comunidades de macroinvertebrados en un rio altoandino
Transcription
comunidades de macroinvertebrados en un rio altoandino
COMUNIDADES DE MACROINVERTEBRADOS EN UN RIO ALTOANDINO: IMPORTANCIA DEL MICROHABITAT, DINAMICA DE LA DERIVA, PAPEL DE LA MATERIA ORGANICA Y RELEVANCIA DE LA OVOPOSICION BLANCA RIOS TOUMA Departament d’Ecologia UNIVERSITAT DE BARCELONA Octubre 2008 Tesis Doctoral Universitat de Barcelona Facultat de Biología- Departament d’Ecologia Programa de doctorado: Ecología. Bienio 2002-2004 COMUNIDADES DE MACROINVERTEBRADOS EN UN RIO ALTOANDINO: IMPORTANCIA DEL MICROHABITAT, DINAMICA DE LA DERIVA, PAPEL DE LA MATERIA ORGANICA Y RELEVANCIA DE LA OVOPOSICION Memoria presentada por Blanca Patricia Ríos Touma para optar al título de Doctor por la Universitat de Barcelona, bajo la dirección del doctor Narcís Prat i Fornells Blanca Patricia Ríos Touma Barcelona, Octubre de 2008 El director de la Tesis: Dr. Narcís Prat i Fornells Catedràtic d’Ecologia Facultat de Biología (UB) A mis padres Índice Agradecimientos................................................................................... I Prefacio.................................................................................................. V Introducción.......................................................................................... Los Ríos Tropicales Altoaninos.................................................. El microhábitat........................................................................... Deriva y recolonización.............................................................. Importancia de la materia orgánica............................................ La ovoposición……………………………………………………... Objetivos................................................................................................ Chapter 1 Macroinvertebrate assemblages at an Andean high altitude stream: Importance of microhabitat, flow and season……. Introduction…………………………………………………………. Materials and Methods……………………………………………. Results………………………………………………………………. Discussion………………………………………………………….. Chapter 2 Invertebrate drift and colonization processes in a Tropical Andean Stream………………………………………………….. Introduction…………………………………………………………. Materials and Methods……………………………………………. Results……………………………………………………………… Discussion………………………………………………………..... Chapter 3 Leaf litter organic matter dynamics and associated invertebrates in a high altitude tropical Andean stream……………. Introduction…………………………………………………………. Materials and Methods………….………………………………… Results………………………………………………………………. Discussion………………………………………………………….. Chapter 4 Oviposition of Aquatic Insects in a High Altitude Tropical Stream…………………………………………………………...... Introduction………………………………………………………..... Materials and Methods……………………………………………. Results……………………………………………………………… Discussion………………………………………………………….. Conclusiones…………………………………………………………........ Resumen General…………………………………….............................. Bibliografía………………………………………………………………….. ANEXO1 Traducción al kichwa del Prefacio, Introducción y Conclusiones……………………………………………………………….. Kallariy (versión Kichwa del Prefacio)……………………………….... Kallari yuyal (versión Kichwa de la Introducción)......………………. Ashalla shimikunawan puchukanchik (version Kichwa de las conclusiones y resumen general)………………………………………. VII IX XII XIV XV XVII XIX 1 3 6 10 18 29 31 34 37 47 55 57 59 63 71 75 77 80 83 92 99 105 119 137 139 140 150 Agradecimientos Agradecimientos Quiero agradecer a mi director de tesis, Narcís Prat, por todo el apoyo dado en la concepción y transcurso de la tesis, sobre todo por haber valorado y apoyado la idea de realizar la tesis sobre un río de los Andes. A todos los miembros del grupo FEM y antiguos ECOBILLs por su interés, entusiasmo, apoyo y amistad durante estos años: María Rieradevall, Mireia Vila-Escalé, Núria Bonada, Caro Solá, Raúl Acosta, Cesc Múrria, Toni Munné, Núria Cid, Tura Punti, Rosa Cassanovas, Rosa Andreu, Iraima Verkaik, Miguel Cañedo, Pau Fortuño, Laura Puértolas, Teresa Vegas, y a los más nuevos Mia, Núria S., Christian, Isabelle y Esther. A Andrea Encalada quién a más de dirigir, apoyar, mejorar y enriquecer este trabajo ha sido muy importante en todo el proceso de la tesis. Gracias Andrea por todo el apoyo científico, moral y afectivo de estos años! Gracias también por abrir las puertas del laboratorio de Ecología Acuática de la USFQ y emprender la aventura de esta tesis de forma tan positiva. A todos los miembros del Lab. de Ecología Acuática: Gaby, Fernanda, Daniel, Cristina, Diego, Verónica y también a la doña Mary. Un agradecimiento especial a Esteban Suárez por la ayuda en el diseño de los índices de caudal. También a Wills Flowers, quien durante su visita al Laboratorio de Ecología Acuática identificó los Ephemeroptera. A todas las personas que me ayudaron en el trabajo de campo y laboratorio. A Adelaida Aigaje, por ser una gran ayudante, entusiasta colaboradora de campo y acompañarme al río, durante los días de sol y los días de tormenta (cuando la gente nos decía que estábamos locas). Al Pucho Andino, muchísimas gracias por tu trabajo entusiasta y tu sentido del humor, tanto en el campo como en laboratorio. A Carolina Arroyo, por su esfuerzo y dedicación en el laboratorio. A Rodrigo por su ayuda en laboratorio y campo. Al Juanjo Vásconez, por ser un amigo incondicional y ayudarme en la confección de parte del material de campo con una precisión impresionante, por venir al campo a ayudarme, por sobrevivir al accidente más grave que tuvimos en toda la fase de campo, de la I Agradecimientos cuál aprendimos lecciones para toda la vida… A Pauli Viteri, Jaime Camacho y Saskia Flores de EcoCiencia, por apoyar la idea de hacer la tesis en Oyacachi y ayudarme dando mis primeros pasos en la comunidad. A todos los amigos que colaboraron y me dieron ánimos en las etapas más duras y en las más felices de esta tesis en especial a Xavier Cisneros, Pauli Viteri, Esteban Neumann, Paola Carrera, Ana Troya, Lola Guarderas, Jorge Celi, Rafa Yánez, Paula Orihuela, Juan Pablo Roggiero, José Hidalgo, Jaime Chaves, Oscar Pérez, Fede Brown, Luisa Chaves, Vero Brown, Ana Bustamante, María Moreno de los Ríos, Raúl Sstrambótica, Pau, Raúl Acosta, Iraima, Mireia y a Tiago Marques por los consejos estadísticos. A la comunidad de Oyacachi, por permitirme estudiar el río Piburja y el río Oyacachi y compartir su vida en mis estancias en el pueblo de Oyacachi. En especial a la Familia Aigaje, al Pato, María, Adelaida, Patricio, Saúl y Saskita por la generosidad y el cariño. Al Departament d’Ecologia en especial a todos los compañeros de Tercer Ciclo: Silvia, Salva, Pere, Mary, Oriol, Dani, Izaskun, Ainhoa, Eusebi, Biel, Jaimito, Enric, Tania, Laia, Julio, Gemma, Carles, Octavi, Neus, Xavi, Rafa, Elena, Ernesto, Gerardo. A Marina, Anna María, los profesores del Departament y a todos los que me estoy olvidando… A Francesc Oliva del Departament de Bioestadística de la UB por la ayuda con la estadística. De todos los agradecimientos el más grande para mi familia, Patricia, Carlos, Carla, Paula, Ana María, Nadia, Ada, Pancho, Nelly, por ser el apoyo más grande, constante y entusiasta de todos los que he tenido. Por hacer de ayudantes, sicólogos, de sponsors, de hostal, centro de reuniones, guías turísticos, chóferes, taxi (a veces autobús), chefs, solucionadores de problemas de todo tipo y un millón de cosas más que han hecho por mí, pero sobre todo gracias por confiar en mí, por todo el apoyo, el cariño, los mimos y por ser un referente de valores y “equipo”. A toda la Gran Familia, encabezada por el abuelito Nube, sus fantásticos hijos (incluida la Amparito), nietos y bisnietos y las diversas sucursales de México, Valle de Napa, Chicago, Argentina y II Agradecimientos Uruguay. A la familia de Uruguay, al Rolo, la Ale, el Nico, Walter, Cora y tooooda la familia que es imposible de escribir en un solo párrafo. Pero, quiero mencionar especialmente a los que vinieron a ayudarme a Oyacachi en algún momento: Papá, Mamá, Paula, Carla, Rolo, Ale, Gaby, Chabelo, Santi y Tibi. También a la Clemen, la China y el Marcelino que me echan cables desde el cielo. A todos los amigos que han sido una familia aquí en Barcelona: Malicha, Margarita, Luis, Alicia, Ana, Vero, Sole, Ramiro, Mireira, Iraima, Raúl (que ha sido también como un “hermano” en esto de estudiar ríos Andinos), Núria Cid, Sandra, Kenny, Yolanda, Lluis, Esther, Nico, Chivo, Paz, Lorenzo, Diego, Marina, Eva, Betty, Mery, Marta, Patxi, Luciano, Tura, Fiona, Joan y todos los que me olvido. Les agradezco a todos por hacer mi vida en Barcelona más feliz, siempre los voy a recordar con cariño. Quiero agradecer especialmente al Pau, por ser mi gran amigo, por cuidarme cuando estuve enferma, hacerme reír cuando estoy triste, por ayudarme y acompañarme en esta etapa de la vida. Al Eric, por cruzar el mundo para estar cerca y ayudarme con el impulso final para terminar esta tesis. Gracias por el amor y por ser un auténtico bicho. A la Agencia Española de Cooperación Internacional para el Desarrollo y a Education For Nature Program de WWF por financiar este proyecto de Tesis. Barcelona, Octubre del 2008 III Prefacio La concepción de la idea de esta tesis se remonta a 1999 durante mi primer trabajo en ríos, cuando estudiaba las poblaciones de Gasterópodos acuáticos en una gradiente altitudinal en la cordillera de los Andes del Ecuador. Fue ahí cuando nacieron las primeras incógnitas acerca de los factores que afectan la distribución de las especies. Estas incógnitas fueron incrementando con mi trabajo de Diplomado en Estudios Avanzados en Ecología, el cuál realicé en condiciones de referencia y contaminación en ríos del valle interandino en Ecuador. Posteriormente tuvimos la oportunidad de realizar dos acciones conjuntas sobre estos temas, con la Universidad San Francisco de Quito y la Universidad La Molina de Lima, en ríos de los Andes de Ecuador y Perú, cuya intención era la de crear en base a la experiencia en ríos Mediterráneos del grupo FEM (basadas en el proyecto ECOBILL y GUADALMED I y II), herramientas de evaluación de la contaminación y el estado ecológico de los ríos Andinos. Durante estas acciones, pudimos apreciar la diversidad que tienen los ríos en los Andes y también visualizar la incesante degradación que sufren, ríos de páramo, ríos de bosque montano, ríos secos o ríos que en lugar de aumentar el caudal río abajo su caudal disminuye o desaparece y cauces que están llenos de basura. No sabemos cuántas especies acuáticas han desaparecido ni las que existen, y el conocimiento de cómo funcionan los ríos en los Andes es incipiente y por lo tanto tampoco sabemos cómo restaurarlos y protegerlos. Esta tesis nace de la necesidad de comprender que pasa en estos ríos, y es tan solo una pequeñísima parte de todo lo que nos queda por estudiar y entender de los ríos Andinos. Tuve la oportunidad de intentar contestar algunas de las preguntas de cómo funcionan estos ríos en este trabajo de investigación, en el Río Piburja, localizado en el Territorio Kichwa de Oyacachi, tierra de ríos, bosques y gente maravillosa, cuya diversidad espectacular y riqueza cultural y natural están lamentablemente amenazadas por las grandes ciudades, que explotan y muchas veces despilfarran sus recursos acuáticos, y por la ambición individualista de las sociedades alejadas de los ritmos y el respeto a la naturaleza. V INTRODUCCIÓN Introducción general Los Ríos Tropicales Altoandinos La diversidad de ríos a nivel mundial es enorme y el estudio los procesos ecológicos, biogeoquímicos, hidrológicos y geomorfológicos han proporcionado un marco unificador en la visión de las características estructurales y funcionales con compendios y revisiones, que nos presentan de forma más ordenada la estructura y funcionamiento de los ríos, así podemos citar: Allan and Castillo (2007), Giller and Malmqvist (1998), Cushing et al.(2006). En todos estos trabajos que describen patrones generales y características de los ecosistemas fluviales, la mayoría de ejemplos corresponden a zonas templadas donde el estudio de los ríos se remonta a varias décadas mientras que los ejemplos de las zonas tropicales son escasos. Solo muy recientemente se ha publicado un libro especialmente dedicado a los ríos tropicales (Dudgeon 2008). Al contrario de Europa y Norte América donde la mayoría de estudios se ha realizado en ríos pequeños, en América del Sur los estudios de ríos se han enfatizado en los grandes ríos como el Orinoco o el Amazonas (Sioli 1984, Covich 1988, Lewis et al. 1995), pese a que existen algunas excepciones de estudios en los ríos de mayor altitud (Turcotte and Harper 1982b, a, Flecker 1992, Flecker and Feifarek 1994, Jacobsen et al. 1997, Jacobsen and Encalada 1998, Jacobsen and Terneus 2001, Jacobsen 2003, 2004, 2005, Allan et al. 2006, Jacobsen and Marín 2007), pero la información sobre las cabeceras y ríos de bajo orden de montaña tropicales es en general escasa (Jacobsen 2008). Es en estos ecosistemas (ríos tropicales altoandinos) donde se centra el trabajo de esta tesis doctoral Los Andes del Norte, ubicados desde el sur de Venezuela hasta la depresión de Huancabamba al norte de Perú (Figura 1), son una de las regiones con mayor actividad tectónica del continente, con una compleja climatología y topografía que ha favorecido la presencia de distintas formaciones vegetales caracterizadas por un alto endemismo (Myers et al. 2000). En consecuencia, los ríos altoandinos tienen formas y apariencias muy variadas donde podemos encontrar ríos con fuertes pendientes y cascadas a pequeñas salidas de laguna de sustrato suave (Jacobsen 2008). Pese a que nuestra idea de ríos tropicales IX Introducción General está más asociada a climas cálidos y vegetación exuberante, los ríos de altitud de los trópicos tienen más similitudes con los ríos de altitud de zonas templadas que con ríos tropicales de tierras bajas (Jacobsen 2008). El régimen estacional constituye una de las diferencias principales entre los ríos de altitud de zonas templadas con los tropicales. La estacionalidad en el trópico se mide como cambios en el régimen de lluvias y no como cambios de temperatura. Al contrario que en zonas de alta montaña templadas, la variación de la temperatura en zonas altoandinas es diaria y está relacionada a la radiación solar, las cuales provocan fluctuaciones diarias de temperatura que pueden oscilar entre los -11 a los 25 ºC (Guhl 1989) con promedios comprendidos entre los 2 y 10 ºC (Luteyn 1999). Los regímenes de precipitación en las zonas altoandinas suelen ser constantes y los cambios entre las épocas secas y lluviosas son menos drásticos que en las zonas tropicales bajas. La precipitación puede variar entre 500 y 3000 mm/año con una humedad relativa entre el 25 y el 100% (Luteyn 1999, Ortíz 2003, Jacobsen 2008). Figura 1. Andes del Norte. El límite norte son los Andes de Venezuela y el límite sur está marcado en el paralelo 6º S en la depresión de Huancabamba. Modificado de:http://www.ucm.es/info/agrygfdp/Web/Aula%20de%20cartograf%EDa/amsurfis.jpg X Introducción general Pese a su extraordinaria diversidad, los ríos tropicales altoandinos son probablemente uno de los ecosistemas menos estudiados del mundo (Ward 1994, Allan et al. 2006, Jacobsen 2008). En una reciente revisión sobre los ríos de altura tropicales Jacobsen (2008) pone de manifiesto el escaso conocimiento de estos ríos, tanto sistemático como ecológico. Por lo que sabemos hasta el momento la composición de las comunidades de macroinvertebrados y su distribución espacial en los ríos de los trópicos está más ligada a los regímenes de caudal y perturbaciones hidrológicas que a otros factores ambientales (Flecker and Feifarek 1994, Jacobsen et al. 1997, Jacobsen 2005, 2008). Los patrones de la variabilidad temporal en el caudal de los ríos tienen efectos profundos en la estructura y funcionamiento de los ecosistemas así como en las dinámicas de macroinvertebrados acuáticos (Resh et al. 1988, Poff and Ward 1990). Estos cambios originan, junto con la variabilidad del sustrato, la compleja disposición espacial de los macroinvertebrados, así como provocan cambios en la deriva y en la disponibilidad de los recursos, como la materia orgánica alóctona (Turcotte and Harper 1982a, Benson and Pearson 1987, Pearson et al. 1989). A su vez, estos cambios tienen profundos efectos en el funcionamiento de los ríos y en procesos relacionados con la persistencia de las comunidades de macroinvertebrados, como es la colonización del sustrato del río. Adicionalmente, se ha establecido que parte de la persistencia de estas comunidades de macroinvertebrados en un sistema que sufre perturbaciones impredecibles de caudal, está atribuida al hecho de que mayoritariamente las especies de insectos acuáticos en los trópicos son multivoltinas (Jackson & Sweeney 1995) con lo cual el reclutamiento de nuevos individuos que en zonas templadas se da una vez por año, en el trópico sería un proceso continuo. Sin embargo el conocimiento de las consecuencias de estos distintos procesos involucrados en la persistencia de las comunidades de macroinvertebrados de ríos altoandinos es incipiente mientras que urge obtenerlo ya que los ríos de altura en los trópicos son unos de los ecosistemas más amenazados por el calentamiento global y las perturbaciones antrópicas (Bradley et al. 2006, Jacobsen 2008). XI Introducción General En este contexto, en la tesis me centro en cuatro aspectos fundamentales de la persistencia de las comunidades de macroinvertebrados de ríos altoandinos, contemplando las diferencias estacionales de caudal: 1) la disposición espacial de las comunidades bentónicas (microhabitats); 2) la dinámica de la deriva y el proceso de recolonización; 3) el papel de la materia orgánica alóctona y 4) la ovoposición de los adultos en el río. Estos son aspectos poco o nada estudiados en los ríos altoandinos. El Microhabitat Los cambios de caudal en los ríos son fundamentales ya que pueden generar una perturbación que crea nuevos espacios, cambia la disponibilidad de los recursos o su variabilidad temporal (Pickett and White 1985), y ello generalmente provoca que la biota se organice en parches dentro del río. Cuando las perturbaciones por caudal, como las crecidas o sequías, ocurren varias veces en la vida de un organismo, a una escala temporal corta, los efectos negativos de las perturbaciones se pueden compensar por movimientos hacia zonas menos afectadas por el flujo del caudal (Lancaster 2000). La presencia de estas zonas, permite que los organismos tengan más probabilidades de subsistir y puedan recolonizar las zonas que han sufrido los efectos más severos, asegurando la persistencia local de las especies (Lancaster and Hildrew 1993b, a, Lancaster and Belyea 1997, Townsend et al. 1997). A éstas áreas se las denomina “refugios” (Caswell and Cohen 1991, Townsend and Hildrew 1994, Lancaster and Belyea 1997). La importancia que tienen éstos para las comunidades acuáticas es difícil de estudiar ya que en situaciones de caudal normal los refugios pueden no ser distinguibles de otras zonas o microhabitats, ya que las fuerzas hidráulicas a las que están sometidas los diferentes sustratos del río varían con la descarga (Lancaster and Hildrew 1993b, a). A nivel de comunidad, en los ríos tropicales, la subsistencia a cambios de caudal impredecibles y recurrentes, puede estar mediada por adaptaciones en su historia de vida, como tiempos de desarrollo o estrategias reproductivas, XII Introducción general como por ejemplo el multivoltinismo. Los tiempos de desarrollo de los estadíos acuáticos también pueden influir, siendo favorecidos los organismos con tiempos de desarrollo más rápido como Chironomidae, Simuliidae o Baetidae. Sin embargo, en especies presentes en el neotrópico con tiempos de desarrollo más largo que, por lo tanto estarían más expuestas a los efectos negativos de las crecidas, adaptaciones de comportamiento, como el uso de refugios podría ser clave para la persistencia de las mismas. Estas interacciones entre las perturbaciones y la presencia o importancia de los “refugios” han sido estudiadas en zonas templadas (Lancaster and Hildrew 1993b, Winterbottom et al. 1997, Winterbottom 1997, Lytle 1999, Lancaster 2000, Lytle 2001) sin embargo se desconoce su ocurrencia en el neotrópico, pese a que su existencia podría ser crítica en el mantenimiento de las comunidades. En síntesis, en los ríos altoandinos, que como dijimos en un principio sufren cambios de caudal rápidos e impredecibles, que sumados a la topografía variable (con fuertes pendientes) pueden provocar también fuertes perturbaciones en el sustrato, se desconocen los mecanismos usados por los distintos taxa presentes para recuperar las poblaciones luego de las crecidas. A escala espacial, las reducciones antropogénicas del caudal provocan cambios en la dinámica hidrológica del río y por lo tanto de las comunidades de macroinvertebrados. Por esta razón en este capítulo también incluimos datos de un tramo afectado por la desviación de agua para la cría de truchas, en el cuál el caudal base se reduce en un 50 porciento. En este contexto las preguntas que intento responder en el primer capítulo son: ¿Cuál es el efecto de la variación a corto plazo y estacional del caudal en la comunidad de macroinvertebrados y qué importancia potencial tienen los refugios y las características del microhabitat en la persistencia de las mismas? ¿Cuál es el efecto de la reducción del caudal en la comunidad de macroinvertebrados? Deriva y recolonización La recolonización del sustrato, que sigue a las perturbaciones, es uno de los procesos más importantes que estructura las comunidades (Boyero and Bosch XIII Introducción General 2004). Éste suele ser un proceso que depende principalmente de los individuos que llegan con la deriva, pero también de las migraciones contracorriente de algunos macroinvertebrados, las comunidades de parches adyacentes y del reclutamiento por ovoposición (Williams and Hynes 1976). Este proceso está influenciado por las características del sustrato y recursos alimenticios asociados así como la competencia, la depredación (Resetarits 1991, Mackay 1992, Resetarits 2001) y la recurrencia mayor o menor de las perturbaciones. La composición de la deriva afecta profundamente la dinámica de las comunidades bentónicas, por un lado disminuyendo la densidad de las especies más susceptibles a derivar y por otro lado proveyendo continuamente organismos para la colonización del bentos (Townsend and Hildrew 1976). En zonas templadas el papel de la deriva en la recolonización es un proceso que ha sido muy estudiado y documentado (Brittain and Eikeland 1988, Mackay 1992). En los trópicos se han realizado pocos estudios, algunos de ellos muy recientes, que han revelado que la deriva en estos sitos no es estacional y está más ligada a cambios de caudal (Pringle and Ramirez 1998, Ramirez and Pringle 2001, Jacobsen and Bojsen 2002, Rodriguez-Barrios et al. 2007). De los estudios recientes sobre deriva en los trópicos sabemos que a nivel local la recolonización depende de la migración de los parches adyacentes, pero a nivel de secciones de río depende de la deriva de zonas más lejanas (Boyero and DeLope 2002, Boyero and Bosch 2004, Melo and Froehlich 2004). Sin embargo la mayoría de estos estudios se han realizado solo en una estación, generalmente la de menor lluvia, por lo tanto los cambios de composición de la deriva asociados al caudal y su influencia en la recolonización no ha sido abordada. Tampoco se sabe que taxa son más proclives a derivar. Además ríos tropicales que no poseen poblaciones de peces locales, pero que sin embargo poseen especies de peces introducidas (p.e. varias especies de truchas), han demostrado carecer de periodicidad en la deriva (Flecker 1992, Jacobsen and Bojsen 2002, Jacobsen 2008). Las interrogantes respecto a la deriva y a la recolonización, en el contexto de los ríos de alta montaña tropicales con perturbaciones de caudal impredecibles XIV Introducción general y a su vez temperatura media de 10 ºC, son muchas. Entre otras preguntas que hemos intentado contestar en el capítulo dos de esta tesis están: ¿Hay periodicidad en la deriva? ¿Cuál es la variación estacional en la composición de la deriva y que taxa está siendo más propenso a ser arrastrado por la misma? ¿Cómo afectan los patrones de deriva en la recolonización del sustrato? ¿Se diferencia la recolonización entre estaciones y microhábitats distintos? Importancia de la materia orgánica. La entrada de materia orgánica alóctona en forma de hojarasca constituye la principal fuente de energía y nutrientes en los ríos de cabecera (Siccama et al. 1970, Anderson and Sedell 1979, Wallace et al. 1997, Graça 2001). Parte de esta energía es aprovechada por los consumidores y otra es exportada río abajo por acción de la corriente (Likens et al. 1970, Fisher and Likens 1973) y por ello existe vínculo trófico entre las comunidades de los ríos de cabecera y los tramos más bajos de los ríos que está mediado por los descomponedores y detritívoros (Graça 2001). En zonas templadas la interacción entre las entradas, los descomponedores y los detritívoros y los factores físicos ha sido ampliamente estudiada (Anderson and Sedell 1979, Suberkropp and Wallace 1992, Suberkropp and Chauvet 1995, Wallace and Webster 1996, Wallace et al. 1997, Graça 2001, Graça et al. 2001b). Al contrario, en los ecosistemas tropicales la información cuantitativa respecto a entradas, almacenamiento y ciclos de estas entradas se desconocen pese a que usualmente los ríos tropicales drenan áreas con densas vegetaciones y las entradas alóctonas probablemente son la principal fuente de energía (Graça et al. 2001a, ColónGaud et al. 2008). Debido a la escasa estacionalidad de los ríos tropicales (en términos de temperatura), estas entradas son potencialmente continuas durante todo el año, al contrario que en ríos de zonas templadas que reciben la mayor parte de entradas en otoño. Sin embargo, en el trópico y en los estudios realizados hasta el momento, los máximos de entrada de materia orgánica están asociados a tormentas (Covich 1988), o al comienzo (Gonçalves et al. 2006) o final de la estación de lluvias (Afonso et al. 2000). XV Introducción General La capacidad de los ríos de retener estas entradas está relacionada a la morfología y heterogeneidad espacial del canal del río (Speaker et al. 1984, Lamberti et al. 1989) y en general los ríos más angostos de fondo rugoso son más retienen más material (Mathooko et al. 2001). Debido a la inestabilidad del caudal, en los ríos tropicales la acumulación de la material alóctona en el fondo del río no solo está regulada por las entradas del bosque adyacente sino también por la magnitud y variabilidad de la descarga (Pearson et al. 1989). En situaciones de caudales altos, la capacidad retentiva disminuye y aumenta el movimiento y redistribución de la hojarasca en el fondo del río (Larrañaga et al. 2003). El patrón general en el trópico es que mayores cantidades de hojarasca se acumulen durante las épocas secas (Covich 1988), mientras que la cantidad 2 acumulada anual puede ser muy variable p.e de 35 g AFDM/m (Friberg et al. 2 1997) a más de 1000 g AFDM/m (Colón-Gaud et al. 2008). Los estudios de zonas templadas han demostrado que la relación de esta materia alóctona acumulada en el río puede ser usada por la comunidad de macroinvertebrados como refugio (Palmer et al. 1996), o como recurso alimenticio por parte de los trituradores (Wallace and Webster 1996, Graça 2001, Graça et al. 2001b). Al contrario que en zonas templadas, en el trópico los trituradores al parecer no son una parte importante de la comunidad (Ramirez and Pringle 1998, Mathuriau and Chauvet 2002, Mathuriau et al. 2008), pero existe alguna evidencia de que en los ríos tropicales de montaña pueden tener más relevancia (Cheshire et al. 2005). Además el análisis de contenido del tracto digestivo de insectos acuáticos en ríos tropicales han demostrado que la mayoría de especies explota dos niveles tróficos, o se alimentan de más de un tipo de recurso (Wantzen et al. 2005, Tomanova et al. 2006, Wantzen and Wagner 2006). En este sentido, la importancia de la materia orgánica alóctona (hojarasca) como recurso alimenticio en los ríos tropicales de montaña es incierta, y probablemente ésta dependa de los recursos disponibles a nivel local, ya que al parecer los macroinvertebrados tropicales parecen tener hábitos alimenticios flexibles (Covich 1988). XVI Introducción general Para abordar este tema en el contexto de los ríos altoandinos, las preguntas que intentamos responder en el capítulo tres fueron: ¿Cuál es la importancia de las entradas de materia alóctona en un río altoandino? ¿Hay algún efecto estacional en el transporte, retención de ésta materia orgánica y qué implica para las comunidades de macroinvertebrados? ¿Qué taxa se están alimentando de este recurso? La Ovoposición La ovoposición tiene extrema importancia en los ecosistemas acuáticos, ya que establece el tamaño inicial de las poblaciones, y además constituye uno de los principales procesos de recolonización (Williams and Hynes 1976, Encalada and Peckarsky 2006). En ríos con caudales que fluctúan ampliamente de forma impredecible, como la mayoría de ríos tropicales, la deriva catastrófica y la mortalidad de las larvas puede ser muy importante. En este contexto, el reclutamiento de nuevos individuos por ovoposición podría ser un proceso fundamental para la estabilidad y resiliencia de éstas comunidades. El papel del reclutamiento en las comunidades acuáticas es poco conocida (Encalada et al. en prep.), y la poca información que existe sobre ovoposición está restringida al hemisferio norte (Hinton 1981, Brittain 1989, Merritt and Cummins 1996). Sin embargo, es de esperar que en zonas templadas, sea solo importante durante los meses de primavera y verano, cuando los insectos que han emergido para la reproducción vuelven al agua a depositar sus huevos. La estrategia del univoltinismo favorece que los estadios aéreos ocurran cuando las condiciones para la reproducción y ovoposición son más favorables. Las zonas tropicales por el contrario carecen de esta marcada estacionalidad en la temperatura y en este contexto, el multivoltinismo es una estrategia que puede ser altamente beneficiosa para la persistencia de las comunidades. Esta estrategia ha sido reportada para varios insectos tropicales (Collier and Smith 1995, Jackson and Sweeney 1995) principalmente de altitudes bajas. XVII Introducción General Por el momento los datos de historia de vida y ovoposición de insectos andinos de alta montaña son inexistentes (Jacobsen 2008). Sin embargo, conocer este aspecto es fundamental para entender la persistencia de las comunidades en las condiciones ambientales más restrictivas de la alta montaña, como es la temperatura media más baja (~10ºC en Ecuador) y donde la saturación de oxígeno está afectada por la altitud (Jacobsen 2008). En este contexto, las interrogantes en este tema fueron: ¿Cuál es la importancia del reclutamiento por ovoposición en ríos de altitud? ¿Hay efecto de la estacionalidad hidrológica? ¿Qué relación tienen los patrones observados en las formas acuáticas (bentos y deriva) con los observados en los estadios adultos? En el cuarto capítulo de esta tesis intentamos responder a estas preguntas. XVIII Introducción general Objetivos El objetivo general de esta tesis es entender como los procesos que operan en los ríos altoandinos influencian en la persistencia de las comunidades de macroinvertebrados. Las diferentes incógnitas que nos hemos planteado se tratan en cuatro capítulos independientes, que tratan de responder a la pregunta más general planteada desde diversas aproximaciones. Los capítulos están escritos en inglés y de tal forma que se aproximen al formato que tendrán en su posible futura publicación. Los objetivos de cada capítulo son: 1.1 Caracterizar el régimen hidrológico en un río tropical altoandino en varios días consecutivos durante dos estaciones diferentes (seca y húmeda). 1.2 Determinar si existe variación en la comunidad de macroinvertebrados entre estaciones, microhábitats (rápidos vs. refugios) o tramos (caudal alterado vs. caudal natural). 1.3 Determinar la relación entre la comunidad de macroinvertebrados y la estabilidad del caudal. 2.1 Describir la deriva diaria y estacional. 2.2 Estudiar las diferencias estacionales en la deriva y estimar la propensión de los distintos taxa de macroinvertebrados a derivar en cada época. 2.3 Describir el proceso de colonización a corto plazo (1 a 7 días) en condiciones de caudal base. 2.4 Estudiar la dinámica de la recolonización a medio plazo (1 mes) en cada época y entre épocas. 2.5 Determinar la importancia del microhábitat en el proceso de recolonización. 3.1 Describir las entradas anuales de hojarasca en un río tropical altoandino. 3.2 Definir si hay diferencias estacionales en el transporte y retención de la Materia orgánica particulada gruesa (MOPG). XIX Introducción General 3.3 Estudiar las diferencias espaciales y estacionales de la materia orgánica alóctona acumulada en el río y sus potenciales relaciones con la composición de la comunidad de macroinvertebrados. 3.4 Evaluar si los recursos alóctonos son importantes en la dieta de los macroinvertebrados del río mediante el análisis de contenidos intestinales. 4.1 Estudiar las diferencias estacionales en la riqueza y abundancia de adultos de insectos acuáticos volando y ovopositando. 4.2 Evaluar si existen diferencias entre el número de masas huevos y la identidad de éstas y su morfología entre las dos épocas estudiadas. 4.3 Estudiar si existe algún tipo de preferencia de las hembras en el sustrato usado para ovopositar. 4.5 Relacionar la identidad de las larvas presentes en el río con la de los adultos encontrados en las mismas estaciones. XX CHAPTER 1: Macroinvertebrate assemblages at an Andean high altitude stream: Importance of microhabitat, flow and season CHAPTER 1: Importance of microhabitat, flow and season Introduction The water discharge in fluvial ecosystems, varies widely in terms of its quantity, quality, timing, and temporal variability (Allan and Castillo 2007), and is largely determined by natural variations in climate, vegetation, geology, and terrain (Poff et al. 1997, Allan and Castillo 2007). At the same time, the patterns of temporal variability in river flows have profound impacts on the structure and function of fluvial ecosystems. But in addition to its ecosystem level effects, variations in water discharge are also part of the natural disturbance patterns of streams, having a key influence on the structure and dynamics of biological communities (Resh et al. 1988, Poff and Ward 1990). From this point of view, the occurrence of disturbances is fundamental in terms of creating “open spaces” and changes in resource availability or influencing the temporal dynamics (Pickett and White 1985) that often result in patchy distributions of stream biota. Moreover, extreme events like floods are also a primary selective pressure for adaptation because of the high mortality rates that they can inflict in some aquatic taxa (Lytle and Poff 2004). The spatial and temporal variation in disturbance regimes in streams determines which mechanism operates to avoid the effects of disturbance on biological communities. At large multigenerational scales, external recruitment is the main mechanism that maintain populations, while at smaller scales, during the lifetime of an individual, organisms may avoid the negative effects of disturbance by moving between patches not affected by the disturbance and ensuring the local persistence of the species (Lancaster 2000). In such situations, and specially if flow disturbances occur at time intervals of less than one generation, the persistence of one species might depend on the availability of areas of the river where physical characteristics provide the organisms with a greater probability of subsisting through periods of severe conditions, facilitating further recolonization of patches where the effects of disturbance have been more severe (Lancaster and Hildrew 1993b, a, Lancaster and Belyea 1997, Townsend et al. 1997). These areas that are less susceptible to the impacts of disturbance are called “refugia”. Their existence has been suggested by empirical and 3 CHAPTER 1: Importance of microhabitat, flow and season theoretical evidence that emphasize the importance of temporal and spatial patterns of habitat heterogeneity (Caswell and Cohen 1991, Townsend and Hildrew 1994, Lancaster and Belyea 1997). However, the importance of such refugia in stream communities is difficult to assess because, in situations of low or basal flow, a refugium patch might be undistinguishable from other patches, as the hydraulic forces vary with the discharge (Lancaster and Hildrew 1993b, a). In Neotropical rivers, severe and unpredictable hydraulic changes are a major source of disturbance and play an important role structuring aquatic communities (Flecker and Feifarek 1994). At the community level, the net effect of these disturbances is mediated by natural history attributes of the species such as reproductive strategies and developmental times. For example, multivoltinism among many neotropical species is a major factor influencing the persistence of aquatic macroinvertebrate communities. Similarly, developmental times of aquatic stages vary widely among different taxa, determining either less susceptibility to hydraulic disturbance for macroinvertebrates with faster developmental times (e.g. Chironomidae, Baetidae), or development of morphological or behavioral adaptations for organisms with longer developmental times such as Trichoptera or Plecoptera. Even though the influence of these life history strategies in tropical streams is poorly understood, they might be critical in terms of determining the ability of a species to withstand the effects of disturbance or to avoid them through the use of refugia. Although previous studies have addressed similar interactions in temperate (Lancaster and Hildrew 1993b, Winterbottom et al. 1997, Winterbottom 1997, Lancaster 2000) or desert areas (Lytle 1999, Lytle 2001) little is known about their occurrence in tropical regions, where other factors maybe influencing the use of refugia at different scales. Tropical high-altitude streams in the Andean region are characterized by rapid flow changes that are not easily predictable from seasonal variations in precipitation. Moreover, the occurrence of spates might be a crucial form of disturbance in these ecosystems, as the topography of the region already 4 CHAPTER 1: Importance of microhabitat, flow and season determines fast flow regimes, turbulence, and high substrate instability. The importance of this type of disturbance in tropical mountain streams was already suggested by Jacobsen (2005), who reported high temporal variability in faunastone relationships related to channel stability in the Ecuadorian Andes. However, how taxa persist after spates and the consequences of anthropogenic flow regulation of these high flow-variable streams remain poorly studied. In this context, our aim is to provide a further insight into the effects of short-term (hours and days) and mid-term (seasonal) variations in flow, on the macroinvertebrate communities of a high altitude tropical stream, assessing the potential importance of refugia on the persistence of these communities. More specifically, we intended to: 1) characterize the hydrological regime in a high altitude tropical stream in several consecutive days during two different seasons (dry vs. wet); 2) determine whether macroinvertebrate community composition differs between seasons (dry vs. wet), microhabitats (exposed areas [rapids] vs potential refugia) and reaches (normal vs. anthropogenic reduced flow; and 3) determine whether there is a relationship between macroinvertebrate community composition and flow stability. In addition comparing a section of stream with minor human disturbance, with a contiguous section which flow has been reduced, we may assess the importance of human induced disturbance on the relative importance of refugia in determining community structure and dynamics in this ecosystem. Study area We performed the study at the Piburja stream (3300 m a.s.l.), a first order stream in the Oyacachi river basin, situated at the Cayambe-Coca Ecological Reserve (RECAY) in Ecuador (0º12’ 44.70”S, 78º 04’ 40.27”W). Oyacachi basin is located at the slopes of the Andean Range and is covered by several vegetation types from high altitude tropical grasslands (páramos) to tropical rain forest (~4000 to 1800 m). This watershed has a western-eastern slope, and is part of the Amazon basin (Terneus & Vásconez, 2003). The Oyacachi river starts in the upper slopes of the cordillera, running through páramo grasslands dominated by Calamagrostis spp. and Neurolepis sp., and mixed forests of 5 CHAPTER 1: Importance of microhabitat, flow and season Polylepis sp. and Gynoxis sp.; in its middle ranges, the river flows through an ever-green forest dominated by Alnus acuminata in the river shores and in the disturbed areas (Baez et al., 1999). Total precipitation in the town of Oyacachi is ~ 1600 mm/year, and daily mean temperature is ~10 ºC. Pluviometric records (~10 years) from nearby localities show lower rainfall from December to February compared to a more wet period from May to September. Precipitation is 2 or 3 times greater than the potential evapotranspiration, which makes this area very humid throughout the year (Skov 1999). We studied two 70m-long reaches at Piburja stream: The pristine reach had a minimum width of 1.6 m during the dry season, and a maximum of 4.0 m during the Wet season. The surrounding vegetation is an evergreen forest dominated by Andean alder (Alnus acuminata) and a dense understory with high diversity of Melastomataceae, Asteraceae, and Rosaceae. The disturbed reach is located 250 meters downstream from pristine reach. Its discharge is reduced to 50% of the upstream water at basal flow due to an anthropogenic diversion for trout rearing pools. Parts of this area have been transformed to pastures, but the stream shores still preserve the forest cover similar to that of the undisturbed reach. During spates, the reduction of flow is negligible. Flow measurements during sampling period are provided in the results section. Materials and Methods To describe and characterize stream flow, aquatic invertebrate communities, and the relationship between them, we measured these parameters at three different scales: 1. Temporal scale (dry and wet season); 2. Reach scale (pristine and disturbed section) and 3. Within the reach, microhabitat scale (rapids and refugia). Flow and environmental variables To describe and characterize flow stability, we sampled discharge during two hydrologically distinct periods: wet and dry. The wet season was studied from 6 CHAPTER 1: Importance of microhabitat, flow and season April through May 2006, and the dry season from January through February 2007. Flow was measured using a Global water flow probe model FP201 making a minimum of two daily measurements during the sampling periods in a fixed transect at each reach. Detailed (every ten minutes) flow variation was measured using a GW Water Logger model WL16 located at the pristine transect, which was calibrated using data from the fixed transect. In addition to instantaneous flow we calculate an index of flow stability (INEST), by dividing the cumulative flow of 12, 24, and 48 hours before sampling by the variance of the flow at the same time intervals. We measured conductivity, pH, temperature, and oxygen a minimum of 20 times during each sampling period (between 6h00 and 17h00), using a 4-Star Orion pH/conductivity portable meter and a WTW oxygen meter. The proportion of benthic substrates (i.e. boulders, cobbles, gravel or sand) was measured at ten cross-section transects at each reach, in addition to depth and water velocity which were measured every 20 cm along each of these transects. The substrate movement was measured by the movement of three big boulders, and 12 painted cobbles at each site. During the sampling period boulders did not move at any spate event, while cobbles moved only moderately in the same reach, with movements raging from less than 10 m at the dry season, to a maximum of 20 m during the wet season. These data suggest that no large catastrophic floods, eroding the substrate, occurred during our sampling periods. Macroinvertebrates To understand the relationship between flow measurements, microhabitat and macroinvertebrate community composition we used a small Surber sampler (14x14 cm). This sampling device (opposed to the typical Surber sample of 20x20 cm) allowed us to discriminate between the two microhabitats: fast flow areas (rapids) and areas with lower or null water current velocity (potential refugia). We sampled on five different dates at each season, with an interval of 7 CHAPTER 1: Importance of microhabitat, flow and season four to six days between sampling occasions. To avoid damage of sites within our reach we always sampled moving upstream. At wet season we sampled before, during, and after spates, guided by the level of a rain gauge located at Oyacachi town. We collected six samples at each microhabitat condition (rapid or refugium) during the wet season, and ten during the dry season, with a total of 30 and 50 samples in the wet and dry season respectively, for each microhabitat condition (rapid vs. refugium) and reach (pristine vs. disturbed). In order to distinguish between rapids and refugia, we measured mean velocity at each Surber location. Species accumulation plots suggested that there was not effect in taxa richness or macroinvertebrate density collected using six or ten samples, therefore data can be compared directly. Samples were preserved in 10% formalin and taken to the laboratory for identification. All samples were analyzed under a stereomicroscope to differentiate small invertebrates, especially small dipterans. For macroinvertebrate identification we used the keys of: Holzenthal and Flint (1995), Merritt and Cummins (1996), Roldán (1996), Fernandez & Dominguez (2001) and Dominguez et al. (2006). Data treatment We calculated descriptive statistics for all physico-chemical variables and used the test of Kruskal-Wallis to detect significant differences among reaches and seasons. This analysis was necessary because not all the environmental variables satisfied the homogeneity of variance requirement even when transformed. We identified invertebrates to genus level when possible (and subfamily level for Chironomidae), and calculated several community metrics: richness (S), abundance, density, Fisher’s alpha diversity index, and Shannon-Weiner diversity index (H’). Additionally, with some invertebrate groups we conducted individual presence/absence analyses, or measured changes in their density in the different treatments. 8 CHAPTER 1: Importance of microhabitat, flow and season Macroinvertebrate densities for each treatment were calculated excluding rare taxa (present in <10% of samples and <0.5 % of total density) and then log(x+1) transformed prior analysis. With this data matrix, we performed a Bray-Curtis similarity index to construct a NMDS (Non-metric Multi-Dimensional Scaling) to compare communities among microhabitat, reaches and seasons. We used a General Linear Model (GLM) to assess differences in community metrics and taxa densities in microhabitats at both, space (reach) and time (season) scales. Fixed categorical factors in the GLM were Season (wet and dry), Reach (disturbed and undisturbed) and microhabitat condition (rapids and refugia). Total taxa (S), total abundance (N), Fisher’s α and Shannon (H’) 2 diversity indexes and taxa densities (ind/m ) were analyzed as dependent variables. GLM was performed with pooled data (two seasons together) and for each season separately (GLM was performed only with reach and microhabitat condition as fixed factors). This was done to identify if the factors that are more related to the community metrics differed between seasons. To analyze the relationship between macroinvertebrates, stream flow, and the index of flow stability 12 hours before sampling, we performed correlations and linear regression analyses with all variables log transformed. Flow stability indexes after 24 and 48 hours were not included in the analysis after preliminary tests showed that flow stability 12 hours before sampling were more associated with taxa densities and also that this index was highly correlated with the 24 and 48 hours before sampling flow stability indexes. We also made Logistic binary regression analysis, to relate flow and flow stability to taxa presence and to obtain the probabilities of taxa occurrence in different flow conditions. Bonferroni correction of p-values was applied to all statistical test, but corrected values were analyzed with caution due to the unnecessarily conservative restrictions of these corrections (Gotelli & Ellison, 2004) in multiple tests. Statistical analyses were performed using Statistica 6, Primer 6.0 and SPSS 14 statistical software. 9 CHAPTER 1: Importance of microhabitat, flow and season Results Flow stability and hydrological regimes. The hydrological regime was clearly different between wet and dry periods (Fig. 1), with large differences in mean flow, as well as in its minimum and maximum values, at both reaches and hydrological periods studied (Table 1). Flow was significantly higher in the wet than in the dry season, and significantly higher in the pristine than disturbed reaches (Appendix 1). “Rapid zones” were significantly faster than “refugia zones” (Kruskal Wallis H= 91.37, test p < .001) and the velocity measures at each microhabitat type where similar at both seasons (Fig. 1). Table 1. Mean, minimum and maximum values of flow for the pristine and the disturbed reaches during wet and dry season at Piburja stream, Ecuador. Reach season Mean flow (l/s) 95% Confidence intervals. Pristine Dry Wet Dry Wet 35,15 92,65 16,66 43,66 ± 0,54 ± 0,92 ± 0,23 ± 0,85 Disturbed Minimum Maximum 6,49 48,17 2,01 12,86 117,30 355,78 52,59 400,90 The mean current velocity at the reach scale, was significantly higher in wet season in both reaches. Depth presented differences at disturbed reach between seasons, with more depth at the wet season, and also between reaches at both seasons with deeper measurements at the pristine reach (Appendix 1). Seasonal changes of environmental conditions Temperature varied significantly between seasons, and between reaches during the dry season. Water temperature was significantly higher during the wet season, compared to the dry season, and also was consistently higher in the disturbed reach, compared to the pristine site (Appendix 1). Only at wet season the temperature between reaches did not vary significantly. The pH and conductivity was different between seasons, but not between reaches, being lower at wet season. Although mean pH values were significantly lower at wet 10 CHAPTER 1: Importance of microhabitat, flow and season season, (Kruskal-Wallis analysis (Appendix 1)), there was a high overlap of values of pH. Finally the substrate composition structure did not differ between reaches (R=-0.009, ANOSYM analysis). 1a WET DRY 400 flow l/s 300 200 Prisitine Disturbed 100 0 1b4000 April 06 May 06 Jan 07 Feb 07 INEST 12 3000 2000 1000 0 Disturbed Pristine 2 suber velocity m/s Pristine 1c 2 1 1 0 Disturbed 0 RAP REP RAD RED RAP REP RAD RED Figure 1. Hydrological changes between seasons, reaches and microhabitats at Piburja stream. 1a) changes in flow; 1b) Changes in flow stability INEST 12 th th hours before sampling (Box plots, with 75 and 25 percentile); 1c) differences on near bed velocity between at each Surber sample site (microhabitats). RAP: Rapids pristine site; REP: Refugia pristine site; RAD: Rapids disturbed site; RED: Refugia disturbed site (Box plots, with percentile 75 and 25). 11 CHAPTER 1: Importance of microhabitat, flow and season Factors explaining the macroinvertebrate community changes The results of MDS (Non-metric Multi-Dimensional Scaling) with taxa densities using Bray Curtis similarity index, showed that macroinvertebrate communities differ between seasons (Fig. 2). Season is the main factor explaining the strong differentiation of community assemblages, independent from the reach (Fig. 2a). At the dry season, the community was more homogeneous (in terms of composition) compared with the wet season. Additionally, microhabitat (rapid or refugium) was an important factor determining communities at each season (Fig. 2b), while reach was not an important factor determining the community composition. 2a 2b Figure 2. MDS using Bray Curtis similarity index with taxa densities (transformed to log x+1) of invertebrates sampled in Piburja stream Oyacachi. Dry and Wet seasons are plotted with squares (dry) and rhombus (wet) and samples are identified with a letter as p (pristine reach), d (disturbed reach) and in 2a, ra (rapid microhabitat) or re (refugium microhabitat) in 2b. 12 CHAPTER 1: Importance of microhabitat, flow and season Seasonal changes of macroinvertebrates biodiversity and abundance Temporal scale We performed several GLM analyses to test if macroinvertebrate biodiversity and abundance (S, N, H’, Fishers’α and taxa densities) differed between analyzed factors (season, reach, microhabitat). Season was the most important factor generating differences both in community metrics and in macroinvertebrate densities for the majority of taxa being higher in dry season (Fig. 3a, Appendix 1). The exceptions were Macrelmis and Baetodes (Fig. 3f) that presented the opposed pattern being denser at the wet season. Few taxa did not suffer any seasonal significant density variation. The complete results of the effects of the factors: season, reach and microhabitat on the taxa densities (log transformed) and community metrics of Piburja stream in the General Linear Model can be found at the Appendix 2. Reach scale We did not found any difference on biodiversity between reaches, but differences in densities of certain taxa were found (Table 2, Fig. 3b & 3c). The taxa Hyalella, Tanytarsini, Oligochaeta and Tricladida were significantly denser at the disturbed section of the stream (pattern of Fig. 3c) while Cochliopsyche, Ochrotrichia, and Claudioperla shown a density increase at the pristine reach (pattern of Fig. 3b). These tendencies were maintained during the dry season, where Cocliopsyche and Nectopsyche were also denser at the pristine reach. On the other hand, Tanytarsini, Andesiops, Baetidae, Oligochaeta and Tricladida had higher densities at the disturbed site in the dry season (pattern of Fig. 3c). During the wet season Oligochaeta and Tricladida showed a significant difference of density, being higher at the disturbed site (pattern of Fig. 3c). 13 CHAPTER 1: Importance of microhabitat, flow and season Figure 3. Relation of community metrics with season, reach and microhabitat of invertebrates sampled at Piburja stream in Oyacachi, Ecuador. These graphs show all the different patterns that we found for different taxa and for measured metrics. The complete list of taxa and community metrics that followed these patters are shown in table 2. All values are means (± 1 SE). a. metrics that show an increase at dry season. b. metrics that show an increase at dry season and at the pristine reach. c. metrics that show an increase at dry season and at the disturbed reach. d. metrics that show an increase at dry season and in refugia. e. metrics that show an increase at dry season and in rapids. f. Baetodes increasing density at wet season and rapids (same pattern of Macrelmis). 14 CHAPTER 1: Importance of microhabitat, flow and season Microhabitat scale Total abundance of Prionocyphon, Hyalella, Ceratopogonidae, Tanytarsini, Cocliopsyche and Nectopsyche were higher at refugia (pattern of Fig. 3d) while Simuliidae, Leptohyphes, Hydrobiosidae, and Ochrotrichia showed higher densities at rapids. Baetodes (Table 2, Fig. 3f) and Baetidae show this increase in rapids. This tendency generally remains during either wet or dry season. During the dry season Heterelmis, Prionocyphon, Chinoronominae and Hydracarina also showed significant higher densities at refugia (pattern of Fig. 3d). At wet season Shannon index was significantly higher in rapids. Table 2. List of metrics and taxa that follow any of the different patterns described in Figure 3, related to stream, reach or microhabitat characteristics in the General Linear Model analysis. TAXA / community metrics Fisher’s α H’ Heterelmis Neocylloepus Macrelmis Total Elmidae Prionocyphon Probezzia Atrichopogon Diamesinae Podonominae Tanytarsini Chelifera Psychodidae Limoniidae Simuliidae Andesiops Baetodes Leptohyphes Hyalella Hydracarina Oligochaeta Andiperlodes Claudioperla Total Gripopterygidae Hydrobiosidae Cocliopsyche Ochrotrichia Nectopsyche Tricladida Corresponding Figure 3 3a 3a 3a 3a 3f 3a 3d 3a, 3d 3a, 3d 3a 3a 3c 3a 3a 3a 3e 3a 3f 3a, 3e 3c, 3d 3a 3a, 3c 3a 3b 3a 3e 3b, 3d 3a, 3b, 3e 3a, 3d 3a, 3c 15 CHAPTER 1: Importance of microhabitat, flow and season The relation of flow and flow stability with macroinvertebrate fauna For the majority of the taxa, densities were inversely correlated with flow independent from season. Only Macrelmis showed a positive correlation with flow (Appendix 3). Andiperlodes and Hydrobiosidae, also showed significant positive correlations with flow stability (12 hours before sampling). We did not find a predictive function between the taxa densities and the flow or flow stability suggested by the significant lack of fit of the test for Linear and polynomial regression models. This was probably because of high densities found on the dry season and the lack of a clear pattern in wet season Logistic binary (presence- absence) regressions (Table 3) revealed a negative slope (B) for 13 taxa, which means a decrease of the probability of the presence of these taxa when flow increases (Fig. 4). All taxa that showed this relationship with flow were also significantly denser at the dry season. Only Andiperlodes had positive slope with flow stability (12 hours before sampling), and Tricladida showed a decrease of presence while the stability increases. Figure 4. Probability of presence of Diamesinae at Piburja stream with flow, predicted by logistic binary regression. This same pattern of decreasing probability of presence as flow increase, were followed by the 13 taxa shown in table 3. 16 CHAPTER 1: Importance of microhabitat, flow and season Table 3. Summary of Logistic Binary regression with forward LR Likelihood ratio test of taxa presence or absence between flow and flow stability (only dependent significant metrics are included) at Pibujra Stream, Ecuador. B= values for the logistic regression equation for predicting the taxa presence from the independent variables (flow and flow stability). The prediction equation is log(p/1-p) = b0 + b1*x1 + b2*x2 ; S.E. = standard errors associated with the coefficients; where b0= Constant. Wald and P.= Wald chi-square value and 2tailed p-value used in testing the null hypothesis that the coefficient (parameter) is 0. Exp(B) = the odds ratios for the predictors. Variables in the logistic equation B S.E. Wald df P Taxa Heterelmis Neocylloepus Elmidae Diamesinae Podonominae Simuliidae Andesiops Exp(B) flow -0.02 0.01 6.075 1 0.014 0.983 Constant 2.032 0.67 9.12 1 0.003 7.628 flow -0.05 0.01 10.45 1 0.001 0.955 Constant 2.772 0.84 10.96 1 0.001 15.983 flow -0.02 0.01 3.762 1 0.052 0.983 Constant 3.557 1.13 9.952 1 0.002 35.068 flow -0.03 0.01 11.02 1 0.001 0.966 Constant 2.368 0.73 10.47 1 0.001 10.673 flow -0.02 0.01 8.673 1 0.003 0.976 Constant 1.618 0.62 6.833 1 0.009 5.042 flow -0.02 0.01 5.334 1 0.021 0.985 Constant 2.072 0.68 9.188 1 0.002 7.942 flow -0.02 0.01 5.351 1 0.021 0.985 Constant 1.29 0.58 5.024 1 0.025 3.633 Hydracarina flow Constant -0.02 3.144 0.01 0.96 4.959 10.8 1 1 0.026 0.001 0.982 23.198 Andiperlodes inest12 Constant 0.001 -1.91 0 0.52 6.167 13.44 1 1 0.013 0 1.001 0.148 Cochliopsyche flow Constant -0.02 1.549 0.01 0.6 7.171 6.591 1 1 0.007 0.01 0.981 4.706 Hydrobiosidae flow -0.03 0.01 7.544 1 0.006 0.975 Ochrotrichia Constant flow 3.663 -0.02 1.09 0.01 11.37 7.201 1 1 0.001 0.007 38.978 0.981 Constant 2.217 0.7 9.973 1 0.002 9.179 flow -0.05 0.001 5.055 0.01 10.98 1 0.001 0.956 0 1.54 5.682 10.71 1 1 0.017 0.001 0.999 156.77 Tricladida inest12 Constant 17 CHAPTER 1: Importance of microhabitat, flow and season Discussion High altitude Andean streams had been considered aseasonal streams (Jacobsen 2005). At Piburja stream, although temperature showed variations monthly changes in tropical and specifically Andean streams are often narrow. The few previous studies of Andean streams, showed a temperature dial variation (~ 5 ºC) larger than monthly variation (~1 ºC) in contrast to rainfall that show great seasonal changes, and therefore hydrological differences as those found at Piburja stream (Flecker and Feifarek 1994, Jacobsen and Encalada 1998, Jacobsen and Marín 2007, Perez and Segnini 2007). Although we lack of a complete 24 hour water temperature records, monthly mean air temperature in the area had a difference of less than ~1 ºC, for this reason we can not assume that differences present on the structure and composition of the benthic community are due to temperature variations between seasons. However at Piburja stream, flow and the related variables: flow stability, velocity and depth, clearly had a seasonal and reach variation during the two sample periods and are good candidates to explain differences in macroinvertebrate community and structure. If seasonal, hydrological related events are key drivers in this Andean stream, large seasonal changes on the benthic community should be expected. In fact, at Piburja stream we found important seasonal changes in all macroinvertebrate parameters measured: community composition, species richness, number of individuals, taxa density and diversity. Most part of taxa were present at the two seasons but densities of most of them were higher at dry season, the most stable hydrologic period. This increase of abundance and diversity at dry periods is reported in almost every previous study in Andean streams (Flecker and Feifarek 1994, Jacobsen and Encalada 1998, Jacobsen and Marín 2007, Perez and Segnini 2007). Only two taxa Baetodes and Macrelmis were denser at the wet season. This could be related to a more availability of rapid areas at high flow conditions although contradictory information may be found in the literature. Thus, while 18 CHAPTER 1: Importance of microhabitat, flow and season Macrelmis has been reported as a riffle inhabitant in Brazilian tropical streams, with biomass peaks at larvae or adult instars at summer (Passos et al. 2003), in Colombian rivers, the same taxa showed no relation of the abundance when related to wet or dry seasons. On the other hand, Baetodes is known to be an organism that prefer fast flow areas (Zuñiga de Cardoso et al. 1997), and Baetids in general enter in drift actively as a feeding behavior (Kohler and McPeek 1989, Peckarsky 1996). Probably these two taxa are adapted to increase densities at wet season due to more fast flow area availability and this could explain its higher densities on the stream at this season. A further question arises from these clear differences in density for most taxa between the dry and the wet season in Piburja stream: Might there be differences in density due to synchronized life cycles? Although there are evidences of synchronized life cycles of taxa in other tropical streams (Jackson and Sweeney 1995), and thus synchronicity in life cycles of some aquatic insects maybe present in some tropical areas with strong environmental seasonal changes in response to more favorable developmental conditions, most tropical aquatic insects show multivoltine life cycles or are present during all year (Turcotte and Harper 1982, Jackson and Sweeney 1995). But, some studies had shown that Elmids, like Macrelmis, have long life-cycles in rivers, that could last 4 years (Steedman and Anderson 1985) and no seasonal patterns in density were present (Suren and Jowett 2006). Unfortunately we do not collect data during a complete year and therefore we can not conclude if there is a preferred reproductive season for the taxa present at Piburja stream that were more abundant in one of the seasons. As we found most part of taxa at both seasons, and thus the multivoltine strategy seems to be the rule. Anyway much more research is needed to define if all taxa in tropical streams really had multivoltinism and asynchronic life cycles, especially in those taxa with longer developmental times that may be more vulnerable to natural disturbances. For hydrologically disturbed environments is expected that the fauna is randomly organized (Death 2004). In fact, Jacobsen (2005), with cobble stones samples in a monthly year study at Ecuadorian Andean rivers, found a random 19 CHAPTER 1: Importance of microhabitat, flow and season distribution of the macroinvertebrate community, with a positive relation with current velocity and number of macroinvertebrate families. Contrarily, in Venezuelan highland Andean streams Perez and Segnini (2007) found clearly differentiated benthic communities in Surber samples in high velocity and low velocity habitats, taken samples every 15 days during a year. At Piburja stream microhabitat condition related to flow velocity (rapid, refugium) was an important factor differentiating the community at dry season while at the wet season, as expected for disturbed habitats, fauna were more randomly organized indicating that seasonal differences are important and related to flow conditions. The differences found in this study with the previous studies could be related to the sampling frequency. Short term sampling, as the present study, are needed to visualize changes or patterns of distribution of fauna at river bed with high unstable flow and velocity condition, because changes occur in short periods of time (hours or days). Anyway in streams is expected that flow heterogeneity and differences in composition and abundance of benthic fauna between habitat patches arise after the spates (Jacobsen 2005) and therefore habitat preferences of aquatic organism should became more evident at the dry season as is the case at Piburja stream. Despite the large flow seasonal differences in Piburja stream, certain taxa maintained their preferences for rapids (Simuliidae, Leptohyphes, Baetodes and Ochrotrichia) during the both seasons. For these taxa there is a clear evidence of habitat preference that can be mediated by specific adaptative traits that allow them to avoid the effects of flow increase and the consequent disturbance events during the wet season. On the other hand, taxa like Nectopsyche, Prionocyphon, Probezzia and Hyalella had greater densities at refugia areas. In general taxa that were more abundant at refugia had higher densities at dry season. The importance of refugia in streams has been reported in several studies (Lancaster and Hildrew 1993b, a, Palmer et al. 1995, Palmer et al. 1996, Lancaster and Belyea 1997, Winterbottom 1997, Lancaster 1999, Matthaei et al. 1999, Lancaster 2000, Matthaei et al. 2000, Gjerlov et al. 2003, Melo et al. 2003, 20 CHAPTER 1: Importance of microhabitat, flow and season Bergey 2005, Hose et al. 2007). We found that the species that permanently prefer rapid areas do not increase the density (p.e. Simuliidae) at refugia in the wet season, therefore is seems that refugia searching behavior is not present in these taxa despite the fact that some individuals of these taxa were present, but in lower densities at refugia in both seasons (probably by passive arrival). In other studies species that prefer fast flowing areas, like Deleatidium (mayfly) had shown microbistributional changes in response to flow increases, to avoid drift (Holomuzki and Biggs 2000). Although this behavior may be present in the mayflies of Piburja stream we do not detect it during our study. Another possibility is that the flow events that we recorded during both seasons were not strong enough to reveal the behavior of refugium search to avoid spate effects. On the other hand for species found in higher densities at refugia or low flow areas during both seasons, like Nectopsyche, may have a permanent behavior to avoid catastrophical drift, and increase the odds to persist. This behavior was also present in studies for other crawling caddisflies, Potamophylax latipennis showed a permanent preferences for refugium under controlled laboratory conditions in response to fully turbulent flow (Lancaster et al. 2006). Community composition is not altered by the water extraction at Piburja stream, and both reaches showed similar responses at community level. Differences in community structure at reach scale were not detected, and only some density differences in certain taxa where found. Most part of Trichoptera, and Plecoptera showed a density increase in the pristine reach, while Baetidae, Oligochaeta and Tricladida increased density at the disturbed site. As it was part of the same river, most that taxa should arrive through drift to the lower reach, but the fact that some taxa decrease in density at the disturbed reach, while other taxa increased at the reach that suffered water extraction, suggest that these taxa are sensitive to water reduction. Therefore the effect of water extraction in this stream was not a change on species richness but the lowering of densities of more intolerant taxa (e.g. Claudioperla). A future issue in the study of the effect of water extraction in these ecosystems may be if this water reduction in altered areas produces changes in community structure or species lost at long term. This will be crucial, also for the understanding of the implications of water 21 CHAPTER 1: Importance of microhabitat, flow and season extractions in these Andean areas, where the pressure to aquatic ecosystems is increasing due to flow reductions related to glacier retreats produced by the climate change (Bradley et al. 2006). 22 CHAPTER 1: Importance of microhabitat, flow and season APPENDIX1. Kruskal-Wallis Test for Seasonal and Reach differences of Flow and Physico-chemical variables of Piburja stream, Ecuador. H= Kruskal-Wallis test; R= rainy season; Dy= Dry season; P=Pristine Reach; D= Disturbed Reach; *=p<0.05;**=p<0.01, N.S = Non significant differences . SEASONS flow l/s R Mean H 127.39 22.4 Dy 28.74 INEST 12h00 R 479.98 Dy 1731.51 INEST 24h00 INEST 48h00 R velocity cm/s depth cm pH temperature ºC conductivity µS/cm P 8.49 3.48 N.S 547.67 R 28.67 4.62 27.6 R>Dy R 2 Dy 10.79 N.S R 11 6.91 R 15.5 Dy 8.60 R>Dy R 24.8 79.22 131.01 0.00** 0.00** Dy>R Dy 0.03* 0.157 Dy 7.14 9.49 0.062 Dy>R Dy 10.96 12.28 0.004** Dy>R 1837.61 R 0.00** R>Dy Dy 1309.40 Dy 1837.88 Rainy 0.00** 0.00** Dy>R Dry Mean H P P 71.92 2.56 0.11 D 71.05 N.S P 976.63 1.55 D 1466.62 N.S P 1622.55 2.85 D 1437.48 N.S P 1483.70 2.42 D 1000.24 N.S P 16.97 0.64 D 20.73 N.S P 13.22 3.65 D 9.21 N.S P 7.07 0.02 D 7.01 N.S P 8.79 2.05 D 9.22 N.S P 111.10 106.04 0.28 D 0.21 0.09 0.12 REACHES Mean H P 50.15 8.69 D 38.84 P>D P 1523.74 0.18 D 1551.34 N.S P 1591.05 1.12 D 1193.40 N.S P 1622.66 0.94 D 1631.00 N.S P 0.00** 0.67 0.29 0.33 P 13.44 3.05 D 14.19 N.S 0.06 P 11.36 32.01 D 10.68 P>D 0.89 P 7.10 0.79 D 7.11 N.S P 8.70 11.46 D 8.78 D>P P 121.99 123.70 0.09 0.42 0.15 0.59 N.S D 0.08 0.00** 0.37 0.00** 0.77 N.S Mean H P 66.40 7,089 D 41.51 P>D P 1087.96 0 D 1797.97 NS P 1853.32 0 D 880.13 N.S P 1703.13 0 D 1141.61 N.S Pristine reach P 0.01** 0.96 0.96 0.96 P 13.56 2.1 D 19.12 N.S P 13.88 31.9 D 7.42 P>D P 7.10 0.59 D 7.05 N.S P 8.56 11.3 D 9.23 D>P P 117.67 0.07 0.795 115.81 N.S D 0.147 0.00** 0.443 0.000** Mean H R 71.92 16.4 Dy 50.15 R>Dy R 976.63 4.64 Dy 1523.74 Dy>R R 1622.55 0.86 Dy 1591.05 N.S R 1483.70 1.42 Dy 1622.66 N.S Disturbed reach P 0.00** Mean H P 71.05 9.2 0.002** Dy 38.84 0.03* 0.353 R 0.233 1466.62 3.4 N.S R 1437.48 R 1000.24 Dy 1631.00 R 16.97 19.4 13.44 R>Dy R 13.22 0.36 Dy 11.36 N.S R 7.07 6.69 Dy 7.10 N.S R 8.79 12.2 Dy 8.70 R>Dy R 111.10 14.3 0.002** 121.99 Dy>R 0.00** 0.551 R 20.73 0.000** 0.064 3 0.085 N.S 4 0.04* Dy>R 8.5 0.003** Dy 14.19 R>Dy R 4.6 9.21 Dy 10.68 0.009 R>Dy Dy 1551.34 Dy 1193.40 Dy Dy R R 7.01 0.031* R>Dy 4.4 0.04* Dy 7.11 Dy>R R 5.3 9.22 .022* Dy 8.78 R>Dy R 11 Dy 106.04 123.70 .001** Dy>R 23 CHAPTER 1: Importance of microhabitat, flow and season APPENDIX 2. F and P values of the General Linear Model performed for the community metrics of Piburja Stream. Fixed factors: Season (wet and dry), reach (pristine and disturbed), microhabitat (rapids and refugia) and the respective interactions are presented. Highlighted cells correspond to significant P-values after Bonferroni corrections. dependent variable S N Fisher’s α Intercept F 1475.985 season reach season season* reach* *reach mhabitat mhabitat mhabitat reach* mhabitat *season 110.420 0.374 1.635 0.696 4.232 0.250 P 0.000 0.000 0.545 0.210 0.410 0.048 0.620 0.956 F 211.039 20.621 0.887 4.091 0.220 4.178 0.270 0.439 P 0.000 0.000 0.353 0.052 0.642 0.049 0.607 0.512 F 1222.428 85.062 0.022 0.370 0.400 1.541 0.178 0.090 P 0.003 0.000 0.000 0.883 0.547 0.532 0.223 0.676 0.766 H’ F 2486.628 52.353 0.708 2.159 4.732 5.126 0.169 0.087 P 0.000 0.000 0.406 0.152 0.037 0.030 0.683 0.769 Heterelmis F 101.482 4.773 1.414 2.589 0.011 5.399 7.993 4.265 P 0.000 0.036 0.243 0.117 0.918 0.027 0.008 0.047 Pharceonus F 33.651 33.651 0.290 0.738 0.290 0.738 2.003 2.003 P 0.000 0.000 0.594 0.397 0.594 0.397 0.167 0.167 F 51.254 29.961 4.926 1.430 0.285 3.090 14.015 10.124 P 0.000 0.000 0.034 0.240 0.597 0.088 0.001 0.003 F 180.880 160.381 3.470 2.688 1.162 0.730 1.864 0.337 P 0.000 0.000 0.072 0.111 0.289 0.399 0.182 0.566 Elmidae F 101.232 87.709 0.014 0.282 0.332 1.507 0.017 0.319 P 0.000 0.000 0.905 0.599 0.569 0.229 0.896 0.576 Prionocyphon F 33.259 33.259 0.521 15.035 0.521 15.035 0.203 0.203 Macrelmis Neocylloepus P 0.000 0.000 0.476 0.000 0.476 0.000 0.656 0.656 F 70.104 12.639 0.146 6.896 0.983 6.615 0.013 0.244 P 0.000 0.001 0.705 0.013 0.329 0.015 0.909 0.624 Staphilinidae F 21.933 21.933 0.040 1.696 0.040 1.696 0.634 0.634 P 0.000 0.000 0.843 0.202 0.843 0.202 0.432 0.432 Hyalella F 39.322 3.978 4.483 17.997 0.232 6.792 1.986 0.052 P 0.000 0.055 0.042 0.000 0.634 0.014 0.168 0.822 Probezzia F 405.594 405.594 8.982 17.965 8.982 17.965 0.911 0.911 P 0.000 0.000 0.005 0.000 0.005 0.000 0.347 0.347 Atrichopogon F 33.470 33.470 0.395 2.943 0.395 2.943 0.035 0.035 P 0.000 0.000 0.534 0.096 0.534 0.096 0.854 0.854 F 411.222 9.428 2.740 16.161 2.632 0.517 0.190 0.366 P 0.000 0.004 0.108 0.000 0.115 0.477 0.666 0.549 Chironominae F 196.453 1.813 2.447 0.617 1.605 3.553 0.172 0.134 P 0.000 0.188 0.128 0.438 0.214 0.069 0.681 0.717 Diamesinae F 266.443 235.600 1.188 0.329 0.014 0.160 0.028 1.299 P 0.000 0.000 0.284 0.570 0.908 0.692 0.869 0.263 Scirtidae Ceratopogonidae 24 CHAPTER 1: Importance of microhabitat, flow and season dependent variable Orthocladiinae Podonominae Tanypodinae Tanytarsini Dolichopodidae Chelifera Intercept season reach season season* reach* *reach mhabit mhabit mhabit reach* mhabit *season F 3082.041 2.295 1.736 0.664 0.000 3.275 0.007 0.463 P 0.000 0.140 0.197 0.421 0.995 0.080 0.936 0.501 F 105.409 74.412 0.001 0.045 2.579 3.429 2.579 0.001 P 0.000 0.000 0.972 0.834 0.118 0.073 0.118 0.972 F 92.571 0.015 0.934 1.919 0.029 0.414 0.131 0.834 P 0.000 0.903 0.341 0.176 0.867 0.524 0.720 0.368 F 334.337 11.813 7.440 8.947 0.251 0.166 0.019 0.215 P 0.000 0.002 0.010 0.005 0.620 0.686 0.891 0.646 F 25.129 25.129 0.798 0.013 0.798 0.013 3.574 3.574 P 0.000 0.000 0.378 0.909 0.378 0.909 0.068 0.068 F 370.547 370.547 0.148 0.289 0.148 0.289 0.004 0.004 P 0.000 0.000 0.703 0.595 0.703 0.595 0.949 0.949 Limoniidae F 76.959 76.959 2.207 3.301 2.207 3.301 0.804 0.804 P 0.000 0.000 0.147 0.079 0.147 0.079 0.377 0.377 Maurinia F 16.971 11.390 2.328 0.337 0.610 1.755 0.668 0.005 Simuliidae Stratiomyidae Tipula Tipulidae P 0.000 0.002 0.137 0.566 0.440 0.195 0.420 0.943 F 131.875 10.712 0.131 28.145 0.039 0.069 0.010 0.005 P 0.000 0.003 0.720 0.000 0.845 0.795 0.921 0.946 F 34.903 3.315 0.099 3.939 0.837 0.571 1.449 0.309 P 0.000 0.078 0.755 0.056 0.367 0.455 0.237 0.582 F 40.232 40.232 0.120 7.911 0.120 7.911 0.005 0.005 P 0.000 0.000 0.732 0.008 0.732 0.008 0.943 0.943 F 54.918 1.126 0.021 10.629 0.248 0.750 0.252 0.001 P 0.000 0.297 0.886 0.003 0.622 0.393 0.619 0.971 Andesiops F 63.223 9.525 3.584 0.913 7.822 1.887 1.220 0.013 P 0.000 0.004 0.067 0.347 0.009 0.179 0.278 0.910 Baetodes F 417.727 6.841 0.034 43.137 0.009 0.133 0.437 1.244 P 0.000 0.013 0.855 0.000 0.925 0.718 0.513 0.273 F 272.131 13.572 0.122 5.719 8.606 0.419 0.467 0.116 Leptohyphes Planorbiidae Hydracarina Ostracoda Oligochaeta Andiperlodes P 0.000 0.001 0.729 0.023 0.006 0.522 0.499 0.736 F 17.589 1.333 0.127 3.015 0.127 0.165 0.458 1.064 P 0.000 0.257 0.723 0.092 0.723 0.688 0.503 0.310 F 263.414 32.143 3.754 0.698 2.052 1.225 0.009 0.000 P 0.000 0.000 0.062 0.410 0.162 0.277 0.924 0.989 F 27.504 27.504 0.502 1.862 0.502 1.862 0.502 0.502 P 0.000 0.000 0.182 0.484 0.182 0.484 0.484 F 646.437 4.688 0.484 44.09 1 2.630 4.370 2.298 0.695 1.138 P 0.000 0.038 0.000 0.115 0.045 0.139 0.411 0.294 F 14.228 9.765 1.527 1.062 0.347 2.814 0.217 0.033 P 0.001 0.004 0.225 0.311 0.560 0.103 0.644 0.858 25 CHAPTER 1: Importance of microhabitat, flow and season dependent variable Claudioperla Gripopterygidae Cochliopsyche Contulma Intercept season reach season season* reach* *reach mhabitat mhabita mhabitat reach* mhabitat *season F 32.425 0.198 6.088 0.821 2.437 0.025 2.000 2.469 P 0.000 0.659 0.019 0.372 0.128 0.876 0.167 0.126 F 18.754 18.754 2.049 0.936 2.049 0.936 6.397 6.397 P 0.000 0.000 0.162 0.341 0.162 0.341 0.017 0.017 F 68.319 14.986 7.306 5.762 6.029 3.040 0.238 0.541 P 0.000 0.001 0.011 0.022 0.020 0.091 0.629 0.467 F 85.988 85.988 1.483 0.500 1.483 0.500 0.441 0.441 P 0.000 0.000 0.232 0.485 0.232 0.485 0.512 0.512 Hydrobiosidae F 56.498 0.030 0.636 15.274 1.482 0.615 2.806 1.201 P 0.000 0.864 0.431 0.000 0.232 0.439 0.104 0.281 Ochrotrichia F 167.344 42.191 9.482 18.602 0.076 0.418 1.102 0.075 Nectopsyche Leptoceridae Tricladia P 0.000 0.000 0.004 0.000 0.785 0.522 0.302 0.786 F 282.710 10.338 2.542 7.770 1.343 4.977 0.769 0.025 P 0.000 0.003 0.121 0.009 0.255 0.033 0.387 0.876 F 282.863 10.577 2.614 7.665 1.399 4.899 0.820 0.016 P 0.000 0.003 0.009 0.246 0.034 0.372 0.900 F 97.846 15.322 0.116 15.46 7 0.023 0.015 1.167 0.005 1.348 P 0.000 0.000 0.000 0.881 0.903 0.288 0.944 0.254 26 CHAPTER 1: Importance of microhabitat, flow and season APPENDIX 3. Pearson’s correlations, r(X,Y),between taxa densities and flow and flow stability (all variables log transformed) at Piburja stream, Ecuador. r², t and p values are also presented. inest12log Heterelmis Macrelmis Neocylloepus Elmidae Total Scirtidae Hyalella Probezzia Chironominae Diamesinae Orthocladiinae Podonominae Tanypodinae Tanytarsini Chelifera Maurinia Simuliidae Stratiomyidae Tipulidae Andesiops Baetodes Leptohyphes Planorbiidae Hydracarina Oligochaeta Andiperlodes Claudioperla Cochliopsyche Hydrobiosidae Ochrotrichia Nectopsyche Tricladia INES12log r(X,Y) 0.186 -0.202 0.424 0.350 0.006 0.237 0.425 0.125 0.461 0.067 0.385 0.076 0.226 0.218 0.194 0.300 0.130 -0.132 0.431 0.058 0.279 0.212 0.322 -0.097 0.570 0.048 0.274 0.484 0.327 0.302 0.168 r² t p 0.034 0.041 0.180 0.122 0.000 0.056 0.180 0.016 0.213 0.004 0.148 0.006 0.051 0.048 0.038 0.090 0.017 0.018 0.186 0.003 0.078 0.045 0.104 0.009 0.325 0.002 0.075 0.234 0.107 0.091 0.028 1.164 -1.272 2.884 2.303 0.038 1.507 2.891 0.775 3.206 0.411 2.568 0.470 1.431 1.378 1.221 1.941 0.810 -0.824 2.945 0.361 1.791 1.335 2.097 -0.598 4.277 0.296 1.753 3.406 2.132 1.952 1.054 0.252 0.211 0.006 0.027 0.970 0.140 0.006 0.443 0.003 0.683 0.014 0.641 0.161 0.176 0.230 0.060 0.423 0.415 0.005 0.720 0.081 0.190 0.043 0.553 0.000 0.769 0.088 0.002 0.040 0.058 0.299 CaudalLOG r(X,Y) r² -0.343 0.334 -0.703 -0.513 -0.276 -0.273 -0.237 -0.101 -0.729 -0.105 -0.557 -0.146 -0.480 -0.414 -0.219 -0.414 -0.019 0.030 -0.449 0.083 -0.361 -0.160 -0.592 -0.290 -0.414 0.145 -0.276 -0.600 -0.421 -0.337 -0.477 0.117 0.111 0.495 0.263 0.076 0.075 0.056 0.010 0.532 0.011 0.310 0.021 0.231 0.171 0.048 0.172 0.000 0.001 0.202 0.007 0.130 0.026 0.350 0.084 0.172 0.021 0.076 0.360 0.177 0.113 0.227 t p -2.248 2.181 -6.100 -3.685 -1.769 -1.750 -1.503 -0.625 -6.574 -0.650 -4.135 -0.908 -3.375 -2.801 -1.384 -2.807 -0.117 0.186 -3.097 0.516 -2.387 -1.002 -4.523 -1.868 -2.807 0.904 -1.767 -4.626 -2.860 -2.203 -3.341 0.030 0.035 0.000 0.001 0.085 0.088 0.141 0.536 0.000 0.520 0.000 0.370 0.002 0.008 0.174 0.008 0.907 0.854 0.004 0.609 0.022 0.323 0.000 0.069 0.008 0.372 0.085 0.000 0.007 0.034 0.002 27 CHAPTER 2: Invertebrate drift and colonization processes in a Tropical Andean Stream CHAPTER 2: Invertebrate drift and colonization processes Introduction Recolonization of substrate after disturbance is one of the most important processes that structure the macroinvertebrate communities (Boyero and Bosch 2004). This recovery is generally fast (Mackay 1992, Flecker and Feifarek 1994), and usually begins the first hour after disturbance (Boyero and DeLope 2002) and may be completed in a relatively short time (30 days) (Lake and Schreiber 1991). Recolonization depends mainly on the individuals that arrive with the drift, upstream migration within the water, communities in surrounding patches and recruitment by oviposition (Williams and Hynes 1976). Substrate characteristics, associated food sources, competition and predation can affect colonization (Resetarits 1991, Mackay 1992, Resetarits 2001) One of the main mechanisms of substrate recolonization is macroinvertebrate drift and its composition may profoundly influence benthic community dynamics. On one hand, reducing benthic density of the species more prone to drift than others and thus affecting the local composition and abundance. On the other hand, the continuous settling in the substrate of animals from drift plays an important role in the colonization of benthos (Townsend and Hildrew 1976). The study of drift, which is a recurrent topic of study in stream ecology, had generated a lot of data but few clear conclusions about this important process. In temperate areas, where the role of drift on benthic recolonization is well studied and documented, (Brittain and Eikeland 1988, Mackay 1992) it has been established that the great majority of colonizing fauna came from drift (Williams and Hynes 1976). Although, benthic fauna from near undisturbed patches may play an important role in the recolonization process (Lancaster and Belyea 1997, Townsend et al. 1997). In tropical areas, recent studies show that drift diel patterns are only present on rivers with fish while no diel patterns have been reported in fish-less rivers (Flecker 1992, Pringle and Ramirez 1998, Jacobsen and Bojsen 2002). In these areas, drift is generally aseasonal (Pringle and Ramirez 1998, Ramirez and Pringle 2001, Jacobsen and Bojsen 2002, Rodriguez-Barrios et al. 2007) and the drift density seems to be more dependent on flow, increasing with high flow conditions (Turcotte and Harper 1982, Benson 31 CHAPTER 2: Invertebrate drift and colonization processes and Pearson 1987). Although, some tropical streams show an increase during dry seasons (Ramirez and Pringle 2001, Rodriguez-Barrios et al. 2007) The role of drift in recolonization processes in tropical systems has been recently addressed (Boyero and DeLope 2002, Boyero and Bosch 2004, Melo and Froehlich 2004). These studies find evidences that recolonization by movement of invertebrates in tropical rivers varies among riffles but not among sections of river and the individuals that recolonize the stones depend on both the surrounding patches at the local level and the drift coming from upstream at riffles and sections of river (Boyero and Bosch 2004, Melo and Froehlich 2004). However, these studies have been developed only in one season and for a short period of time, therefore seasonal differences on drift, that can cause differences on the recolonization process, have not been addressed in previous studies. Also, different species traits and life-history adaptations of benthic fauna, can influence how and when certain taxa arrive to new or disturbed substrata. The effect of microhabitat hydrological conditions on the recolonization process is still unknown. Besides these increasing on the knowledge of drift and recolonization of tropical rivers, tropical Andean streams remain remarkably understudied (Allan et al. 2006). Streams in the Andean region are characterized by rapid flow changes that are not easily predictable from seasonal variations in precipitation. This high unpredictability on the occurrence of spates should have important effects on drift and recolonization process in these streams. On the other hand mean temperature in these rivers are low (~10ºC) and oxygen saturation is always close to 70-80 % due to altitude (Jacobsen 2008). In this context, our aim is to describe the diel and seasonal variation of drift in a high altitude Andean stream, including the taxa propensity to enter in drift and the differences of this propensity among seasons. Finally, the importance of drift for recolonization of stones is studied and related to drift intensity and propensity in two different hydrological seasons. 32 CHAPTER 2: Invertebrate drift and colonization processes In this context our objectives are: 1) Describe diel and seasonal drift in a high altitude Andean stream; 2) Study the seasonal differences in drift and estimate the propensity of macroinvertebrate taxa to drift at each season; 3) Describe short term colonization process (1 to 7 days) in basal flow conditions; 4) Study stone colonization and dynamics within and between seasons; 5) Determine the importance of microhabitat conditions in the recolonization process (fast velocity areas vs. low velocity areas) Study Area We performed the study at the Piburja stream (3300 m a.s.l.), a first order stream in the Oyacachi river basin, located at the Cayambe-Coca Ecological Reserve (RECAY) in Ecuador (0º13’ S, 78º 03’ W). Oyacachi basin, includes several vegetation types from paramos to tropical rain forest (~4000 to 1800 m a.s.l.), has a western-eastern slope and is part of the Amazon basin (Terneus and Vásconez 2004). The Oyacachi river starts in the Paramo (Polylepis and mix forest), and continues through an ever-green forest (Alnus and ever-green high forest (Báez et al. 1999). Pluviometric records (10 years) from nearby localities show lower rainfall from December to February (dry season) compared with May until September. Total precipitation in Oyacachi town is ~ 1600 mm/year, and mean annual temperature ~10 ºC. Precipitation is 2 or 3 times greater than the potential evapotranspiration, which makes very humid conditions during the whole year (Skov 1999). We studied a 70 m pristine reach of the stream located at 3300 m asl. The stream width ranges from 1.60 m to 4.0 m. The surrounding vegetation is an evergreen forest with Alnus acuminata trees and a high diversity of Melastomataceae, Asteraceae and Rosaceae shrubs. The stream physic- chemical parameters measured (Table 1) showed seasonal differences in mean flow and mean water velocity, which had been higher at wet season (Kruskalwallis test). More detailed physico- chemical characteristics of the reach can be found at Chapter 1 of this thesis. We performed all surveys and experiments during April and May of 2006 (the wet season) and January and February of 2007 (the dry season). The river has a population of rainbow trout, introduced 33 CHAPTER 2: Invertebrate drift and colonization processes from a fish culture located downstream. Trout density is not known but is presumably low (Aigaje family pers comm.). Table 1. Main physico-chemical parameters during dry and wet seasons of Pijurba streams, Oyacachi, Ecuador. * means significant change between seasons according to Kruskal-Wallis analysis (Chapter 1). Mean Min Max Parameter Wet Dry Wet Dry Wet Dry season season season season season season Flow (l/s)* 150.79 36.26 68.49 11.42 262.90 121.64 Velocity (cm/s)* 25.08 9.44 17.87 4.09 35.34 22.55 Depth cm 14.04 13.83 10.17 9.89 16.81 18.55 pH 6.90 6.59 6.38 7.17 7.32 7.70 Temperature (°C) 9.20 8.32 8.30 6.70 10.00 9.20 Conductivity (µS/cm) 78.69 131.59 53.50 67.70 120.70 162.10 Materials and Methods Drift To assess the diel dynamic of drift we made a 24 h sampling during low flow conditions at the dry season in new moon. We took samples during four periods in this day: 1) From 10h30 to 13h30; 2) From 16h30 to 19h30; 3) from 22h30 to 01h30 and 4) From 04h30-07h30. Four nets (250 µm mesh, 15 x 35 cm frame, 2 m long) were placed in the river for 3 hours at each of the four sampling periods. Water level at each net mouth and average velocity was measured at the beginning, at the middle and end of each sampling period. Each replicate was stored separately and preserved with formalin 4%. To identify seasonal changes in drift and its relationship with flow we sampled four times at each season. During the wet season we sampled twice during spates and twice during low flow conditions. At the dry season the four samples were taken at basal flow conditions. The samples of low flow conditions from the wet season as well as the samples of the dry season were taken at the same hour of the day when spates occurred to minimize the error related to diel 34 CHAPTER 2: Invertebrate drift and colonization processes patters on taxa drift. Four to six drift nets (same model as above) were placed in the river for 20 minutes to 1 hour, depending on flow conditions at each of the eight sampling events. Each replicate was stored separately and preserved with formalin 4%. We made all drift density calculations following Allan & Russek (1985). To assess the drift propensity of taxa, we applied the formula: drift density/ benthic density (McIntosh et al. 2002) using mean values of drift density and benthic density of each season. The benthos densities were taken from a simultaneous study developed at the same time at the same reach (see chapter 1). Recolonization of benthic substrate We assessed short term recolonization, performing 7 day colonization experiments during the dry season (basal flow conditions). At each experiment, we placed in the first day 24 cleaned cobble stones with similar size and surface in the stream. We marked the stones with white paint to recognize them, and measure their turning or rolling. We used stones because they are considered well defined and discrete habitats (Douglas and Lake 1994), appropriate for colonization studies (Boulton et al. 1988). Twelve stones were placed in high velocity areas (rapids) and twelve in low velocity areas (potential refugia). Four stones from rapids and four from refugia were collected placing a 250 µm mesh hand net downstream at 1, 3 and 7 days from the beginning of the experiment. Surrounding velocity and stone area (maximum length x maximum width) were measured for each stone. Stone turning was scored in 5 categories: 1: no change; 2: less than 45º of inclination, 3: between 45º to 135º; 4: Close to 180º and 5: upside down. This process was repeated 3 times during the dry season at the same reach. The stones that we placed in the stream did not move downstream during the experiment. In a second experiment we wanted to know the recolonization dynamics at a longer scale of time. For this purpose marked clean and dry cobbles were placed in rapids and refugia areas in the whole reach (45 in the wet season and 60 in the dry season). Stones of both areas were taken on four dates at both seasons (at days 7, 12-14, 17-19 and 22-25 after the stones were placed on the 35 CHAPTER 2: Invertebrate drift and colonization processes river). The detailed characterization of rapids and refugia in this stream may be found in the chapter 1. We recorded the surrounding velocity of each stone together with the stone area (maximum length x maximum width) at the moment of collection from the stream. Data analysis Variables were log(x+1) transformed when necessary to satisfy homogeneity of variance assumptions. In addition to taxa densities, in all experiments we calculate four community metrics: Richness (S), Total Density (N), Fisher’s α and Shannon Weiner (H’) index. To assess differences of the community parameters between in samples from the four intervals sampled at the drift periodicity survey we used a Repeated Measures Analysis of Variance (ANOVA). To assess differences of taxa densities from the four intervals sampled at the drift periodicity survey we used the Kruskal-Wallis analysis of variance (using the four intervals sampled as factor). In the seasonal drift survey, drift community metrics were related to flow using Spearman Correlations. To assess seasonal changes on the composition of drift we applied the Non Metric Multidimentional Scaling using Bray-Curtis similarities with drift densities log transformed. Also ANOSIM analysis with all factors (seasons, colonization days and microhabitats) was performed. In the short term (7 days) stone colonization experiment we used the KruskalWallis analysis of variance to asses differences in community metrics and taxa densities considering three factors: colonization days, stone movement and microhabitat. In the mid-term stone colonization experiment, we used a two way ANOVA with the factors: colonization days and microhabitats, to assess differences in community metrics. Tuckey post hoc comparison was used to determine significant differences among colonization days. Differences of taxa densities in recolonized stones with the two factors (colonization days and microhabitat) were analysed by a Kruskal-Wallis analysis of variance. Bonferroni progressive correction of p-values was applied to all multiple test. The analyses were performed using SPSS 14 and Primer 6 statistical software. 36 CHAPTER 2: Invertebrate drift and colonization processes Results 1. Drift diel periodicity. At community level we did not find significant differences in community metrics between hours during the diel experiment performed at the dry season (Table 2). Total density, Richness, Fishers’ α, and Shannon- Weiner indexes did not differ among hour periods, and the slight rise detected at dusk time was not significant. Table 2. Summary of the Repeated Measures ANOVA of community metrics measured during the diel experiment at Piburja stream, Ecuador( df.=3; at four time intervals: 10h30 - 13h30;16h30-19h30;22h30-01h30;04h30-07h30) Community metrics F p S 1.567 0.264 N 1.204 0.363 Fisher 0.697 0.577 H'(loge) 0.945 0.459 From the 28 taxa that were common on drift samples in the diel experiment only the ephemeropterans Baetodes and Leptohyphes showed significant differences among periods (Fig. 1) according to the Kruskal-wallis analysis of variance (Table 3). Higher drift densities at the period that included dusk (between 17h30 and 19h30) are found although a large variability between replicates was present. 60 45 40 50 35 40 25 Leptohyphes Baetodes 30 20 15 10 5 0 22h30 - 01h30 10h30 - 13h30 04h30-07h30 16h30 - 19h30 Time of the day 30 20 10 0 Mean ±SE 10h30 - 13h30 22h30 - 01h30 16h30 - 19h30 04h30-07h30 Time of the day Mean ±SE Figure 1. Diel changes in Baetodes and Leptohyphes drift density 3 (Individuals./100m ) at base flow conditions at Piburja stream, Ecuador. Mean value is marked by squares and bars are 1 SE. 37 CHAPTER 2: Invertebrate drift and colonization processes Table 3. Kruskal Wallis Test for macroinvertebrate drift densities 3 (Individuals/100m ) at the four sampling periods. * significant p values after the bonferroni progressive correction. Kruskal-Wallis Test Taxa X² Mean drift density at each time of the day df P 10h30-3h30 16h30-9h30 22h30-1h30 04h30-h30 10.711 3 0.013 0.386 26.469 0.000 0.824 Baetodes 9.075 3 0.028 14.372 29.647 6.329 6.895 Chironominae 6.790 3 0.079 4.919 43.211 17.453 6.895 Ochrotrichia 5.481 3 0.140 11.210 17.579 3.237 6.189 Nectopsyche 5.412 3 0.144 19.188 65.013 30.973 27.641 Leptohyphes Oligochaeta 5.186 3 0.159 2.718 36.495 2.487 1.799 Simuliidae 5.009 3 0.171 54.730 100.768 44.617 46.970 Andiperlodes 4.604 3 0.203 0.000 8.545 0.000 0.412 Contulma 4.420 3 0.220 0.000 8.859 1.849 0.824 Stratiomyidae 3.918 3 0.270 7.679 1.440 2.487 4.141 Prionocyphon 3.616 3 0.306 0.000 1.042 4.264 3.349 21.051 Tanytarsini 3.363 3 0.339 18.553 61.584 16.742 Tipula 3.169 3 0.366 2.718 9.108 0.781 1.106 Orthocladiinae 2.934 3 0.402 51.737 72.468 29.932 45.165 Hydracarina 2.596 3 0.458 39.337 43.205 22.578 31.394 Atopsyche 2.120 3 0.548 1.158 9.504 1.244 1.583 Staphylinidae 2.121 3 0.548 5.167 12.655 5.264 9.983 Blepharoceridae 1.775 3 0.620 7.120 29.828 7.255 15.425 Clognia 1.473 3 0.688 3.514 2.233 0.318 2.937 Lampirydae 1.420 3 0.701 2.160 0.438 1.244 3.415 Diamesinae 1.403 3 0.705 2.857 2.127 0.636 3.349 Psychodidae 1.370 3 0.713 5.115 3.110 0.781 3.631 Atrichopogon 1.274 3 0.735 3.393 0.479 2.054 1.387 Elodes 0.773 3 0.856 2.201 1.356 2.917 6.633 2. Changes in density and composition of drift related to season and flow conditions. Although community metrics (Richness, total drift density, Shannon and Fisher’s α index) did not showed significant variation among seasons (Table 4), richness and Fisher’s α are highly correlated with flow (Rho Spearman: 0.76; p=0.031 and Rho Spearman: 0.83; p=0.010 respectively). However strong community composition differences were found among seasons and the NMDS analysis clearly shows this pattern (Fig. 2). The ANOSYM also confirms this high relation between the community composition and the season (Global R=0.322 p=0.001). 38 CHAPTER 2: Invertebrate drift and colonization processes Table 4. Mean values of community metrics of macroinvertebrate drift and summary of ANOVA for seasonal differences among these metrics at Piburja Stream. Community Metrics S total drift density Fisher H'(loge) Mean WET 27.75 600.48 6.30 2.19 Mean DRY ± 8.22 ± 169.65 ± 2.34 ± 0.21 26.00 596.35 5.67 2.29 df ± 6.98 ± 201.91 ± 1.38 ± 0.27 7 7 7 7 F P 0.105 0.756 0.001 0.214 0.331 0.976 0.660 0.586 A similar pattern of seasonal change in community composition was also found in benthic Surber samples from the same site in the same seasons (Chapter 1: page 13, and Appendix 1 of this chapter). Comparing the composition of benthos and drift samples, we found that from the 52 taxa present in drift samples at the wet season 17 were absent from the benthos samples, and only Tricladia and Hirudinea were present in benthos Surber samples but not in drift samples. On the other hand, at dry season 28 taxa were found in the drift and 50 in benthos Surber samples. Seven taxa from the benthos were absent in drift samples and just three coleopteran taxa were present in drift but not on benthos samples (Appendix 1). Figure 2. Non Metric Multidimensional Scaling of the four drift sampings in the dry (inverted triangles) and the wet season (triangles). Each triangle is the average of the 4 to 6 replicates of each sampling date. Samples from the dry and the wet seasons are clearly differentiated because of the different taxa composition. 39 CHAPTER 2: Invertebrate drift and colonization processes In general drift propensity values are higher at wet season compared to the dry season (Fig 3, Appendix 1). For taxa that are present in both seasons, the general pattern is an increase of the drift propensity in the wet season (Fig 3, Appendix 1). This is especially true for Podonominae, Diamesinae, Muscidae, Hydracarina, Ochotrichia, Simuliidae, Pyralidae and Planorbiidae that were the taxa that presented higher drift propensity values, but only at the wet season because, at the dry season all taxa had small drift propensity values. Stratiomydae, Maurinia and Tipula are the only taxa that presented more drift propensity at the dry season, although absolute values of all of them are very small. 0 .16 Drift Propensity w et drift p ro p en s ity d ry d rift p rop e ns ity 0 .14 0 .06 0 .05 0 .04 0 .03 0 .02 0 .01 Tipula Scirtes Tanypodinae Hyalella Chelifera Nectopsyche Baetodes Nematomorpha Hydrobiosidae Maruina Scirtidae Andiperlodes Stratiomyidae Pyralidae Planorbiidae Simuliidae Ochrotrichia Muscidae Hydracarina Diamesinae Podonominae 0 .00 Figure 3. Mean drift propensity at wet and dry seasons for taxa present at Piburja stream, Ecuador. At dry season, drift and benthos composition and taxa densities had similarities and differences in the dominant taxa (Table 5, Appendix1). Thus, Orthocladiinae and Nectopsyche were the most common taxa (up to >30% of the abundance), both in benthos and drift, while Simuliidae which was abundant in drift (13%) is only the 3% of the individuals of benthos Surber samples. Reciprocally other abundant taxa in benthos Surber samples like Ceratopogonidae (8%) and Elmidae (5%) were less important in drift or almost absent. 40 CHAPTER 2: Invertebrate drift and colonization processes In the wet season (Table 5), Orthocladiinae and Baetodes were the dominant taxa in benthos (>50%) and drift (>40%). While some taxa like Hydracarina, Simuliidae and Ochotrichia were part of the abundant drifting taxa, other such as Chironominae and Ceratopogonidae are dominant in Surber samples. The principal difference between seasons is that Baetodes is one of the dominant taxa at wet season but become less important in terms of dominance at the dry season. On the other hand, Nectopsyche, dominant during the dry season become less important at wet season. Interestingly Podonominae present higher densities in drift at the wet season but in benthos at dry season. As stated previously (Fig. 3) this taxa has the highest propensity to enter in drift at wet season. Table 5. Macroinvertebrate dominance (as % of total density) of drift, Surber and stone samples at Piburja stream during wet and dry seasons. Only taxa representing more than 1% of total density were included in the table. taxa drift Surber Orthocladiinae 20.30 36.59 Baetodes 19.75 12.92 Simuliidae 10.22 2.44 Hydracarina 9.93 1.63 Ochrotrichia 5.15 1.08 Podonominae 4.47 0.18 Nectopsyche 4.43 4.16 Chironominae 3.76 11.02 Tanypodinae 1.88 2.62 Chelifera 1.63 1.72 Stratiomyidae 1.60 0.54 Tanytarsini 1.30 2.26 Ceratopogonidae 1.13 6.41 Maruina 1.12 0.45 Muscidae 1.07 0.15 Planorbiidae 1.02 0.27 Total Scirtidae 0.93 0.45 Hydrobiosidae 0.88 0.54 Blephariceridae 0.85 Diamesinae 0.83 0.09 Oligochaeta 0.79 4.25 Tipula 0.64 0.90 2.08 Total Elmidae 0.61 Leptohyphes 0.58 1.26 Limonidae 0.55 Cochliopsyche 0.29 0.63 Andiperlodes 0.29 0.09 WET stones high velocity 18.04 30.69 20.80 0.42 2.39 0.82 7.18 0.82 4.67 2.05 0.39 0.55 4.09 0.42 0.87 1.68 1.50 0.82 stones low velocity 46.81 7.76 0.64 6.64 2.97 0.87 15.87 3.29 1.05 0.71 2.39 1.33 4.12 2.01 drift Surber 21.88 20.00 2.99 2.01 12.75 3.35 8.44 5.93 4.47 3.60 0.09 0.62 12.95 11.31 6.35 7.19 0.37 0.84 2.27 1.81 2.89 0.35 1.15 3.35 2.61 8.41 3.14 0.50 0.04 0.11 0.88 0.12 1.01 0.89 0.73 1.27 0.72 0.09 1.19 2.78 2.28 4.24 2.75 0.37 0.20 5.28 0.10 4.17 1.78 0.47 0.32 1.74 0.55 1.01 DRY stones high velocity 18.51 7.17 17.15 4.4 4.06 0.15 11.04 5.68 0.13 0.98 0.14 9.02 0.95 0.3 2.55 1.5 2.36 0.14 1.79 6.01 0.72 1.47 1.18 stones low velocity 18.47 7.17 5.40 6.11 2.74 2.35 23.92 5.19 0.37 0.29 7.16 2.18 0.21 0.43 0.52 0.47 1.56 0.46 5.47 0.35 3.55 1.30 41 CHAPTER 2: Invertebrate drift and colonization processes 3. Short term recolonization of stones at basal flow conditions In the 3 seven-day colonization experiment (performed only at the dry season) a total of 42 taxa were found, 27 after the first day of colonization, 30 after 3 days and 38 after 7 days. From these 42 taxa, 8 arrive at the end of colonization experiment and only one (Tricladia) appear on the first day and disappear the following days. According to the Kruskal-wallis analysis of variance (Table 6) there were higher invertebrate density and richness at the seventh day than any other day. Additionally, densities of Chironominae, Orthocladiinae, Tanytarsini, and Leptohyphes, were significantly higher at day 7 (Table 6). As expected, there st th were more differences detected between the 1 and the 7 day, than between rd st the 3 and the 1 day. No movement of stones was detected during the experiment, only turning of some of them in the same place. Stone turning was only important for Podonominae and Hydrobiosidae that showed at significant reduction of density when the stones roll or turned at least 180º. At community level there was no effect of stone movement on the community metrics. Richness, total density and Fisher’s alpha diversity were significantly higher in rocks located in rapids than those in refugia areas. Also, the densities of Simuliidae, Baetodes and Hydrobiosidae were higher at rapids while only Cocliopsyche had higher density at slow flow areas. 42 CHAPTER 2: Invertebrate drift and colonization processes Table 6. Kruskal-wallis analysis of variance for community metrics and taxa densities (rare taxa excluded) between colonization days (1,3 or 7 days), stonemovement (from 1 to 5 in order of increase movement), and mirohabitat (high vs. low current areas) . P significant values (after Bonferrroni correction) are in bold letters. Colonization days P X² df TAXA S N Fisher H'(loge) Elmidae Prionocyphon Chironominae Orthocladiinae Podonominae Tanytarsini Chelifera Limonidae Maruina Psychodidae Simuliidae Stratiomyidae Baetodes Leptohyphes Hydracarina Oligochaeta Contulma Cochliopsyche Hydrobiosidae Hydroptilidae Nectopsyche 8.045 9.67 6.976 5.285 0.318 1.134 10.125 22.023 3.932 7.507 6.788 2.062 2.086 1.046 0.001 5.111 0.813 10.399 1.755 0.938 5.178 4.171 3.903 0.832 3.244 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 stone movement X² df P 0.018 6.924 0.008 4.501 0.031 8.295 0.071 7.304 0.853 0.929 0.567 5.118 0.006 3.564 0.000 6.965 0.140 17.872 0.023 2.230 0.034 1.169 0.357 9.555 0.352 10.605 0.593 6.232 0.999 8.175 0.078 3.632 0.666 5.440 0.006 7.804 0.416 5.467 0.626 8.182 0.075 3.586 0.124 1.278 0.142 14.010 0.660 2.398 0.198 1.691 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 0.140 0.342 0.081 0.121 0.920 0.275 0.468 0.138 0.001 0.693 0.883 0.049 0.031 0.182 0.085 0.458 0.245 0.099 0.243 0.085 0.465 0.865 0.007 0.663 0.792 microhabitat X² df P 7.161 7.928 6.479 3.394 1.348 0.001 2.816 1.697 3.717 2.131 4.653 1.162 1.072 0.715 33.497 0.923 30.593 3.132 0.020 0.011 0.002 7.737 10.863 3.350 3.683 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.007 0.005 0.011 0.065 0.246 0.972 0.093 0.193 0.054 0.144 0.031 0.281 0.300 0.398 0.000 0.337 0.000 0.077 0.887 0.918 0.967 0.005 0.001 0.067 0.055 4. Mid-term experiment of recolonization and composition of stone fauna. Effect of local hydrological conditions and seasons. Data of this experiment come from the marked cobles located in high velocity and low velocity areas during dry and wet seasons, and were sampled from 7 days up to 25 days with 5-7 days intervals. Seasons From the 41 taxa registered at both seasons, few but abundant taxa showed significant seasonal changes (Kruskal-Wallis analysis of variance, Appendix 2; Appendix3). Thus, Chironominae, Tanytarsini and Leptohyphes were 43 CHAPTER 2: Invertebrate drift and colonization processes significantly more abundant at dry season, and Tanypodinae was more abundant in wet season. At community level, the Non Metric Multidimensional Scaling (NMDS) did not detect significant differences in the composition of the community between seasons. Colonization days Using the NMDS, no differences for community composition were found between colonization days (7 to 25 days) during both seasons. Only at wet season the two-way ANOVA performed found significant differences (Table 7) between days in total density. The Tukey post hoc comparisons detect that at th th the day 17 total density was significantly higher than day 12 (p= 0.029) and th day 22 (p=0.013) . We did not found significant differences of the other community metrics with the two-way ANOVA performed with colonization days and microhabitats (Table 7) at each season. From all the taxa analysed, only Orthocladiinae showed a significant relationship with colonization days (Appendix 2, Kruskal-Wallis test), being higher at day 14 and 25 at the dry season. No relationship was found between colonization days and density of different taxa at the dry season. The relation between taxa density and days was weak in the wet season, and again only Orthocladiinae showed a significant increase at day 17 (Kruskal-Wallis test Appendix 2). Microhabitat Community metrics differed among microhabitat types (Table 7) with higher richness, density and diversity at stones located in rapid areas, independent form colonization days. The taxa that showed significant microhabitat preference were those that are more abundant at rapid areas (Kruskal-Wallis analysis, Appendix 2). At the dry season only total density showed a significant increase at stones located in rapids compared to those in refugia (Table 7). This pattern is opposite to benthos Surber samples (Chapter 1), were the low velocity samples showed denser and more diverse communities (the same was true for the short term colonization experiment). At dry season, 39 taxa were found in the stones, from 44 CHAPTER 2: Invertebrate drift and colonization processes which 35 were present on rapid stones and 31 on slow flow stones. Several taxa showed significant differences among microhabitats. While Nectopsyche represents the 24% of the density of taxa present in slow flow areas, Simuliidae was the opposite, being 17% of taxa density in stones located in rapids (Table 5). When comparing the abundance of different taxa in stones with Surber and drift samples, Orthocladiinae and Nectopsyche had similar percentages of total densities at both drift and benthos Surber samples and therefore colonizers may arrive from both sources to the stones (Table 5, Fig. 4). However the dominance of Simuliidae in stones located in rapids could only be related to drift because of its low density in benthos Surber samples. In this low flow season there is a markedly decrease on Baetodes densities in both drift and benthos samples but this taxa still represented an important part of the individuals of stone fauna (7% of the density of both refugium and rapid located stones). At the wet season several community metrics showed a significant increase at stones located in rapids (Table 7), except total density that did not differ significantly among microhabitats. For example densities of Tanypodinae, Simuliidae and Baetodes increased at rapids. Despite the lack of differences on total density during the wet season, mean density of many taxa differed among stones located in rapids and stone located in low velocity areas (Table 5). More than 50 % of the density of stones located in rapids was from Baetodes and Simuliidae, while almost 47% of density in low velocity areas was from Orthocladiinae, followed by Nectopsyche (16%). In drift and benthos Surber samples, in this season Orthocladiinae and Baetodes were dominant taxa, therefore colonization of new stones can come from both sources. Simuliidae, as in dry season should came mainly from drift (Fig. 4). One interesting fact is that Nectopsyche, in terms of percentage of abundance is less important in the wet season in drift and benthos Surber samples, but at the stones located in low velocity areas this taxa present the highest percentages of density. 45 CHAPTER 2: Invertebrate drift and colonization processes Figure 4. Diagram that summarizes the colonization process in stones on Piburja Stream, using season and microhabitat factors. Taxa which mean density is higher in any of the combinations is indicated. Taxa in bold had significant differences with the factors (Appendix 2, Kruskal Wallis test) In addition if taxa had higher abundance in drift or benthos Surber samples is indicated by ˜ or * respectively. DRY Stratiomydae˜ Chironominae Tanytarsini* Maurinia Nectopsyche* Limoniidae˜ Leptohyphes* Elmidae* Diamesinae* Ochotrichia Simuliidae˜ Hydracarina Oligochaeta Andiperlodes* Hydrobiosidae Ceratopogonidae* Podonominae Baetodes Chelifera Orthocladiinae Tanypodinae Scirtidae Blephariceriidae Cocliopsyche Tipula˜ WET LOW VELOCITY LOW / HIGH VELOCITY HIGH VELOCITY Table 7. Summary of the two way ANOVA of community metrics related to days of permanence of the stone on the river and microhabitat at Piburja stream, Ecuador. Data is presented for each season (dry and wet season) and for the two seasons together (Global).D= colonization days, M=microhabitat (rapid or refugia), D*M=interaction between the two factors. Community metrics Density Richness d Fisher alpha H' 46 D 0.003 0.049 0.139 0.147 0.114 Global M 0.001 0.000 0.002 0.003 0.002 D*M 0.450 0.856 0.967 0.953 0.781 Dry season D M 0.004 0.214 0.515 0.333 0.313 0.286 0.378 0.311 0.487 0.307 D*M 0.400 0.653 0.715 0.765 0.629 Wet Season D M D*M 0.023 0.036 0.288 0.157 0.000 0.509 0.171 0.000 0.358 0.183 0.000 0.329 0.373 0.000 0.304 CHAPTER 2: Invertebrate drift and colonization processes Discussion We found that overall; there was no difference in invertebrates drift though out the day, this was true for all the community metrics tested and also for the density of most taxa density. This result differs with data coming from temperate areas (Allan 1984, Allan 1987, Allan et al. 1988) where night drift densities can be up to ten times greater. However, it coincides with previous studies in tropical streams in which diel periodicity in drift has not been found either (Turcotte and Harper 1982, Pringle and Ramirez 1998, Jacobsen and Bojsen 2002, Rodriguez-Barrios et al. 2007). Despite this, two ephemeropterans, Baetodes and Leptohyphes, showed a clear diel periodicity. This can be related to the presence of the introduced rainbow trout as reported to high Andean rivers (Flecker 1992) and agrees with studies that demonstrated that some Ephemertotera larvae on fish-less streams did not showed diel periodicity in drift, after contact with fish was established, they maintain nocturnal drift behaviour even when returned to a fishless habitat (Allan 1978, Allan et al. 1986, Flecker 1992, McIntosh and Townsend 1994, Peckarsky and McIntosh 1998, McIntosh et al. 2002). Flecker (1992) found this pattern only for Baetis and not for Baetodes in a high Andean stream from Venezuela, where trout was introduced, while Turcotte & Harper(1982) and Jacobsen (2002) did not found diel periodicity in Baetodes or Baetis in a high Andean streams in Ecuador. We found this pattern for the most abundant ephemeropterans of the stream (which suppose a significantly high percentage of the total community density). As our study is limited in time, and more surveys in several consecutive days with full and new moon in both seasons are needed to understand the diel periodicity of macroinvertebrate fauna in any stream, we cannot assure that this pattern is repetitive in our stream. Unfortunately the introduced rainbow trout is generalized in Andean rivers from Ecuador and is difficult to find streams without trout to assess the natural condition of fish-less Andean streams. From our results, only ephemeropterans seem to have a “fixed” evolved behavioural response to avoid fish predation in these streams. 47 CHAPTER 2: Invertebrate drift and colonization processes Like previous studies (Turcotte and Harper 1982, Ramirez and Pringle 2001, Rodriguez-Barrios et al. 2007) community metrics in drift did not change between seasons. However, unlike Rodriguez-Barrios(2007) and Ramirez & Pringle (2001) we found an increase, and not a decrease, in drift richness and diversity with higher flow conditions, a pattern reported previously by Turcotte and Harper (1982). Despite this lack of differences among seasons in community metrics, community composition had strong differences among seasons because of the important changes in the dominance of several abundant taxa. This results are otherwise to those that previously reported aseasonality on drift densities of tropical streams (Brittain and Eikeland 1988) and although some evidence of this seasonality has been previously reported (Boyero and Bosch 2002) this is the first time that differences are reported on composition among drift and benthos in two different seasons, based on several consecutive sampling at each season. This seasonality on drift should affect both benthic and stone recolonization and composition. Drift propensity clearly differs among seasons and thus behavioural and catastrophic drift could be differentiated because a great majority of taxa showed high drift propensity values at wet season. All these taxa had higher benthic densities at the dry season except Pyralidae, and higher drift densities at wet season. Among the dominant taxa present in both drift and benthos, only Simuliidae and Hydracarina seem to suffer catastrophical drift during the wet season. These differences in drift propensity values for taxa between seasons suggest that the high values observed at the wet season, are result of a continuous drag of benthic community during the this season. Dominant taxa, like Nectopsyche and Baetodes, that had similar drift propensity values among seasons showed seasonality on benthic Surber densities, indicating that catastrophic drift is not related to the changes in abundances between seasons. This is interesting in terms of the strategies that different taxa are using to maintain their populations and avoid catastrophic drift. We mention previously (Chapter 1) that Baetodes show high benthic densities at wet season and in rapids, which could be related to higher availability of fast flow benthos areas in this season. Contrary, Nectopsyche, show a clear preference of refugium areas 48 CHAPTER 2: Invertebrate drift and colonization processes in both seasons, being less exposed to be washed out. This preference of low velocity areas for this taxa could be an indicator of a behavioural trait to avoid drift that has been reported to other crawling caddisflies (Lancaster et al. 2006) which permanently avoid high velocity areas and reinforce the results of microhabitat preferences for the taxa found in Chapter 1. Interestingly in Nectopsyche even if the greatest Surber densities in benthos are found at dry season and during the wet season on recolonized stones located at slow velocity areas the abundance is even higher than drift or benthos Surber samples at this season. Therefore we may conclude that this taxa is actively searching refugium, and definitely prefer low velocity areas. As expected for tropical areas, recolonization of stones was stabilized after 7 days, and the most common taxa showed clear differences between microhabitats. Values of community metrics (richness, density, H’, Fishers’ α) were higher at stones located in high velocity, as has been reported for stonefauna experiments at Australia (Downes et al. 1995) and also at high Andean streams of Ecuador (Jacobsen 2005). Degree of upturn was only important to few taxa as Podonominae and Simuliidae, that were strongly affected. This can also explain the great drift propensity values of these taxa during the wet season were more stone up turn is expected. Thus, colonization days and microhabitat are at community level, and for several dominant taxa, the factors that explain composition of recolonized stones. Microhabitat played a very important role differentiating communities in both short-term and mid-term recolonization experiments. The response of community composition to small scale environmental changes has been observed in temperate aquatic biota and may be related to many factors including to predator avoidance (Resetarits 1991, Resetarits 2001, Binckley and Resetarits 2005). In our study there is a general tendency of richer and more diverse community at stones located in rapid areas maybe are more related to abiotic factors and the continuous influence of drift. Dynamics on stone fauna at mid term (~25 days) varied between seasons, showing and strong influence of both drift and the actual benthic communities in the composition of either low or 49 CHAPTER 2: Invertebrate drift and colonization processes high velocity located stones. While Orthocladiinae was an important component of drift and benthos in both seasons, other taxa had different percentage of mean benthos and drift densities, therefore differences may be due to the fact that colonizing taxa preferentially came from one source or other. Thus Simuliidae showed high drift propensity rates at both seasons and is an important component of drift diversity, and as a consequence colonizing Simuliidae on stones located at rapids should came from drift. With the present study we were able to synthesize a general view of the seasonal processes of drift and dispersion of macroinvertebrate taxa and the consequences of these processes in colonization of new habitat in a high altitude Andean stream. We still have to understand the details of the population dynamics, especially with taxa that present or could present more longevity of the aquatic instars and of taxa that are fully aquatic. Fill the gap of information on the biology of aquatic insects in neotropical, and specially the Andean areas, is of primary importance to address this and other ecological questions and enhance the understanding of this aquatic ecosystems. 50 CHAPTER 2: Invertebrate drift and colonization processes APPENDIX 1. Mean values of drift and benthos densities and drift propensity of taxa present at both seasons at Piburja stream, Ecuador. Drift density m3 taxa WET DRY Heterelmis 0.014 0.004 Total Elmidae 0.035 0.011 Elodes 0.002 0.017 - Benthos density m2 WET 5.952 DRY Drift propensity WET DRY 12.245 0.002 0.000 19.558 108.673 0.002 0.000 5.357 0.001 0.003 2.278 1.276 0.005 0.000 4.252 18.367 0.013 0.003 1.701 1.822 Scirtes 0.011 Total Scirtidae 0.054 0.056 Hyalella 0.009 0.004 4.082 0.005 0.001 Ceratopogonidae 0.065 0.146 60.374 172.959 0.001 0.001 Chironominae 0.217 0.355 103.741 147.959 0.002 0.002 Diamesinae 0.048 0.067 57.143 0.057 0.001 Orthocladiinae 1.171 1.223 344.388 411.224 0.003 0.003 Podonominae 0.258 0.005 1.701 12.755 0.152 0.000 Tanypodinae 0.109 0.021 24.660 17.347 0.004 0.001 Tanytarsini 0.075 0.064 21.259 68.878 0.004 0.001 Chelifera 0.094 0.127 16.156 37.245 0.006 0.003 Muscidae 0.062 0.002 1.367 2.296 0.045 0.001 Maruina 0.065 0.175 4.252 10.204 0.015 0.017 Simuliidae 0.590 0.712 22.959 68.878 0.026 0.010 Stratiomyidae 0.092 0.161 5.102 7.143 0.018 0.023 Tipula 0.037 0.154 8.503 7.653 0.004 0.020 Andesiops 0.007 0.020 7.653 7.143 0.001 0.003 Baetodes 1.139 0.167 121.599 41.327 0.009 0.004 Leptohyphes 0.034 0.005 11.905 85.714 0.003 0.000 Planorbiidae 0.059 0.049 2.551 2.551 0.023 0.019 Hydracarina 0.573 0.471 15.306 121.939 Pyralidae 0.056 0.014 Nematomorpha 0.019 0.024 Oligochaeta 0.045 0.128 Andiperlodes 0.017 0.031 Claudioperla 0.007 - Anacroneuria 0.001 - 0.850 0.037 0.004 1.786 0.025 0.008 2.733 5.102 0.007 0.005 39.966 87.245 0.001 0.001 0.850 20.833 0.020 0.001 8.503 14.881 0.001 0.000 0.456 0.510 0.003 0.000 2.278 Cochliopsyche 0.017 0.018 5.952 35.714 0.003 0.001 Hydrobiosidae 0.051 0.041 5.102 26.020 0.010 0.002 Ochrotrichia 0.297 0.250 10.204 73.980 0.029 0.003 Nectopsyche Tricladida 0.256 - 0.724 0.004 39.116 232.653 1.701 11.224 0.007 0.000 0.003 0.000 51 CHAPTER 2: Invertebrate drift and colonization processes APPENDIX 2. Summary of Kruskal-Wallis p-values for macroinvertebrate density for: season, microhabitats and colonization days at Piburja stream, Ecuador. Pooled data is marked as GLOBAL and at each season the p-values for the factors: colonization days and microhabitats. GLOBAL DRY SEASON COLONIZATION SEASON TAXA p DAYS MICROHABITATS p WET SEASON COLONIZATION p DAYS COLONIZATION MICROHABITATS p p DAYS MICROHABITATS p p Elmidae 0.130 0.309 0.730 0.298 0.56 - - Georissidae 0.388 0.407 0.376 0.405 0.307 - - Elodes 0.388 0.407 0.376 0.405 0.307 - - Prionocyphon 0.219 0.118 0.208 0.114 0.144 0.409 0.166 Staphylinidae 0.247 0.407 0.376 1.000 1.000 0.409 0.470 Hyalella 0.820 0.587 0.208 0.405 0.307 0.409 0.470 Ostracoda 0.388 0.407 0.258 0.405 0.328 - - Blephariceridae 0.247 0.407 0.258 1.000 1.000 0.409 0.166 Ceratopogonidae 0.124 0.958 0.985 0.298 0.547 0.409 0.166 Chironominae 0.001 0.438 0.033 0.095 0.324 0.530 0.047 Diamesinae 0.018 0.160 0.118 0.134 0.223 - - Orthocladiinae 0.008 0.072 0.172 0.006 0.112 0.013 0.375 Podonominae 0.492 0.160 0.464 0.505 0.676 0.114 0.604 Tanypodinae 0.000 0.756 0.043 1.000 1.000 0.672 0.002 Tanytarsini 0.000 0.588 0.917 0.454 0.365 1.000 1.000 Chelifera 0.437 0.705 0.027 0.251 0.043 0.815 0.162 Limonidae 0.079 0.110 0.206 0.099 0.333 - - Clognia 0.130 0.253 0.688 0.256 0.498 - - 52 CHAPTER 2: Invertebrate drift and colonization processes GLOBAL DRY SEASON COLONIZATION SEASON DAYS WET SEASON COLONIZATION MICROHABITATS DAYS COLONIZATION MICROHABITATS DAYS MICROHABITATS Maruina 0.219 0.587 0.847 0.581 1.000 - - Simuliidae 0.044 0.356 0.000 0.383 0.000 0.193 0.000 Stratiomyidae 0.219 0.545 0.208 0.545 0.144 - - Tipula 1.000 0.345 1.000 1.000 1.000 - - Andesiops 0.397 0.251 0.910 0.581 0.144 0.260 0.198 Baetodes 0.222 0.240 0.000 0.217 0.003 0.538 0.000 Leptohyphes 0.002 0.475 0.009 0.292 0.052 0.906 0.219 Hydracarina 0.087 0.119 0.849 0.432 0.632 0.289 0.131 Pyralidae 0.388 0.407 0.376 0.405 0.307 - - Nematoda 0.820 0.545 0.875 0.351 0.328 0.409 0.470 Oligochaeta 0.615 0.196 0.627 0.700 0.974 0.048 0.571 Andiperlodes 0.645 0.446 0.909 0.502 0.976 0.086 0.958 Claudioperla 0.388 0.407 0.258 0.405 0.328 - - Contulma 0.955 0.482 0.848 0.256 0.498 0.114 0.635 Cochliopsyche 0.942 0.014 0.859 0.085 0.532 0.157 0.654 Atopsyche - - - 0.493 0.152 - - Cailloma - - - 0.329 0.011 - - Hydrobiosidae 0.208 0.169 0.002 - - 0.277 0.198 Smicridea 0.388 0.407 0.258 0.405 0.328 - - Ochrotrichia 0.782 0.448 0.027 0.460 0.029 0.805 0.383 Nectopsyche 0.221 0.095 0.486 0.251 0.674 0.250 0.151 Tricladida 0.740 0.309 0.047 0.114 0.162 0.409 0.166 53 CHAPTER 3: Leaf litter organic matter dynamics and associated invertebrates in a high altitude tropical Andean stream CHAPTER 3: Leaf litter organic matter dynamics and associated invertebrates Introduction Inputs of leaf litter from riparian vegetation comprise a significant source of energy and nutrients for headwater streams (Siccama et al. 1970, Anderson and Sedell 1979, Wallace et al. 1997, Graça 2001). Some studies have evaluated the importance of litter dynamics throughout the ecosystem using energy budgets (Gosz et al. 1972, Likens 1972, Fisher and Likens 1973, Meyer et al. 1981). In a forested stream, nearly all available energy comes from the forest. In temperate areas, the interactions between the inputs (leaves), the decomposers, the detritivores and the physical factors have been widely studied (Anderson and Sedell 1979, Suberkropp and Wallace 1992, Suberkropp and Chauvet 1995, Wallace and Webster 1996, Wallace et al. 1997, Graça 2001, Graça et al. 2001b). The general pattern is that an important part of this energy is not used by consumers in the headwater streams, but is exported downstream by the current (Likens et al. 1970, Fisher and Likens 1973) and the trophic link between headwaters, which receive the greatest input, and the lower parts are mediated by decomposers and detritivores (Graça 2001). For tropical streams, there is a lack of quantitative information on inputs, storage and cycling of allochthonous inputs, even though these streams often drain heavily forested catchments and the litter inputs should be a major energy source (Graça et al. 2001a, Colón-Gaud et al. 2008). In the context of the low seasonality patterns of tropical high altitude regions, litter inputs may enter to tropical streams throughout the year, unlike in most temperate streams, where most allochthonous materials enter in the fall. Therefore, understanding the potential importance of this continuous entrance is essential for comprehending the functioning of tropical streams. However, despite these continuous inputs, peak litterfall in tropical streams is often associated with storm events (Covich 1988), or with the beginning (Gonçalves et al. 2006) or the end of the wet season (Afonso et al. 2000). Channel morphology and habitat heterogeneity are key factors determining the capacity of streams to retain leaf litter (Speaker et al. 1984, Lamberti et al. 57 CHAPTER 3: Leaf litter organic matter dynamics and associated invertebrates 1989). In general, narrow rough-bottomed streams are more retentive (Mathooko et al. 2001). In tropical streams, litter accumulation and distribution in stream beds are regulated not only by inputs from the adjacent forest and channel morphology but also by the magnitude and variability of discharge (Pearson et al. 1989). Therefore, temporal changes in stream hydrology (such as high discharge events) result in greater hydraulic power, thus decreasing retention capacity (Larrañaga et al. 2003) and increasing the movement and redistribution of leaf litter. The general pattern is that greater amounts of standing stock are accumulated during the dry season (Covich 1988). However, the amount of standing stock accumulated in tropical streams (on a yearly basis) 2 ranges widely, from 35 g AFDM/m (Friberg et al. 1997) to more than 1000 g 2 AFDM/m (Colón-Gaud et al. 2008). The relation of organic matter standing stock and macroinvertebrates is well documented for temperate areas, but the study of this relation has been rare for tropical streams (Mathuriau et al. 2008). In general, leaf litter can be used by macroinvertebrates as refugium (Palmer et al. 1996) or as a food source (Wallace and Webster 1996, Graca 2001, Graca et al. 2001b). Contrary to temperate streams, shredders in tropical streams seem to be an unimportant part of the community (Ramirez and Pringle 1998, Mathuriau and Chauvet 2002, Mathuriau et al. 2008). However, in contrast to the pattern found in the lowland tropical streams, new evidence shows that in tropical mountain streams shredders may be important (Cheshire et al. 2005). On the other hand, gut content analysis from neotropical detritivorous insects has shown that each taxa may have at least two trophic species traits (Wantzen et al. 2005, Wantzen and Wagner 2006) or that each taxa is feeding on more than one source (Tomanova et al. 2006). Therefore, the importance of leaf litter as a food source remains unclear for tropical mountain streams. Its documented importance would probably change with the availability of feeding sources, because macroinvertebrate taxa of tropical areas seem to have highly flexible feeding habits (Covich 1988). 58 CHAPTER 3: Leaf litter organic matter dynamics and associated invertebrates With this study, we want to assess the importance of leaf litter for the macroinvertebrate communities of an Andean forested stream, and our specific objectives are: 1) Describe the annual litter inputs in a high altitude Andean stream; 2) define whether there are seasonal differences in the transport and retention of Coarse Particulate Organic Matter (CPOM); 3) study whether there are differences in litter standing stock between seasons and the potential relationship of this stock with macroinvertebrate community assemblages; and 4) assess whether litter is an important food source for the most abundant invertebrate taxa based on gut content analysis. Study area We performed the study at the Piburja stream, a first order stream in the Oyacachi river basin, located at the Cayambe-Coca Ecological Reserve (RECAY) in Ecuador (0º13’ S, 78º 03’ W) at 3300 m asl. We studied a 70 m reach with a minimum width of 1.60 m and a maximum of 4.0 m. The surrounding vegetation was an evergreen forest with Alnus acuminata trees. Pluviometric records (10 years) from nearby localities show lower rainfall from December to February (dry season) compared, with May to September. Rainfall ranged between 32.56 and 244.11 mm per month during the year of the study. Total precipitation in Oyacachi town is ~ 1600 mm/year, and mean temperature is ~10ºC. Precipitation is probably 2 or 3 times greater than potential evapotranspiration, which implies very humid conditions during the whole year (Skov, 2000). The most important seasonal changes in the physico-chemical characteristics of the stream are a significant increase in flow and water velocity during the wet season. A detailed description of the physical-chemical characteristics of the stream can be found in Chapter 1. Materials and Methods In order to assess the litter input, we sampled the stream once a month during one year. Movement, retention and standing stock were sampled in two different seasons, wet (April-May 2006) and dry (January-February 2007). Stream hydrology varied accordingly with this seasonality. 59 CHAPTER 3: Leaf litter organic matter dynamics and associated invertebrates Annual litter input To understand vertical litter input, we estimated it for a 70m reach of one first order stream which (as described previously) is surrounded by a high altitude riparian forest. Following the methodology of Elosegi and Pozo (2005), we 2 placed 8 plastic litter-fall traps, each with an area of 0.082 m . The traps were placed randomly, and were suspended over the stream channel and banks using ropes. Every month, we collected the material in the traps, and then air dried and preserved the material in paper mesh bags for weighing later in the laboratory. Subsequently, samples where dried at 60ºC for 2 days and weighed. Samples were then ignited in a muffle furnace oven at 500ºC for 4 hours, to 2 determine ash-free dry mass per m per day of each sample. Litter input was then related to monthly precipitation using Pearson correlation. We transformed the mean day rainfall of each month into two categorical variables by subtracting the lowest value from the highest value and dividing by 2. In this way, values of less than 3.98 mm rain/day would be considered “dry periods” and values greater than this value would be considered “wet periods”. We used ANOVA analysis to assess differences between rainfall periods and litter input. The differences between mean monthly litter inputs were analyzed using ANOVA with Fisher’s least significant difference (LSD) post hoc analysis. Litter input values were log transformed to achieve homogeneity of variance. Litter movement To understand litter movement through the system, we placed four to six drift 2 nets (495 cm of cross-sectional area) in the stream for 20 minutes (wet season) and 1 hour (dry season), four times during each sampling period. Using a Global water flow probe, we measured the average water velocity at the net mouth at the beginning and at the end of each sampling time. All the material in the net was collected and taken to the laboratory. At the lab, all material greater than 1 mm was dried at 60ºC for 2 days and weighed. Afterwards, all samples were incinerated at 500ºC for 4 hours to determine ash-free dry mass (AFDM) per m 3 3 of each sample. The AFDM/m values were log transformed and correlated with 60 CHAPTER 3: Leaf litter organic matter dynamics and associated invertebrates water flow using Pearson’s correlation. In addition, ANOVA was used to assess seasonal differences in the litter movements. Litter retention We chose two species of plants: Alnus acuminata and Eucalyptus globulus, to assess differences in the retentiveness of flexible and hard leaves, respectively. We choose Alnus acuminata because it is a common tree in the riparian forest of the Piburja stream, and Eucalyptus globulus because it is a common introduced species in Andean forests. In addition, the retention of Eucalyptus leaves has been previously assessed and constitutes a good leaf reference (Pozo et al. 1997, Canhoto and Graça 1998, Bañuelos et al. 2004). We collected a hundred air-dried recently fallen leaves of each species and marked them with a small waterproof ink mark. The night before the experiment, we soaked the leaves overnight to give them neutral buoyancy. We placed a stop net of 2 mm mesh size and released the leaves one by one 40 metres upstream of the net. We allowed the stream to disperse the leaves for one hour. After one hour, we made a multiple point collection (Elosegi, 2005); we counted the leaves that had arrived at the net, and went upstream to measure the distance travelled by each retained leaf and the habitat type where it was retained. We measured discharge before releasing the leaves and after collecting all the leaves retained. We conducted this procedure once during each of the two hydrological seasons (wet and dry). To obtain the instantaneous retention rate and the average travel distance of each leaf type during each season (Elosegi, 2005), we plotted the number of released leaves in transport to the distance travelled. Data were then fitted to the exponential decay model k*d (Young et al. 1978), Ld=L0*e , were L0 is total leaves recovered, Ld the number of leaves still in transport at distance d (40m), and k the instantaneous retention rate. The average travel distance was 1/k. Finally, we also recorded the percentage of leaves of each species retained at different substrates and habitats of the stream to evaluate their importance in the retention process. 61 CHAPTER 3: Leaf litter organic matter dynamics and associated invertebrates Standing stock 2 We took Surber samples (196 cm , 250 µm mesh size) on five dates in each season, with an interval of four to six days between samplings. To avoid damaging our own sites within our reach we always sampled moving forward in the upstream direction. At the lab, we removed all macroinvertebrates from each sample and then filtered all the material to select the CPOM (>1 mm). CPOM was dried at 60ºC for 2 days, and weighed. Afterwards, these samples were 2 incinerated at 500ºC for 4 hours to determine ash-free dry mass per m of each sample. Macroinvertebrates were identified to the lowest taxonomic level possible (usually genera, but some small individuals were identified to family level). Oligochaeta, Tricladida, Hydracarina and Ostracoda, were identified to order and Chironomidae to sub-families. We used Merrit & Cummins (2007) and Tomanova (2006) to assign macroinvertebrates to functional feeding groups. The community metrics used to analyse community patterns were total density, richness, Shannon Weiner index, and Fisher’s alpha index. To analyse the differences in organic matter standing stock between seasons, we used the Mann-Whitney U test. This non-parametric test was used because after transformation the data was did not achieve a normal distribution. We used Spearman correlations to relate the standing stock, functional feeding groups and community metrics. Gut content analysis The digestive tube was dissected and mounted on a plate with a solution of 1:1 glycerine and lactic acid. The walls of the digestive tubes were broken using pliers to leave all the material in the plate. A plaque was made for each individual, and 10 random visual fields of 100x to 400x magnification were analyzed for each plaque, in order to classify the occupancy rate of each food category: a) CPOM (> 1 mm), b) Fine particulate organic matter (< 1 mm, FPOM), c) diatoms or d) chitin. The data was expressed as a percentage of each category of food per visual field. To analyze seasonal differences in food 62 CHAPTER 3: Leaf litter organic matter dynamics and associated invertebrates preferences, we performed an ANOVA. The percentages were previously arcsine transformed. We analysed five individuals of each taxa, from each season. Only the shredders (classified using Merrit and Cummings, 2007 and Tomanova, 2006) and the most abundant taxa were analysed. After a preliminary analysis, the following taxa were included: Baetodes, Chironominae, Claudioperla, Hyallela, Leptohyphes, Nectopsyche, Oligochaeta, Orthocladiinae, Prionocyphon, Simuliidae and Tipula. Although Tanytarsini, Hydracarina and Ochotrichia were also important but due to the size of the individuals (too small), we were not able to analyse the gut content with the applied methodology. Probezzia (Ceratopogonidae) showed an empty gut in all individuals analysed and we do not know if this was due to the gut content analysis methodology or to the preservation methodology (formalin 4%). All statistical analyses were performed with Statistica 6.0 and SPSS 15. Results 1. Annual litter input 2 Mean monthly g AFDM/m /day ranged from 0.12 on July 2006 to 1.50 on 2 February 2007. The annual mean litterfall value was 0.59 ±0.42 g AFDM/m /day. 2 -1 The total annual litter input was 216.07 g AFDM/m / y . The litter input was not 2 correlated with mean daily rainfall, but the highest values of AFDM/m /day coincided with lower rainfall values and the lowest input values coincided with the highest rainfall values (Fig 1). The one way ANOVA (Table 1) of rainfall periods showed that there were no 2 significant differences in AFDM/m /day between the two rainfall periods. However, the ANOVA between the months and the litter input showed significant differences (F =2,22, df = 11, p =0 . 022). The main differences were between the period of May to August 2006, with lower litterfall values, and the period of February to April 2007, with higher litterfall values (Fig. 1, Table 2). 63 CHAPTER 3: Leaf litter organic matter dynamics and associated invertebrates 2.2 10 Plot 1 Col 26 vs Col 27 2.0 9 1.8 8 7 1.4 1 1.2 6 2 5 1.0 4 0.8 rain (mm/day) 2 AFDM/m /day 1.6 3 0.6 0.4 2 0.2 1 0.0 0 6 6 6 6 6 7 7 6 6 7 7 6 y 0 ju n 0 ju l 0 g o 0 e p 0 o c t 0 o v 0 e c 0 ja n 0 e b 0 a r 0 p r 0 f a s n d a m ma 2 Figure 1. Monthly gAFDM/m /day of litterfall and mean mm rain/day at the Piburja Stream, Ecuador. Arrows mark: 1) the lowest litterfall value, which coincided with the highest rainfall value, and 2) the highest litter fall value, which coincided with the lowest rainfall value. Table 1. Analysis of Variance (ANOVA) table to test differences of litter input 2 (gAFDM/m /day) during different rainfall periods (dry period = values <3.98 mm rain/day; rainy period = values >3.98 mm rain/day), at the Piburja stream, Ecuador. SS D.F MS F p 28.648 1 28.648 44.088 0.000 rainfall periods 0.532 1 0.532 0.819 0.368 Error 50.684 78 0.650 Intercept 64 CHAPTER 3: Leaf litter organic matter dynamics and associated invertebrates Table 2. Summary of the multiple comparison procedure to determine significant differences (p<0.05) in monthly litter input (gAFDM/m2/day) at the Piburja stream, Ecuador. The method used to discriminate among the means is Fisher's least significant difference (LSD) procedure. comparisons Sig. May 06Feb 07 * May 06Apr 07 * Jun 06Feb0 7 * Jun 06Apr 07 * Jul 06Feb 07 * Jul 06Mar 07 * Jul 06Apr 07 * Ago 06Feb 07 * Ago 06Apr 07 * Nov 06Feb 07 * Jan 07Feb 07 * Difference -0.55 -0.44 -0.56 -0.45 -0.64 -0.42 -0.53 -0.61 -0.50 -0.46 -0.38 +/- Limits 0.35 0.38 0.36 0.39 0.36 0.37 0.39 0.40 0.42 0.40 0.36 2. Litter movement and retention a. Litter movement 3 Mean values of AFDM/m collected in drift nets were slightly higher during the dry season than during the wet season, but the ANOVA (F=0,11; df=1; p=0.75) showed that differences between seasons were not significant (Fig 2). There 3 was no correlation between flow and AFDM/m (Pearson correlation: r=0,466 p=0,244). b. Leaf retention During the dry season, no leaves of the two species arrived at the net. In contrast, during the wet season, some leaves were retained at the net that was located at 40 m, implying a faster downstream transport during the wet season. Almost 30% of Eucalyptus leaves were in movement (arrived at the net) and most alder leaves were retained in the first 25 meters of the section. The average travel distances (ATD) during the wet season were 41.7 m (Alder) and 454.5m (Eucalyptus); during the dry season, ATD values were 24.4 m (Alder) and 8.7 m (Eucalyptus). 65 CHAPTER 3: Leaf litter organic matter dynamics and associated invertebrates 0.22 0.20 g AFDM/m3 0.18 0.16 0.14 0.12 0.10 0.08 0.06 WET M ean ±SE DRY season Figure 2. Mean confidence intervals of the CPOM in transport (g AFDM/m3) during the wet and the dry seasons at the Piburja stream, Ecuador. Stones and high velocity areas were the abiotic structures and habitat that retained Eucalyptus and Alder leaves during the wet season (Table 3). During the dry season, Eucalyptus leaves were caught up by stones (50%) and Alder leaves in detritus (55.17%). During this season, both kinds of leaves were found mainly in shallow habitats. Overall, there was a higher retention of both types of leaves during the dry season than during the wet season. Table 3. Percentage of Alder and Eucalyptus leaves retained at different stream substrates, depths and velocities at Piburja stream, Ecuador during the wet and dry seasons. Alder RETAINING STRUCTURE Gravel and pebbles Cobbles and Boulders Natural barriers (debris dams) TOTAL DEPTH/VELOCITY shallow/low deep/low shallow/high deep/high TOTAL 66 Eucalyptus DRY WET DRY WET 15 30 55 100 0 73 27 100 11 50 39 100 0 77 23 100 25.84 12.36 35.96 25.84 100 11.39 5.06 12.66 70.89 100 40.66 21.98 37.36 0 100 10.34 3.45 77.59 8.62 100 CHAPTER 3: Leaf litter organic matter dynamics and associated invertebrates 100 % of leaves in transport alder wet alder dry 80 eucalyptus wet eucalyptus dry 60 40 20 0 0 5 10 15 20 25 distance traveled (m) 30 35 40 Figure 3. Downstream decrease in the number of leaves transported in Piburja stream, expressed as a percentage of Eucalyptus and Alder leaves in transport. During the dry season, both leaf species were retained in the first 25 m. During the wet season, Alder leaves presented a higher retention compared to Eucalyptus leaves. 3. Organic matter standing stock and relation with invertebrate assemblages Standing stock of benthic particulate organic matter (CBOM) showed significant differences between seasons (Fig 4a). The amounts of standing stock were significantly higher during the dry season (Mann-Whitney: U=1149.0, p=0.000). Diversity, density and richness of macroinvertebrates were positively correlated with the standing stock (Table 4) when data was pooled (wet and dry season 2 together). During the wet season, g AFDM/m was significantly correlated with richness and diversity, while, during the dry season, no significant relationship was found between the amount of standing stock and shredder abundance or other community metrics. For the pooled data, all functional feeding groups (FFG) found in the stream had a strong correlation with the standing stock, except the scrapers (Table 4). We found the same pattern when we analyzed the wet season data alone (Table 4), but no correlations were found during the dry season. In both seasons, the gathering collectors were the most abundant FFG (Fig 5). Density of all FFG was significantly higher during the dry season as compared to the wet season 67 CHAPTER 3: Leaf litter organic matter dynamics and associated invertebrates (Table 5). Orthocladiinae (collector gatherers) were the most abundant taxa in both seasons (17 and 34 % of total abundance in dry and wet seasons, respectively). In the dry season, Nectopsyche (10%), Ceratopogonidae (7%) and Chironominae (6%) were also dominant taxa. In the wet season, Orthocladiinae (34%), Baetodes (12%), Chironominae (10%) and Ceratopogonidae (6%) were the dominant taxa. b a Figure 4. Comparison of (a) standing stock (as CBOM) and (b) shredder density between seasons at Piburja stream, Ecuador. The increase of standing stock (a) in the dry season is similar to the increase of shredder density (b). Table 4. Summary of Spearman’s correlation analysis of standing stock (g 2 AFMD/m ) and community parameters and shredders density at the Piburja stream, Ecuador during both seasons studied. Community Parameters/ Functional Feeding Groups Two seasons (wet + dry) Spearman p R Richness (S) Density Shannon Index (H') Fishers'α gathering collectors filtering collectors shredders scrapers predator 0.835 0.761 0.827 0.681 0.308 0.426 0.293 0.155 0.326 68 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.053 0.000 WET Spearman R 0.769 0.588 0.745 0.164 0.273 0.531 0.421 0.232 0.432 p 0.009 0.074 0.013 0.651 0.042 0.000 0.001 0.085 0.001 DRY Spearman R -0.018 0.261 0.030 -0.176 -0.013 0.167 0.112 -0.045 -0.014 p 0.960 0.467 0.934 0.627 0.895 0.096 0.269 0.656 0.886 CHAPTER 3: Leaf litter organic matter dynamics and associated invertebrates 2 Table 5. Density (ind/m ) changes in functional feeding groups between seasons at the Piburja Stream, Ecuador. *= Significant differences between seasons with the Kruskal-Wallis analysis of variance. Wet Dry Mean Mean S.E S.E gathering collectors* 395.408 94.045 712.755 82.713 filtering collectors* 29.085 225.000 33.008 84.184 shredders* 166.667 50.992 446.429 151.891 scrappers* 42.767 174.490 32.605 140.306 predator* 119.048 41.619 401.020 70.006 Table 6. F and p values of the one way ANOVA of feeding preferences between the wet and the dry season based on the % gut content of several taxa and shredders (arcsine transformed values) at the Piburja stream. Taxa df. F p Baetodes Claudioperla Hyalella Nectopsyche Oligochaeta 1 1 1 1 1 1 0.668 2.104 3.897 0.533 3.491 1.402 0.025 0.437 0.185 0.084 0.486 0.099 0.270 0.877 Prionocyphon Simuliidae 1 4. Invertebrate gut content analysis Fine Particulate Organic Matter (FPOM) and CPOM were the most consumed resources by all the taxa analysed (Fig 6). Feeding preferences did not change with seasons (Table 6). Diatoms and chitin were only found occasionally and in small amounts (Fig 6.) Based on the literature, we hypothesized that Hyallela, Chironominae, Tipula Claudioperla, Nectopsyche and Prionocyphon were shredders. This was generally confirmed by the gut content analysis, but these taxa were also feeding on FPOM. Chironominae was feeding on only FPOM, because we did not find CPOM in their guts. On the other hand, Baetodes and Oligochaeta, considered as collectors were also feeding on CPOM in important percentages. Baetodes gut analysis showed that CPOM was more important than FPOM in the gut content analysis. Based on the gut content of the taxa analysed, which are representative of the 43.65% of the total abundance during the dry season and 60.73% of the total abundance during the wet season, we 69 CHAPTER 3: Leaf litter organic matter dynamics and associated invertebrates showed that CPOM and FPOM are the main food resources of the community (FPOM 65% and CPOM 35%). predator 5% scrappers 20% predator 21% scrappers 5% shredders 5% filtering collectors 5% gathering collectors 64% Funtional Feeding Groups Dry Season shredders 4% gathering collectors 60% filtering collectors 11% Functional Feeding Groups Wet Season Figure 5. Percentage of density of the macroinvertebrate functional feeding groups at the Piburja stream (Ecuador) during dry (a) and wet (b) seasons. Figure 6. Percentage of gut content for the most abundant taxa and some taxa considered shredders at Piburja stream in Ecuador. Preferences of the four categories are identified by colours at each season. 70 CHAPTER 3: Leaf litter organic matter dynamics and associated invertebrates Discussion This high altitude tropical stream receives permanent but irregular litter input through out the year. In contrast to other tropical streams at lower altitudes (Colón-Gaud et al. 2008), we did not find a strong relationship between rainfall and litter input. Although there is some pattern of increase of litter input during the drier months, this pattern was not significantly different. Interestingly, there are large significant differences in litter input between months; for example, the 2 amount received during July was 0.125 g AFDM/m /day and during February 2 was 1.50 g AFDM/m /day. Humidity in Oyacachi is high throughout the year (Skov 1999), and we can thus assume that the vegetation is not suffering extreme changes in moisture (water scarcity) like other tropical forests. Therefore, leaf loss is less predictable and this could weaken the relationship between rainfall and litterfall. The wind probably plays a more important role in litter input dynamics, as is suggested for some Brazilian streams (Afonso et al. 2000). Total annual inputs were more similar to temperate or Mediterranean streams than to tropical steams (see values cited in Abelho ( 2001)). These lower litter inputs, compared to the values of lower parts of the Andean ranges, could be related to the harsher climatic conditions in the highlands. Although our primary objective in this study was not to assess the variation of litter inputs with altitude, this is an important issue for the understanding the ecology of tropical highland rivers, which seem to behave differently from the lowland tropical rivers. The amount of litter transported in the water column was not significantly different between the dry and the wet seasons but, as the present study was done during only two seasons, more detailed study over time is needed to understand CPOM transport during the year. However, the amount of litter retained was higher during the dry season, potentially because of greater obstruction of rocks and other structures that appear when there is less water in the stream. Retention of the two species tested, varied between seasons, with a clear tendency of alder leaves to accumulate in leaf packs (debris dams) in the dry season and rocks in the wet season. Eucalyptus leaves were retained in 71 CHAPTER 3: Leaf litter organic matter dynamics and associated invertebrates rocks in both seasons. These differences could be attributed to the leaf species characteristics, as hard leaves (eucalyptus) are more difficult to retain and are easily transported (Canhoto and Graça 1998). The retaining structures can vary largely in rivers within the same geographical area that may differ in spatial heterogeneity. This is especially true when abrupt changes of slope are present, as in the Andean ranges. In the Piburja stream, as in other studies of tropical (Mathooko et al. 2001) and Mediterranean (Canhoto and Graça 1998) headwater streams, these structures were mainly debris dams and rocks. Due to the high retention rate, we also found a higher accumulation of organic matter (or standing stock) in the stream during the dry season, with respect to the wet season. This increase in the dry season is also reported for Australian forested streams (Bunn 1986). However, no relation was found between litter inputs and standing stock, a pattern previously reported for Iberian streams (González and Pozo 1996). Interestingly, invertebrates followed the resource; the more organic matter found, the higher the diversity and abundance of invertebrates. During the dry season, when there are lower discharge levels (Chapter 1), and therefore lower disturbance and hydrologic stress, biotic interactions could be more intense. Consequently, abundance and richness of different groups might vary due to competition or predation effects. During the wet season, even though the standing stocks decreased dramatically, the abundance of different feeding groups (except scrapers) showed strong correlations with benthic particulate organic matter. This indicates that the community is tracking the source when is scarce. Our functional feeding group classification, based on literature, produced results similar to previous studies in tropical streams (Ramirez and Pringle 1998, Mathuriau and Chauvet 2002, Wantzen et al. 2005, Gonçalves et al. 2006, Tomanova et al. 2006, Wantzen and Wagner 2006, Colón-Gaud et al. 2008, Mathuriau et al. 2008) with a small increase in the importance of shredders. Taking into account the gut content (we analyzed taxa that represented almost 50% of the total density), we showed that CPOM constitutes at least the 35% of the feeding sources of all taxa analyzed. If we compare this value with the 4% or 5% of the organisms that are classified as 72 CHAPTER 3: Leaf litter organic matter dynamics and associated invertebrates shredders using the literature, we see that, by using this classification of functional feeding groups, we are not getting a clear picture of the taxa that consume CPOM in our stream. Previous works have shown that the functional feeding groups in neotropical rivers are difficult to assign because taxa commonly use at least two trophic levels (Tomanova et al. 2006, Wantzen and Wagner 2006, Tomanova et al. 2007). Even if the community structure of the Piburja stream was generally similar to those reported in previous work on Andean rivers (Turcotte and Harper 1982, Flecker and Feifarek 1994, Jacobsen and Encalada 1998, Pringle and Ramirez 1998, Ramirez and Pringle 1998), we found important differences when comparing the gut content analysis of Piburja stream with those of insects in Bolivia Andean ranges (Tomanova et al. 2006). This suggests that the taxa are feeding on the resources available under the local conditions, making functional feeding groups a not very useful approach for neotropical high altitude stream communities. This is because of the generalist tendency (Covich 1988) and great adaptability to local conditions of the most abundant taxa. Our findings differ from previous work on Andean streams (Mathuriau et al. 2008), which analyzed the data based on the functional feeding groups defined by Merritt et al. (1996) for North-American fauna, and did not find any relationship with detritus and shredders or collectors. We show here that the functional feeding groups defined by the literature do not reflect the real resources consumed in this Andean stream. The differences in altitude and riparian characteristics could also generate important differences in the functioning and feeding preferences of macroinvertebrate communities of different Andean streams. In conclusion, we show that most of the invertebrates in the stream feed on organic matter, either CPOM or FPOM, and this suggests that the Piburja stream is a heterotrophic system. Primary production, principally by diatoms and aquatic plants might not be very important in this system. This is contrary to most parts of highland Ecuadorian streams, which are generally autotrophic systems with a high presence of macrophytes, due to the absence of forest at high altitudes (Jacobsen and Terneus 2001). The presence of riparian forest, and the light limitations produced by this vegetation, regulates the ecosystem 73 CHAPTER 3: Leaf litter organic matter dynamics and associated invertebrates functioning in this stream and also regulates the community assemblage. Although the presence of forest in high altitude streams of the Andean ranges is not common, it can be found in some parts of the northern (Rios 2004) and central Andes (Acosta 2005) up to 3900 m a.s.l. It is likely that the presence of riparian vegetation, in addition to the constraints of altitude (such as temperature and low oxygen pressure) (Jacobsen 2003, 2008), regulates the macroinvertebrate assemblages and functioning of Andean high altitude streams. However, Andean headwater streams are highly diverse and largely unknown (Allan et al. 2006) and with a lack of complete information is impossible to make generalizations about the functioning of these ecosystems. Because of this diversity, we expect a large variety of conditions for functional ecology in these tropical streams, even if the general structure of the macroinvertebrate community is similar between sites. 74 CHAPTER 4: Oviposition of Aquatic Insects in a High Altitude Tropical Stream CHAPTER 4:Oviposition of Aquatic Insects Introduction In streams the permanence of populations of aquatic insects depends of the recruiment of larval populations from the egg masses deposited by adults, especially after disturbance (Williams and Hynes 1976). Thus, oviposition (together with drift, see Chapter 2) is of great importance because it establishes the initial size of populations (Encalada and Peckarsky 2006). It has been suggested that at large multigenerational scales, external recruitment, compared to drift or recolonization from hyporheos, is the main mechanism that maintain populations (Lancaster and Belyea 1997). However, despite the key importance of oviposition few studies in lotic population dynamics address adult and egg life stages. Moreover studies that address recolonization of stream substrate are focused more on benthic larvae arriving from drift than in oviposition studies (e.g.: Benson and Pearson 1987, Boulton et al. 1988, Boyero and DeLope 2002, Boyero and Bosch 2004). Measuring recruitment is an especially challenging problem for organisms with complex life cycles and high mobile dispersal stages, like aquatic insects (Peckarsky et al. 2000). In most insects, as in all the animals that lack of parental care, females can increase their fitness by ovipositing in habitats that minimize egg and larval mortality and increase larval growth (Rausher 1979, Hinton 1981, Binckley and Resetarits 2008). Thus, while specialized oviposition behaviors have been described mainly for terrestrial insects oviposition in aquatic insects are generally described as non-selective (Hinton 1981). Although in many aquatic taxa non-specialized reproductive behaviors seem to be the rule, specialized oviposition behaviors can be found in some of them, including: Diptera (Gillett 1971, Baba and Takaoka 1989, 1991), Ephemeroptera (Peckarsky et al. 2000, Encalada and Peckarsky 2006, 2007), Trichoptera (Lancaster et al. 2003, Reich and Downes 2003a, Reich and Downes 2003b) or Coleoptera (Binckley and Resetarits 2008). 77 CHAPTER 4:Oviposition of Aquatic Insects In general, information of reproductive strategies of aquatic insects is geographically restricted and is only available for some species of the northern hemisphere (Hinton 1981, Brittain 1989, Merritt and Cummins 1996). Detailed information of egg and embryonic development related to environmental conditions have been mainly generated for temperate species although some relevant information from neotropical species is available (Jackson and Sweeney 1995). However, information on selective oviposition and eggs characteristics of aquatic insects is particularly scarce for southern Hemisphere taxa (Reich 2004). For lotic habitats that are highly variable and unpredictable in flow conditions, hydrological disturbance might be a key component for larval mortality originated by catastrophic drift. In these ecosystems one important process for community permanence may be recruitment by oviposition, but the importance of this mechanism in lotic ecosystems is virtually unknown (but see Encalada et al in prep). Due to seasonal constrains, one might expect that in high latitude streams, recruitment by oviposition is only important during spring and summer months, when insects have emerged out of the water to reproduce and return to lay their eggs. Certainly, univoltinism is common life history strategy for insects living in lotic systems in cold and temperate zones and consequently adult stages can cope with more favorable environmental conditions for flying and reproduction. In contrast, in tropical lotic systems where annual seasonality is not the rule, but daily changes in temperature are always present (Guhl 1989, Luteyn 1999, Jacobsen 2008), a multivoltinism strategy would be more beneficial for the maintenance of population throughout the time. In fact, the research made until now have reported multivoltinsm in several taxa of aquatic insects from the low lands of the tropics (Flowers 1987, Jackson and Sweeney 1995). As Andean tropical streams are very dynamic hydrologically and water discharge fluctuations have an important role structuring aquatic communities (Flecker and Feifarek 1994, Jacobsen 2005, 2008), we should expect that 78 CHAPTER 4:Oviposition of Aquatic Insects hydrological changes might have a key role in population dynamics.. Therefore, recruitment by oviposition might be more pivotal in these tropical systems in which there is substantial short term discharge fluctuations, most of which might be unpredictable. But the knowledge on how the hydraulic changes affects flying seasons, mating and ovipositing behaviors is inexistent. The objective of our study is to understand the importance of the reproductive strategies of aquatic insects in a high altitude tropical stream. Since this ecosystem presents a strong seasonal component and consequently, conspicuous high and low hydrologic periods, we want specifically to analyze if there are differences between these periods in: 1) richness and abundance of adult forms of aquatic insects flying and ovipositing, 2) number of eggs (oviposition pattern) and egg mass identity and morphology and 3) substrate preferences by ovipositing females. Finally, we want to determine, for both seasons, if there a relationship between the identity of larvae present in the stream (using data from chapters 1 and 2) with that of adults flying at the same time. Study area We performed the study on a pristine reach of 100 meters length of the Piburja stream (3300 m asl), surrounded by an evergreen forest with Alnus acuminata trees and a high diversity of Melastomataceae, Asteraceae and Rosaceae shrubs. This headwater stream of the Oyacachi River Basin is, located at the Cayambe-Coca Ecological Reserve (RECAY) in Ecuador (0º13’ S, 78º 03’ W). Pluviometric records (10 years) from nearby localities show lower rainfall from December to February (dry season) compared, with May until September. Total precipitation in Oyacachi town is ~ 1600 mm/year, and mean air temperature is ~10 ºC. Precipitation is 2 or 3 times greater than the potential evapotranspiration at this area, which makes very humid conditions during the whole year (Skov 1999). The stream width ranges from 1.60 m to 4.0 m. Seasonal differences in flow, mean water velocity, were found during the studying periods, with higher discharges at wet season. More detailed physico-chemical characteristics of the 79 CHAPTER 4:Oviposition of Aquatic Insects reach can be found at Chapter 1. We performed all surveys (eggs, larvae and adult sampling) during May of 2006 (the wet season) and February of 2007 (the dry season). Materials and methods Adult sampling To estimate the relative abundance of flying and/or ovipositing females we placed two kinds of sticky traps. Both traps consisted in transparent acetate sheets (210x 297 mm) with tree pest adhesive at both sides (Encalada and Peckarsky 2007). The first type was the flying trap, and 18 of these sticky traps were suspended in three nylon transects at two different altitudes above the stream surface. At each transect three acetate sheets were suspended, across the river from nylon lines located five to eight cm above the water surface, and three at 80 to 120 . The other type of trap was a platform trap, which were placed horizontally three cm above the water surface. These traps were made of dark plywood (to simulate the river bed color) with the acetate sheets above, and anchored using iron rebar. Twenty four of this platform traps were placed at random locations on the 100 meters transect. All traps were deployed on 23, 24 and 25 of July of 2006 (wet season) and from 19 to 22 of February of 2007 (dry season). Traps were changed two times daily at 0700 and 1800 hours. In total, we had data for two days and two nights at each season. At the laboratory each acetate sheet was soaked on kerosene dissolvent to enable the separation of trapped individuals. All individuals were placed on ethanol 75º and identified to lowest possible taxonomic level. The lack of appropriate identification keys for adults of aquatic insects of this geographic area plus the damage suffered by the individuals (due to the trapping method) were determinants in the identification process. Thus, we maintained the identifications to family level for most taxa, although in some cases we were able to identify until genera level. The taxonomic keys used were: Domínguez et al. 1992, Merritt and Cummins 1996, Fernández and Domínguez 2001, Dominguez 80 CHAPTER 4:Oviposition of Aquatic Insects et al. 2006. We identified the sexes when possible and for all gravid females we recorded the percentage of abdomen filled with eggs. For all individuals of each taxa that sex was not possible to determine we applied the Fisher's principle (Fisher 1930) assuming a sex ratio of 1:1. Several gravid females from each family were dissected and the eggs were counted and described. Egg masses sampling To understand oviposition patterns in this high altitude stream, we sampled for egg masses in three different occasions (wet 2006, dry 2007 and wet 2007). At each occasion, we sampled 85 rocks at random places on the same 100 m transect were the sticky traps were placed. Each rock was categorized as either submerged or emergent and the longest length and width axis were recorded. The surrounding water velocity of each rock was also recorded using a Global water flow probe model FP201. All egg masses found were counted and reference samples were collected and transported to the laboratory for incubation in containers with river water for further identification of hatching larvae. We also took reference egg masses in ethanol at 75º for description and egg counting. Larvae samples During the same sampling periods, we collected six to ten benthic insect samples in five occasions, at the same stream reach using a Surber net of 14 x 14 cm2, (data from Chapter 1). Also, four to six drift samples (data from Chapter 2) were collected at the same seasons at four occasions, using a net of 250 µm mesh, and 15 x 35 cm frame. The nets were placed in the river for 20 minutes to 1 hour, depending on flow conditions at each of the eight sampling events. Each replicate was store separately and preserved with formalin 4%. Samples were taken to the laboratory for further sorting and identification. Insects were preserved in ethanol and identified to the lowest possible taxonomic level. 81 CHAPTER 4:Oviposition of Aquatic Insects Data analysis To analyze seasonal changes in taxa richness and relative abundance of flying adults we used a three way ANOVA analysis between the proportion of the taxa arcsine transformed and considering the factors: season, behavior (flying [sticky] or ovipositing [plataforms] traps) and diel periodicity (day or night). The effects of the interaction of the factors were not included in the model due to the low significance of the factors and the low number of degrees of freedom of the model. To analyze the seasonal changes in males and females ratios (response variable) we performed one way ANOVA, with sex as factor. All proportions were arcsine transformed. To analyze if relative abundance of gravid females (arcsine transformed) was different between seasons (wet or dry), diel periods (day or night) and behaviors (flying or ovipositing traps), we performed general linear model procedure for a three-way ANOVA. Also, in this analysis we did not include the effects of the interaction of the factors because of the low significance of the factors and the low number of degrees of freedom of the model. Due to the small numbers of individuals collected of some taxa we made the analysis only with those taxa that had a total abundance of more than 0.5 % of the individuals collected at least in one season. To assess seasonal differences in the number and density of egg masses, we conducted a Kruskal-Wallis analysis, due to the small number of egg masses found. Since, there were no significant differences between seasons of each taxa, a logistic multinomial regression was conducted with pooled data to understand which factors are the most important to explain the presence of an egg mass of each taxa at a rock. The logistic multinomial regression was performed with the factors: rock area, surrounding velocity, and emergence/submerged. To determine which physical characteristics of the rock may influence the abundance of egg masses (number of egg masses/rock) we performed a 82 CHAPTER 4:Oviposition of Aquatic Insects negative binomial regression with pooled data. The factors in the model were: rock emergence (categorical), surrounding velocity and area (continuous factor). Following Reich & Downes ( 2003a), we use the number of egg masses per rock for the analysis instead of the density of egg masses per rock area, because we did not have evidence of a consistent relationship between egg mass abundance and rock size across a wide range of rock dimensions. The negative binomial regression allowed us to analyze the count of egg masses with categorical and continuous factor. A best subset selection of the factors was done to produce the best possible model. As explained above, we did not separate the data from each season due to the small number of egg masses collected for each taxon. We made the negative binomial regression only for most abundant taxa. To analyze the relationship between the larvae present in the stream with that of adult stages we performed a Spearman correlation analysis with the proportions of the taxa found at each type of sample (aerial, drift, benthos). Also, we use a Non Metric Multidimentional Scaling (NMDS) with the Bray Curtis Similarity, obtained from the proportions of taxa at each type of sample (arcsine transformated) to address the same issue. For all statistical analysis we used SPSS 15, Primer 6 and Statgraphics Centurion statistical software. Results Aerial stages of aquatic insects We found a total 822 adults of terrestrial invertebrates (from 13 orders) and 2383 adults of aquatic insects in the sticky traps, of five orders: Ephemeroptera, Trichoptera, Coleoptera, Plecoptera and Diptera corresponding to 28 families (Appendix 1). Dipterans were the 88.8% of the total individuals collected. Eighteen taxa (at family level) were found at both seasons while five were found only at the wet season and three were exclusive of the dry season. Richness and the relative abundance of most taxa was not significantly different between seasons, behaviors or diel period. Only adults of Ephydridae (Diptera) had 83 CHAPTER 4:Oviposition of Aquatic Insects significant higher abundance at the wet season and those of Ochrotrichia (Trichoptera) at the dry season (Table 1). The proportion of males and females was significantly different for Ceratopogonidae and Chironomidae presenting greater proportions of females during both seasons (Table 2), while Baetidae and Ochrotrichia had a significant greater proportion of females only at the dry season. For the other taxa present at both seasons not significant differences were founded between sex ratios. During both sampling periods we found females with eggs for a total of 15 different taxa (13 in the dry season and 14 in the wet season). Females of Chironomidae family were the taxa most commonly found with eggs. A description of the eggs found gravid females of most abundant taxa is detailed in Table 3. We did not find significant differences in the proportion of females with eggs between seasons, diel periods or different behaviors (sticky vs. platform traps) of the different taxa. The only exception was Nectopsyche, in which we found significant greater proportions of females in traps placed at night time (Table 4) suggesting a nocturnal behavior. Oviposition patterns Only a small number of rocks had egg masses, 10% at dry season while at wet seasons of 2006 and 2007 the proportion was 18 and 13 %, respectively. We found a total of 147 egg masses of five types (Table 5) in rocks. Most of them were from Baetidae and Chironomidae with 91 and 41 egg masses respectively together with few egg masses of Ceratopogonidae, Hydrobiosidae and Nectopsyche were also found (Table 5). With the pooled data, we did not found significant differences in both, number of egg masses or masses per rock area, between seasons (Kruskal-Wallis test: H ( 2, N= 257) =2.620 p =0.270). Due to the small numbers of egg masses recorded we only made the statistical analysis, to test differences in seasonality, for Baetidae and Chironomidae. We did not found significant seasonal differences in the presence and abundance of egg masses (as direct counting) both for Chironomidae (Kruskal-Wallis ANOVA: 84 CHAPTER 4:Oviposition of Aquatic Insects H (2, N= 257) =1.438011 p =0.4872; H (2, N= 257) =1.337896 p =0.5122) and Baetidae (Kruskal-Wallis ANOVA: H (2, N= 257) =5.311986 p =0.0702; H ( 2, N= 257) =5.340174 p =0.0692). Table 1. Summary of the three way ANOVA (d.f=7) of adults of aquatic insects between seasons, behaviors and diel period at Piburja stream, Ecuador. pvalues significant after Bonferonni progressive correction are in bold. Taxa richness Elmidae Staphilinidae Blepharoceridae Ceratopogonidae Chironomidae Dolichopodidae Empididae Ephydridae Muscidae Psychodidae Simuliidae Tabanidae Tipulidae Baetidae Atopsyche Ochotrichia Nectopsyche F/p F p F p F p F p F p F p F p F p F p F p F p F p F p F p F p F p F p F p season 1.200 0.335 0.612 0.478 2.168 0.215 2.639 0.180 2.014 0.229 2.251 0.208 6.068 0.069 1.242 0.327 18.319 0.013 1.640 0.270 4.521 0.101 0.161 0.709 1.934 0.237 1.453 0.295 0.665 0.461 0.288 0.620 19.776 0.011 8.544 0.043 Behavior 0.000 1.000 0.219 0.664 5.062 0.088 0.081 0.790 7.092 0.056 1.667 0.266 17.568 0.014 3.109 0.153 4.061 0.114 1.104 0.353 0.836 0.412 0.004 0.951 0.679 0.456 3.686 0.127 0.113 0.753 0.944 0.386 0.309 0.608 0.688 0.453 Diel period 0.533 0.506 0.022 0.888 0.262 0.636 0.324 0.600 0.773 0.429 0.407 0.558 1.339 0.312 0.000 0.990 1.952 0.235 2.494 0.189 1.747 0.257 4.451 0.103 0.227 0.659 7.756 0.050 0.163 0.707 2.398 0.196 0.882 0.401 14.211 0.020 85 CHAPTER 4:Oviposition of Aquatic Insects Table 2. Summary of the one way ANOVA of adult sex proportions (arcsine transformed) in the two sampled seasons at Piburja stream, Oyacachi, Ecuador. Only taxa that presented significant differences are presented, in all significant cases females were more abundant. Taxa d.f DRY SS MS F p WET SS MS F p Ceratopogonidae 1 0.2136 0.2136 35.2373 0.001 0.1757 0.1757 7.2957 0.035 Chironomidae 1 2.1684 2.1684 333.729 0.000 1.9749 1.9749 10409.541 0.000 Baetidae 1 2.2757 2.2757 23.3990 0.003 1.4479 1.4479 4.1220 0.089 Ochotrichia 1 0.7132 0.7132 47.3120 0.000 1.4597 1.4597 3.8007 0.099 Table 3. Number and characteristics of eggs found inside the abdomen of gravid females. Females were collected attached to sticky traps located above stream sections at Piburja stream, Oyacachi, Ecuador. form max. diameter (mm) color taxa N number of eggs/female Chironomidae 406 31-1000 elliptical 0.1 white-yellowish Ceratopogonidae 39 60-300 spherical 0.1 white Simuliidae 26 100-1000 elliptical 0.12 white-yellowish Tipulidae 23 21-105 spherical 0.1 white-yellowish Hydroptilidae 10 40-100 ovoid 0.12 white Baetidae 7 15 - 150 spherical 0.08 light yellow Dolichopodidae 5 300-1000 elliptical 0.05 yellow Tabanidae 5 29-145 elliptical 0.24 brown-yellowish Nectopsyche (Leptoceridae) 4 19-40 spherical 0.2 white Hydrobiosidae 4 200-300 spherical 0.05 white None of the rock attributes used as predictors of the presence of egg masses showed a significant relationship for Chironomidae and Baetidae. The logistic regression model adequately fits the data of the predictors and the presence/absence of egg masses both for Chironomidae (X2 =8.131, df=8, p=0.421) and Baetidae (X2 = 6.574, df=8, p=0.583). 86 CHAPTER 4:Oviposition of Aquatic Insects Table 4. Summary of the p-values of the 3 way ANOVA (d.f=7) performed using the proportion (arcsine transformed) of gravid females found at each season, behaviors, or diel period, at Piburja stream, Ecuador. Psychodidae Simuliidae Tabanidae Tipulidae Baetidae Atopsyche Cailloma Ochotrichia Nectopsyche F p F p F p F p F p F p F p F p F p Intercept 3.571 0.132 6.291 0.066 2.944 0.161 4.613 0.098 6.391 0.065 2.841 0.167 1.000 0.374 5.443 0.080 18.235 0.013 season 3.571 0.132 1.373 0.306 0.366 0.578 0.003 0.957 0.014 0.910 0.476 0.528 1.000 0.374 1.575 0.278 3.615 0.130 14 behavior 3.571 0.132 6.291 0.066 0.558 0.497 0.418 0.553 0.014 0.910 0.037 0.857 1.000 0.374 0.114 0.752 0.128 0.738 diel period 0.143 0.725 2.506 0.189 0.133 0.734 1.034 0.367 0.362 0.580 0.646 0.467 1.000 0.374 0.014 0.910 18.235 0.013 emergent submerged 12 Egg masses 10 8 6 4 2 0 Baetidae Baetidae Chironomidae Chironomidae Figure 1. Mean number for egg masses present in emergent or submerged rocks at Piburja stream (Ecuador) for the two most abundant families. Error bars represent one standard error of the mean. Most part of egg masses were located at emergent rocks (Figure 1), and in contrast to the absence of relation with the rock attributes and the presence of egg masses, the number of egg masses per rock showed significant relationship 87 CHAPTER 4:Oviposition of Aquatic Insects with rock attributes for the family Baetidae. The best predictors for Baetidae egg mass abundance in the Negative bionomial regression were rock emergence and rock area (Table 6, Figure 2). Despite this significant relation, the explained percentages of the deviance by the model was only 32,85 % for Baetidae (and a scarce 2,36 % for Chironomidae). The equations of the models for each taxa were: Baetidae egg mass abundance = exp(-4,07531 + 48,2988*area + 0,83398* rock emergence) Chironomidae egg mass abundance = exp(-3,21588 + 18,4374*area + 1,0932* rock emergence) 2 Were area is m , velocity is m*s-1 and rock emergence= emergent/submerged Plot of Fitted Model Chironomidae with 95.0% confidence limits 12 Egg Masses Emergent rock 9 6 3 0 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 Area Plot of Fitted Model Baetidae with 95.0% confidence limits 50 Emergent Rock Egg masses 40 30 20 10 0 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 Area Figure 2. Negative Binomial regression model predicting the egg mass 2 abundance for Baetidae and Chironomidae. Area in squared meters (m ). 88 CHAPTER 4:Oviposition of Aquatic Insects Table 5. Description of egg masses found in rocks at Piburja stream (Ecuadorian Andes) during the dry season (2007) and wet seasons (2006 and 2007). Egg size (max. egg diameter; mm) Number of eggs per mass Most frequent substrate # egg masses Season Description Baetidae 91 dry &wet yellowish egg masses with yellow white circular eggs 0.08 31-62 Nectopsyche 4 wet Transparent egg mass encapsulated with clear yellow eggs forming lines. Ovoid eggs 0.10 120-360 submerged median rocks Hydrobiosidae 5 dry &wet transparent spherical egg mass with circular white eggs 0.05 236-380 Large emergent rocks small larvae (31) also founded at masses with a size of larvae with sizes around 0.2 mm Diamesinae (Chironomidae) 13 dry &wet Transparent egg mass encapsulated with clear yellow eggs forming lines. Ovoid eggs 0.18-0.20 172-1062 Large emergent rocks small larvae (840) were found in one mass. Each larvae of 0.53 mm long Chironomidae 28 dry &wet transparent encapsulated with white eggs forming a worm like mass 0.10-0.20 310-999 Large emergent rocks small larvae (87) were found in one mass. Each larvae of 0.55 mm long Ceratopogonidae 6 wet brownish egg mass. Circular eggs. 0.10 120-280 Median emergent rocks Taxa Observations Large emergent rocks 89 CHAPTER 4:Oviposition of Aquatic Insects Table 6. Results of the negative binomial regression (d.f.=2), assessing whether rock attributes were significant predictors of egg mass abundance for Chironomidae and Baetidae. When the variable was not included in the model is marked by (-).Bold p values are significant after Bonferroni correction. Prediction of abundance of egg masses Rock attributes Chironomidae Baetidae X2 p X2 p rock emergence -2,497 1.000 7,963 0.005 Surrounding water velocity - - - - 0,674 0.412 149,283 0.000 rock area Comparison of the faunal composition from the aquatic and aerial stages We have compared the percentage of individuals in the aerial samples with the percentage of importance of the same taxa in drift and benthos Surber samples in both seasons sampled (Table 7). The Chironomidae, are the most important family for all types of samples (data from Rios, chapter 1 and 2), together with Ceratopogonidae which are also important in both aerial and benthic samples. The most important difference between the aerial and aquatic samples is that Baetidae (wet season) and Nectopsyche (dry season) are underrepresented in the aerial samples, because the dominance of Diptera in the aerial traps. The Spearman correlations between the proportions of taxa in aquatic samples (drift of benthos Surber samples) with the proportion of adults were not significant. Only at the dry season we found a significant correlation, but with a low R value, between the proportion of taxa samples in drift with adults samples (R=0.444, p=0.0263). This absence of relation was clearly shown by the NMDS analysis (Fig. 3.). 90 CHAPTER 4:Oviposition of Aquatic Insects Table 7. Percentage of abundance (adults) and density (drift and benthos) of aquatic and aerial stages of benthic fauna at Piburja stream (Ecuador) during the wet (2006) and the dry season (2007). The most important value for each category is in bold and the second and third values, in order of importance are in italic. WET DRY taxa adults drift benthos adults drift benthos Chironomidae 48.66 32.54 Ceratopogonidae 12.61 1.13 52.76 32.07 31.03 34.78 6.41 16.43 2.61 Tipulidae 7.78 0.64 8.41 0.9 4.03 2.75 0.37 0.25 Dolichopodidae 6.08 0.03 - 19.67 3.8 Staphilinidae 4.38 - - 8.21 - - Simuliidae 4.29 10.22 2.44 4.74 12.75 3.35 Muscidae 2.29 1.07 0.15 6.44 0.04 0.11 Chelifera 1.61 1.63 1.72 1.11 2.27 1.81 Hydrobiosidae 1.03 0.88 0.54 1.52 0.73 1.27 Tabanidae 0.98 0.07 0.05 0.39 - - Nectopsyche 0.81 4.43 4.16 0.16 12.95 11.31 Baetidae 0.63 20.04 13.01 1.03 3.54 3.02 Blephariceridae 0.54 0.85 - - 0.72 0.09 Blepharoceridae 0.54 0.85 - - 0.72 0.09 Ochrotrichia 0.36 5.15 1.08 2.06 4.47 3.6 Maruina 0.36 1.12 0.45 5.61 3.14 0.5 Total Elmidae 0.36 0.61 2.08 0.16 0.2 5.28 Anomalopsychidae 0.27 0.07 - - - 1.02 Ephydridae 0.16 5.72 0.04 1.88 0.4 0.04 Leptohyphes 0.09 0.58 1.26 0.16 0.1 4.17 Lampyridae 0.09 0.2 0.05 0.08 0.24 - Haliplidae 0.09 - - - - 0.02 Culicidae 0.09 - - - - Syrphidae 0.09 - - - - Stratiomyidae - 1.6 0.54 0.32 2.89 Cochliopsyche - 0.29 0.63 0.08 0.32 0.35 1.74 Gripopterygidae - 0.42 0.99 0.16 0.55 1.73 Leptophlebiidae - - - 0.08 - - 91 CHAPTER 4:Oviposition of Aquatic Insects Figure 3. Non Metric Multidimentional Scaling based on the Bray Curtis Similarity of the proportion of taxa present at drift, benthos and adult samples of Piburja Stream, Ecuador. Discussion Studies on oviposition and the relationship between the benthic fauna and the adults present in a stream are scarce and mainly from temperate streams (Ward and Cummins 1978, Allan and Flecker 1989, Peckarsky and McIntosh 1998, Peckarsky et al. 2000, Wissinger et al. 2003, Encalada and Peckarsky 2006, Petersen et al. 2006, Encalada and Peckarsky 2007, Encalada and Peckarsky in prep.). The few studies on tropical streams show that continuous emergence and long flight period seems to be the rule with dominance of Diptera and variable sex ratio (Wolf et al. 1988, Flint 1991). Our results showed that in the tropical mountain Piburja stream the richness and relative abundance of adults do not present differences between the sampled seasons, except for Ephydridae and Ochrotrichia (but only few individuals of these two taxa were collected). Also that dipterans were the dominant order always, that, for most abundant taxa, gravid females were present and in similar proportions at both seasons, while 92 CHAPTER 4:Oviposition of Aquatic Insects egg masses, were scarce in contrast to the available data from other geographical areas. The diversity of the egg masses were also low and again did not showed seasonal changes. Only a relationship between the rock area, the emergent rocks and the number of Baetidae egg masses was observed. In summary, our data agree with other studies on tropical areas, and seasonality is not present in the structure and composition of adult aquatic insects. However, some previous results disagree with this general pattern, for example seasonality has been reported for some Ephemeroptera taxa in tropical streams (Sweeney et al. 1995), or in another study in New Zealand, at least the 50 % of the species Trichoptera adults were found only six of the twelve months of the year (Smith et al. 2002). In our case we found strong seasonal differences on density of Baetodes and Nectopsyche larvae (chapter 1) and therefore a similar seasonality to that of the New Zealand streams could be present in Piburja stream at least for these taxa. However, with the adult sampling focused only in a week at each season, we are not able to define if the taxa is present or not during the whole year. Seasonal differences in larval densities of these two taxa could be related to post recruitment control of local population by processes operating in the larval stage (Peckarsky et al. 2000) more than factors related to adult presence. Chironomidae are the dominant taxa in our adult samples, as in other studies on Andean areas (Wolf et al. 1988, Flint 1991), while the number of Ephemeroptera, Plecoptera and Trichoptera (EPT) was low. This was coincident with a previous study that found that the total EPT individuals were less than a hundred after one year of monthly continuous sampling, using sticky traps (Winterbourn and Crowe 2001). Despite the conspicuousness of Chironomidae, behavioral patterns of mating and oviposition are generally not studied while several studies exist for Ephemeroptera (Sweeney et al. 1995, Peckarsky et al. 2000, Encalada and Peckarsky 2006, 2007), Trichoptera (Komzak 2001, Lancaster et al. 2003, Reich and Downes 2003b) and Plecoptera (Petersen et al. 2006). Data on mating and ovipositing behavior of Chironomidae is scarce, 93 CHAPTER 4:Oviposition of Aquatic Insects and only descriptions of egg masses are known (Branch 1928, Hinton 1981, Nolte 1993). Due to the importance of Chironomidae more studies are needed about reproductive strategies of these aquatic insects. Sex ratio reported in previous studies of tropical streams is highly variable. For example Winterbourn et al. (2007) found a higher proportion males of hidroptilids while Wolf et al. ( 1988) report a higher proportion of females in the same family. In our case, Ceratopogonidae and Chironomidae presented a higher proportion of females and this pattern has been also reported for emergence in Colombian Andean rivers (Wolf et al. 1988). The same pattern was found for Baetidae and Ochrotrichia, but due to the few individuals collected this result must be confirmed in future. The proportion of females with eggs did not differ between seasons at least for the most abundant taxa present in the stream. This is coincident with the hypothesis of multivoltinism as the main strategy to maintain macroinvertebrate populations in this stream and is coincident with previous evidence for Neotropical but lowland rivers (Jackson and Sweeney 1995). The small numbers of non-dipterans aquatic insects trapped restrict our conclusions, but as they were present in both seasons we can suppose that they are able to reproduce any time of the year. This does not mean that there is not a preferred season for oviposition of some taxa, but longer and more frequent trapping times is needed to found seasonal patterns. Again our benthic data (Chapter 1 and 2) suggested that for some taxa (Nectopsyche, Baetodes) seasonal changes in density may also indicate changes in adult emergence. Alternatively differences on egg survival may explain differences in benthic density while the number of adults and females with eggs are similar between seasons. The types of egg masses found coincide with the literature (Hickin 1968, Hinton 1981, Reich 2004) for the same families, but few types and egg masses were found compared to from Australian rivers (Reich and Downes 2003a, Reich 2004, Encalada and Peckarsky 2007) and in temperate mountain streams (Encalada and Peckarsky 2007). Unlike the above mentioned studies, there is not a high season of reproduction and therefore this indicates again the 94 CHAPTER 4:Oviposition of Aquatic Insects aseasonality of reproductive traits in this stream. But our sampling method was focused in egg masses in rocks, and a greater diversity of oviposition sites might be present at the stream which could change our results. For example several aquatic insects just release the eggs when flying above the water (Hinton 1981, Encalada and Peckarsky 2007). Another interesting result is that the great majority of egg masses were from Baetidae, in contrast to the adult patters where Chironomidae dominates. One explanation for this fact may be that the presence of egg masses is not always related to the presence or emergence of adults of the same taxa in the same site. For example Peckarsky et al. (2000) found that Baetis eggs appeared before any adults had emerged at that site. Evidences of a non random distribution on egg masses and specialized behaviors for aquatic taxa have been previously documented (Gillett 1971, Reich and Downes 2003a, Reich and Downes 2003b, Encalada and Peckarsky 2006). The fact that almost all egg masses found at Piburja stream were on emergent large rocks suggest that this is the preferred substrate for oviposition, although we were able to analyze only the relation of the egg masses of Baetidae and Chironomidae with rock characteristics. The same tendency was previously described for Baetis (Peckarsky et al. 2000) and in Australian rivers for Trichoptera and Diptera (Reich and Downes 2003a, Reich 2004). This fact might be attributed to an increase hydrological stability of larger substrates that may reduce egg mortality (Peckarsky et al. 2000). Since strong unpredictable changes in flow can occur at the Piburja stream, choosing more stable substrate can have important consequences preventing egg mortality. This is especially important for Baetidae, that presented few gravid females compared to those of Chironomidae, and thus selective oviposition that increases egg survival appears as very important for population persistence of this taxa in this stream. Another fact that may explain differences in adult and larvae dominance may be hatching times. The short period of hatching of dipterans (Jackson and Sweeney 1995) could be an advantage for the survival of eggs and prevent egg stranding (Jackson and Sweeney 1995, Reich 2004). Taxa with longer developmental 95 CHAPTER 4:Oviposition of Aquatic Insects times as Ephemeroptera, Plecoptera and Trichoptera (Jackson and Sweeney 1995, Reich 2004), would need more specialization on ovipositing site selection to increase egg survival compared to Diptera. Also hatching times are temperature dependent for most part of these taxa (Brittain 1982, Brittain 1989) and is expected that developmental times last more at high altitude forested tropical streams, like Piburja, where the maximum registered temperature is 10 ºC. On the other hand the importance of diapause for certain insects described on temperate streams is probably absent for mountain Andean streams, but the importance of this mechanism has not been studied. The mechanisms involved and the implications in population dynamics remain unknown and different alternative explanations may be given for our results (oviposition behavior, adult maturity, adult dispersion, etc). This study was a first attempt to describe oviposition patterns in an Andean tropical mountain stream, and we provide evidence on multivoltinism as a generalized strategy, which is coincident with other studies in tropical areas. Also oviposition site selection for one taxa (Baetidae) was described. Moreover a more detailed taxonomic study that may determine differences at species level and much more time intensive research is needed to understand the importance of reproductive strategies in the population dynamics of highland altitude tropical streams. 96 CHAPTER 4:Oviposition of Aquatic Insects APPENDIX 1. Total individuals of adults collected in the sticky traps during the dry and the wet seasons. Individuals are separated by sex (females with or without eggs). DRY wet Gravid Gravid TAXA female females male female females male Elmidae 1 1 3 1 Haliplidae 1 Lampyridae 1 1 Staphilinidae 53 51 24 25 Blepharoceridae 2 3 1 Ceratopogonidae 91 22 95 61 17 63 Chironomidae 212 148 46 197 258 89 Culicidae 1 Dolichopodidae 124 3 122 33 2 33 Empididae 8 6 9 9 Ephydridae 1 1 13 8 Muscidae 14 15 36 1 35 Psychodidae 32 8 31 3 1 Simuliidae 17 24 19 27 2 19 Stratyiomydae 2 2 Syrphidae 1 Tabanidae 3 1 1 5 4 2 Tipulidae 16 8 27 25 15 47 Baetidae 7 4 2 2 3 2 Leptohyphidae 1 1 1 Leptophlebiidae 1 Gripopterygidae 1 1 1 1 1 Anomalopsychidae Atopsyche 4 1 6 3 2 6 Cailloma 2 2 1 2 Helicopsychidae 1 Ochotrichia 9 9 8 2 1 1 Nectopsyche 2 4 2 3 Total general 599 231 436 455 312 350 97 CONCLUSIONES Conclusiones Conclusiones y Resumen General Luego de abordar en profundidad los efectos de los cambios de caudal sobre la estructura de la comunidad de macroinvertebrados, estudiándolos durante dos épocas hidrológicamente distintas en el río Piburja y los mecanismos que pueden explicarlos, en cuatro capítulos diferentes, volvemos a las preguntas planteadas en un inicio para establecer las conclusiones de esta tesis. ¿Cuál es el efecto de la variación a corto plazo y estacional del caudal en la comunidad de macroinvertebrados y qué importancia potencial tienen los refugios y las características del microhabitat en la persistencia de las mismas? ¿Cuál es el efecto de la reducción del caudal en la comunidad de macroinvertebrados? La variación estacional de caudal en el río Piburja fue importante. Las comunidades de macroinvertebrados mostraron un patrón de variación que se corresponde con la variabilidad estacional del caudal. Encontramos una mayor riqueza, diversidad y densidad de la mayoría de las especies en la época seca, cuando los caudales del río son más estables. La excepción fue Baetodes, un taxa que fue dominante en la época de lluvias y su densidad tuvo una marcada disminución en la época seca. Estas diferencias podrían estar relacionadas a una mayor disponibilidad de zonas rápidas en el río durante esta época, que en el caso de Baetodes son las que más utiliza. La diferenciación de comunidades por microhábitats fue más marcada en la época seca mientras que en la época de lluvias la disposición espacial de los distintos taxa en el río fue más bien aleatoria. No encontramos evidencias del uso de zonas con menor stress hidrológico o refugios, en la época de caudal inestable (lluvias). Sin embargo ciertos taxa (p.e. Nectopsyche) tuvieron una tendencia constante a permanecer en zonas con poca corriente (de refugio), lo cual podría ser un comportamiento para evitar permanentemente zonas donde aumente la probabilidad de ser arrastrados por la corriente. 101 Conclusiones En general la respuesta de la comunidad del tramo de caudal regulado y el tramo prístino a los cambios estacionales de caudal fueron similares. Pese a esto, la reducción antropogénica del caudal produjo la disminución de ciertos taxa (Ochrotrichia, Claudioperla), en general las más sensibles a la reducción de oxígeno y por el contrario favoreció el aumento de la densidad de ciertos taxa más resistentes (Oligochaeta, Tricladida). ¿Hay periodicidad diaria en la deriva? ¿Cuál es la variación estacional en la composición de la deriva y que taxa está siendo más propenso a ser arrastrado por la misma? ¿Cómo afectan los patrones de deriva en la recolonización del sustrato? ¿Se diferencia la recolonización entre estaciones y microhábitats distintos? En general la comunidad no presentó una tendencia a derivar más en horas cercanas al atardecer como se ha visto en ríos de montañas templados. Solo dos taxa de efemerópteros (Baetodes y Leptohyphes) presentaron este comportamiento, que puede estar relacionado a la presencia de la especie introducida de trucha Oncorhynchus mykiss. Por otra parte, la deriva tuvo una fuerte variación estacional, siguiendo un patrón contrario al del bentos, ya que en general las densidades de la deriva de la mayoría de taxa aumentaron en la época de lluvias y disminuyeron en la época seca, provocando cambios estacionales en la estructura de la comunidad. Esto sugiere un aumento de la deriva accidental por aumento de caudal en la época de lluvias, que también fue corroborada con la mayor propensión a derivar de la mayoría de taxa en ésta época. La recolonización de piedras estuvo claramente influenciada por los cambios en la composición estacional de la deriva. Además, aquellas piedras localizadas en zonas rápidas tuvieron una composición taxonómica distinta de las encontradas en zonas lentas, con una tendencia general a tener mayor riqueza, diversidad y densidad en las primeras. El aumento de la densidad de Nectopsyche durante la época de lluvias en piedras localizadas en zonas lentas en comparación con 102 Conclusiones las muestras Surber del bentos, sugiere que este taxa busca activamente éstas zonas donde los efectos del flujo del agua son menores. En resumen la deriva tiene variaciones estacionales importantes y la recolonización está influenciada por estos cambios y por las condiciones del microhábitat. ¿Cuál es la importancia de las entradas de materia alóctona en un río altoandino? ¿Hay algún efecto estacional en el transporte, retención de ésta materia orgánica y qué implica para las comunidades de macroinvertebrados? ¿Qué taxa se están alimentando de este recurso? El río Piburja demostró ser un sistema heterotrófico. Las entradas de materia orgánica al río fueron constantes, pero no tuvieron una clara relación con el régimen de lluvias. Sin embargo las mayores entradas se produjeron en meses en que las lluvias fueron menos intensas y viceversa. Pese a que el transporte total no tuvo diferencias claras entre épocas, la retención aumentó considerablemente en la época seca. La materia orgánica acumulada tuvo relación con directa con la riqueza, diversidad y densidad de macroinvertebrados, especialmente en la época de lluvias cuando este recurso fue más escaso. Los recursos consumidos en mayor cantidad por la comunidad (de acuerdo con los contenidos intestinales), independientemente del grupo funcional alimenticio adjudicado por la literatura, fueron la materia orgánica particulada gruesa y fina en las dos épocas estudiadas. Esto sugiere que la comunidad en este río ha adaptado sus hábitos alimenticios a los recursos disponibles, y que por lo tanto puede ser que los mismos taxa en otras localidades consuman otros recursos. Esto reafirmaría el hecho de que en general, las comunidades de insectos acuáticos neotropicales tienen hábitos alimenticios flexibles. 103 Conclusiones ¿Cuál es la importancia del reclutamiento por ovoposición en ríos de altitud? ¿Hay efecto estacional? ¿Qué relación tienen los patrones observados en las formas acuáticas (bentos y deriva) con los observados en los estadios adultos? Encontramos muchos adultos de insectos acuáticos durante las dos épocas, la mayoría de ellos dípteros. La riqueza y abundancia relativa de adultos no presentó cambios significativos entre épocas, a excepción de dos taxa poco abundantes (Ephydridae and Ochrotrichia). En general encontramos muchos individuos volando y pocos ovopositando (pocas hembras con huevos, pocas masas de huevos) y esto fue similar en las dos épocas. Presumiblemente existe moltivoltinismo y la reproducción se daría durante todo el año, pero necesitaríamos datos por lo menos durante todo un año para realizar conclusiones más contundentes sobre este patrón. Encontramos poca diversidad y pocas masas de huevos (y muchas de ellas de Baetidae) en rocas durante las dos épocas, y la mayoría de ellas estaba en rocas grandes emergentes, probablemente debido a que son un sustrato más estable. Debido a que muchos taxa solo expulsan sus huevos sobre el agua, nuestro método de ubicación de masas de huevos excluye a otros taxa, cuyos huevos podrían encontrarse en otros sustratos del río. No hubo una clara relación entre la diversidad y abundancia relativa de adultos y las formas acuáticas (bentos o deriva). La principal similitud constituye la importancia que tiene tanto en el ambiente acuático como en el aire la familia Chironomidae. Por otro lado la principal diferencia constituye que las larvas de Baetodes, muy abundante en la época de lluvias, y las de Nectopsyche, muy abundante en la época seca, estuvieron poco representadas en las muestras de adultos. El tema de la ovoposición y su importancia en el reclutamiento es el que quizá deja más interrogantes. Es mucho lo que desconocemos sobre la historia de vida de los insectos acuáticos altoandinos mientras que su investigación es primordial para el estudio de las dinámicas poblacionales. 104 RESUMEN GENERAL Resumen General Capítulo 1. Comunidades de macroinvertebrados en un río Tropical Altoandino: La importancia del microhábitat, el caudal y la estacionalidad En este capítulo nos centramos en la importancia del microhábitat, el caudal y la estacionalidad en la estructuración de las comunidades de macroinvertebrados en el río. Los ríos altoandinos sufren cambios de caudal rápidos e impredecibles que sumados a la topografía variable propia de la zona (con fuertes pendientes) pueden provocar fuertes perturbaciones en el sustrato. Se desconocen en esta área los mecanismos usados por los distintos taxa presentes para recuperar las poblaciones luego de las crecidas. A escala espacial, las reducciones antropogénicas del caudal provocan cambios en la dinámica hidrológica del río y por lo tanto de las comunidades de macroinvertebrados. Por esta razón en este capítulo también incluimos datos de un tramo afectado por la desviación de agua para la cría de truchas, en el cuál el caudal base se reduce en un 50 por ciento. En este contexto las preguntas que se intentan responder en el primer capítulo son: ¿Cuál es el efecto de la variación a corto plazo y estacional del caudal en la comunidad de macroinvertebrados y qué importancia potencial tienen los refugios y las características del microhabitat en la persistencia de las mismas? ¿Cuál es el efecto de la reducción del caudal en la comunidad de macroinvertebrados? Para contestar estas preguntas realizamos muestreos Surber en cinco ocasiones durante cada época. En cada ocasión tomamos de 6 a 10 muestras Surber en dos tipos de microhábitat: zonas de fuerte corriente o rápidos y zonas con menores fuerzas hidrológicas a las que denominamos refugios. En cada Surber se midió la velocidad cercana al sustrato y la profundidad. Durante toda la época de muestreo colocamos un medidor en continuo de la profundidad a partir del cual pudimos obtener el caudal cada 10 minutos. Estos datos de caudal fueron relacionados a la composición y abundancia de las comunidades de macroinvertebrados presentes. La variación estacional de caudal en el río Piburja fue importante. La época seca tuvo un caudal menor y mucho más estable comparado con la época de 107 Resumen General lluvias, donde el caudal además de ser significativamente mayor que en la época seca, tuvo variaciones importantes en el tiempo (Fig 1. Capítulo 1). Las comunidades de macroinvertebrados mostraron un patrón de variación que se corresponde con la variabilidad estacional del caudal, en consecuencia las comunidades estuvieron estructuradas de forma distinta en las dos épocas (Fig 2, Capítulo 1). Encontramos una mayor riqueza, diversidad y densidad de la mayoría de las especies en la época seca, cuando los caudales del río son más estables (Fig 3a, Capítulo 1). En general los estudios previos realizados en los Andes muestran también este incremento en las métricas de la comunidad durante las épocas secas o de menos lluvias (Flecker and Feifarek 1994, Jacobsen and Encalada 1998, Jacobsen and Marín 2007, Perez and Segnini 2007). La excepción a esta tendencia general fueron dos taxa Baetodes y Macrelmis, especialmente el primero que fue dominante en la época de lluvias mientras que su densidad tuvo una marcada disminución en la época seca (Fig 3f, Capítulo 1). Estas diferencias podrían estar relacionadas a una mayor disponibilidad de zonas rápidas en el río durante esta época, que en el caso de estos dos taxa son las que más utilizan (Kohler and McPeek 1989, Peckarsky 1996, Zuñiga de Cardoso et al. 1997). Además de la variación estacional en las comunidades, también encontramos una diferenciación de éstas por microhábitats. Esta variación fue más marcada en la época seca mientras que en la época de lluvias la disposición espacial de los distintos taxa en el río fue más bien aleatoria (Fig. 2 y 3, Capítulo 1). Ciertos taxa como Simuliidae (Fig. 3e, Capítulo 1) tuvieron una preferencia por zonas de rápidos en las dos épocas y no encontramos para ellos evidencias del uso de zonas con menor stress hidrológico o refugios, en la época de caudal inestable (lluvias). Por otra parte, otros taxa como Nectopsyche (Fig. 3d, Capítulo 1) tuvieron una tendencia constante a permanecer en zonas con poca corriente (de refugio), lo cual podría ser un comportamiento para evitar permanentemente zonas donde aumente la probabilidad de ser arrastrados por la corriente. Este comportamiento ha sido evidenciado en condiciones controladas de caudal (en laboratorio) en otros tricópteros (Lancaster et al. 2006) 108 Resumen General En general la respuesta de la comunidad del tramo de caudal regulado y el tramo prístino a los cambios estacionales de caudal fueron similares. Pese a esto, la reducción antropogénica del caudal produjo la disminución de la abundancia de ciertos taxa (Ochrotrichia, Claudioperla), en general las más sensibles a la reducción de oxígeno y por el contrario favoreció el aumento de la densidad de los taxa más tolerantes (Oligochaeta, Tricladida). 109 Resumen General Capítulo 2. Los procesos de deriva y recolonización en un río Tropical Altoandino. En este capítulo tratamos de dos procesos fundamentales en el mantenimiento de las comunidades de macroinvertebrados de los ríos la deriva y la recolonización. De los estudios recientes sobre deriva en los trópicos sabemos que a nivel local la recolonización depende de la migración de los parches adyacentes, pero a nivel de secciones de río puede depender de la deriva de zonas más lejanas (Boyero and DeLope 2002, Boyero and Bosch 2004, Melo and Froehlich 2004). Sin embargo la mayoría de estos estudios se han realizado solo en una estación del año, generalmente la de menor lluvia, por lo tanto los cambios de composición de la deriva asociados al caudal y su influencia en la recolonización no ha sido abordada. Tampoco se sabe que taxa son más proclives a derivar. Además ríos tropicales que no poseen poblaciones de peces locales, pero que sin embargo poseen especies de peces introducidas (p.e. varias especies de truchas), han demostrado carecer de periodicidad en la deriva (Flecker 1992, Jacobsen and Bojsen 2002, Jacobsen 2008). Las interrogantes respecto a la deriva y a la recolonización, en el contexto de los ríos de alta montaña tropicales con perturbaciones de caudal impredecibles y a su vez temperatura media de 10 º C, son muchas. Entre otras preguntas que hemos intentado contestar en el capítulo dos de esta tesis están: ¿Hay periodicidad en la deriva? ¿Cuál es la variación estacional en la composición de la deriva y que taxa está siendo más propenso a ser arrastrado por la misma? ¿Cómo afectan los patrones de deriva en la recolonización del sustrato? ¿Se diferencia la recolonización entre estaciones y microhábitats distintos? Para contestar las preguntas relacionadas a la deriva realizamos dos tipos de muestreo. El primero fue un muestreo de 24 horas en caudal base, en luna nueva (en la época seca), con el que queríamos describir el patrón diario en la deriva del comportamiento. Con el segundo tipo de muestreo, realizado en las dos épocas en cuatro ocasiones en cada época a horas similares, queríamos estudiar las variaciones estacionales y relacionadas al caudal en la composición 110 Resumen General de la deriva. En estos muestreos se usaron de cuatro a seis réplicas en cada evento de muestreo. Para hacer los cálculos de propensión a la derivar de los distintos taxa se relacionó su densidad promedio por época en la deriva con la densidad promedio presentes en las muestras Surber tomadas durante los mismos periodos (Capítulo 1). La recolonización fue estudiada a dos escalas temporales: una corta, tomando en cuenta los 7 días en que según los estudios previos los procesos de recolonización se completan en el trópico; y una escala temporal a medio plazo (hasta 25 días) donde se pueden apreciar las variaciones a partir de una comunidad establecida y relacionarla con los cambios de caudal y situación hidrológica del microhábitat. Para esto utilizamos piedras previamente lavadas y marcadas y las colocamos en los dos microhábitats hidrológicos (zonas rápidas y zonas lentas o de refugio). El proceso de recolonización fue analizado y relacionado con la composición de la deriva y del bentos. Al contrario que en los ríos de montaña de las zonas templadas (Allan 1984, Allan 1987, Allan et al. 1988), la comunidad en general, no presentó una tendencia a derivar más en horas cercanas al atardecer. Solo dos efemerópteros (Baetodes y Leptohyphes) presentaron este comportamiento (Fig. 1, Capítulo 2), que puede estar relacionado a la presencia de la especie introducida de trucha Oncorhynchus mykiss. Este comportamiento ha sido ampliamente estudiado en efemerópteros de zonas templadas, donde se ha visto que el contacto con peces produce una mayor deriva en horas del atardecer (Allan 1978, Allan et al. 1986, McIntosh and Townsend 1994, Peckarsky and McIntosh 1998, McIntosh et al. 2002). También ha sido observado en Baetis en los Andes de Venezuela (Flecker 1992). La deriva tuvo una fuerte variación estacional, siguiendo un patrón contrario al del bentos, ya que en general las densidades de la deriva de la mayoría de taxa aumentaron en la época de lluvias y disminuyeron en la época seca, provocando cambios estacionales en la estructura de la comunidad (Fig. 2, Capítulo 2). Esto sugiere un aumento de la deriva catastrófica o accidental por 111 Resumen General aumento de caudal en algunas ocasiones en la época de lluvias, que también fue corroborada con la mayor propensión a derivar de la mayoría de taxa en ésta época (Fig. 3, Capítulo 3). Este patrón de cambio, es contrario a los encontrados en otros ríos tropicales (Brittain and Eikeland 1988). La recolonización de las piedras en los experimentos realizados estuvo claramente influenciada por los cambios en la composición estacional de la deriva. Además aquellas piedras localizadas en zonas rápidas tuvieron una composición taxonómica distinta de las encontradas en zonas lentas, con una tendencia general a tener mayor riqueza, diversidad y densidad en las primeras (Tabla 7, Capítulo 2). Este patrón de aumento de las métricas de la comunidad en las piedras localizadas en las zonas rápidas ha sido previamente reportada en ríos de Australia (Downes et al. 1995) y de Ecuador (Jacobsen, 1995). El aumento de la densidad de Nectopsyche durante la época de lluvias en piedras localizadas en zonas lentas en comparación con las muestras Surber del bentos, sugiere que este taxa busca activamente éstas zonas donde los efectos del flujo del agua son menores. En resumen se puede decir que en el río Piburja, la deriva tiene variaciones estacionales importantes y la recolonización está influenciada por los cambios hidrológicos que se producen y por las condiciones del microhábitat. 112 Resumen General Capítulo 3. Dinámica de la hojarasca y los macroinvertebrados asociados en un río tropical Altoandino. La entrada de materia orgánica alóctona en forma de hojarasca constituye la principal fuente de energía y nutrientes en los ríos de cabecera (Siccama et al. 1970, Anderson and Sedell 1979, Wallace et al. 1997, Graça 2001). Parte de esta energía es aprovechada por los consumidores y otra es exportada río abajo por acción de la corriente (Likens et al. 1970, Fisher and Likens 1973) y por ello existe un vínculo trófico entre las comunidades de los ríos de cabecera y los tramos más bajos de los ríos que está mediado por los descomponedores y detritívoros (Graça 2001). En los ecosistemas tropicales la información cuantitativa respecto a entradas, almacenamiento y ciclos de estas entradas se desconocen pese a que usualmente los ríos tropicales drenan áreas con vegetaciones densas y las entradas alóctonas probablemente son la principal fuente de energía (Graça et al. 2001a, Colón-Gaud et al. 2008). Debido a la escasa estacionalidad de los ríos tropicales (en términos de temperatura), estas entradas son potencialmente continuas durante todo el año, al contrario que en ríos de zonas templadas que reciben la mayor parte de entradas en otoño. Sin embargo, en el trópico y en los estudios realizados hasta el momento, los máximos de entrada de materia orgánica están asociados a tormentas (Covich 1988), o al comienzo (Gonçalves et al. 2006) o final de la estación de lluvias (Afonso et al. 2000). La capacidad de los ríos de retener estas entradas está relacionada a la morfología y heterogeneidad espacial del canal del río (Speaker et al. 1984, Lamberti et al. 1989) y está regulada no solo por las entradas del bosque adyacente sino también por la magnitud y variabilidad de la descarga (Pearson et al. 1989). En situaciones de caudales altos, la capacidad retentiva disminuye y aumenta el movimiento y redistribución de la hojarasca en el fondo del río (Larrañaga et al. 2003). El patrón general en el trópico es que mayores cantidades de hojarasca se acumulen durante las épocas secas (Covich 1988). Los estudios de zonas templadas han demostrado que la relación de esta materia alóctona acumulada en el río puede ser usada por la comunidad de 113 Resumen General macroinvertebrados como refugio (Palmer et al. 1996), o como recurso alimenticio por parte de los trituradores (Wallace and Webster 1996, Graça 2001, Graça et al. 2001b). Al contrario que en zonas templadas, en el trópico los trituradores al parecer no son una parte importante de la comunidad (Ramirez and Pringle 1998, Mathuriau and Chauvet 2002, Mathuriau et al. 2008), pero existe alguna evidencia de que en los ríos tropicales de montaña pueden tener más relevancia (Cheshire et al. 2005). Además el análisis de contenido del tracto digestivo de insectos acuáticos en ríos tropicales han demostrado que la mayoría de especies explota dos niveles tróficos, o se alimentan de más de un tipo de recurso (Wantzen et al. 2005, Tomanova et al. 2006, Wantzen and Wagner 2006). En este sentido, la importancia de la materia orgánica alóctona (hojarasca) como recurso alimenticio en los ríos tropicales de montaña es incierta, y probablemente ésta dependa de los recursos disponibles a nivel local, ya que al parecer los macroinvertebrados tropicales parecen tener hábitos alimenticios flexibles (Covich 1988). Para abordar este tema en el contexto de los ríos altoandinos, las preguntas que intentamos responder en el capítulo tres fueron: ¿Cuál es la importancia de las entradas de materia alóctona en un río altoandino? ¿Hay algún efecto estacional en el transporte, retención de ésta materia orgánica y qué implica para las comunidades de macroinvertebrados? ¿Qué taxa se están alimentando de este recurso? La hojarasca proveniente del bosque de ribera fue medida durante todo un año, por medio de canastas plásticas rectangulares (ocho) dispuestas sobre el canal del río. El material acumulado en las canastas fue colectado mensualmente. La retención, transporte y materia acumulada en el río fueron medidos durante las dos épocas hidrológicas distintas. Las entradas de materia orgánica al río fueron constantes, pero no tuvieron una clara relación con el régimen de lluvias, aunque la mayor entrada se produjero en meses en que las lluvias fueron menos intensas y viceversa (Fig. 1, Capítulo 3). Pese a que el transporte total no tuvo diferencias claras entre épocas, la 114 Resumen General retención aumentó considerablemente en la época seca (Fig.2 y Fig. 3, Capítulo 3). La materia orgánica acumulada tuvo relación con directa con la riqueza, diversidad, densidad total y de grupos funcionales alimenticios, especialmente en la época de lluvias cuando este recurso fue más escaso (Tabla 5, Capítulo 3), y por otro lado, cuando durante la época seca, cuando encontramos más materia orgánica acumulada en el río, hubo un incremento en la densidad de todos los grupos funcionales alimenticios (Tabla 6, Capítulo 3). Los recursos consumidos en mayor cantidad por la comunidad (de acuerdo con los contenidos intestinales), independientemente del grupo funcional alimenticio adjudicado por la literatura, fueron la materia orgánica particulada gruesa y fina en las dos épocas estudiadas (Fig.6, Capítulo 3). Las preferencias alimenticias no se diferenciaron en las dos épocas. Estos resultados sugieren que la comunidad en este río ha adaptado sus hábitos alimenticios a los recursos disponibles, y que por lo tanto puede ser que los mismos taxa en otras localidades consuman otros recursos. Esto reafirmaría el hecho de que en general, las comunidades de insectos acuáticos neotropicales tienen hábitos alimenticios flexibles. 115 Resumen General Capítulo 4. Ovoposición de los Insectos acuáticos en un río tropical altoandino. Este capítulo se centra en la Ovoposición de los insectos acuáticos del río Piburja. El papel del reclutamiento en las comunidades acuáticas es poco conocida (Encalada et al. en prep.), y la poca información que existe sobre ovoposición está restringida al hemisferio norte (Hinton 1981, Brittain 1989, Merritt and Cummins 1996). Sin embargo, es de esperar que en zonas templadas, sea solo importante durante los meses de primavera y verano, cuando los insectos que han emergido para la reproducción vuelven al agua a depositar sus huevos. La estrategia del univoltinismo favorece que los estadios aéreos ocurran cuando las condiciones para la reproducción y ovoposición son más favorables. Las zonas tropicales por el contrario carecen de esta marcada estacionalidad en la temperatura y en este contexto, el multivoltinismo es una estrategia que puede ser altamente beneficiosa para la persistencia de las comunidades. Esta estrategia ha sido reportada para varios insectos tropicales (Collier and Smith 1995, Jackson and Sweeney 1995) principalmente de altitudes bajas. Por el momento los datos de historia de vida y ovoposición de insectos andinos de alta montaña son inexistentes (Jacobsen 2008). Sin embargo, conocer este aspecto es fundamental para entender la persistencia de las comunidades en las condiciones ambientales más restrictivas de la alta montaña, como es la temperatura media más baja (~10ºC en Ecuador) y donde la saturación de oxígeno está afectada por la altitud (Jacobsen 2008). En este contexto, las interrogantes en este tema fueron: ¿Cuál es la importancia del reclutamiento por ovoposición en ríos de altitud? ¿Hay efecto de la estacionalidad hidrológica? ¿Qué relación tienen los patrones observados en las formas acuáticas (bentos y deriva) con los observados en los estadios adultos? En el cuarto capítulo de esta tesis intentamos responder a estas preguntas. Para contestar estas preguntas realizamos muestreos durante la época seca y la época de lluvias. En los muestreos empleamos dos tipos de trampas con pegamento: las trampas de vuelo, hojas de acetato con pegamento que estaban 116 Resumen General suspendidas en transectos transversales en el río (en total 18 trampas) y trampas de ovoposición que consistían en hojas de acetato dispuestas en plataformas de plywood negro (en total 24 trampas). Estas fueron colectadas durante dos días y dos noches en cada época. También muestreamos huevos en las rocas del río (85 en cada época) y de cada roca registramos la velocidad circundante, el área y si estaba sumergida en el agua o emergía de la misma. Encontramos muchos adultos de insectos acuáticos durante las dos épocas, la mayoría de ellos dípteros. La riqueza y abundancia relativa de adultos no presentó cambios significativos entre épocas (Tabla 1, Capítulo 4), a excepción de dos taxa poco abundantes (Ephydridae and Ochrotrichia). En general encontramos muchos individuos volando y pocos ovopositando (pocas hembras con huevos, pocas masas de huevos) y esto fue similar en las dos épocas. Presumiblemente existe multivoltinismo y la reproducción se daría durante todo el año, pero necesitaríamos datos por lo menos durante todo un año para obtener conclusiones más contundentes sobre este patrón. Encontramos poca diversidad y pocas masas de huevos en rocas durante las dos épocas, y la mayoría de ellas estaba en rocas grandes emergentes (Tabla 5, Capítulo 4), probablemente debido a que son un sustrato más estable. Las masas de huevos de Baetidae fueron las más comunes, y éstas presentaron una relación significativa de la abundancia de masas de huevos con el área de la roca y el hecho de que ésta sea emergente (Tabla 6, Capítulo 4). Debido a que muchos taxa expulsan sus huevos sobre el agua, nuestro método de ubicación de masas de huevos excluye a aquellos taxa, cuyos huevos no han sido depositados en rocas directamente. No hubo una clara relación entre la diversidad de adultos y las formas acuáticas (Tabla 7, Fig.3 Capítulo 4). La principal similitud constituye la importancia que tiene tanto en el ambiente acuático como en el aire la familia Chironomidae. Por otro lado la principal diferencia constituye que Baetodes, muy abundante en la época de lluvias, y Nectopsyche, muy abundante en la época seca, estuvieron poco representadas en las muestras de adultos. El tema de la ovoposición y su 117 Resumen General importancia en el reclutamiento es el que quizá deja más interrogantes. Es mucho lo que desconocemos sobre la historia de vida de los insectos acuáticos altoandinos y su investigación primordial para el estudio de las dinámicas poblacionales. 118 BIBLIOGRAFIA Bibliografía Abelho, M. 2001. From Litterfall to Breakdown in Streams: A Review. The Scientific World Journal 1:656-680. Acosta, R. 2005. Caracterización de la Comunidad de Macroinvertebrados Bentónicos de la Cuenca Altoandina del río Cañete (Lima, Perú). Pages 93 pp. in Trabajo de Investigación del programa de Doctorado y Diplomado en Estudios Avanzados en Ecología.Universitat de Barcelona., Barcelona, España. Afonso, A. A. d. O., R. Henry, R. Rodella, and C. S. Maimoni. 2000. Allochthonous matter input in two different stretches of a headstream (Itatinga, São Paulo, Brazil). Brazilian Archives of Biology and Technology 43:335-343. Allan, J. 1987. Macroinvertebrate drift in a Rocky Mountain stream. Hydrobiologia 144:261-268. Allan, J. D. 1978. Trout predation and the size composition of stream drift. Limnology and Oceanography 23:1231-1237. Allan, J. D. 1984. The size composition of invertebrate drift in a Rocky Mountain stream. Oikos 43:68-76. Allan, J. D., A. S. Flecker, and N. L. Mcclintock. 1986. Diel epibenthic activity of mayfly nymphs,and its nonconcordance with behavioral drift. Limnology and Oceanography 31:1057-1065. Allan, J. D., and M. M. Castillo. 2007. Stream Ecology: Structure and function of running waters, 2nd ed. edition. Springer. Allan, J. D., and A. S. Flecker. 1989. The mating biology of a mass-swarming mayfly. Animal Behaviour 37:361-371. Allan, J. D., A. S. Flecker, S. Segnini, D. C. Taphorn, E. Sokol, and G. W. Kling. 2006. Limnology of Andean piedmont rivers of Venezuela. Journal of the North American Benthological Society 25:66-81. Allan, J. D., G. N. Herbst, R. Ortal, and Y. Regev. 1988. Invertebrate drift in the Dan River, Israel. Hydrobiologia 160:155-163. Allan, J. D., and E. Russek. 1985. The Quantification of Stream Drift. Canadian Journal of Fisheries and Aquatic Sciences 42:210-215. 121 Bibliografía Anderson, N. H., and J. Macroinvertebrates in R. Sedell. Stream 1979. Detritus Ecosystems. Processing Annual Review by of Entomology 24:351-377. Baba, M., and H. Takaoka. 1989. Oviposition sites and the number of larval instars of two mountain blackfly species, Simulium japonicum and S. rufibasis (Diptera: Simuliidae). Japanese Journal of Sanitary Zoology 40:307-313. Baba, M., and H. Takaoka. 1991. Oviposition Habits of a Univoltine Blackfly, Prosimulium-Kiotoense (Diptera, Simuliidae), in Kyushu, Japan. Medical and Veterinary Entomology 5:351-357. Báez, S., F. Cuesta, and M. Peralvo. 1999. Caracterización vegetal de la cuenca alta del Río Oyacachi, Reserva Ecológica Cayambe-Coca. in EcoCiencia, Quito, Ecuador. Bañuelos, R., S. Larrañaga, A. Elosegi, and J. Pozo. 2004. Effects of eucalyptus plantations on CPOM dynamics in headwater streams: a manipulative approach. Archiv für Hydrobiologie 159:211-228. Benson, L. J., and R. G. Pearson. 1987. The role of drift and effect of season on macroinvertebrate colonization of implanted substrata in a tropical Australian stream. Freshwater Biology 18:109-116. Bergey, E. A. 2005. How protective are refuges? Quantifying algal protection in rock crevices. Freshwater Biology 50:1163-1177. Binckley, C. A., and W. J. Resetarits. 2005. Habitat selection determines abundance, richness and species composition of beetles in aquatic communities. Biology Letters 1:370-374. Binckley, C. A., and W. J. Resetarits. 2008. Oviposition behavior partitions aquatic landscapes along predation and nutrient gradients. Behavioral Ecology 19:552-557. Boulton, A. J., G. M. Spangaro, and P. S. Lake. 1988. Macroinvertebrate Distribution and Recolonization on Stones Subjected to Varying Degrees of Disturbance - an Experimental Approach. Archiv Fur Hydrobiologie 113:551-576. 122 Bibliografía Boyero, L., and J. Bosch. 2002. Spatial and temporal variation of macroinvertebrate drift in two neotropical streams. Biotropica 34:567574. Boyero, L., and J. Bosch. 2004. Multiscale spatial variation of stone recolonization by macroinvertebrates in a Costa Rican stream. Journal of Tropical Ecology 20:85-95. Boyero, L., and J. L. DeLope. 2002. Short-term recolonization of stones in a tropical island stream. Marine and Freshwater Research 53:993-998. Bradley, R. S., M. Vuille, H. F. Diaz, and W. Vergara. 2006. CLIMATE CHANGE: Threats to Water Supplies in the Tropical Andes. Science 312:17551756. Branch, H. E. 1928. Description and identification of some Chironomid egg masses. Annals of the Entomological Society of America 2:566-570. Brittain, J. E. 1982. Biology of mayflies. Ann. Rev. Entomol. 27:119--147. Brittain, J. E. 1989. Life history strategies in Ephemeroptera and Plecoptera. Series Entomologica (Dordrecht) 44. Brittain, J. E., and T. J. Eikeland. 1988. Invertebrate drift A review. Hydrobiologia 166:77-93. Bunn, S. E. 1986. Origin and fate of organic matter in Australian upland streams. Pages pp. 277–291. in P. a. W. de Dekker, W.D., Eds., editor. Limnology in Australia. CSIRO Australia, Melbourne. Canhoto, C., and M. A. S. Graça. 1998. Leaf retention: a comparative study between two stream categories and leaf types. Verh. Internat. Verein. Limnol. 26:990-993. Caswell, H., and J. E. Cohen. 1991. Communities in patchy environments: a model of disturbance, competition, and heterogeneity. Ecological Studies. Cheshire, K., L. Boyero, and R. G. Pearson. 2005. Food webs in tropical Australian streams: shredders are not scarce. Freshwater Biology 50:748-769. Collier, K. J., and B. J. Smith. 1995. Sticky trapping of adult mayflies, stoneflies and caddisflies alongside three contrasting streams near Hamilton, New Zealand. New Zealand Natural Sciences 22:1-9. 123 Bibliografía Colón-Gaud, C., S. Peterson, M. Whiles, S. Kilham, K. Lips, and C. Pringle. 2008. Allochthonous litter inputs, organic matter standing stocks, and organic seston dynamics in upland Panamanian streams: potential effects of larval amphibians on organic matter dynamics. Hydrobiologia 603:301-312. Covich, A. P. 1988. Geographical and historical comparisons of neotropical streams - biotic diversity and detrital processing in highly variable habitats. Journal of the North American Benthological Society 7:361386. Cushing, C., K. Cummins, and G. Minshall. 2006. River and Stream Ecosystems of the World. UNIV CALIFORNIA PRESS. Death, R. G. 2004. Patterns of spatial resource use in lotic invertebrate assemblages. Hydrobiologia 513:171-182. Domínguez, E., M. D. Hubbard, and W. L. P. B. Acuática, editors. 1992. Clave para ninfas y adultos de las familias y géneros de Ephemeroptera (Insecta) sudamericanos. Instituto de Limnología «Dr. Raúl A. Ringuelet» (UNLP-CONICET), La Plata. Dominguez, E., C. Molineri, M. L. Pescador, M. D. Hubbard, and C. Nieto. 2006. Ephemeroptera of South America. in Ephemeroptera of South America. Pensoft Publishers. Douglas, M., and P. S. Lake. 1994. Species Richness of Stream Stones - an Investigation of the Mechanisms Generating the Species-Area Relationship. Oikos 69:387-396. Downes, B. J., P. S. Lake, and E. S. G. Schreiber. 1995. Habitat structure and invertebrate assemblages on stream stones: A multivariate view from the riffle. Austral Ecology 20:502-514. Dudgeon, D. 2008. Tropical Stream Ecology. Academic Press., San Diego. Encalada, A., and B. Peckarsky. 2006. Selective oviposition of the mayfly Baetis bicaudatus. Oecologia 148:526-537. Encalada, A., and B. Peckarsky. 2007. A comparative study of the costs of alternative mayfly oviposition behaviors. Behavioral Ecology and Sociobiology 61:1437-1448. 124 Bibliografía Encalada, A., and B. Peckarsky. in prep. The influence of recruitment on the population dynamics of the mayfly Baetis bicaudatus in fish and fishless streams. Submitted to Ecology. Fernández, H. R., and E. Domínguez, editors. 2001. Guía para la determinación de los artrópodos bentónicos sudamericanos. Editorial Universitaria de Tucumán, Tucumán. Fisher, R. A. 1930. The Genetical Theory of Natural Selection. Clarendon Press, Oxford. Fisher, S. G., and G. E. Likens. 1973. Energy Flow in Bear Brook, New Hampshire: An Integrative Approach to Stream Ecosystem Metabolism. Ecological Monographs 43:421-439. Flecker, A. S. 1992. Fish Predation and The Evolution of Invertebrate Drift Periodicity: Evidence from Neotropical Streams. Ecology 73:438-448. Flecker, A. S., and B. Feifarek. 1994. Disturbance and the Temporal Variability of Invertebrate Assemblages in 2 Andean Streams. Freshwater Biology 31:131-142. Flint, O. S. J. 1991. Studies of Neotropical Caddisflies Xlv. The Taxonomy Phenology and Faunistics of the Trichoptera of Antioquia Colombia. Smithsonian Contributions to Zoology:I-113. Flowers, R. W. 1987. The Adult Stage of 3 Central-American Baetodes (Ephemeroptera, Baetidae) with Notes on the Genus. Aquatic Insects 9:1-10. Friberg, N., M. J. Winterbourn, K. A. Shearer, and S. E. Larsen. 1997. Benthic communities of forest streams in the South Island, New Zealand: Effects of forest type and location. Archiv Fur Hydrobiologie 138:289-306. Giller, P. S., and B. Malmqvist. 1998. The biology of streams and rivers. in The biology of streams and rivers. Oxford University Press. Gillett, J. D. 1971. Mosquitos. Weidenfeld and Nicolson, London. Gjerlov, C., A. G. Hildrew, and J. I. Jones. 2003. Mobility of stream invertebrates in relation to disturbance and refugia: a test of habitat templet theory. Journal of the North American Benthological Society 22:207-223. 125 Bibliografía Gonçalves, J. F., J. S. Franca, and M. Callisto. 2006. Dynamics of allochthonous organic matter in a tropical Brazilian headstream. Brazilian Archives of Biology and Technology 49:967-973. Gonçalves, J. F., J. S. França, A. O. Medeiros, C. A. Rosa, and M. Callisto. 2006. Leaf Breakdown in a Tropical Stream. International Review of Hydrobiology 91:164-177. González, E., and J. Pozo. 1996. Longitudinal and temporal patterns of benthic coarse particulate organic matter in the Agüera stream (northern Spain). Aquat. Sci. 58, 355. Gosz, J. R., G. E. Likens, and F. H. Bormann. 1972. Nutrient Content of Litter Fall on the Hubbard Brook Experimental Forest, New Hampshire. Ecology 53:770-784. Graça, M. A. S. 2001. The role of invertebrates on leaf litter decomposition in streams - A review. International Review of Hydrobiology 86:383-393. Graça, M. A. S., C. Cressa, M. O. Gessner, M. J. Feio, K. A. Callies, and C. Barrios. 2001a. Food quality, feeding preferences, survival and growth of shredders from temperate and tropical streams. Freshwater Biology 46:947-957. Graça, M. A. S., R. C. F. Ferreira, and C. N. Coimbra. 2001b. Litter processing along a stream gradient: the role of invertebrates and decomposers. Journal of the North American Benthological Society 20:408-420. Guhl, E. 1989. Efectos geoecológicos en la dinámica de la vegetación antropogénica en los páramos y sus consecuencias biogeográficas en los Andes ecuatoriales. Ecológica 1:40-45. Hickin, N. E. 1968. Caddis Larvae: Larvae of the British Trichoptera. Hutchinson of London. Hinton, H. E. 1981. Biology of insect eggs. Volume I, Volume II, Volume III. Pergammon Press., Oxford UK. Holomuzki, J. R., and B. J. F. Biggs. 2000. Taxon-specific responses to highflow disturbance in streams:implications for population persistence. Journal of the North American Benthological Society 19:670-679. 126 Bibliografía Holzenthal, R. W., and O. S. Flint, Jr. 1995. Studies of neotropical caddisflies, LI: Systematics of the neotropical caddisfly genus Contulma (Trichoptera: Anomalopsychidae). Smithsonian Contributions to Zoology 0:I-59. Hose, G. C., T. Walter, and A. J. Brooks. 2007. Short-term colonisation by macroinvertebrates of cobbles in main channel and inundated stream bank habitats. Hydrobiologia 592:513-522. Jackson, J. K., and B. W. Sweeney. 1995. Egg and Larval Development Times for 35 Species of Tropical Stream Insects from Costa-Rica. Journal of the North American Benthological Society 14:115-130. Jacobsen, D. 2003. Altitudinal changes in diversity of macroinvertebrates from small streams in the Ecuadorian Andes. Archiv Fur Hydrobiologie 158:145-167. Jacobsen, D. 2004. Contrasting patterns in local and zonal family richness of stream invertebrates along an Andean altitudinal gradient. Freshwater Biology 49:1293-1305. Jacobsen, D. 2005. Temporally variable macroinvertebrate-stone relationships in streams. Hydrobiologia 544:201-214. Jacobsen, D. 2008. Tropical High-Altitude Streams. Pages 219-256 in D. Dudgeon, editor. Tropical Stream Ecology. Elsevier Inc. Academic Press., San Diego. Jacobsen, D., and B. Bojsen. 2002. Macroinvertebrate drift in Amazon streams in relation to riparian forest cover and fish fauna. Archiv Fur Hydrobiologie 155:177-197. Jacobsen, D., and A. Encalada. 1998. The macroinvertebrate fauna of Ecuadorian highland streams in the wet and dry season. Archiv Fur Hydrobiologie 142:53-70. Jacobsen, D., and R. Marín. 2007. Bolivian Altiplano streams with low richness of macroinvertebrates and large diel fluctuations in temperature and dissolved oxygen. Aquatic Ecology. Jacobsen, D., R. Schultz, and A. Encalada. 1997. Structure and diversity of stream invertebrate assemblages: the influence of temperature with altitude and latitude. Freshwater Biology 38:247-261. 127 Bibliografía Jacobsen, D., and E. Terneus. 2001. Aquatic macrophytes in cool aseasonal and seasonal streams: a comparison between Ecuadorian highland and Danish lowland streams. Aquatic Botany 71:281-295. Kohler, S. L., and M. A. McPeek. 1989. Predation Risk and The Foraging Behavior of Competing Stream Insects. Ecology 70: 1811-1825. Komzak, P. 2001. The spatio-temporal diversity in caddisfly communities (Trichoptera, Insecta) of the Oslava and Chvojnice streams (Czech Republic). Scripta Biology (Brno) 27:63-85. Lake, P. S., and E. S. G. Schreiber. 1991. Colonization of stones and recovery from disturbance: an experimental study along a river. Internationale Vereinigung fuer Theoretische und Angewandte Limnologie Verhandlungen 24. Lamberti, G., S. Gregory, L. Ashkenas, R. Wildman, and A. Steinman. 1989. Influence of channel geomorphology on retention of dissolved and paticualte matter in a Cascade Mountain Stream. USDA Forest Service Gen. Tech. Rep.PSW-110.:33-39. Lancaster, J. 1999. Small-scale movements of lotic macroinvertebrates with variations in flow. Freshwater Biology 41:605-619. Lancaster, J. 2000. Geometric scaling of microhabitat patches and their efficacy as refugia during disturbance. Journal of Animal Ecology 69:442-457. Lancaster, J., and L. R. Belyea. 1997. Nested hierarchies and scaledependence of mechanisms of flow refugium use. Journal of the North American Benthological Society 16:221-238. Lancaster, J., T. Buffin-Belanger, I. Reid, and S. Rice. 2006. Flow- and substratum-mediated movement by a stream insect. Freshwater Biology 51:1053-1069. Lancaster, J., B. J. Downes, and P. Reich. 2003. Linking landscape patterns of resource distribution with models of aggregation in ovipositing stream insects. Journal of Animal Ecology 72:969-978. Lancaster, J., and A. G. Hildrew. 1993a. Characterizing in-Stream Flow Refugia. Canadian Journal of Fisheries and Aquatic Sciences 50:1663-1675. 128 Bibliografía Lancaster, J., and A. G. Hildrew. 1993b. Flow Refugia and the Microdistribution of Lotic Macroinvertebrates. Journal of the North American Benthological Society 12:385-393. Larrañaga, S., J. R. Díez, A. Elosegi, and J. Pozo. 2003. Leaf retention in streams of the Agüera basin (northern Spain). Aquatic Sciences Research Across Boundaries 65:158-166. Lewis, W. M., Jr., S. K. Hamilton, and J. F. Saunders, III. 1995. Rivers of northern South America. Pages 219-256 in Ecosystems of the World; River and stream ecosystems. Elsevier Science Publishers B.V.; Elsevier Science Publishing Co. Inc. Likens, G. E. 1972. Eutrophication and aquatic ecosystems. in G. E. Likens, editor. Nutrients and eutrophication. Special Symposia Vol. I Amer. soc. Limnol. Oceanogr. Amer. soc. Limnol. Oceanogr, Lawrence, Kansas. Likens, G. E., F. H. Bormann, N. M. Johnson, D. W. Fisher, and R. S. Pierce. 1970. Effects of Forest Cutting and Herbicide Treatment on Nutrient Budgets in the Hubbard Brook Watershed-Ecosystem. Ecological Monographs 40:23-47. Luteyn, J. L. 1999. Paramos: A checklist of plant diversity, Geographic Distribution and Botanical Literature. Memoirs of The New York Botanical Garden 84:1-278. Lytle, D. A. 1999. Use of rainfall cues by Abedus herberti (Hemiptera : Belostomatidae): A mechanism for avoiding flash floods. Journal of Insect Behavior 12:1-12. Lytle, D. A. 2001. Disturbance Regimes and Life-History Evolution. The American Naturalist 157:525-536. Lytle, D. A., and N. L. Poff. 2004. Adaptation to natural flow regimes. Trends in Ecology & Evolution 19:94-100. Mackay, R. J. 1992. Colonization by Lotic Macroinvertebrates - a Review of Processes and Patterns. Canadian Journal of Fisheries and Aquatic Sciences 49:617-628. Mathooko, J. M., G.O.Morara, and M.Leichtfried. 2001. Leaf litter transport and retention in a tropical Rift Valley stream: an experimental approach. Hydrobiologia 443:9-18. 129 Bibliografía Mathuriau, C., and E. Chauvet. 2002. Breakdown of leaf litter in a neotropical stream. Journal of the North American Benthological Society 21:384396. Mathuriau, C., A. G. B. Thomas, and E. Chauvet. 2008. Seasonal dynamics of benthic detritus and associated macroinvertebrate communities in a neotropical stream. Fundamental and Applied Limnology 171. Matthaei, C. D., C. J. Arbuckle, and C. R. Townsend. 2000. Stable surface stones as refugia for invertebrates during disturbance in a New Zealand stream. Journal of the North American Benthological Society 19:82-93. Matthaei, C. H. r. D., K. A. Peacock, and C. R. Townsend. 1999. Scour and fill patterns in a New Zealand stream and potential implications for invertebrate refugia. Freshwater Biology 42:41-57. McIntosh, A. R., B. L. Peckarsky, and B. W. Taylor. 2002. The influence of predatory fish on mayfly drift: extrapolating from experiments to nature. Freshwater Biology 47:1497-1513. McIntosh, A. R., and C. R. Townsend. 1994. Interpopulation Variation in Mayfly Antipredator Tactics: Differential Effects of Contrasting Predatory Fish. Ecology 75: 2078-2090. Melo, A. S., and C. G. Froehlich. 2004. Colonization by macroinvertebrates of experimentally disturbed stones in three tropical streams differing in size. International Review of Hydrobiology 89:317-325. Melo, A. S., D. K. Niyogi, C. D. Matthaei, and C. R. Townsend. 2003. Resistance, resilience, and patchiness of invertebrate assemblages in native tussock and pasture streams in New Zealand after a hydrological disturbance. Canadian Journal of Fisheries and Aquatic Sciences 60:731-739. Merritt, R., and K. W. Cummins. 1996. An introduction to the aquatic insects of North America. Third edition. in An introduction to the aquatic insects of North America. Third edition. Kendall/Hunt Publishing Company. Meyer, J. L., G. E. Likens, and J. Sloane. 1981. Phosphorus, Nitrogen, and Organic-Carbon Flux in a Headwater Stream. Archiv Fur Hydrobiologie 91:28-44. 130 Bibliografía Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. B. D. Fonseca, and J. Kent. 2000. Biodiversity hotspots for conservation priorities. Nature 403:853-858. Nolte, U. 1993. Egg Masses of Chironomidae (Diptera) - a Review, Including New Observations and a Preliminary Key. Entomologica Scandinavica:1-75. Ortíz, D. 2003. Ecuador. in R. P. S. P. M. Hofstede, editor. Los Páramos del Mundo. Proyecto Atlas mundial de los Páramos. GlobalPeatland Initiative/NC-UICN/EcoCiencia, Quito. Palmer, M. A., P. Arensburger, P. S. Botts, C. C. Hakenkamp, and J. W. Reid. 1995. Disturbance and the Community Structure of Stream Invertebrates - Patch-Specific Effects and the Role of Refugia. Freshwater Biology 34:343-356. Palmer, M. A., P. Arensburger, A. P. Martin, and D. W. Denman. 1996. Disturbance and patch specific responses: The interactive effects of woody debris and floods on lotic invertebrates. Oecologia 105:247-257. Passos, M. I. S., J. L. Nessimian, and L. F. M. Dorvillé. 2003. Life strategies in an elmid (Insecta:Coleoptera: Elmidae) community from a first order stream in the Atlantic Forest southeastern Brazil. Acta Limnol. Bras. 15:29-36. Pearson, R. G., R. K. Tobin, R. E. W. Smith, and L. J. Benson. 1989. Standing Crop and Processing of Rainforest Litter in a Tropical Australian Stream. Archiv Für Hydrobiologie 115:481-498. Peckarsky, B. L. 1996. Alternative Predator Avoidance Syndromes of StreamDwelling Mayfly Larvae. Ecology 77: 1888-1905. Peckarsky, B. L., and A. R. McIntosh. 1998. Fitness and community consequences of avoiding multiple predators. Oecologia 113:565-576. Peckarsky, B. L., B. W. Taylor, and C. C. Caudill. 2000. Hydrologic and behavioral constraints on oviposition of stream insects: implications for adult dispersal. Oecologia 125:186-200. Perez, B., and S. Segnini. 2007. Variación espacial de la composición y diversidad de géneros de Ephemeroptera (Insecta) en un río tropical altiandino. Ecotropicos 16(2):45-63 2003. 131 Bibliografía Petersen, I., Z. Masters, S. J. Ormerod, and A. G. Hildrew. 2006. Sex ratio and maturity indicate the local dispersal and mortality of adult stoneflies. Freshwater Biology 51:1543-1551. Pickett, S. T. A., and P. S. White. 1985. Patch Dynamics a Synthesis. Pages 371-384 in Pickett, S. T. A. And P. S. White (Ed.). The Ecology of Natural Disturbance and Patch Dynamics. Xv+472p. Academic Press, Inc., Publishers: Orlando, Fla., USA; London, England. Illus. Maps. Poff, N., and J. Ward. 1990. Physical habitat template of lotic systems: Recovery in the context of historical pattern of spatiotemporal heterogeneity. Environmental Management 14:629-645. Poff, N. L., J. D. Allan, M. B. Bain, J. R. Karr, K. L. Prestegaard, B. D. Richter, R. E. Sparks, and J. C. Stromberg. 1997. The natural flow regime. Bioscience 47:769-784. Pozo, J., E. Gonzalez, J. R. Diez, J. Molinero, and A. Elosegui. 1997. Inputs of Particulate Organic Matter to Streams with Different Riparian Vegetation. Journal of the North American Benthological Society 16:602-611 Pringle, C. M., and A. Ramirez. 1998. Use of both benthic and drift sampling techniques to assess tropical stream invertebrate communities along an altitudinal gradient, Costa Rica. Freshwater Biology 39:359-373. Ramirez, A., and C. M. Pringle. 1998. Structure and Production of a Benthic Insect Assemblage in a Neotropical Stream. Journal of the North American Benthological Society 17:443-463. Ramirez, A., and C. M. Pringle. 2001. Spatial and temporal patterns of invertebrate drift in streams draining a Neotropical landscape. Freshwater Biology 46:47-62. Rausher, M. D. 1979. Larval Habitat Suitability and Oviposition Preference in Three Related Butterflies. Ecology 60:503-511. Reich, P. 2004. Patterns of composition and abundance in macroinvertebrate egg masses from temperate Australian streams. Marine and Freshwater Research 55:39-56. 132 Bibliografía Reich, P., and B. J. Downes. 2003a. The distribution of aquatic invertebrate egg masses in relation to physical characteristics of oviposition sites at two Victorian upland streams. Freshwater Biology 48:1497-1513. Reich, P., and B. J. Downes. 2003b. Experimental evidence for physical cues involved in oviposition site selection of lotic hydrobiosid caddis flies. Oecologia 136:465-475. Resetarits, W. 2001. Colonization under threat of predation: avoidance of fish by an aquatic beetle, Tropisternus lateralis (Coleoptera: Hydrophilidae). Oecologia 129:155-160. Resetarits, W. J., Jr. 1991. Ecological Interactions Among Predators in Experimental Stream Communities. Ecology 72:1782-1793 Resh, V. H., A. V. Brown, A. P. Covich, M. E. Gurtz, H. W. Li, G. W. Minshall, S. R. Reice, A. L. Sheldon, J. B. Wallace, and R. C. Wissmar. 1988. The Role of Disturbance in Stream Ecology. Journal of the North American Benthological Society 7:433-455. Rios, B. 2004. Las comunidades de macroinvertebrados bentónicos de dos cuencas altoandinas del Ecuador. Trabajo de Investigación del programa de Doctorado y Diplomado en Estudios Avanzados en Ecología. Pages 51 pp. in U. d. Barcelona., editor., Barcelona, España. Rodriguez-Barrios, J., R. Ospina-Torres, and J. D. Gutierrez 2007. Density and biomass of drifting aquatic macroinvertebrates in a tropical mountain creek at Bogotá, Colombia. caldasia 29:397-412. Siccama, T. G., F. H. Bormann, and G. E. Likens. 1970. The Hubbard Brook Ecosystem Study: Productivity, Nutrients, and Phytosociology of the Herbaceous Layer. Ecological Monographs 40:389-402. Sioli, H. 1984. The Amazon: limnology and landscape ecology of a mighty tropical river and its basin. Dr. W. Junk, The Hague Netherlands. Skov, F. 1999. Ambiente Físico. Pages 120 in D. H. B. Pedersen, editor. Oyacachi- La Gente y la Biodiversidad. Centro para la Investigación de la Diversidad Cultural y Biológica de los Bosques Pluviales Andinos (DIVA), Dinamarca y Ediciones Abya Yala, Ecuador, Quito. Smith, B. J., K. J. Collier, and N. J. Halliday. 2002. Composition and flight periodicity of adult caddisflies in New Zealand hill-country catchments of 133 Bibliografía contrasting land use. New Zealand Journal of Marine and Freshwater Research 36:863-878. Speaker, R., K. Moore, and S. Gregory. 1984. Analysis of the process of retention of organic matter in stream ecosystems. Verh Internat Verein Limnol 22:1835-1841. Steedman, R. J., and N. H. Anderson. 1985. Life-History and Ecological Role of the Xylophagous Aquatic Beetle, Lara-Avara Leconte (Dryopoidea, Elmidae). Freshwater Biology 15:535-546. Suberkropp, K., and E. Chauvet. 1995. Regulation of Leaf Breakdown by Fungi in Streams: Influences of Water Chemistry. Ecology 76:1433-1445 Suberkropp, K., and J. B. Wallace. 1992. Aquatic Hyphomycetes in InsecticideTreated and Untreated Streams. Journal of the North American Benthological Society 11:165-171. Suren, A. M., and I. G. Jowett. 2006. Effects of floods versus low flows on invertebrates in a New Zealand gravel-bed river. Freshwater Biology 51:2207-2227. Sweeney, B. W., J. K. Jackson, and D. H. Funk. 1995. Semivoltinism, Seasonal Emergence, and Adult Size Variation in a Tropical Stream Mayfly (Euthyplocia-Hecuba). Journal of the North American Benthological Society 14:131-146. Terneus, E., and J. J. Vásconez. 2004. Preliminary characterization of the aquatic ecosystems in Oyacachi and Muertepungu Basins. Lyonia 6:177-198. Tomanova, S., E. Goitia, and J. Helešic. 2006. Trophic Levels and Functional Feeding Groups of Macroinvertebrates in Neotropical Streams. Hydrobiologia 556:251-264. Tomanova, S., P. A. Tedesco, M. Campero, P. A. Van Damme, N. Moya, and T. Oberdorff. 2007. Longitudinal and altitudinal changes of macroinvertebrate functional feeding groups in neotropical streams: a test of the River Continuum Concept. Fundamental and Applied Limnology / Archiv für Hydrobiologie 170:233-241. 134 Bibliografía Townsend, C. R., and A. G. Hildrew. 1976. Field Experiments on the Drifting, Colonization and Continuous Redistribution of Stream Benthos. The Journal of Animal Ecology 45: 759-772. Townsend, C. R., and A. G. Hildrew. 1994. Species Traits in Relation to a Habitat Templet for River Systems. Freshwater Biology 31:265-275. Townsend, C. R., M. R. Scarsbrook, and S. Doledec. 1997. Quantifying disturbance in streams: alternative measures of disturbance in relation to macroinvertebrate species traits and species richness. Journal of the North American Benthological Society 16:531-544. Turcotte, P., and P. P. Harper. 1982a. Drift patterns in a high Andean stream. Hydrobiologia 89:141-151. Turcotte, P., and P. P. Harper. 1982b. The Macroinvertebrate Fauna of a Small Andean Stream. Freshwater Biology 12:411-419. Wallace, J. B., S. L. Eggert, J. L. Meyer, and J. R. Webster. 1997. Multiple Trophic Levels of a Forest Stream Linked to Terrestrial Litter Inputs. Science 277:102-104. Wallace, J. B., and J. R. Webster. 1996. The Role of Macroinvertebrates in Stream Ecosystem Function. Annual Review of Entomology 41:115-139. Wantzen, K. M., F. R. Rosa, C. O. Neves, and C. N. da Cunha. 2005. Leaf litter addition experiments in riparian ponds with different connectivity to a Cerrado stream in Mato Grosso, Brazil. Amazoniana-Limnologia Et Oecologia Regionalis Systemae Fluminis Amazonas 18:387-396. Wantzen, K. M., and R. Wagner. 2006. Detritus processing by invertebrate shredders: a neotropical-temperate comparison. Journal of the North American Benthological Society 25:216-232. Ward, G. M., and K. W. Cummins. 1978. Life-History and Growth-Pattern of Paratendipes-Albimanus in a Michigan Headwater Stream (DipteraChironomidae). Annals of the Entomological Society of America 71:272284. 135 Bibliografía Ward, J. V. 1994. Ecology of Alpine Streams. Freshwater Biology 32:277-294. Williams, D. D., and H. B. N. Hynes. 1976. Recolonization Mechanisms of Stream Benthos. Oikos 27:265-272. Winterbottom, J. H., S. E. Orton, and A. G. Hildrew. 1997. Field experiments on the mobility of benthic invertebrates in a southern English stream. Freshwater Biology 38:37-47. Winterbottom, J.H., A.G. Hildrew and J. Lancaster. 1997. Field experiments on flow refugia in streams. Freshwater Biology 37, 569-580:11. Winterbourn, M. J., W. L. Chadderton, S. A. Entrekin, J. L. Tank, and J. S. Harding. 2007. Distribution and dispersal of adult stream insects in a heterogeneous montane environment. Fundamental and Applied Limnology 168:127-135. Wissinger, S. A., W. S. Brown, and J. E. Jannot. 2003. Caddisfly life histories along permanence gradients in high-altitude wetlands in Colorado (USA). Freshwater Biology 48:255-270. Wolf, E. M., U. Matthias, and G. Roldan P. 1988. Estudio del desarrollo de los insectos acuaticos, su emergencia y ecologia en tres ecosistemas diferentes en el departamento de Antioquia. Actualidades Biologicas (Medellin) 17:2-27. Young, S. A., W. P. Kovalak, and K. A. DelSignore. 1978. distances travelled by autumn leaves introduced into a woodland stream. American Midland Naturalist 100:217-222. Zuñiga de Cardoso, M. C., A. M. Rojas, and S. Mosquera. 1997. Biological Aspects of Ephemeroptera in rivers of Southwestern Colombia (South America). Ephemeroptera Systematics:261-268. 136 & Plecoptera: Biology-Ecology- Anti Hawa Mayukunapi Hatun Tullu Illak Kuru Wiwa Ayllukunamanta: Imapi Kawsaymanta, Imashina Kuyurimanta, Ima Wanuta Llukchimanta, Ima Shina Lulunta Churaymantapash Kallariy 1 Kayta killkanaka 1999 watapimi kallarirka, chaypimi wakin mayukunapi rikushpa rurakurkani. Chaypimi wakin mayukunapi kawsak, allpapi kawsak wiwakunata urku hawa urachacana kuskapi rikurkani. Chaytami Ecuador anti hawapi rikurkani. ruraypakka Chaypi rikushpami wakin yuyaykuna shamurka, chaywanmi ñuka ima shina kay wiwakuna mayukunapi kawsakta riksirkani. Kaykunatami sumak kawsaypi hatun diplomado nishkata rurakushpa alli yacharkani. Chaypimiima shina urku mayukunata mapayachinakuymanta riksirkanchik. Chaypak katimi chay hawallata ishkay ruraykunata charirkanchik San Francisco de Quito Sumak Yachay Wasiwan shinallata La Molina de Lima Sumak Yachay Wasiwampash kay Ecuador, Perú mamallaktakunapi. Kay yachaykunawanka Anti urku shinallata Grupo FEM Meditrerráneo charik urku mayukunapi mapayachi hawamantami riksirkanchik shinallata (proyecto ECOBIL y GUADALMED I y II) charishkakunatapash. Kaypimi ima shina kay mayukuna kakta, shinallata ima wiwakunalla kaypi tiyakta riksirkanchik Shinallata ima shina Anti mayukuna mapayashka kakta, yacharkanchik. Shinallata urku mayukuna hawapash, chakishka mayukunatapash, ashalla yakuwan mayukunatapash riksirkanchik shina wakin mayukunaka ashalla yakuwan kaymanta mapakunata shitakpi chakiktapash yacharkanchik. Mana yachanchikchu mashna wiwakuna chinkashkata, imakunalla tiyaktapash ima shina mayukuna kaktapash mana alli yachanchikchu, shinallata ima shina wakllishka kakpi allichinatapash mana yachanchikchu. Kay killkayka imata kay mayukuna tukunakuktami riman kayka ashakullami kan kay mayukunata yachay hawa rimaymantaka. Shuk kutinka kay mayukuna ima shina kakta rimankapak charirkanimi kay Piburja mayupi wakin taripaykunata rurashka kaymanta kay mayuka Oyacachi kichwa runakunapak allpata yallin, kaypika sumak sachakuna, sumak runakuna kawsan shinapash kay sumak tiyashkakunaka llakipimi kan hatun llaktakuna mapayachishpa kanakukpi shinallata yaku ukupi tiyashka wiwakunata ushashka apinakukpi shinallata kay hatun llaktamanta runakuna pachamamawan phiñarishka kawsanakushkamanta. 1 Traducción de español a kichwa: Luis Enrique Cachiguango 139 Anti hawapi wacharishka kunuk mayukuna Allpa mamapi tiyashka mayukunaka tawkapachami, shinallata allpa-kawsaychakllisinchita, yakukunata, allpa-samikunata rikushpaka ñami allillata rikuyta ushanchik imakunatalla mayukuna charikta, ima shina kakta kaykunawan ashtawan kay mayukuna ima shinapacha kawsanakukta yachankapak, shina kaypika rikunchik Allan & Castillo 2007, Giller & Malmqvist 1998, Cushing et al. 2006. Paykunapak rurashkapika ima shina mayu yakukuna kakta, imakunawan pakta kawsaktapash rikuchin, chaykunapika chiri-kunuk allpakunata yallik mayukunapi tawka watakunapi yachaykunata rurashkata rikuchin kutin shinapash kunuk allpakunata yallik mayukunapi yachaykunata rurashkaka wakinllami tiyan. Kay hawaka chayrakmi shak kamu llukshishka (Dudgeon 2008). Shinapash Uray Europa, Uray América allpakunapika tukuylla yachaykunatami uchilla mayukunapi rurarishka, kutin wichay américa allpapika yachaykunataka Orinoco, Amazonas (Sioli 1984; Covich 1988; Lewis et al. 1995) hatun mayukunapimi rurarishka, shinapash kayka mana tukuyllachu kan, tiyanrakmi wakin yachaykunata rurashka urku hawa allpakunapi (Turcotte & Harper 19982b; a; Flecker 1002; Flecker & Feibarek 1994; Jacobsen et al. 1997 ; Jaconsen & Encalada 1998 ; Jacobsen&Terneus 2001 ; Jacobsen 2003, 2004, 2005 ; Allan et al. 2006; Jacobsen&Marín 2007). Kaykunapika mayu wacharimanta shinallata uchilla kunuk allpakunata yallik mayukunamantaka mana rimanchu (Jacobsen 2008), kaykunapika anti hawamanta kunuk allpata yallik mayukunatami rimasha ninchik kay sumak yachay killkapika. Uray antikunapika, Venezuelamanta wichayman Huancabamba Perú wichaykaman (Fig. 1) allpa mama kuyunalla allpakuna kan, kaypika urkukuna, pampakuna, chirikunuypash samikunami tiyan, shinallata kaypika yura unkuykunapash tiyan (Myers et al. 2000). chaymantami anti hawa mayukunaka paykunapak kaytaka shikan shikanta charin, chaymi ñukanchikka sinchi kallpak mayukunata, phakchakunata, uchilla kuchakunamanta llukshik mayukunata charinchik (Jacobsen 2008). Shinapash kunuk mayukunata rimashpaka kunuk allpakunata yallik achka yurakunata chariktami rimanchik shinami urku hawamanta kunuk mayukunaka chirilla allpata yallik mayukunawan paypura kan 140 kutin kaykunaka shikanmi kan kunuk allpakunata yallik mayukunawan (Jabobsen 2008). Kay mayukunapaka pachakunami shukta shukta tikrachin, shina Kunuk pachakunapika mana rikunachu allpa kunukyakpi, tamiyakuna mirakpimi rikuna. Kutin chiri-kunuklla allpakunapika punchan punchanmi shukman tikran kaykunaka kutin intiwanmi shina tukun, chaymi urkukunapika tamiyan chay allpakunapika 11º mana kashpaka 25º chayan (Guhl 1989). Shinallata 2º mana kashpaka 10º kunukka chayan (Luteyn 1999). Tamuyapash kay anti hawapika kutin kutinmi urman chaymi kay allpakunapika mana achka tiyanchu tamiya pachakuna shinallata rupay pachakunapash kutin uku allpakunapika mana shinachu kan. kaypika watapi 500 mana kashpaka 3.000 mm yakuta tamiyanllami. Chashna kaymantami 25 mana kashpaka patsakpi patsakkaman tsapakyanlla (Luteyn 1999; Ortíz 2003; Jacobsen 2008). Shuyu 1. Uray Anti. Urayman saywaka Venezuela antikunami, kutin wichayman saywaka 6º ishkantin wichayman sirik Huancabambapimi (http://www.ucm.es/info/agrygfdp/web/aula%20de%20cartograf%EDa/amsurfis.jpg 141 Achka sami kawsaykunata charikpipash anti hawamanta mayukunataka mana yachaykunata rurashka tiyanchu (Ward 1994; Allan et al. 2006; Jacobsen 2008). Chayraklla urku hawa mayukunata taripashka yachaypika Jacobsen (2008) churanmi kashna mayukunamantaka ima shina kakta, imakuna tiyaktapash mana yachanchikchu nishpa. Kunankaman yachaypika hatun tullu illak wiwakunaka llashak kunuk allpa yakukunapimi kawsan shinallata kay yakukuna tamiyashpa mirashkakunapipash tiyan Pachamamapi tiyashkakuna kawsaypipash rikuna tiyan (Flecker&Feifarek 1994; Jacobsen et al. 1997, Jacobsen 2005, 2008). Chaymantami pachamama shikan kaykunata charikpi, shinallata yakukunapash pishiyakun mirakun kakpika tullu illak kuru wiwakunapash chaypimi mirashpa kawsay ushan (Resh et el. 1988; Poff &Ward 1990) Yakukuna mirakun pishiyakun kaymanta, shinallata Pachamama shikan shikan kaykunawanka tullu illak wiwakunapash shikan mirarikunata charin shinallata mana chay yaku ukupi tiyakkunapash shikan shikan tukun (Turcotte&Harper 1982a; Benson&Pearson et al. 1989). Shinallata kay shuk tukuymantaka mayu yakukunapash tukuymi shuk shuk tikran, shinami tullu illak kuru wiwakunapash shikan mirarikunata charin, chaytaka ima shina mayu ukupi ima shina miraripi rikunchik. Cahypak hawa kashna shuk shuk kaymantaka kay tukku illak kuru wiwakunaka sinchipacha tikraykunatami charin yakukuna wakimpika mirakun, wakinpika chakikun kaymanta, kaykunaka chay yaku ukupi kawsak kurukunapash shikan shikan kaymantami shina tukun multivoltina kaymanta (Jackson & Sweeney 1995) Shina kaymantaka chirilla kuskakunapi watapi shuklla wiñayta charik wiwakunaka kunuk allpapika kutin kutin mirarin. Shinapash kay anti hawapi wiwakuna kashna mirarinakushpapash kaykunataka ima shinapacha mirarinakuktapash mana alli riksinchichu, chaymantami kaytaka utkalla riksina urmanchik kay wiwakuna allpa mama kunukyakuymanta kay shina kunukyashpaka kay yaku ukupi tiyak wiwakunaka tukuyllami wañunka (Bradley et al. 2006 Jacobsen 2008). Kashna rikushpaka kay killkaypika chusku yachaytami ashtawan rimasha nini, kaykunaka ima shina hatun tullu illak wiwakuna Anti hawa urkukunapi ima shina tamiya pachakunapi, rupay pachakunapi kawsaktami rikuchisha nini, yaku miray 142 pachapi: 1) Ima shina kay wiwa aylluna yaku uku allpapi kawsaymanta; 2) Ima shina mirarishpa kawsaymanta; 3) Ima shina yaku ukupi tiyakkuna paykunapak mikuna kaymanta; kutin 4) Ima shina hatun wiwakuna yaku ukupi lulunta churashpa mirarimantapash. Kaykunataka pipash mana yachakuykunata rurashkachu hawa anti urku mayukunapika. Kawsaypak kuskamanta Mayukunapi yakukuna miray pishiyaykunaka allipachami kan mushuk kawsaykuna tiyarichun shinashpami mushuk mikunakuna yaku ukupi tiyarin, wakimpika chay pachakunapaklla mikunakuna tiyarin (Pickett & White 1985), chaymantami yaku ukupi tiyak wiwakuna yurakunapash paykuna usharishkapi mirarita ushan. Shinallata yakukuna mirakpi pishiyakpi, ima kashpaka kutin kutin yaku hatarishpa, yaku chakishpaka chaypi kawsak wiwakunaka llakitami charin mirarinkapak, shina kaymantami kay wiwakunaka maypi mana yakukuna llakichiklla kuskakunaman ashtawan rishpa kawsan (Lancaster 2000). Kashna alli kuskakuna tiyashpaka ninan allimi, chaypimi wiwakunaka ashtawan alli kawsashpa mirarita ushan shinallata chaymanta ashtawan mirashpa katita ushan, shinami paypurakuna alli mirarishpa chay kuskapi huntayta ushan (Lancaster&Hildrew 1993b, a; Lancaster &Belyea 1997; Townsend et al. 1997). Kashna sumak kuskakunatami “minkarinalla” (Caswell & Cohen 1991; Townsend &Hildrew 1994; Lancaster & Belyea 1997). Kashna kuskakuna imakunatalla wiwakuna mikushpa kawsachun chariytaka mana alli yachanchikchu kaytaka wakimpi yaku hatarishkapika mana alli yachay ushanallachu kan yaku hatarishpa tukuyta apashpa rinlla kaymanta, shinallata yaku hatarikpika tukuy yaku ukupi tiyashkakunami kayta chayta kuyurinkuna (Lancaster & Hildrew 1993b, a). Shinallata yacharinchu kashna ima wiwa shina ayllukunapika yaku hatarikpi kunuk allpakunapika kaktaka wakimpika mana alli kaykunaka wiwakunapak kawsaypika paykuna hatunyanakuypi mana kashpaka paykuna wachanakuypi, paykuna multivoltismo kaypimi kanka yuyanchik chaypa hawapash yakukuna llashaklla, pishiklla kashpapash kay wiwakuna miranataka 143 rikunata charin yuyanchik, wakimpika kashnashpami ñapash hatunyashpa mirarita yanapan yuyanchik kay Chironomidae, Simuliidae, Baetidae nishka wiwakunata, shinapash kunuklla allpakunapi tiyak mayukunapika kay wiwakunaka llashak pachakunatami charin hatunyashpa mirarinkapakka, chaymantami kaykunapika kay wiwakunaka ashtawan llakikunata charin yakukuna hatarishpa tukuyta apakpika, chaymantami kaypi kawsak wiwakunaka minkarinalla kuskakunata charin yaku ama apachun pakakunkapak. Kashna yakukuna hatarikpi ama apay tukunkapak kuskakunapi pakakuytaka chirilla allpapi tiyak mayukunapimi yachaykunata rurashka (Lancaster & Hildrew 1993b; Winterbotton et al.1997; Winterbotton 1997; Lancaster 2000; Lytle 2001), shinapash mana alli yachanchikchu ima shina kaykunaka kunuk allpa mayukunapi kaktaka, kaykunapika kay wiwakunapakka hatu hatiriyka ninan llakimi kanka yuyanchik. Puchukaypika, anti hawa mayukunapika, ima shina kallaripi ninakurkanchik yakukunaka kutin kutinmi hatarin, chakimpash, chaypak hawa allpakunapash pata pukru kaymanta (phakchakuna tiyaymanta) Sinchipacha yaku kuyurikunatami kay allpakunaka charin, chaymantami mana alli yachanchik ima sami taxa yurakuna chay yaku ukupi tiyaktapash kay yakukuna ama tukuyta apashpa richun. Kutin ashtawan nishpaka yakukuna hatarishpaka ninantami tukuy ima tiyashkata shukman tikrachin chaymantami tullu illak kuru wiwakunaka ima shinapash kashka mayukunapi kawsana tukun, chaymantami kay killkapipash churashkanchik ima shina yakukunata allichina trucha challuwakunata wiñachinkapak, chaypakka yaku kallpakuytaka 50% kanatami pishiyachina kan, chaymanta shukniki yachaypika kay tapuykunatami kutichinkapak munani: Ima shinata unaypi, ñapash yaku hatarikunapika tullu illak wiwakunaka kawsan, shinallata ima shinata kay wiwakunaka pakakushpa mana yakupi apay tukun, chaypak hawapash ima shinatak paykunaka yaku ukupi kawsay ushan. Ima shinata kay tullu illak wiwakunaka yakukuna chakikpika kawsayta ushan. 144 Chakchurishpa kutin mirarimanta Alli kuskata maskashpa ima shina kay wiwakuna kutin mirashpa katimantaka hatun allipacha yuyanchikmi kayta yachayka (Boyero & Bosch 2004). Kayka mashna, maykan wiwakunalla yaku hatarishka hipa chayakkunawanmi paktarin, chay hawapash wakin purik wiwakunawampash paktarin kay purik wiwakunaka yaku hawaman purin, shinallata paykuna purishkapika lulunkunata churashpa purin (Williams & Hynes 1976). Kashna kaytaka Yaku ukupi allpakunami yanapan, shinallata chay allpakunapi mikunakunami yanapan chaypika maykan mishak mikukmi ashtawan yallin (Resetarits 1991; Mackay 1002; Resentarits 2001) shinallata chaypakka haku hatarikunapashmi rikunata charin. Kaypika purik wiwakunapash rikunata charin shuk kuskapilla kawsak wiwakuna mirarichun kay wiwakunaka wakinkunaka mikunata tukuchin, chayka uchilla wiwakunaka wañushpa tukurinllami, kutin wakinkunaka utkalla mishashpa paykunapak mikuna kuskakunapika huntan (Townsend & Hildrew 1976). Chirilla allpa mayukunapika purik wiwakunata, shinallata ima shina mikunakunata allichiktaka achkami yachaykunata rurashka tiyan (Brittain & Eikeland 1988; Mackay 1992), kunuk allpa mayukunapika wakinlla yachaykunatami rurashkanchik, wakinkunaka kunampilla rurashkami kan, chaypimi kay purin wiwakunaka mana chay kuskapilla kawsan, ashtawankarin yakukuna hataripi ashtawan puriktaka yachanchik (Pringle & Ramirez 1998; Ramirez & Pringle 2001; Jacobsen & Bojsen 2002; Rrodriguez-Barrios et al. 2007). Kaynanilla yachaykunata rurashkapika kunuk allpa mayukunapika kutin yaku hatarishka hipa wiwakuna mirarinkapakka shuk purik wiwakuna tiyakpillami ushan, shinallata ima mikunakuna tiyakpimi mirarin chaymantami karuta puriklla wiwakuna ashtawan alli mirayta ushan (Boyero & DeLope 2002; Boyero & Bosch 2004; Melo & Froehlich 2004). Shinapash kay yachaykunataka mana achka rurashka kanchu, ashalla tamiyakuna pachapilla ima shina kaktalla rurashka tiyan, chaymantami yaku hatarikpi ima shina wiwakuna kutin mirarimantaka mana imapash tiyan, shinallata mana yachanchikchu ima wiwakuna ashtawan purikkuna kaktapash Shinallata mana yacharinchu imamanta kunuk allpa mayukuna challuwakunata mana charsihpapash 145 runakuna churashka challuwakunata charin (tawka trucha challuwakunamanta shina ninchik), kaykunapika rikushkanchikmi mana kutin kutin yakukuna hatishpa llakichikta (Flecker 1992; Jacobsen & Bojsen 2002; Jacobsen 2008). Yakukuna hatarishpa wiwakuna chakchushka hipa ima shina kutin mirarimantaka tawka rimaykunami tiyan, ima shina yaku hatarishpa 10º chiri yakukunapi kawsashkamanta. Kay ishkay niki killkaypika kaykunatami kutichinkapak mushkanchik: Ima pachakunapitak yaku hatarishpa wiwakunata chakchurin. Ima sami mikunakunata tiyan kay chakchurishka wiwakuna mikuchunka. Ima wiwakunata ashtawan yaku hatarikpika apay tukun. Ima shinatak chakchurishka kashpapash wiwakunaka kutinlla tantarishpa mirarin. Ima shinatak wiwakunaka mushuk mikunakunawan, mushuk kawsak kuskakunapika yacharin. Mikunakuna yaku ukupi tiyaymanta Yurakunamanta phitirishka phankakuna taku ukuman urmashkami hatun alli mikunakuna kan kay wiwakunapakka mayukuna kallarikuk kuskakunapika (Siccama et al. 1970; Anderson & Sedell 1979; Wallace et al. 1997; Graca 2001). Kay mikuykunataka wiwakunami mikun, kutin ashaka yaku apakpi urkuta uraymanmi uriyakun (Likens et al. 1970; Fisher & Likens 1973) chaymantami urku hawa mayukunapi, shinallata uray kunuk allpa mayukunapi kawsay wiwakunaka paypura watarishka shina kan chaypimi ima tiyashkatapash mikushpa wanuman tikranchin (Graca 2001). Chirilla allpakunapika kay ismuchik wiwakuna, shinallata mikushpa wanuyachik wiwakunataka achka yachaykunatami rurashka kan (Anderson & Sedell 1979; Suberkropp & Wallace 1992; Suberkropp & Chauvet 1995; Wallace & Webster 1996; Wallace et al. 1997; Graça 2001; Graça et al. 2001b). Kutin shinallata kunuk allpa mayukunapi kawsak wiwakunataka mana alli riksinchikchu chaymantami mana yachanchik ima shina mikunakunata tantachikta, ima shina pachakunapi mirariktapash, kaytaka kashna mayukunapika achka yurakuna urmashpa yakupi tiyakpipash mana yachanchikchu. Yuyanchikmi kaypi kawsak wiwakunaka yaku ukupi tiyak mikunakunatami mikushpa kawsanka yuyanchik (Graca et al. 2001a; 146 Colón-Gaud et al. 2008). Kunuk allpa mayukunaka achka yurakunatami yakuman urmashkataka charin, kayka kutin kutinmi urmanakun tukuylla watapi. Kutin chirilla allpa mayukunaka yurakuna chakinakuy pachapillami kaytaka charin shinapash kay kunuk allpa mayukunapi yachaykunata rurashpaka, wiwakunapakka ashtawan mikunaka wayrakuna, sinchi tamiyakuna urmashpalla mikunata mirachikta yachanchik (Covich 1988), tamiyakuna kallarikpi mana kashpaka tamiyakuna tukurinakukpi (Gonçalves et al. 2006; Afonso et al. 2000) Kay mayukuna urmashka phankakunata charinkapakka paykuna ima allpakunata, ima shina kaykunamantami rikuna kan shinashpallami imatak chariktapash yachanchik río (Speaker et al. 1984; Lamberti et al. 1989) Mana chay sirilla yakukuna kaymantaka yaku ukupi allpakuna shakra kashpallami ashtan kaypakka alli kanka ninchik (Mathooko et al. 2001). Yakukunakutin kutin hatarinakukpi, kunuk allpa mayukunapika urmashka phankakuna miraytaka mana achka kirukuna tiyaymantallaka kanchu, kaypika yakukuna mirashpa phankakunata pashkakunapashmi kan, shinami yaku ukupika kay phankakuna mirashpa tukuylla yaku uku allpami rakirin (Larrañaga et al. 2003). Kunuk allpakunapika urmashka phankakunaka chakishka pachakunapimi ashtawan tiyan (Covich 1988) chaymanta watapika 35 g AFDM/m2 (Friberg et al. 1997) a más de 1000 g AFDM/m2 tukunkakaman mirarin (Colón-Gaud et al. 2008). Kay chiri akkpa mayukunapi yachayta rurashpaka kay yaku ukupi tiyak phankakunaka chay yakupi tiyak wiwakuna ama yakupi apay tukunkapak pakakunkapakmi mutsurin ninchik (Palmer et al. 1996), mana kashpaka chay phankakunata mikuk wiwakunapak mikunami tukun (Wallace & Webster 1996; Graça 2001; Graça et al. 2001b). Shina yuyakpika kutin kunuk allpa mayukunapika kay phankakunata mikuk wiwakunaka ninan mutsurishka wiwakunami kan kay mayukunata allichinkapak (Ramirez & Pringle 1998; Mathuriau & Chauvet 2002; Mathuriau et al. 2008), shina kashpapash kunuk allpapi tiyak mayukuna urku hawapi wacharikushpaka kashna wiwakuna tiyayka may hatun mutsurishkami kan (Cheshire et al. 2005). Chaypak hawa kay wiwakunapak wiksakunaka kunuk allpa mayukunapika ashatawan sinchikunami kan shukta shukta mikunakunata mikunakuymanta (Wantzen et al. 2005; 147 Tomanova et al. 2006; Wantzen & Wagner 2006). Kaypi rikushpaka, kay yakuman urmashka khupakunaka ninan mutsurishka mikunakunami kan kay yaku ukupi kawsak wiwakunapakka, shinapash urku hawa mayukunapi kawsak wiwakunaka maymanta mikuktapash mana alli yacharinchu, imapash chaypillata tiyashka mikunakunatami kikushpa kawsanka yuyanchik kunuk allpa mayukunapi tiyal tullu illak wiwakuna imatapash mikukta rikuymantami shina yuyanchik. (Covich 1988). Anti hawa mayukunapi kashna kakta rimankapakka kay tapuykunatami kutichinkapak munanchik: Imamantatak anti hawa mayukunapika yura phankakuna urmayka mutsurishka kanka. Imapash rikunata charinchu kay phankakunata apankapak yakukuna hatariyka shinallata kay yaku hatarishpaka ima shinata wiwakunataka llakichin chakchushpa. Ima wiwakunata kay phankakunawanka kawsan Lulunkunata churaymanta Yaku ukupi kawsak wiwakuna lulunkunata churayka tukuylla wiwakunapimi rikunata charin chayllami wiwakuna miranakun mana miranakuktapash, ima shina kutin miranakuktapash yacharin (Williams & Hynes 1976; Encalada & Peckarsky 2006). Kutin kutin yaku hatarik mayukunapika ima shinami kan kunuk allpa mayukuna, kaykunapika yaku hatarika ninan llakimi kan achka wiwa lulunkunata apashpa tukuchiklla kaymanta, chaymantami may mutsurishka kan ashtawan wiwakuna lulunkunata churayka, shinashpallami kay wiwakunaka tukuylla yaku ukupi tiyashka wiwa ayllukunataka kawsayta kushpa katin. Ima shina ashtawan kay wiwakuna mirarishpa ashtawan lulunkunata churashpa katitaka mana yachanchikchu, (shinapash taripana kanchik Encalada et al. en prep.), kaypika wiwakuna lulun churaymantaka uray allpakunapakllami rimashka kan (Hinton 1981; Brittain 1989; Merritt & Cummins 1996). shinapash shuyanami kanchik chirilla allpakunapika sisay pachakunapi, phanka urmay pachakunapilla kashna kaktaka chay pachakunapika kurukunaka yakumanta llukshishpa lulunta churankapaklla yakuman tikran univoltismo nishka, shuk 148 kutinlla lulun churaytaka wiwakunaka tukuy ima tiyashkakunapash alli kakpilla churan mana shina kakpika mana imatapash churanchu, kutin kunuk allpa mayukunapika mana tiyanchu kashna pachakuna chaymantami kaypi kawsak wiwakunaka tawka kutin lulunkunataka churan shinashpami ima pachakuna kakpipash llakikunata yallishpa kawsashpa katinlla kashna ruraytaka kunuk allpakunapi kawsak tawka kurukunata rikushpami shina ninchik (Collier & Smith 1995; Jackson & Sweeney 1995) ashtawanka kunukpacha allpakunapi. Kunampillaka anti hawa mayukunapi wiwakuna ima shina kawsan, ima shina lulunkunata churan, chaykunataka mana yachanchikchu, imatapash mana kay hawaka charinchikchu (Jacobsen 2008). shinapash kayta yachanaka mutsurishkapachami kan ima shina urku hawa mayukunapi wiwakuna mikunakuna illashpapash kawsayta ushayta yachayka kutin wakinkunaka chirikunapipash kawsan (~10ºC en Ecuador) shinallata samaypash hawapi kaymanta ashallapi kawsan (Jacobsen 2008). Kaypi rikushpaka kay hawaka kaykunatami tapurishkanchik: Urku hawa mayukunapika wiwakunaka ima shinata mirarinkapakka lulunkunata churan. Tamiya pachakunaka imatatak rikunata charin. Imatatak rikunata charin wawa wiwakuna hatun wiwakunawan yaku hatarishpa chakchukpika Chusku niki yachaypimi kay tapuykunataka kutichinkapajk munanchik. Kay killkapika ima shinami wiwakunaka anti hawa mayukunapi kawsayta ushan shinallata ima shinatak kay wiwakunaka yanapan yaku ukupi kawsak ayllukunataka. Tukuy kay tapuykunataka chusku yachaykunapimi churashkanchik, chaykunapimi kutichinkapak munashkanchik ima shinatak kay wiwakunaka kashna llaki mayu ukukunapi kawsayta ushaktaka. Shinallata inglés shimipi killkashka yachaykunataka ñukanchik shimi shinallata churashkanchik kaykunatapash mincha punchakunami kamuman tikrachichun 149 Ashalla shimikunawan puchukanchik Yakukuna hatarishpa ima shina chay yaku ukupi kawsak wiwakunata, shinallata chay yaku ukupi tiyak ayllukunata yanapakta rimankapakka, Piburja mayupimi ishkay hatun pachakunata rikushpa yachakushkanchik shinallata kaykunataka chusku yachaykunapimi churashkanchik. Kaypika kallaripi churashka tapuykunata kutin churanchik kay killkapa puchukaykunata churankapak. Ima shinatak yakukuna hatarishpaka yaku ukupi kawsak wiwakunataka chakchun, shinallata kay hatarikunaka ima shinatak kay wiwakunataka pakakushpa mirarichun yanapan, chay hawa ima shinatak kay wiwakunapak kawsak allpakunaka. Imatatak kay wiwakunaka yaku chakishpa pishiyakpika kawsashpa katin. Piburja mayupi shikan pachakunata rikuyka allipachami karka. Kaypika tullu illak hatun wiwakunaka paykunapash ima allichirishpa shina pachakuna kawsanakurka kakpipash shinallata chaymanllatami yakukuna chakishpa pishiyakpimi tukuy pachakunapi yalli ashtawan wiwakunata tarirkanchik yakukuna mana hatarishpa kakpi, shinapash Baetodes nishkakunami tamiya pachakunapika ashtawan tiyarka, katin kaykunaka rupay pachakuanpika tutkurirkallami. kashna kaykunaka ñukanchik yuyaypika yakukuna ashtawan kallpanakuywanmi rikunata charinka yuyanchik kay Baetodes nishkakunawan rikushpaka llashak yakukunapi ashtawan purita ushan. Wiwakunapak ayllukunataka chakishka pachakunapimi ashtawan alli rikuy usharkanchik kutin tamiya pachakunapika wakinkunatallami rikurkanchik. Tamiyakunawan yakukuna hatarishkakunapika mana kay wiwakuna pakakuna llaki illak kuskakunataka tarirkanchikchu shinapash wakin kashna yakulla pachakunapika yaku ashalla Nectopsyche nishkakunaka kallpakun kuskakunapimi yallinakurka, kaykunata rikushpami kay wiwakunaka maypi ama yaku apanalla kuskakunata maskashpa kawsayta ushakta yacharkanchik. 150 Chashna rikushpaka ashalla kallpakuk yakuwan kutin paykunapak ñawpamanta kawsak kuskakunawan chimpapurashpaka ima shina wiwakuna chakchiriyka shinallatami karka, shinapash yaku pishiyashpaka wakin (Ochrotrichia, Claudioperla), nishkakunatapashmi pishiyachirka, kaykunaka ñapashmi samay pishiyaktaka hapirka, shina kashpapash shukkuna tukurinakukpipash kutin ashtawan sinchi yurakunami mirarishpa katirka (Oligochaeta, Tricladida). nishkakuna. Tukuy punchakunachu yakukuna mirakun pishiyakun. Ima pachakunapitak yakukunaka shuk shuk kan, shinallata ima yura phankakunata ashtawan yakuwan apay tukun. Ima shinatak wiwakunaka yaku hatarikpika chakchurin, kutin ima shinatak kutin mirarin kay mirarikunaka imatatak rikunata charin paykunapak kawsak kuskakunawanka. Kaykunata rikushpaka yaku ukupi kawsak ayllukunaka chishi pachakunapillami ashata tikraykuna rikurirka ima shina chirilla urkukunapi rikushkanchik. Kutin ishkay sami yurakunallami (Baetodes y Leptohyphes) shukman tikraytaka rikuchishka. Kashna kayta shikan trucha challuwakunata Oncorhynchus mykiss. churashka kaymantami kanka yuyanchik. Kutin shukpi rikushpaka wiwakuna wañuyka pachakuna tikraypimi rikurirka, chay pachakunapika yaku ukupi tiyak mikunakunaka mana wañurkachu kaytaka tukuy yaku ukupi tiyak ayllukunata rikushpami shina ninchik, shina nishkakuna mirarka tamiya pachakunapi kutin pishiyarka chakishka pachakunapi. Kayta rikushpami tamiya pachapi yakukuna hatarikpaka achka wiwakunami wañun ninchik, kaytaka shinallata rikurkanchik kashna pachakunapi yura phankakunapash mirakta. Yaku ukupi tiyak rumikunapi wiwakuna kutin kawsankapak chayaktaka rikurkanchikmi kashka yakukuna hatarishka hipa shina wakin yakukuna sinchi kallpakuk kuskapi tiyak rumikunapika shikan yura phankakunatami tarirkanchik ashalla kallpakuk kuskakunapi tiyak phankakunawan rikunkapakka, shina kallarikunapika ashtawan alli kakta rikurkanchik kutin hipamanka mirashka kakta 151 rikurkanchik Nectopsyche nishkakunata tamiya pachakunapi, kaykunapika ashalla yaku kallpakuk kuskakunapika ashtawanmi tiyarla sinchi kallpakuk yakupi tiyan rumikunawan rikukpika chaymantami ninchik kay wiwakuna, kay ayllukunaka ashalla kallpakuk yakukunatami maskashpa kawsan, chaypimi phankalla kawsay ushan. Ashalla shimikunapi nishpaka: yakukuna hatarishpami wiwakunataka chakchushpa mirachinkapak yanapan shinallata kay wiwa mirarikunaka paykunapak kawsak kuskakunawampash rikunata charin. Imatatak rikunata charin mana chaymanta kashpata mushuk mikunakuna anti hawa mayukunapi yaykushpaka. Imapash alli tiyanchu kashna mikunakuna yaykushpa chay yakukunapi, shinallata ima shinata llakichin mana kashpaka yanapan chaypi kawsak wiwekunataka. Imakunatak mikun chay mikunakunataka. Piburja mayupika mana paykunallata mikunata rurayta ushakkunallami rikurirka, kaypika kashna mikuykunaka kutin kutinmi yaykunakurka, shinapash kaykunaka ashtawan mana tamiya pachakunapilla yaykurkachu, shina yaykurkuna tiyarka mana achka tamiyakuk pachapi, kutin wakimpika tamiyakuk pachapipash yaykuykuna tiyarka chaymanta mana allipachaka yacharinchu ima pachakunapipacha kashna yakukuna hatarishpa tukuyta apak pachakuna tiyaktaka, chaymantami tukuy ima yaku ukupi tiyashkapash chakishka pachakunapika mayukunapi huntarka. Yaku ukupi tiyashkakunaka tukuypimi rikunata charirka ima pachakunapi ashtawan yurakuna tiyan, imakunalla tiyan, ima shina tamiyakuypipash rikunata charin. Kasha pachakunapika yaku ukupi kawsak ayllukunaka (paykunapak chunchullikunata rikushpaka) paykunaka kashnakunatami mikun nishpa killkashka kamukunapi rikushpaka kashna yurakunatami ashtawan mikushka karka, ishkantin yachayta ruurashka pachakunapika raku, hamtsi yura phankakunatami mikushka karka. kaykunata rikushpami. Kay wiwa ayllukunaka kay mayupika yaku ukupi ima tiyashkakunatami mikun kashka yuyanchik, shina 152 rikushpaka shuk kuskakunapipash shuk mikunakunata charinka yuyanchik. Chaymantami yaku ukupi kawsak kurukunaka ima pachapi kashpapash ima yaku ukupi tiyashkakunata mikunka yuyanchik. Ima shinatak mirarinkapakka anti hawa mayukunapika wiwakunaka lulunkunata churan. Kaypika pachakuna rikunata charinchu. Kaypakka imatatak rikunata charin yaku ukupi kawsakkuna, shinallata yaku hatarikpi chakchurik wiwakunaka, rukuyashka wiwakunawan rikushpaka. Ishkantin pachakunapimi yakupi kawsak rukuyashka kurukunata tarishkanchik, ashtawanka ishkay rikrayuk kurukunata tarishkanchik. Rukuyashka kurukunataka mana mirarirka, pishiyarikta rikushkanchikchu tamiya pachapi, rupay pachapipash, phankakunaka pishiyaktami kallpariyanakukta, tarishkanchik, shinapash (Ephydridae rikushkanchik. shinapash (kaytaka wakinlla wakinlla lulunyuk and Ochrotrichia). Tarishkanchikmi yura achka lulunkunata churanakuktaka warmikunata, wakinlla lulun churashkakunata rikushpa ninchik). Kashna kayka ishkantin pachakunapimi shinallata kashka. cahymantami tukuy pachakunapi lulunkunata churanka ninchik chayka tukuy watatami wacharishpa mirarinakusha yallinka ninchik, shinapash kayta ninkapakka taripashkakunata mutsunchik shuk watatallapash kaykunaka shinapacha kakta alli yachankapak. Kashna maskashpaka wakin wiwakunatalla tarishkanchik wakinlla lulunkunatalla tarishkanchik ishkantin pachakunapi, tarishpapash kay lulunkunaka yakumanta llukshishka hatun rumikunapilla tiyarka. Kaytaka llakikunamanta kishpirinkapakmi shina ruranka yuyanchik, wakin yura phankakunaka kurukunapak lulunkunataka yaku hawaman llukchin. Ñukanchikka shuk sami yura phankakunata rikushkanchik, chaypi tiyak lulunkunaka shuk yakukunapi tiyanka yuyanchik. Mana alli rikuy ushashkanchikchu ruku yaku kurukunawan yaku ukupi tiyak ayllukunawan ima shina rantimanta kawsaktapash. Ñukanchik yuyaypika ima shina allpa hawapi kawsak ayllukuna rantimanta kawsankapak yanaparishpa kawsan Chironomidae. Shinallatami yaku ukupipash yanaparishpa kawsanka 153 yuyanchik. Chay hawa shikan kaytaka Baetodes ayllumi tamiya pachapika ashtawan tiyan, kutin Nectopsyche ayllumi rupay pachakunapika ashtawan tiyan rukuyashka kurukunata rikushpaka. kurukuna lulun churaymanta, mirarimantapash rimashpaka ashtawan tapuykunatarkmi sakin yuyanchik. Ashtakatami mana riksinchik anti hawa mayukunapi yaku kurukunapak kawsaymantaka chaymantami taripaykunaka mutsurishkapacha kan ima shina wiwa ayllukuna kutin kutin mirarishpa kawsanakukta yachankapak 154