OilGasPublisher
Transcription
OilGasPublisher
C 6183 E ERDÖL ERDGAS OILS KOHLE GA Dezember HEFT 12, 2015 131. JAHRGANG 12 ZINE MAGA EUROPEAN OF ITION NAL EDHLE NATIO INTER ERDGAS KO ERDÖL Aufsuchung / Gewinnung . Verarbeitung / Anwendung . Petrochemie . Kohlen- / Biomasseveredlung Full power control for industry grids ENEAS power management Integrated monitoring and control with automatic generation control and fast load shedding improves reliability of industrial power grids. We support your grid operator with the ENEAS power management system (PMS). This leads to reduced downtime for production and optimum spinning reserve. You don’t have to worry about power import control and stable frequency/voltage in island mode. PMS automatically detects different island conditions and selects the optimal operation mode. The all-in-one user interface provides fast and easy access to all required information. Various levels of operator training will support improved grid operation. Scenario analysis using real-time simulation adds even more security for complex grid situations. Give your industry grid a kick and profit from full power system control with ENEAS power management. siemens.com/eneas-pms ERDÖL ERDGAS KOHLE vorm. Allgemeine Österreichische Chemiker und Techniker Zeitung – Central Organ für Petroleum-Industrie (Gründungsjahr 1883, Wien) vereinigt mit Erdöl & Kohle, Erdgas Petrochemie Technisch / wissenschaftliche Zeitschrift für Aufsuchung und Gewinnung, Transport und Speicherung von Erdöl und Erdgas, Verarbeitung und Anwendung von Mineralöl und Erdgas, Petrochemie, Kohlenveredlung Enthält 4 x jährlich (März, Juni, September, Dezember) das OIL GAS European Magazine – Int. Edition of ERDÖL ERDGAS KOHLE Organ der: DGMK Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle ÖGEW Österreichische Gesellschaft für Erdölwissenschaften Wissenschaftlicher Beirat: Prof. Dr. Leonhard Ganzer, ITE, TU Clausthal, Clausthal-Zellerfeld; Univ.-Prof. Dr. B. Geringer, Institut für Verbrennungskraftmaschinen, TU Wien; Dr. R. O. Elsen, RWE Power AG, Essen; Univ.-Prof. Dr.-Ing. W. Klose, Universität Kassel; Dr. Dipl.-Geol. M. Kosinowski, BGR, Hannover; Prof. Dr.-Ing. C. Küchen, MWV Mineralölwirtschaftsverband e. V., Berlin; Dipl.-Ing. H. Langanger, Strasshof bei Wien; Prof. Dr.- Ing. C. Marx, Owingen/Clausthal-Zellerfeld; Prof. Dr. K. Millahn, Montanuniversität Leoben; Dipl.-Ing. A. Möhring, Vermilion Energy Deutschland GmbH, Schönefeld; Prof. Dr.-Ing. M. Reich, TU Bergakademie Freiberg; Prof. Dr. Dipl.Ing. P. Reichetseder, Hattingen; Prof. Dr. R. Reimert, Engler-Bunte-Institut, Karlsruhe; Prof. Dr. K. M. Reinicke, ITE, TU Clausthal, Clausthal-Zellerfeld; Dr. P. Sauermann, Deutsche BP Aktiengesellschaft, Bochum Redaktion: Dipl.-Geol. Hans J. Mager (Chefredakteur), Hamburg Dr. Christoph Capek, Wien Verlag: EID – Energie Informationsdienst GmbH Anschrift von Redaktion und Verlag: Neumann-Reichardt-Straße 34 22041 Hamburg Postfach 70 16 06, 22016 Hamburg Tel. (+49-40) 65 69 45-0, Fax 65 69 45-51 E-mail: eek@OilGasPublisher.de In Österreich: c/o ÖGEW, Wiedner Hauptstraße 63 Zimmer 4208, 1045 Wien Tel. (+43) 5 90900-4891, Fax -4895 E-mail: oegew@oil-gas.at Geschäftsführung: Stefan Waldeisen Anzeigenleitung: Harald Jordan Vertrieb: Margret Storbeck Titelbild: GDF SUEZ E&P Deutschland GmbH, Lingen Bohrplatz Römerberg vor Sonnenuntergang ISSN 0179-3187 131. Jahrgang, Dezember 2015, Heft 12 ERDÖL ERDGAS OILS KOHLE GA EUROPEAN MAGAZINE ION OF L EDIT E ATIONA HL INTERNERDGAS KO ERDÖL Aufsuchung / Gewinnung . Verarbeitung / Anwendung . Petrochemie . Kohlen- / Biomasseveredlung Inhalt / Contents Geologie / Geology Georgia – Petroleum Geologic Link from the Black Sea to the Caspian Region W. NACHTMANN, A. JANIASHVILI and Z. SURAMELASHVILI OG 185 Bohr technik / Drilling Successful Workover Operations for Milling Permanent Bridge Plugs at 8000 m MD – A Case Study K. SOLIMAN OG 193 Erdöl-/Erdgasfördertechnik / Oil/Gas Production BTEX Removal from Production Water using Associated Gas M. VALKENIER, G. HINNERS, and G. THEMANN OG 198 Analyses of Operating Electric Submersible Pumps (ESPs) of Different Manufacturers – Case Study: Western Siberia A. SUKHANOV, M. AMRO and B. ABRAMOVICH OG 202 Improvement of Oil Production Rate using the TOPSIS and VIKOR Computer Mathematical Models M. ALEMI, M. KALBASI, F. RASHIDI OG 205 Real Value of “Real Options” A. ZICH, K. S. VEREVKIN, and D. A. SOZAEVA OG 210 Maschinen & Anlagen / M achiner y & Plants Oil-Flooded Screw Compressors for Unconventional Gas A. ALMASI OG 212 Diagnosis of Centrifugal Pumps using Vibration Analysis M. MINESCU, I. PANA and M. STAN OG 215 Wartung & Instandhaltung / Maintenance & Repair Smarter Work with “Smartphones” S. CIERNIAK and M. DUMAN OG 219 Rubriken Nachrichten / News OIL GAS News Produkte & Dienstleistungen / Products & Services Bücher & Berichte / Books & Reports Veranstaltungen • Termine / Events of Note Tagungskalender/Calendar Persönliches / Personal Notes 452 OG 178 459, OG 221 461 461 460, OG 224 464 Mitteilungen Mitteilungen der DGMK • ÖGEW / Societies News Bericht über die ordentliche Mitgliederversammlung der DGMK Neue Mitglieder 463 463 465 Mitteilungen des FAM / FAM News 465 Nachrichten DEUTSCHLAND DVGW stellt Studie zur Wasserstoffeinspeisung ins Erdgasnetz vor Einspeisung von bis zu zehn Volumenprozent Wasserstoff unkritisch Power-to-Gas kann einen wichtigen Beitrag zur Umgestaltung des Energiesystems leisten. Aufgrund seiner Kapazität ist das 500.000 km lange Erdgasnetz in Deutschland sehr gut für die Aufnahme und Speicherung von Wasserstoff aus erneuerbarem Strom geeignet. Der Wasserstofftoleranz des deutschen Erdgasnetzes kommt damit eine entscheidende Bedeutung für die Einbindung von Ökostrom ins Gasnetz zu. Vor diesem Hintergrund kommt eine Ende Oktober auf der gat 2015 in Essen vorgestellte Studie zu dem Ergebnis, dass die bestehende Erdgasinfrastruktur für Wasserstoffbeimischungen im einstelligen Prozentbereich von bis zu 10 Vol.-% grundsätzlich geeignet ist. In diesem in Deutschland und Europa bisher einzigartigen, von E.ON und dem DVGW verantworteten Projekt wurden dem Erdgas in einem Erdgasverteilnetz der Schleswig-Holstein Netz AG mit seiner bestehenden Infrastruktur und Gerätetechnik über mehrere Monate steigende Anteile an Wasserstoff zugemischt. Bislang wurden direkte Netzeinspeisungen mit unveränderter Gerätetechnik nur bis 2 Vol.-% Wasserstoff erforscht. Das DVGW-Forschungsprojekt »Ermittlung der Wasserstofftoleranz der Erdgasinfrastruktur und assoziierten Anlagen« überprüfte das Polyethylen-Netz vor und während der Einspeisung ohne feststellbare Auffälligkeiten. Die Einspeisung erfolgte bei deutlich fluktuierender Erdgasabnahme in mehreren Stufen von 4, 6,5 und 9 Vol.-% Wasserstoffbeimischung. Durch begleitende Messungen an zahlreichen Kundenanlagen konnte die Wasserstoffkonzentration und Abgaszusammensetzung am jeweiligen Gasgerät erfasst werden. Neben den Messungen wurden auch Rückmeldungen von Kunden bzw. Handwerkern in der Analyse des Feldtests berücksichtigt. Die Ergebnisse waren eindeutig: Die Gesamtheit der Kohlenstoffmonoxid-Messergebnisse blieb praktisch unverändert und liegt in dem Bereich, der auch durch die Schornsteinfegerstatistik der letzten Jahre ausgewiesen wird. Gleichwohl gebe es noch Forschungsbedarf hinsichtlich einiger zentraler Elemente wie etwa Erdgasspeicher, Gasturbinen und den Tanks von Erdgasfahrzeugen, so die Studie. AGEB-Prognose: Anstieg des Energieverbrauchs um 1,7 % Die Arbeitsgemeinschaft Energiebilanzen (AGEB) rechnet in diesem Jahr mit einem Anstieg des Energieverbrauchs in Deutschland um etwa 1,7 % auf rund 456 Mio. t. SKE. Wie die AGEB in ihrer traditionellen Herbstprognose ausführt, werden die erneuerbaren Energien mit einen Zuwachs von knapp 9 % am stärksten zulegen. Es folgt aufgrund der gegenüber der im Vorjahr kühleren Witterung und dem damit höheren Wärmebedarf das Erdgas mit einem Plus von etwa 8,5 %. Der Mineralölverbrauch wird in etwa auf dem Niveau des Vorjahres liegen. Während der Verbrauch an Steinkohle um rund 2 % zurückgeht, wird es bei der Braunkohle ein leichtes Plus von knapp einem Prozent geben. Der Beitrag der Kernenergie wird weiter sinken. In den ersten neun Monaten des laufenden Jahres lag der Verbrauch nach ersten Berechnungen der AG Energiebilanzen um rund 2 % über dem Vorjahreszeitraum. Insgesamt erreichte der Energieverbrauch nach drei Quartalen eine Höhe von 333,0 Mio. t SKE. Um den Temperatureffekt bereinigt, hätte sich der Energieverbrauch im Jahresverlauf nur geringfügig erhöht. Der Mineralölverbrauch lag nach neun Monaten um rund 1 % unter dem Vorjahreszeit452 raum. Der Verbrauch an Kraftstoffen stieg um knapp 1,5 % und erreichte damit einen Anteil von rund 60 % am gesamten Mineralölverbrauch. Der Absatz an leichtem Heizöl sank um etwa 7 %. Damit haben die Verbraucher trotz niedriger Preise bisher keine Aufstockung ihrer Bestände vorgenommen. Der Verbrauch an schwerem Heizöl stieg infolge höherer Bezüge der Petrochemie deutlich an. Der Erdgasverbrauch verzeichnete ein Plus von 10 %. Hauptursache des Anstiegs war die im Vergleich zum Vorjahr bisher durchschnittliche und damit kühlere Witterung, die den Einsatz von Erdgas zur Wärmeerzeugung ansteigen ließ. Der Verbrauch an Steinkohle sank in den ersten neun Monaten leicht um 0,5 %, während der Verbrauch an Braunkohle um 1,7 % über dem Wert des Vorjahreszeitraumes lag. Bei der Kernenergie gab es ein leichtes Minus von 1,3 %. Die erneuerbaren Energien erhöhten ihren Beitrag um insgesamt 9 %. Bei den sonstigen Energieträgern kam es zu einem Plus von etwa 4 %. Der Ausfuhrüberschuss beim Strom erreichte eine Höhe von 129 PJ (rund 4,4 Mio. t SKE) und damit bereits nach neun Monaten den Wert des gesamten Vorjahres. Drilling Simulator Celle hat Versuchsbetrieb aufgenommen An der Forschungseinrichtung Drilling Simulator Celle (DSC), die von der TU Clausthal zusammen mit dem Energie-Forschungszentrum Niedersachsen betrieben wird, haben im Oktober die ersten Projekte begonnen. Langfristig verfolgt der DSC mit seiner Forschung das Ziel, Tiefbohrungen auf Erdöl, Erdgas und Geothermie sowie unterirdische Speicher kostengünstiger und sicherer zu machen. Die Forschungseinrichtung wird einen Software- und einen Hardware-Simulator aufweisen, deren Finanzierung das Land Niedersachsen übernimmt. Das wissenschaftliches Konzept wurde von Professor Joachim Oppelt – er leitet den DSC und hat gleichzeitig die Professur für Tiefbohrtechnik, Erdölund Erdgasgewinnung an der TU Clausthal inne – entwickelt. Im ersten Halbjahr 2016 soll der Aufbau im Wesentlichen abgeschlossen sein. In den vergangenen Monaten gelang es bereits, zwei von der Industrie beauftragte Projekte für den DSC zu akquirieren. Mit den beiden Projekten, die von zwei lokalen Vertretern internationaler bohrtechnischer Dienstleister vergeben wurden, ist im Oktober begonnen worden. Im einen Fall handelt es sich um ein Gemeinschaftsprojekt mit dem Institut für Technische Mechanik der TU Clausthal, Projektleiter ist Professor Gunther Brenner. Die Arbeit beinhaltet Tätigkeiten im Bereich der computerbasierten Strömungssimulation, die hauptsächlich am Institut in Clausthal durchgeführt, aber vom DSC mit betreut werden. Das zweite Projekt ist deutlich praktischer ausgerichtet. Hier werden am Drilling Simulator Celle in der sogenannten »Flow Loop« in waagerechter Bohrführung experimentelle Untersuchungen bzw. Messungen an Modulen neu entwickelter Untertage-Bohrsysteme durchgeführt. Neue Rohrfernleitungen zwischen Scholven und Marl Evonik plant den Ausbau der Fernleitungsinfrastruktur zwischen dem Standort Gelsenkirchen-Scholven der Ruhr Oel GmbH und dem Chemiepark Marl. Geplant ist die Errichtung einer Pipeline, die zum Transport von Heizgasen verwendet werden soll. Daneben wird ein Leerrohr gezogen, damit bei einer nächstmöglichen Erweiterung keine neuen Verlegearbeiten erforderlich werden. Die neuen Rohrfernleitungsanlagen werden größtenteils parallel zu bestehenden Fernleitungen verlegt. Die Verlegearbeiten sollen bis voraussichtlich Ende 2016 abgeschlossen werden. ERDÖL ERDGAS KOHLE, 131. Jg. 2015, Heft 12 NACHRICHTEN Umfassende Investitionen in weitere Erschließung der Lagerstätte Speyer geplant Das Konsortium aus GDF SUEZ E&P Deutschland GmbH (ENGIE) und Palatina GeoCon GmbH & Co. KG, das seit 2008 in Speyer Öl fördert, hat sich entschieden, trotz veränderter wirtschaftlicher Rahmenbedingungen an seinen Plänen zur Erschließung des Erdölfeldes Römerberg-Speyer und der Ausweitung der Produktion auf über 500 t/d festzuhalten. Hierzu wird das Konsortium in den nächsten Jahren einen dreistelligen Millionenbetrag in Bohrungen und die Optimierung der Betriebsanlagen investieren. Voraussetzung für die Erhöhung der Förderung ist ein Planfeststellungsverfahren mit Umweltverträglichkeitsprüfung, für das beim Landesamt für Geologie und Bergbau in Mainz (LGB) ein Antrag eingereicht werden wird. Mit dem Basiskonzept sollen die bereits vorhandenen obertägigen Anlagen wie Speichertanks und Aufbereitungsanlagen auf den beiden bestehenden Betriebsplätzen optimiert werden. Weiterer Bestandteil ist zudem die Errichtung einer etwa 3 km langen Zusatzwasserleitung, um aus einem Brunnen bei Bedarf Zusatzwasser zu entnehmen und zusammen mit dem bei der Erdölproduktion anfallenden Lagerstättenwasser in die Lagerstätte zurückzuführen. Über weitere Schritte wird nach Umsetzung des Basiskonzeptes entschieden, das 2017 realisiert werden soll. Der Transport des Rohöls zur Raffinerie nach Karlsruhe erfolgt wie bisher durch Tankkraftwagen. Derzeit gibt es auf den beiden Betriebsplätzen in Speyer sieben Bohrungen, der aktuelle Plan für die Entwicklung des Erdölfeldes sieht weitere fünf Bohrungen vor. Insgesamt soll damit die Produktion mindestens verdoppelt werden. ONTRAS startet Neubauprojekt im Lausitzer Revier Um die Energie-Infrastruktur in der Lausitz weiter zu verbessern und zukunftsfest zu gestalten, baut die ONTRAS Gastransport GmbH, Leipzig, seit Mitte Oktober 2015 zwei Ferngasleitungen neu. Sie führen vom brandenburgischen Senftenberg bis in den Spreetaler Ortsteil Spreewitz (südlich von Schwarze Pumpe in Sachsen). Die neuen, jeweils rund 35 km langen und parallel laufenden Leitungen ersetzen vorhandene Leitungen, die durch mittlerweile gesperrte Kippengebiete ehemaliger Braunkohletagebaue verlaufen. Mit dem Vorbau der ersten Ferngasleitung (FGL 19) wurde im November begonnen. Die Arbeiten zur parallel laufenden, zweiten Pipeline (FGL 20) sind ab März 2016 geplant. In der jetzt begonnenen Bauphase 2015/2016 werden zunächst diejenigen ERDÖL ERDGAS KOHLE, 131. Jg. 2015, Heft 12 Bohrstatistik 28 B ohrm eter (E rdöl/E rdgas ) in 1000 m 26 A k tiv e B ohranlagen (ink l.Geotherm ie) 24 22 20 18 16 14 12 10 8 6 4 2 0 7 8 9 10 11 12 J an 14 2 3 4 5 6 7 8 9 10 11 12 J an 15 2 3 4 5 6 7 8 9 Erdöl- und Erdgasproduktion im September Erdgasproduktion* (in 1.000 m3) September Januar – September 2015 2015 Vorjahr Zwischen Oder und Elbe Erdölproduktion (in t) September Januar – September 2015 2015 Vorjahr 512 3.857 4.107 1.285 9.222 10.855 2.371 93.300 118.431 118.241 986.997 1.029.300 Zwischen Elbe und Weser 312.508 2.914.713 2.969.967 9.757 87.961 89.890 Zwischen Weser und Ems 206.733 3.286.769 3.610.252 15.612 148.342 156.485 Westlich der Ems 11.139 141.894 148.727 43.293 374.720 379.001 Thüringer Becken 1.152 10.000 9.687 – – – 217 1.809 1.964 16.419 151.433 140.839 Nördlich der Elbe Oberrheintal Alpenvorland Gesamt 1.302 12.190 6.087 3.327 30.558 32.692 535.935 6.464.533 6.869.223 207.935 1.789.233 1.829.061 * inkl. Erdölgas – (9,7692 kWh/m3) Quelle: WEG Bohraktivitäten im September Erdöl-Erdgas-Zahlen im August Bohrmeterleistung Explorationsbohrungen Aufschlussbohrungen Wiedererschließungsbohrungen in m – 1.197,0 ± geg. Vorjahr 0,4 Mineralölprodukte (Mio. t) Feldesentwicklungsbohrungen Erweiterungsbohrungen Produktionsbohrungen Hilfsbohrungen – – – 1.197,0 Anzahl der Bohranlagen am 30. September insgesamt davon aktiv Bohrungen auf Erdöl und Erdgas Aufwältigungen Speicherbohrungen Geothermiebohrungen Sonstige Einsätze August 1/2015 bis 8/2015 32 17 3 12 – 1 1 Quelle: WEG 8,9 72,1 – Dieselkraftstoff 3,2 24,2 3,7 – Ottokraftstoff 1,6 12,1 –1,4 – Heizöl leicht 1,3 10,3 –3,7 – Heizöl schwer 0,4 3,5 38,8 – Rohbenzin 1,3 10,9 –6,5 – Flugturbinenkraftstoff 0,8 5,7 –1,3 Import 3,4 24,3 –0,3 Export 1,8 15,1 8,6 0,217 1,581 –2,9 7,8 60,8 3,8 381,75 –35.3 Rohölaufkommen Eigene Förderung Trassenabschnitte neu gebaut, bei denen die bestehenden Leitungen derzeit durch Sperrgebiete verlaufen. Voraussichtlich 2017 soll dann mit dem etwa 8,4 km langen restlichen Bauabschnitt begonnen werden, in dem die Bestandsleitungen seit jeher in gewachsenem Boden liegen. Das Investitionsvolumen für den gesamten Neubau beläuft sich auf rund 44 Mio. Euro. % Inlandsabsatz gesamt Import Grenzüberg.-Preis, EUR/t Erdgasaufkommen (Mio. TJ*) Inlandsförderung 1) Import (Mio. TJ) 0,025 0,208 –3,8 0,354 2,777 24,5 Grenzübergangspreis, EUR/TJ 5.889,04 –11,2 3 * TeraJoule (35.169 TJ/Mrd. m ) Quelle: BAFA, WEG, eigene Berechnungen 453 NACHRICHTEN GDF SUEZ E&P demontiert CO2-Injektionsanlagen im Feld Altmark Forschungsanlage fehlt Rechtsrahmen Seit 2009 ist die Anlage zur CO2-Injektion im Altmark-Kreis in der Nähe der Ortschaft Maxdorf fertig und betriebsbereit, doch die behördliche Zulassung zur Inbetriebnahme liegt bis heute nicht vor. GDF SUEZ E&P Deutschland, eine Tochter der ENGIE-Unternehmensgruppe, wollte im Rahmen eines Forschungsprojektes untersuchen, ob die Einbringung von Kohlenstoffdioxid in die Erdgaslagerstätte Altmark die förderbare Menge an Erdgas gesteigert hätte. Bereits seit 2012 verfolgt das Unternehmen das Forschungsprojekt aufgrund des fehlen- den Rechtsrahmens nicht weiter. »Wir arbeiten immer an Konzepten, um die Fördertradition in der Region noch möglichst lange fortsetzen zu können. Dieses Projekt hätte dabei helfen können, denn die Erdgasproduktion in der Altmark leistet einen wichtigen Beitrag zur heimischen Energieversorgung und sichert in der Region zahlreiche Arbeitsplätze«, macht Unternehmenssprecher Dr. Stefan Brieske deutlich. Jetzt beginnt der Rückbau der Anlage. Ende November sollten dann die beiden rund 62 t schweren Tanks abtransportiert werden. Fernleitungsnetzbetreiber veröffentlichen modulares Konzept zur Versorgungssicherheit Mit einem umfassenden, modular aufgebauten System, das auf den beiden Pfeilern (Netz-)Stabilitätsreserve und (Lieferanten-)Anreizsystem basiert, bringen die deutschen Fernleitungsnetzbetreiber neue Impulse in die aktuelle Diskussion zum Thema Versorgungssicherheit. In ihrem Eckpunktepapier entwickelt die Vereinigung der Fernleitungsnetzbetreiber Gas e. V. (FNB Gas) ihr eigenes Versorgungssicherheitskonzept, das einen kosteneffizienten Weg zu einer verlässlichen Gasversorgung in Deutschland für kritische Situationen aufzeigt. »Unser Konzept zur Versorgungssicherheit zeichnet sich durch mehrere Kernelemente aus: Deutlich geringere Kosten für Erdgaskunden als bei einer strategischen Speicherreserve, Einbettung in den bestehenden regulatorischen Rahmen und ohne negative Beeinflussung der Handelsmärkte«, nennt Ralph Bahke, Vorsitzender des FNB Gas, die wichtigsten Ergebnisse des Eckpunktepapiers. Das Modul Netz-Stabilitätsreserve wird über die FNB abgedeckt. Es sieht die Einführung einer FNB-Speicherreserve für Leistungsspitzen vor, mit der ein sicheres und zuverlässiges Gasversorgungssystem als Grundvoraussetzung für eine sichere Belieferung garantiert werden soll und zielt auf lokale Netzstabilisierung ab. Das Modul Lieferanten-Anreizsystem wird über die Bilanzkreisverantwortlichen abgedeckt. Damit soll auch in einer Gasmangellage sichergestellt werden, dass alle vertraglichen und gesetzlichen Versorgungspflichten erfüllt werden. Der Einsatz von nichtmarktbezogenen Maßnahmen (z. B. Abschaltung) soll auch bei einer Gasmangellage soweit wie möglich vermieden werden. Förderstränge in Etzel werden verstärkt Derzeit werden die Förderstränge an 28 Kavernen der IVG Caverns GmbH in Etzel verstärkt. Nach dem Abriss zweier Förderstränge im November 2014 hatte das Landesamt für Bergbau, Energie und Geologie (LBEG), Hannover, die IVG Caverns GmbH aufgefordert, vorsorglich ein Konzept zur Verstärkung der Kavernen mit vergleichbaren Fördersträngen vorzulegen. Die Gaskavernen in Etzel sind durch ein Mehrfach-Barrieren-System geschützt, so dass selbst bei Versagen einer Barriere (z. B. Leckage oder Abriss), die zweite dahinter liegende Barriere in vollem Umfang wirksam ist. Allerdings fällt bei Versagen einer Barriere die Kaverne für die Erdgasversorgung aus und muss aufwändig repariert werden, was durch eine Verstärkung vermieden werden kann. Betroffen sind insgesamt 30 Kavernen in Etzel, darunter die zwei Kavernen, an denen die Förderstränge abgerissen sind. Das Konzept wird seit Ende September 2015 umgesetzt. Dabei werden die fehlerhaften Schweißnähte in den Fördersträngen jeweils mit einem innen liegenden Rohr überbrückt. Oberhalb des zusätzlichen Rohres wird ein Sicherheitsventil zum Absperren des Gasflusses eingebaut. Die Arbeiten werden voraussichtlich im vierten Quartal 2016 abgeschlossen sein. Die IVG hat die Firma Halliburton mit der Durchführung der Arbeiten beauftragt. Die Planung und Bauüberwachung führen die Fachfirmen ESK und DEEP/KBB durch. ERDÖL online mit ERDGAS KOHLE www.oilgaspublisher.de Allen Abonnenten steht ERDÖL ERDGAS KOHLE online zur Verfügung. Registrieren Sie sich mit Ihrem Zugangscode über den weblink http://abo.oilgaspublisher.de/index.php?page=register Haben Sie Fragen zum Zugangscode? Bitte wenden Sie sich per E-Mail an: info@oilgaspublisher.de URBAN-VERLAG Hamburg/Wien GmbH eek@oilgaspublisher.de 454 Alle Beiträge und Nachrichten ab der Ausgabe 1/2000 können nach Themen, Titel, Schlagwort sowie Autor gesucht, ausgedruckt oder archiviert werden. Die Inhaltsverzeichnisse können von allen Lesern unter www.oilgaspublisher.de abgerufen werden. ERDÖL ERDGAS KOHLE, 131. Jg. 2015, Heft 12 NACHRICHTEN Aus Koksofengas wird Backpulver Eine völlig neuartige Technologie wurde im Rahmen eines Gemeinschaftsprojekts von der Kokerei Schwelgern (KBS), dem Anlagenbauer ThyssenKrupp Industrial Solutions und der TU Berlin entwickelt. Auf dem Werkgelände von ThyssenKrupp Steel Europe in Duisburg ist eine Pilotanlage in Betrieb gegangen, die eine Substanz produziert, die auch als Backpulver einsetzbar ist. Das Versuchsaggregat nutzt Prozessgase, die bei der Herstellung von Koks entstehen, und wandelt diese in vermarktbare Stoffe wie Düngemittel und Treibmittel für die Chemieindustrie um, gleichzeitig wird der CO2-Ausstoß vermindert. Technologie wandelt Prozessgas in verwertbare Stoffe um Im Vordergrund bei der weltweit ersten Anlage ihrer Art steht nicht, mit der Herstellung des sogenannten Hirschhornsalzes in die Lebensmittelindustrie einzusteigen. »Kokereien gibt es auf der ganzen Welt. Wir wollen mit dem neu entwickelten Verfahren den Betreibern die Chance bieten, ihre Prozessgase sinnvoll weiterzuverwenden und die Produktivität ihrer Anlagen zu steigern«, erläutert Dr. Holger Thielert von ThyssenKrupp Industrial Solutions: »Hierfür haben wir ein Verfahren entwickelt und patentiert, das Koksofengase ressourcenschonend in verwertbare Stoffe umwandelt. Dieses Verfahren können wir weltweit vermarkten oder auch in bestehenden Anlagen installieren.« Am Anfang des neuen Verfahrens steht die Produktion von Koks, neben Eisenerz der Haupteinsatzstoff zur Herstellung von Roheisen im Hochofen. »Dabei wird in der Kokerei Kohle unter hohen Temperaturen ‚gebacken‘. Die in diesem Prozess entstehenden heißen Gase führen eine Reihe von Stoffen mit sich. In der Versuchsanlage wird nun in ein einem komplexen Verfahren das Koksofengas gewaschen. Unter Beigabe von Kohlenstoffdioxid entsteht Ammoniumbikarbonat – umgangssprachlich Hirschhornsalz«, erklärt Dr. Thielert. Die entstehenden Endprodukte sind vielfältig einsetzbar: als Stickstoffdünger, als Treib- und Schäumungsmittel für Kunststoffe oder poröse Keramiken und letztlich auch in der Nahrungsmittelindustrie. Nach erfolgreichen Testläufen unter Laborbedingungen wurden zwei Forscher der TU Berlin mit dem Bau der Pilotanlage in Duisburg beauftragt. Für die Testphase bietet die Kokerei Schwelgern als Teil des integrierten Hüttenwerks von ThyssenKrupp Steel Europe in Duisburg optimale Bedingungen. »Läuft hier auf der Kokerei alles wie geplant, kann das neue Verfahren auch im Großmaßstab angewendet werden«. Die ersten Ergebnisse waren vielversprechend: »95 % des im Koksofengases enthaltenen Ammoniaks können genutzt werden. Aus 15 m³ Koksofengas und 2 m³ Kohlenstoffdioxid entstehen so pro Stunde 15 kg Feststoffe«, erläutert Sebastian Riethof, Wissenschaftler von der TU Berlin, die Effizienz der Anlage. Die Chemieprodukte können so zu marktfähigen Kosten hergestellt werden. Reduktion von CO2-Emissionen Laufen die Tests weiter erfolgreich, wäre dies ein echter Durchbruch in Sachen Produktivität und Ressourceneffizienz – auch für die Kokerei Schwelgern: »Schon jetzt werden hier in Duisburg nahezu alle anfallenden Prozessgase möglichst effizient verwertet«, erklärt KBSGeschäftsführer Peter Liszio. »Gelingt es uns jetzt noch langfristig, sowohl aus den Koksofengasen am Markt absetzbare Produkte für andere Industriezweige herzustellen und zugleich den CO2-Ausstoß des Hüttenwerks zu senken, wäre das ein echter Mehrwert, der auch der Umwelt zugutekommt.« Deshalb könnten Idee und Anlagentyp bei positivem Fortschritt künftig auch weltweit zum Einsatz kommen. Die Kokerei Schwelgern stellt jährlich 2,6 Mio. t Brennstoff für die Duisburger Hochöfen her. Sie ist die modernste Anlage ihrer Art in Europa und besitzt die weltweit größten Öfen. Die Kokereibetriebsgesellschaft Schwelgern GmbH (KBS) ist eine Tochtergesellschaft der ThyssenKrupp Steel Europe. ERDÖL ERDGAS KOHLE, 131. Jg. 2015, Heft 12 (LQIDFK ]XYHUOlVVLJ $QODJHQVLFKHUKHLW YRQ (QGUHVV+DXVHU (LQ *UL̟ HLQ .OLFN ² PLW HLQHU HLQIDFKHQ +DQGEHZHJXQJ KDEHQ 6LH JHUDGH ,KUH 6LFKHUKHLW HQWVFKHLGHQG HUK|KW 9LHOOHLFKW GHQNHQ 6LH GDEHL Å:HQQ GDV GRFK QXU LPPHU VR HLQIDFK ZlUH´ )U GLH 6LFKHUKHLW YRQ 3UR]HVVHQ LQ ,QGXVWULHDQODJHQ EUDXFKW HV PHKU DOV HLQH +DQGEHZHJXQJ 8QG LVW WURW]GHP VR HLQIDFK 'HQQ )HOGLQVWUXPHQWH YRQ (QGUHVV+DXVHU WUDJHQ ]XYHUOlVVLJ ]XU 6LFKHUKHLW ,KUHU $QODJHQ EHL 2E EHLP ([SORVLRQV VFKXW] QDFK ([ LD([ G VRZLH GHU IXQNWLRQDOHQ XQG NRQVWUXNWLYHQ 6LFKHU KHLW 6LH KDEHQ )UDJHQ" 6SUHFKHQ 6LH XQV DQ ZZZGHHQGUHVVFRPDQODJHQVLFKHUKHLW (QGUHVV+DXVHU 0HVVWHFKQLN *PE+&R .* &ROPDUHU 6WUDH :HLO DP 5KHLQ LQIR#GHHQGUHVVFRP ZZZGHHQGUHVVFRP NACHRICHTEN 8. Ölwärme-Kolloquium – Hybride Heizsysteme haben Marktpotenzial Aktuelle Fragen der Ölheiztechnik rund um die Themenbereiche hybride Energie- beziehungsweise Heizsysteme, die Definition von Premium-Heizöl und Entwicklungstendenzen bei flüssigen biogenen Brennstoffen prägten das 8. Ölwärme-Kolloquium, das am 14. und 15. Oktober 2015 in Hamburg stattfand. Redner von Viessmann und des Instituts für Wärme- und Oeltechnik waren überzeugt davon, dass hybride Energie- beziehungsweise Heizsysteme künftig an Bedeutung gewinnen können. Aktuelle ÖlBrennwertheizungen lassen sich mit erneuerbaren Energien zu Hybridheizungen kombinieren. Oft wird Solarthermie als Variante gewählt, doch Wärme und Strom wachsen zunehmend zusammen, so dass Power-to-Heat auch für Individualheizungen aufgrund größerer Flexibilität immer attraktiver wird. Unter Power-to-Heat wird sowohl die Nutzung von Strom aus hauseigenen Photovoltaik-Anlagen als auch von überschüssigem, »abgeregeltem« Strom aus dem Energienetz zur Unterstützung der Wärmeversorgung verstanden. Hilfreich für Brennwertheizungen wie Hybridsysteme kann ihre Online-Anbindung sein. Sie ermöglicht und erleichtert die Überwachung und Regelung von Heizungsanlagen, das heißt sowohl für die Wartung und Fehleranalyse durch den SHK-Betrieb als auch die Statusbetrachtung und Steuerung durch den Hausbe- sitzer aus der Ferne. Beispiele für die bestehenden technischen Möglichkeiten stellte Buderus Deutschland vor. In der Podiumsdiskussion zum Thema »Premium-Heizöl: Braucht die Branche einheitliche Anforderungen?« stellten Vertreter von Additivherstellern, der Mineralölwirtschaft und der Heizungsindustrie fest, dass »Premium-Heizöl« kein geschützter Begriff ist. Sie beleuchteten unterschiedliche Facetten des Themas und waren sich einig, dass eine einheitliche Definition von Premium-Heizöl wünschenswert sei, um die Vorteile qualitativ guter Heizöle für die Verbraucher transparent zu machen. Fragen der Kennzeichnung des Brennstoffs und der Erfüllung nachweisbarer Qualitätskriterien, die beispielsweise die Betriebssicherheit von Heizungen unterstützen, konnten in der Diskussion nicht abschließend geklärt werden. Hydriertes Pflanzenöl ist ein alternativer Brennstoff, der unter bestimmten Voraussetzungen auch im Wärmemarkt eingesetzt werden könnte. Erste Forschungsergebnisse zu stofflichen und produktionstechnischen Fragen der Markteinführung wurden vom Oel-Waerme-Institut und der Technischen Universität Bergakademie Freiberg vorgestellt. Veranstaltet wurde das Ölwärme-Kolloquium vom OWI Oel-Waerme-Institut und dem Institut für Wärme und Oeltechnik (IWO). Wege zur weitgehenden Dekarbonisierung des Energiesystems Um die Erwärmung der Erdatmosphäre auf maximal 2 °C gegenüber dem vorindustriellen Niveau beschränken zu können, müssen die globalen Treibhausgasemissionen in der zweiten Hälfte des Jahrhunderts gegen Null gehen (deep decarbonization). Wie, das untersuchen Wissenschaftler(innen) aus 16 Ländern, die zusammen für 70 % der globalen Treibhausgasemissionen verantwortlich sind, im Rahmen des Deep Decarbonization Pathways Project (DDPP). Nun liegt die Länderstudie für Deutschland vor. Darin analysiert und diskutiert das Wuppertal Institut auch, wie eine adäquate Brücke in eine treibhausgasfreie Zukunft gebaut werden kann. Die Studie arbeitet drei Hauptstrategien heraus, um die Treibhausgasemissionen in Deutschland bis 2050 stark zu reduzieren: – Umfassende Erhöhung der Energieeffizienz, d. h. sinkender Energieverbrauch bei gleichbleibendem Nutzen in allen Endenergiesektoren – Verstärkte Nutzung erneuerbarer Energiequellen im Inland (insbesondere erhöhte Stromproduktion aus Wind- und Solarenergie) – Weitgehende Elektrifizierung von Prozessen (z. B. strombasierte Wärmeversorgung, Elektrofahrzeuge) und mittel- bis 456 langfristig die Nutzung synthetischer Gase und Treibstoffe (Power-to-Gas/-Fuels), die auf Basis erneuerbarer Energien erzeugt werden. Eine weitergehende Dekarbonisierung (90 % und mehr bis 2050) ist möglich, wenn die Energienachfrage auch durch Verhaltensänderungen gesenkt wird, z. B. im Verkehrssektor durch Verlagerung auf klimafreundliche Transportmittel, oder durch Änderungen von Ernährungs- und Heizgewohnheiten. Eine weitere Strategie könnte laut der Studie im Industriesektor die Nutzung der CCSTechnologie (Carbon Capture and Storage) zur Reduzierung des Kohlendioxidausstoßes sein. Ohne geeignete politische, institutionelle, kulturelle und soziale Rahmenbedingungen ist eine Dekarbonisierung nicht möglich, betont Prof. Dr. Manfred Fischedick, Projektleiter und Vizepräsident des Wuppertal Instituts. Vor allem gilt es stabile Investitionsbedingungen zu schaffen, die Gesellschaft in den tiefgreifenden Veränderungsprozess einzubinden und damit auch die öffentliche Akzeptanz für notwendige Infrastrukturprojekte zu sichern. http://wupperinst.org FORSCHUNG Neues Reaktorkonzept soll Energieverbrauch drastisch senken Evonik startet mit Partnern Forschungsprojekt ROMEO Evonik Industries verfolgt in dem jetzt gemeinsam mit acht Partnern gestarteten Forschungsprojekt ROMEO (Reactor Optimisation by Membrane Enhanced Operation) das ehrgeizige Ziel, bei industriell bedeutenden katalytischen Reaktionen in der Gasphase bis zu 80 % Energie und bis zu 90 % Emissionen einzusparen. Das neue Reaktorkonzept soll Herstellung und Aufarbeitung durch den Einsatz von Membranen in einem Schritt erledigen – eine Art 2-in-1-Reaktor, bei dem das gebildete Produkt kontinuierlich aus dem Reaktionsgemisch ausgeschleust wird. Die EU fördert das Projekt im Rahmen des Forschungsprogramms Horizon 2020 mit 6 Mio. Euro. In den kommenden vier Jahren soll anhand von zwei industriellen Prozessen in der Gasphase – der Hydroformylierung und der Wassergas-Shift-Reaktion – die technische Machbarkeit des Reaktorkonzepts demonstriert werden. Demonstrationsanlagen bei Evonik und Linde Evonik wird eine Demonstrationsanlage für die Hydroformylierung aufbauen. Sie verwandelt Olefine und Synthesegas in Aldehyde. Linde dagegen will die Machbarkeit anhand der Wassergas-Shift-Reaktion zeigen, bei der Kohlenmonoxid und Wasser zu Wasserstoff reagieren. Wird für diese Reaktion CO beziehungsweise CO-haltiges Synthesegas aus Biomasse eingesetzt, wäre mit dem neuen Reaktorkonzept ein Weg gefunden, um zum Beispiel aus Holzabfällen Wasserstoff zu erzeugen. Kern des neuen Konzepts ist ein Hohlfaserrohrbündel-Reaktor: Auf einem speziellen Trägermaterial soll ein homogener Katalysator fixiert und auf dessen Außenseite eine Membran aufgebracht werden. Nachdem am Katalysator die Reaktion stattgefunden hat, können je nach Beschaffenheit der Membran entweder das Produkt oder Nebenprodukte die Membran passieren. Das Prinzip birgt zahlreiche technische Herausforderungen, angefangen bei der Beschaffenheit von Träger, Katalysator und Membran bis hin zum modularen Aufbau des Reaktors, der das spätere Up-Scaling erleichtern soll. Zum Konsortium gehören neben Evonik die Friedrich-Alexander-Universität Erlangen-Nürnberg, die RWTH Aachen, die Technical University of Denmark, die BioEnergy2020+ GmbH (Österreich), die LiqTech International A/S (Dänemark), das European Membrane House (Belgien), die Agencia Estatal Consejo Superior de Investigaciones Científicas (Spanien) und die Linde AG. ERDÖL ERDGAS KOHLE, 131. Jg. 2015, Heft 12 1995 - Erdgasspeicher Puchkirchen 2010 - Haidach II (zweite Ausbaustufe) 2007 - Haidach I 2014 - 7 Fields II (Oberkling und Pfaffstätt) 2011 - 7 Fields I (Nussdorf Nord, Nussdorf Süd und Zagling) Chemie + Anlage = eine Lösung: CAC Ein halbes Jahrhundert Erfahrung, die Kompetenz von mehr als 250 Experten für Verfahrenstechnik und Anlagenplanung, erfolgreiche Projekte auf der ganzen Welt: dafür steht CAC. Mit dem ersten Erdgasspeicher für die Rohöl Aufsuchungs AG legten wir 1995 den Grundstein für ein weiteres Geschäftsfeld. Die 2010 finalisierte Anlage in Haidach ist mit einem Arbeitsgasvolumen von 2.640 Mio m3 der zweitgrößte Erdgasspeicher Europas. Wann dürfen wir für Sie planen? www.cac-chem.de NACHRICHTEN ÖSTERREICH POLEN Weg frei für die geplante vollständige Übernahme von EconGas durch OMV Mehr als 1.200 km neue Gasleitungen Die Eigentümer der EconGas GmbH, OMV (64,25 %), EVN (16,51 %), Wien Energie (16,51 %) und Energie Burgenland (2,73 %) haben eine substanzielle Einigung über die zukünftige gesellschaftsrechtliche Struktur der EconGas GmbH erzielt. Eckpunkte sind die Übernahme der Anteile von EVN, Wien Energie und Energie Burgenland im Ausmaß von 35,75 % an EconGas durch die OMV sowie die Fortführung der bestehenden Kundenbeziehungen mit EVN, Wien Energie und Energie Burgenland. Bis Jahresende soll eine vertraglich bindende Vereinbarung vorliegen. Die Transaktion unterliegt der Genehmigung durch die Aufsichtsräte der betroffenen Unternehmen und der kartellrechtli- Das seit sechs Jahren laufende Investitionsprogramm zum Bau neuer Gasleitungen der GAZ-SYSTEM S. A., wurde im Oktober 2015 abgeschlossen. Die Zielsetzung von GAZ-SYSTEM war es, in Polen neue Gasleitungen mit einer Gesamtlänge von über 1.200 km zu bauen. Zusätzlich zu den neuen Gasleitungen hat GAZ-SYSTEM auch zwei Kompressorstationen und 41 Gasstationen gebaut, um neue Möglichkeiten für den Ausbau des polnischen Gasversorgungsnetzes zu schaffen, dessen Liberalisierung zu ermöglichen und Polens Energieversorgungssicherheit zu erhöhen. Die ILF Consulting Engineers, München, waren nach eigenen Angaben dabei an Planungs- und Überwachungsarbeiten von vier Hochdruckgasleitungen beteiligt: Szczecin – Gdañsk (201 km, 28″), Szczecin – Lwówek (189 km, 28″), Rembelszczyzna – Gustorzyn (176 km, 28″) and Lasów – Jeleniów (18 km, 28″). chen Behörden. OMV-Vorstandsmitglied Manfred Leitner, verantwortlich für Downstream: »Die geplante Übernahme ist ein weiterer Schritt in der Restrukturierung des Gasbereiches des OMV-Konzerns. Wir erwarten uns davon eine deutliche Steigerung der Effizienz unseres Erdgashandelsgeschäfts.« EconGas ist die gemeinsame Gashandelstochter von OMV, EVN, Wien Energie und Energie Burgenland. Das Unternehmen ist auf den Erdgas-Direktverkauf an europäische Geschäftskunden, an europäische Großhändler und auf den Handel mit Erdgas an internationalen Handelsplätzen spezialisiert. Im Jahr 2014 hat EconGas 28,4 Mrd. m³ Erdgas in Europa und Österreich gehandelt. TSCHECHIEN Gasmärkte in Deutschland, Österreich und Tschechien gleichen sich immer mehr an »Perspektiven der fossilen Brennstoffe in Europa« – unter diesem Thema diskutierten Energieexperten in der tschechischen Hauptstadt Prag die momentane Situation des hiesigen Energiemarktes und auch die zukünftige Rolle der traditionellen Energieträger im Energiemix der Zukunft. »Die Gasmärkte in Deutschland, Österreich und Tschechien nähern sich einander immer weiter an, insbesondere im Hinblick auf Preissysteme, Markttransparenz, Produktlandschaften, Marktregeln und die sehr niedrigen Markteintrittsbarrieren. Obwohl der tschechische Markt nur rund ein Zehntel des größten europäischen Gasmarktes – Deutschland – umfasst, treffen wir auch hier auf die gleichen Herausforderungen wie in unseren anderen Kernmärkten«, erläuterte Hamead Ahrary, Leiter Sales Central Europe bei WINGAS, in seinem Vortrag vor Vertretern der tschechischen Energiebranche. Der tschechische Markt durchläuft seit über zehn Jahren einen fundamentalen Wandel und ist von zahlreichen Einflussgrößen, wie der Liberalisierung, Regulierung oder dem Erdgas-Überangebot, teilweise neu geformt worden. So ist der Markt heute insbesondere von hoher Wettbewerbsintensität und einem entsprechenden Margen- und Preisdruck gekennzeichnet. »Alle Marktteilnehmer sind daher nicht nur gezwungen, diese Gegebenheiten zu akzeptieren und mit ihnen umzugehen. Darüber hinaus müssen sie sich vor allem mit Blick auf ihre Strategie, Struktur, Schwerpunkte sowie Prozesse möglichst frühzeitig entsprechend positionieren, um gegenüber dem Wettbewerb zu punkten«, führte Ahrary weiter aus. In den vergangenen Jahren ist WINGAS auch in Zentraleuropa solide gewachsen, das Unternehmen konnte seinen Erdgasabsatz in der Region deutlich steigern. MITTLERER OSTEN ADNOC und Wintershall wollen gemeinsam zur Chemical Enhanced Oil Recovery forschen Die Abu Dhabi National Oil Company (ADNOC) und Wintershall haben ein Memorandum of Understanding (MoU) über eine künftige Zusammenarbeit in der Forschung und Entwicklung unterzeichnet. Hauptziel ist die Entwicklung von cEOR-Verfahren für die in den Ölfeldern der Region auftre458 tenden hohen Temperaturen und hohen Salinitäten in den Carbonatvorkommen. Die Zusammenarbeit soll zu dem von Abu Dhabi definierten strategischen Ziel einer künftigen Endausbeute von 70 % aus seinen Ölfeldern beitragen (s. auch Meldung auf S. OG 181 in dieser Ausgabe). WELT Technologie-Outlook von BP Mit dem jetzt erschienenen Technology Outlook hat BP einen weiteren internationalen Report veröffentlicht. Der Technology Outlook soll einen Weg aufzeigen, wie Energieversorgung sicher, bezahlbar und nachhaltig gestaltet werden kann. Er gibt dazu einen Überblick über die Technologien, die nach Meinung von BP das Energiesystem der kommenden 30 bis 40 Jahre bestimmen werden. Eine etwas detailliertere Übersicht wird den Technologien gewidmet, die in der Ölund Gasindustrie das größte Potenzial haben. Neben Forschungsergebnissen von BP kommen im Technology Outlook auch zahlreiche externe Experten zu Wort. Die Ergebnisse beruhen auf dem heutigen Wissen und können nur einen Ausschnitt abbilden. Viele Technologien stecken noch in den Kinderschuhen, wie zum Beispiel der Bereich Carbon Capture and Storage. Andere Bereiche wie die Digitaltechnologie haben bereits jetzt enorme Auswirkung. Was sich jedoch feststellen lässt: Technologische Durchbrüche in anderen Sektoren werden zunehmend an Einfluss auch für die Energiebranche gewinnen. Verschwimmende Grenzen zwischen Sektoren sind ein Trend, der gerade beginnt. (www.bp.com) ERDÖL ERDGAS KOHLE, 131. Jg. 2015, Heft 12 OIL GAS EUROPEAN MAGAZINE INTERNATIONAL EDITION OF ERDÖL ERDGAS KOHLE December,4/2015 LOOKING AHEAD. We plan for the future. More than one-third of ROSEN employees work in research and development, creating innovative products needed by the industry. An investment, we are proud of. www.rosen-group.com ISSN 0342-5622 VOLUME 41 OIL GAS OIL GAS European Magazine was first published in 1974 as an original international edition of ERDÖL ERDGAS KOHLE. Since 2003 OIL GAS European Magazine is also published as an integrated part of ERDÖL ERDGAS KOHLE’s March, June, September and December issues. Published by: EID Energie Informationsdienst GmbH Neumann-Reichardt-Straße 34 22041 Hamburg, Germany P. O. Box 70 16 06, 22016 Hamburg, Germany Phone (+49 40) 65 69 45 0, Fax 65 69 45 51 E-mail: oilgas@oilgaspublisher.de http://www.oilgaspublisher.de Editor: Hans Jörg Mager E-mail: h.j.mager@oilgaspublisher.de IV/2015 EUROPEAN MAGAZINE INTERNATIONAL EDITION OF ERDÖL ERDGAS KOHLE Contents Advertising: Harald Jordan, Advertisement Manager EID Energie Informationsdienst GmbH Neumann-Reichardt-Straße 34 22041 Hamburg, Germany P. O. Box 70 16 06, 22016 Hamburg, Germany Phone (+49 40) 65 69 45 20, Fax 65 69 45 51 E-mail: h.jordan@oilgaspublisher.de USA/Canada Representative: Trade Media International 421 Seventh Avenue, New York, N.Y. 10001, USA. Phone (212) 564-3380, Fax: 594-3841 E-mail: Corrie.deGroot@tmicor.com Subscription: OIL GAS European Magazine – publ. quarterly. Subscription rate for four issues EUR 117.49 including surface mailing charge, Single copy EUR 36.17. Term of cancellation: Not less than 6 weeks to the end of the year. © EID Energie Informationsdienst GmbH. All rights reserved, including right of reproduction in whole or in parts in any form. Valid for users in the USA: The appearance of the code at the botton of the first page of an ar ticle in this journal (serial) indicates the copyright owner’s consent that copies of the article may be made for personal or internal use, or for the personal or internal use of specific clients. This consent is given on the condition, however, that the copier pay $ 6.00 per article to CCC, 222 Rosewood Drive, Danvers, MA 01923, USA (ISSN 0342-5622). This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising of promotional purposes, for creating new collective work or for resale. Oil & Gas News 178 221 224 Geology 185 The plant processes nitrogen-rich natural gas to high-methane gas, purifies and liquefies helium, compresses methane gas, and produces LNG. Georgia – Petroleum Geologic Link from the Black Sea to the Caspian By W. NACHTMANN, A. JANIASHVILI Region and Z. SURAMELASHVILI Dr illing 193 Successful Workover Operations for Milling Permanent Bridge Plugs at 8000 m MD – A Case Study By K. SOLIMAN O i l / G a s Pr o d u c t i o n 198 BTEX Removal from Production Water using Associated Gas By M. VALKENIER, G. HINNERS, and G. THEMANN 202 Analyses of Operating Electric Submersible Pumps (ESPs) of Different Manufacturers – Case Study: Western Siberia By A. SUKHANOV, M. AMRO and B. ABRAMOVICH 205 Improvement of Oil Production Rate using the TOPSIS and VIKOR Computer Mathematical Models By M. ALEMI, M. KALBASI, and F. RASHIDI 210 Real Value of “Real Options” Front Cover Photo: PGNiG SA, Warsaw, Poland Natural gas processing plant Odolanow, Poland International News New Products / Processes / Literature Calendar By A. ZICH, K. S. VEREVKIN, and D. A. SOZAEVA Machiner y & Plants 212 Oil-Flooded Screw Compressors for Unconventional Gas By A. ALMASI 215 Diagnosis of Centrifugal Pumps using Vibration Analysis By M. MINESCU, I. PANA and M. STAN Maintenance & Repair 219 Smarter Work with “Smartphones” By S. CIERNIAK and M. DUMAN NORWAY GREAT BRITAIN Polarled pipeline now in place 40 Years of production at Forties field Polarled is the first pipeline on the Norwegian continental shelf that crosses the Arctic Circle and opens up a new highway for gas from the Norwegian Sea to Europe. End of September, the final pipe in the 482.4 km pipeline was laid at the Aasta Hansteen field at a depth of 1260 m in the Norwegian Sea. The pipeline, which has a diameter of 36″, extends from Nyhamna in Møre og Romsdal to the Aasta Hansteen field in the Norwegian Sea and was laid by the world’s largest pipelaying vessel; “Solitaire” from Allseas. Polarled is the deepest pipeline on the Norwegian continental shelf. It is the first time ever that a pipe that is 36″ in diameter has been laid at such a depth. The pipeline’s capacity will be up to 70 million m³ of gas per day. Building for the future In the initial stage, only the gas from Aasta Hansteen will be transported through Polarled but the pipeline has space for more. Six more connection points have been installed. “With this pipeline, we open up for the export of gas to Europe from a completely new area, and with the infrastructure in place it will also be more attractive to explore the area,” concluded Håkon Ivarjord, project director for the Polarled development project. THE NETHERLANDS ExxonMobil to expand Rotterdam hydrocracker to produce higher-value products ExxonMobil will expand the hydrocracker unit at its Rotterdam refinery to upgrade heavier byproducts into cleaner, highervalue finished products, including EHCTM Group II base stocks and ultra-low sulfur diesel, to meet growing global market demand. The refinery, operated by Esso Nederland BV, will use ExxonMobil’s proprietary hydrocracking technology and be the first to produce EHC Group II base stocks in Europe, which are used in the production of high-quality lubricating oils and greases. ExxonMobil’s Rotterdam refinery plays a key role in the region and marketplace as a manufacturer of low-sulfur petroleum products and chemical feedstocks. Following the expansion, the hydrocracking process will use proprietary catalysts applied in a unique refinery process configuration to efficiently produce both high-quality base stocks and ultra-low sulfur diesel. The project’s environmental impact assessment has been approved and the site-permitting process is being finalized. Permits are expected in early 2016. Pending receipt of permits, construction is scheduled to begin in 2016 and unit startup is targeted for 2018. ROMANIA Deep-water offshore gas field discovered LUKOIL announced completion of the exploratory well Lira-1X and the discovery of a gas field in the Lira offshore structure, which is located at the Trident block (EX-30) in the deep-sea Romanian offshore. According to preliminary results of the analysis of drilling data and geophysical exploration, the Lira-1X delivered a productive interval with an effective gas-saturated thickness of 46 m. According to seismic data, the area of the gas field can reach up to 39 km², reserves can exceed 30 billion m³ of gas, The water depth within the block ranges from 300 to 1200 m. The block has an area of 1006 km². The Lira-1X well is located at a distance of about 170 km from the coast, where the depth of the sea is about 700 m. OG 178 The well was drilled to a depth of 2700 m and was temporarily abandoned for further evaluation. The success of the Lira-1X well will reduce the risk for further exploration on a series of prospective sites with significant potential reserves, located close to the Lira structure and in other parts of the block. The program of future works planned for 2016 includes drilling an exploration well at Lira and reprocessing of seismic data to confirm the size of the discovery and precise assessment of its potential hydrocarbon reserves. Exploration on the EX-30 block is conducted by LUKOIL Overseas Atash BV. LUKOIL’s share in the project is 72%, while PanAtlantic Petroleum Ltd owns 18% and S. N. G. N. Romgaz SA owns 10%. Apache Corporation reached a significant milestone at its Forties field in celebration of 40 years since oil was first produced from Forties Alpha and transported via the Forties pipeline system to the onshore terminal at Cruden Bay. The Forties field, which Apache has successfully rehabilitated through its Apache North Sea subsidiary, remains one of the key producers in the U. K. sector of the North Sea. Situated 177 km east of Aberdeen, Scotland, Forties has seen activity since 1964 when the area was initially licensed for exploration. In October 1970, commercial oil was confirmed in the field with the discovery of an estimated 1.8 billion b of oil, establishing the U. K. North Sea as a major source of energy and revenue. It remains the single largest oil-producing asset within the U. K. Continental Shelf, surpassing 2.4 billion b to date, and is one of the top-producing fields in 2015. Apache revived production from 40,000 to 60,000 b/d Prior to Apache’s acquisition, the field was expected to cease production by 2013 with decommissioning operations commencing thereafter. Production had declined to 40,000 b/d – less than a twelfth of its peak production – by the time Apache assumed operations in 2003. After addressing key issues impacting the five platforms of the mature asset base, Apache revived production to more than 60,000 b/d by yearend 2004. While Forties was estimated to contain 144 million boe of remaining reserves when Apache acquired it from BP in 2003, the company has since recovered more than 230 million boe and added critical infrastructure, including tying back new, operated, satellite-field discoveries, to extend the field’s life expectancy by more than 20 years. Today – 12 years after Apache assumed control – the field continues to produce in excess of 52,000 b/d with a robust inventory of opportunities to pursue going forward. OIL GAS European Magazine 4/2015 Moving Energy Forward NORWAY Subsea gas compression to boost Gullfaks recovery Statoil with partners Petoro and OMV have started the world´s first wet gas compression on the seabed of the North Sea Gullfaks field. The unique technology will increase recovery by 22 million boe and extend plateau production by around two years from the Gullfaks South Brent reservoir. “Subsea processing and gas compression represent the next generation oil and gas recovery, taking us a big step forward,” Margareth Øvrum, executive vice president for Technology, Projects & Drilling said. In mid-September Statoil also started Åsgard subsea gas compression. The two projects are the first of their kind worldwide, and represent two different technologies for maintaining production when the reservoir pressure drops after a certain time. Subsea compression has stronger impact than conventional platform-based compression. It is furthermore an advantage that the platform avoids increased weight and the extra space needed on the platform for a compression module. And it is an important technological leap to further develop the concept of a subsea factory, says Statoil. It is also possible to tie in other subsea wells to the wet gas compressor via existing pipelines. The station has already been prepared for new tie-ins. “We see great opportunities for wet gas compression on the Norwegian continental shelf. It is an efficient system and a concept that can be used for improved recovery on small and medium-sized fields. We are searching for more candidates that are suitable,” says Kjetil Hove, senior vice president for the operations west cluster. The advantage of a wet gas compressor is that it does not require gas and liquid separation before compression, thereby simplifying the system considerably and requiring smaller modules and a simpler structure on the seabed. The system consists of a 420 t protective structure, a compressor station with two 5-MW compressors totalling 650 t, and all equipment needed for power supply and system control on the platform. Extensive preparations had been made on Gullfaks C before the subsea compressor could be started, including modifications and preparation of areas as well as installation of equipment. Gullfaks licensees are Statoil (operator, 51%), Petoro (30%), and OMV (19%). Ideal solutions for onshore or offshore, upstream or downstream As an expert manufacturer of downhole and surface pumps, we produce oilfield pump systems according to the highest quality standards. The viscosity of your crude oil or its percentage of gas or sand makes no difference to the NETZSCH progressing cavity pumps, our helical rotor system is unbeatable. POLAND PGNiG and Qatargas sign a new supplementary agreement to the LNG supplies contract Polskie Górnictwo Naftowe i Gazownictwo SA and Qatar Liquefied Gas Company Ltd have signed a new supplementary agreement to the LNG supplies contract of June 2009. As in 2015, in the first half of 2016 Qatargas will place the volumes defined under the long-term contract on other markets. PGNiG will cover any difference between the LNG price specified in the long-term contract and the market price obtained by Qatargas. Should the price be lower than PGNiG finds satisfactory, any unsold LNG supplies will be shifted to later years of the long-term contract. The supplementary agreement also specifies the terms on which PGNiG S. A. and Qatargas will agree LNG supplies in the first half of 2016. As announced by the project owner, Polskie LNG, acceptance tests of all the critical systems at the LNG Terminal in Swinoujscie that are necessary to receive the first delivery of liquefied natural gas have been completed. Currently, the project is at the start-up stage and the first vessel with technical LNG is to arrive at the port of Swinoujscie in December. Commercial deliveries are scheduled to start in the first half of 2016. CYPRUS BG Group secures equity in Aphrodite discovery, offshore Cyprus BG Group today announces it has taken a 35% holding in Block 12 offshore Cyprus which includes the Aphrodite gas discovery. This upstream position provides a potential source of gas to Egypt where BG Group holds equity in the two train LNG export faOIL GAS European Magazine 4/2015 cility at Idku as well as LNG offtake rights to lift 3.6 million t/a. Operated by Noble Energy, the Aphrodite gas discovery is approximately 170 kilometres south of Limassol. Completion of the transaction is subject to certain regulatory approvals as well as customary closing conditions. NETZSCH Pumpen & Systeme GmbH Business Field Oil & Gas Geretsrieder Str. 1 84478 Waldkraiburg Germany Tel.: +49 8638 63-1024 Fax: +49 8638 63-2333 info.nps@netzsch.com www.netzsch.com NEWS GREAT BRITAIN NORWAY Apache announced significant reserves additions in the North Sea Statoil exits Alaska Apache Corporation announced significant discoveries on two exploration wells in the Beryl area of the U.K. North Sea. The company also drilled two significant development wells in the Beryl area, from which no reserves have been previously booked. Additionally, Apache announced a large discovery at its Seagull prospect, which lies approximately 80 km south of the company’s Forties field. The K and Corona wells are the first exploratory prospects drilled by Apache in the Beryl area. Each discovery proves a separate geologic concept that helps to de-risk additional drilling locations. Apache estimates the K and Corona discoveries, combined with the success at Seagull, represent likely net recoverable reserves of 50 million to more than 70 million boe. Future appraisal drilling will enable the company to further define the upside potential beyond 70 million boe. Apache’s proved reserves in the North Sea at yearend 2014 were approximately 140 million boe. GREAT BRITAIN Ethane from US shale gas to the Fife Ethylene Plant in Scotland In November INEOS Europe AG, ExxonMobil Chemical Limited and Shell Chemicals Europe B. V. signed a long-term sale and purchase agreement to secure ethane from US shale gas for the Fife Ethylene Plant (FEP) at Mossmorran in Scotland, from mid 2017. The Fife plant will receive ethane from INEOS’ new import terminal in Grangemouth, Scotland. Access to this new source of feedstock will help complement supplies from North Sea natural gas fields. The agreement will also ensure the competitiveness of the plant. Access to ethane from shale production will provide sufficient raw material to run UK steamcrackers to make ethylene at full operating rates. INEOS has committed £ 450 million to construct the new ethane import terminal at its Grangemouth facility. An existing pipeline will transport the gas from Grangemouth to Fife. The Fife Ethylene Plant is owned and operated by ExxonMobil and Shell has 50% capacity rights. The plant started production in 1985, and is one of only four natural gas-fed steam crackers in Europe. It was the first plant specifically designed to use natural gas liquids from the North Sea as feedstock. Alongside INEOS Grangemouth, it supplies manufacturing in Scotland, the rest of the UK and export markets with ethylene. It has an annual capacity of 830,000 t of ethylene. Statoil is optimising its exploration portfolio and has decided to exit Alaska following recent exploration results in neighbouring leases. The leases in the Chukchi Sea are no longer considered competitive within Statoil’s global portfolio, so the decision has been made to exit the leases and close the office in Anchorage, Alaska. The decision means Statoil will exit 16 Statoil-operated leases, and its stake in 50 leases operated by ConocoPhillips, all in the Chukchi Sea. The leases were awarded in the 2008 lease sale in Alaska and expire in 2020. POLAND Over 1200 km of new gas pipelines GAZ-SYSTEM S.A. recently has finished the construction of more than 1200 km of new gas pipelines in Poland. In addition to the new gas pipelines, GAZ-SYSTEM has also built two compressor stations and 41 gas stations, which provides new opportunities for developing the domestic gas network, enables its liberalization and increases Poland’s energy security. For the last six years, ILF Consulting Engineers has been involved in the investment program. ILF provided design and supervision services for four key high-pressure gas 28″ pipelines of a combined lenght of approx. 590 km. ROMANIA NORWAY OMV Petrom constructs a new water treatment plant in Suplacu de Barcau oil field More gas from Troll A Part of the field’s redevelopment project which will be finalized in 2021 OMV Petrom started construction of a new produced water treatment plant in Suplacu de Barcau oil field. The investment for the new plant amounts to approximately 17 million Euro and the completion is estimated for December 2016. Suplacu de Barcau is the largest oil field in OMV Petrom’s portfolio accounting for approximately 10% of its current oil production in Romania and has been in production for over 50 years. The existing water treatment plant was built in 1968 and will be replaced with a new plant that will use the latest available technology in the field. The new plant will have a capacity of 8000 m³ of water/day, in line with the volume of residual water currently produced in Suplacu de Barcau oil field. The new installation is part of a significant investment program for the redevelopment OG 180 of the Suplacu de Barcau field, started in 2013 and expected to be finalized in 2021. The investment program consists of 105 additional wells to increase the recovery factor of hydrocarbons as well as a strong environment component that targets the reduction of emissions and increase of energy efficiency. In this regard, the company already finalized investments in oil gathering points, pipelines, a combustion gas incinerator and modernization of boilers and compressors that reduced the environmental impact of the operations. The investments performed in the program up to August 2015 amounted to 110 million Euro. Future investments in the program will also include further incinerators as well as the modernization of oil processing and storage facilities and the potable water plant. The two new giant compressors that started up on the Troll A platform will help increase gas recovery by 83 billion m³. The compressors ensure a daily export capacity from the Troll field of 120 million m³ of gas, totalling 30 billion m³ of gas per year. The compressors are an important measure to meet the Troll field’s long-term production profile, currently extending from 2045 to 2063. They are operated by land-based power from Kollsnes west of Bergen, ensuring zero emissions of carbon dioxide and nitrogen oxides from the platform. During the past 18 months Statoil has started up low-pressure compressors on Troll A, Kvitebjørn, Heidrun, Kristin, Åsgard and Gullfaks, the last two on the seabed (see separate news). This increases the recovery rate by more than 1.2 billion b and extends the life of the installations. OIL GAS European Magazine 4/2015 NEWS NORTH AFRICA MIDDLE EAST AFRICA Eni starts production from “near field” discoveries in Egypt ADNOC and Wintershall to cooperate in Chemical Enhanced Oil Recovery First Production from the Lianzi Development offshore of Congo and Angola Eni announces the success of the “Nidoco North West 3” well drilling, appraisal of “Nidoco NW 2 Dir” discovery, in the Nooros exploration prospect, located in the Abu Madi West license in the Nile Delta. The field, which is estimated to contain about 15 billion m³ of gas in place, beside to associate condensates, was discovered on July this year and put into production after only two months; it currently produces more than 15,000 boe/d. The production from the new well was planned to start-up by the end of November. Within 2015, Nooros field will produce 30,000 boe/d and is expected to reach a plateau of 70,000 boe/d in the first half of 2016. The gas and condensates are sent to the Abu Madi’s treatment plant, about 25 km from the discovery, and then routed in the Egyptian network. Similarly to the discovery well, “Nidoco NW3” was drilled from onshore to reach in deviation the Noroos reservoir located in the offshore shallow waters. The well encountered a 65 m thick gas bearing sandstone layer of Messianian age with excellent petrophysical properties. At the Abu Dhabi International Petroleum Exhibition and Conference in November the Abu Dhabi National Oil Company (ADNOC) and the German E&P company Wintershall signed a Memorandum of Understanding (MoU) regarding future cooperation in research and development. The project focuses on enhanced oil recovery using specialized chemicals for the oil and gas industry. Main goal is to jointly develop customized solutions to meet the subsurface challenges that are characteristic for the local oil fields – high temperature and high salinity in the carbonate reservoirs of Abu Dhabi. The MoU forms the framework for a close cooperation of the two companies and comprises a roadmap for the development of chemical EOR methods. Following successful lab results, a pilot test in Abu Dhabi will be envisaged. The MoU defines a further step of the cooperation between ADNOC and Wintershall. The cooperation aims to contribute to Abu Dhabi’s strategic target of reaching a 70% ultimate recovery from its oil fields in the future. Chevron Overseas Limited, has commenced oil and gas production from the Lianzi Field, located in a unitized offshore zone between the Republic of Congo and the Republic of Angola. Located 105 km offshore in approximately 900 m of water, Lianzi is Chevron’s first operated asset in the Republic of Congo and the first cross-border oil development project offshore Central Africa. The project is expected to produce an average of 40,000 b of crude oil per day. The field, discovered in 2004, includes a subsea production system and a 43 km electrically heated flowline system, the first of its kind at this water depth. The system transports the oil from the field to the Benguela Belize – Lobito Tomboco platform in Angola’s Block 14. Chevron Overseas (Congo) Limited is operator of the Lianzi Field and has a 15.75% interest, along with its affiliate Cabinda Gulf Oil Company Limited (15.5%), Total E&P Congo (26.75%), Angola Block 14 BV (10%), Eni (10%), Sonangol P&P (10%), SNPC (the Republic of Congo National Oil Company (7.5%), and GALP (4.5%). Genau 1.436 km nordwestlich von Berlin. Erdgas aus Norwegen ist die emissionsarme und kosteneffektive Antwort auf Deutschlands Energiefragen. Vor der Küste Norwegens befindet sich unsere größte Plattform Troll A, von der aus jährlich 30 Milliarden m3 Erdgas zu Haushalten in ganz Deutschland gelangen. Damit lassen sich mehr als 10 Millionen Einfamilienhäuser ein Jahr lang versorgen. Mehr Information auf statoil.de NEWS AFRICA NORTH AFRICA Eni makes a new discovery offshore Congo BP to accelerate development of first phase of Atoll field in Egypt Eni made a new discovery of gas and condensates offshore Congo, in the exploration prospect of Nkala Marine, located in Marine XII block, about 20 km off the coast and 3 km from the Nene Marine field, already in production. The finding, realized through the Nkala Marine 1 well, is expected to have a potential of 250–350 million boe in place. During the production test, the well provided over 300,000 m³/d of gas and associated condensates. The well, drilled in a water depth of 38 m, encountered a major gas and condensates buildup in the pre-salt clastic geological sequence of lower Cretaceous age, crossing a hydrocarbon column of 240 m. Eni will be starting the evaluation of Nkala Marine through new delineation wells. The exploration of the pre-salt sequences continues to deliver new discoveries all along the West Africa’s margin. Eni estimates the resources in place of oil and gas discoveries made in the pre-salt Marine XII block to be approximately 5.8 billion boe. The production of the block, started last December, is increasing and it currently stands at around 15,000 boe/d. Eni, through its subsidiary Eni Congo, is the operator of Marine XII block with a 65% stake. The other partners are New Age, with 25% stake, and the Congolese state company Societé Nationale des Pétroles du Congo (SNPC), with 10% stake. BP has signed a Heads of Agreement (HoA) with the Egyptian Minister of Petroleum regarding the acceleration of the development of the recent Atoll gas discovery. The discovery (BP 100%) in the North Damietta Offshore Concession in the East Nile Delta, offshore Egypt was announced in March 2015. The agreement is expected to enable first production to be expedited from an estimated 1.5 trillion ft³ (42.5 billion m³) of gas resources and 31 million b of condensates in the Atoll field to the domestic market, with production anticipated to begin in 2018. Full field development of Atoll is expected to consist of two phases. The first phase will consist of two development wells tied back to existing infrastructure, with production expected to start up in 2018. Success of this first phase is expected to trigger additional investment and further wells to increase production. BP expects to sustain its current oil production and double its gas production in Egypt before the end of the decade to reach 2.5 billion ft³/d (25 billion m³/a) with partners, which represents more than 50% of Egypt’s current gas production. Development of Atoll will be executed and operated by Pharaonic Petroleum Co. (PhPC), BP’s joint venture with EGAS and Eni. The Atoll-1 deepwater exploration well discovery was BP’s second important Oligocene discovery in the North Damietta Offshore Concession in the East Nile Delta, following the 2013 Salamat discovery. AFRICA Production from Bonga Phase 3 project in Nigeria started Shell Nigeria Exploration and Production Company Ltd (SNEPCo) has announced the start-up of production from the Bonga Phase 3 project. Bonga Phase 3 is an expansion of the Bonga Main development, with peak production expected to be some 50,000 boe. This will be transported through existing pipelines to the Bonga floating production storage and offloading (FPSO) facility, which has the capacity to produce more than 200,000 b of oil and 150 million ft³of gas a day (1.5 billion m³/a). The Bonga field, which began producing oil and gas in 2005, was Nigeria’s first deep-water development in depths of more than 1000 m. Bonga has produced over 600 million b of oil to date. SNEPCo holds a 55% contractor interest in OML 118. The other co-venturers are Esso Exploration & Production Nigeria Ltd (20%), Total E&P Nigeria Ltd (12.5%) and Nigerian Agip Exploration Ltd (12.5%). AFRICA AFRICA Eni to operate a new exploration block offshore of Mozambique Statoil to explore offshore South Africa Eni, through its subsidiary Eni Mozambico, is the operator (34%) of the Joint Venture together with partners Statoil and Sasol (each 25.5%) and ENH (15%), which has been awarded, following the 5th Competitive Mozambique Bid Round, the exploration and development rights of the offshore block A5-A. The block in the area called Angoche, about 1500 km northeast of the capital city Maputo, covers a total area of di 5145 km² in a water depth between 200 and 1800 m and is placed within an unexplored area of the Northern Zambesi Basin. Eni has been present in Mozambique since 2006 and is the operator of Area 4 with a 50% indirect quote, owned through its subsidiary Eni East Africa. In Area 4, following an intensive exploration campaign and appraisal, from 2011 to 2014, were also discovered supergiant natural gas resources, estimated in 2407 billion m³ of gas in place. OG 182 Statoil has completed a farm-in transaction with ExxonMobil Exploration and Production South Africa Limited, acquiring a 35% interest in the ER 12/3/154 Tugela South Exploration Right. The remaining interests are held by the operator ExxonMobil (40%) and co-venturer Impact Africa Limited (Impact Africa) (25%). The Tugela South Exploration Right covers an area of approximately 9054 km². It is lo- cated offshore eastern South Africa in water depths up to 1800 m. The farm-in represents a country entry for Statoil into South Africa. Statoil enters in an early exploration phase with a step-wise exploration programme. Work commitments between 2015 and 2017 include the acquisition of 1000 km² of 3D seismic data and geology and geophysics studies. There are no commitment wells during this exploration period. NORTH AMERICA Successful appraisal of the Anchor discovery in the deepwater Gulf Significant discovery in the Lower Tertiary Wilcox trend Chevron Corporation announced the successful appraisal of the Anchor discovery in the Lower Tertiary Wilcox Trend. The original Anchor discovery well, located in Green Canyon Block 807, approximately 225 km) off the coast of Louisiana in 1579 m of water, was drilled in late 2014 to a depth of 10,287 m and it encountered 210 m of net oil pay. Appraisal drilling began in June 2015 and recently found 211 m of net oil pay. To date, Chevron has confirmed a hydrocarbon column of at least 549 m in the Lower Tertiary Wilcox reservoirs at Anchor. Complete appraisal of the field will require further delineation wells and technical studies. OIL GAS European Magazine 4/2015 Benefit from experience The new DEA – since 1899 As an international upstream company with German roots based in Hamburg, we rely on many years’ experience, geological expertise, innovative engineering knowledge and high technology. Environmental protection and safety have the highest priority when producing oil and gas. Transparent and open dialogue is also important to us. Any questions? www.dea-group.com DEA Deutsche Erdoel AG DEA_EN_210x297_Erdoel_Erdgas_Kohle.indd 1 Ueberseering 40, 22297 Hamburg, Germany 29.05.15 09:23 NEWS NORTH AMERICA Shell launches Quest carbon capture and storage project Commercial operations of the Quest carbon capture and storage (CCS) project in Alberta, Canada, started November 6. Quest is designed to capture and safely store more than one million tonnes of carbon dioxide each year. Quest draws on techniques used by the energy industry for decades and integrates the components of CCS for the large-scale capture, transport and storage of CO2. Quest will capture one-third of the emissions from Shell’s Scotford Upgrader, which turns oil sands bitumen into synthetic crude that can be refined into fuel and other products. The CO2 is then transported through a 65 km pipeline and injected more than 2000 m underground below multiple layers of impermeable rock formations. Quest is now operating at commercial scale after successful testing earlier this year, during which it captured and stored more than 200,000 t of CO2. Quest was built on behalf of the Athabasca Oil Sands Project joint-venture owners Shell Canada Energy (60%), Chevron Canada Limited (20%) and Marathon Oil Canada Corporation (20%), and was made possible through strong financial support from the governments of Alberta and Canada. Support from the local community was essential to building Quest. Shell initiated public consultation in 2008, two years before submitting a regulatory application. Quest has a robust measurement, monitoring and verification program agreed upon with the government and verified by a third party (Det Norske Veritas (DNV)). Furthermore, Shell and the United States Department of Energy will field-test advanced monitoring technologies alongside the state-of-the-art, comprehensive monitoring program already in place. IEA hails launch of Quest CO2 storage project The International Energy Agency (IEA) has welcomed the launch of the world’s first large-scale carbon capture and storage project. “The launch of the Quest CCS project in Alberta, Canada, is remarkable, as it provides another excellent example of the fact that CCS is about so much more than just coal-fired power,” IEA Executive Director Fatih Birol said. “It can be used in many industrial sectors where no other solutions exist to significantly reduce the CO2 footprint.” current proven fossil-fuel reserves cannot be commercialised before 2050 if the increase in global temperatures is to remain below 2 °C. The world’s first CCS project, Sleipner, started in Norway in 1996 and continues to operate today, storing nearly 1 million tonnes of CO2 yearly in the North Sea. CCS projects are entering operation, under construction or in advanced stages of planning in Australia, Canada, Saudi Arabia, the United Arab Emirates and the United States, bringing the world towards the threshold of 10 million t of CO2 captured and verified as stored every year. Projects in the pipeline to store 10 million t The IEA believes that CCS plays a key role in an ambitious, climate-friendly future energy scenario, accounting for one-sixth of required emissions reductions by 2050. IEA analysis also shows that without significant deployment of CCS, more than two-thirds of Quest amine stripper vessel (Photo: Fluor) NETL’s 2015 Carbon Storage Atlas shows increase in U.S. CO2 storage potential The U. S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has released the fifth edition of the Carbon Storage Atlas (Atlas V), which shows prospective carbon dioxide storage resources of at least 2600 billion t – an increase over the findings of the 2012 Atlas. Atlas V is a coordinated update of carbon storage resources, activities, and large-scale field projects in the United States. It showcases the progress that NETL scientists and engineers have made with their partners toward wide-scale deployment of carbon storage technologies. Atlas V highlights potential CO2 storage resources in saline formations, oil and natural gas reservoirs, and unmineable coal seams. For each large-scale field project, Atlas V provides a summary of approaches taken, technologies validated, and lessons learned in carrying out key aspects of a CCS project: site characterization; risk assessment; simulation and modeling; monitoring, verification, accounting, and assessment; site operations; and public outreach. 230 billion t of CO2 in depleted reservoirs The refined CO2 storage estimate of OG 184 2600 billion t reported in Atlas V represents an increase over the 2380 billion t reported in the previous edition. The increase is a result of improved accuracy and precision in storage resource calculations, additional information from formation studies, and refinement of storage efficiency. This vast resource has the potential to store hundreds of years’worth of industrial greenhouse gas emissions, permanently preventing their release into the atmosphere. Of par- ticular importance for U. S. energy security is Atlas V’s finding that approximately 230 billion t of CO2 could be stored in depleted oil and natural gas fields. This storage estimate equates to several decades’ worth of emissions from stationary sources with the added benefit of enhancing oil and gas recovery. For more than a decade, Regional Partnerships have been investigating the best possible CO2 storage sites. Shell to halt Carmon Creek in situ project Shell will not continue construction of the 80,000 b/d Carmon Creek thermal in situ project located in Alberta, Canada. Shell originally sanctioned the project in October 2013 and announced in March 2015 that the project would be re-phased to take advantage of the market downturn to optimise design and retender certain contracts. Shell’s view is that the project does not rank in its portfolio at this time. This decision reflects current uncertainties, including the lack of infrastructure to move Canadian crude oil to global commodity markets. Shell will retain the Carmon Creek leases and preserve some equipment while continuing to study the options for this asset. The company expects to take net impairment, contract provision, and redundancy and restructuring charges of some $ 2 billion as a result of this decision. The project SEC Proved Reserves estimated at 418 million b bitumen at end 2014 will be de-booked and the project estimated recoverable petroleum resources will be classified as Contingent Resources. Carmon Creek is 100% Shell owned. OIL GAS European Magazine 4/2015 GEOLOGY Georgia – Petroleum Geologic Link from the Black Sea to the Caspian Region By W. NACHTMANN, A. JANIASHVILI and Z. SURAMELASHVILI* Abstract Georgia, a country with plenty of oil seeps and leaks, stretches from the Black Sea into the Caspian Region. Oil has been produced since the early 19th century, recorded production statistics exist since 1930. The current production of less than 1000 barrels of oil per day (<50,000 t/a) ranks Georgia as number 104 among the oil producing nations. Since Georgia’s independence from Soviet Union in 1991, quite a number of international oil companies have taken licenses and pursued pretty diverging business strategies. Classical E&P companies remained a minority compared to the number of ‘financial investors’, sometimes more soldiers of fortune than wildcatters. Georgia used to have an investor friendly PSA policy; attractiveness of conditions for new licenses has ceased during the last couple of years, although, to some degree, terms are still negotiable. Embedded between the High Caucasus and the Lesser Caucasus mountains the Rioni Basin towards the Black Sea in the west and the larger Kura Basin near and east of Tbilisi are the country’s two petroleum regions. Main producers are fields in the Kura Basin with oil from fractured volcanoclastics of Middle Eocene age and from Upper Eocene to Miocene (shaly) sandstones. Cretaceous carbonates bear oil but no production could be established yet. The Black Sea shelf is still rather untapped – a licensing round has been in preparation for a few years without further announcement yet. Georgian Oil & Gas Corporation (GOGC), the state oil company, numbers the ‘prospective resources’in Georgia with 677 million t of oil and 148 billion m3 of gas (status: end 2014). Practically all oil prone areas of Georgia are covered with licenses, held by local and/or international operators; the exploration, appraisal and production activity is concentrated on the vicinity of Tbilisi and the easternmost part of the country. During the recent years, most operators’activity and investment regarding seismic acquisition, drilling wells and well treatments was rather modest. Beyond the known conventional resources some operators have started to have an eye at Georgia’s considered shale oil potential in Maikop shales. Technical challenges like complex geology, demanding surface topography, varying pressure gradients, difficult to produce reservoirs from very shallow to 5000 m depth in combination with high environmental and safety requirements contribute to a higher risk and high cost for seismic and well operations. However, highly experienced professionals, utilizing state of the art technology, shall be able to manage the risks properly and keep necessary funds at a reasonable level to, eventually, transfer at least some of the “dream” potential to proved and recoverable reserves within a near to midterm timeframe. 1 Introduction For the petroleum industry, Georgia has been a transit country for more than 100 years – the first oil pipeline from the oil fields near Baku at the Caspian Sea to the Georgian Black Sea harbor Batumi was opened in 1904. After the end of the Soviet Union in the early 1990’s, western compa- nies quickly stepped into the oil play in Azerbaijan – with the opening of the BTC (Baku-Tbilisi-Ceyhan; Fig. 1) pipeline in 2004 a direct connection from the Caspian oil fields via Georgia to the Mediterranean Sea, and herewith to the European market, was established. Today, also gas transport from the Caspian towards the Black Sea respectively to Turkey and further to Europe are partly completed (SCP – South Caucasus Pipeline; Fig. 1) partly under construction (TANAP – Transanatolian Pipeline) – more pipeline connections through Georgia to Turkey and the Balkan region are in a planning phase [1]. But, what about oil and gas in Georgia? Hydrocarbon exploration in Georgia started about 150 years ago. The Middle Eocene and Maikop (Oligocene to Lower Miocene) fields in the Near-Tbilisi-Region were discovered between 1939 and the 1970’s (Upper Eocene fields: in the Norio, Patardzeuli, Teleti and Samgori-Patardzeuli-Ninotsminda anticlines; Maikop fields: in the Norio [1939], Satskhenisi [1956] and Samgori-ParadzeuliNinotsminda anticlines). In all cases, the Maikop fields are located on the northern flanks of anticlinal structures; traps are structural as well as stratigraphic, faults and thrust planes act as seals and as migration paths. The greater part of the Near-Tbilisi-Region * Wolfgang Nachtmann, at Chair Petroleum Geology, Montanuniversität Leoben, Austria; currently with Central European Petroleum GmbH, Berlin, Germany; Alexander Janiashvili, Norio Operating Company, Tbilisi, Georgia; Zurab Suramelashvili, CanArgo Georgia, Tbilisi, Georgia. Lecture, presented at the DGMK/ÖGEW Spring Meeting 2015, April 22–23, Celle, Germany (E-mail: WNachtmann@gmx.de). 0179-3187/15/IV © 2015 EID Energie Informationsdienst GmbH OIL GAS European Magazine 4/2015 Fig. 1 Existing oil and gas transport systems through Georgia [1] OG 185 GEOLOGY is located on the eastern edge of the Adjara-Trialeti zone of the Lesser Caucasus. During the Late Eocene to Miocene time, the area was characterized by continuous terrigenic sedimentation into a deep, semi-closed sea with normal salinity to a more isolated, shallower, saline sea in an oxygen depleted environment with free H2S and frequent climate fluctuations. Thick clayey- sandy formations (3–5 km), rich in organic matter, were deposited. The modern structure of the NearTbilisi-Region was formed after the Styrian, Attic, Rodonian and Valahian folding phases. Three anticline trends are identified: Kavtiskhevi–Norio–Martkopi, Tabori–Varkeili–Samgori– Patardzeuli–Ninotsminda, Teleti– South Dome. Most folds are turned to the south and complicated by faults. 2 Geologic Overview (modified after [2]) Fig. 2 Geological Map of the Caucasus, petroleum prone Rioni and Kura basins belong to the Transcaucasian intermountain depression (modified after [3]) Georgia, as part of the Caucasus region, is located in an area of extensive continental collision of the Eurasian and Arabic plates, forming a part of the Alpine-Himalayan fold and thrust belt. Ocean floor of the Tethys Sea, as well as fragments and units of continental transition form a geologic melange of Gondwana, Tethys and Eurasian terrains. Today’s topography of the Caucasus region is the (preliminary) result of a Late Cenozoic orogenic phase that is still ongoing due to the northwards movement of the African and Arabic plates. Three major tectonic units, subdivided into smaller subunits, are to be differentiated (Fig. 2): 1)Folded and thrusted system of the Greater Caucasus (the main mountain ridge or Greater Caucasus Anticlinorium) 2)Transcaucasian Intermountain Basin (Georgian Basin): Neogene molasse respectively foreland-type basins opening towards the west (the Rioni Basin towards the Black Sea) and east (the Kartli-Kura Basin near and east of Tbilisi into Azerbaijan towards the Caspian Sea) hold Georgia’s oil and gas potential and are separated from each other by a zone of uplift 3)Folded system of Lesser Caucasus (AdjaraTrialetian folded zone, Artvin-Bolnisi zone (block) and Lock-Karabakh poorly folded zone). Ad 1) The folded and thrusted system of the Greater Caucasus is a complex geo-tectonic unit. The morphologic highest part, located at and across the border from Georgia to Russia, consists of Pre-Cambrian (?) to Paleozoic metamorphites (gneiss and shists OG 186 with intruded granite material). Late Paleozoic molasse sediments and shales of Early to Middle Jurassic age overlay these rocks unconformably. Hercynian and Alpine sediments are parts of the geological structure on the southern slope of the Caucasus. Devonian to Triassic sediments, cropping out in the central part, in Svaneti, are characterized by clayeysandy rocks and biogenic limestone lenses (“Dizi suite”). The oldest deposits of the Alpine cycle are Jurassic in age and overlie Triassic rocks concordantly, but older formations with an unconformity. The Lower Jurassic succession is characterized by shale and sandstone (total thickness is about 5000 m). The Middle Jurassic (Bajocian and Bathonian) consists of clayey-sandy and thick volcanic-sedimentary formations, up to 2200 m thick. Upper Jurassic to Cretaceous limestone as well as PaleoceneEocene clayey to sandy sections are developed in the northern and central parts. Flysch sediments, 5000–7000 m thick, of the same age are developed in the western and eastern parts. Total thickness of sediment sequences of the Caucasian folded system is about 15 km. Tectonic faults, thrust planes of southern direction are encountered frequently. Overthrust folds with big horizontal displacement exist in the eastern part of the system, in the Ksani, Aragvi, Iori sub-basins and in the Tsivgombori ridge. Ad 2) The Georgian Basin represents an intermountain massif of Paleozoic age, divided into small compartments by tectonic faults of different directions. Nevertheless, its tectonic structure is less complicated than that in the adjacent folded systems. The highest point of the system, where subsurface rocks are exposed, is the Dzirula massif. The Crystalline Basement deepens gradually to the west and east and is overlain by younger formations. The folded system dips into the Black Sea in the west and adjoins the Muhran-Tiriponi valley and Garekaheti-Iori hills in the east that continue into Azerbaijan. The Dzirula Massif is characterized by PreCambrian (?) to Paleozoic metamorphites – gneiss, phyllite and magmatic intrusions (granitoid and gabbroid). Reworked Late Paleozoic to Triassic quartz porphyrite, continental volcanic rocks, sandstones and conglomerates are developed in the eastern part of the massif; these rocks are transgressively overlain by Lower Jurassic conglomerate, sandstone, and red limestone transformed into marble. Middle Jurassic (Bajocian) volcanic-sedimentary formations are present; the Upper Jurassic is less extensively developed, characterized by gypsum-bearing multi-colored clay. Carbonates with rare volcanic successions of the Lower and Upper Cretaceous play an important role in Georgia. These formations are rich in fauna used for biostratigraphy. Cenozoic sediments, characterized mostly by terrigenic origin, rarely limestone, marl and volcanic rocks are the predominating formations. The gypsum-bearing clay section of the Maikop is interesting, since it contains manganese deposits (Chiatura, Chkari-Ajameti). The thickest (several km’s) and best developed are the Neogene molasse sediments – erosional products from the Greater and Lesser Caucasus. Ten small oil fields have been discovered in the Miocene-Pliocene formaOIL GAS European Magazine 4/2015 Energy & Environment GmbH Register by 21 January 2016 and save up to US $150. 3-6 April • Barcelona, Spain barcelona2016.iceevent.org Centre de Convencions Internacional de Barcelona Moving heat I C E B a r c el o n a Discover the hidden values of your gas compressor station: Process heat (water/steam) District heating Power generation With more than 35 years experience in industrial plant engineering, we provide heat recovery solutions for all industries. Our solution - your benefit. ECOSTAT HEAT PIPE SYSTEMS ECOFLOW HEAT DISPLACEMENT SYSTEMS RE-COOLING PLANTS Register now for AAPG/SEG’s ICE Barcelona, the industry’s premier integrated geosciences conference and exhibition. Attracting a global audience of decision-makers, thought leaders, and technical experts, ICE Barcelona unites the geologist and geophysicist disciplines under one roof, providing a truly integrated experience for attendees and exhibitors. Benefit from: • A premier technical program featuring a full range of sessions, short courses, and field trips • State-of-the-art exhibition displaying the latest in products, technologies, and services • Networking opportunities designed to build connections, drive new business, and enhance career opportunities • Access to leaders on the forefront of advancing the geosciences industry Register online today at barcelona2016.iceevent.org PRESENTED BY: Küttner Energy & Environment GmbH 45130 Essen/Germany kee@kuettner.com www.kuettner.com SUPPORTED BY: #FXCPEKPI VJG 9QTNF QH 2GVTQNGWO )GQUEKGPEGU 6/ Exhibition and sponsorship opportunities still available! Visit barcelona2016.iceevent.org for more information. GEOLOGY tions in the Near-Tbilisi-Region and GareKaheti. Ad 3) The Adjara-Trialetian Folded Zone, located in the northern part of the Lesser Caucasus, is one of the most intensively studied tectonic units in Georgia. It is west–east trending and reaches from the Black Sea to the Iori river valley east of Tbilisi. The zone comprises Cretaceous and Paleogene formations. The lower part of the Cretaceous section (Albian-Cenomanian, partly TuronianLower Senonian) is mainly characterized by volcanic sediments, the upper part by limestone and marl. A sandstone and shale sequence, so called Borjomi Suite (2500 m), was formed at the beginning of the Paleogene. A thick volcanic sequence (about 4000 m) was deposited due to active submarine volcanoes in the Eocene (mostly in the Middle Eocene) – for more details see chapter 4, Reservoirs. The Upper Paleogene is mostly characterized by terrigeneous rocks. A number of folds and several big tectonic faults are developed in these formations. The Artvini-Bolnisi Massif, south of Tbilisi, is characterized by Paleozoic metamorphites, overlain by semi-continental volcanogenic formations of Carboniferous age. Lower Jurassic shale, Upper Jurassic and Lower Cretaceous limestone and marl have limited distribution. All these rocks are overlain by Upper Cretaceous clastic rocks that are gradually replaced by volcanic rocks and – higher up – by limestone of Senonian age. Copper, zinc, barite, and iron deposits were discovered in the Upper Cretaceous volcanic rocks in the Bolnisi region. The Artvin-Bolnisi Massif is tectonically simple; Akhalkalaki and Khrami highs and one big syncline between Khrami and Lock massifs are identified there. Many tectonic faults with different directions play a key role in compartmentalization of the basin, thus contributing to the formation of channel-type gorges cut into volcanogenic sediments. Fig. 3 OG 188 The Lock-Karabakh Zone is the southernmost region of Georgia, mainly represented by the Lock massif. Unlike the Khrami massif, a thick sequence of Lower Jurassic clay and sandstone and an even thicker suite of Middle Jurassic volcanic rocks (up to 2 km) are developed. The lower part of the Upper Cretaceous is characterized by sandstone and limestone, the upper part by volcanic rocks on the northern edge of the massif. The Lock massif comprises Early Paleozoic phyllites and granitoide intrusions. 3 Paleogeographic and Tectonic Development (for details see also [4] and [5]) According to paleo-magnetic and bio-geographic data, during the Early and Middle Carboniferous the northern part of modern Transcaucasia (e. g. the Dzirula massif) was located at the southern edge of the European continent. South Transcaucasia and Iran (Elburs) were located about 2500–3000 km away, at the northern edge of Africa – Arabia. The huge area between these two was covered by the Paleo-Tethys Ocean, dividing Transcaucasia into two geological provinces. A southern part – Iranian province (central Armenia, Nahijevan) – was a passive continental ‘carbonate environment’ off-shore of Gondwana. The Northern Caucasus is located to the north of the Sevan-Zangezur ophiolite belt that was an active edge of the European continent, consisting of island arches of Transcaucasia and Greater Caucasus, intra-arch rifts and basins of the Greater Caucasus. In the northern, Caucasian province Hercynian folding, granitoid magmatism, regional metamorphism and “andesite” volcanism was intensive. Metamorphic zoning indicates the existence of north-vergent subduction zones along the southern edge of Transcaucasia and island arches of the Greater Caucasus. According to paleo-magnetic and bio-geographic data, the southern province was displaced to the north, near to the island arch of Transcaucasia, causing narrowing of the Paleo-Tethys. The southern part of the Tethys, Mezogea, was opened at the same time in the Iranian province. During Jurassic to Early Cretaceous, the Transcaucasian inter-arch basin was opened by several km’s, separating the Dzirula and Lock massifs. Apparently the basin closed soon, due to a folding phase in the PreEarly-Jurassic. The northern branch of the Tethys, which is narrowing to the Transcaspian region, was bounded by Iran island arches from the south. In the Late Cretaceous to Eocene, a wide “Andesite Belt” was formed due to permanent movement of Euro-Asian and African continents, connected to the Zagros- Anatolia subduction zone. At that time the Sevan residual subduction zone of ophiolite belt still exists. At the backside of the Andesite belt Burga-Black Sea-Adjara and TallishSouth Caspian intra-arch rifts are characterized by intensive basalt volcanism and deep marine turbidite sequences. Folded structures of Turkey, Lesser Caucasus and Elburs were bended in the Paleogene (Eocene?) due to a movement of the Arabic plate. The modern structure of the Caucasus, including Georgia, was formed after Late Alpine (Neogene) compression, folding, uplift and “andesite” volcanism. 4 Petroleum System(s) (compare Fig. 5) 4.1 Source rocks For most of the oil in Georgia the partly TOC rich Oligocene to lower Miocene Maikop and Upper Eocene shales are seen as the source. Lower Jurassic shales are not yet proved but considered as additional source rock in parts of the country. Schematic geological cross section across anticlines with distinct flower structures that hold oil in fractured Middle Eocene volcanoclasts [4] 4.2 Reservoirs Main producers are fields in the Kura Basin with oil from fractured volcanic tuffs of Middle Eocene age (Georgia’s biggest oil fields, the Samgori-Patardzeuli, Ninotsminda, Teleti, South Dome, Rustavi and West Rustavi oil and gas fields with a cumulative production of, so far, some 25 million t of oil, were discovered in these rocks in the Near-Tbilisi-Region). Further producing reservoirs are Upper Eocene to Miocene (shaly-silti) sandstones. Cretaceous fractured carbonates occasionally also bear oil but no production could be established yet (e. g. East Kavtiskhevi, Manavi). The Upper Eocene is characterized by fine- and mediumgrained, carbonatic, hard polyOIL GAS European Magazine 4/2015 GEOLOGY These few attempts were not coordinated and conducted by different operators and service companies. They can only be the beginning of an industry wide learning process. 4.3 Traps Fig. 4 Seismic zoom-in to flower structured anticline (compare Fig. 3), modified after [4] mictic sandstones, Oligocene and Lower Miocene by unsorted, mainly carbonatic arenites. Available data indicate that the main oil zones of the Upper Eocene in the Ninotsminda and Patardzeuli fields are right below thrust planes separating the Maikop from the Upper Eocene. In the Ninotsminda structure, oil zones are also located in sandstone sections developed in the upper (Tbilisi Suite) and lower (Navtlugi Suite) parts of the Upper Eocene. For successful exploration in both formations the identification of thrust planes across potential reservoir rocks appears to be a most promising tool. It seems that also the Sakaraulo (Burdigalian) arenite, developed west of Norio-Satskhenisi and to the east of Satskhenisi-Ninotsminda, has a significant hydrocarbon potential. Reservoir quality is a main obstacle in Geor- Fig. 5 gia’s oil and gas plays. The so far best producing reservoir, the up to 600 m thick Middle Eocene volcanoclastic sequence, has zero matrix porosity. (Economic) production is only provided by heavily fractured portions in tectonically stressed positions like anticlines with steeply dipping flanks (compare Figs. 3, 4). Handicap of practically all sand-silt-shale intercalations from Upper Eocene up to Miocene is the widespread lack of clean sand portions. To improve production from these formations, a handful of fracs have been conducted (three in the Taribani field in eastern Georgia, two in the Norio field near Tbilisi). The results were rather ‘modest’to disappointing – the target formations are either ‘too plastic’ or operators and service companies failed in utilizing the proper technique. Stratigraphic table with main hydrocarbon bearing formations in East Georgia [4] OIL GAS European Magazine 4/2015 Classical trap types in Georgia are structural and stratigraphic ones plus combinations of both. Proved plays in the Rioni Basin are: – Neogene terrigenous deposits in anticlinal settings (Supsa-Shromisubani oil fields) – Upper Cretaceous fractured limestones in uplifts below the Neogene unconformity (East Chaladidi oil field) – Upper Jurassic subsalt sandstone-evaporite and limestone succession with sandstone pinch-outs (Okumi structure). Proved plays in the Kartli and Kura Basin are: – Neogene terrigenous deposits in structural or structural-stratigraphic closures (e. g. Norio, Mirzaani, Satskhenisi, Taribani oil fields) – Middle Eocene fractured, partly compartmentalized volcaniclastic tuffs in anticlinal settings (e. g. Teleti,Krtsanisi, Samgori-Patardzeuli-Ninotsminda, Samgori South Dome oil fields) – Upper Cretaceous fractured limestones in anticlinal structures (e. g. Kavitskhevi, Manavi oil structures – no commercial production yet). 5 Production Until 1977, when the oil production from the Samgori-Patardzeuli-Ninotsminda field complex some 20 km east of Tbilisi has started, the overall oil production from Georgian fields has languished for years with daily rates of just a couple of hundred barrels. Between 1977 and 1984 Georgia experienced peak production rates of almost 70,000 b/d (equals some 3.3 million t of oil per year) before overexploitation and insufficient reservoir management resulted in a drastic rise of the water cut against a dramatic drop of the oil rate. Production from the other fields has always stayed at a low to rather marginal level. Today’s oil production from just a handful of fields is below 1000 b/d respectively some 135 t/d. During the most recent years, international as well as domestic operators drilled a couple of wells. Targets were the Middle Eocene volcanoclastics in the Samgori area and the Miocene in Norio. Although initial production from one of these wells was 250 b of oil per day without water, this rate dropped within a few months to less than a tenth plus a high water cut. Hence, the additional production from these new wells had no mid to long term impact on the production trend. OG 189 GEOLOGY As of end of 2014, cumulative oil production in Georgia amounts to 27.8 million t. 6 Underground Gas Storage (UGS) Since 2004, Georgia has repeatedly considered to build an underground gas storage. In January 2015,“JSC Georgian Oil and Gas Corporation (GOGC) has tendered a project for the preparation of a feasibility study and construction of a UGS project for the sake of security of natural gas supply to the “protected” (household and thermal power generation) consumers of Georgia and to accommodate seasonal and short-term fluctuations in the demand for natural gas”. For this purpose, the partly depleted Samgori South Dome oil field (fractured volcanic tuffs, oil with high water cut, water drive!) shall be transformed to a UGS with a planned turn-over-volume of 200 to 250 million m³ of gas [6]. Realization of the feasibility study of this ambitious project has been awarded to a French company. The feasibility report has to be prepared by beginning of 2016, while construction of the gas storage shall be completed in 2019 [7]. 7 Reserves/Resources/Potential For petroleum exploration purposes, Soviet/Russian experience was applied, as it was soon understood that Georgia, geologically located just south of the Greater Caucasus Mountains, might have very similar reservoir conditions like well-known Russian oil fields in Chechnya and Ingushetsia north of the Caucasus. Georgia is trapped between two major orogenic systems: the Greater Caucasus in the north and the Lesser Caucasus in the south. Between these mountains, the same sedimentary formations exist which form petroleum systems of the Northern Caucasus region. 7.1 Unconventional oil (shale oil) Parts of the Maikop are compared with the Bakken in the US and considered as a high potential future target. Respective research has just started [8]. However, the shales have not undergone any significant thermal overprint leading to sufficient brittleness that could support fracking of this rock; no intensive research yet. 7.2 Reserves/resources nomenclature Regarding “reserves”, “resources” and “potential” a common language, comparable with SPE and SEC standards, still needs to be established in Georgia. According to GOGC, the Georgian state oil company, per end of 2014 Georgia has [9]: – 2P reserves: oil – 7.3 million t natural gas – 7 billion m³ (free & associated) – Contingent resources (2C): oil – 51.4 million t natural gas – 15.4 billion m³ OG 190 – Prospective resources: oil – 677 million t natural gas – 148 billion m³. A most recently published message of an operator in the eastern Kura Basin that his company “has identified combined prospective natural gas resources of as much as 12.9 tcf (365 billion m³) of gas-in-place, with as much as 9.4 tcf (266 billion m³) of recoverable prospective natural gas resources” appears not to be considered in GOGC’s official numbers and still waits for an independent validation [10]. 8 E&P Business Environment in Georgia The political situation in Georgia is considered stable; petroleum related state bodies like the Agency of Natural Resources and the national oil company GOGC are, in general, very open minded and supportive towards (potential) operators. Onshore, almost all available blocks are awarded to local or international operators; offshore blocks shall be offered in a licensing round that is in preparation. Main activity and production is in blocks near Tbilisi (Kura Basin). Since 1996, petroleum licenses have been awarded via PSA (Production Sharing Agreement) regimes that used to be quite investor friendly; however, terms for new licenses have become less attractive during the last couple of years, but are still, to some degree, negotiable. As Georgia’s petroleum potential has always remained below the radar of larger international oil companies, players in Georgia are smaller to mid-sized E&P companies as well as ambitious investment groups with partly strongly diverging business models and concepts. Cooperation of two or more companies via joint venture agreements are pretty common. Total investment of the E&P industry in the post-Soviet time is estimated to be some US$ 1.2 billion (verbal communication Mr. Tevzadze, CEO of Georgia Oil and Gas Ltd.). Compared to this investment the economic outcome has been very modest. 8.1 Challenges an operator may face – Topography – impact on accessibility, transport logistics, cost – swampy areas along the Black Sea coast: limited accessibility due to missing infrastructure and or environmental restrictions – mountainous regions in central eastern Georgia (e. g. Norio, Ninotsminda, Manavi areas): limited accessibility due to hostile morphology (steep cliffs, dense and steep forests, limited number of viable tracks or roads) – Protected Areas, National Parks – impact on accessibility, timing, cost – Population – impact on accessibility of certain regions, transport logistics, cost in some areas, e. g. town of Sagarejo, peo- ple can be extremely ‘sensitive’ and block any activity (e. g. acquisition of seismic) even against highest political interventions and official police support – Service industry – impact on timely availability, cost; proper planning is crucial due to the oversee able E&P activity in Georgia, only a few service providers have a base in the country. The nearest concentrations of service companies are in Baku, some 500 km from Tbilisi, or in eastern Turkey respectively, across the Black Sea, in Romania. Proper planning and call of service providers is mandatory for avoiding expensive stand-by cost. – Infrastructure – impact on oil & gas sales, transport logistics, cost For both, oil and gas, mostly old but reasonable production and transport facilities are in place, especially around Tbilisi and in the Kura Basin fields. There is no refinery in Georgia, hence all produced crude oil is exported from Black Sea harbors (transport from the fields to these harbors is by train). Transit pipelines are operated with pressures of 80+ bar and not accessible for the domestic production. Gas is sold domestically. – Skilled personnel – impact on quality, efficiency, success of work – Senior technical staff with solid Soviet time education normally belong to a company’s knowledge carriers but are hardly familiar with state of the art technology, often no or only limited English speakers – Geoscience and petroleum engineering education at the Tbilisi Technical University does not meet western standards and requirements – Company-internal respectively sponsored education/training of professionals is essential for successful application of modern technology and methodologies 9 Conclusion Georgia has a substantial petroleum potential with well developed petroleum systems. All discovered oil and gas fields as well as prospective regions belong to the Transcaucasian intermountain depression comprising the Rioni Basin and the Kura Basin. Rioni Basin: thickness of the sedimentary sequence is some 8–9 km onshore and up to 15 km in the Black Sea. Onshore, three small oil fields have been discovered with a cumulative production of 143,000 t of oil. Ambitious offshore drilling plans of 2004/ 05 have not materialized as the existence of sufficient reservoir rock appeared too uncertain. Drilling successes in the Romanian, Ukrainian and Russian Black Sea areas face a couple of (expensive) failures in Turkish waters. The Georgian Agency of Natural Resources prepares an offshore licensing round – the date of announcement is still unknown. The Kura Basin, including its western Kartli subbasin, extends eastwards from central OIL GAS European Magazine 4/2015 Safety Excellence the code for better business Superior safety technology enables you to achieve the highest plant availability and maximum potential output. We show you how. Learn more at www.hima.com/safety-excellence GEOLOGY [8] [9] [10] [11] Fig. 6 E&P license blocks onshore and offshore Georgia, Status: December 2014 (GOGC) eastern Georgia into Azerbaijan and the Caspian Sea with some of Azerbaijan’s most prolific oil fields onshore as well as offshore. The sediment thickness reaches from 14–15 km in the east of Georgia to some 20–25 km in the center of the south Caspian Sea. The Kura Basin holds 18 out of 21 formally registered oil/gas discoveries in Georgia including the country’s biggest field complex Samgori-Patardzeuli-Ninotsminda. Ways forward: reservoir quality and ways to improve the production rates, combined with modern drilling and completion technology and state of the art reservoir management, are the keys to a significant mid to long term increase of the domestic oil production. Earlier this year, a deep well in Manavi (~30 km east of Tbilisi; planned total depth 4500 m) was spudded to assess a huge anticline with a several 100 m thick Cretaceous carbonate body from which some oil was tested in two previous wells. Due to technical problems, the well was abandoned in late July 2015 without having reached the target. Georgian geologists feel confident that these Cretaceous carbonates belong to an identical depositional environment north of the Caucasus, in Chechnia, where excellent fracture porosity led to production rates of up to 400,000 b/d [11]. In case of success of this ongoing well the E&P industry in Georgia should experience a strong kick into an “oily future”. Despite a total investment of some US$ 1.2 billion, not one single new field has been discovered in the post Soviet time. However, operators with the right (geological) concepts, utilization of modern technol- OG 192 ogies and well trained professionals and financially well funded have a realistic chance to turn the tide and Georgia may become a respected oil and gas producer that is not only watching Azeri oil and gas transits from the Caspian to the Black Sea and further to Europe. The authors are grateful to Irakli Tavdumadze and Mevlud Sharikadze, both in Tbilisi, for their input to the geological chapters. For his critical review of the manuscript and helpful hints for drafting this paper we thank Reinhard Sachsenhofer, Montanuniversität Leoben, very much. References [1] GOCHITASHVILI T.: Oil & Gas Infrastructure of Georgia – Ongoing and Prospective Projects; Presentation at GIOGIE Georgian Energy Conference, Tbilisi, Georgia (2014). [2] TAVDUMADZE I., NACHTMANN W. (Editors): Kartli – Field Trip Guide Book; AAPG Europe Regional Conference, Tbilisi, Georgia, 54 pages, English and Georgian, Publishing House Universal, Tbilisi, Georgia (2013). [3] ADAMIA S. (Editor): Geological Map of the Caucasus 2010; http://iv-g.livejournal.com/ 1104914. html. [4] NACHTMANN W., ADAMYAN A., SALAJKA I., SHARIKADZE M., SURAMELASHVILI Z., TAVDUMADZE I.: Are there “Hidden or Left Over” Oil Treasures in Georgia?; Abstract and Presentation AAPG Europe Regional Conference “Petroleum Systems of the Paratethys”, Tbilisi, Georgia (2013). [5] GAMKRELIDZE I., GAMKRELIDZE M., LOLADZE M., TSAMALASHVILI T.: New Tectonic Map of Georgia (Explanatory Note); Bull. Georg. Ntl. Acad. Sci., p. 111–116 (2015). [6] GOGC Presentation: UGS Project – Pre-Proposal Meeting, Tbilisi, January 30, 2015. [7] http://www.gogc.ge/en/page/french-company- geostock-sas-will-prepare-the-feasibility-studyfor-the-underground-gas-storage, 08. 06. 2015. ROBSON W.: Oil and Gas in Georgia – Untapped Potential; Presentation at GIOGIE Georgian Energy Conference, Tbilisi, Georgia (2014). GUDUSHAURI S.: Georgia’s Potential as Hydrocarbon Producer – Resources Assessment; Presentation at GIOGIE Georgian Energy Conference, Tbilisi, Georgia (2014). Frontera and Naftogaz of Ukraine sign strategic MOU for upstream and LNG cooperation (2015) – http://www.energy-pedia.com/news/ukraine/ new-164311?editionid=101677. NIBLADZE M., JANIASHVILI A.: History of Petroleum Geology in Georgia; Extended Abstract and Presentation AAPG International Conference & Exhibition, Istanbul (2014). Wolfgang Nachtmann earned his PhD in geology at the Innsbruck University, Austria, in 1975 and has some four decades of E&P industry experience, primarily in central in eastern Europe (RAG). 2013/ 14 he acted as Geoscience Manager and Business Developer in Georgia (MND Georgia B. V.) in close cooperation with local and international oil companies. Currently, heis Managing Director of Central European Petroleum GmbH (CEP) in Berlin, Germany. Since 2002, he teaches petroleum exploration & production geology related lectures at the Montanuniversität in Leoben, Austria. Alexander Janiashvili received his Master degree from in HeriotWatt University of Edinburg in Reservoir Evaluation and Management in 2005. He has large experience in reservoir modeling and evaluation for multiple oil fields in Russia (mainly Western Siberia) in field development companies. Currently, he works in Central Georgia and his main working interest is oil and gas exploration in Georgia from the structural modeling point of view. Zurab Suramelashvili was born in Mtskheta, Georgia, in 1976 and graduated in 2003 in Exploration and Mining of Gas & Oil Deposits, Gas Storage / Petroleum Geology, Oil and Gas / International Customs Law at the Technical University Tbilisi, Georgia. Since 1996 he works as a geologist with CanArgo Georgia Limited. During his career he participated in several conferences of AAPG and CEEC and international job related trainings and courses. OIL GAS European Magazine 4/2015 DRILLING Successful Workover Operations for Milling Permanent Bridge Plugs at 8000 m MD – A Case Study By K. SOLIMAN* Abstract World oil and gas demand is growing on a continuous base. Simultaneously produced water and maturity of producing fields are increasing gradually, which creates a major challenge for E&P companies. Economically it is very important to isolate reservoir compartments with a high water cut, to guarantee maximum oil production and an effective utilization of processing facilities. Having all reservoir compartments on the nearby level of produced water would require opening isolated sections to increase daily production. Additionally oil and gas prices play a major role in reopening isolated pay zones. This was carried out in two wells within the Mittelplate oil field, North Sea. The Mittelplate oil field is located within a highly sensitive environmental area in northern Germany. To be precise, it is a protected landscape for migratory birds (Wadden Sea, UNESCO World Natural Heritage Site Enclaves). Production of Dieksand (as part of Mittelplate oil field) extended reach wells started 2001/02, after three years of production. Permanent bridge plugs were installed to isolate lower reservoir compartments, due to increased water cut. Milling those permanent bridge plugs, at a measured depth of nearly 8000 m (26,240 ft), was executed in 2014. Those specific well bores are extended reach wells, with a total measured depth of nearly 9000 m (29,520 ft). To provide a circulation, upper compartments were killed. Killing producing zones without damaging the reservoir was one of the major targets. After some eight years of production sand deposition was an additional challenge in both wells, resulting in higher operational torques. Hence the cleaning operation had to be customized to counter mentioned torque challenges. Research confirmed that those were the first two bridge plugs worldwide to be milled out in extended reach wells, within a horizontal section of 82° deviation, at nearly 8000 m (26,240 ft) measured depth. * Karim Soliman, DEA Deutsche Erdoel AG, Hamburg (E-mail: Karim.Soliman@dea-group.com). Lecture, presented at the DGMK/ÖGEW Spring Conference 2015, Celle, Germany, 22–23 April 2015. 0179-3187/15/IV © 2015 EID Energie Informationsdienst GmbH OIL GAS European Magazine 4/2015 Both heavy workover operations were a major success and supplemented a notable oil production to the Holstein operational district. Challenges were solved through adapted engineering techniques and smart solutions. Within this article challenges, engineered solutions and results will be presented as a case study. sand there are seven production and two disposal wells. It has to be mentioned that the Mittelplate oil field is situated within the UNESCO World Natural Heritage Site Enclaves Wadden Sea. This environmentally protected area is an important resting domicile for migrating birds. DEA has introduced and implemented several guidelines and improvements to guarantee maximum protection at the highest safety and environmental standards. General Information about Mittelplate Oil Field 35.6 million m³ (224 million bbl) were successfully produced from the Mittelplate oil Aim of Workover Operation field up till September 2015. This oil field is In 2014 two workover operations were carthe largest within the territorial area of Ger- ried out at Dieksand (Dks). The main purmany and creates a key pillar within the pose was to remove permanent bridge plugs, structure of DEA. Nearly 50% of Germany´s which were installed back in 2005. Those oil is produced out of this field. permanent bridge plugs were installed to Mittelplate is located roughly 8 km off the isolate lower reservoir sections, due to incoastline (Friedrichskoog, Schleswig-Hol- creased water cut (~50%). Newly perforated stein) and 80 km North West of Hamburg. upper pay zones would allow significantly This field was discovered in 1980 and took higher production rates with 100% oil and up production in 1987. The first wells were lower processing expenditures. drilled from the drilling and production platform Mittelplate A (MpA). To increase daily Dieksand 5 production rates and save limited drilling Drilling the extended reach well Dks 5 slots, a further drilling location was set up started in October 2000 and continued for and started drilling from onshore in 1997. about four months for completion and handDieksand (Dks, onshore location) wells ing over to the production department. The were planned and executed as extended well was then perforated (Dogger Delta) and reach wells (ERW) towards the oil field finally got into production in February 2001. Mittelplate. Those ERW´s were drilled This borehole was planned and executed through a salt dome (Fig. 1) with a maximum length of 9275 m (30,429 ft, Dks 6). Twenty production and eight Injection wells are situated on the Mittelplate drilling and production platform. Three of the twenty producing wells from MpA are configured as duo-lateral wells with TAML 5 (Technology Advancement of Multi-Lateral level five) completion, saving limited drilling slots. In Diek- Fig. 1 Overview Mittelplate oil field OG 193 DRILLING with a total measured depth of 8895 m (29,183 ft) and a true vertical depth of 2191 m (7188 ft). It was at this time the longest well ever drilled by RWE Dea AG. Dieksand 7 For Dks 7 drilling started in April 2002 and lasted for four and half months. At the end of 2002 it got into production, after successful perforation of lower reservoir section (Dogger Delta). This well has a total measured depth of 8450 m (27,722 ft) and a true vertical depth of 2122 m (6962 ft). Both wells have nearly the same casing design with 10 3/4″ / 9 5/8″ casing to surface and 7 5/8″ / 7″ liner starting from ~3000 m MD to total depth. The 7 5/8″ / 7″ liner is utilized for production purposes. A formation isolation system with 7″ production tubing is installed to protect the 10 3/4″ / 9 5/8″ casing from production fluid. This formation isolation system gives the opportunity to shut in the wellbore for ESP change without any killing operation. The aim is to protect and avoid any formation damage. Furthermore the formation isolation system allows cleaning production tubing through circulation of washer. Both wells are classified as long radius wells with a build rate between 2° to 5° per 30 m. Casing sections greater than 80° have an approximate extent of 7200 m. Performed Steps during Workover Operation Workover operations in Dieksand were carried out with KCA Deutag as a rig provider. The T-207 (BENTEC-1500-AC) EURO type rig was specified for that purpose. T-207 has box-on-box substructure, which enables rig moves and efficient rig-up and rig-down times. This rig built in 2009 has a large set-back capacity, The pick-up-lay-down machine and a skidding system allow skidding with drill pipe in the mast. Using this system T-207 was skidded from Dks 7 to Dks 5 with 6000 m (3 1/2″ DP 3500 m; 5 1/2″ DP 2500 m) of drill pipe in the mast. Noise emissions played a major role during rig selection, to minimize the impact on the neighborhood and surrounding protected landscape. T-207 fulfilled all requirements regarding noise protection, due to measures taken earlier (noise protected rig floor, fingerboard, shale shaker area, generators and draw works). Additionally mud pumps were noise protected using housing. Soundproofed walls were additionally installed on three sides of the drilling pad to minimize noise emission. Acoustic level microphones were positioned in- and outside the drilling pad to monitor noise. Noise pollution during workover was below 55 dB on average at a distance of 300 m. Due to similar completion design of Dks 5 and Dks 7, planned operational phases were nearly identical. Below the main operational OG 194 sequences are listed. Some of those sequences are summarized. 1. Shut off ESP and isolation from piping system 2. Hydrostatic equalization of wellbore, followed by shut in of formation isolation system 3. Clean out of 3 1/2″ tubing from inside as well as annular space 3 1/2″ to 7″ (annular space A). This was carried out through circulation of adequate volumes of washer 4. Removal of relevant X-mas tree equipment as solid block, adapter spool, gate valves and piping system connection 5. Pull out of hole (POOH) 3 1/2″ tubing hanger, 3 1/2″ tubing and ESP 6. Placement of adapted plugging pill above formation isolation system (lubricator valve) 7. Opening formation isolation system and killing the wellbore with adapted plugging pill 8. Remove of tubing head spool 9. POOH 7″ tubing hanger, 7″ tubing, formation isolation system and 5 1/2″ tail pipe with seal steam 10. POOH 9 5/8″ packer with PBR and tail pipe with steam 11. Cleanout of 7 5/8″ / 7″ liner section in steps up to 1000 m (3280 ft) 12. Exchange of wellbore fluid from oil based mud (OBM) to water based mud (WBM) 13. Milling permanent bridge plug 14. Push down remaining part of permanent bridge plug below lowest perforation interval 15. Perforation of additional reservoir sections 16. Run in hole (RIH) 9 5/8″ packer with PBR and tail pipe with steam 17. RIH 5 1/2″ tubing with seal steam, formation isolation system, 7″ tubing and 7″ tubing hanger 18. Installation of tubing head spool 19. RIH ESP, 3 1/2″ tubing and 3 1/2″ tubing hanger 20. Installation of X-mas tree equipment as solid block, adapter spool, gate valves and piping system connection 21. Handover for ESP start and production. During planning and engineering phase several challenging steps were identified as critical for success of operations. Challenges were a result of wellbore geometry as extended reach wells and reservoir properties. Those could be summed up into three major blocks: 1. Well killing/killing operation 2. Wellbore clean out 3. Milling operation. Well Killing Selection of plugging pill To ensure a wellbore circulation after POOH of formation isolation system, both wells had to be adequately killed. Experience indi- cated that application of a salt pill would not lead to acceptable plugging of the formation, thus resulting in massive loss of workover fluid into pay zones ending up in negative production behavior. Producing reservoir layers in Dieksand wells have a relatively high permeability of up to 10,000 mD and porosity between 17% and 27%. Porosity, pressure conditions, permeability and length of perforation intervals represented a challenging situation for well killing. The focus was to carry out this job with little or no damage to pay zones. For selection of adequate plugging pill, the current state of influencing conditions had to be evaluated. The most influencing conditions to be reviewed were: – Temperature conditions: In the case of Dieksand 5 and 7 wells temperature distribution at perforation intervals ranges between 68 °C (155 °F) and 73 °C (163 °F) – Pressure conditions: Static wellbore pressure ranges from 140 bar (2030 psi) to 160 bar (2320 psi) depending on investigated pay zone. In general both wells are under hydrostatic pressure and static fluid level is at roughly 500 m TVD (1640 ft) – Porosity: For lower reservoir compartments in Dogger Delta porosity ranges between 17–27%. Within the upper compartments in Dogger Epsilon value ranges from 22–25%. Analysis showed that sampled cores mainly consist of Quartz [SiO2] ~75%, Muscovite [KAl2(Si3Al)O10(OH,F)2] ~10% , Calcite [CaCO3] ~10% and other minerals (~5%) – Permeability: Both pay zones of interest show relatively high permeability ranging from 2000 mD to 10,000 mD, depending on investigated sub-sand layers – Perforation interval: Length of perforation intervals (reservoir section above bridge plug, Dogger Epsilon) are ~170 m for both wells. Several properties were determined by an engineering team as essential to get a fit for purpose performance from selected plugging pill. Below the most important properties are listed: – Ability to build up a plugging filter cake – Ability to withstand differential pressure – Solubility of plugging pill – Coherence during well killing operation. To carry out efficient selection possible plugging pill candidates were pre-evaluated based on experience and historical data. From the economical and technical point of view the most interesting candidates were a salt plugging pill and a lime scale plugging pill. As previously mentioned the salt plugging pill provided inaccurate performance. This type of pill was not really successful in plugging perforation intervals, leading to major challenges during earlier operations. Lime scale showed good plugging behavior, but dissolving the lime scale pill with acid resulted in a chemical reaction with reservoir oil. This created high viscous fluids and OIL GAS European Magazine 4/2015 DRILLING remarkable precipitations of asphaltenes, having a negative influence on production behavior. This fact disqualified that type of pill. A modified salt pill was then investigated as a possible candidate to fulfill the requirements of well killing. Modifi- Fig. 2 Starting phase of dissolvent for candidate A cation focused on selection of fit-forpurpose additives to improve the perfor- Additives for one cubic meter of water are mance of the salt pill. According to investi- presented in Table 1. gations, resin was a promising additive. Two resin additives were selected for further in- Killing operation vestigation. The ability to build up a filter For well killing the crux was ensuring cohercake was investigated in the DEA laboratory ence of plugging pill, so that it reaches perunder in-situ reservoir conditions. Porosity foration intervals compactly. Simulations and permeability conditions were simulated indicated that large plugging pill volumes according to evaluated circumstances to get have to be utilized to ensure that lighter mud reliable results. The candidates displayed does not break through (while bull heading) suitable filter cake build up. Average values towards perforation. So placement of pill ranged from 2.5 mm to 3.5 mm. The candi- (above Lubricator Valve) in 7″ production dates performed well regarding withstand- tubing was one of key factors for success. ing differential pressure. Candidate A Pumping rates were limited to 300 l/min showed fit-for-purpose behavior concerning avoiding mixing up or break through of filtration volume over time. Comparing fil- plugging pill, spacer and oil-based mud. tration volumes after 30 minutes showed Mixed up fluids have a negative impact on 45% (on average) better performance of plugging behavior and give unclear indicacandidate A than candidate B. Determina- tions of performance. tion of filtration volume was carried out ac- After placement, the formation isolation cording to API recommended practice system was opened and the plugging pill was 13B-1. bull headed. Due to the pumping distance of Investigations continued with the promising ~7200 m in the horizontal section (>80 °) candidate A (AUSTONE II, AMC) regard- constant high pumping rates were imperaing solubility. One of the most important tive. This should ensure that the plugging specifications was the necessary solubility pill reaches perforations compactly. Once it in reservoir oil. This should ensure that the reached perforations pumping rates had to modified pill gets dissolved during the pro- be adjusted to maintain constant pressure. duction phase. Initial indications for dis- Well killing was successful in both wells, solving in reservoir oil started at 20 °C. The once reaching perforations and setting the dissolving rate improved further with in- plugging pill, losses decreased from 250 licreasing temperature. Figure 2 shows the ters in the first hour to zero liters after four starting phase of pill dissolvent. hours. Proper placement resulted into zero To ensure coherence of plugging pill and losses over the whole workover period (~50 avoid mixing up with wellbore fluids, during days per workover). pumping, additives like Xanthan were included. After detailed investigations, the mixture and main contents of modified plugging pill were fixed: Torque and Drag 1. Modified starch (AUS-DEX HT): Main Experience from earlier workovers (Dks 5 & function is to improve physical properties 7) indicated that torque and drag issues are at reservoir temperature and reservoir not a topic to be considered for Dieksand pressure; furthermore it supports stability wells. While setting permanent bridge plugs of plugging pill back in year 2005, torque values were at a 2. Xanthan (Xan Bore): Is a carbohydrate maximum of 22 kNm at the surface, having and has the function of increasing viscos- sufficient buffer to weakest connection ity for better pumping behavior point (DP XO 4″ x 5″ @ 7 5/8″ top of liner). 3. Resin (AUSTONE II): Main component In 2014 torque and drag created a major for plugging reservoir pores, this compo- problem in clean out operation. The main nent could be dissolved by reservoir oil reason for torque and drag issues was the 4. Salt (NaCl): Supports plugging of reser- outcome of sand deposition. Torque peaks voir pores reached 44 kNm (~8000 m drill pipe in5. Water: Works as a carrier medium for all stalled), resulting in a major risk of breaking ingredients of modified plugging pill weakest connection (DP XO 3 1/2″ x 5 1/2″ OIL GAS European Magazine 4/2015 Table 1 Additives of modified plugging pill Content Salt kg/m³ 150 AUS-DEX HT 15 Xan Bore 7,5 AUSTONE II 106 at top of liner, maximum 24 kNm). Realizing that torque and drag issues could end up in a fishing operation, a two-step approach was adopted to solve the problem. Step 1: Testing of torque values To get a better understanding of torque behavior real time testing was carried out during workover operation. As mentioned before the weakest connection point is the drill pipe X-Over 3 1/2″ 15,5# X 5 1/2″ 21,9# at the top of 7 5/8″ liner with a maximum make-up torque of 24 kNm. To test torque development at 3000 m, DP 5 1/2″ 21,9# were tested at different rotational speeds, with and without pumping working fluid. Investigations at Dks 7 resulted in torque values reaching 36 kNm. On average the torque was 28.5 kNm. This indicated that on average 15.5 kNm torque (44 kNm minus 28.5 kNm) was generated over 5000 m of 7 5/8″ / 7″ section. The safety margin to maximum allowable torque was roughly 8.5 kNm at the weakest connection point. Step 2: Reduction of torque. Application of water based mud Due to unpredictable milling conditions water based mud (WBM) was foreseen during planning phase for permanent bridge plug removal. A change from OBM to WBM was planned to reduce torque and to minimize losses of expensive OBM, due to open perforation intervals below permanent bridge plugs. The assumption was that the plugging pill utilized back in 2005 was completely dissolved. Water based mud contained mainly two components: 1. Fresh water 2. Friction reducer (AMC Torq-Free Xtra). The friction reducer displayed excellent properties, while replacing OBM by WBM. The onsite circulating pressure decreased from ~300 bars to ~210 bars (~3000 m DP 5 1/2″, ~ 5000 m DP 3 1/2″). Additionally the torque decreased by 4 kNm with drill pipe at top of bridge plug. Application of drill string torque reducer tool (DSTR tool) The primary objective was to reduce the effects of high side forces thus counteracting torque development along the well bore. The main focus lay on the area between kick off point (KoP) and end of build-up (EoB) in 10 3/4″ 51# casing section. This area typically shows highest casing wear and drill pipe wear, thus torque build up. Results of simulations for Dks 5 & 7 confirmed assumption. OG 195 DRILLING Fig. 3 Critcal side force Dks 5 Fig. 4 Critcal side force Dks 7 In Figures 3 and 4 the area of critical side force can be clearly recognized, and is marked in red. Areas marked blue have moderate side forces and a minimum influence on torque build up. According to simulation, side forces at some joints had a value of 900 daN. To cover primary area of torque development DSTR tools were utilized. This tool minimizes contact area between drill pipe and casing. Additionally bearings are installed to reduce rotational forces. The DSTR tool´s spacing and placement were determined by curve length of each build up section. In the case of Dks 5 & 7 they were implemented into the drill pipe string from 100 m MD to 1600 m MD. At each stand one DSTR tool was installed. Decreasing surface torque is calculated through simulations. One important input factor was the casing friction factor. For Dks 5 & 7 the estimated friction factors lay between 0.22 and 0.27. Two Scenarios were developed for each of the wells. The first scenario was the one without DSTR tools installed (Fig. 5, red line). The second scenario was simulated with DSTR tools in action (Fig. 5, blue line). The estimated torque without DSTR tools accumulated up to a value 48 kNm. This torque rang was approved through operational measurements. OG 196 Utilizing DSTR tools resulted in a reduction to 36 kNm, which is an improvement by 27% in surface torque. During milling operation values were fluctuating between 32 kNm and 37 kNm, confirming simulation outputs. main idea, during planning phase, was to clean out liner section in maintainable steps up to 1000 m. This should secure a reliable clean out with moderate operational conditions. On site investigation figured out that the first sections below top of liner were significantly sedimented. Calculations resulted in 20% volumetric proportion for first 250 m of 7 5/8″ / 7″ liner. Due to this fact clean out steps were reduced to 250 m, to avoid stuck pipe, pack offs and torque & drag problems. Toward perforation the sand deposition decreased to a volumetric proportion of 5%. So clean out steps were increased to 400 m. Integration of DSTR tools resulted in a safe clean out operation with no torque peaks. Due to the length of the clean out string (up to 7500 m) pumping rates were limited, because of pressure losses. Calculations figured out that the maximum pumping rate would be 1000 l/min at 300 bar pumping pressure. On site measurements confirmed a pumping rate of 1100 l/min at 300 bar. In the 7 5/8″ / 7″ liner flow velocities would be suitable for fines removal (1.25 m/s). Having transported fines out of the liner into the 10 3/4″ / 9 5/8″ casing section, a pumping rate of 1000 l/min would not be fully effective, since larger particles would settle out. Due to this fact the circulation tool (WELL COMMANDER) was planned and installed at 7 5/8″ top of liner. This tool allowed pumping rates up to 3800 l/min with a minimal pressure drop (~140 bar). Boosting annular velocity (2.5 m/s) ended up in adequate fines removal in upper 10 3/4″ / 9 5/8″ casing section. Design of clean out BHA was very simple to minimize operational risks. Configuration was: 1. Taper mill 2. 3 1/2″ heavy weight drill pipe with implemented Jar and accelerator 3. 3 1/2″ drill pipe (250 m–5000 m) 4. Well Commander including ball catcher 5. 5 1/2″ drill pipe with DSTR tool in upper section. Borehole Clean Out As previously mentioned borehole clean out was determined as one of the critical operational steps, due to wellbore trajectory and extent. The main focus was on the cleaning operation of 7 5/8″ / 7″ liner, due to flow of reservoir fluids in this section. Fines deposition was the major topic; the expectation for volumetric proportion was 1% to 5% (1–2 cm precipitation). This phase consumed a large portion of Fig. 5 String torque simulations for Dks 5. Red line indicates torque simulation without DSTR tools. Blue line indicates improvement in overall operational torque within areas with DSTR tools. Horizontal axis represents time (~30%). The torque in Nm. Vertical axis represents measured depth OIL GAS European Magazine 4/2015 DRILLING Fig. 6 Alpha Oil Tools, 5 3/4″ H-M Bridge Plug (model “P”) Permanent Bridge Plug Milling To plan a successful milling operation, material properties and recommendation of bridge plug provider had to be considered. In both wells permanent bridge plugs from Alpha Oil Tools were installed (Fig. 6). The high pressure and temperature 5 3/4″ H-M Bridge Plug (model “P”) was set by using hydraulic power. The most important properties to be considered for milling operation were cast iron construction and one-piece slip. With support of Smith International a fit-for-purpose bit selection was carried out. For this category of workover three types of mills came into consideration: 1. Copperhead Bridge Plug Mill 2. Super Junk Mill 3. PIRANHA Mill. After deeper investigation, the decision was to carry out the milling operation with the Copperhead Bridge Plug Mill. This mill was chamfered to guarantee no damage to the top of the liner. The Milling BHA was kept very simple to minimize risk of failure. BHA set up: 1. Copperhead Mill 2. Bit stabilizer 3. String magnet 4. String stabilizer 5. 3 1/2″ heavy weight drill pipe with implemented jar and accelerator 6. 3 1/2″ drill pipe 7. 3 1/2″ heavy weight drill pipe at top of liner 8. 5 1/2″ drill pipe with DSTR-tool in upper section. Milling operations were carried out according to recommendations. Flow rates were 1100 l/min with ~200 bar pumping pressure. Torque fluctuated between 32 and 37 kNm at 80 RPM (improvement through WBM and DSTR-tool). Exact evaluation of plug position was challenging due to sedimentation of reservoir sand above. The first 5 3/4″ H-M Bridge Plug was milled out after 110 min at Dks 7 with Weight on Bit values from 5 to 13 t. Indication for milling was not clear at the beginning, thus WOB was moderately increased. Taking lessons learned from Dks 7 into account WOB was increased at Dks 5 and varied from 10 to 18 t. This resulted in improved milling time of 50 min. Utilized copperhead mills for Dks 5 and 7 are presented below. Impact of higher WOB could be clearly recognized. Fig. 7 Fig. 8 Copperhead Mill after milling BP Dks 7 OIL GAS European Magazine 4/2015 Outcome of Workover Operations The average production parameters (Dks 5 & 7) before workover operations were 1950 m³ (12,265 bbl) daily with water cut of 83%. After milling both permanent bridge plugs and perforation of additional reservoir intervals, production rates were slightly increased by 100 m³/d (629 bbl) to 2050 m³ (12,895 bbl) daily with an average water cut of 70%. 280 m³/d (1760 bbl) of additional oil were gained through workover operation increasing oil production for both wells by 84%. Conclusions Workover operations for milling permanent bridge plugs on Dieksand 5 and 7 were a major success. Through precise evaluation several challenges could be identified and fit for purpose procedures were engineered. Three key points were determined during the planning phase. The first challenge was well killing, which was solved through adequate plugging pill selection. Selection was carried out after lab experiments and consultation of various service companies. The selected pill performed as expected, which resulted in safe workover operations, zero losses and no damage to pay zones. The second challenge was wellbore clean up. Because of significant sedimentation in the production casing, clean out steps had to be adapted. The planned steps for clean out operation were initially 1000 m and these were reduced in practice to 250 m due to massive sedimentation. Sedimentation issues resulted in torque peaks generating a major risk of breaking the drillpipe´s weakest connection at 7 5/8″ top of liner (5 1/2″ X 3 1/2″ DP). Torque issues were solved through implementation of drill string torque reducers. Those tools were installed in upper section of the drill string resulting in a reduction of surface torque values by 27%. Additionally a change in the mud system was carried out to minimize losses of expensive oil based mud. Water based mud promoted reduction of torque values (reduction ~7%) and pumping pressures (reduction ~30%). The third challenge was selection of suitable mill and milling parameters. Selection was carried out in cooperation with service companies. Lessons learned from the first milling operation at Dieksand 7 allowed an increase of weight-on-bit for Dieksand 5. The direct outcome was a reduction of milling time from 110 min to 50 min for the same kind of bridge plug. Overall both workovers were very successful regarding engineering, execution and economics. The increase of oil production was 84% in comparison to before workover operations. Karim Soliman is a graduate of Montan University Leoben, Austria. He holds a Dipl.-Ing. in Petroleum Production Engineering and a Dipl.-Ing. in Industrial Management and Business Administration. Karim started his career with DEA Deutsche Erdoel AG back in January 2014. He is currently working at production district Holstein and responsible for production & completion of oil wells. Copperhead Mill after milling BP Dks 5 OG 197 OIL/GAS PRODUCTION BTEX Removal from Production Water using Associated Gas By M. VALKENIER, G. HINNERS, and G. THEMANN* Abstract HDPE is a popular material for pipelines due to its chemical resistance, flexibility and durability; unfortunately a major drawback has been identified: BTEX1) components are shown to be permeable through HDPE. BTEX is environmentally unfriendly as well as genotoxic and carcinogenic, but is commonly found in oil production and thus could pose a problem when transporting these fluids through HDPE pipelines. The driving force of the BTEX components through the HDPE can be severely decreased by reducing the concentration in the fluid, effectively preventing permeation. A novel process has been investigated to remove the BTEX components from production water. This patent-pending process was tested on a laboratory scale, in order to obtain a proof-of-concept. The process was eventually scaled to a full-size system, which is currently installed in an oilfield in Southern Germany. It was shown that by using a desorption column in combination with conditioned associated gas, BTEX components can be removed from production water and recovered together with aliphatic hydrocarbons in one process step. The recovered hydrocarbons are added to the oil, effectively increasing production and avoiding handling of waste. By using this technology a continuous process is provided by Wintershall, which does not need foreign stripping gas or materials. 1 Introduction Production water can contain a variety of commonly found impurities such as BTEX1), mercaptans and others. BTEX components are a group of aromatic hydrocarbons, which are environmentally unfriendly as well as being genotoxic and carcinogenic [1]. It has been shown that these components can permeate through an HDPE pipeline [1]. By decreasing the BTEX concentration in the production water, the driving force of the diffusion of BTEX through a HDPE injection pipeline is severely decreased, effectively preventing permeation. Wintershall's self* M. Valkenier, G. Hinners, G. Themann, Wintershall Holding GmbH. Lecture, presented at the DGMK/ÖGEW Spring Conference in Celle, Germany, April 22–23, 2015 (E-mail: Mark.Valkenier@wintershall.com) 1) BTEX: Benzene, Toluene, Ethyl-benzene and Xylene 0179-3187/15/IV © 2015 EID Energie Informationsdienst GmbH OG 198 imposed goal is to remove at least 80% of BTEX from the production water. Existing processes have the disadvantage that the problem of BTEX is shifted from the production water towards waste-management. A patent-pending process was investigated in which the BTEX is removed from the production water in the context of an existing Wintershall oil production plant in Southern Germany with a production water flow of ~40 m³/h. First some applicable alternatives are described, before selecting the process to be used. Secondly, the theoretical background of the novel process is discussed and the in-field process system is presented. Finally the performance of the system is analysed, compared with simulations and operation curves are constructed. 2 Process Selection 2.1 Adsorption Removal of BTEX components is possible by using an adsorbent such as activated carbon. The main challenge is the low selectivity of BTEX (compared to water) on adsorbents. The combination of the low concentration of BTEX and more than ten times higher aliphatic hydrocarbon contamination in the production water can lead to high adsorbent consumption. Furthermore, if the adsorbent is loaded with BTEX then it needs to be disposed of by an external company, hence the problem is shifted from the liquid to the solid state. Additionally, since adsorption is not a continuous operation, the entire process has to be installed redundantly. 2.2 Adsorption with biological material Biological material can be used to remove BTEX components, such as in the Siemens PACT process. The performance of this system can be increased by adding activated carbon adsorbent. The inherent disadvantage of a biological system is the inertia of the system; if an increase in BTEX is introduced, the bacteria will not multiply quickly enough to prevent breakthrough from occurring. This effect is overcome by introducing activated carbon adsorbent. Addition of regeneration of the activated carbon then makes this process the most elaborate of the presented solutions. Addition of activated carbon regeneration makes this process the most elaborate of the presented solutions. 2.3 Membranes The demands on membranes when separating BTEX components from production water are high, since either a nanofiltration- or a reverse osmosis process is required. The low molecular weight of the BTEX components presents a major challenge. The driving force from these components out of the water phase is extremely small. Furthermore, the small particles and contaminants generally found in production water are a major disadvantage for the sensitive membrane units. 2.4 Electrochemical oxidation Electrochemical oxidation promotes reduction of hydrocarbons from reservoir water. The speed of this reduction is determined by the structure of the components, but can not only be directed towards BTEX components. The principle of the process is similar to electrolytic dissociation of water: a cathode and an anode are inserted into the water and a current is applied. The formed hydroxyl radical can oxidize the hydrocarbons into carbon-dioxide and water. The major advantage is that no other material has to be added to the stream, only electricity is required. The disadvantage is that contact of the production water with oxygen is unavoidable. 2.5 Desorption The desorption process is relatively uncomplicated, with a column as the main component, which serves as a contactor for gas and liquid. The vapour pressures of the BTEX components is relatively low (80–140 °C). The column conditions must come close to the vapour pressure of the BTEX components. This can be done in three ways: either increase the temperature, decrease the total pressure or decrease the partial pressure using stripping gas. The major advantage is that no rotating equipment is present (except for the pumps) and the fouling potential is low. Due to the simplicity of the process, this technology was chosen to remove the BTEX components from the reservoir water. 3 Process description 3.1 Theory 3.1.1 BTEX stripping In 2011, various laboratory experiments were performed to show a proof-of-concept. OIL GAS European Magazine 4/2015 OIL/GAS PRODUCTION Fig. 1 BTEX removal percentage as a function of the temperature for various media using a test-column. The dots indicate measured data, while the dashed lines help visualize the trend In these experiments BTEX was removed from production water at various temperatures and at atmospheric and vacuum conditions. In 2012, a small test-column was built, which was filled with glass Raschig rings to provide the system with a high specific surface area. BTEX was removed from production water whereby the temperature, pressure, vapour-to-liquid ratio, BTEX preloading and gas (associated gas vs. nitrogen) were varied. In Figure 1, the BTEX removal efficiency is shown for various stripping media as a function of temperature. From Figure 1 it can be seen that the BTEX removal capability of pure nitrogen is superior to associated gas. However, if benzene preloaded nitrogen is used as stripping gas, the temperature has to be elevated significantly in order to have a BTEX removal efficiency similar to that of pure nitrogen. Therefore in order to effectively use nitrogen as a stripping gas, it has to be either conditioned very deeply or fresh nitrogen needs to be provided continuously. 3.1.2 Gas conditioning In order to select the appropriate stripping medium, the gas conditioning unit step should be taken into account as well. The gas conditioning can be done using compression and cooling to separate the BTEX components from the stripping gas. Firstly nitrogen is considered as a stripping gas, since it has a high removal efficiency as can be seen in Figure 1. In Figure 2 a nitro- Simulated nitrogen-benzene dew-point curve for a benzene content of 0.025 mol-% gen-benzene dew-point curve is shown for a mixture containing 0.025 mol-% benzene by using Peng-Robinson. From Figure 2, it becomes clear that in order to remove small amounts of benzene from nitrogen, high pressures and/or low temperatures are necessary. This can be verified by a short-cut calculation: if an ideal mixture is assumed, which consists of 0.025 mol-% benzene, operated at 10 bar(g) and 10°C, the partial pressure is 0.00275 bar(a). At these conditions the vapour pressure is 0.06 bar(a) [2]. From this it follows that for an ideal mixture to condensate a small amount of benzene, one needs very large pressures (and/or low temperatures). Secondly a hydrocarbon stream will be considered as stripping gas, which can be considered a non-ideal mixture. For the analysis, the ΣC3+ fraction is varied to identify the difference between associated and natural gas. Two phase envelopes for a light and a heavy hydrocarbon gas are shown in Figure 3. Depending on the composition, a two phase-region is reached with relatively high temperatures and low pressures. By exploiting associated gases (higher molecular weight and thus containing higher aliphatic hydrocarbons), the aromatic hydrocarbons can be recovered as part of a condensate. Simulations indicate that benzene can be removed from the loaded gas stream at low pressures when operating the separator at 10°C, as shown in Figure 4. The formed condensate consists of both the aromatic as well Fig. 3 Phase envelope for a light and a heavy hydrocarbon gas OIL GAS European Magazine 4/2015 Fig. 2 Fig. 4 as the aliphatic hydrocarbons, which can be spiked into oil or sold directly. Associated gas is used as stripping gas due to its advantages over nitrogen. 3.2 Process flow diagram The process flow diagram for the field system is shown in Figure 5. The reservoir water is treated in the desorption column at elevated temperatures, hence two recuperator plate heat exchangers are installed to decrease the load on two hot water plate heat exchangers, which results in an energy efficient process. All heat exchangers are designed to handle full capacity in order to perform maintenance operations without having to shut-down the entire plant. Furthermore, it is possible to operate the heat exchangers in series or parallel. After the production water has been conditioned in the column, it is cooled down by the recuperator, an air-cooler and, if necessary, a vapour-compression refrigeration system. The last cooling step is required to ensure a maximum injection water temperature of 30°C (required by operations), which is not guaranteed by using only an air-cooler. The associated gas coming from the desorption column, thus containing BTEX components, is mixed with the associated gas coming from the initial oil/gas-separator before entering the gas conditioning unit. The (assumed) saturated wet gas is cooled down before entering a knock-out drum and is compressed by an oil lubricated screw- Condensation of benzene in a hydrocarbon condensate at 10 °C OG 199 OIL/GAS PRODUCTION Fig. 5 Process flow diagram for the desorption column in combination with the gas conditioning unit type compressor to 4.5–14 bar(g). This range in pressure level is related to the need for fuel-gas; the amount of fuel-gas available can be adjusted by the pressure level to match the requirement for changing gas composition (winter - vs. summer operation). The gas is cooled down to 10 °C and the hydrocarbon-gas mixture is separated. In this last step, the aromatic and heavier aliphatic hydrocarbons will condensate, thus obtaining a conditioned associated gas which can be used to clean the production water. The remaining fuel-gas is also used to heat up the production water entering the column. 3.3 Advantages and disadvantages The advantages of removing BTEX from reservoir water using a desorption process in combination with a gas conditioning unit based on condensate production are: – Recovery of aromatic and aliphatic hydrocarbons in one process step – Simultaneous cleaning of stripping gas – No foreign stripping medium is required – No waste disposal required – Continuous process – Adjustable BTEX removal rate – Energy efficient operation (non-condensed gas is used to heat the water) – Production water treatment in a single step desorption. The major disadvantage of such a gas conditioning unit is the fact that a compressor is required in order to produce condensate. In Figure 6 the main components involved in BTEX removal are shown. It can be seen that the compact design leads to an orderly plot-plan. 4 Performance analysis The performance of the in-field desorption column will be compared with the process simulations in this chapter. By obtaining an adequate model, it is possible to optimize the process, so that it can be operated in the most cost-effective way. 4.1 Experiments The essential variables of the desorption column are the Fig. 6 OG 200 In-field BTEX removal unit. From left to right: pumps (front), gas conditioning unit (back), desorption column and heat exchangers Fig. 7 production water temperature, gas/liquid ratio and the gas conditioning pressure and temperature. The compositions of the gas and water are not constant due to the nature of the operations and these effects are assumed to be balanced out by acquiring multiple samples. The column temperature was varied from 20 °C to 75 °C; the gas/liquid ratio from 1 to 2; To simplify the experimental program, the gas conditioning operation conditions were held constant at 10 barg (average operating pressure) and 10 °C (minimum practical temperature). The amount of BTEX removed as a function of those parameters can be seen in Figure 7. Figure 7 indicates that by increasing temperature the BTEX removal approaches 100% asymptotically. With a higher gas rate (increased gas loading) the removal increases significantly at 45 °C, however at low (20 °C) and high temperatures (75 °C), the difference in removal rate is small. For a higher gas/liquid ratio and/or higher temperature it can be seen that 80% BTEX removal can be achieved by the in-field desorption column using conditioned associated gas. 4.2 Simulation In order to (energy-) optimize the desorption process, a simulation model was created. After comparing the results (Fig. 7) with various property methods, it became clear that the non-idealities in the production water caused the model to grossly under- or over-estimate BTEX removal. One property method was selected and tuned to fit the available data. The experimental data and results from the simulation are shown in Figure 8. From Figure 8 it can be seen that the model can adequately predict the qualitative and quantitative data of the desorption column. The error bars in the graph indicate the uncertainty in BTEX removal due to changing gas and water composition. Above 30 °C, the relative error is 10%; from 50 °C onwards the error is ~6% and decreases with increasing temperature; which is deemed sufficient for optimization purposes. BTEX removal as function of column temperature for two gas/liquid ratios OIL GAS European Magazine 4/2015 OIL/GAS PRODUCTION Fig. 8 Experimental data and simulations using a tuned property package Fig. 9 4.3 Recommendations By using the calibrated model, the system’s response to other operating conditions can be simulated. This can be used to create lines of equal BTEX removal percentages as a function of the column temperature and gas/liquid ratio. The results can be seen in Figure 9. As can be seen in Figure 9, a higher BTEX removal rate requires an increase in the column temperature or the gas/liquid ratio. Increasing the G/L ratio has a direct effect on the electricity consumption of the compressor and increasing the column temperature only consumes more (self-produced) fuelgas. Hence it was recommended that the column should be run with high temperatures and a minimum G/L ratio, in order to achieve the 80% BTEX removal goal most cost-effectively. 5 Conclusions In the early stages of the project the decision was made to expedite the desorption process for removing BTEX components from the production water. The idea of using conditioned associated gas as a stripping medium in a desorption column was successfully tested in a laboratory set-up. From this it became clear that the project was feasible and finally the system was built at an existing oil production plant in Southern Germany with production water volumes of ~40 m³/h. Finally the performance of the full-size column was evaluated and the process optimized in conjunction with simulations. OIL GAS European Magazine 4/2015 Worst case constant-BTEX-removal curves as a function of the column temperature and G/L ratio. The white area indicates the area at which the model has been proven to be maximum 10% error. The grey area designates extrapolated (unverified) results from the model. The analysis was done at a constant benzene preloading of 138 ppm The removal of BTEX components using a desorption column in combination with conditioned associated stripping gas was shown to be an excellent process in the context of an oil producing field. Wintershall’s patent- pending continuous process can recover the aromatic and aliphatic hydrocarbons in a single process step; by adding this to the oil, production is enhanced. Furthermore, using this novel process averts usage of foreign material such as adsorbents or nitrogen, thereby avoiding the need for waste disposal. By raising the temperature of the column, the gas/liquid ratio can be minimized in order to increase effectivity and energy efficiency of the entire plant. References [1] Koo, D. (2012), ‘Assessment and Calculation of BTEX Permeation through HDPE Water Pipe’, Plastics Pipe Institute. [2] Goodwin, R.D (1988), ‘Benzene Thermophysical Properties from 279 K to 900 K at Pressures to 1000 bar’, J. Phys. Chem. Ref. Data, Vol. 17, No. 4, p. 1541–1636. Mark Valkenier grew up in The Netherlands, where he studied Mechanical Engineering at Delft University of Technology, obtaining a masters degree with honors in 2014. Since then, he works as a Project Engineer in the graduate program of Wintershall Holding GmbH. Georg Hinners is Head of Facilities Engineering with Wintershall Holding GmbH and responsible for all own operated German O&G surface facilities. He holds a Dipl.-Ing. degree in Mechanical Engineering from the Technical University of Hannover in Germany. Georg works for Wintershall since 1981 in all kind of planning and constructing process facilities for oil and gas production. Gerhard Themann studied Mechanical Engineering at the Fachhochschule Osnabrück in Germany, obtaining a Dipl.Ing. degree in 1995. Gerhard has more than 20 years of experience in Facilities engineering. Since 2010 he works as a Project Engineer for Wintershall Holding GmbH . OG 201 OIL PRODUCTION Analyses of Operating Electric Submersible Pumps (ESPs) of Different Manufacturers – Case Study: Western Siberia By A. SUKHANOV, M. AMRO and B. ABRAMOVICH* Abstract These analyses were performed to investigate the efficiency of operating electric submersible pumps (ESPs) an oil field in Western Siberia. This field is considered to be one of the most difficult in this region, as the reservoir temperature in some areas reaches anomalous values, and the amount of solid particles in the majority of wells exceeds the allowable value of 100 mg/l by 5–8 times. The article shows the main causes of failure of both ESP “X” and ESP “Z” of two different manufacturers. It considers the experience in almost 600 wells. The key efficiency indicator of the ESP is measured by the turnaround time (TAT). In our case the TAT of ESP “X” exceeds that of ESP “Z” by almost 3.5 times. Economically, it is estimated that after the second failure of ESP “Z”, the costs for workover operations, subsequent repairs and washing out the wells already exceed the costs of ESP “X”. Therefore, despite the high purchase costs for ESP “X”, its further usage can achieve additional production of hydrocarbons in this oil field. These analyses have been conducted together with the Institute of Drilling Engineering and Fluid Mining at the TU Bergakademie Freiberg. cludes above-ground and underground equipment. Above-ground equipment: The transformer converts the voltage up to the optimum values needed for ESP. The switchboard allows manual or automatic switching on and off of the ESP during target program. The junction box is necessary for the connection of the cable line from the switchboard to the ESP. The X-mas tree consists of various gate valves and control elements. For control of the fluid regime from the borehole a flow choke is in- stalled in the manifold. The electrical cable line carries the electric current from the surface to the electromotor of ESP (Fig. 1). Underground equipment: The ESP consists of a multi-stage centrifugal pump, pump intake, protector und submerged electromotor. The electric motor drives the pump, whereby liquid is raised to the surface through the pipework. Also, a gas separator can be included additionally in the ESP. For monitoring the condition of ESP a telemetry system is installed to determine temperature, pres- 1 Introduction ESP usage remains one of the most advanced methods worldwide in the production of crude oil. In the case of ESP failure, the costs for workover operations and subsequent repairs are nearly equal to the costs for new equipment. For this reason, the choice of quality equipment is very relevant for the oil companies. The main criteria for selecting an ESP are price, availability of the necessary spare parts and high turnaround time (TAT) of ESP operations. ESP contains a chain of sequentially interconnected mechanisms operating in one system. Therefore, a failure of at least one of the mechanisms leads to failure of the whole system. The electric submersible pump in* M.Sc. Alexander Sukhanov, Prof. Dr.-Ing. Mohd Amro, TU Freiberg, Germany; Prof. Boris Abramovich, Mining University St. Petersburg, St. Petersburg, Russia (E-mail: ASukhanov2@mail.ru, Mohd.Amro@tbt.tu-freiberg.de). 0179-3187/15/IV © 2015 EID Energie Informationsdienst GmbH OG 202 Fig. 1 Well construction equipped with ESP OIL GAS European Magazine 4/2015 OIL PRODUCTION sure and vibration. The data from the telemetry system is transferred through the electrical cable line to the electrical panel of the switchboard in real time. The float valve prevents a liquid flow through the centrifugal pump back to the wellbore in the event that the ESP is switched off. The Fig. 2 Turnaround time of ESPs 2011–2013 overflow valve is necessary remove liquid from the pipework After a thorough analysis of all the wells when the ESP is pulled out of the hole. equipped with ESP over three years, we can clearly see that the TAT of ESP “X” is much higher than others. For example, the TAT of 2 Formation Characteristics ESP “X” in 2011 and 2012 is almost four The task was to investigate the efficiency of times higher than that of ESP “Z”. In 2013, it operating the ESPs of two manufacturers exceeded ESP “Z” by almost 3.5 times. The [1]. Due to its geological characteristics, the constructional features and the quality of oil field is considered to be one of the most some of the manufacturing components of difficult in this region, as reservoir tempera- the ESP, as well as their ability to work over a tures reach anomalous values (150 °C) in wide range of downhole conditions can exsome areas and as the amount of solid parti- plain such a high TAT. cles in the majority of the wells is 5–8 times The TAT decreases over the three years, higher than the allowed value of 100 mg/l. which can be explained by the aging of the Pay formations in this oil field occur at equipment in the wellbore, whereby partial depths of 2369 to 2409 m and are character- accumulation of salts in the working pump ized by frequent alternation of sandstones, stages occurred and the high concentration siltstones and argillite with clay layers. The of solids particles in the well fluid led to information thickness varies from 22 to 39 m. tense wear of the working pump stages and The average porosity of the oil field reaches bearings. This is mainly due to running the 17.5% and the permeability is 14 x 10–3 µm2. pump immediately after frac stimulation. 3 Turnaround Time (TAT) of ESPs The key efficiency indicator of the ESP is the turnaround time (TAT). The TAT describes the non-stop operation of the ESP between two workover operations of the well, from the beginning of the first start until the stop for replacement. Figure 2 shows the development of TAT of ESPs over time. Fig. 3 4 Causes of Failure of ESP Figure 3 represents the causes and their percentages of failure in this oil field. The main reasons for failure are presented in more detail below. 4.1 Impacts of saline deposits on the ESP operation The analysis shows that the main reason for failure of ESP “X” was in more than 50% of cases the accumulation of salts in the working pump stages followed by workover. In comparison this factor for ESP “Z” reached only 30%. Such a high tendency can be explained only by smaller size flow areas in the pump stages of ESP “X”. Salt manifestations occur due to overheating of the water present in the well fluid. Overheated water can be explained by undersupply of fluid; this means the inflow into the borehole is less than the ESP is able to pump. The second reason for salt forming is the mixing of reservoir water with water, which is pumped to maintain reservoir pressure or to kill the well using a different chemical composition. Salt crystals are deposited not only on the pump stages, but also on the outer surface of the ESP, which impairs the heat transfer and sometimes leads to jamming in the production casing. 4.2 High concentration of solid particles About 20% of ESP failures from ESPs of both manufacturers occurred due to high concentration of solid particles. When the concentration of solids in the well fluid exceeds the allowed norm, the lifespan of the pump is significantly reduced. Furthermore, high wear on impellers, diffusers in the inner diameter, shaft sleeves, sleeves of the upper and lower bearings, heel units and textolite grooves occurs, which leads to increased shaft vibration and premature failure of the ESP. The reason for the occurrence of solid particles can not only be the natural process of destruction of the formation, but also the recovery methods as well as stimulation methods. When starting the ESP, a sharp decline in the bottom hole pressure occurs, which e. .g contributes to removing frac proppant with the well fluid from the reservoir. The sharp drop of bottom hole pressure is also possible e. g. in low-density perforations. Causes of ESP failure OIL GAS European Magazine 4/2015 OG 203 OIL PRODUCTION 4.3 Electrical breakdown of stator winding of electromotor Increased vibration of the pump shaft and the rotor of the electromotor causes entering of well fluid through the end seals into the protector inside the electromotor. This leads to an electrical breakdown of the stator winding. During a short circuit, the pressure in the electromotor abruptly rises causing thereby a break of the diaphragm protector. The failure rate due to this reason was about 5% for ESP “Z”, for ESP “X” it does not exceed 2%. Protectors of all manufacturers have the same functions, with the exception of minor structural differences. Protectors of ESP “X” have not two, but three end seals and diaphragms made of a material which can withstand temperatures as high as 204 °C. 4.4 Insufficient flow of fluid to the ESP This phenomenon leads to a decrease of dynamic fluid levels in the well and to a reduction of the pressure at the pump intake. This occurs when the gas enters into the pump in two ways: either from the annular of the well through the pump intake or from dissolved gas which is released from the well fluid appearing when the pressure inside the pump is below the saturation pressure. As a result, pump starvation occurs and leads to a decrease in the current to a value close to the idling current of the electromotor. The pressure drop across the pump causes closing of the float valve and the pump begins to operate in a mode called “dry friction” resulting in intense heat and increased wear of working components of the pump. This causes 8% of all ESP failures for both manufacturers. 4.5 Melting insulation extension cable The reliability of extension cable depends primarily on the thermal resistance of insulation material, as well as the ability to work in a certain temperature range. Therefore, not only the high bottom hole temperature, but also the heat from the pump and the electromotor have an adverse effect on the longevity of the extension cable. Extension cables of ESP “Z” are able to withstand temperatures up to 120 °C, while the extension cables of ESP “X” are designed for temperatures up to 204 °C. This cause of failure was detected for ESP “Z” only. Its quote reaches 15%. OG 204 4.6 ESP work in periodical duty Periodic regime means the operation of ESPs is not constant, but with frequent stops. The frequency of starts and stops is depending on the inflow of well fluid. For example: 3hours pumping fluid, 8 hours restoring of static fluid level. Operating ESP in this mode leads to premature failure of the electromotor due to electrical breakdown of the stator winding, as it is designed for 190–230 runs only. Periodic mode is used only on ESP “Z”, which caused 6% failures. Moreover, at the present time variable speed drives (VSDs) are widely used which allow avoiding periodical operation of ESP by pumping well fluid in accordance with the dynamic level of the well. VSD also provides a smooth start of the ESP, which prolongs the life of the electromotor. With the invention of VSD, the task of selecting the pump size has become much simpler. If the rotation speed of the pump shaft changes for example, it is possible to adjust ESPs to different inflow of crude oil from the formation, regardless of the number of pump stages in the pump. Other reasons for the failures, such as mechanical damage of electrical cable, pipework leakage, poor quality repair of the protector or the electromotor are indirect causes, but also lead to failure of ESP. 5 Summary and Conclusions On the basis of the performed analyses it can be concluded that the usage of ESP “X” is more favorable. TAT from ESP “X” exceeds ESP “Z” by several times. Economically, it is estimated that after the second failure of the ESP “Z”, the cost of workover operations, subsequent repairs and washing out the wells, are higher than the purchase costs of ESP “X”. Despite the high costs of ESP “X” (almost three times compared to ESP “Z”) it is advisable to use this ESP to provide additional production of crude oil in this oil field. References [1] A. Sukhanov: Erhöhung des Reparaturintervalls von Elektrotauchkreiselpumpen durch den Einsatz gleichartiger Pumpen verschiedener Anbieter in der Lagerstätte Prirazlomnoje. Diplomarbeit, TU Bergakademie Freiberg, Sept. 2011. Alexander Sukhanov, a PhD student, received MSc degrees from Tyumen State Oil and Gas University Russia in 2003 and from Freiberg University of Mining and Technology, Germany in 2012. From 2003 to 2009 he worked with Schlumberger Logelco Inc. and Halliburton International Inc. in Russia as an ESP field engineer and later as L/MWD engineer. From 2012 to 2015 he was employed as an Assistance Rig Manager at DrillTec GUT Ltd Company and as Directional Drilling Engineer at Halliburton Company Germany GmbH. Mohammed M. Amro is currently Professor and Chair of Reservoir, Production and Storage Engineering at Technical University Bergakademie Freiberg in Germany. From 1999 to 2009 he was a faculty member in the petroleum and natural gas engineering department of King Saud University, Riyadh. Previously, he worked at the German Petroleum Institute in Clausthal, Germany, and for Qatar Drilling Co. in Qatar. Prof. Amro holds a BS, an MS and a PhD in petroleum engineering from The Technical University of Clausthal in Germany. He is a member of Society of Petroleum Engineers (SPE) and German Society for Petroleum and Coal Science and Technology (DGMK), Germany. Boris N. Abramovich is currently Professor of Electrical Energetics and Electromechanics Department at National Mineral Resources University (Mining University), Saint Petersburg, Russian Federation. He received his PhD degree in electrical engineering and his Dr.Tech. degree in electrical engineering from Leningrad Mining Institute, Leningrad, Soviet Union, in 1971 and 1986 respectively. Since 1986, he has been a professor in Leningrad Mining Institute, Leningrad, Soviet Union and later in National Mineral Resources University (Mining University), Saint Petersburg, Russian Federation. His research area covers the wide range of power quality and electromagnetic compatibility problems, power supply and consumption optimization problems, power supply reliability ensuring problems, distributed generation problems. He is the honorary figure of Russian higher education. He is a full member of Russian natural science academy, Russian mining science academy, International energy academy (Russia), International academy of ecology, human and nature safety (Russia). OIL GAS European Magazine 4/2015 PRODUCTION Improvement of Oil Production Rate Using the TOPSIS and VIKOR Computer Mathematical Models By M. ALEMI, M. KALBASI, F. RASHIDI* Abstract Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) and VIšekriterijumsko KOmpromisno Rangiranje (VIKOR) are two important Multi Criteria Decison Making (MCDM) methods, which can be applied to facilitate selection among a limited number of criteria to be processed. Artificial lift is defined as any system increasing energy to the fluid column in a wellbore with the aim of improving the production rate. In this article, a novel software computer method (by means of Visual Basic.net Coding) based on the two TOPSIS and VIKOR mathematical models is presented for artificial lift selection in oil production, validated with several specific oil field data to show a good match between the two TOPSIS and VIKOR models program final results and the fields’ operational results. The application of these models on the basis of MCDM scientific methods can perform the best artificial lift method selection under the oil field circumstances. As a comparison, the programs of TOPSIS and VIKOR models artificial lift selection were applied to an HP (Hydraulic Pump) and GL (Gas Lift) respectively for an example oil field. Of course, it should be mentioned that as shown in this paper, we have used the field data available in table 1, but for more accuracy in results, we have also privately used more input data of other fields such as table 2 etc. Since the TOPSIS model program results are closer to the field data for artificial lift selection, as compared with the results using the VIKOR model, then TOPSIS is a better MCDM model for artificial lift selection. 1 Introduction Any system adding energy to the fluid column in a wellbore to enhance production from the well is called an Artificial Lift. Ma* Mehrdad Alemi, Department of Petroleum Engineering, Amirkabir University of Technology, Tehran, Iran; Mansour Kalbasi, Fariborz Rashidi, Department of Petroleum Engineering, Amirkabir University of Technology, Tehran, Iran, Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran (E-mail: mkalbasi2000@jahoo. com, mkalbasi@aut.ac.ir). 0179-3187/15/4 © 2015 EID Energie Informationsdienst GmbH OIL GAS European Magazine 4/2015 jor types of Artificial Lift are Gas Lift (GL) design (Continuous Gas Lift, Intermittent Gas Lift) and Pumping (Electrical Submersible Pump (ESP), Progressive Cavity Pump (PCP), Sucker Rod Pump (SRP), Hydraulic jet type Pump (HP)). When a reservoir lacks sufficient energy for oil, gas and water to flow from the wells at desired rates, supplemental production methods can help. It may be economical at any point in the life of a well to maintain or even to increase the production rate by the use of Artificial Lift to offset the dissipation of reservoir energy. MCDM (Multi Criteria Decision Making) refers to making decisions in the presence of multiple, usually conflicting criteria. The problems of MCDM can be broadly classified into two categories: Multiple Attribute Decision Making (MADM) and Multiple Objective Decision Making (MODM), depending on whether the problem is a selection problem or a design problem. By now, the percentage usage of GL, ESP, SRP, PCP and HP Artificial Lift methods throughout the world amounts to 50%, 30%, 17%, >2% and <2% respectively. Regarding earlier artificial lift selection procedures some researchers studied the following: In (1981), Neely considered the geographical and environmental circumstances as the dominant factors for Artificial Lift Selection. In (1988), Valentine used Optimal Pumping Unit Search (OPUS), a smart integrated system possessing the characteristics of artificial lift methods, for artificial lift selection. In (1993), Bucaram and Clegg studied on some of the operational and designing factors based on artificial lift methods overall capability comparison and design. In (1994), Espin used SEDLA, a computer program possessing the characteristics of artificial lift methods, for artificial lift selection. In (1995), Heinze used the Decision Tree for artificial lift selection, mostly based on a longtime economic analysis. The objective of the article is to compare and to discuss the two TOPSIS and VIKOR mathematical models as appropriate methods for artificial lift selection. 2 Materials and Methods The usage of Artificial Lift methods throughout the world has been recently reported by Weatherford Corp. Up to now the percent usage of each of the artificial lift methods throughout the world i. e. GL, ESP, SRP, PCP and HP, as different artificial lift methods amounts to 50%, 30%, 17%, >2% and <2% respectively. 2.1 Some engineering applications of TOPSIS and VIKOR models used up to now – Application of TOPSIS model as a data classifier, the proposed model could provide additional efficient tool for comparative analysis of data sets. TOPSIS model has been applied in Multiple Criteria Decision Analysis based on D.Wu’s data mining model. It has been applied in supply chain complexity evaluation and simulation has been used to validate the proposed model [1]. – Application of TOPSIS model as a new model for mining method selection of mineral deposit based on Fuzzy Decision Making, the Fuzzy Decision Making (FDM) software tool has been employed to develop a Fuzzy TOPSIS based model. Application of this model with various values (crisp, linguistic and fuzzy) of the deposit eliminated the existing disadvantages of other methods [2]. – Application of TOPSIS model in initial training aircraft evaluation under a fuzzy environment, the study has applied the fuzzy MCDM method to determine the weights of evaluation criteria and to synthesize the ratings of candidate aircraft. Aggregated the evaluators’attitude toward preference; then TOPSIS has been employed to obtain a crisp overall performance value for each alternative to make a final decision [3]. – Application of TOPSIS model as a multi criteria decision analysis of alternative fuel buses for public transportation, the result has shown that the hybrid electric bus has been the most suitable substitute bus for Taiwan urban areas in the short and median term. But, if the cruising distance of the electric bus extends to an acceptable range, the pure electric bus could be the best alternative [4]. OG 205 PRODUCTION – A study attempts to present a method for differentiating between multi-attribute decision procedures and to identify some competent procedures for major decision problems, where a matrix of alternative-measure of effectiveness and a vector of weights for the latter are available. This is done from an engineering viewpoint and in the context of a transportation problem, using a real case light rail transit network choice problem for the City of Mashhad, and the results are presented. Two concepts have been proposed in this respect and used in this evaluation; peer evaluation and information evaluation, which are investigated in this study [5]. – Application of VIKOR model as a Multi Criteria Decision Analysis of alternative fuel buses for public transportation, the result has shown that the hybrid electric bus has been the most suitable substitute bus for Taiwan urban areas in the short and median term. But, if the cruising distance of the electric bus extends to an acceptable range, the pure electric bus could be the best alternative [4]. – The application of VIKOR model for the selection of suppliers based on Rough Set Theory and VIKOR algorithm, the proposed methodology consisted of two parts: 1) The RST was a fairly new methodology developed for dealing with imprecise, uncertain, and vague information. 2) According to index systems for selection of suppliers, VIKOR algorithm has been used to select the best suppliers [6]. – Among popular MCDM methods, VIKOR (Vlsekriterijumska Optimizacija I KOmpromisno Resenje) has attracted much attention to cope with complex problems with conflict factors. The current study conducted a state-of-the-art literature review to embody the research on VIKOR and its applications. The study structure consists of nine categories: 1) design and manufacturing management, 2) business and marketing management, 3) supply chain and logistics management, 4) environmental resources and energy management, 5) construction management, 6) education management, 7) healthcare and risk management, 8) tourism management, and 9) other topics. the last topic contains information and knowledge management, mine industry, etc [7]. 3 TOPSIS/VIKOR Based Selection In this article, a novel software computer method based on the two TOPSIS and VIKOR models has been presented for Artificial Lift selection in oil industry. It was essential to mention to the mathematical and OG 206 3.1 TOPSIS model The TOPSIS model was developed by Hwang and Yoon [8]. This model is based on the concept that the chosen alternative should have the shortest Euclidean distance Table 1 Example oil field input data Condition Example oil field input data (the designed program default input data) Number of wells Production rate Well depth Casing size from above: artificial lift methods designation; production, reservoir and well constraints; produced fluid properties; surface infrastructure constraints; and finally results by TOPSIS or VIKOR programs respectively 5 26000ssSTB 4500ssft 7" Well inclination Deviated Dogleg severity 3–10 per feet Temperature Safety barriers 180–210ssF 2 Flowing pressure 100–1000 psi Reservoir access Required Completion Stability Dual Stable Recovery Secondary waterflood Water cut 40% Fluid viscosity Corrosive fluid Sand and abrasives GOR Less than 100 cp No Less than 10 ppm 450 VLR Less than 0.1 Contaminants Treatment ⇐ Fig. 1 logical strategy and calculations of these models. The designed program of artificial lift selection is shown in Figure 1. Here we have used the same values of a selected oil field input data to determine the TOPSIS and VIKOR results, because we should enter constant input data of a selected oil field to the software for the two models to check their different results with each other and compare with that field operationally selected artificial lift method. It should be noted that these two models have the same input data and the resulted weights of the alternatives relative to the criteria all quantities (both calculated by Entropy method) but different other strategies and formulas for artificial lift selection and consequently different final results. From the two models, that software model which has the same result as the field data/result is the software model with more accuracy. Of course, it should be mentioned that as shown here, we have used the field data available in Table 1, but for more accuracy in results, we have also privately used more input data of other fields (Table 2). Scale Acid Location Onshore Electrical power Space restriction Well service Utility No Wireline OIL GAS European Magazine 4/2015 PRODUCTION ties matrix (decision making matrix) respectively [10]. The relative scores of different methods relative to Production, Reservoir and Well constraints as well as Produced fluid properties and Surface infrastructure constraints (all the criteria) have been based on the Schlumberger Company certain practical reports (Fig. 2), (Schlumberger Com.). The value of 1 (good to excellent) has been considered as 7 out of 10, the value of 2 (fair to good) has been considered as 5 out of 10 and the value of 3 (not recommended and poor) has been considered as 3 out of 10 in the following. Then, the normalizing of the resulted alternatives relative to the criteria quantities matrix had to be done by equation (1), [10]: V ij (1) nij = m Fig. 2 ∑V The alternatives versus the criteria for artificial lift selection (Schlumberger Com.) from the ideal solution, and the farthest from the negative ideal solution [8, 9]. The ideal solution is a hypothetical solution for which all alternatives relative to criteria attribute values (V ij ) correspond to the maximum attribute values in the database comprising the satisfying solutions; the negative ideal solution is the hypothetical solution for which alternatives relative to criteria attribute values (V ij ) correspond to the minimum attribute values in the database. i=1 The main procedure of TOPSIS model for the selection of the best alternative from among those available has been described as below: At first, it was required to allocate suitable quantities (V ij ) scaled from 0 through 10 for the alternative relative to the criteria qualities, (higher each of their qualities, more its value out of 10), the number of the alternatives and the number of the criteria have been considered as the number of matrix rows (i) and matrix Table 2 Examples for oil field input data (privately done) columns (j) in the alternatives relative to Condition Salman Field Nosrat Field the criteria quantiProduction, Reservoir and Well constraints Number of wells 50 Production rate 56000 STB Well depth 8000–11,000 ft Casing size 9 5/8" Well inclination All of cases Dogleg severity 0–10 per feet Temperature 180–210 F Safety barriers 1 Flowing pressure Greater than 1000 psi Reservoir access Required Completion Simple Stability variable Recovery Secondary waterflood Produced-Fluid Properties Water cut Fluid viscosity Corrosive fluid Sand and abrasives GOR VLR Contaminants Treatment Surface Infrastructure Location Electrical power Fuel Space restriction SCADA Well service Then, the criteria quantities had to be weighted by means of the Entropy method, by equations (2) through (5), (Fig. 3), [10]. aij (2) Pij = m a ∑ ij i=1 (3) d j = 1 − Ej m [ E j = − k ∑ pij Lnpij d j i=1 Wj n ∑dj ] (4) (5) j=1 where m number of decision making matrix rows 6 4200 STB 7000–9000 ft 9 5/8" All of cases 0–10 per feet 150–180 F 1 100–1000 psi Required Simple variable Primary 70% Less than 100 cp No Less than 10 ppm 650 Less than 0.1 Scale Acid 65% Less than 100 cp No Less than 10 ppm 350 Less than 0.1 Scale Acid Offshore Utility Natural gas Yes No Pulling unit Offshore Utility Natural gas No Yes Pulling unit OIL GAS European Magazine 4/2015 2 ij Fig. 3 The resulted weights of the alternatives relative to the criteria all quantities OG 207 PRODUCTION Fig. 5 Fig. 4 Above: The resulted separation of each alternative from the positive ideal given by the Euclidean distance, e. g. HP is closest to the positive ideal; below: The resulted separation of each alternative from the negative ideal given by the Euclidean distance, e. g. HP is farthest from the negative ideal aij decision making matrix values Pij decision making matrix values related to the sum values of all matrix rows in each matrix column dj uncertainty value Ej entropy value k 1/Ln(m) Wij weighted criteria quantities. The relative closeness of a particular alternative to the ideal solution could be expressed in this step as follows: Multiplying the normalized matrix by the alternatives relative to the criteria resulted weights diametrical matrix, the normalized weighted matrix has been obtained [10]. Then, the positive ideal (best) and the negative ideal (worst) of each criterion had to be obtained in this step [10]. Pi = V + The highest value for as the best alternative for selection min ⎧ max ⎫ = ⎨ ∑V ij / j ∈ J , ∑V ij / j ∈ J ' ⎬ i ⎩ i ⎭ = {V 1+ ,V 2+ ,V 3+ ,...V M+ } max ⎧ min ⎫ V − = ⎨ ∑V ij / j ∈ J , ∑V ij / j ∈ J ' ⎬ i ⎩ i ⎭ = {V 1− ,V 2− ,V 3− ,...V M− } (6) (7) i = 1, 2,..., N where J (j =1, 2, … , M)/j is associated with beneficial attributes J’ (j =1, 2, … , M)/j is associated with non-beneficial attributes. The separation of each alternative from the ideal one has been given by the Euclidean distance in the following equations (Fig. 4), [10]. 0 .5 ⎧M + + 2⎫ (8) S i = ⎨ ∑ (V ij − V j ) ⎬ ⎩ j=1 ⎭ 0 .5 ⎧M − − 2⎫ (9) S i = ⎨ ∑ (V ij − V j ) ⎬ ⎩ j=1 ⎭ i = 1, 2,..., N OG 208 S i+ (10) S + S i− The highest value for Pi has shown the best alternative for selection (Fig. 5), [10]. On the whole, it should be stated that Fig. 6 The resulted weights of the alternatives relative to the criteria all quantities the results vary with regards to different oil field parameters. MCDM problems with conflicting (different The TOPSIS and VIKOR models have some units) criteria, assuming that compromising similarities and also some differences in is acceptable for conflict resolution, the determs of their mathematical equations and cision maker wants a solution that is the results for artificial lift selection. As well, closest to the ideal, and the alternatives are the VIKOR model is included and worked in evaluated according to all established critethe TOPSIS paper for determining the re- ria. This model focuses on ranking and sesulted normalized matrix weights by means lecting from a set of alternatives in the presof the Entropy method. ence of conflicting criteria, and on proposing compromise solution [10]. According to the mentioned introductory 3.2 VIKOR model notes in TOPSIS model, we have prepared The foundation for Compromise Solution the decision making matrix for the rest of the was established by Yu [11] and Zeleny [12] specific strategy of this VIKOR model. and later advocated by Opricovic and Tzeng Now, the resulted normalized matrix had to [13, 14]. The Compromise Solution is a fea- be weighted by means of a specific mathesible solution that is the closest to the ideal matical method such as the Entropy method solution, and a Compromise means an (the weights calculation method is the same agreement established by mutual conces- as TOPSIS model), (Fig. 6), [10]. sion. The Compromise Solution Method, The process of calculating and selecting the also known as the VIKOR (Višekriteri- TOPSIS and VIKOR weights of the alternajumsko KOmpromisno Rangiranje) model, tives relative to the criteria all quantities was introduced as one applicable technique (Figs. 3 and 6) is the same. to implement within MADM [8, 9]. Then the following Ei , Fi, Pi parameters had The VIKOR model was developed to solve to be calculated (Figs. 7, 8). + i OIL GAS European Magazine 4/2015 PRODUCTION Fig. 8 Artificial lift selection graph for VIKOR model artificial lift selection operational results and finally, a considerable accordance between this designed model program final results and the fields operational results Fig. 7 The resulted alternatives Ei (above) and alternatives Fi values (below) has been found. 3. These two TOPSIS and VIKOR mathematical models have M been known as proper computerized modEi = ∑W j (V ij ) max − V ij / (V ij ) max − (V ij ) min j=1 els for the improvement of oil production (11) rate and artificial lift selection in oil industry. 4. As a comparison, the program of TOPSIS Fi = Max m of and VI- KOR models artificial lift selection results have been the application of {W j (V ij ) max − V ij / (V ij ) max − (V ij ) min | HP (Hydraulic Pump) and GL (Gas Lift) i = 1,2,...,m } (12) for an example oil field data respectively. ( Ei − Ei − min ) As examined with the data from Tables 1 + Pi = v and 2, the TOPSIS model results are E − E ( i − max i − min ) closer to the field data for artificial lift se(13) ( Fi − Fi − min ) lection, so compared to the VIKOR (1 − v ) model, TOPSIS is a better MCDM model ( Fi − max − Fi − min ) for artificial lift selection. Where i, j are the number of (rows) alternatives and (columns) criteria in the matrix respectively. (Vij) is related to the alternatives It is considerable to thank to the Petroleum/Chemical relative to the criteria all quantities matrix Engineering Department of Amirkabir University of values. (W j) is related to the alternatives rel- Technology, Tehran, Iran backing up to study on this sciative to the criteria all quantities matrix entific matter. weights. v is introduced as the weight of the majority of attributes strategy. Usually, the value of v is taken as 0.5. However, v can References [1] Jiang, W., Zhong, X., Chen, K., Zhang, S.: Fourth take any value from 0 to 1. International Conference on Fuzzy Systems and The alternative with the lowest P i value has Knowledge Discovery, 2007. been considered the best alternative (Fig. 8). [2] Samimi Namin, F., Shahriar, K., Ataeepour, M., [ [ ][ ][ ] ] 4 Conclusions 1. In this article, a novel computer method (by means of Visual Basic.net Code) based on the two TOPSIS and VIKOR models has been presented for Artificial Lift Selection in oil industry. 2. The designed novel software computer program based on the two models presented for artificial lift selection has been validated with several certain oil fields OIL GAS European Magazine 4/2015 [7] Yazdani, M., Felipe, R. VIKOR and its Applications: A State-of-the-Art Survey. International Journal of Strategic Decision Sciences 2014. [8] Hwang, C. L., Yoon, K.: Multiple Attribute Decision Making: a state of the art survey. Springer Verlag, 1981. [9] Pimerol, J. C., Romero, S. B.: Multi Criteria Decision in management: Principles and practice. Kluwer Academic Publishers, 2000. [10] Rao, R. V.: Decision making in the manufacturing environment: Using Graph Theory and Fuzzy Multiple Attribute Decision Making methods. Springer Verlag, 2007. [3] [4] [5] [6] Dehghani, H.: The Journal of the Southern African Institute of Mining and Metallurgy, 2008. Wang, T. C., Chang, T. H.: International Journal on Expert Systems with Applications, Volume 33, Pages 870–880, 2007. Tzeng, G. H., Lin, C. W., Opricovic, S.: Energy Policy 33, 1373–1383, 2005. Poorzahedy, H. Rezaei, A.: Peer evaluation of multi-attribute analysis techniques: Case of a light rail transit network choice, 2013. Guo, J., Zhang, W.: Selection of suppliers based on Rough Set Theory and VIKOR algorithm. International Symposium on Intelligent Information Technology Application Workshops, 2008. M. Alemi is a Ph.D. student at the Petroleum Reservoir Engineering Department, Amirkabir University of Technology, Tehran, Iran. M. Kalbasi is Professor in the Chemical Engineering Department, Amirkabir University of Technology, Tehran, Iran. He optained his Ph.D. from Bradford University, England. Fariborz Rashidi is Professor of Chemical Engineering at the Amirkabir University of Technology, Tehran, Iran. He received a Ph.D. In Chemical Engineering from Imperial College of Science and Technology, London, England. OG 209 OIL PRODUCTION Real Value of “Real Options” By A. ZICH, K. S. VEREVKIN, and D. A. SOZAEVA* Abstract This article reviews the project for the development (exploration) of oil and gas fields, within which it becomes possible to implement additional projects capable of increasing the debit of oil wells. A key problem with the implementation of such innovations in the life cycle of the project is the complexity of calculating the efficiency of implementing innovations arising from the evaluation of the project by classical methods. Therefore, in this article, to improve the efficiency of managerial decision-making at the management level of companies, it is proposed to evaluate the investment attractiveness of the project by the method of “real options”, in addition to the classical methods of assessment. Introduction Energy objects are characterized by longterm investment period (20, 30, 40 years are normal deadlines for the implementation of projects). In an increasingly uncertain and dynamic global market, classic methods of evaluation such as NPV (Net present value) do not allow full assessment of the profitability of a project. In this context, alternative methods for calculating project efficiency come to the fore. Such calculation methods allow effective response to technological changes or competitive moves, or otherwise limit the losses from adverse market movements. One of these methods is “real options”. The study of the theory of “real options” is carried out both in Germany and abroad. There are studies in Russia, in the field of oil and gas exploration and investment attractiveness of hydrocarbon raw materials, which obtained widespread recognition. The companies, which use the real options method, have high-level capitalizations (see Table 1). For example, BP has achieved growth of capitalization of the company from 18 to 30 billion dollars. (i. e. +167%) for the period 1990 to C 1996. According to the company managers, this result was achieved through strategic thinking and in addition, due to the method of “real options”. [1] In this article, we will try to develop an alter* Dr.-Ing. A. Zich, Energy Scientist, Dresden, Germany (E-mail: Alexej.Zich@freenet.de); K. S. Verevkin, CNIS Gazprom, Moscow, Russia; D. A. Sozaeva, Research Support Center of SUM, State University of Management, Moscow, Russia. 0179-3187/15/IV © 2015 EID Energie Informationsdienst GmbH OG 210 native approach to assess the investment attractiveness of a project and evaluate the applicability of the method of “real options” in the stage of extraction, within the project of oil fields development. New Possibilities during the Life Cycle of a Project To achieve the objectives scientific methods of research such as analysis, synthesis, mathematical, statistical and expert methods of estimation were used. The field development is known to be a long process, which can reach 40-50 years. The stages of a field development are: 1. Opening of the field 2. Evaluation of the field 3. Preparations for development 4. Extraction of mineral resources 5. Elimination/Preservation of wells. Extraction of mineral resources is the longest stage. During the initial assessment, it is not always possible to estimate reserves for the implementation of innovative technologies to optimize production, because at the stage of opening and evaluation of fields, such technologies simply may not exist. Not only do the technologies improve, but also project data can suggest better organizational approaches as we showed in [2]. However, at a certain stage of the life cycle of a project, by virtue of scientific and technological progress, the possibility of introducing additional innovative solutions (changes) is usually provided. Such changes, for example, may be implemented in the project due to the new technologies like e. g. the so called “Intelligent accompaniment of drilling operations” developed by Schlumberger company. The technology allows in real time to obtain the necessary data on the structure of a reservoir, to make optimal decisions for wiring and construction of boreholes, as well as to seek opening deposits of smaller numbers of well and horizontal sections [3]. The ability to implement such technology within the exploitation phase (for e. g., by 10–12 years of production) creates the need for change management in the project and along with the positive effects, provokes additional risks. Thus, the management of the company will have to answer the following questions: 1. At whose expense will changes in the financing of the project be carried out; 2. Will the terms of the project be observed – it is necessary to consider, if any implementation of additional project within the main project will move the project’s timeline; 3. Are there risks due to sharp increase in production and consequently, the risks associated with sales? Methodology for Evaluating Projects In order to provide for situations with possible implementation of innovative and rationalized solutions in existing long-term projects, to financially evaluate implications of adopting certain management decisions related to the implementation of such changes, it is necessary to develop a methodology for evaluating projects and to allow in the project, provisions for making management decisions. One tool that allows you to reserve the right to make management decisions in long-term projects in the field of oil and gas production is “real options”. Real Options is a method of evaluating the investment attractiveness of projects. This method appeared in the second half of the 20th century. Two basic models are used to evaluate projects by real options: Black-Scholes and binominal model [4]. Both models offer the possibility of selecting events at certain times during Table 1 Market capitalization companies, which are the project. Re-evaluation investusing “real option” method [1, 3, 9–11] ment project with the “real options” carries the possibility of laying a Country Company Market capitalization larger number of risk identification (billion US Dollars) and management decision options England British Petroleum 118,3 in the project, which may lead to a potential increase in profits and, as a USA ExxonMobil 356 consequence, the investment attracFrance Total 118,5 tiveness of the project. (It happens Switzerland Schlumberger 106,37 because classic methods of evaluatBrazil Petrobras 40,14 ing investment project do not take Venezuela PDVSA – into account consequences of imOIL GAS European Magazine 4/2015 OIL PRODUCTION portant management decisions, which could not be even planned at the beginning of the project). In order to use the method of “real options” in the field, first of all, the use of a risk management algorithm approach was proposed, which consists of five parts: 1. Identification of the option. At this stage, options capable of influencing the investment project are identified. Particularly, the main options: the option to defer a project, the option to expand the project, the option to abandon the project. (Option to defer a project means that management is waiting for a better opportunity to start a project. They are waiting for the right time to do it. Option to expand is used when project is going well and it makes sense to keep it going and make extra profit. And option to abandon the project is used when project has negative cash flows and it would be better to withdraw from it). 2. Qualitative evaluation. At this stage, there is ranking of options; determining the most important ones, those that may have the most impact on the project. 3. Quantitative evaluation. As part of this stage, a quantitative assessment of all options (major and minor), identified in the earlier stages of evaluation; is carried out. 4. Planning the use of options. 5. The implementation of options and monitoring the results. Example According to this algorithm, in the course of the Bashneft development project an evaluation was carried out of options to prove the implementation of the innovative technology “intellectual accompaniment of drilling” for the Trebs and Titov field developments [5–7]. Furthermore, according to the algorithm, calculations were performed, which confirmed that the laying of additional choices (options) in the investment project ( to defer a project, to expand a project and to abandon a project) opens additional possibilities. In this example, the calculation was performed Fig. 1 Map of Trebs and Titov project OIL GAS European Magazine 4/2015 Table 2 Results of calculating project cost in consideration of the option premium Conditions for project implementation Without options With options Type of Option Options for extension of project Options for deposition of project implementation NPV = 29,764.892 thousand USD NPV = 13,282.448 thousand USD NPV + Option Premium = 55,016.53 thousand USD NPV + Option Premium = 18,168.78 thousand USD using the Black-Scholes model, and with the help of the program for calculating value of options, developed by the American scientist A. Damodaran, since it is the most adapted to the stage of hydrocarbons production (mining) [8]. In particular, it was found that of the three proposed options (to extend the period of use of innovative technologies, for the deferment of an innovative project and the option for the possibility of rejecting an innovative project at any given time), a real bonus that increases the efficiency of the project, is contained only in two options – the extension and the deferment of the project. The option to withdraw from the project was dropped due to the fact that it did not present any economic value. For the implementation of the option to extend the project using intellectual accompaniment of drilling within the stage of field development, named after Trebs and Titov (Fig. 1), “Bashneft” will require an additional 3.3 million dollars. Assuming that subsequently generated flow will be stable, the expected additional profits will be 25,251.64 USD. In the case of the option for the deferment of project, additional costs are not considered. However, if the market situation is unfavorable and they would have to use this option, then the additional income will be equal to 4886.33 thousand USD (see Table 2.) Therefore, the calculation clearly demonstrates that using the “options” in the project of “Intelligent accompaniment of drilling operations” can significantly change the initial results of evaluating the investment attractiveness of the main project. Remarks However, it is necessary to also note the limitations that exist in the projects for production or mining of hydrocarbons, as regards application of options – in particular, the possibility of applying options on various technological stages of production. At the initial stage of a extraction project, the option for the deferment of project is usually considered, as well as the option to withdraw from the project, which can be applied at all stages of the project. The option to extend the project cannot be applied, due to the fact that prior to the decision to extend the project, it is required to collect the maximum amount of information about the current project, and at the initial stage, there is simply not enough information. At the final stage of the project for extraction or production of hydrocarbons, all types of options may also be used. For example, the option for the deferment of a project can be used in case there were only hard to exploit hydrocarbon reserves and their production is not profitable in the current period. However, one would expect that with the implementation of innovative technologies, after a while, it becomes easier to extract oil and extraction would be profitable. The decision on the application of options for expansion and for withdrawal from the project shall be based on information gathered during the project. As a conclusion, it is worth noting that applying evaluation of investment projects by “real options” in the phase of hydrocarbon extraction is a good tool. In the case of proper and true application, “Options” allow taking into account larger number of risks and managerial flexibility than classical methods for evaluating the investment attractiveness of projects. References [1] “McKinsey & Company” #1 2002 p 28. [2] https://science1data1base.files.wordpress.com/ 2015/08/paper.pdf. [3] http://www.slb.com/~/media/Files/drilling/ brochures/mwd/optidrill_br.pdf. [4] Damodaran A. The Promise Of Real Options// Journal of Applied Corporate Finance, Morgan Stanley.-2000. [5] http://www.bashneft.com/press/releases/6117/. [6] http://www.bashneft.com/press/releases/6346/. [7] http://www.bashneft.com/production/production/ new_regions/. [8] “Investment Valuation: Tools and Techniques for Determining the Value of Any Asset” McGrawHill, 2002, Aswath Damodaran. [9] http://www.statista.com/statistics/272709/top- OG 211 OIL PRODUCTION / MACHINERY & PLANTS 10-oil-and-gas-companies-worldwide-basedon-market-value/. [10] https://ycharts.com/companies/PBR/market_cap. [11] https://ycharts.com/companies/SLB/market_cap. Alexej Zich, as an energy scientist, initiated an open data approach for environment protection technologies. He has worked several years in the energy industry particularly in he area of transmission and distribution. Hereafter he graduated to Dr.-Ing. at the Freiberg Mining Academy in Germany in the department of geocurrents, production technology and storage technology. Kirill S. Verevkin is working as an engineer with CNIS Gazprom, Moscow, Russia. He received a PhD from the State University of Management (SUM). His sphere of interest includes business analytics, oil and gas extraction projects. Dzhamilya A. Sozaeva is Researcher and Associate Professor at SUM (State University of Management), Moscow,Russia. She received a PhD in Economics. Her sphere of interest includes business analytics, oil and gas extraction projects, regional innivation systems. Oil-Flooded Screw Compressors for Unconventional Gas By A. ALMASI* Abstract The technical and commercial advantages of the API-619 oil-flooded screw compressors (using the fixed-speed electric motor) have made them the compressor of choice for the unconventional gas gathering applications. The minimum number of the compressor trains in a single station is recommended. Each compressor station should preferably be located near the centre of the coverage area. Introduction The unconventional gases (the coal-seam gas, the shale gas, the tight-sand gas and other) have become an increasingly important source of the natural gas in the world over the past decade. Recent studies point to high decline rates/pressures of some unconventional gas wells as an indication that the unconventional gas production may ultimately be much lower than is currently projected. A key point could be proper unconventional gas compression units to compensate the pressure decline and maintain the production at an acceptable level. The nodal compression involves the use of booster compressor (for example, the discharge pressure around 15–20 barg) to provide the required motive force to transport the unconventional gas from the wells to the centralized processing plants or the major compression stations. The gas engine driven compressors may seem a good option for the nodal compressors. However, there are some issues which discourage the gas engine drivers and support the electric motor drivers: – Relatively high maintenance and low reliability of the gas engine – Higher cost of the gas engine compared to the electric motor – Lower efficiency of the gas engine compared to the electric motor – Large size/weight and high dynamic/shaking forces. The requirement of a large foundation and many accessories/auxiliaries. Usually the cost of the gas engine driven compressor is around 20–60% higher than the comparable electric motor driven com*Amin Almasi, Rotating Machine Consultant, Brisbane, Australia (E-mail: Amin.Almasi@ymail.com). 0179-3187/15/IV © 2015 EID Energie Informationsdienst GmbH OG 212 pressor. The option of the gas engine driven compressor may be a good option for very remote areas. However, the gas engine driven compressor is usually not recommended. The nodal compressor should preferably be the electric motor driven compressor. Figure 1 illustrates an example of a screw compressor package for an unconventional gas development project (in a very remote area). The screw compressor is driven by a 12-cylinders gas engine through a gear unit. Figure 2 illustrates an example of a screw compressor for an unconventional gas development project. The screw compressor is driven by an electric motor (direct drive). Compressor Selection and Design Similar (identical) compressor packages should be used. The minimum number of the compressor trains in a single nodal station is recommended. The spare compressor train is not specified since the unconventional gas development projects are marginally viable and the cost should be minimized. All compressors for a medium size field (say about 20 km × 20 km) should be located in a single nodal station to minimize the utility and the accessories (the electric power facilities, the soft start, the compressed air, the flare, and others). Increased number of nodal stations can increase the fixed costs and the manning requirements. In addition, a single nodal station offers a better operational flexibility, the ease in the operation/maintenance and many other benefits during the design, the installation and the operation. This single nodal compressor station should preferably be located near the centre of the coverage area. However, the location of the nodal compressor station is related to many factors (such as the land availability and others) and this ideal centrally located nodal station may not be achieved. Usually a careful optimization regarding the location of the nodal compressor station should be done. As compressors have the longest lead time as far as gas gathering equipment is concerned, it is desirable to minimize the number of compressor trains and order them as soon as possible. Using smaller compressors does not usually translate into reduced lead times. Even for the nodal compressors, the minimum number of the compressor trains could translate to the minimum lead time. The lead OIL GAS European Magazine 4/2015 MACHINERY & PLANTS times are dependent more on the compressor manufacturer factory loading at the time of order. Reciprocating compressors have shown low reliability and low availability. They have demonstrated frequent unscheduled shutdowns and high maintenance costs/efforts. The reliability and availability of reciprocating compressors are so low that in many applications, a spare compressor train is necessary. Reciprocating compressors are not usually recommended for the unconventional gas services. The nodal compressors have required a capacity range which is on the lower limit of the centrifugal compressor coverage. A relatively high purchase/installation cost can be mentioned for the centrifugal compressors (compared to oil-flooded screw options). From the preliminary pricing obtained, for the nodal compressor applications, the cost of the centrifugal compressors are approximately 1.3–1.8 times the cost of oil-flooded screw compressors with the same capacity. The nodal compressors require the flexibility with regards to the relocation and the adaptability to different operating conditions. An important factor is the ease in the relocation. The difficulty, the time required and the high cost of the relocation should be noted for the centrifugal compressors. For the pressure ratios required in nodal compressors (the suction pressure: about 0.7–3 barg and the discharge pressure: approximately 15–23 barg), the centrifugal compressor will probably require 3-sections (3-stages or 3-casings). This differential pressure can usually be achieved by single oil-flooded screw compressor stage. Higher number of the compression stage means more inter-stage facilities/piping. The multistage requirement is raised as one of the main reasons making the centrifugal compressor difficult to relocate and also making the centrifugal compressor costly. The low suction pressure limitations for centrifugal compressors will lead to larger sized com- Fig. 1 pressor units when compared to oilflooded screw compressors. Less tolerant to varying conditions when compared to oil-flooded screw compressors should also be highlighted for the centrifugal compressors. The nodal compressors are expected to experience the suction pressure variation. This can be because of the wellhead processing facilities, new wells Fig. 2 An example of a screw compressor for an unconventional gas development project. The screw compressor is driven by an electric coming online (or motor (direct drive) some wells shutting down), variations in the gas production, a complex behaviour of compressor has many advantages over the wells/reservoirs and others. The centrifugal dry type screw compressors and can genercompressors have less tolerance to varying ally be purchased for a lower cost. Nowasuction conditions than oil-injected screw days, there are several competent and capable vendors for oil-flooded screw comprescompressors. The complex anti-surge systems and the sors. The dry type screw compressors should complicated control systems for the centrif- only be used in specific applications which ugal compressors could be a disadvantage the oil-free compression is absolutely necesfor nodal compressors. Another significant sary. It is not the case for the unconventional issue associated with the centrifugal com- gas nodal compression services. The dry pressors is the VSD (variable speed drive) screw compressor option is usually not specrequirement for each compressor train. The ified for the unconventional gas applicaVSD for each machine has an important ef- tions. fect on the cost and the complexity. The dry The selected compressor type for the nodal gas seal and the continuous requirement for compressor for unconventional gas is usuthe nitrogen supply should also be raised for ally the API-619 oil-flooded screw compressor (electric motor driven using the the centrifugal compressors. Based on the abovementioned details, the fixed-speed electric motor). The largest poscentrifugal compressor option is not usually sible oil-flooded screw compressor with proper references should preferably be sespecified for the nodal compressors. The dry screw compressors are expensive, lected. complex, and special compared to the oil- The preferred design is to eliminate the comflooded screw compressors. Compared to pressor package enclosure (because of the the dry type screw compressors, the access issues, safety problems and many oil-flooded screw compressors enable much other issues/problems). The compressor higher compression package should be supplied for the installaratios, a simplified tion at “Outdoor” (no enclosure, no roof and mechanical design no shelter). If the generated noise is exces(such as the elimina- sive, a noise control solution should be fortion of the timing- mulated. The most convenient noise control gear system), a more option is the local enclosure for the comefficient operation pressor (preferably provided by the comand an advanced re- pressor vendor) and the sound insulation of liability. The dry the piping/vessels. screw compressors also require a specific drive speed Compressor Size, Soft-Start and which means the ex- Auxiliaries tra gear unit for the In essence, inside an oil-flooded screw comspeed-match when pressor, the compressed gas is mixed with using the electric the oil and moves on to the primary oil sepamotor drivers. The rator. The oil separator acts also as the oil oil-flooded screw reservoir. A relatively large mass of oil is adcompressor can be mitted with the gas to be compressed. The directly driven by the oil acts as a lubricant between the contacting An example of a screw compressor package for an unconventional electric motor. rotors, as a sealant of any clearance and as a gas development project. The screw compressor is driven by a The oil-flooded screw coolant of the gas during the compression. 12-cylinders gas engine through a gear unit OIL GAS European Magazine 4/2015 OG 213 MACHINERY & PLANTS This cooling effect improves the compression efficiency and permits high pressure ratios in a single compressor stage. The discharge gas temperature can normally be controlled by the quantity of the injected oil, and is below or around 100 °C. The compressor cost depends on many factors such the vendor situation, the detail design of the compressor package, any special project interest (for example, the interest of a vendor to a project) and many other complex factors (such as the technical, commercial and market factors). Many proposals from the compressor vendors usually indicate +/–25% tolerances. The compressor cost is reduced slowly with the size. Usually, the cost/MW of the compressor is around 1.2–1.7 times for a compressor with the half size (1/2 size). In other words, using two compressors with the half capacity compared to a large compressor (for example, using two 1 MW compressors instead of the one 2 MW compressors) can result in 20%–70% cost increase. The abovementioned rise in the cost (20%–70% cost increase) is based on normal (average) market cases. Depending on vendor/compressor, some exceptions may be expected. In addition of this compressor cost increase, the costs for accessories and auxiliaries (such as the foundation, the piping, the vessels, the supports, and others) and also the cost for the operation/maintenance are much more when more compressor units are employed. The overall efficiency of smaller compressors is lower compared a large compressor because the frictions, the mechanical losses, and other losses are proportionally high for small compressors. Generally smaller compressors are inefficient in the operation compared to a large compressor. As an indication (on average), when two 1 MW compressors are used instead of the one 2 MW compressors, the total cost of ownership would increase 40–80%. Another key factor is the use of 1/2 size compressor cannot usually eliminate the VFD (variable frequency drive) soft-start requirement. The VFD soft-start requirement should be studied case by case depending on the electrical OG 214 grid characteristics and the compressor details, but using 1/2 size (or even sometimes 1/4 size) most often cannot eliminate the VFD soft-start requirement. The “soft-start” (VFD) is usually required for the nodal compressors. Single VFD “soft-start” system for the bank of the nodal compressors is generally recommended. The (single) VFD “soft-start” system should be designed with high reliability and proper redundancy, particularly for the mechanical/auxiliary systems associated with the VFD “soft-start” system. Special attention is required for the VFD cooling system redundancy (for example, robust dual-pumps design cooling system). The unconventional gases are usually near the saturation (saturated with water). Also the gases could contain fine particles. The oil-flooded screw compressors are capable of digesting low levels of entrained particles and the liquid. However, the oil-flooded screw compressors cannot tolerate the liquid carryover and the fine particles above certain levels. Soft particles tend to form sludge with the oil and block the internal passages. The liquid carryover can cause erosion at the inlet end of the rotors. More seriously the liquid can be trapped within compressor oil loop and it can dilute or emulsify the oil. The inlet separator (the separator upstream of the compressor) is necessary. The inlet separator (the suction/upstream separator) should be provided and should be properly sized for the screw compressor package. This inlet separator serves a dual purpose. It prevents the liquid enters the compressor. It also collects the gas contaminations. Excessive high concentrations might jeopardize the compressor component life. Each compressor package requires its own inlet separator installed near the oil-flooded screw compressor. The compressor package (the compressor skid) should be installed on a concrete foundation. The compressor skid should preferably include ancillaries, vessels and others. The air-cooler is usually installed separately. It is recommended to design the nodal compressors with a low suction pressure capabil- ity (even the zero suction pressure capability) in a way that the nodal compressor can facilitate the gas collection even for the lowest possible well pressure. To extend the gas gathering system life time (particularly for the end of life, when the wellhead pressure declining), it is recommended to consider provisions for the future installation of extra nodal compressors with the low suction pressure capability which can provide the power and the capability to collect low-pressure gases from the wells at the end of their life. References [1] Bloch, H. P., Geitner F. K.: Compressors: How to Achieve High Reliability & Availability, 2012 (McGraw-Hill, USA). [2] Brown, R. N.: Compressors Selection and Sizing, Third edition, pp 120–220, 2005 (Gulf Publishing Company, Houston, USA). [3] Davidson, J., Bertele, O.: Process Fan and Compressor Selection, pp 112–145, 2000 (Mechanical Engineering Publications Limited, London, UK). [4] Forsthoffer, W. E.: Forsthoffer’s Best Practice Handbook for Rotating Machinery, First edition, 2011 (Elsevier, Oxford, UK). Amin Almasi is a rotating machine consultant in Australia. He is chartered professional engineer of Engineers Australia (MIEAust CPEng – Mechanical) and IMechE (CEng MIMechE) in addition to a M.Sc. and B.Sc. in mechanical engineering and RPEQ (Registered Professional Engineer in Queensland). He specializes in rotating machines including centrifugal, screw and reciprocating compressors, gas turbines, steam turbines, engines, pumps, offshore rotating machines, LNG units, condition monitoring and reliability. Almasi is an active member of Engineers Australia, IMechE, ASME, and SPE. He has authored more than 100 papers and articles dealing with rotating equipment, condition monitoring, offshore, and reliability. OIL GAS European Magazine 4/2015 MACHINERY & PLANTS Diagnosis of Centrifugal Pumps Using Vibration Analysis By M. MINESCU, I. PANA and M. STAN* Abstract Vibration analysis is a diagnostic method frequently used during operation of equipment. The analysis of the failures produced by vibrations indicated the existence of specific finger prints and related equipment vibration spectra. Modeling and identification of these particular aspects in the spectrum of vibration help to control the operation of petroleum facilities and build them in a safe manner. The operating status for a centrifugal pump can be considered for the purpose of analysis as the mechanical vibrations produced in the impeller shaft bearings or propagated through the suction and/or discharge piping. The paper presents vibration analysis of the working vibrations of centrifugal pumps both single- and multi-stage in a simulated pipeline network. 1 Introduction During the operation of equipment or facilities of various categories, vibrations may occur, which once exceeding a certain limit, may lead to shortening the life of the equipment. Moreover the noise associated with these vibrations can be a factor affecting human health. Generally, the most important parameters of the oscillatory motion can be considered as: – Pulsation – dependent on initial conditions – Amplitude – the size parameter characterizing the vibration – Effective speed/accelerators – parameter shows vibration energy – Intensity of elastic waves, which changes very little with the frequency of movement. The vibration level of the pumping aggregates, expressed by the value of effective speed is measured at significant positions on the pump. The sources of vibrations in a dynamic machine can be multiple: – Failure of bearings – Impeller dynamic imbalance – Misalignment – Gear defects (faulty gear) – Resonance (stiffening inappropriate, ineffective technologies, wrong design) – The flow of fluids through pipes/ pump. Centrifugal pumps are characterized by low vibrations because of their working princi* Mihail Minescu, Ion Panã, Marius Stan, Petroleum Gas University of Ploiesti, Romania (E-mail: mminescu@ upg-ploiesti.ro) 0179-3187/15/IV © 2015 EID Energie Informationsdienst GmbH OIL GAS European Magazine 4/2015 ple (rotation parts only). This is why, vibration analysis of these particular pumps allows identification of existing problems much easier than with reciprocal pumps for example. Centrifugal pumps are very common in the oil industry with applications ranging from drilling rigs, refineries and special appliances. Fig. 1 Operating scheme of a single stage centrifugal pump: 1 – shaft; 2 – wedge; 3 – screw nut; 4 – wear ring; 5 – impeller; 6 – vane; 7 – diffuser; 8 – diffuser vane; 9 – volute; 10 – packing; 11 – suction nozzle; 12 – reducer; 13 – discharge nozzle 2 Process Centrifugal Pumps Figure 1 shows the configuration of the single stage centrifugal pump used for the first set of experiments. Fluid enters the pump through the suction nozzle 11. The impeller 5 is fixed into the shaft 1 (wedge 2 and screw nut 3) and rotates. The liquid is centrifuged by the impeller outwards and is collected via the diffuser 7 and led to the volute 9. High pressure liquid exits at the discharge 13. The functional parameters of a pump do not remain at constant values throughout its life. This is explained by the fact that the factors that contribute to wear increase over time. The wear on centrifugal pump components is in two categories, namely mechanical and chemical. Whatever the nature of wear is, it has the effect of changing the geometric shape of parts, which is reflected in the final modification of the hydraulic pump funcTable 1 tional parameters (flow, pressure, and pumping head), hence changing the vibration frequency. Centrifugal pump components that wear out frequently are presented in Table 1, according to [13] . 3 Centrifugal Pump Vibration Measurement The major source of vibrations is the rotor itself. Due to high rotational speeds, any misalignment of the pump components may lead to vibrations. The assessment of the technical condition and reliability of a dynamic machine involves gathering all technical information on instrumentation and control equipment. This data acquisition must be done when the pump is new, in order to use these as a reference. If no reference Main causes of wear on parts and subassemblies of centrifugal pumps and wear characteristics of data (after [13]) No. Item Causes of the failures and effects 1 Impeller Pinching, indenture, discontinuities in shape, thin wall, camber of the hub bore, deformation of the keyway 2 Shaft Portion of the seals rub, rub portion rings (rubber seals), the par ts which come into contact with fluid from the pump are subject to corrosion 3 Wear ring Wear due to abrasive action of particles that flow through the gap between ring and rotor 4 Soft gaskets Wear due to friction at the contact surface wear bushings, are replaced and not repaired 5 Mechanical seal Wear on the friction surfaces of the stationary ring and mobile, no repair but replacement 6 Bearings supporting Wear balls and taxiways are replaced, wear causes include: excessive loads, speeds too high, insufficient lubr ication, and improper installation OG 215 MACHINERY & PLANTS Table 2 Example of alarm limits, according to [7] Bandwidth Alert mm/s – PK Alarm mm/s – PK Absolute Fault mm/s – PK Alarm limits for 1200 rpm and higher Overall 3.81 1× Narrowband 2.54 2× Narrowband 1.27 3× Narrowband 1.01 1× Gear mesh 1.27 Rolling-element bearing 1.27 Blade/vane pass 1.27 7.62 5.08 2.54 2.03 2.54 2.54 2.54 15.95 10.16 5.08 3.81 5.08 5.08 5.08 Alarm Limits for 300 to 1199 rpm Overall 2.54 1× Narrowband 1.27 2× Narrowband 0.51 3× Narrowband 0,25 1× Gear mesh 0.51 Rolling-element bearing 0.76 Blade/vane pass 0.76 3.81 2.54 1.27 0.76 1.01 1.27 1.27 7.62 5.08 2.54 1.52 2.03 2.54 2.54 Fig. 2 Location of vibration sensors on horizontal multistage pump with ten rotors CASE 5: Single stage The pump used for this experiment uses the pump cavitation same setup as for bearing failure as shown The case considers in Figure 5a and allows visualization of The values in this table have been divided by 20.5 to compare with RMS the cavitation situa- cavitation via the transparent inlet pipe values. PK refers to peak measured value, typically peak filtered. tion, which is a cause (cavitation was induced by throttling the of degradation of suction valve). exists, alarm limits may be used (see Table centrifugal pumps. It can be revealed by the The mixture of air and fluid entering into the frequency spectrogram, Figure 6, in which pump can be controlled permanently. We 2). The measured values, compared with per- there are a series of signals at high frequen- also noticed a loud noise when operating the pump under these conditions. missible levels recommended by the manu- cies with high amplitudes. facturer or dynamic equipment standards Table 3 Results from analysis of multistage (ten impellers) centrifugal pump vibrations (CASE 1) ISO 10816 and ISO 2372, indicate whether (overall vibration) the equipment operates safely. Basically, to Discharge LEFT – Bearing 1 RIGHT – Bearing 2 determine the overall level of vibration meapressure (speed 2960 rot/min) (speed 2960 rot/min) surements are performed on all equipment [bar] Vibration velocity Vibration velocity sites on the three relevant directions (Fig. 2) horizontal vertical axial horizontal vertical axial by placing the sensors at inlet or outlet of the [mm/s] [mm/s] [mm/s] [mm/s] [mm/s] [mm/s] pump. The typical defects that can be detected in10 0.130 / UAL 0.354 / UAL 0.154 / UAL 0.124 / UAL 0.242 / UAL 0.106 / UAL clude: 8 0.261 / UAL 0.390 / UAL 0.272 / UAL 0.129 / UAL 0.122 / UAL 0.125 / UAL – Dynamic imbalance 6 0.302 / UAL 0.380 / UAL 0.288 / UAL 0.121 / UAL 0.117 / UAL 0.129 / UAL – Faulty alignment (parallel or angular, shaft 3 0.279 / UAL 0.327 / UAL 0.257 / UAL 0.120 / UAL 0.128 / UAL 0.143 / UAL problems) – Electro-mechanical problems *UAL Under Alarm Limit – Faulty gear (symptom reducers / multipliers) Table 4 Experimental results from analysis of multistage (three impellers) centrifugal pump – Specific defective bearings (bearings or vibrations (CASE 2) (overall vibration) sliding) Speed Bearings 1 Bearing 2 – Specific resonances related to equipment [rot/min] Vibration velocity Vibration velocity or assemblies etc. horizontal vertical axial horizontal vertical axial The vibration analysis data, performed us[mm/s] [mm/s] [mm/s] [mm/s] [mm/s] [mm/s] ing the VIBROTEST 80 device, is shown in 1010 0.235 / UAL 0.077 / UAL 0.211 / UAL 0.149 / UAL 0.053 / UAL 0.124 / UAL Tables 3 to 5 (Figs. 3, 4). Furthermore, two other cases (4 and 5) have 1220 0.279 / UAL 0.106 / UAL 0.161 / UAL 0.130 / UAL 0.110 / UAL 0.138 / UAL been simulated including man made fail1450 1.144 / UAL 0.443 / UAL 0.788 / UAL 0.990 / UAL 0.251 / UAL 0.564 / UAL ures: bearing failure and cavitation. The two 1800 1.365 / UAL 0.593 / UAL 0.992 / UAL 1.293 / UAL 0.378 / UAL 0.772 / UAL simulated failures have a clear characteristic *UAL Under Alarm Limit and can be used as “finger prints” for pump diagnostics. Table 5 CASE 4: Single stage centrifugal pump, bearing failure In Figure 5a a single-stage pump with the possibility to induce bearing defects is shown. The test conditions are as follows: speed 1020 rpm, pump geometry: 8 vanes impeller, 3.8 barg discharge pressure, 2.4 l/s flow rate. Figures 5b and 5c show the finger print of a good bearing, whereas the bearing train and ball frequencies are clearly seen. OG 216 Speed [rot/min] Results from analysis of single stage centrifugal pump vibrations (CASE 3) (overall vibration) Bearings 1 Vibration velocity horizontal vertical [mm/s] [mm/s] Bearing 2 Vibration velocity horizontal vertical [mm/s] [mm/s] Gland 1010 0.237 / UAL 0.123 / UAL 0.203 / UAL 0.077 / UAL 0.130 / UAL 1220 0.230 / UAL 0.125 / UAL 0.168 / UAL 0.107 / UAL 0.139 / UAL 1450 1.485 / UAL 0.726 / UAL 1.273 / UAL 0.683 / UAL 0.571 / UAL 1800 0.706 / UAL 0.472 / UAL 0.524 / UAL 0.173 / UAL 0.383 / UAL *UAL Under Alarm Limit OIL GAS European Magazine 4/2015 MACHINERY & PLANTS Fig. 3 Location for sensors S speed; 1,2 – rolling bearings Fig. 4 Sensor placement scheme for singlestage pump vibrations; S speed; 1,2 – bearings ble or inadmissible, but also can provide information on what is defective and where it is located. The values (Tables 3–5) of the overall vibrations compared with the permissible levels recommended by the literature (Table 2) or standards (ISO 2372 and ISO 10816, see Fig. 7) indicate that the pumps work safely (cases 1–3). After the analysis of vibration, carried out on the three types of centrifugal pump, namely: single stage pump, multiple stage horizontal pump with four impellers and ten impellers, we found out that these machines did not require repair since the vibrations are within the limits prescribed. The research conducted on the cavitation [2, 3, 5, 6, 9] is added to the known condition to avoid this phenomenon: NPSH a > NPSH γ (1) where NPSH a is net positive suction head available and NPSH γ net positive suction head required, a condition referring to the suction conditions: S ss = Fig. 5 Single-stage pump vibration bearings evaluation a) test equipment; b) vibration spectrum before bearing replacement; c) vibration spectrum after bearing replacement 4 Discussions To highlight the cause of the fault (important in maintenance works) the spectrogram (frequency domain measurement) is used, where the recorded signal is split up into components of different frequencies. The vibration signature associated with the frequency of the shaft, blades, bearings etc. is unique and exceeding the limits indicates the necessity to replace / repair the component. A loud noise associated with a defect in the bearing, see Figure 5 a), provided verification, highlighted in Figure 5 b). It is noted that the alarm limit is reached at a frequency corresponding to the value of 0.5 X (half of the frequency of rotation of the shaft). This frequency is associated with the frequency of the bearing cage. After removal of the “bad bearing” (cracked cage) and replacing it with a new one, the amplitude of the vibration speed decreased from 1.2 to 0.15 mm/s (Fig. 5 c). Mechanical vibrations due to weakened bearings are the most dangerous because they lead to additional loads by shock on the shaft and the other bearings. Diagnosing mechanical weakening by the OIL GAS European Magazine 4/2015 vibration analysis method has several advantages such as lower maintenance costs, increase of operational safety, reducing wear on bearings, etc. The vibration measurements may indicate if the vibration (RMS) is normal, still admissi- Fig. 6 Q 4 NPSH γ3 (2) Suction specific speed Sss is needed to be calculated in accordance with API 610 Appendix A; it is the suction specific speed based on NPSH γ at full diameter and BEP (Best Efficiency Point) flow. The importance of the Sss is presented in Figure 8. It shows the close link between the Sss and the reliability of a centrifugal pump. The failure rate is half at the value of Sss below 11,000 (units used in the equation (2): rpm – speed value, gpm – flow value and feet – net positive suction head required) compared with the values of failure rate Sss at above 11,000 and this limit was imposed for practical operation. Table 6 shows a short overview of the parameters used to reproduce each one of the cases. The calculated Sss values are between 3400 and 6400 rpm gmp1/2/ft3/4, which means that the pump has a failure frequency of 0,42 to 0,53 according to Figure 8. Single-stage pump frequency-domain of vibrations during cavitation. (speed 1040 rpm, 8 vanes impeller) OG 217 MACHINERY & PLANTS Fig. 8 Fig.7 Matrix which characterizes the severity of vibration 5 Conclusions The article presents and analyses the actual working of single and multi-stage centrifugal pumps in a pipeline network. “Finger prints” could be generated for specific cases such as cavitation or “faulty bearing”. Vibration monitoring of industrial pumps shows that with low investment costs, there is a large saving potential, through failure prediction and early detection of pump malfunctions. As cavitation is a very dangerous phenomenon for the mechanical integrity of pumps, it is shown that vibration analysis can identify this condition and, when integrated in a control system, can regulate the pump parameters to avoid cavitation. References [1] Guiseppe Aiello, s. a.: Real time assessment of hand–arm vibration system based on capacitive MEMS accelerometers. Computers and Electronics in Agriculture, Volume 85, July 2012. [2] Hallam, J. L.: Centrifugal Pumps: Which Suction Specific Speeds are Acceptable?. Hydrocarbon Processing, April 1982. [3] Henshaw, T.: Suction Specific Speed Part 1, 2, and 3. Pumps and Systems Magazine, 2009. [4] Hirschberger, M., James, I.: A Review of Nss Limitations – New Opportunities. 25th International Pump Users Symposium Proceedings, 2009. [5] Karassik, I. J.: Centrifugal Pump Operation at Off-Design Conditions. Chemical Processing Magazine, 1987. [6] Karassik, I. J.: Setting the Minimum Flows for Centrifugal Pumps. Pumps and Systems Magazine, March, 1994. [7] Mobley R. K.: Root Cause Failure Analysis. Butterworth–Heinemann, Boston, 1999. [8] Ravindra Birajdar s. a.: Vibration and Noise in Centrifugal Pumps – Sources And Diagnosis Methods. 3rd International Conference on Integrity, Reliability and Failure, Porto/Portugal, 20–24 July 2009. [9] Stables G.: Cavitation and Pump NPSHR: Proceedings of the 25th International Pump Users Symposium, 2009. [10] Stan M.: Analysis the significance of reliable experimentally determined distribution laws. 3 rd Symposium with international participation Durability and Reliability of Mechanical Systems, Targu-Jiu, ISBN 978-973-144-350-8, Mai, 20–21 2010. [11] Steven J., Hrivnak, P.E.: Associate Mechanical Engineer. Tennessee Eastman, Eastman Chem- OG 218 Table 6 The influence of the suction specific speed (Sss) over failure rate according [9]: left) and [2]: right) – the values in brackets represent the number of centrifugal pumps tested Pumps characteristics Case Speed Flow rate1) Head1) rpm gpm ft 1 2 3 4 5 1) 2960 1450 1450 1020 1040 22.0 114.4 132.6 38.0 38.8 at best efficiency point; 106.9 65.3 29.4 125.0 129.9 2) NPSHr1) ft Head2) ft Flow rate2) gpm Sss rpm gmp1/2/t3/4 η1) – D2 Mm/ 4.8 7.5 3.5 1.3 1.3 325.6 93.7 51.9 145.0 150.7 29.4 148.8 173.8 50.7 51.7 4,289.0 3,422.6 6,525.1 5,170.6 5,323.0 0.43 0.70 0.67 0.52 0.52 120 209 200 416 416 maximum value; D2 impeller diameter. ical Company, Centrifugal Pump Vibrations: The Causes – Vibration.org. [12] Volk, M.: Pump Characteristics and Applications, 2nd Edition, CRC Press, 2005. [13] Stan, M., Buca, S.: The Vibration Analysis Diagnostics Centrifugal Pumps. Analele Universitatii “Constantin Brâncusi” din Târgu Jiu, Seria Inginerie, Nr. 4/2011. of Drilling and Extraction Equipment. He holds a Ph. D. in technical sciences, with a specialty in oilfield equipment, a M. Sc. in mechanical engineering and a M. Sc. in computer science, both from the Oil and Gas University of Ploiesti. Mr. Panã is author of more than 120 publications from which more than 80 are peer-reviewed and of ten books in collaboration or as single author. Mihail Minescu is Professor at Petroleum & Gas University of Ploiesti, Romania. He is head of the sub-department for Manufacture of Technological Equipment and dean of the faculty of Mechanical and Electrical Engineering. He teaches courses on the manufacturing of the petroleum equipment topics such as: Study and Engineering of Materials, Material Processing, Manufacture of Technological Equipment. He holds a Ph.D. in technical sciences, with a specialty in oilfield equipment, a M.Sc. in mechanical engineering and a M.Sc. in computer science, both from the Oil and Gas University of Ploiesti. Mr. Minescu is author of more than 150 publications from which more than 100 are peer-reviewed and of ten books in collaboration or as single author. Marius Stan is Lecturer PhD. Eng. at Oil and Gas University of Ploiesti. Since 1991 working as a faculty in the Mechanical Engineering Department from the Faculty of Mechanical and Electrical Engineering at the Oil and Gas University of Ploiesti. Until 2015 he was engineer at SC Neptun SA Campina and participated in the design of speed reducers, screw pumps, screw compressors and oil field equipment. Between 1996 and 1997, Mastère Spécialisé en Exploration Production, Ecole Nationale Superieure du Petrol et des Moteurs, Rueil Malmaison, France, obtained in 1997. Between 1999–2000 he participated in the elaboration “Process for the preparation of a cement and swelling associated test device WO 2002010086 A1“ at the Clausthal University of Technology in Germany. In university teaching courses, scientifical research, design and consultIng activities in the area of oil drilling and production equippement; drilling rig installations of large size; topdrive system; coiled tubing system; oil management; environmental protection; logistics, reliability and safety of the oil equippement in exploatation. He holds a Ph. D. in technical sciences, with a specialty in oilfield equipment from the Oil and Gas University of Ploiesti. Dr. Stan is also an experienced specialist in drilling equipments engineering, drilling facilities and drilling technologies topics. He is author of more than 50 publications from which more than 20 are peer-reviewed, and four books specialized courses . Ion Panã is Associate Professor at Petroleum & Gas University of Ploiesti, Romania. He is head of the sub-department for Hydraulic and Pneumatics Equipment and vice dean of the faculty of Mechanical and Electrical Engineering. He teaches courses on the petroleum equipment topics such as: Gathering, Transport and Distribution of Hydrocarbons, Hydraulic and Pneumatic Machines, Numerical Simulation of Petroleum Systems, Mechanical Design OIL GAS European Magazine 4/2015 MAINTENANCE & REPAIR Smarter Work with “Smartphones” By S. CIERNIAK and M. DUMAN* 1 Introduction Today’s smartphones – available to everybody at acceptable cost – now have much more processing power than NASA’s computers during the times the first man landed on the moon. In addition to this, the functionality of these devices is growing rapidly. Only a short time ago the so called GPS tracking function was recognized as highly attractive, today nobody is surprised that the “Small Computer Smartphone” can calculate “step functions” and manages all operations via simple voice control. In addition, the type of use has changed. At the beginning of the smartphone era, all functions of the office applications were implemented visually unchanged on the smartphones. Today there are an increasing number of applications developed specifically for use on smartphones. In addition, short message services and chat programs such as WhatsApp or Twitter continue to replace classical email functionality. New specific functions have already been developed and new applications are promoted by the expansion of transmission technologies (e. g. LTE). Thus, many more applications become available on mobile phones and some applications already solve the classic desktop applications. Currently it is expected that worldwide 1.5 billion smartphones will find buyers in the coming year, whilst the sales of the classic desktop computer decline. Having this background in mind, the question arises to what extent technicians and engineers in the world of oil and gas grids and pipeline nets and the related grid-bound infrastructure will use smartphones in the short term for their operational practical day-to-day work. 2 Mobile Applications for the Grid-bound Infrastructure of Oil and Gas Pipeline Systems It is typical for the grid-bound infrastructure of oil and gas pipeline systems that the whole system as such is decentralized, that means that the infrastructure extends over an area of many square kilometers. For the operation of this infrastructure it is a must to have a so called “area organization”. All modern companies target a digitally optimized business process through available IT * Siegmund Cierniak, Consultant, Aachen, Germany (E-mail: Siegmund.Cierniak@gmx.net); Metin Duman, GATTER 3 Technik GmbH, Dortmund, Germany (E-mail: Duman@gatter3-technik.com). 0179-3187/15/IV © 2015 EID Energie Informationsdienst GmbH OIL GAS European Magazine 4/2015 Fig. 1 Pipeline engineers at work on site solutions, which support the main ideas of being up to date (i. e. Workforce Management (WFM) and Geographic Information Systems (GIS)). In order to avoid media breaks, specific mobile data collection and output devices will be used. Moreover, these hard and software tools are also linked with the financial hard and software systems in order to ensure efficient processes in total. Due to the need to operate continuously in some cases with ancient infrastructures, the achievement of the aforementioned targets represents an enormous challenge to the operator. It is not possible to interrupt the operating system in order to merge new data and then later realizing the optimized processes. All digital transformations must be implemented cautiously and taking into account the interactions with other processes. Against this background it is clear that all grid operators are focusing their strategies on the organization of the so-called area operation (work scheduling, debugging, pipe line information) and its link with their related commercial systems. It should be noted that in addition to this the implementation of this strategy is also influenced by third parties (e. g. it has to be taken into account that new legal requirements have to be fulfilled). 3 Technical Calculations made with “Smart Phones” In practice it is pretty normal to act with a variety of self-developed calculation programs. These calculations are, however, so far carried out for the various tasks in everyday practice, but largely in the offices and not directly on site. Due to the reasons described above, these calculation programs are generally not in the main focus on the digital strategy of the companies. Nevertheless, the efficient and high-quality processing of these tasks is of great importance, because these tasks are essential to ensure the functionality of secure network operation. Due to the extensive proliferation of socalled “Office software” the implementation of technical engineering calculations is normally nowadays given by means of spreadsheet programs. A disadvantage of these solutions is often the lack of quality assurance of most of the self-programmed calculations. In addition to the non-existent documentation, the development of solutions for system updates is often missing or even totally questionable. Very often the possibilities of the software are not optimally utilized due to a lack of programming skills. Usually, the development of these calculation programs is therefore not based on a structured process but only an individually motivated “trouble shooter”. The transfer of these (mostly only company-internal) calculation programs to mobile applications is an excellent approach and is therefore a chance to utilize more sensible optimizations based on simultaneous use of engineering know-how and also the know-how of informatic techniques. The “trivial” transfer using a “standard” laptop is of course possible, but does not match the potential options and possibilities achievable with a smartphone. The benefits of implementation using smartphones are at the onset evident, since their use is much more comfortable and flexible in the field and on-site. It is certainly a not to be underestimated advantage that smartphones are small in size and weight. Smartphones are today already practically always in man’s hands (on site) and do not need “boot” time while the notebook or the laptop is stored in the company car, far from the construction site. Furthermore, the user interface, significantly improved during the last years, plays an important role, thus also increasing the comfort dramatically. At this point it should be also noted that there are much more useful advantages, i. e. voice control as an important example. Important and decisive for the use of smartphone apps compared to the laptop, however, is the additional use of features of the original basic calculations. Using smartphones it helps dramatically to add a couple of photos to further illustrate the situation and also to store the GPS coordinates or a map with a few clicks. The quality of results of all engineering tasks becomes much more professional. The immeOG 219 PIPELINES Fig. 2 App FREESPAN diate and direct sending of messages, photos and calculation results is a further advantage of smartphones in comparison to the mobile computers. Unforeseen situations or faults can already be documented. It is also possible without delay to commission -already on site- subsequent tasks. Therefore, the use of smartphones is much more comfortable and flexible in the field than all other available working tools. First applications – already available by Apps4Grids – support already a few field engineers (practitioners) on sites. Two examples using such mobile apps will be explained later. 3.1 Example “Free Span” Nearly 100% of all grid-bound infrastructures, such as gas supply systems, were laid underground. To have a precise knowledge of the state is very important, but this is often only possible during or after a visual inspection. For this reason it often occurs, for example, that the extent of excavation has to be enlarged to repair damaged pipe coating and all of this during the time of the mentioned activity (Fig. 2). The site management team has to decide in advance, what length of the pipe can be exposed without additional support. The app “FREESPAN” calculates based on only a few parameters (pipe diameter, wall thickness, material, etc.) the maximum allowable deflection of the pipe, and thus supports the necessary decisions of the responsible person-in-charge on site. Due to this app as a mobile application the repair work will become much more efficient and safe. Fig. 3 OG 220 Parameters for calculations (www.apps4grids.com) 3.2 Example “Rating of corrosion” Many gas pipes are made of steel, so it could still happen today that parts of pipe lines corrode despite presence of highly sophisticated state-of-the-art protection techniques such as pipe plastic wraps and cathodic corrosion protection. It happens that we observe the appearance of local wall thickness reductions. The engineer’s job is to evaluate the residual capacity and thus the stability of the gas line based upon different calculation methods such as ASME B31 G or DNV-RPF101, developed by norm institutes and authorities. Based on these calculation methods it is possible to calculate the residual capacity and stability of a gas pipe with local wall thickness reduction. These calculation methods require only a few input parameters (Fig. 3) to achieve the desired results. To apply these methods as a mobile app for the practitioner on the site is an ideal basis for decision-making. Thus, a decision at short notice is possible and if necessary repair activities can be carried out immediately and if necessary other actions can be implemented promptly and efficiently. 4 Conclusions For today’s technicians and engineers in operational practice smartphone applications are a must. These apps represent a valuable addition for many applications, thereby facilitating the decision-making process directly on site. On the other hand, the mentioned apps do not replace the existing company internal IT solutions. Without question following an intense examination of the practical use and weighing up the low cost for the purchase of apps against the achievable high flexibility, one can highly recommend the purchase and use of these apps. Furthermore it is worth mentioning, that interactions with other users, for example, via a web portal, are already well-es- tablished functions, useable for the development of the respective apps. Besides the exchange of experience with already available applications it is an excellent way to formulate new tasks with this approach. Maybe there are tasks that are reserved for a special group of users. Thinking for example of the use of iPads in the Apple Store, which is restricted to the sales process. That has to be realized for example, for competitive reasons or obligations to maintain confidentiality. Based on smartphones the realization of company-specific duties can be achieved easily. Finally, based on the shown benefits in grid-bound infrastructures it is anticipated that there will be an enormous growth in on-site smartphone use in the very near future. Literature [1] DNV-RP-F101: Corroded pipelines, January 2015. [2] ASME: Manual for Determining the Remaining Strength of Corroded Pipelines, B31G-2012. [3] Schneider: Bautabellen für Ingenieure (mit Berechnungshinweisen und Beispielen), Werner-Verlag, Köln, 21. Auflage, 2012. [4] Dubbel: Taschenbuch für den Maschinenbau, Springer-Verlag, Berlin, 2014. [5] APPS4Grids: www.apps4grids.com Dr. Siegmund Cierniak has more than 40 years of experience in the gas business. He worked many years in the field of rotating equipment in R&D, Sales and Management at well-known companies and ten years at RWE in charge of future gas projects. He was many years President of the EFRC (European Forum for Reciprocating Compressors). After his retirement (2013) he has been working as an active consultant in these sectors. He holds a B.Sc. and a M.Sc. in Process Engineering as well as a Ph.D. in Mechanical Engineering from the Aachen University, Germany. Metin Duman has worked for large companies in the energy sector in Germany and for a technical service company in Turkey as shareholder. He is a manager with international experience and personal emphasis in business development, strategic marketing and project management. Metin Duman holds a M.Sc. in Electrical Engineering from the University of Dortmund and has almost 20 years of experience in the energy and services market. He is Managing Director and Shareholder of GATTER 3 Technik GmbH, Dortmund/Germany. OIL GAS European Magazine 4/2015 NEWS CONSTRUCTION ENGINEERING El Segundo Refinery Coke Drum Reliability Project is “Project of the Year” Pioneering fractured basement reservoir development on the UKCS The Project Management Institute has selected Chevron’s El Segundo Refinery Coke Drum Reliability Project as its 2015 Project of the Year. Fluor served as the engineering, procurement and construction management contractor, in addition to performing initial studies and front-end design work. The project replaced six coke drums and incorporated seismic upgrades to the coker structure at Chevron’s El Segundo Refinery in California. The vertical project required extensive scaffolding and 15 major lifts that ranged from 166 to 500-plus t, and took place at heights of more than 80 m. The project was completed four months ahead of schedule, $7 million under budget, with no serious injuries and with no disruption to the plant’s operations. “Through close collaboration with Chevron and all stakeholders, we met a significant challenge and helped deliver this project ahead of schedule, under budget and, most importantly, safely,” said Jim Brittain, president of Fluor’s Energy & Chemicals business in the Americas. “Fluor takes on the world’s most complex and challenging projects, and the logistical and safety challenges of this project were second to none.” The project team developed an innovative logistics plan to transport the new drums to the site – reducing the distance from 35 to 7,2 km to minimize inconveniences to the community. Once at the site, old drums were removed and the new 29-m-tall drums, which are three times as heavy as the Space Shuttle Endeavor, were installed. The project also removed a 454 t, six-derrick structure and cutting deck that covered the coke drums. The removal took place in one lift, with a 122 m tall crane, the largest ever brought to Southern California. The project used interactive planning sessions, safety commitment workshops, cutting-edge technology and strict scaffolding safety guidelines to complete with no serious incidents or losttime injuries. CARBON CAPTURE & STORAGE Largest ever controlled release of CO2 from an underwater pipeline To fully understand the environmental and safety implications associated with the development of CO2 pipelines, DNV GL is conducting the oil and gas industry’s largest ever controlled release of carbon dioxide from an underwater pipeline at its full-scale Spadeadam Testing and Research Centre, located in Cumbria, UK. The planned underwater release, scheduled to start in January, is part of an international Joint Industry Project (JIP) ‘Sub-C-O2’ to develop safety guidelines on the use of offshore CO2 pipelines. Companies participating in the JIP are Norway’s Gassnova, Brazil’s Petrobras, the UK government’s Department of Energy and Climate Change, the UK’s National Grid and DNV GL. Italy’s ENI is expected to join the JIP in early 2016. This is the second experimental phase which will run for three months and will involve releases in a 40 m diameter, 12 m deep pond at OIL GAS European Magazine 4/2015 the Spadeadam Testing and Research Centre, which is located in Cumbria, UK. “This is the largest experimental investigation to date of underwater CO2 releases which will study the effects of depth on measured and observed parameters,“ said Gary Tomlin, VP Safety and Risk, with DNV GL at Spadeadam. “The testing is designed around what is already known about underwater natural gas leaks and the possible occurrence of CO2 hydrates collecting on pipework. By using high-speed, underwater cameras and other measurement techniques, we can examine the configuration and characteristics of the released gas. It will allow us to see whether it reaches the surface and analyse what happens.” The first phase of experiments which involved small-scale, controlled CO2 releases from a 3″ nominal bore pipeline in a 8.5 m diameter, 3 m deep water tank were expected to be completed by December. UK engineering solutions provider, Costain, is involved in a project which the Oil and Gas Authority has recently lauded as “significant” for the future of the UK continental shelf. Costain has worked closely with Hurricane Energy on hydrocarbon resources in naturally fractured basement reservoirs, to produce a number of field development options for their Lancaster discovery, West of Shetland. Globally, naturally fractured basement reservoirs are prolific oil producers, but they represent a new opportunity for the UKCS. Costain, in collaboration with Hurricane, has defined an initial development concept based around an Early Production System (EPS). The primary objectives of the EPS are to gain additional knowledge of the reservoir and minimise capital exposure, whilst providing an economic return on the capital invested. The EPS concept takes into account the current low oil price environment which has necessitated the development of novel solutions and cost saving initiatives. www.constain.com PROCESSING New Biturox® plant for SOCAR The Austrian engineering company Pörner signed a contract with SOCAR (State Oil Company of Azerbaijan Republic) for the design and supply of a Biturox® plant for the Hey-dar Aliyev Refinery in Baku, Azerbaijan. The plant, for the production of quality bitumen, is part of a comprehensive modernization project and replaces the Biturox® plant that Pörner delivered to Azerneftyag in 1995. For the Biturox® plant, Pörner will provide the license, basic engineering, pilot tests – carried out in the Pörner research facility, key equipment and commissioning support. Using the latest off-gas treatment system, and designed for an an-nual capacity of 400,000 t, this plant will meet the high demand for quality bitumen for the further expansion of the road network of Azerbaijan. The Heydar Aliyev Baku Oil Refinery is located near the capital Baku and is currently undergoing extensive modernization. The annual pro-cessing capacity will increase from 6 to 7.5 million tons. All grades of fuel produced will comply with Euro 5 standards and are quality feed materials for the Azerkimya downstream plant, such as ethylene, propylene and butylene. www.poerner.at OG 221 NEWS CONDITION MONITORING SERVICES Full diagnostic power on the PC DNV GL wins frame agreement with Wintershall Norge AS With OMNITREND Center, PRUFTECHNIK Condition Monitoring launches a modern, powerful and easy to use software platform. It communicates with all the latest offline and online systems of PRUFTECHNIK such as the VIBXPERT device family, the VIBRONET Signalmaster and the DNV GL certified VIBGUARD and VIBROWEB XP. OMNITREND Center is available in single user or client-server versions, is ready for cloud solutions, and provides powerful aids like knowledge-based machine templates, online and offline device managers. Statistical post processing methods help to monitor the health of even the most complex machines. The operator quickly gets an overview about the status of his machine park using interactive asset reports. Thanks to the flexible html format this information can easily be shared. www.pruftechnik.com DNV GL, technical advisor to the oil and gas industry, has been selected by Wintershall Norge AS to provide a frame agreement for global inspection services for its developments offshore Norway. The overall contract is expected to exceed NOK 10 million (approx $ 1.2 million). The term of the contract is five years, with an option for two, two-year extensions and covers all Wintershall’s projects on the Norwegian Continental Shelf. It will initially be used for the ongoing Maria development. DNV GL will perform inspection, test and surveillance activities on a worldwide basis as instructed by Wintershall Norge AS. The scope of services includes: review of the in- ENGINEERING 7-inch HMIs for hazardous area applications now with visualisation software Movicon The only 7" widescreen HMI for Zone 1 hazardous area applications, the innovative ET-208 operator interface, is now available with Movicon, the HMI visualisation software solution for complex engineering tasks. Running a Windows Embedded operating system, SERIES 200 R. STAHL HMIs offer a highly versatile solution in their device class. Movicon CE currently represents one of the most powerful open software solutions on the market. Thanks to the XML structure of this runtime engine, Movicon- based projects are platform-independent and can be run autonomously on the HMI device, operator terminals, PDAs, smartphones or wireless systems (pocket PCs, handhelds). This means maximum data transparency, simplified project engineering for different types of devices, and lower maintenance costs. www.stahl.de OG 222 spection and test plan , examination of materials, products, manufacturing processes, work procedures and/or services at Wintershall’s contractor’s premises. DNV GL will also examine contractor’s procedures, documents, quality performance and compliance with governing standards and specifications. The frame agreement is now underway and inspection and surveillance work is planned to be carried out across a number of locations including Germany, Italy, Greece, Norway and Malaysia, where subsea equipment components and structures will be manufactured. www.dnvgl.com SAFETY HELPE upgrades safety at Aspropyrgos refinery Greek oil company chooses HIMA safety systems, local partner to upgrade emergency shutdown capabilities Hellenic Petroleum (HELPE), one of the largest oil companies in the Balkans, recently upgraded the emergency shutdown capabilities of its Aspropyrgos Industrial Complex in an Athens suburbwith the installation of six HIMA safety systems by Solidus Assyst, a Greek automation specialist. The replacement of safety-related programmable electronic systems at the Aspropyrgos refinery included the installation of four HIMax® and 2 HIQuad systems from HIMA. The new systems protect the refinery’s FCC complex, LPG spheres and circulation network, diesel hydrodesulphurization unit, naphtha hydrodesulphurization unit and two crude distillation units. The HIMA safety systems integrate with the refinery’s Yokogawa control system and fully comply with the IEC 61511 standard. Communication is accomplished with Modbus Serial Link. The HIMA hardware supports 3,030 I/Os. Supported by HIMA, Solidus Assyst managed the project through engineering, construction, integration, programming, procurement, testing and training, decommissioning of old PESs, installation of new systems, commissioning and modifications. www.hima.com CYBER SECURITY Emerson further strengthens protection of critical infrastructure Emerson Process Management has joined forces with Intel® Security to enhance and strengthen its integrated cyber security solution to better secure the DeltaVTM distributed control system (DCS). This increased layer of cyber protection is designed to help safeguard critical assets and data. This strategic relationship reinforces Emerson’s commitment to protecting infrastructure throughout the plant lifecycle and addresses the market demand for consistent, proven industrial cyber security. The DeltaV DCS has long incorporated builtfor-purpose control system firewalls and network switches that provide easy-to-configure security and protection features to help system networks remain available, reliable and more secure. The new solutions provide efficient compliance measures and instant intelligence for changing threat environments, along with the power of real-time visibility and centralised management through a single platform. www.emersonprocess.com OIL GAS European Magazine 4/2015 NEWS RESERVOIR DEVELOPMENT PIPE CONSTRUCTION New HOSTAFRAC®SF 13213 delivers a step change for flowback aid sustainability Venture capital investment to produce innovative pipelines for offshore production Surfactant subsystem contains sustainably sourced sugar-based amide surfactants Clariant, manufacturer of specialty chemicals, recently announced its new HOSTAFRAC® SF 13213 innovative chemical flowback aid for hydraulic fracturing. The new sugar-based surfactant dramatically lowers the fluid’s surface and interface tension to significantly increase the flowback of the hydraulic fracturing fluid. HOSTAFRAC SF 13213 effectively lowers the formation damage caused by emulsification of the fracture fluids in the reservoir. While as little as 13% of the fluid used during the hydraulic fracturing process can be recovered without flowback aid additives, the new HOSTAFRAC SF 13213 increases fluid recovery levels to as high as 87%. Offering significant sustainability advantages, HOSTAFRAC SF 13213 has earned Clariant’s EcoTain® label for sustainability. Products with this designation undergo a systematic, in-depth screening process using 36 criteria in three sustainability dimensions: social, environmental and economic. EcoTain products significantly exceed sustainability market standards, have best-inclass performance and contribute overall to the sustainability efforts. www.clariant.com PROCESSING Air Liquide offers G2GTM gas-to-gasoline technology Air Liquide Global E&C Solutions has entered into a global technology licensing agreement with ExxonMobil Research and Engineering. Under the terms of the agreement, Air Liquide will market and license its proven Lurgi MegaMethanolTM technology combined with ExxonMobil’s proprietary methanol-to-gasoline (MTG) technology to transform natural gas into ultra-low sulfur gasoline. The combination of technologies will be marketed under the trademark G2GTM. The G2GTM technology transforms natural gas, as well as other feedstocks, into motor gasoline containing virtually no sulfur and low in benzene content. The integration of both Air Liquide Global E&C Solutions and ExxonMobil technologies into one combined solution will minimize project interfaces, off sites and logistics complexities, as well as overall investment for synthetic fuel production. The G2GTM technology offer will be licensed as an integrated solution and will be deployed globally through Air Liquide Global E&C Solutions’ network. www.airliquide.com OIL GAS European Magazine 4/2015 Through its venture capital arm, Evonik has invested in Airborne Oil & Gas (IJmuiden, Netherlands). The specialty chemicals group now holds a minority interest in the Dutch company. The investment was made jointly with HPE Growth Capital (HPE) and Shell Technology Ventures. Airborne Oil & Gas (AOG) possesses a unique technology for the production of thermoplastic composite pipes for a variety of offshore oil and gas applications. The current offshore oil & gas infrastructure consists of either rigid steel pipes or so-called flexibles. The latter comprise of multiple layers of steel and polymers. AOG’s thermoplastic composite pipes dispense with steel entirely and are therefore not susceptible to corrosion. They have extremely high mechanical stability but are also flexible. As an added advantage they are lightweight and can be fabricated in lengths of up to 10 km, which means that AOG’s pipes can be installed relatively simply and cost effectively. AOG’s thermoplastic composite pipes are suitable and beneficial for a wide range of offshore applications. A number of operators have qualified AOG’s pipes for offshore oil & gas transport lines, where the benefits of low cost installation and the absence of corrosion offer breakthrough improvements. Excellent mechanical properties thanks to unidirectional tapes AOG’s pipelines consist of three layers: An inner plastic pipe is covered with a composite of unidirectional tapes, which in turn is sheathed by plastic. Polymers such as polyethylene, polypropylene, polyamide 12 and PEEK can be used. Unidirectional tapes are thin plastic bands in which continuous reinforcing fibers are embedded in parallel alignment. When a number of such bands are stacked vertically at defined angles and fused together, it results in an extremely stable composite. AOG’s special expertise lies in the design of both the composite material and the finished pipe, for a variety of applications: All the layers are melt-fused to one another inseparably, which explains the outstanding mechanical properties of the pipelines. www.airborne-oilandgas.com METERING New LACT control system designed to increase accuracy of liquid hydrocarbon transfer Liquid hydrocarbon transporting and storage companies, including truck and ship loading facilities and pipelines, can now transfer materials using an enhanced lease automatic custody transfer (LACT) control system designed for accuracy and safety. The Thermo Scientific AutoLACT system is designed to facilitate the transfer of liquid hydrocarbon from storage tanks or trucks to refineries or centralized processing facilities while accurately recording data for each transaction. The AutoLACT system features the market-proven flow computer capabilities of the Thermo Scientific AutoPILOT Pro as well as an integrated human machine interface (HMI) designed to ensure that operators capture each transaction in the system for true accountability. www.thermoscientific.com/autolact OG 223 NEWS CALENDAR December International Petroleum Technology Conference (IPTC), December 6–9, Doha. www.iptcnet.org BBTC Mena – Bottom of the Barrel Technology Conference, December 8–9, Abu Dhabi, UEA. www.europetro.com The 2015 European Biopolymer Summit, December 9–10, Lonond, UK. www.acieu.co.uk January The Future of Aromatics 2016, January 13–14, Amsterdam, The Netherlands. www.wplgroup.com/aci North Africa Downstream Summit, January 17–19, Cairo, Egypt. www.northafricadownstream.com 9th European Gas Conference, January 19–21, Vienna, Austria. www.europeangas-conference.com Lignofuels 2016, January 20–21, Munich, Germany. www.acieu.co.uk 6th Carbon Dioxide Utilization Summit, February 24–25, Newark, NJ, USA. www.acieu.co.uk Black Sea Oil & Gas Summit, January 28–29, Vienna, Austria. www.theenergyexchange.co.uk February 18th annual E&P Information and Data Management, February 3–4, London. www.smi-online.co.uk Energy Storage 2016, February 3–4, Paris, France, www.wplgroup.com International Petroleum (IP) Week, February 9–10, London. www.energyinst.org 6th Russia & CIS Oil & Gas Executive Summit, February 17–18, Dubai. www.europetro.com 7th International Gas Technology Conference – IGTC, February 17–18, Dubai. www.europetro.com ME-TECH 2016 – Middle East Technology Forum for Refining & Petrochemicals, February 14–16, Dubai. www.europetro.com March STAR Global Conference 2016, March 7–9, Prague, Czech Republic, www.cd-adapco.com OG 224 International LNG Congress, March 14–15, London. lngcongress.com Gasification 2016, March 23–24, Rotterdam, Netherlands. www.acius.net June 2016 APPEA Conference & Exhibition, June 5–8, Brisbane, Australia. www.appea.com.au April Course: Petroleum Economics and Business, April 3–6, Abu Dhabi. www.hoteng.com wire 2016 / Tube 2016 – Int. Fairs, April 4–8, Duesseldorf, Germany. www.wire.de; www.tube.de LNG18 – 18th International Conference & Exhibition Liquefied Natural Gas, April 11–15, Perth, Australia. www.appea.com.au Course: Introduction to Shale Oil and Gas, April 18–22, Vienna, Austria. www.hoteng.com SIMONE Congress, April 20–22, Krakow, Poland. www.simonecongress.com July Course: Advanced Well Planning, July 18–29, Vienna, Austria. www.hoteng.com May International Downstream Week 2016 incorporating: Operational Excellence in Refining, Gas & Petrochemicals Conference; International Downstream Technology & Strategy Conference; International Bottom of the Barrel Technology Conference May 9–13, Madrid, Spain. www.europetro.com August Course: Artificial Lift Systems, August 8–12, Vienna, Austria. www.hoteng.com September European Bulk Liquid Storage 2016, September 7–8, Tarragona, Spain. www.acius.net 3rd Rotating Equipment Conference 2016, September 14–15, Duesseldorf, Germany. www.introequipcon.com Int. Conference Catalysis – Novel Aspects in Petrochemistry and Refining, September 26–28, Berlin, Germany. www.dgmk.de October 11th Global LNG Tech Summit, October 3–5, Barcelona, Spain. www.lngsummit.com International Conference Catalysis – Novel Aspects in Petrochemistry and Refining September 26–28, 2016, Berlin, Germany. organized by DGMK, SCI (Italy), ÖGEW (Austria) and GECATS (Germany). www.dgmk.de OIL GAS European Magazine 4/2015 ,8 564'+%*'4 Ō $17%*#/#17+ 0#9#4# &'8'.12/'06 241,'%6 1/8 6WPGUKGP 2TQFWEVKQP )OD* 9KVJKP CP '2%%EQPVTCEV VJG LQKPV XGPVWTG 564'+%*'4 s $17%*#/#17+ #4 +0&7564+'5 KU TGURQPUKDNG HQT VJG %GPVTCN 2TQEGUUKPI (CEKNKV[ %2( KP VJG ICU ƂGNF 0#9#4# 5QWVJ QH 6WPKUKC (NQYNKPGU CPF 9GNNRCFU (WTVJGTOQTG 564'+%*'4 CPF $17%*#/#17+ +0&7564+'5 ECTT[ QWV VJG EQPUVTWEVKQP QH C p RKRGNKPG YKVJ C NGPIVJ QH MO YJKEJ VTCPURQTVU ICU HTQO VJG RTQFWEVKQP UKVG VQ VJG ICU RTQEGUUKPI HCEKNKV[ PGCT VJG EKV[ )CDÄU QP VJG 6WPKUKCP GCUV EQCUV 2KRGNKPG CPF RNCPV EQPUVTWEVKQP CTG EQTG EQORGVGPEGU QH 564'+%*'4 #U CP '2%EQPVTCEVQT HQT VWTPMG[ RNCPVU KP VJG QKN CPF ICU UGEVQT 564'+%*'4 RTQXKFGU CNN UGTXKEGU HTQO RNCPPKPI CPF EQPUVTWEVKQP VQ EQOOKUUKQPKPI CPF OCKPVGPCPEG $17%*#/#17+ #4 +0&7564+'5 KU CP KPVGTPCVKQPCNN[ TGEQIPKUGF EQPUVTWEVKQP EQORCP[ KP 0QTVJ #HTKEC EQXGTKPI C NCTIG URGEVTWO QH CEVKXKVKGU HQT VJG QKN ICU KPFWUVT[ *8 GNGEVTKECN RQYGT UWRRN[ CPF KPFWUVTKCN KPUVCNNCVKQPU /#: 564'+%*'4 )OD* %Q -) C# YYY UVTGKEJGTFG $QWEJCOCQWK #4 +PFWUVTKGU YYY DQWEJCOCQWKPGV Our success, as one of the leading land drilling contractors in Europe, is based on more than 125 years continuous operational experience. Oil & Gas Wells Geothermal Wells Underground Storage Wells Workover Integrated Project Management Drilling Equipment Rental KCA DEUTAG Drilling GmbH Deilmannstrasse 1 48455 Bad Bentheim, Germany Tel 05922 72 0 info.de@kcadeutag.com www.kcadeutag.com Noise protection for outdoor installations OUR EXPERTISE SUPPORTS YOUR SUCCESS The design of these noise barriers makes them particularly suitable for temporary enclosures of machines and drilling rigs. Individual shielding of industrial outdoor areas, generally A major advantage of our professional NoiseGard is that no aimed at optimizing environmental and occupational health foundation is required, so you do not have to bother about and safety, has useful side effects, in addition to noise underground cables, drainage channels, etc. protection. For example wind forces acting on a drilling rig may be attenuated or the outside world may be effectively The system may be designed for different heights and any sealed off, if confidentiality so requires. length to provide complete fencing of industrial facilities and events. Matching gate systems, entrances and emergency exits will be adapted as required. Individual requirements of acoustic or optical properties may be implemented upon request. Depending on the model, we offer to either rent or buy the systems. noisegard.com PRODUKTE & DIENSTLEISTUNGEN Produkte & Dienstleistungen VariAS-Ventilblock mit drehbarem Adapter vereinfacht das Ablesen AS-Schneider hat für einen Kunden aus der Erdölbranche einen individuellen Ventilblock auf Basis der bewährten VariAS-Baureihe entwickelt. Der Anwender benötigte für die Druckmessung in einer Förderanlage einen Kugelhahn mit Block-&-Bleed-Funktion. Dieser musste über einen zusätzlichen Prüfanschluss verfügen. Außerdem sollte die Stellung des angeschlossenen Druckmessgeräts zur besseren Lesbarkeit flexibel einstellbar sein. Eine bisherige Lösung mit mehreren Kugelhähnen genügte diesen Anforderungen nicht. Die geschmiedeten Double-Block-&-BleedVentilblöcke mit einteiligem Gehäuse ersetzen konventionelle Installationen aus mehreren Einzelventilen. Der VariAS-Block wurde mit einem drehbaren Adapter am Eingang ausgestattet. Mit diesem lässt sich die Stellung der gesamten Messanordnung flexibel verändern, Ventile und Druckmessgerät sind damit gut zugänglich. Das Messgerät ist direkt am Ventilblock angebracht. Die Erstabsperrung erfolgt über einen Kugelhahn, und auch ein separater Prüfanschluss mit einer Mini-Messkupplung ist in den VariAS-Block integriert. Dieser wird über ein Nadelventil abgesperrt. Zur Entlüftung ist zusätzlich ein kleines Entlüftungsventil montiert. www.as-schneider.com TOTAL setzt weiter auf Service von Bilfinger Maintenance Der Engineering- und Servicekonzern Bilfinger wird auch in den kommenden sechs Jahren in weiten Teilen für die Instandhaltung der TOTAL Raffinerie Mitteldeutschland in Leuna verantwortlich sein. Das Gesamtvolumen des jetzt verlängerten Rahmenvertrags beläuft sich auf mehr als 100 Mio. Euro inkl. budgetierte Stillstandsund Projektleistungen. Bilfinger Maintenance ist seit der Inbetriebnahme der Raffinerie im Jahr 1997 für die Instandhaltung wesentlicher Teile der Anlage zuständig. »In dem neuen Vertrag werden zusätzlich Tools und Methoden unseres Bilfinger Maintenance Concepts, BMC®, zur Anwendung kommen, so dass sowohl der Betreiber als auch wir von sinkendem Instandhaltungsaufwand profitieren«, erläutert Hermann Holme, Geschäftsführer Bilfinger Maintenance. www.bilfinger.com Fachtagung für unterirdische Energiespeicherung 10. März 2016 | The Westin Bellevue Dresden Bei der von der ESK GmbH or anisierten Ta un werden Vorträ e zu aktuellen Themen , g g . Weitere Informationen: E jana.dziadek@rwe.com I www.rwe.com/esk Sicherheitsnetz für Verkrustungen am Bohrlochrohr Frankfurt am Main, November 2015–Ein Weihnachtsbaum war Auslöser für eine außergewöhnliche Idee, welche die Arbeiten in der Bohr- und Workoverindustrie sicherer macht. UGS/VINCI Construction suchte nach einer Lösung zum Schutz vor herab fallenden Bohrrohrverkrustungen und -ablagerungen bei Rohrzieharbeiten – und entwickelte zusammen mit GeostockEntrepose ein ebenso einfaches wie kreatives System, das Erinnerungen an den Christbaumverkauf weckt. Um den Gefahrenherd abblätternderAblagerungen an Rohren möglichst auszuschalten, orientierte sich das Team an den Netzmaschinen zur Verpackung von Weihnachtsbäumen. Während des Aussolprozesses von Salzkavernen können sich Anhaftungen in Form von zentimeterdicken Krusten am Rohr bilden. Wird das Rohr aus dem Bohrloch entfernt, kann es bei der herkömmlichen Methode ERDÖL ERDGAS KOHLE, 131. Jg. 2015, Heft 12 vorkommen, dass sich die zuvor entstandenen Ablagerungen beim Ausbauender Rohre ablösen und zu Boden fallen. Dies führt zu einer unmittelbaren Gefährdung der Mitarbeiter am Bohrloch. Darüber hinaus muss im späteren Verlauf der Arbeiten die komplette Außenfläche des Rohres mühsam von Abla- gerungen befreit und das entfernte Material entsorgt werden. Probleme, die mit der neuen Methode behoben bzw. vermieden werden. Jetzt spannt sich beim Ausbau der Rohre aus dem Bohrloch automatisch ein stabiles Netz über diese; Ablagerungen können so nicht mehr herab fallen. Auch das spätere Entfernen und Entsorgen der Anhaftungen verläuft wesentlich schneller: Dafür wird im Vergleich zur vorherigen Verfahrensweise nur noch ein Sechstel der Zeit benötigt. Die originelle Lösung überzeugte auch die Jury des VINCI-Innovationspreises 2015, der dieses Jahr zum achten Mal für konzerninterne Projekte vergeben wurde. Für die ganzjährig einsetzbare Weiterentwicklung der Weihnachtsbaumverpackung konnte sich das Projektteam der UGS GmbH über eine Auszeichnung in der Kategorie »Sicherheit« freuen. (Bild: UGS Mittelwalde) 459 VERANSTALTUNGEN TAGUNGSKALENDER 18.–19. Januar 13. Internationaler Fachkongress »Kraftstoffe der Zukunft 2016«, Berlin. www.bioenergie.de 19.–21. Januar 9. European Gas Conference 2016, Wien. www.europeangas-conference.com 20.–21. Januar Lignofuels 2016, München www.wplgroup.com/aci/ 21. Januar Schiefergas: 7. Energiekolloquium der Chemie-Gesellschaften, gemeinsam veranstaltet von: DBG, DECHEMA, DGMK, GDCh, VCI, VDI-GVC, Frankfurt am Main. www.dechema.de 27. – 28. Januar TAR 2016 – Turnarounds, Anlagenabstellungen, Revisionen, Potsdam. www.tacook.com 9. Februar Potenziale des unterirdischen Speicherund Wirtschaftsraumes im Norddeutschen Becken (Projekt TUNB) – BGR-Hauskolloquium, Hannover. www.bgr.de 2.–4. März 28. Deutsche Zeolith-Tagung, Gießen. www.processnet.de/dzt28.html 9.–10. März 8. Workshop Gasmengenmessung – Gasanlagen – Gastechnik, Rheine. www.koetter-consulting.com 16.–18. März 49. Jahrestreffen Deutscher Katalytiker, Weimar. www.processnet.org/katalytiker2016 13,–14. April UNITI Mineralöltechnologie-Forum, Stuttgart. www.umtf.de 18.–21. April NEFTEGAZ 2016, Moskau. www.neftegaz-expo.ru/en/ 21.–22. April DGMK/ÖGEW-Frühjahrstagung 2016, Celle. www.dgmk.de 24.–27. April SMRI Spring Meeting 2016, Galveston, TX, USA. www.solutionmining.org 2.–4. Mai Jahrestreffen Reaktionstechnik 2016, Würzburg. www.dechema.de 9.–11. Mai DGMK-Tagung Konversion von Biomassen, Rotenburg a.d.F., www.dgmk.de 13.–15. September ProcessNet-Jahrestagung 2016, Aachen. www.dechema.de 14.–15. September Rotating Equipment Conference 2016, Düsseldorf. www.introequipcon.com 25.–28. September SMRI Fall Meeting 2016, Salzburg, Österreich. www.solutionmining.org 26–28. September Catalysis – Novel Aspects in Petrochemistry and Refining; Tagung des DGMK-Fachbereichs Petrochemie mit SCI und ÖGEW, Berlin. www.dgmk.de 9.–13. Oktober World Energy Congress 2016, Istanbul. http://wec2016istanbul.org.tr/ 26.–27. Oktober 20. Workshop Kolbenverdichter, Rheine. www.koetter-consulting.com 8.–10. November gat 2016, Essen www.drgw.de 29. November – 1. Dezember Geothermiekongress DGK 2016, Essen. www.geothermie.de 2017 Call for Papers The Petrochemistry Division of DGMK announces its 24th topical Conference with the general theme Catalysis – Novel Aspects in Petrochemistry and Refining September 26–28, 2016, in Berlin, Germany The Conference is jointly organized by the Petrochemistry Division of DGMK, the Division of Industrial Chemistry of the Società Chimica Italiana (SCI), ÖGEW Österreichische Gesellschaft für Erdölwissenschaften and GeCatS German Catalysis Society. The scientific chairmen are Professor Dr. Stefan Ernst (Technische Universität Kaiserslautern), Dr. Ulrich Balfanz (BP Europa SE, Bochum), Professor Dr. Matthias Beller (Leibniz-Institut für Katalyse e.V., LIKAT, Rostock), Dr. Michael Bender (BASF SE, Ludwigshafen), Dr. Harald Häger (Evonik Industries AG, Marl) and Dr. Mario Marchionna (Saipem S.p.A., San Donato Milanese, Italy). English will be the Conference language throughout. The scientific program will consist of Keynote Lectures (upon invitation only) by renowned experts in the field, Oral Presentations and Poster Presentations. There will be no parallel sessions and ample time for discussion. The preprints with the manuscripts of keynote, oral and poster presentations will be handed out to registered participants at the Conference desk in Dresden. The Conference will address all scientific and technical issues related to the general theme. Particular emphasis will be on the following topics: More recent developments in catalytic refining processes, in particular with respect to deep hydrotreating (HDS and HDN, i. e. of cycle oils and heavy fuel oils), recent developments in hydrocracking of heavy petroleum fractions and in fluid catalytic cracking (FCC) for the use of heavier feedstocks and the production of increased yields of light olefins from FCC. Moreover, contributions on recent achievements in the synthesis of alkylate gasoline will be highly welcome. Also, the challenges and opportunities arising from catalytic processing/coprocessing of biogenic feedstocks in the refinery will be addressed. Innovative applications of catalysis in petrochemistry will be discussed related to new developments in selective oxidation catalysis, selective hydrogenations/dehydrogenations and the catalytic use of carbon dioxide, bioethanol etc. for the synthesis of value-added products. Moreover, contributions on the catalytic production of light olefins and aromatics from alternative sources (e.g., methane, methanol) and related topics are welcome. Please send your proposal by May 1, 2016 to: DGMK German Society for Petroleum and Coal Science and Technology, Attn. Dr. Gisa Tessmer / Mrs. Christa Jenke, Überseering 40, D-22297 Hamburg, Phone:+49-40-63 90 04-11 or -12, Fax: +49-40-63 90 04 50, Preferably by email to: petrochemistry@dgmk.de. All proposals should contain the envisaged title of the paper, the authors´ names and affiliations including their addresses and a concise abstract. The complete proposal should not exceed one typewritten page. Please indicate if you prefer oral presentation or a poster. Please note that we intend to provide the accepted abstracts on our homepage. We therefore kindly ask you to use the template for abstracts on our website. Please note that authors will not be exempt from paying the Conference fee. Dr. Gisa Tessmer and Mrs. Christa Jenke from DGMK or any of the organizers will be pleased to provide more information on any aspect related to the 2015 Conference of the Petrochemistry Division of DGMK. 9.–13. Juli 22. Welt-Erdöl-Kongress, Istanbul Deutsches Erdölmuseum Wietze, alle Veranstaltungen unter www.erdoelmuseum.de 460 Stefan Ernst Ulrich Balfanz Matthias Beller Michael Bender Harald Häger Mario Marchionna ERDÖL ERDGAS KOHLE, 131. Jg. 2015, Heft 12 BÜCHER & BERICHTE / VERANSTALTUNGEN Bücher & Berichte Geothermieanlagen Bau und Berechnung von Erdwärmeanlagen – Einführung mit praktischen Beispielen. Autoren: Frieder Häfner, Rolf-Michael Wagner, Linda Meusel. Hardcover 49,99 Euro, ISBN 978-3-662-48200-1 Unter den regenerativen Energiequellen für die Gebäudeheizung und -klimatisierung nimmt die Erdwärme (in Form von Erdwärmesonden etc. mit Wärmepumpen) den ersten Platz ein. Der jährliche Zubau von Erdwärmeanlagen hat steigende Tendenz. Das Buch richtet sich besonders an private Bauherren, Ingenieure und Firmen, die Anlagen planen und bauen. Die Schwerpunkte liegen im Bereich Planen/Berechnen und Bau/Qualitätssicherung. Die Autoren charakterisieren die Erdwärmenutzung, beschreiben die üblichen technischen Anlagen dazu, mit Schwerpunkt auf Erdwärmesonden (EWS) und ihre Einsatzmöglichkeiten. Danach wird die Berechnung von Erdwärmeanlagen (Einzel-EWS, Sondenfelder) mit mathematisch-analytischen Verfahren und numerischen Simulationsverfahren dargestellt. Die dazu notwendige Software wird Online als Demo-Version bereitgestellt. In einem weiteren Hauptkapitel werden der Bau von Erdwärmeanlagen, technische Voraussetzungen, Anforderungen und Genehmigungspraxis dargestellt. Der Betrieb der Anlagen und die vielfältigen Nutzungsmöglichkeiten für Heizen, Warmwasserbereitung, Kühlen ist in den Hauptkapiteln integriert. Beispielhafte Anlagenmuster werden dimensioniert, bautechnisch beschrieben und wirtschaftlich bewertet. Bezug genommen wird u. a. auch auf den spektakulären Schadensfall in der Stadt Staufen, wo sich der Erdboden noch heute infolge Gipsquellung hebt, sowie das Projekt SuperC der RWTH Aachen. Statusreport »Regenerative Energien in Deutschland« In dem aktuellen »Statusreport 2015 Regenerative Energie in Deutschland« zeigt der VDI den Stand der Technik und die sich abzeichnenden Tendenzen der regenerativen Energien auf. Mit seinen Empfehlungen soll der Statusreport helfen, die politische Diskussion um das Für und Wider des regenerativen Energieangebots zu versachlichen und aus ingenieurtechnischer Sicht Hinweise zu geben, wo sich einerseits begrüßenswerte Entwicklungen abzeichnen und andererseits Tendenzen erkennen lassen, denen gegengesteuert werden muss. ERDÖL ERDGAS KOHLE, 131. Jg. 2015, Heft 12 Die Nutzung regenerativer Energien hat in den letzten Jahren deutlich zugenommen. Die Strombereitstellung aus erneuerbaren Energien lag 2014 bei etwa 160,6 Terrawattstunden (TWh), das entspricht etwa 28 % des Bruttostromverbrauchs. Dazu tragen die Windenergie 35 % und die Bioenergie 31 % bei. Die Fotovoltaik und die Wasserkraft haben einen Anteil von jeweils 22 %. Im Jahr 2014 wurden rund 471 Petajoule (PJ) an Wärme aus regenerativen Energien bereitgestellt, was 10 % bezogen auf den Endenergieverbrauch (ohne Verkehr) an Brennstoffen entspricht. Dieser Beitrag wird nach wie vor überwiegend durch biogene Festbrennstoffe (87 %) abgedeckt, ge- folgt von Wärmepumpen und Solarthermie. Der Fachausschuss »Regenerative Energien« (FaRE) der VDI-Gesellschaft Energie und Umwelt (GEU) begleitet die Entwicklung der Nutzung des regenerativen Energieangebots in Deutschland und global seit vielen Jahren. Dazu behandelt er neben technischen, ökonomischen und ökologischen auch energie-, wirtschafts-, umwelt- und agrarpolitische sowie soziale Aspekte im Zusammenhang mit der Nutzung der erneuerbaren Energien als Teil des Energiesystems. Der »Statusreport 2015 Regenerative Energien in Deutschland« steht kostenfrei zum Download unter www.vdi.de/fa-re. Veranstaltungen • Termine Schiefergas: 7. Energiekolloquium Die Chemie-Gesellschaften DBG, DECHEMA, DGMK, GDCh, VCI und VDI-GVC veranstalten gemeinsam das 7. Energiekolloquium am 21. Januar in Frankfurt am Main. Welche Möglichkeiten zur Erschließung unkonventioneller Vorkommen gibt es in Deutschland und Europa. Bricht ein neues Zeitalter der heimischen Energieversorgung an oder sind wir nicht bereit die damit verbundenen Risiken zu tragen und was bedeutet dies für den Chemiestandort Deutschland? Auf dem Programm stehen die Vorträge: – Schiefergas und Fracking – Game Changer oder Risikotechnologie (Stefan Ladage, Bundesanstalt für Geowissenschaften und Rohstoffe, GEOZENTRUM, Hannover) – Schiefergas-Ressourcen: Entwicklung der Frack-Technologie (Prof. Dr.-Ing. Mohd Amro, TU Bergakademie Freiberg, Freiberg) – Bedeutung unkonventioneller Vorkommen für die Öl- und Gasindustrie (Kathrin Falk, ExxonMobil Central Europe Holding GmbH, Berlin) – Fracking Chemikalien – Abwasserproblematik, aktuelle Wissenslücken und die Rolle der Wissenschaft (PD Dr. Martin Elsner, Helmholtz-Zentrum München, Neuherberg). Die Moderation übernimmt Prof. Dr. Kurt Wagemann, DECHEMA e.V., Frankfurt am Main. www.dechema.de 19. Workshop Kolbenverdichter 2015 – Bericht Der 19. Workshop Kolbenverdichter 2015 bot den zahlreichen Teilnehmern auch in diesem Jahr ein vielseitiges Programm aus Fachvorträgen, Versuchsvorführungen und begleitender Fachausstellung. Der jährlich stattfindende deutschsprachige Branchentreff rund um das Thema Kolbenverdichter ermöglichte Betreibern, Herstellern und Dienstleistungsunternehmen aus der Öl- und Gasindustrie, der chemischen Industrie, dem Anlagenbau sowie der Forschung wieder einen interessanten Informations- und Erfahrungsaustausch. Aus der Perspektive der Betreiber wurde über Erfahrungen mit Überwachungssystemen, aber auch mit der Schmierung von Zylindern und Packungen sowie der Sanierung von Fundamenten und Rohrleitungsbefestigungen berichtet. Außerdem gab es wieder Themenbeiträge »über den Tellerrand hinaus«. So wurden die rechtlichen Aspekte der neuen Betriebssicherheitsverordnung vorgestellt und die rechtlichen Grundlagen beim Umbau von Maschinen thematisiert – eine Herausforderung für Hersteller und Betreiber. Zwischen den Vorträgen hatten alle Gäste Gelegenheit, die begleitende Fachausstellung sowie verschiedene Versuchsvorführungen zum Thema Schall- und Schwingungstechnik zu besuchen. So wurden u.a. Effekte wie Torsionsschwingungen, akustische und mechanische Schwingungen dargestellt sowie deren Ursachen und mögliche Lösungsmaßnahmen erläutert. Der 20. Workshop Kolbenverdichter findet am 26. und 27. Oktober 2016 in Rheine statt. www.koetter-consulting.com 461 VERANSTALTUNGEN Call for Papers Die gute Resonanz auf die vorangegangenen Tagungen veranlasst den DGMK-Fachbereich Kohlen- und Biomasseveredlung, zur Fachtagung Konversion von Biomassen und Kohlen vom 9. bis 11. Mai 2016 in Rotenburg a. d. Fulda einzuladen. Die Tagung wird sich wiederum mit innovativen Verfahren, Prozessen und Anlagen zur Nutzung von Biomassen und Kohlen durch chemische und physikalische, insbesondere thermochemische Konversionstechniken und der Verwendung der erhaltenen Produkte in energetischen und chemischen Folgeprozessen, u. a. zur Herstellung von Kraftstoffen, befassen. Schwerpunktthemen sind: Verfahrens-/Prozesstechnik – Effizienz – Reaktionsverhalten – Produktqualitäten/Produktverwertung – Gasaufbereitung/Gasreinigung – Bilanzierungen (Energie, Schadstoffe u.a.) – synthetische und thermische Nutzung der erzeugten Gase – Synergien – Bio-Raffinerie – Alternative Kraftstoffe – Betriebserfahrungen – Anlagenbau. Neben der Vermittlung von Grundlagen technisch effizienter Konzepte und neuerer Entwicklungen zur Nutzung von Biomassen und Kohlen wird dem Erfahrungsaustausch mit Anlagenbetreibern und Konzepten zur Realisierung von Anlagen, die Biomassen und Kohlen effektiv umwandeln, ein breiter Raum gewidmet werden. Zwischen den Techniken der Kohlenveredlung und der Biomasseverwertung bestehen vielfältige Gemeinsamkeiten, die den Raum für eine interessante Fachtagung bieten. Kohletechniken sollen Eingang in die Biomasseverwertung finden. Der DGMK-Fachbereich Kohlen- und Biomasseveredlung lädt daher zu dieser Tagung alle Fachleute ein, die sich mit der Technik der Umwandlung von Kohlen und Biomassen befassen. Die Tagung wird in Zusammenarbeit mit der Fördergesellschaft Erneuerbare Energien (FEE), Berlin, veranstaltet. Vorgesehen sind: Übersichtsvorträge eingeladener Referenten Fachvorträge (ohne Parallelsitzungen) Posterbeiträge eine Podiumsdiskussion zu den Erkenntnissen der Tagung. Vorträge und Posterbeiträge werden in einem DGMK-Tagungsberichtsband veröffentlicht, der den Teilnehmern im Tagungsbüro ausgehändigt wird. Die Konferenzsprachen sind Deutsch und Englisch. Eine Simultanübersetzung ist nicht vorgesehen. Tagungsort ist das Hotel Rodenberg in Rotenburg an der Fulda (www.goebel-hotels.com/rotenburg/hotel-rodenberg), das hierfür in besonderer Weise geeignet ist und den Klausurcharakter der ersten acht Tagungen in Velen/ Westfalen aufgreift. Der DGMK-Fachbereich Kohlen- und Biomasseveredlung ruft mit diesem »Call for Papers« alle Fachleute auf, sich mit Beiträgen zu beteiligen. Er bittet zunächst um Übersendung eines Abstracts von max. einer DIN A4Seite. Das Organisationskomitee wird aus den eingegangenen Beiträgen Vorträge und Poster für das Programm der Tagung auswählen. Bitte benutzen Sie zur Abfassung des Abstracts die auf unserer Website www.dgmk.de verfügbare Formatvorlage. Wir beabsichtigen, die eingegangenen Abstracts mit dem Programm im Internet zu veröffentlichen. Einsendeschluss für vorgeschlagene Beiträge ist der 15. Januar 2016. Sie sind per Email biomasse@dgmk.de an die DGMK-Geschäftsstelle zu richten. Weitere Informationen erhalten Sie von der DGMK-Geschäftsstelle: Frau Dr. H. Doloszeski, Überseering 40, D-22297 Hamburg, Tel. 040 639004 71, email: doloszeski@dgmk.de Bitte beachten Sie, dass auch die Autoren die Teilnehmergebühr entrichten müssen. Organisationskomitee: R. Abraham, Dortmund; Prof. Dr. F. Behrendt, Berlin; Dipl.-Ing. D. Bräkow, Berlin; Dr. H. Doloszeski, Hambur; Dr.-Ing. R. Elsen, Essen; Prof. Dr. M.W. Haenel, Mülheim a.d.R.; Prof. Dr. W. Klose, Berlin; Dr. S. Krzack, Freiberg; Dr. H.-J. Mühlen, Herten; Dr. M. Specht, Stuttgart Veranstaltungen Internationale »Student Technical Conference« in Wietze Am 5. und 6. November trafen sich in Wietze Studenten, Professoren und Experten aus der Öl- und Gasindustrie zu einer technischen Konferenz. Die Studenten aus acht Nationen hatten hier eine Gelegenheit ihre Arbeiten zum Thema Tiefbohrtechnik, Lagerstättentechnik, Geothermie und Geowissenschaften einem Fachpublikum zu präsentieren. Das Erdölmuseum in Wietze gab dieser Veranstaltung einen besonderen Rahmen. Nur wenige der Teilnehmer wussten, dass in Wietze die Wiege der internationalen Ölförderung ist, 462 mit der ersten fündigen Ölbohrung noch vor dem Ölboom in den USA. Außerdem wurde in Wietze das Rotary- Drilling erfunden und entwickelt, welches heute noch weltweit im Einsatz ist. Ausgerichtet wird diese einmal pro Jahr stattfindende Veranstaltung von der Deutschen Sektion der Society of Petrolem Engineers (SPE) mit Sitz in Celle. Trotz des niedrigen Ölpreises und der damit wirtschaftlich schwierigen Situation in diesem Geschäft fanden sich genügend Sponsoren um die Veranstaltung zu fördern. Hierzu gehörten u. a. die Wintershall sowie die DEA Deutsche Erdoel AG. M. Heil ERDÖL ERDGAS KOHLE, 131. Jg. 2015, Heft 12 MITTEILUNGEN Bericht über die ordentliche Mitgliederversammlung 2015 der DGMK am 13. November 2015 in Hamburg Der Vorsitzende der DGMK, Herr Thomas Rappuhn, übernahm die Sitzungsleitung. Er eröffnete die ordentliche Mitgliederversammlung 2015 am 13. November 2015 um 15.00 Uhr in Hamburg. Er begrüßte 24 erschienene Mitglieder. Frau Dr. Teßmer übernahm die Protokollführung. Vor Eintritt in die Tagesordnung gedachte die Mitgliederversammlung der verstorbenen Mitglieder: Dipl.-Ing. Peter Chromik, Hannover Prof. Dr.-Ing. habil. Heinz Gloth, Freiberg Dr. rer. nat. Wilhelm von Ilsemann, Hamburg Dipl.-Ing. Fred-Harald Linde-Suden, Jever Dr. rer. nat. Klaus Naumburg, Bad Soden-Altenhain Prof. Dr. rer. nat. Eberhard Plein, Hannover Dr.-Ing. Gerhard Schmidt, Schwedelbach Dipl.-Ing. Karlheinz Schönemann, Ronnenberg Dr. Armin Schram, Hamburg Dipl.-Berging. Karl-A. Stelter, Hannover Dipl.-Ing. Peter K. Stiller, Sarstedt. TOP 1 Eröffnung der Mitgliederversammlung durch den Vorsitzenden der DGMK, Herrn Thomas Rappuhn Der Vorsitzende stellte fest, dass zur ordentlichen Mitgliederversammlung in der Zeitschrift ERDÖL ERDGAS KOHLE, Seite 326 (131. Jahrgang, Heft 9, September 2015) ordnungsgemäß gem. § 10 Abs. 3 der Satzung form- und fristgerecht eingeladen worden ist. Anträge zur Mitgliederversammlung aus dem Kreise der Mitglieder sind dem Vorstand nicht zugeleitet worden. Gegen die den Mitgliedern mit der Einladung in der Zeitschrift ERDÖL ERDGAS KOHLE zugegangene Tagesordnung wurden seitens der Versammlungsteilnehmer keine Einwände erhoben. Ergänzungen zur Tagesordnung wurden nicht gewünscht. Der Vorsitzende stellte fest, dass keine Satzungsänderungen auf der Tagesordnung stehen. Zur Beschlussfähigkeit der Mitgliederversammlung stellte der Vorsitzende fest, dass die Mitgliederversammlung nach § 10 Abs. ERDÖL ERDGAS KOHLE, 131. Jg. 2015, Heft 12 7 der Satzung daher uneingeschränkt beschlussfähig ist. Der Vorsitzende stellte fest, dass laut Eintragungsliste am Saaleingang 24 Mitglieder der DGMK erschienen sind. TOP 2 Verabschiedung des DGMK-Jahresberichtes für 2014 Auf Empfehlung des Vorstandes verabschiedete die Mitgliederversammlung einstimmig ohne Aussprache den DGMK-Jahresbericht für 2014, siehe ERDÖL ERDGAS KOHLE, Seite 215–226 (131. Jahrgang, Heft 5, Mai 2015). TOP 3 Entgegennahme des Berichtes der Rechnungsprüfer und Feststellung der Jahresabrechnung für das Geschäftsjahr vom 01. 01. 2014 bis 31. 12. 2014 Der Schatzmeister, Herr Dr. Ties Tiessen verlas den Bericht der Rechnungsprüfer, die nicht erscheinen konnten. Der Bericht stellte Art und Umfang der von den Firmen Wintershall Holding GmbH (Herr Jürgen Scherf) und ExxonMobil Central Europe Holding GmbH (Frau Marlies Schmetzer) durchgeführten Prüfungen des Rechnungsabschlusses für 2014 dar. Nach dem Ergebnis dieser Prüfung bezeichneten die Rechnungsprüfer den Jahresabschluss der DGMK für das Rechnungsjahr 2014 als ordnungsgemäß. Der Bericht wurde von der Mitgliederversammlung ohne Aussprache gebilligt. Die Jahresabrechnung für 2014 wurde festgestellt; § 10 Abs. 1 der Satzung. Der Vorsitzende sprach den beiden Rechnungsprüfern den Dank der Mitglieder für ihre verantwortungsvolle Arbeit aus. TOP 4 Entlastung des Vorstandes und der Geschäftsführung für das Jahr 2014 Auf Antrag von Herrn Dr. Peter Seifried, Seevetal, entlastete die Mitgliederversammlung ohne Aussprache einstimmig den Vorstand für die Amtsführung im Jahre 2014; § 10 Abs. 1 der Satzung. Des Weiteren entlastete die Mitgliederversammlung auf Antrag von Herrn Dr. Seifried einstimmig die Geschäftsführung für die Amtsführung im Jahre 2014; § 10 Abs. 1 der Satzung. TOP 5 Bericht des Vorstandes über die Entwicklung der Gesellschaft im laufenden Jahr 2015” Die Geschäftsführerin der DGMK, Frau Dr. Gisa Teßmer, unterrichtete als Geschäftsführendes Vorstandsmitglied die Versammlungsteilnehmer über Tätigkeiten und Arbeitsergebnisse der Gesellschaft im laufenden Jahr 2015. In der Gemeinschaftsforschung werden derzeit 58 Projekte bearbeitet. Davon entfallen 29 auf den Fachbereich Aufsuchung und Gewinnung und 29 auf den Fachbereich Verarbeitung und Anwendung. Die im laufenden Jahr durchgeführten Veranstaltungen sind alle sehr erfolgreich verlaufen. Für das kommende Jahr sind bereits wieder fünf Tagungen in der Planung. Der Urban-Verlag, in dem seit 1985 die Organzeitschrift der DGMK, ERDÖL ERDGAS KOHLE erscheint, wurde an den Verlag Moderne Industrie verkauft. Damit endet die Geschichte des Urban-Verlags, der seit 1971 von der Familie Vieth geführt wurde. Frau Dr. Teßmer dankte Herrn Thomas Vieth für die gute Zusammenarbeit in den letzten 20 Jahren. Frau Dr. Teßmer berichtete über eine Ehrung der Gesellschaft. Der Georg-Hunaeus-Preis 2015 wurde an Herrn Dr. Jonas Wegner verliehen. Frau Dr. Teßmer schloss ihren Bericht mit dem Dank an alle, die ehrenamtlich in den Gremien der DGMK und in den Bezirksgruppen mitarbeiten und an die Mitarbeiter in der DGMK-Geschäftsstelle. TOP 6 Bericht des Vorstandes über die Finanzlage der Gesellschaft mit Ausblick auf 2016 und Genehmigung des Haushaltsplanes für 2016; Erlass einer Beitragsordnung für 2016 Herr Dr. Tiessen gab einen Überblick über die Abschlusszahlen zum 30.09.2015 und die vom Vorstand vorgelegten Haushaltszahlen für 2016, siehe dazu Tabelle 1. Die Finanzentwicklung im laufenden Jahr ist in Einnahmen und Ausgaben überwiegend plangemäß. Der Haushaltsplan für das Jahr 2016 sieht insgesamt einen Abbau des Kassenbestandes vor. Der Vorstand empfahl der Mitgliederversammlung, die Beitragshöhe des Jahres 463 MITTEILUNGEN / PERSÖNLICHES Tabelle 1 DGMK-Haushaltsplanung für 2016 – Gesamtübersicht über Einnahmen und Ausgaben nach Arbeitsgebieten (Teilhaushalten) Ausgaben, Tabelle 2 DGMK- Beitragssätze für das Jahr 2016 T EUR 331 269 Fachbereich Aufsuchung und Gewinnung 1.368 1.323 Fachbereich Verarbeitung und Anwendung 1.124 1.105 509 491 Fachbereich Petrochemie 47 45 Fachbereich Kohlenveredlung 51 48 Deutsches Nationalkomitee des Welt-Erdöl-Rates (DNK) 15 18 Gesamt-Konsolidierung Mindereinnahmen 3.445 3.299 0 146 Summe 3.445 3.445 Zentralaufgaben Fachausschuss Mineralöl- und Brennstoffnormung (FAM) 2015 unverändert für das Jahr 2016 zu übernehmen; siehe dazu Tabelle 2. Nach diesem Bericht beschloss die Mitgliederversammlung einstimmig auf Vorschlag des Vorstandes den vorgelegten Haushaltsplan für 2016 wie in Tabelle 1 angegeben und die Beitragsordnung für 2016 wie in der Tabelle 2 angegeben; § 10 Abs. 1 der Satzung. TOP 7 Wahl von Vorstandsmitgliedern Am 31. 12. 2015 endet die satzungsgemäße Amtszeit von Herrn Dr. Reinhold Elsen als Leiter des Fachbereiches Kohlen- und Biomasseveredlung und Mitglied des Vorstandes. Auf Vorschlag des Vorstandes wählte die Mitgliederversammlung bei offener Wahl mit einer Enthaltung Herrn Dr. Elsen für die Amtszeit vom 01. 01. 2016 bis 31. 12. 2019 erneut zum Leiter des Fachbereiches Kohlen- und Biomasseveredlung und Mitglied des Vorstandes der DGMK, § 11 Abs.3 und § 13 Abs. 4 der Satzung. Herr Dr. Elsen nahm die Wahl an. Jahresbeitrag 2015, Einnahmen, T EUR EUR Vollzahlende persönliche Mitglieder 75,00 Studierende Mitglieder 15,00 Doppelmitglieder 58,00 Mitglieder im Ruhestand 43,00 Firmen 1.100,00 Mitgliedsverbände/Interessenvereine 330,00 Behörden sowie Körperschaften und Anstalten des öffentlichen Rechts, wissenschaftliche Institute sowie 85,00 kleine und mittlere Unternehmen TOP 8 Berufungen in den Wissenschaftlichen Beirat Am 31. 12. 2015 endet die satzungsgemäße Amtszeit von Herrn Prof. Dr. Bernhard Cramer und Herrn Prof. Dr.-Ing. Georg Schaub als Mitglieder des Wissenschaftlichen Beirats der DGMK. Der Vorstand schlug vor, Herrn Prof. Cramer für die Amtszeit vom 01. 01. 2016 bis 31. 12. 2019 erneut in den Beirat zu berufen. Der Vorstand schlug des Weiteren vor, die Herren Prof. Dr.-Ing. Andreas Jess, Universität Bayreuth und Dr. Volker Steinbach, Bundesanstalt für Geowissenschaften und Rohstoffe, für die Amtszeit vom 01. 01. 2016 bis zum 31. 12. 2019 in den Wissenschaftlichen Beirat zu berufen, § 15 Abs. 3 der Satzung. Die Mitgliederversammlung beschloss die vorgeschlagenen Berufungen ohne Gegenstimmen. Herr Dr. Steinbach nahm die Berufung an. Die Herren Prof. Cramer und Prof. Jess hatten vor der Sitzung erklärt, dass sie die Berufung annehmen würden. Der Vorsitzende dankte dem ausscheidenden Herrn Prof. Schaub für seine Mitarbeit. und Bildung verstärkt dem Ausbau des Geothermie-Wissensnetzwerks widmen. ausgezeichnet, dem höchsten Ehrenpreis des Bundesverbandes Geothermie. Patricius Plakette geht an Horst Rüter Wechsel an der Spitze des Aufsichtsrats der VNG AG Prof. Dr. Horst Rüter wurde auf dem diesjährigen Geothermiekongress DGK 2015 für seine Verdienste auf dem Gebiet der Vernetzung von nationalen und internationalen Wissensträgern und seine richtungsweisenden Leistungen bei der Entwicklung innovativer Methoden zu seismischen Untergrunduntersuchungen mit der Patricius-Plakette In der Aufsichtsratssitzung der VNG – Verbundnetz Gas Aktiengesellschaft (VNG) am 10. November wurde Ulf Heitmüller, Leiter der Geschäftseinheit Handel der EnBW Energie Baden-Württemberg AG, zum neuen Vorsitzenden des Aufsichtsrates der Gesellschaft gewählt. Heitmüller gehört dem TOP 9 Wahl der Rechnungsprüfer für das Rechnungsjahr 2016 Auf Vorschlag des Vorstandes wählte die Mitgliederversammlung nach vorangegangener Zustimmung der betroffenen Unternehmen nach § 17 der Satzung einstimmig die DGMK-Mitglieder DEA Deutsche Erdoel AG und Shell Deutschland Oil GmbH zu Rechnungsprüfern für das Jahr 2016. TOP 10 Verschiedenes Der Vorsitzende sprach den Mitarbeitern der DGMK, den Mitwirkenden in den Gremien und seinen Vorstandskollegen seinen Dank für die gute Arbeit und das Engagement aus. Mit einem Dank an alle Anwesenden beendete der Vorsitzende die ordentliche Mitgliederversammlung 2015 der DGMK um 16.00 Uhr. Persönliches Neues Präsidium des Bundesverbandes Geothermie gewählt Die Mitgliederversammlungen des Bundesverbandes hat ein neues Präsidium gewählt. Einstimmig wiedergewählt wurden Präsident Dr. Erwin Knapek, seine Stellvertreter Lutz Stahl und Leonhard Thien sowie Schriftführerin Inga Moeck. Der neue und alte BVG-Präsident bedankte sich herzlich bei Horst Rüter, der nach langjähriger Amtszeit aus dem Präsidium ausschied. Rüter will sich in der kommenden Amtszeit als Sprecher des Fachausschusses Wissenschaft 464 Fortsetzung auf nächster Seite ERDÖL ERDGAS KOHLE, 131. Jg. 2015, Heft 12 PERSÖNLICHES / MITTEILUNGEN Kontrollgremium der VNG AG im Rahmen eines persönlichen Mandats seit 16. Dezember 2014 an. Er folgt auf Dr. Heiko Sanders, der zum 30. September 2015 aus dem Vorstand der EWE AG (Oldenburg) ausgeschieden ist und den Vorsitz im Aufsichtsrat der VNG AG niedergelegt hatte. Hanns-Hofmann-Preis 2015 geht an Erik von Harbou Den Hanns-Hofmann-Preis der ProcessNetFachgruppe Reaktionstechnik erhält Jun.Prof. Dr.-Ing. Erik von Harbou von der TU Kaiserslautern für seine herausragenden Leistungen auf dem Gebiet der Aufklärung komplexer chemischer Prozesse und deren Zusammenspiel mit der Fluidverfahrenstechnik und der Thermodynamik. Die Forschung von Erik von Harbou verbindet grundlegende methodische Arbeiten mit der Untersuchung wichtiger praktischer Fragestellungen. Dabei liegt der Schwerpunkt auf Themen der Reaktionstechnik, die in Zusammenhang mit fluidverfahrenstechnischen und thermodynamischen Fragen stehen. Von Harbou kombiniert Experimente mit fortschrittlichen Methoden der Modellierung und Simulation. Die Arbeiten haben zu zahlreichen wissenschaftlichen Publikationen geführt, haben aber auch eine hohe Praxisrelevanz; das belegen die zahlreichen Industriekooperationen, an denen Erik von Harbou beteiligt ist. Mitteilungen des FAM Mit Datum Oktober 2015 ist folgende Norm herausgegeben worden, die im Verantwortungsbereich des FAM liegt: DIN 51454 Prüfung von Schmierstoffen – Bestimmung von Kraftstoffanteilen in gebrauchten Motorenölen – Gaschromatographisches Verfahren als Ersatz für DIN 51454:2015-06 Mit Datum Oktober 2015 sind folgende Norm-Entwürfe herausgegeben worden, die im Verantwortungsbereich des FAM liegen: E DIN EN ISO 22854 Flüssige Mineralölerzeugnisse – Bestimmung der Kohlenwassertoffgruppen und der sauerstoffhaltigen Verbindungen in Kraftstoffen für Kraftfahrzeugmotoren und in Ethanolkraftstoff (E85) – Multidimensionales gaschromatographisches Verfahren (ISO/ FDIS 22854:2015); Deutsche und Englische Fassung FprEN ISO 22854:2015 als Ersatz für DIN EN ISO 22854:2014-07 E DIN 51810-3 Prüfung von Schmierstoffen – Prüfung der rheologischen Eigenschaften von Schmierfetten – Teil 3: Bestimmung der Fließgrenze mit der Kippstabmethode Mit Datum November 2015 sind folgende Normen herausgegeben worden, die im Verantwortungsbereich des FAM liegen: DIN EN 116 Dieselkraftstoffe und Haushaltheizöle – Bestimmung des Temperaturgrenzwertes der Filtrierbarkeit – Verfahren mit einem stufenweise arbeitenden Kühlbad; Deutsche Fassung EN 116:2015 als Ersatz für DIN EN 116:1998-01 DIN EN ISO 6743-4 Schmierstoffe, Industrieöle und verwandte ErzeugERDÖL ERDGAS KOHLE, 131. Jg. 2015, Heft 12 Bei der DGMK in Hamburg ist die Position Wissenschaftlicher Referent (m/w) Aufsuchung und Gewinnung zum 1. Januar 2016 oder später zu besetzen. Die DGMK ist die zentrale Anlaufstelle für den wissenschaftlichen/technischen Informations- und Erfahrungsaustausch und für die Gemeinschaftsforschung im Bereich Aufsuchung und Gewinnung von Erdöl und Erdgas. Das Aufgabengebiet umfasst: Betreuung der Projekte der DGMK-Gemeinschaftsforschung von der Projekteinreichung bis zum Projektabschluss, insbesondere: Projektkommunikation, Organisation von Projekttreffen, Überwachung der Zeitplanung, Redigieren von Berichten Mitarbeit bei der Organisation der Frühjahrstagung der DGMK, insbesondere bei der Erstellung des wissenschaftlichen Programms, beim Redigieren der Autorenmanuskripte für den Tagungsberichtsband und bei der Durchführung der Tagung Übernahme von Aufgaben in der Mitgliederbetreuung/Mitgliederkommunikation Anforderungen: Abgeschlossenes Hochschulstudium, vorzugsweise Geowissenschaften oder Petroleum Engineering, Bereitschaft und Fähigkeit in einem kleinen Team mitzuarbeiten, Flexibilität, Eigeninitiative, gute Kommunikationsfähigkeit, Organisationstalent, souveräne Beherrschung der deutschen Sprache in Wort und Schrift Die Stelle ist vorerst auf ein Jahr befristet. Bewerbungen werden bis zum 15. Dezember 2015 erbeten, gerne auch per Email. Kontakt: Dr. Gisa Teßmer, Überseering 40, 22297 Hamburg, Tessmer@dgmk.de, Tel. (040)63900411 nisse – (Klasse L) – Klassifizierung – Teil 4: Familie H (Hydraulische Systeme) (ISO 6743-4:2015); Deutsche Fassung EN ISO 6743-4:2015 als Ersatz für DIN EN ISO 6743-4:2002-04 Mit Datum November 2015 sind folgende Norm-Entwürfe herausgegeben worden, die im Verantwortungsbereich des FAM liegen: E DIN 51821-1 Prüfung von Schmierstoffen – Prüfung von Schmierfetten auf dem FAG-Wälzlagerfett-Prüfgerät FE9 – Teil 1: Allgemeine Arbeitsgrundlagen vorgesehen als Ersatz für DIN 51821-1:1988-01 E DIN 51821-2 Prüfung von Schmierstoffen – Prüfung von Schmierfetten auf dem FAG-Wälzlagerfett-Prüfgerät FE9 – Teil 2: Prüfverfahren A/1500/6000 vorgesehen als Ersatz für DIN 51821-2:1989-03 E DIN 51808 Prüfung von Schmierstoffen – Bestimmung der Oxidationsbeständigkeit von Schmierstoffen – Sauerstoff-Verfahren vorgesehen als Ersatz für DIN 51808:1978-01 (zurückgezogen 2013-01) E DIN 51575 Prüfung von Mineralölen – Bestimmung der Sulfatasche; vorgesehen als Ersatz für DIN 51575:2011-01 Mit Datum Dezember 2015 ist folgender Norm-Entwurf herausgegeben worden, der im Verantwortungsbereich des FAM liegt: E DIN 51577-5 Prüfung von Schmierölen – Bestimmung des Chlorgehaltes – Teil 5: Direkte Bestimmung durch optische Emissionsspektralanalyse mit induktiv gekoppeltem Plasma (ICP OES) Mitteilungen der DGMK • ÖGEW Neue Mitglieder Dipl.-Ing. Sebastian Boor, Hannover Annelies de Cuyper, TU Kaiserslautern, Kaiserslautern Dipl.-Ing. Reinhard Decher, Reinhard Decher Gas-Engineering, Rockenberg Chris Dontje, Balance Point Control BV, NL- Emmen DSG Drilling Solutions GmbH, Nordhorn Stephan Estel, Dichtelemente Hallite GmbH, Hamburg Robert Frase, IAV GmbH, Ingenieurgesellschaft Auto und Verkehr, Gifhorn Dipl.-Kfm. Jan-Martin Gonsior, MIDCO Deutschland GmbH, Celle Thomas Gröger, Helmholtz Zentrum München, Oberschleißheim Daniel Günther, Geophysik GGD mbH, Leipzig Frank Guthke, Wintershall Holding GmbH, Kassel Anthony Habash, Clausthal-Zellerfeld Frederic Hildebrand, Clausthal-Zellerfeld Dipl.-Ing. Karin Hofstätter, Barnstorf Inera Tec-Innovative Chemical Reactor Technologies, Eggenstein-Leopoldshafen Paul Kangowski, Aachen Holger Kinzel, planxty engineering & consulting Services GmbH, Peine Jan König, Micon-Drilling GmbH, Nienhagen 465 MITTEILUNGEN Anton Lehner, A-Gänserndorf Hannah Lieder-Wolf, Hannover Dipl.-Ing. Eckard Malt, DEA Deutsche Erdoel AG, Hamburg Benjamin Mees, CropEnergies AG, Mannheim Nils Michel, Air Liquide Global E&C Solutions Germany GmbH, Frankfurt am Main Christian Roth, TU Kaiserslautern, Kaiserslautern Reinhard Rothe, Vermillion Energy Germany GmbH, Schönefeld Dipl.-Ing. Karlheinz Russ, TÜV Süd Industrie Service GmbH, Karlsruhe Dipl.-Ing. Ralf Schairer, MiRO Mineralölraffinerie Oberrhein GmbH, Karlsruhe Dr. Andreas Scheck, Wintershall Holding GmbH, Barnstorf Maxim Schubert, PVG GmbH, Gelsenkirchen Martin Schuster, GWE Pumpenboese GmbH, Peine Dipl.-Ing. Jacobus Steijn, EWE Gasspeicher GmbH, Oldenburg Patrick Urban, Winsen/Aller Dipl.-Ing. Ullrich Wältken, 5P Energy GmbH, Hannover David Wunsch, Corsyde Int. GmbH & Co. KG, Berlin Dipl.-Ing. Nirmal Sinha, Celle-Altencelle, 81 Jahre Dipl.-Phys. Hermann Arens, Lingen, 75 Jahre Dipl.-Ing. Walter Baudy, Hatzenbühl, 65 Jahre Rainer Fahlbusch, Hannover, 55 Jahre Dipl.-Ing. Dieter Simons, Celle, 80 Jahre Dr. Birgit Müller, Lauffen, 55 Jahre Dipl.-Volkswirt Heino Elfert, Bardowick, 80 Jahre Dipl.-Ing. Albrecht Möhring, Schönefeld, 60 Jahre Dipl.-Ing. Rainer Wilhelm, Lehrte, 65 Jahre Dipl.-Geol. Reinhold Graf, Lachendorf, 60 Jahre Dipl.-Ing. Alfons Heitker, Lingen/Ems, 80 Jahre Dipl.-Geol. Helge Kreutz, Mölln, 60 Jahre Alfred Idas, Hamburg, 85 Jahre Dr. Günter Stober, Müllheim, 88 Jahre Dipl.-Ing. Claus Chur, Nordhorn, 65 Jahre Prof. Dr. Jürgen Gmehling, Oldenburg, 70 Jahre Dipl.-Ing. Kurt Sackmaier, Barnstorf, 55 Jahre Dr. Reinhard Gast, Havetoftloit-Dammholm, 65 Jahre Dipl.-Ing. H.-E. Hartz, Rosengarten, 81 Jahre Dr. Horst-Werner Zanthoff, Mülheim a. d. Ruhr, 55 Jahre Dr. rer. nat Herbert Engelke, Salzbergen, 82 Jahre Dipl.-Ing. Ulrich Moldenhauer, Köln, 85 Jahre Dipl.-Ing. Heiner Ribbeck, Salzwedel, 70 Jahre Prof. Dr. Dipl.-Chem. Rolf-D. Behling, Hamburg, 86 Jahre Dr.-Ing. Thomas Franzen, Schweinfurt, 50 Jahre Dr. Dipl.-Chem. Karl Michaelis, Ingolstadt, 89 Jahre Dr.-Ing. Reinhard Hanisch, Eulau, 60 Jahre Dr. H. Gondermann, Bochum, 86 Jahre Prof. Dr. rer. nat. Christian Jentsch, Lübeck, 80 Jahre Prof. Dr. Dr. h. c. Dietrich H. Welte, Aachen, 81 Jahre Dr. Iulia Ghergut, Göttingen, 50 Jahre Dr. Manfred G. Bullinger, Hamburg, 65 Jahre Dipl.-Ing. Friedrich Heyer, Deisenhofen, 65 Jahre Dipl.-Ing. Wolfgang Schaefer, Ahrensburg, 82 Jahre Dr.-Ing. Holger Depner, Karlsruhe, 50 Jahre Burkhard Helmig, Oelde, 55 Jahre Dr. Dipl.-Chem. Johannes Elster, Hamburg, 87 Jahre Dipl.-Ing. Wolfgang Roth, Mittenwalde, 60 Jahre Ralf Heyen, Braunschweig, 50 Jahre Rolf Goldowsky, Neuss, 55 Jahre Dipl.-Ing. Joachim Hof, Stuttgart, 60 Jahre 466 1. Januar 4. Januar 5. Januar 5. Januar 5. Januar 7. Januar 8. Januar 8. Januar 8. Januar 9. Januar 10. Januar 10. Januar 11. Januar 11. Januar 13. Januar 13. Januar 15. Januar 15. Januar 15. Januar 15. Januar 16. Januar 16. Januar 16. Januar 17. Januar 18. Januar 19. Januar 20. Januar 21. Januar 22. Januar 22. Januar 23. Januar 24. Januar 25. Januar 25. Januar 26. Januar 26. Januar 27. Januar 29. Januar 29. Januar 31. Januar 31. Januar Yashar Yadigarov, Fangmann Energy Services GmbH & Co. KG, Cloppenburg Dr.-Ing. Dirk Zander-Schiebenhöfer, KBB Underground Technologies GmbH, Hannover EID Energie Informationsdienst GmbH Neumann-Reichardt-Str. 34, 22041 Hamburg. Postanschrift für Verlag und Redaktion: Postfach 70 16 06, 22016 Hamburg Telefon (040) 65 69 45-0, Fax: 65 69 45-51 E-mail: eek@OilGasPublisher.de, Internet: http://www.OilGasPublisher.de Verlagsbüro Wien: c/o ÖGEW, Wiedner Hauptstr. 63, Zimmer 4208, 1045 Wien, Österreich Telefon (+43) 5 90900-4891, Fax: -4895 E-mail: oegew@oil-gas.at Redaktion: Hans Jörg Mager (Chefredakteur), Dr. Christoph Capek (Wien) Geschäftsführer: Stefan Waldeisen Anzeigenleiter: Harald Jordan Vertrieb: Margret Storbeck. Preis des Einzelheftes: EUR 35,80 zzgl. 7 % MWSt. Jahres-Abonnement (incl. Versand): Inland: EUR 350,00 zzgl. 7 % MWSt., Ausland: EUR 365,00 Anzeigenpreisliste Nr. 50 vom 1. 1. 2015. ERDÖL ERDGAS KOHLE erscheint monatlich (7/8 Doppelausgabe) Abonnements sind jeweils für ein Kalenderjahr gültig und verlängern sich automatisch um ein weiteres Kalenderjahr, wenn sie nicht fristgemäß gekündigt werden. Abbestellungen bis spätestens sechs Wochen vor Ablauf des Kalenderjahres bzw. Bezugszeitraumes. AGB zum Online-Zugang für Abonennten unter: http://oilgaspublisher.de/agb.php EEK wird als Organzeitschrift im Rahmen der Mitgliedschaft geliefert. Die in dieser Zeitschrift veröffentlichten Beiträge sind urheberrechtlich geschützt. Alle Rechte bleiben vorbehalten. Kein Teil dieser Zeitschrift darf ohne schriftliche Genehmigung des Verlages in irgendeiner Form reproduziert oder übertragen werden. Fotokopien für den persönlichen und sonstigen eigenen Gebrauch dürfen nur von einzelnen Beiträgen oder Teilen daraus als Einzelkopie hergestellt werden. Das gilt auch für die Aufnahme in elektronische Datenbanken und Mailboxes sowie für Verfielfältigungen auf CD-Rom. Valid for users in the USA: The appearance of the code at the botton of the first page of an article in this journal (serial) indicates the copyright owner’s consent that copies of the article may be made for personal or internal use, or for the personal or internal use of specific clients. This consent is given on the condition, however, that the copier pay $ 2.00 per page to CCC, 222 Rosewood Drive, Danvers, MA 01923, USA (ISSN 0179-3187) This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising of promotional purposes, for creating new collective work or for resale. ERDÖL ERDGAS KOHLE, 131. Jg. 2015, Heft 12 Melden Sie sich an: www.tarconference.de 25. – 28. Januar 2016, Potsdam TARfighter: 25. – 26. Januar | Workshops: 26. Januar | 12. Jahrestagung: 27. – 28. Januar 2016 2016 TURNAROUNDS ANLAGENABSTELLUNGEN REVISIONEN Best Practices – Community – Trends PLUS: Interaktive Diskussionsrunden » Arbeitssicherheit » Differenzierte Kostentransparenz pro Equipment – Wunsch und Wirklichkeit » Umgang mit Unvorhergesehenem & Überraschungen PLUS: Blick über den Tellerrand Großprojekte im Marineschiffbau PLUS: Podiumsdiskussion Mehr- und Zusatzarbeiten – Einfach hinzunehmen oder aktiv steuerbar? Fachbeiträge: BASF +++ Shell +++ Borealis Agrolinz Melamine +++ Evonik +++ RWE Generation +++ Covestro Deutschland +++ INEOS +++ u.v.m. Das Ganze sehen. Durchfluss- und rMengenmessung in Roh leitungen o )¾U HLQ LQWHUQDWLRQDOHV 5DIˋQHULH3URMHNW VXFKHQ ZLU 3(752 (;3(57(1 YHUVFKLHGHQHU 'LV]LSOLQHQ ,P 5DKPHQ HLQHV *UHHQˋHOGSURMHNWHV LQ $VLHQ ZLUG HLQ /DERU ]XU %HWULHEVNRQWUROOH XQG 4XDOLW¦WVVLFKHUXQJ DXIJHEDXW 'DI¾U VXFKHQ ZLU PHKUHUH )DFKOHXWH PLW ODQJM¦KULJHU (UIDKUXQJ JHUQH DEHU DXFK $EVROYHQWHQ PLW SUDNWLVFKHU (UIDKUXQJ LP /DERU EHU XQV :LU GLH )LUPD 7+,(07 YHUVWHKHQ XQV DOV /DERU)DFKSODQHU XQG /DERU,QWHJUDWRU Quelle: Open Grid Europe GmbH 8. Workshop Gasmengenmessung Gasanlagen – Gastechnik 09./10. März 2016 · KCE-Akademie, Rheine ZZZWKLHPWFRPMREV 7+,(07 *PE+ ȟ *LVHOKHUVWU ȟ 'RUWPXQG KÖTTER Consulting Engineers · info@kce-akademie.de Anmeldung & Informationen unter: www.kce-akademie.de Unser Impuls, Ihr Erfolg. GiMA. Oil & Gas Fachmessen & Konferenzen 2016 / 2017 Global Oil&Gas Middle East & North Africa RPGC Internationale Öl- und Gasmesse und Konferenz 27. - 29. Januar 2016 • Kairo, Ägyptem 13. Russischer Petroleum- und Gaskongress 27. - 29. Juni 2016 • Moskau, Russland 15. Internationale Öl- & Gaskonferenz und Global Oil&Gas Black Sea and Mediterranean -ausstellung Internationale Fachmesse und Konferenz 16. - 17. März 2016 • Ankara, Türkei 22. - 23. September 2016 • Athen, Griechenland ehemals TUROGE Global Oil&Gas Turkey Global Oil&Gas Atyrau ehemals Atyrau Oil & Gas 15. Nordkaspische regionale 24. Internationale Öl- und Gasmesse und -konferenz Ausstellung für Öl und Gas 12. - 14. April 2016 • Atyrau, Kasachstan Global Oil&Gas Atyrau Conference KIOGE Kazakhstan ehemals Oiltech Atyrau 04. - 07. Oktober 2016 • Almaty, Kasachstan PCVExpo 15. Internationale Fachmesse für Pumpen, Kompres- 10. Nordkaspische Konferenz für Erdöltechnologie soren, Ventile, Servomotoren und Antriebssysteme 12. - 13. April 2016 • Atyrau, Kasachstan 25. - 27. Oktober 2016 • Moskau, Russland OGU Uzbekistan Global Oil&Gas Mangystau 20. Internationale Öl- und Gasmesse 10. Regionale Fachmesse für Öl und Gas und -konferenz 18. - 20. Mai 2016 • Taschkent, Usbekistan Global Oil&Gas Myanmar ehemals Mangystau Oil&Gas ehemals Myanmar Oil & Gas 08. - 10. November 2016 • Aktau, Kasachstan OGT Turkmenistan 3. Öl- und Gaskonferenz 21. Internationale Öl & Gas Konferenz 19 - 20. Mai 2016 • Yangun, Myanmar November 2016 • Ashgabat, Turkmenistan Caspian Oil&Gas Azerbaijan MIOGE Moscow 23. Internationale Fachmesse und Konferenz für die Öl- und Gasindustrie 01. - 04. Juni 2016 • Baku, Aserbaidschan 14. Internationale Öl- und Gasmesse 27. - 30. Juni 2017 • Moskau, Russland Sprechen Sie uns an - wir beraten Sie gerne! GiMA GmbH, Schleidenstr. 3, 22083 Hamburg Tel.: +49 (0)40 235 24 201 • E-Mail: oilgas@gima.de Web: www.gima.de Änderungen vorbehalten 2015 / 2016 -6.0