Passive Remote sensing in the IR spectral range
Transcription
Passive Remote sensing in the IR spectral range
Remote sensing in IR spectral range • Overview • trace gas spectra • spectrometer concepts • Trace gas measurements from different platforms • Imaging satellite instruments Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Remote sensing in IR spectral range Cloud droplets rain droplets aerosols molecules Wavelengths from ~1 to 1000μm -vibrational + rotational transitions Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de In the IR spectral range, typically emission spectra are analysed In some cases also absorption spectra of the solar radiation are measured Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Infrared emission spectrum of the Earth atmosphere in the mid-infrared region (700–2250 cm−1) calculated with the radiative transfer model LBLRTM for mid-latitude conditions (summer, unpolluted scenario). The most important absorption bands of different trace gases (O3, CO, CO2, H2O, CH4, N2O) are indicated. (Orphal et al., 2005)on atmospheric remote sensing Lecture thomas.wagner@iup.uni-heidelberg.de The observed Intensity is: =0 if only emission is observed Optical depth -emission and absorption plays a role -typically no simple inversion (like in the UV/vis) is possible -complex radiative transfer modelling has to be applied Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de α: absorption coefficient α ij (ν , p, T , N ) = N ⋅ σ (ν ij , T )⋅ S (ν − ν ij , p, T ) N: Number density T: Temperature p: Pressure σ: absorption cross section S: Line width gl is the degeneracy and El the energy for state l, μis the overall dipole (or other) moment coupling to the radiation field Q(T)= Σgl exp (- El /kT) is the partition function φij² is the transition matrix element Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Scheme of rotational-vibrational transitions Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Zu sehen sind die Rotationsschwingungsspektren von HCl (2800 cm-1) und DCl (2200 cm-1) sowie deren erste Obertöne (HCl bei 5600 cm-1 und DCl bei 4400 cm-1) sowie Wasserbanden (3600 cm-1) und CO2Banden (2600 cm-1).on atmospheric remote sensing Lecture thomas.wagner@iup.uni-heidelberg.de Example of an absorption FTIR- measurement Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de The rotational-vibrational spectra are determined by the molecules symmetry and complexity Methyl ethyl ketone (13 atoms, nonsymmetric) Benzene (12 atoms, symmetric) Formaldehyde (4 atoms, non-linear) Acetylene (4 atoms, linear) Nitric oxide (heteronuclear, diatomic) Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Subtraction sequence of an absorption measurement Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Example of an emission FTIR- measurement http://www-imk.fzk.de:8080/imk2/mipas-b/bestfit.gif Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de MIPAS-HNO3-observation Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Beispiel: N2OIsotope Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Natural line width: It can be ignored compared to collision (pressure) broadening at lower altitudes and Doppler (thermal motion) broadening at higher altitudes. Collision (pressure) broadening: -collission between molecules shortens lifetimes for specific states -for increasing pressure towards lower altitudes the probability to be scattered increases -the line shape for pressure broadening can be approximated by a Lorentzian line shape: (Δν: line width for pressure broadening) The Lorentian line shpae can be retrievd from the *van Vleck and Weisskopf* line shape assuming that the duration of a collision is much shorter than the time between two collisions (impact-approximation) Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Lorentian line width: Typical value: 2.5 MHz p0: 1hPa T0: 300K Typical value: 0.75 The Lorentian line width is temperature dependent Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Doppler broadening -is caused by thermal motion of molecules. The Maxwell distribution depends on temperature and the molecular mass: According to the Doppler-effect, the line width becomes: With line width: By convolution of the Lorentian and Doppler line shape one gets the so called Voigt line shape: Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de www2.nict.go.jp/kk/e414/shuppan/ kihou-journal/journal-vol49no2/4-06.pdf Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Different types of spectrometers: -Grating spectrometer: simple setup, medium spectral resolution, typical for early measurements, today satellite instrument CRISTA -FTIR, e.g. MIPAS: complex system with moving parts, high spectral resolution (typical instruments today) -Etalon spectrometers (e.g. CLAES): high spectral resolution in selected wavelength windows -gas correlation filter radiometer (e.g. satellite instrument MOPITT) Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Michelson-Interferometer Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Prinzip des Michelson- Interferometers Wellenzahl: ν ≡ 1 λ = ν c Überlagerung zweier monochromatischer Wellen mit Phasenverschiebung Δx: a1 = A ⋅ cos(2π ⋅ν ⋅ x) a2 = A ⋅ cos(2π ⋅ν ⋅ ( x − Δx)) a = a1 + a2 = 2 A ⋅ cos(2π ⋅ν ⋅ Δx) ⋅ cos(2π ⋅ν ⋅ ( x + Δx / 2)) Intensität: I = a 2 = 4 ⋅ A2 ⋅ cos 2 (2π ⋅ν ⋅ Δx) = 2 ⋅ I in ⋅ [1 + cos(2π ⋅ν ⋅ Δx)] 1.0 a1 Amplitude 0.5 a2 Δx 0.0 -0.5 -1.0 0 1 2 3 4 Phase in W ellenlängen Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Polychromatische Interferenz Da Spektrometer Licht vieler Wellenlängen verarbeiten, entsteht die oben beschriebene Interferenz für jede Wellenlänge. Entsprechend überlagern sich die InterferenzIntensitäten der einzelnen Wellenlängen zusätzlich. Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Fourier Transformation Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Atmospheric observations -ground based measurements -balloon-borne observations of IR emission -satellite observations of scattered sun light (NIR) -satellite observations of direct sun light -satellite observations of IR emission (limb) -satellite observations of IR emission (nadir) -satellite observations imagers (IR emission nadir) Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Atmospheric observations -ground based measurements -balloon-borne observations of IR emission -satellite observations of scattered sun light (NIR) -satellite observations of direct sun light -satellite observations of IR emission (limb) -satellite observations of IR emission (nadir) -satellite observations imagers (IR emission nadir) Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Schematic illustration of the instrumental setup used. The solar/lunar tracker follows the course of the sun/moon and feeds a parallel light beam into the spectrometer. In the interferometer the light beam is splitted into the two rays by the beamsplitter. Several detectors are mounted which allow to record the whole spectral region from the IR at 700/cm (14 µm) up to the UV at 33000/cm (300 nm). Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Increase of free tropospheric CO from 1951 to 1985 (ISSJ Jungfraujoch) Early measurements were carried out with a grating spectrometer; the spectral resolution was limited A spectrum from 1985 mathematically degraded to the resolution from 1951 Original spectrum from 1985 measured with a FTIR high reolution spectrometer Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de CO and CH4 column above the Jungfraujoch station 1985 - 1996 Mahieu et al., 1997 Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Total column CO abundance over Zvenigorod (right scale) and corresponding mean tropospheric mixing ratio (left scale). Regression lines for 1970-1984 and for 19851997 are shown. http://www.igac.noaa.gov/newsletter/igac21/trends.html Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Seasonal cycle of free tropospheric CO from 1950/51 and 1985-87 (ISSJ Jungfraujoch) Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de www.ifjungo.ch/reports/1999_2000/pdf/09.pdf Increase of several species from 1951 to 2000 (ISSJ Jungfraujoch) Early measurements were carried out with a grating spectrometer; the spectral resolution was limited A spectrum from 2000 mathematically degraded to the resolution from 1951 Original spectrum from 2000 measured with a FTIR high reolution spectrometer Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de 1951 1988 2000 Lecture on atmospheric remote sensing 1951 1988 2000 thomas.wagner@iup.uni-heidelberg.de Total column densities of HCl, measured in Spitsbergen between 1992 and 2000. Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Griesfeller, A.: Validierung von ENVISAT-Daten mit Hilfe von bodengebundenen FTIR-Messungen, Dissertation, FZK Report No. 7072, Forschungszentrum Karlsruhe, Germany, 2004. Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Atmospheric observations -ground based measurements -balloon-borne observations of IR emission -satellite observations of scattered sun light (NIR) -satellite observations of direct sun light -satellite observations of IR emission (limb) -satellite observations of IR emission (nadir) -satellite observations imagers (IR emission nadir) Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de MIPAS Balloon Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de MIPAS ClONO2-Messung Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Atmospheric observations -ground based measurements -balloon-borne observations of IR emission -satellite observations of scattered sun light (NIR) -satellite observations of direct sun light -satellite observations of IR emission (limb) -satellite observations of IR emission (nadir) -satellite observations imagers (IR emission nadir) Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de SCIAMACHY-Spectral regions Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de SCIAMACHY on ENVISAT measures backscattered sunlight in the near-IR How does the earth look like in the NIR spectral region? Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Unterer Häufungspunkt der Reflektivität als Maß für wolkenfreie Messungen 1508-1645 Lecturenm on atmospheric remote sensing M. Grezeorski thomas.wagner@iup.uni-heidelberg.de Unterer Häufungspunkt der Reflektivität als Maß für wolkenfreie Messungen 2265-2380 Lecturenm on atmospheric remote sensing M. Grezeorski thomas.wagner@iup.uni-heidelberg.de Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Panel (a) shows the spectrally fully resolved total optical densities for a vertical path for CH4 (V = 3.6 · 1019molec/cm-2) and H2O (V = 6.5 · 1022molec/cm-2) while panel (b) depicts the vertical optical densities of CH4 for different height layers in the atmosphere. The expected total slant optical density (here for A=2.41) is now shown in panel c). Shown is the high resolution optical density and the convolved one that is seen by the instrument, i.e. convolved with I (here: SCIAMACHY slit function in channel 8: Gaussian, FWHM=0.24nm). Starting from this linearisation point, the effect of a change in the vertical column density of CH4 of +1018molec/cm2 (i.e. 3% of the total column) in different height layers is shown in panel (d). Panel (e) shows the derivatives (also with respect to CH4 perturbations) for different linearisation points, viz. for different water vapour columns (1.3, 6.5 and 32.5 1022molec/cm-2, respectively). The optical densities in (a) and (b) are not convolved. Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Typical modelled and measured differential slant optical densities (DSOD) in the CO2 (a) and CH4 (b) fit windows are shown. In panel (a), CO2 contributes most to the depicted total DSOD, while there are also very weak absorptions by water vapour. In panel (b), absorptions by CO2 and H2O marginally add to the strong CH4 signal. In both panels, all species are fitted simultaneously and make up the total DSOD using a gaussian slit function with 1.35 nm full width at half maximum. Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de CO absorption detected in SCIAMACHY spectra C. Frankenberg, IUP Heidelberg Example of a CO fit. The upper panel shows the differential slant optical density of all absorbers (CH4, H2O and CO), the middle panelthat of CO. The lower panel shows the residual of the fit. Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de CO maps correlate well with maps of fire counts C. Frankenberg, IUP Heidelberg Fire counts measured by MODIS aboard Terra. Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de CH4 maps from SCIAMACHY C. Frankenberg, IUP Heidelberg CO2 CH4 CH4 columns are normalised with respect to CO2 columns Aug-Nov 2003 Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Comparison with model results Aug-Nov 2003 C. Frankenberg, IUP Heidelberg J.F. Meirink, KNMI, Utrecht Aug-Nov 2003 Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Difference SCIAMACHY – Model, Aug-Nov 2003 C. Frankenberg, IUP Heidelberg The largest differences can be seen in tropical broadleaf evergreen forests Science, March 2005 In agreement with recent findings of a new CH4 source from plants under aerobic conditions Keppler et al., Nature 2006 MODIS Enhanced Vegetation Index Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Atmospheric observations -ground based measurements -balloon-borne observations of IR emission -satellite observations of scattered sun light (NIR) -satellite observations of direct sun light -satellite observations of IR emission (limb) -satellite observations of IR emission (nadir) -satellite observations imagers (IR emission nadir) Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Different viewing geometries and wavelength ranges: Direct sun observations provide a high signal to noise ratio The light path is well defined High requirements on telescope adjustement Only special parts of the earth can be monitored Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de The platform for SAGE II is the Earth Radiation Budget Satellite (ERBS). Nominal orbit parameters for ERBS are: •Launch Date: October 5, 1984 •Planned Duration: 2 years •Actual Duration: ongoing •Orbit: non-sun synchronous, circular at 650 km •Inclination: 57 degrees •Nodal Period: 96.8 minutes Channel Wavelength (nm) 1 2 3 4 5 6 7 1020 935 600 525 452 448 (nominal) 386 SAGE II Channels Lecture on atmospheric remote sensing http://www-sage2.larc.nasa.gov/instrument/ thomas.wagner@iup.uni-heidelberg.de Approximate Altitude Range (km) 3-6 O3, NO2 45-60 1, 3-6 O3, NO2, Aerosol (3) 15-45 1, 3-5 O3, Aerosol(3) 10-15 1, 3 ,4 O3, Aerosol (2) 5-10 1 Aerosol (1) 1-5 Table 2. Algorithm Species and Altitude Range. (3) 1020, 525, and 452nm extinction profiles; (2) 1020 and 525 nm; (1) 1020 nm only. Channels Species Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de http://www-sage2.larc.nasa.gov/data/v6_data/ Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Atmospheric observations -ground based measurements -balloon-borne observations of IR emission -satellite observations of scattered sun light (NIR) -satellite observations of direct sun light -satellite observations of IR emission (limb) -satellite observations of IR emission (nadir) -satellite observations imagers (IR emission nadir) Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Limb-Beobachtung Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de THE (Cryogenic Limb Array Etalon Spectrometer ) CLAES INSTRUMENT CLAES infers the amounts of gases in the stratosphere from the measurement of the unique infrared emission features by combining a telescope with an infrared spectrometer and solid state detectors, and cryogenically cooling the whole instrument below 150 Kelvin to minimise its own thermal infrared emissions. The spectrometer operates over the wavelength range 3.5 to 12.9 microns.Spectroscopy is performed by tilt scanning one of the four solid etalons between one or more of the nine blocking filters. The nine filters are centered at 2843, 1897, 1605, 1257, 925, 879, 843, 792 and 780 cm-1. http://www.lmsal.com/ 9120/CLAES/mission. html Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de 24 hours of ClONO2 (top) and HNO3 (bottom) data at 21 km as measured by CLAES in the Arctic stratosphere for individual days between July 1992 and May 1993. (Roche et al., J. Atmos. Sci., 51, 2877-2902, Oct. 15, 1994.] ) Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de http://www.crista.uni-wuppertal.de/images/space.png Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Measured CRISTA spectra of a single altitude scan in the tropical upper troposphere. Shaded spectral signatures originate from H2O emissions of weak lines. Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de CRISTA ist in der Ladebucht des Space Shuttles eingebaut Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de N20-Karte am 06. November 1994 in 30 km Höhe Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Assimilated water vapor field at 215 hPa on August 12, 1997. Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de MIPAS/ENVISAT Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de MIPAS on Envisat Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de 13.5km 16.4km 19.4km 40.3km ClO emission http://www-imk.fzk.de/asf/ame/ClosedProjects/assfts/P_III_12_Glatthor_N.pdf Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de 17.9.2002 20.9.2002 13.10.202 Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Model simulation O3 (TM3-DAM, KNMI) GOME O3 GOME NO2 GOME OClO (IUP Bremen) (IUP Heidelberg) (IUP Heidelberg) 21.09. 22.09. 23.09. Walburga Wilms-Grabe Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Model simulation O3 (TM3-DAM, KNMI) GOME O3 GOME NO2 GOME OClO (IUP Bremen) (IUP Heidelberg) (IUP Heidelberg) 24.09. 25.09. 26.09. Walburga Wilms-Grabe Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de www.copernicus.org/EGU/acp/acpd/4/6283/acpd-4-6283.pdf Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Atmospheric observations -ground based measurements -balloon-borne observations of IR emission -satellite observations of scattered sun light (NIR) -satellite observations of direct sun light -satellite observations of IR emission (limb) -satellite observations of IR emission (nadir) -satellite observations imagers (IR emission nadir) Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de MOPITT measures emitted (4.6 μm) and and reflected (2.3 μm) radiation http://www.atmosp.physics.utoronto.ca/MOPITT/MATR.pdf Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de MOPITT instrument LMC: length modulated gas correlation cell PMC: pressure modulated gas correlation cell Transmission convolved with the detector sensitivity (4.6 μm) for different CO absorptions Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Global CO distribution from SCIAMACHY (top) and MOPITT (bottom) Buchwitz et al., 2004 Averaging kernels Remedios et al., 2005 Global CO on 23 March 2000 Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Clerbaux et al., 2003 IMG spectrum (in transmittance units) in the 600–2500 cm−1 spectral range recorded over South Pacific (−75.24, −28.82) on 4 April 1997, 04:00:42GMT (top). Radiative transfer simulations for absorption contributions due to strong (middle) and weak (bottom) absorbers are also provided. Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Detection of HNO3 from IMG data. Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Surface temperature retrieved from IMG at 976.75 cm−1 Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Coheur et al., JGR 2005 (a) Best ozone spectral fits for IMG observations above the Uccle (left plot) and Ny-Alesund (right plot) sites. The selected scenes correspond to surface temperatures of 280 and 255 K, respectively. The dashed lines at ±107 W/(cm2 sr cm1) correspond to the se value selected to constrain the retrievals. (b) Retrieved ozone profiles in number density units and relative differences calculated with respect to the smoothed ozone sonde profiles the two locations.thomas.wagner@iup.uni-heidelberg.de The a priori profile is also shown. Lecture on atmospheric remoteat sensing Turquety et al., ACP, 2004 Global distributions of IMG O3 total and partial columns for the April 1–10, 1997 IMG period, filtered and averaged over a 5 5 grid and the time period. Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Global distributions of IMG CH4 and CO total columns for the April 1–10, 1997 IMG period. The data are averaged over the time period and a 5 5 grid. The corresponding available NDSC measurements are represented by colored circles on each map. Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Tropospheric Emission Spectrometer (TES) From Beer, 2005 Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de First TES global map of tropospheric O3 (9/21/2004) GEOS-CHEM model for 9/21/2004 Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de CO Column from TES, 9-20-04 Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de CO Column from MOPITT, 9-20-04 Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Atmospheric observations -ground based measurements -balloon-borne observations of IR emission -satellite observations of scattered sun light (NIR) -satellite observations of direct sun light -satellite observations of IR emission (limb) -satellite observations of IR emission (nadir) -satellite observations imagers (IR emission nadir) Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Nimbus-1 Launch Date Operational Period August 28, 1964 Operational until September 23, 1964 Nimbus-1 High Resolution Infrared Radiometer (HRIR) image, taken at night over western Europe - note the distortion that enlarges Germany and Sweden relative to southern countries - the Italians might be aggrieved by the shrinking of the "boot". Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Nimbus-4 Launch Date April 8, 1970 Operational Period Over 10 years until it was deactivated on September 30, 1980 700-mile Long Thermometer. Nimbus-4 took temperature readings of three continents (Africa, Europe and Asia) from 700 statute miles with an infrared camera. The temperature data were reconstructed into a photograph. White dots on the photo are grid marks which provide scientists with precise latitude and longitude information. Since the images were measured in heat emitted from Earth, dark areas are land, grey are water and white are clouds. Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de AVHRR 23 Jan 2005 at 1245 UTC Dundee Satellite Receiving Station http://www.sat.dundee.ac.uk/abin/browse/avhrr/2005/1/23/1245 visible, 0.58-0.68µm near infra-red, 0.725-1.10µm short wave infra-red, 1.58-1.64 or 3.55-3.93µm Lecture on atmospheric remote sensing thermal infra-red, 10.3-11.3µm thermal infra-red, 11.512.5µm thomas.wagner@iup.uni-heidelberg.de High Resolution Infrared Radiation Sounder Version 2 (HIRS/2) on he TIROS Operational Vertical Sounder (TOVS) Sensitivity of TOVS H2O observation for different IR wavelengths Soden and Bretherton, 1996 Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Retrieved water vapor between 1000 - 700 mb, 700 - 500 mb, and 500 - 300 mb for CSU algorithm, NVAP algorithm, and Susskind's algorithm. Engelen and Graeme, 2002 Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de Set up of an interferometer Monochromatic interference Lecture on atmospheric remote sensing thomas.wagner@iup.uni-heidelberg.de