoder, L., Sheridan, J.J., Luchansky, J.B., 2003. Prevalence of Campylobacter within a swine slaughter and processing facility. J. Food Prot. 66, 1550-1556. Pilon, J., Higgins, R., Quessy, S., 2000. Epidemiological study of Yersinia enterocolitica in swine herds in Quebec. Can. Vet. J. 41, 383-387. Rice, B.E., Rollins, D.M., Mallinson, E.T., Carr, L., Joseph, S.W., 1997. Campylobacter jejuni in broiler chickens: colonization and humoral immunity fallowing oral vaccination and experimental infection. Vaccine 15, 1922-1932. Skjerve, E., Lium, B., Nielson, B., Nesbakken, T., 1998. Control of Yersinia enterocolitica in pigs at a herd level. Int. J. Food Microbiol. 45, 195-203. Sticht-Groh, V., 1982. Campylobacter in healthy slaughter pigs: a possible source of infection for man. Vet. Rec. 110, 104-106. Tam, C.C., O’Brien, S.J., Adak, G.K., Meakins, S.M., Frost, J.A., 2003. Campylobacter coli – an important foodborne pathogen. J. Infect. 47, 28-32. van der Gaag, M.A., Backus, G.B.C., Hurine, R.B.M., 1999. Epidemiological and economic effects of Salmonella control in the pork production chain. In: Proceedings of Third International Symposium on Epidemiological Control Salmonella in Pork, 5-7 August, WA, USA, 231-236. 83 van der Gaag, M., Saatkamp, H.W., Backus, G.B.C., van Beek, P., Huirne, R.B.M. 2004. Cost-effectiveness of controlling Salmonella in the pork chain. Food Control 15, 173180. Weijtens, M.J.B., Bijker P.G., van der Plas, J., Urlings, H.A., Biesheuvel, M.H., 1993. Prevalence of Campylobacter in pigs during fattening; an epidemiological study. Vet. Q. 15, 138-143. Weijtens, M., 1996. Campylobacter in pigs. (Diss. med. vet.). Univ. Utrecht. Weijtens, M.J.B., Reinders, R. D., Urlings, H. A., van der Plas, J., 1999. Campylobacter infections in fattening pigs; excretion pattern and genetic diversity. J. Appl. Microbiol. 86, 63-70. Weijtens, M.J.B., Urlings, H.A.P., van der Plas, J., Bijker, P.G.H., Kreuzkamp, D.A., Koster, D.S., van Logtestijen, J.G., 2000. Establishing a Campylobacter-free pig population through a top-down approach. Lett. Appl. Microbiol. 30, 479-487. Young, C.R., Harvey, R., Anderson, R., Nisbet, D., Stanker, L.H., 2000. Enteric colonisation following natural exposure to Campylobacter in pigs. Res. Vet. Sci. 68 (1), 75-78. ZMP (Zentrale Markt- und Preisberichtstelle für Erzeugnisse der Land-, Forst- und Ernährungswirtschaft GmbH, Bonn, Germany) 2007. Deutscher Außenhandel mit Schweinen. www.zmp.de/presse/agrarwoche/markt-grafik/grafik_2007_02.asp. 84 GENERAL SUMMARY This thesis focuses on information about the prevalence and origins and preventive measures of the important zoonotic pathogens Campylobacter spp. and Yersinia spp. in the different stages of the pig production chain. Furthermore, the epidemiological effects of different strategies in the farrowing and finishing units with respect to the prevalence of Salmonella spp. in finishing pigs were evaluated by simulation. CHAPTER ONE summarises several studies emphasising the importance of Campylobacter spp. and Yersinia spp. as widespread pathogens in the pig production chain. First, the taxonomy and the pathogen character of these internationally important pathogens are described, and second, prevalence in the pig production is reported. Obviously, pigs are often carriers of Campylobacter spp. and Yersinia spp. causing infections in humans. Contamination during the slaughtering process is possible. However, pathogenic Campylobacter spp. and Yersinia spp. are comparatively infrequently isolated from meat. A greater health risk is represented by entrails. In conclusion, to increase pork safety, further epidemiological studies are urgently needed to determine the origin of pathogens and to take counteractive measures. The objective of CHAPTER TWO was to determine the prevalence of Campylobacter spp. and Yersinia spp. in a total of 1,040 faecal samples taken from animals at different ages from four farrowing and twelve fattening herds. In the farrowing unit, faeces were collected from 68 sows (faecal samples) and 256 suckling piglets (rectal swab samples). Further samples were collected from 362 growing and 354 finishing pigs (rectal swab samples). Additionally, 56 feed and environmental samples were collected. During the slaughtering process, 122 pigs and their carcasses respectively were sampled three times. First, rectal samples were taken with swabs during the lairage. Second, the samples were taken from the carcass before entering the chilling room. The same method was repeated in the chilling room twelve hours after starting the chilling. Finally, 86 raw meat samples were taken from 34 retail stores. Campylobacter spp. were isolated in sows (33.8%), piglets (80.9%), growing (89.2%) and finishing (64.7%) pigs. Yersinia spp. were detected in growing (15.2%) and finishing (13.3%) pigs only. 85 During lairage, Campylobacter spp. were identified from pig faeces from all farms whereas Yersinia spp. were detected in pigs from just two herds. After twelve hours of chilling neither Campylobacter spp. nor Yersinia spp. were detected. In raw meat samples, Campylobacter spp. were isolated from one liver sample and Yersinia enterocolitica from two meat samples (mince and cutlet). Common slaughter techniques and hygiene procedures may be effective tools to reduce the risk of contamination and recontamination of meat products since Campylobacter spp. and Yersinia spp. were found only sporadically in raw meat samples. The aim of CHAPTER THREE was to gather further information about the sources of infection with Campylobacter spp. and their qualitative and quantitative importance in pig production. For statistical analysis, 1,040 results from the bacteriological examination for Campylobacter spp. were evaluated with questionnaires from four farrowing and twelve fattening units. The prevalence was determined via faeces and swab samples with regard to certain farm production parameters. Thereby, 30.8% of the sows and 80.9% of their piglets were carriers of Campylobacter spp.. In the fattening unit, the prevalence at the beginning of the fattening period was 89.2% and at the end 64.7%. As a result of the small sample size in the farrowing unit, it was not possible to perform a risk analysis which yielded significant conclusions. In the fattening stage, the following risk factors had a significant effect (p≤0.05) on Campylobacter spp. prevalence: sampling time, number of fattening places per herd, mixed farming, floor space design, feed origin, antibacterial and anthelmintic treatment. These results show that housing and management have a possible influence on the Campylobacter spp. prevalence and should be investigated further. In CHAPTER FOUR the objective was to gain insight into the epidemiological effects of different strategies in the farrowing and finishing units to improve the food safety of pork with respect to the prevalence of Salmonella spp. in finishing pigs. Therefore a stochastic transition model was designed depending on prevalence in the population (sows = 0.5% to 65%; rearing pigs = 2% to 95%), infection risks (farmer = 0% to 10%; rodents = 0% to 5%; feed = 0% to 10%; and dust = 0% to 5%), the immunisation schedule of sows (yes/no) and the purchase of pathogen-free gilts (yes/no). 86 The simulation model generated an integrated pig production chain with linkages between the stages farrowing, rearing and fattening. Within each herd, dynamic patterns of Salmonella infections were simulated. The simulation covered a time interval of 24 months. The results in the present study showed that preventive measures must first be introduced in the fattening unit because at this production stage preventive measures regarding the different risk factors had the highest influence on the prevalence of Salmonella spp.. The risk factor ‘farmer’ represented an exception as the influence of this factor was higher in the rearing unit (22.8% vs. 17.1%). The distribution over management interventions in the finishing stages was in the following order: farmer (p-value: 0.0004-0.0443), feed (p-value: 0.03-0.46), dust (p-value: 0.33-0.66) and rodents (p-value: 0.71-0.92). Immunisation against Salmonella spp. in sows represents a good strategy to decrease prevalence of Salmonella spp. in the fattening unit. 87 88 ZUSAMMENFASSUNG Die Ziele der vorliegenden Arbeit bestanden zum Einen aus der Erfassung und Bewertung von Prävalenzen und Eintragsquellen der Zooanthroponosenerreger Campylobacter spp. und Yersinia spp. in den verschiedenen Produktionsstufen der Schweineerzeugung. Zum Anderen wurde eine Simulation der Ausbreitung von Salmonella spp. und der Einfluss präventiver Maßnahmen auf die Prävalenz bei Mastschweinen in Ferkelerzeuger- und Mastbetrieben vorgenommen. KAPITEL EINS umfasst eine Literaturübersicht über Campylobacter spp. und Yersinia spp. in der Schweineproduktionskette. Zunächst wurde die Systematik und die Erregereigenschaften dieser zwei weltweit bedeutenden Zooanthroponoserreger dargestellt. Im Anschluss wurden die bisher festgestellten Prävalenzen in der Produktionskette beim Schwein aufgezeigt. Es wird deutlich, dass Schweine häufig Träger humanpathogener Campylobacter spp. und Yersinia spp. sind und somit eine Kontamination ihres Fleisches während des Schlachtprozesses möglich ist. Allerdings sind humanpathogene Campylobacter spp. und Yersinia spp. relativ selten im Fleisch nachweisbar. Eine größere Gefahr stellen Innereien dar. Zur Sicherung der hygienischen Unbedenklichkeit von Schweinefleisch sollte in Zukunft versucht werden, die Epidemiologie der Erreger genauer aufzuklären um die Ursache der Erregerausbreitung zu erkennen und geeignete Gegenmaßnahmen ergreifen zu können. KAPITEL ZWEI zeigt die ermittelten Prävalenzen von Campylobacter spp. und Yersinia spp. aus insgesamt 1.040 Kotproben von Tieren unterschiedlichen Alters auf vier Ferkel- und zwölf Mastbetrieben. In der Ferkelerzeugung wurden 68 Sauen (Kotproben) und 256 Ferkel (rektale Abstrichtupferproben) beprobt. Weitere Proben wurden von 362 Schweinen am Mastanfang und 354 Schweinen am Mastende (rektale Abstrichtupferproben) entnommen. Zusätzlich wurden 56 Futter- und Umweltproben gesammelt. Während des Schlachtprozesses wurden 122 Schweine und ihre Schlachtkörper insgesamt dreimalig beprobt. Zuerst wurden rektale Abstrichtupferproben im Wartebereich entnommen. Die zweite Beprobung erfolgte am Schlachttierkörper direkt vor der Kühlung und noch einmal nach 12 Stunden Kühlung. In 34 Verkaufsstätten wurden abschließend 86 rohe Fleischwarenproben erworben und beprobt. Campylobacter spp. wurden in Sauen (33,8%), Saugferkeln (80,9%), Schweinen am Mastanfang (89,2%) und Mastschweinen am Mastende (64,7%) nachgewiesen. Yersinia spp. wurden nur bei Schweinen am Anfang (15,2%) bzw. am Ende der Mastperiode (13,3%) 89 analysiert. Im Wartebereich des Schlachthofes wurde Campylobacter spp. in Kotproben von allen Mastbetrieben nachgewiesen, wohingegen Yersinia spp. nur in Schweinen von zwei Betrieben entdeckt werden konnten. Nach zwölf Stunden Kühlung wurden weder Campylobacter spp. noch Yersinia spp. nachgewiesen. In den rohen Fleischwarenproben, wurden Campylobacter spp. in einer Leberprobe analysiert und Yersinia spp. von zwei Fleischproben (Hackfleisch und Schnitzel). Anscheinend sind die gebräuchlichen Schlachttechniken und Hygieneprozeduren effektiv genug um das Risiko einer Kontamination bzw. Rekontamination von Fleischprodukten zu reduzieren, da die Erreger nur sporadisch in den Fleischproben nachgewiesen werden konnten. KAPITEL DREI sollte zur Aufdeckung produktionsspezifischer Risikofaktoren und ihrer qualitativen und quantitativen Bedeutung beitragen. Für die statistische Analyse wurden 1.040 Ergebnisse der bakteriologischen Untersuchung auf Campylobacter spp. im Zusammenhang mit den Informationen aus einem Fragebogen aus vier Ferkelerzeuger- und zwölf Mastbetrieben ausgewertet. Die Prävalenzen des Erregers wurden mit Hilfe von Kot- und Abstrichtupferproben vor dem Hintergrund verschiedener Betriebsbedingungen ermittelt. Dabei wurden bei 33,8% der Sauen und bei 80,9% der Ferkel Campylobacter spp. nachgewiesen. In der Produktionsstufe Mast betrug die Prävalenz am Mastanfang 89,2% und am Mastende 64,7%. Aufgrund des geringen Datenmaterials konnte auf der Produktionsstufe Ferkelerzeugung keine Risikoanalyse durchgeführt werden. Folgende Faktoren hatten auf den Mastbetrieben einen signifikanten Einfluss (p≤0,05) auf die Campylobacter spp. Prävalenz: Zeitpunkt der Probeentnahme, Anzahl Mastplätze, Mischbetrieb, Bodengestaltung, Futterherkunft, Einstallbehandlung und anthelminthische Behandlung. Die Ergebnisse veranschaulichen, dass eine Reduzierung der Campylobacter spp. Prävalenz durch betriebliche Haltungs- und Managementfaktoren möglich ist. Aus diesen Ergebnissen resultiert weiterer Forschungsbedarf. Ziel des KAPITEL VIER war es, einen Einblick in die epidemiologischen Effekte verschiedener Strategien zur Qualitätssicherung in Ferkel- und Mastbetrieben und deren Einfluss auf die Salmonellenprävalenz bei Mastschweinen zu gewinnen. Dafür wurde ein stochastisches Simulationsmodell in Abhängigkeit der Populationsprävalenz (Sauen: 0,5% bis 65%; Läufer: 2% bis 95%), des Infektionsrisikos (Betreuungspersonal = 0% bis 10%; Schadnager = 0% bis 5%; Futter = 0% bis 10% und Staub = 0% bis 5%), der 90 Impfung der Sauen (ja/nein) und dem Zukauf pathogen-freier Jungsauen (ja/nein) konstruiert. Das Simulationsmodell generiert ein integriertes Produktionssystem beim Schwein mit den Stufen Ferkelerzeugung, Aufzucht und Mast über einen Zeitintervall von 24 Monaten. Die vorliegende Studie zeigt, dass präventive Maßnahmen zuerst in der Mast erfolgen müssen, da dort die größten Effekte auf die Salmonellenprävalenz erzielt wurden. Der Risikofaktor Betreuungspersonal bildete dabei eine Ausnahme, da er im Flatdeckbereich eine höhere Prävalenz bei den Mastschweinen verursachte (22.8% vs. 17.1%). Die Aufteilung der Managementmaßnahmen in der Mastschweineproduktion wurde in folgender Reihenfolge vorgenommen: Betreuungspersonal (p-Wert: 0.0004-0.0443), Futter (p-Wert: 0.03-0.46), Staub (p-Wert: 0.33-0.66) und Schadnager (p-Wert: 0.71-0.92). Die Immunisierung der Sauen gegen Salmonella prävalenzreduzierend. 91 spp. wirkten im Mastbereich DANKSAGUNG An dieser Stelle möchte ich mich bei den Menschen bedanken, die zum Gelingen dieser Arbeit beigetragen haben. Ich danke Herrn Prof. Dr. Joachim Krieter für die Überlassung des Themas, die Unterstützung bei der Abfassung der Dissertation sowie für die Möglichkeit, meine Ergebnisse auf unterschiedlichen Tagungen im In- und Ausland vorzustellen. Herrn Prof. Dr. Edgar Schallenberger danke ich für die Übernahme des Koreferats. Frau Priv. Doz. Dr. Elisabeth grosse Beilage von der Außenstelle für Epidemiologie der Tierärztlichen Hochschule Hannover möchte ich für die hilfreiche Beratung und für die Bereitschaft zum Korrekturlesen danken. Ein besonders großes Dankeschön geht an Frau Dr. Nicole Kemper für ihre Hilfsbereitschaft und Unterstützung, der ständigen Bereitschaft zum Korrekturlesen und ihrer wertvollen Anregungen bei der Anfertigung dieser Arbeit. Der Vermarktungsgemeinschaft für Zucht- und Nutzvieh (ZNVG, Neumünster) danke ich für die Unterstützung bei der Auswahl der Betriebe. Allen Landwirten und dem Schlachthof Jensen (Oldenburg i.H.) möchte ich herzlich für die Teilnahme an der Untersuchung danken. Die unkomplizierte Art und Hilfsbereitschaft lassen mich die Besuche auf den Höfen in guter Erinnerung behalten. Das Projekt wurde ermöglicht durch die finanzielle Förderung der H. Wilhelm Schaumann Stiftung, dem Ministerium für Soziales, Gesundheit, Familie, Jugend und Senioren des Landes Schleswig-Holstein und der Arbeitsgruppe Lebensmittelqualität und -sicherheit (QUASI) der Agrar- und Ernährungswissenschaftlichen Fakultät der Christian-AlbrechtsUniversität zu Kiel, denen ich herzlich danke. Für die schöne Zeit am Institut, dem guten und freundschaftlichen Arbeitsklima danke ich allen Kollegen. Besonders möchte ich meinen „Containerkollegen“ danken, allen voran Lotti, Imke und Diane. Danke, dass ich mit meinen Sorgen und Nöten bei euch immer auf offene Ohren gestoßen bin und Danke für das freundschaftliche Verhältnis und die moralische Unterstützung. Der größte Dank gilt meiner Familie, die es mir durch ihren Rückhalt und ihrem entgegengebrachten Verständnis ermöglicht hat, meine Promotion erfolgreich zu beenden. LEBENSLAUF Name: Tanja Wehebrink Geburtsdatum: 01.05.1978 Geburtsort: Rahden Staatsangehörigkeit: deutsch Familienstand: ledig Eltern: Heinz Wehebrink, Inge Wehebrink (geb. Timm) Schulbildung: 1984 – 1988 1988 – 1994 1994 – 1997 Grundschule Varl Freiherr-vom-Stein-Realschule, Rahden Söderblom Gymnasium, Espelkamp Abschluss: Allgemeine Hochschulreife Berufsausbildung: 1997 – 1999 Landwirtin 1997 – 1998 Betrieb Ernst Flömer in Gestringen (Milchvieh) Betrieb Friedhelm Lange in Hille (Ferkelerzeugung u. Mast) 1998 – 1999 Studium: 1999 – 2002 2002 – 2004 Berufliche Tätigkeit: seit Juni 2004 Studium Agrarwissenschaften mit der Fachrichtung Tierproduktion an der Christian-Albrechts-Universität zu Kiel Abschluss: Bachelor of Science Studium Agrarwissenschaften mit der Fachrichtung Tierproduktion an der Christian-Albrechts-Universität zu Kiel Abschluss: Master of Science Wissenschaftliche Mitarbeiterin am Institut für Tierzucht und Tierhaltung der Christian-Albrechts-Universität zu Kiel bei Herrn Prof. Dr. Joachim Krieter