Lecture 2 Surface Diffraction
Transcription
Lecture 2 Surface Diffraction
Lecture 2 Surface Diffraction 1. LEED 2. Surface X-ray Diffraction Electron diffraction mean free path • The elastic mean free path of slow electrons in solids is only a few atomic layers, so elastic electrons remain near the surface. Eo Eo Rear view LEED G1,G4: grounded (field-free region between sample and screen) G2, G3: retarding grids (filter out inelastic electrons) LEED: Front-view Apparatus Grid 2: retarding voltage (selects only elastic electrons) Fluorescent Screen Sample LEED optics Si{111}-(7x7) Pt{110}-(1x2) Low Current LEED Cu(100) Ep = 160 eV! Substrate + Overlayer LEED patterns adsorbate overlayer typically larger lattice spacing than substrate adsorbate spots typically smaller lattice spacing than substrate spots k-Space: Ewald Sphere for LEED Diffractedfk e-beams LEED spots Ewald Sphere Reciprocal Lattice Rods ik Incoming e-beam eleci2pkπλ== Direction of scattered LEED beam 2aπ Diffraction order sample k-Space: Bragg Scattering and LEED Equation Derive LEED equation using Bragg’s Law for X-ray diffraction, where appropriate angles are substituted and λ is for the electron wavelength. Electron Diffraction X-ray Diffraction ki Angle φ kf α ki D kf d xray2sinndλθ= d θ nλ=2dsinθ ()()2sincossin2nDnDλααλα== elecsinnDλφ= nλ = D sinφ LEED: History • LEED = Low Energy Electron Diffraction • 1924: Discovered accidentally by Davisson and Kunsman during study of secondary electron emission from Ni crystal • 1927: Davisson and Germer found maxima occurred for: – nλ = D sinφ – D = spacing atomic row spacing, λ = electron wavelength (h/p) • 1931: Davisson and Thomson shared Nobel Prize for discovery of matter waves • 1934: Ehrenburg developed fluorescent screen for data imaging • 1960: Ultrahigh vacuum technology enabled clean surfaces to be studied with LEED LEED: Si(111)7x7 Real Space: • Longer periodicities in real space give closer spots in k-space. Si surface atoms • Higher energy LEED images show spots closer together. 7x bulk spacing K-Space 35 eV 65 eV Methodology I Thy Expt Ep Methodology II Rutile TiO2 Unit Cell Rutile TiO2 Unit Cell (110) TiO2(110)1x1 Structure! Unit Cell: 6.495 x 2.958 Å Tasker’s Rules Previous Work! [001]" STM" Previous Work! Atom" Shift (Å)" Ti(1)" 0.12 ± 0.05" Ti(2)" -0.16 ± 0.05" Ti(3)" -0.09 ± 0.04" Ti(4)" 0.07 ± 0.04" O(1)" -0.27 ± 0.08" O(2)vert" 0.05 ± 0.05" O(2)horz" -0.16 ± 0.08" O(3)" 0.05 ± 0.08" O(4)" 0.00 ± 0.08" O(5)vert" 0.02 ± 0.06" O(5)horz" -0.07 ± 0.08" O(6)" -0.09 ± 0.08" O(7)" -0.12 ± 0.07" SXRD" Charlton et al" Structure Determination: New Phaseshifts Optimised Structure Displacement (Å)" Atom" Atom" LEED-IV" LEED-IV" DFT(LDA)" SXRD" HF" -0.17 ± 0.15! -0.17 ± 0.15! -0.05! -0.16 ± 0.08! -0.06! 0.06 ± 0.10! 0.06 ± 0.10! 0.03! 0.05 ± 0.08! 0.02! SXRD • R. Feidenhans’l, Surf. Sci. Rep. 10 (1989) 105 • I.K. Robinson, D.J.Tweet, Rep. Prog. Phys. 55 (1992) 599 • nλ=2dsinθ • X-rays interact weakly with matter (scattered by core electrons). • Positive side this means single scattering approximation is adequate. This is very quick and cheap computationally. A another major advantage over other diffraction techniques is that work at high pressures is possible, as is magnetic scattering. • Negative side it means that we need a very bright source of X-rays to study surfaces, because they don’t contain many atoms, ie synchrotron radiation. Work at grazing incidence to maximise surface sensitivity. ESRF, Grenoble Diamond, Oxfordshire--2008 What do we mean by synchrotron? • A machine; • A collection of laboratories; • An enabling technology; • A scientific infrastructure. Experimental Stations Control cabin Sample Optics hutch Synchrotron light Focussing magnets Bending magnet Magnets for the storage ring dipoles quadrupoles sextupoles Difracción de rayos X Haces difractados: • Distribución espacial • Intensidad Difracción de rayos X Difracción por un cristal Periodicidad tridimensional Espacio recíproco: puntos de Bragg Difracción de rayos X Difracción por una monocapa Periodicidad bidimensional Espacio recíproco: husos ó varillas Difracción de rayos X Difracción por una superficie Periodicidad tridimensional se pierde en la superficie Espacio recíproco: puntos de Bragg y husos de truncación Difracción de rayos X Crystal Truncation Rods Diffuse intensity between Bragg peaks gives information about the surface structure Difracción de rayos X Relajación de la capa externa N.B. Systematic absences and different Struc factors Difracción de rayos X Relajación de la capa externa Difracción de rayos X Relajación y reconstrucción de la capa externa Espacio recíproco de una superficie reconstruida (2x1) Experimental Keep photon energy fixed--typically 10 keV Ewald Sphere a* = 2π/a k-1' k 0' k-2' k 1' Ewald Sphere construction. The origin of the sphere is at the tip of the incident wavevector, and has radius 2π/λ. k0 is the incident wavevector of incident angle θ0, and kx' the scattered wavevectors, where x is the diffraction order. Diffraction occurs when the tip of a diffracted wavevector and a lattice line intersect. To observe the diffraction the detector must be looking along the scattered wavevector.! 2π/λ θ0 Diffraction -3 Order, n Fig. 2.4 -2 -1 k0 0 1 2 Ewald Sphere construction. The origin of the sphere is at the tip of Difracción de rayos X Cómo se realizan las medidas Difracción de rayos X Intensidades integradas y factores de estructura Factores de corrección Intensidad integrada Errores experimentales Factores de estructura Conjunto de datos final Difracción de rayos X Análisis de datos y determinación del modelo atómico La calidad de un modelo estructural se evalúa comparando los factores de estructura experimentales y calculados mediante un factor de acuerdo: Factor de estructura experimental Factor de estructura calculado calc 2 hk ⎛ F 1 ⎜ 2 χ = ∑ N − p hk ⎜⎜ ⎝ Número de factores de estructura −F σ hk Número de parámetros libres exp 2 hk ⎞ ⎟ ⎟⎟ ⎠ 2 Error experimental Difracción de rayos X Difractómetro de ID3 (ESRF) Experimental • Station 9.4 SRS Daresbury • 5 sample and detector positioning circles needed. • 6th “out of plane” circle maximises out of plane resolution. • Scattered intensity measured by “rocking” across diffraction condition. • Scans then integrated and corrected 6 CIRCLE DIFFRACTOMETER! Surface x-ray diffraction (200 nm)2 area Measurement on ID32 / SCL at the ESRF" 2006 Surface x-ray diffraction results • TiO2(110) with STM characterisation 2006 Surface x-ray diffraction results Displacement (Å) Atom Ti(1) Ti(2) Ti(3) Ti(4) O(1) O(2) [110] O(2) [1 10] O(3) O(4) O(5) [110] O(5) [1 10] O(6) O(7) O(8) [110] O(8) [1 10] Ti(5) Ti(6) O(9) O(10) SXRD SXRD LEED-IV MEIS [3] Current work [4] [5] 0.12 ± 0.05 -0.16 ± 0.05 -0.09 ± 0.04 0.07 ± 0.04 -0.27 ± 0.08 0.05 ± 0.05 -0.16 ± 0.08 0.05 ± 0.08 0.00 ± 0.08 0.02 ± 0.06 -0.07 ± 0.06 -0.09 ± 0.08 -0.12 ± 0.07 - 0.25 ± 0.01 -0.11 ± 0.01 -0.08 ± 0.01 0.19 ± 0.01 0.10 ± 0.04 0.17 ± 0.03 0.01 ± 0.05 0.07 ± 0.04 0.00 ± 0.03 0.04 ± 0.03 0.05 ± 0.05 0.01 ± 0.04 0.01 ± 0.04 0.01 ± 0.03 -0.03 ± 0.05 0.08 ± 0.01 -0.04 ± 0.01 0.02 ± 0.04 -0.02 ± 0.04 0.25 ± 0.03 -0.19 ± 0.03 -0.09 ± 0.07 0.14 ± 0.05 0.10 ± 0.05 0.27 ± 0.08 -0.17 ± 0.15 0.06 ± 0.10 0.00 ± 0.08 0.06 ± 0.12 -0.07 ± 0.18 0.00 ± 0.17 0.01 ± 0.13 - 0.19 ± 0.07 -0.09 ± 0.09 -0.09 ± 0.09 -0.06 ± 0.06 0.13 ± 0.16 0.05* 0.00* 0.10 ± 0.13 0.00 ± 0.07 -0.02 ± 0.08 -