Distillation Processes for Magnesium Winning and Recycling
Transcription
Distillation Processes for Magnesium Winning and Recycling
André Ditze et al.: Distillation Processes for Magnesium Winning and Recycling Distillation Processes for Magnesium Winning and Recycling André Ditze, Christiane Scharf The low melting and boiling temperature of magnesium allows distillation processes for winning and recycling. Fundamentals for the distillation under vacuum show high distillation rates if molecular distillation is assumed. In practical application, the distillation processes are carried out in the high vacuum region and therefore inert gases are present. – The increasing use of magnesium alloys results in increasing scrap quantities. Starting from the scrap classification post consumer scrap and residues come into consideration for distillation processes, because the removal of impurities from magnesium is very limited by conventional refining. The winning processes for magnesium using distillation are shortly described and their qualification for the addition of magnesium scrap is discussed. – Distillation of magnesium scrap has been done already in the past. These processes and actual work are reviewed. The results are compared with each other, and the distillation rates are calculated. It is evident that the distillation rates in these processes are much lower than expected from molecular distillation. Based on that, possible arrangements are presented and the production rate and energy consumption are estimated. Keywords: Distillation – Magnesium – Magnesium scrap – Energy consumption – Costs – Recycling Destillationsprozesse zur Gewinnung von Magnesiummetall und zur Aufbereitung von Magnesiumschrott Wegen der geringen Schmelz- und Siedetemperatur von Magnesium kann das Verfahren der Destillation sowohl zur Gewinnung von Magnesiummetall als auch zur Aufbereitung von Magnesiumschrott genutzt werden. Aus Grundlagenuntersuchungen zur Vakuumdestillation von Magnesium ergeben sich durch Annahme der Molekulardestillation hohe Destillationsraten. In der Praxis werden solche Prozesse im Hochvakuum durchgeführt. – Der steigende Einsatz von Magnesiumlegierungen führt zu einem steigenden Schrottaufkommen. Ausgehend von der Schrottklassifizierung kommen vor allem post consumer scrap (PCS) und Rückstände aus dem Recyclingprozess als Ausgangsmaterial für die Destillation infrage, da die Entfernung von Verunreinigungen aus Magnesium auf konventionellem Wege beschränkt ist. Zunächst werden Destillationsprozesse zur Gewinnung von Magnesium- metall beschrieben, um schließlich deren Einsatz für Magnesiumschrotte zu diskutieren. – Die Destillation von Magnesiumschrotten wurde bereits in der Vergangenheit praktiziert. Diese und derzeitig eingesetzte Verfahren werden aufgeführt und hinsichtlich ihrer erzielten Ergebnisse und der berechneten Destillationsraten verglichen. Es zeigt sich, dass die Destillationsraten der genannten Prozesse kleiner sind, als dies von der Berechnung der Molekulardestillation zu erwarten wäre. Davon ausgehend werden Auslegungen für praktisch einsetzbare Anlagen vorgeschlagen, wobei die Produktionsraten, der Energieverbrauch und die Kosten kalkuliert werden. Schlüsselwörter: Destillation – Magnesium – Magnesiumschrott – Energieverbrauch – Kosten – Recycling Procédés de distillation pour obtenir du magnésium métallique et pour le recyclage de la mitraille de magnésium Procesos de destilado para ganancia y reciclado de magnesio Paper presented on the occasion of the European Metallurgical Conference Emc 2003, September 16 to 19, 2003, in Hannover. 1 Fundamentals Already at temperatures below the melting temperature of magnesium (650 °C) the vapour pressure even enables sublimation of magnesium. The vapour pressure of pure magnesium compared to that of pure zinc is shown in Figure 1. The vapour pressure of zinc exceeds the vapour pressure of magnesium. Remembering most magnesium alloys contain zinc, some contamination of the distillate with zinc has to be expected. World of Metallurgy – ERZMETALL 57 (2004) No. 5 The distillation of metals can be done at ambient pressure or under vacuum. In the case of vacuum distillation the temperature can be lower than the boiling temperature, which is 1090 °C of pure magnesium. On the other hand extra expenses are necessary for the vacuum equipment. The rate determining steps at the vacuum distillation are: • • • • Heat and materials transport in the liquid metal Evaporation Materials transport in the gas Condensation 251 Petra Zapp et al.: Long Term Supply of Aluminium to the European Automotive Industry Long Term Supply of Aluminium to the European Automotive Industry Petra Zapp, Wilhelm Kuckshinrichs, Georg Rombach The paper discusses various long-term developments of the use of aluminium in the automotive sector and their possible impact on the European aluminium industry in view with both primary aluminium industry and the use of scrap, up to 2040. Using a scenario, the differences between the increased use of aluminium in conventional and aluminium-intensive vehicles (AIV) are shown. A variety of parameters influences the availability of old and new scrap and also the demand of primary or recycled metal. Investigated are market developments of new automobiles and collection behaviour for end of live vehicles (ELV) in general. To illustrate the impacts on the different car concepts, the automotive aluminium is classified in casting or wrought alloys, which have to be distinguished with regard to recycling aspects. Keywords: Aluminium use in cars – Car market – Scenario calculation – Supply of wrought and cast alloys – Primary production and recycling – System sensitivity Langfristige Aluminiumversorgung der Europäischen Automobilindustrie Der Beitrag diskutiert verschiedene langfristige Entwicklungen des Einsatzes von Aluminium im Verkehrssektor und ihre möglichen Auswirkungen auf die europäische Aluminiumindustrie im Hinblick auf die Produktion von Primäraluminium und die Nutzung von Schrotten. Mit Hilfe von Szenariotechniken werden die Unterschiede eines steigenden Einsatzes von Aluminium in konventionellen Fahrzeugkonzepten im Gegensatz zu aluminium-intensiven Fahrzeugen (AIV) bis zum Jahr 2040 aufgezeigt. Eine Vielzahl von Parametern beeinflusst dabei die Verfügbarkeit von Alt- und Neuschrotten sowie die Nachfrage nach Primär- bzw. Recyclingmetall. Unabhängig vom Einsatz des Aluminiums im Automobil werden die Marktentwick- lung von Neufahrzeugen sowie die Erfassung von „End of life“-Fahrzeugen (ELV) als wichtige Parameter bestimmt. Zur besseren Darstellung der Bedarfsentwicklung bei unterschiedlichen Fahrzeugkonzepten werden die verwendeten Werkstoffe in Guss- und Knetlegierungen eingeteilt, um insbesondere den verschiedenen Recyclingaspekten Rechnung zu tragen. Schlüsselwörter: Aluminium im Automobil – PKW-Markt – Szenariorechnung – Versorgung mit Guss- und Knetlegierungen – Primärproduktion und Recycling – Sensitivitäten Approvisionnement en aluminium à long terme à l’industrie automobile européenne Abastecimiento a largo plazo de aluminio a la industria europea del automóvil Paper presented on the occasion of the European Metallurgical Conference Emc 2003, September 16 to 19, 2003, in Hannover 1 Introduction The growth of aluminium and the automotive sector are closely connected. The transport sector was the biggest end use sector of the European aluminium industry in 2000 accounting for 29 % of demand. And it will become even more important. The entire European aluminium industry is affected by these developments. Within the transport sector car production plays the dominating role. Using more and more extrusions and rolled products beside castings, the automotive sector covers the variety of production paths. On the other hand, the availability of primary and recycled aluminium is strongly influenced by the car industry being the biggest old scrap-producing sector and the biggest user of new and old scrap at the same time. 258 During the last two to three years, a lot of changes in the overall aluminium system and in certain parameters of the metal flows have taken place which are worthwhile to be investigated and which show former studies in a new light [1]. Especially the availability of aluminium scrap has been matter of lively discussions in different committees like GARC (Global Aluminium Recycling Committee), and working groups of OEA, EAA, and their members. Additionally, the need became obvious to expand the system boundaries from a national to an European or even to a global level due to several reasons. First of all, the international scrap trade makes the determination of recycling quotas and recycled contents of a certain region or country nearly impossible. Here the global approach of GARC will hopefully create better knowledge in the near future. World of Metallurgy – ERZMETALL 57 (2004) No. 5 Udo Boin et al.: Measuring – Modelling: Understanding the Al Scrap Melting Processes Inside a Rotary Furnace Measuring – Modelling: Understanding the Al Scrap Melting Processes Inside a Rotary Furnace Udo Boin, Markus A. Reuter, Thomas Probst Karl Konzelmann Metallschmelzwerke GmbH and the Institute of Resources Engineering of Delft University of Technology agreed upon a joint measuring and modelling program for a standard-type rotary furnace. The fundamental processes inside rotary furnaces as a function of various operating parameters are in fact not yet widely known. For example the economically decisive metal yield is predominantly controlled by the metal burn-off rate inside the furnace. However, this burn-off rate is neither measurable nor deducible from data so far routinely recorded at refiner plant operations. An aluminium refiner is rather interested in a feed forward control than in a retrospective explanation of past metallurgical errors. Therefore an extensive measuring program was carried out at Konzelmann’s plant in Hannover during which meaningful data were registered or recorded and then methodically evaluated by interconnected mass- and energy balances. The output of such a combined computer model was compared with actual operating results. Essential parameters were altered until actual furnace and model results were in acceptable conformity. As one final result, burn-off rates specific for different scrap categories were calculated from a total of 26 furnace cycles. Keywords: Aluminium recycling – Data reconciliation – Energy and mass balance model – Burn-off rates – Feed forward control Messen – Modellieren: Zum Verständnis der Schmelzprozesse von Al-Schrott im Drehrohrofen In einem gemeinsamen Mess- und Simulationsprojekt der Konzelmann Metallschmelzwerke GmbH und des Institute für Resources Engineering der Delft Universität der Technologie wurde ein Drehrohrofen auf verschiedene bisher zum Teil ungemessene Parameter untersucht. Ökonomisch entscheidend für einen Betrieb ist die Minimierung des Metallverlusts durch Aluminiummetallabbrand. In diesem Artikel wird beschrieben, wie die unmessbaren Abbrandraten für Schrotte durch Verwendung eines entwickelten Massen- und Energiebilanzmodells bestimmt wurden, das durch gemessene Industriedaten kalibriert wurde unter Berücksichtigung von Datenausgleichsrech- nungen und deren statistischen Eigenschaften. Durch eine iterative Ausgleichsrechnung konnten aus 26 Ofenreisen die Abbrandraten für verschiedene Schrottkategorien bestimmt werden. Dieses Modell ermöglicht eine vorwärts gekoppelte Steuerung des Ofens in Bezug auf den Schrotteinkauf, den Ofenbetrieb und die Minimierung der Metallverluste. Schlüsselwörter: Aluminiumrecycling – Datenausgleichrechnung – Energie- und Massenbilanzmodell – Abbrandraten – Vorwärts gekoppelte Steuerung Mesurage – Modelage: Comprendre le processus de fusion des mitrailles d‘aluminium dans un four tournant Medición – Modelado: Comprender el proceso de la fusión de chatarra de aluminio en un horno rotatorio Paper presented on the occasion of the European Metallurgical Conference Emc 2003, September 16 to 19, 2003, in Hannover. 1 Introduction A rotary furnace is the preferred melting device at aluminium refiners when processing contaminated mixed scrap. The prevailing fraction of this scrap category is collected old scrap. With regard to the increasing aluminium alloy inventory in European automobiles the tonnage of collected aluminium scrap from this sector will in the foreseeable future sizeably grow. 266 In view of the outstanding economic importance of the European automobile industry and its obligation to make at least 85 % of its cars recyclable by 2006 – and 95 % by 2015 – an efficient processing of collected aluminium scrap is as well imperative as indispensable. Due to contemporary automobile design collected scrap from old cars – customary after passing a shredder and a sink-float plant – contains inorganic and organic impurities as well. World of Metallurgy – ERZMETALL 57 (2004) No. 5 Martin Iffert et al.: „9-Box-Control“ zur Optimierung der Aluminium Schmelzflusselektrolyse „9-Box-Control“ zur Optimierung der Aluminium-Schmelzflusselektrolyse Martin Iffert, Andreas Heime Die Erzeugung von Reinaluminium als wichtigstem Leichtmetall steht weltweit unter dem starken Druck steigender Energiekosten, insbesondere in Mitteleuropa. Daher steht die Verminderung des Energieeinsatzes im Fokus der Erzeuger von Primäraluminium. TRIMET Aluminium AG und Heraeus Electro-Nite haben gemeinsam die Liquidusmesstechnik zur industriereifen Anwendung in Zellen der Aluminium-Schmelzflusselektrolyse weiterentwickelt. Auf dieser Basis wurde ein Algorithmus konzipiert, der eine optimierte Steuerung der Energie- und Massenbilanz von Elektrolysezellen ermöglicht. Kern dieser neuen Strategie ist die direkte und gleichzeitige Messung von Badtemperatur, Liquidustemperatur und somit auch Superheat. Weitere Messungen dienen u.a. zur Analyse des Kathodenzustandes. Die so ermittelten Daten bestimmen die Lage des Ofens im Zustandsraum, welcher in neun Bereiche (Boxen) unterteilt ist. Abhängig von der Box werden Spannung und/oder AlF3-Zufuhr geregelt. Durch Anwendung dieses Systems ist es möglich die Prozessvariationen zu vermindern und den Energieverbrauch zu optimieren. TRIMET betreibt seit Mitte 2003 alle 360 Zellen seiner 155 000 t/a produzierenden Aluminiumelektrolyse in Essen mit dieser sog. 9-Box-Control. Die Ergebnisse aus dem ersten Jahr sind vielversprechend, es wird ein spezifischer Energieverbrauch von unter 14 kWh/kg Aluminium und eine Stromausbeute von über 94 % als dauerhaft erreichbar angesehen. Schlüsselwörter: Aluminiumelektrolyse – Superheat – 9-Box-Control – Energiebilanz – Massenbilanz “9-Box-Control” for an Optimised Aluminium Smelting Process TRIMET Aluminium AG operates an aluminium reduction plant in Essen at the heart of the industrial Ruhr area of Germany. The smelter was commissioned between 1971 and 1973. The pots are produced in line with the latest Alusuisse technology, with end-to-end cells having pre-baked anodes. They are equipped with point feeders and modern computer pot controllers. With amperages between 158 and 165 kA, the 360 pots in three pot-lines achieve an annual output of 155,000 t of high-grade primary aluminium. Reduction of specific energy consumption is a core target for aluminium smelters worldwide. In the past 30 years, the introduction of point-feeders, computer pot-controllers and subsequent development of sophisticated algorithms to control the alumina concentration in a narrow band, have decreased the specific energy consumption by about 2 kWh per kg of aluminium. Further savings are feasible by reducing the process variations associated with energy and mass-balance disturbances. These balances are strongly linked to the mass of solid and liquid bath in the pot. Liquid baths consist of cryolite that is modified with additions of aluminium fluoride, calcium fluoride and alumina, in order to reduce the liquidus temperature from 1010°C to 950 °C and, at the same time, decrease metal solubility. The side crust (ledge) consists of pure cryolite and hence, melting or freezing of side ledge will, respectively, decrease or increase the aluminium fluoride concentration in the bath. Hence, changes in pot energy balance will affect the mass balance and vice versa. Therefore, it is necessary to distin272 guish between energy and mass-balance induced disturbances in order to come to the right decisions. Superheat (the difference between bath and liquidus temperature) measurements provide the necessary information to overcome this problem. TRIMET Aluminium AG and Heraeus Electro-Nite have jointly developed a new control algorithm to optimise energy and mass balance in aluminium reduction cells. Central to this new strategy is the direct and combined measurement of bath temperature, liquidus temperature, and hence superheat. Additional measurements are used to monitor cathode voltage drop and sodium impurities in the alumina. These received data determine the state of the pot in the 9-box scheme. Setup of the nine boxes is done by dividing the bath temperature (x-axis) and liquidus temperature (y-axis) into three sectors each. This will divide the space of a two-dimensional diagram into nine boxes. A set of linguistic rules describes the control action in each of the nine boxes. Additions are determined according to the box number, voltage and/or aluminium fluoride. The application of this system reduces process variations and hence leads to optimised energy consumptions. – Prior to the start of this system, it is important to determine the impact of process operations, measurement location and modifications of voltage, as well as aluminium fluoride additions. At this stage, detailed measurements are done while manipulating individual pots. After completing these tests, the routine measurement schedule is clearly set up and individual rules for all boxes are defined. – TRIMET World of Metallurgy – ERZMETALL 57 (2004) No. 5 Rudolf P. Pawlek: Bauxite and Alumina Activities at the Turn of the Year 2003 / 2004 Bauxite and Alumina Activities at the Turn of the Year 2003 / 2004 Report by Rudolf P. Pawlek This review covers the period January 2003 to July 2004. Key events were: Alcan acquired Aluminium Pechiney, paying ¥ 4 bn. Alcan has decided to expand its Gove alumina refinery in northern Australia from 2 mill t/a to 3.5 mill t/a using proprietary Alcan technology. Comalco and Hydro Aluminium signed one of the largest alumina supply contracts in the history of the aluminium industry. Under the agreement, starting with a volume of 300,000 t/a in 2005, Comalco will supply Hydro Aluminium with 500,000 t/a from 2006 through to 2030. Alcoa will increase the capacity of its alumina refinery in Suriname by 200,000 t/a and at its Australian alumina refinery at Pinjarra by 600,000 t/a. Alcoa expanded the capacity of its Jamaican alumina refinery by 250,000 t/a and of its US-based refinery at Point Comfort by 300,000 t/a. Kaiser Aluminum’s sale of its aluminium upstream activities became a saga which rebounded surprisingly at several stages. Brazil’s Alunorte project kicked off its second expansion phase, increasing capacity by 2.4 mill t/a. Hydro Aluminium sold its 50 % stake in Aluminium Oxid Stade to Dadco. 1 Africa 1.1 Guinea In December 2002, Russian Aluminium (RusAl) acquired a majority interest in Africa’s only alumina refinery at Friguia in Guinea. Rusal bought the stake in Guinean Investment Co Ltd (GIC) from Cayman Islands-based trading company Manro Haydan Overseas. Although further details were not disclosed, the price is rumoured to have been as much as US$ 75 mill. GIC together with the government of Guinea owns the Alumina Co of Guinea (ACG), which has a 23-year lease on the assets of the Friguia alumina refinery. During 2002 the refinery achieved its 700,000 t/a capacity the first time during its 40-year history. A group of ex-Reynolds Metals Co executives installed by Manro Hayden at ACG is credited with turning around the performance of the refinery and increasing its efficiency. Despite this improvement the plant still needs further investment to achieve its planned expansion. RusAl officials in Guinea struck a partnership deal with Randy Reynolds to raise production at the refinery to 1.2 mill t/a. According World of Metallurgy – ERZMETALL 57 (2004) No. 5 to preliminary estimates the project will cost US$ 250 to 300 mill. RusAl has a 25-year contract to manage Guinea’s Cie des Bauxites de Kindia bauxite mine and a concession to develop another bauxite mine Dian-Dian. Guinea has 30 % of the world’s known reserves of high quality bauxite for refining into alumina. In February 2004, RusAl announced the commencement of a detailed feasibility study on the expansion and modernization of its Friguia Alumina Refinery in Guinea. The Canadian engineering company Hatch Associates will conduct the feasibility study in collaboration with RusAl-owned VAMI. The plant’s capacity will increase from 700,000 t/a to about 1.4 mill t/a within three years of the project’s completion. Modernisation will improve alumina quality, improve environmental performance and reduce operating costs. The feasibility study is expected to be complete by the end of 2004 and the engineering, procurement and construction stages of the project will begin in early 2005. The estimated cost of the project is about US$ 350 mill. The Hatch Group, which incorporated both Kaiser Engineers and BHP Engineers, is a world-renowned engineering and construction organization, which has provided industry and government with management and technical services for more than 80 years. In January 2003, Guinea Aluminium Products (from May 2004 onwards Global Aluminium Products Co) (Gapco), through its wholly-owned subsidiary Boké Alumina Co (BAG), was planning to build a 2.6 mill t/a alumina refinery in the west African country, and shortlisted US investment bank Salomon Smith Barney to arrange financing for the US$ 2.2 bn project. The Sangarédi bauxite mine is operated by Cie des Bauxite de Guinée (CBG), a joint venture 49 %-owned by the government of Guinea and 51 % by Halco Mining, a consortium formed by Alcan and Alcoa. Halco is not involved in the Gapco project as its members have existing refinery capacity of their own, but BAG has been granted a concession to mine bauxite in Boké, which has estimated reserves of 6 bn t. This project could be one of the lowest cost producers in the world. The lifespan of the project is potentially 100 years. The bauxite at Boké is particularly abundant, with an alumina content recorded as high as 69 %. Gapco is a consortium whose members include Mitsubishi and Marubeni, two of Japan’s largest trading companies, and western venture capital providers. New York-based Herakles is one of two leading developers in Boké, and has raised most of the private investor capital. The other is Karalco, a London-based concern with experi281