TECHNICAL PUBLICATION NO. 85-5 A GUIDE TO SCS RUNOFF
Transcription
TECHNICAL PUBLICATION NO. 85-5 A GUIDE TO SCS RUNOFF
TECHNICAL PUBLICATION NO. 85-5 A GUIDE TO SCS RUNOFF PROCEDURES BY Thirasak Suphunvorranop Engineer Department of Water Resources St. Johns River Water Management District P. 0. Box 1429 Palatka, Florida 32178-1429 July 1985 Project Number 15/20 200 03 TABLE OF CONTENTS PAGE LIST OF FIGURES iii LIST OF TABLES iv LIST OF SYMBOLS V ABSTRACT 1 I. II. III. INTRODUCTION 2 A. Background 2 B. Scope of Report 2 DISCUSSION OF SCS RUNOFF EQUATION 4 A. Development 4 B. Limitations 5 C. Summary 6 RUNOFF CURVE NUMBER 8 A. Hydrologic Soil Group Classification 8 B. Cover Complex Classification 8 C. Estimation of CN 9 1. Urban CN 9 2. Flatwoods CN 16 3. Wetlands CN 18 D. Antecedent Soil Moisture Condition 19 E. Sensitivity of CN 21 F. Summary 25 IV. V. VI. VII. VIII. IX. DISCUSSION OF SCS UNIT HYDROGRAPH METHOD 26 A. Development 26 B. Convolution 31 C. Limitations 37 D. Summary 39 TIME OF CONCENTRATION 40 A. Estimation of tVx 40 1. SCS Lag Method 40 2. SCS Velocity Method 41 B. Sensitivity of t 45 C. Summary 47 PEAK RATE FACTOR 49 A. Development 49 B. Estimation of K 1 50 C. Sensitivity of K 1 54 D. Summary 54 SUMMARY 58 REFERENCES 60 APPENDIX A - SCS Rainfall Distributions A-l APPENDIX B - Hydrologic Soil Groups B-l APPENDIX C - Descriptions of Selected Land Use C-l APPENDIX D - Applications of SCS D-l Runoff Procedures LIST OF FIGURES Figure Page 1. Relative Sensitivity of RQ to CN 22 2. Relative Sensitivity of R 23 3. Proportion of Error Due to t 24 4. SCS Dimensionless Curvilinear and Triangular 28 to CN Unit Hydrographs 5. Triangular Unit Hydrograph for Example 1 33 6. Runoff Hydrographs of Example 1 Using 38 Curvilinear and Triangular Unit Hydrographs 7. Average Velocities for Estimating Travel Time 42 for Overland Flow 8. Sensitivity of q to t p c 46 9. Sensitivity of Triangular Unit Hydrograph to K 1 55 Sensitivity of Runoff Hydrograph to K 1 56 10. iii LIST OF TABLES Table 1. Page Runoff Curve Numbers for Hydrologic 10 Soil-Cover Complexes (AMC II, I = 0.2S) 2. Approximate CN Values for Pine Flatwoods and 18 Wetlands 3. Classification of Antecedent Moisture Conditions 19 4. Runoff Curve Numbers for AMC I and AMC III 20 5. Ratios for SCS Dimensionless Curvilinear Unit 29 Hydrograph 6. Computation of Incremental Runoff for Example 1 34 7. Computation of Runoff Hydrograph for Example 1 36 8. Manning's 'n1 Values for Overland Flow 44 9. Adjustment Factors Where Ponding and Swampy 52 Areas Occur at the Design Point 10. Adjustment Factors Where Ponding and Swampy 53 Areas Are Spread Throughout the Watershed or Occur in Central Parts of the Watershed 11. Adjustment Factors Where Ponding and Swampy Areas Are Located Only in Upper Reaches of the Watershed IV 53 LIST OF SYMBOLS Drainage area, square miles Effective impervious area, square miles A ei A . = Noneffective impervious area, square miles A = Pervious area, square miles A.. = Total impervious area, square miles AMC = Antecedent moisture condition CN = SCS runoff curve number D = Duration of unit excess rainfall, hours DWT = Depth to water table, feet EIA = Effective impervious area F = Depth of rainfall infiltrated after runoff begins, inches I = Initial abstraction, inches K = Hydrograph shape factor K1 = Peak rate factor L = Watershed time lag, hours n = Manning's roughness coefficient P = Total rainfall, inches P1 = Total rainfall adjusted for the pervious area, inches P24 = 2-year 24-hour rainfall depth, inches Q = Direct runoff, inches Q . = Runoff contributed from the effective impervious area, inches Q = Runoff contributed from the pervious area, inches v q = Peak discharge, cubic feet per second RO = Proportional change in Q per unit change in CN R = Proportional change in q S = Watershed storage, inches s = Slope of energy gradient, feet/foot s = Overland flow slope, feet/foot t, = Time base of unit hydrograph, hours t = Time of concentration, hours t = Overland flow travel time, hours t = Time to peak of unit hydrograph, hours t = Recession time of unit hydrograph, hours TIA = Total impervious area V = Volume of direct runoff, cubic feet x = Overland flow length, feet x per unit change in CN = Hydraulic length of watershed, feet iV Y = Average watershed land slope, percent VI ABSTRACT This report contains: (1) discussions of the SCS runoff pro- cedures, including the curve number and the unit hydrograph methods; (2) methods of estimating runoff curve numbers (CN) , the time of concentration (tc), and a peak rate factor (K1) for different hydrologic conditions; (3) a method of constructing a triangular unit hydrograph for a peak rate factor; and (4) example problems illustrating the effects of methods used in estimating CN, tO , and K 1 on runoff hydrographs. In estimating CN for urban basins, the effective impervious area (EIA) method should be used. The Agricultural Research Service (ARS) method is recommended for basins where soil storage is affected by water table. The SCS velocity method should be used in estimating the basin tC . K 1 can be determined from the proportion of area under the rising limb of the time-area curve or by using the adjustment factor for the swampy and ponding areas. INTBQDUCTIQH A. Background The Soil Conservation Service (SCS) runoff procedures, consisting of the curve number (CN) method and the unit hydrograph method, are commonly used by hydrologists and engineers for hydrologic analyses and designs. These runoft procedures are often recommended by federal, state, and local government agencies, including all of the water management districts in Florida, for use in evaluating the effects of land use changes on runoff volumes and peak discharges. B. ScQpe.gf.Report The first objective of this report is to provide a better understanding of the SCS runoff procedures. The second ob- jective is to develop practical guidelines for estimating soil storage and selecting a peak rate factor for different hydrologic conditions. Specific tasks involved in this report are: (1) Detailed discussions of the SCS runoff procedures. (2) Discussion of techniques for estimating CN under different hydrologic conditions. (3) Derivation of equations for defining the shape of a triangular unit hydrograph for a given peak rate factor. (4) Development of a practical guideline for estimating the peak rate factor for swampy and depression areas. (5) Example problems on applications of the SCS runoff procedures. DISCU§SIQH_QF.THE.SCS_RUNQFF_EQUATIQH In the early 1950 's, the SCS developed a method for estimating volume of direct runoft from storm rainfall and evaluating the effects of land use and treatment changes on volume of direct runoff. The method, which is often referred to as the curve num- ber method, was empirically developed from small agricultural watersheds. A. Development In deriving the SCS runoft equation, the ratio of amount of rainfall infiltrated after runoft begins (F) to watershed storage (S) was assumed to be equal to the ratio of actual direct runoff to effective rainfall (total rainfall minus initial abstraction) . The assumed relationship in mathematical form is: where F = accumulated infiltration, inches S = watershed storage, inches Q = actual direct runoff, inches P = total rainfall, inches I = initial abstraction, inches The amount of rainfall infiltrated after runoff begins can be expressed as: F = (P-I) - Q (2) By substituting Equation (2) into Equation (1) and solving Q in terms of P, I, and S, Equation (1) becomes: / vt -r \ ^> The initial abstraction defined by the SCS mainly consists of interception, depression storage, and infiltration occurring prior to runoff. To eliminate the necessity of estimating both parameters I and S in Equation (3), the relation between I and S was developed by analyzing rainfall-runoff data for many small watersheds. I The empirical relationship is: = 0.2S (4) Substituting Equation (4) into Equation (3) yields: n Q _ - (P-0.2S)2 P+0.8S .... (5) which is the rainfall-runoff equation used by the SCS for estimating depth of direct runoff from storm rainfall. equation has one variable P and one parameter S. The S is re- lated to CN by: Q S _ ~ 1000 in ^F "10 ((t^ 6) CN is a function of hydrologic soil group, land use, land treatment and hydrologic condition. It is dimensionless and has values ranging from 0 to 100. B. Limitations The limitations related to the SCS runoff equation are as follows: 1. Since daily rainfall data were used in the development of the equation, the time distribution and duration of storms were not considered. If all other factors are constant, all storms having the same rainfall magnitude but different duration or intensity will produce equal amount of direct runoff volume. In fact, rainfall in- tensity does have an effect on the hydrologic response of the watershed. 2. The equation tends to overpredict runoff volume for a discontinuous storm, because it does not account for the recovery of soil storage caused by infiltration during periods of no rain. 3. The CN procedure does not work well in areas where large proportion of flow is subsurface, rather than direct runoff (Rallison and Miller, 1983). 4. Since the SCS curve numbers were developed from annual maximum one-day runoff data, the CN procedure is less accurate when dealing with small runoff events. 5. The equation predicts that infiltration rate will approach zero for storms with long duration instead of a constant terminal infiltration rate (Hjelmfelt, 1980). Summary 1. The SCS runoff equation is widely used in estimating direct runoff because of its simplicity, flexibility, and versatility. The only input parameter needed is CN and the hydrologic data used to estimate CN are normally available in most ungaged watersheds. In addition, the equation can be applied to a wide range of watershed conditions. Since CN is the only parameter required, the accuracy of runoff prediction is entirely dependent on the accuracy of CN. Aron and Lakatos (1976) suggested that the assumption of I = 0.2S is in general too large. According to McCuen (1983), this assumption is not critical to design accuracy. Although further refinement of I is possible, it is not recommended because under typical field conditions very little is known of the magnitudes of interception, infiltration, and surface storage (Rallison and Miller, 1979) . To avoid using different rainfall distributions for the same region, the synthetic rainfall distributions developed by the SCS are usually used in practical applications (See Appendix A). RUNQFF_CURYE_N.UMBEBS Runoff Curve Number (CN) is a parameter used in estimating available soil moisture storage prior to a storm event. determined based on the following factors: It is hydrologic soil group, land use, land treatment, and hydrologic condition. A. Hv_drQlQgic_Soil_GEOue_Class_i£ication Soils are classified into four hydrologic soil groups (A, B, C, and D) according to their minimum infiltration rate, which is obtained for a bare soil after prolonged wetting. The definitions of the four hydrologic soil groups and a list of soil names associated with their hydrologic classifications are given in Appendix B. B. CeyeE_£Qffip.lex_eiassific§tiQn Determination of cover complex classification depends on three factors: condition. land use, treatment, and hydrologic Land use is watershed cover; it includes all agricultural and nonagricultural lands. Land treatment refers mainly to mechanical practices (e.g., contouring or terracing) and management practices (e.g., grazing control, crop rotation or conservation tillage). The hydrologic con- dition reflects the level of land treatment; it is divided into three classes: poor, fair, and good. A brief descrip- tion of the selected land uses are given in Appendix C. C. E According to Mockus (1964), to the extent possible, curve numbers (CN) were developed from gaged watershed data where soils, crop covers, and hydrologic conditions were known. The watershed data were interpolated and extrapolated to determine the missing CN values. Estimates of CN values for the selected agricultural, suburban, and urban land uses are given in Table 1. By knowing a hydrologic soil-cover complex condition, CN can be estimated from Table 1. 1. U£ban_CN. A common method of estimating CN for an urbanized basin is to compute the weighted average of CN's for the total impervious area (TIA/A..) and pervious area (A ). Another method is to divide the total impervious area into effective and noneffective impervious areas. The effective impervious area (EIA/A .) comprises those impervious surfaces that are hydraulically connected to the drainage system (e.g., streets with curb and gutter and paved parking lots that drain onto streets). noneffective impervious area (A The .) consists of those impervious surfaces that drain to pervious surface such as a roof that drains onto a lawn. The second method assumes that rain falling on noneffective impervious area is instantaneously the pervious area. and uniformly distributed over This volume is then added to rain falling on the pervious area prior to computation of Table 1.—Runoff Curve Numbers for Hydrologic Soil Cover Complexes (AMC II, I = 0.2S) (SCSr 1983) Curve Numbers for Land Use Description HEdr_QlQgic_so_il_gr.pup A B C D (Vegetation Established) Lawns, open spaces, parks, golf courses, cemeteries, etc. good condition: grass cover on 75% or more of the area fair condition: grass cover on 50% to 75% of the area poor condition: grass cover on 50% or less of the area 39 49 68 61 69 79 74 79 86 80 84 89 Paved parking lots, roofs, driveways, etc. 98 98 98 98 Streets and roads: paved with curbs and storm sewers gravel dirt paved with open ditches 98 76 72 83 98 85 82 89 98 89 87 92 98 91 89 93 85 72 89 81 92 88 94 91 95 93 65 77 85 90 92 38 30 25 20 12 61 57 54 51 46 75 72 70 68 65 83 81 80 79 77 87 86 85 84 82 77 86 91 94 2/ -' Commercial and business areas Industrial districts Row houses, town houses, and residential with lot sizes 1/8 acre or less Residential Average lot size 1/4 acre 1/3 acre 1/2 acre 1 acre 2 acre DEVELQPaE JJgBAN^AREAS^ (No Vegetation Established) Newly graded area or bare soil 10 Table 1.—Continued (AMC II, I = 0.2S) Land Use —Coyer. Treatment or Practice Hydrologic 7 Condition^4/ Curve Numbers for Hydrologic Soil Group A B C D /EURALJjfiilB Fallow Row crops poor good 11 16 74 86 Conservation tillage Conservation tillage Straight row Straight row Conservation tillage Conservation tillage Contoured Contoured Contoured + conservation tillage poor good poor good poor good 72 67 71 64 70 65 81 78 80 poor good poor good 69 64 Straight row Contoured + terraces Contoured + terraces Contoured + terraces + conservation tillage Small grain Straight row Straight row Conservation tillage Conservation tillage Contoured Contoured Contoured + conservation tillage Contoured + terraces Contoured + terraces Contoured + terraces + conservation tillage Close-seeded Straight row Straight row Legumes or 5 Rotation Meadow / Contoured Contoured Contoured & terraces Contoured & terraces 11 91 90 88 94 93 90 75 79 75 88 85 87 82 84 82 91 89 90 85 88 86 66 62 78 74 74 71 83 81 80 78 87 85 82 81 poor good 65 61 73 70 79 77 81 80 poor good poor good 65 63 64 60 poor 63 61 76 75 75 72 74 73 84 83 83 80 82 81 88 87 86 84 85 84 good 85 83 poor good poor good 62 60 61 59 73 72 72 70 81 80 79 78 84 83 82 81 poor good 60 58 71 69 78 81 77 80 poor good poor good poor good 66 58 64 55 63 51 77 72 75 69 73 67 85 81 83 78 80 76 89 85 85 83 83 80 Table 1.—Continued (AMC II, I = 0.2S) Land Use Cover. Treatment or Practice Pasture or Range No mechanical treatment No mechanical treatment No mechanical treatment Contoured Contoured Hydrologic Condition^ poor fair good poor fair Contoured good Meadow — Curve Numbers for Hydrologic Soil Group A B C D 68 49 39 47 25 6 30 79 69 61 67 59 35 58 86 79 74 81 75 70 71 89 84 80 88 83 79 78 Fores tland—grass or orchards— evergreen or deciduous poor fair good 55 44 32 73 Brush poor good 48 20 Woods poor fair good —- Farmsteads 12 82 76 72 86 82 79 67 48 77 65 83 73 45 36 25 66 60 55 77 73 70 83 79 77 59 74 82 86 65 58 Table 1.—-Continued (AMC II, I = 0.2S) Land Use CQV.gr. Treatment or Practice Hydrologic Condition2/ Curve Numbers for Hydrologic Soil Group A B C D Herbaceous poor fair good 79 71 61 86 80 74 Oak-Aspen poor fair good 65 47 30 74 57 41 Juniper-grass poor fair good 72 58 41 83 73 61 Sage-grass poor fair good 67 50 35 80 63 48 13 92 89 84 i/ For land uses with impervious areas, curve numbers are computed assuming that 100% of runoff from impervious areas is directly connected to the drainage system. Pervious areas (lawn) are considered to be equivalent to lawns in good condition and the impervious areas have a CN of 98. 2/ Includes paved streets. 3/ Use for the design of temporary measures during grading and construction. 4/ For conservation tillage poor hydrologic condition, 5 to 20 percent of the surface is covered with residue (less than 750 #/acre row crops or 300 #/acre small grain). For conservation tillage good hydrologic condition, more than 20 percent of the surface is covered with residue (greater than 750 #/acre row crops or 300 #/acre small grain). 5_/ Close-drilled or broadcast. 6/ Poor hydrologic condition has less than 25 percent ground cover density. Fair hydrologic condition has between 25 and 50 percent ground cover density. Good hydrologic condition has more than 50 percent ground cover density. If Poor hydrologic condition has less than 30 percent ground cover density. Fair hydrologic condition has between 30 and 70 percent ground cover density. Good hydrologic condition has more than 70 percent ground cover density. 14 runoff from the pervious area. The steps involved in calculating the total runoff are given below: Step 1. Compute CN and S for the pervious area Step 2. Adjust rain for the pervious area such that: P- Step 3. = Compute runoff from the pervious area: 0 y perv Step 4 . <l+Anei/Vrv)(P> = (P'-0.2S)2( P'+0.8S ^ A /. x; Compute runoff from the effective impervious area: Q ei " {P)(Aei/A) Step 5. Compute total runoff: 0 v = u0 Q. perv +vei Miller (1979) studied the rainfall-runoff characteristics of four urbanized basins in south Florida. His study indicated: (1) The EIA is an important physical feature in urban basins, and is responsible for runoff from small and medium rainfall events. It produces a linear relation between rainfall and runoff. (2) There is a breakpoint rainfall, which varies from 1 to 2 inches. When this rainfall is exceeded, runoff will be contributed from the basin area outside the EIA. 15 (3) A nonlinear relation exists when runoff is produced from the area outside the EIA. Alley and Veenhuis (1983) concluded that considerable overestimations of runoff volumes and peak flows could be incurred in rainfall-runoff modeling, if TIA rather than EIA is used as a model input. Simulation experi- ments also show that the TIA method produces higher runoff volume and peak flow for larger rainfall events. However, the TIA method gives lower runoff volume for smaller rainfall events simply because most of runoff is contributed from the EIA. In the TR-20 computer model, the basin CN is calculated based on TIA. To obtain more realistic estimates of runoff volume and peak flow, the basin CN can be adjusted as follows: Step 1. Compute total runoff using the steps given earlier. Step 2. Compute the equivalent S from the following equation (Hope and Schulze, 1981) : S = 5[P+2Q-(4Q2+5PQ)°'5] Step 3. Compute the equivalent CN from the following equation: 2. Flatw,QQds_CN. The CN values for the flatwoods are greatly affected by the water table and antecedent moisture conditions. 16 During wet periods, the water table is near ground surface and the flatwoods are often submerged. The flatwoods can become very dry during dry periods when water table normally drops to 3-5 feet below the surface. Estimates of CN values for the pine flatwoods are given in Table 2. Another way of estimating watershed storage or CN for the flatwoods is to relate watershed storage with water table. Capece (1984) conducted a study on estimation of runoff volumes from flat, high-water table watersheds in south Florida. Among the seven methods investigated, he concluded that the ARS (Agricultural Research Service) method gives the best estimates of runoff volume. This method was developed from the absorption curve of sandy soils in the Taylor Creek area (Speir et.al., 1960). The relationship between watershed storage and water table is given by the following equations: S = 0.60(DWT) , 0.0<DWT<0.5 (7a) S = 0.30+1.00(DWT-0.5) , 0.5<DWT<1.0 (7b) S = 0.80+1.35(DWT-1.0) , 1.0<DWT<2.0 (7c) S = 2.15+1.55(DWT-2.0) , 2.0<DWT<3.0 (7d) where S = watershed storage, inches DWT = depth to water table, feet. The ARS method ignores effects of crop cover, land treatment and hydrologic condition on runoff. The method seems to work well for watersheds where soil 17 storage is significantly affected by fluctuations of water table. Table 2.—Approximate CN values for Pine Flatwoods and Wetlands. Cunte Number. fo£ Wet Periods Dry Periods Design Pine flatwoods 70 60 98 98 95 93 River swamp, cypress swamp, lake border swamp Marsh Bog swamp, bay head. cypress dome 80 90 98 98 95 98 ^" ^m 98 77 Wet prairies 3. It is difficult to assign CN values for wetlands because their CN values vary from one condition to another condition. During wet periods, wetlands are nearly or fully saturated and could be given a CN value of 100. The behavior of wetlands during dry periods is unclear. Certain types of wetlands such as bog swamp, bay head, and cypress dome may have tremendous depression storage depending on water table conditions. Soils in wetlands areas generally consist of organic materials, peats, and mucks and have high water holding capacity. These soils have very poor drainage and water is lost principally through evapotranspiration. Description of different types of wetlands are given in Appendix C. Approximate CN values for wetlands are given in Table 2. 18 D. Antgcedgnt_gQil_Moistute_Condition Antecedent soil moisture is an indicator of watershed wetness and availability of soil storage prior to a storm. It can have a significant effect on both runoff volume and runoff rate. Recognizing its significance, the SCS developed a guide for adjusting CN according to antecedent moisture condition (AMC) determined by the total rainfall in the 5-day period preceding a storm. Three levels of AMC are used: AMC-I for dry, AMC-II for normal, and AMC-III for wet conditions. Table 3 gives seasonal rainfall limits for these three antecedent moisture conditions. Table 3.—Classification of Antecedent Moisture Conditions 1972) . AMC I II III (SCS, TQt§l_5_rday._Antecedent_Rain£all_linche§l DQtmant^ Season Grow,ing_Season Less than 0.5 0.5 to 1.1 over 1.1 Less than 1.4 1.4 to 2.1 over 2.1 Konyha and others (1982) suggested that the 5-day AMC is not a reliable indicator of watershed wetness for the flatwoods watersheds. According to Rallison and Cronshey (1979), the SCS indicated that a five-day period is a minimum for estimating antecedent conditions. Sometimes longer periods are desirable but the additional work does not always produce 19 additional accuracy in the runoff estimates. Cronshey (1983) suggested that the AMC II CN be used for most practical applications and an AMC curve number adjustment be made only when an actual storm is to be evaluated. The CN estimates presented in Table 1 are for AMC II. If either AMC I or III is to be used, the CN can be adjusted using Table 4. * via^^ Table 4.—Curve Numbers for AMC I and AMC III. o Corresponding CN for AMC I AMC III CN for AMC II 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 100 87 78 70 63 57 51 45 40 35 31 27 23 19 15 12 9 7 4 2 0 20 100 99 98 97 94 91 87 83 79 75 70 65 60 55 50 45 39 33 26 17 0 E. Sensitivity_o£_QI Curve Number (CN) is an important parameter for determining direct runoff (Q) and peak discharge (q ). An error in CN estimate will cause errors in Q and q . The total error in q due to error in CN estimate consists of the errors in Q and time of concentration (tc) obtained from the SCS lag equation. Hawkins (1975) performed a sensitivity analysis of Q to error in rainfall (P) and CN. He concluded: (1) For a con- siderable range of Pf accurate values of CN are more important than accurate estimates of P; and (2) The accuracy of estimating Q is very critical near the threshold of runoff (P=0.2S). Bondelid, et. al. (1982) evaluated the sensitivity of the SCS methodology to errors in CN estimates. They concluded: The effects of CN variation on Q and q decrease as P (1) increases; and (2) As both P and CN increase, the effect of the error in Q on q in t decreases while the effect of the error increases. Figures 1 and 2 show the relative sensitivities of RQ and R , respectively, due to CN. The terms RQ and R are propor- tional changes in Q and q , respectively, per unit change in CN. Both figures can be used for evaluating the hydrologic effects of differences in the estimated CN's. 21 Figure 3, 0.20 CM 50 60 TO BO 80 es 0.15 - \ o •o II 0.10 o 0.05 5 6 R A I N F A L L (In) Figure 1.--Relative Sensitivity of RQ to CN, 0.7<t c<5.0 Hours (Bondelid et. al., 1982) 22 0.20 CN 50 60 70 8« 90 96 0.15 B C 0.10 c IT 0.0£ £ e 2<-hr. R A I N F A L L 7 ( in. ) Figure 2.—Relative Sensitivity of R to q CN, 0.7<tc<5,0 Hours (Bondelid et. al., 1982) 23 0.8 o i- o.e ui a 17 0.4 a: 111 z o H cr a a. O 0.2 ff a. 4 6 8 24-hr. RAINFALL On) 10 Figure 3.—Proportion of Error Due to t , C 0.7<tc<5.0 Hours (Bondelid et. al., 1982) 24 which shows the proportional error in q due to t , can be used to determine the proportional error in q F. due to Q. Summary 1. For design purposes, average condition CN (AMC II) with I = 0.2S should be used and the adjustment of CN based on AMC is not necessary. 2. The EIA method should be used for urbanized basins; it provides better estimates of runoff volume and peak flow than does the TIA method. 3. The ARS method is recommended for watersheds where their CN values vary with depth of water table. Although it is preferrable to determine the depth to water table from the study area, approximate depth during wet periods can be obtained from the SCS soil survey manuals. If depth to water table is not known, then the CN value given in Table 2 can be used. 4. Irrigation practices usually keep the water table high due to low efficiency of irrigation. If water table is maintained within four feet of the ground surface, then the watershed CN should be estimated by the ARS method; otherwise, the watershed CN could be estimated from Table 1. 25 DIseU§S.!QS_QF_S£S_UNJT_HYDBQGRAPH_METHQD A unit hydrograph is the hydrograph resulting from one inch of direct runoff generated uniformly over the watershed at a uniform rate during a specified period of time. The assumptions involved in the unit hydrograph concept are: (1) Rainfall intensity is constant during the storm period. (2) Rainfall is uniformly distributed throughout the entire watershed. (3) The time base for the runoff hydrograph of a watershed is constant for storms of the same duration. (4) The ordinates of unit hydrograph are directly proportional to volume of direct runoff. The principles of linearity, proportionality, and superposition make the unit hydrograph method a very flexible tool in developing runoff hydrographs for ungaged watersheds. A unit hydrograph of a watershed can be derived by analyzing actual rainfall-runoff data (Linsley, 1975). When these data are not available, a synthetic unit hydrograph technique is normally employed. A. Development Victor Mockus developed the SCS synthetic unit hydrograph method for determining runoff hydrograph for ungaged watersheds. Unit hydrographs were derived from observed rainfall-runoff data of natural watersheds with different sizes and geographic locations. 26 The derived unit hydrographs were then made dimensionless and averaged to obtain a stan- dard dimensionless unit hydrograph (DUH) as shown in Figure 4. The area under the rising limb is 37.5% of the total area under the DUH. The time base (t, ) is 5 t b p point on the falling limb occurs at 1.7 t . and the inflection The time and discharge ratios for the SCS curvilinear DUH are given in Table 5. The curvilinear DUH in Figure 4 can be approximated by a triangular DUH having the same percent of runoff volume on the rising side of the triangle. Using the geometry of tri- angles, the area under the unit hydrograph is estimated by: V = where \ qp (t p+tr)(3600) (8) V = volume of direct runofr, cubic feet q = peak discharge, cubic feet per second (cfs) t = time to peak, hours t = recession time, hours Solving Equation qp (8) for q and rearranging yields: (V/3600 t ) (9) p. Let K replace the terms in the bracket such that: K (lu) = then Equation 9 can be written as: qp = KV/(3600 tp) 27 (11) EXCESS RAINFALL rPOINT OF INFLECTION t/t r Figure 4.--SCS Dimensionless Curvilinear and Triangular Unit Hydrographs (SCS, 1972) 28 Table 5.—Ratios for SCS Dimensionless Curvilinear Unit Hydrograph Time Ratios (t/tp) Discharge Ratios (q/qp) 0 .1 .000 .030 .100 .190 .310 .470 .660 .820 .930 .990 1.000 .990 .930 .860 .780 .680 .560 .460 .390 .330 .280 .207 .147 .107 .077 .055 .040 .029 .021 .015 .011 .005 .000 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.5 5.0 29 By introducing A and Q into Equation 11, the equation becomes: qp= where q = peak discharge, cfs A = drainage area, square miles Q = direct runoff depth, inches K = hydrograph shape factor 645.33 = conversion factor By letting K 1 = 645.33 K, the SCS unit hydrograph equation simplifies to: _ (K1) (A) (Q) q p = -1 P where K 1 is called peak rate factor. It should be noted that the DUH shown in Figure 4 is valid only for the K 1 value of 484. If the K 1 value is different from 484, then a new DUH must be developed. In Equation 13, Q represents direct runoff depth resulting from a given rainfall intensity and duration, while K 1 accounts for the effect of watershed storages and t provides timing of unit hydrograph by incorporating hydraulic or timing parameters such as slope, flow length, and surface roughness. 30 Figure 4 shows that: tp where L = L + § (14) = watershed time lag, hours D = duration of unit excess rainfall, hours The lag (L) of a watershed is defined as the time from the center mass of unit excess rainfall (D) to the time to peak (t ) of a unit hydrograph. tc is (SCS, The average relationship of L to 1972) : L = 0.6 tC Substituting in Equation 14 tp = (15) yields: °'6 V 5 (16) Using the relationships defined for the curvilinear DUH (Figure 4), it can be shown that: D = 0.1333 tC (17) Substituting Equation 17 into Equation 16 yields: tp = 2 tc/3 B. (18) CQny.olu.tion The method used to compute a design storm hydrograph from rainfall excess and unit hydrograph is called convolution. It is a process of translation, multiplication, and addition. The following example illustrates this process. 31 I: Develop a runoff hydrograph using the following data: Drainage area: 1.0 square mile Time of concentration: Curve Number: 85 Storm duration: 1.0 hour Rainfall interval: 0.25 hours Rainfall intensity: 0.40, 0.80, 0.50, 0.30 Total rainfall depth: Step 1. 1.50 hours 2.00 inches Develop and plot triangular unit hydrograph. Using Equation 17, compute D: D = 0.1333 (1.50) = 0.20 hours Using Equation 16, compute t : t = 0.5(0.20) + 0.6(1.50) = 1.00 hour P For one inch of direct runoff, the peak discharge is: qp For K 1 (484)(1)(1) = - (1) = - 484 CIS = 484, the time base of the triangular UH is: tb = 2.67(1) = 2.67 hours The resulting triangular UH is shown in Figure 5. Step 2. Tabulate the ordinates of the triangular UH using time increment D (Table 6, Column 2). 32 484 10 m u U in -H Q 2.67 1.00 Time (hours) Figure 5.—Triangular Unit Hydrograph for Example 1 33 Table 6.—Computation of Incremental Runoff for Example 1 TIME (hr) 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 UH ORDINATES (Cfs) 2.6 2.8 0 97 194 290 387 484 426 368 310 252 194 135 77 19 0 TOTAL 3233 ACCUMULATIVE RAINFALL (in.) ACCUMULATIVE RUNOFF (in.) 0 0.32 0.88 1.40 1.76 2.00 3233(0.2) = 646.6 34 INCREMENTAL RUNOFF (in.) 0 0 0 0 0.12 0.39 0.62 0.79 0.12 0.27 0.23 0.17 Step 3. Check the volume under UH by summing the ordinates (Table 6, Column 2) and multiplying by D: 3233(0.20) = 646.60 cfs-hours Compare this value with the computed volume under UH: 645.33(1.0) = 645.33 cfs-hours If these values fail to check, re-read the ordinates from Figure 5 until both values agree. Step 4. Tabulate accumulative rainfall in time increments of D (Table 6, Column 3). Step 5. Compute the accumulated runoff from Equation (5) (Table 6, Column 4). Step 6. Tabulate the incremental runoff (Table 6, Column 5). Step 7. Determine runoff hydrograph by convolution. The ordinates of triangular UH in Table 6, Column 2, is convoluted with rainfall excess in Column 5. The com- putations of runoff hydrograph is shown in Table 7. 35 Table 7.—Computation of Runoff Hydrograph for Example 1 TIME (HRS) 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 EIISCHARGE (CFS) 0 97(0) 194(0) 290(0) 387(0) 484(0) 426(0) 368(0) 310(0) 252(0) 194(0) 135(0) 77(0) 19(0) = Hh -1-h -h -h -^ -h -I-h -f •f •f 97(0 .12) 194(0 .12) 290(0 .12) 387(0 .12) 484(0 .12) 426(0 .12) 368(0 .12) 310(0 .12) 252(0 .12) 194(0 .12) 135(0 .12) 77(0 .12) 19(0 .12) -h -h -H -H -1-I-h -^ -f -f -f -f 97(0 .27) 194(0 .27) 290(0 .27) 387(0 .27) 484(0 .27) 426(0 .27) 368(0 .27) 310(0 .27) 252(0 .27) 194(0 .27) 135(0 .27) 77(0 .27) 19(0 .27) + + + + + + + + + + + + 97(0.23) 194(0.23) 290(0.23) 387(0.23) 484(0.23) 426(0.23) 368(0.23) 310(0.23) 252(0.23) 194(0.23) 135(0.23) 77(0.23) 19(0.23) + + + + + + + + + + + + 97(0.17) 194(0.17) 290(0.17) 387(0.17) 484(0.17) 426(0.17) 368(0.17) 310(0.17) 252(0.17) 194(0.17) 135(0.17) 77(0.17) 19(0.17) TOTAL 36 = = = = = = = = = = = = = = 0 0 11.6 49.5 109.5 185.9 262.3 320.1 336.3 316.8 271.0 225.2 179.2 133.1 87.1 45.8 17.5 3_i.2 = 2,554.1 Step 8. Check the volume under runoff hydrograph by summing the ordinates (Table 7) and multiplying by D: 2554.1(0.20) = 510.8 cfs-hours Compare this value with the computed volume: 695.33(1.0) (0.79) = 509.8 cfs-hours This example illustrates the derivation of runoff hydrograph from rainfall excess and triangular UH by convolution. The same procedure can be used to derive runoff hydrograph from the curvilinear UH. Figure 6 shows that there is little difference in runoff hydrographs using either triangular UH or curvilinear UH, providing that the time increment D is approximately equal to 0.2 t . C. The difference in peak discharges for this example is 5.8%. This difference tends to decrease with increasing storm durations. Limitations The limitations relating to the unit hydrograph method are given below: 1. The unit hydrograph method cannot accommodate the areal variations in runoff that can affect hydrograph shape. For instance, a rapid rise, sharp peak, and rapid recession would result if urbanization is located near the basin outlet. On the other hand, a slow rise, lower and 37 500 D I S C H A R G E I.0 SQ.MI 2.0 IN. 85 400 . 1.5 HRS. 484 300 . CURVILINEAR TRIANGULAR OJ CO I N 200 _ C F S 100 _ 0 0 TIME IN HOURS Figure 6.—Runoff Hydrographs of Example 1 Using Curvilinear and Triangular Unit Hydrographs broader peak, and slow recession would occur if urbanization occurred in the upstream portion of the basin. 2. The unit hydrograph method assumes that ordinates of flow are proportional to volume of direct runoff for all storms of a given duration and that the time bases of all such hydrographs are equal. This assumption is not completely valid because duration of recession is a function of peak flow. The larger the peak flow, the longer the duration of recession. Furthermore, unit hydrographs for storms of the same duration but different magnitudes do not always agree. Peaks of unit hydrographs derived from small storms are normally lower than those derived from larger storms (Linsley, 1975). D. Summary 1. To obtain a good prediction of runoff hydrograph for a basin, it is important to have accurate estimates of direct runoff (Q), time of concentration (tc ), and peak rate factor (K1). 2. The SCS unit hydrograph method should be applied only to the basin small enough so that similar rainfall and runoff characteristics can be attained within the basin. If areal variations in rainfall and runoff are great, it is necessary to divide the basin into smaller 39 subbasins. T!M!_QF_CQHCEJJTRAT!QH The time of concentration (ttx ) is the time it takes for runoff to travel from the hydraulically most remote part of the watershed to the point of reference downstream. The primary function of tc is to provide the timing of hydrograph. Besides increasing runoff volume, urbanization generally decreases travel time or t , which in turn shortens the time to peak of hydrograph and increases peak discharge. A. Estimation of t There are numerous methods for estimating tC . However, the methods recommended by the SCS will be discussed below. The SCS lag method was developed from natural watersheds having areas less than 2,000 acres. The method was intended to be used for different watershed conditions ranging from steep to flat and from heavily forested to smooth surface areas. The equation for watershed lag is: L = *w' (S+l)0'7 1900y°'5 40 (19) where L = watershed time lag, hours x\V = hydraulic length of watershed, feet S = watershed storage, inches y = average watershed land slope, percent Data collected from small urban watersheds indicated that Equation (19) overestimates lag time for urban areas (SCS, 1975). However, the equation adequately represents lag time for paved areas such as parking lots. 2. §G§_YelQcity._MetbQd In the SCS velocity method, the flow path is usually divided into segments according to type of flows such as overland, storm sewer or pipe, road gutter, and channel flows. The time of concentration for a given drainage area is estimated by summing the travel time of each flow segment. a. Qy.erland_£10Y£ The travel time for overland flow can be determined from Figure 7. Figure 7 are: The types of flow included in overland, grassed waterways, paved areas, and small upland gullies. If slope and land use of the overland flow segment are known, the average flow velocity can be read from Figure 7. The travel time is computed by dividing the overland flow length by the average velocity. 41 100 0.5 VELOCITY IN FEET PER SECOND Figure 7.—Average Velocities for Estimating Travel Time for Overland Flow (SCS, 1972). 42 According to Kibler and Aron (1983) , Figure 7 gives very good estimates of overland travel time as long as flow paths exceed 300-400 feet. However, if flow length is less than 300 feet, the travel time for overland flow can be computed from the simplified Manning-Kinematic wave equation (SCS, 1983) : 0.006(nxQ)0.8 *• where t = overland flow travel time, hours n = Manning's roughness coefficient XG = overland flow length, feet P24 = 2-year 24-hour rainfall depth, inches S = overland flow slope, feet/foot Equation (20) is based on the following assumptions: (1) shallow steady uniform flow; (2) constant rainfall excess; (3) 24-hour rainfall duration; (4) SCS Type II rainfall distribution; and (5) impact of infiltration on travel time is minor. Estimates of 'n1 values for use in Equation (20) are given in Table 8. b. The travel time from storm sewer to open channel is the sum of travel times in each individual component of the system between the uppermost inlet 43 Table 8.—Manning's 'n1 Values for Overland Flow I/ (SCS, Recommended Value Concrete Asphalt Bare sand 27 Graveled surface 27 Bare clay-loam (eroded) 27 Fallow (no residue) ** Chisel plow ( 1/4 ton/acre residue) Chisel plow (1/4 - 1 ton/acre residue) Chisel plow ( 1 - 3 tons/acre residue) Chisel plow ( 3 tons/acre residue) Disk/Harrow ( 1/4 ton/acre residue) Disk/Harrow (1/4 1 ton/acre residue) Disk/Harrow ( 1 - 3 tons/acre residue) Disk/Harrow ( 3 tons/acre residue) No till ( 1/4 ton/acre residue) No till (1/4 1 ton/acre residue) No till ( 1 - 3 tons/acre residue) Plow (Fall) Coulter Range (natural) Range (clipped) Grass (bluegrass sod) 2> Short grass prairie-7 Dense grass 47 -' 4/ 7 Bermuda grassWoods !/ 2/ 37 4/ ,011 ,012 ,010 .012 .012 .05 .07 .18 .30 .40 .08 .16 .25 .30 .04 .07 .30 .06 .10 .13 .08 .45 .15 .24 .41 .45 1983) Range of Values ,010 .012 .012 .006 .006 .07 .19 .34 .008 .10 .14 - ,013 ,015 .016 .03 .033 .16 .17 .34 .47 .46 .41 .25 .53 .03 .01 .16 .02 .05 .01 .02 .39 - .07 .13 .47 .10 .13 .32 .24 .63 ,01 ,01 .10 - .20 .17 - .30 .30 - .48 Engman (1983). Woolhiser (1975). Fallow has been idle for one year and is fairly smooth. Palmer (1946). Weeping lovegrass, bluegrass, buffalo grass, blue gramma grass, native grass mix (OK), alfalfa, lespedeza. 44 and the outlet. During major storm events, the sewer system can be assumed flowing full. The average velocity of the sewer system is estimated from the Manning's equation using average conduit size, average slope, and hydraulic radius of full flow condition. Manning's equation is: 1/2 1 49 r r2/3s v = ±f~ s where v = average flow velocity (ft/sec) r = hydraulic radius (ft) s = slope of energy gradient (ft/ft) n = Manning's roughness coefficient c. Gutter.flow. The average velocity of shallow gutter flow can be estimated from Figure 7 using the paved area curve d. Channel.flow. The "bank full" velocity is normally used for computing the travel time for channel flow, which is determined by the Manning's equation. B. Sensitivity of t The primary function of t is to provide timing of runoff hydrograph; it is a very important parameter used in determining the peak and shape of runoff hydrograph. illustrates the effect of variation in t Figure 8 on peak discharge. \^r The unit of peak discharge in Figure 8 is in cubic feet per 45 500 c •H 40O -H g 03 \ cn iw O 300 C •H 0 Cn s-i rfl £ U en •H Q 200 100 OS d) 04 Time of Concentration (t ) in hours Figure 8.--Sensitivity of q 46 to t second per square mile per inch of direct runoff. It can be seen that peak discharge is extremely sensitive to a change in tc, particularly for small values of tc . Also, it will be shown later that variation in t would change the shape and timing of unit hydrograph, which in turn also affects runoff hydrograph of the basin. C. Summary 1. The main disadvantage of the t approach is that it does not account for the areal distribution of runoff which can affect the shape and timing of hydrograph; i.e.,urbanization occurring upstream or downstream of the basin will result in the same runoff hydrograph as long as the t t C C of the basin is equal. As a result, the method should be applied to basins small enough to ensure that areal variation in runoff is not too great. 2. Generally, the SCS lag method is not as accurate as the SCS velocity method because the lag method does not reflect changes in hydraulic properties which can be incorporated in the velocity method. For example, channel modification causes a change in t ing flow velocity of the channel. by increas- Furthermore, t C obtained from the lag method will be equal for watersheds having the same CN, hydraulic length, and slope. 47 3. Time of concentration varies with storm events; therefore, it should be estimated for each storm event. practical purposes, t For can be calculated using the "bank full" velocities. 4. Since tV-* is very important parameter for determining runoff hydrographs for small upland watersheds, great care should be exercised in estimating tc. 48 PEAK.RATE_FACTQR Peak rate factor (K1) is a parameter used to reflect the effect of watershed storage on runoff hydrograph shape. According to the SCS, K 1 value has been known to vary from 300 in flat swampy country to 600 in steep terrain. Woodward et.al. (1980) suggested a value of 284 for the Delmarva peninsula (Delaware, Maryland, and Virginia) which is characterized by flat topography and considerable natural surface storage due to swales and swamps. This suggests that K 1 values vary with the watershed storage characteristics and that a constant value cannot be used to represent the storage characteristics of all watersheds. Therefore, it is neces- sary to develop a method for estimating K 1 value of a DUH for an ungaged watershed. A. Development Before a triangular unit hydrograph can be constructed for a given peak rate factor, the following parameters q , t , and tb must be known. 13 and 16. Both q and t are computed from Equations The equation for solving t, is derived below. Using the relation t. = t +t and substituting this relation into Equation 10 yields: K = 2t /tb (22) tb = 2tp/K (23) or 49 Substituting K = K'/645.333 into Equation 23 results: 1290.66 t /K1 tfa = (24) Equations 13, 16, and 24 are the basic equations used for constructing a triangular unit hydrograph for a given peak rate factor. By substituting Equation 18 into Equations 13 and 24, the equations for q and t, become: qn P = 1.5K'AQ/t tb = 860.42 tc/K' (25) *- (26) From Equations 18, 25, and 26, it can be concluded that: (1) t is the most important parameter in determining runoff hydrographs—any variation in tc would cause changes in q , t , and t, ; and (2) K 1 is the second most important parameter—any change in K 1 would result in changes in q B. and t, . Estirnation_Qf_Kl McCuen and Bondelid (1983) proposed a method for deriving a DUH from the time-area curve. The method assumes that the proportions under the rising limbs of the time-area curve and DUH are equal. This implies that the K 1 value of the DUH is the same as that of the time-area curve. The steps involved in deriving a triangular DUH for a given watershed are summarized below. 50 Step 1. Use the "bank full" velocities to calculate the channel travel times to the watershed outlet. Step 2. Divide the total channel travel time into a number of equal time intervals, and then divide the watershed into areas of equal travel time. Step 3. Develop a dimensionless time-area curve. Step 4. Calculate the proportion (p) of area under the rising limb of the time-area curve. The calculated p is then used to compute K 1 from the relationship K'=1290.66p. With K 1 and tc values known, the terms t , q , and t. are determined from Equations 18, 25r and 26, respectively. Consequently, the triangular DUH can be drawn. Similarly, the same procedure described earlier can be used to derive a curvilinear DUH from the gamma distribution function. Another approach of estimating K 1 for a watershed is to multiply the standard SCS K 1 (484) by an adjustment factor obtained from Tables 9-11. SCS, TR-55 (1975). These tables are published in The values of adjustment factors are given in terms of percent of watershed storage area (e.g. ponds, swamps, ditches, and swales), storm frequency, and areal distribution of watershed storage. It should be noted that this table is not applicable for detention basins. approach is based on the following reasons: 51 This (1) Watershed storages affect the shape of runoff hydrograph by attenuating its peak and enlarging its time base. (2) Rainfall characteristics have an effect upon the storage capacity of watershed. Therefore, K 1 , which is used to represent watershed storage effect also varies with storm frequency. (3) According to Woodward, et.al. (1980), the standard SCS DUH was developed from small watersheds primarily in the Midwest. These watersheds are generally characterized by local relief of 50 to 100 feet with little or no natural storage. Table 9.—Adjustment factors where ponding and swampy areas occur at the design point (SCS, 1975). Percentage of ponding and swampy area 0.2 .5 1.0 2.0 2.5 3.3 5.0 6.7 10.0 20.0 StQ£m_freguency._iyearsl 2 5 10 25 50 0.92 .86 .80 .74 .69 .64 .59 .57 .53 .48 0.94 .87 .81 .75 .70 .65 .61 .58 .54 .49 0.95 .88 .83 .76 .72 .67 .63 .60 .56 .51 0.96 .90 .85 .79 .75 .71 .67 .64 .60 .55 0.97 .92 .87 .82 .78 .75 .71 .67 .63 .59 52 100 0.98 .93 .89 .86 .82 .78 .75 .71 .68 .64 Table 10.—Adjustment factors where ponding and swampy areas are spread throughout the watershed or occur in central parts of the watershed (SCS, 1975) . Percentage of ponding and swampy area 2 0.2 .5 1.0 2.0 2.5 3.3 5.0 6.7 10.0 20.0 25.0 0.94 .88 .83 .78 .73 .69 .65 .62 .58 .53 .50 J. _/ StQrm_f,requency_iyearsl. 5 10 25 50 0.95 .89 .84 .79 .74 .70 .66 .63 .59 .54 .51 0.96 .90 .86 .81 .76 .71 .68 .65 .61 .56 .53 0.97 .91 .87 .83 .78 .74 .72 .69 .65 .60 .57 0.98 .92 .88 .85 .81 .77 .75 .72 .68 .63 .61 100 0.99 .94 .90 .87 .84 .81 .78 .75 .71 .68 .66 Table 11.—Adjustment factors where ponding and swampy areas are located only in upper reaches of the watershed (SCSf 1975) . Percentage of J. ^ swampy area 2 0.2 .5 1.0 2.0 2.5 3.3 5.0 6.7 10.0 20.0 0.96 .93 .90 .87 .85 .82 .80 .78 .77 .74 §tQrm_freguency__iyear.sl. 10 5 25 50 0.97 .94 .91 .88 .85 .83 .81 .79 .77 .75 53 0.98 .94 .92 .88 .86 .84 .82 .80 .78 .76 0.98 .95 .93 .90 .88 .86 .84 .82 .80 .78 0.99 .96 .94 .91 .89 .88 .86 .84 .82 .80 100 0.99 .97 .95 .93 .91 .89 .88 .86 .84 .82 C. Figure 9 shows the effect of K 1 values on the shape of unit hydrographs and that peak discharge is very sensitive to variation in K 1 values. With parameters A, Q, and tC held constant, q increases and t. decreases as K 1 increases, or vice versa. It should be noted that the t of unit hydrograph is not a function of K 1 and therefore is not affected by changing in K 1 values. Similarly, the effect of K 1 values on runoff hydrograph is shown in Figure 10. D. Summary 1. Peak rate factor (K1) is a critical parameter for determining the shape of hydrograph. It is used to represent the effect of watershed storage on hydrograph shape. High values of K 1 are assigned to watersheds with little or no storage effects, and low values of K 1 are for watersheds with significant ponding effects. 2. The peak rate factor of a watershed can be determined from the proportion of area under the rising limb of the time-area curve or by using the adjustment factor obtained from Tables 9-11. 3. The adjustment of K 1 value should be made based on natural surface storage rather than watershed slope, because the effect of watershed slope on hydrograph shape is normally taken into account when t calculated. 54 is being 1000 D I GIVEN 800 _ S A Q TC 1 .0 SQ.MI 1 .0 IN. 1 .0 HR. c H A R G E 600 _ 400 _ 200 _ K, - 300 K, = 484 K = 600 I N C r s 0 0 0.5 1 .5 1 TIME IN 2.5 HOURS Figure 9.--Sensitivity of Triangular Unit Hydrograph to K 1 1000 D I 800 _ 600 _ N 400 _ C F S 200 _ GIVEN : S c H A R G E A = P « SCS CN « TC « 1.0 SO.MI. 5.0 IN. TYPE II CMOD.} 80 1 . 5 MRS. 300 484 600 cr> I 0 _ I 0 5 15 10 TIME IN 20 HOURS Figure 10.-- Sensitivity of Runoff Hydrograph to K 1 25 30 4. Higher K 1 value should be used for future condition if significant natural depression and ponding areas are modified by urbanization. 57 SUMMARY This report has included background information for the SCS runoff procedures and provided methods for estimating runoff curve number (CN), the time of concentration (tc), and a peak rate factor (K1) for different hydrologic conditions. This report will help to utilize the SCS runoff procedures properly and effectively. The main points of the SCS runoff procedures can be summarized below: 1. The accuracy of runoff volume prediction solely relies on the accuracy of CN which is the only parameter required in the SCS curve number method. In estimating CN, the effective impervious area (EIA) method should be used for urban basins and the ARS method is recommended for basins whose CN values are affected by water table. 2. For practical purposes, CN should be estimated based on the average hydrologic condition (AMC II, 1=0.2S). The adjustment of CN is necessary only when an actual storm is to be evaluated. 3. The function of tC is to provide the timing of runofr hydrograph; it has the most influence on hydrograph shape. An error in tC estimate will cause errors in peak discharge (q ), time to peak (t ), and time base (tb) of hydrograph. The SCS velocity method is recom- mended for estimating t . 58 Peak rate factor (K1) is used to account for the effect of basin storage capacity on hydrograph shape. The K 1 value of a basin can be determined from the proportion of area under the rising limb of the time-area curve or by using the adjustment factor obtained from Tables 911. In order to obtain a good prediction of runoff hydrographf it is important to have accurate estimates of CN, tc, and K 1 . 59 REFERENCES Alley, W. M. and J. E. Veenhuis, 1983. "Effective Impervious Area in Urban Runoff Modeling," dQUEn§l_Qf _tbe_Hydr.aulic Division, ASCE, Vol. 109, pp. 313-319. Aron, Gert and A. C. Miller, 1977. "Infiltration Formula Based on SCS Curve Number," JLQU£nal_of_tiie_Irrigation_and_DEainage ASCE, Vol. 103, pp. 419-427. Bondelid, T. R., R. H. McCuen, and T.J. Thomas, 1982. "Sensitivity of SCS Models to Curve Number Variation," Hater Besou£Cgs_Bylletin, AWRA, Vol. 18, No. 1, pp. 111-116. Capece, J. C. , 1984. "Estimating Runoff Peak Rates and Volumes from Flat, High-Water-Table Watersheds," Master of Engineering Thesis, University of Florida, Gainesville, Florida. Cronshey, R. G. , 1983. Discussion of "Antecedent Moisture Condition Probabilities," by D. D. Gray, et. al., Journal^of. tbe_!ErigatiQn_and_D£ain§ge_Diy.isiQn, ASCE, Vol. 108, pp. 297-299. Hawkins, R. H. , 1975. "The Importance of Accurate Curve Numbers in the Estimation of Storm Runoff," Water _Resou£ces Bulletin, AWRA, Vol. 11, No. 5, pp. 887-890. Hawkins, R. H. 1978. "Runoff Curve Numbers with Varying Site Moisture, " aQUEnal_o.£_th,e_lEEigatiQn_an.d_DEainage_Diy.ision, ASCE, Vol. 105, pp. 389-398. Hjelmfelt, A. T. , 1980. "Curve Number Procedure as Infiltration Method," dQUEDal_of_the_Hy.dEaulics_DiYisiQQ, ASCE, Vol. 106, pp. 1107-1111. Hope, A. S. and R. E. Schulze, 1981. "Improved Estimates of Stormwater Volume Using the SCS Curve Number Method," International Symposium on Rainfall-Runoff Modeling, Mississippi State University, May 18-21, 1981, pp. 419-427, Water Resources Publications, Littleton, Colorado. Kibler, D. F. and Gert Aron, 1983. "Evaluation of T Methods for t* Urban Watersheds," EEQceedings_Q£_th.e_C.on£eEence_on EEQntieE§_in_HydEaulic_EngingeEing, Massachusetts Institute of Technology, Cambridge, Massachusetts, August 9-12, 1983, pp. 547-552, ASCE Publications, New York. 60 Konyha, K. D., K. L. Campbell, and L. B. Baldwin, 1982. Runoff EstimatiQQ_£rQm_Flatt_HlgbrWaterrTaMg_Watgr sheds, Coordinating Council on the Restoration of the Kissimmee River Valley and Nubbin Slough Basin, Tallahassee, Florida. Linsley, R. K., M. A. Kohler, and J. L. H. Paulhus, 1975. Hy_d.£QlQgy._fQE_Ei3ginggrs, 2nd Edition, McGraw-Hill, New York. McCuen, R. H., 1983. "A Pragmatic Evaluation of the SCS Hydrologic Methods," EEQCggding§_Q£_tbe_gp.gcialty._C.Qn£gEencg Qn_Ady.ancgs_in_lEEiga.tiQn_and_DEainaggi £u.EY.iY.ing_Extgrna.l EEgssuEgs, Jackson, Wyoming, July 20-22, 1983, pp. 200-207, ASCE Publications, New York. McCuen, R. H. and T. R. Bondelid, 1983. "Estimating Unit Hydrograph Peak Rate Factors," J_QUEna.l_g£_tbe_Irrigation_and DEainage_DiYisiQQ, ASCE, Vol. 109, pp. 239-250. Miller, R. A., 1984. "Rainfall-Runoff Mechanics for Developed Urban Basins," lDterQatiQnal_§y.mp.QSium_Qn_UEban_HydrQlQgy.i HydEaulic§_and_Sgdimgnt_ContEQl, University of Kentucky, Lexington, Kentucky. Mockus, V., 1964. Personnel Communication: Ferris, Dated March 5, 1964, 6 pp. Letter to Orrin Rallison, R. E. and R. C. Cronshey, 1979. Discussion of "Runoff Curve Number with Varying Site Moisture," by R. H. Hawkins. aQUEnal_Q£_tbe_lEEigatiQn_and_Drainage_DiYision, ASCE, Vol. 105, pp. 439-441. Rallison, R. E. and N. Miller, 1981. "Past, Present, and Future SCS Runoff Procedure," In£gEn§tional_gympQsium_Qn_Rainfa^lBUQo££_MQdgling, Mississippi State University, May 18-21, 1981, pp. 353-364. Water Resources Publications, Littleton, Colorado. Soil Conservation Service, 1969. CQfflP.uteE_PEQgEam_fQE_P£Qj.ect FQEffiulation_Hy.3EQlQgy_, Technical Release No. 20, USDA-SCS, Washington, D.C. Soil Conservation Service, 1972. N.atiQna.l_EQginegEing_BandbQOki Section_4.t_Hyd.EQlogy.. USDA-SCS, Washington, D.C. Soil Conservation Service, 1975. UEban_HydEQlQgy_fQE_Small Watersheds., Technical Release No. 55, USDA-SCS, Washington, D.C. Soil Conservation Service, 1983. U.Eb,an_By.dEQlogy__£oE_Sffi§ll WattESbeds (Revised), Technical Release No. 55, USDA-SCS, Washington, D.C. (Draft) 61 Speir, W. H., W. C. Mills, and J. C. Stephens, 1969. HydtQlogy Q£_Three_EjcEeriffiental_W§tershgds_in_SQUtliern_FlQ£idar ARS Publication No. 41-152, USDA-Agricultural Research Service, Washington, D.C. Woodward, D. E., P. I. Wells, and H. F. Moody, 1980. "Coastal Plans Unit Hydrograph Studies," PrQceedings_of_Na.tional SymEQsiuro_on_HEb§n_StO£©water_Managginent_in_CQastal_AEeas, Blacksburg, Virginia, 1980, pp. 99-107, ASCE Publications, New York. 62 APPENDIX A RAINFALL_DISTBIBUTIQNS The intensity of rainfall for a given storm duration is an important factor for determining hydrologic response. Storms having the same magnitude and duration but different intensities will result in different hydrologic responses. The rainfall in- tensity varies considerably within the storm period and from one region to another region. For uniformity, the SCS developed two synthetic 24-hour rainfall distributions from the Weather Bureau rainfall-frequency data (1, 2, 3). The Type I distribution is representative of the maritime climate, including Hawaii, Alaska, and the coastal side of the Sierra Nevada and Cascade Mountains in California, Oregon, and Washington. The Type II distribution represents the remainder of the United States where high runoff rates are generated from summer thunderstorms. The procedure used in developing the SCS rainfall distribu- tions are described in the SCS TP-149 (4). In addition to the Type I and II distributions, the SCS modified the Type II distribution for Florida climate. This distribution was developed in the same manner as the SCS Type II distribution, but the data from HYDRO-35 were used instead of TP-40. The SCS rainfall dis- tributions in 30-minute intervals are listed in Table A-l. The 96-hour rainfall distribution is sometimes required, depending on the type of problems. The procedure for determining the rainfall distribution is explained in the District Applicant's Handbook for Management and Storage of Surface Waters (5). A-l Table A-1. — Ordinates of the SCS 24-Hour Rainfall Distributions Time 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0 Rainfall_RatiQ_lAccuinulated_TQtal/24rHQur_TQtall 0.000 0.008 0.017 0.026 0.035 0.045 0.055 0.065 0.076 0.087 0.099 0.122 0.125 0.140 0.156 0.174 0.194 0.219 0.254 0.303 0.515 0.583 0.624 0.654 0.682 0.705 0.727 0.748 0.767 0.784 0.800 0.816 0.830 0.844 0.857 0.870 0.882 0.893 0.905 0.916 0.926 0.936 0.946 0.955 0.965 0.974 0.983 0.992 1.000 0.000 0.005 0.011 0.017 0.022 0.029 0.035 0.042 0.048 0.056 0.064 0.072 0.080 0.090 0.100 0.110 0.120 0.134 0.147 0.163 0.181 0.204 0.235 0.283 0.663 0.735 0.772 0.799 0.820 0.835 0.850 0.865 0.880 0.889 0.898 0.907 0.916 0.925 0.934 0.943 0.952 0.958 0.964 0.970 0.976 0.982 0.988 0.994 1.000 A- 2 0.000 0.006 0.012 0.018 0.025 0.032 0.039 0.046 0.054 0.062 0.071 0.080 0.089 0.099 0.110 0.122 0.135 0.149 0.164 0.181 0.201 0.226 0.258 0.307 0.606 0.718 0.757 0.785 0.807 0.826 0.842 0.857 0.870 0.882 0.893 0.903 0.913 0.922 0.931 0.939 0.947 0.955 0.962 0.969 0.976 0.983 0.989 0.995 1.000 REFERENCES 1. Hershfield, D. M., 1966. "Rainfall Atlas of the United States," Weather Bureau Technical Paper No. 40, U. S. Dept. of Commerce, Washington, B.C. 2. Miller, J. F., 1965. "Two-to-Ten-Day Precipitation for Return Periods of 2 to 100 Years in the Contiguous United States," Weather Bureau Technical Paper No. 49, U.S. Dept. of Commerce, Washington, B.C. 3. Frederick, R. H., V. A. Myers, and E. P. Anciello, 1977. "Five-to-60-Minute Precipitation Frequency for the Eastern and Central United States," NOAA Technical Memorandum NWS HYBRO-35, U.S. Bept. of Commerce, Washington, B.C. 4. Soil Conservation Service, 1973. "A Method for Estimating Volume and Rate of Runoff in Small Watersheds," Technical Paper No. 149, USBA-SCS, Washington, B.C. 5. St. Johns River Water Management Bistrict, 1983. Aep.li cant Is HandbQQk_r_Managgment_and_gtQ£age_Qf_SUEface_V?atgrs, Palatka, Florida. A-3 APPENDIX B HYDBQLQGIC_SQIL,_GRQUP§ This appendix provides a list of soil names and their hydrologic soil group classification (Table B-l). These soils are divided into four groups, Af B, C, or D based on the minimum rate of infiltration obtained for a bare soil after prolonged wetting. The hydrologic soil groups, as defined by the SCS soil scientists, are: A. (Low runoff potential). Soils having high infiltration rates even when thoroughly wetted and consisting chiefly of deep, well to excessively drained sands or gravels. These soils have a high rate of water transmission (greater than 0.30 in./hr.). B. Soils having moderate infiltration rates when thoroughly wetted and consisting chiefly of moderately deep to deep, moderately well to well drained soils with moderately fine to moderately coarse textures. These soils have a moderate rate of water transmission (0.15-0.30 in./hr.). C. Soils having slow infiltration rates when thoroughly wetted and consisting chiefly of soils with a layer that impedes downward movement of water, or soils with moderately fine to fine texture. These soils have a slow rate of water trans- mission (0.05 - 0.15 in./hr.). D. (High runoff potential). Soils having very slow infiltration rates when thoroughly wetted and consisting chiefly of clay soils with a high swelling potential, soils with a permanent high water table, soils with a clay pan or clay layer at or B-l Table 3-1—Soil names and hydrologic classifications (1) AABERG C AHL C ALMY B ANLAUF ARDOSTOOK C AASTAD B AHLSTROM C ALOHA C ANNABELLA B AROSA ABAC AHMEEK 0 B ALONSO B ANNANDALE C ARP ABAJO C AHOLT D ALOVAR C ANNISTON B ARRINGTDN ABBOTT AHTANUM D C ALPENA ANOKA B A ARRITOLA AoBOTTSTOHN C AHHAHNEE C ALPHA C ANONES C ARROLIME ABCAL D AIBON1TO C ALPON ANSARI B D ARRDN ABEGG B A! KEN B/C ALPONA B ANSEL B ARROW ABELA B AIKMAN D ALPS C ANSELMO A ARROMSMITH ABELL B AILEY B ALSEA 8 ANSON B ARROYO SECO ABERDEEN AINAKEA B ALSPAUGH D C ANTELOPE SPRINGS C ARTA ABES D AIRMONT C ALSTAD B ANTERO C ARTOIS ABILENE AIROTSA 8 C ALSTOWN 8 ANT FLAT C ARVADA ABINGTON B AIRPORT D ALTAMONT D ANTHO B ARVANA AB1QUA AITS B ALTAVISTA C ANTHONY C B ARVESON ABO B/C ALTD'ORF AJO C D ANT 1 GO B ARVILLA ABOR D AKAKA A ALTMAR B ANTILON B ARZELL ABRA C AKASKA B ALTO C ANT 10 CM 0 ASA ABRAHAM B AKELA C ALTOGA C ANTLER C ASBURY ABSAROKEi ALADDIN C B ALTON B ANT DINE C ASCALON ABSCOTA B ALAE A ALTUS B ANT RO BUS B ASCHOFF ABSHER ALAELOA 0 B ALTVAN B ANTY B ASHBY ABSTED ALAGA 0 A ALUM ANVIK 6 B ASHCROFT ACACIO ALAKAI D ALUSA ANHAY C D B ASHDALE ACADEMY ALA MA B ANZA C AtvTfi B B ASHE ACAD1A D ALAMANCE B ALVIRA ANZIANO C C ASHKUN ACANA D ALAMO D ALVISO D APACHE D ASHLAR ACASCO D ALAMOSA C ALVOR A C APAKUIE ASHLEY B ALAPAHA ACEITUNAS D AMADOR D APISHAPA C ASH SPRINGS AC EL ALAPAI A D AMAGON APISON D B ASHTON ACKER ALBAN B B APOPKA A AHALU D ASHUE ACKMEN D AHA NA 6 ALBANO APPIAN B C ASHUELOT ACME ALBANY C AMARGOSA APPLEGATE C D C ASHHOOD ALBATON D AMARILLO ACC B B APPLE TON C ASKEN ACOLITA B ALBEE AMASA C B B APPLING ASO ACOMA B AMBERS ON C ALBEMARLE APRON B AS3TIN ACOVE AMBOY C ALBERTVILLE C APT C C ASPEN ACREfc ALBIA C AMBRAN B C C APTAKISIC ASPERNONT ARABY ACRELANE ALBION B A C AMEDEE ASSINNIBOINE ACTON C ARADA 6 ALBRIGHTS AMELIA B C ASSUMPTION ACUFF B C AMENIA ARANSAS ALCALDE B D ASTATULA ACHORTH B A RAP 1 EN B ALCESTER AMERICUS A C ASTOR ACY ALCOA B C AMES C ARAVE 0 ASTORIA ALCONA B ADA B AMESHA B ARAVETON B ATASCADERO ADA I R ALCOVA B AMHERST ARBELA D C C ATASCOSA ADAMS ALDA A C AMITY ARBONE B C ATCO ADAMSON ALDAX B ARBOR "B D AMMON 8 ATENCIO AOAMSTOHN ALDEN 0 A MOLE C ARBUCKLE 'B A'TEPIC ARCATA ADAMSVILLE ALDER B AMOR C B B ATHELWOLD ADA TON ALDERDALE C ARCH B D AMOS C ATHENA AOAVEN D ALDfcRHOOD C AMSDEN B ARCHABAL B ATHENS ALBINO C AMSTERDAM ARCHER ADDIELOU B C C ATHERLY A DO I SON D ALOHELL C AMTOFT ARCH IN D C ATHERTON ADDY ALEKNAG1K 8 AMY ARCO C D B ATHHAR AOE A ALEMEDA C ANACAPA ARCOLA • B C ATHOL ALEX •ADEL A B ANAHUAC D ARD C ATKINSON ADELAIDE ALEXANDRIA C 0 ANA MITE D AROEN B ATLAS AOELANTU B ALEXIS 8 ANAPRA B B ARDENVOIR ATLEE ARBILLA ADELINO B 8 ALFOKD ANASAZI 8 C ATKDRE ADELPHIA C ALGANSEE B ANATONE B D AREOALE AT3KA ADENA AN. VERDE ALGERITA B ARENA C 8 C ATON ADGER 0 ALGIERS C/D ANA HALT A D ARENALES ATRYPA AOIL1S ALGOMA B/D ANCHO A B B ARENDTSVILLE ATS I ON ADIRONDACK ALHAMBRA B ARENOSA ANCHORAGE A A ATTERBERRV A01V B ALICE A ANCHOR BAY D ARENZVILLE B ATTEHAN ALICEL B ADJUNTAS C D ANCHOR POINT D ARGONAUT ATTICA ADK1NS ALICJA ANCLOTE B 8 D ARGUELLO B ATTLEBORO ADLER ALIDA B C ANCO ARGYL E B C ATHATER ADOLPH ALIKCHI ANDERLY 0 B C ARIEL C ATHELL ADRIAN A/D ALINE A ANDERS C ARIZO A ATHOOD ALKO AENEAS B D ANDERSON B ARKABUTLA C AUBBEENAUBBEE AETNA ALLAGASH B B ARKPORT ANDES C B AUBERRY AFTON ALLARD B ANDORINIA D ARLAND C B AUBURN AGAR ALLEGHENY B B A RLE AND OVER D 8 AUBURNDALE AGASSIZ D 0 ANDREEN ALLEMANOS 8 A RUNG D AUDI AN AGATE ANOREESON D ALLEN 8 C ARLINGTON C AU GRES AGAHAM B ALLENOALE C B ARJ.OVAL ANORES C AUGSBURG AGENCY C ALLENS PARK B ANDREWS ARMAGH C 0 AUGUSTA AGER D ALLENSVILLE C ANED D ARMIJO D AULD ALLENTINE AGNER B D ANETH A ARMINGTON D AURA AGNEH B/C ALLENHOOD B ANGELICA ARMO D B AUKORt AGNOS B ALLESSIO B ANGELINA B/0 ARMOUR B AUSTIN AGUA ALLEY 8 C ANGELO C ARMSTER C AUSTWELL AGUAOILLA A ALLIANCE B ANGIE C ARMSTRONG D AUXVASSE AGUA DULCS C ALLIGATOR D A ANGLE ARMUCHEE » Auzaui AGUA FR1A B ALL IS D ANGLCN B ARNEGARD B AVA AGUALT B ALLISON C ANGOLA ARNHART C C AVALANCHE AGUEOA 8 ALLOUEZ C ANGOSTURA B ARNHEIM C AVALON AGUlLITA ALLONAY B ANHALT ARNO D AVERY 0 AGUIRRE B 0 ALMAC ANIAK D ARNOLD 8 AVON A6USTIN ALMENA B C ANITA ARNOT D C/D AVONBURG AHATONE D ALMONT D ARNY ANKENY A A AVONDALE Ha'res & 6.LANK HYDROLOGIC SOIL GROUP INDICATES THE SOIL GROUP HAS NOT BEEN DETER Nl NED TWO SOIL GROUPS SUCH AS B/C INDICATES THE DRAINED/UNDRAINED SITUATION B-2 C C 8 D C D B B B C C D C D B C 8 B B B C B B B C B A C B B C C C C C B B B B A A/D g C D B B D B B B B B/D C B B 0 C B/D C B C C B A B B C/D B B B C/D 0 B C 8 C D B C C 0 0 B C B B 6 C D E Table B-i—Continued AUBREY AXTELL AYAR AYCOCK ATOM AYR AYRES AYRSHIRE AYSEES AZAAR AZARMAN AZELTINE AZFIELD AZTALAN AZTEC AZULE AZHELL D 0 0 B B B 0 C B C C 8 B B B C B BARKER BARKERVILLE BARKLEY BARLANE BARLING BARLOM BARNARD BARNES 6ARNESTON BARNEY EARNHARDT BARNSTEAD BARNUM BARRADA BARRETT BARRINGTON BARRON BARRONETT A BABB BARROWS BARRY BABBINGTON B BARSTOW C 8ABCOCK A BARTH BABYLON BACA C BARTINE BACH 0 BARTLE C BARTLEY 8ACMUS A BACKBONE BARTON A BARTONFLAT 6ACULAN 8AOENAUGH 8 8ARVON BASCOM C BADGER B BASEHOR BADGERTON 0 BASHAW BAOO BASHER C BADUS C BASILE BAGARO BAGDAD B BASIN D BASINGER BAGGQTT B BASKET BAGLEY BAHEM B BASS D BAILE BASSEL C BASSETT BAINV1LLE BAlRO HOLLOW C 9ASSFIELD D BAJURA BASSL&R 0 BASTIAN BAKEOVEN C BASTROP BAKER BATA BAKER PASS A BATAV1A BALAAM BALCH D BATES B BATH BALCDM BATTERSON C BALO C BATTLE CREEK BALDER B/C BATZA 6ALDOCK BALDWIN 0 BAUDETTE B BALOY BAUER BAUGH C BALE 8 BAXTER BALLARO D BAXTERVILLE 6ALLER C BAYAHON 6ALL1NGER B/C BAYARD bALM B/C BAYBORO BALKAN BALON B BAYERTON BALTIC D BAYLOR BALTIMORE B BAYSHORE D BAYSIOE 8ALTU B BAYUCOS BAMBER BAMFORTH B BAYWOOD B BAZETTE BANCAS 8 BAZILE BANCROFT B bEAD BANDERA C BANGO BEADLE B BEALES BANGOR BANGSTON A BEAR BASIN BEAR CREEK A BANKARC A BEAROALL BANKS BEAROEN BANNER C BEARDSTOWN BANNERV1LLE BANNOCK B BEAR LAKE BEARMCUTH D BAN8UETE bARABOQ B BEARPAH SAKAGA C BEAR PRAIRIE BARBARY 0 BcARSKIN bARBOUR B BEASLEY B BARBOURVILLE BtASON BARCLAY BEATON C B BEATTY BARCO 6 BEAUCOUP . BARCUS BtAUFORD 0 BARD C BEAUMONT BAKCtN BtAUREGARD BAaDLt» C BARELA C BEAUSITE D BARF I ELL) BEAUVAIS a BEAVERTUN BARFUSS bAKGc c BECK c BAR1SHMAN BECKER A BLANK HYDROLOGIC NJTtS TMO SJIL GROUPS SUCH AS a c/o C C 8 D C B D B B A B B D D B B C D D B C C D C 8 B C B 0 0 8 D C C c A B B B D 0 B A B B C D C D B C B/C B B B A D C D B/C C 0 A C B C C A B C C C C D A B B D C C C C B D D C B B A C B SOIL B/C BECKET D 8LACKROCK C BERRENDOS BECKLEY BERRYLAND D B BLACKSTON 8ECKTON D BERTELSON B BLACKTAIL BECKHITH BERTHOUD B C BLACKWAT6R BECKWOURTH BERTIE C B BLACKKELL BECREEK B 8ERTOLOTTI 8 BLADEN BEDFORD BERTRANO B C BLAGD 8ED1NGTON B D BERVILLE BLAINE BEONER B BERYL BLAIR C BEEBE A BESSEMER B BLAIRTDN BETHANY 8EECHER C C BLAKE BEECHY BLAKELAND BETHEL 0 B BETTERAVIA C BLAKENEY BEEHIVE BEEK B C BETTS BLAKEPDRT BLALOCK 6EENOM BEULAH B D BEEZAR BEVENT B B BLAME* BEVERLY BE GAY B B BLANCA BEGOSHIAN C B EM 0 BLANCHARD B BEHANIN B BcWLEYVILLE BLANCHESTER BEHEHOTOSH B BEMLIN D BLAND BEXAR C BEHRING 0 BLANDFORD D BEZZANT B BUNDING BEIRMAN BEJUCOS B BIBB B/D BLANEY BIBON A BLANKET BELCHER D BELDtN BICKELTON B D BLA4TON B1CKLETON BLANYON BELDING B C BICKMORE C BLASOELL BELEN C BICONOOA BELFAST C B BLASINGAME BELFIELO D B B I DOE FORD BLAZON BIDDLEMAN C BELFORE B BLENCOE 8IDMAN C BELGRADE B BLEND B D BICMELL BLENDON BELINDA D BELKNAP BIE8ER BLETHEN C A BELLAMY BIENVILLE BLEVINS C D BELLAV1STA D BIG BLUE BLEVINTON A BLICHTON BELLE B 8 1 GEL B I GEL OH C BLISS BELLEFONTAINE B I GETTY C BLOCKTON BELLICUM B BLODGETT A BELLINGHAM BIGGS C B BELLPINE C BIGGSVILLE BLOMFORD BLDOM BIG HORN C BELMONT B B BLQOHFIELO B BIGNELL BEL MORE D BELT BIG TIMBER BLOOMING D BIGKIN D BELTED D BLOOR A BLOSSOM BELTON C BIJOU A BILLETT BLOUNT 6ELTRAMI B BELTSV1LLE BILLINGS C BLOUNTVILLE C B BELUGA D B1NDLE BLUCHER B BINFORD BLUEBELL BELVOIR C B BLUE EARTH BINGHAM BENCLARE C D BLUEJOINT BENEVOLA B1NNSVILLE C B BENEKAH BINS BLUE LAKE C BENFIRLD BINTON C BLUEPOINT C B B BIPPUS BLUE STAR BENGE A BIRCH BLUEMING BEN HUR B BENIN 0 B1RCHUODD C BLUFFDALE B BENITO BIRDOK BLUFFTON D C BLUFCRO BENJAMIN D BIRDS D " 8LY BEN LOMOND B BIRDS ALL BLYTHE B BIRDS BO RO BENMAN A BIRDSLEY D BENNOALE B BDARDTREE B1RKBECK B B3BS BENNETT C A BOBTAIL BENNINGTON D BISBEE BOCK BISCAY C BENOJT D BENSON C/D BISHOP B/C BDDELL B BISPING B09ENBURG BENTEEN B B BENTONVILLE BISSELL BODINE C C BENZ D BISTI B3EL D BEOTIA BIT BOELUS B A BEOWAKE BITTERON B3ESEL D C BERCAIL BITTERROOT B3ETTCHER C BERDA C BQSAN B BITTER SPRING 8 BOJART BEREA BITTON C B1XBY B B BOGUE BERENICETON BERENT BJQRK C BOHANNDN A BLACKLY C BOHEMIAN BERGLANO D B B3ISTFORT BERGSTROH BLACKBURN 6 BERINO C BOLAR B BLACK BUTTE BERKELEY BLACK CANYON D BOLD A BLACKCAP BOLES BERKS C B BERKSHIRE BLACK ETT BOLIVAR 8 BERLIN BLACK FOOT B/C BOLIVIA C BERMESA D BOLTON 9LACKHALL C D BLACKHArfK B3M8AY BERMUOIAN B BLACKLEiF B bERNAL BON D BLACKLEED A BERNALDU B BONACCDRO BLACKLOCK D BERNARD 0 B3VAPARTE BERNARDINO BLACKMAN C C BOND BLACK MOUNTAIN D BOND RANCH BERNARDS! ON C BLACK OAR BERNHILL B C BONDURANT BERNICE A BLACKPIPE C BJME BLACK RIDGE 0 BEKNING C BONG GROUP INDICATES THE SOIL GROUP HAS NOT 3 E E V DETERMINED INDICATES THS OR AI NED/UNDRAINED SITUATID1 NEH Notice U-102, August 1972 B-3 B B B 0 B/D D D B C C C A C B D C 8 A B/D C C B B C A C A C 0 c D B B B B/D D 0 C A 8 C A B D C C e c c D B A B B B C D D B D C D" B B D B B A A e c c B 0 c e c c B C B B B 8 B D A D D B D B Table B-1—Continued BONHAM C BRANDON B BROOKLYN 0 BUSTER C CAMPSPASS BONIFAY A BRANDYNINE C BROOKS IDE C BUTANO C CAMPUS BONILLA B 8RANFORD e BROOKSTON B/D BUTLER D CAMRODEN BONITA D BRANTFORD B BROOKSVILLE D BUTLERTONN C CANA BONN 0 BRANYON 0 BROOMFIELD 0 BUTTE C CANAAN BONNER BRA SHEAR B BROSELEY C 8 CANADIAN BUTTERFIELD C BONNET B BRASSFIELD B BROSS B BUTTON C CAKADICE BONNEVILLE B B RAT TON e 8ROUGHTON 0 BUXIN D CANANDAIGUA BONNICK A BRA VANE D BROWARD C BUXTON C CANASERAGA BONNIE 0 BRAXTON C BROW NELL B BYARS D CANAVERAL BONO D B/D BROWNf IELD BYNUM BRAYMLL A C CANBUHN BONSALL 0 BRAYS D 8ROWNLEE B BYRON A CANDELERO BONTA C BRAY TON BROYLES C B CANE BONTI C BRAZ1TO A BRUCE 0 CABAL LO B CANEADEA BOOKER D BRAZOS A BRUFFY C CABARTON D CASEEK BOOKER B BREA B BRUIN C CABBA C CANEL BOONE A BRECKENRIDGE D BRUNEEL CABBART B/C D CANELO BOONES80RQ B BRECKNOCK e BRUNO A CABEZON D CASEY BOONTON C BREECE B BRUNT C CABIN C CANEYVILLE BOOTH BREGAR C BRUSH D CABINET C CANEZ 60RACHO BREMEN C B BRUSSETT B CABLE D CANFIELD BORAH BREMER A/C B BRYAN A CABO ROJO C CANISTEO B3ROA D BREMO C BRYCAN B CABOT D CAMNINGER BORDEAUX B BREHS A D BRYCE CACAPON B CA«NQN BORDEN B BRENOA C BUCAN 0 CACHE D CA«OE BORDER B BRENNAN B BUCHANAN C CACIQUE C CANONCITO BORNSTEDT C BRENNER c/o BUCHENAU C CADCO D CAKDVA BORREGO BRENT C BUCHER C C CADEVILLE D CANTALA BORUP 6 BRENTON e BUCKHOUSE A CADMUS B CANTON BQRVANT D BRENTMOOD B BUCKINGHAM CADOMA 0 CA1TRIL BORZA C BRESSER CADOR B 6UCKLAND C C CANTUA BOSANKO 0 BREVARD 8 BUCKLE BAR B CAGEY CANUTIO C 60SCO B BREVORT BUCKLEY B B/C CAGUABO D CANYON BREWER BOSKET B BUCKLON C 0 CAGMIN B CAPAC BOSLER B BREUSTER A CAHABA 0 BUCKNER CAPAY B BO'SBUE B BREHTON BUCKNEY C A CAHILL B CAPE BOSS D BUCKS 8RICKEL C B CAHONE C CAPE FEAR BOSTJN C BRICKTON BUCKSKIN C C CAHTO C CAPERS BOSTWICK B BRIDGE BUCODA CAID C C B CAPILLO BRIDGE- HAMPTON B3SNELL 0 B BUOD B CAIRO D CAPLES 60SNORTH 0 BRIDGEPORT C B 6UDE CAJALCO CAPPS C B 60TELLA BR1DGER A B CAJON BUELL A CAPSHAW BOTHKELL C BRIDGE SON B/C B CALABAR BUENA VISTA D CAPULIN BOTTINEAU BRIDGET 8 C 8 BUFF1NGTON CALABASAS B CAPUTA A BOTTLE BRIOGEV1LLE BUFFHEYER B 8 CALAIS C CA»ACO BOULDER B BUFF PEAK BRIOGPORT 8 C CAHAUMPI CALAMINE D EOULOER LAKE D 8 BUICK BRIEDWELL C CALAPOOYA CASBD C BOULDER POINT B BRIEF 8 8UIST B CALAWAH B CARBOL 80ULFLAT 0 BRIENSBURG BUKREEK B CALCO C CARBONDALEBOURNE C BRIGGS A BULLION D CALDER D CA*BU*Y SON C BR1GGSOALE C BULLREY B CALDHELL B ^ARCITY BOWBAC C BRIGGSVILLE C B BULL RUN CALEAST CARDIFF C BOXBELLS ' B A/D BULL TRAIL BRIGHTON B CALEB B CAtDINGTON 60KCOIN D BRIGHTMOOD C BULLY B CALERA C CAftDON BOKORE C BRILL BUMGARD B B CALHI A CAREY BOHERS BRIM C BUNCOMBE A C CALHOUN D CAtEY LAKE BOWIE B BxIMF-IELD B CALICO C/P BUNDO 0 CAAEYTOMN ; B/0 BRIHLEY BOWMAN B BUNDYHAN C CALIFON CARGILL C BRINEGAR BOWMANSVILLE B BUNEJUG C CALIMUS B CAAIBE 80XELOER C BUNKER BRINKERT C D CALITA B CARIBEL BJXWELL C BRINKERTON D BUNSELMEIER C CALIZA B CARIBOU BOY A BRISCOT B BUNTINGVILLE B/C CALKINS C CA*LIN 63YCE B/D BRITE C 8UNYAN 8 CALLABO C CARLINTON BOYD 0 BRI TTON BUR BANK A C CALLAHAN C CARLISLE BR1ZAM BOYER B BURCH A B CALLEGUAS 0 CARLOTTA BROAD BURCHARO BOYNTON C B CALLINGS C CARLOW BOYSAG BROAOALBIN D C BURCHELL B/C CALL OKAY C CARLSBAD BOYSEN BROADAX D BURDETT CALMAR B C B CARLSBORG BROADBROOK BOZARTH C C BUR EN C CALNEVA C CARLSON BOZE B BROAD CANYON B BURGESS C CALOUSE B CARLT3N SOZEMAN A BROADHEAD BURG I C B C ALPINE CARMI B BROAOHURST BRACEV1LLE C D 6URGIN D CALVERT D CARNASAU BRACKEN D BROCK D BURKE C CALVERTON C CARNEGIE BRACKETT C BROCKLISS C BURKHARDT B CALVIN C CARNERO BRAD BURLE1GH 0 BROCKMAN C D CALVISTA 0 CARNEY BRADOOCK C BROCKO 8 BURL ES ON D CAM B CAROLINE BRAOENTON 8/0 CA1R BROCKPORT 0 BURLINGTON A CAMAGUEY D BRADER D BURMA BROCKTON D CAMARGO B CARRISALITOS BRADFORD B BROCKMAY B BURMESTER D CAHARILLQ B/C DARRIZO SRAOSHAW BRODV e C BURN AC C A CAMAS CARSITAS B>.AD«.AY 0 BROE B BURNETTE B CAMAS CREEK B/3 CAKSLEY BRADY B BROGAN B BURNHAM CAM6ERN D C CARSO 6RADYV1LLE C BROGDON B BURNSIOE B CAMBRIDGE C CARS3N BRA HAM B BROLLIAR 0 BURNSVILLE B CAMCEN B CA^STAIRS BRA I NERO B BROMO B BURNT LAKE B CAMERON D CA3STUMP &RAILIER 0 BRONAUGH B BURRIS 0 CAMILLUS B CA*T SAAM B BRONCHO CAMP B BURT D B CARTAGENA SRAMARO BRONSCN B 8 BURTON B CAMPBELL B/C CARTECAY BRAMBLE C BRONTE BUSE B C CAMPHORA B CARUSO 8AAMWELL C BROOKE CAMPIA C BUSH B B CARUTHERSVILLE BRAND D oRGOKFIELO B BUSHNELL C CAMPO C CARVER BRANDENBURG A BRCOKINGS B BUSHVALLEY D CAMPONE CARWILE B/C NOTES A BLANK HYDROLOGIC SOIL GROUP INDICATES THE SOIL GROUP HAS NOT BEEN DETERMINED TNO SOIL GROUPS SUCH AS B/C INDICATES THE ORAI NtD/UNDRAINEO SITUATI3* NEH Notice 14-102, August 1972 B-4 C B C C C/D B D D C C D C C D B B D C C B C C D 8 B B B/D B B B B B D B D D 0 D C C B C B C C B -C D 0 8 D B C D B B D C B B B 0 B A/0 B D C A C B B C C C D C B D A A C D D B C B D C C B A D Table B-l—Continued CARYVILLE CASA GRANDE CASCADE CASCAJO CASCILLA CASCO CASE CASEBIER B C C B 8 B B D C C 0 B B A 0 B B A CENTRAL POINT CERE SCO CERRILLOS CERRO CHACRA CHAFFEE CNAGRIN CHAIX ;ASEY CHALFONT ;ASHEL CHALMERS CHAM A :ASHION CASHMERE CHAMBER CHAMBERINO CASHMONT CHAMISE CASINO CHAMOKANE CASITO CHAM WON CASPAR CASPIANA CHANCE CHANDLER CASS CHANEY CASSAOACA CHANNAHON CASSIA C CHANNIN6 CASS IRQ C CHANT* CASSOLARV B CHANTIER CASSVILLE CHAPIN CASTAIC C CAST ALIA C CHAPMAN CASTANA B CHAPPELL CASTELL C CHARO B CHAR60 CASTILE CASTINO CHAR 1 TON C CHARITY CASTLE 0 CHARLEBOIS 0 CASTLEVALE CHARLESTON CASTNEft C CHARLEVOIX CASTO C CHARLOS CASTRO C 8 CHARLOTTE CASTROV1LLE CHARLTON 0 CASUSE D CHASE CASWELL CHASEBURG B CATALINA CATALPA C CHASEVILLE CHASKA CATANO A CHASTAIN 0 CATARINA CATAULA CKATBURN C CATAMBA B CHATFIELO 0 CHATHAM CATH CHATSMORTH CATMCART C CHAUNCEY D CATHEDRAL B/0 CHAV1ES CATHERINE 0 CHAMANAKEE CATHRO C/0 CHEAOLE CATLETT CHECKETT B CATLIN CHEOEHAP CATNIP 0 CHEEKTOHAGA C CATOCTIN B CHEESEMAN CATOOSA CHEHALEM A CATSKILL C CHEHALIS CATTARAUGUS CHEHULPUM CAUDLE B CHE LAN CAVAL B CHELSEA 0 CAVE 0 CHE MA MA CAVtLT A CHEMUNG CAVE ROCK CHEN CAVO 0 CHE NA CAVQOfc C CAVOUR 0 CHENANGO CHENEY B CAWKER CHENNEBY C CAYAGUA CHENOWETH CAYLOR B CHEOUEST CAYUGA C CAZADERO C CHEREETE CHE R 1 ONI CAZADOR B B CHEROKEE CAZENOVIA CHERRY CEBOLIA C CHERRYHILL CEBONE C B CHERRY SPRINGS CECIL a CHESAM CEOA 0 CHESHIRE CEOARAN CHESHNINA CEDAR 8UTTE c CHESNIMNUS tE DAK EDGE B CEDAR MOUNTAIN 0 CHESTER a CEDARV1LLE CHESTERTON CfcOQNIA a CHETCO C/B CHETEK CEORON a CHEVEiON CELAYA CHEWACLA 0 CELETON c CHENELAH CELINA A/i CHEYENNE CELIO CHIARA CELLAR 0 CHICKASHA CENCOVE a CH1COPEE CENTER c 8 CENTER CREEK CHICOTE CHIGLEY B CENTERFIELD CHILCCTT D CENTERVILLE a CENTRALIA CHI LOS NJTES A BLANK HYDROLOGIC T»0 SOIL CROUPS SUCH AS B A B C C C B B C C B C C B B B B/D B C B B B D C CHILGREN CHILHOHIE CHILI CHILKAT CHILLICOTHE CMILLISOUA9UE CHILLUM CHILMARK CHILD CHILOOUIN CHILSON CHILTON CHI MAYO CHIMNEY CHINA CREEK CHINCH ALL D CHINIAK CHI NO CHINOOK CHIPETA CHIPLEY CHIPMAN CHIPPENY CHIPPEHA CHI QUITO CHIRICAHUA CHI SPA CHITINA C C 8 C C CLARESON COKEDALE C CLAREVILLE COKEL C COKER CLARINOA 0 CLARION B COKESBURY CLARITA D COKEVILLE CLARK COLBATH B B A CLARK FORK COLBERT B CLARKSBURG COLBURN C COLBY B/D CLARKSDALE C CLARK SON COLCHESTER B B D CLARKSVILLE B COLOCREEK CLARNO COLDEN B B 0 CLARY B COLD SPRINSS B CLATO B COLE COLEBROOK B CLATSOP D COLEM4N B/D CLAVERACK C A CLAM SON COLEMANTOWN C B CDLETD B/C CLAYBURN COLFAX B CLAY SPRINGS D COLIBRO D CLAYTON B C C COL I NAS CLEARFIELO CLEAR LAKE D COLLAMER D COLLARD D CLEEK C COLLBRAN B/0 CLE ELUM COLLEEN C/D CLEGG B D CLEMAN COLLEGIATE CLEMS COLLETT B B COLLIER C B CLEMVILLE COLLINGTON 0 CHITTENDEN C CLEORA COLLINS 0 CH1THOOD C CLERF CLERHONT COLLINSTON C CHI VAT 0 D COLLINSVILLE CLEVERLY c CHI HAM A B COLHA CLICK B CHO C COLMOR D CLIFFDOHN B A CHOBEE COLO A/D CHOCK 8/0 CLIFFHOUSE C C3LOCKUM CLIFFORD B B CHOCOLOCCO B CLIFF WOOD COLOMA CHOPA4A C C 'C B CLIFTERSON COLOMBO CHOPTANK A B COLON* CLIFTON C A CHOPTIE 0 B COLON! E B CLIFTY C CHORALMONT COLORADO CLIKARA D CHOSKA B 0 CLIMAX 0 COLOROCK B CHOTEAU C COLQSO C CHRISTIAN C CLIHE C B CHRISTIANA B CLINTON B CDLOSSE CHRISTIANBURG 0 CLIPPER B/C COLP D CHRISTY D COLRAIN B CLOOINE C CtONTAILF COLTON B 8 CHROME C CLOQUALLUM COLTS NECK CHUALAR B C C B COLUMBIA C CLOQUATO C CHUBBS CLOQUET B COLUMBINE 0 CHUCKAMALLA B COLUSA B D B CHUGTER CLOUD CLOUDCROFT D COLVILLE 0 CHULITNA B C3LVIN CHUMMY C/0 CLOUD PEAK C C COLKOOD CHUMSTICK C CLOUD RIM B C COLY CHUPADERA CLOUGH 0 B C COLYER D D CHURCH D CLOVERDALE 3 CLOVER SPRINGS CONER B CHURCHILL 0 D CLOV I S B COMERIO A CHURCHVILLE COHETA B C B CHURN CLUFF CHURNOASHER COMFREY B CLUNIE D D A CLURDE C CONITAS CHUTE CDHLY A D CLURO C CIALES COMMERCE A CIBEQUE B CLYDE 0 COMO B B CIBO 0 CLYMER COACHELLA CIBOLA B B COMODORE C B COMORO B CICERO D COAD C C COAL CREEK D COHPTCHE C I ORAL A CIENEBA C COALMONT C COMPTON CIMA COHSTOCK D C COAMO C CIMARRON C COARSE GOLD D B/C COHUS COATICQOK CDNALB C CINCINNATI C C CONANT A COATS BURG B CINCO D B B CONASAUGA C CINDERCONE COBB CONATA A C1NEBAR B COBEN 0 CONBOY B B CINTRONA D COBEY C1PRUNU C CONCHAS C D COBURG COUH3 B COCHETOPA C CIRCLE C A CONCONULLY B COCOA C1RCLEVILLE C COCO L ALL A CONCORD C 0 C CISNE 0 A c CONCREEK CISPUS CJDOKUS CONDA B A CITICO B CODY CONDIT C C COE A CLACKAMAS COt BURN CONDON C LA I BORNE B C C COtROCK A D CONE B CLAIRE CONE JO CLAIRE MONT B COFF D B COFFE6K 0 CLALLAM C B CONESTOGA CLAM GULCH D COGGCN B B CONESUS CLAMO CGNGAtEE a C COGS* ELL C CLANTDN C COHASSET B CONGER D COHOCTAH B D CDNI C CLAPPER COHOfc CLAREMORE D B CONKLIN D C3NLEN e D COIT C CLARENCE SOIL GROUP INDICATES THE SOIL GROUP HAS NOT SEEN DETERMINED B/C INDICATES THE CikAINEO/UNORAINED S1TUATI31 NEH Notice 4-102, August 1972 B-5 B/C B D D B C/D D B B B B 0 C B/C B C 0 A C B B C B C C C C A B C C C B B B B A B C A B D D A D B A B B A C B/C C B/D B C/0 B B D C A •C C A B B B C C B B C C D 0 C C B 0 B C D C A C B B B B D B B Table B-]—Continued CONLEY C COURT B CROHLEY 0 OANSK IN B DELLROSE CONNEAUT C COURTHOUSE 0 B CROMN DANT D DELI CONNECTICUT COURTLANO B CROUSHAM B DANVERS C DELMAR CONNERTON B COURTNEY D CROZIER C DANVILLE C DELMITA CONOTTON B COURTROCK B D CRUCES DANZ B DELMONT CONOVER B COUSE CRUCKTON C B DARCO A DELNORTE CONOMINGO C COUSHATTA B CRUICKSHAMK C OARGOL D DELPHI CONRAD B COVE D B CRUME DARIEN C DELPHILL CON ROE B COVEILO B CRUMP D DARLING B DELPIEDRA CONSER C/D COVE LA NO CRUTCH C B DARNELL C DELPINE CONSTABLE A COVELLO B/C CRUTCHER 0 DARN EN B DELRAY CONSTANCIA D COVENTRY B CRUZE C DARR A DEL REY CON SUMO B COVEYTOMN C CRYSTAL LAKE B DARRET C DEL RIS CJNTEE D COVINGTON 0 CRYSTAL SPRINGS D OARROCH C DELSON CONTINE C COWAN A CRYSTOLA B DARROUZETT c DELTA CONTINENTAL C COMARTS C CUBA B DART A DELTON CONTRA COSTA C COWDEN 0 CUBERANT B DARVADA 0 DELMIN CONVENT C COMDREY c CUCHILLAS D OARMIN D DELYNDIA COOK D COWEEMAN 0 CUDAHY D DASSEL 0 DEMAST COOKPORT C COMERS CUERO B B DAST C DE MASTERS COOLBRITH B COMETA C 0 CUEVA DAT EM AN C DE MAYA COOL 1 DOE B COHICHE CUEVITAS B 0 DATINO c DENERS COOLVILLE C COMOOD C CULBERTSON 8 DATMYLER DEMKY c COOMBS B COX D C CULLEN DAULTON D OEMONA COONEY B COXVIU.E 0 CULLEOKA B DAUPHIN DEMOPOLIS COOPER COY C D CULLO C DAVEY A DEMPSEY COOTER C COYATA C CULPEPER C DAVIDSON B DEMPSTER COPAKE B COZAD 8 CULVERS c DAVIS B DENAV CRA8TON COPALIS B B CUMBERLAND B DAVISON 8 DENHAHKEN COP ELAND B/o CRAODOCK B CUMLEY C OAVTONE B DENISON COPITA CRADLEBAUGH 8 CUMMINGS D B/D DAMES C DENMARK COPLAY CRAFTON CUNOIYO B C DAHHOO B/D DENNIS B COPPER RIVER D CRAGO CUNICO C DAMSON 0 DENNY COPPERTON B CRAGOLA D CUPPER B DAXTY C PENROCK tOPPOCK B CRAIG C CURANT B DAY D OENTON COPSEY 0 CRAIGMONT C CURDLI C DAVBELL A DENVER C09UILLE C/D CRAIGSVILLE CURECANTI A B DAYTON D DEODAR CORA CRAMER 0 CURHOLLOM D 0 OAYVILLE B/C DEPEM CORAL C CRANE B CURLEM C DAZE D DEPDE CORBeTT B CRANSTON B CURRAN DEACON C B DEPORT CORBIN 8 CRARY C D PER A CURTIS CREEK DEADFALL B CJRCEGA CRATER LAKE C A DEAMA B CURTIS SIDING C DERINOA CORD C CRAVEN B C CUSHING DEAN DERR C COROES B CUSHMAN CRAMFCRO D C DEAN LAKE C DERRICK CORDOVA C CREAL D CUSTER C OEARDURFF B DESAN CORINTH C CREBBIN D DEARY C CUTTER DESART C CORKINOALE B CREDO D C CUTZ DEARYTON B OESCALABRADO CORLENA DEATH AN A CREEDKAN B 0 CUYAMA C DESCHUTES CORLETT B CREEOMOOR c CUYON A DEAVER C DESERET CORLEY C 8 CYAN CREIGHTON D OEBENGER C DESERTER CORN ANT C CRELDON 8 B CYLINDER DEBORAH DESHA D B CGRNH1LL CRESBARO CYNTHIANA DECAN C C/0 0 DESHLER CORNING . D CRESCENT B CYPREMORT C DECATHON D DESOLATION CORNISH B B CRESCO C CYRIL DECATUR B DESPAIN CORNUTT C CRESPIN C DECCA B DETER CORNVILLE B CREST DABOB 8 C DECKER C DETLOR COROZAL C C RES TCI HE 8 DACONO C DECKERVILLE C DETOUR D CORPENING DACOSTA CRESTMORE D DECLQ B DETRA A CORRAL ITOS CRESTON A A DADE DECOR RA B DETROIT CJRRECO CRE SWELL C C OAFTER B DECROSS B DEV CORRERA a CRETE D DAGFLAT C DEE C DEVILS DIVE CORSON c CREVA D A DAGGETT DEEPMATER C DEVOE CURTAOA B CREVASSE A D DAGLUM DEER CREEK C DEVOIGNES CORTEZ D CRE MS 0 OAGOR 6 DEERFIELO B DEVOL CORTINA A CRIDER B DAGUAO C DEERFORD D DEVON CORUNNA D CRIM B DAGUEY C DEER ING B DEVORE B DAHLQUIST CORVALLIS CRISFIELD 6 B DEERLOOGE D DEVOY CORWIN B CRITCHELL 6 C DAIGLE DEER PARK A DEMART CORY C CRIVITZ A DA I LEY A DEERTON B DEMEY CORYDON C CROCKER A DAKOTA B DEERTRAIL C DEMVILLE COSAO C CROCKETT D OALBO B DEFIANCE 0 DEXTER COSH C C ROE SOS C DALBY 0 DEFORO DIA D COSHOCTON C CROFTON B OALCAN C DEGARMO B/C DIABLO COSKI B CROGHAN B DALE B DEGNER C DIAMOND COSSAYUNA C CROOKED C OALHART B DE GREY D DIAMOND SPRINGS COSTILLA A CROOKED CREEK D DALIAN B DE JAR NET B DIAMONDVILLE COTACO C CROOKSTON DALLAM B B DEKALB C OIANEV COTATI CROOM C B DALTON C OEKOVEN D DIANOLA CJT1TO DALUPE C CROPLEY 0 B DELA B DIAZ COTO CROSBY C C DAMASCUS D DELAKE B DIBBLE COTOPAXI A CROSS D DAMON 0 OELANCO DICK C COTT B DANA CROSSVILLE B B OELANEY A DICKEY COTTER B CROSMELL A DANBURY DELANO C B/C DICKINSON 8 COTTERAL CROT DANBY OELECO 0 D DICKSON CJTTIER B CROTOK DA NO RE A 0 C DELENA D DIGBY CJTTONWCI03 CROUCH C B D D6LFINA DANDRIDGE 8 DIGGER COURiLL CROM C C OANGBERG D DELHI A DIGHTON COUCH C CROW CREEK B C DANIC DELICIAS B DILL CJUGAR D DECKS CROWFOOT 6 B DANIELS B/D DILLARD COULSTONE B CROMHEART 0 DANKO 0 DELL C DILLOOMN COUNTS C CROM HEART D DANLEY C DaLEKER 8 DILLINGER COUPEVILLe C CROM HILL OANNEMOftA D C DELLO DILLON A/C NJTES A BLANK HYDROLOGIC SOIL GROUP INDICATES THE SOIL GROUP HAS NOT BEEN DETERMINED THO SOIL GROUPS SUCH AS B/C INDICATES THE DRAINEO/UNDRAINED SITUATION NEH Notice U-102, August 1972 B-6 B D D C B C B C C D A/0 C 8 € C 8 A A B B C D 0 C C 8 B B D C D C 0 0 D C 0 c D D B C C B A C 0 c c B 0 c c B C c c B C 8 D 0 ' C/D B B B D B B 8 C D 0 C c c D C c A A A C c c B 6 C 8 D Table B-1—Continued A DOUGHTY EGBERT EMILY DU PAGE B B/C B DOUGLAS DUPEE C EGELAND B EMLIN DOURO B OUPL1N EMMA C EGGLESTON B DOVER B EGNAR DUPO C C EMHERT OOVRAY 0 DUPONT D EICKS C EMMET DOW B DUPREE D E1FORT C EMM3NS B DOWAG1AC EKAH EMORY DURALDE C C C OOWDEN DURANO 6 EKALAKA B EMPEORADO DOHELLTON D DURANT D ELAN A EMPEY B DOWNER OURELLE B ELBERT D ENPEYVILLE DOWNEY B DURHAM B ELBURN B EMPIRE B DOWNS EMRICK DURKEE C ELCO B DOXIE C OUROC B B ENCE ELD DOYCE C B DURRSTEIN 0 ELDER ENC1ERRO DOYLE A ELOER HOLLOW ENCINA DUSTON B D DOYLESTOWN 0 DUTCHES S B ELDERON B ENDERS DOYN C OUT SON ENDERSBY 0 EL DON B CUT TON DRA C D ELDORADO C ENDICOTT DRACUT C DUVAL B ELDRIDGE ENET C DRAGE B OUZEL B ELEPHANT D ENFIELD DRAGOON B ELEROY OWIGHT D B ENGLE C DRAGSTON A ELFRIDA B DWYER ENGLESIDE ORAHAT 0 DYE ELIJAH 0 C ENGLEWOOO DRAIN D EL10AK ENGLUNO DYER C B DYKE DRAKE B ELK B ENNIS ELKADER DRANYON 8 0 B DYRENS ENOCHVILLE DRAPER C ELKCREEK C ENDLA B DRESDEN EACHUSTON 0 ELK HOLLOW B ENON C DRESSLER EAO C ELKHORN B ENDREE B EAGAR B ELKINS D DREWS ENDS B E AG L EC ONE ELKINSVILLE DREXEL B B ENOSBURG DRIFTON C ELKMOUND EAKIN B C ENSENADA 00 AK B B ELK MOUNTAIN B ENSIGN DRIGGS EAMES DRUM C D ELKOL D ENSLEY DO BBS EARLE ELKTON DRUMMER B D ENSTROM DO B EL EARLMONT B/C DRUMMOND D DOBROM EARP B ELLABELLE B/D ENTENTE DRURY OOBY 6 EASLEY D ELLEDGE C ENTERPRISE DRYAD C ELLERY OOCAS e EAST FORK D ENTIAT C OR r BURG B A ENUMCLAW DOCKERY C EAST LAKE ELLETT D OOCT 8 DRY CREEK C ELLIBER A EPHRAIM EASTLAND C B EAST ON ELLICOTT EPHRATA B DRYDEN C 'A DODGE DRY LAKE C B EPLEY B A ELLINGTON OOOGEY1LLE EASTONVILLE B EAST PARK ELLINOR OODSON C DUANE 0 C EPOUFETTE A DUART C EASTPORT A ELLIOTT C EPPING 03GER C DUBAKELLA C EATONTOWN ELLIS D EPSIE DOGUE DUB AY D B/0 ERA B ELLISFORDE C DOLANO EAUGALLIE ERAM C DUBBS B EBA ELLISON B DOLE C ELLOAM DOLLAR B DUBOIS C EBBERT D D ERBER OOLLARO C B B ELLSBERRY C ERIC DUBUQUE EBBS DUC ET B B ELLSWORTH EBENEZER C C ERIE DOLORES B ELLUM ERIN DOLPH DUCHESNE ECCLES B C C OUCKETT C ELMA B ERNEST DOMEZ C ECHARD C DUC OR D ECHLER B ELMDALE B ERS3 DOMINGO C DUDA A D D ERRAMOUSPE C ECKERT ELMENDORF OOMINGUEZ ESCA30SA DUDLEY D B A A ECKLEY ELMIRA DOMINIC B DOMINO C DUEL ECKMAN B ELMO C ESCAL A DUELM C 0 ELMONT 8 ESCALANTE DIM IN SON ECKRANT DUFf AU B B ELMORE B ESCAMBIA DONA ANA ECTOR D D ESCONDIDO C DUFFER EDALGO C ELM WOOD C DONAHUE DUFF I ELD B ELNORA B ESM3N3 DONALD B EDDS B DUFF SON B EDDY ELOIKA B ESPARTO DONA VAN b C B DUFFY EDEN C ELPAN D ESPIL DONEGAL B C DUFUR EDENTON EL PECO C ESPINAL DONERAIL C 03NEY DUGGINS D D EL RANCHO B ESPLIN C EOENVALE D ESPY DONICA A DUGOUT EDGAR B ELRED B/D DUG WAY DONLONTDN D EDGECUM8E B B C ELROSE ESOUATZEL A D EOGELEY A DONNA DUKES C ELS ESS 00 UN AN OULAC EDGE MONT C B ELSAH B ESSEN C B ESSEX DONNA ROO B DUMAS EDGEWATER C ELSINBORO B 0 DUMECQ C EDGEUICK B ' A DQNNYBROOK ELSINORE ESSEXVILLE DONOVAN CUMONT B B EDGE WOOD A ELSMERE A ESTACA30 DUNBAK D 030LEY A EOGINGTON C ELSO D ESTELLINE DOOMfc DUMBARTON C B EOINA EL SOLYO C ESTER D B DUNBRIDGE B B ESTERBROOK DOOR EDINBURG C ELSTON D DUNCAN D EDISON ELTOPIA B OJRA B ESTHERVILLE 8 DUNCANNON B OORAN C EDISTO C ELTREE ESTIVE DUNCGM D EDITH D ESTO DORCHESTER B A ELTSAC D DUNOAS C ELWHA B ESTRELLA DOROSHIN EDLUE 8 DUN (JAY A ETHAN C DOROTHEA C EDMONJS D ELWOOD ELY B 0 DUNDEE C ED MORE: D ETHETE D3ROVAN ELYS I AN B B a DUNELLEN EDMUND C ETMRIDGE DORS A ELZINGA B DORSET B DUNE SAND EDNA C ETIL B EMBCEN B ETNA DOS CABEZAS C DUNGENESS EDNEYVILLE B DUN GLEN C EOOM EMBRY B DOSS C C ET3E UUSSMAN B DUNKINSVILLE B EDROY 0 EMBUDO B ET3WAH DUNKIRK B EMOENT ETOWN OOTEK a EOSON C C B DOTKAN B DUNLAP EDWARDS B/0 EMER C ETSEL DUNHGRE DOTTA 6 B EEL C EMERALD B ETTA DOTY 6 DUNNING C EFFINGTON 0 EMERSON ETTER B DUNPHY D A DGUBLETOP B EFWUN EM I DA D ETTERSBURG DOUOS DUNUL A B EGAM C EMIGRANT 8 ETTRICK DOUGHERTY A B DUNVILLE EGAN B EMIGRATION 0 EU8ANKS NJTES A BLANK HYDROLOGIC SCIL GROUP INDICATES THE SOIL GRUUP HAS NOT SEE* DETERMINED TWO SOIL GROUPS SUCH AS B/C INDICATES THE ORAINED/UNORAINED S1TUATI3* DILLWYN OILMAN OILTS OILWORTH D1MAL OIMYAM DINGLE DINGLISHNA DINKELMAN OINKET OINNEN OINSDALE 01 NUBA OINZER OIOX1CE DIPMAN OIOUE OiSABEL DISAUTEL DISCO DISHNER OUTER HErF D1TCHCAMP DITHOO DIVERS DIVIDE DIX DIXIE OIXKONT OIXMORE DIXONVILLE DIXVILLE A C 0 0 0 C B D B A B B B/C B B 0 B 0 B B D C C C B 8 A C C B C A B C D D 0 NEH Notice U-102, August B-7 1972 B B C A B C B C B C C B B D B C B C B 8 B 8 C D B B/0 B C D B 0 B 0 D B B B D C C B B D D D B C C B C B C B C C B B C C 8 B D A D C B B C C D B B D B B C B B B B C A B B B 0 C B B D B Table B-]—Continued EUDORA EUFAULA EUREKA EUSTIS EUTAW EVANGELINE EVANS EVANSTON EVARO EVART EVENDALE EVERETT EVERGLADES EVERLY EVERMAN EVERSON EVESBORO EUA EWAIL EWALL EWINGSVILLE EXCELSIOR EXCHEQUER EXETER EXLINE EXRAY EXUH EYERBOW cYRE B A D A 0 C B B A 0 C B A/0 B C D A B A A B B D C/D D D C 0 B FE 0 FLOWELL C FRENCH C OARLOCK FEDORA B FLOWEREE B FRENCHTOWN D GARNON FELAN A FLOYD B FRENEAU C GARMORE FELOA B/0 FLUETSCH C FRESNO C/D GARNER FELIOA 8 FLUSHING FRIANA D CARD FELKER D FLUVANNA C FRIANT GARR D FELLOWSHIP D FLYGARE 8 FRIDLO C GARRARD FELT B FLYNN D FRIEDMAN B GARRETSON FELT* C FOARD D D FRIENDS GARRETT FELTHAM A FOGELSVILLE B FRIES D GARRISON FELTON B FOLA B FRINDLE B GARTON FELTONIA 8 FOLEY D FRIO B GAMIN FENCE 8 FONOA D FRIZZELL C GASCONADE FENDALL FOND IS C . C F ROB ERG D GAS CREEK FENWOOO B FONTAL D F ROHM AN C GASKELL FERA C FONTREEN B FRONDORF C GASS FERDEIFORD C FOPIANO D FRONHOFER c GASSET FER01S c FORBES B FRONTON 0 GATESBURG FERDINAND c FORD D FROST D GATESON FERGUS FORDNEY B A FRUITA B GATEVIEW FORDTRAN FERGUSON B FRUIT LA NO C B GATEWAY FERNAMOO B FORDVILLE 8 FRYE C GATEWOOD FERN CLIFF B FORE 0 FUEGO GAULOY C FERNOALE B FORELAND 0 FUERA GAVINS FERNLEY FORELLE C 8 B GAVIQTA FUGAWEE FERNOW 8 FORESMAN B FULCHER C GAY FERNPCINT C FORESTDALE 0 FULDA C GAYLORO FERRELO B FORESTER C FULLERTON B GAYNOR FERRIS 0 FORESTON C FULMER B/0 GAYVILLE FERRON 0 FORGAY A FULSHEAR C GAZELLE FABIUS FERTAIINE B 0 FORMAN B FULTON D GAZOS FESTINA 8 FACEVILLE B FORNEY FUQUAY D B GEARHART FAHEY B FETT FORREST D C B/D GEARY FURNISS FAIN FETTIC C D FORSEY FURY C B/D GEE F UNDER FAINES A C FORSGREN C FUSULINA C GEEBURG B FAIRBANKS FIBEA D FORT COLLINS B GEER FIDALGO FAIRDALE S FORT DRUM GEFO C C GAASTRA C FAIRFAX B FIDDLBTOHN CABAL DON C FORT LYON B B GELKIE FORT MEADE FAIRFIELO B FIDOYHENT C A GABBS D GEM FAIRHAVEN B FIELOING 8 FORT MOTT A GABEL C GEMID FAIRMOUNT D FIELOON 8 FORT PIERCE C GABICA D GEMSON FAIRPORT C FIELOSON A FORT ROCK C GACEY D GENE SEE FAIRYDELL C FIFE FORTUNA B 0 GACHADO D GENEVA FAJARDO C FIFER D FORTWINGATE C GADDES C GENOA FALAYA C F1LLMORE D FORWARD C CADES G GENOLA FALCON D FINCA.STLE FOSHOME C B GADS DEN D GEDRGEVILLE FALFA FIN6AL POSSUM C B GAGE C GEORGIA A FINLEY FALFURRIAS B FOSTER B/C GAGEBY 8 GERALD FALK B FIRESTEEL B FOSTORIA B GAGETOWN C GERBER FIRGRELL FALKNER B FOUNTAIN C D GAHEE a GERIG FIRMAGE FALL B 8 FOURLOG D GA1NESc GERING B/C FIRO FALLBRQOK 0 FOURMILE B GAINESVILLE A GERLANO FALLON FIRTH C B/C FOUR STAR B/C GALATA D GERMANIA FALLSBURG C FISH CREEK 8 FOUTS 8 GALE B GERMANY FALLSINGTON D FISHERS 8 FOX B GALEN B GERRARD FANCHER FISHHOOK FOXCREEK C 0 B/D GALENA C GESTRIN FANG B FISHMLL FOX MOUNT C GALEPPI GETTA C FANNIN B FITCH A FOXOL D GALESTOWN A GETTYS FANNO FOX PARK C FITCHVILLE C GALETON D D GEYSEN FOX PARK FANU C FITZGERALD B 0 GALEY B GHENT r FARADAY FITZHUGH B B FOXTON C GIBBLER GALISTEO FARALLONE FRAILEY 8 FIVE DOT B B B GALLAGHER GIBBON FARAWAY 0 FIVEMILE B FRAM B GALLATIN A GIBBS 0 FARB FIVES B FRANCIS A GALLEGOS B GIBBSTOKN FARGO 0 FLAGG B D FRANCITAS GALL I NA C GIFFIN FARISITA FLAGSTAFF C C FRANK D GALL I ON B GIFFORD FARLAND B FLAK B FRANKFORT 0 GALVA B GILA C/D FLAMING FARMINGTON B FRANKIRK GALVESTON C A GILBY FARNHAM B FLAMINGO FRANKLIN D B GALVEZ C GILCHRIST B/C FLANAGAN FARNHAMTON B FRANKSTOWN B GALVIN C GILCREST FARNUF B FLANDREAU B FRANKTOWN D GALWAY B GILEAD FARNUM B FLASHER A FRANKVILLE B GAMBLER A GILES FARRAGUT C FLATHEAO A FRATERNIDAD D GAMBOA B GILFORD FARRAR B FLAT HORN B FRAZER C GANNETT D GILHOULY FARRELL B FLATTOP 0 FRED 0 C GANSNER GILISPIE FARRENBURG B FLATWILLOW B FREOENSBORG D C GAPO GILLIAM FLAX TON FARROT A C FREDERICK B B GAPPMAYER GILLIGAN FARSON B FLEAK A FREDON GARA C B GILLS FARWELL C FLECHAOO B FREDON1A C GARBER A GILLS9URG FASKIN a FLEER D FREDRICKSON C B GIL1AN GARBUTT FATIMA B FLEETHOOO FREE BURG C GARCENO C GILMORE FATTIG c FLEISCHMANN 0 D GARDE LL A D FREECE GILPIN FAUNCE A FLEMING FREEDOM C C GARDENA B GILROY FAUQUIER FLETCHER C B FREEHOLD B GARDINER A GILSON FAUSSE D D B FLOKE FREEL GARDNER'S FORK B GILT EDGE FAWCETT C FLOM C FREEMAN C D GARDNERVILLE GINAT FAWN B FLOMATION A FREEMANVILLE B A GAR DONE GINGER FAXON D FLOMOT B FREE ON CAREY B C GINI FAYAL FLORENCE C C FREER C GARFIELD C GINSER FAYETTE B FLORESVILLE C FREESTONE C GARITA c GIRARDOT 8 FLORIDANA FAYETTEV1LLE B/D FREEZE NER C GARLAND B GIRD FAYWOOD C FLORISSANT C A FREMONT C GARLET GIVEN NOTES A BLANK HYDROLOGIC SOIL GROUP INDICATES THE SOIL GROUP HAS NOT B E E N DETERMINED TWO SOIL GROUPS SUCH AS fl/C INDICATES THE DRAINED/UNORAINED SITUATION c NEH Notice U-102, August 1972 B-8 C C B D 0 D B B B 8 C C D C C D D A C B C D B C 0 0 B C B 0 B A B B C C A B C C C B C 0 8 B B D D B B C B D B C C 0 C C 8 D A C C B B B B C B B/D B C C B C C B C C C B D 0 C B C D A C Table B-l—Continued GOTHARD GLADDEN A GROWDEN HAMBRISHT 0 HASTINGS GLADE PARK GOTHIC GROWLER C HAMBURG B HAT GOTHO HAMBY GLADSTONE B GRUBBS HATBORO C GLADWIN GOULDING GRULLA A HAM EL HATCH C GOVAN GLAHIS GRUMM1T C HAMERLY C HATCHERY GRUNDY GLANN B/C GOVE A HAMILTON HATFIELO GLASGOW GOWEN GRUVER HAMLET C B HATHAWAY GLEAN B GRABE GRYGLA HAMLIN B HATTIE GLEASON GRABLE HAMMONTON C GUADALUPE C HATTON GRACEMONT GUAJE GLEN B HAMPDEN HAUBSTADT GLENOAR B GRACEVILLE GUALALA C HAMPSHIRE HAUGAN GRADY GUAMANI HAUSER GLENBERG B HAMPTON C HAMTAH GLENBROOK GRAFEN GUANABANO c HAVANA 0 GRAF TON HANA A HAVEN GLENCOE GUANAJ180 0 GRAHAM HANALEI GLENDALE B GUANICA C HAVERLY A B GRAIL GUAYABO HANAMAULU HAVERSON GLENDIVE GLENDORA GRAMM B HAVILLAH D GUAYABOTA HANCEVILLE D GRANATH GUAYAMA HANCO GLENELG B HAVINSDON GLENP I ELD HAVRE GRANBY A/0 GUBEN HAND B D GLENFORO GRANDE RONDE 0 GUCKEEN HANDRAN C HAVRELON C D B GUELPH HAN GLENHALL B HANDSBORO GRANOFIELD HANDY GRANDV1EW D HAWES GLENHAM B C GUENQC HANEY HAWI C GUERNSEY B GRANER GLENMORA C GRANGER C GUERRERO HANFORO 8 HAMKEYE GLENNALLEN C B/C GUEST HANGAARO C HAWKSELL SLENOMA B GRANGEVILLE HANGER 8 GUIN B HAHKSPRINGS GRANILE GLENROSE 8 B GRAND GULER HANIPOE HAXTUN GLENSTED 0 HANKINS GULKANA C HAYBOURNE GRANT GLENTON B B HAYBRO GUMBOaT HANKS GRANTSBURG GLENVIEW B HANLY A HAYOEN GUNBARREL GLENVILLE C GRANTSDALE HANNA GUNN B HAYESTON a GRANVILLE GLIDE HANNUM GUNNUK D HAYESVILLE a GRAPEVINE GLIKON HANOVER C HAYFIELO GRA SMERE GUNSIGHT GLORIA c HANS HAYFORD GRASSNA GUNTER C A GLOUCESTER HAYHONO HANSEL GURABO C GLOVER C/D GRASS.Y BUTTE HANSKA GURNEY c HAYNESS GLYNDON B GRATZ A GUSTAVUS HANSON HAYNIE GRAVD6N GLYNN C HANTHO B GUST IN HAYPRESS GRAVE GOBLE C HANTZ D HAYSPUR GRAVITY GUTHRIE GODbARO B GUY TON HAYTER HAP B GRAYCALM D GODDE HAYTI HAPGOOD B GRAYFORD GWIN 0 GOOECKE HAPNEY HAYWODD C GRAYLING GWINNETT GODFREY C KARBORD HAZEL B GRAYLCCK GYMER D GODWIN HAZEL*IR GYPSTRUM HARBOURTON GRAYPOINT GOEGLEIN C HARCO B HAZEN GRAYS GOESSEL D HACCKE B HAZLEHURST HARDEMAN GREAT BEND GOFF C HAROESTY B HAZLETON GREELEY HACIENDA GOGEBIC B HARDING D HAZTQN HACK GREEN BLUFF GOLBIN C HEAOLEY HARDSCRAB6LE B HACKERS GOLCONDA O GREENBRAE HARDY D HEADQUARTERS HACKETTSTOWN GOLD CREEK GREEN CANYON D HEAKE HADAR HARGREAVE B B GREENCREEK GOLOtNOALE HEATH MARKERS C GREENDALE HADES GULDFIELD. B HARKEY HEATLY HADLEY B B GREENFIELD G3LOHILL B HAOO KARLAN HEBBRONVILLE GREENHORN GOLDMAN C HEBER HAGEN HARLEM C GREENLEAF B GOLDRIDGE HEBERT HAGENBARTH HARLESTON C A GREENOUGH GOLDRUN HARLINGEN D HAGENER HEBGEN GOLDSBORO C GREENPORT HEBO HAGER HARM EH. C GREEN RIVER GOLDSTON c C HARMONY HEBRON GJLDSTREAM D HAGERMAN GREENSBORO HARNEY HECHT GREENSON C HAGERSTOWN GOLDVALE C HECKI HAGGA HARPER D GREENTON GOLOVEIN C HARPETH B HECLA HAGGERTY GOLIAD GREENVILLE C HECTOR ' HARPS B HAGSTADT GREENWATER GOLLAHER A C HAGUE HARPSTER HEDOEN GOLTRY A GREENWICH HARPT B HEDRICK GREENWOOD HAIG B GOMEZ HAIKU HAROUA C HEDVILLE GOMM GREER D D GREGORY HAILMAN HARRI ET HEGNE GONVICK B B GREHALEM HAINES B/C HARR I MAN HEIOEN G30CH 0 C HARRIS D HEIDTKAN GRELL HA I RE GOODALE C HEIL HALAWA D GRENADA HARRISBURG GOOD ING C HARRI SON HALOER C HEIMDAL GJODINGTON C GRENVILLE GRESHAM HARRISVILLE C HEISETON GOODLOW B HALE GREWINGK HALEDGN B B HARSTENE HEISLER GOOilMAN GREYBACK HALEIWA HARST INE HEIST C GOODRICH B HALEY D HE1TT GRcYBULL HART D GOODSPRINGS HEITZ HART CAMP C GREYCLIFF HALF MOON GOOSE C R E E K B A GREYS HALFORO HARTFORD HEIZER D GOOSE LAKc HALFWAY 8 HELOT GRIFFY HART 16 GUOSHUS B B HELEMANO GOktJ GRIGSTON HALGAITOH HARTLAND B HAL 11 GRIMSTAD HARTLETON B HELENA D CORDON B GRISWOLD HARTLINE HELMER HALIIMAILE GORE 0 B GRITNEY HALIS HARTSBURG HELVETIA GJKGUNIO A B HELY GORHAM GRIVER HALL HARTSELLS B HARTSHORN B GRIZZLY HALLECK HEMBRE GORIN C HEHNl HALL RANCH HARVARD B GORING GROGAN C HARVEL B GORMAN HALLVILLE HEMPFIELD 6 GkOSECLOSE C HALSEY HARVEY GROSS HEHPSTEAO GORUS A GROTGN HARWOOD C HENCRATT HAMACER GORZELL B HASKI GOSHcN B HENDERSON GROVE HAMAKUAPOK3 B A HA MAN D GROVELANO HASKILL HENDRICKS GOSHUTE HASKI NS GROViR HA MAR C GOSPORT HENEFER C GROVETON . C HENKIN GJTHAM HAMBLEN HASSELL A A BLANK HYDROLOGIC SOIL GROUP INDICATES THE SOIL GROUP HAS NOT SEEM DETERMINED NOTES TWO SOIL GROUPS SUCH AS B/C INDICATES THE DRAINEO/UNDRAINED SITUATI3* NEH Notice H-102, August B-9 1972 B/0 B D 8 C D 8 C B 0 B B 0 C A B B C A D C C C B D C B D 0 D C D B B 8 B C D 0 C C c c c B B C C B B B C B Table B-]—Continued HENLEY C HOBOG 0 HORD B HYAT A IZAGORA HEMLINE C HOB SON C HOREB B HYATTVILLE C IZEE HENNEKE 0 HOCHHEIH B HORNE D HYDABURG D HENNEPIN B HOCKING B HORNELL 0 HYDE 0 JABU HENNINGSEN C HOCK1NSON C HORNING A HYDRO C JACAGUAS HENRY 0 HOCKLEY C HORNITOS D HYMAS D JACANA HENSEL B HODGE B HORROCKS B HYRUM B JACINTO HEN SHAH C HODGINS C HORSESHOE B HYSHAM D JACK CREEK HENSLEY D HODGSON HORTON C B JACKLIN HEPLER 0 6 HOE BE HORTONVILLE B IAO C JACKNIFE HERBERT B HOELZtE C HOSKIN C IBERIA D JACKPORT HEREFORD B HOFFMAN C HOSK1NNINI 0 ICENE C JACKS HERKIMER B HOFFMANVILLE c HOSLEY D IDA B JACKSON HERLONG 0 HOGANSBURG KOSHER B C IOA8EL B JACKSONVILLE HERH1STON B HOG EL AND B HOTAW I OAK C B JACOB HERHON A HOGG C HOT LAKE C I DANA C JACOBSEN HERNOON B HOGRIS B HOUDEK B IDEON D JtCOBY HERO B HOH B HOUGH TON A/D IOMON B JACQUES HERRERA A HOHMANN C HOUK C IGNACIO C JACuUITH HERRICK C HOKO C HOULKA I GO D 0 HERRON HOLBROOK B B HOULTON C/0 IGUALDAD 0 JAFFKEY HERSH A HOLCOMB D HOUNDBY D IHLEN 0 JAGUEYES HERSHAL B 10 HOLDAWAY 0 HOURGLASS B IJAM 0 JAL HESCH B HOLDEN A HOUSATONIC D ILDEFONSO B JALMAR HESPER C HOLDER B HOUSE MOUNTAIN 0 ILKA B JANES CANYON B HESPERIA HOLDERMAN C HOUSEVILLE C ILL I ON B/D JAMESTOWN HESPERUS B HOLDERNESS C HOUSTON D IMA B JANE HESSE C HOLDR6GE B HOUSTON BLACK D IMBLER B JANISE HESSEL 0 HOLLAND B HOVDE A/C 1MLAY C JANSEN HESSELBERG 0 HOLLINGER B HOVEN 0 IMMOKALEE B/D JARAB HESSELT1NE B C/0 HOVENMEEP HOLLIS C IMPERIAL 0 JARBOE HESSLAN C HOLLISTER 0 HOVERT D INAVALE A JARITA HE S SON C HOLLOMAN c HOVEY C INOART B JARRE HETTINGER HOLLOHAY 0 A HOWARD B INOIAHOMA D JARVIS NEXT 8 HOLLY 0 HOWELL C INDIAN JASPER HEZEL B HOLLY SPRINGS D HOW LAND C INDIAN CREEK D JAUCAS HIALEAH HOLLYWOOD 0 0 HOYE B INDIANO C JAVA HIAWATHA A HOLMDEL C HOYLETON C A INOIANOLA JAY HIBBARO 0 HOLMES B I MOID HOY P US A B JAYEM NIBBING HOLOMUA C B HOYTVILLE 0 INGA B JAYSON HIBERNIA C HOLOPAU B/D HUBBARO A B INGALLS JEAN HICKORY C HOLROYO HUBERLY D 1NGARO 6 JEANERETTE HICKS a HOLS1NE HUBERT B 1NGENIO C JEAN LAKE HIDALGO B HOLST HUBLERSBURG C INGRAM D JEDD HIDEAWAY 0 HOLSTON HUCKLEBERRY C INKLER B JEDDO HIOEWOOO c HOLT HUDSON C INKS D JEFFERSON HIERRO c HOLTL6 HUECO c INMACHUK D JEKLEY HIGHAMS 0 HOLTVILLE • HUEL A INMAN C JELM KI6HFIELD B HOLYCKE C/0 HUENEME B/C I NMD A JENA HIGH GAP C HOMA c HUERHUERO D INNESVALE D JENKINS HIGHLAND B HOME CAMP c HUEY D INSKIP C JENKINSON HIGHNORE B HOME LAKE B A HUFFINE INVERNESS D JENNESS HIGH PARK HOMER B C MUGGINS C B INVILLE JENNINGS HIHIMANU A HOMESTAKE D HUGHES B INWDOD C JENNY HIIBNER HOMESTEAD C B HUGHESVILLE B 10 B JERAULD HIKO PEAK B HONAUNAU C HUGO B IOLA A JERICHO HIKO SPRINGS 0 HONCUT B HUICHICA C/D IOLEAU C JEROME HILDRETH 0 I ON A 0 .A HONDALE HUIKAU JERRY 8 HILEA 0 HONDO C HULETT B IONIA B JESBEL MILES B B HONDOHO HULLS C IOSCO B JESSE CAMP HILGER 6 HONEOYE B HULLT IPAVA 6 JESSUP B HILGRAVE B HONEY 0 HULUA D IRA JETT C HILLEHANN HUM C HONEYCftOVE C B IREDELL JIGGS 0 HILLERY 0 HONEYV1LLE C HUMACAO B IRETEBA JIN C HILLET 0 B HONN HUMATAS IftlM C C JIMENEZ H1LLFIELO B HONOKAA A HUMBARGER 8 IR0CK B JIMTOWN HILLGATE 0 HQNOLUA 6 HUMBIRD C IRON BLOSSOM 0 JOB MILLIARD a HONOMANU B HUMBOLDT D IRON MOUNTAIN JOBOS P HILLON B HONOULIULI 0 HUMDUN B IRON RIVER B HILLSBORO B HONUAULU A HUME C IRONTON JOCKO C HILLSOALE B HOOD B HUMESTON C IRRIGON C JOOERO HILMAR C/0 HOODLE B HUMMINGTON C IRVINGTON JOEL ' C HILO HOOD SPORT A C HUMPHREYS 6 IRWIN 0 JOES HOOOVIEW HILT B 6 HUMPTULIPS B ISAAC JOHNS HILTON B HOOKTON C HUNSAKER B/C ISAAC UAH B/C JOHNSBURG HINCKLEY A HOOLEHUA B HUNTERS I SAN B D JOHNSON MINDES C HOOPAL D ISANT1 HUNTING C 0 JOHNSTON HINES6URG C HOOPER D HUNTINGTON B ISBELL C JOHNSWOOD D HINKLfc HOOPESTON B HUNTSVILLE B ISHAM JOKE HINMAN C HOOSIC A HUPP B ISHI PISHI JOLAN c HINSOALE HOOT 0 B HURDS ISLAND JOLIET B HINTZE 0 HOOTEN 0 HURLEY D ISDN B JONESVILLE HIPPLE C HOOVER B HURON C ISSAOUAH B/C JONUS HISLE 0 HQPEKA D HURST 0 ISTOKPOGA D JOPLIN HITT B HOPE TON C HURWAL B ITCA D JOPPA HI VISTA C HOPEWELL HUSE C ITSWOOT B JORDAN KI4ASSEE B C HOPGOOD HUSSA B/D IUKA JORGE C A MI WOOD HOPKIKS B D IVA HUSSMAN JORNADA C HOPLEY HIXTON B B HUTCHINSON C IVAN JORY B HO BACKER B HOPPER B HUT SON B IVES B JOSE HDBAN C HOQUIAM a HUXLEY D IVIE A JOSEPHINE HOBBS B HORATIO D HYAM 0 IVINS C JOSIE NJTES A BLANK HYDROLOGIC SOIL GROUP INDICATES THE SO IL GROUP HAS NOT BEEN DETERMINED T«0 SOIL GROUPS SUCH AS B/C INDICATES THE ORAI NEO/UNDRAINEO SITUATD* JA:WIN JO:ITY c c NEtt Notice U-102, August 1972 B-10 C c c 8 D 8 A B C D c B C 0 0 c c c B A 6 B A B/C C C c A D C C B B . B A B C B D A D B C D B C D B B D B C D D C C C D C C B C c c c c c B A B B B C D B B/D B D C C A B B B D B C C C B B Table B-l—Continued JOY JUAN A DIAZ JUBILEE JUOD JUDITH JUOK1NS JUOSON JUDY JUGET JUGHANDLE JULES JULESBURG JULIAETTA JUMPS JUNCAL JUNCOS JUNCTION JUNEAU B B C D B C B C D B B A B B C D B B KARNAK KARNES KARRO MRS KARSHNER KARTA KARTAR KASCHN1T KASHUITNA KASILOF KASK1 KASOTA KASSLER KASSON KATAMA KATEMCY KATO KATRINE HA TULA J UN I ATA B KATY JJN1PERO C JUNIUS KAUFMAN B KAUPO JUNO KAVETT JUNOUITOS C JURA KAHAIHAE C KAWAIHAPA1 JUVA B JJVAN D KAWBAtiGAM KANICH A KANKAHLIN KAALUALU KACHEMAK B KEAAU 0 KEAHUA KADAKE B KEALAKEKUA KADASHAN KEALIA KAOE C B KEANSBURG KADIN B KADOKA KEARNS 0 KEATING KAENA D KEAUKAHA KAHALUU B KANAKA KEAHAKAPU B KEBLER KAHANUI B KECH KAHLER B KECKO KAHOLA 0 KEDRON KAH SHEETS D KEEPERS KAHUA D KEEGAN KAIKL1 A KAILUA KEE1 A KEEKEE KA1KU KEELOAR A KAINALIU HAJPOIOJ B KEENE A KEENO KAlMiKI B KEESE KALAE a KEG KALALOCH KEHENA KALANA KEIGLEY B KALANA ZOO B KEISER KALAPA KALAUPAPA 0 KEITH KEKAHA KAL1FONSKY D D KEKAKE KALIHI A KELLER KALISPELL A KELLY KALKASKA KELN B KALMIA D KELSEY KALOKO KELSO KALOLOCH B 0 KELTNER KALSIN B KELVIN KAMACK A KAKAKOA KEMMERER KAMAOA B KENDO KAMAOLE B KEMPSVILLE KAMAY D KEMPTON KENAI B KAMIE KENANSV1LLE KAMRAR B B KENDAIA KANABEC B KANAKA KENDALL A/0 KENOALLVILLE KANAPAHA KENESAk KAND1K 8 B KENMOOR KANE KENNALLY B KANEOHE B KENNAN KANEPUU HAN IMA C KENNEBEC KENNEDY a KANLEE KANOSH C KENNER KENNEHICK 0 KANZA KENNEY KAPAA A a KENNEY LAKE KAPAPALA KENG B KAPOO KENOMA C KAPOKSIN D KENSAL KAPUHIKANI B KENSPUR KARAKIN B KENT KAROE KENYCN 0 KARHEEN KARLAN C KEO A KEOLtMR KARLIN K60MAH KARLO 0 KARLUK D KfcOTA A BLANK HYDROLOGIC N3TES THO SOIL GROUPS SUCH AS c 0 B KEOWNS KIPP 0 C KEPLER KIPPEN A C KERBY B KIPSON C A KIRK KERNEL B B/0 D KIRKHAM KERHIT A C C KERHO KIRKLAND 0 A B KERR KIRKTON B B 0 K IRK V RLE KERRICK B C B KIRTLEY KERRTOMN C A KERSHAW KIRVIN A C B KERSICK KISRING 0 0 C KERSTON A/0 KISSICK 0 A KERT KISTLER C/D C C KERWIN KITCHELL B C KITCHEN CREEK B KESSLER C B KITSAP C KESWICK D C C KETCHLY B KITTANNING B B KITTITAS 0 KETTLE B KETTLEMAN B KITTREDGE KITTSON C KETTNER C KIUP 0 KEVIN C B A KIVA KEUAUNEE C 8 0 KEHEENAH K1WANIS A A KIZHUYAK C KEYA B B B KJAR 0 KEYES 0 KEYNER KLABER C 0 C KLAHATH A KEYPORT B/D C A C A KLAUS KEYSTONE D D KEYTESVILLE 0 KLAWASI B KEZAR B B KLEJ KLICKER C KIAMAH C C KLICKITAT 0 KIBBIE C 8 D KICKERV1LLE KLINE B B C/D B KLINESVILLE KIDD 0 KIDMAN B KLINGER 8 C KLONDIKE D 0 A KIEHL KLONE B B KIETZKE 0 B KLOOCHHAN C KIEV 8 D KLOTEN B KIKONI B KLUTINA B 8 0 KILARC KILAUEA KNAPPA B C B KNEELAND C KILBOURNE A C KNIFF1N KILBURN B C KILCH1S KNIGHT 0 0 KNIK B KILDOR B C D B B/0 KNIPPA KILGORE KNOB HILL B KILKENNY B C KILLBUCK B C C/D KNOWLES KNOX B 0 KILLEY D KILLINGHORTH KNULL C B KILLPACK KNUTSEN B C C KOBAR C KILHERQUE C KOBEH B B KILN 0 KOCH KILOA A C B KUCHA NA KODAK C B A KODIAK B 0 KILMINNING C KIM KOEHLER C B C B KOELE B 0 KIHAMA B KOEPKE KIMBALL C 0 KOERLING B KIHBERLY S KOGISH KIMBROUGH D D A KIHKERLING KOHALA B 0 KOKEE B KIHMONS C C KOKERNOT C KINO C C KINA KOKO B B 0 KOKDKAHI D A B KINCO KOKOMO KINESAVA B/D B C B KINGFISHER B KOLBERG C B KINGHURST KOLEKOLE C A KING MAN D KOLLS D C B D KINGS C/D KOLLUTUK KINGSBURY KOLOA C B C KINGSLEY KOLOB C B 8 KOLOKOLO B B KINGS RIVER C KONA D KINGSTON B B K.ONAKA KINGSVILLE B B C KONNER D B KINKEAD C KONOKTI C B B/C KINKEL KINKOKA KOOLAU C 0 D KOOSKIA K1NMAN 6 C KOOTENAI KINNEAR A A B B KOPIAH KINNtY 0 C B KINMCK C KOPP C KINRtAO KOPPES B D D KORCHEA D B B KINROSS A KINSTuN KORNMAN B 0 D KINTA D KJSMOS D KIM ON KOSSE D C C KUSTER C 6 KINZEL B KUSZTA KIOHAT1A A B B KOTEDO KIONA B D C KOUTS B KIPLING 0 C SUIL GROUP INDICATES THE SOIL GROUP HAS NOT BEE* INDICATES THc DRAINED/UNDRAINED SITUATIDN B/C a c c c c c c c NEH Notice U-102, August B-ll 1972 KOVICH KDYEN KOYUKUK KRADE KRtNZBURG KRATKA KRAUSE KREAMER KREMLIN KRENTZ KRESSON KRUM KRUSE KRUZOF KUBE KUBLER KUBLI KUCERt KUCK KUGRUG KUHL KUKAIAU KULA KULAKALA KULLIT KUHA KUN1A KUNUWEIA KUPREANOF KUREB KURO KUSKOKMIM KUSLINA KUTCH KUTZTOWN KVICHAK KUETHLUK KYLE KYLER 0 8 B B B C A C B C C D B B B C C B C 0 D A B B/C B B B C B A 0 0 D D B 6 A 0 D LA BARGE LABETTE LABISH LABOU LABOUNTY LA BOUNTY LA B R I E R LABSHAFT LACAMAS LA CASA LACITA LACKAUANNA LACONl LACOTA LACY LAOD LADDER LADELLE LADOSi LADUE LADYSHITH LA FARGE LAFE LAFITTE LA FONDA LAFDNT LAGLORIA LAGONDA LA GRANDE LAGRANGE LAHAINA LA HQGUE LAHDNTAN LAHRITY LAIDIG LAIDLAU LAIL LAIRDSVILLE LAIREP LAJARA LAKE LAKE CHARLES LAKE CREEK LAKEHELEN LAKEHJRST LAKE JANEE LAKELAND LAKEHONT LAKEPORT LAKESHORE LAKESOL LAKETON 3ETERNINED B C 0 D C C C D C/D C B C C 0 D B D B C B D B D D B B B C C D B B 0 A C B C D D D A D C B A B A D B D B B Table B-1—Continued LAKEV1EW LAIAH C C LENAHEE 8/0 LINVILLE 8 LORADALE LAKEW1N LATAHCO e C LENNEP 0 LIN WOOD A/ 9 LORAIN LAKEMOOO A LATAN6 B LENOIR D LIPAN 0 LORDSTOWN LAX I B LATANIER 0 LENOX B LIPPINCOTT B/0 LOftEAUVILLE UAKIN A LATENE 8 LENZ B LIRIOS B LOR ELLA LAKOMA 0 LATHAM 0 LEO B LIRRET D LORENZO LALAAU A LATHKOP C LEON A/0 LISAOE B LORETTO LA LANOE B LATINA D LEONARD C LISAN D LORING LALLIE 0 LATOM D LEONARDO B LISBON B LOS tLAMOS LAN B/a LATONIA B LEONAROTOWN 0 LISMAS D LOS BANDS LAMAR B LATTY 0 Lf ONI DAS B L1SMORE 8 LOSEE LAMART1NE B LAUDEROALE B LEOTA C LITCHFIELO A LOS GATOS LAMBERT LAUGENOUR B B/0 LEPLEY 0 LITHGOH C LOS CUINEOS LAMBETH LAUGHLIN C B LERDAL C LITHIA C LOSHNAN LAMBORN 0 LAUMAIA B LEROY B L1TIHBER C LOS OSOS LAM1N6TON 0 LAUREL C LESAGE LITLE LOS ROBLES LAMO 6 LAURELHURST C LESHARA LITTLES EAR A LOS TANOS LAMONI 0 LAURELHOOO B LESHO UTTLEFIELD D LOST CREEK LAMONT LAUREN A B LESLIE LITTLE HORN C LOST HILLS LAMONTA LAVALLEE D B LESTER LITTLE POLE 0 LOS TRANCOS LAMOURE C LAVATE B LE SUEUR LITTLETON B LOSTHELLS LAHPH1ER B LAVEEN 8 LET A C LITTLE WOOD B LOTHAIR LANPSHIRE LAVELOO 0 D LETCHER D LITZ C LOTUS LAX SON 0 LAVERKIN C LETKA 0 L1V C LOUD ON LANARK e LA VERKIN C LETHENT C LIVERHORE A LOUOONVILLE LA VI NA LANCASTER B c LETORT LIVIA D LOUIE LANCE LAMAI C 8 LETTERBOX LIVINGSTON 0 XOUISA LAND D LAHET C LEVAN LIVONA A LOUISBURG LANDES B LAkLER B LEVASY LIZE C LOUP LANDISBURG C LAWRENCE C LEVERETT LIZZANT B LOURDES LANOLOM C LAWRENCEVILLE C LEVIATHAN LLANOS C LOUVIERS LANDUSKY LAkSHE LEVIS 0 C LOBOELL C LOVEJOY LANE LAkSON C B LEWIS LOBELVILLE LOVELANO LANEY LAWTHER 0 C LEWISBERRV LOBERG B LOVELL LANG B/D LAKTON C LEHIS6URG LOBERT B LOVELOCK LANGFORO LAX C c LEHISTON LOBITOS C LOWELL LANGHE1 e LAXAL B LEH1SVILLE LOCANE D LOWRY LANGLEY LAYCOCK B LEX c LOCEY C LOVVILLE LANGLOIS LAY TON D A LEXINGTON LOCHSA B LOYAL LANGOLA LAZEAR B 0 LHAZ LOCKE B LOYALTON LANGRELL B LEA C LIB8INGS LOCKERBV C LOYSVILLE LEADER LANGSTON B C LIBBV LOCKHARO LOZAMO B LANiER LEAOPOINT B B LIBEG LOCKHART LOZIER B LANIGER B LEAD VALE C LIBERAL LOCKPORT D LUALUALEI IANK.6USH B LEAOVILLE B LIBERTY LOCKHOOO B LUSBOCK LANKIN LEAF LI6ORY C D LOCUST C LUBRECHT LANKTREE C LEAHY C LIBRARY 0 LODAR D LUCAS LANOAK B LEAL B LIBUTTE D LODEMA A LUCE (.AN SCALE LEAPS B C •LICK B LOCI C LUCEDALE LANSOOHNE LEAThAM C C LICK CREEK D LOOO D LUCERNE LANSING LEAVENMORTH B B LICKOALE 0 LOFFTUS C LUC I EN LANTIS B LEAVITT B LICKING C LOFTON 0 LUCILE LANTON D B LEAVITTVILLE LICKSKILLET 0 LOGAN D LUC I LE TON LANTONIA 8 LEBANON C LIODELL 0 LOGOELL D LUCKENBACH LANTZ 0 LEBAR B LIEBERMAN C LOGCERT A LUCKY LAP 0 LE BAR 8 LIEN D LOGHOUSE B LUCKY STAR LA PALMA 8 C LEBEC LIGGET B LOGY B LUCY LAPEER B LEBO C LIGHTNING D LOHLEft C LUOOEN UAP1NE A LEBSACK C LIGNUM C LOHMILLEft C LU9LOK LAPLATTA C LECK KILL B LIGON D LOHNES A LUEDERS LAPON LEDBEDER 0 B LIHEN 8 LOIRE LUFKIN LAPORTE LEDGEFORK A c LI HUE LOLAK 0 LUHON LA POST* A LEDGER 0 LIKES LOLAL ITA B LUJANE LA PkAIRlE B LEORU 0 LILAH LOLEKAA B LUKIN LARABEE B LEOY LILLlKAUP LOLETA C/D LULA LARANO B LEE 0 LIMA LOLO A LULINC LARCHMOUNT B LEEDS c L1MANI LOLON A LUMBEE LAROfcLL C LEEFIELO LIMBER LOMA C LUMMI LAREDO B LEELANAU LIMERICK LOMALTA 0 LUX LARES C LEEPER LIMON LOMAX B LUNA LARGENT 0 LEESVILLE L1MONES LOMIRA 8 LUNCH LARGO B LEETON L1MPIA LOMITAS D LUND I MO LARIN A LEETONIA LINCO LONDO C LUNOY LARIMER B LEFOR LINCOLN LONE C LUNT LARKIN B LEGLER LINCROFT LONE P INE C LUPPINO LARKSON C LEGORE UNO LEV LONER ID CE B LUPTW LA ROSE B LEHEH c LI NOSEY LONE ROCK A LUXA LARRY 0 LEHIGH c L1NDSIDE LONETREE A LUKAY LARSON 0 LEHMANS 0 LINOSTRON LONGFORD C LUTE LARUE A LEHR B LINOV LONGLOIS B LUTH LARVIE 0 LEICESTER LI NEVILLE LONGMARE 0 LUTHER LAS C LEILEHUA B LINGANORE LONSMONT C LUTIE LAS ANIMAS c LELA 0 LINKER LONER IE c LUTON LASAUSES c LELANO 0 LJNKVILLE B LONGVAL LUVERNE LAS FLORES 0 LEMETA 0 LlNNE LONG VALLEY B LUXOR LASHLEY LEMING c LINNET LONGVIEH C LUZENA LASIL LEMM 0 B LINNEUS 8 LONOKE LVCAN LAS LUCAS LEMONEX c 0 LINO LOMT1 C LYCOHIN6 LAS POSAS c LEMPSTER c/o LI NOTE R LOOKOUT C LYOA LASSEN 0 LEN c LINSLAW LOON 8 LYDICK LASTANCE B LENA A LINT LOPER B LYFORD LAS VEGAS 0 LENAPAH 0 LINTON D LOPEZ LYLES NJTES A BLANK HYDROLOGIC SOIL GROUP INDICATES THE SOIL GROUP HAS NOT BEEN DETERMINED I MO SOIL GROUPS SUCH AS B/C INDICATES THE DRAINEO/UNDRAINEO SITUATIM C C/D /C c c /c c NEH Notice U-102, August 1972 B-12 D C 0 C C C C/O C • B B 0 0 B D 0 C C C C B B C 0 8 C B B A 0 C C 0 8 C C 1 0 0 B/C C C C C 0 C C 0 0 C/O C1 C B B D C 0 0 B C 0 CI C B Table '.•&+.!—Continued MALIN MALJAMAR MALLOT MALM HALO MALONE MALOTERRE MALPAIS MALPOSA MALVERN MAMA LA MAMOU MANAHAA MANALAPAN MAN A HA NANASSA MABANX MANASSAS 0 MANASTASH C MABEH HAS I 0 MANATEE MANAMA MABRAY 0 MANCELONA MACAR B MANCHESTER MACEDONIA C MANDAN MACFARLANE B MANOERFIELD MACHETE C MANOEVILLE HACHIAS B MANFRED 0 KACHUELO MANGUM MACK C MANHATTAN 0 NACKEN MANH6IM HACK I MAC B MACKS BURG HANI B MANILA B NACOMB MANISTEE HACQHBEft B MANITOU a MACON MANL6Y HACY B MANLIUS 0 KAOALIN MANLOVE NADAHASKA B MANNING HADDOCK •A MAN06UE MADDOX MANOR C MADELIA MANSF-IELD 0 MADELINE HAOERA MANSIC D MANSKER MADISON B MANTACHIE MADONNA C NANTEO MADRAS C MANTER B MADRID MA DRONE MANTON C MANTZ MADURE2 B KAFURT B MANU B MANVEl MA GALLON MANHOOD MAG ENS B MANZANITA 0 MAGGIE HANZAWO MAGINNIS C MANZANOLA D MAGNA MAPES B MAGNOLIA MAPLE MOUNTAIN C MAGNUS MAPLE TON MA&OTSU D MARAG4JEZ 0 MAGUAYO HAHAFFEY C/D MARATHON MAHAFFY C/D MARBLE MARBL6MOUNT MAHALA C B/D KARCELINAS MAKALASVILLE MARCETTA MAHANA B B MARCIAL MAHASKA MARCUM MAHER C MA HONING D MARCUS MARC USE MAHUKONA B MARCY MAIDEN B MARDEN A MAILE MARDIN MAINSTAY D MARENGO MAJADA 8 MARESUA B MAKAALAE MARGERUM MAXALAPA D A MARGUERITE MAKAPILI MARIA MAKAUAQ B MAR 1 AKA B MAKAUELI B MARIAS MAKENA MARICAO MAKIKI B MAR1COPA A MAKLAK MARIETTA MAKOT1 C MARILLA B MAL MARINA B MALA MARION MALABAR A/0 MARIPOSA MALA80N C MARISSA MALACHY B MARKES B MALAGA HARKEY A MALAMA MARKHAM MALAYA 0 MARKLANO B MALBIS MARKSBORQ MALCOLM B MARLA MALETTI C MARLBORO MALEZA 8 MARLEAN MALIBU D NOTES A BLANK HYDROLOGIC TWO SOIL GROUPS SUCH AS LYMAN LYMANSON LYNCH LYNCH8URG LYNDEN LYNNDVL LYNN HAVEN LYNNVILLE LYNX LYONMAN LYONS LYONSVILLE LYSINE LYSTA1R LYTELL C/D C 0 B/0 A A B/0 C B C D B D B B B MAY DAY MARLETTE D MARLEY C MAYER D KARL IN 0 HAYES D MARLON C MAYFIELD B C MAYFLOWER MARLTON C B MARHARTH MAYHEM D D MAYLAND MARNA C HARPA B MAYMEN D 0 MAYNARD LAKE MARPLEEN B A MAYO B MARQUETTE MARK B MAYODAN B B MAYOKORTH MARRIOTT C MARSDEN C MAYSOORF B B MARSELL MAYSVILLE B C MARSHALL MAYTOHN C D MAYVILLE B C MARSHAN B MAYWOOO MARSHDALE C B MARSHFIELD C MAZEPPA B C B B/0 MARSING MAZON C C MAZUMA C MART C MARTELLA 8 MCAFEE C A M CALL EN C B A MARTIN A B MARTINA MCALLISTER C e D MCALPIN MART I NECK C B D MCBEE B MARTINEZ MCBETH B D D MARTINI B MART INS BURG MCBRIOE B D B MCCABE B A MARTINSDALE D MCCAFFERY A MARTINSON C B MCCAIN C C MARTINSVILLE HART I NT ON MCCALEB B C C B MCCALLY D B MARTY D MCCAMMON 0 C MARVAN B MCCANN C B MARVELL MCCARRAN D C C MARVIN MCCARTHY C B B MARY B B MCCLAVE C MARY DEL MCCLEARY D C D MARYSLAND MCCLELLAN B B C MAS ADA MCCLOUD MASCAMP 0 C 0 D MASCHETAH B MCCOIN B D MCCOLL D B MASCOTTE 8 C MCCDNNEL C MASHEL a C/D MASHULAVILLE B/0 MCCOOK B MCCORNICK C B MASON MCCOY C C B MASONVILLE B B B MCCREE MASSACK HCCRORY D MASSENA C C B MCCROSKIE D MASSILLON C B MCCUL LOUGH C MASTERSON 0 MCCULLY MATAGORDA D C C D C MCCUNE C MATAMORQS MCCUTCHEN C C MATANUSKA C B MCDOLE B C MATANZAS 8 MCDONALD B B MATAPEAKE C MCDONALDSVILLE C C/0 MATAWAN A MCEHEN B MATCHER a C MCFADDEN B B MATFIELO MCFAIN B C A MATHERS HATHERTON B MCFAUL C B B B MCGAFFEY MATHESQN 0 MCGARR C A HAT HEMS A MCGARY C 0 MATHIS C MCGEHEE B MATHISTON C MCGILVERY 0 0 MAT LOCK C D MCGINTY D MATMON B MCGIRK MATTAPEX C C D MCGOHAN B C C MATTOLE MCGRATH B 0 MAU C .B MCGREH A C/D MAUDE MCHENRY B C B HAUGHAN A C MCILHAINE B MAUKEY MCINTOSH A/0 B B MAUMEE 0 MCINTYRE B B/C MAUNABO C D MAUPIN MCKAMIE C MCKAY D D 0 MAUREPAS MCKENNA C/0 B MAURICE A D MCKENZIE D B MAURINE B B MCKINLEY C MAURY MCKINNEY D MAVERICK C C 0 MCLAIN C A MAVIE MCLAURIN B A 0 MAHAE B MCLEAN C C MAX B MAXEY C MCLEOO C MCMAHQN : C D HAXFIELD MCMEEN c D MAXSON A B MCHULLIN D MAXTON C MCMUROIE A C C MAXVILLE MCMURPHY B 0 MAXWELL C B MCMURRAY A MAY D MCNARY MAY6ERRY C D B B 0 MCPAUL B HAYBESO SOIL GROUP INDICATES THE SOIL GROUP HAS NOT BEEN B/C INDICATES THE DRAINED/UNDRAINED SITUATION C/0 B A C B B 0 C C C 0 C C NEH Notice U-102, August 1972 B-13 MC P HE R SON HCPHIE MCOUARRIE MCQUEEN MCRAE MCTAGGART MCYICKERS MEAD MEADIN MEAOOWVILLE MEADVILLE MEANDER MECAN MECCA MECKESVILLE MECKLENBURG HEDA MEOANQ MEOARV MEDFORO MEDFR/k MEDICINE LODGE MEDINA MEDLEY MEDWAY WEEKS MEETEETSE MEGGETT MESON HEHL MEMLHORN MEIGS MEIKLE MEISS MELBOURNE MELBY MELITA MELLENTHIN HELLOR MELLOTT MELOLAND MELROSE MELSTQNE MELTON MELVILLE MELVIN MEMALQOSE MEMPHIS MENAHGA MENAN MENARD MENCH MENOEBOURE MENDOCINO MENDON MENDOTA MENEFEE MENFRO MENLO HEXD MENDKEN MENDMINEE MENTO MENTOR. MEBUON MERCED MERCEDES MERCER MERCEY MEREDITH MEKETA MERGEL MERIDIAN MERINO MERKEL MERLIN MERMILL MERNA MEROS HERRIFIELD MEiUILL MERRILLAN MERRIMAC HERRITT HE* ROUGE ME»TON MERTZ MESA MESCAL MESCALERO MESITA MESKILL DETERMINED C B D C B B C D A B C D B B C C B C C B u B B B B A D D C C C D D B C B 0 D B C C A B B D D B A C B C C B B B D B D C C 8 C B C C/D D C e B C B 8 0 8 0 6/0 0 A B C C A B/C B B B B B C C c Table B-1—Continued MESMAN C MINORA C MONT OVA MURDOCH 0 C NAVARRO MESPUN A KIN TO C MONTPELLIER MUREN C B N /WE SINK XESSER C MINU 0 MONT ROSE B NURRILL B NAYLOR MET D MINVALE B MONT VALE 0 HURVILLE D NAYPED METAL1NE B MIRA D MONTVERDE A/D MUSCATINE B NAZ METAMQRA B MIRABAL C HONTWEL C MUSE C N-BAR METEA B MIRACLE B MONUE B MUSELLA B NEAPOLIS METHOW B M1RAMAR B MOODY B MUSICK B NEBEKER HETIGOSHt A MIRANDA MOOHOO D B MUS1NIA B NESGEN B METOLIUS MIRES B MOOSE RIVER 0 MUSKINGUM C NEBISH METRE 0 MIRROR B MORA B HUSK OGEE C NEBO METZ A MIRROR LAKE A MORAOO C MUSQUIZ NECHE MEXICO 0 MISSION B MORALES 0 MUSSEL B NEDERLAND HHOON 0 MITCH B MORO MUSS ELS HELL B NEEOHAM MIAMI B MITCHELL B MOREAU 0 NUSSEY D NEEDLE PEAK MIAMIAN C MITIWANGA C MORE HE AD MUSTANG A/D NEEDM3RE HI CCO A/3 MITRE C MOREHOUSE MUTUAL A NEELEY B MJCHELSON B MIZEL D MORE LA NO D MUTUAL B NEESOPAH MICH1GAMM6 C MI I PAH C MORE LA NOT ON A MYAKKA A/0 NEGITA HICK B MOANO D HORET 0 MYATT B/0 NEGLEY MIDAS D MOAPA 0 MOREY D MYERS D NEHALEH MIDDLE C MOAULA A MORFITT B MYERSVILLE B NEHAR MIDDLEBURY B MOBEETIE B MORGANF1ELO B MYLREA B NEKTON MIDESSA B MOCA 0 MORGNEC MYRICK NEISSON D MIDLAND 0 HOC HO B MORIARTY 0 MYRTLE B NEKIA MIDNIGHT D MODA 0 MORICAL C MYSTEN A NELLIS MI OVAL E C MQDALE C MORLEY MYST I C D NELMAN MIDWAY D MODEL C MORMON MESA 0 MYTON B NELSCOTT M1FFL1N B MODE NA 8 MOROCCO A/C NELSON MIFFL1NBURG B MODESTO C MORONI D NAALEHU B NEKAH MIGUEL D MODOC C MOROP C NABESNA D NEMOTE MIKE D MOENKOPIE 0 MORRILL B NACEVILLE C NENANA MIKESELL C MOEP1TZ B MORRIS C B NACHES NENNO MILACA B MOFFAT B MORRISON 8 NACIMIENTO C NEDLA MILAN B MOGOLLON MORROW B C NACOGDOCHES B NEDTDMA MILES B MOGUL B MORSE D NADEAN B NEPALTO MILFDRD C MOHALL B MORTENSON C NADINA NEPEST* D M1LHAM C MOHAVE B MORTON B NAFF B NEPH1 MILHEIM L MOHAKK B MORVAL B NAGEESI B NEPPEL B MILL MOIRA C MOSBY C NAGITSY . C NEPTUNE MILLARD B MOKELUMNE 0 HOSCA A NAGLE B NERESON HILLBORO MOKENA D C MOSCOW C NAGOS D NESDA MILLBROOK MOKIAK B B MOSEL C NAHATCHE C NESHAM1NY MILLBURNE B MOKULEIA B MOSHANunN B NAHMA C NESIKt MILLCREEK B MOLANC B KOSHER 0 NAHUNTA C NESKAHI MILLER 0 KOLCAL B MOSHERVILLE C NAIHA B NESKOMIN MILLERLUX MOLENA 0 A MOSIDA B NAKAI B NESPELEM MILLERTON MOLINOS D B MOSQUE T 0 NAKNEK D NESS MILLETT t D MOLLV.ILLE MOSSYROCK 8 NALDO B NESSEL MILLGROVE B/0 MOLLY B MOTA B NAMBE B NESSOPAH MILL HOLLOW B HOLOKAI MOTLEY B NAMON C NESTER MILL1CH MOLSON B D MOTOOUA D NANAMKIN A NESTUCCA MILLIKEN MOLYNEUX C B MOTTSVILLE A NANCY B NETARTS MILLINGTON B MONAD A MCULTON B/0 NANNY B NETCDNG MILLIS MONAHAN C 0 MOUND NANNY TON C 8 NETO MILLRACE B MONAHANS B MOUNTAINBURG 0 NANSENE B NETTLETON MILL5AP C MQNAROA D MOUNTAINV1EH fi/D NANTUCKET C NEUBERT MILLSDALE B/3 MONCLOVA B NANUM MOUNTAINVILLE B C NEUNS M1LLSHOLM C MONDAM1N C MOUNT AIRY A NAPA D NEUSKE MILLVILLE B MONDOVI B MOUNT CARROLL B NAPAISHAK D NEVAOOR MILLWOOD D MONEE D MOUNT HOME B NAPAVINE B NEVILLE MILNER C MUNI CO B MOUNT HOOD B NAPIER B NEV1N MILPITAS MONIDA C B MOUNT LUCAS C NAPLENE B NEVINE MILROY D MONITtAU 0 MOUNT OLIVE D NAPLES 9 NEVKA MILTON C MONMOUTH C MOUNT VI 6K B NAPPANEE D NEVOYER H1MBRES C MONO D MOVILLE C NAPTOHNE B NEVTAH MIMOSA MONOLITH C C MOWATA D NARANJITO C NEVU MINA MONONA C B MOWER C NARANJO C NEWARK MI NAM MONONGAHELA B C HOY E RS ON D NARCISSE B NEWART MINATARc 0 MONROE B MOY1NA D NARC B NEWAYGO MINCHEY B MONRCEVILLE C/D MUCARA D NARLON NEWBERG C MINCO a MONSE B MUCET C NA RON B NEWBERR.Y MINOALE B MONSERATE C MUORAY D NARRAGANSETT B NEWBY MINOEGO e D MONTAGUE MUD SPRINGS C NARROWS D NEW CAMBRIA MINOEMAN B MONTALTO C HUGHOUSE C NASER B NEWCASTLE XINPEN MONTARA 0 MUIR B NASH B NEKCDMB MINE B MONTAUK C MUI RKI RK 6 NASHUA A NEWDALE MINECiLA MQNTCALH A MUKILTEO D NASHVILLE B NEWELL MINER D MONTE B MULCROW D NASON C NEWELLTON MINERAL A D MONTE CRISTO MULKEY C NASSAU C/D NEUFANE MINERAL MOUNTAIN C MONTEGRANOE D MULLINS 0 NASSET B NEMFOXK MINERVA B MONTELL D MULLINVILLE B NATALIE NEWKIRK C KING B MONTE LLO C MULT C • NATCHEZ B NEULANDS MINGD B MONTEOLA C A MULTORPOR NATHROP B NEWLIN MINIDOKA C MONTERUSA 0 MUMFORD B NATIONAL 8 NEWMARKET MINNEISKA C D MONTE VALLO MUNDELEIN B NATRONA B NEWPORT MINNEOSA B MONTGOMERY D BUNCOS B NATROY D NEWRUSS M1NNEQUA B B MONTICELLO MUNISING B NATUR ITA B NEWRY HINNETONKA D MONTIETH A HUNK C NAUKATI D NEWSKAH HINNEWAUKAN B B MONTMORENCI MUNSON 0 NAUMBURG C NEWSTEAD MINNIECE D MONTOSO B MUNUSCONG D NAVAJO 0 NEWTON MINClA C MONTOUR D MURDO B NAVAN D NEWTONIA A BLANK HYDROLOGIC SOIL GROUP INDICATES THE SOIL GROUP HAS NOT SEEN DETERMINED N3TES TWO SOIL GROUPS SUCH AS B/C INDICATES THE DRAINED/UNSRAINEO SJTUATI3N c B c B B B/0 c o B c B 0 c' c c c c e B C B B 6 B e c NEH Notice U-102, August 1972 B-14 B c A B B 0 8 A C B B A 8 A B 8 8 C B D B B c C A B B C B 8 B C B c B C D C 0 C B B 8 C B C B A B B D D D B B 8 C B B B D A/D B Table B-1—Continued NEWTOWN NEWV1LLE NEZ PERCE NIAGARA NIART NIBLEY NICHOLSON NICHGLV1LLE NICKEL NICODEHUS NICOLAUS N1COLLET NIELSEN NIGHTHAHK NIHILL NIKABUNA NIKEY NIK1SHKA NIKLASON NIKOLAI NILANO NILES NIMROO NINCH NINEMILE NINEVEH N1NIGRET N1NINGER NINNESCAH NIOBELL NIOTA NIPE NIPPERSINK NIPPT N1PSUM NIRA NISHNA NISHON NISQUALLY NISSWA NIU NIULII NIVLOC NIWOT NIXA NIXON NIXONTON NUINA NOBE NG3LE NOB SCOTT NOCKEN NOOAWAY NOEL NOHILI NOKASIPPI NOKAY NOKOHIS NOLAM NOLICHUCKY NOLIN NOLO NOKE NONDALTON NONOPAHU NOOKACHAMPS NOOKSACK NOONAN N3RA C C C C B C C C B B C B 0 B B 0 B A B 0 C C C C 0 B B B C C 0 B B A C B C 0 A B B C 0 C C B B A 0 B A C B 0 0 0 C B B B B 8 0 B 0 C/D B 0 NORTON NORTONVILLE NOR TUNE NORWALK NORWAY FLAT NOKWEIL NORWICH NORWOOD NOT1 NOTUS NOUQUE NOVARA NDVAR.Y NONOOO NOYO NOYSON NUBY NUCKOLLS NUCLA NUECES NUGENT NUGGET NUMA NUNOA NUNICA NUNN NUSS NUTLEY NUTRAS NUTRIOSO NUVALDE NYALA NYMORE NYSSA NYSSATON NYSTROH C OAHE OAKOALE OAKOEN OAK FORD OAK GLEN OAK GROVE OAK LAKE OAKLAND OAKS RIOGE OAKV1LLE OAKWOOD OANAPUKA OASIS OAT HAN OBAN OBARC OBEN OBRAST OBRAY OEURN OCA LA OCEANET OCEANO OCKEYEOAN OCHLOCKONEE OCHO OCHGCO OCHOPEE OCILLA OCKLEY OCOEE OCONEt OCONTC OCOSIA B B 0 B 8 C C 0 B B C D B D A/C 0 e e C C C C/D C a c A C C c c c D C C B C 0 A C 8 C a c c A D B B B C 8 C D 0 D 0 D A B 8 D C B/D C B A/D C OKAU OKAY OKEECHOBEE OKEELANTA OKEHAH OKLARED OKLAWAHA OKMOK OKO OKOBOJI OKOLONA OKREEK OKTIBBEHA OLA OLAA OLALLK QUANTA OLA THE OLD CAMP OLOHAM OLDS OLDSMAR OLDMICK OLE LO OLE NA OLE QUA OLETE OLEX OLGA OLI OLIAGA OLI NO A OLIPHANT OLIVENHAIN OLIVER OLIVIER OLJETO OLMITO OLMITZ OLMOS OLHSTFO OLNEY OLOKUI OLPE OLSON OLTON OLUSTEE OLYIC OLYMPIC OHADI OMAHA OMAK OMEGA OMENA OMNI ONA ONALASKA OMAMIA ONARGA GHANA ON Ah AT OREL LA OR EN ORESTIMBA ORFORD ORIOIA ORIF OR ID ORION ORITA ORLAND ORLANDO ORMAN ORMSBY ORODELL ORO FIND ORD GRANDE ORONO OROVADA ORPHANT ORK ORRVILLE ORSA ORSINO ORTEL LO ORTIGALITA ORTING ORTIZ ORTLEV ORMET ORMOOD OSAGE OSAKIS OSCAR OSCURA OSGOOD OSHA OSHAWA O'SHEA OSHKOSH OSHTEMO OS IF* a OSKA OSMUND 0 c OSO OSOBB D C OSORIOGE B/0 OSOTE OSSIAN B OST B OSTRANOER B a OTERO OTHELLO C A OTIS a OTISCO c OTISVILLE A/D OTLEY OTSEGO B B OTTER a OTTERBEII D OTTER HOL1 B OTTOKEE OTWAY B B OTWELL OUACHITA B OURAY B OUTLET C OVALL B OVERGAARD C P OVERLAND rvi'SLY (;. :.V;nTGN ,-j a, ;o 0 8 A/D A/0 C B A/0 B 0 C D D 0 C A C B C D C 0 B/0 B B B B C B C B B/0 B B D B C A 0 8 C B/D D A C C C A C 8 B B A C B/C C B C PACK PACKARD PACKER PACKHAM PACKSAODLE PACKhOOD PACOLET PACTOLUS PADEN PADRONI PADUCAH PADUS PAESL PAGET PAGODA PAHRANAGAT r PAHREAH L PAHROC 0 PAIA c PAKE c PAINESVILLE A PAINTROCK A PAIT A PAJARITO C PAJARO C PAKA c PAKALA B PAKINI A PALA B PALACIO D PALAPALAI B PALATINE D PALESTINE C PALISADE B PALMA B PALMAHEJO PALM BEACH D C PALMER C PALMER CANYON B PALMICH B/D PALMS C PALMYRA B PALO B PALDDURO D PALOMAS PALOMINO D B PALOS VERDES C PALOUSE B P.ALSGROVE B PAMLICO B PAMOA D PAMSDEL PAMUNKEY C A PANA A PANACA B PANAEWA C PANASOFFKEE B/D PANCHERI C PANCHUELA B PANDO A PANDOAH PANDORA D C PANDURA C PANE A PANGUITCH PANHILL C C PANIOGUE PAMKY C ONDAMA ONE I DA O'NEILL ONEONTA ONITA ONITE ON OTA c B ONriVA PANOCHE ONRAY c PANOLA 3 6 NOfcAD CNSLOK 0 D ?A'JS=Y 0 NGRBERT r ONTARIO ?ASiTESO a ocoutoc B NORBGRNE S PANTHER ONTKO NuRBY B OCTAGON B ft/0 CV:KA 0 ONTONAGON OWE GO PANTON B D D NURD ODEE PAOLA ONYX OWEN CREEK C B B NOROBY B OOELL D ODEM A OOKALA A PAOLI B OWENS NOROEN OHHI B PADNIA OPAL D B OOERHOTT C NORONESS B PAPAA B D OPEOUON C/D OHOSSO NORFOLK ODESSA B PAPAI OPHIR C C OMYHEE B ODIN NORGE C PAPAKATINS OPIHIKAO D OJULIS B C NORKA ODNE OXBOW C PAPOOSE 0 OPPIO 0 N3RMA B/C O'FALLON c OOUAGA OXERINE PARADISE D C NORKANGEfc 0 OGDEN OXFORD D PARADOX ORA C C NORREST C OGEECHEE B/D PARALOMA ORAN OZAHIS B C OGEMAN C NORRIS OZAN D PARAMORE B c ORANGE 0 NORRISTJN OGILVIE OZAUKEE C PARASOL e ORANGE BURG B B OGLALA N3RTE a ORCAS 0 PARCELAS NORTHDALe C OGLE PAAIKI B ORCHARD PAROEE B D B NORTHFItLD OHAYSI B ORD A PAALOA PAREHAT C UHIA A NORTHMORE OJAI A PARENT PAAUHAU NORTHPORT B ORDNANCE C ORDWAY PACHAPPA B 0 PARIETTE NORTH POWDER C OJATA D OREL1A D PACHECO B/C PARIS NJRTHUKBcRLANC C/D OKANOGAN B A BLANK HYDROLOGIC SOIL GROUP INDICATES THE SOIL GROUP HAS NOT SEES DETERMINED N3TES TWO SOIL GROUPS SUCH AS B/C INDICATES THE DRAINEO/UNORAINEO SITUATION NEH Notice U-102, August 1972 B-15 C B C 8 B D B C C B B 8 8 8 C C D D C C C C B 8 C B 8 B B 8 8 B B B B C • A 0 B 8 D B B B 8 D B 8 B 0 C 0 c B D D D B C B C 0 0 8 B a a c 9 0 D D D 0 A B C D A D C C 8 C 0 B D D C c c Table B-l—Continued PARISHVILLe C PELIC D PICAYUNE 8 PLEASANT VIEW B pas. PARKAY B PELLA D PICKAWAY C PLEDGER D POT4MO PARKDALE B B PELLEJAS PICKENf D PLE6K C POTH PARKE 8 PELONA C PICKET. B PLEINE 0 POTLATCH PARKER B PELUK D PICKFORD D PLEVNA D POTRATZ PARKFIELD C PEMBERTON A PICKRELL D PLOME B POTSDAM PARKHJLL 0 PEMBINA C PICKWICK B PLOVER B POTTER PAkKHURSI PEMBROKE B PICO B PLUMAS B POTTS PARKINSON B PENA B PI COS*. C PLUHMER B/D PDUDRE PARKVIEW B PENCE A PICTOU B PLUSH POULTNEY PARKVILLE C PENOEN B PIE CREEK D PLUTH POUNCEY PARKWOOO A/0 PEND OREILLE B PIERIAN A PLUTOS POVERTY PARLEYS B PENOROY 0 PJERPONT C PLYMOUTH POWDER PARLIN C D PENELAS PIERRE 0 POALL POWDERHORN PARLO B PENINSULA C PIERSONTE B POARCH POWELL PARMA C PENISTAJA B PIIHONUA A POCALLA POWER PARNELL 0 PENITENTS B PIKE B POCATELLO POWHITE PARR B PEN LAW C PILCHUCK A POCKER D POWLEY PARRAN 0 PENN C PILGRIM B POCOMOKE D PDWWATKA PARR1SH C PENNEL C PILOT PODO B 0 POY PARSHALL B PENNINGTON B PILOT ROCK C POOUNK B POYGAN PARSIPPANY 0 PENO C PI MA 8 POE B/C POZO PARSONS 0 PENOYER C PI HER B PQEVILLE D PQZO BLANCO PARTRI C PENROSE 0 FINAL D POGAL B PRAS PASAGSHAK 0 PEMSGRE 0 PINALENO B POGANEAB D PRATHER PJNAHT PASCO B/C PENTHOUSE D 8 POGUE B PRATLEY D PASO SECO PENT* 0 PINATA POHAKUPU C A PRATT PASOUETTI C/D PENHELL A P1NAVETES A POINOEXTER C PKEACHER PASSUOTANK A PINCHER B/D PENWOOD C POINSETT B PREAKNESS PASSAR C PEOGA C PINCKNEY C POINT B PREBISH PASS CANYON 0 PEOH C PINCONNING D POINT ISABEL C PKESLE PASSCREEK C PEONE B/C PINCUSHION B POJOAQUE B PRENTISS PASTURA 0 PEORIA D PINEDA B/D POKEGEMA B PRESQUE ISLE PATAHS B PEOTONE C P1NEOALE 8 POKEMAN B PRESTO B PATENT C PEPOQN PINEGUEST B POKER C PRESTON PATILLAS B PEQUEA C PINELLOS A/D POLAND B PREWITT PATILO C PERCHAS 0 PINETOP C POLAR B PREY PATIT CREEK B PERCIVAL c PINEVILLE B POLATIS C PRICE PATNA B PERELLA c PINEY C POLE A PRIOA PATQUTVILLE C PERHAM c PINICON B POLEBAR C PRIDHAM PATRICIA B B PERICO PINKEL C POLELINE B PRIETA PATRICK B PERITSA C PINKHAM B POLEO B PRIMEAUX PATRCLE C PERKINS C PINKSTON B POLEY C PRIMGHAR PATTANI D PERKS A PINNACLES C POLICH B PRINCETON PATTcNBURG B PERLA C PINO C POLLARD C PRINEVILLE PATTER C PERMA A PINOLA POLLASKY C C PR ING PATTERSON C PERMA N£NTE C PINOLE POLLY B B PR INS PATTON B/0 PERR1N B P1NON C POLO B PRITCHETT PATHAY C PtRRlNE 0 P I NONES D POLSON C PROCTOR PAUL B PERROT 0 PINT AS D POLVADERA B PROGRESSO PAULDINe 0 PERRY PINTLAR 0 A POMAT C PROMISE PAULINA 0 PERRYPARK PINTO B C POMELLO C PROMO PERRYVJLLE PAULSELL 0 B PINTURA A POMPANO A/D PROMONTORY PAULSON B PERSANTI PINTWATER C D POHPONIO C/D PRONG a PAULV1LLE PERSAYO 0 PIOCHE D POMP TON B PROSPECT B PAUHALU PERSHING C PIOPOLIS D POHROY B PROSPER PAUNSAUGUNT 0 PERSIS B PIPER B/C PONCA B PROSSER B PAUSANT PERT 0 P ONCE NA PIROUETTE 0 0 PROTIVIN PAUKELA B PERU PI RUN PONCHA C B A PROUT PAVANT 0 PESCAOERO C/0 PISGAH C POND B/C PROVIDENCE PAVILL1GN a PESET C PISHKUN 6 POND CREEK B PRDVO PAVOHROO a PESHASTIN B PISTAKEE B PONOILLA A PROVO BAT PAWCATUCK 0 PESO C PIT D PONIL D PROWESS PAWLET B PETEETNEET D PITTMAN D PONTOTOC B PTARMIGAN PAWNEE 0 PETERBORO B PITTSFIELD B PONZEft 0 PUAULU PAXTON c PETERS 0 PITTSTOWN C POOKU A PUCHYAN u PAXV1LLE PETOSKEY PITT WOOD B POOLE B/D PUDDLE a PETR1E PAYETT6 0 PITZER C POOLER D PUERCO PAYMASTER B PETROLIA 0 PIUTE D POORMA B PUERTA PAYNE c PETTONS C PLACEDO D POPE B PUETT PAYSON u PEWAMO B/D PLACENTIA D POPPLETON A PUGET PEACHAM 0 PEYTON B POOUONOCK PLACER I TOS C C PUGSLEY PEARL HARBOR 0 B PFtlFfER PLACID A/0 PORRETT B/D PUHI ' PEARMAN PHAGE PLACK a D PORT B PUHIMAU PEARSOLL 0 PHANTOM C PLAINFIELO A D PULASKI PORTAGEVILLE PEAV1NE c PHARO PLAINVIEW B C B PORTALES PULEHU PECATONICA B PHAROLIO D PLAISTED C PORTALTO B PULLMAN 0 PECOS PHEBA PLANO C 8 PORT BYRON B PULS PtOEE c PMEENtY 8 PLASKETT D PORTERS B PULSIPHER PEDERNALES c PHELAN B PLATA B PORTERVILLE D PULTNEY PcDIGO 6/C PHELPS B PLATEA C PORTHILL C PUKEL PEDLAR 0 PHIFERSON B PLATEAU B PORT I NO C PUMPER PEDOLI c PHILBON B/D PLATNER C PORTLAND D PUNA PEDRICK B PHILIPSBURG B PLATO C PORTNEUF B PU*ALUU PEEBLES c PHILLIPS PLATORO C 8 PORTOLA C PUHOHU PcEL c PHI LO B PLATTE D PORTSMOUTH D PURDAH PEELER B PHILOMATH PLATTVILf E 0 B PORUM C PURDY PEEVtR c PHIPPS PLAZA C B/C POSANT C PUXGATORY PcliLER 0 PHOEBE B PLEASANT C POSEY a PURNER PEGRAM B PHOENIX 0 PLEASANT GROVE 6 D POSIT AS PURSLEY PcKJN C PIASA D PLEASANTON B POSH IN o PURVES PELHAM B/D PICACHO C PLEASANT VALE 8 POSOS c PUSTOI A BLANK HYDROLOGIC SOIL GROUP INDICATES THE SOIL GROUP HAS NOT BEEN DETERMINED NJTES TWO SOIL GROUPS SUCH AS B/C INDICATES THE DRAINED/UNDRAINED SITUATION NEH Notice 1|-102, August 1972 B-16 D D c c C 8 c B B B 0 A B C c B C D C 0 D C/D B C 8 C A 8 0 D C C B A A B 0 C D D D C B B C B C c B C D D B C B B C C C c D 0 B 8 A A D 0 D 0 B/C 8 A 0 8 8 0 D D C C C A D A C 0 D D B 0 A Table B-l—Continued PUTNAM PUUKALA PUUONE PUU OO PUU DPAE PUU PA PUYALLUP PYLE PYLON PYOTE PYRAMID PYRMONT D D C A B B B A D A D 0 REELFOOT RIFFE B C ROLETTE REESER C RIFLE A/D ROLFE REESVILLE RIGA 0 C ROLISS A RDLLA REEVES RIGGINS RIGLEY B REFUGE ROLLII REGAN RILEY B C RDLOFF REGENT RILLA B C ROMBERG REHM RILLITO B C ROHBO RIKEr REICHEL B C ROMEO REIFF RIMINI B A ROMNEY RE ILLY RIHROCK RAP I DAN A D ROMULUS REINACH R IN B RAP LEE B ROND REKOP RINCON RARDEN D C RONNEBY 9UACKENBUSH RARICK RELAN C C A aiNCONADA ROSSON QUAKER RARITAN RELAY B C RINOGE D ROOSE' B RAS8ANO RELIANCf C RINGLING I RDOTEL OUAKERTOKN D ROSACHI OUArtSA D RASSET RELIZ D RINGO A B B OUAMOS RATAKE RELSE RINGOLD ROSAMOND REMBERT B OUANAH B D RINGWOOD RATHBUN ROSANE D B RATLIFF REMMIT A RIO ROSANKY QUANOAHL RATON REMSEN RIO ARRIBA D 0 D ROSARIQ QUARLES REMUOAR QUARTZ BURG C RATTLER B RIOCONCHO C ROSCOE REHUNDA QUATAKA C RATTO C RIO GRANDE B RDSCOMMON B RENBAC D RIO KING C RDSEBERRY QUAY RAUS QUAZO D RENCALSON RIO LAJAS A ROSE BLOOM RAUVILLE C QUEALY D RENCOT A RIO PIEDRAS B ROSEBUD RAUZI RIPLEY B QUEBRADA C RENFROW D RAVALLI ROSEBURG RENICK QUEENY D O R1PON B ROSE CREEK RAVENDALE RENNIE B B RAVENNA C/0 RIRIE ROSEGLEN QUEETS RENO RISBECK B QUEMADO C RAVOLA 0 ROSEHILL RISLEY D 0 RAMAN RENOHILL C ROSELAND QUENZER D RE NOVA 'J RISTA C ROSELLA QUICKSELL RAMHIDE RENOX a D RISUE R3SELMS QUIETUS C RAH SON RITCHEY B ROSEMOUNT B RAY RENSHAM B QUIGLEY RENSLOM RITNRR C ROSENOALE B QUILCENE C RAYADO B ROSE VALLEY RENSSELAER RITO QUILLAYUTE BRAYENOUF C B B RENTIDE RITTER ROSEVILLE QUIMBY RAYHONOVILLE C C ROSE WORTH A RENT ON B/C RITTMAN QUINCY RAYNE B/D ROSHE SPRINGS C RENTSAC C RITZ 9UINLAN RAYNESFORD RITZCAL B ROSITAS RAYNHAM REPARAOA D QUINN D B C REPP A RITZVILLE ROSLYN RAYNOR QUINNEt REPPART RIVERHEAO B ROSMAN B QUINCON RAZOR A ROSNEY REPUBLIC B RIVERSIDE QUITMAN C RAZORT A RESCUE RIVERTON C OUONSET READING C ROSS RIVERVIEW RESERVE B ROSS FORK READINGTON B RIVRA A C RESNER B ROSSI REAOLYN RABER RET C A B/C RIXIE ROSSMOYNE RABEY REAGAN RETRIEVER D RIXON C ROSS VALLEY RABIDEUX B REAKOR D RIZ ROTAN B RETSOF C RABUN REAL D RETSOK ROANOKE ROTHIEMAY D REAP B RACE ROBANA B ROTHSAY D REXBURG B REARDAN RACHERT B REXFORD C ROBBINS ROTTULEE B REAVILLE RACINE D REXOR A ROBBS ROUBIOEAU RACOON D REBA D B REYES C/D ROBERTS ROUEN C RAD REBEL ROBERTSDALE C REBUCK REYNOLDS ROUND BUTTE RADERSBURG B REYNOSA ROBERTSVILLE 0 ROUNDLEY B 0 B RAOFORO RECAL REYWAT ROBIN B ROUNDTOP C RECLUSE 0 RAOLEY ROBINSON D ROUNDUP D REDBANK B RHAME B RADNOR B ROUNDY RHEA B ROBINSONVILLE D RED BAY B RAFAEL D RHINEBECK ROBLEDO B RED BLUFF C D ROUSSEAU RAGER ROB ROY C ROUTON C RED BUTTE B RHOADES D RAGLAN ROSY C ROUTT B REDBY C RHOAME C RAGNAR RIB ROCA D C REDCHIEF C C ROVAL . RAGO B/0 REOCLOUO B RICCO ROCHE C RAGSDALE 0 ROME RICETON C D REOOICK C B ROCHE LLE ROWENA RAGTOWN 0 RICEVILLE ROCHE PORT ROWLAND C REDDING C RAHAL RICHARDSON B ROCKAWAY ROWLEY RAHM C REDFIELD B D RICHEAU ROCKCASTLE ROXAL C/D RED HILL C C RAIL RICHEY ROCK CREEK D ROXBURY RAINBOW C RED HOOK C C. B ROY B 0 RICHFIELD C ROCKFORD RAINEY REDLAKE A A ROCKHOUSE ROYAL B RICHFORD RAINS REDLANOS C/D ROCKINGHAM ROYALTON D RICHLIE A REOLODGE RAINSBORO C/D ROYCE" B RICHMOND D ROCKL IN RAKE D REDMANSON D ROCKLY ROYSTONE C RICHTER B RALSEN B/C REDMOND RICHVALE ROCKPORT C ROZA C B RAMADA C REDNUN B RICHVIEM ROCK RIVER B REDOLA B C ROZELLVILLE RAMADERO B REOONA RICHWOOD ROZETTA B B B ROCK TON RAMBLER B B RICKMORE C ROCKWELL ROZLEE RAMELLI C REDRIDGE RUA*K ROCKWOOD B D RICKS A RAMIRES D REDROB ROCKY FORD B B RICO C RUBICON RAMMEL C RED ROCK RODDY B RICREST B RUB10 RAMO C RED SPUR RODMAN A B RUBY B REOSTOE RIDO C RAMONA RIDGEBURY B RUSYHILL B B C ROE RAMPART REDTHAYNE D RUCH ROEBUCK C RIDGECREST RAMPARTAR A RED TOM ROELL EN D RAMPARTER A C R1DGEDALE B RUCKLES REOVALE C REDVIEM RIDGELAND 0 ROEMER RUCLICK RAMSEY 0 C ROESIGER RIDGE LAWN A B RUDD RAKSHORN B REE D RIDGELV B ROGER T RUDEEN REEBEX RANCE C B RUDOLPH RIDGEVILLE B ROHNERVILLE RANCHER I A B 0 REED RIDGEWAY O ROHRERSVILLE C RUDYARD B B RAND REEDER D RUELLA RIDIT RANDAOO C REEDPOINT C ROIC RI ET BROCK ROKEBY D RUGGLES D REEDY 0 RANDALL A BLANK HYDROLOGIC SOIL GROUP INDICATES THE SOIL GROUP HAS NOT BEEN DETERMINED NOTES TWO SOIL GROUPS SUCH AS B/C INDICATES THE DRAINED/UNDRAINED SITUATION R AND MAN RANDOLPH RANDS RANGER RANIER RANKIN RANTOUL RANYHAN RAPELJE RAPHO D D C D C C D B C B B C C B C B B C C B D B D B D B C 0 C B B D B B C B D B B C D C B C C B B B C D C C c c c c c c B/a c c e c c c NEH Notice k-I02, August 1972 B-17 C C 0 c D C B C C C D C B B B D C B C C C D D B/D D B B C B D D D D B B C B C 0 A B B C B C C C C c B B B C C 0 C C c c A D C D D C c B 0 B B B C B B D B B C C A C B C B D C D B C D B B Table B-l—Continued RUIDOSO RUKO RULE RULICK X LIMBO RUMFORO RUMNEY RUMPLE RUM RIVER RUNE RUNGE RUNNELLS RUNNYMEDE RUPERT RUSCO RUSE RUSH RUSHTOMN RUSHVILLE RUSS RUSSELL RUSSELLVILLE RUSSLEft RUSTON RUTLAND RUTLEGE RYAN RYAN PARK RYDE RYDER RYEGATE RYELL RYEPATCH RYER RYORP RYUS C 0 B C C B C C SALV1SA C SAUK B SEDAN SHELBY SALZER 0 SAULICH 0 SEOILLO B SHELBYVILLE SAMBA SAUM 0 C SBOWELL C SHELDON SAMISH C/D SAUNDERS SEEDSKADEE D SHELIKOF SAMMAMISH C SAUVIE C/0 SEES C SHELLA8ARGER SAMPSEL 0 SAUVOLA SEEWEE B SHELLORAKE SAMPSON B SAVAGE SEGAL D SHELLROCK SAMSIL 0 SAVANNAH SEGNO C SHELMADINE SAN ANDREAS C SAVENAC SEHORN D SHELOCTA SAN ANTON B SAVO SEITZ C SHELTON B SAN ANTONIO C SAVOIA B SEJITA D SHENA C SAN ARCACIO B 0 SAWA8E SEKIL SHENANDOAH C B SAN BENITO B SAWATCH SEKIU 0 SHEP A SANCHEZ 0 SAWCREEK B SELAH C SHEPPARO C SANDALL C SAWMILL C SELDEN SHERANOO 0 SANDERSON B SAWYER C SELEGNA D SHERAR C SANOLAKE SAXBY C D SELFRIOGE C SHERBURNE A SANOLEE A SAXON B SELKIRK 0 SHERIDAN 0 0 SANEL1 SAYBROOK 8 SELLE B SHERLOCK 8 SAN EMIGOIO 6 SAYLESVILLE C SELLERS A/0 SHERM 6 SANFORO A SAYLOR A SELMA B SHERRYL C SANGER B SCALA B SEMIAHMOO D SHERWOOD SAN GERMAN C 0 SCAMMAN C SEMIHMOO 0 SHIBLE B SANGO C SCANDIA SEMINARIO 8 D SHIELDS SANGREY C A SEMIX SCANTIC C C SHIFFER A 0 SCAR SEN SANILAC C B SHILOH D SAN ISABEL 8 SCARBORO 0 SENECAVILLE C SH1NAKU 6 SAN JOAQUIN 0 SCAVE SEQUATCHIE C B SHINGLE B/D SAN JGN C SCHAFFENAKEf SEQUIM A A SHINGLETOMN B C SAN JOSE SCHAMBER A SEQUIN B SHINN B SAN JUAN A SCHAMP SEQUOIA C C SHINROCK A SAN LUIS B SCHAPVILLE C SERENE D SHI OC TON 0 SAN MATED B SCHEBLY 0 SERNA D SHIPLEY SAN MIGUEL SCHERRARD C C 0 SEROCO A SHIPROCK C SANPETE B SCHLEY B SERPA C/0 SHIRAT SANPITCH C C SCHMUTZ B SERVO SS. SHIRK D SAN POIL B SCHNEBLY D SESAME C SHOALS SAN SABA SABANA D D SCHNEIDER C SESPE C SHOEBAR SABANA SECA SAN SEBASTIAN B 0 SCHNOORSON B/0 SESSIONS C SHOEFFLER SABENYO SANTA SCHNORBUSH B C SESSUM SHONKIN C D SANTA CLARA SABINA C SCHODACK C SETTERS C SHODFLIN SCHODSON A 0 SABINE SANTA FE C SETTLEMEYER 0 SHOOK SABLE 0 SANTA ISABEL 0 SCHOFIELD B SEVAL D SHOREWOOO SANTA LUCIA SAC B SCHOHARIE C SEVERN SHOREY 8 D SACO SANTA MARTA SCHOLLE B SEVILLE D SHORN SACRAMENTO C/D S4NTANA SCHOOLEY C/0 SEVY C SHORT CREEK SACUL SANTAOUIN A 0 SCHOONER D SEWARO B SHOSHONE SANTA YNEZ SADDLE B SCHRAOER C 0 SEWELL B SHOTKELL SADDLEBACK a SANTEE D SCHRAP O SEXTON D SHOUNS SANTIAGO SADER 0 8 SCHR1ER B SEYMOUR C SHOWALTER SADIE B SANTIAM SCHROCK C B SHAAK D SHOWLOW SADLER C SAN T1MOTEO C SCHUMACHER B SHADELANO SHREWSBURY C SANTON1 B D SCHUYLKILL SAFFELL B SHAFFER A SHRINE SAGANING 0 SANTOS SCIO C B B SHAKAN SHROE SAGE 0 SANTO TOMAS SCIOTOVILLE 6 SHAKESPEARE C C SHROUTS SAN YSIDRO SAGEHILL D SCISM B SHAKOPEE SHUBUTA C SAP I NERO SAGEMOOR B SCITUATE SHALCAR C 0 SHULE SAPP SAGERTON 0 SCOBEY D C S HAL ET SHULLSBURG SAGINAM SAPPHIRE B SCOOTENEY B SHAM 0 SHUMWAY SAGO D SAPPHO B SCORUP S HANBO C B SHUPERT SAGOUSPE SAPPINGTQ-* 8 SCOTT D SHAMEL B SHUWAH SAGUACHE SHANAHAN A SARA SCOTT LAKE C B SI B B SARALBGUI B SAHALIE SCOUT B SHAN DON SIBLEYVILLE SAINT HELENS A SARANAC D SCOWLALE C SHAME D SIBYLEE SAINT MARTIN SARAPH C D SCRANTON B/0 SHANO B SICILY SALAOO SARATOGA B B SCRAVO A SHANTA B SICKLESTEETS SALAOON D SARATON B SCRIBA SHAPLEIGH C C/0 SIDELL SALAL B SARBEN A SCRIVER B SHARATIN B SIEfkNCIA SALAMATOF B SARCO D SCROGGIN C SHARKEY 0 SIEBER SARDINIA SALAS C C SCULLIN C SHARON B SIELO SALCHAKET B SARDO B SHARP SBURG SEABROOK SIEROCLIFF C B SALEM SARGEANT B 0 SEAMAN SHARROTT 0 SIERRA SALENS8URG SAR I TA A SEAQUEST SHARVANA SIERRAVILLE C SALGA SARKAR C D SEARCHLIGHT SHASK IT B/C SIESTA SAL IDA A SARPY A SEARING B SHASTA A SIFTON SALINAS C SAR TELL A SEARLA B SHAVANO 8 SIGNAL SALISBURY 0 SASKA B SEARLES C SHAVER B SIGURD SALIX B SASPAMCO B SEATON B SHAWA B SIKESTON SALKUM C SASSAFRAS B SEATTLE 0 SHAWANO A SILCOX SALLISAH SEAWILLOW 8 SASSER B B SHAH HUT B SILENT SALLYANN SATANKA C SHAY C SEBAGO D 0 SILER SALMON 8 SATAhTA B SEBASTIAN 0 SHEAR C SILERTON SALOL 0 SATELLITE C SEBASTOPOL C SHECKLER SILI SALONIE 0 SATT D SEBEKA SHEDAOO D 8 SILSTIO C/D SATTLEY SALREE B/D SHEOO B SEBEWA SILVER C SALTAIR 0 SATTRE B SEBREE D SHEEGE D SILVERADO SALT CHUCK A SATURN B SEBRING 0 SHEEP CREEK C SILVERBOH SALTER B SATUS B SEBUD B SHEEP HE AO C SILVER CREEK SALTERY 0 SAUCIER B SECATA C/0 SHEEPROCK A SILVERTON SALT LAKb SAUDE B 0 SECCA C SHEET IRON B SILVIES SAUGATUCK SALUDA C SECRET C SHEFFIELD 0 SI MAS SALUVIA SAUGUS B SECRET CREEK B SHELBURNE C SIMCOE A BLANK HYDROLOGIC SOIL GROUP INDICATES THE SOIL GROUP HAS NOT BEEN DETERMINED NJTES TWO SOIL GROUPS SUCH AS B/C INDICATES THE ORAINED/UNORAINEO SITUATION c c c c c c c c c c c c c e c c c a c c c c c NEH Notice 1*-102, August B-18 1972 B B D B A A 0 8 C C c B A A C B 8 B 0 8 a B C B C 0 0 c B C B C a c c . B B 8 0 c A C B B 0 0 D B C c D B 0 0 C B C 0 c B B B 0 8 C B B A C 0 B a 0 B C B D B 0 B B 0 A C C 0 0 c D C C Table B-l—Continued A SNOW SIMEON 0 SNOWDEN S1MMLER C SIMMONT SNOWLIN A SIMNER SNOWVILLE SIMON C SNOWY D SOAKPAK SIMON A C SIHOTE SOAP LAKE B SOBOBA SIMPERS SIMPSON C SOBRANTE SOOA LAKE SIMS D SINAI C SODHOUSE SINCLAIR C iODUS SINE C SOELBERG SOFIA SINGLETREE B SOGN SINGSAAS SINNIGAM C SOGZIE SINOMAX B SOKOLOF 8 SOLANO SINTON SINUK D SOLDATNA B SION SOLDIER SIOUX A SOL DUC SOLDUC A SIPPLE B SIRI SOLLEKS SI SKI YOU B SOLLER B SOLOMON SISSETON B SOLONA SISSON SOMBRERO C SITES B SOMERS SITKA B SOMERSET SIXMILE B SIZEMORE SOMERVELL B SOMSEK SIZER B SONOITA SKAGGS SKAGIT B/C SONOMA A SONTAG SKA HA C SOPER SKALAN B SOQUEL SKAMANIA B SKAMOKAWA SORDO SKANEE C SORF SKELLOCK B SORRENTO C SORTER SKERRY SOSA B SKIOMORE C SOTELLA SKILLET SOTIM SKINNER C SOUTHFORK SKIYOU SKOKOMISH B/C SOUTHGATE SKOOKUMCHUCK B SOUTHW1CK B SPAA SKOWHEGAN 0 SPACE CITY SKULL CREEK 0 SKUMPAH SPADE SKUTUM C SPALDING SPAN SKYBERG C SPANAWAY SKYHAVEN D B SPANEL SKYKOMISH . SKYLICK SPARTA C SPEARFISH 0 SKYLINE B SPEARMAN SKYWAY D SPtARVILLE SLAB SPECK C SLATE CREEK C SPECTER SLAUGHTER D SPEELYAI SLAVEN B SLAWSON SPEIGLE SPENARO SLAYTON D SPENCER SLEETH C SPENLO SLETTEN 0 SPERRY SLICK ROCK B D SPICER SLIGHTS B SPILLVILLE SLIGO SLIKOK 0 SPINKS B SPIRES SLIP SPIRIT B/C SLIPMAN SLOAN 0 SPIRO SLOCUM B SPLENOORA SPLITRD C SLOOUC SPOFFORD C SLOSS B SPOKANE SLUICE B SPUNSELLER SMARTS A SPOON 8UTTE SMITH CREEK B SPOONER SMITHOALE B SPOTTSWOOD SMITHNeCK 0 SPRAGUE SMITHTON SKOLAN C SPRECKELS 0 SPRING SMOOT SPRING CREEK SNAG B SNAHOPISH B SPRINGOALE SNAKE C SPRINGER SNAKE HOLLOW B SPRINGERVILLE B SPRINGFIELD SNAKELUM 0 SPRINGMEYER SNEAD C SPRINGTOWN SHELL B SPROUL SNELLING SPUR D SN3HOMISH B SPURLOCK SNOQUALMIE A BLANK HYDROLOGIC NOTES TWO SOIL GROUPS SUCH AS c c B SOUALICUM B STISSING C SURGH SOU AW B STIVERSVILLE B SURPRISE SQUILLCHUCK B STOCKBRIDGE B SURRENCY STOCK LAND SOUIMER B B SURVYA SQUIRES B STOCKPEN D SUSIE CREEK STOCKTON D SUSITNA ST. ALBANS B B STO01CK D ST. CHARLES SUSQUEHANNA ST. CLAIR D SUTHER 0 STOKES C ST. ELMO A STOMAR C SUTHERLIN B ST. GEORGE C B SUTLEW STONER D ST. HELENS A STONEWALL A SUTPHEN C ST. IGNACE C STONO B/D SUTTLER B ST. JOE B/D STONYFORO D SUTTON B ST. JOHNS B/D STOOKEY B SVEA D ST. LUCIE A B STORDEN SVERDRUP B B ST. MARTIN C STORLA SVOLD B ST. MARYS B STORM1TT B SWAGER D STORM KING ST. NICHOLAS 0 0 SWAKtNE B ST. PAUL B STORY C SWAN C ST. THOMAS 0 STOSSEL C SWANBOY B STAATSBURG STOUGH C SWANNER B STABLER B D STOWELL SWAN SON STACY C B STOY C SWANTON STAOY STRAIGHT 0 B C SWANTOWN D STAFFORD E C STRAIN SWAPPS STRASBURG B STAGECOACH B C SWARTSWOOD 0 STAHL STRATFORD B SWARTZ C STALEY B C SWtSEY C STRAUSS 0 STAMBAUGH STRAW B SWASTIKA 8 B B STAMFORD D STRAWN SWATARA STAMPEDE SWAUK C D STREATOR C B STAN SWAWILLIA B STRDLE B D STANOISH B SWEATMAN C/D STRONGHURST 0 STANEY STRONTIA B SWEDE D B/C STANFIELD C STROUPE C SWEDEN B C B SWEEN STANLEY STRYKER STANSBURY C SWEENEY C D STUBBS STUCKCREEK B C STANTON SWEET D D B STAPLETON B STUKEL SWEETGRASS STUKEY B/D STARBUCK B SWEETWATER D ' A SWENODA C STARGO B STUMBLE STUMPP C STARICHKOF D SWIFTCREEK D B STUMP SPRINGS B SWIFTON STARKS C B SWIMS D STARLEY D STUNNER STUTTGART D STARR SWINGLER D B SWINK STASER B STUTZMAN C C D STUTZVILLE B/C SWIS80B STATE B A SUBLETTE B SWITCHBACK STATEN 0 SUOBURY B B B SWITZERLAND STATLER STAVE D D SUDDUTH C SW3PE D D SUFFIELD C SWYGERT STAYTON SUGAR LOAF B STEAMBOAT B D SYCAM3RE D D STEARNS D SUISUN SYCAN A B SYLACAUGA STECUM A SULA B A SULLY B SYLVAN STEED SULPHUR A D C STEEOMAN D SYMERTON B SULTAN SYStREP C STEEKEE C B B/C SYRACUSE D STEELE SUMAS SUMDUM D 0 STEtSE C SY*ENE STEFF SUMMA B SYRETT C C 6 SUMMERFIELO C STEGALL C B D STEIGER A TABERNASH SUMMERS B STEINAUER B SUMMERVILLE C TABIONA B STEINBECK C TABLE MOUNTAIN B SUMMIT 0 SUMHITVILLE B C STEINMETZ TA8LER C TABOR C STEINS BURG C SUMTER B D STEIHER C SUN TAC*N A STELLAR SUNBURST C C D SUNBURY B TACDOSH STEMILT C SUNCOOK A B STENOAL TAFT B C TAGGERT STEPHEN C SUND TAWOMA C STEPHENSBURG B SUNCELL C D B TAHQUIHENON STEPHENVILLE SUNOERLAND TAHQUATS B C STERLING B SUNDOWN B STERLINGTON B SUNFIELO B TAINTOR B STETSON B SUNN I LAND C TAJO SUNNYHAY D TAKEUJHI C STETTER D TAKILMA C STEUBEN SUNNY SIDE B B TAKOTNA B B SUNNYVALE C STEVENS SUNRAY B TtLAG B/C STEVENSON B C D T4LANTE STEWART D SUNRISE C/D STICKNEY B C SUNSET TtLAPUS STIDHAN SUNSHINE C TALBOTT C A TALCOT B STIGLER SUNSWEET C C B STILLMAN D TALIHINA A SUNUP D B STILLWATER D SUPAN TALKEETNA D C STILSON B SUPERIOR TALLAC A C STIMSON TALLADEGA B/C SUPERSTITION SUPERVISOR C STINGAL B C TALLAPOOSA D STINSON B C SUPPLEE TALLEYVILLE B B STIRK SUR TALLS D B STIRUM SURGEM C TALLULA B SOIL GROUP INDICATES THE SOIL GROUP HAS NOT 3EEN DETERMINED B/C INDICATES THE ORAINEO/UNORAINEO SITUATION C B D A B B A TACOMA c • c/o NEH Notice U-102, August B-19 1972 8 B B/D C D B 0 C j B/C 0 B B B B C C c c D D B B/D C C C D D C A C A C B 8 C B C B 0 B B A A C 0 D C B C C B/C A B/D B B B B 0 C B B B D D B 0 D C C B D C C C C 8 B 0 C B C C D C B C C B B B Table B-3—Continued TALLY B TENINQ B TIGERON A TQMERA D TRENTON TALMAGE A TENNO 0 TOM1CHI TIGIHON B A THEP TAL.tO B TENORIO TIGRET1 B TOMOKA A/D TRES HERMANOS TALOKA 0 TENOT C TIGUA D TONASKET B TRETTEN TALPA 0 TENRA6 8 TIJERAS B TONATA C TREVINO TAMA B 0 TENSAS TILFORO TON AH AN DA B C TREXLER TAMAHA C TENSED C TILLED A. B TONEY D TRIAMI TAMALCO 0 TENSLEEF B TILLICUM B TONGUE RIVER C TRIASSIC TAMBA TEOCLU.II B TILLMAN C TONINI B TRICON TAMELY TEPEE 0 T1LMA C TONKA C TRIOELL TAMMANY CREEK B TE.PET6 B/0 TILSIT C TONKEY D TRIDENT TAMMANY RIOGE B TERBIES C TILTON B TONKIN C TRIGO TERESA TAMMS C C T I MB ERG C TONKS B/D TRIMBLE :ERINO TAMPICO B 0 TIMBERLY TONOPAH B B TRIMMER TANANA 0 TERMINAL 0 TIM8LIN 0 TONOR C TRINCHERA TJMENrw* TAN ANA TERMO 0 C B TONDKEK B TRINITY TANBERC TEROU€E 0 0 TIMKEN 0 A TONKA TRI3MAS TANDY C TERRA CEIA A/0 T1MMERMAK B TONS I NA TRIPIT B TANEUH C TERRA? D TIMMONS B TONUCO C TRIPL6N TANEY TERRER* C TIMPAHUTE C D TOOLE 0 TRIPOLI TANGAIR TERRETON C C TIMPANOGOS B TOOMES 0 T*IPP TANNA TERRI,. TIMPER C B D TOP C TRITON TANNER C TERRY B B TOP I A TRIX TIMPOONEKE D TANSEH B TERWILL1GER C T I HULA B TOPPENISH B/C TROJAN TANTALUS A A TINA TESAJO C TOPTON TRDMMALO TANHAX TESCOTT 0 C TINDAHAY A TOSUERVILLE TROMP C TAOPI B C TINE TESUOU6 A TOQUOP A TRONSEN TAOS TETON 0 A TINGEY B TORBDY B TRDOK TAPIA TETONIA B C TINSLEY A TORCHLIGHT C TRQPAL TETONKA TAPPEN 0 C TINTON A TOROIA D TROSI TARA B TETOTUM C TINYTOMN B TORHUNTA TROUP C TARKIO 0 TEU B/0 TIOCANO 0 TORNING B TROUT CREEK TARKLIN TEX B C TIOGA TORODA B B TR3UTDALE TARPO B TIPPAH C TEXL1NE C TORONTO C TR3UT LAKE TARRANT 0 TEIUMA C B TIPPECANOE TORPEDO LAKE D TROUT RIVER THACKERY B TARRETE 0 TIPPER A TORREON C TROUTVILLE THAOER TARRY ALL B C TIPPERARY A B TORRES TROXEL TASCOSA THAGE TIPPIPAH TROY B C 0 TORRINGTON B TASSEL THANYON A TIPPO TORRO 0 C C TRUCE THATCHER TATE B TIPTON B TORS I DO B D TRUCKEE THAT UNA TATIYEE C C TIPTONVILLE B TORTUGAS D TRUCKTON TATU B TIRO TOSTON C THAYNE C D TRUEFISSURE TATUM B TISBURV C THEBES B TOTELAKE A TRUESDALE TAUNT ON THE BO 0 TISCH C C TOTEM B TRULL TAVAJES A C B TRULOU THEOALUNO TISH TANG B TOTTEN TAMAS A/0 THENAS C TITUSVILLE C TOUCHET B TRUMAN TAHCAH C THEO C A TOUHEY B TIVERTON TRUMBULL TAYLOR THERESA C B B TRUMP TIVOU A TOULON TAYLOR CREfK THERIOT 0 TIYY 0 C TOURN C TRYON THERMAL C TOA TOURNQUIST TAYLORSFLAT 0 B TSCHICOMA C TAYLORSV1LUE 0 T06ICQ C TKERKOPOLIS 0 TOURS B TUB TAYSDH B B THESS TOBIN B A TOUTLE TU8AC TAZLINA A THETFORO A TOBISH C TOMER D TUCANNON A TOBLER TlCKERMAN TEAL 0 THIEL B TOWHEE D TKI OKOl TEALSCN C C TOBOSA D TOWNER B TUCSON TEALUHIT THOENY 0 TOBY C B TOHNLEY C TUCUMCARI TE ANA WAY THOMAS 0 TOCCOA TOWNSBURY C B B TUFF1T 0 TEAPO B THORNOALE TOOO .B TOWN SEND C TUSHILL TEAS THORNOIKE C C/D TODDLER B TOWSON B TUJUNGA THORNOCK B 0 TEASDALE TOODVILLE 8 TOXAWAY D TUHEY TEBO B THORNTON 0 TOE HEAD TOY D TUKMILA C TECHICK THCRNWOOD B B TOEJA C TOYAH B TULA B TECOLOTE B THOROUGHFARE TOEM TOZE B C TUUANA ' TECUHSAH B THORP C TOGO B TRABUCO C TULARE TEOROM THORR B B TOGUS TRACK 0 B/C TULAROSA TEEL B THORREL B TOHONA TRACY B TULIA C TEHACHAPI 0 THOM B TOINE C TRAER C TULLAHASSEE T 01 SNOT TEHANA C THREE MILE 0 0 TRAIL A TULLER TEJA ( THROCK C TOIYABE C TRAIL CREEK B TULLOCK TEJON B THUNDEKBIRD D TOKEEN B TRAM B TULLY TEKOA C THURBER C TOKUL C TRANSYLVANIA B TULUKSAK TELA THURLON1 B TOLBY C A A TRAPPER TUHBEZTELEFONO THURLOH C C TOLEDO 0 TRAPPIST TUMEY C THURMAN A TELEPHONE 0 TOLICHA D TRAPPS B TUKITAS TELFER A THURMONT B TOLKE B TRASK C TJMWATER TtLFERNER D THURSTON B TOLL A 0 TRAVELERS TyJEHEAN TEL IDA B 0 TIAGOS TOLLGATE B TRAVER B/C TUNICA TELL B TIAK C D TRAVESSILLA 0 TOLLHOUSE TUNIS TELLER B TIBAN B TOLMAN O TRAVIS TUNITAS C I ELL I CO TOLNA B TIBBITTS 6 B TRAWICK B TUNKHANNOCK TELLMAN B TICA D TOLO TRAY B C TUNNEL TELSTAO B TICE C TOLSONA TREAD WAY D 0 TUPELO TICHIGAN TcMESCAL 0 C TOLSTOI 0 TREASURE 8 TUPUKNUK TEMPLE 0 B/C TICHNOA TOLT D TREBLOC D TUQUE TEHVIK B T1CKAPOO 0 TOLTEC C C TREGO TURBEVILLE T1CKASON TENABO 0 B TOLUCA B 0 TRELONA TURBOTVILLE TENAHA B T I DWELL 0 TOLVAR B B TREMANT TURBYFILL TENAS TIERRA O TOMAH C TREMBLES B TURIN C TENCEE D TIE TON B TOMAS A TURK B TREMPE TENERIFFE TIFFANY C C TOHAST B TREMPEALEAU TURKEYSPRINGS C TENEX A B TIFION TOME TRENARY B TURLEY B TENIBAC B TIGER CREEK B TOMEL B TURLIN 0 TRENT NOTES A BLANK HYDROLOGIC SOIL GROUP INDICATES THE SOIL GROUP HAS NOT BEEN 3ETERMINED TWO SOIL GROUPS SUCH AS B/C INDICATES THE DRAINED/UNORAINEO SITUATION c/c NEH Notice i»-102, August 1972 B-20 D B B C D C C C B D C B B C 0 B C B C B C B B D C C B D 0 A C B C A 8 B C C C B A C C B B D 0 D B C C C D B B 0 D A C D C C/D C/D B B C D B C 0 D 0 B A D 0 D B A B D D B C C B B O C C B Table B~l—Continued TURNSGW TURNER TURNERV1LLE TURNEY TURRAH TURRET TURRIA TURSON TUSCAN TUSCARAWAS TUSCARORA TUSCOLA TUSCUMBIA TUSEL TUSKEEGO TUSLER TUS8U1TEE TUSTIN TUSTUMENA TUTHILL TUTNI TUTWILER TUXEDO TUXEKAN TWIN CREEK TWINING TW1SP TWO DOT TYBO TYEE TYGART TYLER TYNDALL TYNER TYRONE TYSON B WADDELL WARDEN WADDOUPS B WASDWELL B WAOELL WARE WADENA B WAtEHAM B WARMAN WADES BORO D WADLEIGH WARM SPRINGS D WADMALAW WARNERS WADSWORTH C WARREN B WAGES WARRENTON D WAGNER WARRIOR A WAGRAM WARSAW VACHERIE WAHA C C WARSING VADER D WARWICK B WAHEE VADO B WASATCH B WAHIAWA VAIDEN D B WASEPI WAHIKULI VAILTON WAHKEENA B B WASHBURN B VALBY B C WAHKIACUS WASHINGTON B VALCO B C WAHLUKE WASHOE D B VALDEZ WAHHONIE WASHOUGAL B/C B VALE B WASHTENAW WAHPETON C B WASILLA VALENCIA B WAHT1GUP B VALENT A W1SIOJA B WAHTUM 0 D VALENTINE A WAIAHA WASSAIC B VALERA WATAB C C WAIAKOA B D WATAUGA VALKARIA B/0 WAIALEALE B C VALLAN D WAIALUA WATCHAUG B D WATCHUNG VALLECITOS C/D WAIAWA 0 WATERBORO C VALLEONO B WAIHUNA B WATERBURY 0 VALLERS C WAIKALOA VALHONT B WATERINO D C WAIKANE VALHY B WATERS C B WAIKAPU D D B WATKINS VALOIS WAIKOMO B B/C VAMER D WAILUKU WATKINS RIDGE B A VANAJO D WATO WAIMEA B WATDPA C D VANANOA WAINEE A WATROUS WAINOLA C VAN BOREN WATSEKA C VANCE C WAIPAHU VANDA D B WATSON UANA D WAISKA B WATSONIA VANDAL I A WAITS UBAR C C .D UBLY B VANDERDASSON 0 WAKE WATSONVILLE B WATT 0 VANOERGRIFT C WAKEEN UCOLA WAKEF1ELD B WATTON C VANDERHOFF D UCOLQ A B/D WAUBAY B VANDERLIP WAKELANO UCOPIA C WAUBEEK 0 VAN DUSEN 6 WAKDNDA UDEL A VANET WAKULLA C D WAUBONSIE UOOLPHO WAUCHJLA B D VANG B WALCOTT UFFENS VANHORN C WAUCOMA D B WALDECK UGAK WAUCONDA VAN NOSTERN B WALDO D B UHLAND VAN KG Y D B B WALDRON WAUKEE UHLIG B D B WALDROUP WAUKEGAN UINTA VANOSS WAUKENA B VANTAGE C WALES UKIAH C WAUKON ULEN B 0 WALFDRD C VAN WAGONER WAUMBEK B WALKE C ULLOA VARCO VARELUM B 4AURIKA B ULM WALL B VARICK D B ULRICHER WALLACE WAUSEON VAR1NA WAVERLY B C WALLA WALLA B ULUPALAKUA B VARNA C WALLER B/0 WAWAKA ULY B WALLINGTON WAYCUP VARRO B C ULYSSES A B VARYSBURG B WALL I S WAYDEN UMA C/D WAYLAND UHAPINE 6/C VASHTI C B WALLKILL WAYNE D VASQUEZ B B WALLMAN C UM1AT WALLOWA C WAYNESBORO UMIKOA B VASSALBORO D C D VASSAR B WALLPACK C WAYSIDE C UHIL B/C WEA B WALLROCK UMNAK VASTINE C B WALLS BURG 0 WEAVER B C B UNPA VAUCLUSE UUP QUA B D WALLSON B WEBB VAUGHNSV1LLE C C C WEBER D VAYAS D WALPOLE UNA D WALSH B WEBSTER UNA01LLA B VEAL WALSHVILLE WEDEKIND B VEAZIE B B D UNAWEEP A WEDERTZ B VEBAR B B UNCOM WALTERS D VECONT C WEDGE UNCOHPAHGRE D C WALTON VEGA WALUM UNEEDA B B B WEDOWEE C B B VEGA ALTA C WALVAN WEED UNGERS 0 VEGA BAJA WAMBA UNION' C B B/C WEEDING WEEDMARK B VEKOL D B UNIONTOWN C WAMIC VELOA B B UNIONVILLS C D WAMPSVILLE WEEKSVILLE B WEEPON UN I SUN C VELMA B C WANATAH 0 B D WEHADKEE UPDIKE VELVA B WANBLEE A WEIKERT C VENA C B WANDO UPSAL VENANGO A WANETTA A WEIMER UPSATA C B WAN R LA WEINBACH C VENATOR D C C UPSHUR UPTON C VENETA C WANN A WEIR 0 WEIRMAN URACCA B VENEZIA D B WAPAL WABANICA C/D WEISER URbANA C VENICE D D WAPATO URBO D VENLO D WABASH D B WEISHAUPT WAPELLO URJCH B WABASHA WAPINITIA B WEISS D VENUS 0 B VERBOORT D WABASSA B WEITCHPEC URNE B/D WAPP1NG WABEK B WELAKA 0 VEKOfc C B WAPSIE URSINE VERDEL WELBY WACA WARBA B URTAH C 0 C 0 WELCH VERDELLA WACOTA 0 D B WARD URWIL A B VEROICO D WACOUSTA C WELD USAL WARDBORO WELDA USHAR e VERDIGRIS B D WADAMS 6 WARDELL NJTES A BLANK HYDROLOGIC SOIL GROUP INDICATES THE SOIL GROUP HAS NOT BEEN DETERMINED TWO SOIL G R O U P S SUCH AS B/C INDICATES THE D R A I N E O / U N O R A I N E D SITUATIDN C B B B D B C B/C D C C B 0 C C B USINE USKA UTALINE UTE UTICA UTLEY UTUADO UVADA UVALDE UWALA B 0 B C A B B 0 C B c c a c VERDUN VERGENNES VERHALEN VERMEJO VERNAL VERNAL1S VERNIA VERNON VERONA VESSER VESTON VETAL VETERAN VEYO VIA VIAN VI BORAS VIBORG V1CKERY VICKSBURG VICTOR VICTORIA VICTORY VICU VIDA V1DRINE VIEJA VIENNA VIEQUES VIEW VIGAR VIGO VIGUS VIKING VIL VILAS VILLA GROVE VILLARS VILLY VINA VINCENNES VINCENT VINEYARD VINGO VININC VINITA VINLAND VINSAD VINT VI NT ON VIRA VIRATON VIRDEN VIRGIL VIRGIN PEAK VIRGIN RIVER VIRTUE VISALIA VISTA VIVES VIVI VLASATY VOCA VOOERMAIER VOLADORA VOLCO VOLE NT E VOLGA VOLIN VOL1NIA VOLKE VOLKHAR VOLMER VOLNEY VOLPERIE VOLTAIRE VOLUSIA VONA VORE VROOMAN VULCAN VYLACH 0 D 0 D B B A D C C 0 A B 0 B B 0 B C B A D B D B C 0 B B C C D C D D A B B D B C C C 6 C C C C B B C C C B 0 0 C B c- NEH Notice U-102, August 1972 B-21 B C B C 0 C A/D B/D B B A A B B C B C/D 0 B B C B B D 0 C C B B B B B C C D D 0 C B B B B/0 B B B B 0 B B D B/D B/D C B 0 C/D B B B C C B C 0 C A O B A/C B B/D 0 D C/D D C D B C 0 A B A B C C C Table B-l__Continued WICKIUP C HISNER D YALMER B ZUNOELL WICKLIFFE D WITBECK D 8 YAMAC ZUNHALL WICKSBURG WITCH B D YAMHILL C ZUNI WIDTSOE C WITHAM D YAMPA C ZURICH W1EHL C W1THEE C YAMSAY D 2WINGLE MIEN 0 WITT YANA 8 B WIGGLETON B WUZEL YANCY D t WIGTON A HCOEN YARDLEY B C HILBRAHAM C WODSKQW B/C YATES 0 WILBUR C WOLCOTTSBURG C YAUCO WILCO WOLDALE C/D YAWOIM D e/c W1LCOX 0 WOLF YAWKEY B C C WILCGXSON HOLFESEN C YAXON B B/C WILDCAT D WOLFESON C YEAHY C WOLFORD WILDER B B YEATES HOLLOW C C WILDERNESS C WOLF POINT D YEGEN B B WILDKOSE D WOLFTEVER C YELH B WILD WOOD C D WOLVERINE A YENRAB A B WILEY C WOODBINE B YEOMAN B C WILKES C WOODBRIOGE C YESUM B B WILKESON C WOODBURN C A YETULL 0 WILKIMS D WOODBURY D YQDER B C MILL D WOODCOCK B YOKOHL 0 B WILLACY B WOODENVILLE C YOLLA80LLY 0 C WILLAKENZIE C WOODGLEN D YOLO B WILLAMAR C D B WOODHALL YOLOGO D WILLAMETTE B WOOD HURST A YOMBA C WILLAPA C WOODINVILLE C/D YOMONT B B/0 WILLARD B WOODLY B YONCALLA C C/D WILLETTE A/D WOOOLYN C/D YONGES D WILLHAND B B WOODMANSIE B YONNA B/D B B WOODMERE WILLIAMS B YORDY 8 ii WILLIAMSBURG B HOOD RIVER 0 YORK C B WILLIAMSON C WOOD ROCK C YORKVILLE D C WILLIS C WOODROW C YOST C A WILLITS B YOUGA WOODS CROSS 0 B B WILLOUGHBY B WOODSF1ELO YOUMAN C C WETHERSFIELO C WILLOW CREEK B A YOUNGSTON B WOODS IDE WETHEY B/C WILLOWDALE B WOODSON D YOURAME A WETTERHORN C 0 WILLOWS WOODSTOCK C/D VOVIMPA D A YSIDCRA 0 MILLWOOD WOOOSTDWN D WETZEL C WEYMOUTH B WILMER C A WOODWARD B YTURBIDE B WILPAR D WHAKANA D WOOLMAN B YUBA B WHALAN WILSON D WOOLPER YUKO C C C WOOLSEY D MHARTON WILTSHIRE C C YUKON HHATCOM C KINANS B/C WOOSLEY YUNES D WINBERRY WHATELY 0 D WOOSTER YUNOUE C WHEATLEY 0 WINCHESTER A WOOSTERN B WIKCHUCK WHEATRIOGg C C WOOTEN A ZAAR D B WINDER B/D WORCESTER KHEATV1LL6 B ZACA 0 B WINDHAM B WHEELER WORF ZACHARIAS 0 B B WHEELING 8 WORK ZACHARY WINS KILL C D WHEELON 0 WINDOM B WORLAND B B ZAFRA B WIND RIVER B HORLEY WHELCHEL B C ZAHILL B WINDSOR A WHETSTONE WORMSER C ZAHL B C WINDTHORST WHIOBEY C WOROCK ZALESKI B C WINDY WH1PPANY C C WORSHAM ZALLA A D * WHIPSTOCK C WINEG WORTH ZAMORA . C B WINEMA MHIKLQ C WORT HEN B ZANE a WINETTI WHIT 8 D WORTHING ZANEIS B WHI TAKER c WINFIELD C HORTHINGTON ZANESVILLE C C c WING WHITCOMB 0 WORTMAN C C ZANONE WINGAIE B WRENTHAM WHITE BIRO C ZAPATA C WH1TECAP 0 WINGER C WRIGHT ZAVALA B C MHITEFISH B WINGVILLE B/D WRIGHT KAN C ZAVCO C a WINIFRED C WHITEFORO WRIGHTSVILLE D ZEB B B WINK B WUNJEY WH1TEHORS6 B ZEESIX C WINKEL D WHITE HOUSE WURTSBORO C ZELL B B WINKLEMAN WHITELAKE C WYALUSING D ZEN C WHITELAH B WINKLER A WYARD B ZEKDA C 0 0 WHITEMAN WINLO WYARNO B ZENIA B . WINLOCK WHITEROCK 0 C WYATT C B ZENIFF WINN WHITESBURS C WYEAST C ZEONA A 0 WHITE STORE WINNEBAGO B WYEVILLE C ZIEGLER C WHITE SWAN WINNEMUCCA 8 WYGANT C ZIGWEIO B B HINNESHIEK B WYKOFF WHITEWATER B ZILLAH B/C WINNETT D WHITEWOOD C WYMAN B ZIM 0 WHITLEY 8 WINONA D WYMORE C ZIMMERMAN A B WINOCSK1 WHITLOCK B WYNN B C ZING D WINSTON A WHITMAN WY NOOSE D B Z INZER B WHITNEY WINTERS WYO C B ZION C A WINTERSBURG WHI TO RE C WYOCENA B ZIPP C/D WHITSOL WINTERSET ZITA 8 0 WH1TSON WINTHROP A B ZOAR XAVIER C WHIT WELL W1NTONER C ZOATE 0 WINU MHOLAN C YACOLT B ZOHNER B/D WIBAUX WINZ C YAHARA ZOOK B C WICHITA WIOTA B YAHOLA ZORRAVISTA A B D WICHUP WI SHARD YAKI A D B/D ZUFELT WICKERSHAM B WISHEYLU C YAKIMA B ZUKAN D C W I SHKAH WICKETT C YAKUS D ZUMBRO B WISKAH WICKHAM B C ZUMWALT YALLANI B C A BLANK HYDROLOGIC SOIL GROUP INDICATES THE SOIL GROUP HAS NOT BEEN DETERMINED NOTES TWO SOIL GROUPS SUCH AS B/C INDICATES THE DRAINED/UNDRAINED SITUATION WE LOON wELDuNA WELLER WELLINGTON WELLMAN WELLNER WELLS60RO WELLSTON WELLSVILLc WELRING WEMPLE HENAS WENATCHEQ MENDEL WENHAN WENONA WENTWORTH WERLOW WERNER WESO WESSEL WESTBROOK WESTBURY weSTCREEK WESTERVILLE WESTFALL HESTFIELD WESTFORD WESTLAND WESTMINSTER WESTMORE WESTMORELAND WESTON WESTPHALIA WESTPLAIN WESTPORT 0 B C 0 B B C B B 0 B c c weSTviLLE c c e c c c c c a c c c c c NEH Notice U-102, August B-22 1972 B/C B/C D near the surface, and shallow soils over nearly impervious material. These soils have a very slow rate of water trans- mission (0 - 0.15 in./hr.). The infiltration rate is the rate at which water enters the soil at the soil surface and is controlled by surface conditions. The transmission rate is the rate at which the water moves in the soil and is controlled by the soil profile. In the situation where high water table limits the storage capacity of a soil, a dual classification is given to the soil. For instance, a Pompano sand is classified as A/D. The first letter applies to the artificial drained condition and the second to the undrained natural condition. Higher hydrologic soil group should be used if the water table is lowered by an artificial drainage such as a network of canals or ditches. Very often, soil profiles are disturbed and altered by urbanization to an extent that the existing hydrologic soil group is no longer applicable. Under this circumstance, Table B-2 should be used to determine the new hydrologic soil group based on soil texture of the new surface soil. Table B-2.—Approximate Hydrologic Grouping of Soil Textures for Disturbed Soils (2). Hydrologic Soil Group A B C D Soil Textures Sand, loamy sand, and sandy loam Silt loam and loam Sandy clay loam Clay loam, silty clay loam, sandy clay, silty clay, and clay B-23 REFERENCES 1. Soil Conservation Service, 1972. National_Engineering Handb,QQki_S.ection_41._HydEQlo.gy, pp. 7.6-7.26, USDA-SCS, Washington, B.C. 2. Soil Conservation Service, 1983. Urban_Hyd£QlQgy_for_gmall W§teE§beds (Revised), Technical Release No. 55, USDA-SCS, Washington, D.C. (Draft) B-24 APPENDIX C OBSCBIETIQM.QE-SBliECTEO.iAHD.aSES The SCS has provided a description of cover complex classification for the following land covers (1): EallQW. is the agricultural land use and treatment with the highest potential for runoff because the land is kept as bare as possible to conserve moisture for use by a succeeding crop. BQW._CEQP. is any field crop (maize, sorghum, soybeans, sugar beets, tomatoes, tulips) planted in rows far enough apart that most of the soil surface is exposed to rainfall impact throughout the growing season. At planting time, it is equivalent to fallow and may be so again after harvest. In most evaluations, average seasonal condition can be assumed. Sm§ll_gcaiD (wheat, oats, barley, flax, etc.) is planted in rows close enough that the soil surface is not exposed during planting and shortly thereafter. ClQ§er§egded_legumt§_QE_EQtatiQn_meadQw. (alfalfa, sweet clover, timothy, etc., and combinations) are either planted in close rows or broadcast. HatiYe_pa§tUEe._QE_ESQge is evaluated based on cover effectiveness as shown in the table below. c-i Table C-1.—Classification of Hydrologic Condition for Native Pasture or Range (1) Vegetative Condition Heavily grazed (plant cover Not heavily grazed (50% Hydrologic Condition 50%) plant cover Lightly grazed (plant cover Poor 75%) Fair 75%) Good is a field on which grass is continuously grown, protected from grazing, and generally mowed for hay. Drained meadows (those having low water tables) have little or no surface runoff except during storms that have high rainfall intensities. Undrained meadows (those having high water tables) may be so wet as to be the equivalent of water surfaces. If a wet meadow is drained, its soil-group classification as well as its land use and treatment class may change. WQQds are usually small isolated groves of trees being raised for farm or ranch use. Woods are evaluated based on cover effec- tiveness as shown in the table below: C-2 Table C-2.—Classification of Hydrologic Conditions for Woods (1) Vegetative Condition Hydrologic Condition Heavily grazed or regularly burned. Litter, small trees, and brush are destroyed. Poor Grazed but not burned. There may be some litter but these woods are not protected. Fair Protected from grazing. cover the soil. Litter and shrubs Good In addition to the land uses described above, there are two distinct types of land cover that are common in Florida: flatwoods and wetlands. type of Florida. pine The pine flatwoods is a major forest Wetlands can be classified into two groups: forested wetlands and non-forested wetlands. The following descriptions of pine flatwoods and wetlands were extracted from the Phase I report of Water Resource Management, Appendix G (2). EiDg_fl§tWQQd§ consist of more than one pine species with a dense shrub and herbaceous plants (e.g. saw palmetto, gallberry, runner oak and wire grass) growing underneath. Flatwoods are frequently subjected to fire because of the understory density. The flatwoods occur on a variety of soil types (e.g. Leon, Immokalee, St. Johns, Plummer, Rutledge, and Bladen), all of which are poorly to very poorly drained. These soils generally occur on areas which have flat topography and clay layer or organic hardpan 2-4 feet below the ground. located near the ground surface. C-3 Water table is often During the dry months, high loss rate of moisture due to evapotranspiration from the top horizons exceeds the rate of moisture supplied from the lower horizons, which is impeded by the hardpan. This condition makes the flatwoods extremely dry in the dry months. During the heavy rains of the summer months, water may perch above the hardpan, often flooding the flatwoods to above ground level. EQEggted_w.gtlarid§ include floodplain forests (river swamps) , bayheads, lake border swamps, bog swamps, and cypress domes. Floodplain forests (river swamps) are wetland forests occupying stream floodplains and backswamp wetlands formerly in contact with a stream. River swamps are found on alluvial river deposits rich in clay, organic deposits, peats and mucks. Flooding occurs annually, or more frequently. Bayheads are wetland forests dominated by evergreen and broad-leafed bay trees that grow in acid, peat forming depressions. Bayheads occur in depressions in the flatwoods or as marginal growth mound flatwoods ponds with stable water levels. Bay swamps are maintained by a high water table or seepage from higher terrain. Lake border swamps are cypress or ash-gum-cypress swamp occurring on lake borders. Bog swamps are a mixture of cypress swamp, marshes and prairies, lakes and shrub bogs. Bog swamps occur on thick peat deposits above sand with the peat tending to build up to the water surface. C-4 Cypress domes are forested wetlands which are commonly found in flatwoods regions. They occur in lens shaped depressions and are usually underlain by a clay or hardpan layer which impedes seepage. Cypress domes are seasonally or permanently wet. Water is supplied directly by rainfall and indirectly by seepage from surrounding terrain. During drought periods, many cypress domes go dry and burn along with the surrounding flatwoods. HQn::£Qrested_w.etXands include wet prairies and fresh water marsh. Wet prairies are dominated by grass, sedges, herbs and occasionally shrubs. Wet prairies occur on coarse to fine grained, poorly to very poorly drained sandy soils. Due to the nature of sandy soils, their low capillary activity and their occurrence on upland areas, prairies become dry and burn during drought periods. The water which maintains wet prairies comes primarily from rainfall, local runoff, and seepage. Water is lost principally through evapotranspiration, as prairies generally do not drain freely. Fresh water marsh, like wet prairies, is dominated by grasses, sedges and herbs. It remains wetter than prairies during dry periods, because it occurs in low areas on organic soils with high water holding capacity. C-5 REFERENCES 1. Soil Conservation Service, 1972. National.Engineering Ha.ndbQQkI._S.gctiQn_4i_Hyd£QlQgy, pp. 8.1-8.6; USDA-SCS, Washington, D.C. 2. St. Johns River Water Management District, 1977. Water EgsQuccg.Managgmgnt.Blaru.Phase.!, Appendix G, Palatka, Florida. C-6 APPENDIX D APPLICATIONS OF SCS RUNOFF PROCEDURES Determine a design storm hydrograph using the following data: Drainage area = 200 acres Time of concentration = 0.75 hours Rainfall depth =5.0 inches Storm duration =6.0 hours Rainfall interval = 0.25 hours Rainfall distribution (see computer printout) Pervious area = 20%; CN=60 Noneffective impervious area = 50%; CN = 100 Effective impervious area = 30%; CN = 100 A. TIA_MetbQ3: B. M,Qdif_ied_T.IA_Mgth.Qd: Since the TR-20 program cannot model the EIA Method, CN has to be adjusted in order to obtain the same runoff volume as computed from the EIA Method. The steps used to find the equivalent CN is given below: Step 1. CN = (0.20) (60) + (0.80) (100) = 92.0 Compute watershed storage: S = 1QQQ - 10 = 6.67 inches 60 Step 2. Adjust rain for the pervious area: P 1 = (1 + 0.50) (5.0) = 17.5 inches 0.20 Step 3. Compute runoff from the pervious area: Q Step 4. v = (17.5 - 0.2(6.67))2 (.20)/100 = 2.289 inches 17.5 + 0.8(6.67) Compute runoff from the effective impervious area: Qei = (5.0)(30) (100) = 1.50 inches Step 5. Compute total runoff: Q = 2.289 + 1.50 = 3.789 inches Step 6. Compute the equivalent S from the following equation: S = 5 [ 5 . 0 + 2 ( 3 . 7 8 9 ) - ( 4 ( 3 . 7 8 9 ) 2 + 5 (5 .0) ( 3 . 7 8 9 ) ) ° ' 5 ] = 1.215 D-l Step 7. Compute the equivalent CN: CN = 1000/(1.215+10) = 89.16 The resulting runoff hydrographs generated from the TIA Method (Page D-3) and modified TIA Method (Page D-4) are plotted in Figure D-l. D-2 ExaffiPlg_Dr2• Determine a design storm hydrograph using the data given in Example D-l. If one third of effective impervious area in Example D-l is converted into swales, then the basin t would be increased. In this example, the new basin tc is assumed to be 1.0 hour. For design purpose, swales are assumed to be saturated prior to storm event and can be treated as effective impervious area. As a result, the basin CN remains the same (CN = 89.16). This example will show the effect of two methods used in estimating peak rate factor on storm hydrographs. A. Using standard SCS peak rate factor: K 1 = 484 B. Using adjustment factor: Step 1. Determine the adjustment factor according to % of ponding areas and storm frequency. If swales are assumed to spread throughout the basin, then the adjustment factor can be obtained from Table 10. For 10% as swales and a 25-year design storm, the adjustment factor is 0.65. Therefore, the adjusted K 1 would be (0.65) (484) = 314.6. Step 2. Draw a triangular dimensionless unit hydrograph (DUH) . For t = 1.0 hour, tb = - = 4.10 hours The resulting DUH is shown on Page D-6. Step 3. Tabulate the ratios of t/t, and q/q . U If unit hydrograph £r time increment is 0.25 hours, then the interval of t/t, ratio is 0.25/4.10 = 0.061. The ordinates of q/qp corresponding to t/t are determined from the following equations: q/qp = t/tp ; o<t/t p <i.o q/qp = 1.0 - 0.3226(t/tp - 1.0) ;1.0<t/tp<tb The resulting storm hydrographs obtained from the standard K 1 (Page D-8) and adjusted K 1 (Pages D-9 through D-10) are compared in Figure D-2 . D-3 *««HHHHHH»*w*#*80-80 LIST OF INPUT DATA FOR TR-20 HYDRQLQ6Yi»iin»H»»H»«i JOB FULLPRINT TITLE EXAMPLE D-1A TITLE USING TOTAL IMPERVIOUS AREA METHOD 5 RAINFL 1 0.25 8 .000 .017 .035 8 .107 .135 .180 8 .600 .650 .700 8 .810 .835 .860 8 .920 .940 .960 9 ENDTBL 6 RUNOFF 1 01 1 0.3125 92.0 ENDATA 7 INCREM 6 0.10 7 COMPUT 7 01 01 0.0 5.00 ENDCMP 1 ENDJQB 2 .055 .080 .230 .410 .740 .780 .880 .900 .980 1.00 0.75 1 1 1 1.0 1 2 1 1 *««**w**#w**t**««*«««END OF 80-80 LIST**iniHH«mimmiuiiinm TR20 XEQ REV 09/01/83 EXAMPLE D-1A USING TOTAL IMPERVIOUS AREA METHOD EXECUTIVE CONTROL OPERATION INCREM JOB 1 MAIN TIME INCREMENT = 0.10 HOURS PASS 1 RECORD ID EXECUTIVE CONTROL OPERATION COMPUT FROM STRUCTURE 1 TO STRUCTURE 1 STARTING TIME = 0.00 RAIN DEPTH = 5.00 RAIN DURATION 1.00 RAIN TABLE N0.= 1 ALTERNATE N0.= 1 STORM N0.= 1 MAIN TIME INCREMENT = 0.10 HOURS RECORD ID ANT. WIST. COND= 2 OPERATION RUNOFF STRUCTURE 1 OUTPUT HYDR06RAPH= 1 AREA= 0.31 SQ MI INPUT RUNOFF CURVE= 92. TIME OF CONCENTRATION 0.75 HOURS INTERNAL HYDR06RAPH TIME INCREMENT^ 0.1000 HOURS PEAK TIME(HRS) 2.76 TIME(HRS) 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG PEAK DISCHARGE(CFS) 481.89 FIRST HYDRQ6RAPH POINT = 0.00 0.00 5.58 9.57 84.10 104.35 400.34 349.35 143.08 137.01 84.95 83.05 78.72 77.51 3.60 6.16 0.24 0.14 0.00 HOURS TIME INCREMENT = 0.10 HOURS 0.00 V m SO 0.00 0.00 26.64 14.59 20.39 33.02 39.94 427.26 138.10 194.60 270.40 353.79 302.46 266.48 239.10 217.60 199.99 119.33 112.69 106.68 127.28 101.02 30.08 81.72 30.76 79.61 79.27 66.04 55.07 43.27 32.30 73.84 2.25 1.13 4.42 3.16 1.60 0.07 0.02 0.00 VuVTD RUNOFF VOLUME ABOVE BASEFLOH = 4.09 WATERSHED INCHES, EXECUTIVE CONTROL OPERATION ENDCMP PEAK ELEVATION(FEET) (RUNOFF) 824.07 CFS-HRS, COMPUTATIONS COMPLETED FOR PASS D-4 1 DRAINAGE AREA = 0.31 SQ.MI. 0.33 1.12 2.79 48.03 58.30 70.63 475.03 479.33 448.07 185.52 172.39 159.90 91.27 95.80 87.61 79.04 78.88 78.78 16.50 11.90 23.10 0.79 0.54 0.37 68.10 ACRE-FEET; BASEFLOH = 0.00 CFS RECORD ID «rt*******#*******80-80 LIST OF INPUT DATA FOR TR-20 HYDROLOGY****************** JOB FULLPRINT TITLE EXAMPLE D-1B TITLE USING ADJUSTED CURVE NUMBER 5 RAINFL 1 0.25 .035 .017 8 .000 .180 3 .107 .135 .700 8 .600 .650 .860 8 .810 .835 .960 8 .920 .940 9ENDTBL 89.16 1 0.3125 6 RUNOFF 1 01 ENDATA 7 INCREM 6 0.10 5.00 7 COMPUT 7 01 01 0.0 ENDCMP 1 ENDJOB 2 .055 .230 .740 .880 .980 .080 .410 .780 .900 1.00 0.75 1 1 1 1.0 1 2 1 1 M**«HH»********««t*t*******END OF 80-80 LIST******************************** TR20 XEQ REV 09/01/83 EXAMPLE D-1B USING ADJUSTED CURVE NUMBER EXECUTIVE CONTROL OPERATION INCREH JOB 1 MAIN TIME INCREMENT = 0.10 HOURS PASS 1 RECORD ID EXECUTIVE CONTROL OPERATION COMPUT FROM STRUCTURE 1 TO STRUCTURE 1 STARTING TIME = 0.00 RAIN DEPTH = 5.00 RAIN DURATION 1.00 RAIN TABLE N0.= 1 ALTERNATE H0.= 1 STORM N0.= 1 MAIN TIME INCREMENT = 0.10 HOURS RECORD ID ANT. MOIST. COND= 2 OPERATION RUNOFF STRUCTURE 1 OUTPUT HYDROGRAPH= 1 AREA= 0.31 SQ MI INPUT RUNOFF CURVE= 89. TIME OF CONCENTRATION= 0.75 HOURS INTERNAL HYDR06RAPH TIME INCREMENT= 0.1000 HOURS PEAK TIME(HRS) 2.77 TIME(HRS) 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 PEAK DISCHARGE(CFS) 445.99 FIRST HYDROGRAPH POINT = 0.00 DISCHG 0.00 1.37 DISCHG 3.20 DISCHG 64.74 83.21 DISCHG 375.78 329.39 DISCHG 143.34 132.81 DISCHG 81.14 82.96 DISCHG 77.14 75.97 DISCHG 6.04 8.43 DISCHG 0.23 0.14 0.00 HOURS TIME INCREMENT = 0.10HOURS 0.00 0.00 0.00 0.00 0.00 14.53 25.56 9.90 19.68 6.06 166.47 237.46 317.01 114.23 388.66 286.35 253.26 228.07 208.25 191.97 109.62 98.43 123.54 115.95 103.86 79.87 78.33 77.89 78.96 77.59 72.38 64.76 54.00 42.44 31.68 4.34 3.10 1.57 2.21 1.11 0.07 0.02 0.00 RUNOFF VOLUME ABOVE BASEFLOH = 3.79 WATERSHED INCHES, EXECUTIVE CONTROL OPERATION ENDCMP PEAK ELEVATION(FEET) (RUNOFF) 763.46 CFS-HRS, COMPUTATIONS COMPLETED FOR PASS D-5 1 DRAINAGE AREA = i0.31 SQ.MI. 0.00 0.08 0.43 32.62 41.64 52.57 437.02 444.71 418.38 178.55 166.28 154.53 93.41 89.05 85.52 77.38 77.25 77.18 22.66 16.18 11.67 0.78 0.53 0.36 63.09 ACRE-FEET; BASEFLOH = 0.00 CFS RECORD ID 500 D I S C H A R 3 E 400 .j 300 _ TIA METHOD MOD. TIA METHOD a I N 200 . C F S 100 0 10 TIME Figure D-l. IN HOURS Runoff Hydrographs of Example D-l using TIA and Modified TIA Methods, ««mnHHHHHmmni8g-8g LIST OF INPUT DATA FOR TR-20 HYDROLOSY***»**»*»«*«««* JOB TITLE TITLE FULLPRINT EXAMPLE D-2A USIN6 STANDARD PEAK RATE FACTOR (484) 5 RAINFL 1 8 .000 8 .107 3 .600 8 .810 8 .920 9 ENDTBL 6 RUNOF 1 01 ENDATA 7 INCREM 6 7 CO«PUT 7 01 ENDCHP 1 ENDJOB 2 0.25 .017 .135 .650 .835 .940 .035 .130 .700 .860 .960 .055 .230 .740 .880 .980 1 0.3125 89.16 1.00 1 1 1 5.00 1.0 1 2 1 1 .080 .410 .780 .900 1.00 0.10 01 0.0 *w*ww«Hrt««w**««****«*END OF 80-80 LIST«HHHmmHmHHHnmHH»«w«w TR20 XEQ REV 09/01/83 EXAMPLE D-2A USING STANDARD PEAK RATE FACTOR (484! EXECUTIVE CONTROL OPERATION INCREM JOB 1 MAIN TIME INCREMENT = 0.10 mm PASS 1 RECORD ID EXECUTIVE CONTROL OPERATION COMPUT FROM STRUCTURE 1 TO STRUCTURE 1 STARTING TIRE = 0.00 RAIN DEPTH = 5.00 RAIN DURATION 1.00 RAIN TARE N0.= 1 ALTERNATE N0.= 1 STORM N0.= 1 MAIN TIME INCREMENT = 0.10 HOURS RECORD ID ANT. MOIST. COND= 2 OPERATION RUNOF STRUCTURE 1 OUTPUT HYDROGRAPH= 1 AREA= 0.31 SQ MI INPUT RUNOF CURVE= 89. TIME OF CONCENTRATION^ 1.00 HOURS INTERNAL HYDR06RAPH TIME INCREMENT= 0.0952 HOURS PEAK TINE(HRS) 2.96 TIME(HRS) 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG PEAK DISCHARGE(CFS) 376.51 PEAK ELEVATION(FEET) (RUNOFF) FIRST HYDROGRAPH POINT = 0.00 HOILJRS TIME INCREMENT = 0.10HOURS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.34 0.67 1.56 3.09 8.33 12.04 16.53 78.17 107.51 45.46 149.73 203.11 58.54 260.21 303.48 375.20 360.88 336.83 279.71 253.81 232.53 122.39 172.46 160.47 149.42 139.37 130.36 115.31 93.91 87.24 84.81 82.90 90.26 81.42 80.28 78.09 71.89 66.16 77.28 75.41 58.56 50.05 12.37 9.69 20.33 15.82 7.57 5.90 4.60 0.99 1.28 0.75 0.57 1.66 0.42 0.31 0.05 0.02 0.00 RUNOFF VOLUME ABOVE BASEFLOW = 3.73 WATERSHED INCHES, EXECUTIVE CONTROL OPERATION ENDCMP 763.15 CFS-HRS, COMPUTATIONS COMPLETED FOR PASS D-7 1 DRAINAGE 0.01 21.94 312.84 214.92 108.94 79.44 41.43 3.57 0.22 63.07 ACRE-FEET; AREA = 0.31 SQ.MI 0.05 0.23 28.44 36.28 352.75 373.73 199.63 185.56 103.22 98.22 78.84 78.41 33.35 26.22 2.77 2.15 0.15 0.10 BASEFLOH = 0.00 CFS RECORD ID «*m**«HHHHHU**80-80 LIST OF INPUT DATA FOR TR-20 HYDROLOfiY«**#**»»*«*w#* JOB FULLPRINT TITLE EXAMPLE D-2B TITLE USING ADJUSTED PEAK RATE FACTOR 4 DIHHYD 0.061 8 8 8 8 9 ENDTBL 5 RAINFL 8 8 8 8 8 9 ENDTBL 6RUNOFF ENDATA 7 LIST 7 INCREM 7 CQMPUT ENDCMP ENDJOB 0.000 0.919 0.516 0.112 0.250 0.839 0.435 0.031 .000 .107 .600 .810 .920 0.25 .017 .135 .650 .835 .940 1 1 6 7 .860 .960 .055 .230 .740 .880 .980 .080 .410 .730 .900 1.00 89.16 1.00 1 1 5.00 1.0 1 2 1 1 .035 .180 .700 0.10 01 0.0 01 1.000 0.596 0.193 gtaa 0 tWtfv 1 0.3125 01 0.750 0.677 0.274 0.000 0.500 0.758 0.354 V m tflSlff 1 1 2 W»«»*tHHmHHHHHHHHHHHf*«*«*END OF 80-80 LIST«*«**«W#«*«**H*«#**«*** TR20 XEQ REV 09/01/83 EXAMPLE D-2B USINS ADJUSTED PEAK RATE FACTOR EXECUTIVE CONTROL OPERATION LIST TIME INCREMENT 4 DIMHYD 0.0588 8 8 8 9 ENDTBL COMPUTED PEAK TABLE NO. 5 RAINFL 1 8 8 8 8 8 0.9190 0.5160 0.1120 0.8390 0.4350 0.0310 RATE FACTOR = 314.64 TIME INCREMENT 0.2500 oosta g mW&BW 0.0170 0.1070 0.1350 0.6080 0.6500 0.8100 0.8350 0.9200 0.9400 JOB 1 PASS RECORD ID (INPUT VALUE OF 0.061 NOT EQUAL TO COMPUTED VALUE? COMPUTED VALUE USED.) 0.7580 0.3540 0.0000 0.6770 0.2740 0.0000 0.5960 0.1930 0.0000 0.0350 0.1800 0.7000 0.8600 0.9600 0.0550 0.2300 0.7400 0.0800 9 ENDTBL 6 RUNOFF 1 ENDATA 1 1 STANDARD CONTROL INSTRUCTIONS 1 0.3125 89.1600 1.00001 1 0 1 0 0 END OF LISTING D-8 TR20 XEQ REV 09/01/83 EXAMPLE D-2B USING ADJUSTED PEAK RATE FACTOR EXECUTIVE CONTROL OPERATION INCREM JOB 1 MAIN TIME INCREMENT = 0.10 HOURS PASS 1 RECORD ID EXECUTIVE CONTROL OPERATION COMPUT FROM STRUCTURE 1 TO STRUCTURE 1 STARTING TIME = 0.00 RAIN DEPTH = 5.00 RAIN DURATION 1.00 RAIN TABLE N0.= 1 ALTERNATE N0.= 1 STORM N0.= 1 MAIN TIME INCREMENT = 8.10 HOURS RECORD ID ANT. MOIST. COND= 2 OPERATION RUNOFF STRUCTURE 1 OUTPUT HYDR06RAPH= 1 AREA= 0.31 SQ MI INPUT RUNOFF CURVE= 89. TIME OF CONCENTRATION 1.00 HOURS INTERNAL HYDR06RAPH TIME INCREMENT^ 0.0952 HOURS PEAK TIME(HRS) 3.14 TIME(HRS) 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG DISCHG PEAK ELEVATION(FEET) (RUNOFF) PEAK DISCHARGE(CFS) 276.23 FIRST HYDR06RAPH POINT = 0.00 HOURS TIME INCREMENT = 0.10 HOURS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.36 2.40 5.80 0.67 3.87 8.22 11.33 31.74 43.21 60.08 82.47 110.70 143.80 178.08 270.75 275.72 275.39 273.29 270.16 265.94 260.39 227.49 216.72 205.16 193.18 130.74 168.05 155.23 104.84 111.54 99.81 95.86 92.59 89.74 87.28 78.83 80.64 76.41 73.31 69.53 64.99 59.69 38.79 34.33 30.15 26.24 22.60 19.24 16.14 6.46 4.74 3.28 2.10 1.19 0.55 0.19 RUNOFF VOLUME ABOVE BASEFLOW = 3.79 NATERSHED INCHES, EXECUTIVE CONTROL OPERATION ENDCMP 763.95 CFS-HRS, COMPUTATIONS COMPLETED FOR PASS EXECUTIVE CONTROL OPERATION ENDJOB 1 DRAINAGE 0.01 15.19 210.66 253.67 142.58 85.17 53.97 13.31 0.05 63.13 ACRE-FEET; AREA = 0.31 SQ.HI 0.07 0.27 19.85 25.37 237.46 257.75 245.96 237.23 130.79 120.27 83.39 81.88 48.59 43.54 10.76 8.47 0.00 BASEFLOH = 0.00 CFS RECORD ID RECORD ID D-9 D I S C H A R G E 0 K, « 484 K « 315 400 j 300 „ I N 200 . C F S 100 . 0 TIME Figure D-2. IN HOURS Runoff Hydrographs of Example D-2 using Different Peak Rate Factors,
Similar documents
hill~s norfoli
II h"ey ::,t'ch Fl.::;: ..;.!.' Tlrp SIT\" 111127 \V O\:ea:i \-,o:-w ,1',- ~i:_', :! It .Jalllce hll1:;J CIa: t'!1l0Ilt <-1\" <.HJt 1"\ !) II .Jl'SS~' \" .:. :'-'!':~~:lGll'I!;·uci-.. H'adi.310[·
More information7` lL - site home page.
Home group members' anni versaries celebrated Baby-sitting available BB BT Basic Text cc Chairperson's Choice CN Candlehght meeting GL Gay I Lesbian common needs meeting Men's common needs meeting ...
More information