spg mitteilungen communications de la ssp
Transcription
spg mitteilungen communications de la ssp
Nr. 37 Mai 2012 SPG MITTEILUNGEN COMMUNICATIONS DE LA SSP The interesting relation between Albert Einstein and Georges Lemaître, two pioneers of modern cosmology, is adressed in the article "From Static to Expanding Models of the Universe" on page 43. The location of this year's annual meeting on the Hönggerberg Campus. Picture © Ralph Bensberg/ETH Zürich Im vergangenen Herbst erhielt Martin Gutzwiller den Doktor honoris causa der Universität Freiburg; ein willkommener Anlass für die SPG, die wissenschaftlichen Verdienste dieses grossen Schweizer Physikers zu würdigen. Ab S. 34 berichten wir über Gutzwillers grundlegende Arbeiten auf den Gebieten des Quantenchaos und der korrelierten Elektronen. Public lectures The program of this year's annual meeting includes two public highlights: Nobel laureate Samuel C. C. Ting (CERN & MIT) will talk about space-borne detectors for cosmic rays, a key technology worth mentioning at the centennial of the discovery of cosmic rays. Gebhard F. X. Schertler (ETH Zürich & PSI) will explain in a public tutorial about "Ultrafast Biology" (organised by NCCR MUST and ETH FAST), how experiments at the SwissFEL will help to better understand biological processes. Annual Meeting of the Swiss Physical Society June 21 - 22, 2012 , ETH Zürich General information: page 11, preliminary program: page 15 SPG Mitteilungen Nr. 37 Inhalt - Contenu - Contents Jahrestagung der SPG in Zürich, 21. - 22. Juni 2012 - Réunion annuelle de la SSP à Zürich, 21 - 22 juin 2012 Vorwort - Avant-propos Preisverleihung und Generalversammlung 2012 - Cérémonie de remise des prix et assemblée générale 2012 Statistik - Statistique Jahresbericht des Präsidenten - Rapport annuel du président Protokoll der Generalversammlung 2011 in Lausanne - Protocole de l'assemblée générale 2011 à Lausanne Jahresrechnung 2011 - Bilan annuel 2011 Anpassung der Statuten - Modification des statuts Neue Sektion und Kommission - Nouvelle section et commission Allgemeine Tagungsinformationen - Informations générales sur la réunion Vorläufige Programmübersicht - Résumé préliminaire du programme Aussteller - Exposants Kurzmitteilungen Progress in Physics (28): SATW Forum "Advanced Optoceramics" Progress in Physics (29): Understanding exchange bias in thin films The legacy of Martin Gutzwiller Martin Gutzwiller and his periodic orbits Martin Gutzwiller and his wave function Physik und Gesellschaft: "Lead-User-Workshops" für effizientes Innovations- & Produktvariantenmanagement History of Physics (4): From Static to Expanding Models of the Universe Über den Einfluss des Lichtes auf den Menschen Nicht-visuelle Lichtwirkungen beim Menschen Lighting Application for Non-Visual Effects of Light 3 3 3 4 5 5 7 9 10 11 15 27 27 28 30 34 34 37 41 43 47 47 49 Vorstandsmitglieder der SPG / Membres du Comité de la SSP Physikausbildung und -förderung / Education et encouragement à la physique Dr. Tibor Gyalog, Uni Basel, tibor.gyalog@unibas.ch Präsident / Président Dr. Christophe Rossel, IBM Rüschlikon, rsl@zurich.ibm.com Vize-Präsident / Vice-Président Dr. Andreas Schopper, CERN, Andreas.Schopper@cern.ch Geschichte der Physik / Histoire de la Physique Prof. Jan Lacki, Uni Genève, jan.lacki@unige.ch Sekretär / Secrétaire Dr. MER Antoine Pochelon, EPFL-CRPP, antoine.pochelon@epfl.ch SPG Administration / Administration de la SSP Kassier / Trésorier Dr. Pierangelo Gröning, EMPA Thun, pierangelo.groening@empa.ch Allgemeines Sekretariat (Mitgliederverwaltung, Webseite, Druck, Versand, Redaktion Bul/ Secrétariat générale (Service des membres, internet, impression, envoi, rédaction Bulletin letin & SPG Mitteilungen) Kondensierte Materie / Matière Condensée (KOND) Dr. Urs Staub, PSI, urs.staub@psi.ch & Communications de la SSP) S. Albietz, SPG Sekretariat, Departement Physik, Klingelbergstrasse 82, CH-4056 Basel Tel. 061 / 267 36 86, Fax 061 / 267 37 84, sps@unibas.ch Angewandte Physik / Physique Appliquée (ANDO) Dr. Ivo Furno, EPFL-CRPP, ivo.furno@epfl.ch Astrophysik, Kern- und Teilchenphysik / Astrophysique, physique nucléaire et corp. (TASK) Prof. Martin Pohl, Uni Genève, martin.pohl@cern.ch Buchhaltung / Service de la comptabilité F. Erkadoo, SPG Sekretariat, Departement Physik, Klingelbergstrasse 82, CH-4056 Basel Tel. 061 / 267 37 50, Fax 061 / 267 13 49, francois.erkadoo@unibas.ch Theoretische Physik / Physique Théorique (THEO) Prof. Gian Michele Graf, ETH Zürich (ad interim), gmgraf@phys.ethz.ch Sekretärin des Präsidenten / Secrétaire du président Susanne Johner, SJO@zurich.ibm.com Physik in der Industrie / Physique dans l‘industrie Dr. Kai Hencken, ABB Dättwil, kai.hencken@ch.abb.com Wissenschaftlicher Redakteur/ Rédacteur scientifique Dr. Bernhard Braunecker, Braunecker Engineering GmbH, braunecker@bluewin.ch Atomphysik und Quantenoptik / Physique Atomique et Optique Quantique Prof. Antoine Weis, Uni Fribourg, antoine.weis@unifr.ch Impressum: Die SPG Mitteilungen erscheinen ca. 2-4 mal jährlich und werden an alle Mitglieder abgegeben. Abonnement für Nichtmitglieder: CHF 20.- pro Jahrgang (Inland; Ausland auf Anfrage), incl. Lieferung der Hefte sofort nach Erscheinen frei Haus. Bestellungen bzw. Kündigungen jeweils zum Jahresende senden Sie bitte formlos an folgende Adresse: Verlag und Redaktion: Schweizerische Physikalische Gesellschaft, Klingelbergstr. 82, CH-4056 Basel, sps@unibas.ch, www.sps.ch Redaktionelle Beiträge und Inserate sind willkommen, bitte wenden Sie sich an die obige Adresse. Namentlich gekennzeichnete Beiträge geben grundsätzlich die Meinungen der betreffenden Autoren wieder. Die SPG übernimmt hierfür keine Verantwortung. Druck: Werner Druck AG, Kanonengasse 32, 4001 Basel 2 Communications de la SSP No. 37 Jahrestagung der SPG in Zürich, 21. - 22. Juni 2012 Réunion annuelle de la SSP à Zürich, 21 - 22 juin 2012 Vorwort Avant-propos Die erfolgreichen Tagungen der letzten Jahre haben gezeigt, daß die SPG auf dem richtigen Pfad ist. Sowohl die Beteiligung der verschiedenen NCCRs alle 2 Jahre, als auch die Kooperation mit unseren österreichischen Nachbarn erlauben eine exzellente Vernetzung und den Austausch über Fachbereichs- und Landesgrenzen hinweg. Nicht zuletzt die Zusammenarbeit mit Fachgesellschaften, die einen starken Bezug zur Physik haben, erlaubt auch immer wieder den Blick über den Tellerrand des eigenen Wirkens. Le succès des réunions des années dernières a démontré que la SSP est sur la bonne voie. Autant la participation des différents NCCRs tous les deux ans que notre coopération avec nos voisins autrichiens, favorisent le développment d’un excellent réseau et l’échange au delà des spécialités et des frontières. La collaboration avec les sociétés savantes qui ont un fort lien avec la physique, permet aussi de jeter régulièrement un coup d’oeil sur les domaines adjacents à nos propres activités. In diesem Jahr ist z.B. das 100jährige Jubiläum der Entdeckung der Röntgenbeugung durch Max von Laue Anlaß für die Schweizerische Gesellschaft für Kristallographie (SGK), sich mit einer Sitzung an unserer Tagung zu beteiligen. Der Einbezug von lange vernachlässigten Fachgebieten ist ebenfalls geglückt, wie z.B. die nun bereits fest etablierte Sitzung zur Geschichte der Physik zeigt. Die letztjährige Sitzung zur Geophysik gibt sogar Anlaß, das Gebiet in diesem Jahr in einen erweiterten Rahmen unter "Physik der Erde, Atmosphäre und Umwelt" einzubetten und eine gleichnamige Sektion zu gründen. Cette année, la célébration du centenaire de la découverte de la diffraction des rayons X par Max von Laue, est l’occasion pour la Société Suisse de Crystallographie de participer avec une session à notre réunion annuelle. L’incorporation de domaines longtemps négligés est tout aussi réussie, tel que le montre par ex. la session désormais solidement établie sur l’Histoire de la Physique. La séance sur la Géophysique de l’année dernière nous a incité à élargir le sujet vers la "Physique du Globe et de l’Environnement", et à fonder une nouvelle section du même nom. Im folgenden finden Sie die wichtigsten Tagungsinformationen sowie eine vorläufige Programmübersicht. Das definitive Programm wird in Kürze auf der SPG-Webseite verfügbar sein. Dans les pages suivantes vous trouverez les informations essentielles sur la conférence ainsi que le programme provisoire. La version finale sera prochainement accessible sur notre site internet. In diesem Sinne hoffen wir auf eine rege Beteiligung an der diesjährigen Tagung und freuen uns auf Ihren Besuch. Nous comptons donc sur une participation active et nombreuse à notre réunion annuelle et nous réjouissons de votre visite. Preisverleihung und Generalversammlung 2012 Cérémonie de remise des prix et assemblée générale 2012 Donnerstag 21. Juni 2012, 11:30h - Jeudi 21 juin 2012, 11:30h ETH Zürich, Hönggerberg, Gebäude HPH, Hörsaal G 1 11:30 Preisverleihung Cérémonie de remise des prix 11:50 Generalversammlung Assemblée générale 2. 3. Protokoll der Generalversammlung vom 16. Juni 2011 Kurzer Bericht des Präsidenten Rechnung 2011, Revisorenbericht 4. 5. 6. 7. 8. Anpassung der Statuten Neue Sektion und Kommission Projekte Wahlen Diverses Procès-verbal de l'assemblée générale du 16 juin 2011 Bref rapport du président Bilan 2011, rapport des vérificateurs des comptes Modification des statuts Nouvelle section et commission Projets Elections Divers 1. 3 SPG Mitteilungen Nr. 37 Statistik - Statistique Neue Mitglieder 2011 Nouveaux membres en 2011 Prof. K. Alex Müller (1991) Prof. Hans Rudolf Ott (2005) Prof. T. Maurice Rice (2010) Dr. Heinrich Rohrer (1990) Prof. Louis Schlapbach (2010) Allenspach Rolf, Ammann Stephan, Anabitarte Miguel, Andritsch Florian, Balzan Riccardo, Becker Henrik, Bednorz J. Georg, Birrer Simon, Boillat Bénédicte, Boss Jens Michael, Bräm Beat, Braitsch Daniel, Braun Johannes, Büchel Samuel, Bunk Oliver, Capelli Achille, Cedzich Christopher, Chang Johan, Chopdekar Rajesh Vilas, Chowdhuri Zema, Christandl Matthias, Ciganovic Nikola, Conrad Roberta, Dahinden Fabienne, Debus Pascal, Diebold Andreas, Donner Tobias, Eggenschwiler Federico, Ehrbar Stefanie, El Bakkali Issam, El Moussaoui Souliman, Falke Johannes, Flöry Nikolaus, Flühmann Christa, Gauvin Neal, Gehrig Jeffrey, Gehrmann-De Ridder Aude, Gersdorf Thomas, Göldi Damian, Gomes Gerber Isabel, Grimm Alexander, Häberli Florian, Hälg Sebastian, Häusler Samuel, Herrmann Andreas, Howald Ludovic, Huber Felix, Iacobucci Giuseppe, Imamoglu Atac, Jenatsch Sandra, Jochum Johanna, Jusufi Abas, Kambly Dania, Kamleitner Josef, Kangeldi Selim, Kasprzak Malgorzata, Keller Stefan, Khaw Kim Siang, Kläui Mathias, Klauser Christine, Kobayashi Masaki, Korppi Maria, Koulialias Dimitrios, Krempasky Juraj, Kreslo Igor, Kwuida-Manthey Katarina, Leimer Pascal, Löffler Jörg F., Lüthi Florian, Maetz Marc, Maghrbi Yasser, Marsik Premysl, Minkowski Peter, Mirzaei Seyed Imam, Mokso Rajmund, Moser Christophe, Nicola Andrina, Oberle Markus, Ockeloen Caspar, Orsi Silvio, Pagani Kurt, Papariello Luca, Parrinello Michele, Patthey Luc, Pavuna Davor, Pfefferle David, Piamonteze Cinthia, Pikulski Marek, Pilet Nicolas, Plumb Nicholas, Prsa Krunoslav, Radovic Milan, Reichert Julia, Riedo Andreas, Rocco Gaudenzi, Rodriguez Alvarez José, Rose Ruben, Ruffieux Silvia, Rutar Giada, Schäfer Vera, Schmidt Alexander, Schnoz Sebastian, Schönherr Peggy, Schopper Andreas, Schulthess Thomas, Schumann Marc, Sehner Michael, Seidel Mike, Sellerio Alessandro Luigi, Shiroka Toni, Stamm Christian, Stelzer Carol, Stöckl Quirin S., Timpu Flavia Claudia, Tortschanoff Andreas, Tschirky Thomas, Verzetti Mauro, Viereck Julian, von Baussnern Samuel, Wacker Kay, Wágner Dávid, Wallny Rainer, Walt Roger, Waltar Kay, Ward Simon, Watts Benjamin, Weigele Pirmin, Wenzler Dominic, Wertnik Melina, Winkler János, Winterhalter Carla, Wittwer Peter, Witzemann Amadeus, Yarar Hevjin, Zai Anja Assoziierte Mitglieder - Membres associés A) Firmen • F. Hoffmann-La-Roche AG, 4070 Basel • Oerlikon Leybold Vacuum Schweiz AG, 8050 Zürich B) Universitäten, Institute • Albert-Einstein-Center for Fundamental Physics, Universität Bern, 3012 Bern • Département de Physique, Université de Fribourg, 1700 Fribourg • Departement Physik, Universität Basel, 4056 Basel • Departement Physik, ETH Zürich, 8093 Zürich • EMPA, 8600 Dübendorf • Lab. de Physique des Hautes Energies (LPHE), EPFL, 1015 Lausanne • Paul Scherrer Institut, 5332 Villigen PSI • Physik-Institut, Universität Zürich, 8057 Zürich • Section de Physique, Université de Genève, 1211 Genève 4 C) Studentenfachvereine • AEP - Association des Etudiant(e)s en Physique, Université de Genève, 1211 Genève 4 • Fachschaft Physik und Astronomie, Universität Bern, 3012 Bern • Fachschaft Physique, Université de Fribourg, 1700 Fribourg • Fachverein Physik der Universität Zürich (FPU), 8057 Zürich • FG 14 (Fachgruppe für Physik-, Mathematik- und Versicherungswissenschaft), Universität Basel, 4056 Basel • Les Irrotationnels, EPFL, 1015 Lausanne • Verein der Mathematik- und Physikstudierenden an der ETH Zürich (VMP), 8092 Zürich Verteilung der Mitgliedskategorien Répartition des catégories de membres (31.12.2011) Ehrenmitglieder - Membres d'honneur Prof. Hans Beck (2010) Dr. J. Georg Bednorz (2011) Prof. Jean-Pierre Blaser (1990) Prof. Jean-Pierre Borel (2001) Prof. Jean-Pierre Eckmann (2011) Prof. Charles P. Enz (2005) Prof. Øystein Fischer (2010) Prof. Hans Frauenfelder (2001) Prof. Jürg Fröhlich (2011) Prof. Hermann Grunder (2001) Prof. Hans-Joachim Güntherodt (2010) Dr. Martin Huber (2011) Prof. Verena Meyer (2001) 4 Ordentliche Mitglieder Doktoranden Studenten Doppelmitglieder DPG, ÖPG oder APS Doppelmitglieder PGZ Mitglieder auf Lebenszeit Assoziierte Mitglieder Bibliotheksmitglieder Ehrenmitglieder Beitragsfreie (Korrespondenz) Total 697 37 78 193 38 150 16 2 18 10 1239 Communications de la SSP No. 37 Jahresbericht 2011 des Präsidenten - Rapport annuel 2011 du président Once again, one of the highlights of 2011 for the SPS was its successful annual meeting organized at the EPFL in Lausanne on 15-17 June 2011, jointly with the Austrian Physical Society (ÖPG), and both national societies of Astronomy and Astrophysics (SSAA and ÖGAA). It was very well attended with about 650 participants, 10 plenary talks, 470 contributions spread over 10 parallel sessions and one large poster session. The commercial exhibitions reached a record number of 22 company booths. One can claim without any doubt that the formula of having our meeting every other year with our Austrian colleagues is a success. The meeting 2013 is therefore already planned in Vienna for early September. The organization of the alternating meetings with the Swiss NCCRs and other invited learned societies has also proven to be an excellent and appreciated means to make this event attractive to the Swiss community. A detailed review of the meeting 2011 was published in the SPS Communications No 35 and on our website. Worth remembering is the celebration of the centennial of the discovery of superconductivity with dedicated talks, a lively round table in presence of the two Nobel Laureates K. A. Müller and J. G. Bednorz and a special exhibition. Based on the success of the session on Geophysics, it was proposed to create a new section named "Earth, Atmosphere and Environmental Physics". A dedicated session on this topic is planned in our next annual meeting at the ETHZ on 21-22 June 2012 (see page 10 in this issue for details). During the joint award ceremony the three SPS awards as well as several prizes of the ÖPG were attributed. During this ceremony the honorary membership was conferred to four new members. At the General Assembly, two new board members have been elected; several others have been reelected (see minutes on the next page). It is with pleasure that the SPS endorsed also the new membership of CHIPP, the Swiss Institute of Particle Physics, presided by Martin Pohl, within SCNAT. It trusts that this sister organization will strengthen science in general and physics in particular in association with the SPS. The number of individual members keeps increasing steadily with about 1250 by the end of 2011. This enjoyable trend goes in parallel with the strong increase of collective members - renamed ‘associate’ members in the future - found among the different departments of physics, research organizations and physics student associations. Because of improved financial incomes (membership, exhibition) but also because of stronger control of our expenses (reduction of publication and mailing costs) the negative trend of the last three years has been stopped and our budget 2011 ended again in the black with a slight earning. Thanks to the excellent work of our scientific editor B. Braunecker, the SPS Bulletin continues to be a valuable source of information with society news, and the now well established topical rubriques 'Progress in Physics', 'Physics and Society' and 'Physics Anecdotes'. In our collaboration with the Physikalische Gesellschaft Zurich (PGZ), a joint Symposium on "Careers for Physicists" was organized on the 25 October 2011. The student associations of the SPS Young Physicists Forum (YPF), VMP (ETHZ), FPU (Uni. Zürich) and FG14 (Uni. Basel) participated in this successful symposium. In fact the YPF remains active and continues to organize special events, such as visits of research centers or institutes for its student members. In a well established tradition, the SPS sponsored also the Swiss Physics Olympiads and the Swiss Young Physicists Tournament in their respective activities. The best male and female finalists of the SwissPhO were awarded with SPS prizes (http://www.swisspho.ch/en/winners2011). The SPS is actively represented via its president or other members in different EPS groups and commissions, in particular the editorial board of Europhysics News, Europhysics Letters, the Forum Physics and Society, the Technology group and the Energy group. The meeting of the latter took place at the Akershus Energy Park, close to Oslo on 6-7 October 2011. In addition to energy issues specific to Norway (hydro-energy, Thorium reactors), reports on radioactive waste disposal techniques and the status of disposals in EU nuclear energy countries including Switzerland (Nagra) were presented. As a member organization of the Swiss Academy of Science SCNAT, the SPS is part of the platform Mathematics, Astronomy and Physics. We acknowledge here the organizational and financial support of SCNAT in the pursuit of our tasks and activities. The support of the Swiss Academy of Engineering Science SATW is also acknowledged and hopefully our interaction will be further developed on important issues such as energy, resources and sustainability, information technology, nanotechnology, education as well as the training of the physicists in industry and academia. Christophe Rossel, President, March 2012 Protokoll der Generalversammlung vom 16.06.2011 in Lausanne Protocole de l'assemblée générale du 16.06.2011 à Lausanne Traktanden 1. Protokoll der Generalversammlung vom 22.6.2010 2. Bericht des Präsidenten 3. Rechnung 2010 & Revisorenbericht 4. Wahlen 5. Projekte 6. Diverses Der Präsident, Christophe Rossel, eröffnet die Generalversammlung um 12:10 Uhr. Anwesend sind 31 Mitglieder. 1. Protokoll der Generalversammlung vom 22.6.2010 Das Protokoll der letzten Generalversammlung in Basel wird kommentarlos genehmigt. 5 SPG Mitteilungen Nr. 37 Nachdem der Revisorenbericht vorgelesen worden ist, stimmt die Generalversammlung der Jahresrechnung 2010 und der Entlastung des Vorstands zu. 2. Bericht des Präsidenten Auf Seite 5 der „SPG Mitteilungen Nr. 34“ wurde der Jahresbericht des Präsidenten bereits veröffentlicht. •Zur Jahrestagung vom 21.-22. Juni 2010 in Basel mit NCCR ManEP, NANO, QP, CCMX, POLYCOLL (SCG) kamen rund 500 Teilnehmer und 17 Aussteller. •An der Generalversammlung 2010 wurden fünf neue Ehrenmitglieder ernannt: Profs. H. Beck, O. Fischer, H.-J. Güntherodt, T. M. Rice, L. Schlapbach. •Die GV 2010 schuf neue Mitgliederkategorien und passte sowohl die Statuten an, wie teilweise auch die seit acht Jahren unveränderten Mitgliederbeiträge. •Als Werbeaktion erhielten alle Schweizer Physikprofessoren den neuen SPG-Flyer zum Verteilen an die Studierenden. •Folgende Institutionen konnten als Kollektivmitglieder gewonnen werden: Die Physik-Departemente der Universitäten Basel, Genf und Zürich, der ETH Zürich, das LPHE der EPF Lausanne sowie die Studentenvereine VMP (ETHZ), FPU (Uni ZH), AEP (Uni Genf). Der Präsident informiert die Anwesenden, dass der Vorstand die missverständliche Bezeichnung "Kollektivmitgliedschaft" durch "Assoziierte Mitgliedschaft" ersetzen möchte. Die erforderliche Statutenänderung wird nächstes Jahr auf die Traktandenliste gesetzt und der GV 2012 zur Abstimmung vorgelegt. •Die dreimal jährlich erscheinenden "SPG Mitteilungen" werden noch interessanter: Zu den bisherigen Rubriken "Fortschritt in der Physik", "Physik & Gesellschaft" und "Physik-Anekdoten" kommt die neue Serie "Geschichte der Physik". 4. Wahlen Der Präsident dankt den beiden ausscheidenden Vorstandsmitgliedern für ihren Einsatz: Prof. Klaus Kirch, 6 Jahre Leiter der SPG-Sektion "Astro-, Kern- Teilchenphysik" und Prof. Ulrich Straumann, 2 Jahre Vize-Präsident der SPG. In corpore werden einstimmig neu resp. wieder gewählt: •Vize-Präsident (neu): Dr. Andreas Schopper, CERN •Astro-, Kern- Teilchenphysik (neu): Prof. Martin Pohl, Universität Genf •Atomphysik & Quantenoptik (bisher): Prof. Antoine Weis, Universität Fribourg •Physik in der Industrie (bisher): Dr. Kai Hencken, ABB •Theoretische Physik (bisher): Prof. Dionys Baeriswyl, Universität Fribourg • Angewandte Physik (bisher): Dr. Ivo Furno, EPFL •Physikausbildung & -förderung (bisher): Dr. Tibor Gyalog, Universität Basel 5. Projekte •Das "Young Physicists Forum" wird mit den StudentenFachschaften weitere Aktivitäten, Betriebsbesichtigungen und Exkursionen für Studenten organisieren. •Zusammen mit dem PGZ plant die SPG im September 2011 in Zürich ein Symposium über den Physiker-Beruf. 6. Diverses •An der letzten GV wünschte ein Mitglied, die SPG solle dem Anglizismus entgegentreten und dafür sorgen, dass vermehrt deutschsprachige Beiträge gedruckt werden. Der Vorstand hat das Anliegen diskutiert, sieht jedoch keinen Handlungsbedarf. Bei einem Mitgliedermagazin wie den "SPG Mitteilungen" muss in erster Linie der Inhalt stimmen – in welcher Sprache ist weniger wichtig. Was andere Publikationen betrifft, kann und will der SPG-Vorstand keinen Einfluss auf redaktionelle Entscheide nehmen. • Die nächste SPG-Jahrestagung wird am 21./22. Juni 2012 an der ETH Zürich stattfinden. Weitere Einzelheiten erscheinen demnächst auf der SPG-Internetseite (www. sps.ch). Besondere Anlässe im vergangenen Vereinsjahr waren: •Öffentlicher, von SPS und PGZ gemeinsam organisierter Anlass "DIE WISSENSEXPLOSION – Chancen und Risiken – Wissenschaftskommunikation im Zeitalter elektronischer Medien", Sa. 02.10.2010, Uni Zürich. •50 Jahre Laser: Der Tanz der Photonen, vom 10.12.06.2010 an der Universität Bern und vom 19.20.11.2010 an der Universität Fribourg. •Im Rahmen unseres neuen Young Physicists Forums (VMP) organisierte der VMP (Verein Mathematik- & Physik-Studierender der ETH Zürich) folgende gut besuchte Exkursionen: PSI Villigen (4.5.2010), EPFL-CRPP (22.11.2010), ABB (18.4.2011) und IBM Research (30.5.2011). •Als Sponsor der Schweiz. Physik-Olympiaden stiftet die SPG jeweils zwei Nachwuchspreise zu je CHF 500, welche der Präsident an der Schlussfeier vom 3.4.2011 in Aarau überreichte. •Weiterhin ist die SPG Sponsor des Swiss Young Physicists Tournament (PSI, April 2011) und des Schweizer Teams am International Young Physicists Tournament (Teheran, Juli 2011). Der Präsident dankt den Anwesenden für ihr Erscheinen sowie den Delegierten und seinen Vorstandskollegen für Ihren Einsatz und die gute Zusammenarbeit im vergangenen Amtsjahr. Ende der Generalversammlung: 11:15 Uhr. Lausanne, 16. Juni 2011 Die Protokollführerin: Susanne Johner 3. Rechnung 2010 & Revisorenbericht Der Kassier, Pierangelo Gröning, präsentiert die Jahresrechnung 2010, die detailliert in den "SPG-Mitteilungen Nr. 34" veröffentlicht wurde. Sie schliesst mit einem Verlust von CHF 25'777, bei einem Vereinsvermögen per 31.12.2010 von CHF 19'406.50. 6 Communications de la SSP No. 37 Jahresrechnung 2011 - Bilan annuel 2011 Bilanz per 31.12.2011 Aktiven Umlaufsvermögen Postscheckkonto Bank - UBS 230-627945.M1U Debitoren - Mitglieder Debitoren - SCNAT/SATW u.a.m. Transitorische Aktiven Passiven 19233,53 12575,54 2017,50 56851,00 1049,70 Anlagevermögen Beteiligung EP Letters Mobilien 15840,00 1,00 Fremdkapital Mobiliar Mitglieder Lebenszeit Transitorische Passiven 1,00 59824,50 11135,90 Eigenkapital Verfügbares Vermögen 19406,51 Total Aktiven Passiven Gewinn Total 107568,27 107568,27 Verfügbares Vermögen per 31.12.11 nach Gewinnzuweisung 90367,91 17200,36 107568,27 36606,87 Erfolgsrechnung per 31.12.2011 Aufwand Gesellschaftsaufwand EPS - Membership SCNAT - Membership SATW-Mitgliederbeitrag Ertrag 15634,30 7903,00 1750,00 SCNAT & SATW Verpflichtungskredite SPG-Jahrestagung Schweizer Physik Olympiade SPG Young Physicist's Forum EGA-43 Kongress 2011, Fribourg 100 Jahre Supraleitung SCNAT/SPG Bulletin SCNAT Periodika (SPG-Mitteilungen, Druckkosten) SCNAT Int. Young Phys. Tournament 37766,26 4000,00 7133,15 4000,00 11851,00 5500,00 19444,20 5500,00 Betriebsaufwand Löhne Sozialleistungen Porti/Telefonspesen/WWW- und PC-Spesen Versand (Porti Massensendungen) Unkosten Büromaterial Bankspesen Debitorenverluste Mitglieder Debitorenverlust SCNAT/SATW u.a.m. Sekretariatsaufwand extern 11732,64 863,25 908,75 5334,00 3130,30 321,60 163,00 1971,00 5149,00 9675,00 Ertrag Mitgliederbeiträge Inserate/Flyerbeilagen SPG Mitteilungen Aussteller Zinsertrag Ertrag aus EP Letters Beteiligung 87670,35 200,00 24771,69 125,90 2162,87 SCNAT & SATW Verpflichtungskredite SPG-Jahrestagung (SCNAT) Schweizer Physik Olympiade SPG Young Physicist's Forum EGAS-43 Kongress 2011, Fribourg 100 Jahre Supraleitung SATW, 100 Jahre Tieftemperatur und Supraleitung/Session Géophysique SPG Bulletin (SCNAT) Periodika (SPG-Mitteilungen, Druckkosten) (SCNAT) SCNAT Int. Young Phys. Tournament 15000,00 4000,00 7000,00 4000,00 12000,00 5000,00 5500,00 4000,00 5500,00 Total Aufwand/Ertrag Gewinn Total 159730,45 17200,36 176930,81 7 176930,81 176930,81 SPG Mitteilungen Nr. 37 Revisorenbericht zur Jahresrechnung 2011 Die Jahresrechnung 2011 der SPG wurde von den unterzeichneten Revisoren geprüft und mit den Belegen in Übereinstimmung befunden. Die Revisoren empfehlen der Generalversammlung der SPG, die Jahresrechnung zu genehmigen und den Kassier mit bestem Dank für die gute Rechnungsführung zu entlasten. Die Revisoren der SPG: Prof. Dr. Philipp Aebi Dr. Pascal Ruffieux Basel, 15. März 2012 F. Erkadoo, SPG Büro, Departement Physik, Klingelbergstrasse 82, CH-4056 Basel Tel : 061 / 267 37 50, Fax : 061 / 267 13 49, Email : francois.erkadoo@unibas.ch 8 Communications de la SSP No. 37 Anpassung der Statuten - Modification des statuts Seit der letzten Änderung vor zwei Jahren ist der Vorstand auf zwei kleine Unschönheiten in den Statuten aufmerksam gemacht worden. Diese betreffen den Begriff "Kollektivmitglieder", der verschiedentlich zu Mißverständnissen geführt hat. Ferner wird die Definition der Kollektivmitglieder Gruppe B als zu eng gefasst angesehen, da z.B. eine überstaatliche Organisation wie das CERN danach nicht Mitglied werden kann. Après les dernières modifications d'il y a deux ans, le comité a été rendu attentif à deux petites imprécisions dans les statuts. Elles concernent le terme de 'membre collectif' qui a conduit à quelques malentendus. De plus la définition du groupe B des membres collectifs est considérée comme trop limitée. Ainsi une organisation internationale comme le CERN ne pourrait pas devenir membre de la SSP. Pour ces raisons il sera nécéssaire de se prononcer sur les petits amendements suivants: -le terme "membres collectifs" est remplacé par "membres associés" dans les Article 2 et Annexe 1. -la définition du groupe B dans l'Article 2 est élargie. La version actuelle des statuts se trouve sous www.sps.ch -> SSP -> Statuts. Es wird daher über die folgenden kleinen Änderungen abgestimmt: - Der Begriff "Kollektivmitglieder" wird ersetzt durch "Assoziierte Mitglieder". Dies betrifft Artikel 2 und Anhang 1. - Die Definition der Gruppe B in Artikel 2 wird erweitert. Die bisherige Fassung der Statuten finden Sie auf www. sps.ch ->SPG ->Statuten. Art. 2 Die Gesellschaft besteht aus ordentlichen Mitgliedern, aus studentischen Mitgliedern (Studenten), aus Ehrenmitgliedern und aus Assoziierten Mitgliedern. Als Studenten gelten Personen, welche an einer Universität immatrikuliert sind und noch keinen Diplom-/Masterabschluß haben. Assoziierte Mitglieder werden in folgende Gruppen eingeteilt: A)Firmen B)Universitäten bzw. deren Untereinheiten (z.B. Institute, Forschungslabore) oder anerkannte staatliche, überstaatliche bzw. internationale Forschungseinrichtungen C)Studentenorganisationen / Fachgruppen an Schweizer Hochschulen [...] Art. 2 La Société se compose de membres ordinaires, de membres étudiants, de membres honoraires et de membres associés. Comme étudiants sont considérées les personnes immatriculées dans une université et qui n’ont pas encore obtenu de Diplôme ou Master. Les membres associés se composent des groupes suivants: A)Compagnies commerciales B)Universités et leurs unités (par ex. instituts, laboratoires de recherche) ainsi que les institutions nationales, supranationales ou internationales de recherche. C)Organisations ou associations d’étudiants liées à une université suisse [...] Art. 24 Die gegenwärtige Version der Statuten der Schweizerischen Physikalischen Gesellschaft wurde an der Generalversammlung vom 21. Juni 2012 in Zürich angenommen. Sie annulliert alle vorherigen Bestimmungen. Art. 24 La présente version des statuts de la Société Suisse de Physique a été adoptée par l’assemblée générale à Zürich, le 21 juin 2012. Elle annule toutes les dispositions antérieures. Publish your cutting-edge research with EPL A Letters JournAL expLoring the Frontiers oF physics www.epl journal.org 1 Quality – The 50+ Co-Editors, who are experts in their fields, oversee the entire peer-review process, from selection of the referees to making all final acceptance decisions. 2 Impact Factor – The 2010 Impact Factor is 2.753; your work will be in the right place to be cited by your peers. 3 Speed of processing – We aim to provide you with a quick and efficient service; the median time from acceptance to online publication is 29 days. 4 High visibility – All articles are free to read for 30 days from online publication date. 5 International reach – More than 2000 institutions have access to EPL, enabling your work to be read by your peers in more than 100 countries. 6 Open Access – If you are required to publish your research as open access, we offer this service for a one-off author payment. If you would like further information about our author service, or EPL in general, please visit www.epljournal.org, e-mail us at info@epljournal.org or scan this barcode. 9 Impact Factor 2.753* * As listed in ISI®’s 2010 Science Citation Index Journal citation reports More than 624 000 full-text downloads in 2011 29 days median acceptance to online publication in 2011 Visit our booth at the Annual Meeting, 21–22 June SPG Mitteilungen Nr. 37 New Section "Earth, Atmosphere and Environmental Physics" Neue Sektion "Physik der Erde, Atmosphäre und Umwelt" Nouvelle section "Physique du Globe et de l’Environnement" In 2012, the SPS starts up a new section, Earth, Atmosphere and Environmental Physics, following formally the 2011 sessions on geophysics (From Planetary to Engineering Geophysics). rays, extra-terrestrial geophysics,…) to engineering geophysics, applied geophysics (analysis of geological resources, of geomaterials, of geological hazards, of geological barriers for waste storage, monitoring of contaminated sites), aiming at a description from first principles. Earth, atmosphere and environmental physics can be described in terms of the laws of physics. Examples include a number of environmental issues such as global warming, waste depositories, ozone layer depletion, energy crisis and renewable energy sources, air, soil and water pollution, etc. This section pays tribute to the emphasis placed on monitoring and understanding processes, as well as predicting changes of our physical world. The underlying topics may be regarded as Earth- or geo-sciences oriented, being a particular combination of physical, chemical, and biological processes linking and determining every components of the Earth system on a wide variety of spatial and temporal scales. Atmospheric Physics is concerned with the structure and evolution of the planetary atmospheres and with the wide range of phenomena that occur within them, with a particular focus on the Earth’s atmosphere interacting with other components such as the lithosphere, the biosphere, the hydrosphere and the cryosphere. Environmental Physics involves the many aspects of physics that pervade environmental processes in our everyday lives and in naturally occurring phenomena. This includes energy supply and resources issues, which growing needs and use can impact on environment. It aims at understanding the various links between topics such as, e.g.: sustainability, contribution of renewable sources, efficiency, wastes and pollution, CO2, climatic impact. Earth Physics encompasses a number of topics from the geophysics of the globe (plate tectonics, geomagnetism, solid state at high pressures, seismology, geodesy, cosmic New Commission "Young Physicists Forum" Until now, the Young Physicists Forum (YPF) is a loose compound of nearly all Swiss physics students organizations – namely the associations from École polytechnique fédérale de Lausanne, ETH Zürich, Uni Basel, Uni Bern, Uni Fribourg and Uni Genève. tation with the board of the SPS we think that all involved parties can profit if the YPF is formaly founded as a commission of the SPS. In a first step all participating students organizations joined the SPS as Associated Members. The next step is our formal application at the General Assembly at the SPS annual meeting in June 2012, to accept the YPF as a commission. If our inquiry is accepted, we see it as our responsibility to bring our students in contact with the SPS so they get an impression of the wide range of possibilities they will have when finishing their studies. Thus we want to spark interest of young physics students in the SPS as soon as possible. We are looking forward to a productive and successful cooperation and many new acquaintances. Everything started at our first meeting in May 2011, where the representatives of the different students organizations agreed on the fact that there is a need for better connection amongst the physics students and between students and experienced physicists. To work out our aims and goals more precisely we started to meet regularly, each semester at a different university, to force initially the exchange amongst our board members. Since our first meeting the SPS supported us and offered their help. List of YPF founding members: Les Irrotationnels, Association des étudiants en physique de l'EPFL, http://irrotationnels.epfl.ch Verein der Mathematik- und Physikstudierenden an der ETH Zürich (VMP), www.vmp.ethz.ch Uni Basel, Fachgruppe 14 (FG 14), www.fg14.unibas.ch Uni Bern, Fachschaft Physik und Astronomie (FPA), http:// www.fpa.unibe.ch Uni Fribourg, Fachschaft Physique (FPF) Uni Genève, Association des Etudiant(e)s en Physique (AEP), http://www.asso-etud.unige.ch/aep/ As a result of our efforts, the main goal of the YPF is to build up a network and encourage the exchange of information and experience amongst our students, but also with other physicists. This we want to reach e.g. by organizing joint events like visits of research institutions, companies etc. Starting to include the members of our associations, our web-forum was released in April 2012 and as a first event we plan to visit CERN this summer. To foster the communication between our members and "real-life physicists" the SPS turns out to be the ideal platform as they already combine reasearch and industrial interests, covering all areas of physics. In addition the SPS offers a stable framework within which the YPF can develop and grow. After consul- Julia Reichert and Talitha Weiss, YPF, Universität Basel 10 Communications de la SSP No. 37 Allgemeine Tagungsinformationen - Informations générales sur la réunion Konferenzwebseite und Anmeldung Alle Teilnehmeranmeldungen werden über die Konferenzwebseite vorgenommen. www.sps.ch -> Veranstaltungen Site web de la conférence et inscription L' inscription des participants se fait sur le site web de la conférence. www.sps.ch -> Evènements Anmeldeschluß: 1. Juni 2012 Délai d'inscription: 1er juin 2012 Tagungsort ETH Zürich, Hönggerberg, Gebäude HPH / HCI Lieu de la conférence ETH Zürich, Hönggerberg, bâtiment HPH / HCI Tagungssekretariat Das Tagungssekretariat befindet sich im Foyer des HPH direkt neben dem Haupteingang. Öffnungszeiten: Mittwoch 20. Juni 16:00 - 19:00 Donnerstag 21. Juni 08:00 - 18:00 Freitag 22. Juni 08:00 - 15:00 Secrétariat de la conférence Le secrétariat de la réunion se trouve dans le foyer du bâtiment HPH juste à l'entrée. Heures d'ouverture : Mercredi 20 juin 16:00 - 19:00 Jeudi 21 juin 08:00 - 18:00 Vendredi 22 juin 08:00 - 15:00 Alle Tagungsteilnehmer melden sich bitte vor dem Besuch der ersten Veranstaltung beim Sekretariat an, wo Sie ein Namensschild und allfällige weitere Unterlagen erhalten sowie die Tagungsgebühr bezahlen. Wichtig: Ohne Namensschild ist kein Zutritt zu einer Veranstaltung möglich. Tous les participants doivent se présenter en premier lieu au secrétariat de la conférence afin de recevoir leur badge et les divers documents ainsi que pour le paiement des frais d'inscription. Attention: Sans badge, l'accès aux sessions de la manifestation sera refusé. Wir empfehlen Ihnen, wenn möglich den Mittwoch Nachmittag für die Anmeldung zu nutzen. So können Sie am Donnerstag direkt ohne Wartezeiten die Vorträge besuchen. Nous vous recommandons de vous inscrire déjà mercredi après-midi afin d'éviter des temps d'attente inutiles jeudi matin. Achtung: Das Tagungssekretariat gibt kein technisches oder Büromaterial ab. Jeder Teilnehmer ist für seine Ausrüstung (Mobilrechner, Laserpointer, Adapter, Schere, Reissnägel, Folien usw.) selber verantwortlich ! Attention: Le secrétariat de la conférence ne rend aucun matériel technique ni matériel de bureau. Chaque participant est responsable de son équipement (ordinateur, pointeur laser, adaptateurs, ciseaux, punaises, ...) ! Hörsäle In allen Hörsälen stehen Beamer und Hellraumprojektoren zur Verfügung. Bitte bringen Sie Ihre eigenen Mobilrechner und evtl. Adapter und USB Stick/CD mit. Auditoires Les auditoires disposent tous d’un projecteur multimédia (beamer) et d'un projecteur pour transparents. Veuillez apporter votre ordinateur portable ainsi que d'éventuels accessoires tels que clé USB ou CD. Postersession Die Postersession findet am Donnerstag Abend und am Freitag während der Mittagspause im Foyer HPH statt. Bitte bringen Sie Befestigungsmaterial (Reissnägel, Klebestreifen) selbst mit. Die Posterwände sind entsprechend diesem Programm numeriert, sodaß jeder Teilnehmer "seine" Wand leicht finden sollte. Alle Poster sollen an beiden Tagen präsentiert werden. Maximale Postergröße: A0 Hochformat Séance posters Les posters seront présentés dans le foyer HPH le jeudi soir et pendant la pause de midi de vendredi. Veuillez amener vous-même le matériel nécessaire pour fixer les posters (punaises, ruban adhésif). Les panneaux de posters seront numérotés suivant le numéro de l'abstract indiqué dans le programme. Tous les posters pourront rester installés pendant les deux jours. Dimension maximale: A0, format portrait Zahlung Wir bitten Sie, die Tagungsgebühren im Voraus zu bezahlen. Sie verkürzen damit die Wartezeiten am Tagungssekretariat, erleichtern uns die Arbeit und sparen darüber hinaus noch Geld ! Sie können auf das folgende Konto einzahlen / überweisen: Postkonto der Schweizerischen Physikalischen Gesellschaft, CH-4056 Basel, Kontonummer 80-8738-5 Paiement Nous vous prions de régler d'avance vos frais d'inscription par virement postal ou bancaire. De cette manière vous éviterez des files d'attente et vous nous facilitez notre travail. En plus vous pourrez faire des économies ! Vous pouvez effectuer votre virement sur le compte suivant: Compte postale de la Société Suisse de Physique, CH-4056 Basel, Numéro 80-8738-5 11 SPG Mitteilungen Nr. 37 Für Zahlungen aus dem Ausland verwenden Sie bitte folgende Angaben: IBAN: CH59 0900 0000 8000 8738 5 SWIFT/BIC: POFI CH BE XXX Pour des paiements en provenance de l'étranger veuillez utiliser les données suivantes: IBAN: CH59 0900 0000 8000 8738 5 SWIFT/BIC: POFI CH BE XXX Bitte achten Sie darauf, daß Ihr Name und der Zahlungszweck angegeben werden. (Es reicht nicht, wenn als Absender beispielsweise nur "Uni Basel" erscheint, da wir eine solch allgemeine Angabe nicht einer Einzelperson zuordnen können.) N'oubliez pas d'indiquer votre nom et le motif de votre paiement (la mention "Uni Bâle", par exemple, est trop générale et ne suffit pas à identifier l'auteur du virement.) Les paiements lors de la conférence ne pourront être effectués qu'en espèces (CHF). Les cartes de crédit ne pourront malheureusement pas être acceptées. Am Tagungssekretariat kann nur bar bezahlt werden (in CHF). Kreditkarten können leider nicht akzeptiert werden. ATTENTION: Les frais d'inscription ne pourront pas être remboursés. ACHTUNG: Tagungsgebühren können nicht zurückerstattet werden. Preise gültig bei Zahlung bis 1. Juni - Prix valable pour des paiements avant le 1er juin Kategorie - Catégorie CHF SPG-Mitglieder, Doktoranden - Membres de la SSP, Doctorants 100.- Studenten VOR Master/Diplom Abschluß - Etudiants AVANT le degré master/diplôme 30.- Plenar-/Eingeladene Sprecher, Preisträger - Conférenciers pléniers / invités, lauréats 0.- Andere Teilnehmer - Autres participants 140.- Spezialangebot für "Noch-nicht-SPG-Mitglieder" (s.u.) - Offre spéciale pour "Non-membres de la SSP" (voir ci-dessous.) 150.- Grillparty 90.- Zuschlag für Zahlungen nach dem 1. Juni sowie Barzahler an der Tagung Supplément pour paiements effectués après le 1er juin et pour paiements en espèces à la conférence 20.- Kaffeepausen, Mittagessen Die Kaffeepausen, der zur Postersitzung gehörende Apéro am Donnerstag Abend sowie das Lunchbuffet am Freitag finden in Foyer HPH bei der Poster- und Händlerausstellung statt. Diese Leistungen sind in der Konferenzgebühr enthalten. Für das Mittagessen am Donnerstag stehen die Mensen auf dem Campus Hönggerberg zur Verfügung (www. gastro.ethz.ch). Pauses café, repas de midi Les pauses café, l'apéro accompagnant la séance posters du jeudi soir et le buffet de midi du vendredi se dérouleront dans le foyer HPH près des posters et exposants. Ces prestations sont inclues dans les frais d'inscription. Pour le repas de midi du jeudi les restaurants du campus Hönggerberg sont à votre disposition (www.gastro. ethz.ch). Grillparty Die Grillparty findet am Donnerstag im Anschluß an die Postersession statt. Der Preis beträgt CHF 90.- pro Person (beinhaltet Essen und Getränke) Bitte registrieren Sie sich unbedingt im Voraus, damit wir disponieren können. Eine Anmeldung vor Ort ist nicht möglich ! Grillparty La grillparty se tiendra le jeudi soir après la séance posters. Le prix est de CHF 90.- par personne (repas et boissons inclus). Veuillez s.v.p. absolument vous enregistrer d'avance pour des raisons d'organisation. Il n'est plus possible de s'inscrire sur place. Spezialangebot für "Noch-Nicht" SPG-Mitglieder Planen Sie, an unserer Tagung teilzunehmen sowie Mitglied der SPG zu werden ? Sie können nun beides für einen äusserst günstigen Preis von nur CHF 150.- (CHF 170.- nach dem 1. Juni). Dieser Betrag deckt die Konferenzgebühr sowie die Mitgliedschaft für 2012. Verpassen Sie dieses Angebot nicht ! Wählen Sie einfach bei der Online Registrierung die Kategorie "Special Offer", laden Sie das Anmeldeformular ( http://www.sps.ch/ uploads/media/anmeldeformular_d-f-e.pdf ) für neue Mitglieder herunter, drucken es aus und schicken oder faxen es ausgefüllt an das SPG-Sekretariat. Offre spéciale pour les non-membres de la SSP Voulez-vous participer à la conférence et devenir aussi membre de la SSP ? Profitez de notre offre avantageuse ! Pour la somme de CHF 150.- (CHF 170.- après le 1er juin) nous vous offrons l’inscription ainsi que la cotisation de membre de la SSP jusqu’à fin 2012. Ne ratez pas cette occasion! Cochez simplement la case « Special Offer » lors de votre inscription en ligne, téléchargez le formulaire d’admission à la SSP de http://www.sps. ch/uploads/media/anmeldeformular_d-f-e.pdf , imprimez-le, et renvoyez-le dûment rempli par courrier ou par fax au secrétariat de la SSP. 12 Communications de la SSP No. 37 (Dieses Angebot gilt nicht für Studenten oder Doktoranden. Diese profitieren sowieso von der Gratis-Mitgliedschaft im ersten Mitgliedsjahr, und zahlen nur die in der Tabelle angegebene Konferenzgebühr.) (Cette offre n’est pas valable pour les étudiants et les doctorants. Ceux-ci profitent en effet d’une affiliation gratuite à la SSP pendant la première année, et ne paient que les frais d’inscription indiqués dans le tableau ci-dessus.) Hotels Hotelreservierungen können direkt über Zürich Tourismus (www.zuerich.com) vorgenommen werden. Hôtels Les réservations d'hôtel peuvent être effectuées sur la page internet de Zürich Tourisme (www.zuerich.com). Anreise Unter http://www.ethz.ch/about/location/hoengg finden Sie ausführliche Hinweise zur Anreise mit verschiedenen Verkehrsmitteln. Auf dem Campus folgen Sie einfach den Hinweisschildern. Arrivée http://www.ethz.ch/about/location/hoengg/index_EN vous donne les informations détaillées sur l'arrivée avec les différents moyens de transport. Au campus veuillez suivre les panneaux de la conférence. 13 SPG Mitteilungen Nr. 37 ETH Zürich – Standort Hönggerberg (Campus Science City) B n aue Sch A C D g ber sse stra en ubt sse a str Gla 37/80 Schafmattstrasse P P Conference Parking entry ra einst sse sse tra i-S löt il-K Em Wolfgang-Pauli-Strasse Einst 37/69/80 Bushaltestelle ETH-Pendelbus «Science City Link» Mensa Cafeteria Science City Welcome Desk (Telefon +041 44 633 64 44) Alle Gebäude und Parkgaragen sind rollstuhlgängig. Weitere Informationen am Science City Welcome Desk. Herausgeberin: ETH Zürich, Hochschulkommunikation, Mai 2011 Kartenmaterial: Institut für Kartographie der ETH Zürich, bearbeitet von Immobilien, Stab Portfoliomanagement und Hochschulkommunikation 14 Communications de la SSP No. 37 Vorläufige Programmübersicht - Résumé préliminaire du programme Das vollständige Programm wird allen Teilnehmern am Tagungssekretariat abgegeben sowie auf der SPG-Webseite publiziert. Hinweise: - Je Beitrag wird nur der präsentierende Autor aufgeführt. - Die Postersitzung ist am Donnerstag von 18:30 - ca. 20:00 (mit Apéro) sowie am Freitag von 12:00 - 13:30 (mit Lunchbuffet) - (p) = Plenarsprecher, (i) = eingeladener Sprecher Le programme final complet sera distribué aux participants au stand du secrétariat de la conférence et sera publié sur le site de la SSP. Indication: - seul le nom de l’auteur présentant la contribution a été indiqué. - la session poster a lieu le jeudo de 18.30 à env. 20.00 (avec apéro) ainsi que le vendredi de 12:00 à 13:30 (avec buffet de midi) - (p) = orateur de la session plénière, (i) = orateur invité Plenary Session Friday, 22.06.2012, HPH G 2 Thursday, 21.06.2012, HPH G 1 Time ID 08:55 Plenary Session I Chair: Christophe Rossel, IBM Rüschlikon Time ID Public Tutorial of NCCR MUST and ETH FAST Chair: Ursula Keller, ETH Zürich 12:15 12 Ultrafast Biology Gebhard F. X. Schertler, ETH Zürich & PSI Villigen (p) Welcome note of the SPS President 09:00 1 From the QHE to Topological Insulators and on to Cosmic Magnetic Fields - a Unified Perspective Jürg Fröhlich, ETH Zürich (p) 09:40 2 Quantum physics in one dimension Thierry Giamarchi, Uni Genève (p) 10:20 13:00 Special: Careers for Physicists Coffee Break This session is organised in conjunction with the Physikalische Gesellschaft Zürich (PGZ). Chair: Gervais Chapuis, EPFL 10:50 3 From Laue's discovery and the Braggs' key to the world of atoms to service crystallography Dieter Schwarzenbach, EPFL (p) 11:30 Award Ceremony 11:50 SPS General Assembly 12:30 Lunch 13:30 Topical Sessions 18:30 Postersession and Apéro 20:15 Grillparty Thursday, 21.06.2012, HPH G 2 Thursday, 21.06.2012, HPH G 1 Time ID 19:00 11 20:15 END Public Lecture Chair: Martin Pohl, Uni Genève Space-borne Cosmic Ray Detectors Samuel C. C. Ting, CERN & MIT (p) Time ID Careers for Physicists Chair: Kai Hencken, ABB Baden 13:30 31 Sensirion: High-Tech Sensors from the Zürichsee Marc von Waldkirch (i) 14:00 32 Physicists in research administration Florian Weissbach (i) 14:30 33 Theoretical Physics in Industrial Corporate Research Thomas Christen (i) 15:00 34 Mesa Imaging: Seeing the world in three dimensions Thierry Oggier (i) 15:30 END, Coffee Break 18:30 Postersession and Apéro END Friday, 22.06.2012, HPH G 1 Time ID Plenary Session II Chair: NN 09:00 4 Nanomechanical Resonators - coherent control of nanomechanical motion Jörg Peter Kotthaus, LMU München (p) 09:40 5 Special: Teacher's Afternoon: "Nanophysik am Gymnasium" Friday, 22.06.2012, HCI D 2 Time ID "Nanophysik am Gymnasium" Chair: Tibor Gyalog, Uni Basel Charge, Spin And Structural Dynamics of molecular systems: ultrafast optical and X-ray studies Majed Chergui, EPFL (p) 14:30 41 Nano 4 schools - Erfahrungsbericht über 9 Jahre Nano für Schulen Martin Vonlanthen (i) 10:20 Coffee Break 14:50 42 11:00 Topical Sessions Der Nanotruck in Deutschland – Eine Erfolgsstory Andreas Jungbluth (i) 12:00 Postersession (continued), Lunchbuffet 15:10 43 13:30 Topical Sessions Swiss nano Cube - Plattform für Wissen & Bildung zu Nanotechnologien Robert Rekece (i) 15:30 15 Coffee Break SPG Mitteilungen Nr. 37 Time ID 16:00 44 Chair: Tibor Gyalog, Uni Basel Graetzelzellen für die Schule Thilo Glatzel (i) ID 100 Years of Diffraction Poster 71 A moment in time: 100 years of X-Ray diffraction versus 100 days of PHOTON 100 CMOS detector Eric Hovestreydt 16:20 45 Nanomedizin – Eine Debatte über Technologiefolgen Meret Hornstein (i) 16:40 46 Nano-Experimentier-Systeme für die Schule Andreas Vaterlaus (i) 72 Ab-initio crystal structure prediction. Metal borohydrides Riccarda Caputo 17:00 47 War Benjamin Franklin der erste Nanophysiker? Danilo Pescia 73 Pressure modulated proton-phonon coupling and its relevance to ceramic fuel cell proton conductors Qianli Chen 74 Mixed-metal precursors for mixed-metal oxides Claire-Lise Chanez 75 New penta-coordinate iron(III) aryloxide as initiators for ring-opening polymerization Yvens Chérémond 76 Light-induced low-spin structure of the bistable [Fe(bbtr)3] (BF4)2 compound Laure Guenee 77 Magnetic ground state and 2D behavior in the pseudoKagomè layered system Cu3Bi(SeO3)2O2Br Oksana Zaharko 78 XRD investigations on PZT layers for actuator systems Olha Sereda 79 Novel trimetallic borohydrides Pascal Schouwink 80 TIPSI hybrid spectrometer at the European Spallation Neutron Source ESS: Probing multiple length scales in one instrument Nadir Aliouane 81 Neutron diffraction and Oxygen Isotope Back Exchange studies in La2-xSrxCuO4± (x = 0, 0.05, 0.15) crystals as a function of temperature Ravi Sura 82 Our fascination with crystals and crystallography – a 7500 year timeline Rangana Warshamanage 17:20 END Special: A. 100 Years of Diffraction: Historical highlights and a look into the next 100 years This session is organised by the Swiss Society for Crystallography (SGK). Part I is jointly organised with the SPS History of Physics section. Thursday, 21.06.2012, HCI J 6 Time ID I. 100 Years of Diffraction Chair: Jan Lacki, Uni Genève Anthony Linden, Uni Zürich 11:50 SGK General Assembly 12:30 Lunch 13:30 51 The two Braggs A. Michael Glazer (i) 14:00 52 Max von Laue: the physicist and the upright man Jost Lemmerich (i) 14:30 53 The origins and development of macromolecular crystallography Larry Falvello (i) 15:00 54 15:30 Johannes Martin Bijvoet (1892-1980) and absolute structure Ton Spek (i) Coffee Break II. The Next 100 Years Chair: Michael Wörle, ETH Zürich 16:00 61 Novel structural studies with an X-ray Free Electron Laser Bruce Patterson (i) 16:25 62 Investigating disorder as a matter of routine - the next steps Thomas Weber (i) 16:50 63 The Materials Science Beamline upgrade Philip Willmott (i) 17:15 64 High Resolution X-Ray Diffraction applications for microsystems Antonia Neels 17:30 17:45 65 66 B. History of Physics Thursday, 21.06.2012, HCI D 2 Powder Charge Flipping – input parameter optimization and solution evaluation Dubravka Šišak Time ID History of Physics Chair: NN 14:30 91 The method of Victor F. Hess, or how the residual leaking away of electric charge, a tenacious ‘shelf warmer‘, opened up new fascinating fields of physical knowledge Peter Schuster (i) 15:00 92 From thunderstorms to cosmic rays: Albert Gockel’s investigations in atmospheric physics Jan Lacki 15:30 Coffee Break Chair: NN Intercluster compounds for nanosized materials Fabienne Gschwind 16:00 93 The origins and fate of technical physics in Lausanne: the creation of the Ecole Spéciale. Régis Catinaud 16:30 94 Who discovered the Proca equation ? Lanczos, Proca, de Broglie and the development of relativistic quantum theory in the 30’ Adrien Vila-Valls 18:00 67 News from the spallation neutron source SINQ: Diffraction Jürg Schefer 18:15 68 Density functional calculations of polysynthetic Brazil twinning in alpha-quartz Hans Grimmer 18:30 Poster prize and closing remarks 18:35 END, Postersession and Apéro 20:15 Grillparty 16 Communications de la SSP No. 37 17:00 95 Density-functional-theory strategy to solve approximately a quantum many-body problem: main ideas over the last 50 years and their reflection in terminology Tomasz Wesolowski 17:30 96 Political Decisions with deep Scientific Consequences Araceli Sanchez Varela 18:00 97 A key to success for an instrument maker: Collaboration with a scientist. The case of Haag-Streit (established 1858) and Heinrich Wild (1833-1902). Jean-François Loude 18:30 END, Postersession and Apéro 20:15 Grillparty 17:30 116 Search for spontaneous magnetism below the sur- 17:45 117 Ultrafast Enhancement of Ferromagnetism via Pho- 18:00 118 Coherent control of femtosecond magnetization 18:15 119 Ultrafast magnetism seen by time and spin resolved face of (110)-oriented YBCO superconducting films using LE-μSR Hassan Saadaoui toexcited Carriers in EuO Masakazu Matsubara dynamics by a strong THz pulse Christoph Hauri photoemission at FLASH Andreas Fognini 18:30 Postersession and Apéro 20:15 Grillparty Friday, 22.06.2012, HCI J 7 1 Magnetism at Interfaces Time Thursday, 21.06.2012, HCI J 7 Time ID Molecules and Cluster Chair: Armin Kleibert, PSI Villigen 13:30 101 Magnetic exchange coupling at the metal-organic 14:00 102 Investigating the interplay of geometry and mag- 14:30 103 Novel magnetochemical effects induced by axial molecule/substrate interface: Insights from firstprinciples calculations Peter Oppeneer (i) netism in spin shuttle molecules on surfaces Thomas Greber (i) ligands in on-surface planar molecular spin systems Christian Wäckerlin 14:45 104 Magnetism of Fe nanocluster superlattices on 15:00 105 Towards spintronics with Erbium single-ion molec- Al2O3/NiAl (111) Luca Gragnaniello ular magnets Jan Dreiser ID Nanowires and Nanoparticles Chair: Carlos Vaz, PSI Villigen 11:00 121 Static and dynamic properties of Single-Chain Mag- 11:15 122 Thermal fluctuations and domain walls in ultra-thin 11:30 123 Searching for magnetic structural excitations at the 11:45 124 Domain Walls in Structured Ferromagnetic Na- 12:00 125 Temperature-dependent magnetization of individu- 12:15 END, Postersession (continued), Lunchbuffet nets with broad domain walls Alessandro Vindigni magnetic nanowires Thomas Michaelis nano-scale Peter Derlet nowires Vahe Tshitoyan al iron nanoparticles studied with X-ray Photoemission electron microscopy Ana Balan ID Magnetism at Interfaces Poster 131 Use of a Landau-Heisenberg Hamiltonian in modelling the FeRh System Peter Derlet 132 Magnetization dynamics of GdFeCo nanostructures revealed with PEEM Souliman el Moussaoui 133 tronic structure of the interfacial LaAlO3/SrTiO3 electron gas Jean-Marc Triscone (i) Coupled vortex pairs in magnetic multilayer elements Christoph Quitmann 134 Ground state ordering of artificial spin ice Alan Farhan 16:30 112 Interfacial magnetic couplings at LaSrMnO3 inter- 135 Domain pattern breakup in mesoscopic structures studied with x-ray microscopy Stephanie Stevenson 16:45 113 The Nature of Magnetic Ordering in Magnetically 136 Ultrafast laser induced spin reorientation in the Co/SmFeO3 heterostructure Armin Kleibert 137 17:00 114 Strain-driven magnetization in epitaxial multiferroic Studying the interfacial magnetism of LaNiO3/LaMnO3 superlattices with x-ray magnetic circular dichroism Cinthia Piamonteze 138 Size-dependent magnetic properties of individual iron nanoparticles studied at room temperature Ana Balan 139 Luminescence-based scanning x-ray transmission microscopy Carlos Vaz 15:15 106 High anisotropies for bimetallic Co-core Fe-shell islands on Au(11,12,12) Sergio Vlaic 15:30 Coffee Break Magnetic and Ultrafast Interfaces Chair: Cinthia Piamonteze, PSI Villigen 16:00 17:15 111 Superconductivity, magneto-transport and elec- faces Carlos Vaz Doped Topological Insulator Bi2-xFexSe3 - From Bulk to Surface Zaher Salman composite heterostructures mapped with x-rays and neutrons Rajesh Chopedekar 115 Altering STO/vacuum interface electronic states depositing polar LAO epitaxial film: Angle Resolved Photoemission Spectroscopy study Milan Radovic 17 SPG Mitteilungen Nr. 37 140 Enhancement of spin fluctuations of TbPc2 single molecule magnets in thin films Andrea Hofmann 15:00 217 Enhancing the Performance of Solid State Organic 141 Electric field control of magnetism in epitaxial Pd thin films Jakoba Heidler 15:15 218 Wave Propagation in Elastic and Thermoelastic Ma- 142 Radiation-induced elemental magnetic changes in Fe-Cr alloys using XMCD technique Andi Idhil 143 Impurity Band Responsible for Ferromagnetism in Magnetic Semiconductor (Ga,Mn)As Masaki Kobayashi 144 Digging up Bulk Band Dispersion behind Passivation Layer Masaki Kobayashi 145 Three-Dimensional Fermi Surface of Iron-Pnictide Superconductor BKFA Masaki Kobayashi Coffee Break Applied Physics III Chair: NN Note: The Atomic Physics and Quantum Optics Session contains only poster presentations. Friday, 22.06.2012, HCI J 6 ID terials Mario Leindl 15:30 2 Applied Physics + Atomic Physics and Quantum Optics Time Solar Cells by Self-assembled Monolayer Technique Ali Kemal Havare 16:00 221 Highly efficient Cu(In,Ga)Se2 solar cells grown on 16:30 222 Dynamic nuclear polarization at moderate mag- 16:45 223 Dynamical study of electron pump based on self- 17:00 224 DAST/SiO2 multilayer structure for efficient genera- 17:15 225 Laser induced magnetization reversal in GdFeCo 17:30 226 Electrochemical deposition of photoconductive sili- flexible polymer films Adrian Chirilă (i) netic fields and temperature using photo-excited triplet states of aromatic molecules Tim Rolf Eichhorn assembled quantum dots Giancarlo Cerulo tion of 6 THz single-cycle pulses via cascaded optical rectification Andrey Stepanov nanostructures Michele Buzzi con based films using organic solvents Agata Krywko-Cendrowska 17:45 Applied Physics I Chair: Ivo Furno, CRPP-EPFL END ID Applied Physics Poster 11:00 201 Vector Spherical Harmonics for active magnetic 241 Optical position feedback and closed loop control for elec- 11:15 202 Handling wide dynamic PMT signals with high pre- 242 Structural and piezoelectric investigation of BaTiO3 thin 11:30 203 A new internal field mapping device for the nEDM 243 Strain effects on the properties of III-V MOSFETs 11:45 204 High brilliance electron beam extraction from me- 12:00 trostatically driven MOEMS mirrors Andreas Tortschanoff field compensation Grzegorz Wyszynski films on Si Marilyne Sousa cision in ground-based gamma-ray detectors Arno Gadola Pirmin Weigele experiment Dieter Ries 244 Physical properties of ZnSe/SnO2/glass films: Annealing (Ar atmosphere) temperature effects Hulya Metin tallic microstructured photocathode Ardana Fernando 245 Structural and Electrical properties of Inkjet Printed CdS Thin Films Hulya Metin Postersession (continued), Lunchbuffet Applied Physics II Chair: NN 13:30 13:45 14:00 14:15 246 Characterization of Inkjet Printed CdTe Thin Film Hulya Metin 211 Cocaine Detection in Saliva with Attenuated Total 247 Electrical Properties and Crystallographic Properties of Ter- Reflection (ATR) Spectroscopy Kerstin Hans nary Ho2O3 and Eu2O3 Doped Bi2O3 Polymorphs Hulya Metin 212 Sensitive detection of cocaine in a liquid solvent 248 Electrical Properties And Crystallographic Characterisation with a quantum cascade laser Michele Gianella of (Bi2O3)1-x-y(Ho2O3)x and (Tm2O3)y System Hulya Metin 213 Mid-infrared fiber-coupled photoacoustic sensor 249 Surface morphology and Thermoluminescence of CBD for the detection of glucose in biological samples Jonas Kottmann grown ZnSe Films Selma Erat 214 Tracking of Murine Cardiac Stem Cells by Harmonic 250 Scattered light fluorescence microscopy in three dimensions Nanoparticles Thibaud Magouroux 14:30 215 Analysis of Human Tone-Burst-Evoked Otoacoustic 14:45 216 High power SESAM modelocked thin disk lasers: Giulia Ghielmetti 251 Sensitivity of RADFETs with various gate oxide thicknesses Goran Ristic Emissions Reinhart Frosch access to sub-100 fs pulses and first CEO beat frequency detection Cinia Schriber 18 Communications de la SSP No. 37 ID Atomic Physics and Quantum Optics Poster 16:45 313 Muonium emission into vacuum from mesoporous 17:00 314 Qualification procedures of the CMS digital readout 17:15 315 Search for the Higgs boson in the diphoton decay 17:30 316 Measurements of the electron and muon inclusive 17:45 317 HammerCloud: distributed computing monitoring 18:00 318 Search for supersymmetry in hadronic final states 18:15 319 Angular correlation between B-hadrons produced thin films at cryogenic temperatures Kim Siang Khaw 281 Spectral properties of mid-infrared quantum cascade lasers Lionel Tombez 282 Simple approximate relation between laser frequency noise and linewidth: experimental validation Nikola Bucalovic 283 External cavity tuning of broadband QCLs at 3.3 µm and 8 µm chip for the Pixel Upgrade Phase I Philipp Eller channel at CMS Marco Peruzzi Sabine Riedi 284 Ground state Hanle effect based on atomic alignment: theory and experiment. Evelina Breschi cross-sections in proton-proton collisions at s = 7 TeV with the ATLAS detector Maria Clemencia Mora Herrera 285 Study of phase gradients in the Swiss continuous atomic fountain frequency standard Laurent Devenoges for ATLAS and LHC experiments Gianfranco Sciacca 286 Femtosecond gigahertz diode-pumped solid-state laser for frequency comb generation Alexander Klenner with MT2 with the CMS detector Hannsjörg Weber 287 Ultrafast optically pumped VECSELs and MIXSELs Mario Mangold 288 Mid-IR Broadband Quantum Cascade Laser Frequency- in association with a Z boson at the CMS experiment Carlotta Favaro Comb Andreas Hugi 289 Single-cycle high-power THz pulses above 1 MV/cm Carlo Vicario 18:30 Postersession and Apéro 20:15 Grillparty Friday, 22.06.2012, HCI J 3 Time 3 Nuclear, Particle- and Astrophysics Thursday, 21.06.2012, HCI J 3 Time 13:30 ID TASK I: Neutrinos, Astroparticle Physics Chair: Martin Pohl, Uni Genève TASK III: LHC Physics II Chair: T. Montaruli 11:00 321 Search for the Standard Model Higgs Boson decay- 11:15 322 New Optical receiver modules for the insertable B- 11:30 323 Improvements in the search for a Higgs boson de- 11:45 324 B-baryon studies at the CMS Experiment 301 Sterile neutrinos: dark matter, baryogenesis, magnetic fields and more... Oleg Ruchayskiy ID ing to Bottom Quarks Pierluigi Bortignon Layer at the ATLAS project. Basil Schneider caying into bottom quarks Philipp Eller 13:45 302 Dark Matter search with the XENON100 experiment 14:00 303 The Argon Dark Matter Experiment 14:15 304 Measurements of the low-energy response of liquid 14:30 305 Towards a large underground liquid argon observa- 13:30 331 Search for Supersymmetry in Events with a Z Bo- 14:45 306 On Flight Performances of the AMS-02 Detector 13:45 332 Searches for the 4th Generation top-like Quark 14:00 333 Top analysis from the bottom: Jet performance is- 14:15 334 Jet angular resolution 14:30 335 Measurement of the Zero-Crossing Point of the for- 14:45 336 Measurement of lifetime difference Ds in the decay 15:00 337 A data driven QCD-multijet background estimate 15:15 338 New searches for magnetic monopoles Marc Schumann Lukas Epprecht 12:00 tory for neutrino physics and proton decay Alessandro Curioni and Preliminary Results on the Proton and Helium Energy Spectrum Pierre Saoute 307 POLAR: a Gamma-Ray Burst Polarimeter in Space 15:15 308 The FACT telescope - overview and status Silvio Orsi Patrick Vogler 15:30 Coffee Break TASK II: PSI Physics I and LHC Physics I Chair: Klaus Kirch, ETH Zürich 16:00 311 New and final results of the MuCap experiment 16:30 312 Measurement of the Positive Pion Lifetime, tp+, with Postersession (continued), Lunchbuffet TASK IV: LHC Physics III Chair: Antonio Ereditato, Uni Bern xenon Aaron Manalaysay 15:00 Mirena Ivova Claude Petitjean the FAST Detector at the Paul Scherrer Institute Gaetano Barone 19 son, Jets and Missing Energy Marco - Andrea Buchmann Snezana Nektarijevi sues in top quark measurements by the ATLAS experiment at the LHC. Caterina Doglioni Francesco Guescini ward - backward Asymmetry of B0 " K*0 µ+ µMarco Tresch Bs " (J/) " (µ+ µ-) K+ KBarbara Millan Mejias for top physics with the ATLAS detector Kilian Rosbach Philippe Mermod SPG Mitteilungen Nr. 37 Coffee Break 4 Theoretical Physics TASK V: LHC Physics IV and PSI Physics II Chair: Giuseppe Iacobucci, Uni Genève Thursday, 21.06.2012, HCI J 4 15:30 16:00 341 Search for a neutron electric dipole moment at PSI 16:15 342 Systematic effects in the nEDM experiment at PSI 16:30 343 Improvements of the Hg cohabiting magnetometer Johannes Zenner for the nEDM experiment at PSI Martin Fertl 16:45 344 Results of the active compensation of the magnetic 17:00 345 Simultaneous Heavy Flavor and Top (SHyFT) Cross 17:15 346 Radiation hard studies of diamond strip trackers 17:30 347 Search for the Rare Decays B0s " µ+ µ- and 17:45 18:00 18:15 18:30 ID Time Jochen Krempel ID 13:30 401 Electron waiting time distributions in electrical con- 14:00 402 Gravitational wave detection from space ductors Markus Büttiker (i) Philippe Jetzer (i) 14:30 field surrounding the nEDM apparatus at PSI Beatrice Franke 15:30 Coffee Break Theoretical Physics II Chair: G. M. Graf, ETH Zürich Section Measurement Lukas Bäni 16:00 403 A new algorithm to compute one-loop scattering 16:15 404 Application of the Symbol Formalism to the Com- 16:30 405 Polycrystalline Shape Memory Alloys: Constitutive 16:45 406 One-dimensional fermionic systems beyond Lut- 17:00 407 Stability 17:15 408 Euclid and the quest for the Dark Energy amplitudes Fabio Cascioli Felix Bachmair B0 " µ+ µ- at LHCb Christian Elsasser putation of Scattering Amplitudes in Quantum Field Theory Erich Weihs 348 Search for (Higgs-like) bosons decaying into longlived exotic particles Julien Rouvinet Modelling by the BSM (Block-Spin-Method) Eduard Oberaigner 349 Tagged time-dependent angular analysis of B0s " J/ decays at LHCb Frédéric Dupertuis tinger liquid theory Thomas Schmidt 350 b-baryon results at LHCb Raphael Märki END Nuclear, Particle- and Astrophysics Poster 361 LOFT - the Large Observatory for X-ray Timing Enrico Bozzo 362 The search for neutrinoless double beta decay with the GERDA experiment Giovanni Benato Theoretical Physics I Chair: G. M. Graf, ETH Zürich of topological quantum computing schemes to bit-flip and measurement errors Ruben S. Andrist Martin Kunz 17:30 18:30 Postersession and Apéro 20:15 Grillparty 363 Search for Physics Beyond the Standard Model in Events with equally charged Leptons Marc Dünser 364 Performance validation of the CMS digital readout chip with x-rays for the Phase I Pixel Upgrade Marco Rossini 365 Longitudinal spatial compression of a slow muon beam Yu Bao 366 Optical cesium magnetometers for the PSI neutron electric dipole moment experiment Malgorzata Kasprzak 367 Search for Supersymmetry in multilepton final states Tobias Kruker 368 Measurement of Pion and Kaon production cross sections with NA61/SHINE for T2K Silvestro di Luise 13:30 413 Cavity optomechanics in the single-photon strong- 369 Parametric r-process studies in supernova shocks Marius Eichler 14:00 414 Controlling electronic interactions by light 370 Die Grundzüge der Weltpotentialtheorie Peter Wolff 14:30 415 Hybridization of wave functions in one-dimensional 371 Das Lehrplakat zur Weltpotentialtheorie (WPT) Peter Wolff Friday, 22.06.2012, HCI J 4 Time ID Theoretical Physics III Chair: G. M. Graf, ETH Zürich 11:00 411 The quantum marginal problem 11:30 412 What can we learn from the cosmological matter 12:00 Matthias Christandl (i) distribution? Ruth Durrer (i) Postersession (continued), Lunchbuffet Theoretical Physics IV Chair: G. M. Graf, ETH Zürich coupling regime Andreas Nunnenkamp (i) Philipp Werner (i) Anderson localization Dmitri Ivanov (i) 15:00 15:30 Coffee Break Theoretical Physics V Chair: G. M. Graf, ETH Zürich 16:00 20 416 Dynamics of the rotated Dicke model Michael Tomka Communications de la SSP No. 37 16:15 417 Bethe Ansatz and Ordinary Differential Equation 18:15 16:30 418 Eigenvector statistics in a perturbed weakly- 18:30 Postersession and Apéro 20:15 Grillparty 16:45 Correspondence for Degenerate Gaudin Models Omar El Araby confined random matrix ensemble Matous Ringel Friday, 22.06.2012, HPH G 1 Mario Leindl END Time Thursday, 21.06.2012, HPH G 1 ID MaNEP I Chair: Dirk van der Marel, Uni Genève 501 Competition between charge order and supercon- MaNEP III Chair: Alberto Morpurgo, Uni Genève 521 Magnetoplasmons and Faraday rotation in graph- 11:30 522 Engineering Dirac points with ultracold fermions in 11:45 523 Transport through graphene on SrTiO3 12:00 ductivity in YBa2Cu3Oy ID 11:00 5 NCCR MaNEP 13:30 faces: implications for understanding its origin Mathilde L. Reinle-Schmitt 419 Symbolic Computation in Lagrangian Mechanics 17:00 Time 519 Tunable conductivity threshold at polar oxide inter- ene A. B. Kuzmenko (i) a tunable optical lattice Daniel Greif Nuno Couto Postersession (continued), Lunchbuffet Marc-Henri Julien (i) 14:00 14:15 14:30 14:45 15:00 15:15 502 MaNEP IV Chair: Frédéric Mila, EPFL Scanning Tunneling Spectroscopy on YBa2Cu3O7− revisited Jens Bruér 13:30 531 Studying the physics of disordered bosons with dis- 14:00 532 Observation of a quantum critical point in the heavy 14:15 533 Antiferromagnetic spin-S chains with exactly di- Compound T’-La2CuO4 of Electron-Doped Cuprates Gwendolyne Pascua 14:30 534 Diagrammatic Monte Carlo for the Hubbard model 506 Field effect experiments on cuprates and related 14:45 535 Static and dynamic properties of a strong-leg spin 15:00 536 Zero field splitting in the two-dimensional quantum 15:15 537 Controlled flux penetration in platelet supercon- 503 Magnetic-field tuned anisotropy in superconducting RbxFe2−ySe2 Saskia Bosma 504 Universal scaling collapse of the dynamic relaxation rate in underdoped high Tc cuprates Seyed Iman Mirzaei 505 Structural and Magnetic Properties of the Parent materials Guy Dubuis 507 Prospects for improving the superconducting properties of MgB2 and Nb3Sn wires Carmine Senatore 15:30 Coffee Break MaNEP II Chair: Christoph Renner, Uni Genève 16:00 511 From surface to interface physics: High-energy 16:30 512 Theory of High-Temperature Multiferroicity in CuO 16:45 513 Radio-frequency spectroscopy of a weakly attractive Fermi gas Christophe Berthod 17:15 515 Fermi Surface Dependence of the Charge Transport 17:30 roughness Jill Guyonnet and Thermoelectric Effect in Two-Dimensonal Metals Jonathan M. Buhmann 516 Magnetotransport properties of LaAlO3/SrTiO3 interfaces Alexandre Fête 17:45 517 Exchange Bias in LaNiO3-based heterostructures 18:00 518 Correlated transition metal oxides for thermo- merized ground states Frédéric Michaud Jan Gukelberger ladder David Schmidiger spin liquid PHCC Maximilian Goldmann ductors Roland Willa Coffee Break MaNEP V Chair: Andrey Zheludev, ETH Zürich 16:00 541 Spin-Orbital Separation in a Cuprate Spin Chain 16:30 542 Mapping of electron-hole excitations in a charge 16:45 543 Magnetism and orbital physics of the Mott insula- 17:00 544 Imprinting magnetic information in manganites with Naemi Leo 514 Multiscaling analysis of ferroelectric domain wall fermion antiferromagnet CeRhSi3 Nikola Egetenmeyer 15:30 photoemission spectroscopy of oxide heterostructures Ralph Claessen (i) 17:00 ordered magnetic insulators Tommaso Roscilde (i) 17:15 ID Pavlo Zubko and Studies of Fe-based Superconductors with Resonant Inelastic X-ray Scattering Thorsten Schmitt (i) density wave system with Resonant Inelastic X-ray Scattering Claude Monney tor LuVO3 Markos Skoulatos X-rays Marios Garganourakis END MaNEP Poster 5001 Soft x-ray photoemission measurements on LaAlO3/SrTiO3 and (LaAlO3)x(SrTiO3)1−x/SrTiO3 heterostructures Claudia Cancellieri electrics Sascha Populoh 21 SPG Mitteilungen Nr. 37 5002 Bond disorder in Cu(quinoxaline)X2, X = Cl, Br 5026 Humidity Sensing Properties of Different Bismuth Phosphate Types Min Sheng Wolfram E. A. Lorenz 5003 Asymmetric Josephson effect at the interface of non-centrosymmetric superconductors Ludwig Klam 5027 Optical Measurements of Neodymium and Samarium Nickelates Julien Ruppen 5004 Electron-hole instability in TiSe2 5028 Structural study of LaNiO3 heterostructures at the metal- Gael Monney insulator transition Steven J. Leake 5005 µSR investigation of magnetism and magnetoelectric coupling in Cu2OSeO3 Aleander Maisuradze 5029 Effect of phase separation and vacancy order on the superconducting and magnetic properties of RbxFe2−ySe2 Steven Weyeneth 5006 Multiscaling analysis of intrinsic domain walls in epitaxial BiFeO3 thin films Benedikt Ziegler 5007 5030 The effect of nitrogen incorporation on the thermoelectric properties of EuTiO3 and EuTi0.98Nb0.02O3 Leyre Sagarna Phase diagram of epitaxial BiFeO3-LaFeO3 Superlattices Gijsbert Rispens 5031 Semiclassical theory of the 1/2 magnetization plateau of 5008 Multiplet calculations and X-ray spectra simulations in low the J1-J2 model on the square lattice Tommaso Coletta symmetry compounds. Anne-Christine Uldry 5032 Infrared Spectroscopy on Gated Tri-layer Graphene 5009 Field driven ordering in a frustrated spin ladder with bond Nicolas Ubrig randomness Erik Wulf 5033 Hysteresis in the temperature dependent electronic structure of NdNiO3: A photoemission study Zuzana Vydrová 5010 Thermoelectric effect in one-dimensional metallic systems - a model study on the impact of disorder and phonons Daniel Müller 5011 5034 Mixed crystals from the quantum magnets Ba3Cr2O8 and Sr3Cr2O8 Henrik Grundmann Graphene on Ruthenium: Four hills Irakli Kalichava 5035 Influence of different synthesis methods on thermoelectric 5012 Nanoscale PFM imaging of intrinsic domains in PbTiO3 ul- properties of Ti0.33Zr0.33Hf0.33NiSn half-Heusler compound with emphasis on thermal conductivity measurements Krzysztof Galazka trathin films. Céline Lichtensteiger 5013 Pressure dependence of optical exitations in tetragonal 5036 Self-consistent structure of a domain wall in Sr2RuO4 Sr2VO4 Michael Tran Adrien Bouhon 5037 Realization of a thermal LC-circuit 5014 Doping and temperature dependence of STS spectra in Olaf Bossen Bi2Sr2Ca1Cu2O8+ Thomas B. Amundsen 5038 Competition between columnar and plaquette order in the fully frustrated transverse field Ising model on the square lattice. Sandro Wenzel 5015 Scanning tunnelling microscopy/spectroscopy study of La2/3Ca1/3MnO3 thin films Zoran Ristic 5039 Hybridization gap and anisotropic far-infrared optical con- 5016 First direct observation of the Van Hove Singularity in the ductivity of URu2Si2 Julien Levallois tunnelling spectra of cuprates Alexandre Piriou 5040 The influence of defects in the quasi-2D CDW compound 5017 Effect of bond disorder on weakly-coupled spin-1/2 antifer- 1T-TiSe2 Clément Didiot romagnetic Heisenberg chains Matthias Thede 5041 A Thermoelectric Study on the Electron Gas at the LaAlO3/ 5018 CVD graphene: effects of the environment and annealing SrTiO3 Interface Danfeng Li on its doping level and the charge carriers mobility Christophe Caillier 5042 Disorder in a quasi-two-dimensional quantum spin liquid 5019 Nearest-neighbor spin correlations and doublon produc- Dan Hüvonen tion rate by lattice modulation for spin-1/2 fermionic atoms Akiyuki Tokuno 5020 5043 Resonant inelastic x-ray scattering on a quasi-one-dimen- sional multiferroic cuprate: probing the local magnetic correlations Claude Monney New experimental setup for thermal conductivity measurements: stability against quench in industrial Nb3Sn wires fabricated by various techniques Marco Bonura 5044 Critical current of Nb3Sn wires under quasi-hydrostatic radial pressure Giorgio Mondonico 5021 Temperature and time scaling of the peak-effect vortex configuration in FeTe0.7Se0.3 Marco Bonura 5022 5045 Phase diagram of the EuFe2As2 system with respect to chemical and hydrostatic pressure Zurab Guguchia Physical properties of TiSe2 crystals grown by vapour transport technique. Alberto Ubaldini 5046 On Electronic Properties and Superconductivity of Strained High Tc Films Nathaniel Wooding 5023 Bulk insulating states in the Bi2(Se1−xTex)3 solid solution. Alberto Ubaldini 5047 Effects of bond disorder in the quantum spin ladder 5024 Optical properties of Bi2Te2Se (C5H12N)2CuBr4(1-x)Cl4x Simon Ward Ana Akrap 5025 Interactions between carbon nanotubes and epitaxial Pb(Zr0.2Ti0.8)O3 thin films Cédric Blaser 22 Communications de la SSP No. 37 6 NCCR Nano 5048 Nanoscale studies of electrical conduction in ferroelectric domain walls with insulator coated carbon nanotube tips Yuliya Lisunova I. Nanomechanics 5049 Influence of the Internal Polarizability on the Charge Trans- Thursday, 21.06.2012, HCI G 3 port Properties in N-Type Organic Single Crystal Field-Effect Transistors Nikolas Minder Time ID 5050 Control of the magnetic volume fraction in Co-doped TiO2 films via oxygen vacancies Hassan Saadaoui 5051 Structural and electrical properties of BaTiO3 thin-film capacitors Stephanie Fernandez-Pena 13:30 601 Coherent coupling of light and mechanical motion 14:00 602 Stable "ring-like" Ag clusters on Si(111)-(7×7): volt- 14:15 603 Detection of cantilever thermal motion and feed- 14:30 604 Entering the nonlinear regime with mechanical res- 15:00 605 The Lateral Resolution of the near-tip scanning 15:15 606 Prospects and challenges for atomic force micros- Ewold Verhagen (i) age dependency study of the scanning tunneling microscopy apparent topography Nicolas Mariotti 5052 One-dimensional nanolines and single atom chains on Si(001) François Bianco back cooling using a quantum point contact Michele Montinaro 5053 Frustration and disorder in a 1D spin ladder at high magnetic fields Toni Shiroka onators made from nanotubes and graphene Alexander Eichler (i) 5054 Tuning superconductivity and magnetism in FeySe1−xTex Markus Bendele electron microscopy. Danilo Pescia 5055 Superconductivity Driven Imbalance of the Magnetic Domain Population in CeCoIn5 Simon Gerber copy in molecular structure recognition Bruno Schuler 5056 Ultrafast X-Ray Nanowire Single-Photon Detectors and Their Energy-Dependent Response Kevin Inderbitzin Nanomechanics Chair: Martino Poggio, Uni Basel 15:30 5057 Magnetic phase transitions in PbBxB’1−xO3 (B = Fe, and B’ = Nb, Ta) Shravani Chillal Coffee Break 16:00 607 Non-contact friction measurements by means of 16:30 608 NanoXAS - Combining Scanning Probe and X-Ray Atomic Force Microscopy (AFM) operated in pendulum geometry Marcin Kisiel (i) 5058 Differences in Chiral Expression: Racemic and Enantiopure Heptahelicenes on Various Metal Surfaces Johannes Seibel Microscopy for Nanoanalytics Nicolas Pilet 5059 The Luttinger liquid theory of molybdenum purple bronze Piotr Chudzinski 5060 Temperature-Dependence of Detection Efficiency in NbN and TaN SNSPD Andreas Engel 16:45 END 18:30 Postersession and Apéro 20:15 Grillparty 5061 Electronic Properties of Single-Crystal Organic Charge- II. Nanophotonics & Varia Transfer Interfaces probed using Schottky-Gated Heterostructures Ignacio Gutierrez Lezama Thursday, 21.06.2012, HCI G 7 5062 Crossover from Coulomb blockade to quantum-Hall effect in suspended graphene nanoribbon DongKeun Ki Time 5063 Doping dependence of the pseudogap phase in La-based cuprates Christian Matt 5064 Soft-X-Ray ARPES: From Three-Dimensional Materials to Heterostructures Vladimir N. Strocov 5065 Conduction at domain walls in insulating Pb(Zr0.2Ti0.8)O3 Iaroslav Gaponenko 621 Towards time-resolved 3D imaging and probing 14:00 622 Study of the Optical Transport within Plasmonic 14:15 623 Nanoscale Chemical Analysis by Tip-Enhanced Ra- 14:45 624 Gold Photoluminescence in Nanoscale Antennas 15:00 625 3-Dimensional Computational Nano-Optics - With a 5067 Local study of the electronic and structural properties of colloidal semiconductor nanocrystals Maria Longobardi 5068 Pressure dependence of the penetration depth in CeCoIn5 studied by muon spin rotation Ludovic Howald Nanophotonics I Chair: Olivier Martin, EPFL 13:30 5066 Fluctuations of one-dimensional interface in the directed polymer formulation: role of a finite interface width Elisabeth Agoritsas ID with Photonic Force Microspectroscopy Sylvia Jeney (i) Nano- and Sub Nano-metric Junctions Banafsheh Abasahl man Spectroscopy: Recent Developments and Applications Thomas Schmid (i) Toni Fröhlich Focus on Fabricated Structures Benedikt Oswald (i) 15:30 Coffee Break Various Nanotopics Chair: NN 5069 Hexagonal InMnO3 - An Outsider Among The Family Of Multiferroic Hexagonal Manganites Martin Lilienblum 16:00 23 631 Imaging the charge distribution within a single molecule Fabian Mohn (i) SPG Mitteilungen Nr. 37 16:30 632 Chemical sensing with silicon nanowire field-effect 15:00 16:45 633 Combining SFM & ToF-SIMS: a new route to access 15:15 END 15:30 Coffee Break 17:00 transistors Ralph Stoop chemical information at the nanoscale Laetitia Bernard 634 Progress in electron beam generation for Near Field-Emission Scanning Electron Microscopy Danilo Andrea Zanin 17:15 635 New Developments in Near Field-Emission Scan- 17:30 636 Electrostatic characterization of Near Field-Emis- 17:45 637 Resonances arising from hydrodynamic memory - 18:00 ning Electron Microscopy Lorenzo G. De Pietro ID Nano Poster 671 Optomechanical Coupling of Ultracold Atoms and a Membrane Oscillator Maria Korppi isotropic surface of an organic layer compound crystal Gregor Fessler 673 Near Field-Emission Scanning Electron Microscopy Peter Thalmann The Color of Brownian motion Matthias Grimm 674 Electron Beam Properties of Large Double Gate Field Emitter Arrays with an Optimized Collimation Gate Electrode Geometry Patrick Helfenstein 638 Graphane formation and patterning by pure hydrogen low temperature plasma exposure Baran Eren 675 Fabrication and characterization of tunable plasmonic na- 18:15 nostructures for biosensing Olivier Scholder Postersession and Apéro 676 Study of biomolecular interactions using photonic crystal surface waves (PC SW) optical sensor. Tatyana Karakouz Friday, 22.06.2012, HCI G 7 Time 13:30 ID Nanophotonics II Chair: Olivier Martin, EPFL 641 Plasmonic Promises: Single Molecule Sensing, Electrochemistry, Nanowire Electronics, Strain Visualization, and Interferometry Janos Vörös (i) 14:00 642 Periodic nanogap arrays for surface enhanced 14:15 643 Targeting cells with gold nanoparticles 14:45 644 Electron emission from optically excited metallic 15:00 645 Organic LEDs 7 NCCR MUST Friday, 22.06.2012, HPH G 2 spectroscopy: modeling and performance Thomas Siegfried Time Sara Peters (i) nanotips Anna Mustonen END, Coffee Break 11:30 702 Electron ionization times measured with the atto- 11:45 703 Attosecond Time-Gated Absorption and Emission Friday, 22.06.2012, HCI J 7 13:30 ID MUST I Chair: Lukas Gallmann, ETH Zürich 701 Probing electronic valence shell dynamics in mol- 12:00 III. Nanobiophysics ID 11:00 Beat Ruhstaller (i) 15:30 Time for Medical Breath Testing Hans Peter Lang 672 Friction anisotropy investigations: Measurements on the an- sion Scanning Electron Microscopy Hugo Cabrera 18:30 666 Microfabricated Membrane Surface Stress Sensors ecules Hans Jakob Wörner (i) clock Robert Boge Jens Herrmann Postersession (continued), Lunchbuffet Public Tutorial see p. 15 MUST II Chair: Thomas Feurer, Uni Bern Nanopbiophysics Chair: Georg Fantner, EPFL 13:30 711 Optimal Dynamic Discrimination of Free Amino Ac- 13:45 712 Dynamic probe concept for studying aggregation 661 Nanophotonics and Nanoelectronics Tools for Single Molecule Biophysics Aleksandra Radenovic (i) ids and Small Peptides Jean-Pierre Wolf of organic dye molecules at liquid/liquid interfaces by femtosecond second harmonic generation technique Marina Fedoseeva 14:00 662 Investigating Skin Cancer with Nanomechanical 14:15 663 Optimization of DNA hybridization efficiency by pH- 14:00 713 Breaking Down the Problem to Understand the 14:30 664 Study of DNA relaxation on mica using AFM with 14:15 714 Investigation of low frequency vibrations using dis- 14:45 665 Direct Visualization of Lipid Membrane Dynamics 14:30 715 Multidimensional IR spectroscopy of water Biosensors François Huber driven nanomechanical bending Jiayun Zhang further automatic tracing Andrey Mikhaylov Using High-Speed Atomic Force Microscopy (HSAFM) Jonathan D. Adams 24 Photophysics of Conjugated Polymers Natalie Banerji persed femtosecond – DFWM Gregor Knopp Peter Hamm (i) Communications de la SSP No. 37 15:00 15:15 716 Measuring nonadiabaticity of molecular quantum 748 Towards femtosecond dynamics in multiferroics dynamics with quantum fidelity and with its efficient semiclassical approximation Tomáš Zimmerman Teresa Kubacka 749 Photon echo measurements using a frequency doubled cavity dumped femtosecond oscillator Vesna Markovic 717 Perturbative Treatment of the Up-Conversion Detection of Pulse-shaped Entangled Photons and Applications Christof Bernhard 15:30 750 A Combined NIR Transient-Absorption Optical Pump-THz Probe Spectroscopy Study on Charge Carrier Generation Dynamics in Solid State Dye Sensitized Solar Cells Jan Brauer Coffee Break 751 Investigation of chemical surface treatment on the charge MUST III Chair: Jürg Osterwalder, Uni Zürich 16:00 16:15 16:30 carrier dynamics in solid-state Dye-Sensitized Solar Cells Arianna Marchioro 721 High-harmonic generation from oriented OCS mol- 752 Photoinduced Processes of Small Molecule Organic Photo- ecules Peter Kraus voltaics Jelissa De Jongh 722 A double-sided time-resolved VMI setup with high 753 Photoelectron Diffraction on SnPc/Ag(111) temporal resolution Yuzhu Liu Michael Greif 754 Effects of the finite length of the pump laser pulse in nona- 723 Femtosecond dynamics of atomic structure in sol- diabatic quantum dynamics simulations of ultrafast timeresolved spectroscopy Aurélien Patoz ids Steve L. Johnson (i) Chair: Paul Beaud, PSI Villigen 17:00 724 Femtosecond Transient Diffuse Reflectance for 17:15 725 p-Conjugated Donor-Acceptor Systems as Metal- 17:30 17:45 18:00 755 Accelerating calculations of ultrafast time-resolved electronic spectra with various high order split-operator algorithms Marius Wehrle Dye-Sensitized Solar Cells Elham Ghadir 756 High-harmonic spectroscopy of isoelectronic molecules: Free Sensitizers for Dye-Sensitized Solar Cell Applications Mateusz Wielopolski electronic structure and multielectron effects Alisa Rupenyan-Vasileva 757 Actively Stabilized Attosecond Interferometer 726 Probing interfacial electron transfer dynamics in Martin Huppert the attosecond time domain Luca Castiglioni 758 Ultrafast time-resolved photoelectron spectroscopy of solvated systems Inga Jordan 727 Atomic motion of a coherent phonon observed in a charge and orbitally ordered manganite Andrin Caviezel 759 Versatile velocity-map-imaging spectrometer for strongfield and attosecond experiments Samuel Walt 728 Electron dynamics in a quasi-1-dimensional topological metal: Bi(114) Matthias Hengsberger 760 Versatile Non Collinear Four-Wave Mixing Set-Up Fully 18:15 729 Laser induced coherent structural dynamics of the 18:30 730 Non-retarded pairing interaction in a high-Tc cu- Based on Femtosecond Pulse Shaping for Coherent Electronic Spectroscopy Franziska Frei Heusler alloy Ni2MnGa Simon O Mariager 761 Field Enhancement in THz nano-structures Fabian Brunner prate from coherent charge fluctuation spectroscopy Fabrizio Carbone (i) 19:00 762 Femtosecond surface second harmonic generation microscopy to probe adsorbed layers at interfaces Delphine Schaming END ID 763 Time resolved surface second harmonic generation and electron transfer reactions at liquid-liquid interfaces Astrid Olaya MUST Poster 741 Direct High Harmonics Pulse Shaping in the XUV Jean-Pierre Wolf 742 High-Power Mid-infrared Femtosecond Laser Source Based On Parametric Transfer C. Heese 8 NCCR QSIT 743 Stereochemistry of C4 dicarboxylic acids on Cu(110) Friday, 22.06.2012, HCI G 3 Chrysanthi Karageorgaki 744 Beating the efficiency of both quantum and classical simulations with semiclassics Cesare Mollica Time 745 Confocal fs-CARS measurement of nano-particles in epidirection Gregor Knopp 746 Probing the longitudinal momentum spread of the electron wave packet at the exit point Alexandra Landsman 747 Accelerating the calculation of time-resolved electronic spectra with the cellular dephasing representation Miroslav Šulc 25 ID QSIT I Chair: Richard Waburton, Uni Basel 11:00 801 Torque Magnetometry of Individual Ni Nanotubes 11:15 802 Characterization of nano-scale electrical contacts 11:30 803 Scanning gate experiments on graphene nanorib- Dennis P. Weber using dynamical Coulomb blockade Konrad H. Müller bons Nikola Pascher SPG Mitteilungen Nr. 37 11:45 804 All Electrical Control and Slowing of Microwaves 848 Cold collisions in an ion - atom hybrid trap using Circuit Nano-electromechanics Xiaoqing Zhou 12:00 Felix Hall 849 Design and development of a surface electrode ion trap for Postersession (continued), Lunchbuffet sympathetically cooled molecular ions Arezoo Mokhberi QSIT II Chair: Klaus Ensslin, ETH Zürich 13:30 811 Graphene Quantum Dots 14:00 812 Rectification of thermal fluctuations in a chaotic 850 Density Matrix Renormalization Group for Optical Lattices Michele Dolfi 851 In search of operational quantities for characterizing large Johannes Güttinger (i) quantum systems Normand Beaudry cavity heat engine Björn Sothmann 852 On the Optimality of Work Extraction in Small Thermody- 14:15 813 Fiber-cavity spectroscopy of quantum wells and 14:30 814 Supplying cluster states for one-way quantum 14:45 815 Multilevel transport in a three-terminal graphene namical Systems Philippe Faist charge-controlled quantum dots Javier Miguel-Sanchez computing Daniel Becker 9 Earth, Atmosphere and Environmental Physics quantum dot Pauline Simonet Thursday, 21.06.2012, HCI D 8 15:00 816 Quantum Hall effect in Graphene with supercon- 15:15 817 Quantum Metrology with a Scanning Probe Atom ducting electrodes Peter Rickhaus Interferometer Caspar Ockeloen 15:30 Time ID 13:45 901 Ionising radiation in the Environment Christophe Murith (i) 14:15 902 Influence of Galactic Cosmic Rays on the atmospheric composition and temperature Marco Calisto 14:30 903 Laser-induced aerosol generation in air Massimo Petrarca 14:45 904 Wind gusts parametrization methods for winter storms in Switzerland with the Canadian Regional Climate Model Charles-Antoine Kuszli 15:00 905 A Study of Interface Effects Between Porous and Double Porous Media Eduard Oberaigner 15:15 906 Fiber bundle models for granular shearing and acoustic emissions during landslide initiation Denis Cohen Coffee Break QSIT III Chair: Matthias Christandl, ETH Zürich 16:00 821 Dark state spectroscopy of a single hole spin 16:30 822 Exploring cavity-mediated long-range interactions 16:45 823 Density functional theory for static and dynamic 17:00 824 Quantum state tomography of 1000 bosons: 17:15 825 Ultrastrong Coupling of the Cyclotron Transition of Julien Houel (i) in a dilute quantum gas Renate Landig properties of atomic quantum gases Lei Wang reduced density matrices Michael Walter 15:30 Coffee Break II: Resources (Geology, Materials, Biofuels, Energy & LCA) Chair: Antoine Pochelon, EPFL-CRPP a 2D Electron Gas to a THz Metamaterial Curdin Maissen 17:30 END ID I: Atmosphere and Geohysics Chair: Stéphane Goyette, Uni Genève 16:00 911 Deep structure of the Swiss Plateau from seismicwave sounding: a new 3D seismic model of the Swiss Molasse Basin François Marillier (i) 16:30 912 Scarce metals - Applications, supply risks and need for action Patrick A. Wäger (i) 17:00 913 Roundtable on Sustainable Biofuels: Ensuring Biofuels Deliver on their Promises Sebastien Haye (i) 17:30 914 Energy resources, energy choices and life cycle assessment Andrew Simons (i) QSIT Poster 841 Electronic transport in ultra-clean carbon nanotube quantum dots Stefan Nau 842 Quantum dots in the quantum Hall regime Stephan Baer 843 Progress toward nanoscale magnetic resonance with a "magnet-on-cantilever" force microscope Phani Peddibhotla 844 Tunnel barriers for spin injection into graphene Matthias Bräuninger 845 A hybrid on-chip opto-nanomechanical transducer for ultrasensitive force measurements Emanuel Gavartin 846 Probing charge noise in a semiconductor with laser spectroscopy on a single quantum dot Andreas Kuhlmann 847 Geometric phase gates for trapped molecular ions Matthias Germann 26 18:00 END 18:30 Postersession and Apéro 20:15 Grillparty Communications de la SSP No. 37 Aussteller - Exposants Agilent Technologies, CH-4052 Basel www.agilent.com Meili-Kryotech, CH-7433 Donat www.kryotech.ch attocube systems AG, DE-80539 München www.attocube.com NanoScan AG, CH-8600 Dübendorf www.nanoscan.ch Bruker AXS GmbH, DE-76187 Karlsruhe www.bruker.com Oxford Cryosystems Ltd, UK-Long Hanborough, OX29 8LN www.oxcryo.com DECTRIS Ltd, CH-5400 Baden www.dectris.com Schäfer-Tec AG, CH-3422 Kirchberg BE www.schaefer-tec.com Dyneos AG, CH-8307 Effretikon www.dyneos.ch SENTECH GmbH, DE-82152 Krailing www.sentech-sales.de EPL-IOP, UK-Bristol www.iop.org Stoe & Cie GmbH, DE-64295 Darmstadt www.stoe.com GMP SA, CH-1020 Renens www.gmp.ch Swiss Vaccum Technologies S.A., CH-2022 Bevaix www.swissvacuum.com Hiden Analytical Ltd., UK-Warrington, WA5 7UN www.hidenanalytical.com TECO René Koch, CH-1807 Blonay www.teco-rene-koch.com HORIBA Jobin Yvon GmbH, DE-64625 Bensheim www.horiba.com/de/scientific VG Scienta, UK-Hastings, East Sussex, TN38 9NN www.vgscienta.com Hositrad Deutschland Vacuum Technology, DE-93047 Regensburg www.hositrad.com VACOM GmbH, DE-07749 Jena www.vacom.de Zurich Instruments, CH-8005 Zürich www.zhinst.com MaTecK GmbH, DE-52428 Jülich www.mateck.de Kurzmitteilungen Patenschaft für Maturaarbeiten Ernennung von SATW-Mitgliedern Die Akademie der Naturwissenschaften Schweiz (SCNAT) sucht ExpertInnen, die an 4 Halbtagen im Jahr Maturaarbeiten von Mittelschülern in allen naturwissenschaftlichen Fächern (Biologie, Chemie, Geowissenschaften, Informatik, Mathematik, Physik) betreuen wollen. Die Schweizerische Akademie der Technischen Wissenschaften (SATW) hat an ihrer Mitgliederversammlung am 26. April 2012 folgende SPG Mitglieder zu ordentlichen Einzelmitgliedern ernannt: Dr. Rolf Allenspach, Dr. Pierangelo Gröning und Dr. Thomas von Waldkirch. Der SPG-Vorstand freut sich über die ehrenvolle Ernennung und beglückwünscht die Kollegen aufs herzlichste. Hauptziel der Initiative «Patenschaft für Maturaarbeiten» ist es, die Begeisterung für naturwissenschaftliche Berufe zu wecken und den GymnasiastInnen einen Blick in die Berufswelt zu ermöglichen. Dieses Angebot bietet den SchülerInnen die einmalige Möglichkeit, mit Wissenschaftern von Hochschulen oder aus der Industrie in Kontakt zu treten, spezifische Messgeräte zu benutzen und Forschungsluft zu schnuppern. Die Jugendlichen investieren viel in diese Arbeiten (ungefähr 1 Halbtag/Woche während eines Jahres) und lernen gleichzeitig die verschiedenen Karrieremöglichkeiten in den Naturwissenschaften kennen. Joint EPS-SIF International School on Energy New Strategies for Energy Generation, Conversion and Storage 30 July - 4 August 2012, Villa Monastero, Varenna (Lake Como) Directors: L. Cifarelli (Università di Bologna), F. Wagner (Max-Planck-Institut für Plasmaphysik, Greifswald), D. S. Wiersma (LENS, Firenze) Contact person: M. Burresi - burresi@lens.unifi.it More information: http://en.sif.it/activities/energy_school/2012 Im 2011 hat die SCNAT beschlossen, angelehnt an die Patenschaften ein neues Angebot im Bereich Nachwuchsförderung zu entwickeln. Wir haben festgestellt, dass die Schulen regelmässig ReferentInnen suchen, die aus ihren Forschungsgebieten berichten möchten. Es soll deshalb eine Liste mit ExpertInnen geführt werden, die bereit sind, ihre Arbeit SchülerInnen der Sekundarstufe II (15 – 18 Jahre alt) vorzustellen. Weitere Informationen: www.maturitywork.scnat.ch 27 SPG Mitteilungen Nr. 37 Progress in Physics (28) In der Reihe "Progress in Physics" berichten Physikerinnen und Physiker über ihre Aktivitäten an schweizerischen Hochschulen und Industrien. Jedes SPG - Vorstandsmitglied kommt zyklisch an die Reihe, einen Artikel zu acquirieren. Mit dieser Vorgangsweise wird zwar für eine gewisse thematische Breite gesorgt, aber eine Sichtung der bisherigen Beiträge zeigt, dass aus der Industrie bislang wenig kam. Das heisst aber nicht, dass die Industrie an Forschungsergebnissen nicht interessiert sei, aber sie müssen eine erste Umsetzbarkeit erkennen lassen. Wie man Innovation und Realisierung näher zusammenbringt, ist Anliegen des SATW-Forums, über dessen jüngste Veranstaltung im November 2011 im folgenden berichtet wird. SATW Forum "Advanced Optoceramics" Bernhard Braunecker und Rolf Hügli (SATW) In der 2010 gestarteten Reihe des "SATW Forums" sollen neue Erkenntnisse über ein aktuelles Technologiethema im kleinen Kreis von Experten besprochen werden. Die jeweils behandelte Technologie sollte im Ansatz neuartig, jedoch physikalisch im Labor verifiziert sein, und sie sollte noch einer industriellen Umsetzung harren, aber bereits ein attraktives Marktpotential für Produkte erkennen lassen. Von - zumindest in dieser Phase - minderer Bedeutung ist, wenn der Weg von der Laborverifizierung zum industriellen Produkt bislang noch als zu risikoreich eingeschätzt wird, da sich gerade dies durchaus als Wettbewerbsvorteil für die hiesigen Hochschulen und Industrien erweisen könnte. Die Diskussion im Forumskreis soll primär zeigen, ob auf Seiten von Hochschule und Industrie nicht nur fachliche Kompetenz, sondern auch ein gemeinsames Interesse an einer Weiterentwicklung der Technologie zur Produktreife gegeben ist, und wie die Chancen einer solchen Realisierung beurteilt werden? Letzten Endes soll ausgelotet werden, ob durch eine gemeinsame Aktion Grundlagen gelegt werden können, um neue, hochwertige Arbeitsplätze in der Schweiz mittel- bis langfristig zu schaffen. Bei der Auswahl der Themen sollte deshalb darauf geachtet werden, dass die Technologie trotz ihrer Neuartigkeit auf einer gewissen Tradition in der Schweiz wie Miniaturisierung, Höchstpräzision, Umweltverträglichkeit aufbauen kann, um politische Akzeptanz und Verständnis in der Öffentlichkeit zu finden. Zudem erscheint sinnvoll, dass die Themen im evolutionären Sinne eine Weiterführung früherer Aktivitäten wie zum Beispiel eine Umsetzung der Nanotechnik sind. Über sie wurden in der Schweiz in den vorangegangenen Jahren sowohl auf akademischer wie industrieller Seite genügend neue Erkenntnisse prinzipieller Natur gewonnen, um die bereits angesprochenen Risiken bei einer Weiterführung zu minimieren. Die Forumsreihe fokussiert sich somit auf drei Kernanliegen der SATW, nämlich der Früherkennung von Technologien, der Netzwerkbildung und der Gewinnung optimaler Akzeptanz der Technologie durch die Öffentlichkeit, was im Wesentlichen durch eine frühzeitige Auseinandersetzung mit ethischen Grundsätzen geschieht. Optokeramiken Als Thema des zweiten Forums wurde Advanced Optoceramics gewählt. Optokeramiken gehören zur Klasse der oxidisch-mineralischen Werkstoffe, die ein breites Applikationsspektrum von Hochspannungsisolatoren bis zu Medizinalanwendungen abdecken. 1987 erhielten J. G. Bednorz und K. A. Müller vom IBM Forschungszentrum in Rüschlikon den Nobelpreis für ihre Pionierarbeiten an auf Oxidkeramik basierenden Hochtemperatur-Supraleitern. In der Schweiz werden Keramiken schwerpunktsmässig bei der EMPA, an beiden ETHs, aber auch in der Industrie behandelt. Generell zeichnen sich diese Werkstoffe dadurch aus, dass sich durch gezielte Dotierung der Keramikmatrix mit Fremdpartikeln die mechanischen, elektrischen, thermischen und optischen Eigenschaften verändern lassen. Das geschieht über einen mehrstufigen und die Nanotechnik einbeziehenden Herstellprozess. Man zermahlt die Werkstoffe zu Im Abbe-Diagramm liegen links unten die Gläser mit niederer Brechzahl und schwacher Dispersion, rechts oben die hochbrechenden, aber leider auch mit starker Dispersion versehenen Gläser. Für den Optikdesign ideal wären Gläser in der Gegend des Bildes von Ernst Abbe. Nur beginnen die Gläser nahe einer magischen Linie auszukristallisieren, was sie technisch unbrauchbar macht. Anstatt nun gegen die Kristallisierung vergeblich anzukämpfen, macht es mehr Sinn, gleich auf Keramiken zu setzen und diese in ihren optischen Eigenschaften gleichwertig zu Gläsern zu machen. Die Blasen im Diagramm zeigen Bereiche von Optokeramiken, wo in guter optischer Qualität bereits Prototypen vorliegen, und die sich in ihrer Transmission, in den Teildispersionen, etc. voneinander unterscheiden. 28 Communications de la SSP No. 37 Nanopulver, dotiert und kommt über geeignete Press- und Sinterprozesse zurück zu makroskopisch handhabbaren Proben. Da die Dopingrate beim heterogenen NanopulverKonvolut deutlich grösser sein kann als beim Einkristall, sind höhere Effizienzen bei bestimmten Materialeigenschaften zu erwarten. Da jedoch das Thema "Keramik" in seiner vollen Breite eine Forumsveranstaltung überfordern würde, wurde das Thema auf die Untermenge der optischen Keramiken beschränkt. Diese, nicht zu verwechseln mit Glaskeramiken, zeigen eine hohe optische Transparenz, sind also rein äusserlich von hochwertigen optischen Glasscheiben nicht zu unterscheiden. Sie zeigen aber neben den für Keramiken typisch guten mechanischen und thermischen Eigenschaften auch weitere, für den Bau von Optikinstrumenten interessante optische Werte. Erwähnenswert sind hohe Brechzahlen, aussergewöhnliches Dispersionsverhalten und vor allem eine nutzbare Transmission vom visuellen bis in den 5-6 μm Spektralbereich, während Gläser nur bis etwa 2 μm eingesetzt werden können. Gerade für medizinische Anwendungen mit dem Erbiumlaser bei 3 μm sind somit neue Möglichkeiten denkbar. Fabrication & characterisation of transparent ceramics for novel applications, E. Pawlowski, Schott AG About 20 years ago the first development of transparent ceramic started, finally achieving poly-crystalline ceramic materials for laser and optical applications. It was demonstrated, that ceramic materials could overcome the main technical problem of light scattering. The established nano-powder vacuum sintering process at SCHOTT shows good potential for mass fabrication of multi-composite ceramic materials with different dopant concentrations. In comparison to conventional transparent materials optoceramics offer further benefits, which lead to a multiplicity of new applications like optical, laser, solid state lighting or scintillation. Apart from better mechanical properties and special optical properties, higher rare-earth doping levels than single crystals can be achieved, which lead to a higher conversion efficiency combined with small temperature and concentration quenching effects. In our talk we will discuss the fabrication process, the realized materials and the different applications of optoceramics. Teilnehmerkreis und Symposiumsablauf Die Veranstaltung wurde am 24. November 2011 zusammen mit der EMPA an ihrem Standort in Dübendorf durchgeführt. Die Organisatoren waren J. G. Bednorz / IBM, B. Braunecker / SATW, P. Gröning & T. Graule / EMPA und H. P. Herzig / EPFL. Die 30 Teilnehmer kamen von Ceramet, EMPA, EPFL, ETHZ, Fisba, IBM, Lasag, Leica Geosystems, Lonza, Metoxit, Micos, RUAG Space, Schott Forschungszentrum Mainz, Schott Schweiz, Silitec, Swissoptic, SwissLaserNet, Trumpf und Uni Bern. Das Symposium war zweiteilig gegliedert. Nach sechs einführenden Kurzreferaten wurde in der Teilnehmerrunde diskutiert, welche Auswirkungen die Ergebnisse für die Schweiz haben könnten? OC materials for lens design, B. Braunecker, SATW Based on the preliminary optical data of various prototypes of Schott Optoceramics (large refractive index, large anomalous dispersion, speckle free transmission, etc.), their impact on the design of optical systems for imaging, projection, medicine, space, etc. will be discussed. Abstracts der Referate CNC machined optics, B. Reiss, Swissoptic AG Swissoptic as a leading manufacturer of advanced optical components and systems will report about the surface treatment of glass and ceramic optics with modern CNC machines and other deterministic technologies. One exciting example is the production of monolithic components, i.e. multifunctional components out of one piece of glass. The challenge of failure free nanopowder processing, T. Graule, EMPA Aggregate free synthesis and agglomerate free processing of nanopowders is achieved by advanced powder synthesis as well as colloidal processing techniques. The main issue is to overcome Van der Waals attraction forces by surface treatment and high energy dispersion techniques. Different approaches to solve the problem of aggregation and especially agglomeration are demonstrated. Thematische Strukturierung Die Referate wurden in drei Blöcken präsentiert. Im ersten Teil berichtete E. Pawlowski / Schott über den neuesten Stand der Herstellung von Schott-Opto-Ceramic Prototypen SOC. Anschliessend B. Reiss / Swissoptic über Ergebnisse bei der Oberflächenbearbeitung verschiedener SOC - Proben mit modernen CNC-Maschinen und schliesslich B. Braunecker (früherer Entwicklungsleiter - Optik bei Leica Geosystems), welche neuen Optiksysteme denkbar wären, wenn es die Materialien kommerziell gäbe. Im zweiten Teil erläuterte T. Graule / EMPA die hohen Ansprüche und die komplexen Abläufe bei der Materialherstellung, während A. Studart / ETHZ über neueste Forschungsergebnisse mit multifunktionalen Keramiken berichtete. Im dritten Teil referierte J. G. Bednorz über eine neue und Aufsehen erregende Methode aus Japan, bei der das zu dotierende Keramikmaterial dünne Polymerfolien sind, die interessante optische Eigenschaften zeigen, aber vermutlich auch für andere Anwendungen im Solarbereich oder für Batterien geeignet sein könnten. Magnetic control of non-spherical ceramic particles in fluid suspensions, André R. Studart, Complex Materials, Department of Materials, ETH Zürich We present a method to deliberately control the orientation of non-spherical nonmagnetic ceramic particles in fluid suspensions using magnetic fields as low as 1 milliTesla. To achieve magnetic response, the non-spherical particles are coated with minor contents of magnetic nanoparticles (<0.01 Vol %). This simple approach might be used for the preparation of polycrystalline ceramics and composite materials with anisotropic optical, electrical, magnetic and mechanical properties. Super hybrid materials, J. G. Bednorz, IBM We will present a new method, developed by T. Adschiri (Tohoku University, Sendai, Japan). By using supercritical fluids from metal salts and organic molecules, oxide nanoparticles can be produced with an organic modified surface. These organic-inorganic hybrid nanocrystals, having a high affinity to organic solvents and polymers, can be used to produce flexible ceramic films with a high filling factor. So far flexible superhybrid materials with high refractive index, high thermal/low electrical conductivity or magnetic particles could be manufactured, showing the high potential of the new fabrication method. Fazit Die Veranstaltung zeigte, dass der vorgestellte Prozessansatz, der höhere Dopingraten des zu Nanopulver verarbeiteten Trägermaterials mit "intelligenten" Fremdatomen wie Seltenen Erden ermöglicht, nicht nur zu verbesserten ak29 SPG Mitteilungen Nr. 37 tiven (Laser-) und passiven (Linsen-) Optiksystemen führt, sondern auch zu höheren Effizienzen bei Röntgendetektoren und LED-Lichtquellen. Die erforderlichen technischen Herstell- & Bearbeitungsprozesse sind zweifelsohne noch herausfordernd, aber mit dem in der Schweiz vorhandenen Wissen bei EMPA und den teilnehmenden Firmen durchaus machbar. Die an den ETHs betriebene Forschung an multifunktionalen Werkstoffen ist höchst aktuell, da durch geeignete Behandlungsmassnahmen Keramiken nicht nur wie Halbleiter in ihren photonischen Eigenschaften eingestellt werden können, sondern zusätzlich noch in den mechanischthermischen Parametern. Schliesslich wies die von J. G. Bednorz aufgezeigte Methode der Massenproduktion dotierter Polymere auf eine kostengünstige Mannigfaltigkeit an Anwendungen hin. Die Veranstaltung wurde von den Teilnehmern mehrheitlich mit "sehr gut" beurteilt und scheint somit einem Bedürfnis entsprochen zu haben. Während die Industrievertreter die Informationen über die Technologiefortschritte begrüssten, bekamen die Hochschulvertreter in der Diskussionsrunde wertvolle Hinweise über mögliche Anwendungsgebiete. Es zeigte sich, dass verschiedene Firmen sich bilateral über ihre Intentionen und Fortschritte austauschen wollen, und es wurde von nahezu allen Teilnehmern der Wunsch nach einer Diskussionsplattform und einer Folgeveranstaltung geäussert. Progress in Physics (29) Understanding exchange bias in thin films Miguel A. Marioni, Sara Romer, Hans J. Hug 1 Empa, Swiss Federal Institute for Materials Testing and Research, CH-8600 Dübendorf 1 Also at: Institute of Physics, Universität Basel, CH-4056 Basel Every computer hard-drive and many magnetic sensors contain a thin-film device using the GMR or TMR effect. In it, the resistance from a stack of thin films is made to depend on the relative orientation of different magnetic layers’ magnetization, of which one serves as a reference and retains its direction. Fixing the magnetization is accomplished with exchange-bias. Not surprisingly, the effect has received much attention throughout the history of magnetic recording and sensor design. Perhaps it is a surprise, then, that so much remains unknown about exchange-bias after half a century since its discovery. (a) (b) (c) M(H) Hex AF Mshift H Pt CoO ×20 F Pt Si 2 nm Figure 1: (a) Schematic hysteresis loop of an exchange-biased thin magnetic film. (b) Thin film multilayer structure with perpendicular magnetization used for MFM studies of exchange bias. (c) High resolution TEM image of the film structure of (b), highlighting the CoO layer (black arrow) and one grain boundary (white arrow). distinct ways and an interpretation of UCS measurements must take this into account. Principles of the exchange bias effect Exchange-biasing manifests macroscopically as a lateral shift of size Hex of the hysteresis loop (Fig. 1 (a); occasionally there is an accompanying vertical shift Mshift as well.). It occurs if a sample with at least one ferromagnet (F) / antiferromagnet (AF) bilayer (e.g. in Fig. 1 (b)) is cooled through the Néel temperature (TN) of the antiferromagnet. It is generally believed that (local) magnetization of the ferromagnet (F) layer (locally) generates pinned uncompensated spins (pUCS) in the AF layer that are coupled to the F layer. An obstacle to understanding the exchange bias effect is that only a subset of the UCS (those pinned, and coupled to the ferromagnet) are responsible for it [1]. The experimental method and preparation may affect these subsets in Experimental Methods to measure uncompensated pinned spins Reflectometry experiments using polarized neutrons or circularly polarized X-rays as probes have been used to access UCS sub-systems and to map out their thickness distribution. Both methods fit proposed model descriptions of these distributions to the experimental data. Neutronbased techniques can unambiguously determine the relative orientation of the UCS of the various sub-systems and the F-spins. To accomplish this X-ray-based experiments require, in addition, specifying magneto-optical constants of the atomic species carrying the spin in the AF. Recent 30 Communications de la SSP No. 37 results have also stressed the influence on XMLD (X-ray Magnetic Linear Dichroism) signals of the orientation of AF spins relative to the crystallographic axes. Reflectometry techniques cannot, however, reveal the lateral distribution of UCS. This very important aspect of exchange bias characterizations is accessible with other (complementary) techniques. Among these, photoemission electron microscopy (PEEM) with circular and/or linearly polarized X-rays has revealed a correlation between AF domains and F-domains, the formation of new chemical phases at the AF/F interface with magnetic moments parallel to those of the F, and induced ferromagnetic moments at the AF/F interface. But PEEM microscopes have to-date not attained lateral resolutions on the length scale of grainssizes of typical polycrystalline AF materials, important for applications. Note that PEEM experiments require the applied magnetic field to be zero or near-zero, and accordingly cannot distinguish pinned from non-pinned UCS of the AF directly. In fact, only a small part of the net moment induced locally by the F in the AF consists of pinned UCS, which are difficult to isolate from the rest with present-day PEEM sensitivities. contrast arising from the stray field of a domain pattern in a ferromagnetic thin film with perpendicular magnetization is proportional to the z-component of the magnetic moment areal density [2]. This allows a first estimate of the contrast expected for a domain pattern of pinned uncompensated spins imprinted by a corresponding pattern of ferromagnetic domains. In our recent work [2] the MFM contrast measured above an up/down domain pattern in a CoPt ferromagnetic multilayer was 46 Hz (Fig. 2 (a)). From the magnetization of the CoPt-multilayer and its thickness a total magnetic moment areal density of mFz/A= MCoPt tCoPt = 622 kA/m × 22 nm = 1.37 · 10-2 Am2/m2 is found. Likewise an areal moment density of 4.48 · 10-4 Am2/m2, corresponding to a fully uncompensated CoO AF, would thus generate a frequency shift of 1.5 Hz. Our MFM can easily detect ±0.05 Hz in a reasonable measurement bandwidth of 100 Hz, corresponding to a scan speed of about 1s/line in a 256 pixel line. This means that the corresponding ±1.49 · 10-5 Am2/m2 are detectable, and hence also about ±3% of a fully uncompensated monolayer. Assessing the number of pinned uncompensated spins by MFM Not only can MFM image fractions of uncompensated AF spins but it can also be used in applied homogeneous fields. These do not generate a force on the magnetic tip and thus do not give rise to MFM contrast. One can therefore study the evolution of the F-domain pattern in external fields as shown Fig. 2 (a) and (b) (In prior work up to 7 T were applied [4]). MFM however lacks the element-specificity of XMCD methods, so it cannot distinguish directly between different sources of the stray field, i.e. generated by different atomic species. The contrast observed in the data shown in Fig. 2 (a) and (b) arises predominantly from the stray fields emanating from the up/down domain pattern of the F-layer and a small contribution from the imprinted local uncompensated AF moments. However, magnetic stray fields generated the F-layer roughness, as well as by local variations of its thickness or saturation magnetization, could also generate a small MFM contrast. Topography-induced variations of the van der Waals force occurring when the tip of the MFM scans in a plane parallel to the average slope of the sample provide yet another contribution to the measured contrast. Modeling shows that from these last contributions to contrast only the van der Waals force-mediated topography contribution is relevant. It leads to the grainy appearance of the F-domain contrast (Fig. 2 (a)). In contrast to XMCD-PEEM, XMCD (X-ray Magnetic Circular Dichroism) holography is a lens-less imaging method and hence allows the application of arbitrary magnetic fields. Recently, element-selective soft x-ray holography and spectroscopy measurements have been used to study the evolution of domains in ferromagnetic multilayer of [Pt(1.8nm)Co(0.6nm)]×8 on a Mn80Ir20(5nm) antiferromagnetic layer [2]. Element-specific magnetometry revealed uncompensated AF magnetic moments on the Mn and allowed to estimate that about 10% of these moments are pinned and thus are relevant for the exchange bias effect. However, no magnetic contrast could be observed at the Mn L3 edge, so the imaging of the pattern of uncompensated and pinned uncompensated Mn moments was not achieved. A different technique to gain access to the UCS of a system is magnetic force microscopy (MFM). Operated in vacuum, MFM typically measures shifts in the resonance frequency of a cantilever outfitted with a magnetic tip. These are proportional to the magnetic field gradients to which the tip is exposed. Therefore an MFM investigation of sample properties requires a sample with suitable domains generating stray field [3]. In a rough approximation, the MFM (a) (b) H=0 46 Hz contrast ntrast (c) 200 mT 300 mT 35 Hz contrast ontrast 4.4 Hz contrast Figure 2: High resolution MFM images of the sample of Figure 1 (b) and (c) obtained at constant average tip-sample distance of 13.0±0.5 nm. (a) Large contrast obtained in zero applied fields. (b) In a field of 200 mT the bright domains retract. (c) The ferromagnetic layer is saturated at 300 mT. A weak and grainy contrast is retained. This contrast remains unaltered in fields of at least 7 T. A white arrow across Figs. (a) – (c) indicates a particular spot of the film where the retracting bright domain leaves a dark mark in the area it covered at zero field. 31 If the F-layer is saturated by applying a sufficiently strong external field, it does no longer generate an MFM contrast. One can easily understand this by noting that the stray fields generated by the magnetic poles of the top and bottom surface compensate. In this situation the only remaining source of contrast is the pattern of pinned uncompensated AF moments. Note that if the other contrast contributions cannot be neglected, the difference of two consecutive MFM measurements performed in positive SPG Mitteilungen Nr. 37 and negative saturation fields will solely contain the contrast contribution of the pinned UCS moments [4]. as the ferromagnetic domains evolve, Fig. 2. Dark areas correspond to parallel tip and sample magnetization; i.e. there is an attractive force and negative frequency shift. Conversely, bright areas correspond to the antiparallel orientation and positive frequency shift. F-domains are clearly visible in Figs. 2 (a) and (b), generating a contrast of several tens of Hz. As expected, the area of the bright domains (magnetization opposite to the applied field) diminishes as fields are applied parallel to the dark domain magnetization, as e.g. Fig. 2(b) for 200 mT. Consistent with the saturation Quantitative MFM on exchange-biased systems It is now possible to ascertain the exact relation between pinned uncompensated spins and exchange bias by looking at the evolution of ferromagnetic domains over the underlaying pattern of pinned uncompensated spins [5]. For example a film of Pt(2nm)/CoO(1nm)/Co(0.6nm)/ [Pt(0.7nm) Co(0.4nm)]x20/Pt(20nm)/Si (Fig. 1 (b) and (c)) can be seen (a) 0m Ta pp lied AF UCS under blue F domains fie ld (c) AF UCS under yellow F domains F -10 0% pin UC S 10 0% Project F-domain contours (white) onto AF UCS Increase applied field 20 0m Ta pp lied fie ld ave. pinUCS (% AF ML) (b) AF (d) Figure 3: Quantitative analysis of the MFM measurements of the multilayer of Figures 1 – 2. (a) Stack of MFM measurements for zero applied field following the buildup of the magnetic multilayer. The top surface is the MFM measurement of F domains’ contrast. Underneath is the interface with the AF, comprising a distribution of UCS, aligning antiparallel to the F-orientation. Because the UCS relevant for exchange bias are the pinned ones, they can be determined from the MFM measurement of a saturated ferromagnet (Figure 2 (c)) and the tip-transfer function [7], as indicated 20 10 0 -10 -20 -30 0 100 200 300 H (mT) in the scale bar in the Figure. White contours are included in this layer to highlight the position of F-domains. (b) Results for 200 mT following the format of (a). (c) Pinned UCS density disaggregated from either F-domain, at 0 and 200 mT applied fields. The average (negative) magnitude of pinned UCS is larger under the retracted yellow F-domains than their zero field counterparts. (d) Graph showing the correlation between pinned UCS density under a domain and the applied field. 32 Communications de la SSP No. 37 of the ferromagnet the bright domains have disappeared at 300 mT, Fig. 2 (c). At this and larger fields (up to 7 T) the MFM data reveals a rather irregular pattern with contrast of only 4.4 Hz. Cooling the F/AF system with the F in different initial domain states reveals that the shape of the patterns observed after saturation are governed by the structure of the initial F-domains. In Figure 3 (c) small regions can be seen with parallel pinned UCS-F domain alignment at zero field (red arrows). The retracting F-domains avoid these regions as they reconfigure in response to the applied field. In other words, at least in the CoO (and MnIr as shown in [2]) Co/Pt perpendicular system pinned UCSs coupling antiparallel to the F magnetization stabilize its orientation, i.e. they are biasing, whereas pinned UCSs oriented parallel to the F magnetization have the opposite effect, i.e. they are anti-biasing. These results are a direct observation of the stabilizing effect of (antiparallel) pinned UCS on F domains, and show that a higher pinned UCS density leads to a stronger F domain pinning, i.e. a higher EB effect. In the same way that the saturated F does not produce a stray field, the uncompensated AF spins which rotate with the F-domains will not be imaged at saturation. The main contrast is thus due to pinned UCS [6]. Using the response function of the MFM tip according to quantitative MFM methods [6] one can obtain the areal moment of pinned uncompensated spins (more specifically the z-component of the areal moment of the pinned UCS projected onto a virtual F/AF interfacial plane) from the Df pattern (Fig. 2 (c)). The result can be seen in Fig. 3 (a). At the AF-F interface a strikingly inhomogeneous distribution of the pinned UCS is revealed. TEM images of the films (Fig. 1(c)) show columnar grains in the film with sizes of the order of 10 nm, placing the observed pinned UCS variations on the same length scale. This pinned UCS distribution also represents an inhomogeneous distribution of ‘‘pinning’’ centers for F-domain motion, leading to the commonly observed EBinduced increase in coercivity. Figures 3 (a) and (b) also show the F-domain contours (white lines) at different fields overlaid to the pinned uncompensated AF moment pattern that biases them. From them we see that the pinned UCS in the area initially covered by bright F domains (Fig. 1) is predominantly negative [blue in Figs. 3 (a) and (b)], whereas the area initially covered by dark F domains (Fig. 1) is predominantly positive [yellow in Figs. 3 (a) and (b)]. This local antiparallel alignment between the F magnetization and the pinned UCS suggests antiferromagnetic coupling across the F/AF interface and is consistent with earlier work [2,6,7]. Because the local alignment is antiparallel to the local cooling field, it can only be the result of exchange coupling. Notice the existence of isolated regions of pinned UCS that do not follow the above trend. They are oriented parallel to the (initial) adjacent F-magnetization, and seem to be circumscribed to areas of the size of single grains of the film (cf. Fig. 1 (c)). More insight can be gained from a quantitative evaluation of the data just discussed. Concluding remarks The density of pinned UCS found by MFM agrees well with work on polycrystalline Py/CoO samples estimating the pinned UCS at about 10% of a 1.1 monolayer-thick layer of interfacial Co2+ spins. A decreasing magnetic moment of the FM layer near the interface may explain the somewhat smaller density of pinned UCS observed there. But the high density of pinned UCS requires that the average coupling strength between the pinned UCS and F-spins be much smaller than previously expected, in order to explain the rather small exchange bias field. Without an exhaustive theoretical analysis of the pinned UCS coupling strength and possible variations thereof, we point out that the interface between the AF and the F very likely differs from a chemically sharp interface across which the system goes from F to AF, on account of interdiffusion and interface reconstruction. A similar reconstruction ought to be expected in the CoO/Co interfaces discussed here and may lead to a structurally and chemically disordered interfacial phase, explaining the higher density of pinned UCS and their weaker coupling to the F-spins. Furthermore frustration, as found in spin glass systems, may also lead to weak or indirect coupling between AF UCS and the F-layer. Yet a weak coupling may be a necessary condition for the UCS AF moments to remain pinned to the AF-lattice rather than rotate with the F-moments. Exchange coupling between different AF grains across their grain boundaries could lead to frustration of the magnetic orientation over grain-size areas, giving rise to the observed anti-biasing effect. Further work to address this issue is under way. One can compute the average pinned UCS density (data from Figs. 3 (a) and (b) for the areas under the F-domains, i.e. delimited by the white contours of the figures, as shown in Figs. 3 (c). Under the initial yellow and blue F-domains the average pinned UCS density is ±21.8% of a fully uncompensated monolayer of AF spins. As a magnetic field is applied parallel to the blue F-domains, they expand at the expense of the yellow F-domains. Over the area covered by the retracted yellow F-domains the average pinned UCS is more negative than before the field was applied. Figure 3 (d) shows the average densities of UCS under each domain type as a function of the applied field. A roughly proportional relation between the applied field and the average pinned UCS density under the surviving yellow F-domains is apparent. [1] I. Schmid, et al. Europhys. Lett. 81, 17001 (2008). [2] C. Tieg et al. Appl. Phys. Lett. 96, 072503, (2010). [3] N. R. Joshi, et al. Appl. Phys. Lett. 98, 082502 (2011). [4] P. Kappenberger, I. Schmid & H. Hug., Adv. Eng. Mater. 7, 332 (2005). [5] I. Schmid, et al. Phys. Rev. Lett. 105, 197201 (2010) [6] P. J. A. van Schendel, H. J. Hug, B. Stiefel, S. Martin & H.-J. Güntherodt. J. Appl. Phys. 88, 435 (2000). [7] P. Kappenberger, et al. Phys. Rev. Lett. 91, 267202 (2003). 33 SPG Mitteilungen Nr. 37 The legacy of Martin Gutzwiller Last November, the Faculty of Science of the University of Fribourg awarded the doctor honoris causa to Martin Gutzwiller, with a threefold motivation: His outstanding contributions to theoretical physics, his active interest for science in general and his relations to Fribourg. Reason enough for emphasizing the eminent role Gutzwiller played during the last half century, especially in the two still very active research areas of quantum chaos and correlated electrons, as described in some detail below. Special thanks to Michael Berry for his profound analysis of Gutzwiller’s pioneering work in "quantum chaology". admits having received “a marvelous education in early field theory”, but at the same time having been frustrated because the problem posed by Pauli could not be handled in a satisfactory way. Thus he pleads for coming back to "down-to-earth physics", instead of "chasing an elusive goal on the basis of abstract models". After having received his diploma, Martin Gutzwiller worked during one year as an engineer in microwave transmission at Brown Boveri in Baden. In 1951 he moved to the US, where he spent most of the time since. At the University of Kansas he made his Ph. D. studies under the guidance of Max Dresden, on "Quantum Theory of Fields in Curved Space". From 1953 to 1960 he worked on geophysics in a laboratory of Shell in Houston, Texas. A position at the IBM Zurich Research Laboratory, then still in Adliswil, brought him back to Switzerland for three years, but subsequently he settled definitely down in New York. He remained a researcher at IBM, from 1963 to 1970 at the Watson Laboratory and from 1970 to 1993 in Yorktown Heights. He was at the same time Adjunct Professor in Metallurgy at the Columbia University. After his retirement from IBM he became an Adjunct Professor at the Yale University. Martin Gutzwiller was born 1925 in Basel. His father was an internationally known professor of law, from 1921 to 1926 at the University of Fribourg, from 1926 to 1936 at the University of Heidelberg and then, after having escaped with his family from Germany because of the harassment by the nazis, again in Fribourg from 1937 to 1956. Martin passed his first school years in Heidelberg. Back to Switzerland, Martin Gutzwiller ca. 1951/52 he received his further education in Trogen and at the Collège Saint Michel in Fribourg, where he passed the final two years of gymnasium. In 1944 he started studying physics at the University of Fribourg, but then he enrolled at the ETH in Zürich, where he received the diploma in 1949. His diploma work on the magnetic moment of nucleons with vector-meson coupling, supervised by Wolfgang Pauli, undoubtedly had a strong impact on his view of physics. 45 years later, in a letter to Physics Today (August 1994), he Martin Gutzwiller has published about 40 papers, most of them alone. He received prestigious prizes, such as the Dannie Heinemann prize of the American Physical Society (1993) or the Max-Planck Medal of the German Physical Society (2003). His international recognition is also well documented by four issues of Foundations of Physics (2000/2001), published at the occasion of his 75th birthday. It is worth mentioning that his research activities were broader than quantum chaos and correlated electrons, they included such diverse topics as dislocations in solids, the quantum Toda lattice and the ephemerides of the moon. Dionys Baeriswyl, Uni Fribourg Martin Gutzwiller and his periodic orbits Michael Berry, H H Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, UK In the 1970s, physicists were made aware, largely through the efforts of the late Joseph Ford, that classical hamiltonian mechanics was enjoying a quiet revolution. The traditional emphasis had been on exactly solvable models, with as many conserved quantities as degrees of freedom, in which the motion was integrable and predictable. Examples are the Kepler ellipses of planetary motion, and the simple pendulum: 'as regular as clockwork'. The new research, incorporating Russian analytical mechanics and computer simulations inspired by statistical mechanics, revealed that most (technically, 'almost all') dynamical systems behave very differently. There are few conserved quantities, and motion, in part or all of the phase space, is nonseparable and unpredictable, that is, unstable: initially neighbouring orbits diverge exponentially. This is classical chaos. It was quickly realised that this classical behaviour must have implications for quantum physics, especially semiclassical physics, e.g. for the arrangement of high-lying energy levels and the morphology of eigenfunctions. The study of these implications became what is now called quantum chaos (though I prefer the term quantum chaology). This is an area of research in which Martin Gutzwiller made a seminal contribution, described in the following, which I have adapted from a speech honouring his 70th birthday. Since a substantial part of my own scientific life has been devoted to the development and application to Martin's ideas, I won’t attempt to be detached. Martin published the last of his series of four papers [1-4] on periodic orbits exactly forty years ago. I encountered them at that time, while Kate Mount and I were writing our review of semiclassical mechanics. That was prehistoric semiclassical mechanics: before catastrophe theory demystified caustics, before asymptotics beyond all orders lifted divergent series to new levels of precision, and above all before we knew about classical chaos. 34 Communications de la SSP No. 37 Of Martin's series of papers, the most influential was the last one [4], containing the celebrated 'Gutzwiller trace formula'. That was a tricky calculation, based on the Van Vleck formula for the semiclassical propagator, giving the density of quantum states (actually the trace of the resolvent operator) as a sum over classical periodic orbits. In particular, Martin calculated the contribution from an individual unstable periodic orbit. Nowadays we can see this as one of the 'atomic concepts' of quantum chaology, but in those days chaos was not appreciated. But he emphasized the essential novelty of his calculation in a similar way: it applies even when the classical dynamics is nonseparable. I'm rather proud of what we wrote at the beginning of 1972, as the last sentence of our review: "Finally, the difficulties raised by Gutzwiller's (1971) theory of quantization, which is perhaps the most exciting recent development in semiclassical mechanics, should be studied deeply in order to provide insight into the properties of quantum states in those systems, previously almost intractable, where no separation of variables is possible." described when we learned that William Miller wanted to visit us in Bristol, to talk about his new work on periodic orbits. We convinced ourselves that this must be the same as ours, and laboured day and night (up a ladder, actually, because Michael was helping me paint my new house) to get our paper written and submitted before he arrived. We were foolish to panic, because William's work was completely different. An awkward feature of stable orbits, recognized clearly by Martin in those early days, was that focusing occurs along them, leading for certain repetition numbers and stability indices to divergences of the contributions he calculated, associated with bifurcations. That awkwardness was removed in 1985 by Alfredo Ozorio de Almeida and John Hannay, who applied ideas from catastrophe theory that had come into semiclassical mechanics in the 1970s. Their development of Martin's formula became popular much later, when the features they predicted could be detected numerically. In the early 1970s, Ian Percival made us aware of the amazing developments in classical mechanics by Arnold and Sinai, before chaos became popular. Percival insisted that semiclassical mechanics must take account of chaos. Later, we learned more about chaos from Joseph Ford. Of course Martin had paved the way with his trace formula for unstable orbits. The trace formula could be approximated by taking just one periodic orbit and its repetitions. This led to an approximate 'quantization formula' that gave good results when applied to the lowest states of an electron in a semiconductor, whose mass depended on direction. I am referring to the birth of Martin's treatment of the anisotropic Kepler problem [5]. A persistent question was whether the formula could generate asymptotically high levels for a chaotic system. My opinions fluctuated. In 1976 I thought it could not, arguing that long orbits - required to generate the high levels - were so unstable that the Van Vleck propagator would not be valid for them. Instead, I thought (using ideas developed by Balian and Bloch) that periodic orbits could at best describe spectra smoothed on scales that were large compared with the mean spacing – but still classically small, so that some detail beyond the Weyl rule was accessible, though still not individual levels. This question is still not settled definitively, but my pessimistic opinion was changed by two developments. For a few years, his calculation was widely misinterpreted (among the ignorant it is misinterpreted even today) as implying a relation between the individual energy levels and individual periodic orbits of chaotic systems. One might call this the 'De Broglie interpretation' of the trace formula: that there is a level at each energy for which the action of a periodic orbit is a multiple of Planck. This is nonsense: the simplest calculation shows that the number of levels is hopelessly overestimated – in a billiard, for example, there is an 'infra-red catastrophe', that is, the prediction of levels at arbitrarily low energies. Martin's papers quickly inspired others. In 1974, Jacques Chazarain showed that the trace formula could be operated 'in reverse', so that a sum over energy levels generated a function whose singularities were the actions of periodic orbits. This was exact, not semiclassical, and led (often unacknowledged) to what later came to be called 'inverse quantum chaology' and 'quantum recurrence spectroscopy'. In 1975 Michael Tabor and I generalized some of the results in the first of Martin's semiclassical papers [1] to get the general trace formula for integrable systems, where the periodic orbits are not isolated but fill tori. In nuclear physics, similar formulas had been obtained by Strutinsky in the context of the shell model. Tabor and I used our result to show that the level statistics in integrable systems are Poissonian - more about that later. William Miller and André Voros resolved a puzzle about the application of the trace formula for a stable orbit: by properly quantizing transverse to the orbit, they restored the missing quantum numbers; then Martin's single-orbit quantization rule makes sense, as the 'thin-torus' limit of Bohr-Sommerfeld quantization. The first was energy level statistics. In the 1970s, following a suggestion from Balazs Gyorffy, I imported from nuclear physics the idea that random matrices could be relevant in the quantum mechanics of chaos. The first application of this suggestion was not to chaotic systems at all, but to integrable systems, where it was shown – as I just mentioned – that the levels are not distributed according to randommatrix theory. That work inspired Allan Kaufman and Steven McDonald to the first calculation of level spacings for a chaotic system: the stadium. Then I did the same for Sinai's billiard. In those days we were fixated on the spacings distribution. My way of deriving level repulsion was a generalization of Wigner's: through the codimension of degeneracies. This gave the same result as random-matrix theory for small spacings, and explained the differences between the different ensembles, but gave no clue as to why randommatrix theory worked for all spacings, and why it was connected with classical chaos. Then came Oriol Bohigas and Marie-Joya Giannoni and Charles Schmit. What they did, in the early 1980s, was simple but very important. They repeated the calculations that Kaufman and McDonald and I had done, for the same Probably Martin didn't realize that his formula was so fashionable at that time that it induced a certain hysteria. Michael Tabor and I were quietly finishing the work I just 35 SPG Mitteilungen Nr. 37 this defect is shared by the formally exact counterpart of the formula for billiards with constant negative curvature, namely the Selberg trace formula. And later Frank Steiner taught us that trace formulas can sometimes converge conditionally, in ways depending delicately on the topology of the orbits (expressed as Maslov phases). Eventually these concerns about convergence led naturally to the study of zeta functions. The idea there is to find a function where the energy levels are zeros, rather than steps or spikes as in the density of states. The grandparent of all these objects is Riemann's zeta function of number theory. I learned its possible relevance to quantum chaology from Oriol Bohigas, and also from Martin's semiclassical interpretation of the Faddeev-Pavlov scattering billiard, where Riemann's zeta function gives the phase shifts [6, 7]. It is amazing that Martin had already realized the connection with zeta functions in his 1971 paper. He wrote: "This response function is remarkably similar to the socalled zeta functions which mathematicians have invented in order to survey and classify the periodic orbits of abstract mechanical systems." (He cited Smale). And in 1982 Martin explicitly wrote a semiclassical zeta function of the kind we consider today, and used it in conjunction with some tricks from statistical mechanics to sum the periodic orbits for the anisotropic Kepler system [7, 8]. systems and using the same numerical methods, but instead of focusing on the one statistic of the level spacing they appreciated that the random-matrix analogy is much broader: it predicts all the spectral statistics, in particular long-range ones. They calculated one of these: the spectral rigidity (equivalent to the number variance). Their observation was enormously influential. In particular, it was central to my construction in 1985 of the beginnings of the semiclassical theory of spectral statistics from Martin's atoms: the periodic orbits. Another crucial ingredient in this was also a development of periodic-orbit theory: the inspired realization by John Hannay and Alfredo Ozorio de Almeida that the Gutzwiller contributions of long orbits obey a sum rule whose origin is classical and whose structure is universal - that is, independent of details. Pure mathematicians (Margulis, Parry, Pollicott) had found similar rules more general in that they applied to dissipative as well as hamiltonian systems, but also more restricted in that Hannay and Ozorio's theory applied also to integrable systems (where Tabor and I had found their particular result in 1977 but failed to appreciate its general significance). Thus periodic orbits were able to reproduce key formulas from random-matrix theory, and random-matrix universality found a natural explanation as the inheritance by quantum mechanics of the classical universality of long orbits. There was more: the periodic orbit theory of spectral statistics showed clearly and simply why and how random-matrix theory must break down for correlations involving sufficiently many levels. There were misty mathematical aspects – now being clarified – of those arguments, but the formulas were not misty, and were the first step in convincing me that long orbits in Martin's trace formula were meaningful. A crucial ingredient turned out to be the Riemann-Siegel formula, that makes the sum over integers for the Riemann zeta function converge. I realized this in 1986, and later developed the idea with Jon Keating [9]; we were helped by André Voros's precise definitions of the regularized products in these zeta functions. The result was an adaptation of the trace formula to give a convergent sum over periodic orbits, soon employed to good effect by Keating and Martin Sieber [10] (see the figure). A related idea was the invention of cycle expansions by Predrag Cvitanovic and Bruno Eckhardt; in these, essential use is made of symbolic dynamics to speed the convergence of the sum over orbits. This application of coding to semiclassical mechanics was also originally Martin's idea: he used it in the 1970s and early 1980s to classify and then estimate the sum over the orbits, again for the anisotropic Kepler problem [7, 8]. The second step sprang from the realization - increasingly urgent in the early 1980s - that the series of periodic orbits in the trace formula does not converge. The cause was realized by Martin in 1971 [4]: "Even more serious is the fact that there is usually more than a countable number of orbits in a mechanical system, whereas the bound states of a Hamiltonian are countable." The failure of the trace formula to converge was emphasized especially by André Voros, who pointed out that The two applications of Martin's periodic-orbit ideas that I have just described, to spectral statistics and to zeta functions, were combined by Eugene Bogomolny and Jonathan Keating. This development, and more recent insights from Martin Sieber, Fritz Haake and Sebastian Müller, are taking the derivation of random-matrix formulas from quantum chaology to new levels of sophistication and refinement. In the mid-1980s, Eric Heller discovered that for some chaotic systems the wavefunctions of individual states are scarred by individual short periodic orbits, in ways that depend on how unstable these are. From this came further extensions of Martin's ideas, to new sorts of spectral series of periodic orbits, not involving traces, and for Wigner functions as well as wavefunctions. Quantum spectral determinant (zeta function) for a particle confined between branches of a hyperbola, calculated exactly (dashed curve) and from a renormalized version [9,10] of Gutzwiller's sum over the unstable classical periodic orbits (full curve); the energy levels are the zeros, indicated by stars. Reproduced from [10], with permission. In spite of all this progress, we are still unable to answer definitively and rigorously the central question Martin posed in 1971 [4]: "What is the relation between the periodic orbits in the clas36 Communications de la SSP No. 37 sical system and the energy levels of the corresponding quantum system?" Of course the trace formula itself is one such relation, but I am sure that what Martin meant is: how can periodic orbits be used for effective calculations of individual levels. For the lowest levels there is no problem, but – and again I quote from Martin’s 1971 paper "the semiclassical approach to quantum mechanics is supposed to be better the larger the quantum number" and to reproduce the spectrum for high levels, using even the convergent versions of the trace formula that are now available, requires an exponentially large number of periodic orbits. This is a gross degree of redundancy unacceptable to anybody who appreciates the spectacular power of asymptotics elsewhere. Martin's old ideas continue to challenge us. [7] Gutzwiller, M. C.,1982, The Quantization of a Classically Ergodic System Physica D 5, 183-207 [8] Gutzwiller, M. C.,1977, Bernoulli Sequences and Trajectories in the Anisotropic Kepler Problem J. Math. Phys. 18, 806-823 [9] Berry, M. V. & Keating, J. P.,1992, A new approximation for zeta(1/2 +it) and quantum spectral determinants Proc. Roy. Soc. Lond. A437, 151-173 [10] Keating, J. P. & Sieber, M.,1994, Calculation of spectral determinants Proc. Roy. Soc. Lond. A447, 413-437 After graduating from Exeter and St Andrews, Michael Berry entered Bristol University, where he has been for considerably longer than he has not. He is a physicist, focusing on the physics of the mathematics…of the physics. Applications include the geometry of singularities (caustics on large scales, vortices on fine scales) in optics and other waves, the connection between classical and quantum physics, and the physical asymptotics of divergent series. He delights in finding the arcane in the mundane – abstract and subtle concepts in familiar or dramatic phenomena: - Singularities of smooth gradient maps in rainbows and tsunamis; - The Laplace operator in oriental magic mirrors; - Elliptic integrals in the polarization pattern of the clear blue sky; - Geometry of twists and turns in quantum indistinguishability; - Matrix degeneracies in overhead-projector transparencies; - Gauss sums in the light beyond a humble diffraction grating. A few years ago, I refereed an application for research funding for a German-British collaboration. This required me to comment on the applicants' "timetable for research" and their "list of deliverables". I wrote "In science there are no deliverables; researches are not potatoes". Martin Gutzwiller ignored these toxic fashions. What makes him so attractive as a scientist is that he refuses to follow any fashion; instead, he generates ideas that become the fashion. References [1] Gutzwiller, M. C.,1967, The Phase Integral Approximation in Momentum Space and the Bound States of an Atom J. Math. Phys. 8, 1979-2000 [2] Gutzwiller, M. C.,1969, The Phase Integral Approximation in Momentum Space and the Bound States of an Atom II J. Math. Phys. 10, 1004-1020 [3] Gutzwiller, M. C.,1970, The Energy Spectrum According to Classical Mechanics J. Math. Phys. 11, 1791-1806 [4] Gutzwiller, M. C.,1971, Periodic orbits and classical quantization conditions J. Math. Phys. 12, 343-358 [5] Gutzwiller, M. C.,1973, The Anistropic Kepler Problem in Two Dimensions J. Math. Phys. 14, 139-152 [6] Gutzwiller, M. C.,1983, Stochastic behavior in quantum scattering Physica D 7, 341-355 Martin Gutzwiller and his wave function Dionys Baeriswyl, Département de physique, Université de Fribourg, 1700 Fribourg Werner Weber, Fakultät Physik, Universität Dortmund, DE-44221 Dortmund Gutzwiller's work on correlated electrons is mostly concentrated in three papers, written in the time span 1962 to 1964 [1, 2, 3]. A short fourth paper was published a few years later [4]. In essence, Gutzwiller introduced a variational ansatz, where charge fluctuations are reduced as compared to Hartree-Fock theory, thus quantifying Van Vleck's qualitative idea of minimum polarity [5]. H = - t / (c i@v c jv + c j@v c iv) + U / n i - n i . i ,j (1) i where the first term describes electron hopping between the neighboring sites of a lattice ( c @iv and c iv are, respectively, creation and annihilation operators for electrons at site i with spin s) and the second term is the interaction, which acts only if two electrons meet on the same site ( n iv = c @iv c iv ). Quantum chemists had previously used a similar model for p-electrons in conjugated polymers, but they had included the long-range part of the Coulomb interaction. Curiously, shortly after Gutzwiller's first paper on the subject, two publications appeared where the same Hamiltonian (1) is treated, but without reference to Gutzwiller's work, one by Hubbard [7], the other by Kanamori [8]. One Historically, electronic correlations were first studied for the homogeneous electron gas, much less for electrons in narrow bands such as d-electrons in transition metals. A noticeable exception was Anderson's paper on the kinetic origin of antiferromagnetism in transition metal compounds, where a localized basis of Wannier functions was used [6]. In the same spirit, Gutzwiller wrote down the Hamiltonian 37 SPG Mitteilungen Nr. 37 g depends on the electron density n as g = (1 - n)/(1 - n/2). Therefore, when approaching half filling (n " 1), the electron motion is completely suppressed, and the system is a Mott insulator. Brinkman and Rice noticed that within the Gutzwiller approximation the jamming of electrons (for n = 1) occurs at a large but finite value of U and is signaled by the vanishing of double occupancy [16]. They associated the critical point with the Mott metal-insulator transition. However, a closer scrutiny shows that this conclusion is an artifact of the Gutzwiller approximation. Indeed, for an exact treatment of the Gutzwiller ansatz (and finite lattice dimensions) double occupancy remains finite for all finite values of U. Moreover, the Gutzwiller ansatz itself is of limited validity for large values of U, as seen clearly by comparing it with the exact solution in one dimension. has to conclude that the three papers [1, 7, 8] were written completely independently and that the Hamiltonien (1), now universally referred to as Hubbard model, was in the air, especially for investigating the problem of correlated electrons in transition metals. In contrast to Gutzwiller, who did not care too much about the justification of the model, Hubbard estimated the different Coulomb matrix elements between localized d wave functions, and he also explained how in transition metals with partly filled 3d shells and a partly filled 4s shell the selectrons can effectively screen the Coulomb interactions between d-electrons. The fact, pointed out by Gutzwiller [3], that the three authors, himself, Hubbard and Kanamori, obtained qualitatively different results, shows that, despite of its formal simplicity, the model was – and still is – very challenging. Nevertheless, a Mott transition does occur for the Hubbard model, but in the sense of a topological transition from a phase with finite Drude weight for small values of U to one with vanishing Drude weight at large U, in agreement with Kohn’s distinction between metals and insulators [17]. To show this in a variational framework 1, we have used a pair of trial ground states [18], the Gutzwiller wave function W together with the "inverted" ansatz Gutzwiller's main contributions to the field of correlated electrons are his ansatz for the ground state of the Hubbard model and his ingenious way of handling this wave function. He starts from the ground state W 0 of the hopping term, the filled Fermi sea. This would just yield the Hartree-Fock approximation, which treats neutral and "polar" configurations on the same footing. Thus he adds a projector term, now called correlator, that reduces charge fluctuations. His ansatz reads W = % 61 - ^1 - hh n i - n i .@ W 0 t Wl = e -hT W 3 where Tt = / (c i@v c jv + c j@v c jv) is the hopping operator, W 3 (2) i ,j is the ground state for U " ∞ and h is a variational param- i or, written in a different way, W =e -gDt W0 eter. One readily shows that W has a finite Drude weight and lower energy for small U, while the Drude weight vanishes for Wl , which is preferred for large U. A metal-insulator transition occurs for a value of U of the order of the band width, in good agreement with Quantum Monte Carlo results. (3) where Dt = / n i - n i . is the number of doubly occupied sites i and g is related to Gutzwiller’s parameter by = e-g. So far, we have assumed the Gutzwiller ansatz to be "adiabatically" linked to the filled Fermi sea W 0 , which is the main reason for the metallic character of W . However, if we allow for a broken symmetry within W 0 , we may find a competing ground state with qualitatively different properties. For instance, allowing for different magnetic moments on the two sublattices of a bi-partite lattice, one can obtain an antiferromagnetic insulator already below the Mott transition, i.e., before electrons are essentially localized. This is indeed found for the square lattice (n = 1), where the Mott transition is replaced by a smooth crossover from a band (or "Slater" [19]) insulator with small alternating magnetic moments at small U to a (Heisenberg) antiferromagnetic insulator with fully developed local moments at large U. Interestingly, this is not the case for the honeycomb lattice, where antiferromagnetism sets in essentially together with the Mott transition [20], although the detailed behavior close to the transition appears to be more complicated – and quite intriguing [21]. The problem of evaluating the ground state energy E 6W@ = t W W H WW (5) (4) for this trial state still represents a formidable task. Exact results were only obtained in one dimension [9, 10]. For other dimensions, Variational Monte Carlo (VMC), pioneered for the Gutzwiller ansatz by Horsch and Kaplan [11], has been widely used in recent years [12]. Gutzwiller himself proposed an approximate way of evaluating Eq. (4) [3]. His procedure, known as "Gutzwiller approximation", involves two steps [13]. In a first step, the expectation value is factorized with respect to spin. In a second step, the remaining expectation values are assumed to be configuration-independent. This leads to a purely combinatorial problem. In the limit of infinite dimensions, the Gutzwiller approximation represents the exact solution for the Gutzwiller ansatz, as shown by Metzner and Vollhardt [14, 10]. This interesting result marked the beginning of a new era in the theory of correlated electrons, that of the Dynamical Mean-Field Theory [15]. As a second example of a broken symmetry we mention bond alternation in conjugated polymers, or, more precisely, the fate of the Peierls instability in the presence of Coulomb interaction. Eric Jeckelmann, during his Ph.D. thesis, The result of the Gutzwiller approximation can be represented in terms of a renormalized hopping, t " gt. For U " ∞, 1 From this point on, we will concentrate mostly on our own work, with apologies to other authors. 38 Communications de la SSP No. 37 studied the one-dimensional Peierls-Hubbard model where the bond length dependence of the hopping amplitude t provides a coupling between the electrons and the lattice [22]. He used the Gutzwiller ansatz but added both the electronic gap and the lattice dimerization as variational parameters. The result for the dimerization D, as a function of U and for fixed electron-lattice couplings , is shown in Fig. 1. In contrast to Unrestricted Hartree-Fock, where the Peierls insulator is rapidly replaced by a spin-density wave (a Slater insulator), the dimerization is found to remain finite for all values of U. It even increases initially, as discovered long before this work [23], and exhibits a maximum for U ≈ 4t, where a crossover to spin-Peierls behavior occurs. These variational results are in good agreement with subsequent calculations using the Density Matrix Renormalization Group. Figure 2: Superconducting order parameter as a function of doping for the Hubbard model on the square lattice. 0.20 which ferromagnetism occurs if U(eF) > 1, where (eF) is the density of states per spin at the Fermi energy. Already in 1953 Van Vleck argued that the Stoner theory could not be the whole story, but that electronic correlations had to be taken into account. Gutzwiller’s scheme is well suited for doing that. The results obtained in this way still leave space for ferromagnetism, but the stability region in parameter space is strongly reduced as compared to that of Stoner’s theory [25]. In fact, the necessary U values are so large that one has to conclude that the single-orbital Hubbard model is not adequate for describing the ferromagnetism of transition metals. 0.15 Δ /(2t) λ = 0.2 0.10 0.05 0.00 λ = 0.1 0 2 4 6 8 There is another more fundamental reason why the singleband Hubbard model cannot be taken too seriously for describing transition metals. These materials are characterized by narrow partly filled 3d-bands located within a broad s-band and overlapping with even broader p bands, and therefore it is far from obvious how a one-band model should be able to describe their magnetic properties. This problem must have been clear to Gutzwiller, who used the smart title "Correlation of Electrons in a Narrow s Band" for one of his papers [3]. Notwithstanding this loophole, a realistic model should add uncorrelated electrons representing the s-band to the correlated electrons of the d-band. The Periodic Anderson Model is a first step in this direction, it admits two orbitals at each site, one of which is localized and correlated through an on-site interaction, the other is delocalized and uncorrelated. The two bands are hybridized. Using a generalized Gutzwiller ansatz together with a corresponding Gutzwiller approximation, one finds not only the usual renormalization of the correlated band by a factor g, but also a renormalization of the hybridization by √g [26, 27]. U/t Figure 1: Dimerization in the Hubbard-Peierls model. Circles: VMC, full lines: analytical small U expansion, broken lines: Unrestricted Hartree-Fock. As a third example we discuss results of the Ph. D. thesis of David Eichenberger [24], who studied the Hubbard model on a square lattice, using the modified Gutzwiller ansatz t t W = e -hT e -gD W 0 (6) t The additional factor e -hT leads to a substantial improvement of the ground state energy and provides a kinetic exchange. We were particularly interested in the possibility of a superconducting ground state with d-wave symmetry, taken into account in the reference state W 0 . Fig. 2 shows the VMC result for the superconducting order parameter for the Hubbard model on an 8×8 square lattice with both nearest (t) and next-nearest neighbor hoppings (t') and a realistic Hubbard parameter U = 8t. Our results agree very well with other studies using completely different methods. The next step is to treat two or more correlated orbitals at a site. Here, Jörg Bünemann in his Ph.D. thesis has contributed a great deal to generalize the Gutzwiller formalism [28]. The generalization leads to an enormous expansion of the Gutzwiller wave function, as many additional correlators have to be introduced. The relevant local multi-electron configurations can be represented by the eigenstates of an atomic Hamiltonian, which reproduces the atomic multiplet spectrum of the partly filled 3d shell. This extension also We turn now to the problem of itinerant ferromagnetism, which has been the main motivation for Gutzwiller (and for Hubbard and Kanamori as well) to study the Hamiltonian (1). The most simple trial state is the ground state of an effective single-particle model where the bands for up and down spins are shifted relative to each other. The "exchange splitting" is then determined by minimizing the total energy. This leads to the Stoner criterion, according to 39 SPG Mitteilungen Nr. 37 [6] P. W. Anderson, Phys. Rev. 115, 2 (1959). [7] J. Hubbard, Proc. Roy. Soc. A276, 238 (1963). [8] J. Kanamori, Prog. Theor. Phys. 30, 275 (1963). [9] W. Metzner and D. Vollhardt, Phys. Rev. Lett. 59, 121 (1987); F. Gebhard and D. Vollhardt, Phys. Rev. Lett. 59, 1472 (1987). [10] For a review see F. Gebhard, The Mott Metal-Insulator Transition: Models and Methods, Springer 1997. [11] P. Horsch and T. A. Kaplan, J. Phys. C 16, L1203 (1983). [12] For a recent review of the method for the fully projected Gutzwiller wave function (g " ∞) see B. Edegger, V. N. Muthukumar and C. Gros, Adv. Phys. 56, 927 (2007). [13] For a clear presentation see P. Fulde, Electron Correlations in Molecules and Solids, Springer Series in Solid-State Sciences 100 (1990). [14] W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989). [15] For an early review see A. Georges, G. Kotliar, W. Krauth and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996). [16] W. Brinkman and T. M. Rice, Phys. Rev. B 2, 4302 (1970). [17] W. Kohn, Phys. Rev. 133, A171 (1964). [18] L. M. Martelo, M. Dzierzawa and D. Baeriswyl, Z. Phys. B 103, 335 (1997). [19] J. C. Slater, Phys. Rev. 82, 538 (1951). [20] M. Dzierzawa, D. Baeriswyl and L. M. Martelo, Helv. Phys. Acta 70, 124 (1997); for a review see D. Baeriswyl, Found. Phys. 30, 2033 (2000). [21] Z. Y. Meng, T. C. Lang, S. Wessel, F. F. Assaad and A. Muramatsu, Nature 464, 847 (2010). [22] E. Jeckelmann, Ph D. thesis, University of Fribourg (1995); E. Jeckelmann and D. Baeriswyl, Synth. Met. 65, 211 (1994). [23] P. Horsch, Phys. Rev. B 24, 7351 (1981); D. Baeriswyl and K. Maki, Phys. Rev. B 31, 6633 (1985). [24] D. Eichenberger, Ph. D. thesis, University of Fribourg (2008); D. Baeriswyl, D. Eichenberger and M. Menteshashvili, New J. Phys. 11, 075010 (2009). [25] P. Fazekas, Electron Correlation and Magnetism, World Scientific 1999. [26] T. M. Rice and K. Ueda, Phys. Rev. Lett. 55, 995 (1985). [27] C. M. Varma, W. Weber and L. J. Randall, Phys. Rev. B 33, 1015 (1986). [28] J. Bünemann, Ph. D. thesis, University of Dortmund (1998); J. Bünemann, W. Weber and F. Gebhard, Phys. Rev. B 57, 6896 (1998). [29] For a recent review see O. K. Andersen and L. Boeri, Ann. Phys. (Berlin) 523, 8 (2011). [30] J. Bünemann et al., Europhys. Lett. 61, 667 (2003). [31] J. Bünemann, F. Gebhard, T. Ohm, S. Weiser and W. Weber, Phys. Rev. Lett. 101, 236404 (2008). [32] T. Schickling et al., Phys. Rev. Lett. 108, 036406 (2012). leads to a rapid increase of the number of variational parameters in the Gutzwiller wave function. If the number of different orbitals is N (N can be as large as 5 for an open d shell), the number of independent variational parameters can reach 22N - 2N - 1, which may be of the order of 1000 [28]. The variational parameters represent the occupancies of all possible multiplet states. At the first instance, the atomic multiplet spectrum is governed by three SlaterCondon or Racah integrals, when spherical symmetry is assumed for the atoms. Yet, the site symmetry in a crystal is lower than spherical. Incorporation of the correct site symmetry results in many further modifications and extensions of the method. The multi-band Gutzwiller method allows the investigation of 3d transition metals and compounds on a quantitative basis. An ab initio single-particle Hamiltonian can be constructed using Density-Functional Theory (DFT). The simplest way to incorporate DFT results is to extract a tightbinding model by fitting the hopping amplitudes to the DFT bands, but more elaborate methods are available, such as down-folding the DFT bands to a reduced Wannier basis [29]. We have carried out various studies on magnetic 3d elements and on compounds of 3d elements. One paper dealt with the Fermi surface of ferromagnetic Ni. DFT predicts a hole ellipsoid around the X point of the Brillouin zone, which is missing in the data. The multi-band Gutzwiller method was based on a one-particle Hamiltonian derived from paramagnetic DFT bands for Ni including wide 4s and 4p bands. Using typical interaction parameters for Ni, our calculations reproduced the observed Fermi surface topology [30]. Another paper dealt with the magnetic anisotropy in ferromagnetic Ni [31]. Here again, pure DFT results did not yield the correct answers, while the Gutzwiller method gave very good agreement with experiment. In all cases, the renormalization parameters g have been found to be of the order of 0.7, indicating moderately strong correlation effects. Finally we mention the issue of metallic anti-ferromagnetism in iron pnictides, a new class of high-temperature superconductors. Our calculations were based on down-folded DFT bands. The results indicate also in this case moderately strong correlations. The atomic magnetic moments were found to agree well with experiment, in contrast to the DFT results and also to model calculations [32]. The examples mentioned above demonstrate that Gutzwiller's simple ansatz evolved into a powerful tool for dealing with correlated electron systems. The method has recently also been applied successfully to cold bosonic atoms in an optical lattice. At the age of 50, Gutzwiller’s wave function in its extensions remains competitive for describing correlated states of matter. Werner Weber received his PhD from the TU Munich in 1972. He worked first at a variety of research institutions, at the MPI for Solid State Research in Stuttgart, at the Research Center in Karlsruhe (now K.I.T.), at Bell Laboratories, Murray Hill. He then became a faculty member at the TU Dortmund, where he retired in 2010. His research area is theoretical solid state physics, with main emphasis on materials science theory. He assumed many duties in university self-administration, even presently. In the spirit of Martin Gutzwiller, he recently changed his field of interest to activities in climate research, including applications. References [1] M. C. Gutzwiller, Phys. Rev. Lett. 10, 169 (1963). [2] M. C. Gutzwiller, Phys. Rev. 134, A923 (1964). [3] M. C. Gutzwiller, Phys. Rev. 137, A1726 (1965). [4] K. A. Chao and M. C. Gutzwiller, J. Appl. Phys. 42, 1420 (1971). [5] J. H. van Vleck, Rev. Mod. Phys. 25, 220 (1953). 40 Communications de la SSP No. 37 Physik und Gesellschaft "Lead-User-Workshops" für effizientes Innovations- & Produktvariantenmanagement Bernhard Braunecker und Richard Wenk Industriephysiker in Managementfunktion Physiker sind in der Industrie nicht nur in Forschung und Entwicklung tätig, sondern auch als Produktmanager. In dieser Funktion müssen sie sich um drei Fragen kümmern: a) wie leistungsstark und erprobt sind die dem Produkt und dem Herstellprozess zugrunde liegenden Technologien, b) wie gut deckt das Produkt heutige und zukünftige Kundenanwendungen ab und c) wie wird es sich am Markt behaupten? Um den wirtschaftlichen Erfolg des Produkts zu sichern, müssen alle drei Fragen kohärent, also im Kontext positiv beantwortet sein. Die Abhängigkeit der Fragestellungen voneinander spiegelt sich zum Beispiel bei der Festlegung des Produktkonzepts wider: einerseits möchte man ein entsprechend grosses Angebot an Produktvarianten, um ein möglichst breites Kundenspektrum abzudecken; anderseits erfordern die für den Markterfolg zu minimierenden Herstell- und Vertriebskosten die Beschränkung auf nur wenige Varianten. Selbst wenn man den Widerspruch dadurch löst, dass man die Produkte baukastenmässig aus Modulen aufbaut, bleibt dennoch die Frage b) zu beantworten, ob sich damit auch alle gewünschten Kundenapplikationen erfüllen lassen? Alpha-Beziehungen von Physikern zwischen Firmen Unter diesem Begriff sei verstanden, wenn die Geschäftsbeziehung zweier Firmen über das übliche Kunden/Lieferantenverhältnis hinausgeht, wenn also beider Primär interessen strategisch in die gleiche Richtung zielen. Als klassisches Beispiel gilt das in der Optikindustrie enge Verhältnis zu den Glasherstellern, deren beste Lieferqualität gerade gut genug ist für hochwertige Optiksysteme. Besonders wichtig war und ist der Kontakt zwischen den Optikentwicklern im deutschsprachigen Raum und den Glasexperten von Schott in Mainz, um die hohen Qualitätsansprüche ans Glas, aber auch die Komplexität der Glasproduktion jeweils der anderen Seite verständlich zu machen. Dazu organisiert Schott seit Jahrzehnten regelmässig sogenannte "Designer"-Treffen, zu denen die gesamte Optikindustrie ihre Wissenschaftler schickt, um Probleme und Anregungen zu artikulieren. Als Folge dieser Treffen bildete sich unter den Optikentwicklern eine Gemeinschaft über Firmengrenzen hinaus und bei vielen Kollegen zusätzlich auch ein enges Verhältnis zu den Glasproduktionsleuten, das sich zur Lösung von Problemfällen in der täglichen Praxis als vorteilhaft erweist. Als vor einigen Jahren japanische Glasherstellern überraschend "bleifreie" Gläser am Markt lancierten, konnte Schott unter Mithilfe der Experten aller grosser Optikfirmen im deutschsprachigen Raum rasch und gezielt auf die neue Situation reagieren. Diese "Alpha-Beziehungen" sind daher für beide Seiten ein wirksames Mittel der Risikominimierung (risk mitigation), sowohl in technischen Belangen, wie in der strategischen Ausrichtung. Man sieht, dass die drei Fragestellungen ein profundes Verständnis der technisch-kommerziellen Abhängigkeiten erfordern, besonders, wenn neue Technologien ins Spiel gelangen. Während die Marktaspekte von Marketingleuten abgedeckt werden können, muss die Schnittstelle der Applikationen gemeinsam von Marketing und F&E bearbeitet werden. Sollte sich das angesprochene Modularkonzept dann als geeignet und machbar erweisen, ist es Aufgabe der F&E - Wissenschaftler, die Funktionalität und die Struktur der Module festzulegen. Nur wie lässt sich in diesem iterativen und mit vielen Fragezeichen versehenen Prozess mehr Gewissheit über das richtige Vorgehen gewinnen? Konzept eines "Lead-User-Workshops" Im Folgenden wird die Vorgehensweise beschrieben, wie vor einigen Jahren bei Leica Geosystems in Heerbrugg ein Lead-User-Workshop zum anstehenden Thema der Digitalisierung von Vermessungsgeräten organisiert wurde. Dazu wurden 15 Experten aus aller Welt aus den Bereichen der amtlichen Landesvermessung, der Industrie, dem Bauwesen und der Denkmalpflege (cultural heritage) eingeladen. Das Ziel war, internes Technologie-Knowhow mit dem Applikations-Knowhow der externen Experten zu kombinieren. Im Vorfeld des WS wurden verschiedene, für Leica interessante Applikationsfelder (total 6) definiert, die dann am WS vorgestellt und bearbeitet werden sollten. Dabei sollten die externen Experten nach Kenntnis der neuen Technologieansätze sich nicht nur mit den möglichen Folgen für ihr eigenes Arbeitsgebiet auseinandersetzen, sondern auch mit dem ihrer Kollegen. Das sollte wichtige Argumente für die erwähnte Modularisierung liefern. Ein sehr leistungsstarkes Werkzeug dazu sind sogenannte Lead-User-Workshops, wo man als Produkthersteller mit Repräsentanten wichtiger Kunden gemeinsam herauszufinden versucht, welche neuen Anwendungen durch den Einsatz kommender Technologien denkbar wären, und welche Produktvarianten dazu infrage kämen? Der Meinungsaustausch geschieht im gegenseitigen Interesse, da danach beide Seiten die Folgen anstehender Entscheide besser einzuschätzen vermögen. Bevor im Folgenden auf die Gestaltung eines solchen Workshops eingegangen wird, sei am Beispiel der Optikindustrie illustriert, dass Veranstaltungen dieser Art zur Bildung von auch in Krisensituationen belastbaren Interessengemeinschaften (Communities) führen können. 41 SPG Mitteilungen Nr. 37 Auswahl der externen Teilnehmer Die Auswahl der Experten ist die wichtigste Aufgabe, die von den Marketing- und Vertriebsleuten, gemeinsam mit den Auslandsvertretern, vorgenommen werden muss. Als Kriterien gelten, dass zu den Personen ein langjähriges Vertrauensverhältnis besteht, dass sie als Entscheidungsträger mit technischem Hintergrund noch Kenntnis der Abläufe in der täglichen Praxis haben, und dass sie offen für Neues sind. •In unserem Falle waren die Experten in folgenden Organisationen tätig: a) Fünf Ingenieurbüros und KMUs mit Fokus auf Architektur, Katastervermessung, Hoch-/Tiefbau, Tunnelbau, b) fünf Institutionen (Universitäten, Behörden, Ämter für Denkmalpflege), und c) fünf "Big players" (Shell Oil, British Rail, CERN & US-Freeway companies). •Sie kamen aus vier Regionen, logarithmisch gewichtet: a) Schweiz, b) Deutschland / Österreich, c) Europa, d) USA, •Und sie deckten folgende Applikationsfelder ab: a) Traditionelle Märkte, b) Nischenmärkte mit Wachstumspotential, c) Neue Märkte. Gruppeneinteilung Es wurden drei Arbeitsgruppen mit jeweils fünf externen Experten gebildet, wobei in jeder Gruppe alle vier Regionen vertreten waren. Jeder Gruppe wird zugeteilt ein Moderator, sowie ein Produktmanager aus Marketing und ein technischer Berater aus F&E, die nur bei Klärungsbedarf eingreifen sollten. Ablauf der Veranstaltung Die Teilnehmer in den 3 Gruppen mussten jeweils zwei der Applikationsfelder wie folgt bearbeiten: Schritt 1: Erarbeiten von speziellen Messabläufen (User Workflow) in den definierten Applikationsfeldern. Schritt 2: Identifizieren von Problemen und deren Lösung, um den Messablauf wesentlich zu vereinfachen und zu verkürzen. Schritt 3: Identifizieren von Kundenanforderungen für zukünftige Messsysteme. Schritt 4: Erarbeiten von Konzeptvorschlägen für zukünftige Messsysteme. Der Workshop (Figur 1) wurde dreiteilig angelegt: •Im Teil 1 schilderte jeder Teilnehmer typische Abläufe seiner täglichen Arbeit und verwies auf Probleme und Verbesserungswünsche (Schritte 1 & 2). Damit gewann jedes Gruppenmitglied Kenntnis über die Tätigkeiten der Anderen. Nach der Gruppenarbeit präsentierte der Moderator im Plenum vor allen Teilnehmern erste Gemeinsamkeiten in der noch sehr heterogenen Analyse und skizzierte erste Verbesserungswünsche. •Im Teil 2 informierte der F&E-Leiter der einladenden Firma, welche neuen Technologien in nächster Zeit zu erwarten sind. Dieser Schritt ist der psychologisch wichtige Icebreaker, der im geschilderten Fall auch zu einer spürbaren Solidarisierung der Experten untereinander und mit dem Veranstalter führte. •Im Teil 3 wurden in neuer Zusammensetzung der Gruppen die Konzeptvorschläge für zukünftige Messsysteme (Schritte 3 & 4) diskutiert, nun allerdings im Wissen kommender Technologiemöglichkeiten. Da die Grundaufgaben aller Teilnehmer meist ähnlicher Natur waren, war die Diskussion in allen Gruppen deutlich einheitlicher als am ersten Tag. Die darauf vorbereiteten Moderatoren lenkten deshalb die Diskussion in Richtung allgemein einsetzbarer Hardware- und Softwaremodule. Nach erneuter Präsentation der Gruppenarbeiten im Plenum gab der Vertreter des Veranstalters dann eine erste Zusammenfassung der Erkenntnisse (Wrap up). Ergebnis, Auswertung, weitere Schritte Nach Ablauf des WS wurden die gesammelten Kundenanregungen für verschiedene Applikationen in den predefinierten Anwendungsfeldern in drei Bereiche unterteilt: generelle Anwender-, Technologie- und Produktanforderungen. In jedem Bereich wurden die Empfehlungen dann konsolidiert, also möglichst vereinheitlicht über alle Anwen- Figur 1: Teilnehmer eines Lead User Workshops bei Leica Geosystems 42 Communications de la SSP No. 37 dungsfelder hinweg. So konnte man bei den generellen Anwenderanforderungen vier Untergruppen bilden, für Genauigkeitssteigerungen, höhere Effizienz des Messsystems, geringere Störanfälligkeit und mehr Bedienerfreundlichkeit; im Bereich der Technologie gab es neun Untergruppen wie Empfehlungen für Echtzeit-Systeme und vereinheitlichtes Datenformat und im Bereich der Produktanforderungen sieben Untergruppen, wie z.B. für handhaltbare statt stativmontierte Instrumente, Multisensor Systeme, etc. Wie einleitend angedeutet, soll ein breites Angebot an Produktvarianten möglichst viele Kundenapplikationen abdecken, demzufolge sich aus Logistik- und Kostengründen ein modular hierarchischer Aufbau (Figur 2) empfiehlt: Teure Basismodule wie Optik, Mechanik und Elektronik werden standardisiert, also konstruktiv vereinheitlicht, während die Produktdifferenzierung möglichst weit ans Ende der Wertschöpfungskette geschoben wird, im Idealfall sogar in reine Softwaremodule. Im Gegensatz zu früher kann deshalb auch die kostengünstigste Variante die beste Hardware enthalten, wenn es sich wegen der grösseren Stückzahl und der Fertigungsautomatisierung lohnt. Die eigentliche Kernfrage lautet deshalb, mittels welcher Modulfunktionen kann Redundanz reduziert und die angestrebte Vollständigkeit des Applikationsspektrum realisiert werden? Bei der Beantwortung dieser Frage helfen die wichtigen Erkenntnisse aus dem Lead User Workshop. Aus diesen Anforderungskatalogen wurden dann Funktionen für die verschiedenen Produktgruppen abgeleitet. Grundsätzlich wurde dabei unterschieden zwischen Produktverbesserungen, also Optionen für die unmittelbare Zukunft, Innovationen, die interne F&E Anstrengungen benötigen, und Visionen, also Konzepte für zukünftige Systeme, die eine Grundlagenentwicklung mit Hochschulpartnern bedingen. Daraus wurden dann konkrete Produktideen abgeleitet, woraus letztendlich für die verschiedenen Produktkategorien 17 Produktvorschläge resultierten. Diese Produktideen flossen dann bei den entsprechenden Divisionen in deren Roadmap-Prozess ein, wurden von den Produkt- und Technologiespezialisten dort hinterfragt, und es wurden realistische Produktentwicklungen definiert. Einige dieser Ideen konnten noch in bereits laufende Produktentwicklungen eingebracht werden, andere wurden verworfen aus Gründen der Machbarkeit oder weil der Bedarf aus Kundensicht noch nicht gegeben war, wieder andere wurden zurückgestellt, beziehungsweise als Kandidaten für externe Entwicklungen mit Hochschulen vorgesehen. Dabei wurde verstärktes Augenwerk auf eine mögliche Modularisierung gerichtet, also auf die Mehrfachverwendung von Grundmodulen (Principal Components) in verschiedenen Instrumenten und Dienstleistungen. Figur 2: Produktvarianten P1…P5: Die Hardwareplattformen Optik & Mechanik sind konzeptionell zu vereinheitlichen und an einem Standort vollautomatisch herzustellen. Der Einbau der "intermediate" Module von Elektronik & Sensorik kann weltweit an mehreren Standorten durchgeführt werden, während die applikationsspezifischen Software-Module im Idealfall vom Kunden selber freigeschaltet werden können. Richard Wenk ist CTO und Vizepräsident bei Hexagon Geosystems, zu der auch Leica Geosystems in Heerbrugg gehört. Optimales Konzept des Variantenmanagements Die gewonnenen Erkenntnisse aus einem Lead-User-Workshop fliessen in die Auslegung zukünftiger Instrumente ein. History of Physics (4) From Static to Expanding Models of the Universe Norbert Straumann, Uni Zürich Einstein's static model of the universe At the end of some historical remarks in the article on the 2011 Nobel Prize [1], it was announced that the author would indicate in a historical essay the interesting early history of cosmology. One of the reasons is that this is not even well-known among cosmologists, and is often distorted. In the words of the late Allen Sandage: "In 1929, Edwin Hubble published a paper that correlated redshifts of galaxies with distances he had estimated from calibration of their absolute magnitudes previously made in 1926. Writers of both popular accounts and technical textbooks have often described this as the discovery of the expanding universe. This is not so." [2] On 8 February 1917, in the middle of the most terrible time during the First World War, Einstein gave a talk in the Preussian Academy of Sciences on an application of his general relativity on the universe as a whole. One week before the German military leadership had declared in the same city the unconstrained submarine war. Einstein’s first paper on cosmology [3] marks in many ways the beginning of modern cosmology. Perhaps the main reason why Einstein turned so soon after the completion of general relativity to cosmology had much to do with Machian ideas on the origin of inertia, 43 SPG Mitteilungen Nr. 37 itation. It has to be emphasized, however, that a positive curvature of space is given by our results, even if the supplementary term is not introduced. That term is necessary only for the purpose of making possible a quasi-static distribution of matter, as required by the fact of the small velocities of the stars." which played in those years an important role in Einstein’s thinking. His intention was to eliminate all vestiges of absolute space. He was, in particular, convinced that isolated masses cannot impose a structure on space at infinity. Einstein was actually thinking about the problem regarding the choice of boundary conditions at infinity already in spring 1916. In a letter to Michele Besso from 14 May 1916 he also mentions the possibility of the world being finite. A few months later he expanded on this in letters to Willem de Sitter. It is along these lines that he postulated a Universe that is spatially finite and closed, a Universe in which no boundary conditions are needed 1. He then believed that this was the only way to satisfy what he later [5] named Mach’s principle, in the sense that the metric field should be determined uniquely by the energy-momentum tensor. In addition, Einstein assumed that the Universe was static. This was not unreasonable at the time, because the relative velocities of the stars as observed were small. (Recall that astronomers only learned later that spiral nebulae are independent star systems outside the Milky Way. This was definitely established when in 1924 Hubble found that there were Cepheid variables in Andromeda and also in other nearby galaxies. Einstein compares the observed small peculiar velocities of stars with the speed of light.) Edwin Hubble These two assumptions were, however, not compatible with Einstein’s original field equations. For this reason, Einstein added the famous Lterm, which is compatible with the principles of general relativity. The cosmological term is, in four dimensions, the only possible complication of the field equations if no higher than second order derivatives of the metric are allowed (Lovelock theorem). This remarkable uniqueness is one of the most attractive features of general relativity. (In higher dimensions additional terms satisfying this requirement are allowed.) For the static Einstein universe the field equations with the cosmological term imply the two relations To de Sitter he emphasized in a letter on 12 March 1917, that his cosmological model was intended primarily to settle the question "whether the basic idea of relativity can be followed through its completion, or whether it leads to contradictions". And he adds whether the model corresponds to reality was another matter. Only later Einstein came to realize that Mach's philosophy is predicated on an antiquated ontology that seeks to reduce the metric field to an epiphenomenon of matter. It became increasingly clear to him that the metric field has an independent existence, and his enthusiasm for what he called Mach's principle later decreased. In a letter to F. Pirani he wrote in 1954: "As a matter of fact, one should no longer speak of Mach's principle at all." GR still preserves some remnant of Newton’s absolute space and time. De Sitter model Surprisingly to Einstein, de Sitter discovered in the same year, 1917, a completely different static cosmological model which also incorporated the cosmological constant, but was anti-Machian, because it contained no matter [6]. For this reason, Einstein tried to discard it on various grounds (more on this below). The original form of the metric was: dr 2 g = - 81 - ( r ) 2B dt 2 + + r 2 ^dj + sin 2 jd{ 2 h . R 1 - ( r )2 R Here, the spatial part is the standard metric of a threesphere of radius R, with R = (3/L)1/2. The model had one very interesting property: For light sources moving along static world lines there is a gravitational redshift, which became known as the de Sitter effect. This was thought to have some bearing on the redshift results obtained by Slipher. Because the fundamental (static) worldlines in this model are not geodesic, a freely-falling object released by any static observer will be seen by him to accelerate away, generating also local velocity (Doppler) redshifts corresponding to peculiar velocities. In the second edition of his book [7], published in 1924, Eddington writes about this: "de Sitter's theory gives a double explanation for this motion of recession; first there is a general tendency to scatter (...); second there is a general displacement of spectral lines to the red in distant objects owing to the slowing down of atomic vibrations (...), which would erroneously be interpreted as a motion of recession." I do not want to enter into all the confusion over the de Sitter universe. One source of this was the apparent singularity at r = R = (3/L)1/2. This was at first thoroughly misunderstood even by Einstein and Weyl. ("The Einstein-de Sitter-WeylKlein Debate" is now published in Vol. 8 of the Collected Papers [4].) At the end, Einstein had to acknowledge that de Sitter's solution is fully regular and matter-free and thus indeed a counter example to Mach's principle. But he still discarded the solution as physically irrelevant because it is not globally static. This is clearly expressed in a letter 4rGt = 12 = K , a where r is the mass density of the dust filled universe (zero pressure) and a is the radius of curvature. For L = 0 the density r would have to vanish. (We remark, in passing, that the Einstein universe is the only static dust solution; one does not have to assume isotropy or homogeneity.) Einstein was very pleased by this direct connection between the mass density and geometry, because he thought that this was in accord with Mach's philosophy. Einstein concludes with the following sentences: "In order to arrive at this consistent view, we admittedly had to introduce an extension of the field equations of gravitation which is not justified by our actual knowledge of grav1 The spatial geometry in Einstein's model is that of a three-sphere, i.e., the surface of a sphere in four-dimensional Euclidean space. This is a prototype of a highly symmetric compact manifold without boundary. 44 Communications de la SSP No. 37 from Weyl to Klein, after he had discussed the issue during a visit of Einstein in Zürich [8]. An important discussion of the redshift of galaxies in de Sitter's model by H. Weyl in 1923 should be mentioned. Weyl introduced an expanding version 2 of the de Sitter model [9]. For small distances his result reduced to what later became known as the Hubble law. Independently of Weyl, Cornelius Lanczos introduced in 1922 also a non-stationary interpretation of de Sitter's solution in the form of a Friedmann spacetime with a positive spatial curvature [10]. In a second paper he also derived the redshift for the non-stationary interpretation [11]. for small distances to a linear relation, known as Hubble's law. He also estimated the Hubble constant H0 based on Slipher's redshift data for about 40 nebulae, and Hubble's 1925 distance determination to Andromeda, as well as the the magnitudes of nebulae published by him in 1926. Two years before Hubble he found a value only somewhat higher than the one Hubble obtained in 1929. (Actually, Lemaître gave two values for H0.) But this seminal work was almost completely ignored. The general attitude is well illustrated by the following remark of Eddington at a Royal Society meeting in January, 1930: "One puzzling question is why there should be only two solutions. I suppose the trouble is that people look for static solutions." Lemaître, who had been for a short time a post-doctoral student of Eddington, read this remark in a report on the meeting published in Observatory, and wrote to Eddington pointing out his 1927 paper. Eddington had seen that paper, but had completely forgotten about it. But now he was greatly impressed and recommended Lemaître's work in a letter to Nature. He also arranged for a translation which appeared in MNRAS [13]. Eddington also "pointed out that it was immediately deducible from his [Lemaître's] formulae that Einstein's world is unstable, so that an expanding or a contracting universe is an inevitable result of Einstein's law of gravitation." Lemaître's successful explanation of Hubble's improved data, carefully analysed by de Sitter in a series of papers, finally changed the viewpoint of the majority of workers in the field. At this point, after a stay with Eddington, and a visit to the Mount Wilson Observatory, Einstein rejected the cosmological term as superfluous and no longer justified [14]. At the end of the paper in which he published his new view, From static to expanding world models Until about 1930 almost everybody believed that the Universe was static, in spite of the two fundamental papers by Friedmann [12] in 1922 and 1924 and Lemaître's independent work [13] in 1927. These path breaking papers were in fact largely ignored. The history of this early period has - as is often the case - been distorted by some widely read Alexander Friedmann documents. Einstein too accepted the idea of an expanding Universe only much later. After the first paper of Friedmann, he published a brief note claiming an error in Friedmann's work; when it was pointed out to him that it was his error, Einstein published a retraction of his comment, with a sentence that luckily was deleted before publication: "[Friedmann's paper] while mathematically correct is of no physical significance". In comments to Lemaître during the Solvay meeting in 1927, Einstein again rejected the expanding universe solutions as physically unacceptable. According to Lemaître, Einstein was telling him: "Vos calculs sont corrects, mais votre physique est abominable". It appears astonishing that Einstein - after having studied carefully Friedmann's papers - did not realize that his static model is unstable, and hence that the Universe has to be expanding or contracting. On the other hand, I found in the archive of the ETH many years ago a postcard of Einstein to Weyl from 1923, related to Weyl's reinterpretation of de Sitter's solution, with the following interesting sentence: "If there is no quasi-static world, then away with the cosmological term". It also is not well-known that Hubble interpreted in 1929 the redshifts of radiation emitted by distant 'nebulae' in the framework of the de Sitter model, as had been suggested by Eddington. Lemaître discovers the expanding universe We repeat what we said in [1] about Lemaître's key role in the founding period of cosmology. He was the first person who seriously proposed an expanding universe as a model of the real universe. He derived in his crucial paper of 1927 the general redshift formula, and showed that it leads 2 The de Sitter model has many different interpretations, depending on the choice of the velocity field for the subdominant matter flow. Letter from Lemaître to Eddington 45 SPG Mitteilungen Nr. 37 L-force is not important, the expansion is decelerated due to gravity and slowly approaches the radius of the Einstein universe. At about the same time, the repulsion becomes stronger than gravity and a second stage of expansion begins which eventually inflates. In this way a positive L was employed to reconcile the expansion of the Universe with the age of stars. Lemaître was also the first who associated in 1933 the cosmological constant with vacuum energy. Actually, Pauli made before the advent of the new quantum mechanics some simple, but profound remarks on this issue [15]. To a minority of cosmologists who had read the French original of Lemaître's 1927 paper, it was known that a few paragraphs were deleted in the translation, notably the one in which Lemaître assessed the evidence for linearity of the distance-velocity relation and estimated the expansion rate. Fortunately, the origin of this curious fact has very recently been completely cleared up [16]. It was Lemaître himself who translated his original paper. The correspondence of him with the editor of MNRAS, quoted in [16], shows that Lemaître was not very interested in establishing priority. He saw no point in repeating in 1931 his findings four years earlier, since the quality of the observational data had in the meantime been improved. This is one of the reasons that Hubble was elevated to the discoverer of the expanding universe. For much more on all this I refer again to the recent excellent book [17] of our Swiss colleagues Harry Nussbaumer and Lydia Bieri. References Albert Einstein and Georges Lemaître Einstein adds some remarks about the age problem which was quite severe without the L-term, since Hubble's value of the Hubble parameter was then about seven times too large. Einstein is, however, not very worried and suggests two ways out. First he says that the matter distribution is in reality inhomogeneous and that the approximate treatment may be illusionary. Then he adds that in astronomy one should be cautious with large extrapolations in time. After the L-force was rejected by its inventor, other cosmologists, such as Eddington and Lemaître, retained it. One major reason was that it solved the problem of the age of the Universe when the Hubble time scale was thought to be only 2 billion years (corresponding to the value H0 ~ 500 km s-1 Mpc-1 of the Hubble constant). This was even shorter than the age of the Earth. In addition, Eddington and others overestimated the age of stars and stellar systems. For this reason, the L-term was employed again and a model was revived which Lemaître had singled out from the many solutions of the Friedmann-Lemaître equations 3. This so-called Lemaître hesitation universe is closed and has a repulsive L-force (L > 0), which is slightly greater than the value chosen by Einstein. It begins with a big bang and has the following two stages of expansion. In the first the [1] N. Straumann, The 2011 Nobel Prize in Physics, SPG Mitteilungen, Nr. 36, Januar 2012. [2] A. Sandage, Preface to [17]. [3] A. Einstein, Sitzungsber. Preuss. Akad. Wiss. phys.-math. Klasse VI, 142 (1917). See also: [4], Vol. 6, p. 540, Doc. 43. [4] A. Einstein, The Collected Papers of Albert Einstein, Vols. 1-12, Princeton University Press, 1987–. See also: [http://www. einstein. caltech.edu/]. [5] A. Einstein, On the Foundations of the General Theory of Relativity. Ref. [4], Vol. 7, Doc. 4. [6] W. de Sitter, Proc. Acad. Sci., 19, 1217 (1917); and 20, 229 (1917). [7] A. S. Eddington, The Mathematical Theory of Relativity. Chelsea Publishing Company (1924). Third (unaltered) Edition (1975). See especially Sect.70. [8] Letter from Hermann Weyl to Felix Klein, 7 February 1919; see also Ref. [5], Vol. 8, Part B, Doc. 567. [9] H. Weyl, Phys. Zeits. 24, 230, (1923); Phil. Mag. 9, 923 (1930). [10] C. Lanczos, Phys. Zeits. 23, 539 (1922). [11] C. Lanczos, Zeits. f. Physik 17, 168 (1923). [12] A. Friedmann, Z.Phys. 10, 377 (1922); 21, 326 (1924). [13] G. Lemaître, L’univers en expansion. Ann. Soc. Sci. de Bruxelles 47, 49 (1927). Translated in MNRAS 91, 483 (1931). [14] A. Einstein, S. B. Preuss. Akad. Wiss. (1931), 235. [15] N. Straumann, Wolfgang Pauli and Modern Physics, Space Science Reviews 148, 25 (2009). [16] M. Livio, Nature 479, 208-211 (2011). [17] H. Nussbaumer and L. Bieri, Discovering the Expanding Universe, Cambridge University Press (2009). 3 I recall that Friedmann included the L-term in his basic equations. I find it remarkable that for the negatively curved solutions he pointed out that these may be open or compact (but not simply connected). 46 Communications de la SSP No. 37 Über den Einfluss des Lichtes auf den Menschen Mit den beiden folgenden Artikeln dringen wir in das Gebiet der Biophysik ein. Was liegt näher im Jahrhundert des Photons, als den Einfluss des Lichtes auf das menschliche Verhalten zu beschreiben? Vieles, was bislang nur empirisch erfasst werden konnte, kann heutzutage als Abfolge physikalisch/chemischer Zeitprozesse quantitativ erklärt und modelliert werden. Für die Beleuchtungsindustrie öffnet sich ein riesiges Aktionsfeld, um die Wirkung des Lichtes auf das Wohlbefinden des Menschen technisch umzusetzen. Nicht-visuelle Lichtwirkungen beim Menschen Christian Cajochen, Zentrum für Chronobiologie, Universität Basel 1. Licht eicht die innere Uhr. Die Tagesrhythmik (Circadianrhythmik) ist eine Spontanrhythmik, die eigentlich in jeder Körperzelle tickt, aber von einem reiskorngrossen Hirngebiet, das ca. 2 cm hinter der Nasenwurzel liegt, kontrolliert wird. Dieses Hirngebiet liegt in den sogenannten suprachiasmatischen Kernen und umfasst ungefähr 10 bis 20000 Nervenzellen, die als Schrittmacher fungieren, indem sie eine endogene Spontanaktivität mit einer Rhythmik von 24 Stunden generieren (Abbildung 1). Falls kein Licht vorhanden ist, oder Dauerlicht herrscht, misst man bei Menschen eine Spontanrhythmik, die im Durchschnitt etwas länger als 24 Stunden, nämlich 24.2 Stunden beträgt. Die Periodenlänge ist individuell verschieden und zum Teil genetisch determiniert. So haben Frühtypen (Lerchen) eher kürzere als 24 Stunden Periodenlängen, während Abendtypen (Eulen) eher langsamer > 24.8 Stunden ticken. Leben Menschen unter DauerdunkelLicht- mehr als nur fürs Sehen heit (z.B. Sehbehinderte) oder Dauerlicht, laufen die TagesLichtwirkungen, die nicht unmittelbar mit dem Sehen zu- rhythmen frei- gemäss der endogenen Periodik (Abbildung sammenhängen, werden als sogenannte nicht-visuelle 1 oberes Beispiel). Das heisst, die Rhythmen sind nicht Lichtwirkungen bezeichnet, welche folgend zusammenge- auf den Tag-Nachtwechsel abgestimmt. Der immer wiederkehrende Licht-Dunkelwechsel, dem wir normalerweifasst sind. se täglich ausgesetzt sind, gleicht diese Spontanrhythmik auf die exakte 24-Stunden Periodik der Erdrotation ab (Abbildung 1 unteres Beispiel). Licht wirkt deshalb als Zeitgeber. Zuwenig Licht für einige Zeit, oder Licht zur falschen Zeit (z.B. bei der Schichtarbeit), bringt die innere Uhr aus dem Lot mit dem natürlichen 24-StundenLicht-Dunkelwechsel, was zu circadianen Schlafstörungen führt. Das geschieht sehr oft bei Leuten mit Sehbehinderungen, bei Schichtarbeitern oder wenn man nach dem Überfliegen von mehreren ZeitzoAbbildung 1. Die Eichung der inneren Uhr durch Licht. Die endogene Circadianrhythmik wird nen mit einem "Jetlag" zu kämpfen in den suprachiasmatischen Kernen (SCN), einem Hirngebiet im vorderen Hypothalamus, ge- hat. Folgen einer dauernden circadineriert. Das Signal wird über den paraventrikulären Nukleus (PVN), über das superiore Zervi- anen Desynchronisation sind neben kalganglion im Rückenmark (SCG) zur Pinealis, dem Ort der Melatoninproduktion weitergelei- Schlafstörungen auch gastrointestitet. Die Sekretion des Hormons Melatonin ist tagesrhythmisch unter der Kontrolle der SCN. nale Beschwerden, Depressionen Falls Dauerlicht oder Dauerdunkelheit aufs Auge fällt, ist der Tagesgang des Melatonins nicht und kardiovaskuläre Störungen. Dosynchronisiert und läuft „frei“, gemäss der endogenen Circadianperiodik, die von 24 Stunsis Wirkungsstudien haben ergeben, den abweicht (oberes Beispiel). In diesem Beispiel verzögert sich die Melatoninproduktion dass beim Menschen Lichtstärken jeden Tag um ca. 0.8 Stunden, weil die endogene Tagesperiodik 24.8 Stunden beträgt. Falls der periodische Licht-Dunkelwechsel, der durch die Erdrotation genau 24 Stunden beträgt, ab ca. 100 lux wirksam sind für die wahrgenommen wird, wird dieses Signal vom Auge, über die Netzhaut, via den retinohypo- Eichung der inneren Uhr (Abbildung thalamischen Trakt (RHT) direkt zu den SCN weitergeleitet. Dieser Licht-Dunkelwechsel wirkt 2). Mit Morgenlicht verschiebt man als Zeitgeber, das heisst die Endogenperiodik wird auf die Exogenperiodik des 24-Stunden die innere Uhr nach vorne, also in Lichtdunkelwechsel abgeglichen, man spricht von circadianem „Entrainment“. eine östliche Zeitzone, während Ohne sichtbares Licht ist bewusstes Sehen für den Menschen unmöglich. Einfallendes Licht wird in den Augen gesammelt und weiterverarbeitet, damit ein Abbild der Umgebungswelt in unserem Gehirn entsteht. Die Netzhaut im Auge wandelt die eintreffenden Lichtimpulse in Nervensignale um und leitet sie über den Sehnerv ans Gehirn weiter. Neben den Hirngebieten, die verantwortlich fürs Sehen sind, trifft die Lichtinformation auch auf Hirnregionen, die eine wichtige Rolle für die Regulierung circadianer (circa diem = ungefähr ein Tag) Rhythmen und der Verarbeitung von Gedächtnisinhalten und Emotionen spielen. Licht spielt somit eine zentrale "nicht-visuelle" Rolle, die zur Zeit intensiv auf dem Gebiet der Chronobiologie, der Schlafforschung, der Kognitionsforschung, aber zunehmend auch von Lichtplanern und Architekten erforscht wird. 47 SPG Mitteilungen Nr. 37 Computerbildschirm besser lösten, als wenn sie die gleiche Aufgabe vor einem "normalen" Computerbildschirm ohne LEDs der gleichen Lichtstärke meistern mussten (Abbildung 3). Neben dem Gedächtnis für deklaratives Lernen werden auch sogenannt höhere kognitive Funktionen im Bereich der Exekutivkontrolle und der Daueraufmerksamkeit mit blauangereichertem Licht im Vergleich zu Glühlampenlicht verbessert. Abbildung 2. Dosis-Wirkungsbeziehung zwischen der Beleuchtungsstärke und der phasenverschiebenden Wirkung von Licht nach Zeitzer 1999. Jedes Quadrat symbolisiert eine Versuchsperson, die während 6.5 Stunden mit je einer unterschiedlichen Lichtstärke (210000 lux) bestrahlt wurde. 4. Licht wirkt antidepressiv. Die Lichttherapie ist das Mittel erster Wahl bei der Behandlung von Winterdepressionen, und deren Kosten werden schon seit über 20 Jahren von den Schweizerischen Krankenkassen vergütet. Zudem zeigen neue Studien, dass Licht auch bei anderen psychiatrischen Erkrankungen antidepressiv und gegen die häufige Tagesmüdigkeit wirkt. Hier ist der Wirkungsmechanismus weitgehend unbekannt. Neuere Untersuchungen mit bildgebenden Verfahren für die Hirnaktivitätsmessung zeigen, dass Licht direkt auf die sogenannten Mandelkerne wirkt. Das ist ein wichtiges Hirngebiet für die Verarbeitung von Gefühlen und Emotionen. Licht am Abend die innere Uhr zurückverschiebt in eine westliche Zeitzone. Mit einem einzigen Lichtpuls von 10000 lux für 3 Stunden kann man die Circadianrhythmik bis zu 2 Stunden vor- bzw. nachverschieben. 2. Licht macht wach. Eine tagaktive Spezies wie der Mensch empfindet das Licht als "Wachstimulus". Im Gegensatz dazu wirkt Licht bei nachtaktiven Tieren schlafinduzierend. Ab etwa 100 lux wirkt Licht bei jungen Menschen wachheitssteigernd. Das entspricht einer nicht allzu starken Raumbeleuchtung. Diese Helligkeit kann aber schon vor einem Computerbildschirm sitzend erreicht werden. Neben der Lichtstärke spielt auch die Wellenlänge, also die farbliche Zusammensetzung des Lichts, eine wichtige Rolle. So hat Licht mit hohen Blauanteilen eine stärkere wachheitssteigernde Wirkung als Licht in anderen Farben, weil spezielle Lichtrezeptoren in der Netzhaut besonders bei Blaulicht aktiv werden, und so die nicht-visuellen Lichtwirkungen gezielt auf das Gehirn weitervermitteln. Es wird vermutet, dass die Rezeptoren für die nicht-visuellen Lichtwirkungen eng mit den klassischen visuellen Rezeptoren, den Stäbchen und Zäpfchen, kommunizieren. Je nach Lichtstärke und Dauer des Lichtstimulus beteiligen sich Stäbchen, Zäpfchen oder sogenannte "intrinsisch photosensitive Ganglienzellen in der Netzhaut" unterschiedlich stark an der Vermittlung nicht-visueller Lichtwirkungen. Konsequenzen für das Licht am Arbeitsplatz Am Arbeitsplatz müssen die Lichtbedingungen vor allem bezüglich visuellem Komfort optimal abgestimmt werden. In letzter Zeit spielen aber auch die nicht-visuellen Lichtwirkungen zunehmend eine grössere Rolle. Aufgrund der neuen Forschungsresultate wie Lichtqualität und Wohlbefinden zusammenhängen, hat die Lampenindustrie ein neues Geschäftsfeld entdeckt. So erhofft man sich positive Effekte auch von besserem Licht am Arbeitsplatz. Ob diese Hoffnung berechtigt ist, haben Forscher der Universität Surrey in einem Bürogebäude in England untersucht. Sie bestrahlten je ein Stockwerk zuerst vier Wochen mit weissem Licht und dann vier Wochen mit blau angereichertem Licht oder umgekehrt. Sowohl Aufmerksamkeit als auch Gemütslage, Leistung, Konzentration und Sehkomfort waren beim blauweissen Licht signifikant verbessert. Auch konnten die Probanden in der Nacht besser schlafen. Wichtige Lichtquellen im Büro sind nicht nur Lampen, sondern auch die Bildschirme. Biologisch besonders aktiv sind Modelle der neueren Generation mit LEDs, denn sie emittieren stark im blauen Wellenlängenbereich. Neben der geistigen Leistungsfähigkeit wie oben erwähnt, wirken LED Bildschirme auch auf physiologische Messgrössen beim Menschen wie zum Beispiel die abendliche Produktion des Dunkelhormons Melatonin und die elektro-enzephalographisch gemessene Hirnaktivität (siehe 1). Neben der Lichtgestaltung mit künstlichem Licht im Büro ist aber auch der Einbezug von natürlichem Tageslicht sehr wichtig. Schon 1971 definierte der Biologe Stephen Boyden das Bedürfnis nach Tageslicht als eine der "well-being needs": als Voraussetzung für ein Leben ohne stressbedingte Krankheiten. Man weiss, dass Mitarbeiter, die wenig Tageslicht abbekommen, unzufriedener und gesundheitlich anfälliger werden (Berliner Ergonomic Instituts für Arbeitsund Sozialforschung). Darum arbeiten Physiker, Lichtplaner, Architekten und Chronobiologen fieberhaft an ausgeklügelten Systemen und Gebäudegrundrissen, um das Tageslicht bis in hinterste Zimmerwinkel zu leiten. Eine ideale Lösung wäre, eine biodynamische Lichtquelle am Arbeitsplatz zu haben, die punkto Intensität und Wellenlänge (Farbe) dem 3. Licht macht helle. Neue Untersuchungen zeigen, dass Licht auch direkte Auswirkungen auf die kognitive Leistungsfähigkeit von Menschen hat. Wir konnten zum Beispiel feststellen, dass Versuchspersonen, die eine Lernaufgabe vor einem mit Leuchtdioden (LED) mit vielen Blauanteilen bestückten Abbildung 3. Positive Wirkung von LED Computerbildschirmen auf höhere kognitive Funktionen im Vergleich zu nicht-LED Computerbildschirmen, die weniger Blauanteile im Lichtspektrum haben. 48 Communications de la SSP No. 37 allerdings, dass es für eine solche Richtlinie noch zu früh ist. Es sind noch zu viele Fragen offen, und es mangelt an Studienergebnissen, um sich derart festzulegen. Es ist aber sehr positiv, dass neben den visuellen Aspekten nun vermehrt die Wirkungen des Lichts auf die innere Uhr und deren Regulation des Schlaf-Wachrhythmus, der kognitiven Leistung sowie der Stimmung berücksichtigt werden, denn Licht ist mehr als nur Helligkeit. natürlichen Wechsel des Tagelichts möglichst nahe kommt. Denn evolutionsgeschichtlich gesehen, wurde der Mensch nicht fürs Büro konzipiert. Für uns wäre es normal, wenn wir tagsüber draussen im Hellen wären. Einen sehr innovativen Ansatz, dieses Dilemma zu entschärfen, kommt derzeit vom Fraunhofer Institut, das eine dynamische Lichtdecke mit Tausenden kleiner LEDs entwickelt hat, welche dem Büroangestellten das Gefühl vermittelt, unter freiem Himmel zu arbeiten (http://www.fraunhofer.de/en/press/research-news/2012/january/sky-light-sky-bright.html). Erste Untersuchungen zeigen, dass ein solches Lichtszenario vor allem bei der Verrichtung von kreativen Arbeiten am Computer auf grossen Anklang stösst. Neben dieser kreativen technischen Lösung der Bürobeleuchtung versucht man eine nüchterne Vornorm zu erstellen, um die wichtige Begriffe zur cirkadianen, nicht-visuellen Wirkung von Licht auf den Menschen zu klären (DIN V 5031-100). Das Ziel ist es, aufzeigen, wann und wie biologisch wirksame Beleuchtung einzusetzen ist, und wie viel wirksamer sie ist als normales Licht. Viele Forscher glauben Prof. sc. natw. Christian Cajochen leitet das Zentrum für Chronobiologie an der Psychiatrischen Universitätsklinik in Basel. Seine Forschungsinteressen umfassen die circadiane und homöostatische Regulation der Schlaf/Wachrhythmik beim Menschen, die nichtvisuelle Lichtwirkung in der Chronobiologie, sowie circadiane Schlaf-Wachstörungen bei psychiatrischen Patienten. Lighting Application for Non-Visual Effects of Light Andreas Wojtysiak, Alfred Wacker and Dieter Lang, Osram AG Introduction sponse is the curve for nocturnal melatonin suppression. Several models have been developed to describe this response with minor deviations when these were used to rate white light with respect to its circadian input. The models of Gall [5] and Rea [6] differ with respect to the effect of light in the green wavelength region, which might be of interest when comparing small waveband (colored) light sources. In total, it can clearly be stated, that blue spectral components in light act on the internal clock system by affecting circadian amplitude and phase. The discovery of melanopsin containing retinal ganglion cells with intrinsic photoreception (ipRGC) at the beginning of this millennium [1, 2, 3] evoked interest not only in the research community, but also in the lighting industry. Beneficial health effects of light have been discussed not only since evidence for the use of light in psychiatric disorder therapy was achieved. One obvious drawback for broader application was always the need for additional energy, because clear effects with the typical light used for illumination purposes were dependent on higher illumination levels. It now has turned out, that the lighting used in previous laboratory and application studies was not sufficiently adapted to the non-visual reception system and cofactors could have masked these effects considerably. Though there is still discussion about the optimal lighting for non-visual effects with minimum energy use, there is no doubt in the scientific community that appropriately timed stimulation of the ipRGC during the day and avoidance of stimulation in the night stabilizes our circadian system. This leads to a more efficient nocturnal sleep and better daytime activity and alertness levels. Alertness is also directly affected by input to the ipRGCs, resulting in acutely increased performance in laboratory testing and higher activity levels in corresponding nuclei of the brain [4]. This article will highlight how to transfer scientific results on non-visual effects - also called biological effects - of light into lighting application. Fig. 1: action spectrum c() for biological effects and visual sensitivity curve v() combined from different sources. The model from Gall [5] was implemented in the German prestandard DIN V 5031-100:2009 [7], which contains terms and definitions for biological effects of light. Using the metrics described there, it is possible to rate lamp spectra according to their biological efficiency in addition to light output for vision. A lamp spectrum with a higher socalled biological action factor (abiol v ≥ 0,8) has a high fraction of short wavelength spectrum, a high correlated color Lighting Technology for non-visual effects Light Sources A number of studies on the ipRGC have shown that the action spectrum of their photopigment melanopsin peaks in the blue spectrum around 480 nm. No nervous cell responses were elicited by yellow or red light. The best described action spectrum for a more complex biological re49 SPG Mitteilungen Nr. 37 is clear that the dynamics of daylight follows a rhythmic change in the course of day and night, and that this is a benchmark for good artificial lighting also. For day time application, changes in biological efficiency of applied lighting with positive impact on circadian rhythm stability, sleep/ wake cycle, alertness and cognitive performance can be achieved with light management technology already available. The biological effectiveness in nature emanates from a combination of spectral composition and illuminance level, being in average at highest level around noon and at minimum in the night. Technically, this situation can be simulated by dimming the relative contribution of lamps with different light colors against each other in order to have a white light color but with different portions of blue spectral components appropriate to the respective daytime. temperature, and is generally more suitable to represent the active and day time part of the circadian day, especially in the morning hours. Cool white light sources including LEDs and fluorescent lamps may be used for this purpose. While stabilizing circadian rhythms when applied over the day, this spectrum is not suited for the regenerative and nocturnal phases, typically in the late evening and night. Warm white lamps with low biological action factors (abiol v ≤ 0,4) have a lower influence on the ipRGCs and on the internal clock. These lamps are more suited when light for vision is needed, but an influence on the circadian phase or an alerting effect should be avoided. Halogen lamps, warm white LEDs or fluorescent lamps are suited to achieve this. To balance best with visual and ecological needs, it seems advisable to use different CCT lamps or light sources with high energy efficiency over the day and use them as needed. This will result in higher installation costs in the short term, but will be the most sustainable solution in the long run. Warm colors with only little biological effects can maintain good vision without strongly influencing circadian effects in the evening, while cooler colors with enriched blue content used over the day are providing good vision and higher biological effectiveness simultaneously. The evening and night scenario also allows to reduce the laminar light distribution and a change to spot-like illumination exclusively. This allows also substantial reductions in amount of energy needed for lighting, as only the visual tasks and emotional aspects have to be respected in these hours. Reductions in energy consumption may further be achieved by including sensors and intelligent controls, without deductions in illumination quality. Luminaires The biological photoreceptors are widely distributed over the eye’s retina and more sensitive in the nasal and inferior region than in the upper part [8]. For biological effects it is essential to address many of these receptors, like the sky does in nature. Good effects indoors will be achieved with light coming from the upper field of view and covering a wide solid angle, e. g. from the ceiling and the upper surfaces of walls. Consequently, biologically effective illumination requires planning and luminaires fitting to this concept, with a high proportion of indirect lighting or laminar design, thus leading to suitable vertical illumination levels. Up to now, no dose-response curve describing the relationship between lighting area and biological effect size has been established. In the meanwhile, the general recommendation for application must be to "maximize" the lighting area, while keeping luminance levels low in order to avoid glare effects. Lighting Application Studies Application studies (like the examples below) showed, that non-visual effects of light may be achieved with moderate effort in energy consumption by using modern lighting systems and control. The general strategy is to differentiate lighting according to time of the day and needs. Controls and Light Management Systems (LMS) Natural daylight is highly variable, especially in terms of illuminance levels but also in terms of color temperature. It Better lighting in nursing homes improved the nocturnal sleep and daytime activity as well as psychological scores of elderly persons in several studies [9, 10]. Old persons are especially dependent on a lighting change because of their reduced transmission of the dioptric apparatus. The hazing and yellowing of the lenses with age reduces drastically the Fig. 2: Lighting concept with pendant luminaires for day-time office workers including non-visual effects of light: Left: Day scenario with task lighting by warm white direct light and additional cool white light to the ceiling and upper wall to address ipRGC. Right: Evening and night scenario with warm white task lighting only. 50 Communications de la SSP No. 37 short wavelength light arriving at the retina. This effect was counteracted by the lighting. Jet Lag and Shift Work Natural light sets the internal clock, but humans often challenge this system with more or less voluntary changes in day/night behavior. Jet travel is such a challenge, shift work is another. The internal clock shifts about 1 hr per day in such scenarios. With timed biologically active light (as described in the main text) and avoidance of light at other appropriate times, it appears possible to adapt to a new time zone much faster. Shifts of more than 3 hrs with one light episode have been achieved in laboratory settings [a]. But at present, there is no reliable and robust scientific base how to handle lighting for shift workers. Actual recommendations range from shortening the shift schedules in order to reduce frequent massive circadian disruption as stated by some ergonomics experts to shifting totally (also in the worker’s free times) to the new shift schedule as proposed by chronobiologists, with considerable consequences for social life of those affected [b]. A stronger synchronization by daytime office light and improvements in subjective performance in office workers have been achieved with fluorescent lamps of higher CCT than the typical 4000 K lamps used in this application [11, 12]. For daytime indoor workers, this could be a first step to a better lighting but it is needed to say that this scenario might not be optimal for late office hours. Comparable benefits have been shown in schools, leading to increased scholar performance of the pupils and in hospital settings, where the recovery phase could be shortened. Conclusion Although scientific researchers still have numerous questions in this field, these first results of application of the new findings on non-visual effects of light open a very promising future for improvements in interior illumination. This is true for the professional lighting as well as for the lighting at home. [a] Khalsa, S. B., M. E. Jewett, et al. (2003). "A phase response curve to single bright light pulses in human subjects." J Physiol 549 (Pt 3): 945-52. [b] Roenneberg, T. (2009): "New approaches in investigating the consequences of shift-work". 3rd DIN Expert Panel Effect of Light on Human Beings, DIN. Berlin, Beuth Verlag. References [1] Brainard, G. C., et al. (2001). "Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor." J Neurosci 21(16): 6405-12. [2] Thapan, K., et al. (2001). "An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans." J Physiol 535 (Pt 1): 261-7. [3] Berson, D. M., et al. (2002). "Phototransduction by retinal ganglion cells that set the circadian clock." Science 295(5557):1070-3. [4] Vandewalle, G., P. Maquet, et al. (2009). "Light as a modulator of cognitive brain function." Trends Cogn Sci 13(10): 429-38. [5] Gall, D., Bieske, K. (2004). Definition and measurement of circadian radiometric quantities. CIE Symposium '04: Light and Health: non-visual effects, University of Performing Arts, Vienna, CIE. [6] Rea, M. S., et al. (2005). "A model of photo¬transduction by the human circadian system." Brain Res Brain Res Rev 50(2): 213-28. [7] DIN V 5031-100:2009-06 Optical radiation physics and illuminating engineering - Part 100: Non-visual effects of ocular light on human beings - Quantities, symbols and action spectra [8] Glickman, G., et al. (2003). "Inferior retinal light exposure is more effective than superior retinal exposure in suppressing melatonin in humans." J Biol Rhythms 18(1):71-9. [9] Van Someren, E. J., A. Kessler, et al. (1997). "Indirect bright light improves circadian rest-activity rhythm disturbances in demented patients." Biol Psychiatry 41(9): 955-63. [10] Riemersma-van der Lek, R. F., D. F. Swaab, et al. (2008). "Effect of bright light and melatonin on cognitive and noncognitive function in elderly residents of group care facilities: a randomized controlled trial." JAMA 299(22): 2642-55. [11] Vetter, C., M. Juda et al. (2011) “Blue-enriched office light competes with natural light as a zeitgeber”; Scand J Work Environ Health 37(5): 437445 [12] Viola, A. U., L. M. James, et al. (2008). "Blue-enriched white light in the workplace improves self-reported alertness, performance and sleep quality." Scand J Work Environ Health 34(4): 297-306. Andreas Wojtysiak ist promovierter Biologe und nach Tätigkeiten am IMST in Kamp-Lintfort, in der Medizinischen Fakultät der privaten Universität Witten/Herdecke und bei BenQ Mobile in München seit 2008 bei der Osram AG München als Innovation Manager Light & Health beim Strategic Innovation Management (SIM) aktiv. Alfred Wacker (Dipl.-Ing.) war früher Leiter des Marketings bei OSRAM und ist nun für seine Firma beratend und in internationalen Gremien und Komitees tätig, u. A. im "Lighting Technology Standards Committee NA 058-00-27 AA (FNL 27) 'Effects of light on human beings' at DIN", dem auch die Schweiz angehört. Dieter Lang (Dipl.-Phys.) forschte früher bei Osram an "ceramic metal halide lamps" und ist seit der Formierung des Corporate Innovation Management Department im Jahr 2004 als Head Europe zuständig für Innovationen. 51 Warum selber bauen? 600 MHz Lock-In Amplifier 2 units 100 dB dynamic reserve Fokus auf das Wesentliche Sie wünschen sich mehr Zeit für Forschung? Sie würden Ihre Ergebnisse gern früher und häufiger publizieren? Unser Lock-In-Verstärker erspart Ihnen die Zeit, die Sie mit dem Entwickeln eigener Messschaltungen verbringen. Vereinfachter Laboraufbau Unser neuer UHFLI ist mit zwei unabhängigen LockIn-Einheiten ausgestattet und dreimal schneller als jeder andere kommerzielle Lock-In-Verstärker. Signalgenerator, Oszilloskop, Frequenzganganalysator und FFT-Spektrumanalysator sind im Gerät integriert. Das Ergebnis: weniger Kabel, mehr Zuverlässigkeit. www.zhinst.com Technologieführer für Lock-In-Verstärker Zurich Instruments steht für unübertroffenes Knowhow auf den Gebieten der Quanten- und Nanophysik, Sensorik und Aktorik, Laserspektroskopie und Biotechnologie. Präzise und verlässliche Ergebnisse, die zeitnah veröffentlicht werden – das ist unser Ziel für Sie. Your Application. Measured. Zurich Zurich Instruments Instruments