ANALIZA CIRCUITELOR ELECTRICE CU PSPICE. LUCRARI DE
Transcription
ANALIZA CIRCUITELOR ELECTRICE CU PSPICE. LUCRARI DE
ANALIZA CIRCUITELOR ELECTRICE CU PSPICE. LUCRARI DE LABORATOR/ CONSTANTINESCU FLORIN, IONESCU ANISOARA, MARIN CONSTANTIN-VIOREL, NITESCU MIRUNA 8/-*2.*)54 ? !" #%$%&'()*+-,.$,/012'( Q 3" ,(4.5(6$78(9:<; =" 0$,.>?%$'(8.$+-@$ A B/68.$?)> J CAP. 1. BREVIAR TEORETIC "!$#&%(')&*,+-/.'0"123#&*#&%*,!$4657.8)93:574<; 3=?>@3;=1A.BC#$%5C7'0"*?;=% D EF7G2HJIE,KMLNH2IKPORQSK&HOUTVQWEMXYO:FZTCOR[]\-Q"EF"^2_UH2`COaENH2IAOaKPL,b2\$KPL,E$K&H\$`:OROc_dE,\MK-EeF"TdH(Od\fF"H2IJTgFS\&T3O:Fih3\PK-H2TCE FiOUjkH_RTa\-Ilb2Em^jnH_R`COUjoEpHJIOaKPLmb2EpTaE-I=FiOqH2IO?rSOK&H2QSE&I2`3O3set<uAO:F7T3LmKPORQWK&HOqT3EFiOUjnG_UEK-\-QSEpIJHv\&HoFS^2_UH2`COaEFi\&Hl\-H HJII2HJjoL&Q0ORIh3OUIOUT b2EFi^2_qH2`3OdOCsJwxOUQWK&HORTdH_=b2OUInh7OdyeH2Q"\Vzl\&QSEm^nF{^J_RH2`COdEpH2IOdKML |} ~ FiEG^eTb2O:F3T3OUIy2EVb2^eHA\FiOqTaHA\-`aOaO: E − E2 b2\YKPL}| se\$KYL ≠~ I= 1 R riO=K-ORQSK&HOqTaH_\$QZEm^gOIAh7ORIAOTC\TCEpb2EmFi^2_UH2`aOcO7^eQSOdKME | ~ • ~ ∈ riOKMOUQWK$H(ORTRH_AI2Hk\$QWEmFi^2_UH2`:OdEes d c b2\$KPL}t : t QWE-XMH_UT:L ≠~ ~ • ≠~ R bJ\MKPL}tB 3t/d ~ QWEMX$H_UT3L w}OQ"K-HOqTaHA_?b2OUIoh3OdyeH2Q"\mv\-QSE^FS^2_UH2`aOaEHJIOaKPL FiOqTaHA\-`aOaOC QSE-XPH_qT3L 3R?" ~ ~ dc b2\$KPL QSE-X$H_TCL " ?7 ≠ ~ w}^eIb2Oq`3Od\bJEE-u2OCF"TaE$IT3LnrSO R bJ\MKPL EYF"TCEmAP ≠¡ • ~ I +I sJ\PK$L FiEVG^eT b2O:F7T3OqIy2Eb2^YHL b2\YKML U = s1 s2 ≠~ ~ G r{O=K-ORQSK9HOUTaH_=\&QZEm^ORIAh3ORIOUTC\TCEpb2EmFi^2_UH2`aOaO(7^eQSOdKME ∈ | riOKPOUQ7K$HOqTaHA_IJHk\-Q"EFi^J_RH2`aOcEs ~ • ≠ ~ H2IAOaK-ORTa\-TaE\nFS^2_RHJ`3OdE$OH2I2H=OFiOaF"TCEj_cOUIOR\-Q}bJEIEPK&H\-`aOaO\$_dy2E&2QSOdKMEmu2 skK$EY\YFZTCLKP^eIb2OU`3OREgE-uJG2QSOUjlLgh7\&G2TdH_KYLEMK&H\9`3OROa_REFSOCF7TCE-jnH(_UHO<F"H2IJT_cOqIOa\&Q¢OUIb2E&GE-IAb2E-IJT3EOUI2TdQSE EP_dEJsP\$KPLbJE-Tk E-uOaF"TaLVb2^eH\mFiOTRH\$`dOdOAb2EVOUI2T3E&QWEYF/G2QW\YKTCOcKJ ~ R QS\&IyeH_£_UHO¤EYF"T:EgI9¥krSO0bJETCE-Q7jOUI(\-IJTaH_?jORIA^eQ7H_UHO?G2QSOUIK$OUG\P_A^eQSb2\&T£K$HKP^A_U^J\PIA\kTaE$Q3jvE&IOd_a^eQ _dOUE-Q"O<EF7T:EgI2H_3¦=§cI¨\PK$EF7T8KP\&XH2IA\lbJORI2TdQZEnEMK$H\9`3ORO/EYF7T3Ek_aOqIOc\$Q}bJE-GE&Ib2E$I2TCLkb2EKYE-_aEP_c\P_TCEvr"O8FSOCF7TaEPjkH_\-Q"El^ OUIh7OUIOUT:\&T:EVb2EmFS^2_UH2`:OdOa© dc QS\&IyeH_ _RHAO6ªEJF7TCEI¥riO b2E&T3E&Q7jlORI\&I2TRH_jOUI^eQ7H_qHOGJQSORIAKMOUG\P_^eQWbJ\PT<K-H@KP^2_d^2\$I\TaEPQ3jE&IOc_d^eQ _dOUE-Q"OEYFZTCExIE$I2H_:¦§cIk\YK$EYF"T=KY\&XFSOaF"TaE-jnH_2I2H\-QSEmFS^2_UH2`:OdEes « IKMOUQSK&HOTCEM_REmF"OUjnG_aEG2QSE-XYEPITC\&T:Exjv\POORI\-ORIJT3EmFWEm^e=FSE-QZ[L2 ¬ §cI hZOayeHJQW\,z©8GE-IJTaQ7H|¢ \$[E&jb2E&TU riOmE-uAO:FWTCL^2HKP_a\,hZ^eQ7j\-TCLI2H2jl\POb2OI®F7H2QiFSEbJE ~ ~ TCE&I=FiORHJIE 3 d ¬ §dIfh3OayYH2QS\n©=GE$I2TcQ7HfV ~ \-[E-j b2E&Td r{O8E-uAO:F7T3Lv^FiEMK9`3OUH2IEvh7^YQ3jo\&TCLI2Hj\MO8b2OUI,F"HJQSFiEvb2E ~ &K H2QSE&I2TWs kKYEYF7T:En^e=FSE$Q3[\$`:OROGA^eT8hZO0yJE-IE&QS\P_cORXM\&T:EGE&I2TaQZH¨^eQWOdKMEnKPORQ"K-H(OUTBh3^eQ7j\-TBb2OqINQSEXeO:F7T:^2\&QSEkb2OUG^2_d\-QSEnK&H| rSO ~ F"HJQSFiEfOUIb2E&GE$Ib2E&I2TCEe©BKM^YIb2OU`:OdOc_dEfbJE,E$uAOdF"T:E$I2`aLr{OxH2IAOaK-ORTC\TCE¨h3OaOUIb E-uJG2Q"ORj\&T:E§dI]haH2IK$`:OdE,b2ENG\&QS\&jvE$TcQ"OcO KPOUQSK-HAOTdH_RHAOZs &mz I KMOUQWK$HOT®_RORIAOc\$Q h3^YQ7j\T b2OUI QWE-XOaF7TC^2\-Q"E b2ORGA^2_c\&QSE _cOUIOd\-QWEK-H | riO F"H2QSFiE ~ OUIb2E&GE$Ib2E&I2TCE\&QWE^vF{^J_RH2`aOaEVH2IOcKPLG(E&I2TdQ7H^eQWOaKPE[\$_d^eQWO?\$_dEpTCE-I=FSOUH2IOd_a^YQ8E-_aEPK-TdQW^ejl^eTC^2\-Q"EgrSO\M_REmKPHJQWEPIJ`:Oc_d^eQ EP_dEMK&TaQW^Yjo^YT3^eQ"O6bJ\$KPLrSOAI2H2j\-O6bJ\MK-LF"HJI2T?FS\&T:O:FSh7\MK$HTaEpH2Q3j\-Ta^2\$QWEM_REKP^eIbJOR`COcOC I2HnE-uAO:F7T3LxIORKMO^(HKM_RLVh7^eQ3j\-TaLxI2H2j\YOAb2OUIvF"H2QSFiEVb2ETCE-I=FiOUH2IEY© I2HnE-uAO:F7T3LxIORKMO=^FSE-K-`aORH2IAEhZ^eQ7j\-TaLxI2H2j\MO=b2OUInF7H2QiFSEmb2E}K&H2QSE&I2T"s &izA $ zAd$z F"Eb2E$jv^YI=F7TaQSEP\-XMLG2QSOUI QSEPbeHKPE-QSE _a\\&=F7H2QSbs 2I TaQWZ^2HKP_aLbAEF7H2QiFSEb2E TCE&I=FiORHJIEvb2OUITCEM^YQSE-jl\o\ 3\\v_RH O OUQWK ^2h7hQSE-XPH_UTC L m t s\PKPLn t F7H2I2T¢\F7T3h3EP_§dIAK & T m t ≠~ 7 ~ KPOUQSK-HAOTdH_6I2H\&QWEgFS^2_RHJ`:OdEJse\$KPLmt F7H2IJT \eF"TCh3EM_=§cI(K P T mt ©(\-TdH2IKPOGAQWOUIv\PKPEM\YF7T:L2HAKM_dLG^2\&TCEmK$OUQSK-HA_a\ ~ HJI@K-H2Q"E-I2T/b2E[A\M_d^2\&QSE\&Q7OUTaQW\&QWL KP\-Q"EFW\TCOCFih3\PKMEEMK&H\`COd\ riOKPORQSK&H(OUTaH_\-QSE^lOUIh7OUIOUT3\9T3Eb2EgFS^2_UH2`COcO3s Ι ~ ⋅ ~ IQS\&`3Od^eI\&jE-I2TFiOjlOd_c\&Q8FSExG^2\&T3E}h7\PK$EGE$I2TaQ3H^FiEPK-`aORHJIEVh7^eQ3j\$TdLpI2H2j\POb2OUIvF3H2QiFSEVb2EmK&H2QWE$I2TWs "!$# %7zNFSEb2E$jo^YI=F7TaQSE-\$XPLgKP^eI=FiOdb2E&&Q IbvKPLgE-uAO:F"TdLgbJ^eH=\gFi^J_RH2`COcO7KM\&QWEgKP^eQSEYF"GH2Ibv\PKPEM_d^eQS\YrSO[\-_a^eQ"O<\$_dE TCE&I=FiORHJIOc_d^eQr"OBK-H2QWE$I2`aOc_d^eQE$_dE$K&TaQ"^ej^eT:^eQ"O riO8\-QSL9T3L&Ib¨K$LE$_dEvKM^2OUIKPOabs('OdE Fi^J_RH2`aOaO?rSO=h7ORE KPOUQSK-HAOTdH_RHAO (E dk u d = u1 − u 2 GE&I2TdQ7H rSO id = i1 − i2 [\P_d^eQSO I2H_dE rSO (u1 , i1 ) (u 2 ,i2 ) KPEM_dEob2^YHL Fi^2_RHJ`:Od\mb2OahZE-QWE&I2`CLKP\$QWEe©Jb2\&T3^eQWOUTCL_RORIAOa\&QSOTCL`COcOd©FS\&T:O:FSh7\MK-EmEMK&H\&`:OdOc_dE \Y_cE = E k − E k = 0 si I dsk = I sk − I sk = 0 ) TCE-I=FSOUH2IOR_a^eQ s£w}^eIh3^YQ7j riO K&H2QSE9I2`3Od_c^YQ EY_cEPKTdQS^ejl^eT3^YQSO T3EP^eQSE&jEMO}_RHAO*) EM_d_dEMyE$I + u dk i dk = 0 ©8b(\-Q toate laturile bJEM^2\$QWEYKPE GE&I2TdQ7H F"H2QiFSE u dk FS\PH idk F"H2I2T@I2H_dOa©gQSE-XPHA_TCL , Rk idk2 = 0 b2EPKMO idk = 0 G2QSOUI T3^J\-TCE toate rezistoarele Q"E$XYOCF7TC^2\&QWEe_RElrSO£F"H2QiFSEP_cEnb2EkK-H2Q"E-I2TWs « I_d^2K&HOUIbN_d\TdH2QSOd_cEkK$H id = 0 _d\&TaH2Q"Oc_dEfFiK&H2Q3TCKMOqQSK-HAOTKM^YQWEJF7G2HJI(XeL$Ta^2\$QWEfF7H2QiFiEP_d^eQkb2EoT3E&I=FiOUH2IEK-H K$HoQSE-XMO:F"TC^\-QWEnK$H|p Ed = 0 ∞ QSL&j--I@I2H2j\$O s£\PKML¨^\F7T:h7EP_}b2E,FWHJQiFSLfbJE TCE&I=FiORHJIEI2H®hZ\MK-E G\&Q7TdEb2OUI2TdQW7^]2HKP_cL b2E]FSK$H2Q3T:KPOUQSK-HAOTCE\$TcH2IKPOgK&H2QSE&I2TdH(_G2QWOqI F7H2QiFSLEeF7T:E,I2H_3s¢EMK-O E-uAO:F"T3E&I`C\v_HO id ≠ 0 ORjnG_dOaK-LvE$u(OCF7T:E&I2`C\2HKP_cEPO£b2EoF7H2QiFSEvb2ETCE-I=FiOUH2IEY©<riO§cI,KP^eI=FSEYKPORI`CL F"HJQSFiEM_dEb2EpTaE-I=FiOqH2I=EsDAOUjlOa_R\-Q¢FSEmb2E$jv^YI=F"TaQWEY\XeLmKPLE-uAOCF3TCE-I2`a\pT3E&I=FiOUH2IOR_c^eQ ud ≠ 0 K&H2QSE&I2T0ORjnG_dOUKYLkE$u2O:F7T:E&I2`3\ FSEMK&`COH2IOR_a^YQ}h3^eQ7j\&T3EI2H2j\PO/b2OUIF"H2QSFiEkb2EkK-H2Q"E-I2TZ©b2E-KMO 4 id = 0 riO<G2QSOUI _c\V^eQ3IEP_aEF"HJQiFSEM_d^eQBb2E ud = 0 riO _a\^eQ7IAEM_dE F"HJQSFiEM_d^eQb2EoK&H2QSE&I2T"s « IKM^YI=FSEeK-ORIJ`3\nKYE$_dEvb2^eH\oFi^J_RH2`COcO (u1 , i1 ) rSO (u 2 ,i2 ) KY^2OIKMOdbA©?bJEMKPOF7H=h3OdK$OcE&I2`C\vEeF"TaE bJE-j^eI=F"TdQW\$T:Lsgs t8s s bJ^eHLgF7H2QiFSEbJET3E&I=FiOUH2IEIJHNFSEGA^eTKP^JIEPK$T:\m§cIGA\PQW\P_dEM_b2EY^2\&QWEYK$EhZ^eQ3jEM\PXML\eF7TCh3EM_§UjnG2QSE&H2IL^ JHKM_dL¦ b2^eHA\F7H2QiFSENbJENK&H2QSE&I2TIAHFSEvG^eT}KY^JIAEMK&T3\l§dIFSE&QSOcE@b2EM^J\-QSEPK$E@h7^eQ3jEY\$XYLN\YF3T3h7EP_8§cjnG2QSE&H2ILN^ FiEPK&`:OUH2IE¦ KY^eIb2OU`:OdOc_dEVE$uG2QSOUjo\&T:EV§cIlhCH2IK&`3OdEmb2ExG\&QS\&joE&TdQWOaO=KPOQSK&HOTdH_UHO?FSEpG^eTTaEeF"Ta\pjlHA_T=j\MOH=ri^YQ£b2EYKT KP^eIbJOR`COa\}y2E&IE$QW\Y_UL 2¦ §dIlKM\XPHA_H2I2HO=KPORQSK&H(OUT?K&HFWHJQiFSEmKM^ej\9Ib2\&T3EFSEpG^2\&T:EmK-\ ! FSLF"Em\$I2H_EMXYEGE-IJTaQ7Hl\&I2H2jORTCE [A\M_d^eQSO\Y_UEvG\&QS\-jE9TaQSOd_d^eQb2ENKP^ej\-IAb2Le©\PKMEYF7T3En[\Y_c^eQSOBh7OcOUIbNQSLPb2LYKMOUIOc_RENE-KPHA\-`aOaE-O" #K&H¨G\$QW\PjlE$TcQSORO F"HJQSFiEM_d^eQ£KP^ej\&Ib2\&T3EVKP^eI=FiOdb2E-Q"\-`aObQWE-G2T=IEPK$H2I^AFSK&H2TCEJ¦(b2E$TdE$Q3jORIA\-QSE-\xH2I^eQ/KM^Ib2OU`3OdOF"OUjnG_aEP©2E-uJG2QSOUj\-TaE}§dI h:H2IK&`3OdE b2EnG\-Q"\-jlE-TdQSORO0KPOUQSK-H(OUTdH_RHAOa©GE-IJTcQ7HE-uAOCF7TCE-I`C\ r{O/HJI=OUKYOTa\$T:EP\oF{^J_RH2`COcEPO<H2I2HOB\eF7TCh7E$_bJElKYOUQZK-HOTI2H EYF"TCE¢G^(F{OUOd_cL¦ HJInKPORQSK&HOqT_dORIAOc\&Q£\&QWEFS\&Hn^kF{OUIyeHJQWLF{^J_RH2`COdEM©AFW\$HgIORKMO=^kF{^J_RH2`aOaEP©AFS\$Hn^OqIh7OUIOUT:\&T:EVb2EmFi^2_UH`3OROCs $&%'(%*),+.-0/12+43576598.+.6+:;-<5 HKM_dE$_dEnb2EnFWHJQiFSElbJEkTaE-IF{OUH2IE©?FiE-K-`aORHJIOc_dEnb2ElF"HJQiFSElbJEK&H2QSE&I2T¢rSOGJQWE$XYE-IJ`:\vF7H2QiFSEY_c^eQpKM^ej\&Ib2\&T:E x OUIh7_UHE&I2`CEM\XeLkE$uOaF7TCE-I2`C\ riO H2IOUKYOTa\-TCEM\nFW^2_RHJ`3OdE$O<H2I2HAO/KPORQWK&HOUT£Q7E-XOCF3TCOR[oIAEM_dOIOR\$Q¢§dIjv^(bNFiORjlOd_c\&QVK&H¨\H2I2HO KPOUQSK-HAOT@_cOUIOd\-Qis « I G_UH=F,OUI2T3E&Q7[OUI KM^eIAb2O`COaOn_REeyJ\TCE b2E h7^eQ7jl\ K-\-QS\PKTCE&QSOCF3TCOcKPOcOQSEXeO:F7T3^eQZH_RHAOCs \PTaL K 9T3E&[\ E-uAE$jnG_cEs w}OQSK&HOTdH_£b2OqI¨h7Odys£¥Ms \2s(§cI¨KP\-QWEnb2Od^2b2> \ =EPIAE-Q}\&QSEkKM\&QS\-K-TCE$Q7O:F"T:ORKM\nb2OqI¨h7Odys£¥Ps sIJH¨\&QSElFi^J_RH2`aOaEk\Yr{\ K&H2j QSE-X$H_RTaLVb2ORIh7Odys¥MsKesZKM\&QS\$K&T:E&QSO:F7T:OdK$\mb2OR^2b2EYO=£E&IE-Q0riOKPEP\\mF"H2QSFiE-O=b2ExT:E&I=FiOH2IAE}IJHvFSEVORI2TCE&QiFiEMK9T3EP\&XL s \YKPLmF"EVOI(TcQS^JbeHKPE}Q"E$XYOaF"TC^eQ3H=_b2En¥ Ω :h7Odys¥Ps bs K$OUQWKPHAOTdH(_6\&QWEV^Fi^2_UH2`aOcEmbE&T3E&Q7jlOI\$TCLpyeQW\Yh3OdKx§cInhZOays¥Ms Es 3h Oaysa¥ w}OQSK&HOTdH_ b2ORIh7Odys@?6s \sJ§dI@K-\-Q"Egb2Od^2b2\b2EK&H2QSE&I2TKY^eI=F7T:\&I2T/\-QSEK$\&QS\MK9T3E$QWO:F7T:OcKY\b2OIh7OdysA?6s 6sJIJH@\-QSE Fi^J_RH2`aOaE¨\YrS\fK&H2j QWE-XMH_TaLfbJORI]h7OaysB?6s Ks83KY\&QW\MK&T:E&QSO:FWTaOaK-\,b2Oc^(b2EPOpb2E¨K&H2QWE$I2TKM^eIF"T:\$I2Tr{OVKPE$\¨\,F"H2QSFiE$OVb2E K&H2QSE&I2T£I2HfF{EnOUI2TCE-QiFSEPKTCEM\-XML s\MK-LFSEnOIJTaQS^JbeHKPEkQ"E$XYOCF7TC^eQ7H_b2E¨¥ bJE-TCE-QZjoOUI\9T3L}yeQS\Ph7OdKx§cInh3Odys!?6sE(s 5 Ω 7h3OdysC?6s bs KYOqQSK-HAORTdH_\-QSEk^Fi^J_H2`COcE 3h Oays ? w}OQSK&HOTdH_=b2OUInh3ORyss\JsP§UInKY\&QWEbJOa^2bJ\¢TdH2IEP_\&QSE}KM\&QS\-KPTaE$Q7O:F"T:OdK$\Vb2OUInhZOcyss s\$QZEpTcQWEPOFi^2_HJ`:OcO h3Oays bJE-TCE-QZjoOUI\9T3E}yeQS\Ph7OdKx§cInh3Odyss K2s OUIn\PKMEYF7T:EVEPuAE-jnG(_dEmF"ExQSE9jo\&QSK-LpTcQWEPO\F3GEMK&TCE2 PE uAO:F7T3E&I`3\ H2IE-O2HKP_aEVh7^eQZjo\&TCEpI2H2j\$ObOUIQWEPXYOCF3TC^2\-Q"EKP^eI2TdQS^2_d\&T:EV§cInK&H2QSE&I2T K$\&QSExI2HFWHJI2T KM^YI2TaQ"^2_a\&TCEr{O §cIvT3E&I=FiOUH2IE3KM\m§cI@h7Odys:¥Ms\es G^2\$TCEgKP^eIbeHAKME_a\OUIE-uAO:FWTaE-IJ`3\ Fi^_UH2`aOcEYOC¦F{^J_H2`COc\E$u2O:F"T3Lb2\$KPLm§cI@\MKPEYFWT T:OqG • b2EpJHKM_dLmF"EVOUI2TcQ"^2beHKPEpH2IgQWE-XYOCF7TC^eQ<GE&I2TdQ:HnKY\-QWEpH2 EPuAO:F7T3E&I`3\ • O ±∞⇔ ±∞ 3h7Ody?¥Ms bs © H2IAEMONFSEYK&`:OUH2IOvh7^eQZjo\&TCEI2H2j\POob2OUI QSE-XOaF7TC^2\-Q"E KM^YI2TaQ"^2_c\&T3E§dI T3E$IFSOUH2IE KP\-Q"EI2H F"H2I2T KY^eI2TdQW^2_d\-TCEVriOA§cInK&H2QWE$I2T3KML¢§cInh3Odys ?6s \s G(^2\-TCE}Ke^YIbeHKPEV_a\}ORIAE$uAO:F"TdE$I2`C\ F{^J_RH2`aOaEPOC¦FW^2_UH2`3Od\}E$uAO:F"T:LVb2\PK$L}§UI \YKPEeF7TATCOUGnb2EVFiEMK9`3OUH2IEmFSE}ORI2TdQW^2beHAKeExH2IQSE-XeO:FZTC^eQ GE-IJTaQ7HKM\&QWExH( OU ±∞⇔ ±∞ Zh3Oays ?=s bs © QSE-XOaF7TC^2\-Q"EM_REpK&HnKP\$Q7\YK&T:E&QSOaF7TCOcKPOAIEj^eI^YT3^eIAEhZ\-[^YQSOcXYEP\&XYL\&G\&QSO`aOa\mFS^2_UH2`:OdOd_c^eQ jlH(_qT3OUG_dEpZh3Oayss \es s « I\POUI2T3EmbJEm\mh7^eQ7jkH_d\mKe^YIb2OU`:OcOR_aEmbJEmEMu(OaF7T3E&I2`CL rWOH2IOdKMOqT3\9T3Em\Fi^J_RH`COaE-O[^ej¤bJEMh3OUIO\&I2H2jORTaEpT3OUG2H2Q"O bJE}Q"E$XYOaF"TC^2\&QSEpOUjnG^eQ3TC\-IJT:E}§RI\eK-EeF"TKY^eI2T:E-uJTWs • ! p\&QSEm^kKM\&QS\PK-TaE-QSO:F7T:ORKMLYK&QWEJFWKPL-Ta^2\$QWEm\Pb2ORKMLpGE&I2TdQ7Hl^eQSOcKY\&QWEmb2^eHLpG(H2IK&T3Em:Hd© O ©maH3©mO b2E GAE]KP\$QW\eK&T:E&QSOdF"T:OdK$L\-[E&j H O s H ∆ •∆ O<aHnZH 7OlZO ≥~ s # !,\-QSE ∆ •∆ ~ ! ! 7 b2E}_a\"&H2I2^eHJI=b2EYb$#gIAE-jL&QSy2OUIOT \&QSEp^K$\$QW\YKTCE-Q"OaF7T3ORKML}KHG2QS^eGJQSOaE&TCL-`COc_dE 7b2\PKPLEYF7T3E}KP^eI2TdQS^2_d\T§dIK-H2Q"E-I2T6\&TaH2IAKMO 7b2\PKPLEYF7T3E}KP^eI2TdQS^2_d\T§dIT3E&I=FSOH2IAEm\TdH2IKPO ! &% lim u( i) = ±∞ i→ ± ∞ lim i( u) = ±∞ u→ ±∞ 3b2E,_a\'\Y_ah3:H2IA^YH2I=b2EPb, kF{E&jOa:IE-jL&QSy2OUIOT \&QSE,^ KM\&QS\PK-TaEPQZO:F"T:ORKeL¨K&H GJQS^eG2QSORE$T3\&T3E-\xQSE&XYOCF7Ta^eQ7H_UHO=b2ET3OUG IJH2jv\POAGE&I2TaQZHgH2I\Vb2OUITdQWEE-uJTdQWE$jvOqT3L&`:O"F7G2QSE FS\&HvF7G2QSEV s ∞ ∞ (^ej E$I2H2I2`a\ §cI®KM^YI2T3OUI2H\&QSEY©Vh7\&QWL \_RE]b2E&j^eI=F7TdQS\e©V^]TaEM^YQSE-jL bAEE-uAO:FWTaE$I2`dL©q^]T3EP^eQSE&jlL b2E E-uAO:F"T3E&I`CLrWOAH2IOdK$OUT:\&T:EmrSO=^T:EP^eQSE&jLpbJE}HIAOaKPORTa\-TaEJs 6 A 9 '?OdEpH2IlK$OUQSK&HOT h3^eQZjo\&Tb2OUIoF7H2QiFSEmOqIb2E$GEIAb2E-IJT3EriO2QSE-XeOdF"T3^2\&QWEmb2OUG^2_d\-QZEGA\eFWOR[AEmKe^MIJTaQW^2_d\&T3E}§cIgTCE-I=FiOUH2IEmFS\&H §cIK&H2QSE&I2T£\YF7T3hZE$_?§cIKT [(\PQWOd\&Oc_d\gb2EKM^YI2TaQ"^2_ GA^2\-TCEg_UH\k^eQWOcKPE[A\e_R^2\$QWE§cI2TdQWE ∞ riO ∞ skKPEFZT/KMOUQSK&HOT\$QWE HJIgI2H2jL&Q£OUjnG\-Q/b2EmFS^2_RHJ`:OdOb2\PKPLF7H2IJT<FW\$T:O:Fih:LeK&H2TaE}HJQ7jv\$TC^2\&QWEM_REKP^eIbJOR`aOaO ^eQSOcKYE,2HKP_aL h7^eQ7j\&T3L b2ORI Q"E$XYOaF"Ta^2\$Q7EKP^eI2TdQW^2_a\$TaE§cI®K-H2Q"E-I2TKM\&QSE,I2H F7H2I2TlKM^YI2TaQ"^2_a\&TCE]rSO§UI TCE&I=FiORHJIEoKP^JI2`aORIE@K$EP_BG2HJ`3OUI HJIfQ"E$XYOCF"Ta^eQb2ElTCOUG Fi\&HbA^eHALQSE-XeO:F7T3^J\-QSE@b2ETaOG ^eQSOdE&I2T3\&T:E@b2Odh3EPQWOUT¢§cI Q"\-G^YQ7TK-HlF{E&IF7H_=b2EG\&QSK&H2QSy2E&QSEV\$_A2HK-_cEPOC© ^eQ"OaK-ElFiE-K-`aORH2IAEh3^eQZjo\&TCLgb2OUIoQWEPXMO:F7T3^2\9QSEkKM^eIJTaQS^J_a\&T:E§dIvTCE-IF{OUH2IEkKP\-QWEI2H¨F7H2I2T0KP^eI2TdQW^2_a\$TdEnriO§cI K&H2QSE&I2TKP^eI2`COUI(EK$EY_AG2H2`CORI H2InQWE$XYO:FZTC^eQBb2ETaORG FS\&Hb2^eHLQ"E$XYOaF"Ta^2\$QWEmb2ET:OUG ^MQ"OaE&I2TC\TCEbOahZE-QSO T §dInQW\&G^eQ7T K&HvFiE&I=F"H_b2ExG\&QSK&H2QWy2E$QWEm\$_FWEMK&`:OUH2IOdOCs * \&[ &IbgH2InI2H2j\&Q8OUjnG\-QBb2EF{^J_RH2`COcOK$OQ"K-HOUTdH_\-QWEKMEP_6G2H2`aOI^vFi^2_UH2`:OdEJ¦bJEmEMu(EjnG_UHobJOc^2b2\VTaH2IAEe_ bJORIKMOUQSK&HOTdH_=b2OUInh:OayYH2QS\ gEYF7T3ExH2IQWE$XYOCF3T:^YQ<G\YFiO[Ke^YI2TaQW^J_a\&T=§cITCE-IFiOH2IEpOd\-Q<KMOUQZKPHAOTdH_\&QSETaQ"E$OFS^2_RHJ`:OdOZs QSEYF7TaQ"OcK&`:Od\NK$H,G2QSOU[OUQWE_d\2HAKe_\h7^YQ7jv\$TaL@I2HJjo\PO}b2OIF7H2Q{F{Eb2EoT3E&I=FSOUH2IEb2ORI,TCEP^eQSE&jo\oGE&I2TdQ3H PK OUQSK-HAOTCE$_dE _cOUIOd\-QWE EYF7T:E H2I KY\-X G\&Q3T3ORKH_d\&Q\P_vKP^eIb2OU`3OREMO "F7H2QiFiEP_cE b2ET:E&I=FSOH2IEG^JT@h7OKM^eIF{Odb2E$QW\&T3E Q"E$XYOCF7TC^2\&QWEpIE$_dORIAOc\&QWEKP^eI2TdQW^2_d\$TdE}§dIK-H2QWE&I2TKP\-QSEI2HlFWHJI2TKM^eIJTaQS^J_a\9T3EVriOA§UIgTaEPIF{OUH2IE QSEeF7TdQWOcK&`3OR\ K&HvG2QSO[AORQSE_c\kF{EYK9`3OUH2IEP\gh3^eQ3j\&T3LmI2H2j\PO<b2OUIF7H2QiFSEgb2EK-HJQSE-IJT£b2OUInT3EP^eQSE&j\GE&I2TdQ3H KPOUQSK-HAOTCE$_dE_dOUIOc\&QSEmEYFWTaEH2IlK$\-XG\&Q7T:OdK-HA_c\&Q£\P_KM^eIAb2OR`aOaE-&O ="F"H2QSFiEP_cEmbJEmK-H2Q"E-I2TGA^eT h:OKM^eI6FSOab2E&QS\9T3EpQSEXeO:F3T3^2\$QWE IAEM_dORIAOc\&QSEpKP^eI2TdQS^2_d\&T:E}§dIT3E&I=FiOHJI=E}KM\&QWExIHvF"H2I2T6KY^eI2TdQW^2_d\-TaErSO§cIkK-HJQSE-IJT s w}^eIbJO`COaOR_aEnb2EnE-uAOCF7TaE-I2`CL rWO/H2IOdK$OUT:\&T3En\nFi^2_UH2`3OREMO?H2I2HAO8KMOUQWK-HAORTIEP_cOUIOa\&QVK&HQWE$XYOCF3TC^2\-Q"ElK&QSEYFSK$L$T3^J\-QWEgG^eT¢h3O hZ^eQ7jkH_a\$TaEK&HgQ"EMh3E$QWOUQSEp_R\VE$u2O:F"T:E&I2`C\ rSO2H2IOdKMOUT:\&T:EP\xH2I^eQ<KeOqQSK&HORTaEp_dOUIOc\&QSEs A 9 A '?OdEH2I@KMOUQWK$HOT 7h ^eQ3j\-T0bOUI¨F7H2QiFSEgOUIb2E&GE$Ib2E&I2TCElrWO QWE-XYOCF3T3^J\-QSEK-Q"EeFSKPLTC^2\-Q"EgKP^MI2TaQ"^2_a\&TCE§cIlTCE&I=FSORH2IAElFS\&H riO s?w¢^eI=FiORb2E$QWLPj §cIfK-H2Q"E-I2TB\YF"T3h3EP_ §dIK&T [\&QSOc\$OR_c\vb2EnKP^eI2TdQS^2_<G=^2\&TCEl_UH\v^eQ"OcKPE[\M_d^\&QSEn§RI2TdQWE −∞ +∞ KPOUQSK-HAOTdH_^e2`COIJH2TnG2QSOUI §cI_a^JK-HOUQWEY\ Q"E$XYOCF3TC^2\-Q"EM_d^eQNIAEM_RORIOd\&QSE]K&HQ"E$XYOCF7Ta^2\$QWE_dOIAOa\&QWEKPH®QWEPXMO:FWTCE&I`3EP_cE Rk > 0 sY\PKPL\-Q"Ep^kF{^J_RH2`COcEmrSO2I2H2j\YO(H2IA\pG(E-I2TdQ3Hn^YQSOaKPEx[\P_a^eQWO Rk rSO§dIAE$u(OCF7T:LV^mGE$Q7EYKE}\-Q7A^eQSEP KP^2\$Q3^eQ"Eg\YF"T3h3E-_?§cIK&TQWE-XeO:FZTC^2\&QSE$_d^eQ¢KP^eI2TdQS^2_R\PTaE§UI@K-H(QWE-I2T/b2OUI _dEKP^eQSEYFWGJH2IblQSE-XYOCF3T3^J\-QSEb2OUI@\-Q7A^eQSEm§cI =rSOQ"E$XYOCF7TC^2\&QWEe_d^eQKP^eI2TdQS^2_d\TCE}§dIT:E&I=FiOHJIEVb2ORI _dEKP^eQSEYF7G2H2IbmQSE-XeO:F"T3^J\-QWEmb2OUInK-^2\&Q7^eQWEV§UI c ©J\-TdH2IKYO \&QSEV^Fi^J_RH2`aOcEmrSOAI2H2j\$OAH2I\s ]KP^eIbJOR`COaOR_aEb2EEPuAOaF7TCE-IJ`:L rSOH2IOdKPORTa\-TaE\]FS^2_UH2`COaE-OG2QSOU[OUT3^2\&QWE_d\ F"H2QSFiEP_cEOUIb2E&GE$Ib2E&I2TCE F"H2I2T \PKYE$_dEM\PriOnK$\V_c\xH2IK$OUQSK-HAORT6_cOUIOd\-QS¦ kF7G2QSEVb2EP^AFiE-AORQWEVb2ETaEM^YQWEPjl\pG2QWEYKPEMb2E9I2TCLe©JKe^YIb2O`COcOd_dEF"HJI2T FWTdQWOdKT=T3^YG^2_d^2y2OdKMEmCIHlE-uAOCF"TcLKM^YIb2OU`:OdO _dEPy2\-TaE]bJE h7^eQ3j\KM\&QS\PKTCE-Q"OCF3T3ORKMOR_a^YQvQSE$XYOaF7TC^2\&QSEM_d^eQvIEP_dORI(Od\-Q"E ¦pKM\,H2Q7j\-Q"E ^e=FiE&Q3[L$j KML,H2I®KYOQSK&HOUTnK&H Q"E$XYOCF7TC^2\&QWEK-QWEFSK$L&TC^2\$Q7EFiEmKM^ejnG^YQ7T3LF"OqjoOd_d\-Q/KPHnH2IlKPORQWK&HOUT K-HnQSEXeO:F7T3^2\&QWE_RORIOR\-QWEb2ORInG2HJIK-T<b2Ep[EPb2E$QWEm\e_ 7 E-uAO:F"T3E&I`CE$OrSO(H2IAOaKPOTC\`COcOoFS^_UH2`3OREMO3s A ! '?OdEH2IKPORQZK$HOT/h7^eQ3j\$T£b2OUIoQWE-XeO:F3T3^2\&QSEkb2OGA^2_a\&QSEkK-Q"EeFWKML&TC^2\-QWEKY^eI2TdQW^2_a\&T:E§cIvT3E&I=FSOH2IAElFi\&H@§cI@K-H(QWE-I2T/\eF"TCh:EY_ §cIK-Tv[A\-QSOd\&(Oa_d\Vb2EVKe^YI2TaQW^J_GA^2\-TCEV_RHA\^YQWOaKPEx[\Y_c^2\&QWEmOI2TdQSEV ∞ rSO ∞ sY\PKPLE-uAO:FZTaL©AFS^2_UH2`3OR\V\MKPEeF7TdHO=K$OUQWK$HORT EYF"TCE¢H2IAOaKPLpbJ\MKPLmFWHJI2T F{\&T:O:FSh7\PK-H2TaExH2Q7jLTa^2\-Q"EM_dEpKY^eIAb2O`COcO O ^eQWOdKeE2HK-_aLh7^eQZjo\9T3Lb2OUI QWE-XeO:FZTC^2\&QWEKM^eIJTaQW^2_d\TCE §dI K&H2QWE$I2TKM^eIJ`3OUIE KPEP_G2H2TaORI H2I QSE-XOaF7T3^YQ KP^eI2TdQS^2_d\&T=§cIgTaE-I=FSOUH2IE OdO ^eQSOdKPEFiE$K&`:OUH2IEh7^eQ3j\&T3Lb2ORIvQ"E$XYOCF7TC^2\Q"EgKP^eI2TdQS^2_d\-TCE§cInT:E$I=FSORHJIEgKP^eI2`CORIAEgKPE$_GJH2T3OUIvH2InQSE-XOaF"TC^eQ KP^eI2TdQS^2_d\&T=§cInK&H2QSE&I2T @ ! * QWEF7TaQ"OUK$`:OcOR_aEVK$HgGJQWOR[OUQSE}_a\x2HAKM_R\hZ^eQ7j\TCLxI2H2j\MO=b2OUIvF7H2Q{F{EmbJE¢TCE-IF{OUH2IEmriO_a\mFWEMK&`COH2IEY\Vh7^eQ3j\9T3L IJH2j\MO=b2OUIvF7H2QiFiEVb2E}K&H2QSE&I2T FWHJI2TKY\XPH2Q"O(G\&Q7TaOaK&H_c\$QWEV\P_cEVKM^YIb2OU`:OdOc_d^eQB Wr O< © TaEM^YQWEPj\I2H \YFSOayeHJQWLE-uAO:FZTCE&I2`3\ Fi^2_UH2`3OdE$O:©mbEE$u(E-jnG_UH 2 b \PKML§dIKMOUQWK-HAORTdH_gbJORI hZOcys:¥Ps \2smF"E §cI_d^2K&HOaEYr7T3EkbAOR^2b2\>=£E-IE&QVOdbEP\M_RLlK&H¨^bOa^2bJL =£E&IE-Q¢QWEY\M_RLl3KP\$QWEEYF7T3EgH2IQSE$XYOaF"TC^MQ}KP^eI2TdQS^2_d\-T/§RI@T3E&I=FiOUH2IE \&TdH2IKYOA\YK$EYF"T=KYOqQWK-HOUTFi\TCOCFSh7\-KME}KY^eIb2OU`:OROa_RE¢TCEM^YQSE-jlEPO6b\$Q?IJHn\&QSEmFi^_RH2`COUE© H2IvQSE-XeO:F7T:^eQ}F7TdQSOcK&T£K&QSEMFSKPL-TC^eQ£G^2\&TCEgh7O KM^eIF{Odb2E&QS\&TKM^YI2TaQ"^2_a\&T \$T &T §cIvT:E&I=FiORHJIEK -T0r"O§dI@K&H2QWE$I2T7¦ HJI KPOUQSK-HAORTh7^eQZjv\$Tb2OUI F7H2Q{F{E OUIb2E&GE9IbAE&I2TCE riOQ"E$XYOaF"TC^2\&QWE FWTdQWOdK-TK&QSEeFiK-L-TC^2\9QSE FS\TCOCFih3\PKPE KM^eIAb2OR`COUOd_cE TCEP^eQSE&joE-_a^YQ¥-© ?vriO nb2\PKMLF"H2IJTFi\TCOCFSh7L-KH2TCEQSEYF7TaQWOdK`COcOd_cEK&HnG2QSOU[OQ"Em_c\2HAKe_R\mh7^eQ7j\&T3LpIJH2j\MO?bJORI@F7H2QiFSEmb2E TCE&I=FiORHJIEmr"OFSEMK&`:OUH2IEP\Vh7^eQ7jl\&T3LxI2H2j\-O6bOUIvF7H2Q{F{EmbJEpK&H2QSE&I2TZ©2b2E-KMOn\&QWE^kFi^2_UH2`dOdErWOAI2H2j\POkHJI\Js !"#$%&%'()#*+, -&(./& *0120#3%(& '?OdE}HJInKPORQSK&HOqT?KP\&QWEKP^eI2`COUIExQSE&XYOCF7TC^2\&QWEm_cOIAOa\$QWEVb2OUG^2_d\-QWEY©eQSEXeO:F7T3^J\-QSEV_ROIOd\$QWE}jnH(_UT:OUG^2_d\-Q"E\&[ &Ib ^ Q"E-G2Q"E$XYE-IJT3\&QWEVKe^YI2TcQS^J_c\&T3L¢§dIT3E&I=FiOUH2IEmr"O=F"H2QSFiEVOUIb2E&GE-IAb2E$I2T3EVb2E}K&H2QSE&I2T"s 4?E&I2TaQZH§dIKPE&G2H2TF{EKP^eI=FiOcbJEPQWLK$OUQSK&HOTdH_0GA\eFiOU[ORXe\9T"s '?ORE 8[EMK9T3^YQ7H_xK&HAQWE&I2`COc_d^eQkriOxhZOcE f[EPK-TC^eQ7H_ TCE&I=FiORHJIOc_d^eQf_a\9TaH2Q"Oa_R^eQ,yYQS\Mh:H_RHAOl\YKPEeF3TdHOnKMOUQSK&HORTZs )^2\&T3E EP_dEjE-IJT:EP_aE\$H ^ QWE&GAQSE-XeE$I2Ta\-QWE KM^eIJTaQW^2_d\&T:L §UI TCE&I=FiORHJIEe©6b2EMK-O0FSEG^2\&T3EnFSK$QWOcEkO65 75 HoH2Ib2Ek75AEYF7T3Ej\-TdQWOaKPE$\kKP^eIbeHK$Ta\PIJ`:EP_a^MQ¢_d\-TdH2QSOd_c^YQ9s\PK$L EYF7T3E ⋅ j\&TaQ"OcKPE$\Vb2EVORIAKMOdb2E&I2`:L}_a\9TaHJQSOaaIA^2beH2QSOATCEM^YQSE-j\ \V_UH(O OqQSK ^2h7hFSEFSK&QSOdEB O( F{\&Hk85 H( ⋅ ⋅ ~ ~ « IKMOUQWK$HOTdH_£ORIAOR`dOd\P_/_d\nKM\&QWEvF{EnKP^eIEYK&T:EP\&XYLriO£F"H2QSFiEP_aEnOUIb2E&GE&Ib2E&I2T3Enb2EnK&H2QSE&I2TZ©T3EP^eQWE$j\ \n_RHO OUQSK ^2hZhF{E¨FSK$QWOaEnkO8O69<H2IAb2ENO:9/EYF7T3EvH2I[EPKTC^eQ\P_cEK$L&Q7HO¢Ke^YjlGA^eIE&I2T3EF7H2I2TmF"HJjoE@\M_RENK&H2QSE&I2`COc_d^eQ F"HJQSFiEM_d^eQORIAb2E-GAE-IbJE-I2TCE KP^eIEPKTC\&T:E _R\h7OdEMK-\-Q"EfI^2bsB|VE&X$H_UT:L 5 (H ?O:9prSObAEP^\&QSEMKPEfH(=<; ( ⋅ ⋅ ⋅ ( h7OdOIAb = ¨I^2beH(QWOOc\$Q (?>: ~ QSE-XPHA_RTCL ⋅ 5 ⋅@; ⋅( <O:9xFS\PHI^eT &Ib j\&TaQ"OcKPEM\ KP^eIbYHK$T3\&I2`CEM_d^eQ?I^JbeH2QSOd_a^YQK$HnA>CBED 6k 5 ; QSE-XPH_qT3LVA>CBED (?O:9{KY\&Q7EmEYF3T3E}EMK&H\&`:Od\xG(^eT3E&I2`COc\P_aE-_a^YQ<I^2bYH2QSOd_c^eQ9s ⋅ [AEMK$T:^Q3H_pG^eTCE&I2`3OR\M_REY_c^eQkG2QSOUjEM_d^eQ T -TGE&IATcQZHvFSK$QWOcE&QSEM\VE-K-H\&`:OdOd_a^eQ<bAE}KML9TaQSEH2I^eGE&QS\-TC^eQ H2j\-I=©JK&T?riO2GE$ITdQ3HnKP^eI=F"TcQZHOQSEP\xj\-TRQSOcKPEMO 8 >CBED §cI2TdQSaH2I GAQS^JyeQS\&j b2E KP\M_dK-HA_a©kFiEGA^eTF7T3\&Oc_dOQSEPyeH_ROjH_qTvj\$OoFiOjkG_dEb2EYK&TnH2T3OR_aOXe\&QSEP\h7^eQ3jEYO j\&TaQ"OcKPE$\P_aEGJQSE$XYE$IT3\&T:E\-I2TCE&QSOa^YQis6DLKM^eIFiOcb2E$QWL$j H2I@E-uAE&jGA_RHFiOqjlG(_UHvGE&I2TdQ7H@KM\9QSE[A^ej FSK&QSOcEmT:EP^eQSE&j\ \V_UHO ORQSK ^Jh7h"s$n_REYy2Ej (d s ~ §cIgIA^2beH_=b2ExG^eTCE&I2`3OR\M_ ( D §cIgIA^2beH_=b2ExG^eTCE&I2`3OR\M_ (W (V1 − V2 ) G2 + (V1 − V2 )G3 + (V1 − V3 ) G1 = G (V1 − V2 ) (V2 − V1 )G2 + (V2 − V1 )G3 = +1 sAD\&H V−1V(G(1G+ G+2G+ )G+3V− G(G) − +V2G(G)3=++G12 − G ) = 0 1 2 3 2 2 3 V3 = 0 )?QWEeK&Ib§cIgjE&jlJQ7H_bJQWE&G2TTCE&Q7jvE&I2H_AGQS^JbeH=F£b2EF7H2QiFS\VKP^ej\PIAb2\-TCL}EMK&H\&`:OcOd_cEVb2E&[OqI V1(G1 + G2 + G3 ) − V2 (G3 + G2 ) = G (V1 − V2 ) − V1(G2 + G3 ) + V2 (G2 + G3 ) = +1 V3 = 0 D EoG^2\&T3E@ORjEPb2Oc\&TmbJEMbeHAKME^QSEPyeH_dLfFSOjnG_dLNbJE !NZb2EK-L-TdQSEvH2I^eGE&QS\&T3^YQ HJjo\&I \E-K$H\-`aOaOR_c^eQ G^eTCE-IJ`3OR\M_dE$_d^eQ<IA^2beH2Q{Oc_d^eQ9sYt£K&H\-`aOa\¢§cIgI^2bYH_#"mEYF7T:EVb2Emh3^eQ7j\e Vj $ $ $ G − Vi G = I k k ∈ j sk k ∈ j k k ∈i , j HJIb2EfG2QWOUj\ F7H2jL,KY^eI2`COIEfTC^2\9T3E,KY^eI(beHAK-TC\-IJ`3E-_aE,KY^eIE-K-TC\TCE¨§RII^JbeH_%"J©x\,b(^eH\F7H2jLKP^eI2`CORIETC^2\9T3E GJQS^2bJHF{EY_RE (&7'H2I=bJEm' EeF"TCEmKM^YIEMK&TC\-TaLV§dI2TRQSEpI^2bYH2QSOd_aE%"krSO(OU\$Q8F"HJjo\mbJORIkjvE$jn2Q3H_bYQSE-GJT KM^eIJ`3OUIEpTC^e`3O &K H2QSE&I2`COaOF7H2QiFSEM_R^eQ¢7OqIb2E$GE&Ib2E&I2T3EkFS\PHKY^ej\&Ib2\&T3E KM^YIEMK&T:\&T:E_a\mI^2beHA_)" 7_UH\&`3O?K&HFSE-jnI2HA_ b2\YKMLORIJTaQWL §cIgIA^2beH_#"rSOK&HvFSE&jlIJH_=?b2\YK$L}OaEYF8bOUIn\-KMEYF"T:\ s D E^eFiE-Q3[LKML^nKP^eIbeHAK-TC\-I`C\+*KM^eIEMK9T:\&T3LV§cI2TdQWEI^2bYH2QWOa_dE,<rSO-"\&G\-Q"EV§dInjl\-TdQSOUKPEM\ GA^XeOU`COcOnK-HlFiE-jnIE-_aEe coloana linie i j i + − j − + >BD §dInG\9TaQ3H FiOUjlOc_d\-Q0F"EpG^J\-TaE^Y=FSEPQ3[A\mK$LV^KP^eIbeHK$Ta\PIJ`3LVb2ETaQW\$I=FSh7E&Q\xH2IEPO=FWH(QSFiEpKP^ej\&Ib2\&T:EmK$\}§cInh3ORyeH2QSLV\$G\&QWEp§cI */.1032ATC^eT6§dIG\&TaQ7HG^XYO`COcOkK$HvFSE-jnI(EP_aE}b2OqIgTC\-EY_:s 9 coloana 4?E&I2TdQ7HvH2InG2QS^JyeQS\&j i j linie k l + − − + b2EKM\P_cK&H_?EYF"T:EmjHA_T<j\-O/FWORjnG_UHF"LORITdQS^2bYHKMLh7OdE$KP\-QSEKM^eIAbeHK&T3\&I2`CLG2QS^eGJQSOaEkFS\-H@b2E TdQS\&I=FSh7E&Q8§cIlKME-_aEGA\TdQ7HnG^XYOR`aOaOvG2QSEPK$ORXM\$T3EmbJE\$KPEeF7TCEQSEPyeH_ROb2EMK&TF{LmKY^eIFWTdQ7HOR\F"KPLjl\PTRQWOaKPEP_cE rSO?75rSO?F{L ^YGE-Q"E$XE}K-H\MK-EJF7TaEM\s 4 &ILo\PK-H2j \-j Ke^YI=FSOab2E&QS\9T}KMLK$OUQWKPHAOTdH(_0I2HfKe^YI2`:OUIENF"H2QSFiEvOdb2EY\P_aEvb2EnT3E&I=FSORHJIEv"FS\$H=©<bJ\MKYLv_dEM7\ \&[2H2TZ©EM_RE\$HvhZ^AF"TTaQ"\-I=FSh7^YQ7j\-TCEm§cINF7H2Q{F{EmOdb2EP\Y_UEgb2EK-H2Q"E-I2T sJt/u(OCF7TCLm§dIF{Lr{O FWHJQiFSEb2ETCE-IFiORH2IAEKM\&QSEIJHNFSE GA^eTTaQ"\-I=FSh7^YQ7jv\§RIF"H2QiFSEmb2EmK&H2QSE&I2T"se\PKeLmKPOUQWK-HOUTdH_=KM^eI(`dOUIEmb2^A\&Q£^nFiOUIyeHAQWLF"HJQiFiLmb2Em\PKMEF3TT3OUGv\9TaHJIKMO?FSE \P_dEMy2E$( {D ~ rSO2QSE$X$H_qT3L ( t,CIJHvFSExjo\-OFiK-QWORE}TCEP^eQWE$jv\ \V_UHO g OqQSK ^2h7h§dII^2beHA_6bJE}GA^eT3E&I2`COc\P_( s t<[Odb2E&I2T7©0b2\MKYL@E$uAO:F7T3Lvj\$OxjnH_ TCEfF7H2QiFiE@b2E¨\$KPEeF7T¢T3OUGKP\-QWE\-H H2II^Jb KP^ejnH2IFi\&HK$\$QWE¨h7^eQ3jE$\PXYLH2I &jORIAOa7\&Q7^YQWEmI^2beHA_/b2EG^eTCE&I2T3Od\$_?I2H_[\k\PGA\-Q3`CORIAE\-KeEYF3T3E-O0F7TdQ7HK&TaH2Q"O?Oa\$Q8G^YT3E&I`3Od\$_dE$_dEkK$EP_a^eQ"_c\P_TCEI^JbeH2QSO \P_dEgF"TaQ3HAK-TRH2QSOdO6QWEFWGAE$K$TdOU[EgFiEG^YTE$uG2QSOj\KY\gF7H2jEbJET3E&I=FiOqH2I=OEP_cEYKTdQW^ej^eTC^2\&QSEJse\PKeLKMOUQWK$H(ORTRH_?KP^eI2`CORI(E bJ^eHL\YF7T3h7EP_mb2EF7H2QiFSEK-\-Q"EI2H \-HH2II=^2bKM^YjlHJI FiE,\P_aEPy2E ( D ©8QWE-XPH_UT:L ( ?t rSOFiE,ORIJTaQS^JbeHKPE,^ ~ IAEMK$H2I^(F{K&H2TCLF"H2GA_aOqjoE&IATc\PQW L $sw &IboFiEkF{K&QSOUH@EMK&H\&`:OdOc_dE§cInI^2beH2Q"Oa_dEgb2EmG^eTCE-IJ`3Od\$_dE (£r{O (£_R\PTRH2QS\K-H@t FiE KM^eIF{Odb2E$QWLG\&QSK&H2QiFSLbJE K-H2Q"E-I2TdH _ 9sVkKPEJF3TCEMOlIAE$K&HAI^AFSK&H2TCEF"H2G_dOjlE$I2T:\$QZE §aOKM^eQ"EeF"G2HJIb2E EPK-HA\-`aOc\ F"HJG_aOqjE-I(T:\$QZL ( ( ?t Ws 4 &ILm\MK&H2j¤\&j KP^eI=FSOabJE-QS\&TK$L\&[E&j b2^2\&QF7H2Q{F{EmKY^ejl\$Ib2\9T3E}§cITaE-I=FSOUH2IEsw}^ej\IbJ\V§dIlK-HJQSE-IJTF"E GA^2\-TCExTaQW\&I=Fih3^eQZjo\}§cInKP^ejl\-IbJLV§RIgTaE$I=FSORHIEJ \YKPLV\MKPEM\YF7T:LpTdQS\&I=FSh7^eQ7j\&QSEpI2HlEeF7T:EpGA^AFiORAOa_RLm3KM\V§cInh7OdyeH2Q"\mb2Epj\MO ^AF FSEmKY^eI=FSOcbJE-QSLm^nF7H2QiFiLmK&H m§UI _d\&TaH2Q"\gb2EKM^ej\&Ib2LnrSO/FSEGJQW^2KYEMb2E-\$XYLgKP\§dIKY\&X$H_£FWHJQiFSE$O<Odb2EP\$_dEgb2EmT3E&I=FiOUH2IE:§RIEPK-H\`COaO_aEmI^2beH2Q"Oa_d^eQ¢b2E GA^eT3E&I2`COa\-_aE$( D rSO ( _R\-TdH2QW\Vb2EVKP^ej\-IbJLx\$G\&QWEpG2QWORI#=r{OrSOF"EV\Pb2\$Hy2L}EMK&H\&`3O\"( D ( s 10 EYKMO\P_ay2^YQWORTRjlHA_6bJEFiK&QSOUE$QWEV\VE$K&H\-`aOaOR_a^YQ<G^eTCE&I2`3OR\M_dE$_d^eQ?IA^2beH2QSOd_d^eQ£EYF7T3Ee • • • iF EhZ\MKTC^2\&T:ETdQS\&I=FSh7^eQ7jlL$QWOc_dEG^AFiOqOd_cE\Y_UEkFWHJQiFSEM_d^eQBb2ETCE-IF{OUH2IE§dI@F7H2QiFiEbJEK-HJQiE&I2T£rSO?\P_cEKP^ejE-I2XMOd_a^eQ §cInK&HAQWE&I2T§dIKM^ejE$I(XPOA§cIgTdE$I=FSOUH2IEY© FiEn\P_aEPyEgG^eTCE-I2`COc\P_UH_£b2EQ"EMh7E&QSOUI2`:Ln\YFZTCh7E-_/§UIKT KPTjl\MO<jnH_TaEgG^eTCE-I2`COc\P_cEn\P_cEgI^2bYHAQSOd_a^YQVFSLkGA^2\$T:Lnh7O EPuJG2QWOUj\-TCE}KM\mF7H2jEpbJEpT:E&I=FSORH2IAOEP_aE-K$TcQS^Mj^eTC^2\&QSEe© YK ^eI=FSOdb2E&QS\-IAbNrSO IEPK&H2I^AFiK&H2TCE$_dElF7H2G_dOUjvE9I2T3\&QSEk7K&H2QSE&I2`3OROH2IA^eQVF7H2QiFSEkb2ETCE&I=FiORHJIEgKP^eIEPK-TC\TCE§cI2TdQSEg\P_TCE I^(beH2QSO=b2EPK-T6KMEP_cEVb2E}_d\¢G2HJIK$TaH_2G2QSEPKPEMb2E&I2T rSOK&H2QSE&I2`aO6bJEpKY^ejl\$Ib2L FSEFiK&QSOUEFWO:FZTCE$jH_=bEmE-K-H\&`:OdO3 Vj G − Vi G k = I k ∈ j k k ∈i , j k ∈ j sk _d\}KM\$QWEmFSEp\Yb2\&Hy2LVE$K&H\$`:OROc_dEF"HJG_aOUjE-IJT:\Q"EbJEhZ^eQ3j\ Vl − Vm = E α s V4 = 0 V1 = E 1 1 1 1 + − V1 = I2 R1 R3 R1 V 2 V 1 + 1 − V 1 = −I 3 R R 1 R 2 2 4 2 V −V V2 − V3 = 2 1 2 HJGL KME FS7\&H R1 bJE-TCE-Q3jlOUI\-TG^YT3E&I2`COc\P_cEP_aE I^2beHJQSOa_d^eQ F{E GA^eT K$\Y_aK&H(_d\ TCE-IFiOH2IOd_cE K-\ b2OdhCE$QWE$I2`aE \P_cE GA^eT3E&I2`COa\-_aE-_a^YQ8rSO\$G^JOK$H2QWE&I2`:OdOCs !#"$&%')(*',+(*.-/0' '?OdEkHJIKYORQWK&H(ORTBK&HNQWE-XeO:F3T3^2\&QSEkKM^YI2TaQ"^2_a\&T:E§cIoT3E&I=FiOUH2IEvrWOBF7H2Q{F{EnOUIb2E&GE&Ib2E$I2T:Ekb2EkK$H2QWE-I(T7s EPK$H\&`:OdOc_cEVKP^eI=F7TCOTdH2T3OU[E}\$_dExQSE&XYOCF7TC^2\&QWEM_d^eQ 2 1/3465872TCEP^eQSE&jo\ DK-QWOdOIb \}_UHO OUQWK ^Ah3h rSOAT:EP^eQSE&jo\}\ 3\}\m_HO ⋅ 7 OUQSK ^2hZh9 $:<;lQSE-X$H_RTCLgE-K-HA\-`aOaOd_cEmG^eT:E&I2`COa\-_aE-_a^YQ]I^JbeH2QSOd_a^YQ 13 *:=;>5 ?A@<DHAQSFSEP_aEbETaE-I=FSOUH2IEKM\$QZEI2H ⋅ FiExG^YT6TdQZ\$I=FSh7^eQ3j\}§dIlF"H2QSFiEVb2EpK$H2QWE&I2TriOKP^ejE&I(XMOd_aE¢§cIkK-HJQSE-IJT<FSExTdQW\-TaEM\-XMLmFiOjOU_d\&QK-HKYOQWK&HORTaEM_REm_UOUIOa\&QWEs 11 9 ' %', .( -!!' - "(*' /+" 2#.( ' %- ' %( - ( SF O:FWTaE$j bJEfEPK&H\-`aOaO}\P_ay2E&2QSORKMEI(EP_dORIOR\-Q"E 3 >5 H2Ib2E EeF"TaEN[EYKTC^eQ3H_xIEPK-H2IA^AFiK-HJT3EP_a^YQis |VEP_c\&`:Od\K$\&QSEb2EPh7OUIEYrZTCEjlE-TC^2b2\OqT3E&QS\9T3OU[(L kET:^eIA3|p\$G =FS^eI@FSEg^Y2`:OUIEb2EPX$[^2_UT 9IbgGEh§dI@FSE-Q"OaE )\_a^YQ '?OdEHJI §cI SH2Q7HA__UH(O ! " k_U\mOqT:E$QW\-`aOc\ " &'( # &'( # &'( f x ( j + 1) $% = f x ( j ) $% + J x ( j ) $% # &'( # x ( j + 1) − x ( j ) $% + ... * HJIb2Exj\PTRQSOdK$EP\)!3 ! " 5 , , ∂ f1 ∂ fn / ... , / ∂ x1 / , ∂ x1 . . . / , ∂ f1 ∂ fn / ... ,+ / ∂ xn ∂ xn . x= x( j) FiEI2H2jEYr7T3E10 \YKP^eOR\-I2HA_0FSO:FWTaE-jnH_UHO£r"O£FWEKY\$_dK&H_cEP\&XL§cIoG2HJIK-TdH_ !2"=@ jnG2HJI -IAboKM^YIb2OU`3Od\gKP\ 3 !5476 "0FiLkh3OaE Fi^J_RH2`aOaEk\kE$K$H\&`:OdE$O8 3 >5 lr{O?IEPy2_dO -IbnT3E&Q7jlEPIAOcO<bJE^eQ"b2ORIF"HJGE-Q"Oa^eQxb2ORINb2E$X$[^2_cTC\-Q"EM\§dI¨FSE&QSOdE ) \7_d^eQVFSE ^Y2`3OUIExQSEP_c\&`:Od\VbE}Q"EMK&H2QSE&I`3LV\xjlE-TC^2b2EPOOqT3E&QW\&T3Oq[E E7mTC^eI3|}\-G=Fi^eI ( j+1) ( j) ( j) ( j) x = x − J −1( x ) f ( x ). k_dy2^eQ"ORTdjnH_G_dEP\$KYLbJE_R\^o\&G2QS^euAORj\&`3OREOUIOq`3OR\M_RL 329 "0rSOEMh3EYK&TaH(EP\-XMLH2IoI2H2jL&Qmh3ORuNb2EkOUT3E&QW\$`:OcO;: s\PKML 9 E&QS^2\&QSEP\k§dITdQSEkb2^eHLnOUT:E&QS\-`aOaO F"HK-KMEYFSOR[AE x( N) − x( N −1) EYF"T3Emjo\YOjoOdK$Lnb2EPK$T0^NE&QS^2\&QSEkORjkG2H=FiL KP^eI=FiOdb2E&QSLnKMLgjlE-TC^2b2\nEYF7T:EnKM^YI2[E&QSy2E&I2T3LnOd\-QpFi^2_RHJ`3OR\lEYF7T:Eku=< >? E&QS^2\&QSEP\xI2HvFiK-\Mb2EmF"H2[\$_d^2\&QSEP\ ε x = @n x k =1 k 2 s=\PKPLlbYH2GLA: 9 ε FSE OUT3E&QS\&`:OdO FiEpKP^MI=FSOdb2E$QWLKPLxjvE&TC^2b2\VEMF"TCEpbJOR[E&QSy2E&I2TCLes \YKMLVh7:u \&QSExj\MOAjnH_qT3EmFi^2_UH2`COcOa©YG2QSOqIn\PKMEY\YFWTaLxjoE&TC^2b2LFSEVb2E-TCE&Q7jvOUILxI2H2j\POAH2I\Vb2OUI2TaQ"EEP_dEriO ~ \&I2H2jEmKPE$\}KM\$QWEVEYFWTaExjv\PO Y\&G2QW^eGOd\&T:LpbJE\&G2QS^euAORj\&`:Od\pOUIOq`3OR\M_dLxu < BC? s \YKMLnu\-Q"Ev^fFSOUIyeH2QSLnKY^ejkG=^eIAEPIJT3LgjE-TC^2b2\kEDmTC^eI:|V\-G=FS^eI,\&QSEv^@ORI2TCE&Q7G2QSE$TC\-QWEvy2EP^ejE&TcQSORKML FiOUjkG_aLs ? ' OREvh33u \-[ - Ib QSE&G2QSE-XYE-ITC\-Q"E$\nyeQS\Ph7OdKMLvbOUI¨h7OdyeH2QW\vbJEjo\-O 9^AFr{O8h:OdEnu < BC? \-G2Q"^uAOUjo\&`COc\vOIAO`COc\P_cLs (\Y_R^2\$QWEM\}u <FEF? FSEm^e2`:OqIEpG2QWOUI tgα = f ' ( x (0) x (1) =x (0) (0) (0) \Mb2OdKPLe©Jb2EM^\&QSEPKME − f '−1 ( x ) ⋅ f ( x ) (0) f ( x ) ©u=<FEF?FiExG^2\&T3EVb2E&TCE-Q7jlOUI\VORI2TaE-Q{F{EPK&T $IbTa\-IAy2E-IJT3\V_d\G 3 >5m§RIgu=< BH?K-H\$u(\JIVu=s )= (0) (1) x −x 12 « InKP^eI2TCORI2HA\-QSEmFSEV^e2`COIgu < ? ©eu < C? riO=FS^2_UH2`:OR\}IJH2jE-QSOdK$LTCORIbJEK-L$TcQWEmFi^2_UH2`:Od\pE-uA\PKTCL}u 2s ]E9T3^Jb2\ nEmTC^eI:|V\-G F{^YI I2H EF7T3E KM^eIJ[E-Q"y2E-IJT3L GE&I2TaQ3H ^eQSOcKYE \PGJQW^uAOUjo\9`3OdE OUIOq`:Od\M_RLJs@E E-uAE$jnG_H©hZOaEhZ:u b2ORIh3OdyeH2QS\b2Ej\PO 9^(FxrSO?\&G2QS^uAOUj\-`COc\ORIOq`:Od\$_dLmu < BH? sYG_aORK-Ibk\PKMEP\FZTCLjETC^2b2LgFi^J_H2`COc\ IJH2jE-QSOdKPL}[A\^(F{KPOc_d\¢§dI2TdQSE[\P_a^eQ"Oc_cEVu <5E ? rWOAu < ? rSOAI2HlF{Ex[\V\&G2QS^eGAOa\Vb2EVFS^2_RHJ`3OR\pEPuA\PKTCL9 @ DE ^e=FSE&Q7[L KPL b2\PK$L J ( x ( j) ) ⋅ x ( j+ 1) = J ( x ( j) ) x ( j) − f ( x ( j) ) FSE FiK-QWOdE QSE$_d\`COc\ bJE Q"EMK&H2QSE&I2`:L F7H2 h7^eQ3j\ EYF"T3EE&[(Oab2E&I2TlKYL _d\]h7OREMK-\-Q"E]OqT3E&QS\`COdE]FiEQSE$XY^2_U[LH2I FiO:FWTaE-j EPK$H\&`:OdO_cOqIOa\$QWE \K$L&Q7HOmjv\&TaQ"OcKPE ) 3 5 riOTaEPQ3jlE&I _cOqE$Q J (x ( j) )x ( j) − f (x ( j) ) b2E TdQWE-JHOcEQWEMKP\$_dK&H_c\&T3EYs w¢\Y_cK&H_RHA_ 0&\$KP^eOd\&I2H_UHO/OUjnG_cORKMLkb2E&T3E&Q7jORI\$QWEP\\I [ \P_a^eQ"O<\Y_cEkb2E$QWOR[A\TCE$_d^eQ¢§cI KPEMEY\kK$EI2HEYF7T3Ekb2EP_a^2K FiOUjkG_RH6s(4?E&I2TdQ3H¨H2IKMOUQWK-HAORTQWEPXYOCF3TCOR[f_aOUI(Oc\&QE$u(OCF7TCLM© §dI{F LY©^@GJQS^2KPEebYH2QWLljnH_UT8jo\POxFSOUjlGA_aLobJEvEeh3EPK$TaH(\&QWEo\ OUTCE-QW\&`3OROa_d^eQisYw}^eI=FSOdb2E&QSL-jª_R\p§cI(KPE-G2HJT6HJInE-uAE-jnG_UH £\nh3OaEPKY\-QWEkOTCE&QS\`COcEgQSE-XMO:F7T3^eQZH_<IE$_dORIAOc\&Q8G^2\&T3Enh7O§dI_d^2K&HOTBK&HNH2INKeOUQZK-HOT0EMKOU[\P_UE$I2TFiE&QSOUEnh7^YQ7j\-T0bORIJTaQS3^ F"HJQSFi\mb2EpT3E&I=FiOqH2IEm§UIoFSE&QSOaEVK&HHJIQSE-XYOCF7T:^YQ9s \pGAQWOUj\mORTCE-QW\&`COcEF7H2QiFS\\&QWEpT:E$I=FWORHJIEM\mEP_dEMK9TaQS^Yjv^eTC^2\$QWEVt < BC? riO Q"E$XYOCF7TC^eQ3H_\&QSEpQSE-XeO:F3T3E$I2`d\| < BC? T3y < B ? s 4 -E I2TdQ7Hl\mb2^eH\mOUTCE-QS\&`COcEm\&[E-j α ?rSO A1 α ?E-TCKesPkKPEeF7T KPORQWK$HOqT iF E I2HJjoEYr7T:E K-ORQWK$HO TdH_kEYKOU[\-_aE&I2TbOCFSK9QSE-TWs £\h3OaEPK$\&QSEORTaE-Q"\-`aOaEFiE]KP\$_dK&H_cEY\-XMLG\$QW\-jE&TcQSOdOK-ORQ"K-HOUTdH(_RHO EPKO[\M_RE-IJT?bO:FSK-Q"ET rSO6FiEQSE-Xe^2_U[(LxH2InKPOUQWKHOUT_cOUIOa\&Qis kKYEM\YF3T3LNG2QS^JKMEPbeH2QSL¨FiEoG^2\$TdE¨\-GA_cOdK$\NH2I2HO}KPORQSK&HOqTpQSE-XMO:F"T:Oq[ IEP_dORI(Od\-Qg^eQSOdK&Tmb2EKP^ejnG_aOdK$\&T\-QkhZO \PKYEeF3TC\Jsw¢ORQSK&HOqTaH_ EMK Oq[\Y_cE&I2Tb2O:FSK$QWE-T_d\¤OTCE-QW\&T:Od\ \M_,H2I2HOQWEPXeO:F7T3^eQ®KP^eI2TdQS^2_d\&T§cI K-HJQSE-IJTK&H KP\$QW\MK&TCE-QWOdF"T:OdKM\ 3 5mKM^YI2`3OUIExQWE-XeOdFWTC^eQ7HA_6K&HgQ"E&XYOCF3T3E&I2`a\ R (k ) = ∂u ∂i §dIlFiE-QWOREmK-HlF7H2QiFS\Vb2ExT:E&IF{OUH2IE i( k ) ^Y2`3OUI2H2TCLgKP\§cI@E-uAE-jnG_UH_G2QWEMKYEPb2E&I2T7s4?E9I2TaQ3HvH(IvQSE-XeO:F7T3^eQ¢KP^eI2TdQS^2_R\$T §dIvTCE&I=FSORH2IAEgK$HKe\&QW\YK-TaE-Q"OCF3T3ORKML 3=65 KPOUQSK-HAOTdH_8EYK(OU[\P_cE&I2T}b2OdFiK-QSE9T¢\$QWElG\&QS\-jlE&TaQSORO G (k ) = ∂i ∂u rSO @ g\PK$LlQWEPXYOCF3T3^YQ7H_8\&QSEoK$\&QS\PKTaEPQWO:F"TdOdKMO u( k ) _dOUIOa\&QWExGExG^eQ7`aORHJIOC©YG\&QW\PjlE&TaQZOdOKPORQ"K-H(OUTaH(_UHO=E$KOU[\P_cE&I2Tb2OaFiK&QWE-T FSE}b2E-TaE$Q3joOUIL}KM\}§UInh3OdyeH2QSLJ 13 46QSOUI 2H TCOc_ROcXY\$Q7EY\ K$OUQSK&HOTdH_UHOEPKAOR[\-_aE9I2T b2OCFiK&QWE&T \&G_cOdKP\-QWEP\ FiOUjkG_aOdh3OdKML}KM^YI=FiOabJE-QS\&OR_Zs jlE&T3^2bJEeO E7mTa^eI3|}\-G=Fi^eI FSE ! #"%$&(')* "+',+- '?OdEKYOQ"K-H(OUTaHA_¢QSEPbeQSEYFi^eQj^eIA^2\M_UTCE-Q3I\$I2`CLNhZL-QSLh7Od_RTdQ3HbJORIhZOayeHJQW\,3\ HAIb2EKP\PQW\YK&T3E&QWO:FWTCOcKP\b2Oa^Jb2EYO EYF"TCEpb2\&T:L}§cInh3OdyeH2QW\ma rSOKY\&QW\MK&T3E&QWO:FWTaOaK-\pbJE}TdQS\&I=Fih3E$Q§dIT:E&I=FiOUH2IEY©EeF7TaEmb2EeFSE&I\&T3L¢§RIh3OayeHJQS\V7K s \YKPL u1 ( t ) = sin ω t 7hZOcys£b \-TdH2IKPO}b2OIKP\&QS\MK&TCE-QWO:F7T:OcKP\b2E@TdQW\$I=FSh7E&Q§dI,TCE-IFiORH2IAEQSE-XPHA_TCLKPL . 3 5[\ \&[EY\Vh3^JQ3j\VbORIh7OdyeH2QW\m3E s « Ig\MKPEeF7T6KM\XF{E&jnI\$_UH_=b2E}OaEYrSORQWEV\&QSEV^gh3^eQZjo\VbOdh7E&QSOTaLh3\$`aLbJEpKPE$_=b2EVOIJTaQS\&QWE bJ\-TC^eQSOUT3LVIEM_RORIAOa\&QWOTC\-`aOcO,KP\-QW\PKTCE$QWOCF7TaOcKYOUO<bEmTaQ"\-I=FSh7E&Qis(\$KPL u1 ( t ) = 1 + sin ω t 3h7Odysh \-TdH2IKPO<FSE&jlIA\M_UH_?b2E OdEYriORQZEVEFWTaEmFiORI2HF{^JOab2\P_=7h3Odysy KM\mriOKME-_=b2EVORI2TdQW\$QWE2s2D2G2H2IE$jªKYL + 0/ 21 8 43 K&Hn^kFiORIAyeH2QWL F"HJQSFiLb2EgFSE&jI\M_=7K&HEFi\-HlO65[(\&QSOa\&OR_=§RInT:OUjnG 67 839/: 23 ,;3# ,1 <;3 :71 : =3 >7 ?3 ,;3#, @< 3 @ « IK-\$X$H_?§cIK-\-QSEH2IFSOUIyeH2Q8QSLYF"G2H2IF¢IJH\-QWEk\YK$E-EM\rSO<h3^eQZjo\kK&HF{E$jkI\P_RH_ bJEOUI2TdQS\-QWEkF"G2H2IE&jK$L 8 , !A7 39/B: C3 ,;3 1 ?3 Cs4?E&ITdQ7HvH2IKPORQWK&HOUT8bJ\T£h:H2IK&`:Od^eI\&QSEM\_a\ FiE&jnI\P_cExj\-QWOFW\-HjoORKMO=b2E&GOqIb2Emb2ExG\&QW\-jE&TaQWOdOFiE&jnI\$_UH_UHO=b2E}ORI2TdQW\&QWE(s IvQSE-XeO:F"T:^YQ8IEM_dOUIOa\&QBb2OUG^2_d\-Q¢hCHJIK-`COc^YIEM\-XYLg_c\kFiE-jnI\P_cEmjOcKPO?b2\YKMLmG2H2TCE-j \&G2QS^YuAOqjo\b2E$G_c\FS\&QWEM\ 14 GJH2IK&TaH_UHOb2E hCHJIK-`COd^eI\&QSE GAE K$\&QS\MK9T:E&QSO:FWTaOaKPL K-H b2E&G_c\YFS\$Q7EY\ GE T:\&Iy2E&I2TC\¤§dI G2H2IK&TaHA_ F7TC\TCOaK¤b2E h:H2IK&`3Od^eI\&QSEs¢|pE-XeO:FZTC^eQ7HA_KP^eI2TdQS^2_R\-Tg§dI TCE-IF{OUH2IEb2OUI h3OdyeH2QS\b2Ejv\PO ^AFK-HK$\$QW\MK$TaE-QWO:F7T3ORKM\ *13465 FSE KP^ejnG^eQZT3LVb2OUIgG2HJIK-Tb2Ex[EPb2E&QWEm\$_FWE-jnI(\Y_H_UHO=C[\&QWOd\`COaOR_cEVb2ET3E&I=FSORHJIEr{OK&H2QSE&I2T=§UI SH2Q3H_AG2H2IAKPTRH_UHOF"Td\$T:OcK bJEh:H2IK&`3Od^eI\&QSE KP\ H2I®QSE-XJOdF7T3^eQN_aOUIOc\&QK&H KY^eIbYHK-TC\&I2`3\ G= KM\&QWE F{E]IJH2jEer3T3E dg( u) = tg α du p. s. f . PK ^eIbYHK$T3\&I2`C\,EMKOU[\M_RE$I2T:LbJE FSE-jnI\-_pjoOdK]rWOb2E&G(OUIb2E Jb EfG2H2IK&TdH_F"T3\9T3ORKb2EhaHJIK$`:Od^eI\$QWEJs*4E$I2TdQ3HHJI Q"E$XYOCF7TC^eQKP^eI2TdQW^2_a\$Tx§dIK&H2QSE&I2TmK&H KP\PQZ\YK&T:E&QSOaF"TaOaK-L@H(?hZ7O FSE2b EPh7ORIAEer3T3EoQWE-XeO:FZTCE&I2`:\@EMKOU[\M_RE$I2T:Lb2E¨F"E&jnI\M_ jOdK R= d f (i ) s . . . p s f di '?OdE H2I TdQW\$I(XeO:F3T3^eQ u BE = uˆ BE (i , u ), B CE FiE&jnI\P_¤jlOcK u FiE i = iˆ (i , u ) C C B CE b2E-XP[A^2_RTCL ,i ,i ,u BE 0 B 0 C 0 CE 0 |VE-XPH_qT3Le BE =u rSO û KY\ QWEPXMO:F7T3^eQ jH_TaORG^J_a\&Q K&H KP\&QW\MK&T:E$QWO:FWTaOaKPOc_RE( s4E$I2TdQ3H\b2E&T3E&Q7jORIA\G\&QS\-jlE&TaQSOROKYOQWK&HOTdH_UHO?EPKOU[\-_aE&I2Tb2E iˆ C §UI FiE&QWOaE )\7A_a^eQ {HJQ7H_ GsqF&s h"s "b2E&T3E&Q7jOIA\-T b2E §dI BE '?OcEYKP\-Q"ETCE&I=FSORH2IAEriOVK&H2QSE&I2T\-Q"Ef^KP^ejnG^eIE&I2TCL,KM^eIFWTC\&I2T3L,3KY^eQWEF7G2H2I2Xe\&T3^J\-QWE G6sqF&s h"s2riO2I^eTa\$T:L}K-HORIbJOaK-EM_RE u j^2b2EY_c\&T BE 0 ~ rSO^KY^ejGA^eIE&I2T3Lx[\&QSOd\-AOc_dLx§cIgTaOjnGn7bJEFSE&jnI\M_ ©\Pb2OdK$LJ +u be , i B =i +i , B0 b i C =i +i , C0 c u CE =u CE 0 +u s ce ∂ uˆ BE BE ⋅ + i p.s. f . p.s. f .u ce BE ∂i BE 0 b ∂u B CE ∂ iˆ ∂ iˆ C + C p.s. f .i + i =i p.s. f .u ce C C0 ∂ i b ∂u B CE u sau u =u = r i + αu , ce be b b ∂ uˆ BE r = p.s. f . , ∂i b B α= + i ∂ uˆ ∂u ∂ uˆ u = β ⋅ i + ce c r b c BE p.s. f . , CE |VE$X$H_TCL}K$OUQSK-HAORTdH(_=E$KOR[A\M_RE-I2Tb2EVFiE&jlIA\$_2joOdK 15 β = unde ∂ iˆ ∂i C B p.s. f . , 1 r = ˆ c ∂i C p.s. f . ∂u CE KYEeF7TKYOQWK&HORTVG^(\TCE¨h7O¢HJT3OR_aOXe\9TbJ\MKPLNG2H2IK$TcHA_mb2E¨hCH2IK&`3Od^eI\&QSE¨FiE¨b2E-GA_c\FSE$\-XeL@§dIJTaQS3^ XY^eIL,b2OqI k GA_a\&I2H_kh7OdEMK-L-QSE-OKY\&QZ\eK&T:E&QSO:FZTCOcKPOGE-IJTaQ7H®KP\&QSE GA\PQW\&jlEPTRQWOaO G^YTvh7OkKP^eI=FSOabJE-QS\&T:OKM^YI=F"T3\&I2`COCs « I rb , α , β , rc P\ KYE$EP\erSOmjo\&IOdE-QWLFSE G^J\-TCE b2E9T3E$Q3jOUI(\fH2I KPORQWK$HOqTnEYKOR[A\$_dE-I2Tb2E]FSE&jnI\M_mjvORKGE$I2TdQ3H®^eQSOdKPEQSE-XOaF7T3^YQ IAEM_dORIAOc\&Q9s I\Y_cORXY\ HJI2HO,K$OUQSK&HOTKP\-Q"E h:H2IK&`:Od^eIE$\PXYL _a\ FSE-jnI(\P_aEjOcKPO,FSE GA^2\-TCE h7\PK$EGE H2I KMOUQWK&HORT EPKO[\M_RE-IJT_dOIOR\$QKM^YI=h3^eQ7j \P_dy2^eQSOqTcjnH_UHO3 ¥Ps D E@b2E-TCE&Q7jOILvG2H2IK&TaHA_pF7T3\9T3ORKNb2EhCH2IK&`3Od^eI\&QSE@KM^eIF{Odb2E&Q&&Ib,KMOUQSK&HOUTaH_BE$uAKPOTC\Tpb2ENF"H2Q{F{EP_dENb2EoK$H2QWE$I2T KP^eI2TCORIJH2H"F7H2QiFSE OUIb2E&GE-Ib2E&I2T3EªK-H G=\&QS\&jETdQSOcOKP^eI=F"Ta\-IJ`3O¨§cI TdORjnG ©F"H2Q{F{EP_cEªb2E FSE-jnI\Y_,h7OdOIAb G\YFiOU[OcXP\-TCEes ?=s DEobJE-TCE-QZjvOqI=LvKPOQSK&HOTdH_E-K AOR[\P_cE&I2T}bJEFiE&jnI\P_0jvORKv\eFi^JKMOR\-TG6sqF sh{s?bJEPTcEPQ3jOUI\T¢_d\GAHJIK-TdH_m¥gGE&I2TdQ3H h7OdEPKM\&QWExQSE&XYOCF7TC^eQ?IEY_RORI(Od\-Q s s DE¨h3\PKeE\&I\Y_cOUXY\KMOUQSK&HOTdH_UHOpE-KO[\M_RE-I2Tb2E,FSE-jnI\P_xjOcK¨^e2`CORIJH2TpGJQSORI ORI2TCE&QSKM^MIAEMK&T3\&QWEP\fKPOUQWK-HOUT:EP_d^eQ EPK O[\M_RE-I2TCEb2EkFSE-jnI(\Y_6jlOaKkr{O\QSE-XMO:F"T:^2\&QSEP_a^eQB_dORIAOc\&QSEJsYkKPEeF7TKPOQ"K-HOqT£EYF7T3EE-uAKPOTC\-T I2H2j\$Ob2EF"H2Q{F{E-_aE b2E®FiE-jnI\P_a©nF7H2QiFSEY_cE bJE K-H2Q"E-I2TNKM^eIJT:OIJH2Hªh3OaOUIbG\YFiOR[OX\-TaEJsnD^2_UH`:Od\ ^J2`aORIJH2T3L EeF7TCE KM^ejnG^YIE-IJT3\ [\&QSOd\-AOa_RLx§cIgTaORjnGn\xQWLYF7G2H2I=F"H_UHO=KPORQWK&HOTRH_UHOZs =s DE [E&QSOch7OdK$L¤b2\PKML KM^YIb2OU`3OROa_dE b2E¤hCH2IAK-`COa^YI\-Q"E _a\ FSE-jkI=\P_jlOdK F7H2I2TFi\TCOCFSh3LPK-HJT3E GE&I2TaQZH T3^2\9T3E QSE-XYOCF7TC^2\-QWEY_RE}IAE$_dORIOR\-Q"EJsP\PK$LVEPuAOdFWTCLH2IvFiOqIyJH2QQSE$XYO:F"T:^eQ IE$_dORIAOc\&Q<GE&I2TdQ7HnK-\-QSE}\PKMEYF7T3E}KM^Ib2Oq`:OdOkIJHvF"H2I2T §cIb2E&G_dORIOUT:ExQSEXPHA_RTa\-TdH_\-I\-_aOXeEYO(b2EV_a\xG2HIK&TdH_ gEMF"TaEVOIKY^eQWEPK-TWs 16 "!$#&%('*),+.-,0/1'24356#&+#,%7+8!$9:"/*);66:<9>= t uAO:FWTCE&I2`3\kFSOH2IOdK$OUT:\&TCE$\Fi^J_RH2TCOcEPO6H2IJHO<KPOQSK&HOUT£b2OUI\&jOcKgEYF3T3E_cEPy2\-Ta\gb2EEPuAOaF"TaE-I2TC\EPK-HA\PTcOaEPO?b2EkF"T3\&QWEgOqI E-uAOCF7TC\\&TaH2IAKMO?OUI@_dOT:E$QZ\$TcH(QW\jl\-TCEj\$TdOdKM\kF{E\-QS\9T:\KM\Jb2\YK$\h hZ^eQ7jl\I^Q3jo\P_d\Js(\-Ke\EMK&H\TCOd\@? x = f ( x ,t ) EYF"TCE /OUG=FiKOTaXe\&I\:GE-IJTaQ7H^eQWOdKPEmuBAC;DFE7GHCID>JLKIDNMPORQ OXW7Y>Z[C;D f ( x 1 , t ) − f ( x 2 , t ) ≤ k x 1 − x 2 S(TVU • O\C<Q]O JLK6^`_O M$abD DN_ _PcRC<D _,M$_[d M&QeDf_[d6g"ZhiQjckO\C"Q6O Dbd"JLKl^m^n_&KIo(D DpQ6_\h>_&Q M,D0O\M _&Q]Db_ OnC6Q6_&KIO_&KIOJ T S U T U S(T S(T T S5T S U C;J5a QjDjO DbM\_rqO QNK JLK4DjM$OsC"Qe_&KIOkD DtQeDN_,aN_ S S(T T S T x 0 = x( t 0 ). uOvMPJ C<QbK DjO\w<Q6Ox_,K6yJLKIO$abO JLK"^`_$aH_$a M\DpK4M DtQ a DHMz_zKIOvM$J D O ^n|&K1^`_zEDf^ OvM\J O CI_,QeJ(_,K4O T S T S S S T({ T S(T[T(S U TU T w;D ^`|&K}^`D Dt^ O8yJLyD O5~rDKIM DtQ a D _z^`DfMC;O8KIO&q(KIOzLD Qj|M$_ ^ afQ]DtqJLK"QK4Oz D]C6Q]Df_& S(TTS T U T S S U T T S(T S TU O$aNOz^}O QeO$ajO D _z^}DNM,O D _&K6yJ5K4OC yFC"Q]DfQ DpQeOM C K;CIO OQ]O C;D OwIDnO$abO&^nO Q]O,aNO D _&^[DNM$O D T U T U T S S S S U T S(T T U T U T M$J(_,K6yJLK<OC yFC"Q6DtQ DQ]OkM C K;C;O OM KIO Q"~ S S S S U S T EDeC4Q]O 6Q _Rd"J\K"^[O$D JLK6^`_$ajO_ROPM _Q]DbO$D OsC<Qe_&KIOkO\C<QeORafOPo(_&Qe_ O T T S U U OzED]C<Q]O Q6_C;D DjM$DQ]_Q]O,_C;J(a DjOzDk^ afQjDqJ\K6Q a DkKIOz\D]C"QeDtqO QjK JLK4DNM$O8_$ajJLK<Ds_PaNOq_&KI_z^}O&QjKIDfajJ\K T S(T S({ S S S T S • C KIC;O$ajJ\K0g6M$_$K4ORD ajJ5M DtO CMO\atO,^`O QjOPafO D _&^`DjM$Ozc MPJ OPM&Q]_Q]OkaN_qJLK"QjDjh S T S T U T T −1 O\MPD*O$EDNC<QeO Q6_ OzED]C<Q]O 6Q _^`_&QbKIDNM,O$ajJ\K CID JLKXMP_&q_\M$DfQj| D1CID1D M&QeDtDfQj_zQjD D _z^`DNMPO T T S(T { TULS U T ∆−1 ∆* U O aNOkqO QjK JLKIDNMPO1_\abJ\KIDV_$abOq_&KI_^nO&QtKIDNaNJLK OM$J QNKIJ(a_PDF_zMPO\C"Q6JLK OPafO$^}O Q6O ~ T T(S T S U T T O DN_Po>M$_&q_PMzDfQ]_Q]DbaNO D _^`DNM,OR_PafORMPJ O C;_zQ]J(_&KIO,aNJLK D _,K6yJ\KIOLhxD M&Q6DtDtQ6_Q6DfajO D _^nDNM,OR_zajO S5TU ∆ U U T TU T U T TULS U T yJLyD OPaNJLK D MPJ5_zK"yJLKIOnC;D * DN_PorM$_zq_LMzDfQj_zQjDjafO D _&^nDfMPO`_PafOM$J O C;_&Q6J _&KIO$ajJLK D M\J(_zKlyJLK4O\h T U T U T TU T U T ∆ U D MzQ]DfDfQj_zQjDjafO D _&^}DjMzOX_zajOyJ\yD OPaNJLK D _&K"yJ\KIOP;~ TULS U T T U T _&K4_PM&Q6O&K aRDfqVC;MzDpQe$Dj_ _Pad MzQjDjO$Dd qVJ(_&Q6Od"D O C D M\_&K4_\MzQjOzK aRHDtqFC;MzDfQjPDN_ _$asOPM _Q]DNDbaNJLK S T S5T T(S U ULS U T S T S M$J C<Q]DtQ QjDfOx_PafOO$ajO&^}O Q]O,aNJLK OxMLDpKIM DfQl~7D _$M$OLC"Q>^`JLQ]DfD QeO\JLK4Df_M$DfK4M DtQeO$ajJ\K1D QjO$K4O CIO,_z\_M$J DtQ6DfD O T S T U S T T S T TU U OzEDeC<Q6O Q]_}CID DNM,DtQe_&Q6OxO,E5q5KID^`_,QNOvD d M&Q6DNO OOzM _&QeDNDbaNOvMPJ C4QjDfQ QjDfOv_$abOvOPafO^`O Q6OzajJLK OM$DtK4M DfQC;D O T S(T T S(T U S T S T U S U ^`J a ORD Q]O&K4MPJ OPM,QN_,K4OR_R_,M$OLC"Q]JLKO\abO^nO Q]O5~ U\S U T T T MP_z aHM$DfK4M DtQeO$ajJ\KabD DN_zK4OO,aNO&^[O Q]O,aNO D _&^`DbM$O`C Q*afD DN_&KIO O\MzDHO$EDNC4Q]_ −1 CID ~F_$M,_ T S S T T U T S(T T U ∆ ∆ *−1 ^ atQ]DfqJ\K6Q a[KIOzPDeC4QjDf_&KIO J¡CJ5a Q]DNOCID ^`_$D _qO QNK JLK4DNMPO_\ajJ\K4D_$ajOq_zKI_&^`OzQNKIDfajJLKC KIC;O$aNJLK S S S T(S S(T T S S • 17 D MPJ PO M&Qe_&Q]O aN_ qJLK"Q]Djh _&Q MPD OzED]C6Q]_ OPM z_ Q]Db_ T S(T S ~ C_ S x = Ax + Bµ s + B * µ s x = f ( x, t ) OLC<Q]ODfqVC;MzDtQjPDN_ L_ uOqJ5_zQ]OR_zK4_&Q6_M$ | _zMPO C6QM$_, T T f ( x, t ) wID OzEDeC<Qe_ D eQ J\Q O\_ _ T U (S T f ( x1 , t ) − f ( x2t ) = A( x1 − x2 ) TU O&qO O Q]O TU T A( x1 − x2 ) ≤ k x1 − x2 O U J C4Qj_zK<O D d"JLK6^`_ T M$J <C Qe_ Q]_ T T W T _LC<Qjd6OPa J K6^n_zaj_ D $M _,Q T ~ OLC<Q]O Djd"J\K6^^`_zK<o(D DfQ]__&Q M,DM$DtK4M DpQ a_,K4OJCIJ(a Q6DNO DNM,_qO QjK J\KIDbM\OC"Q]_zKIO S(T T S(T S S S S(T T S f (0, t ) D DtQeDN_Paf_ ~ T x (t 0 ) MPJ Q6D _&K4O[C;OM$J CID OzK<| ^n_$DMP_z a0M$DfK4M DtQeO$ajJ\K O\atD Dj_&K4Od"_&KI_^`_,KlDf^`D O[C4Qj_zK<OD OzEMPO\C~ T T T(S T U T(S S S T T U T Q S(T M$DFMP_ TU _zO&^ ^}_zKIDt^}D U OXC"Q]_zK4ORD T O,EM\O\C q(KIJLyajO&^[_sC;O1QjK4_&QeO$_zL_RC;Df^}Dbaf_,K;~ _\MP_ Mz_zKI_$MQ]O&K4D]C"QeDNM$DbaNOO$abO&^`O QNO\abJ5K D _&^`DjM$O C QClQNKIDNMQ M&KIOPCIM\_Q]J(_&KIO CID O&K4Df_$yDbabO _Q MLD T U T S(T U S(T _$M\OLC6Q]O,__ q_&KI_&^`OQNK D _&^`DbMsg CI_ c O aD JLK4DNMPOXq M&Q Osd M&QeDfJ _&K4O h OPMzDO,E(DeC"Qe_ −1 ~ SS5T S[U T S(T U S(T T U C d S Ld T T(S T ∆ _\M$_KIO&\D]C"Q]J(_&KIOPafOC QxC"QjKIDfMzQXM&KIOLC;Mz_zQ]J _&KIOC;D^ apQ6DtqJLK6Q aKIO5DNC"Q6Dt _,K4Oy M$ajO d"JLKl^n_Q6O ^n_$D D S(T S S T(S S T(S U T C KIC;O OQ]O C;D OsCDCIO$MzQjD DBd6J\K"^`_zQ]O ^`_PD D C K;C;O ORM KIO Qlh(_Q M$DF_,M\O\C4Q^ atQ6DtqJLK6QFKIOzPDeC<QeDp_,K4ORJ S U T S5T S(T T S U T S U S T S(T S ~ >O T QjK S M\_M$DfK4M S DpQ S a C;J5a QjDjO DNMP_ ~ kO& atQe_M$_O$EDNC4Q]_O$M _,QjDbDNajO OC<Q6_&KlOD dlJLK"^`_ J K6^n_$aN_ S S(T S S U T T x = f ( x, t ) D _&^`DjM CI__\DpyF_J@C;J a QeDfO DjMz_qO QbK JLKIDfMLO C6Q6_&KIOD DQeDf_\at_ OLC<Q]O C d"DbM$DjO Q8M,_ dC;_d6DjO U T S S5T T S T S T x (t 0 ) 0DtqFCIMzDtQjLDf_ _(~ T ^ C<QNDNd"DNM,_&Q O,M\D6 S U T MzDfKIM S DtQd6_&KI_1^`_zKIDt^}D U OkC"Q6_,K4OD T O$EM,O\C_$_ TU O$ajO&^[O QjO D _z^}DjM$OM M\_&K4_PM&Q]OzK4DeC"QeDNM,DC"QjK4DNMzQBM&KIOLC4M\_Q]J(_&KIOsC<D O&KIDt7_zyDNabO T U T S U • O$ajO&^[O QjO`KIO\C;DjC"Q]DfOnM M,_&KI_PM&QeO,KlDeC<QeDbM\DC"QfKIDjM&QM,K4O CIM,_&Q6J(_,KlO _LC"QedlOParD Mz_zQ OdsO\C"Q6O T S T • x = f ( x, t ) S(TU 0DfqFCIM&DtQe\Db_ _ T _&KIORJC;J5a QjDbOsCID ^`_,D _qO QNK J\KIDbM$OXC"Q]_zK<OkD DQ]Db_$ab_ ~ S T(S S(T T S T x (t 0 ) _zK4_$MzQ]O&K a HDtqFC;MzDQjPDN_ O\C<QeO D C_ O\C<Q a O KIO\C"QjK4DNMQ]Dt~ O O$EO&^qa _$MP_ S T T U S U S U _&Q M$D CD O$EDNC<Q6_ W_LC<Qjd"OPa D M$_zQ T5S S(T T f ( x, t ) = x 2 + s (t ) S(T f ( x1 , t ) − f ( x 2 , t ) = x12 − x 22 _\M$_ qO QjK JLKIDNMPO CID ~O, aQ]_RMP_kK<O& DjC"Q]J(_zK4O$aNOXM OPafD Dj_&KIDQ]_Q]DVqJ(aND JL^`Db_$abOkqJ Q T S S SvT T T x12 − x 22 ≤ k x1 − x 2 x1 x2 M$J M\OXaN_Rd M&QeDNDd>M,_,K4O C QBHDtqFC;MDtQjLDfO O ~ TU\S S(T TS S5T T uO}qJ5_zQ]O O&^nJ C"QjKI_[Mz_ M,DtKIM DQM O\aNOz^}O Q6O D _,^[DfMPOC<DHKIO DjC"Q6DtOM M\_&K"_\M&QeO&KIDeClQ]DjMzD1C"QjK4DfM$Q U T S(T S S T U T S M&KIO\C;MP_Q6J5_zKIO_&KIOkJvC;J(a Q6DO DNM,_ O\wDdq7J5_zQ]OsC_ d"DNO0DqFC;M&DtQN\Db_ _ ~ S S(T U T(S T !"#$&%'%)( DbO S7T MzDfKIM S DpQrM S OPafO,^[O T Q]O U D T _z^}DjM$O[M S M$_,K"_$M,QeO&K4D]C"Q]DbM$D*C<QjK4DfMzQrMKIOLCIM\_Q]J(_&KIOnCID U O,KlDf_&yDNabO ~ _\M$_`Q]J(_&QeOnKIO,$D]C"Q]J(_,KlOPaNO8C QC"QNKIDbM&QRM&K4OLC;M$_Q]J(_&KIO CD*^ afQjDfqJLK"Q arK4O$\D]C6Q6Dt_,K4OJC;J(a Q]DbO C;D ^n_$D _ h S(T S S S T(S S5T _&Q M\DM\DK4M DtQ a D _&^`DbM_zKIORJvC;J(a QeDbOsC4D ^`_PD _qO QNK J\KIDjM$ORC4Qj_,K4OkD DtQeDN_,aN_ ~ S(T S S U T S T(S S(T T S T x (t 0 ) 18 u(Q]Df^@M\|K4OzLDeClQ]J(_&KIO$abOM O,^[J JLQ]J Odl_zJ KIDfLO$_& __&q_&KIDQ]Dt_ J5KCIJ(a Q]DjD^ aQjDfqaNO_zajO T T T S(T S S M$DtKIM DQ a DrKIOzPDeC<QNDt~ VKIOz O Qe_ _PM\O\ClQ]JLKKIOz\D]C"Q]J(_zK<OqJ5_zQ]O MPJ M$O8aN_ D OzEDeC"Q6O Q6_ O\M _zQjDjOzD O C"Q]_zKIO D S S S T TULS T T S U T dlJLK"^}_ JLK6^`_PaN| ~ T ( DNO[M,DtK4M S DQ S a U O[JLK U D T(S a*D T Qe_$D U D T d"Dfo S K4_[_ S(TU OK4O$LDNC4Q]JLK S a T OPafD T DN_&KR_&KIOMP_&KI_,M&Q]OzK4DeC"QeDNMP_ D d"Djo K4_ky~\O$J(_&KIO,M$O KIO, apQ6_RM$_rqO QfK Y ZDFC;M,_ ORDb_,K>qO QNK ZDFMzK4O\C"Q6O O\MPD U T S S T SS U T SS U u = − Li S M$_zKI_zM,QeO,KlD]C<QjDbM$D _ y q_zKIM ;K C K<DjaNO D _&^`DbM$OxqJCIDfyDNabOC QM,O$ajOxD jD M$_&QeOvD dlDjo K4_xy~vMPO\C"Q*M$DfK4M DpQ _&KIOCIJ(a Q6DNO PO J(_&KIO$M,O S S U T S(T TU T S S T(S S U qajO$MP_ D LJ K<DjMzOC<QN_,K4OD DfQ]Db_$ab_C;Os_ o(OD QNK q M&Q ODf^q_\CC;_ D M$_,K4OC;J(a QeDf_ ^`_PD TU U T T S T T (S T S(T U S U T S (T S qJ(_zQ]O OzJ5a _\ ~ vM\OPC"QM\DKIM DpQ _&KlO O$M _$QjDbO O C<Qj_$KlO D d6J K6^`_ JLK6^`_$aj| O$J(_zK<OPMzO d MzQjDj_ S S T(S S U T T U (S T OzEDeC"Qe_\h $O M$DBOzM _zQjDj_C y}d6JLK"^`_ IC OXqJ(_&QeOCIM&K4DjO ~\ QjK"_ O,_&K g −1 ( i ) U S S T(S T U i=− L _PM\_sC<ORD ajJ5M DbO ClQ]O1yJLyD _RM JC KC_ OsM K4O Q z^ atQNDtqJLK"Q aK4O,\DeClQ]Df _&4K O U T S T S S U S T S S T5S g −1 (unde u = g −1 (i )) T(S C;J5a jQ DjO S S(T DbM$_ qO NQ K T S JLK<DbM\O iL U O$J(_,K4OPM$OK<O&\D]C"Q]JLK a $O abD Dj_&K S T T T(S O5C6Q]O@M$J fQ K4J(aj_&QD T T M "K K<O QM S T S ~ i ∈ (−∞,+∞) uOsM$J ;C D OzK<_ M$DtK4M DQ HD M$_$K4Okq_$K6Q]O$_kKIO& DjC"Q]Df_sd6JLK"^`OP_z\_ ^ atQeDtqJLKlQ aj_kqJ\K6Q6DNajOsMz_,K Dj_ T U S(T S T S(T S S C QMPJ OPM&Qe_&QeORO$ajO&^[O Q]O,aNO D _&^`DbM$O5~ S5T T T U T _$MP_RD QbK* MzDfKIM DtQ rHC QD OzqajD DfQ]OMPJ DfQjDjDfajO5 !#"%$'&(&)& T S(T S S(T TU T TU OzEDeC<Qe_y M\afOg<C;O$MQ]D Dfcd"JLK6^`_&Q6O D M$J O C;_&Q6J(_&KIOgjyJLyD OzcXCID-"CI_ C KIC;OD O&qO O Q6O +, T(S S S(T U T TU T T S S TU TU T OQ]O CID OXglM K<O Qjc U T S(T S T QNK4J(aN_zQBD Q6O CID OMP_&KIO O\C"Q6OM$J QNKIJ(aN_Q C<DFD M KIO QO\C<QeOM$J O$M$Qj_zQBD +.+ , JLK4DjMzOkK4O,\DeClQ]JLK0M$J T T T S(T T(S T T S T T T q_zKI_$aNO,aFM M\J O C_&Q]JLK SxS(T TU T J\KIDjMzO}K4Oz5DeC6Q6JLKXM$J QNKIJ(aN_zQrD M K<O Q2M\_&KIO OLC<QjOnM$J QNKIJ(aN_QRCID*D Q]O C<D O`OLC<Q]O[M\J O,M&Q]_QD +.+/+ , T T S T T(S T T T S(T T T C;O&KIDfOXM JsyJLyD _ S T 19 + , JLKIDNM$O8KIO&\DeC4Q]JLK`M$_zKIO T(S C;_zQ]D]CId"_zMPOM,J TU DfQ]DbDNabO +/+ , CD +/+ + , O C4QjOC<QNK4DbM&QvM,K4O5C4M$_zQNJ\KC;D_zKIO q_ 6Q _ T M$_,K4_PM&Q]OzK4DNC<QeDNMPDfDVD $M _ K<_Q]_k_\C<Qed"Oza du T U 0 < µ 1< < µ 2< ∞ di O CI_&Q6J\K0_&K4OXJxM,_&KI_$MQ]O$K4DeC"QeDfML_M$J QNKIJ(ab_,Qj_XD C4_&KIM,D _ ), JLKIDNM$OkM$J TU T T T T _R_&K4OXJxM,_,K4_$MzQ]OzK4DNC<QeDNMP_M$J QjK<J(aj_&Q]_kD d"a E + , JLKIDbM$OyJLyD T T T S _&Q M\DO$EDNC4Q]_OPM _Q6DfDbaNO OC6Q]_zKIO_,aNORMPDtK4M DQ a DDj_&KM$DfK4M DtQ a_&K4OXMzOPaq QeD JCIJ(a Q]DjO ~ S(T S U S S S S S S T S $ ++ O,EO&^qa B a q(K4O\M$O O Q _PM$_C4OD QjK4J M$O M$J O ;C _&Q6J\K1D q_&KI_,aNO,aM KIOLDeC"Q6J\K a $O abD Df_$KIh_Q MLD S U T U T ULS (S T TU T T S S T T S(T &^ atQeDtqJLK"Q a(KIO,\DjC<QjDf k_&KIORJCIJ(a Q6DNORC;D ^`_$D _ qO QjK LJ K4DNM,O CD ~ S S S T(S S(T T S i L uC +, T CIOz^`_ _Q]JLKrCIOkQjKI_Q6O$_zL_sM$_& a DMPDtKIM DfQ d6JLK"^`_Q D NQ K $M J O C;_&Q6J\K1D q_$K4_$aNabO$aM KIO\CID]C"Q]JLK T S (S T5S S U T (S T T U T T SS(T OPaND Db_&K0M,_&KIO OLC"Q]OkM$J QNKIJ(aN_zQBD Q6O IC D O5~ T T (T S T T T 5S T +.+ , _PM$OLC<Q ML_}CIO_ _ o(_syJLyD x _ D C;O&KIDjOxM K4Oz D]C"Q]JLK a C;D,^ apQ6DtqJLKlQ aFKIO,$D]C<QjDfx_zK4OxJnC;J(a Q6DfOC;D ^}_LD U S T T S S S S S T5S _qO QjK JLKIDNMPO C;D ~ 5S T T S uC iL T 20 !#"$!%& uM&KIDjO&KIOz_O$M _ DbDfajJ\K " /(' +*) +' $,.- " .(' $. . )0/ + $, 0,. ) ('1 + ,/ , qO QjK MPDtK4M DQ S { T SS(T S OPaND Db_&K0M$J C<Qe| T T T T <CIM&KIDjO&KIOz_}Q6O$JLKIO^`OPD0R_na D2sDfKIM&(J5d6d 43 J KID1M OzEM\O&q DN_ J a D O}K4O\d6OzK<D |}qO QNK S T T T ULS S { T U\S S U T({ T S M$_,K4O6587 Zhn_& KIO&q(Q O$M JCIM Q6ORqJLQeO Db_\afOPafO J K4DjaNJLKrwID>M KIO DND D aj_&Q KIDbaNOM O$abO&^`O QeO_$abO TU U T S5T S T({ T ULS S T5{ U T S S T M$|,K4JLK0M$_&KI_,M&QeO,K4DeC4Q]DbM$D C QM$J QNKIJ(aN_zQj O Q]O C<D O T(S S(T T T T S(T <CIM&KIDjO&KIOz_XO\M _ DbDNaNJLK ORaNOLo5|zQ K4| D QjK<OQjO C;D OwIDFM KIO QFqO QjK d6DjO$M\_zK<OXOzajO&^}O QM$_$K4O _,K4OXJ S { U S U T T S(T S T T S T T(S M$_,K4_PM&Q]OzK4DNC<QeDNMP|MLJ QjK4J5ab_&Q6| Q]O C;D O 90dlDjO$MP_&K4O OPafOz^`O Q O_$MPO\C"QQeDtqD QNK4J M$OM$O$arq D JF_&K4Dj_&yDNab| T T T S(T T U T ULS S5{ T C qajDp^`O Qe_,Kl|Xg M KIO Qjcw4DBJxO,M _ DNOXC qaNDt^nO Q]_zK4|5 S T S(T S T S { S T <C K;CI_D O\_PaN| O Q]O CID OD QjKIJ M$O O\M JCIM Qe_C qajDt^`O Qj_zK<| D[g"M KIO Q aq(KID S U U T S(T T ULS T S(T S S T S T S T C KC|$cHw;DFOzM _ DN_RC qaND^}O Qe_,K4| S S { S T V j − Vk = e(t ) ]KIOzLDeC"Q6J\K a[M$J QNK4J(aj_,Q M KIO QD QNKIJ M$O_&KIDN_zyDfaj_ C qabDt^`O Qj_zK<|;D :q(KID O$M _ Dj_ S T T S T T ULS S T T S { u R = uˆ R (iR ) yJ\yD X _ aND Db_&KI|D QfKIJ MPO qa CH_&K4DN_yDNaj_D=< _,K4DN_zyDfaj_Rw;DOPM _ Db_ T T T ULS T S S { u L = Li> L ]yJLyD _ O$aND DN_&KI| M$J QNKIJ(aN_Q]| d"a E D QjK4J M\O J | _&KIDj_&yDNajO C qafD^`O Q6_,K4O T T T T T S T U\S U S S T q(KID O$M _ DtDNajO ~ T S { i L si φ iL = iˆL (φ ) si u L = φ? "M$J O C;_&Q6JLK a M$J QNKIJ(aN_zQ CI_&KIM,D |xD QNK4J MLOs_,K4Dj_&yDfajOzajOvC qaNDf^O Q6_&K4OD;@wDBA(@kq(KID TU T S T T T T ULS S T T O$M _ DjDfajO C D S { ic = q si q c = q c ( uc ) E FHGIJLK V4 = 0, V1 = 2 cos t , V2 = 10−3 iM 2 , (V2 − V1N ) / 2N + (V2 − V3 ) / 1 + i2 = 0, 10−6 (V1 − V3 ) + 1(V2 − V3 ) = i3, V3 = 3i32 − i3 1 −6 (VO1 − VO 3 ) = i1, 2 POQ]J _ J $_ aN| _,K4O^[_\Dq D OO$M _ jD D O$M,,Q^`OQ6J _Q]_zyajJ a DvM,O$O$_MzO O\C<Q]O _z_ Qj_ qO NQ K U T U S({ T S { U U S S S(T T T S (V1 − V2 ) − 10 21 M$_\abM a a ^[_ _$al~ kOzLJ5af_&KIOz_[O,M _ DjDfajJ\K DNd"O&KIO Df_PaNO OMP|&QjK4O JLqO&KI_&Q6J\K ^`_ O\C<QeO CI| OPd6DNM$DbO Q6| S S T(S S { U T5{ U S(T S T T T ^`_PD>qO QjK MLDtK4M DfQjOPafO OJLK D a>h OvO,E7D]C"Q]|JCID o K<|O$M _ DjO ~ MzOzq M JLK D a 6khFd"DNO}CIO T5S T S S U U T5S S(TU T S S { T TU S U T(S OzQ]OzKl^nD |g]_\M$J(aNJ OOzEDeC"Q6|zcJC;J(a DNOn_ _PafDfQjDjM$| QjDjafDt\ ^n_ Dtq aN_zQ]JLKxC;D^yJ5ajDNMg OO,E7O$^vqa U T S5TU S5{ T S TU S5T T S U S P cHC;_ h(M&DN_zKHwDqO QfK M$DfK<M DtQeO$abORabD DN_zK<OPhC4Osd6J(aNJC;O\wlQ]ORJ^}O$QjJ | ^[O,KlDjM$| ~ S T S S T U T(S D IC DeC"QeO&^ OmO$M _ DND O C6Q]_zK4O C;M&KIDeC<O d6J\K"^`_ JLK6^`_$aj| S(T(S U S { U T T ~2Dj_&K w;DqO QNK M,DtK4M DQjO\atO aND Db_,K4O _zajOMP|,K4JLKO$M _ DbDx_ CIJ(a DbO_ _,aNDfQNDNM$|LhRCIOq5K4OLd6O,K4| T S S T S { S S({ T x = f ( x ,t ) Q6DNabDfL_&K4O$_^}O&Q6J OPafJLK ^nO&KIDNMPO\~ vM$OP_\C6Qe|kq(K4O$d"O&KID |ROLC"Q]Or^`JLQ]D7_,Q]|k_\C6Q6d"O$a6 S U T(S T5{ Dfc2M&DN_zKqO QNK MPDtK4M DfQ OJLK D a J5D>MP_zajM aNO,aNOs_ _PafDfQjDbM$OC Q OLC<Q a OM$JL^qabDNM$_zQ]OXqO QNK T SS(T S U U T(S U S T S(T U S U T S _Rd"DO$d"OPMQ _zQjOXO$d6DNMPDfO Q O JLqO&KI_&Q6JLK ^n_ ~ S T U S(T S T DNDbc OQ6O&K"^}D _&KIO$_CIJ(a DNDjaNJLKX_ _PafDfQjDjMzOM _ Q6J\K a JLKRq(KIJ(oLK4_&^`O O$M$OLCIDtQe| O$d"JLK"Q OnM$_,aNM a U T S({ T S S S S(T T S5T U S M$J C;D O&KI_&yDjaNh(Mz_PafM aN_Q]J(_&KIO$abORd"DbD q(KIJ(DfOLM&Qe_&QeOqO QNK _JLqO&KI_RM M\Dbd]KIORw;D M CIDf^yJ5a K<D]~ T U S TU T S S T(S S S !kKIDNMPO^}OzQ]J | ^nO&K4DNMP| qJLK OLw"Q]O O af_ M$J D Dj_D D Df_PaN| wID OQ]OzKl^nD | qOK4 U T(S T U TU { T { U T TU x( t 0 ) OOLC<Q]O1q_LC a OQjD^q~ S U x( t 0 + h ), x( t 0 + 2 h ),..., S(TU "vJLQ]|z^ ~O,aNO^[_$D8C;Dp^qajO ^}O$QjJ O O D Q6O$oLKI_&KIO ^`O&KIDbM$| C Q OPdlD DpQeO O U U T T(S S5T U T U x( t ) = x k k K<OPaN_ DjDfajOL { B^`O,QeJ _ aNOzKHO,E qajDfMPDpQ6|Rg6lc U S x = x + h⋅ f (x ) k +1 k k B^`OzQ]J _r ajO&K0Dt^qabDNMPDpQe|Rg6""c U S x = x + h⋅ f (x ) k +1 k k +1 uO x S K6^`|&KIO\w<QeO@KIOzLJ5af7_&KIO$_ ^}O,QeJ _QNK4_zqO, a DFge""6c h U S S = x + [ f (x ) + f (x )] k +1 k 2 k k +1 #$&%')(+*-,/.0(1,2*.3'4$5,&*7698;:0<=(>.9?(1<@?(A.).,/8B(1$DC;.FE$/(A8G)%=')(A$H$I:)$J,&*-,&K&'$B68H<@(1CL.0%M$CL$NPOB(A.)NP$RQ S@T+').FE+E+U&VWNX$&'F<CL$@:0$ %*NY$Z(>.[,;$R?(A$&\I$Z%'[8&'4$NP8I.G[%8/.0%L'$R%*-CL8/*](1$/\Z*:^'8&'[$H,I<@(1$&,&'4$_Z`F%P8/,I$;TA',I8/\]Ta$5E<M:0<TA$@T1,RNP$/'4<MCL$DT+?$I,&.[8I:3$DCL$ '[.)?-b5$I8B(c_ZdR$;:[8fe4.[.4:0$J,Z8&(A$DC$ZE.3%$@TA,Ng$&'<CL$Z:0$Db5$/8/(C$D<@(1CL.0%*M:9h ikjlTA*%'1m ]^`O&Q6J _os n Oz_,K ORJLK D aqp U U U T(S 4 1 2 g6 5c x k +1 = x k − x k −1 + h[ f ( x k +1 , t k +1 )] ]^`O&Q6J _o3nsOz_,K OR3JLK D ar 3 U U U T(S 18 9 2 6 xk +1 = xk − xk −1 + xk −2 + h[ f ( xk +1 , t k +1 )] 11 ]^`O&Q6J _ 11 o nsOz_,K OR11JLK D aXs11 U U U T(S 48 36 16 3 12 x k +1 = xk − x k −1 + xk − 2 − xk − 3 + h[ f ( x k +1 , t k +1 )] 25 25 25 25 25 ]^`O&Q6J _ nsOz_,K ORJLK D o a t U U U T(S 300 300 200 75 12 60 x k +1 = xk − xk −1 + xk − 2 − xk −3 + xk − 4 + h[ f ( xk +1 , t k +1 )] 137 137 137 137 137 137 22 ]^`O&Q6J o _ nsOz_,K ORJLK D a U U U T(S 360 450 400 225 72 10 60 x k +1 = xk − x k −1 + xk − 2 − xk − 3 + xk − 4 − x k − 5 + h[ f ( x k +1 , t k +1 )] 1147 147 147 147 147 147 147 J IC D O&KI M$| X^`OzQ]J O$abO DNd"O&KI|1q(KID ^`J a ORM$_,aNM a_$a O&KIDt_Q]O,Dl T U TU U U T ULS U S U x = x + h⋅ x k +1 k ) = x ( t ) + hx ( t ) ( I ) k k x( t ) = x ( t ) + hx ( t ) ( II ) k +1 k k +1 h x( t ) = x ( t ) + ( x ( t ) + x ( t )) ( III ) k +1 k k k +1 2 x( t k +1 2 ~ge5c x (t k −1 ) + h x (t k +1 ) 4 3 3 uOJLyFCIO&K"| wJ\KM\|}^`O&Q6J _nh MP_&KIO CIO OzQ]OzKl^[D | d M DNO O S U T U T T S(T { U x( t ) k +1 OzE5qaNDNM,DtQ6|$h QeDt^q MzO^}O&Q6J OLafO6h "60wID 5C Q^[O,QeJ ODf^vqFafDbM$DQ]O5~ T U S(T U uJ(a DjDtaNOsJLy D Q6Okq5KID D Q6O$oLKI_&K4O ^`OK4DNM$|deDjD _zq(K<J EDt^n_Q6DtOsCIOsMP_zajM S({ { T5S T T T(S TU S aN_sd6DNOPMz_zKIOkq_PC `wI D }_k^}OzQ]J O$Dfc ~\OROzEVO&^}qa h\qO U S x (t k +1 ) = _RM$|zK<OPDFCIJ(a S5{ 3 1 x( t ) k hO5C"Q]OJn^`OzQ]J | U afOP_5|RO&KIJLK4DNajORD NQ KIJ CIO T ULS QjK O$M _ Db_ T S S { x = −λ x DfOk_ $_ abDtQ6DfMP|O ClQ]O − λ t CIOMP_$aNM afOP_zP|7 T S x ( t ) = x ( 0 )e O$K4J5_$K4O$_ x (t k ) − aNJ(M$_Laf| aj_ t = t n+1 ε n = x exact ( t n+1 ) − x aprox ( t n+1 ) = ( x n e g O _sd6JC<QMz_PafM aN_QFqafOPM$ OkNa _ MP_$abM af_zQB_&q(KIJ EDp^`_$QjDf(c S(TU xexact ( t n+1 ) S TUU S x( t n ) −λ h ) − x n+1 λt g O _¡d"JC<Q t = t n+1 este ε t = ( x 0e n+1 ) − x n+1 S(TU x exact ( t n+1 ) _&QD D Df_Pafc ~ M$_\abM aN_QFqabO$M$ Oaj_ T { S TUxU x( 0 ) U d"Dfo KI|sC;Oq(KIOzPD Q]|CIJ(a DbDNabORO,E7_PM&Qe|sw4DV_,q(K4J E7Df^`_&QeDt|qO QjK ,O M _ Df_ h O ~ T S T S({ T S S { x = −λ x S5TU λ > 0 O,K4J(_zK<OP_ !@^`OzQ]J | Q]JLQ]_,aN|¡aN_ OD 6Q O\oLK4_&KIOnqO QjK M$_&KIOO&KIJ(_&KIOz_`Q]JLQe_$aj| O\CIMzKIO\w6Q6O J _&Q6|M M&KIO\w"QeO&KIOP_ T T S U U S Q]Dt^}q a DO\C<QeO`J"!#$%&('*)+$,-./0'F~ ! ^[O&Q6J |nM,_,K4O _&K4O[_$MPOz_LC<Q]|q(KIJLq(K<DjO&Q6_Q6O[O\C"QeO ^ OzKIDfM1.02)$,-./3'h ` S S U T5S T5S M&DN_zK _,M\|OzK<J(_zK<OP_ajJ5M,_$aj|RO\ClQ]Or^`DNM,|swID OLC;M&K4O w4Qj O Q]D^q~ U U T OzEOz^qa a O1^`_PDFC C qO QNK ^}OzQ]J _r ajO&KO$E5qaNDbM$DQj| MP_&K4O T S U S T S U S T U T(S ^`O&KIDjM$| U 23 x1 = ( 1 − λ h ) x 0 x 2 = ( 1 − λ h ) x1 = ( 1 − λ h ) 2 x 0 O\C<Q]O8Mzaj_,KMP| U xn = ( 1 − λ h ) n x0 _zQ M\D qO NQ K xn → ∞ T S 1 − λ h > 1 S(T _$MP| n→∞ w;D U OPM$DqO bQ K q_ wID^`_&KID OQ]D^q T S U ^`O&Q6J k _ O C"Q]OkD C"Qe_,yDfab|(~ O bQ K M,_k^}OzQ]J _sCI|sd6DbOsC"Q6_&yDfaj|1QjK4O,y DjOM,_ w D OzM\D 2~ U T T S U S 1− λ h < 1 U h< λ >O T QjK S ^`OzQ]J _ ajO&KDp^}qabDNMPDpQ6|M U S S xn = 1 x (1 + λ h) n 0 hλ 1− 2 xn = hλ 1+ 2 n x w;D(^`OzQ]J 1 _ QjK<_zqOz a F D M U S S S 0 C;OsO O M$|Ph _$M\| hnqO QNK _&Oz^ w;D O$MLDF^[O&Q6J O\atOC Q*C"Q6_&yDfajO$hFD jD d6O,K4O Q O U U T S n→∞ U S(T TU T U λ >0 xn → 0 U ^`|&KIDt^nOz_v_q_ C a D O1Q6Dt^q~_xJ^[O,Q]J |vC4Q]_&yDjaN|^`|&K4Df^}O\_q_\C a D OsQ6Dt^qO C"QeOxajDt^}DQe_&Q]| ^`_\D O S S U U S S U (T S U O&KIJ(_&KIO$_kaNJ(M$_PaN|Df^q CI|MP_,K4O O&qD O O1q(KIJLyaNO&^n_sC<Q Db_,QN|(~ S U TU U SU 0_ ^`OzQ]J _ aNO&K¡OzE5qaNDNMPDpQ6| g qO QjK ^`O&Q6J _m aNOzK Dt ^ qaNDNM,DtQe|\h U S T S U S ε e = k1h 2 ε e = k 2 h 2 ε e = k 3h 3 qO NQ K ^`OzQ]J _QNKI_zqO, a DbcIhkq_\C ad"DND aNDf^}DfQj_zQ`w;D O T S U S S S TU U 2 CIOqJ(_&Q6O T Q6&^q7ab_MP_ λ max a &M KI M _$ajJLK<D d"J(_&K"QjOx^`DbM$D>_\atOva D ^n|&K a^`_zKIO Oq_\wD O$MPO\CI_zK4D>qO QjK O$QjO,K6^nD _&KIO,_C;J(a DNOPD S T U S S T(S S U T T SU T S({ C;| PM |aj_ 6Q Dt^q OMP_$aNM a O ClQ]DjdlDbM,_&Q O1^n_&KIO\~ ULS S(T U S T S U M\_, a OPDH^`O&Q6J OnO,E qabDNM,DtQ6O$h q|n_$aNOPo(O&KIOz_}q_\C a D OQeDt^qFh0COqJLK O\w"QeO Onaj_[M\J D Dj_ T S ST U ULS S S U T U TU { D D DN_Paf| wIDnC4OMP_zajM aNO,_$P| _$MPJLqOzKID Q6JLQD Q6O,K6_$a a OQ6Dt^q M$_zKIO T { S T7U T S U x( t 0 ) x( t 0 + h ), x( t 0 + 2h ), ... q5KIO,\D Q6|vD QeO&KIO\C~ M\_& a O$D^`O&QeJ ODt^qabDNM,DtQeOab_d6DfOPM$_zK<Oxq_ CRCIOd6_PM^`_PD^ afQjODtQeO&KI_ DND2~0_q(K4Dt^[_ T T T S S(T U S { ~5x_PaNJ(_&KIO,_ DtQ]OzK4_ DfO[C<Od"J(aNJCIO\w4Q]OvJ}^`OQ]J |vO,E5qVabDNM,DtQe|[w;DHC;OvJLy D Oxq(K<O DNMQ]JLK a { U { T U S x ( 0) = x + hf ( x ) k +1 k k J\y D Q]|XqO QNK q(K4O DjM,QjJLKrCOD QNKIJ MP O ^`Oz^y(K a KIO&q(Q_$aOPM _ DtO\DV^}O,QeJ O\DFDt^}qajDfMPDpQ6OJ\y D 4CO { T(S T S U T ULS T S U S { U { T TULS J J |X_$aNJ(_zK<O_a D 'g ^nO&^y(K S a>C<Q]_ T o c0ML_&K4OaN_DtQeO&KI_ { Dj_ S K"^`|zQ]J(_&K4OCIOD T QjK<J ULS M$O U D T}T J S T T S S x (1) T k+1 ^`O&^y(K a K4O,q(Q wID>CIORJLy D O C&~ _ ~ ^ ~ ~$q |sM,O ( N −1) − x ( N ) < ε Df^q S C&~ 5x_,aNJLK4DNabO S U { T x (2) U T x k +1 k +1 k+1 x (1) , x ( 2) ... CO T(S ^nO C4MRMPJLK<O,M,QeJLK<Dl~ k +1 k +1 24 q_zK<_PoLK4_$d R a _ Q]OzKIDNJLK OPMzOLC;DpQ6|C;M&K4DbO,K4O$_8O$M _ DbDajJLK OC"Q6_&KIO S T T S { U T dlJLK"^}_ ~ uM&KlDjO,K4O,_O$M _ DtDNajJ\KvMPDtKIM DQ a D _LM$O,_\C<Qe_ d"J\K6^n| OPMzO5CIDpQe| O\atDf^`D _&K4OP_ T S { S S S T T T x = f ( x, t ) JLKR_,K4Dj_&yDNajO w<DrO,E qabDNM,DtQ6_&K4O$_n_PapQ6J\K4_`q7aNOPMz Oab_`OPM _ DNDbaNO[MLDtK4M DfQ a D]~ MzOLC<QjOnJLqO&KI_ D D1Dt^qabDNM,| S5T TU8U S { S S S { S(T K<O,\J(at_zK<OP_ ^`OzK4DfML| _ JLK`CDeC"Q6O&^`O OO$M _ DjDR_$ajo(O&y(KIDfMPOafD Dj_&K4OCI_ O\abD DN_$K4O\hJLqO&KI_ DbO_$aRM\|zK D T5S S5T U S { T ST T { S K<O, atQe_&QqJ(_&Q6Osd"D_$d"O$MQ]_Q OsOzKIJ\KID>CIOz^ Dfd"DbM\_Q]DtOwIDDf^qafDbM$| _ ^`DQ O$d6JLK"Q OsM$_$abM al~ vM\OLC6Q>q(K<J(MPO O S U T S(T T5S U S U S O_D Q6O$oLKI_O$M _ DjDfabOMzDfK<M DtQ a DCIOCIDt^qajDNdeDjM$|8q(K4D aNJ(M DpKIOP_ O,aNOz^}O Q6OzajJPK D _z^`DNMPO M ^`J O$ajO U T S { S S S T T S T U T S U K<O,\D]C"Q]DO ^`DtQ6 O "!$#&%'#)(*",+.-/$01"/B~ BKIJ5MPO _\C<Q6d6O$aHCIO OQ]OzKl^[D |xK<|LC<q C a K<O,\J(at7 M$DfK4M DpQ T(S U TU U T S5T S TUS(T S K<O,\D]C"Q]DvaND Db_&K*CI_ OzajD Df_zKaf_Rd"DbO$MP_&K4Okq_$C OQeDt^}qB~ T ST T U 2 3!$#*%1#&%'#4(&"+.-/$053/6+#7/98;:=<><"/?(&"/$!#7/@A-$81":6@A-$<B>C$C05/DB%10;/$0E-:FD O&KIDp| D ^nO&Q]J _ U U T U ^`OzKIDNM$| OD Q6O$oLK4_,KlO Q]DbafDb$_,Q6 | q_&KI_$oLKI_$d a_ Q]OzK<DbJLK$ ~ POzQ]J _ aNO&KDf^xqFabDNM$DQ]| d6J(aNJC;O\wlQ]O K<OPaf_ Dj_ T5S U T S T S T U S { O`EO5C"QjO`_&K4Db_,yDfab_ OC"Qe_&KIO~OPMzDqO QfK MPJ O C;_zQ]JLKxw4D2yJLyD |CO[qJPQRCIM,KlDjO U T S TU T T xn +1 = xn + xG n +1 S(TU K<OPaN_ DjDfajOL { P OQ6J OPaNO U JLK"^`_$aj| J T(S ^`O&KIDbM$O U T O\CM,KlDNO HJLyD | O CI_zQ]JLK TU T T uI n +1 = 1 C un +1 = un + huK n +1 in +1 = C h un +1 − C h iJ n +1 = in +1 in +1 = un in +1 = h L 1 L un +1 un +1 + in h un +1 + in L vM\O\C"Q6JLKvKIO$ab_ DND fa OMLJ\K4O5C"q C;M&O&^`OPaNOOPM&Dt_,aNO QeOM$_&KIOKIO&q(KIO&\D Qe|8^}J \O a asM$JL^q_ jD J _$a D { S5TU T T U S T T ST(S $M J O C_&Q]JLK*wID_Pa O$D(yJLyD OR_ CJ5M,DN_zQ7^nO,QjJ O\D aNOzKHDf^qafDbM$DfQNO(~ T U T S(T T U S P OQ6J _QjK4_,qO a DFd"J(afJCIOLw<QjOK4OPaf_ Dj_ U S S { xn +1 = xn + 25 h 2 [xL n + xL n+1] J un = 1 C in , HRJLyD | O CI_&Q6J\K TU T un +1 = 1 C h h un +1 = un + un + un +1 2 2 2C 2C un + in un +1 − in +1 = h h in = in +1 1 L in +1 = h 2L 1 in +1 = un , in +1 = in + T h 2 in + un +1 + L h 2 un +1 in +1 h 2L un + in !"#%$&(')#+*"',.-/0123/',546#6 x = 3 x − 1 x + h 2 x7 89 2#6':#<;=5$( n n +1 n −1 n +1 3 4 3 >?@?-A,BC"'<@4D#:CE(5$6&>!?$($F-/52!G0/#.HI!HH.#:$(BJ<KLE/&$(BM>@&L>5&(4D#,#<',MM*2&$(>4D#,!$(/M',NKO!KO$5'6M 2#%KPEQ$(RS@T?$U0V#$IWXSY"5;Z&I':6B[ efg 4 1 dc b _`a 2C C ^] \ 0/# 3C 2h i u u − i u u i − i = − = + n +1 2h n +1 h n 2h n −1 n +1 3L n +1 h'65'6>!KLE(5$.#6!$!-V>@#,i2C>@&jKPDM5kM!/#%$&('F#l-1&$"[ mX!$(I5$n-o2! 3 n 3 n −1 pC?H(#:$.B )q 52KO'6'<U>!KLE($(#,!$rEI"@;s$DDU>!$42#:$t>Z=2Pu/i;!#D-1D@$4DBL>?!$F-125$s2BEI$6v&r&$wE(?- 2#%KPEyxz5'6?-/T{J<$|EI/'<'}>&~>5=@D-A&o-oB>&/$>!KO5$(i2B65$n-V#:&$.Z-/5&>@&"@$<&(' >!$($n-o2!1&('%&(# -/5&QH(!H(#%$(#n',NKO!KO$6&.'N2#:KLE $25A#6! 8 $,1& &$E.!-GC#%KLExP1TsE(',Z>5=5$( ',-AD/#%$(#%4D#,@',Bi2BMZ',KU@$6Z',!#:$(KO#6>5j-/>@?'%>@&(',Zi;!B A!-AE&$F-1&('k>#%">&.#,&(':&.#k':QKO!KP@$6&.' t0+h &6#6',#%;?=@$(UPKO52B #:$!//3$&KO"#:>ZB !/#%$&('l 8( $ >?!-l*1@'F$IZ':#<;?X&$&(#F>#:v>@&(#s#%$(KO#<>M'<#%$(#,5E(DM*1#(*B!>&6BE/#:$Q"@;?'%(/@X&$&.#>#%">5&(#%FvZ;#2-16#:'<#%$(#6 26 ,' *1#,@>5AE(s- 2#:KLE 8 >Z-AO>!#">5&.#: >!$42#:$.KuZ':?'% >!KLE(5$.#6!$ '6 '6KO5$6?'<! #%$(5KO#:>Z?T A@;?#2-12"',#$.#<@"M#:E.'</0/#(K &('#%E(':i/0V# -1&V-/C#%$(E(@$($2 8 $(>E(=@$(>@&LKP!KO5$I<&(' t0+2h -/E(52C&2#<'<#;sjKL@B!"#:$&.' 11>ZCKOX6/E(5;Z&('&(# -V&jKOMZM!A#:$&('( 8 >BE.!-1&('FX2#:KLEj$&U-/CKU#6*v#6>BZT!J,$>@#%/>5&.#:,&('."@;?#D-v2#:P-/CKUI#<*1#:>ZB $&KOZ# E("KO6"#:#-1&V-/'6?#%$(@E($($2!T)(@',!"#,'6U"Z;#2-165$42@',!/BKO=5$.=$. >?@',Z0V# 8 >ZBUE(?-A&('Xs 2#%KPEP-AXKO#,*1#:>ZBX('<!A#6':A;?#2-1D@$46Z',! ,/H&(#,N/>@?':>&I',D 8 !#"%$&'()!#*+,('-#.#"/ -V >Z?$F-161&.#6?-/>r?-V5KOB$(Bi2!Q>& KOZ',Z': Z':5KO$D',! ':#$(#,@" 8M $ >!$2#:$&.5/?T.!K 1KO#:$I E(/KOi,/#6# >Z?-1!OKu?'<E($,& >!$($n-o2!1&('$.Z',#:$I#,r0"#Hn!H(#$. $(5'6#$(#6/B J<$>Z5;&.'&s#,'<#;!B/#:#KOi21# 0)&(':@u#KLE('<#,>@#%D 8 '<'< >!/?-AE&$;!B5/>Z',!"',Z' KOi2#:$!"@"X$.&KP@1#,>B3-/@,@KO#:$(BNJ<$jKPj?-V5KOB$(Bi2! 8 mN!$(I5$F-/? pM!H(#%$(B 7 u = uˆ ( q ) in +1 = qn +1 7 un +1 = un + hun +1 7 un +1 = 7 duˆ dq n +1 un +1 = un + h 6 qn +1 = duˆ dq n +1 i = iˆ(ϕ ) duˆ dq n +1 ⋅ in +1 25 2 f (4 in+2 1 ) 2 C q = qˆ (u ) 3 in +1 = qn +1 C qn +1 = qn + hqn +1 1 1 in +1 = q (un +1 ) − qˆ (un ) h B h =A@ =?> ( n+1 ) ⋅ in +1 < u n +1 = ϕ n +1 < in +1 = in + hin +1 < < diˆ diˆ in +1 = ϕ n +1 = ⋅ in +1 dϕ n +1 dϕ n +1 diˆ ⋅ un +1 in +1 = in + h ; dϕ n +1 9 8 8 f (:u n+8 1 ) 8 I ϕ = ϕˆ (i ) un +1 = ϕn +1 I ϕ n +1 = ϕ n + hϕ n +1 ϕ ϕ 1 1 un +1 = n +1 − n = ϕˆ (in +1 ) − ϕˆ (in ) h h h H hDAG DFE ( n+1 ) f u f i m#/>&(#,&('n/5;Z#D-1D#%U>/-VC"@;?'%(B',*1#%?>Z/CE(?-GICD#KLEP!-A6MJ,$P>Z?-1>Zi;$(Z':#:$.#6VTI>5x(#:5 >ZB 27 A@;?#2-12"!':u#%$ >Z#%v>@&(# -A&$N'6#%$(#</ 8 >Z?-1>Z#%/>&(#C-VP"@;?'%(BOE/#:$</R1rKO,B #:25Ai2#:(BTu!H.#6>Z# KO M2!$(RM5ExF-/!$ 8 ## #,#+ Z',@',u>!KLE(5$.#6!$ '<u5'6@K$5'6!3#%$(KO#<>u'<#%$(#<@"PE.!*1# >!$F-1,1&(#%Dr0/#G>&h-1&V-/r $F-V#%&$(A1-VQE.56Q,"$F-V*1!KOL-A&/-VQ"?'<B >5&"@$+J,$t-"&V-/BD$F-V#%&$(' 8 R1&uE/*1" >Z?':>@& -A&/-VBLL>&/$sG>?vO-A&$G?5>5.52QKO@#+E(!2$4D#,Z':Z',! $(!&A#6',! 8 '<'6 >Z?KPE.$.#<!$tZ',L@',5KP@$D'6? $('6#%$(#</ 5&t*.-A >Z!$n-A6&(#%2P?-1*'J,$(>=i -1&o-oU-/B/5E/@;?#%$D I>!'&F-V#% #$(*1'%&($4D('6!A#6',!Yj',3KOZKO$6&.'+$D/#,! 5($,&('<B3,/$F-V*!1KO/j -1&V-/?# 8 5 *1>ZR1 -AB5.#:$(B #:$ -1&V-/B #$(5E($($2B -A&/-VB >Z!KO$(DB}$.@',#:$(#5t':&(>1& >Z@" >Z?KPE.'6#,>@BM@$(@',#%;?>Z#%">5&.#:,&('%&I#(";#2-1D#% 8 v$2Z?/5AZU?>&(i42#<#,'6?>5#:A>5&(#6&.':&(#N-A *1@>rL"!?&('6BU>& E(?-A&('kx (/#<@HI#,' 8 KOBs-"&/Bu>Px -V>Z?T./;?#D-"6@$4D RC #%$UKO':&('>Z?$($ -V!&.':&(#)-/>!Q#< A@;?#2-125$4D RL #%$UKu.':&(' H(!H(#%$(#X>/?0"2 8 h2 RC = RL LC ',OKO-0&('63#:KLE(',#,>Z#B' 8 #6U&$ >Z#%/>&(#: m 5/#%(4#:u>& /0 # C = 1 pF TG(=$( *2"?>(5$4wOA@;?!$(@$46Bt 1,6 ⋅10 Hz >!"s-1E&.$I;?@" &$(#En5"#,s 6,3ns 8 mX?$F-V#65"=@$(~z*1!KOB &$(B >5& -/>@xI#:K H(B@"# H&E2 E/?-A&E&$.5Ky>BU#:$.#:46#65' -oL#, h0 = T = 6,3 ⋅10−11 s #6M>@s-v2B(5'6/UXE&5u-o>BZ L = 1µH 8 100 S!" !"#': h = 6,3 ⋅10−13 s 8 $ &('%#%K &('M>@5; RC = 4 ⋅10−7 ?>Z#>Z#%">&(#:,&('5ArJ<$ 1 RL E(/Z',@')!&.BQ/i;!#D-1D@"QZ':j>?B5"? /5;Z#D-v25$4 -A&$#6*/#%Dj>& 0/ED !/#%$( KOB/#KO 89 $ !-A2*'U >5#:">@&(# O$& E( *v#P"@;?'%I5r>Z!A@> >Z'<>@&(':=$. >& E"?>@#:;Z#, -"#:K E(',B # >Z#,*2" -V5KL$(#,*#,>@@D#( 8 $ 5$&KO#:2 >5@;@&/# >x(#,5y>@',>&('<'6 J,$ EAZ>#<;#6 !&H(',B iS$ >Z#,*2" -V5KL$(#,*#,>@@D#( lE(!-/B$&L>!$(?&(>ZBM':C15;Z&('%,@DM>Z?/@>D 8 %'& (*)+-,/.)012,3+4165.7,98:)<;=7134>?A@B3DC1/EF73G@B1HEI),") J! .>&V-/#, L 9 $',5KO$ $(@',#:$.#< >?#:">&(# *2&$(>542#,!$(;?B ', -o@KL$(5'6 KP#<>#t6&$(>?#r>@=@$(K E&$(>6&('%&(#FM*2&$.>542#6?$(5AE.>5@"!>/#<-A6#6>X$(@',#%$(#</B!-A2C>x(#:I',5$6B>5&E('<-V5/':&(#.E(X65$(5$2'6 >?@?-A,Bj>?"Z>25"#D-1D#,>@BJ<$UE&$.>5,&('k-1252#<>3j*2&I$(>4#,!$(" 89 $u?':KP$$(?',#$I#,Y>& >Z/>56@"#2-12#%>?Bj'<#$(#,"B E.PE(!142#&$(#2T)*2&$(>542#,!$(;?BU'6r-"KP$.Z':Ku#,>#Gi,&$(>#G>Z=$(uE&$F>,&('Gu*6&$n>542#<?$I" -VUsE.'<s-A;ZBPE.U -V#$(&"E(!142#%&$(',#:$.#<@vB 8 5>ZBC2D5'<@KU@$2@',C&$&.#>Z#%">&(#$.@',#:$(#:5 J<$(E(',#$(?-/>Z>!-12B>Z!$.#:42#<Q-o -AE&$(M>ZBM>#/>&(#6&('F*2&$(>546#6?$(Z5;ZB'-AK$.Z',CKL#,>Z# 8 28 #,C>5&ni42#<#:'6 KO56.#I6@H('6?&('&(#E(@$:1&&$>Z#%/>&(#:($('<#%$(#,5 [ Ai = 0 U = A TV h( u , u , i , i ,φ ,φ , q , q , t ) = 0 /?-1&E&$(@K >ZBQ>!#%">&(#,&('+>!$42#%$(-1&V-"j>@&UE("@KU@,v#+>!$F-A25$:4D#lJ,$U6#:KLE 1Q>5&A5$k>Z?$#%$&& 0V#G-A&/-VL>@&rE."KO@</#k("#,5H(#:'<#J<$r2#:K E 8 $ >!?-1Bu-/#6&(4D#,u-/'%&4D#,U@>!-1,&(#G-V#2-12iK~-/E(52u-/>"#:U>Z -A&KuMM#251KP$(#1[ ~ i = I q + i (t ), u = U q + u~ (t ), v = Vq + v~ (t ), q = Qq + q~ (t ), φ = Φ q + ϕ~ (t ) A#:K &('6KO$ ( I q ,U q ,Vq ,Qq , Φ q) 5A h.!':."{>!$F-A,@$2B 0"#>Z?"-1E&$( 6E - * G>@/?-"2j-/'%&4D#,j-"#6-A25KL&('%&(# ?>&(i42#<#lZ' >#:v>@&(#6&('%&(#FJ<$O>Z/j-1&V-V'63>5&LE(/KU6"# 888 .5/#,H(#6':#J%$U#KPEw-1&$+E(?-V#(#:;?52ZT.H(?H(#:$.Z',-1&$+J,$.'6>&(#Q>5&U"5;!#D-1D$423$&(',j0/#+>!$($n-o25A@',-A&$ J<$(',>&(#:6 >5&{A@;?#2-16$4w#:$.*1#:$.# 8 '#,'6rD1KO5$ ( i~, u~, v~, q~, φ~ ) !-12r(5A#%@H(#6'NJ<${#%KLE 0"#.5/#:*1#,>ZB >@&(4D#,#<'< Ai~ = 0 si U~ = A V~; >?-ADuKuB"#%Ku# /E/i;!#%$DB *1E5(#,4D#,#KO#<>#NJ,!$ "&1&(' E 8 - 8 * 8 T I q ,U q ,Vq , Qq , Φ q . ;.':6=@$(LJ,$ -/"#:Lqk"(',!NJ<$#o&&('+E 8 - 8 * 8 5>5&.546#6 >Z?$F-A#<&2#%(B *1#,@>B5v&(#k'<KO5$$(5'6#%$(#:5M0V# A542#:$.=5$( $&KO# 21KO5$&.'P}?/#%$&(' O/5;&.':2B >ZB%i$ , u$ , v$ ,q$ ,φ$ .5/#,*#,>ZB$(#,0AD >5&(42#%#',#%$(#6/ >@@" J<$(',>&(#6?-/>M@>&(@4D#< h( ⋅ ) = 0. 0>&(542#,C>!$F-A2#:&#%(B X&$&(#./5;Z#D-A2!)>!$<A'6nJ,$QD$F-/#:&$.5.#:$(![ i = f (u) i ( t ) + I q = f (U q ) + f ' (U ) U u~ +... q ?=$( >Z?$(!&(>$42{#$(@KU#:>!BwJ<$E 8 - 8 * 8 >5& Gdq = f '( u) U 0V#/@> q I q = f (U q ) /5;&.':6B 5E(@$(5$42B '6#%$(#:5/BwJ<$," ~i (t ) si u~(t ): ~i (t ) = G u~(t ). @$6&h&$h/5;!#D-v2!>Z!$6/'6J,$>&"$ dq A@;@&('%DB u~(t ) = R ⋅ i~(t ) &$( R ?-ADv5;s#6-1$s42#:$.5KP#6>5BJ,$ E 8 - 8 * 8 /#%$<AR2&$ "42#<?$(@Ku$s)-/#:KP#,'< dq dq A@;@&('%DBMZ>&(4D#,#<':',#$.#<@"XE(5$6&l[ R -A&/-VZ',>Z!KO$(@DX$('<#%$(#,5 i1 = f ( u2 ) → ~ i1 = G u~2 dq ~ i1 = f (i2 ) → i1 = β dq ~ i2 u1 = f ( u2 ) → u~1 = α dq u~2 u1 = f (i2 ) → u~1 = Rdq ~ i1 29 RlH.!H(#%$(M>Z!$6/'6BNJ<$ >5&/5$ df ~ φ = f (i ) → Φ = Ldq i~ cu Ldq = q di RlH.!H(#%$(M>Z!$6/'6BNJ<$L*'&" ~ ~ i = f (φ ) → i = Γdq φ si ~ u~ = φ df cu Γdq = q dφ R+>!$(5$F-V2!1&('(>?!$<A'6J,$2$F-V#&$n df q = f ( u) → q~ = Cdq u~ cu Cdq = q du R+>!$(5$F-V2!1&('(>?!$<A'6J,$P-o">#:$(B u = f (q ) → u~ = Sdq q~ cu S dq = si q~ = Cdq u~ df q dq A#:$ J<$('6>5&(#%/u*#,Z>B5&.#X@',KU$X$.Z':#$(#,53 >Z#%v>@&(#:N>& '6Ku$6Z',rs#%$(Ku#:>Z PKO#X-1&F--VO!H42#:$I >#%/>5&.#,&('n>x(#:.@',5$IF',3-/KL$(@',NKO#:>Z#(>Z"?-v2N&$L>?#/>&I#% ',#:$.#< 8 ',!/#%6KL&('(M$(Z':#<;BMZ'&$&(#F>#/>&(# >5"M*2&$(>542#,!$(@;?BC':-ViKL$('<XKO#<>#n?-1D[ %S 525vKu#%$(BXE&$.>5,&(' -v2D#,>*D&$(>i42#,!$(/XE/#%$L$(Z':#<;M>!#">5&.#:,&('%&I#nJ<$L>"2-A&/-V5'6>& E.5/KO5,"#}(/#:5H(#,'<# J<$~D#%KLE -A&$ E(?-o#%(#:;Z@D?T{H(!H(#%$('<|-A&$J,$.'6>&(#%D>@&~";Z#D-"65$4$&('6y0o# >!$($n-o25AZ':3-A&$FJ<$(':>@&(#:<>&jA@;#6-1$.46M#:$(*#%$(# 8 >Z',>5&I',@;?B EFvKO6"#,# >Z#%">@&(# ,&('%&(# @>x(#%('<$ -VKP$.Z' KP#6> E.5$,&L*v#6>@/!':5KO$($(Z':#:$.#6 8 ( Rdq , Gdq , Ldq , Γdq , Cdq , S dq , α dq , β dq ) *1Z> 5$.Z',#%;? >Z#%">@&(# ,&(':&.# >x(#(',5$ -/@K $(Z'rKP#6> >5A >!$42#%$( $&KOZ# -A&o-o'< #%$(E(@$($2X(5A#<H(#6':XJ<$j2# KLE "-"&I/-VZ':MC>&/$l>!$D#%$&&*1#,#:$(E(?-o#%(#;!D 8 w*?>ZUF"#6*1#,>5/5 ";@&('2D'6!2Z-12=@$( J,$ >?UKuB?-A&"Bw5E/ .#%KO5/rIt-VKL$(Z'GKO#<>w!-1D >!/>DB E($,1&}*1#<>Z/ ?'%@KO5$$.@',#:$I#:5P{>#:v>@&(#A @>?B J I>5&/-V#, L E&$(><&('%&(# *D&$(>4#,!$(/tE( >@"Z>25"#,-AD#,>Z $('<#%$(#6"BXE(*1#(5E/ .#%KO52BC>& J .>5&V-/#6 LE.<$.5$NJ,$QE 8 - 8 * 8 8 !#"$%&'()*+"-,*,*".(/,*"+0*1.23%)465 L-VU>&K -VRDU5"BkJ,$wE("!?"!*6&.'# 8 T+-/E"?*@"BL>Z!KO$( J<$t65$F-/#%&$(U@vZ>?jKPB"#KOZL >!KO$FBE(6u*# -V>"#2-/BU>ut#6*1/$s4DBuPE(!6$4D#<', 8 mCj&1KO/?T+>#:">@&(#<&('G>x(#:.Z':$ >& -1&V-/u 2$F-V#:&$( >!KO5$(56 J,$ >&/$w'PH(!H.#:$(',! >@&E.'6 $& !-12}E(!,/#%(#UE(@$,&-V>5"#,/ZZ>&(4D#,#<',! KOZ# $(Z': 8 $.:1&h@>?-"2OH.!H(#%$( -/uE(Dw>Z?$F-161&.#Y&$h>#%1>@&(#%>5x.#:(5'6@$C>5&h-A&V-/tO>&"$ >!KO@$( J<$ 25$F-V#%&$( 8 $ >!?- -o>ZE-ot"5;s'%(B Z>&F4#:#<'< *D&$(>4#,!$(/ Z',rH(!H(#%$('6?L>&E(',56.[ 9 798 ω 7 79: ω ; T 9 ; 8 ω;: ; : ω{ 7 J,$Q"@E(!l>5&Q$(>5&$..-/>&D?'< 7 0o#I ; 8 30 U 1 = 2 jI 1 + jI 2 #, H(!H.#:$(', si >5&E('6D U 2 = jI 1 + 2 jI 2 M5;!'%I=$(j>Z?-1-o#,-ADK@>&F4D#,#J<$j"E(!1l>& 7 I1 = U1 j + U2 j3 3 2 >5& *6&$(>@46#6!$." 0o#( ; /;@&('%DB[ si #,>ZBM5>5&(4D#,#,'< &1KOB!v&('&(#(>?#/>&(# >5x.#(?',5$1[ >5&.546#<#,'6 I2 = U2 j + U 3 3 1 j 2 B-/-V>"#,C>5&.546#<#,'6 E(!25$4D#<',Z':!t$.!&/#,',!E($,1&L>#:A>5&(#6&.' e ( t ) = 2 cos 2t π i ( t ) = 2 sin( 2t + ) s 4 ?"?>Z3>5&E.'6 o&(' $&w-/3E(56-AE(/>!$F-1,1&(#%K>#:">&(#%6&I'@>x(#%(Z':@$)>&w-A&"-VjQ>5&A5$+>Z!KO$(D J<$ $F-/#:&$(@' >5Z',! !&(BCH.!H(#%$(>5&E('62 8 mY& $(!2546#6#,'<#%$P*1#<!&/BZ>@&(4#:#6':M*2&$(>42#6!$.5"'<>@?-A2! !&(B3H.!H(#%$(-A&$/[ U = 2 jI + jI , U = 2 jI + jI ?># >!#%v>5&.#:,&('5>5x(#(?'<@$s-1DQ>@'E/5;!$6 1 1 2 2 2 1 J<$L .KLE(':&.'IEAZ>Z$s 8 >@x(Ku>5xI#%('6@$6BXJ<$L>!KLE(', j?-1DI[ M !Hn-V51.B>BM5.5K &$>Z#/>&(#:F"5;!?$(5$ km -/5A#<M>5& 8 R VW 8 0V#F?&(B-1&o-o#,Z':MXD$F-V#:&$( >@" $&h-VOE(sX,"$n-o*v!KOrJ<$h-A&/-Vrt>&/$ 8 L'<Kz> E.!D$42#<'CU/*5/#%$46Bt H.!$(Bw &$.Z#, #:$,/M@>?-"2-1&V-V#<+E($,&L>Z'<'2BC#$,/!&(>K $(Z>&$(I-V>5&2-A&E(',# KO@$,@"B 8 C5;&.':6B5>5&.546#6#:'6![ 31 V5 = 0 V1 = j j 1 2 2 1 V 2 + − V1 − V 3 = I 4 + U 2 3 3 3j 3j 3 U2 = −V3 V 2 − V 4 = 3I 3 I3 = V1 − V 3 1− j V V 1 1 2 j V3 + + − 1 − 2 = 1 + j + U1 1 − j 3 3j 1 − j 3 3 U1 = V1 − V 2 1 V 4 = −1 − j − I 4 2 #,>ZBX&$P-/#2-1D@K j5>5&.546#6#(>5&Q$(>&$I.-/>5&2?'% V1 ,..., V5 , U1 , U 2 , I 3 , I 4 . ?>#n',!"#%<KL&('FM-V>5/#"MM@>&(4D#,#<',!+E.!$42#<'65'6?r$(?&/#,'6!k!-16[ -V*vZ>2D,/$F-/*1!1KP@"#<',E(.-V#HF#:'<?'% -"&V-/Z',!Y25$n-o#%&$(J,$ -1&V-V>5&V$)0V#'<>!KO5$;Z#,'6! • J<$L>@&"$nJ,$>Z!KO@$I;#.J<$j,@$F-/#%&$(?T -VL'6sjE(!25$42#<'%&('QAZ*1/#%$4DBL?-v2*15'kJ%$(>?=i>=)KPZ#+KL&('6jE(!25$42#<'<L'<j$(?&./#,'6?M-/B E.@DBL*1# • E"#%KO52>Z-1&KOCCD$F-/#:&$.#n'65>@</ZKO!2/!T >?!$F-/#,/=5$.r0/#$(>&$(.-V>&2@',P-1&E(',#%KU$/A 1>&/$4#:#l&$.!M-1&V-/ Q2$F-V#:&$(j>!$(>52i2J<$,/j'2 • $(I!&/#F>=5l>@'<M',NE&$F>6&('E/>Z$0/#n>&/$46#6#FsM>Z?KPKP$(B k-V-A>@"#:-V#D-1KP&.'C?>&(i42#<#v[ Vj k ∈j Yk − k ∈i , j ViYk = 0/#(Z>&(i42#<#,',-1&E(',#%KU$25/ 8 k ∈j I sk 32 CAPITOLUL 2. UTILIZAREA PROGRAMULUI PSPICE "!$#&%(')*,+.-0/21+43 15'&!768)"9;:<-)(=53 15')(=?>A@B"1C4#D*)E2!F9&'HG?IGKJMLONQPRLTSUWV&XZY&[ XZ\^]`_&LONQPRabUc\^P <N ab]dSce*f^XZa*ahg4abXQg^SabPRL4e*Y X2L4e*L4g^PXQa*g4LHijDk8lXQL^VXQL?mOabUPRfonc\^XZa*\^U&Pp\rq&s tQuBvTVcL^U&PXwSxg4\4e*g^Sce*\^PpY&\^XQLVcL^X<NyY.Uc\4e*Lz<a \8{|YDNQP}_L?m~ncY&ebPR\^P_&LoWR44DR *Ucg4L^V^Uc_g^ST^hi rebPRLncL^X<N<abS&Uca\4e*LV&XZY&[ XZ\^]Sce(Scaoq&s tQuBvNSU&P$qHs}tuBvV&XZY&_ S}N$_Lx;L^PR\OqDY&{RP*$\^XZLOtZQqHs}tQuBv VXQY&_.S N_&Lu8q}q¡ ab]xLONQ¢c\^XQa(Uc[0NyatQ£QqHs}tQuBv¤V&XZY&_ S N_&LMi ¥$iN5NyYg4a*\^PRLONdBq&s vu ¦v V&XZY&_ S}N_&L u\4_L^Ucg4L¨§$LON<a*[ U Dq&s}tuBv©sebS}NªV&XQY_ S N«_L¬r\4e*a*_rY&[&a*gHi ®}¯|® ¯°r±D²D±D³´¶µ^²D³¸·±º¹D»¼½³¾·2¿ hÀ L^XZL4\ONPXQ\Á_&LÁg4Y ]x\^Uc_&fªN<LVcY&\^PRLº_LONyg^¢a*_&Lº_&abUlq.PR\^X|Pw©sXZY&[ XZ\^]ºNN<\^SÂg^S;g4e*a*g^øVcLSUÂ{waRNyaL^XÄ_&L a(U&P*XZ\^XQLÄR_LPRa(VÆÅiÇg4abXNy\^Sskq.Va*g4LÈuabXZg^ScabP Àha*e*L?JN<\^SAVLS&UM{|a©N<a*L^Xk_&L¨XZL?m~ScebPR\^PRLÄp_&LPpabVÁÅ&iÇ_\^PhN<\^S sÉNQVca*g4LÁqDab]dSce*\^PRaY UT¦oLONQScebP|NQJKi sXZY&[ XZ\^]dSceBN<Ld]x\4aVcY\^PRLxe*\^U N<\ºz<a_&abUÊ{|L^XZL4\ONPXQ\C4+.!Ë!Ä'&-&>Tg^SÆ/./:^@E -c#.!=^ÌÍHÏÎ4(=?1r>D=º"- )"15'&1=ºN<\^SÊ_&abUP*XyUÐVXQY&[.XQ\^]ÑN<g^XQaRN8*UÊuoÀhÒ¦o ¦ÓN<\^ST\4ebPBe*ab]dÔc\Õ$_&LVXQY&[.XQ\^]x\^XQL {|Y&e*YcNya(Uc_abU NQP*X|Scg^PRabS&Uac_LPRa(VGRÖcG?)(=?!$× Ø UM{wL^XZL4\ONQP*XZ\_&L8g4Y ]x\^Uc_&f8L?ÙDa©NQPRf¨S&X|]\^PRY\^XQL4e*L¨]xL^U&S S&XQaQ Ú*ÛRÜ Ðg4\*UPRY&\^PRL¤\^Vce*a*g4\^Ýpa*a*e*LßÞWtR$§$ÒÞßqVcY\^PRLà_LONyg^¢a*_&LS&Uá{wa©z<a*L^X<ReVcY\^PRL½PpabVcf^XZa© ]xL^]xY XQL4\?mOfÂScebPpab]L4eLÂ{|a©z<a*L^XZL;\4g4g4LONy\^PpL¡z<aÄSce(PRab]xL4e*L0Nya(]Scef^XQar{|f4g^S&PRLO¨VcY&\^PRL0N<\4ebnc\0N<\^S½VcY&\^PRL Ucg^¢ca*_&L¨S&UM{|a©z<a*L^X«z<aVcY&\^PRL¨*Ucg^¢ca_&L{|L^XZL4\ONPXQ\8_&L8g4Y ]\^U_&fHi oâ*ãhäVcL^X|]xabPRL¨]Y&_a*{wag4f^XQa*eLSm~S\4e*LUd{|a©z<a*L^X|Sce_&LON<g^¢ca©Nk*UM{wL^XZL4\ONQP*XQ\8_&L8g4Y ]x\^Uc_&fHi åÄRÜ^æÑä½VcL^X|]abPpL¸na(m~Sc\4e*a(mO\^XZL4\;{waRzyaL^XQL4e*Y.X_&L;abU&PXQ\^XZL0ZÅ&içg4abXJºz<a_&LèaLOzya(XQL;yÅ&içY S&PJy¨\è{|L^XZLONPXQL4a [ XZ\4{wag4Lr*UÐg4\^XZLdNyL$V&XZL?mOabU&PpfXZL?m~ScebPp\^PRL4e*LdN<ab]Se*f^XQaa© \{|L^XQLONQP*XZL4ah*Uég4\^XZLN<Lg4\^XZ\4g^PRL^XQa,mOL4\?mO\[e*Y Ôc\4e N<ab]dSce*\^XZL4\rR_\4g4frNQS&U&PÉL^XZY XZa*Uº{waRzyaL^XwSceh_&LabUP*XQ\^XZLOD_&\4g4f8S&Uº\^U&S&]xL8PRabVx_&LÄ\^Uc\4e*a(mOfU&Sg4Y.U&ncL^XZ[&LO _&\4g4fÄN<ab]Se*\^XQL4\ÄN5R\¨*Ucg^¢L4a*\^PJKi D© ÁêcÛpë ãw©ìdäcg4Y U&ÝpabUcL8g4Y ]L^UDmOa*e*L8_&LUcg4L^VcL^XZL\ÄN<ab]Se*f^XQaa©OVc\^SmOfÄz<aY V&XZabXQL8\ÄNya(]Scef^XQa*ai íOë.4ÜäÐg4Y U&ÝRabULg4Y ]xL^UmOa*eL_&Ld\4_&f^Sc[\^XQLz<a«zQPRL^XZ[&L^XZL\S&UcL4aÉXZL^V&XZL?mOL^U&PRf^XZak[.XQ\4{|a*g4Lzyag4Y ]xL^UmOa V&XZabncabPpY&\^XQL8e*\8g^S&X<NyY.XKi Û©.ãyg4Y UÝRabUcLÁg4Y ]xL^UmOaV&XZabncabPpY&\^XQLÁe*\Á{|Y X|]\^P*Se_&LÁ\4{wa©z<\^XZLÁg^S&]îNQS&U&P«É]xY&_&a*{|a*g4\^XZL4\ªNyg4f^XZa*aVcL \?ÙDL4e*LïÓNya2ðÉ]Y&_a*{wag4\^XQL4\ºabUPRL^Xwn\4ebScebSca_&Lº\4{waRzy\^XZLONyg^¢ab]Ô\^XQL4\]xf^XQa(]a*a\ONyYg4a*\^PRLS&UcL4a\?ÙDLO abU&PXQY&_.Scg4L^XQL4\Äz<a}zPpL^XQ[&L^XZL4\¨S&UcL4a\?ÙDL¨ðANSVce*ab]xL^U&PR\^XZLHi í&.ÛRñK8VL^Xw]xabPRLTabU&P*XZY&_ Scg4L^XZL4\¸N<\^SÈL4e*ab]xabUc\^XZL4\ÁS&UY XrÔc\^XZLÐg^SÈa*g4Y&\^UcLTg4\^XQLÆXQL^VXQL?mOabUPRfé_abncL^X<NyL g4Y ]xL^UmOa|i òA©ì â} æ*S&U]xL^UcabSMg4e*\ON<a*g8g4\^XQL¨VcL^X|]a(PRLe(Scg^XwSecg^SM{|L^XQLONQP*XZL4e*L8_&abUskqHs}tuBv¨i óÜ?Û*ô}SU]xL^UcabSMg4e*\ON<a*g8g4\^XZLVcL^X|]xabPRL8g4Y U NQScebPR\^XZL4\8_&Y&g^S&]xL^U&PR\^ÝRaL4a z<a\4g4g4LONQSceVcL8abU&PRL^X|UcL^Pe*\ÄNya(PRLO S&XZa*e*L¨V&XZY&_ Scg4f^PRY.XwSce(Sca|i 33 ® ¯¯°y±D²D±y±º·2±Q¾«µ^²D³²D± ·2±y±Z²D± "!#" Àha©z<a*L^X|SceB_&Lºa(U&P*XZ\^XQLP*XZL^Ô&ScaLÁNyfº\4a(ÔcfºL?ÙHPRL^U N<a*\TiçuBt|¦ i ÄXQLºYèNQP*X|Scg^P*SXQfºe*a(ÔcL^XQfOÉ*U¡N<L^U NQSceg4fdU&S ?L Ùca©NQPRfYxNQScg4g4LON<abSUcLrNQP*XZa*g^PRf\eabUca*a*eY XyDg^SºL?ÙDg4L^V&ÝRa*\ËV&XQa(]L4ahe*abUca*ahg4\^XQLËXQL^V&XZL?mOabU&Ppf8PRabPRe(Sceg4abXZg^ScabPScebScaÉNyah\^XQL n\4e*Y&\^XZL4\xSU&Scag4Y ]xL^U&PR\^XZabSWV&XQa(]Sceg4\^XZ\4g^PRL^XrLONPpL¸Å4Jrz<a\ScebPRab]xL4ae*abUa*ayi vÉ$§ÄJËg4\^XZLºabUc_a*g4fÁN<{w^X<z<abP*Sce {|a©z<a*L^X|ScebSca_&L8abU&PXQ\^XZLHiuY U&PpabU&Sc\^XZL4\SUcL4ae*abUca*a}N<L8{w\4g4L¨PR\ONQPR^Uc% _ $ *UV&XQa(]\8g4Y&e*Y&\^Uf\8e*abUcaL4a&SXw]xf^PRY&\^XZLHi skq&s tQuBvªU&SM{|\4g4L_a*{wL^XZL^U&ÝR\¨*U&PXQL8e*abPRL^XZL¨]\^XZa}zyae*a(PRL^XQL¨]xa*g4a|i &ÄUU&S&]xLP*XZL^Ô&ScaLËN<f¨*Ucg4L4\^Vcf8g^SMYeabPRL^XZfËz<ag4Y U&ÝRa(UcL]x\?ÙDab] Äg4\^XZ\4g^PRL^XZLHi &ÄUMU&S]f^XVcY&\^PpL{wa *U&P*XZL4[xN<\^SS&UMU&S]\^X*UdncabXZ[ Scefo]xY Ôca*e*f$z<aDVcY\^PRLË{|aDU N<Y ÝRabP_&LoSUL?ÙHVY UcL^U&P U&P*XZL4[}i~vÙDa©NQPRf¨S&X|]f^PRY.XQa*a{|\4g^PRY XZa_&LËN<g4\4e*f& 'KvÄ )+* ( £ 'Kv, *$èv £ 'K. v -/*10'K. v 2/* 'Kv4 2/*5&6'Kv4 -/*Ë1 3 '¨KvR, *.s 'Kv )+* À 'v28 7i abPpL^XQL4e*L8g4\^XZLËN<LÄNSg4g4L4_a(]L4_&a\^P}_.S&Vcf¨S&UU&S&]xf^X«z<a&USNQS&UP}{|\4g^PRY XZa_&LÄNyg4\4efËNQS&U&Pa*[.UcY XZ\^PRLHi §$LON<g^XQa*L^XZL4\Ág4abXZg^ScabP*Sce(ScaPRY VcY&eY&[&a*\Áz<aB_&LON<g^XZa*L^XZL4\ºL4e*L^]L^UPRL4e*Y X_&Lºg4abXZg^ScabPJ$N<Lº{w\4g4Lºg^S;\ÕyS&PRY X|Sce eabUca*a*eY XkL4e*L^]xL^U&PRL4e*Y.Xk_&L8g4abXQg^SabPZi Ø UMe*L4[&f^PS&XQf8g^SM\4g4LONQPRL4\PXQL^Ô&Sa*L{|f4g^S&PRL8g4^PRL^nc\¨V&XZL4g4a(mOf^XZa z<a\^U&S&]xL& Å N<LS&PRa*e*a,mOL4\?mOf¤XQL4[.Sce*\ _&L e*\¤XZL4g4L^V&PRY&\^XZL¤VcL^U&PXwSÓNyL^U}NSXQa*eL _&L¤XZL4{wL^XZabU&Ýpf \4e*L¤PRL^U}Nya(S&Uca*e*Y.Xlz<a g^SXQL^U&Ýpa*e*Y Xi Å UcY&_.Sce:9XZL^V&XQL?mOa(U&PRfo]x\ON<\z<a}LONPpLËY Ôcea*[&\^PRY XZabS &g4L4eL4e*\4ebPRLUcY&_ S&XZa{waabUc_$U&S&]xL^XQY.PR\^PRLÄNSg4g4LONya(n O*U 8 Y.XQ_&a(UcLËg^XZLON<g4f^PRY&\^XZLO *Ucg4L^Vc^Uc_dg^SèOiÀaL4g4\^XQLUcY&_$P*XZL^Ô&Sca*LÄN<f\4abÔfYg4\4e*L8g4f^P*XZL]x\ON<f*UXZL4[&ab] _Lg^S&XZL^U&P g4Y.U&PRabU&SS_&L4Y\^XQL4g4L¡*UA[&L^UcL^XZ\4e©Ëg^¢ca*\^XÁ_&\4g4fWN<L0g4L^XQL0Yß\^Uc\4e*a(mOfÂ*UAg^S&XZL^U&PM\4ebPRL^X|Uc\^PRabn N<\^Sß*UßXQL4[ab] PXQ\^UmOa(PRY XZabS jskqHs}tQuBv¸{|\4g4Le*\¨*Ucg4L^VS&PS&UMg4\4e*g^Sce\4eV&S&Ucg^P*SebSca}NQPR\^PRa*g8_&L8{©S&Ug^ÝRa*Y Uc\^XZLHi Åxg4abXZg^ScabP*SeUSÆPXQL^Ô&Sa*LMN<fdg4Y U&ÝRa(UcfrÔScg4e*LwN<L4g^ÝRabSUca(J{|Y X|]\^PRLdL?ÙDg4ebS}Nya(nª_abU [&L^UL^XQ\^PRY\^XQLda*_&L4\4e*L _LPRL^U}Nya(S&UcLÄRg^S&XZL^U&PJKi ÄUc\4e*a(mO\rg4a(XQg^Sca(P*ScebScak*PRa(V&Sce\^Uc\4ea(mOL4az<a_&a(ncL^Xyz<a*a Vc\^XZ\^]L^P*XZa(JLONQPRL_&LON<g^XZa©N<f_&LeabUca*a*eL_&Lg4Y ]x\^Uc_&f i~$g4LONQPRL4\8\^SSUVS&Ucg^P*UV&XZab]\8g4Y&e*Y\^UcfHi ;< hÀ a©z<a*L^X|Sce_&L8a*LOz<abXQL8\^XZLL?ÙHPpL^U N<a*\riçÒ=&r ¸z<aLONQPRL[L^UcL^XQ\^P\^S&PpY ]\^Pi rg4LONQPR\rg4Y U&ÝRa(UcLr_&abncL^X<N<LrabUc{|Y X|]\^ÝRaag4\xDe*a©NQPR\^XZL4\N<\^SxU&SÆ\r{|a©z<a*L^X|ScebScaÉ_&LabU&PXQ\^XZLODe*a©NQPR\^XZL4\rN<\^SMU&S \Ð]Y&_L4e*L4e*Y X<\¸_&abncL^X<z<a*e*Y XVc\^XZ\^]xL^P*XQa$*U {RS&Ucg^ÝRa*LT_&LÐY.V&ÝRabS&Ua*e*LÐ_abUleabUca*\T_&LÐg4Y ]x\^Uc_&f¡iÇÒ8s tQÒqHJy ea©NQPR\^XQL4\¨nc\4e*Y.XQa*eY Xnc\^XZa*\^Ôca*eL4e*Y Xk_&L8a*LOz<abXZLËpabUc_a*g4\^PRL¨*UMe*abUca*\8_&L8g4Y ]x\^Uc_&fi s}¦t© JZ.L^PpgHi ®}¯>¯@?Ay±D¼½±&¾«µ^±y±º·2±º¹y²D¹BC|µ skq&s tQuBv N<ab]dSce*L4\?mOfªg4abXZg^ScabPRLªL4e*L4g^P*XZa*g4Lªg4\^XQLÁg4Y U&ÝpabUèS&X|]f^PRY\^XQL4e*LÁL4e*L^]xL^U&PRLÁ_&LÁg4abXZg^ScabP|«e*abUa*\^XQL N<\^SUcL4e*a(Uca*\^XZL& QX L?mOa©NQPRY.X DFE#EE hg4Y Uc_&L^U N<\^PRY.X %EE#E ÔcY ÔcabUf GEEE ÔcY ÔcabUfg^S&Ve*\^PRf HIEEE he*abUca*L8_&L¨P*XZ\^U NQ]a©N<a*L8íEEE ÉNSXyN<L8abUc_&L^VcL^U_&L^U&PRL 34 _&L¨PRL^U N<abS&UcL å/EEE _&L8g^S&XQL^UP EEE ÀhY X|]L4eL_&L¨S&Uc_f*UXZL4[&ab] PXQ\^UmOa(PRY XZabSVcY P{wa_&L¨PRabVSce ÉNya(U&S N<Y&a*_&\4e hL?ÙHVcY UcL^UÝRa*\4e Ä hab]VSce©N G8 he*abUca*\^XÉVcLVY XwÝpabS&Uca kò G ÉNya(U&S N<Y&a*_&\4e]xY&_ Sce\^PcUd{RXZL4g^ncL^U&ÝRf½DÚÚ ÉNSXyN<L8g4Y ]\^U_&\^PRL NQS&X<N<\_LPRL^U}Nya(S&UcL8g4Y ]\^U_&\^PRf¨*UPRL^U N<abS&UcLoEEE NQS&X<N<\_LPRL^U}Nya(S&UcL8g4Y ]\^U_&\^PRf¨*UMg^S&XQL^UP óIEEE NQS&X<N<\_Lg^S&XZL^U&Pg4Y ]x\^Uc_&\^PRf¨*UPRL^U N<abSUcL ,EEE NQS&X<N<\_Lg^S&XZL^U&Pg4Y ]x\^Uc_&\^PRf¨*UMg^S&XZL^U&P Ú EE#E uY.]\^Uc_\VcY\^PRL{|a_&L¨PRabV&SceQ he*abUca*\^XZf VcY&e*abUY ]a\4e*f G hY{RS&Ucg^Ýpa*L\^U\4e*abPRa*g4f å 6GË h_&\^PRf¨V&XQa(UVS&Ucg^PRL í G hYL?Ù&V&XQLON<a*L¨*UM_&Y ]xL^UcabSe\^Vce\4g4L GÄ G$8 _a©NQVcY.mOabPRa(ncL4e*LÄNyL^]xa*g4Y U_ Scg^PRY&\^XZL¨Sm~Sc\4e*L8\4g4g4L^V&PR\^PRLÄNQS&U&P« _&aY&_&\ FEEE P*XZ\^UmOa©NQPRY.XwSceÔca(VcY&e*\^X E#EE P*XZ\^UmOa©NQPRY.XwSceg^SML4{|L4g^P}_Lg4^]d V À}v @EE#E P*XZ\^UmOa©NQPRY.XwSced;Òrq&À v EEE P*XZ\^UmOa©NQPRY.XwSce£Ä\^NZÀL^P EEE NQS NZJKi ÄNSÔcg4abXZg^ScabP*Sce AEE#E Rg4\^XZLºLONQPRLº_&L4{|abUcabP¨g^S;\ÕyS&PRY X|SceBL4eL^]L^U&PpL4e*Y X_&Lºg4abXZg^ScabPBV&XZL?mOL^U&PR\^PpL]\4a § LON<g^XQa*L^XZL4\ª*U½Y XZ_&abUcL¸\4e{w\^ÔcL^Ppa*g4f¸\¸L4e*L^]xL^U&PRL4eY XM_&LÐg4abXZg^ScabPLONQPRLÐ_\^PRfÁ*U0Vc\^XZ\4[ XZ\4{©Sce=)Ba*\^X\ $ ]xY&_&L4eL4e*Y Xk\ON<Y&g4a*\^PpLe*Y.XÆUV\^XQ\4[ XZ\4{RSce 2&.e*\8e*abUca\_&L8g4Y ]x\^Uc_&fi ;Ò8§Ëv¨i ®}¯¯1 B ² y±º·2±º³h¾B³:4}¿ 1@! !"!$# ( < @%#'& ßhg4\4e*g^Sce*L4\?mOf¨V&S&Ucg^PSce}NPp\^PRa*g8_&LÈ{RS&Ucg^ÝRa*Y.Uc\^XQL8\4eg4abXZg^ScabP*Sce(Sca}**UMg^S&XZL^U&Pg4Y U&PpabU&S&SJKi ¤_L^PRL^Xw]xabUcfV&S&Ucg^PSce2NQPR\^Ppa*gM_&L{©SUcg^ÝRa*Y U\^XQLHiDrg4L4\ONPpfM\^Uc\4e*a,mOfMLONQPRLM\^SPRY ]x\^PL4{|L4g^P*Sc\^PRf*Uc\4abUPRLM_&L ^\( U\4e*a(mO\Â*UßXQL4[&a(] P*XZ\^UmOabPRY XZabS 8_&\4g4fÊU&SANQS&U&PMNQVcL4g4a*{|a*g4\^PRL;g4Y U_&abÝRa*ae*L;abUcabÝRa\4e*LOV&XZL4g^S&] zyaÄUc\4abU&PRL;_&L \^U\4e*a(mO\;UàXZL4[&ab] N<abU&S}NyYa*_&\4e©8VcL^UP*XwS _&L^PRL^X|]xabUc\^XZL4\;]xY&_&L4e*L4e*Y.Xé_&LWN<L^]dUc\4e$]ag¡\4e*L0_&a©NQVcYHmOabPRabncL4eY X UL4e*abUca*\^XZLÈ_&L8g4abXZg^ScabPZi íBÚ¨_L^PRL^Xw]xabUcfºY.XQa*g4Lº{RS&Ucg^Ýpa*Lx_&Lxg4a(XQg^Sca(P2*Uèg^S&XQL^UPg4Y U&PpabU&S&Sèg4Y U N<a*_&L^XZ^Uc_Á]xY&_&L4e(Sce2_&LÆNyL^]dUc\4e«]a*g 4g( Y.XQLONQV&S&UDmOf^PRY XV&SUcg^P*ScebSa NQPR\^Ppa*g_LÈ{©SUcg^ÝRa*Y U\^XQLHi 35 D rÓè_&L^PRL^X|]abUf N<L^UmOabPRabnabPRf^ÝRa*eL¤S&UcY X;PRL^U}Nya(S&Uca¸z<a |Ny\^S g^S&XZL^U&ÝRaÁU {RS&Ucg^ÝRaLA_&LàPRY ÝRaÆVc\^XZ\^]L^P*XZa*a ] ( Y&_&L4e(ScebSca_&LÄN<L^]Uc\4e]xa*g8g4Y XQLONQV&SUmOf^PRY XVS&Ucg^P*Sce(Sca}NPp\^PRa*g8_&LÈ{RS&Ucg^ÝRa*Y.Uc\^XQLHi x 1@! !"! " ( & #! / !# # $$\^Uc\4e*a,mOL4\?mOfg4abXZg^ScabPSce*UXQL4[&a(] N<abU&S N<Y&a*_\4e©O*U&PXypY$Ôc\^Uc_&f8_&\^PRf8_&L8{©XZL4g^ncL^U&ÝRLOH{wY&eYDN<abUc_ ]Y&_L4ebScee*abUca\^Xk_&LÄNyL^]dUc\4e]xa*gg4Y.XQLONQV&S&UDmOf^PRY XV&SUcg^P*ScebSa NQPR\^Ppa*g_LÈ{©SUcg^ÝRa*Y U\^XQLHi ^ g4\4e*g^Se*L4\?mOf¨mO[Y ]Y.P*SceV&XZY&_ S Ne*\Y\^U&S]abPpfa*LOzQXZLËPRL^U N<abSUcLËN<\^SMg^S&XZL^U&PJhU&P*X<RY$Ôc\^Uc_f_&L R{( XZL4g^ncL^U&ÝRLÄNQVcL4g4a*{|a*g4\^PRf¨*UMg4Y ]\^U_&\\ON<Y&g4a\^PRfri $uÄi 1@! !"! " <! &< í D ¤äÆa(U&PRL4[ XZL4\?mOfrL4g^Sc\^ÝRa*ae*LÄ]Y_&L4ebScebSa_&LN<L^]U\4e}]\^XZLr\4eg4a(XQg^Sca(P*ScebSca VcL8S&UºabU&PRL^X|nc\4eh_&L8PRab]dV_\^PZi u( Y.Uc_&abÝRaa*e*L¸abUabÝRa*\4e*LÂNSU&P$g4\4e*g^Se*\^PRLªV&XZabU&PXypYW\^Uc\4ea(mO\ª*U½g^S&XQL^UP$g4Y U&PpabU&S&Sl*U g4\^XZLèN<LÐg4Y U}Nya_&L^XQféPRY&\^PRL NQS&X<N<L4e*L8abUc_&L^VcL^U_&L^U&PRL8g^Snc\4e*Y XZa*e*L8_&L8e*\]xY ]xL^U&P*SceabUabÝRa*\4e}N<\^SxNSU&P_&\^PRL8_&LSPRa*e*a(mO\^PpY XKi Ú D äc{|\4g4L\^Uc\4ea(mO\\^X|]xY Uca*g4f8\SUcL4aPRL^U N<abS&Uca}N<\^SM\SU&Scag^S&XZL^U&PY Ô&ÝRabUS&Pg^Sdg4Y.]\^Uc_\riç ¦ V ( L^U&P*X|SdY{RXQL4g^nL^U&ÝRf8{©S&U_&\^]L^UPR\4e*f8_&\^PRfÄzyaS&UU&S]f^X«NQVcL4g4a{wa*g4\^P_&L8g4Y ]dVcY UcL^UPRL\^X|]xY Uca*g4LHi rg4LONQPRLg4Y.]L^UmOa}NQS&U&P_&LON<g^XZa©N<LUd_L^PR\4e*abS*UVc\^XZ\4[ XZ\4{©Sce 2 i ®}¯ ¯ r¹B³ Z±º¹y²D¹BC|µBC BC < 4 Ø UÂg^S&XZL^U&P¨g4Y.U&PRabU&SS¡z<a*UÂg^S&XZL^U&P¨\4e(PRL^XwU\^PRabn¡N<LS&PRae*a(mOL4\?mOfºL4g^Sc\^ÝRaa*e*L]xL^PRY&_&L4a«VcY PRL^U&Ýpa*\4e*L4e*Y XoUcY_ S&XZa*e*Y Xi ÄUc\4e*a(mO\ *U XZL4[&ab] PXQ\^UmOa(PRY XZabS {|Y&e*YcNyLOzQPRL ]Y_&L4e*L4e*L g4Y ]V\^Uca*Y U \4e*L L4eL^]L^U&PpL4e*Y X _&abU\^]a*g4L g4Y.XQLONQV&S&UDmOf^PRY&\^XZL8S&UcL4ah\^U&S&]xabPRL8]xL^PRY&_&LËU&S&]xL^XQa*g4L *VcL^U&P*X|Sg4a(XQg^Sca(P*SceXZL?mOa©NQPRabnºg4\^XQLËXQL?m~Sce(PRfN<LoSPRa*e*a(mOL4\?mOf L4g^S\^ÝRa*a*e*L¨]xL^PRY&_&L4aVcY PpL^U&ÝRa*\4e*L4eY XUcY&_.S&XQae*Y Xi ®}¯ ¯ Ó±.µ^»·2±y±x¾ B ¼½±D²Z¹D± & @<!<= < # ;L^PpY&_&L4e*L8_&L8abU&PRL4[ XZ\^XZLU&S]L^XZa*g4f8{wY&eYDN<abPRL8_&L¨skq&s tQuBvèNQS&U&P< ]L^PRY_&\PXQ\^VcL?m~SebSca© ]L^PRY_&\£ÄL4\^Xk_&L8Y XZ_&abA U )Vc^Ucf8e* \ - i &ÄUcL4e*Lnc\^XQa\^U&PRLM_LskqHs}tuBvÈVcL^Xw]xabPS&PRe*a,mO\^PRY X|ScebScaN<fM\4e*L4\4[&f*U&PXQL]L^PpY&_&\P*XQ\^VL?m~ScebScaz<aÉ]L^PRY_&\£ÄL4\^X _LS&UM\^U&S]abPY XZ_&abU]x\?ÙDab]ªi~\\4e(PRLn\^XQa*\^UPRL0]xL^PRY&_&\8_&L8abU&PRL4[ XZ\^XZLU&S]L^XZa*g4f8LONPpL\4e*L4\ON<f8_&L¨V&XQY[ XQ\^]ªi &# # < & 8!<! #8 # & < 8 @@!< skq&s tQuBv S&PRae*a(mOL4\?mOf *U \4g4LONP N<g4Y V ]xL^PRY&_\dL^ËPpY U ©¦o\^V&¢ N<Y UÂ\^PR^PVcL^U&P*X|SÂ\^Uc\4e*a,mO\*UÂg^S&XZL^U&P¨g4Y UPRabU&S&S;g4^Pz<aVcL^U&P*X|SÂ\^Uc\4ea(mO\xg4abXZg^ScabPRL4eY X g4\^XZL8g4Y U&ÝRabU]xY&_&L4e*L8g4Y ]dVc\^Uca*Y.Ui ®}¯ ¯ Á²wµ^±D²4B·±º¹D»¾ «±D² ɱ&¾ ^¿¸³ | µ^±D²D³ ! #" $ % Z»É² б éµ^»¾ T³% B´4»¾ < 4 '& )( +*-, /. twPRL^XZ\^ÝRa*a*eLBL^ËPRY U}¦o\^V&¢}NyY.UN<L8Y V&XZLON<g_&\4g4fÄNQS&U&P*Uc_L^Vce*abUca(PRLPpY&\^PRL8g4Y Uc_&abÝpa*a*e*L¨S&X|]f^PRY\^XQL& 36 _L4g4^P pL^XZY&\^XQL4\8\^Ô N<Y&ebSPRfU&P*XZLnc\4eY XQae*LY.XQa*g4f^X|Scag^S&XZL^U&Pe*\¨ScebPRab]xL4e*L8_&Y Scf8abPRL^XZ\^ÝRa*aLONQPRL¨]\4a]xa*g4f8_&L4g4^P nc\4e*Y&\^XZL4\¨Vc\^XQ\^]xL^P*X|ScebSca¥Äq Òp_&\4g4f¨U&SxNyLÄNQVcL4g4a*{|a*g4f8\4ebPR{|L4e&¥Äq Ò8 '¨5V&J pL^XZY&\^XQL4\Ê\^Ô N<Y&ebS&PRfÐ*U&P*XZLªnc\4e*Y.XQa*eL¸Y XZa*g4f^XQL4aPRL^U N<abS&UaËe*\ªSebPRab]xL4e*L¸_&Y.Scf¸abPRL^XZ\^ÝRa*a8LONQPRLÁ]x\4a¨]a*g4f cn \4e*Y&\^XZL4\¨Vc\^XQ\^]xL^P*X|ScebSca¬8 Òp_&\4g4fUSN<LÄNQVcL4g4a*{|a*g4f\4e(PR{wL4e¬8 Ò 'j¬J pL^XZY&\^XQL4\¨XZL4e*\^PRabncf¨*U&PXQL¨nc\4e*Y XZa*e*L8Y XZa*g4f^X|Scag^S&XQL^UPhN<\^SMY XZa*g4f^XZL4a&PpL^U N<abS&Ucae*\¨ScebPRa(]L4e*L8_&Y SfabPpL^XQ\^ÝRaa LONQPRL]x\4a]ag4f_&L4g4^Pnc\4eY&\^XQL4\¨Vc\^XZ\^]L^PXwSce(ScaD¦vk Òp_&\4g4f¨U&SxNyLÄNQVcL4g4a*{|a*g4f8\4ebPR{|L4e¦v kÒ8 ' 9}i© ºJ ÄPR^Pnc\4e*Y XZa*e*LVc\^XQ\^]xL^P*XZa*e*Y X¥Äq Ò82}¬8 Ò¦v Ò½g4^Pz<aU&S]f^X|SceÉ]\?Ùcab] _&LdabPRL^XZ\^ÝRa*a L^ËPRY.U ¦o\^V¢ N<Y UVcY P{wa}N<g^¢cab]dÔc\^PRL¨*UMe*abUa*\_Lg4Y ]x\^Uc_&f ( íB i §$\4g4f8V&XZY&g4L4_&L^ScehabPRL^XZ\^PRabnU&SLONQPRLg4Y.U&ncL^XZ[&L^U&PkN<L8PpabVcf^XZLONygËVcY PRL^U&Ýpa*\4e*L4e*L8UY&_ S&XZa*e*Y XVcL^UP*XwSdScebPpab]\ a(PRL^XQ\^Ýpa*LHi ®}¯¯ B ²D´4±º·2±º±D²D»² v ÙDaRNPpL^U&ÝR\ÄS&UcY.XL^XZY XZa}*UÆ_&LON<g^XZa*L^XZL4\rg4abXQg^SabP*ScebSa©cg4\z<a\ÄSUcY XBL^XQY XZa_Lg4\4e*g^ScehLONPpLrN<L^]Uc\4e\^PRf8*U {|L^XZL4\ONPXQ\¨*UMg4\^XQLÄN<Lg4\^XZ\4g^PRL^XZa(mOL4\?mO\8[&e*Y Ôc\4e}N<ab]dSce*\^XZL4\Hi§$LON<g^XQa*L^XZL4\x_&L^Pp\4e*a*\^PRfx\\4g4LONPpY XËL^XQY XZaBN<Lx[fONyLOzQPRL Ud{|a©z<a*L^X|Sce_&L8a*LOz<abXQLHi §$\4g4fég4a(XQg^Sca(P*Sceo\^XQLÆS&U;UcY&_ÊVcL^UP*XwS¡g4\^XZLU&S¡L?ÙDa©NQPRfÁYèg4\4e*LÁ_&LXZL?mOa©NQPRL^U&ÝRfÁ{|abUcabPpféNQV&XZL]\ON<f*U g^SXQL^U&Pég4Y.U&PRabU&SS VS&Ucg^P*SceÁNQPR\^Ppa*g½_&L½{RS&Ucg^ÝRa*Y.Uc\^XQLlUS N<LlVcY&\^PRL½g4\4e*g^Se*\ßz<adV&XZY&[ XZ\^]SceÆNyL½Y.V&XQLOzQPRL N<L^]dUc\4e*^Uc_ª\4g4L4\ONQPRfdL^XQY&\^XZLHi§$\4g4fg4L4e*Ld_&Y Sfa*LOz<abXZa\4e*Lde*abUca*L4a_&LP*XZ\^U NQ]aRNyaLrU&SÐ\^SÁ*U&PXQLdL4e*LdYÆg4\4eL_&L XZL?mOa©NQPRL^U&Ýpfé{|abUcabPpfº*UWg^S&XZL^U&PËg4Y U&PpabU&S&SÈN<\^SW_&\4g4fUcY&_ S&XZa*e*LÁ_&LÁg4Y ]x\^Uc_&fÁ\4e*LS&UL4aoNSXyN<LÁg4Y ]x\^Uc_&\^PRL*U PpL^U N<abS&UcL8US\^SMU&P*XZLL4e*LYg4\4e*L_&L8XZL?mOa©NQPRL^U&Ýpf{wa(UcabPRf*Ug^SXQL^U&Pg4Y U&PpabU&S&SxL4{wL4g^PSce LONQPRLÄ\4g4L4e*\Oz<a|i4$g4LONQP}PRabV _LL^XZY XZa N<L8L4e*ab]xabUcf8g4Y UcL4g^PR^U_g4Y.XQLONQV&S&UDmOf^PRY XÁS&UXQL?mOaRNPpY Xkg^SXQL?mOaRNPpL^U&ÝR\8{wY&\^X|PRL¨]\^XZLHi shY PL?ÙDa©NQPR\TL^XQY XZao_&\^PRY XZ\^PRLªL?ÙDa©NQPRL^U&ÝpL4aBSUcY XÔ&Sg4e*Lé{|Y X|]\^PpLºU&S]\4ao_&abUÈNQS&X<N<Lé_&LÆPRL^U N<abSUcLÐN<\^S SUcY XN<L4g^ÝRabSUca{wY X|]x\^PRLrUS&]\4a_abUÐNQS&XyN<L_&Lg^S&XZL^U&PZiH$g4LONQPRLL^XQY.XQaN<Lg4Y XZL4g^PRL4\?mOfabU&P*XZY&_ Scg4^U_*UºÔ&Scg4e*\ XZLONQVcL4g^PRabnf8S&UMXZL?mOa©NQPRY X2g^SXQL?mOa©NQPRL^UÝR\{|Y&\^XwPpL8]ag4frN<\^SabU&PXQY&_.Scg4^Uc_*UN<L4g^ÝRa(S&UcL4\oXZLONQVcL4g^PRabnfoS&UdXQL?mOaRNPpY X g^SXZL?mOa©NQPRL^U&ÝR\8{|Y&\^XwPpL]x\^XQLHi shY P2\^Vcf^XZL4\rVXQY Ôe*L^]Ld_&Ldg4Y U&ncL^XZ[&L^U&Ýpf\dabPRL^XZ\^ÝRa*a*eY X2L^ÄPRY U ©¦o\^V&¢ N<Y UÁ*UÐg^S&XZL^U&P«g4Y UPRabU&S&SÐN<\^S UÈXQL4[ab] PXQ\^UmOa(PRY XZabSi Ø Ug^SXQL^U&Pg4Y U&PRabUS&SàN<LTXQL4g4Y.]\^Uc_fªS&PRa*ea(mO\^XQL4\Êg4Y ]L^UDmOa*a ( "Ë8Doí VcL^U&PXwS \4eL4[&L^XQL4\ S&UL4aº\4ebPRLß\^V&XZY.ÙDab]x\^ÝRa*aºabUabÝRa*\4e*LHir Y Pº*U \4g4LONQPég4\?mNyL VcY\^PRL *Ucg4L^XZg4\ÈSPRa*e*a(mO\^XZL4\ßY V&ÝRa(S&Uca*a íB $l 7g4\^XZL¸[&L^UcL^XZL4\?mOfªS&UlV&XZY&g4LONxabPRL^XZ\^PRabn½_&L¸g4Y XZL4g^PR\^XZL¸\¸g4Y Uc_.Scg^PR\^ÝRL4a]abUab]LT_&abUÈg4abXZg^ScabP * \4g4L4\ONQPRfÁY VÝRabS&UcLVcY\^PRLÁ{wa\4g^PRa(nc\^PRfV&XZabU¡g4Y ]x\^Uc_&\ ( íB i Ø UèXZL4[&ab] P*XQ\^UDmOabPRY XZabS¡g4\^SmO\VcY&\^PpLº{wa SPRa*e*a(mO\^XZL4\S&UcY X¸]xY&_&L4eL½UcL^XZL4\4e*a©NQPRLO{wf^XZfàg4\^V\4g4abPRf^ÝRaªz<aXQL?mOa©NQPRL^UÝRL½V\^XQ\?mOabPpLAp_&LßL?ÙDL^]dVcebS g4abXZg^ScabPRL g4Y.U&ÝRabUc^U_Æ_a*Y&_&Lz<aÔY ÔcabUcLOh{wf^XZfg4\^V\4g4abPRf^ÝRaz<aÉXQL?mOa©NQPRL^UÝRLrV\^XQ\?mOabPpL?JZN<\^S¸N<L^PR\^XZL4\rUcL4g4Y.XQLONQV&S&UDmOf^PRY&\^XZL\ _a*{wL^XZabPRL4eY XkL^XZY XQaS&Ppa*e*a(mO\^PRL8_ XZL^V&Pg^XQa(PRL^XQaac_Lg4Y UncL^XQ[L^U&ÝRf8\4e*La(PRL^XQ\^Ýpa*a*e*Y XhL^ËPpY U ©¦o\^V&¢ N<Y Ui 37 8ßD5ß5 50¡5Z És NQVca*g4L0SPRa*e*a(mOL4\?mOf¨S&X|]f^PpY&\^XQL4eLL4e*L^]xL^U&PRL8_&L8g4abXZg^ScabPwOUdY.XQ_&a(UcL\4e{w\^ÔcL^Ppa*g4f& E#EEíOëHì©ñ<ãQ&ë rñ<Úkoí ( ÀhY X|]\8[&L^UcL^XZ\4e*f& B<name> _ <d> [ª<g> N<s> UcY<model> _ S&XZa*e*L8g4Y [<area>] XQLONQV&SUmOf^PRY&\^XZL_.XQL^UcL4aR.[ XZa*e*L4a}z<a ]xY&_&L4e \^XZL4\ ' U&S&]xL4e*L¨]Y_&L4ebScebSa Á{|\4g^PRY Xk_L\^XZa*L NQS&X<N<L4a ' vÙDL^]dVce*L& ¥tR 99 9A£8Àdq ¥d8 2 ))TKF)2à£¨Ò h) i 9 Ä&ì â}Ü4ì}ñKë ã& EEE ÀhY X|]\8[&L^UcL^XZ\4e*f& C<name> <+node> <-node> [<model>]<value>[IC=<initial>] $UcY&_&Lª UcY&_&L 'UY&_ S&XZa*e*L¨VcY.mOabPpabnxzyaUcL4[\^PRabn nc\4e(ScL tu ' abUabPRa*\4e ' nc\4e*Y\^XQL4\8g4\^Vc\4g4abPRf^Ýpa*a*UÀ PpL^U N<abS&UcL4\8abUcabÝpa*\4e*\OO*U¬OVcL8g4Y Uc_&L^U N<\^PRY.X *Ud\4g4LONQPg4\?m$NyL8{|Y&e*YDN<LOzQPRL8g4Y ]\^U_&\riç ¦Ag^SMY V&ÝpabS&UcL4\$q Ä 0 tws}¥s}J ' vÙDL^]dVce*L& uBÒħ 87 9 )9 VÀ uBÀ}§Ë¥ 0 2 2#2àuB;Ò§ ;9 VÀxtQu ' Oi 7On Ë©â FE#EE ÀhY Xw]x\8[&L^UcL^XZ\4e*f& D<name> <+node> <-node> <model>[<area>] $}UY&_&Lª UcY&_&L 'UcY_ S&XZa*e*L¨VcY.mOabPRa(nz<aUcL4[&\^Ppabn 'U&S&]xL4e*L¨]Y&_L4ebScebSca ]xY&_&L4e 'Áw { \4g^PRY.Xk_&L8\^XQa*L \^XZL4\ vÙDL^]dVce*L& §uBkès7 9à§Ä;Ò§ §º 2 8 7Á q&ÞWtQ uB Oi 7 EEEZê}4ñrâ}ܨãQÜ4ì}ñyRê ì}Ü4 éëHì âhëjã "!QìMãÜ4ì}ñ<©ê}ì Ü UC 38 E<name> <+node> <-node> <+control> <-control> <gain> E<name> <+node> <-node> POLY(<value>) < <+control> <-control> >* + < <coeff> >* E<name> <+node> <-node> VALUE={<exp>} E<name> <+node> <-node> TABLE {<exp>} < (inval), (outval) >* E<name> <+node> <-node> LAPLACE {<exp>} {<sexp>} E<name> <+node> <-node> !"FREQ $#%&('{<exp>} $)*%,+-%,./0% <(freq, +-%1.2magdb, &('$43-%&phasedeg) %5$6 +->* 5 +7$8 8 5 + 19!"# %&(':)*%,+-%,./0% +-%,.;<'3-%%=5 !"# >@?-A$ 5CB#0B0 *B+-=5+-=%,% %, DFE G8HJI .1#K 9 5 L4LM9ON B#PB0=*B+- 5$6 +-('%,$6% !Q%,RB0%,#<'&%,2#,#%SIUTVXWSVZY[K .,# 5L4LM9!Q5L%5%3M%% '%,\#,#% ]_^`2' '%,$a=%,RB0%,#f 6T b!Qc de# > f&# > Og,g,g '%,$ah%16RB0%,# <W f f j b!Qc de# f >id f&# >,f fj&# >-d jki#`>ide# >,f lZ# >,f m&#`>id n&# >-d # >,f oZ# >ide#`>@f p&# >,f qg@g,g '%1a=%,RB0%,#CY f b!Qc f de# >id f&# >,f j&#`>@f j ki# >-d j lZ# >ide#`f >@f m&# >-de# >,j n # >,f f o # >,f # >,j p f # >,j d@c # >-d did # >id # >,f f d@f&# >-d j # >@j d@j&#`f >ide# >,f deki# >ide#`f >@f&# >,j Tr*j #`>ide# >,j d@m&# >,f d@n&# >,f # >,j d1oZ#`>@f&# >,j d@p&# >,j qg@g,g sutuG8vu]_! Bw# PB0=*Bw+M x^:'7*B0%=%,+-%&5 <.7%y%&<^z {<exp>}I&+-RB0%,#%i$5#73-% '7%,B#PB0=%=<+-RB0%,#**+-%,2' K !{LI&^ z K_*| !<T}WR g,g # 53-%% #+-%&%1)*y%&(~;^:' *B0%%w RS M Q iM i*[ M ABS(x) SQRT(x) EXP(x) LOG(x) LOG10(x) PWR(x,y) PWRS(x,y) SIN(x) COS(x) TAN(x) ATAN(x) |x| x1/2 ex ln x log x |x|y +|x|y (x>0), -|x|y (x<0) 0B %,\^;^J~x7%% 5`B8^6[^J~x7%% +-\^^J~x7%% 5+Mx^R*~x %% 55+Mx^R*~x %% tub(t=\Ii^K 39 t(G8] qN {<exp>} < (inval), (outval) 67%, =5=*B+- ^';x^:'7*B0%=5='%, +-RB0%,# %,;5%,5#%,+{ ' 3- *B+-=^:'7%,+- '7%,x'#5+- 5$$+- IM%,.1KPIM#+.1K{NC7 +-<~ 7%, 57*B05+-7 <.7%$ %, .1[#<.7% %1.1 B#+=,#% ^:'`Q% .&%& #+.1B#+<+-RB0%,#%&%RB#0B0%S 5+-%, #%,+-+-=5*B+-%' 3-=*Bw+M *B0%# +-<'7%,;%,+-'&=%,%&* %{~&2L7 %,+-.,#,#% .7%$ %,.1"+MRB0%,#uB#PB0%%<.7%5RB+-+M 57*B'# )*+M 5'+M8%, +-4.,#,#% g G8tuDSG8t ] {<exp>} {<sexp>} 5=*Bw+M ^:';x^:'7*B0% 57='%, = +-RB0%,# %125%15#%1+F 7%,6== L 5 + # < + 7 RB0L48*B+-=+5=Li#53-% B0^:' Q<.7%y%& 52'^CB g R(] I-L-7 `*yR*'*B0$K{qN {<exp>} +-RB0%,# %,;5%,5#%,+{ 67%, =5=*B+- ^';x^:'7*B0%=5='%, L45+-$4#<+7RB0L4_*Bw+M +' +4#;# 6%,+M L-5.3- '7%,x. <6 #,#1#%SI~;(K /P% L)*%SI~;7K g s &%&('+#2L-75.3-=%,+M4%7CB0=y3-%1J' %,;%, +-4'7 %1%7 I&'+&4#;L)*K_B0# %,+&6%5uI&'+#x6$#1K g ]_^`2' EBUFF 1 2 10 11 1.0 EAMP 13 0 POLY(1) 26 0 500 ENLIN 100 101 POLY(2) 3 0 4 0 0.0 13.6 0.2 0.005 ESQRT 10 0 VALUE = {SQRT(V(5))} ETAB 20 5 TABLE {10*V(2)}(-5v,5v) (0v,0v) (5v,-5v) E1POLE 10 0 LAPLACE {V(1)} {1 / (1 + s)} EATTEN 20 0 FREQ {V(100)} (0,0,0 10,-2,-5 20,-6,-10) S= $!w F6=7 #"$Q% $&"('{ R%$&"(wS%$&")F$Q%$&"+*[ i$ #"$Q% $&"('{ R% $&"(w S% $&,-./102"3)R5 4iS% $36+"&"3)F$Q%$&$#7"&"{ 8$&$# 8 9!"#7%<'$)*%1+-%,./0%+-%,. !Bw# PB096+-SBP%1#9 57% 5#7+ 7'7)*%,+-6%169 . 6 5$6 !Q%iB?-%5u$ 5 92B#0B0 *B+-=5+-=%,%& %, DE=GH I .,#K B#PB0=*B+- 5$6 +-('%,$6%SI&.)*%^:'%&53-%%<'+&4# B#PB0=<+-RB0%,#=5+-<~x+-RB0%,# <]<NN N K ]_^`2' ;:]{< ::] T W s=:]>:] T@? g ? RtBA D TY ? DFE G8HxI T K{sBC- r ?? # G C- @T ??T@?T DE=G8HJIiWKFs T . W ? g ? ? gED ? g F W ? g ??`r 40 <7_ 1S 8 $F5 !w>0 iSR F6=7 G<name> <+node> <-node> <+control> <-control> <gain> G<name> <+node> <-node> POLY(<value>) < <+control> <-control> >* + < <coeff> >* G<name> <+node> <-node> VALUE={<exp>} G<name> <+node> <-node> TABLE {<exp>}= < (inval), (outval) >* G<name> <+node> <-node> LAPLACE {<exp>} <sexp>} <+node> phasedeg) ]_^:'%53-G<name> %%&CB# +FB0%, %7=5#25<-node> & =uFREQ B#PB0b]<{<exp>}< NNNI4B#0B0 (freq, (+-Smagdb, BP%1#=56 +-<~x>* +-RB0%,#K ]_^`2' GBUFF 1 2 10 11 1.0 GAMP 13 0 POLY(1) 26 0 500 GNLIN 100 101 POLY(2) 3 0 4 0 0.0 13.6 0.2 0.005 GSQRT 10 0 VALUE = {SQRT(V(5))} GTAB 20 5 TABLE{V(2)} = (-5v,5v) (0v,0v) (5v,-5v) G1POLE 10 0 LAPLACE {V(1)} {1 / (1 + s)} GATTEN 20 0 FREQ {V(100)}(0,0,0 10,-2,-5 20,-6,-10) 7_ 1S P -RS :F5 F4=7 F"{F$Q% $&"3'{ S%$&"3R%$&"3): %$&" *`[ i$ F"{F$Q% $&"3'{ S% $&"3 R% $&,-./08")R54-R%$(6 "&"3): % $&$ 7"&"{ 2$&$ ]_^:'%53-%%&CB# +FB0%,%7=5#25&(' +4#B#0B0< NNNIBw# PB0= 5# + 5 $6 +-(~&25# +iK g ]_^`2' =::]< ::] T W = s :]{< ::] T ? g ? CB t A D TY ? DFE G8HJIUT KF s Ci r ?? # G C- @T ??@T ?T DE=GHxI&W KFs T . W ? g ?? Eg D ? g = W ? g ??r 7_ iRFR1S 41 g F6=7 I<name> <+node> <-node> [[DC] <value>] [AC <mag> [<phase>]] + [ <transient> ] # %&(':)*%,+-%,./0% +-%,. <+node>, <-node> = [DC] <value>] = semnal de curent continuu de tip i = <value> AC <mag> [<phase>] = semnal de curent alternativ de tipul Li75.3- i =Bw<mag> * sin(2 *3.14*f*t), unde f este '5%L4%&5+-(~&2&%,%==56 t g <transient> = semnal tranzitoriu :`\&(+& )*%1+-7%% '+L4%<+-%,' # ^'3M% ,0- Q S% 4M %w S%4M 2%6 i= A %16 %0T %,'| 4+M5 L4 Li+M5 i1, 0 < t < rdelay i1 + (ipk-i1){1-exp[-(t-rdelay)/rtc]}, rdelay < t < fdelay ipk + (i1 - ipk){1-exp{-(t-fdelay)/ftc]}, fdelay < t < TSTOP :`2%L%53-% s 7=%,%,3-%& s 7=(. 9L 8%1\';<~2+ 9w)*%7('+#2L-7+#57*B05+- (RB+-+-=<+-%,2'x'+#;Li7+#57*B05+- 8%1\' ~2+ 9w)*%7 '+&4# Li7+# *B05*B05+- (RB+-+-=<+-%,2'x'+#;Li7+# *BP57*B05+- ' #iB ,7.=!0M + 42 %6 F s 7 ' 7L4%1%,+- ? g? : ]_D 7 :`]_D `: ]8D vC%,+M+- 6*B#7 t t B B B B A %, %d %f + + + ' ' :`\%&L4%53M% s 7 '7L%,%,+- ? g? : ]_D : ]_D : _E=D : _E=D s 7 %,%,3-% s 7 <. 97L _%,2';(~&2+ 9w)*% _%,2'; 57*/+-7 _%,2'; *BP57*/+-7 C#+M %,2'#-Bw#,#% DF%& &%,%{'('$43-%1#% , vu%,+-+M *B#7 t t B B B B B .!08 S 5 6 s 7%=%,+M4%7CB# +S$y3-%,# +-(' %,;%, +-4'7 %1%7 g BP%1#RB0% #&+~&2L-75.3-u _ M0 M: 4S4= &6 i(t) = ioff + iampl*sin[(2*3.14*fc*t)+mod*sin(2*3.14*fm*t)] 43 A :`\%&L4%53M% %, %LL %\' L45 6 Li s 7 =LLwB0+ tu\'&%,+#%1 R5.3-<'#+-+-7 C4%5=<6 #7 R5.3-uBP2,#,#% B0%, #RB0%" C{! A 0M M: 4S < S %LL ? %6 ioff + iampl*exp[-(t-td)*df]*sin[2*3.14*freq*(t-td) + + 3.14*Phase/180] , td < t < TSTOP :`\%&L4%53M% s 7 '7L%,%,+- T ?- :`_E D ? g? ? g? ? g? s 7 =LLwB0+ tu\'&%,+#%1 R5.3- _%,2';(~&2+ 9w)*% F5+-8 +-%1)*7 F)* ]_^`2' C C4= t : TY ? W g Y*\t C4t W YAt g ??T C4t D :xW YAt g ??T D ? CDRvuG ::]T ? DvG :] I T 2t T 2tW:RB8WRB8W:SBqr?SBCT@??$RB7K CPY W g ??$WJt T :Ci2I g ??$W g ??$W T g r5A ] K J vu%,+-+M *B#7 t t C) C) + +- %, %LL %\' Li7 +- L D *B0 s 7 ' 7L%,%,+- T ?M :`_E D T ? :`8E=D *$ 2 =% R=$ 44 vu%,+-+M *B#7 t t C) B d B 7 F6=7 J<name> <d> <g> <s> <model> [<area> >] <d> <g> <s> = nodurile corespunzatoare drenei, grilei si sursei <model> = numele modelului <area> = factor de arie Exemple: JIN 100 1 0 JFAST J13 22 14 23 JNOM + 2.0 K*** - bobine cuplate Forma generala: K<name> L<name> < L<name> >* <coupling> K<name> < L<name> >* <coupling> <model> [<size>] L<name>* = numele bobinelor cuplate M <coupling> = factor de cuplaj 0 ≤ K = ∠1 L1 + L2 <model> = numele modelului. Se poate defini bobina, neliniara, cu miez feromagnetic, cu histerezis. <size> = factor de scala pentru aria transversala a bobinei neliniare. Exemple: KTUNED L3OUT L4IN .8 KXFR1 LPRIM LSEC .99 KXFR2 L1 L2 L3 L4 .98 KPOT_3C8 L*** bobina Forma generala: L<name> <+node> <-node> [model] <value> [IC=<initial>] <+node>, <-node> = nodurile pozitiv si negativ 45 [model] = numele modelului <value> = valoare in H %,%,3-%19!".7 %,%,3-%<'+&4#;5#7+#%1Jyy%,uI{B0=L4&`B0*Bw+M 5 9 IC=< ~;%,%==5= t= B0CB'5%L%5:BC4D(DSK g Exemple: LLOAD 15 0 20mH L2 1 2 .2e-6 LCHOKE 3 42 LMOD .03 LSENSE 5 12 2uH IC=2mA M ***- tranzistor MOSFET. Forma generala: M<name> <d> <g> <s> <sub> <mdl> [L=<value>] [W=<value>] +[AD=<value>] [AS=<value>] [PD=<value>] [PS=<value>] +[NRD=<value>] +[NRS=<value>] [NRG=<value>] 57*B'# )*+M=[NRB=<value>] 7%i$$%&% , / <d>, <g> <s>, <sub>= nodurile sursei i substratului 6 1 !" #6&(,#,#% G !Q,# %,6u/0%3-%, 5,#,#% t }t=:J!Q7%%& =%L-# )*7 & 7%S/0%SBw# PB0% D D;:J!"'76+7%%% 53-%,#%&% B : !"#& <'+7+-=5%,.&+-= % Li#`)*%%_%i B#0B0%i$7%%S/0%SB#yRB+7+#,#% g Exemple: M1 14 2 13 0 PNOM L=25u W=12u M13 15 3 0 0 PSTRONG M2A 0 2 100 100 PWEAK L=33u w=12u AD=288p AS=288p PD=60u PS=60u + NRD=14 NRS=24 NRG=10 Q*** - tranzistor bipolar Q< < name> > <c> > <b> > <e> > [< <subs> >] <model> > [< <area> >] <c> <b> <e> = nodurile corespunzatoare colectorului si bazei <subs>= nod al substratului ( optional ) <model> = numele modelului <area> = factor de arie Exemple: 46 Q1 14 2 13 PNPNOM Q13 15 3 0 1 NPNSTRONG 1.5 Q7 VC 5 12 [SUB] LATPNP R*** - rezistor Forma generala: R<name> <+node> <-node> [<model>] <value> <+node>, <-node> = nodurile pozitiv si negativ <model> = numele modelului <value> = valoarea rezistentei in Ω Exemple: RLOAD 15 0 2k R2 1 2 2.4e4 R*** N1 N 2 <VALUE> <MNAME> <L= LENGTH> <W = WIDTH> S*** - intrerupator controlat in tensiune Forma generala: S<name> <+node> <-node> <+control> <-control> #7%<'$)*%,+M%,. /P% +-%,.;<model> =%,+74# '+-#,#% <+node>, <-node> = 5 + 1 5$+719!"$#%&('$)*%,+-%,./0% +-%1.2&(+-SBP%1#%% F 8 command Uc <model> = numele modelului Exemple: S12 13 17 2 0 SMOD SRESET 5 0 15 3 RELAY T*** - linie de transmisie Forma general : T<name><A+><A-><B+><B->Z∅ ∅=<value>[TD=<val> | F=<val>[NL=<val>]] 47 $#%&('4+M% Tb/0%`W <A+>, <A-> = !Q%,\'3-=575+-%-Bw+M%5 ∅ A!"~ +29)*%&<+7RB6%iB0%% "!QLi75.3- G ! 1#%,5+&%5 %,%&%i#u,# %,6uL4%Z)*%5 G_! G<N 0/ % *Bw+MC,# %,6 λ λ (# uB0\,#,#%=L-5. 3-< I.7<' L4%,%,+-b! ? g WRr[K ]_^`2' T1 1 2 3 4 Z0=220 TD=115ns T2 1 2 3 4 Z0=50 F=5MEG NL=0.5 V*** - sursa independent de tensiune Forma general : V<name> <+node> <-node> [[DC] <value>] [AC <mag> [<phase>]] + [ <transient> ] ]_^:'%53-%%&CB# +FB0%,%7=5#25& =uB#PB0=%,'+-==5#7+ I***. Exemple: VBIAS 13 0 2.3mV VAC 2 3 AC .001 VACPHS 2 3 AC .001 90 VPULSE 1 0 + PULSE(-1mV 1mV 2ns 2ns 2ns 50ns 100ns) V3 26 77 DC .002 AC 1 + SIN(.002 .002 1.5MEG) W*** - i + = 4M5w" Forma general : W<name> <+node> <-node> <vname> <model> F 8 9!"$#%&('$)*%,+-%,./0% +-%1.2&(~ + #'+M4#,#% . !" #6&CB#0B0% (+-SBP%1#=57%5#7+'7)*%,+M(%16= 5\ 1 !" #6&(,#,#% g Exemple: W12 13 17 VC WMOD WRESET 5 0 VRESET RELAY X*** - subcircuit 48 Forma generala: X<name> [<node>]* <sname> [PARAMS: <<par>=<val>*>] <node>* = nodurile la care este conectat subcircuitul <sname> = numele subcircuitului. Acesta este definit asfel: SUBCKT <sname> [<node>]* .......... ENDS <sname> Examples: X12 100 101 200 201 DIFFAMP XBUFF 13 15 UNITAMP 3. Liniile de comand F54 $!w_54 4 ) Forma general : .AC [LIN][OCT][DEC] <points> <start> <end> B0(.%)*=L-5. 3- &%,%0*'=5+-.uB0#x' 5 g [LIN], [OCT], [DEC] '%, +4B79!"#4#<'#5+-CI&+-+M'+#J.% +-<G#C-\*' 5+M.('+#J.% -+ E ( /0% '=5<'+#x.7%+- C C ] KF~;57CB0=L45+&#)* %1)*<t B+-4+i9!QLi75.3-=%,%13-% $9!QL-5.3-=L4%, Example: .AC LIN 101 10Hz 200Hz .AC OCT 10 1KHz 16KHz .AC DEC 20 1MEG 100MEG F54 $!w 4 iSS Forma general : .DC [LIN] <varname> <start> <end> <incr> [<nest>] .DC [OCT][DEC] <varname> <start> <end> <points> [<nest>] .DC <varname> LIST #<value>* =7[<nest>] +-#,#%%, '+<+-RB0%,# CB0#;5#7+ <varname> = 5#% .7<.%&)* [LIN], +M[OCT], 4#,#% [DEC] !".%&3-%=%,%7**'=5+-.CB0#x'=5=(.&%&% B +-4+i $9!".$%& %,%,3-%u/0%L4%,('+#J.7 +-$4#1#% '%, +4B79!"#4#<'#5+-('+#J.7%=7+-#,#% '+&4#;57CB0 L5=%1)* %,5w9!"'*B#=%,576+M<'+#x.7=7+-#,#% *B+&9!Q,+7+-_%,'+54#% '7+4#B0<.%&)* G#C : !Q%1)* '+&4#;x%iB+-=<.7% .,#Q<.$%% +-$4#1#% . Exemple: 49 .DC VIN -.25 .25 .05 .DC LIN I2 5mA -2mA 0.1mA .DC VCE 0v 10v .5v + IB 0mA 1mA 50uA .DC RES RMOD(R) 0.9 1.1 .001 .DC DEC NPN QFAST(IS) + 1e-18 1e-14 5 .DC TEMP LIST 0 20 27 50 80 .DC PARAM RS -1 1 0.1 .DC SRCNAM VSTART VSTOP VINCR < SRC2 START2 STOP2 INCR2 > 0 S4 M 0 i 4i S< - *!,q END F- 6=7 , . END .ENDS - 0 4 5 S RS- i iu SS F F6=7 .ENDS [<name>] <name> = numele subcircuitului Exemplu: .ENDS 741 .FOUR -Analiza Fourier Forma general : .FOUR <freq> <output L-5. 3- var>* 5$\'$+-%L-#+- <freq> = #+' #+_.qN\!O.%&y% ' +4# 572B0J */+-x&%1)* # % V5*B+-x%1)* B0<'+-=L5(# 6% '5 9J =+-& 55#+-=5#2%1)*<~x%1 +7 )*%,+-7%,# g Exemplu: .FOUR 10KHz v(5) v(6,7) .IC - Conditii initiale pentru regimul tranzitoriu Forma generala: .IC < <vnode> = <value> >* %,%13-% <vnode> = <value> - se atribuie nodurilor < vnode> valorile <value> Exemplu: .IC V(2)=3.4 V(102)=0 .INC - Includerea unui fisier Forma general : .INC <name> L%i/0%#,#% <name> = numele , inclusiv calea Exemple: 50 .INC SETUP.CIR .INC C:\\PSLIB\\VCO.CIR .LIB - Utilizarea unei biblioteci de modele si subcircuite Forma general ! #:.LIB [<name>] %,y 7%%i %,5,#RB0%,. 5& 5 ' %,5%,' g %1'RB0*/w+M* B0 #+-%&%1)*)* y%,y%+-5 NOM.LIB Exemple: .LIB .LIB OPNOM.LIB .LIB C:\\PSLIB\\QNOM.LIB .MC -Analiza Monte Carlo Forma general : .MC <#runs> [DC][AC][TRAN] <opvar> <func> <option>* <#runs> = numar de simulari Monte Carlo [DC] [AC] [TRAN] = tipul de analiz =%*/0%,7(' +4#;57CB0=L45=%Z)* A 2+-=(& <opvar> L-#59!Q=L-#marimile 53-%='%&5+-(.7%{7%,6%&8=%*/0%,7('+#2=y3M%, 2B0%,# <.7=55+-7%iB+-%5 g t 5*B+-<'+L4% B H AOtJ ] ] I&.,#KP[RtuG_G ] ] &I .,#K $'+&9!Q%,.PB0='3-%,# %5uB0('$+FB0+- AOtJ5A C-\[ C :] : [LIST], .PLOT, .PROBE, ALL, FIRST <n> , EVERY <n> , RUNS <n> . Exemple: .MC 10 TRAN V(5) YMAX .MC 50 DC IC(Q7) MIN LIST .MC 20 AC VP(13,5) RISE_EDGE(1.0) LIST OUTPUT ALL .WCASE -Wort Case Analysis Forma general : .WCASE <analysis> <opvar> <func> <option>* Exemple: .WCASE DC V(4,5) YMAX .WCASE TRAN V(1) FALL EDGE(3.5v) VARY BOTH BY RELTOL DEVICES RL .MODEL - Model. Forma generala: .MODEL <name> <type> [<param>=<value> [<tol>]]* <name> = numele modelului <type> = tipul dispozitivului <name> C*** L*** R*** D*** Q*** Q*** <type> CAP IND RES D NPN PNP Tip condensator bobina rezistor dioda tr.bipolar NPN tr.bipolar PNP 51 Q*** J*** J*** M*** M*** B*** K*** S*** W*** N*** O*** LPNP NJF PJF NMOS PMOS GASFET CORE VSWITCH ISWITCH DINPUT DOUTPUT tr.lateral PNP JFET canal N JFET canal P MOSFET canal N MOSFET canal P GaAsFet canal N miez neliniar ~ + #'+M85+&&+~&J+MRB0%,# ~ + #'+M85+&&+~&25# + dispozitiv digital de intrare dispozitiv digital de iesire /0% <param> parametri la valorile <value .+#=5#x<value> +-&3M[< tol>] +-1"-~&setarea J' 5anumitor +- vu4)*=%iB+-<'+7%_5 9+-.(+M%,'#7% %iB'$)*%,+-%1.C/0%# ** pentru rezistor Nume R TC 1 TC 2 TCE R*** 5L%5%Parametru +S 2'%L%57 '+&4#x7)*%iB+-3- 5L%5%+%,%8 +-2'7+#7 5L%5%+'+7+-%5= +-2'7+#7 5L%5% +S^'3M% +-2'7+#7 Unitate Val. predefinita 1.0 _ C-1 0 0.0 0 0.0 C-2 0 /0 - 0 C 0.0 <valoare> = RNOM* R * [ 1+ TC1( T - TNOM) + TC2( T - TNOM)2] sau TCE ( T - TNOM ) <valoare> = !" RNOM .7*<R* )*%i1B+-.01 3-%(+M\'7+#7=xE A RNOM FxE A !"+-\'+# <%, g D+M L%SBw'5%L4%&5+-(~&2&%,%==5\ g E DF C E(<: ** pentru condensator C*** Nume C VC1 VC2 TC1 Parametru coeficient de amplificare pentru capacitate coeficient liniar de tensiune coeficient patratic de tensiune coeficient liniar de temperature 52 Unitate - Val.predefinita 1.0 V-1 V-2 0 -1 C 0.0 0.0 0.0 coeficient patratic de temperature TC2 0 C-2 0.0 <valoare> = CNOM.C.(1+VC1.ϑ ϑ3-+VC ϑ 2).[1+TC1(T-TNOM)+TC2(TTNOM)2] %% 2.ϑ CNOM = valoarea capacit la temperatura TNOM ~ TNOM = valoarea nominal a temperaturii. Se poate specifica n linia de comand .OPTIONS ϑ= tensiunea pe condensator T = temperatura ** pentru bobina L*** Nume L 5L4%&5%+Parametru =\'&%L4%&5<'+# %,#53-+- 5L%5%+%,%8=5#7+ 5L%5%+'+7+-%5==5#7+ 5L%5% +S&%,%8 (+-2'7+#7 5L%5% +'++M%5 (+-2'7+#7 IL1 IL2 TC1 TC2 Unitate - Val.predefinita 1.0 A-1 A-2 0 -1 C 0 -2 C 0.0 0.0 0.0 0.0 2 2 <valoare> = LNOM*L*(1+IL ).[1+TC (T-TNOM)+TC 2(T-TNOM) ] %,#5+M1.i+IL 3-%<2.i+-\ '+# 1= FJE A LNOM FxE A =!"valoarea +-\'+# <%, %`!Q5#7+#' %,xy$yy%, T = temperatura ** '+#B # D 76+&%% b)*%iB+- 3-$ b)*%iB+- 3- L4L +-RB0%,#==5+7 '+&4#B+-7 $ +-RB0%,#==5+7 '+&4#B+-7 L4L -x8 1-x8 N N<'+#B # -x8 x - _ 5 = 4Mw>0 iSS ( 5 = 4Mw vC%1+-+- s s g '7L%,%,+- T g? T] T g? s ? g? vC%1+-+- s g '7L%,%,+- T g? T] T] Y ? g? Ω Ω D 76+&% b)*%iB+- 3-$ b)*%iB+- 3- L4L 5 # +=5+& ' +4#B+-7$ 5 # +=5+& ' +4#B+-7 L4L 53 Ω Ω t t N N<'+#F F # \ = D76+&% 5 #7+uB0+#73-% b)*%-Bw+M3-=%5 5L4%&5%+=6%iB0% +-%,2';<+`)*%,+ 5'5%,+-+- 53M%,#%% '+-+-%&,#% 53M%,#%% 5L4%&5%+#=77 % 5+-%1. ^:'+<+-2'+&#=5#7+#,#% CB0+# 3-%& 5L4%&5%+b)*+L4%&5| ^:'+<)* 6$+SL%5| 5L%5%+'+&4#;L42#=5'5%,+M3-%% ~x'7%1)*7 %15+- +MRB0%,#=uBw+&'# 7 5#7+#<+-RB0%,# CB+7'# vC%1+-+- t s g '7L%,%,+- T g ?$] T ? g? T g? ? g? ? g? T g? ? gr T g TT Y g? Ω : s s ? t ? s T gr T g ?$∞] Y DF76+7%% $8,+-_%iB'$)*%,+M%,.uBw# +')* +-3-% ~;+-%1#J~&Jy%,y% L% g Exemple: .MODEL RMAX RES (R=1.5 TC=.02 TC2=.005) .MODEL QDRIV NPN (IS=1e-7 BF=30) .MODEL DLOAD D (IS=1e-9 DEV 5% LOT 10%) F S5 [ * ) *w *[ 4 F6=7 .NODESET - Setarea valorilor potentialelor nodurilor w iSR F .NODESET < <node> = <value> >* <node> = <value> - nodurilor <node> li se atribuie valorile <value>.* Exemplu: .NODESET V(2)=3.4 V(3)=-1V .NOISE - Analiza zgomotului Forma general : .NOISE <opvar> <name> [<ival>] 5*B+-%Z)*9B02'+- pentru zgomotul ; a #,+-%%Z)*(# 6% ~<opvar> 2'7#==5#2variabila %1)*<~; 5# care +S1+-se 4analizeaza +-%,. t g 9!"# +M4#,#%%,'+<+-RB0%,#CB0#;5#7+5 5RB+-%,+&#%uBw# PB0=<)* 6$+ %,.19! L-5.3-<'+#;5uB0(+-%1'*B+-uB#'%16+M85+7%,y# 3-%=L4%57% B#0BP=b)*+# +-$+-5%15#%1+#,#% g 54 ,SR% P5 i S=4SR F .OP Forma general : .OP w 8 tinuu .OPTIONS - Optiuni Forma general : .OPTIONS [<fopt>*] [<vopt>=<value>*] 3 <fopt>,<vopt> = op iuni care nu cer sau cer atribuirea unor valori <value> Acestea_sunt: B0(+M%,'7*BP5<+-%,2'%=55# , %,%5=+-=%,B#y5%15#%1+-C/0% '76+&%%5*B+-7 . / %iB+-)*=%,%%=%,;L%i/0%=<y%,y&%+-5%& . &%iB+-)* +-= %1+7 - +-%1'*/+-<+-y1# #7%$ - >- B#'7%, &%iB+- - - B#'7%, &%iB+-<'76+&%&{,#1#% -, B#'7%,(' %,7 #+M6+M -,b +M%,'7*/w+M(.&%=%L7%,+-_'3-%,# % = -. ! .,# B05 %,2y<.7=7%%yRB0,# +-('+#25# + g s ( ( J \! (#. ( ! ! A! '7L%,%,+M *B+-6T 't .,# BP5%,\y(.&=7%&%ySBP ,#+-<'+#B05%,?SL,# ^ g s 7 ' L4%,%,+-=*Bw+M;T g ?$] T ! .1# L%1^`)*<.7(^`%,uI~B05#K= DRvA+-%, ! .,# B05 %1\y<. =%&% %&Li# )*7= 7% '+&4#;%iB':)*%,+-%,.!A E1: g s 7('7L%,%,+M *B+- ? g? . , # 0 B 5 , % 2 y < . 7 7 % % = % L # )*7 uB#PB0% '+&4#;%iB':)*%,+-%,.! A 1 E : g s 7<' L4%,%,+-=*Bw+M ? g ? . 1# B05 %,2y(.7 ,# %,%%5,#1#% '+#;%iB'$)*%,+M%,.! A 1 E : g s 7 DR L4%,%,+-=*Bw+M;@T ?? g ? g µ . , # A 1 E : g s & B05 %,2y(.7 7%,%%5,#,#% '+#;%iB'$)*%1+-%,.! '7L%,%,+M *B+-6@T ?? g ? g µ .,# B05 %,2y(.7 ,#% A Ci2$5$#5+-3-<%,%, 55' +-+-=(#% +# % g s 7<' L4%,%,+-=*Bw+M;T g ? ] T W g .1# B05 %,2y #6# 6^`%1 $6%iB %,+-73-%% '+# +M4%,7' g B g L g -. , . ! s 7 .x! .,# .x! .,# . ! .,# +& )*%1+-7%,#V . '7L%,%,+-=*B+-6Tr? g B05 %1\y<## 6^`%1a%iB ='7$^`%,+-%%%,%,3-%<'+&4#;%Z)*(~ 5# +S5$+-%,# #"V.&<'7L%,%,+-=*B+-bW ? g B05 %1\y<## 6^`%1a%iB =%,+-73-%% ' +4#;L%57('# 5+~;54# %1)*% %,\#,#% +7 )*%,+-7%,#9V.7<' L4%,%,+-=*Bw+M;@T ? g B05 %,2y # 6#Q^`%, +-$+- %iBh %,+-73-%% ~ 5$4# 7%,2#,#% . <'7L4%1%,+-=*B+-Cr ???`*'+#CG r[!+?2B0 $6%,+M 5*B+-=%,%,+- g , b2! .,# BP5%,\y(# 6# 6^%,a<'#5+M(' +4#x#;7L%5 %,;L4%i/0%#N g #+ g >- A! 6 B+-y%*/+-<6+- %, +-7<#%&5*$5('+-=L4%CBP#x+- +&')*& g 6".=L% u B0#x+')*% g s &<'7L%,%,+-=*B+- +&')* % g 55 1- C! .,# L%1^`)*=7%,# ^`%, '+#J+- =%,+M7<#%5 C g DF+-=L4% ~ +bW6B0% g s <'7L4%1%,+-=*B+-W g ! .,# B05 %,2y<#4#=5%L-uB0\%L4%&5+-%,.=<) #1+-+-#%5 g ?2/0% g s <'7L4%1%,+-=*B+- g .,#"+&y#%CB0=L4%&(~ + . ! .,# '4+&# 6^`%1a%iB0%,y% ~+&<.7<'%,.+&#,#% #% +7%5%S/P% .7=5,#% 6% =+%,+& x5uI&.7(' L%,%1+-;T g ] Y[K g -.(! .,# B05 %,2y(.7(%,%,=yRB0,#+-=%iB0('+#J# J'%,.+V .7('7L%,%,+M *B+-6T g ? ] TY g . -. ! .,# .&=7%&%7+-%1. $6%iB0*$8+ 9+'+#J+MRB0%,#*$ 5 9+{/0% '+# 5#7+{I.&<'7L%,%,+- ? g ??T K g - ! .,# +-2'7+#7($6%,CI&. <'7L4%1%,+-$W M K -.(! .,# =yRB0,#+M(' +4#x+-SBP%1#uI.&<'7L%,%,+-6T suK µ ! .1# &3-%, L%i/0%#,#%=%*/0%,7**~x#8=55+MuI.7('7L%,%,+M5?:K , , ]_^`2' :xE ] E xE A E A(]8G_E G_! g ?T g E DF CwE<> : t (( u8 ] SG_!(T W# u_ ] !# g E DF CwE<> , , *$Q% F6=7 *4 54 .PARAM < <name>=<value> >* <<name>={expr}>* <name>=<value> - parametrului <name> i se atribuie valoarea<value>. <name>={expr} - parametrului <name> i se atribuie expresia {expr}. Referirea la valoarea unui parametru global se face utilizand acoladele { } Exemple: .PARAM pi=3.14159265 .PARAM RSHEET=120, VCC=5V .PLOT - Trasarea unui grafic Forma general : .PLOT [DC][AC][NOISE][TRAN] [ [<opvar>*] [(<lo>,<hi>)] ]* [DC],[AC],[NOISE],[TRAN] - tipul de analiza pentru care se cere trasarea graficului */0%, <opvar> = numele variabilei de i e pentru care se traseaz graficul. Num rul maxim al acestor variabile este de 8. (<lo>,<hi>) = punct de origine al axelor pentru graficul respectiv. Exemple: .PLOT DC V(3) V(2,3) V(R1) I(VIN) .PLOT AC VM(2) VP(2) VG(2) .PLOT TRAN V(3) V(2,3) (0,5V) ID(M2) I(VCC) (-50mA,50mA) .PRINT - Tiparirea rezultatelor Forma general : .PRINT [DC][AC][NOISE][TRAN] [<opvar>*] 56 7 ) #,+M+-[DC],[AC],[NOISE],[TRAN] +M%,'#=%1)*<'+&4#;57CB0=5<+-%,'7%,7 '.w9!".7%y%& 57<#4)*h=L4% +-%1'%1+- Exemple: .PRINT DC V(3) V(2,3) V(R1) IB(Q13) .PRINT AC VM(2) VP(2) VG(5) II(7) .PRINT NOISE INOISE ONOISE DB(INOISE) .PROBE -Postprocesorul grafic PROBE Forma general : .PROBE[/CSDF] .PROBE[/CSDF] '.w9!"[<opvar>*] .7%y%&('+#257uBP=7*B+-=J%1)*='%5 DSbE (] <'6%,+M(.%Z) #%1)*7(# 8^:' *B0%%<.7%y%==%*/0%,7 g s 7%y%& %&*/P%1<'`B0%,y%&CB# +P {'+#x%1\#=5#7+5+-%1##B0#J+& )*%1+-7%,# 102" R% $(6 !"'+-3-%&,# #,#% 102"&' R% $ "(w S% $36{!"+-SBP%1#<~+7(# /0% 102": % $(6{!"+-RB0%,# (' +# %,' F 02"$Q% $(6{!"'+- +-%,# #,#%`^2 ##%+ 6 08"{F$Q% $36{!"+MRB0%,#<~+7<#7%b^6/0% ;<##%&6+2#,+-%1' 08"{F$Q% $36{!Q5# +&# '%12&6+&#%,'& 08"{F$Q% $36!Q5# +# '7%,xy<^2<##%+2#,+-%,' 6"' +- L% #=%&54#%+<+-%,'#w ? =?&]8?&R? ? =? C4?&G8?& ?s ^ J'+L4%7%57 %1Jy4 =? b? : I (K - D/G/S (J) - D/G/S/B (M) - C/B/E/S (Q) - pentru regimul sinusoidal: M - amplitudinea DB - amplitudinea in dB P - faza ~&+-w)*%==#' G– ' 4+M(7 '+-=%,6 %,7 '+#;%1)*b)*+#1#%w - )* 6$+#=%,+7 - - )*$6+&# %&*BP%1 0 - 6 )*+# %, +7<~; 0 - - 6+{)* 6$+#=%*/0%,<~; R#53M%%<#+-%&%1)*y%uB#+P 57 R#53-% tBB:Ii^K :(\Ii^K : bI&^ K ] uDI&^ K GE I&^K GE "@T ?`Ii^K A Ii^K DI&^K =Ii^K C A Ii^K Ii^K D =Ii^ `K :Ci2I&^K (1 E :Ii^K t 2I&^K t t=\Ii^K tub(t=\Ii^K `Ii^K B I&^ K tCs Ii^K A :I&^K A C-\Ii^K AOt xI&^ K : 2%L%53-%& I&^ K TIi^ ?$KP ?`Ii^! ?$K7 TI&^ ?$K ^ > ,RIi^K `Ii^K 6 #,#,#% ^ L4)*uI&~; K 1#%`^ '+-(7= 1#%`^ '+- %16%1==,#%`^ ~+-w)*%7 #'x'+&4#\^6I-%16B7K I&^ K B0%,\^[^J~x %% 5`B8^R[^J~x%&% +-\^[^J~x7%% 5+Mx^R*~x %% 55+Mx^R*~x %% 7%,.+-=,#%`^J~x'4+5#;yRB05%iB0 %,+-$=,#%`^J~;%,+M4.1#L4%1%,+'+#;yRB05%iB0 .7<#%=,#%`^J' %1+-.,#L%,%,+' +4#;yRB05%iB0 .7=L45+-%1. =,#%`^2%,;%,+M4.1#L4%1%,+'+#;yRB05%iB0 6%1%,2# '43M%% ==,#%`^ 6^%,\#'43-%&%7= 1#%`^ Exemple: .PROBE .PROBE v(2) I(R2) VBE(Q13) VDB(5) .PROBE/CSDF G5&*/P% ) #,+-+<B0 0#\#+-%%Z) 99%,# 75?t 5?M{75;^'*B B0% g : u *Bw+Mx# L6+{B'5%L%5<'+#;+-<#7%5 %*/0%,7<~\D : DC ] g 5 4i4i 4 4 ) [4 4 .SENS F6=7 , w iSR "+ )R%$ '.qN !".7%y%& %*/0%,7<'+#;5uB0 $*/+-=%1)* B0 )*%1+-%,.%,+M3-%~x'$4+5#x+-3-% '7+%&%5%15#%1+#,#% g Exemplu: .SENS V(9) V(4,3) I(VCC) .STEP - F54 $!w { 0 58 Forme generale: .STEP [LIN] <varname> <start> <end> <incr> .STEP [OCT][DEC] <varname> <start> <end> <points> .STEP <varname> LIST <value>* [LIN], [OCT],[DEC], LIST - se variaza variabila <varname> liniar, pe B0#x~x'#5+M .,#qNBw'5%L4%&5+-(~&2&%iB+- octave, peB+-decade 4+i $9!".7%=(~&5'#+{/0%SBPL 90/P%1+S&(.7%y%& <incr> = incrementul <points> = num rul de puncte Exemple: .STEP VIN -.25 .25 .05 .STEP LIN I2 5mA -2mA 0.1mA .STEP RES RMOD(R) 0.9 1.1 .001 .STEP TEMP LIST 0 20 27 50 80 .STEP PARAM X 1 5 0.1 .SUBCKT - Definirea unui subcircuit Formele generale: .SUBCKT <name> [<node>*] [PARAMS: <par>[=<val>]* ] <name> = numele subcircuitului <node>* = nodurile extreme ale subcircuitului. Niciunul nu poate fi zero. PARAMS: <par> [ = <val>]* - setarea unor parametri Exemple: .SUBCKT OPAMP 1 2 101 102 .SUBCKT FILTER IN OUT PARAMS: CENTER, WIDTH=10KHz .TEMP - Temperatura Forma generala: .TEMP <value>* / <value>* = valorile temperaturii pentru care se dore te analiza circuitului Exemple: .TEMP 125 .TEMP 0 27 125 54i4i4SRS S4SR S *$ w iSR F6=7 " )R %$&" 3 %$ '.w9!".7%y%& =%*/0%,7 %,'RB759!"# +M4#,#% 5#% . <' )*%, +-(.%y%= %1+ Exemple: .TF V(5) VIN 59 .TF I(VDRIV) ICNTRL .TRAN - Analiza de regim tranzitoriu Forma general : .TRAN[/OP] <pstep> [<noprint> '*<ftime> B#<+-%,2'J '+#257u[<ceiling>]] BP=L%i/0)*(7[SKIPBP] ) #,+-+&# <pstep> = Li+M%,6 !"+-%,2'#L%, '+#;5uB0 */+-=%Z)*(+7 )*%,+M%& '7%,+i !"+-%1\'#%1%,+-% ' +4#;57CB0=7*/+- L%i/07(7) #,+-+M 5%%,$ ! limita superioara a pasului de timp; daca nu se specifica se considera ceiling=ftime/50 pentru un circuit care contine elemente dinamice sau ceiling=pstep pentru un circuit rezistiv. 5 %,3-%%&8%,%1+-%=L%,%,+-=%,;%,%%=%,.0B08&6+M [SKIPBP] = folosirea =5%,75#%,+{B0#25&5#+-=L4 `B0%,2B0+-7%=%,;%,%& =5 g C Exemple: .TRAN 1nS 100nS .TRAN/OP 1nS 100nS 20nS SKIPBP .TRAN 1nS 100nS 0nS .1nS .WATCH - $*1 [ 4 P5w%42 SRQ i !w<4 i F 4F$F54 [ R 2 4i F6=7 : .WATCH [DC] [AC] [TRAN] <<varname> <l, h>>* [DC], [AC], [TRAN] = tipul analizei #(.%y%%SI' 9=<+7%.%y%bK_/0%&%,6%1+- <varname> <l, h> = B0=%,L%&u/0%SBw# '%& Exemple: .WATCH .WATCH DC V(1) (1,5) I (R5) TRAN VC(2) (-0.8, 0.8) .bR*$ iQ*4 i 4 .WIDTH - =7 F6 ? IL(L) (0.1mA, 0.6mA) w"- 0 i 4Rb i0 - ")S5 4 $ . 1 !O##_\5 2L4%Z^`+_'+# %,%%&\ %, L4%i/0%#_2%*/0%,7 g DF+-2L4%~ + ]_^`2' g C Ebv ! /0%TYY g s 7<' L4%,%,+-=*Bw+M5? g 5? 60 CAP 3. LUCRARI DE LABORATOR LUCRAREA 1 5 , - . :`uBPuB0%,2#)*=5#xD;:DC ]#+-7 5%15#%1+-CB0%SB0CB0=^:'%&5(7) #,+-+M ] ! D s\V ] ! D v V ]S! T W:s2VC7B Y! T t\V V#S! V ! Ω Ω !Y V&%!Y V Ω Ω %& g T g T g B, KQ]R! T s\V y KQ ] S!9Ws\V 5K $ !9W V !9W:s2V ] !9WFN C V C"! ! T t2V[ !" ! T !" ! T V"R!9W ΩV Ω Ω ] Ω %& g T g W g (' 7. .!- RD g T g T g : $yRB04. 5O5%,5#%,+# # 7y#5& L4$4+-# 6%u%,B#0B0 +MRB0%,# B0# B05+-%1#%xL4$4+- #%J %, Bw# PB0 5# + g (%,75#%,+#x%1% 7 5%J B0,# +-%O#%5 g : ,#+-% +-4%,+M 5& # :DC ] B0<.%&L4%5=5#xy% +# '#+-7%${#+-%&%1)*x+-=%,;L%iB0%#N g $#+ g DR g T g W g C4 5) #F# #%5%,75#%,+ %,% 5# B#0B0J5$6 +-2BP ' +- 5 +-6%1+#6+7%5% B0%iB+-2#,#%9 5#3-%%995%,75#%,+&#,#%QB0 B0 #)* '+# #%,+- .&%" '76+7%$ 5$\ g DF+# +-4%,^`%iB+- +- /0% #%&5%,+-+- B0,#+-%&%(5%,5#%,+#,#%(%, L%#7 T g W g '+&4# 5) # %&K7:y K /0%5K B0+M4%, +M4#5 %,.+ =+-RB0%,#5%,75#%,+&#,#%F%,+7=y$4&bt /0% g b)*%-Bw+M+-5 %1.+- ~+7by4C5%,75#%,+&#,#%'*B0%,.%1)*+ R '+-CL%S+-6%,+-C# 'C5# # 4)* g 5=5*B+S5%15AB#%10+ 5$+-%,6 B#0B0;5+M*S'+# 5&5#,#,#% B0\'&%5 R AB 0 ~&+7At B0& % # 5# + T t 5 ~ L%#7AW g T g b) #1+- % g W g T g +MRB0%,#<v %,;57CB0=+-6%, R AB 0 = :`=+-6%, +-$4#5 %1.+<+-RB0%,# %, +<y<Bt g DF+#;+-6%1<7)*%iB+-+-%5%,.+-b*),+bBP<'*B0%,.%Z)*)* 5%,75#%,+&# g 61 U g 1 b) #,+-=5#+-%&% I1 + I3 = I2 2I1 − 2I 3 = 0 2I = 2I + U 1 # 3 I2 = 1A %,x#1+-%, 5#+-%% ) #,+-<vu!+? 7*B'5+-%,. R AB 0 = DF+#; +-4%, U AB0 U = 0Ω 1A BPuB05%1#25#+-%%=5%,75#%,+#,#%w I5 = 0 I2 = I4 I1 + I 3 = I 2 I1 + I 2 + 2 I 4 = 2 I 1 + I 2 = 2 + 2 I 1 − U AB 0 b) #,+- I3 = 1 I1 = − I2 = I4 I 4 = 1 + I1 I4 = I1 + I 4 + 2 I 4 = 2 U AB 0 = 2 I 1 + 2 I 4 1 A 4 3 A 4 2 6 U AB 0 = − + = 1V 4 4 b) #,+-=7+-#5%,. +S (+-SBP%1#=(y4(t K MC ;5*B+5) U −E =0 B0% AB0 3 0B %_50%,⋅7I5#= %,0+#x9%,L%,%1+-+-x2B0,#+-%&%_I-7%5 K0V I ∈R 62 − 2 I 4 = 2 I 1 − U AB 0 y`K+CM;5*B+5) U 7) AB0 #,+M − E4 ≠ 0 0⋅I ≠ 0 B0%5%,5#%,+# #;7CB0,# +-%V 5K MC ;5*B+5) I= U AB0 R4 B0%O'+&4# # %5 g R4 ≠ 0 5%,75#%,+# 7 B01#+-% : <.#+-%%Z)*(#+-7 %1RB+4#5+-%,#% a) Descrierea elementelor de circuit - resistor R<name> <+node> <-node> [<model>] <value> R<name> = numele rezistorului <+node> , <-node> = nodurile intre care se conecteaza <model> = numele modelului (optional) <value> = valoarea rezistentei, in Ω !"$#%"&'()")*' I<name> <+node> <-node> [[DC] <value>] [AC <mag> [<phase>]] [ <transient specifications> ] <+node>, <-node> = nodurile pozitiv si negativ [[DC] <value>]= semnal de curent continuu de tip Is = <value> , in A. - !"$#%"&'( de tensiune V<name> <+node> <-node> [[DC] <value>] [AC <mag> [<phase>]] [ <transient specifications> ] <+node>, <-node> = nodurile pozitiv si negativ [[DC] <value>] = semnal de tensiune continua de tip E = <value> , in V. - & comandate liniar - sursa de tensiune comandata in tensiune (VCVS) 63 E<name> <+node> <-node> <+control> <-control> <gain> <+node> ,<-node> = nodurile pozitiv si negativ ale sursei <+contro>,<-control> = nodurile pozitiv si negativ ale portii de comanda <gain> = E/Uc - sursa de tensiune comandata in curent (CCVS) H<name> <+node> <-node> <vname> <gain> <+node>, <-node> = nodurile pozitiv si negativ <vname> = sursa de tensiune al carei curent reprezinta marimea de comanda <gain> = E/Ic - sursa de curent comandata in tensiune (VCCS) G<name> <+node> <-node> <+control> <-control> <gain> <+node> ,<-node> = nodurile pozitiv si negativ ale sursei <+contro>,<-control> = nodurile pozitiv si negativ ale portii de comanda <gain> = Is/Uc - sursa de curent comandata in curent (CCCS) F<name> <+node> <-node> <vname> <gain> <+node>, <-node> = nodurile pozitiv si negative ale sursei <vname> = sursa de tensiune al carei curent reprezinta marimea de comanda <gain> = Is/Ic b) Descrierea tipului de analiza de curent continuu .OP - realizeaza determinarea punctului de functionare in current continuu si tipareste valorile potentialelor nodurilor si ale curentilor prin sursele de tensiune in fisierul *.out. .DC [LIN] <varname> <start> <end> <incr> [<nest>] .DC [OCT][DEC] <varname> <start> <end> <points> [<nest>] .DC <varname> LIST <values [<nest>] <varname> = numele sursei a carei valoare se variaza; [LIN],[OCT],[DEC] = variatie de tip liniar, pe octave, sau decadica a valorii sursei; LIST = variatie dupa o lista de valori <value>; <start>,<end> = valorile de inceput si sfsrsit ale parametrului considerat; <incr> = increment; 64 <points> = numarul de puncte in intervalul considerat; <nest> = cea de-a doua sursa a carei valoare se variaza (optional) ; LUCRAREA 2 CIRCUITE NELINIARE DE CURENT CONTINUU 1. PROBLEME 1.1.) Sa se simuleze cu PSPICE urmatorul circuit : E1= 1 .. 10 V, r1= 1 kΩ, r2= 2 kΩ Sa se reprezinte grafic caracteristica de transfer v(2) = f(V(1)) si sa se indice utilitatea acestui circuit. 1.2.) Sa se simuleze cu PSPICE urmatorul circuit: r1= 3.0 Ω, E1=10.0 V a) Sa se aprecieze numarul de solutii al circuitului prin metoda dreptei de sarcina. b) Sa se rezolve circuitul plecand de la urmatoarele valori pentr V(2) (se foloseste comanda .NODESET) : 0.0V ; 3.0V ; 7.0V ; 65 2. INTERPRETAREA REZULTATELOR La problema 1.1. se obtine cu SPICE urmatoarea caracteristica de transfer: Se constata ca pentru valori mai mari sau egale cu 6V ale tensiunii de intrare V(1), tensiunea de iesire V(2) este egala cu 4V. Rezulta ca circuitul este un stabilizator de tensiune. La punctul a) al problemei 1.2 se traseaza dreapta de sarcina cu ecuatia E = R i + u respectiv: 10 = 3 i + u . Dreapta se intersecteaza cu axele in punctele A de coordonate (0, 3,33) si B de coordonate (10, 0). Se constata ca dreapta de sarcina se intersecteaza cu caracteristica rezistorului neliniar in punctele corespunzatoare valorilor U1 = 11765 , V , U 2 = 3,2174 V si U 3 = 4,6102 V . Rezulta ca circuitul are trei solutii, deci un numar impar de solutii in conformitate cu teorema de existenta de la paragraful 2.4.1.2. din curs. Programul SPICE rezolva circuitul utilizand metoda Newton-Raphson. In cazul in care circuitul are mai multe solutii, prin aceasta metoda se determina numai una dintre ele si anume aceea care este “mai apropiata” de aproximatia initiala. In problema, aproximatia initiala se introduce cu instructiunea NODESET. Atribuind acestuia valorile 0V, 3V si 7V se obtin succesiv cele trei solutii. Totodata se verifica faptul ca daca aproximatia initiala nu este specificata, programul SPICE ii atribuie acesteia valoarea nula V (0) = 0 si in acest caz se determina prima solutie. 3. INSTRUCTIUNI SPICE Se utilizeaza urmatoarele linii pentru descrierea circuitului: 66 1) Descrierea unei diode D<name> <+node> <-node> <model>[<area>] <+node> ,<-node> = nodurile pozitiv si negativ <model> = numele modelului <area> = numarul de diode montate in paralel (daca acest parametru nu este precizat se considera area =1); 2) Descrierea unui model .MODEL <name> <type> [<param>=<value> ] <name>= numele modelului ( de exemplu cel declarat in linia de descriere a diodei); <type>= tipul modelului (pentru dioda este D); <param> = <value> - reprezinta setarea unor parametrii ai modelului. Principalii parametri ai diodei sunt: Parametru Nume IS curent de saturatie Unitate de masura Valoare predefinita A RS rezistenta serie 1.0E-14 Ω CJ0 BV capacitaea tensiunea jonctiunii inversa de la tensiune strapungere nula F V 0 0 ∝ IBV curentul la tensiunea BV A 1.0E-3 3) Descrierea surselor comandate neliniar: - comanda de tip polinom: E<name> <+node> <-node> POLY(<value>) < <+control> <-control> >* + < <coeff> >* F<name> <+node> <-node> POLY(<value>) < <vname> >* < <coeff> >* G<name> <+node> <-node> POLY(<value>) < <+control> <-control> >* + < <coeff> >* H<name> <+node> <-node> POLY(<value>)< <vname> >* < <coeff> >* <value> = dimensiunea polinomului (1;2;3) < coeff> = coeficientii polinomului Exemplu: - polinom de dimensiune 1 e = a0 + a1uc + a2uc2 + ... - comanda de tip o expresie analitica: E<name> <+node> <-node> VALUE=[<exp>] 67 G<name> <+node> <-node> VALUE=[<exp>] <exp> - o expresie analitica; - comanda de tip tabel (intre puncte se considera extrapolarea liniara): E<name> <+node> <-node> TABLE [<exp>] < (inval), (outval) >* G<name> <+node> <-node> TABLE [<exp>]= < (inval), (outval) >* Cu acest ultim tip de surse comandate se modeleaza rezistoarele neliniare cu caracteristici liniare pe portiuni (PWL) . LUCRAREA 3 CIRCUITE CU EXCITATIE SINUSOIDALA CARE FUNCTIONEAZA LA SEMNALE MICI SAU LA SEMNALE MARI 1. PROBLEME 1.1.) Sa se simuleze cu PSPICE urmatorul circuit: Rb = 1MΩ ; Rc = 4kΩ; E1 = 5V; Vcc = 9V; e2 = E2 sin (ωt); TB: β= 200 ; Cje = 2pF; Cjc = 2pF; Vje = 0.6V; Vjc = 0.6V; a) Sa se reprezinte grafic caracteristica de transfer in curent continuu Ve = f (Vi), unde Vi ∈[0,5E 1 ] , iar Ve este tensiunea pe rezistorul Rc. b) Sa se faca analiza de curent alternativ la semnal mic a circuitului pentru E2=1.0 V si respectiv E2= 20.0 V. Sa se reprezinte grafic Ve=f (frecv) , frecventa variind decadic intre 0.1 Hz si 100Mhz. Sa se discute valabilitatea rezultatelor obtinute prin analiza de semnal mic pentru cele doua valori ale lui E2, timand seama de caracteristica determinate la punctul a). 2. INTERPRETAREA REZULTATELOR La punctul a) al problemei, din analiza caracteristicii de transfer in curent continuu Ve = f (Vi ) prezentata in figura 1, rezulta ca aceasta prezinta doua portiuni liniare distincte: 68 1 0 V 5 V 0 V 0 V 5 V 1 0 V 1 5 V 2 0 V 2 5 V V 1 v (5 )-v (4 ) Fig. 1 prima portiune pentru Vi ≤ 11,25V si a doua portiune pentru Vi > 11,25V . Acest rezultat se datoreaza faptului ca tranzistorul are caracteristici neliniare de intrare si de iesire atunci cand functioneaza la semnal mare. Prima portiune liniara a carcateristicii u e = f (ui ) corespunde conditiilor de functionare la semnal mic. La punctul b) al problemei in urma analizei in curent alternativ a circuitului rezulta Ve = f ( frecv ) pentru E 2 = 10 . V , fig. 2 si E 2 = 20.0 V , fig. 3. 1 .0 V 0 .5 V 0V 1 0 0 m H z 1 .0 H z 100H z 10K H z V (5 )-V (4 ) F re q u e n c y Fig. 2 69 1 .0 M H z 100M H z 2 0 V 1 0 V 0 V 1 0 0 m H z 1 .0 H z 1 0 0 H z 1 0 K H z 1 .0 M H z 1 0 0 M H z V (5 )-V (4 ) F re q u e n c y Fig. 3 Se constata ca alura celor doua curbe este identica, curba din figura 3 reproducand la o alta scara curba din figura 2. Luand in considerare caracteristica determinata la punctul a) rezulta ca rezultatul obtinut la punctul b) pentru E 2 = 20.0 V nu este valabil, deoarece pentru Vi > 11,25 V circuitul functioneaza la semnal mare, deci modelul liniar la semnal mic nu este valabil. 3. INSTRUCTIUNI SPICE Se vor utiliza urmatoarele linii: a) descrierea tranzistorului bipolar: Q<name> <c> <b> <e> [<subs>] <model> <c> = nodul corespunzator colectorului <b> = nodul corespunzator bazei <e> = nodul corespunzator emitorului <subs> = nodul corespunzator substratului (optional) <model> = numele modelului b) descrierea modelului tranzistorului bipolar : .MODEL <name> <type> [<param>=<value> ] <name>= numele modelului (declarat in linia de descriere a tranzistorului) <type>=tipul modelului (pentru tranzistor bipolar este PNP sau NPN): <param> = <value> - reprezinta setarea unor parametrii ai modelului. Principalii parametri ai tranzistorului bipolar (modelul Gummel-Poon) sunt: Parametru Nume IS curent de BF amplificarea RB rezistenta 70 RE rezistenta RC rezistenta Unitate de masura Valoare predefinita Parametru Nume Unitate de masura Valoare predefinita saturatie A 1.0E-16 in curent β - bazei Ω 100 emitorului Ω 0 colectorului Ω 0 0 Vje tensiune de deschidere BE V Vjc tensiune de deschidere BC V Cje capacitatea BE (jonctiune nepolarizata) F Cjc capacitatea BC (jonctiune nepolarizata) F 0.75 0.75 0 0 c) descrierea analizei in curent alternativ a circuitului echivalent de semnal mic: .AC [LIN][OCT][DEC] <points> <start> <end> [LIN][OCT][DEC] = variatia liniara, pe octave, sau decadica a frecventei; <points> = numarul de puncte in intervalul considerat; <start>, <end> = capetele intervalului de frecventa considerat; Pentru sursele independente forma generala este: V<name> <+node> <-node> AC <mag> [<phase>] I<name> <+node> <-node> AC <mag> [<phase>] <+node>, <-node> = nodurile pozitiv si negativ AC <mag> [<phase>] = semnal de curent alternativ de tipul x = <mag> * sin (2 πf t + phase), unde x este tensiune sau curent si f este frecventa specificata in linia de comanda.AC 71 LUCRAREA 4 CIRCUITE LINIARE DE CURENT ALTERNATIV 1. PROBLEME 1.1.) Sa se simuleze cu PSPICE urmatorul circuit: Se dau: r1=10Ω; r2=1Ω; r3=2Ω; c2=1.5mF; L1=50mH; L2=25mH; L3=50mH; M=25mH; e(t)=30 sin(2πft + π/2); is(t)=2 sin(2πft); f ∈ (10Hz,200Hz) Se cere sa se calculeze curentul prin r2 (modulul, argumentul, partea reala si partea imaginara) pentru f=50Hz si sa se verifice concordanta acestor rezultate. 1.2.) Sa se traseze cu PSPICE caracteristicile de amplitudine si de faza ale amplificarii in tensiune Au= Ve/e pentru urmatoarele filtre in banda de frecvente 1Hz-1MHz. Sa se indice tipul fiecarui filtru. Fig.a) r1 =1kΩ; c1 = 8nF; c2 =11.5nF L1 = 3mH;L2 =12mH; e(t)=1 sin (ωt) 72 Fig. b) r1 =1,5 kΩ; c1 = 10nF; c2 = 8uF L1 = 2mH;L2 =12mH; e(t)=1 sin (ωt) Fig.c) r1 =1,5 kΩ; c1 = 10nF; c2 = 8uF L1 = 2mH; c3=1nF e(t)=1 sin (ωt) ; Rs=1.5kΩ Fig. d) r1 =1,5 kΩ; c1 = 0,1uF; c2 = 40uF L1 = 10mH; L2 =20mH; c3=1uF e(t)=1 sin (ωt) ; L3=4mH 2. INTERPRETAREA REZULTATELOR La problema 1.1. chestiunile care se vor urmari sunt: - modul de descriere a elementelor de circuit, bobine, bobine cuplate si condensatoare, in circuitele de curent alternativ; - modul de obtinere si tiparire a marimilor electrice, curenti si tensiuni, la o frecventa precizata; La problema 1.2., pentru fiecare punct, se va trasa caracteristica de amplificare si se vor obtine urmatoarele tipuri de filtre: trece jos, trece sus, trece banda si opreste banda. 3. INSTRUCTIUNI SPICE Se vor utiliza urmatoarele linii: a) descrierea bobinelor: L<name> <+node> <-node> [<model>]<value> [IC=<initial>] <+node> <-node>= nodurile intre care se conecteaza model = numele modelului (optional) 73 value = valoarea inductivitatii (in H) IC=<initial>= conditia initiala (pentru curent) (se foloseste pentru .TRAN cu optiunea SKIPBP) b) descrierea cuplajului K<name> L<name> < L<name> >* <coupling> L<name> < L<name> >* = bobinele intre care exista cuplaj <coupling> = factorul de cuplaj ( K ≤ M / L1 L2 ) c) descrierea condensatorului C<name> <+node> <-node> [<model>]<value>[IC=<initial>] <+node> ,<-node> = nodurile pozitiv si negativ <value> = valoarea capacitatii in F IC=<initial> = tensiunea initiala, in V, pe condensator (se foloseste pentru .TRAN cu optiunea SKIPBP) d) descrierea analizei in curent alternativ a circuitului echivalent de semnal mic: .AC [LIN][OCT][DEC] <points> <start> <end> [LIN][OCT][DEC] = variatia liniara, pe octave, sau decadica a frecventei; <points> = numarul de puncte in intervalul considerat; <start>, <end> = capetele intervalului de frecventa considerat; Pentru sursele independente forma generala este: V<name> <+node> <-node> AC <mag> [<phase>] I<name> <+node> <-node> AC <mag> [<phase>] <+node>, <-node> = nodurile pozitiv si negativ AC <mag> [<phase>] = semnal de curent alternativ de tipul x = <mag> * sin (2 πf t + phase), unde x este tensiune sau curent si f este frecventa specificata in linia de comanda .AC d) Comanda .PRINT pentru analiza de tip .AC .PRINT AC VM(1) VP(5) IR(r1) VI(5,4) VM(1) = amplitudinea potentialului nodului 1 (modulul numarului complex); VP(5) = faza potentialului nodului 5 (argumentul numarului complex); IR(r1) = partea reala a curentului prin r1; VI(5,4) = partea imaginara a tensiunii intre nodurile 5 si 4. 74 LUCRAREA 5 SUBCIRCUITE. ANALIZA IN REGIM TRANZITORIU 1. PROBLEME 1.) Sa se determine caracteristica amplificarii A= U2 / U1 pentru urmatorul circuit cu amplificatoare operationale: a) E1=10-3sin(2πft) (V), f∈(0.1Hz , 10MHz) Pentru amplificatorul operational se va utiliza urmatorul model, care va constitui un subcircuit: ri = 1MΩ; re=0.1mΩ; Ce=0.1pF b) sa se simuleze in regim tranzitoriu acelasi circuit cu f=500Hz si E1 = 1mV , E1 = 10V ; sa se vizualizeze tensiunea de iesire sis a se explice rezultatele obtinute. 2.) Sa se simuleze in regim tranzitoriu urmatorul circuit : 75 Rb = 1MΩ ; Rc = 4kΩ; E1 = 5V; Vcc = 9V; e2 = E2 sin (ωt); f=10kHz; TB: β= 200 ; Cje = 2pF; Cjc = 2pF; Vje = 0.6V; Vjc = 0.6V; Sa se faca analiza pentru E2=1.0 V si respectiv E2= 20.0 V. Sa se reprezinte grafic Ve.Sa se compare formele de unda obtinute pentru cele doua valori ale lui E2 .Sa se discute valabilitatea rezultatelor obtinute la lucrarea L3 pentru acelasi circuit. 2. INTERPRETAREA REZULTATELOR La problema 1. chestiunile care se vor urmari sunt: - Modul de utilizare a subcircuitelor; - Analiza in curent alternativ (.AC) excitand circuitul in gama de frecvente 0,1 Hz - 10 Mhz; - Se va verifica prin analiza in regim tranzitoriu ca pentru amplitudinea de 1 mV la intrare se obtine acelasi rezultat ca la analiza in curent alternativ deci circuitul functioneaza la semnale mici. Daca tensiunea de intrare are amplitudinea de 10V forma de unda la iesire nu este sinusoidala deci circuitul functioneaza la semnal mare si rezultatele obtinute cu analiza de semnal mic (AC) nu sunt valabile. La problema 2. simuland circuitul in regim tranzitoriu se obtin pentru E2=1.0 V figura 1 si pentru E2= 20.0 V figura 2. 10V 5V 0V 1 0 0 us 150us V (5 )-V (4 ) 200us 2 5 0 us V (2 ) T im e Fig. 1 76 3 0 0 us 350us 400us 40V 0V -4 0 V 100us 150us V (5 )-V (4 ) 200us 250us 300us 350 us 400us V (2 ) T im e Fig. 2 Din figura 2 rezulta ca forma de unda a tensiunii Ve pe rezistorul de sarcina Re, care la o anumita scara reprezinta curentul de colector, este distorsionata. Acest lucru se produce deoarece pentru circuitul neliniar cu tranzistor se poate folosi modelul liniar in curent alternativ numai pentru functionarea la semnale mici. E2=20.0 V corespunde functionarii la semnale mari. 3. INSTRUCTIUNI SPICE Se folosesc urmatoarele linii: a) Semnalul sinusoidal amortizat este descris astfel: Pentru sursele independente forma generala este: V<name> <+node> <-node> SIN (voff vampl freq td df phase) I<name> <+node> <-node> SIN (ioff iampl freq td df phase) I= ioff + iampl*expi-(t-td)*df*sin(2*3.14*freq*(t-td)+3.14*Phase/180) unde td < t < TSTOP Marime ioff iampl freq td df Phase Semnificatie Valoare predefinita 1/TSTOP 0.0 0.0 0.0 Valoare de offset Amplitudinea Frecventa Timp de intarziere Factor de amortizare Faza Unitate de masura A A Hz s s-1 grade b) comanda de analiza in regim tranzitoriu este: .TRAN <pstep> <ftime> [<noprint> [<ceiling>]][SKIPBP] <pstep> =pasul de timp pentru tiparirea rezultatelor; <ftime> = timpul final; <noprint> = timpul de la care se incepe tiparirea (vizualizarea) rezultatelor; 77 <ceiling> =limita superioara a pasului de timp; daca nu se specifica se considera ceiling=ftime/50 pentru un circuit care contine elemente dinamice sau ceiling=pstep pentru un circuit rezistiv. SKIPBP = utilizarea conditiilor initiale impuse (U=<value> pentru condensator si I=<value> pentru bobina, care sunt specificate in liniile care definesc elementele respective). c) definirea unui subcircuit .SUBCKT <name> [<nodes>*] [PARAMS: <par>[=<val>]* ] ..... (descrierea elementelor) .ENDS Utilizarea subcircuitului : X<name> [<nodes>]* <sname> [PARAMS: <<par>=<val>*>] <name> = numele modelului (definit in linia .SUBCKT) <sname> = numele elementului modelat cu subcircuitul respectiv; <nodes> = nodurile prin care subcircuitul se conecteaza cu circuitul 78 LUCRAREA 6 REGIMUL TRANZITORIU AL CIRCUITELOR NELINIARE 1. PROBLEME 1.) Pentru circuitul din figura sa se faca analiza Fourier a tensiunii de iesire pentru E2 =1 mV si E2 =10 V incazul in care frecventa sursei e2 este f=1 kHz. Rb = 20 kΩ ;C=100 uF, Rc = 100 Ω; E1 = 5V; Vcc = 9V; e2 = E2 sin (ωt); TB: β= 200 ; Cje = 200 pF; Cjc = 200 pF; Vje = 0.6V; Vjc = 0.6V; 2.) Sa se simuleze convertorul dc - dc : L=20mH ; C=1.25uF; R=400Ω ; E=100V; Comutator: - frecventa de comutatie f=10kHz ; - durata de inchidere reprezinta 50% din perioada de comutatie; - rezistente : Rinchis = 1Ω ; Rdeschis = 1e+06Ω ; D - dioda avand modelul predefinit de PSPICE; Sa se vizualizeze tensiunea de comanda a comutatorului(pe un interval de 5 perioade de comutatie) si tensiunea la iesirea convertorului(atat pe intreaga durata a regimului tranzitoriu cat si 3 perioade din regimul permanent). Sa se traseze spectrul de frecvente pentru tensiunea de comanda a comutatorului si pentru tensiunea la iesirea convertorului. 2. INTERPRETAREA REZULTATELOR 79 La problema 1., realizand analiza Fourier a tensiunii de iesire rezulta fig. 1 pentru E2=1.0 mV si fig. 2 pentru E2=10.0 V. Din analiza celor doua figuri rezulta ca tensiunea de iesire in cazul E2=10.0 V, care are forma de unda distorsionata, contine o gama larga de armonici superioare. 5.0V 2.5V 0V 0Hz 5KHz V(5)- V(4) 10KHz 15KHz 20KHz 25KHz 30KHz Frequency Fig. 1 1.0V 0.5V 0V 0Hz 10KHz 20KHz 30KHz V(5,4) Frequency Fig. 2 La problema 2. chestiunile care se vor urmari sunt: - modul de utilizare a comutatorului; - descrierea semnalelor de tip puls pentru surse in regim tranzitoriu; -trasarea spectrului de frecvente al unei marimi periodice 80 40KHz 50KHz 1100mV 800mV 400mV 0V 4.5ms V(4) 4.6ms 4.8ms 5.0ms Time Fig.3 In fig. 3 se prezinta semnalul generat cu functia pulse, iar in fig. 4 se prezinta semnalul la iesirea convertorului. Spectrele tensiunii de comanda si pentru tensiunea de iesire sunt prezentate in fig. 5 - 7. Figura 7 contine un detaliu al spectrului tensiunii de iesire care permite evidentierea armonicelor frecventei de comanda. 300V 200V 100V 0V 0s 2.0ms 4.0ms V(3) Time Fig.4 81 5.0ms 800mV 400mV 0V 0Hz 100KHz 200KHz 300KHz 400KHz V(4) Frequency Fig. 5 Se observa ca spectrul tensiunii de comanda este discret (contine numai componentele armonice ale frecventei de comutatie si componenta de current continuu) deoarece aceasta marime este periodica. Tensiunea la iesirea convertorului nefiind periodica (deoarece contine si componente tranzitorii care nu s-au amortizat) spectrul acesteia nu este discret. 200V 100V 0V 0Hz 10KHz 20KHz 30KHz 40KHz V(3) Frequency Fig.6 Pentru trasarea spectrului tensiunii de iesire s-au considerat numai ultimile 5 perioade din raspuns (o forma de unda aproapiata de o functie periodica). 82 1.0V 0.5V 0V 9KHz 25KHz 50KHz 75KHz 100KHz V(3) Frequency Fig.7 3. INSTRUCTIUNI SPICE Se vor utiliza urmatoarele linii: a) Semnalul de tip puls pentru surse in regim tranzitoriu este descris de: PULSE(i1 i2 td trise tfall pw per) pentru sursa de curent PULSE(v1 v2 td trise tfall pw per) pentru sursa de tensiune Marime i1 i2 td trise tfall pw per Semnificatie Valoare predefinita 0.0 TSTEP TSTEP TSTOP TSTOP Valoare initiala Valoare de varf Timp de intarziere Timp de crestere Timp de descrestere Durata impulsului Perioada 83 Unitate de masura A A s s s s s b) comutatorul comandat in tensiune S<name> <+node> <-node> <+control> <-control> <model> <+node> <-node> = nodurile intre care se conecteaza; <+control> <-control> = nodurile tensiunii de comanda; <model> = numele modelului; .MODEL <model> VSWITCH ( RON=... , ROFF=... , VON= ... , VOFF= ... ) Valori predefinite : RON=1Ω ; ROFF=1MΩ (rezistenta echivalenta a comutatorului in pozitiile inchis si deschis); VON=1V; VOFF=0V (valorile tensiunii de comanda la care comutatorul se inchide si se deschide) ; d) Analiza Fourier a unui semnal este descrisa de linia: .FOUR <freq> <output var>* <freq> = frecventa considerata fundamentala ; <output var> = semnalele pentru care se face analiza Fourier; 84 LUCRAREA 7 COMPORTAREA CALITATIVA A CIRCUITELOR DE ORDINUL II 1. PROBLEME 1.) Sa se simuleze circuitul cu conditiile initiale si valorile din tabelul 1 : L=1H ; C=1F; Caz 1 2 3 4 5 R [Ω] 3 -3 1 -1 1e-9 Conditii initiale (uc(0),il(0)) (1,1) (-1,1) (1,-1) (-1,-1) (1,1) (-1,1) (1,-1) (-1,-1) (1,1) (-1,1) (1,-1) (-1,-1) (1,1) (-1,1) (1,-1) (-1,-1) (1,1) (-1,1) (1,-1) (-1,-1) Tabelul 1 Sa se indice in cazurile 1 .. 5 tipul comportarii calitative a circuitului in jurul punctului de echilibru. 2. a) Sa se simuleze circuitul din figura pentru i (0) = 6A. Sa se vizualizeze i(t) si curba i = f(V(1)) si sa se explice rezultatul obtinut. b) Intre nodurile 1 si 0 se conecteaza un condensator cu C= 1mF avand conditia initiala Uc0= 8V. Sa se vizualizeze traiectoria in planul fazelor (iL – uC ). Sa se compare rezultatele obtinute pentru eroarea relative RELTOL cu valoarea predefinita( 1e-05) si valoarea impusa de 1e-07. 2. INTERPRETAREA REZULTATELOR 85 1. Circuitul din problema 1. este un circuit liniar, dinamic, de ordinul doi, cu excitatie nula, cu ecuatiile: uC + Ri + U L = 0 iC = iL = i Tinand cont de ecuatiile de functionare ale bobinei si condensatorului U L = Li L i C = CU C rezulta ecuatiile de stare ale circuitului: UC iL 0 = − 1 L 1 C UC R − iL L Pentru a studia comportarea calitativa a unui circuit liniar cu excitatia nula se determina valorile proprii s1 si s2 ale matricei A a ecuatiei x = Ax . Valorile proprii s1 si s2 sunt solutiile ecuatiei: 1 0−s C det =0 1 R − − −s L L respectiv s2 + R 1 s+ =0 L L ⋅C care pentru L=1H si C=1F devine s 2 + Rs + 1 = 0 Punctele de echilibru se determina rezolvand sistemul de ecuatii Ax=0 adica In cazul problemei ∆ = ! 0 1 −1 − R a11 a 21 a12 x1Q = 0 a 22 x 2 Q " #$ si ∆ = 1 deci ∆ ≠ 0 si sistemul admite numai solutia banala si originea este singurul punct de echilibru adica x1Q = x 2Q = 0 . Evolutia circuitului plecand de la o stare initiala(uC(0) si iL(0)) poate fi reprezentata printr-o curba numita traiectorie de faza in planul de coordonate uC si iL numit planul fazelor. Evolutia circuitului corespunzatoare mai multor stari initiale poate fi reprezentataprintr-o multime de traiectorii in planul fazelor. Aceste traiectorii formeazaun portret de faza. Considerand perechile de valori U C 0 si I l 0 din tabelul 1 se determinatraiectoriile corespunzatoare starilor initiale date, care formeaza portrete de faza in cele 4 cazuri considerate. In functie de valorile rezistentei R din tabelul 1 rezulta 4 cazuri. Cazul1. R = 3 Ω si valorile proprii sunt: s1 = −3 + 5 2 s2 = deci s2 < s1 < 0 si originea este un nod stabil. 86 −3 − 5 2 Cazul 2. R = −3 Ω si valorile proprii sunt: s1 = 3+ 5 2 s2 = 3− 5 2 deci s2 > s1 > 0 si originea este un nod instabil. Cazul 3. R = 1 Ω si valorile proprii sunt: s1 = − 1 3 +j 2 2 s2 = − 1 3 −j 2 2 1 2 deci constanta de atenuare α = − si pentru α < 0 , punctul de echilibru este un focar stabil si corespunde raspunsului periodic amortizat. Cazul 4. R = −1 Ω si valorile proprii sunt: s1 = deci constanta de atenuare α = 1 2 1 3 +j 2 2 s2 = 1 3 −j 2 2 si in acest caz α > 0 , punctul de echilibru este un focar instabil. 87 Solutia x(t) a ecuatiei de stare x = Ax , are doua componente: uC(t) si iL(t). Cazul 5 R 0 si valorile proprii sunt s1, 2 = ± j si originea este centru 2. Pentru circuitul dinamic neliniar de la problema 2. punctul a), parcursul dinamic este: unde punctele Q1(1,-1) si Q2(-1,1) sunt puncte de impas iar originea 0 este un nod instabil. Simuland circuitul cu PSPICE se constata ca traiectoria evolueaza pe curba plecand din punctul corespunzator conditiei initiale iL(0) si se opreste in punctul de impas intalnit Q1(1,-1). La punctul b) al problemei 2. se constata ca leg nd la bornele circuitului un condensator C, circuitul se comporta ca un oscilator de relaxare. In cazul circuitului real nu este necesara introducerea in circuit a condensatorului C, rolul acestuia fiind indeplinit de capacitatea parazita dintre bornele circuitului. Cel de-al doilea punct al problemei 2. are ca scop ilustrarea preciziei analizei efectuata cu PSPICE in functie de diferite valori date pentru eroarea relativa RELTOL. 88 RELTOL=1e-05 RELTOL=1e-07 3. INSTRUCTIUNI SPICE .OPTIONS [<fopt>*] [<vopt>=<value>*] - setarea unor optiuni: Flag Options ACCT summary & accounting EXPAND show subcircuit expansion LIBRARY list lines from library files LIST output summary NODE output netlist NOECHO suppress listing NOMOD suppress model parameter listing NOPAGE suppress banners OPTS output option values Value Options ABSTOL best accuracy of currents CHGTOL best accuracy of charges CPTIME CPU time allowed DEFAD MOSFET default AD DEFAS MOSFET default AS DEFL MOSFET default L 89 DEFW MOSFET default W GMIN minimal conductance, any branch ITL1 iteration number - DC & bias point blind limit ITL2 iteration number - DC & bias point guess limit ITL4 iteration number - transient per-point limit ITL5 iteration number - transient total, all points LIMPTS maximal number of points for print/plot NUMDGT number of digits in output file PIVREL relative magnitude for matrix pivot PIVTOL absolute magnitude for matrix pivot RELTOL relative accuracy of voltages and currents TNOM default temperature TRTOL transient accuracy adjustment VNTOL best accuracy of voltages WIDTH printing width in output file 90 LUCRAREA 8 PROPRIETATI CALITATIVE IN CIRCUITELE ELECTRICE NELINIARE IN REGIM TRANZITORIU 1. PROBLEME Sa se simuleze circuitul cu urmatorii parametri: - dioda D : IS=8.3e-15A; RS=9.6Ω; TT=4e-06s (timp de tranzit) ; CJO=300pF ; M=0.4 (gradient); VJ=0.75V (potential de jonctiune); R = 15Ω ; L = 10mH; e(t)= E0sin (ωt) ; f=100kHz. Se vor utiliza un pas de afisare de T/2000=5.e-09 s si o valoare RELTOL=1e-6. Sa se reprezinte grafic dependenta i(t) = f ( e(t)) si sa se interpreteze rezultatele in urmatoarele situatii: a) E0 = 0.5 V . Se vor simula 40 perioade , dintre care se vor afisa ultimele 4. b) E0 = 1.5 V . Se vor simula 40 perioade, dintre care se vor afisa ultimele 4. c) E0 = 6.5 V . Se vor simula 60 de perioade, dintre care se vor afisa ultimele 20. 2. INTERPRETAREA REZULTATELOR In urma simularii se determina raspunsul I(L1) pentru cele trei cazuri: a) pentru E0=0,5 V rezulta un raspuns periodic de frecventa excitatiei. 91 400uA 400uA 0A 0A -400uA 360us I(l1) 370us 380us 390us 400us -400uA -500mV I(l1) Time 0V 500mV V(1) Fig. 1. E0=0,5 V Comportarea circuitului in acest caz este o comportare obisnuita deoarece pentru amplitudini relativ mici ale excitatiei comportarea diodei poate fi aproximata prin modelul de semnal mic. b) pentru E0=1,5 V se observa raspunsul subarmonic(periodic de frecventa ω /2). 1.0mA 1.0mA 0.5mA 0.5mA 0A 0A -0.5mA 360us I(l1) 370us 380us 390us -0.5mA -2.0V I(l1) 400us Time -1.0V 0V 1.0V 2.0V V(1) Fig. 2. E0=1,5 V c) pentru E0=6,5 V se observa comportarea haotica a circuitului(raspuns neperiodic la excitatie periodica). 92 4.0mA 4.0mA 2.0mA 2.0mA 0A 0A -2.0mA 400us I(l1) 450us 500us 550us -2.0mA -8.0V I(l1) 600us -4.0V 0V V(1) Time Fig. 3. E0=6,5 V 93 4.0V 8.0V CAP 4. SOLUTIILE PROBLEMELOR LUCRAREA 1 Problema 1 !"#$%&')(+* ' , '-'.0/ .-13234 10/5.04 76 1 6 / /51-.8' 10/ 6 19.3: ; '-'<2-: ; 4 6 2='>. % 5?; '2='@2=' , A%B , CD , , FEHG &I& KJL5G & BMG3N & D 97S ;D & CGVJ% 97S ;D & CGDJ7 CIEOAI<GDCQP 9% : 2 222 W .X R 6 222 W /ZX\[Y' 6 222 W , , , ] X > ' . 2 2 2 2 W 6 , & ;D CGVJ%^5_ 5`- W 'YX 5G5EO ; ' ; 4 1X ;V & CGDJ7 4 2 222 , C9 [ 6 2 22 [M2' [ 6 , 222 M[ 2' , ISCG & 7abIcdAefGD ' 2 g6 Ih 2' abGDI , D ; & CGVJ% [ L9 &I& Ii;D & CGVJ%^5< 1 DGEO ; [ 5 [ % [Y' / 6 2 Ih 2' ' 6 , 22 Ih 22 , jY7BbL9 & k 94 .R 2 22 STJU , -% ;V & CGDJ% Problema 2 a. pct "#$7&S'>(+* . , '2='-' .-.0/ ' /-/V2V. '2V.8' ; '.8'. / ; 'L[ . 1-'11 2= ' ; 9 1 3 1 V 2 . % CD , , W FEHG &I& KJL5G & BMG3N & D 97S ;D & CGVJ% 97S ;D & CGDJ7 'YX\[ . 2 222 W .X 2 2222 W /ZX\[/ 2222 , , , ;D & CGVJ%^5_ 5`- 5G5EO 9% W 1X ;V & CGDJ7 .R 2 22 STJU , -% ;V & CGDJ% ' 2 222 , C9 ; ' ; 1 [ . 2 22 Ih 2 2 1 , 6 2 2 I h 22 , ISCG & 7abIcdAefGD CIEOAI<GDCQP [ 6 2 2 [M2' abGDI , %AI<GD -J 7 - %EHGVC IEOAk<GVC8P C9 [ -C &I& Ii;V & CGDJ%c%< DGEO ; [ 5 [ % ' 1 222 Ih 22 [ 1 6 , 22 Ih 22 , pct b. "#$7&S'>(+* . , '2='-' .-.0/ ' /-/V2V. '2V.8' ; '.8'. 95 .R 2 22 STJU , '1 / ; 'L[ . 1 ; 1 2V. 19132V. % CD , , $ k* " " " $k"+ $#V$ $ I7 [ [ $ $ $* &" #$ ;D & CGVJ% 97S 'YX'@2 2 2 I h 2: , W $ $ " $ $#D" P P e P P P " D , 7 W ;V & CGDJ7 9% /gX'@2 2 2 I h 2: , W 1X -% ;V & CGDJ% . 2 222 , $ $ e $ " $#5" W ; Y' X W ; 1X W 'YX '@$ @' $ @' $ P $ $** .X' 2 2 2 I h 2: , W ; W >' X ; W .X ; W /gX ;D & CGDJ7 97S '@$ [>'@$ '@$ h 2'@2D('@$ h 2'@2D('@$ h 2'@2D('@$ h 2k'@2 h 2k'@2 h 2k'@2 ! $ $ 2 '@2D('@$ h h 2'@2D(`[>' h 2'@2D('@$ h 2k'@2 $ h 2 '@2 k 2 h '@2 CI J%EO jY7BbL9 & k I`G & jY%B eEO , 2' c. pct !"#$%&')(+* . , '2='-' .-.0/ ' /-/V2V. '2V.8' ; '.8'. '1-1 13/ 2D; . 'L[ . ; 1-132V. , , % CD FEHG &I& KJL5G & BMG3N & D CIEOAI<GDCQP 96 .R 2 22 STJU , ;D & CGVJ% 97S W 97S ;D & CGDJ7 'YX [ . 2 22 [Y'>. W .X . 2222 W /gX , , ;V & CGDJ%c%H C9 5G5EO ;V & CGDJ7 9% ' 2 222 , W 1X C9 ; ' [ . 2 22 [Y'>. , ISCG & 7abIcdAefGD 1 2 2 [Y'>. abGDI , C9 [ -C &I& Ii;V & CGDJ%c%< DGEO ; [ 5 [ % ' 1 222 [>'Y. [ 6 2 , 22 [M2' , jY7BbL9 & k LUCRARAEA 2 Problema 1 *Circ cu dioda Zener cdz1.cir R1 1 2 1k R2 2 0 2k D 0 2 Dioda_Zener *Modelul diodei *Bv=4 tens de strapungere inversa .MODEL Dioda_Zener D(Is=10f Rs=0 + Bv=4 Ibv=10m Cjo=0) *Tensiunea de polarizare V1 1 0 1 *Analiza in curent continuu .DC LIN V1 -10 15 .1 .PROBE .END **** Diode MODEL PARAMETERS Dioda_Zener IS 10.000000E-15 BV 4 IBV .01 97 ' 2 222 , -% ;V & CGDJ% 4.0V 2.0V 0V -2.0V -10V V(2) -5V 0V 5V 10V 15V V(1) Problema 2 a. pct *circuit cu rezistenta neliniara cnl1.cir R1 1 2 3 V1 1 0 10 G1 2 0 TABLE {V(2)}= +(0,0), (2,5), (4,0.5), (8,9) .NODESET V(2)=0.0 .OP .END **** SMALL SIGNAL BIAS SOLUTION NODE VOLTAGE NODE VOLTAGE TEMPERATURE = 27.000 DEG C NODE VOLTAGE ( 1) 10.0000 ( 2) 1.1765 VOLTAGE SOURCE CURRENTS NAME V1 CURRENT -2.941E+00 TOTAL POWER DISSIPATION 2.94E+01 WATTS **** VOLTAGE-CONTROLLED CURRENT SOURCES NAME I-SOURCE G1 2.941E+00 98 NODE VOLTAGE b. pct *circuit cu rezistenta neliniara cnl1.cir R1 1 2 3 V1 1 0 10 G1 2 0 TABLE {V(2)}= +(0,0), (2,5), (4,0.5), (8,9) .NODESET V(2)=3.0 .OP .END **** SMALL SIGNAL BIAS SOLUTION NODE VOLTAGE NODE VOLTAGE TEMPERATURE = 27.000 DEG C NODE VOLTAGE NODE VOLTAGE ( 1) 10.0000 ( 2) 3.2174 VOLTAGE SOURCE CURRENTS NAME V1 CURRENT -2.261E+00 TOTAL POWER DISSIPATION 2.26E+01 WATTS **** VOLTAGE-CONTROLLED CURRENT SOURCES NAME G1 I-SOURCE c. pct 2.261E+00 *circuit cu rezistenta neliniara cnl1.cir R1 1 2 3 V1 1 0 10 G1 2 0 TABLE {V(2)}= +(0,0), (2,5), (4,0.5), (8,9) .NODESET V(2)=7.0 .OP .END **** SMALL SIGNAL BIAS SOLUTION TEMPERATURE = 27.000 DEG C 99 NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE ( 1) 10.0000 ( 2) 4.6102 VOLTAGE SOURCE CURRENTS NAME CURRENT V1 -1.797E+00 TOTAL POWER DISSIPATION 1.80E+01 WATTS **** VOLTAGE-CONTROLLED CURRENT SOURCES NAME G1 I-SOURCE 1.797E+00 d. pct *circuit cu rezistenta neliniara cnl1.cir R1 1 2 3 V1 1 0 10 G1 2 0 TABLE {V(2)}= +(0,0), (2,5), (4,0.5), (8,9) *.NODESET V(2)=7.0 .OP .END **** SMALL SIGNAL BIAS SOLUTION NODE VOLTAGE NODE VOLTAGE TEMPERATURE = 27.000 DEG C NODE VOLTAGE ( 1) 10.0000 ( 2) 1.1765 VOLTAGE SOURCE CURRENTS NAME CURRENT V1 -2.941E+00 TOTAL POWER DISSIPATION 2.94E+01 WATTS **** VOLTAGE-CONTROLLED CURRENT SOURCES NAME G1 I-SOURCE 2.941E+00 100 NODE VOLTAGE LUCRAREA 3 Punctul a. **** CIRCUIT DESCRIPTION *etb31.cir circ cu tranz bipolare *.options reltol=1e-6 itl5=0 numdgt=8 V1 2 0 DC 5 V2 5 0 DC 9 R1 2 3 1MEG R2 5 4 4K Q1 4 3 0 TB .MODEL TB NPN(Is=10.f Bf=200 Cje=2p + Cjc=2p Vje=.6 Vjc=.6) .DC LIN V1 0 25 .05 *.PRINT DC V(R2) .PROBE .END **** BJT MODEL PARAMETERS TB NPN IS 10.000000E-15 BF 200 NF 1 BR 1 NR 1 CJE 2.000000E-12 VJE .6 CJC 2.000000E-12 VJC .6 CN 2.42 D .87 JOB CONCLUDED 101 10V 5V 0V 0V 5V 10V 15V v(5)-v(4) V1 Punctul b **** CIRCUIT DESCRIPTION *etb32.cir circ cu tranz bipolare V1 2 1 DC 5 V10 + DC 0 + AC 1 0 V2 5 0 DC 9 R1 2 3 1MEG R2 5 4 4K Q1 4 3 0 TB .MODEL TB NPN(Is=10.f Bf=200 Cje=2p + Cjc=2p Vje=.6 Vjc=.6) *.DC LIN V1 0 25 .05 .AC DEC 100 .1 100MEG .OP .PROBE .END **** BJT MODEL PARAMETERS TB NPN IS 10.000000E-15 BF 200 NF 1 BR 1 NR 1 CJE 2.000000E-12 VJE .6 CJC 2.000000E-12 VJC .6 CN 2.42 102 20V 25V D **** .87 SMALL SIGNAL BIAS SOLUTION NODE VOLTAGE NODE VOLTAGE ( 1) 0.0000 ( 2) 5.0000 ( 3) ( 5) 9.0000 TEMPERATURE = 27.000 DEG C NODE VOLTAGE .6515 ( 4) 5.5212 VOLTAGE SOURCE CURRENTS NAME CURRENT V1 V V2 -4.349E-06 -4.349E-06 -8.697E-04 TOTAL POWER DISSIPATION 7.85E-03 WATTS **** BIPOLAR JUNCTION TRANSISTORS NAME Q1 MODEL TB IB 4.35E-06 IC 8.70E-04 VBE 6.51E-01 VBC -4.87E+00 VCE 5.52E+00 BETADC 2.00E+02 GM 3.36E-02 RPI 5.95E+03 RX 0.00E+00 RO 1.00E+12 CBE 3.49E-12 CBC 9.64E-13 CJS 0.00E+00 BETAAC 2.00E+02 CBX/CBX2 0.00E+00 FT/FT2 1.20E+09 103 NODE VOLTAGE 800mV 400mV 0V 100mHz 1.0Hz V(5)- V(4) 100Hz 10KHz Frequency **** CIRCUIT DESCRIPTION *etb32.cir circ cu tranz bipolare V1 2 1 DC 5 V10 + DC 0 + AC 20 0 V2 5 0 DC 9 R1 2 3 1MEG R2 5 4 4K Q1 4 3 0 TB .MODEL TB NPN(Is=10.f Bf=200 Cje=2p + Cjc=2p Vje=.6 Vjc=.6) *.DC LIN V1 0 25 .05 .AC DEC 100 .1 100MEG .OP .PROBE .END **** BJT MODEL PARAMETERS TB NPN IS 10.000000E-15 BF 200 NF 1 BR 1 NR 1 CJE 2.000000E-12 VJE .6 CJC 2.000000E-12 VJC .6 CN 2.42 D .87 104 1.0MHz 100MHz **** SMALL SIGNAL BIAS SOLUTION TEMPERATURE = 27.000 DEG C NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE ( 1) 0.0000 ( 2) 5.0000 ( 3) ( 5) 9.0000 .6515 ( 4) 5.5212 VOLTAGE SOURCE CURRENTS NAME CURRENT V1 V V2 -4.349E-06 -4.349E-06 -8.697E-04 TOTAL POWER DISSIPATION 7.85E-03 WATTS **** BIPOLAR JUNCTION TRANSISTORS NAME Q1 MODEL TB IB 4.35E-06 IC 8.70E-04 VBE 6.51E-01 VBC -4.87E+00 VCE 5.52E+00 BETADC 2.00E+02 GM 3.36E-02 RPI 5.95E+03 RX 0.00E+00 RO 1.00E+12 CBE 3.49E-12 CBC 9.64E-13 CJS 0.00E+00 BETAAC 2.00E+02 CBX/CBX2 0.00E+00 FT/FT2 1.20E+09 105 20V 10V 0V 100mHz 1.0Hz V(5)- V(4) 100Hz 10KHz 1.0MHz 100MHz Frequency LUCRARAEA 4 Problema 1 **** CIRCUIT DESCRIPTION *circ lin c.a. CLA1.CIR R1 2 3 10 R2 3 5 1 R3 3 4 2 L1 1 2 50m L2 6 7 25m L3 0 4 50m K1 l1 l3 0.5 K2 l2 l3 0.707 C2 5 6 1.5m V_SIN 7 0 +DC 0 +AC 30 90 I_SIN 0 1 +DC 0 +AC 2 0 .AC LIN 1 50 50 .PRINT AC IM(R2) IP(R2) IR(R2) II(R2) .PROBE .END **** SMALL SIGNAL BIAS SOLUTION TEMPERATURE = 27.000 DEG C NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE ( 1) 0.0000 ( 2) 0.0000 ( 3) 0.0000 ( 4) 0.0000 ( 5) 0.0000 ( 6) 0.0000 ( 7) 0.0000 VOLTAGE SOURCE CURRENTS 106 NAME V_SIN CURRENT 0.000E+00 TOTAL POWER DISSIPATION 0.00E+00 WATTS **** AC ANALYSIS TEMPERATURE = 27.000 DEG C FREQ IM(R2) IP(R2) IR(R2) II(R2) 5.000E+01 1.138E-01 -6.592E+01 4.645E-02 -1.039E-01 Problema 2a **** CIRCUIT DESCRIPTION *CIRC LIN DE CA FIL1 R1 1 2 1K L1 2 3 3M L2 3 4 12M C1 3 0 8N C2 4 0 11.5N V1 1 0 +DC 0 +AC 1 0 +SIN(0 1 50 0 0 0) .AC LIN 100 1 1MEG .PROBE .END **** SMALL SIGNAL BIAS SOLUTION TEMPERATURE = 27.000 DEG C NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE ( 1) 0.0000 ( 2) 0.0000 ( 3) 0.0000 ( 4) 0.0000 VOLTAGE SOURCE CURRENTS NAME CURRENT V1 0.000E+00 TOTAL POWER DISSIPATION 0.00E+00 WATTS 107 1.0V 0.5V 0V 1.0Hz V(4) 100Hz 10KHz 1.0MHz Frequency Problema 2b **** CIRCUIT DESCRIPTION *CIRC LIN DE CA FIL2 R1 1 2 1.5K L1 3 0 2M L2 4 0 12M C1 2 3 10N C2 3 4 8U V1 1 0 +DC 0 +AC 1 0 +SIN(0 1 50 0 0 0) .AC LIN 100 1 2MEG .PROBE .END **** SMALL SIGNAL BIAS SOLUTION NODE VOLTAGE NODE VOLTAGE TEMPERATURE = 27.000 DEG C NODE VOLTAGE ( 1) 0.0000 ( 2) 0.0000 ( 3) 0.0000 ( 4) 0.0000 VOLTAGE SOURCE CURRENTS NAME CURRENT V1 0.000E+00 TOTAL POWER DISSIPATION 0.00E+00 WATTS 108 NODE VOLTAGE 1.0V 0.5V 0V 1.0Hz V(4) 100Hz 10KHz 1.0MHz 100MHz Frequency Problema 2c **** CIRCUIT DESCRIPTION *CIRC LIN DE CA FIL3 R1 1 2 1.5K RS 4 0 1.5K L1 2 3 2M C1 2 0 10N C2 3 4 8U C3 4 0 1N V1 1 0 +DC 0 +AC 1 0 +SIN(0 1 50 0 0 0) .AC DEC 100 1 2MEG .PROBE .END **** SMALL SIGNAL BIAS SOLUTION NODE VOLTAGE NODE VOLTAGE TEMPERATURE = 27.000 DEG C NODE VOLTAGE ( 1) 0.0000 ( 2) 0.0000 ( 3) 0.0000 ( 4) 0.0000 VOLTAGE SOURCE CURRENTS NAME V1 CURRENT 0.000E+00 TOTAL POWER DISSIPATION 0.00E+00 WATTS 109 NODE VOLTAGE 500mV 250mV 0V 1.0Hz V(4) 100Hz 10KHz 1.0MHz 100MHz Frequency Problema 2d **** CIRCUIT DESCRIPTION *CIRC LIN DE CA FIL4 R1 1 2 1.5K L1 5 0 10M L2 2 3 20M L3 4 0 4M C1 2 5 .1U C2 2 3 40U C3 3 4 1U V1 1 0 +DC 0 +AC 1 0 +SIN(0 1 50 0 0 0) .AC DEC 100 1 2MEG .PROBE .END **** SMALL SIGNAL BIAS SOLUTION NODE VOLTAGE NODE VOLTAGE TEMPERATURE = 27.000 DEG C NODE VOLTAGE ( 1) 0.0000 ( 2) 0.0000 ( 3) 0.0000 ( 4) 0.0000 ( 5) 0.0000 VOLTAGE SOURCE CURRENTS NAME CURRENT V1 0.000E+00 110 NODE VOLTAGE TOTAL POWER DISSIPATION 0.00E+00 WATTS 1.0V 0.5V 0V 1.0Hz V(3) 100Hz 10KHz Frequency LUCRAREA 5 Problema 1 **** CIRCUIT DESCRIPTION *est51.cir CIR cu AO/ SUBcirc V1 1 0 + DC 0 + AC 1m 0 + SIN(0 1m 500 0 0 0) * R1 1 2 1 C1 1 2 1 R2 2 3 1 C2 3 6 1 R3 2 4 1 R4 4 5 1 R5 5 6 1 C5 5 6 1 R6 1 7 1 C6 7 5 1 * X1 [0 2 4] AO X2 [0 5 6] AO 111 1.0MHz 100MHz * .SUBCKT AO 2 1 4 Ri 1 2 1MEG Re 3 4 .1m Ce 4 2 .1p E 3 2 TABLE { V(2)-V(1)} = (-.0015,-15)(0,0)(.0015,15) .ENDS * .AC DEC 100 .1 10MEG *.tran 1n 4.m .probe .options reltol=1e-6 itl5=0 numdgt=8 .end **** SMALL SIGNAL BIAS SOLUTION NODE VOLTAGE NODE VOLTAGE TEMPERATURE = 27.000 DEG C NODE VOLTAGE NODE VOLTAGE ( 1) 0.00000000 ( 2) 0.00000000 ( 3) 0.00000000 ( 4) 0.00000000 ( 5) 0.00000000 ( 6) 0.00000000 ( 7) 0.00000000 ( X1.3) 0.00000000 ( X2.3) 0.00000000 VOLTAGE SOURCE CURRENTS NAME CURRENT V1 0.000E+00 TOTAL POWER DISSIPATION 0.00E+00 WATTS 1.0mV 0.5mV 0V 100mHz 1.0Hz V(6) 100Hz 10KHz Frequency 112 1.0MHz 1.0 0.5 0 100mHz 1.0Hz V(6)/ V(1) 100Hz 10KHz 1.0MHz Frequency *est51.cir CIR cu AO/ SUBcirc V1 1 0 + DC 0 + AC 1m 0 + SIN(0 1m 500 0 0 0) * R1 1 2 1 C1 1 2 1 R2 2 3 1 C2 3 6 1 R3 2 4 1 R4 4 5 1 R5 5 6 1 C5 5 6 1 R6 1 7 1 C6 7 5 1 * X1 [0 2 4] AO X2 [0 5 6] AO * .SUBCKT AO 2 1 4 Ri 1 2 1MEG Re 3 4 .1m Ce 4 2 .1p E 3 2 TABLE { V(2)-V(1)} = (-.0015,-15)(0,0)(.0015,15) .ENDS * *.AC DEC 100 .1 10MEG .tran 1n 4.m .probe .options reltol=1e-6 itl5=0 numdgt=8 .end **** INITIAL TRANSIENT SOLUTION TEMPERATURE = 27.000 DEG C 113 NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE ( 1) 0.00000000 ( 2) 0.00000000 ( 3) 0.00000000 ( 4) 0.00000000 ( 5) 0.00000000 ( 6) 0.00000000 ( 7) 0.00000000 ( X1.3) 0.00000000 ( X2.3) 0.00000000 VOLTAGE SOURCE CURRENTS NAME CURRENT V1 0.000E+00 TOTAL POWER DISSIPATION 0.00E+00 WATTS 1.0mV 0V -1.0mV 0s 1.0ms 2.0ms V(6) Time **** CIRCUIT DESCRIPTION *est51.cir CIR cu AO/ SUBcirc V1 1 0 + DC 0 + AC 1m 0 + SIN(0 10 500 0 0 0) * R1 1 2 1 C1 1 2 1 R2 2 3 1 C2 3 6 1 R3 2 4 1 R4 4 5 1 R5 5 6 1 C5 5 6 1 R6 1 7 1 C6 7 5 1 * X1 [0 2 4] AO 114 3.0ms 4.0ms X2 [0 5 6] AO * .SUBCKT AO 2 1 4 Ri 1 2 1MEG Re 3 4 .1m Ce 4 2 .1p E 3 2 TABLE { V(2)-V(1)} = (-.0015,-15)(0,0)(.0015,15) .ENDS * *.AC DEC 100 .1 10MEG .tran 1n 4.m .probe .options reltol=1e-6 itl5=0 numdgt=8 .end **** INITIAL TRANSIENT SOLUTION NODE VOLTAGE NODE VOLTAGE TEMPERATURE = 27.000 DEG C NODE VOLTAGE NODE VOLTAGE ( 1) 0.00000000 ( 2) 0.00000000 ( 3) 0.00000000 ( 4) 0.00000000 ( 5) 0.00000000 ( 6) 0.00000000 ( 7) 0.00000000 ( X1.3) 0.00000000 ( X2.3) 0.00000000 VOLTAGE SOURCE CURRENTS NAME CURRENT V1 0.000E+00 TOTAL POWER DISSIPATION 0.00E+00 WATTS 10mV 0V -10mV 0s 1.0ms 2.0ms V(6) Time Problema 2 **** CIRCUIT DESCRIPTION 115 3.0ms 4.0ms *etb52.cir circ cu tranz bipolare .options reltol=1e-6 V1 1 0 DC 5 C3 2 3 100u *V3 3 0 AC 1m SIN(0 1m 1K 0 0) V3 3 0 AC 10 SIN(0 10 1K 0 0) V2 5 0 DC 9 R1 1 2 20K R2 5 4 100 Q1 4 2 0 TB .MODEL TB NPN(IS=10.F BF=200 CJE=200p + CJC=200p) *.DC LIN V1 0 25 .05 *.AC DEC 100 .1 100MEG .TRAN .1u 10m .OP .PROBE .END **** BJT MODEL PARAMETERS TB NPN IS 10.000000E-15 BF 200 NF 1 BR 1 NR 1 CJE 200.000000E-12 CJC 200.000000E-12 CN 2.42 D .87 **** SMALL SIGNAL BIAS SOLUTION TEMPERATURE = 27.000 DEG C NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE ( 1) 5.0000 ( 2) ( 5) 9.0000 .7521 ( 3) 0.0000 ( 4) 4.7521 VOLTAGE SOURCE CURRENTS NAME V1 CURRENT -2.124E-04 116 NODE VOLTAGE V3 V2 0.000E+00 -4.248E-02 TOTAL POWER DISSIPATION 3.83E-01 WATTS **** OPERATING POINT INFORMATION TEMPERATURE = 27.000 DEG C **** BIPOLAR JUNCTION TRANSISTORS NAME Q1 MODEL TB IB 2.12E-04 IC 4.25E-02 VBE 7.52E-01 VBC -4.00E+00 VCE 4.75E+00 BETADC 2.00E+02 GM 1.64E+00 RPI 1.22E+02 RX 0.00E+00 RO 1.00E+12 CBE 3.35E-10 CBC 1.09E-10 CJS 0.00E+00 BETAAC 2.00E+02 CBX/CBX2 0.00E+00 FT/FT2 5.89E+08 **** INITIAL TRANSIENT SOLUTION TEMPERATURE = 27.000 DEG C NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE ( 1) 5.0000 ( 2) .7521 ( 3) 0.0000 ( 4) 4.7521 ( 5) 9.0000 VOLTAGE SOURCE CURRENTS NAME V1 V3 V2 CURRENT -2.124E-04 0.000E+00 -4.248E-02 TOTAL POWER DISSIPATION 3.83E-01 WATTS 117 NODE VOLTAGE 4.50V 4.25V 4.00V 0s 2ms V(5)- V(4) 4ms 6ms 8ms 10ms Time 10V 0V -10V 0s 2ms V(5)- V(4) 4ms 6ms Time LUCRAREA 6 Problema 1 **** CIRCUIT DESCRIPTION *etb61.cir circ cu tranz bipolare .options reltol=1e-6 V1 1 0 DC 5 118 8ms 10ms C3 2 3 100u V3 3 0 AC 1m SIN(0 1m 1K 0 0) *V3 3 0 AC 10 SIN(0 10 1K 0 0) V2 5 0 DC 9 R1 1 2 20K R2 5 4 100 Q1 4 2 0 TB .MODEL TB NPN(IS=10.F BF=200 CJE=200p + CJC=200p) *.TRAN .1u 10m .TRAN .1u 10m 5m .FOUR 1K 10 V(5,4) *.OP .PROBE .END **** BJT MODEL PARAMETERS TB NPN IS 10.000000E-15 BF 200 NF 1 BR 1 NR 1 CJE 200.000000E-12 CJC 200.000000E-12 CN 2.42 D .87 **** INITIAL TRANSIENT SOLUTION TEMPERATURE = 27.000 DEG C NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE ( 1) 5.0000 ( 2) ( 5) 9.0000 .7521 ( 3) 0.0000 ( 4) 4.7521 NODE VOLTAGE VOLTAGE SOURCE CURRENTS NAME CURRENT V1 V3 V2 -2.124E-04 0.000E+00 -4.248E-02 TOTAL POWER DISSIPATION 3.83E-01 WATTS **** FOURIER ANALYSIS TEMPERATURE = 27.000 DEG C 119 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(5,4) DC COMPONENT = 4.247607E+00 HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG) 1 2 3 4 5 6 7 8 9 10 1.000E+03 2.000E+03 3.000E+03 4.000E+03 5.000E+03 6.000E+03 7.000E+03 8.000E+03 9.000E+03 1.000E+04 1.625E-01 1.589E-03 5.077E-04 1.470E-04 3.713E-04 1.359E-04 2.854E-04 1.450E-04 2.411E-04 1.767E-04 1.000E+00 9.777E-03 3.125E-03 9.045E-04 2.285E-03 8.364E-04 1.756E-03 8.922E-04 1.484E-03 1.088E-03 7.960E-01 -8.396E+01 -5.091E+01 1.237E+02 7.320E+01 -1.204E+02 -1.695E+02 -4.044E+00 -4.427E+01 1.118E+02 0.000E+00 -8.476E+01 -5.171E+01 1.229E+02 7.240E+01 -1.212E+02 -1.703E+02 -4.840E+00 -4.506E+01 1.110E+02 TOTAL HARMONIC DISTORTION = 1.092516E+00 PERCENT 5.0V 2.5V 0V 0Hz 5KHz V(5)- V(4) 10KHz 15KHz Frequency 120 20KHz 25KHz 30KHz 1.0V 0.5V 0V 0Hz 2KHz V(5)- V(4) 4KHz 6KHz Frequency **** CIRCUIT DESCRIPTION *etb61.cir circ cu tranz bipolare .options reltol=1e-6 V1 1 0 DC 5 C3 2 3 100u *V3 3 0 AC 1m SIN(0 1m 1K 0 0) V3 3 0 AC 10 SIN(0 10 1K 0 0) V2 5 0 DC 9 R1 1 2 20K R2 5 4 100 Q1 4 2 0 TB .MODEL TB NPN(IS=10.F BF=200 CJE=200p + CJC=200p) *.TRAN .1u 10m .TRAN .1u 10m 5m .FOUR 1K 10 V(5,4) *.OP .PROBE .END **** BJT MODEL PARAMETERS TB NPN IS 10.000000E-15 BF 200 NF 1 BR 1 NR 1 CJE 200.000000E-12 CJC 200.000000E-12 121 8KHz 10KHz CN 2.42 D .87 **** INITIAL TRANSIENT SOLUTION TEMPERATURE = 27.000 DEG C NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE ( 1) 5.0000 ( 2) ( 5) 9.0000 .7521 ( 3) 0.0000 ( 4) 4.7521 NODE VOLTAGE VOLTAGE SOURCE CURRENTS NAME CURRENT V1 V3 V2 -2.124E-04 0.000E+00 -4.248E-02 TOTAL POWER DISSIPATION 3.83E-01 WATTS **** FOURIER ANALYSIS TEMPERATURE = 27.000 DEG C FOURIER COMPONENTS OF TRANSIENT RESPONSE V(5,4) DC COMPONENT = 2.677038E-01 HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG) 1 2 3 4 5 6 7 8 9 10 1.000E+03 2.000E+03 3.000E+03 4.000E+03 5.000E+03 6.000E+03 7.000E+03 8.000E+03 9.000E+03 1.000E+04 5.345E-01 5.316E-01 5.269E-01 5.203E-01 5.120E-01 5.019E-01 4.903E-01 4.771E-01 4.625E-01 4.465E-01 1.000E+00 9.947E-01 9.858E-01 9.736E-01 9.580E-01 9.392E-01 9.173E-01 8.927E-01 8.653E-01 8.355E-01 1.600E-01 -8.959E+01 -1.794E+02 9.083E+01 1.041E+00 -8.875E+01 -1.785E+02 9.168E+01 1.897E+00 -8.788E+01 0.000E+00 -8.975E+01 -1.795E+02 9.067E+01 8.813E-01 -8.891E+01 -1.787E+02 9.152E+01 1.737E+00 -8.804E+01 TOTAL HARMONIC DISTORTION = 2.791763E+02 PERCENT 122 1.0V 0.5V 0V 0Hz 10KHz 20KHz 30KHz 40KHz 50KHz 8KHz 10KHz V(5,4) Frequency 1.0V 0.5V 0V 0Hz 2KHz 4KHz 6KHz V(5,4) Frequency Problema 2 **** CIRCUIT DESCRIPTION *etR61.cir CIR cu SWITCH options reltol=5.e-7 itl5=0 numdgt=8 V1 1 0 + DC 100 * V4 4 0 PULSE (0 1 50.u 1.p 1.p .05m .1m ) * L1 1 2 20m C1 3 0 1.25u R1 3 0 400 * d1 2 3 dioda .model dioda d 123 * S1 2 0 4 0 S1 * .MODEL S1 VSWITCH ( RON=1, ROFF=1MEG, + VON=1, VOFF=0 ) * .TRAN 10u 5m *.TRAN 10u 5m 4.5m *.FOUR 10.K V(3),V(4) .PROBE .END **** Diode MODEL PARAMETERS dioda IS 10.000000E-15 **** Voltage Controlled Switch MODEL PARAMETERS S1 RON ROFF VON VOFF **** 1 1.000000E+06 1 0 INITIAL TRANSIENT SOLUTION NODE VOLTAGE NODE VOLTAGE TEMPERATURE = 27.000 DEG C NODE VOLTAGE ( 1) 100.00000000 ( 2) 100.00000000 ( 3) 99.20229970 ( 4) 0.00000000 VOLTAGE SOURCE CURRENTS NAME CURRENT V1 V4 -2.481E-01 0.000E+00 TOTAL POWER DISSIPATION 2.48E+01 WATTS 124 NODE VOLTAGE 1100mV 800mV 400mV 0V 4.5ms V(4) 4.6ms 4.8ms 5.0ms Time 300V 200V 100V 0V 0s 2.0ms 4.0ms 5.0ms V(3) Time 800mV 400mV 0V 0Hz 100KHz 200KHz V(4) Frequency 125 300KHz 400KHz 200V 100V 0V 0Hz 10KHz 20KHz 30KHz 40KHz V(3) Frequency 1.0V 0.5V 0V 9KHz 25KHz 50KHz V(3) Frequency 126 75KHz 100KHz LUCRAREA 7 Problema 1 **** CIRCUIT DESCRIPTION *circ in reg tranz cetr1.cir .options reltol=1e-6 itl5=0 numdgt=8 NOMOD NOPAGE NOECHO R1 0 1 3 L1 1 2 1 IC=-.10E+01 C1 2 0 1 IC=.10E+01 .TRAN 10M 15 SKIPBP .PRINT TRAN V(2),I(L1) .PROBE .END **** TIME TRANSIENT ANALYSIS V(2) TEMPERATURE = 27.000 DEG C I(L1) 1.0000000E-02 9.9011134E-01 -9.8027822E-01 2.0000000E-02 9.8041165E-01 -9.6102829E-01 3.0000000E-02 9.7091674E-01 -9.4228926E-01 4.0000000E-02 9.6166173E-01 -9.2414761E-01 5.0000000E-02 9.5251726E-01 -9.0628115E-01 6.0000000E-02 9.4349691E-01 -8.8872298E-01 7.0000000E-02 9.3484698E-01 -8.7208478E-01 8.0000000E-02 9.2619704E-01 -8.5544659E-01 9.0000000E-02 9.1754711E-01 -8.3880839E-01 1.0000000E-01 9.0942287E-01 -8.2347094E-01 ……………………………………………………………. 1.4960000E+01 2.3808301E-03 -9.0939618E-04 1.4970000E+01 2.3716028E-03 -9.0587170E-04 1.4980000E+01 2.3623756E-03 -9.0234722E-04 1.4990000E+01 2.3531484E-03 -8.9882274E-04 1.5000000E+01 2.3439212E-03 -8.9529826E-04 127 1.0 0 -1.0 0s 5s I(L1) 10s 15s V(2) Time 1.0A 0A -1.0A 0V 0.2V 0.4V 0.6V I(L1) V(2) **** CIRCUIT DESCRIPTION *circ in reg tranz cetr1.cir .options reltol=1e-6 itl5=0 numdgt=8 NOMOD NOPAGE NOECHO R1 0 1 3 L1 1 2 1 IC=.10E+01 C1 2 0 1 IC=.10E+01 .TRAN 10M 15 SKIPBP .PROBE .END 128 0.8V 1.0V 1.0A 0A -1.0A 0s 5s I(L1) 10s 15s 1.0V 1.5V V(2) Time 1.0A 0A -1.0A 0V 0.5V I(L1) V(2) **** CIRCUIT DESCRIPTION *circ in reg tranz cetr1.cir .options reltol=1e-6 itl5=0 numdgt=8 NOMOD NOPAGE NOECHO R1 0 1 3 L1 1 2 1 IC=.10E+01 C1 2 0 1 IC=-.10E+01 129 .TRAN 10M 15 SKIPBP .PROBE .END 1.0A 0A -1.0A 0s 5s I(L1) 10s 15s V(2) Time 1.0A 0A -1.0A -1.0V -0.8V I(L1) -0.6V -0.4V V(2) **** CIRCUIT DESCRIPTION *circ in reg tranz cetr1.cir .options reltol=1e-6 itl5=0 numdgt=8 NOMOD NOPAGE NOECHO R1 0 1 -3 L1 1 2 1 IC=.10E+01 C1 2 0 1 IC=.10E+01 130 -0.2V 0V .TRAN 1M 2 SKIPBP .PROBE .END 5.0A 2.5A 0A 0s I(L1) 0.2s V(2) 0.4s 0.6s 0.8s 1.0s Time 5.0A 2.5A 0A 0V 0.5V 1.0V 1.5V I(L1) V(2) 131 2.0V 2.5V 3.0V 20KA 15KA 10KA 5KA 0A 0V 2.0KV 4.0KV 6.0KV 8.0KV I(L1) V(2) **** CIRCUIT DESCRIPTION *circ in reg tranz cetr1.cir .options reltol=1e-6 itl5=0 numdgt=8 NOMOD NOPAGE NOECHO R1 0 1 3 L1 1 2 1 IC=.10E+01 C1 2 0 -1 IC=.10E+01 .TRAN 1M 15 SKIPBP .PROBE .END 1.0A 0A -1.0A 0s I(L1) 0.5s V(2) 1.0s Time 132 1.5s 2.0s 1.0A 0A -1.0A 0V 0.5V 1.0V 1.5V 2.0V I(L1) V(2) **** CIRCUIT DESCRIPTION *circ in reg tranz cetr1.cir .options reltol=1e-6 itl5=0 numdgt=8 NOMOD NOPAGE NOECHO R1 0 1 1 L1 1 2 1 IC=.10E+01 C1 2 0 1 IC=.10E+01 .TRAN 1M 15 SKIPBP .PROBE .END 2.0A 0A -2.0A 0s I(L1) 0.2s V(2) 0.4s 0.6s Time 133 0.8s 1.0s 1.0A 0A -1.0A -0.5V I(L1) 0V 0.5V 1.0V 1.5V V(2) **** CIRCUIT DESCRIPTION *circ in reg tranz cetr1.cir .options reltol=1e-6 itl5=0 numdgt=8 NOMOD NOPAGE NOECHO R1 0 1 -1 L1 1 2 1 IC=-.10E+01 C1 2 0 1 IC=-.10E+01 .TRAN .1M 15 SKIPBP .PROBE .END 200A 100A 0A -100A -200A 0s I(L1) 2s V(2) 4s 6s Time 134 8s 10s 5.0A 2.5A 0A -2.0V I(L1) -1.0V 0V 1.0V 2.0V V(2) 150A 100A 50A 0A -50A -75V -50V 0V I(L1) V(2) **** CIRCUIT DESCRIPTION *circ in reg tranz cetr1.cir .options reltol=1e-6 itl5=0 numdgt=8 NOMOD NOPAGE NOECHO R1 0 1 1n L1 1 2 1 IC=.10E+01 C1 2 0 1 IC=.10E+01 .TRAN .1M 15 SKIPBP .PROBE 135 50V .END 2.0A 0A -2.0A 0s I(L1) 2s V(2) 4s 6s 8s 10s Time 2.0A 0A -2.0A -1.5V -1.0V I(L1) -0.5V 0V V(2) Problema 2 **** CIRCUIT DESCRIPTION *circ nelin de ord 2 cnd2.cir L1 0 1 1 IC=6 G1 1 0 TABLE {V(1)}= + (-10,-8),(-1,1),(1,-1),(10,8) .TRAN .1M 7 SKIPBP .PROBE .END 136 0.5V 1.0V 1.5V 2.0A 0A -2.0A -4.0V I(L1) -2.0V 0V 2.0V 4.0V 6.0V 2.0V 4.0V 6.0V V(1) *circ nelin de ord 2 cnd2.cir L1 0 1 1 IC=6 G1 1 0 TABLE {V(1)}= + (-10,-8),(-1,1),(1,-1),(10,8) C1 1 0 1M IC=8 .TRAN .1M 7 SKIPBP .PROBE .END 2.0A 0A -2.0A -4.0V I(L1) -2.0V 0V V1(C1) 137 *circ nelin de ord 2 cnd2.cir L1 0 1 1 IC=6 G1 1 0 TABLE {V(1)}= + (-10,-8),(-1,1),(1,-1),(10,8) C1 1 0 1M IC=8 .TRAN .1M 7 SKIPBP .PROBE .OPTIONS RELTOL=1e-7 .END 2.0A 0A -2.0A -4.0V I(L1) -2.0V 0V 2.0V V1(C1) 138 4.0V 6.0V LUCRAREA 8 Problema 1a **** CIRCUIT DESCRIPTION *el81.cir circ el nelin reg tran .options reltol=1e-6 itl5=0 numdgt=8 r1 1 2 15 l1 2 3 10m V1 1 0 sin(0 0.5 1.e+5 0 0 0) d 3 0 dioda .model dioda d(Is=8.3e-15 Rs=9.6 + Cjo=300p Vj=.75 + M=.4 Tt=4.e-06) .tran 5n 400u 360u *.tran 2u 200u 100u 1u .probe .end **** **** Diode MODEL PARAMETERS dioda IS 8.300000E-15 RS 9.6 TT 4.000000E-06 CJO 300.000000E-12 VJ .75 M .4 INITIAL TRANSIENT SOLUTION NODE VOLTAGE NODE VOLTAGE TEMPERATURE = 27.000 DEG C NODE VOLTAGE ( 1) 0.00000000 ( 2) 0.00000000 ( 3) 0.00000000 VOLTAGE SOURCE CURRENTS NAME CURRENT V1 0.000E+00 139 NODE VOLTAGE 400uA 0A -400uA 360us I(l1) 370us 380us 390us 400us Time 400uA 0A -400uA -500mV I(l1) 0V 500mV V(1) 140 Problema 1b v=1.5V 1.0mA 0.5mA 0A -0.5mA 360us I(l1) 370us 380us 390us 400us Time 1.0mA 0.5mA 0A -0.5mA -2.0V I(l1) -1.0V 0V 1.0V V(1) 141 2.0V Problema 1c v=6.5V 4.0mA 2.0mA 0A -2.0mA 400us I(l1) 450us 500us 550us 600us Time 4.0mA 2.0mA 0A -2.0mA -8.0V I(l1) -4.0V 0V 4.0V V(1) 142 8.0V [ ] "! #%$'&(*),+.-0/012-3/-% "! #$46571989:;<:; !/= +2/> ?-3;!@BA(12=/C1EDFHGH +.=@16!= ! #I/:;+.= : !/>=;! ,4KJ'L3/#%=C1MAN=;-3/> ! ?PO;QR-%L+.=7GBST+VU>$25'#! #= W0/;$3YX.X.Z.$2DF[5H\X.]2^._X.Z2`Ia2^._a2_>aI [2] &(),+.-0/012-3/-% "! #$ b> "! #c4dJH:; !/= +2/?% -3;!CefSg -I/= #h&(12! #3:/019/>C1dLiQj#3/>+lkm1Y/;!CedW )j19:;! #3:@19/+12= C42$l! #%= NST#3n%:b;!C19/Sg*-I/ = -%/$ ?3//SNoqpp@r = =C12=s:;kt-gsSg#gu= +Yp@0/#L% -3/ [3] K "! #%$7&(v)+l-%/012-I/;- "! #T4fJH:; !/= +2/?% -3;!CefSg -I/= #h&(12! #3:/019/C1fJ'-% = w./;!Ce.4V$! #= Sg#3n%:!C19/Sg*;-3/ = -%/$ ?3//Sxoyppr = =C12=@z:;kt-gsSg#Tq= +Yp/#%L -3/ [4] A Vladimirescu$4{[lA|D})vJ~4MJ'LI/#=C1,/ ?-I;!Cel95'#%! #= W/$39X.X.Xl$2DF[l5H\X.]V^._^T_C.a2_X [5] L. O. Chua, C. A. Desoer, E. S. Kuh, 4YH;-%C1V=12-L<-%+l-I:-%C12=!;= ! #3/>}4d!C =C19,_:b:;$ YX.Z.] 143