MS MS/MS - Agilent Technologies
Transcription
MS MS/MS - Agilent Technologies
Últimos Desarrollos en Tecnología de Alta Resolución: GCQTOF – IMS QTOF. Trabajo con Muestras Complejas Jaume C. Morales MS Product Specialist February 12, 2014 1 GC/Q-TOF para Target, No-target y Desconocidos : Las ventajas de la Alta Resolución, Masa Exacta y la alta Velocidad de adquisición en MS y MS/MS 7200 GC-QTOF Una nueva herramienta para solucionar complejos problemas analíticos Febrero 2014 Portfolio de Agilent en GC/MS RENDIMIENTO GC Q-TOF 7000C TQ 5975T SQ 240 IT 5977A SQ 7890BGC 5977E SQ Full Scan/SIM MS/MS MS/MS masa exacta 7820 GC PRECIO Febrero 2014 El reto en GCMS : problemas analíticos complejos La identificación de compuestos en muestras complejas a nivel de trazas (ng/mL o menor) es difícil y generalmente requieres estrategias analíticas no-rutinarias o sistemas de configuración atípica y poco robustas como : 1- Potentes métodos de extracción/enriquecimiento 2- Sistemas GC de alto poder de separación (e.g.GCxGC) 3- Detectores selectivos y/o MS. Sin embargo, para análisis a nivel rutinario de éste tipo de compuestos se requieren enfoques con técnicas más simples, rápidas y robustas para incrementar la productividad. Desafortunadamente los sistemas GC/MS (SIM) o 1D GC en combinación con detectores específicos como el PFPD o ECD no son a menudo suficientes para conseguir la selectividad requerida. Page 4 El reto en GCMS : problemas analíticos complejos 1a Estrategia : La tecnología MS-TOF recoge y analiza simultáneamente todos los iones a lo largo del rango de masas en contraposición a los instrumentos de barrido convencional donde los iones son filtrados y detectados secuencialmente. Consecuentemente, el GC-QTOF-MS en modo TOF no tiene parangón en sensibilidad trabajando en “Full Scan”, comparable a la técnica GC-MS en modo SIM, pero con el espectro completo y Además ,el GC-QTOF-MS genera datos en masa exacta lo cual permite obtener una alta selectividad y sensibilidad utilizando ventanas de extracción del orden de 0.02-0.05Da. PERO, ¿Qué pasa cuando la Resolución y la Δ Masa no son suficientes? 2a Estrategia: GC-QTOF-MS/MS Page 5 ¿Que es el 7200? 7200 GC/Q-TOF = 7890 + 7000 + 6500 MS Triple Cuadrupolo + = MS Cuadrupolo /Tiempo de vuelo MS Tiempo de Vuelo Page 6 La fusión de dos plataformas Ion Mirror 7000 GC/MS 6500 LC/MS QQQ based Q-TOF based Quad Mass Filter (Q1) Ion Source Transfer optics Ion Pulser Collision Cell Turbo 1b Page 7 Turbo 1a Ion Detector Turbo 2 Turbo 3 Nuevo . . . Pero totalmente probado Dual-stage ion mirror improves second-order time focusing for high mass resolution. 4GHz ADC electronics enable a high sampling rate (32 Gbit/s) which improves the resolution, mass accuracy, and sensitivity for low-abundance samples. Dual gain amplifiers simultaneously process detector signals through both lowgain and high gain channels, extending the dynamic range to 105. Hot, quartz monolithic quadrupole analyzer and collision cell identical to the 7000 Quadrupole MS/MS Proprietary INVAR flight tube sealed in a vacuum-insulated shell eliminates thermal mass drift due to temperature changes to maintain excellent mass accuracy, 24/7. Added length improves mass resolution. Analog-to-digital (ADC) Detector: Unlike time-to-digital (TDC) detectors which record single ion events, ADC detection records multiple ion events, allowing very accurate mass assignments over a wide mass range and dynamic range of concentrations. New Internal Reference Mass can be delivered to the source at a low and high concentration New Removable Ion Source includes repeller, ion volume, extraction lens and dual filaments Two 300L/s t urbos pump the focusing optics and flight tube Split-flow turbo differentially pumps the ion source and quadrupole analyzer compartments Page 8 Hexapole collision cell accelerates ion through the cell to enable faster generation of high-quality MS/MS spectra without cross-talk Removable Ion Source (RIS) Automated Gate Valve RIS Automated Retractable Transfer Line Page 9 ¿Que puede hacer el GC-QTOF por nosotros? • En modo TOF • Espectros “full scan” de alta resolución • Medida de masa exacta • Adquisición a alta velocidad de espectros “full scan” • En modo MS/MS • Espectros “full scan product ion” con alta resolución y masa exacta • La herramienta ideal para abordar complejos problemas analíticos. Page 10 Aportación de los sistemas de Tiempo de Vuelo El TOF es un cronómetro que mide el tiempo que tardan los diferentes iones en llegar al detector desde que se disparan en el PULSER. Los iones más ligeros llegan antes y los más pesados, más tarde. Ese tiempo se contrasta con una calibración del equipo t <-> m/z y sabemos con exactitud la m/z del ión. Genéricamente se entiende por masa exacta cuando el error en la medida es menor de 5 ppm. Los sistemas basados en SQ/QQQ suelen mostrar un error de masa > 150ppm. Error en la medida = (Masa Medida - Masa Calculada) Masa Calculada X 1.000.000 = ppm 11 Resolución y exactitud de masa Resolución : R=mz/FWHM Mz=614 SQ TQ IT R = 614/0.68 = 903 Δmz = 0.1/614 = 160 ppm Exactitud de masa: Δmz=dm/mz*106, partes por millon (ppm) PFTBA mass 614 C12F24N=613.964203 TOF Q-TOF Pw=0.68 R = 614/0.0423 = 14522 Δmz = 0.0004/613.96 = 0.7 ppm 1 Da. 1 Da. Page 12 Características Clave en el 7200 1. Bloqueo del eje de masas por Referencia Interna o Calibración simultanea para exactitud sub 5ppm incluso en muestras con alta carga de matriz 2. Fuente extraíble RIS para una limpieza, cambio de filamentos o intercambio de fuentes EI/CI rápida y sin romper vacío. 3. Q-TOF MS/MS: • • • • Reducción del ruido químico Selectividad Information estructural Desarrollo de métodos 4. Herramientas de software – Formula calculator / MSC (MS/MS Structural Correlation Tool) Page 13 El reto en GCMS : problemas analíticos complejos 1a Estrategia : La tecnología MS-TOF recoge y analiza simultáneamente todos los iones a lo largo del rango de masas en contraposición a los instrumentos de barrido convencional donde los iones son filtrados y detectados secuencialmente. Consecuentemente, el GC-QTOF-MS en modo TOF no tiene parangón en sensibilidad trabajando en “Full Scan”, comparable a la técnica GC-MS en modo SIM, pero con el espectro completo y Además ,el GC-QTOF-MS genera datos en masa exacta lo cual permite obtener una alta selectividad y sensibilidad utilizando ventanas de extracción del orden de 0.02-0.05Da. PERO, ¿Qué pasa cuando la Resolución y la Δ Masa no son suficientes? 2a Estrategia: GC-QTOF-MS/MS Page 14 El reto en GCMS : problemas analíticos complejos 2a Estrategia : El modo QTOF-MS puede : - Reducir el ruido al seleccionar y filtrar un Precursor, suministrando así mayor selectividad. - Confirmar la identidad de un compuesto a través de su espectro MS/MS de Alta Resolución. - Elucidación Estructural. Page 15 Elucidación estructural por MS/MS. C16H14O4 (Anillos + Enlaces Dobles = 10) (M – H)+ 269.0802 Estructuras candidatas m/z (experimental) Fórmula Error (ppm) Score –H 269.0802 C16H13O4 2.2 80.7 – C6H5 193.0494 C10H9O4 0.6 96.7 – CH=CH–C6H5 167.0334 C8H7O4 3.0 N/A – CH2=CH–C6H5 166.0259 C8H6O4 0.6 N/A 138.0310 C7H6O3 1.1 98.1 – CO 110.0359 C6H6O2 3.0 N/A – CH3 95.0127 C5H3O2 0.9 99.5 – CO Page 16 Formula Calculator: fórmulas consistentes con la masa exacta y fórmula del Ión padre C5H12O2PS3 Page 17 m/z = 230.9732 Aplicaciones 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. Page 18 Metabolic profiling of yeast sterols using the Agilent 7200 Series GC/Q-TOF system Metabolomics of Carbon Fixing Mutants of Cyanobacteria by GC/QTOF Metabolomics of Opiate-Induced Changes in Murine Brain by GC/QTOF Untargeted Metabolomic Analysis of UV Stress Response in C. reinhardtii by GC-QTOF Simultaneous analysis of tryptophan, kynurenines and amino acids using the GC/QTOF in Negative CI mode Accurate mass retention time locked flavor database by GC/Q-TOF Analysis of trace levels of sulfur compounds in coffee by the Agilent 7200 GC/Q-TOF system Olive oil characterization using Agilent GC/Q-TOF MS and Mass Profiler Professional software Rapid simultaneous screening of multiple pesticide residues in Food matrices Simultaneous targeted and non-targeted screening for pesticides in vegetables by GC/Q-TOF MS Analysis of biomarkers in crude oil using the Agilent 7200 GC/Q-TOF Characterization and classification of heroin from illicit heroin seizures by GC/Q-TOF Unknowns analysis of natural products using GC/Q-TOF and GC/IonTrap in EI and PCI modes with MS/MS Determination of odor compounds in surface water by solid phase micro-extraction and GC/Q-TOF The role of GC/QTOF in exposomics Food Testing and Flavors: Olive Oil Characterization UC Davis Olive Center & Stephan Baumann, Agilent Technologies • MPP for statistical processing of GC/Q-TOF data • MS library searching using GC/Q-TOF spectra • CI data provide accurate mass information for molecular ions Page 19 Olive Oil Characterization: Workflow Goals: - to create a model that could predict whether olive oil sample would pass or fail sensory test - to recognize statistically significant olive oil components that are present at distinct levels depending on whether they passed or failed sensory test 1. Olive oil samples had been subjected to sensory test and classified as passed or failed 2. GC/Q-TOF data then were acquired in both EI and PCI modes 3. Chromatographic deconvolution was performed with MassHunter Qual, and the data were exported as CEF files to perform statistical analysis using Mass Profiler Professional (MPP). 4. MPP was used for statistical evaluation of the data including construction of class prediction model 5. The model was able to correctly predict whether the sample would pass or fail the sensory test Page 20 Olive Oil Characterization: Data Filtering 442 unique compounds were distinguished by chromatographic deconvolution, most of which occur only once or twice and are filtered out by MPP. The table shows how many of these 442 compounds were actually found in each sample. Page 21 Olive Oil Characterization: Visualization of Data Clustering failed passed Principal Component Analysis (PCA) of MPP helps to visualize clustering of the data Page 22 Olive Oil Characterization: Fold Change Analysis Compounds accumulated in the samples that failed the sensory test. The Volcano Plot (on the right) shows fold-change for each entity on the x-axis and significance on the y-axis. Page 23 Olive Oil Characterization: Compound Identification 1. EI spectra were used to search NIST library to obtain tentative identification of the compounds 2. PCI data were used to obtain molecular formula for the compounds 3. Further MS/MS experiments allowed to generate ‘clean’ spectra in the presence of matrix interference and could possibly be used for structure elucidation Page 24 Olive Oil Characterization: Library Search Compound spectrum (accurate mass) Compound spectrum NIST library spectrum EI Commercial unit mass EI spectral libraries can be searched using accurate mass EI GC/Q-TOF data to identify compounds Page 25 Olive Oil Characterization: MS/MS Example 105 100 161 119 α-Cubebene, full scan C15H24 50 41 81 91 55 204 69 77 0 40 50 60 (replib) α-Cubebene α-Cubebene: MS/MS Precursor: 204 CE: 10 eV 70 80 133 147 175 189 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 C9H11 -3.58 ppm C12H17 5.11 ppm C8H9 -2.63 ppm C10H13 0.93 ppm Accurate masses of ion fragments are consistent with molecular formula Page 26 Olive Oil Characterization: Combining EI and PCI Data Tentative NIST ID Hexadecanoic acid Ethyl-octadecanoate Squalene α-Cubebene Unknown EI , M*+ Calculated Measured Mass error, ppm C16H32O2 256.2397 256.2385 4.68 C20H40O2 312.3023 312.3008 4.80 C30H50 410.3907 410.3904 0.73 C15H24 204.1873 204.1883 4.90 C14H26O2 226.1927 N/A N/A Formula Calculated 257.2475 313.3101 411.3985 205.1951 227.2006 PCI, (M+H)+ Measured Mass error, ppm 257.247 1.94 313.3091 3.19 411.3987 0.49 205.1945 2.92 227.1987 8.36 PCI spectral data provided accurate mass information for molecular ions of the accumulated compounds in olive oils that fail the sensory test, including the case where the EI spectrum showed no prominent molecular ion Page 27 Olive Oil Characterization: MPP Results • The model correctly predicted the pass or fail status of all samples, including those not used to construct the model. • The samples that were not used for building the prediction model are listed with the Training parameter set as ‘None’ Page 28 Photodegradation Products of Beer Page 29 Problem – identify degradation Products of beer • Completely untargeted (initially) study of beer photodegradation • Method highlights • 30 min extraction at 30 ˚C using manual SPME holder and conditioned 50/30 µm DVB/Carboxen/PDMS StableFlex SPME fiber (Supelco), no agitation • Desorption at 300 ˚C for 2 min in the SSL injector; 1:10 split • Agilent J&W column DB-5MS 30 m x 0.25 mm x 0.25 µm Page 30 Changes in the Chromatogram Appears following the exposure of the sample to direct sunlight. Peak height is dependent on the duration of exposure to the sun Molecular ion m/z=165.1120 C10H15NO Page 31 No exposure to direct sunlight 3 hours 6 hours Summary of MS/MS Experiments Accurate mass measurement of molecular ion and fragments 109 C6H7NO 81 7 O C10H14N N 95 122 C5H7N 136 C4H6N C6H8N C5H6N C6H6NO C4164 H5 100 150 200 250 300 mine, N-(2-furanylmethylene)-3-methyl- 350 C7H8N C9H14N C10H15NO C9H11N 400 109 C6H7NO 122 C7H8NO 136 C9H14N 148 C10H14N MS 81 C5 H 7 N 108 C6H6NO 78 C5 H 4 N Page 32 80 C5 H 6 N 55 C3 H 5 N 94 C6 H 8 N MS/MS 66 C4 H 4 N 53 C4 H 5 41 C3 H 5 133 C9H11N Summary of MS/MS Experiments Calculate possible empirical formulas 109 C6H7NO 81 7 O C10H14N N 95 122 C5H7N 136 C4H6N C6H8N C5H6N C6H6NO C4164 H5 100 150 200 250 300 mine, N-(2-furanylmethylene)-3-methyl- 350 C7H8N C9H14N C10H15NO C9H11N 400 109 C6H7NO 122 C7H8NO 136 C9H14N 148 C10H14N MS 81 C5 H 7 N 108 C6H6NO 78 C5 H 4 N Page 33 80 C5 H 6 N 55 C3 H 5 N 94 C6 H 8 N MS/MS 66 C4 H 4 N 53 C4 H 5 41 C3 H 5 133 C9H11N Summary of MS/MS Experiments MS/MS on fragments + accurate mass to find empirical formulas 109 C6H7NO 81 7 O C10H14N N 95 -OH 122 C5H7N 136 C4H6N C6H8N C5H6N C6H6NO C4164 H5 100 150 200 250 300 mine, N-(2-furanylmethylene)-3-methyl- 350 C7H8N C9H14N C9H11N C10H15NO 400 109 C6H7NO 122 C7H8NO -C5H8 136 C9H14N 148 C10H14N MS -CH3 80 C5 H 6 N -H2 78 C5 H 4 N Page 34 -CHN 53 C4 H 5 133 C9H11N MS/MS Summary of MS/MS Experiments MS/MS on other fragments 109 C6H7NO 81 7 O C10H14N N 95 122 C5H7N 136 C4H6N C6H8N C5H6N C6H6NO C4164 H5 100 150 200 250 300 mine, N-(2-furanylmethylene)-3-methyl- 350 C7H8N C9H14N C10H15NO C9H11N 400 109 C6H7NO 122 C7H8NO 136 C9H14N 148 C10H14N MS 81 C5 H 7 N 108 C6H6NO 78 C5 H 4 N Page 35 80 C5 H 6 N 55 C3 H 5 N 94 C6 H 8 N MS/MS 66 C4 H 4 N 53 C4 H 5 41 C3 H 5 133 C9H11N Resumen – Qué recordar • Los nuevos retos requieren en ocasiones nuevas herramientas/soluciones. • El GC Q-TOF ofrece la capacidad de solucionar problemas con nuevas estrategias. • La Alta Resolución (HR), Mejor Exactitud de masa (MA) y Alta Velocidad de barrido mejora los resultados analíticos. • Los espectros MS/MS con HR y MA hacen posible la Elucidación Estructural • Agilent ofrece el portfolio más amplio en herramientas GC/MS : SQ, IT, TQ, & Q-TOF Page 36 Novel Ion Mobility Technology for QTOF LC/MS April 23, 2014 37 IMS QTOF - Overview HD QTOF IMS Background Ion Mobility Basics Instrument & Software Overview Applications - Software tools Ω Lipids Carbohydrates ASMS 2013 Ion Mobility Abstracts Summary April 23, 2014 38 Aportación de los sistemas de Tiempo de Vuelo El TOF es un cronómetro que mide el tiempo que tardan los diferentes iones en llegar al detector desde que se disparan en el PULSER. Los iones más ligeros llegan antes y los más pesados, más tarde. Ese tiempo se contrasta con una calibración del equipo t <-> m/z y sabemos con exactitud la m/z del ión. Genéricamente se entiende por masa exacta cuando el error en la medida es menor de 5 ppm. Los sistemas basados en SQ/QQQ suelen mostrar un error de masa > 150ppm. Error en la medida = (Masa Medida - Masa Calculada) Masa Calculada 43 X 1.000.000 = ppm Aportación de los sistemas de Tiempo de Vuelo TOF TOF Adquisición de todo el espectro (Full Scan) Tiapride 0.8 ppm QTOF QTOF Adquisición de todo el espectro (Full Scan) Adquisición del espectro MS/MS: Tiapride 0.8 ppm New 6550 iFunnel QTOF 10X Sensitivity Gain Enables Applications Sensitivity • Dramatically improved quantitative capabilities • New Qual/Quan Workflows • Superior metabolite and protein detection • Non-targeted compound screening Comprehensive Performance Enhancements • Mass Resolution >40,000 • 50 spectra /sec MS and 33 spectra/sec MS/MS • 5 orders of linear dynamic range • <1 ppm MS mass accuracy; <2 ppm MS/MS • Unrivalled sensitivity 6550 iFunnel Q-TOF LC/MS System 2. Instrument and Software Overview QTOF Acquisition – MS and MS/MS Modes of Operation • MS Only – “TOF only” mode • MS/MS All Ions . MS & MS/MS info at the same time. • Data Dependent MS/MS Experiments • Precursor selection based on intensity of n-highest (with relative and absolute threshold) • Excluded and Preferred mass lists • Configurable charge-state selection preference • Data Directed (Targeted) MS/MS experiments • Import of target mass lists from Mass Profiler or Mass Profiler Professional software • Import of mass lists from other applications • Automatic dynamic creation of time segments Screening and identification workflow Agilent’s approach • Combination of UHPLC separation and accurate mass TOF technology • Effective data mining algorithms to FIND compounds in a sample • Optional software to COMPARE samples or sample sets to identify differences • AMRT Databases and MS/MS Library Search to easily IDENTIFY targeted compounds • Several algorithms to help IDENTIFYING unknown compounds (MFG, MSC) • User Interface to easily NAVIGATE RESULTS • Custom reporting to comprehensively REPORT results • Full AUTOMATION of data acquisition, processing and reporting TOF/ Q-TOF Analysis Automation Find Compounds OPTION: Differential Analysis ID via AMRT DBs ID via MSMS libraries MFG of Compounds w/ MSMS MSMS structural correlation Print custom report Screening and identification workflow MS/MS Structural Correlation (MSC) • Algorithm to correlate “proposed structures” with accurate mass MS/MS fragment ion spectrum. • Favor systematic bond dissociation approach over rule based fragmentation prediction approach. • Proposed structures can be selected directly or searched in a PCDL or via ChemSpider TOF/ Q-TOF Analysis Automation Molecular Feature Finding OPTION: Differential Analysis ID via AMRT DBs ID via MSMS libraries MFG of Compounds w/ MSMS MSMS structural correlation Print custom report IMS QTOF - Overview HD QTOF IMS Background Ion Mobility Basics Instrument & Software Overview Applications - Software tools Ω Lipids Carbohydrates ASMS 2013 Ion Mobility Abstracts Summary April 23, 2014 50 Ion Mobility – A Brief History… 2013 Agilent IMS QTOF Mass Spectrograph Aston & Thomson 1919 1969 Transport of Ions in Gases 1997 Applications to clusters & biomolecules 2006 Synapt Triwave G2 in 2009 G2S in 2011 Clemmer & Jarrold 1905 McDaniel & Ion mobility Mason theory Paul Langevin 1872 - 1946 April 23, 2014 51 Drift Ion Mobility for LC-MS Chromatography, Mass Resolution & now Ion Mobility Pacific Northwest Labs NIH Texas A&M Cross sectional areas Complex Samples Ion Mobility MS Shape and Charge Boston University Vanderbilt University Conformers 2013 ASMS Scientific Presentations: • Disease research • Proteomics, Metabolomics, Lipidomics • Natural Products • Fundamental studies Isomers April 23, 2014 52 Solving Analytical Problems PNNL Boston University Texas A&M Vanderbilt University NIH Agilent Better IM resolution • Enhance throughput, improve sensitivity and quantitation • For large scale -omics studies • Improving glycan analysis • Disease research - Entamoeba • Ion mobility fundamentals • Study of metallo-protein structures • Collisional cross section data (Ω) • Mapping specific chemical classes – natural products • Separation of androgenic steroids not amenable to LC & MS • Ω used to identify isobaric steroids • Characterization of trans membrane domains. • Preservation of fragile protein folding structures Higher IM sensitivity Resolve complex samples Direct measurement of Ω Preserve molecular structures April 23, 2014 53 IMS QTOF - Overview HD QTOF IMS Background Ion Mobility Basics Instrument & Software Overview Applications - Software tools Ω Lipids Carbohydrates ASMS 2013 Ion Mobility Abstracts Summary April 23, 2014 54 Mass Accuracy Does Not Equal Compound Identification: Seven Golden Rules - Oliver Fiehn Empirical formula is not unique above mass m/z 100 (searching PubChem) Number of Database Entries (Assuming Zero Mass Error) Number of formula: ChemSpider mass search at m/z 400.3787 • 1 ppm mass error → 1742 entries • 0 ppm mass error → 340 entries Need additional physical information to identify • MS/MS spectra • Physical properties such as: • Chromatographic retention time • Ion mobility cross section (size, charge) April 23, 2014 55 What Does Ion Mobility Bring to Mass Spectrometry? Separation • Ion Mobility resolves of many isomeric analytes otherwise impossible to determine by mass spectrometry alone. Improves Detection Limits • Ion Mobility dramatically reduces interference from other analytes and background. Confirmation • Collision Cross Section data gives additional information supporting compound characterization and identification. April 23, 2014 56 Resolving Stereoisomers α-glucose β-glucose Ion mobility enables separation of glucose stereoisomers Resolving Structural Sugar Isomers C18H32O16 Raffinose Melezitose Resolving two isobaric trisaccharides Resolving Different type of Isomers Melezitose α-glucose Raffinose b-glucose Resolution Is Important! Chromatographic ~seconds Ion Mobility ~60 milli-seconds Mass ~ 100 m seconds April 23, 2014 60 It’s All About Separation Chromatography ~seconds Ion Mobility ~60 milli-seconds Mass ~100 m seconds April 23, 2014 61 Separation of Isobaric Pesticides Theoretical Plot Aldicarb-sulfone (C7H14N2O4S) [M+Na]+ = 245.056649 Acetamiprid (C10H11ClN4) [M+Na]+ = 245.056445 D mass is 0.2 mDa requires ~2,000,000 resolution 4 x10 IMS Drift Separation 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 Acetamiprid x10 4 +IMS DriftSpec (m/z: 245.013827-245.177238) (rt: 0.026-1.987 min) Aldicarbsulfone_A… * 18.297 5.5 19.441 5 4.5 4 3.5 * 19.441 3 17 17.5 18 18.5 19 19.5 20 20.5 21 21.5 2.5 2 18.297 6 x10 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 1.5 1 Aldicarb-sulfone 0.5 0 17 17 17.5 19 19 19.5 19.520 2020.5 20.5 21 17.5 1818 18.5 18.5 vs. Counts Acquisition Time (min) 21.5 21 21.5 Drift Time (ms) 17 17.5 18 18.5 19 19.5 20 20.5 21 21.5 Drift Time (ms) April 23, 2014 62 IMS QTOF - Overview UHPLC HD QTOF IMS Background Ion Mobility Basics Instrument & Software Overview Applications - ASMS 2013 Ion Mobility Abstracts Software tools Ω Lipids Carbohydrates Summary April 23, 2014 63 Basic Operational Principle of Ion Mobility For Conventional DC Uniform Field IMS Ion Mobility Cell VH 𝑣=𝐾𝐸 ∝ 𝑒𝐸 𝑃 𝑇Ω VL Analyte Ions Detector Gating Optics Electric Field Stacked ring ion guide gives linear field t0 tdrift April 23, 2014 65 The Agilent Ion Mobility System • Nitrogen buffer gas • Funnels drive sensitivity • Uniform Field Drift Tube allows direct determination of Ω • Longer drift tube drives resolution approaching theoretical limit • Fragmentation after IMS means parents and fragments have common drift times enables an all ion experiment (with the precursor ions separated by drift times). Mobility Resolution ∝ 𝐿𝐸𝑍𝑒 April 23, 2014 66 The Agilent Ion Mobility System • Nitrogen buffer gas • Funnels drive sensitivity • Uniform Field Drift Tube allows direct determination of Ω • Longer drift tube drives resolution approaching theoretical limit • Fragmentation after IMS means parents and fragments have common drift times enables an all ion experiment (with the precursor ions separated by drift times). Mobility Resolution ∝ 𝐿𝐸𝑍𝑒 April 23, 2014 67 The Agilent Ion Mobility System 𝑣=𝐾𝐸 ∝ 𝑒𝐸 𝑃 𝑇Ω Electric Field • Nitrogen buffer gas • Funnels drive sensitivity • Uniform Field Drift Tube allows direct determination of Ω • Longer drift tube drives resolution approaching theoretical limit • Fragmentation after IMS means parents and fragments have common drift times enables an all ion experiment (with the precursor ions separated by drift times). Mobility Resolution ∝ 𝐿𝐸𝑍𝑒 April 23, 2014 68 Front-end Instrumentation Ion funnel technology drives sensitivity gain April 23, 2014 69 New Agilent MassHunter IM-MS Browser Visualizing Ion Mobility LC/MS Data • • • Frame Navigation tool Frame viewer Heat map IMS/MS Frame Selection Software Solutions for Improving your Productivity Chromatogram View IM Drift TIme MS 1221.9906 1521.9711 922.0098 1821.9521 2121.9332 2421.9138 622.0294 2721.8941 322.0481 April 23, 2014 70 New Agilent MassHunter IM-MS Browser Visualizing Ion Mobility LC/MS Data IMS/MS Frame Selection Software Solutions for Improving your Productivity Chromatogram View IM Drift TIme MS April 23, 2014 71 Ion Mobility Resolution. How much? Resolution = 84! 536.5960 536.9300 Zipper peptide 537.2644 April 23, 2014 72 IMS QTOF - Overview HD QTOF IMS Background Ion Mobility Basics Instrument & Software Overview Applications - Software tools Ω Lipids Carbohydrates ASMS 2013 Ion Mobility Abstracts Summary April 23, 2014 74 Published Collisional Cross Sections Analyte Mass [Da] CCS Literature [Å2] Colchicine1 399.4 196.2 196.2 ± 0.54 Å2 Odansetron2 293.4 172.7 173.8 ± 0.36 Å2 Threonine 119.1 130.1 ±0.45 Å2 140.9 ±0.5 Å2 ±0.6 Å2 <2% ±0.6 Å2 <2% ±0.5 Å2 <2% Phenylalanine Tyrosine Fructose Sorbitol 165.2 181.2 180.2 182.2 CCS This Work [Å2] 148.4 143.4 142.7 % Deviation from Lit. New Analyte Ion CCS IMS QTOF [Å2] 0% 5α-dihydrotestosterone (M+H)+ 181.6 ± 0. 0.6% 5α-dihydrotestosterone (M+Na)+ 201.5±1.0 5β-dihydrotestosterone (M+H)+ 179.8±0.8 5β-dihydrotestosterone (M+Na)+ 199.5±0.8 androsterone (M+Na)+ 200.0±0.7 etiocholanolone (M+Na)+ 196.3±1.1 5-androstenediol (M+Na)+ 174.0±1.5 epiandrosterone (M+Na)+ 197.0±0.8 <2% <2% Collaboration with NIH Excellent agreement between published and measured cross sections 1. Anal.Chem. 2012;84:1026. 2. Int. J. MS. 2010;298:78 3. JASMS.2007;18:1163 April 23, 2014 75 Reveal Greater Detail All Ions: Ondansetron, Colchicine, Reserpine IM Reserpine Drift TIme Colchicine Ondansetron MS 400.1749 294.1597 609.2800 40 All Ion MS using 20 Volt Fragmentation Energy drift time (ms) Reserpine Colchicine 12 Ondansetron 100 m/z 600 Collective drift spectrum includes all ions generated from 3 compounds 12 drift time (ms) 40 Drift Time Separated Fragmentation Ondansetron [M+H]+ 100 m/z Simultaneous separation and fragmentation for ondansetron 600 12 drift time (ms) 40 Drift Time Separated Fragmentation Colchicine [M+H]+ 100 m/z Simultaneous separation and fragmentation for colchicine 600 12 drift time (ms) 40 Drift Time Separated Fragmentation Reserpine [M+H]+ 100 m/z Simultaneous separation and fragmentation for reserpine 600 Collision Cross Section Benchmark Vanderbilt University TAA-5 N-(CH2CH2CH2CH2CH3)4 • Tetraalkylammonium salts (TAA) • Proposed as an “ideal” ion mobility standard • Wide CCS range (TAA-4 to TAA-18; 100 to 400 Å2) • TAA salts do not form clusters • Literature CCS values exist N2 drift gas TAA-16 Mobility Drift Time (ms) 50 TAA-18 +1 ions TAA-12 TAA-10 40 +2 ions TAA-8 TAA-7 TAA-6 TAA-5 TAA-4 30 +3 ions 20 10 0 0 200 400 600 800 1000 1200 Mass-to-Charge (m/z) April 23, 2014 83 Tetraalkylammonium Salts CCS Values Compared to Literature Analyte Measured Cross-Section [Å2] Literature Cross-Section [Å2] TAA-4 TAA-5 TAA-6 TAA-7 TAA-8 TAA-10 TAA-12 TAA-16 TAA-18 166.61 189.21 212.71 236.34 257.19 294.53 323.62 362.03 381.58 166.00 190.10 214.00 236.80 258.30 ± 0.5% ± 0.6% ± 0.3% ± 0.2% ± 0.1% ± 0.1% ± 0.2% ± 0.2% ± 0.3% Relative Standard Deviation [%] ± 0.3% ± 0.1% ± 0.3% ± 0.2% ± 0.4% 0.56 0.28 0.41 0.01 0.24 • High experimental precision (< 0.5% relative deviation) • Agreement with literature (most < 0.5% deviation) April 23, 2014 84 Conformational Space Occupancy of Biomolecules: Class Association by Trend Curves Size Shape Drift tube IMS allows Charge Class association Using a Synapt does NOT allow compound class association Conformational Space Occupancy of Biomolecules Hypothetical Ordering of Biomolecular Classes lipids Collision Cross Section (Å2) peptides carbohydrates oligonucleotides Mass (Da) April 23, 2014 86 Lipid nomenclature Trivial nomenclature Palmitoleic acid Trivial names (or common names) are non-systematic historical names. Systematic nomenclature (9Z)-octadecenoic acid Systematic names (or IUPAC names) derive from the standard IUPAC Rules for the Nomenclature of Organic Chemistry, published in 1979,[1] along with a recommendation published specifically for lipids in 1977.[2] Counting begins from the carboxylic acid end. Double bonds are labelled with cis-trans isomerism/trans- notation or E-/Z- notation, where appropriate. Δx nomenclature In Δx (or delta-x) nomenclature, each double bond is indicated by Δx, where the cis,cis-Δ9,Δ12 double bond is located on the xth carbon–carbon bond, counting from the octadecadienoic acid carboxylic acid end. Each double bond is preceded by a cis- or trans- prefix, indicating the conformation of the molecule around the bond. n−x nomenclature n−3 n−x (n minus x; also ω−x or omega-x) nomenclature both provides names for individual compounds and classifies them by their likely biosynthetic properties in animals. A double bond is located on the xth carbon–carbon bond, counting from the terminal methyl carbon (designated as n or ω) toward the carbonyl carbon. Lipid numbers 18:3; or 18:3, n-6; or 18:3, cis,cis,cisΔ9,Δ12,Δ15 Lipid numbers take the form C:D, where C is the number of carbon atoms in the fatty acid and D is the number of double bonds in the fatty acid. This notation can be ambiguous, as some different fatty acids can have the same numbers. Source: Wikipedia April 23, 2014 87 Lipid classes Main classes Examples of Glycerophospholipids Fatty acids Glycerolipids Glycerophospholipids Sphingolipids Sterol lipids Prenol lipids Saccharolipids Polyketides Source: Wikipedia April 23, 2014 88 Cerebrosides Cerebrosides are glycosphingolipids called monoglycosylceramides which are important components in animal muscle and nerve cell membranes. April 23, 2014 89 Diseases Based on Sphingolipids Disease Deficient enzyme Accumulated products Niemann-Pick disease Sphingomyelinase Sphingomyelin in brain and RBCs Fabry disease α-galactosidase A Glycolipids in brain, heart, kidney Krabbe disease Galactocerebrosidase Glycolipids in oligodendrocytes Gaucher disease Glucocerebrosidase Glucocerebrosides in RBCs, liver and spleen Tay-Sachs disease Hexosaminidase A GM2 gangliosides in neurons Metachromatic leukodystrophy Arylsulfatase A or prosaposin Sulfatide compounds in neural tissue Source: Wikipedia April 23, 2014 90 Lipid Analysis 70 +1 ions Ion Mobility Drift Time (ms) 60 Tetraalkylammonium Salts 50 TAA-16 +2 ions TAA-12 +3 ions TAA-10 40 +4 ions TAA-8 TAA-7 TAA-6 TAA-5 TAA-4 TAA-3 30 20 10 L-α-phosphotidylethanolamines (PE) 0 0 500 1000 1500 2000 Mass (Da) April 23, 2014 91 Lipid Analysis 70 PE oligomers (+1) Ion Mobility Drift Time (ms) 60 50 PE oligomers (+2) PE 41:N PE 39:N PE 37:N PE 35:N PE 33:N 40 PE 64:N PE 62:N PE 60:N 30 PE 23:N PE 21:N PE 19:N 20 10 L-α-phosphotidylethanolamines (PE) 0 0 500 1000 1500 2000 Mass (Da) April 23, 2014 92 Lipid Analysis 70 PE oligomers (+1) Ion Mobility Drift Time (ms) 60 50 PE oligomers (+2) PE 41:N PE 39:N PE 37:N PE 35:N PE 33:N 40 30 PE 23:N PE 21:N PE 19:N PE 64:N PE 62:N PE 60:N PE 33:(4-2) PE 35:(6-2) PE 37:(8-4) PE 39:(10-6) 20 +Na 740 10 750 760 +K 770 780 790 800 810 820 Mass (Da) 0 0 500 1000 1500 2000 Mass (Da) April 23, 2014 93 Carbohydrates; Great complexity by linkage Source: Blixt et al., PNAS, 2004 Current dominant strategies: MS(n) or Library searches April 23, 2014 94 Carbohydrates Analysis 60 +1 ions 50 Ion Mobility Drift Time (ms) Tetraalkylammonium Salts 40 +2 ions +3 ions +4 ions 30 20 maltodextrins (1 to 8) cyclodextrins (α, β, γ) human milk oligosaccharides (7) 10 0 0 500 1000 1500 2000 Mass (Da) April 23, 2014 95 Carbohydrates IM-MS Mixture of Lacto-N-difucohexaose I & II Lacto-N-difucohexaose I Ion Mobility Drift Time (ms) 60 Fuc Fuc Gal 50 GlcNAc Gal Glc 1018 1020 1022 40 Lacto-N-difucohexaose II Fuc 1024 1026 1028 Mass (Da) Fuc 30 Gal GlcNAc Gal Glc 35 36 37 20 38 39 Lacto-N40 41 42 difucohexaose I Drift Time (ms) Lacto-Ndifucohexaose II 10 35 36 37 38 39 40 41 42 Drift Time (ms) 0 0 500 1000 1500 2000 Mass (Da) April 23, 2014 96 Summary • Next generation of IMS QTOF Technology • Added dimension of separation based on size, charge and molecular conformation • Resolve and characterize the complex samples - Increased peak capacity • Direct determination collision cross sections • Preservation of molecular structures via lower thermal excitation April 23, 2014 97 MUCHAS GRACIAS Jaume C. Morales Especialista de Producto jaume_morales@agilent.com AGILENT TECHNOLOGIES 901.11.68.90 LY BBEETTTTEERR MMSS SSOOL LUUTTI OI ONNSS CCLLEEAARRLY Questions? Mass Spectrometry Technology Products Solutions NEW NEW NEW