euraclimates_kokous_..

Transcription

euraclimates_kokous_..
1
VENÄJÄ-YHTEISTYÖN KEHITTÄMISKOKOUS
SISÄLLYS:
KOKOUSKUTSU .................................................................................................................3
JOHDANTO: METLAN VENÄJÄ-YHTEISTYÖN KEHITTÄMISSUUNNITELMA..................4
KESKUSTELUA...................................................................................................................5
31. Tutkimusstrategian pohdiskelua .................................................................................6
32. Lähitavoitteena EU-hanke-esityksen laadinta FP7-ohjelmaan liittyen. .......................8
33. Lisäajatuksia liittyen Euraclimates-suunnitteluun .......................................................9
EURACLIMATES -PROJEKTISUUNNITTELU ..................................................................11
EURACLIMATES-TUTKIMUSPROJEKTIEN TIEDONHALLINTA .....................................13
ILMASTOTIEDON VISUALISOINTI HAVUPUIDEN VUOSILUSTOISTA...........................15
PAIKALLISILMASTOJEN MÄÄRITTÄMINEN MÄNNYN VUOSILUSTOISTA ...................16
THE EURACLIMATES PROJECT IN SHORT ...................................................................17
LIITTEET ...........................................................................................................................17
I Exciting views in European-Siberian tree-ring research ...........................................18
II Some recent comments and suggestions from MKH..............................................18
III Productive synergies suggested by M.K. Hughes and E. A. Vaganov....................19
B. Personal exchange and communications...............................................................21
C. “Proposal” activity...................................................................................................22
D. Other activity .......................................................................................................22
Some Words about the Institute of Plant and Animal Ecology (IPAE)...............................36
2
VENÄJÄ-YHTEISTYÖN KEHITTÄMISKOKOUS
KOKOUSKUTSU
Tervehdys kaikki,
Siperia-yhteistyön suunnittelukokous pidetään maanantaina 27.3. kello 9.30 alkaen
Vantaan yksikön kirjastorakennuksen kokoushuoneessa Signe. Mauri Timonen ja Kari
Mielikäinen kertovat syyskuussa 2005 tekemänsä matkan pohjalta tuntojaan aiheista,
joista venäläiset osapuolet ovat erityisen kiinnostuneita. Lisäksi kokouksessa pohditaan
myös Venäjä-yhteistyöhön liittyvän ensimmäisen, Euraasia laajuisen, EUympäristönmuutosprojektimme sisältöä.
Ohjelma:
09:30 Kari Mielikäinen: Metlan Venäjä-yhteistyön näkymät
09:50 Mauri Timonen: SPINEACLIMA - projektisuunnittelu: ehdotus Euraasian laajuisen
monitieteisen ilmaston- ja ympäristönmuutostutkimuksen käynnistämiseksi.
- mitä tehty, missä mennään, mitä jatkossa?
10:10 Keskustelua alustusten pohjalta. Toivotaan erityisesti mietittävän seuraavia
ympäristömuutosten kannalta tärkeitä ydinasioita:
- biodiversiteetti
- fenologia
11.30 Lopetus
>
> Tervetuloa mukaan
>
> Kari
>
> P.S. Ellet itse pääse mukaan, mutta tiedät jonkun muun asiasta
> kiinnostuneen, kerro hänelle ja yllytä mukaan.
3
Metla/VA/mt
KOKOUSMUISTIO
27.03.2006
Aika
27.03.2006 klo 9.30
Paikka
Signe-kabinetti/Vantaan yksikön kirjastorakennus
Läsnä
Kari Mielikäinen
Mauri Timonen
Jarkko Hantula
Heikki Henttonen
Sauli Härkönen
Aleksi Lehtonen
Harri Mäkinen
Tiina Nieminen
Juha Siitonen
(KM) kokoonkutsuja
(MT) sihteeri
(JH)
(HH)
(SH)
(AL)
(HM)
(TN)
(JS)
JOHDANTO: METLAN VENÄJÄ-YHTEISTYÖN KEHITTÄMISSUUNNITELMA
Arizonan yliopiston puulustotutkimusyksikön (LTRR1) aiemman johtajan (1986-1996) ja
nykyisen dendrokronologian professorin Malcolm K. Hughesin panos on ollut merkittävä
uudistettaessa Metlan lustotutkimusta viimeisten 13 vuoden aikana. Hän käynnisti Suomen
vierailullaan heinäkuussa 2004 seuraavan vaiheen, jonka tavoitteena on lustotutkimusyhteistyön
virittäminen tieteenalan venäläisten huippututkijoiden kanssa. Venäläisestä yhteistyöstä vastaa
Siperian metsien tutkimuksen johtaja, akateemikko professori Eugene A. Vaganov VN
Sukachev -instituutista.
Yhteistyö sai merkittävää lisäpontta, kun Metlan ylijohtaja Hannu Raitio kutsui molemmat
professorit pääpuhujiksi Pallaksella 29.03.2005 pidettyyn ilmastoseminaariin. Siitä alkoi
prosessi, joka on johtanut mm. virallisiin yhteistyösopimuksiin Venäjän tiedeakatemiaan
kuuluvien VN Sukachev instituutin (SIFBRAS)sekä Plant and Animal Ecology –instituuttien
(IPAE) kanssa sekä yhteisiin tutkimusprojektisuunnitteluihin.
Sekä Hughes että Vaganov ovat hyödyntäneet vuosilustoista saatavaa ilmastotietoa ekologisia
kysymyksiä käsittelevissä tutkimuksissaan. Lustotutkimukseen keskittyneillä Metlan
kasvututkijoilla on ollut siten luontevaa kehittää yhteistyötä heidän kanssaan. Sen seurauksena
on muodostunut useiden kymmenien tutkijoiden suomalais-venäläis-amerikkalainen
yhteistyöverkko, joka pyrkii aktiivisesti hankkimaan synergiaetua erilaisista osaamisistaan.
Paraikaa on meneillään Euraasian laajuisen ilmastonmuutostutkimukseen suunnittelu, johon
tämäkin muistio liittyy.
KM ja MT tutustuivat mainittujen instituuttien toimintaan syyskuussa 2005 tekemällään
kaksiviikkoisella venäjänvierailullaan. Sen tuloksena laadittu yhteistyömuistio (liite xx) on
toiminut viitteenä etsittäessä sopivia yhteistyömuotoja ja –kumppaneita. Välittömästi Venäjältä
paluun jälkeen alkoi ns. EURACLIMATES-tutkimussuunnittelu, jonka ytimenä on Metlan ja
Venäjän metsäntutkimuksen välisen tutkimusyhteistyön kehittäminen. Koska suunnittelun
aihepiiriksi on muotoutunut pohjoisen havumetsävyöhykkeen ilmastonmuutos ja sen
1
LTRR = Laboratory of Tree-Ring Research. Linkki www.ltrr.arizona.edu
4
metsäekologiset vaikutukset, on ollut tarkoituksenmukaista laajentaa kysymyksenasettelu koko
Euraasian aluetta koskevaksi.
KM:n ja MT:n osallistuminen Metlan ilmastonmuutoksen tutkimusohjelman
suunnittelukokoukseen Vantaalla 27.01.2006, MT:n osallistumiset Millennium-projektin
alkukokoukseen Mallorcalla 12-17.02.2006 ja yhteistyöneuvotteluun professori Vaganovin
kanssa 04-09.03.2006 Jenassa maaliskuun alussa 2006 sekä IPAElta saatu palaute ovat
täsmentäneet EURACLIMATES-suunnittelua. Sitä on tarkoitus jatkaa Jekaterinburgin
kansainvälisen ilmastokokouksen yhteydessä 5-7.6.2006 sekä Pekingin kansainvälisen
lustotutkijoiden kokouksessa 11-17.06.2006. EURACLIMATES-suunnittelun ensimmäisenä
konkreettisena tavoitteena on projektioesityksen jättäminen FP7-puiteohjelmaan vuoden 2007
alussa.
KESKUSTELUA
KM alusti Venäjä-yhteistyön yleisistä puitteista.
MT kertoi EURACLIMATES-suunnittelun keskeisistä periaatteista. Alun perin on ollut puhetta
kansainvälisen ilmastonmuutosta koskevan projektikokonaisuuden luomisesta. Kyse ei itse
asiassa ole kuitenkaan varsinaisesta ilmastonmuutostutkimuksesta, vaan ilmaston vaihteluiden
ja trendimäisten muutosten aiheuttamien metsäekologisten vaikutusten analysoimisesta. Ajatus
ei siten poikkea paljoa siitä, miten Metlan ilmastonmuutosta koskevassa omassa
tutkimusohjelman suunnittelussa aiotaan edetään. Lähestymistavat saattavat kuitenkin poiketa
huomattavastikin toisistaan, tosin riippuen siitä, kuinka paljon suunnittelussa tehdään
yhteistyötä ja toimitaan yhteisin menetelmin. Euraclimates-suunnittelussa on tavoitteena laatia
viitekehys Euraasian laajuiselle metsäekologiselle ilmastonmuutoksen tutkimusohjelmalle, jossa
tutkitaan ja vertaillaan eri alueilla ja erilaisissa olosuhteissa kehittyneiden paikallisten ekosysteemien
ominaisuuksia toisiinsa sekä mahdollisuuksien mukaan projisoidaan vertaisalueiden tulevan kehityksen
ennustamiseksi. Voidaan ajatella, että jollain alueella lämpimämmissä paikallisilmastoissa
kehittyneiden metsäekosysteemien ominaisuudet kehittyvät samankaltaisesti niillä alueilla, joiden
ilmasto- ja ekologinen historia ovat yhteismitallisia.
Käydyssä keskustelussa todettiin tärkeäksi tutkia ilmastonmuutoksesta aiheutuvia sellaisia
metsäekologisia vaikutuksia, jotka tavalla tai toisella uhkaavat ja vaikeuttavat metsätalouden
harjoittamista. Asia jätettiin JH:n ja HH:n johtamien tutkimusryhmien mietittäväksi.
<<<< jatkuu >>
5
Liite 2. TAUSTAINFORMAATIOTA: EURACLIMATES: PIENILMASTOT
6
──────────────────────────────────────────────────────────────────
31. Tutkimusstrategian pohdiskelua
Ensimmäisen euraasialaisen luonnon biodiversiteettimuutoksiin perustuvan
ilmastonmuutostutkimusohjelman suunnittelu on käynnissä. Suunnittelun lähtökohtana ovat
tuhannet maantieteellisten ja muiden syiden vuoksi toisistaan poikkeavat euraasialaiset
paikallisilmastot, joiden aiheuttamissa olosuhteissa on kehittynyt toisistaan poikkeavia
ekosysteemeitä. Suuralueen ekosysteemien kirjon muodostama biodiversiteettivaihtelu tarjoaa
erinomaisen lähtökohdan pohjoisen pallonpuoliskon havumetsiä koskevalle
ilmastonmuutostutkimukselle, jossa ilmastonmuutos määritellään lajien biodiversiteetissä
tapahtuneiden pienten trendimäisten muutosten perusteella. Kartoittamalla systemaattisesti
euraasialaisia ekosysteemejä, tutkimalla kysymyksenasettelun kannalta mielenkiintoisten
kohteiden nykyisten ja menneiden ominaispiirteiden kehitysvaiheita, sekä vertaamalla niitä
toisiinsa on mahdollista kehittää jopa ekosysteemien tulevaisuutta kuvaavia malleja.
Euraasian metsäisistä alueilta on kerätty vuosikymmenien aikana suuri määrä
ilmastotutkimuksiin soveltuvaa vuosilustoaineistoa. Suurin osa datasta on peräisin elävistä
puista, mikä tarkoittaa 50-300 vuoden pituisia aikasarjoja. Ne sarjat, joiden kokoamisessa on
käytetty myös muuta materiaalia, kuten esimerkiksi keloja, kantojuurakoita, vanhoja
rakennushirsiä sekä järvien pohjamudissa ja ikiroudassa säilyneitä ns. megafossiilipuita, voivat
olla paljon pidempiä, jopa yli 7000 vuoden pituisia. Niiden avulla päästään kurkistamaan yhtä
pitkältä ajanjaksolta myös menneiden vuosisatojen ilmastoihin.
Paikallisilmastojen kartoittamiseen käytetään vuosilustosarjoista lasketuja vuosikohtaisia
trendipintalämpötilakarttoja. Suunnitteilla olevalla Google Earth-tyyppisellä
visualisointisysteemillä, jossa maaston korkeusvaihtelu on korvattu kuukausi- ja muilla
keskilämpötilamuuttujilla, on mahdollista ”etsiä” ilmastollisia poikkeavuuksia, anomalioita,
laajojen alueiden nykyisistä ja menneistä ilmastoista. Nykyisten ja menneiden ilmastojen välillä
saattaa olla huomattaviakin eroja, sillä olosuhteiden kehitys on ympäristötekijöiden summa.
Esimerkiksi ilmaston trendimäiset lämpenemiset ja viilenemiset, vallitsevien tuulien suunnat,
auringon aktiivisuuden vaihtelut yms. tekijät saavat aikaan jatkuvan ilmastonmuutoksen.
Paikalliset ekosysteemit reagoivat joka kerta aiemmasta poikkeavalla tavalla. Siksi
”sukellukset” paikallisilmastojen menneisyyksiin ovat tärkeitä pyrittäessä ymmärtämään
paikallisen ekosysteemin kehitystä.
On mahdollista, että tutkittaessa laajojen alueiden, kuten Euraasian paikallisilmastoja, löydetään
sellaisia vertailupareja, joissa ensimmäisen alueen jo historialliseksi muuttunut ilmaston
kehitys on tulossa toisen alueen tulevaksi ilmastoksi. Vertailuparit voidaan paikallistaa
esimerkiksi niiden ekologisen kehityksen ja ilmastohistorioiden yhteisiä ominaispiirteitä
vertailemalla. Kyseessä siis on jonkinlainen ajoitustehtävä. Tiedämme ilmaston lämmenneen
esimerkiksi Uralilla, Alpeilla ja Kölivuoristossa. Suomessa ei vielä ole tapahtunut kovin
merkittävää lämpenemistä. Jos lämpeneminen kuitenkin jatkuu, voisivat em. alueilta saadut
tulokset ekosysteemin muutoksista olla tietyin ehdoin sovellettavissa Suomenkin olosuhteisiin.
Kun ajatellaan esimerkiksi sienten ja hyönteisten leviämistä uusille alueille ilmaston
muuttuessa, saadaan niiltä alueilta, joissa muutos jo on tapahtunut, suoraan sovellettavaa tietoa
muutosprosessissa olevan tulevaisuudesta!
Suomalaiset tuhotutkijat, paikallistakaa Suomen ilmaston arvioitua kehitystä vastaavat
paikallisilmastot Euraasiasta, tutkikaa kyseisten alueiden ekologiaa ja soveltaa ne Suomen
olosuhteisiin.
6
Liite 2. TAUSTAINFORMAATIOTA: EURACLIMATES: PIENILMASTOT
7
──────────────────────────────────────────────────────────────────
Olemme laatineet useampia lähestymistapoja Euraasian laajuisen EuraClimatesprojektipakettimme laajan viitekehyksen määrittelemiseksi. Perusajatuksena on antaa
tutkimusryhmille jokin yksiselitteinen kiinnekohta, joka auttaa siirtämään muualla saadut
tulokset Suomen tulevassa ilmastossa kehittyvien ekosysteemien kehityskulun arvioimiseksi.
Joidenkin alueiden ilmastohistoriaa päästään katselemaan ”matkustamalla” puiden
vuosilustojen ilmastosignaalien mahdollistamassa aikakapselissa nykyhetkestä esimerkiksi
1000 vuotta taaksepäin, jolloin on mahdollista arvioida paikallista ilmastoa pikku jääkauden ja
keskiajan lämpökauden aikana. Euraasian alueelta on kerätty vuosikymmenien aikana
kymmeniin tuhansiin nouseva havupuiden vuosilustosarjojen joukko, joka mahdollistaa
alueellisten ilmastokarttojen laatimisen sadoiksi ja jopa tuhansiksi vuosiksi ajassa taaksepäin.
7
Liite 3. EURACLIMATES: TUTKIMUSAIHIOITA PROJEKTISUUNNITTELUA VARTEN
8
──────────────────────────────────────────────────────────────────
32. Lähitavoitteena EU-hanke-esityksen laadinta FP7-ohjelmaan liittyen.
Projektiesityksen työpaketteihin sisällytetään mm. seuraavia asioita:
-
trendipintoihin perustuva alueellinen ilmastokartoitus
ekosysteemien kartoitusta kiinnostavien ekologisten kohteiden paikallistamiseksi
biodiversiteetti- ja fenologia-lähtöistä tutkimusta
metsätuhoanalyysejä mm. professorien Henttonen ja Hantula viitoittamalla tavalla.
hiiliasioita
tiedonhallinnan, mallituksen sekä datojen/tulosten visualisointia (datan ja metadatan
arkistointia, datalouhintaa, GIS-mallitusta, prosessimalleja jne.)
Hanke-esityksen sisällön elementtejä
311.
HIILIASIAT
- hiilitase, hiilen sitoutuminen turpeeseen
- Zotto 250 -projekti
- Knorre A, Sievänen R, Nieminen T,
312.
METSÄTUHOT
- tuhosienten ja –hyönteisten aiheuttamat uhat
- Professorien Hantula ja Henttonen päätös osallistua Venäjä-yhteistyön kehittämiseen
omien tieteenalojensa puitteissa.
- Venäjä-asiantuntijoiden määrä kasvussa (mm. Juha Siitonen)
- Hantula J, Henttonen H, Kaitera J, Müller M, Siitonen J, Korhonen K
313.
VUOSILUSTOTIEDON VERKOSTOSOVELLUKSET
- Hantemirov R, Kukkola M, Levanic T, Mielikäinen T, Pöntinen, Timonen M, Timonen
T,
314.
MALLITUKSET
- Vaganovin prosessimallit
- Esper J, Hari P, Heinonen J, Hughes M, Häkkinen R, Mazepa V, Mikkola K,
Sievänen R, Shishov V, Timonen M, Vaganov E, Wilson R,
315.
BIODIVERSITEETTI
316.
ilmaston vaihtelut = biodiversiteettien rikaus
pienet muutokset kasvistossa ja eläimistössä määrittelevät ilmastonmuutoksen
Shiatovin kuvaparivertailut Uralilla
Moiseev P,
FENOLOGIA
- Huhta E, Häkkinen R, Kubin E, Moiseev P
8
Liite 3. EURACLIMATES: TUTKIMUSAIHIOITA PROJEKTISUUNNITTELUA VARTEN
9
──────────────────────────────────────────────────────────────────
317.
VUOSILUSTOANALYYSIT
- Grudd, H, Hantemirov R, Helama S, Kirchhefer A, Kononov J, Kultti S, Mielikäinen
K, Spiecker H, Touchan R
318.
ILMASTO
- Helama S, Hughes M, Jungner H, Macias M, Tuomenvirta H, Velicho A, Venäläinen
A,
319.
ISOTOOPIT
- Robertson I, Loader N,
320.
SOLUT
- Gurskaya M, Gorlanova L, Kirdianov A, Saranpää P,
321.
METSÄNRAJA
- Kulman L, Moiseev P, Neuvonen S, Sutinen M-L, Sutinen R, Timonen M,
322.
SATELLIITTIDATA
- Mikkola K, Nikula A,
323.
KYLMÄNKESTÄVYYS
- Gurskaya M, Martz F, Sutinen M-L,
324.
TIHEYSANALYYSIT
- Kolström T, Meriläinen J,
325.
DATAN HALLINTA
- METIH-järjestelmän käyttöönotto
326.
GRADIENTTITUTKIMUKSET
- Helama S, Macias M, Timonen M,
327.
DATOJEN JA TULOSTEN VISUALISOINNIT (”ILMASTOLENTOKONE”)
- Mielikäinen T, Mikkola K, Timonen T, Timonen M,
33. Lisäajatuksia liittyen Euraclimates-suunnitteluun
321.
KIINA
322.
Kiinalaiset mukaan Euraclimates-ohjelmaan?
Sypressi Tiibetissä ilmastonmuutoksen sanansaattaja
Kiinan metsissä ainakin ”biomi”-yteensopivuutta
kiinalaisen metsäasiantuntemuksen mukaantulo lisää tutkimuksen ”biodiversiteettiä”.
SAB (SCIENTIFIC ADVISORY BOARD)
- Venäläinen jäsen
9
Liite 3. EURACLIMATES: TUTKIMUSAIHIOITA PROJEKTISUUNNITTELUA VARTEN
10
──────────────────────────────────────────────────────────────────
- YHDYSHENKILÖT
- Professori Vaganov haluaisi kehittää myös ministeriötasoista yhteistyötä
Metlan ja Venäjän välillä. Tällä hetkellä yhteyksiä ainakin MMM:n Heikki
Granholmiin ja Ympäristöministeriön Jaakko Ojalaan.
- Lisätiedon saamiseksi yhteinen seminaari venäläisten kanssa välttämätön
- Vaganovin hyväksyntä Spineaclima-viitekehyssuunnitelman periaatteille.
- Laajemman jatkosuunnittelun pohjaksi tarvitaan lännestä itään ja etelästä
pohjoiseen tehdyt ilmastolliset gradienttianalyysit.
10
Liite 4. PROJEKTIT
11
──────────────────────────────────────────────────────────────────
EURACLIMATES -PROJEKTISUUNNITTELU
Mikä on EURACLIMATES? Se on lyhennelmä sanoista “EURAsian wide CLImate change
Monitoring and Analysis based on Tree-ring and EcoSystem modelling.”
Tavoitteena on:
1. Laatia viitekehys Euraasian laajuiselle metsäekologiselle ilmastonmuutoksen
tutkimusohjelmalle, jonka keskeisenä toiminta-ajatuksena on hitaammin lämpenevien
verrokkialueiden tulevan kehityksen arviointi lämpimämmissä paikallisilmastoissa kehittyneiden
metsäekosysteemien ominaisuuksien, niiden vaihteluiden (biodiversiteetin) ja historiatietojen
perusteella.
2. Yhtenäistää euraasialaista ilmastonmuutostutkimusta kehittämällä uusimpaan tekniikkaan
perustuvaa integroitua tiedonhallintaa, joka parantaa erityisesti dendrokronologisten datojen ja
metadatojen hyväksikäyttöä kansainvälisessä ekologisessa tutkimuksessa.
3. Tuottaa tietoa lämpenevän ilmaston aiheuttamista vaikutuksista metsäekosysteemien toimintaan
ja tarvittavista käytännön toimenpiteistä.
Ajatus tutkia vaihtelevissa paikallisilmastoissa kehittyneitä ekosysteemejä antaa mahdollisuuden
verrata erilaisia kehityskulkuja toisiinsa. Vertailualueet määritellään yhteisen ilmasto- ja ekologisen
historian perusteella. On varsin mahdollista, että lähtökohdiltaan samanlaisissa, mutta erilaisissa
ilmasto-olosuhteissa kehittyneiden ekosysteemien tiedot ovat sekä taannehtivasti että etenevästi
vertailukelpoisia. Tällöin esimerkiksi suotuisammissa ilmastollisessa vaiheessa kehittyneen
ekosysteemin tietoja voidaan soveltaa hitaammin kehittyvän ekosysteemin tulevaisuuden
ennustamiseen. Vertailtavien ekosysteemien ilmastohistorioiden jäljille päästään alueellisesti
kattavien havupuiden vuosilustosarjojen avulla, joista pisimmät ovat yli 7000 vuoden pituisia.
Männyn ilmastosignaali puutteellinen esimerkiksi Uralin alueella. Lehtikuusella ja katajalla
parempi. Siksi tarvitaan vaihtoehtoisia lähestymistapoja:
1.Mänty (Pinus sylvestris), Euraasian laajuisesti
2. Pohjoisboreaaliset havupuumetsät, kaikki puulajit, joilla vahva ilmastosignaali
(Pinus, Abies, Larix, Juniperus)
3. Biome-pohjainen lähestymistapa, erityisesti Boreal humid -alueet
4. Euraasian vuoristoalueet, joissa kasvaa mäntyä (Pinus sylvestris)
5. Muut mahdolliset lähestymistavat
Some suggested projects:
1. SpineaClimates: climate change research based on Scots pine (Pinus sylvestris) tree-ring
chronologies (Fig. 2)
2. TaigaClimates: climate change research based on the all sensitive northern timberline conifer
species (Fig. 4)
3. EuraMountainClimates: Eurasian mountain timberlines climate change research (Fig. 1).
4. Boreal Zone Biome Climates: Eurasian climate change research in the Boreal humid and
semiarid zones (Fig. 3).
EuraClimates-viitekehykseen liitettäviä elementtejä:
-
dendroklimaattisella tutkimuksella tutkimusohjelmaa suuntaava vaikutus
11
Liite 4. PROJEKTIT
12
──────────────────────────────────────────────────────────────────
-
-
-
-
keskitytään Euraasian havumetsävyöhykkeeseen
tutkimuksen puulajeiksi hyväksytään mäntymme (Pinus sylvestris) lisäksi kaikki muutkin
ilmastoherkät havupuulajit (kuusi (Picea abies), lehtikuusi (Larix), kataja (Juniperus), …
suunnittelun päätavoitteena ilmastonmuutoksen monipuolinen ja tehokas seuranta Euraasian
alueella. Tarvitaan useammantyyppisiä lähestymistapoja: SpineaClimates, TaigaClimates,
EuraMountainClimates, Boreal Zone Biome Climates jne.)
alueellisesti ja ajallisesti kattavan (spatiotemporaalisen) perusverkoston muodostavat
euraasianlaajuiset havupuukronologiat
pyritään monipuoliseen ilmastonmuutoksen tutkimiseen ja seurantaan soveltamalla menetelmiä,
jotka pystyvät mittaamaan pieniä muutoksia luonnossa. Niitä ovat erityisesti biodiversiteetti- ja
fenologiamuutoksia koskevat mittaukset, erilaiset hiilimittaukset (Zotto-projekti,
http://www.bgc-jena.mpg.de/bgc-systems/projects/zotto/overview.shtml )
metsäntutkimuksen näkökulmat (metsänhoito, patologia, eläintiede, käsittelyt, kasvun vaihtelu,
kasvutrendit ym.) saatava sovitettu yleiseen kysymyksenasetteluun. Vrt. Metlan oman
ilmastonmuutoksen tutkimusohjelmaan liittyvät näkökulmat).
ilmastotutkimuksen apuna käytetään ilmastomittauksia ja ilmastoindeksejä (NAO, AO,
Siperian indeksit ym.
mukana myös muita ilmastoa kuvaavia prokseja (isotoopit, sedimentit, siitepölyt,
lajistomuutoshavainnot
satelliittikuvien hyödyntäminen tärkeätä laajan tutkimusalueen vuoksi . Tarvitaan GPS- ja
GIS-tekniikoiden soveltamista.
verrokkiaineistoina käytetään myös vihnemäntyyn liittyviä aineistoja ja tutkimustuloksia.
(kasvunvaihtelu, metsänraja).
metsätuhotutkimukset (Hantula, Henttonen, Siitonen, Muller, Kaitera ym.
12
Liite 5. EURACLIMATES: TIEDONHALLINTA
13
──────────────────────────────────────────────────────────────────
Tapio Timonen:
EURACLIMATES-TUTKIMUSPROJEKTIEN TIEDONHALLINTA
METIH - Metlan LustoTutkimustiedon Integroitu Hallintajärjestelmä
Lustia-hankkeen (hankenro 2511) ohjelmistoratkaisuissa on noudatettu toimintatapaa, joka tekee
sovelluksista helposti ylläpidettäviä ja käyttäjäystävällisiä sekä myös tulevaisuudessa toimivia.
Olen pyrkinyt ratkaisemaan huolellisella suunnittelulla sovellusten käyttöä vaikeuttavat tekniset
yksityiskohdat, jolloin loppukäyttäjät ja ylläpitäjät voivat keskittyä varsinaiseen tuotannolliseen
toimintaan.
Metlan lustoTutkimustiedon Integroitu Hallintajärjestelmä (METIH) tulee muokkaamaan
tutkimuskäytäntöä tavalla, joka antaa tutkijoille aiempaa paremmat mahdollisuudet
yksinkertaisempaan ja tehokkaampaan työskentelytapaan tutkimustiedon hallinnassa ja käsittelyssä
(METIH-palvelut).
METIH-järjestelmän tiedonhallinnassa sovelletaan tietotekniikan uusinta tietoa ja uusimpia
menetelmiä. Esimerkkeinä niistä mainittakoon seuraavat:
1) Data- ja käyttöliittymätiedot on talletettu SQL Server -pohjaiseen tietokantaan.
2) Käyttöliittymän ulkoasu on sidottu XHTML-pohjaiseen ratkaisuun.
3) Ohjelmointikielenä on C# ja
4) kaiken taustalla on Microsoft .NET Framework -luokkakirjasto. Mainitut tekniikat ovat tämän
päivän selkeästi hyväksyttyjä standardeja, mikä antaa elinaikaa sovelluksille pitkälle
tulevaisuuteen.
Vaikeasti ylläpidettävän koodin (C#) määrä minimoidaan huolellisella suunnittelulla. Järjestelmän
joustavuutta on lisätty esimerkiksi ulkoistamalla SQL-komennot tietokantatauluihin, jolloin niitä
voidaan muokata sovelluksesta käsin.
METIH-järjestelmän ohjausrakenne on kokonaan XML-pohjainen. Silloin on käytännössä
merkityksetöntä, mistä syöte tulee, sillä sen jatkokäsittely tehdään aina samaa XML-rakennetta
soveltaen. Menettely mahdollistaa myös sellaisten laitteiden liittämisen järjestelmään, joista ei ole
etukäteistietoa. Järjestelmän käyttöliittymässä on kielituki, mikä mahdollistaa sovellusten
toteuttamisen myös kansainvälisissä projekteissa.
METIH-järjestelmän käyttöliittymän runkoa ei ole sidottu mihinkään erityiseen dataan, mikä tekee
siitä joustavan. Kun esimerkiksi tietokannan sisältö vaihdetaan uuteen, on kyseessä uusi, jo
sellaisenaan toimiva sovellus eli Metih-palvelu.
13
Liite 5. EURACLIMATES: TIEDONHALLINTA
14
──────────────────────────────────────────────────────────────────
Kaavio 1. Lustia-lustotiedon hallintakaavio
14
Liite 6. EURACLIMATES: ILMASTONMUUTOKSET MÄNNYN VUOSILUSTOISTA
15
──────────────────────────────────────────────────────────────────
ILMASTOTIEDON VISUALISOINTI HAVUPUIDEN VUOSILUSTOISTA
EuraClimates-projekteissa sovelletaan tietotekniikan mahdollisuuksia aikaan ja paikkaan
sidottujen (spatiotemporaalisten) alueellisten ilmastokarttojen laatimiseen ja havainnollistamiseen.
Karttojen aineistolähteenä ovat luonnon omat ”ilmastoasemat”, havupuut, joiden vuosilustoihin
rekisteröityvät vuodesta toiseen kasvuympäristöissä tapahtuvat muutokset mitattaviksi
ominaisuuksiksi. Parhaiksi pohjoisboreaalisen havumetsävyöhykkeen proksitiedon2 lähteiksi ovat
osoittautuneet mänty (Pinus), kuusi (Picea), lehtikuusi (Larix) ja katajakin (Juniperus). Niiden
vuosilustoista voidaan eräin edellytyksin päätellä myös ilmaston kesänaikainen ilmastohistoria.
Tällöin edellytetään, että on olemassa jokin puun kasvuun vaikuttava ilmastollinen minimitekijä,
ilmastosignaali. Suomen oloissa männyn kasvun minimitekijöinä ovat yleensä pohjoisessa
lämpötila ja etelässä sademäärä.
Euraasian alueelle on kehitetty useita yli 7000 vuoden pituisia sarjoja. Pisin niistä on Hohenheimin
yliopistossa koottu Keski-Euroopan yhdistetty tammi- ja mäntysarja: 12 460 vuotta (Friedrich et al.
2004). Suomen metsänrajamännyn sarja on 7638 (Eronen et al.), Ruotsin Torneträskin vastaava
7400 (Grudd et al 2002), Irlannin tammisarja 7400 ja Venäjän lehtikuusisarja (Larix sibirica) 7310
(Hantemirov et al.) vuoden pituinen. Tähän lustosarja-”aateliston” joukkoon on luettava vielä 8820
vuoden pituinen Pohjois-Amerikan vihnemäntysarja (Pinus longaeva). On selvää, että sarjojen
lukumäärä ja alueellinen peittävyys kasvaa, kun tarkasteltava aikajänne lyhenee. Jos tarkastellaan
vain pelkästään elävien puiden lustosarjoja, nousee käyttökelpoisten sarjojen määrä jo pelkästään
Suomessakin satoihin. Euraasian alueella on kerätty aktiivisesti vuosilustoaineistoja jo
vuosikymmenien ajan. Ei lienee kaukaa haettu arvioida, että Euraasian elävien puiden sarjojen
lukumäärä nousee kymmeniin tuhansiin.
Tämän tutkimuksen tavoitteena on luoda alueellisesti kattavia ns. trendipintalämpötilasarjoja.
Euraasian alueella voidaan helposti päästä useiden tuhansien vuosien mittaisiin lämpötilasarjoihin,
joita voidaan analysoida GIS-tekniikan, prosessimallien ja muiden tilastollisten työvälineiden
mahdollistamin keinoin.
Ilmastonmuutosta havainnollistetaan kolmiulotteisin mallein Google Earth- ohjelmassa käytetyn
visualisoinnin tapaan. Siinä liikutaan ohjaushiiriohjausta käytetään lentokoneen ohjaussauvana ja
lennetään kaikkialla maapallolla halutussa korkeudessa ja katselukulmassa. Vaikutelma on
täsmälleen sama kuin katsoisi lentokoneen ikkunasta. Männyn vuosilustoista mallitettu
pisteittäinen ilmastodata mallitetaan GIS-tekniikan keinoin koko kohdealueella, joka voi vaihdella
100 km2:n pienalueesta alueesta Euraasian ja jopa koko pohjoisen pallonpuoliskon laajuiseksi
tarkasteluksi männyn esiintymäalueella.
Mielenkiintoiseksi tarkastelun tekee liikkuminen ajassa taaksepäin. Nyt meneillään oleva
lämpökausi (Present warming), pikku jääkausi, keskiajan lämpökausi, sekä sitä edeltänyt hitaasti
kohti atlanttisen kauden lämpöhuipennusta etenevä ja sen jälkeen vajoaminen takaisin jääkauden
kylmyyteen, lukuun ottamatta 1000 vuoden lämpöjaksoa 11500 vuotta siten. Mutta oliko vaihtelua
näinä kaikkina vuosina ja vuodenaikoina alueellisesti samanlaista, vai vaikuttavatko erilaisen
pinnanmuodot ja luontaiset olosuhteet ilmastossa ristikkäisvaikutuksia, jotka edelleen muokkasivat
ilmastoa omaan suuntaansa.
2
proksi = ilmastoa likimääräisesti kuvaava muuttuja
15
Liite 6. EURACLIMATES: ILMASTONMUUTOKSET MÄNNYN VUOSILUSTOISTA
16
──────────────────────────────────────────────────────────────────
Kun ilmasto nykyisen on lämpenemään päin, muodostavat ristikkäisvaikutuksen oman
mielenkiintoisen mausteensa ilmastonmuutokseen. Kertyvät ominaisuudet saattavat horjuttaa
vakiintuneita säärakenteita enemmän kuin osataan kuvitellakaan.
Poistamalla jo ennakkoon selviä puiden ilmastosignaaliin vaikuttavia häiriötekijöitä luotettaviin
tuloksiin voidaan päästä hyvinkin pienillä aineistoilla. Periaatteessa jo yksikin ideaaliolosuhteissa
kasvanut puu voi sisältää kaiken tarvittavan informaation. Toisaalta umpimähkään tehty
koepuuvalinta saattaa johtaa epäonnistumiseen, vaikka otanta kuinka paljon lisättäisiin. Hyvänä
esimerkkinä ovat erilaiset jatkuvana epidemiana jatkuvat hyönteistuhot. Silloin on melko vaikeaa
erottaa ilmastosignaalia ja hyönteisten kasvuun aiheuttamaa tuhovaikutusta, sillä taustatekijät
aiheuttavat helposti hallitsemattomia ristikkäisvaikutuksia. Koepuuotannalla voidaan vaikuttaa
tuloksiin.
PAIKALLISILMASTOJEN MÄÄRITTÄMINEN MÄNNYN VUOSILUSTOISTA
Esitutkimus EuraClimates-projektia varten
Kootaan alueellisesti kattavista mäntylustosarjoista alueellisissa trendipintoja vastinvuosien
vuosilustoista tulkittujen ilmastosignaalien, esimerkiksi heinäkuun keskilämpötilan avulla.
Tutkimusten mukaan (mm. Helama, Macias, Vaganov) on euraasialaisesta ilmaston on
löydettävissä sekä pohjois-, etelä-, itä-länsi- ja korkeussuuntaisia ilmastogradientteja. Kun lisäksi
tarkasteluun otetaan mukaan ilmaston luontainen vaihtelu pitkän ajan keskiarvon molemmin puolin
sekä sen trendimäinen muuttuminen, ollaankin jo moniulotteisen ilmastonmuutostutkimuksen
synnyttämässä tutkimusasetelmassa. Ilmastonmuutos määritellään lukemattomilla tavoilla. Tässä
yhteydessä sillä tarkoitetaan <<<jatkuu >>>
Lähteet:
Eronen, M., Zetterberg, P., Briffa, K., Lindholm, M., Meriläinen, J. & Timonen, M. 2002. Part 1:
The supra-long Scots pine tree-ring record for northern Finnish Lapland; Chronology construction
and initial inferences. The Holocene 12(6): 673-680.
Friedrich, M., Remmele, S. , Kromer, B., Hofmann, J., Spurk, M., Kaiser, F., Orcel, C., Küppers,
M. 2004. The 12,460-Year Hohenheim Oak and Pine Tree-Ring Chronology from Central
Europe—a Unique Annual Record for Radiocarbon Calibration and Paleoenvironment
Reconstructions. Radiocarbon, Volume 46, Number 3, 2004, pp. 1111-1122(12). Arizona Board of
Regents (University of Arizona)
Grudd, H., K.R. Briffa, W. Karlén, T.S. Bartholin, P.D. Jones and B. Kromer, 2002. A 7400-year
tree-ring chronology in northern Swedish Lapland: natural climatic variability expressed on annual
to millennial timescales, Holocene 12, 657-665, 2002.
Hantemirov, R.M., Shiyatov, S.G., 2002. A continuous multimillennial ring-width chronology in
Yamal, northwestern Siberia. Holocene 12 (6), 717–726.
16
Liite 7. EURACLIMATES: MT, MKH & EAV: PRODUCTIVE SYNERGIES
17
────────────────────────────────────────────────────────────────
Mauri Timonen and Kari Mielikäinen:
THE EURACLIMATES PROJECT IN SHORT
This Eurasian wide research project planning deals with the global climate change subject. The
first version of this overall plan was called The SPINEACLIMA Programme. Having received
some important feedback, especially from Stepan Shiyatov’s researchers (Valeri Mazepa) , we
have decided to split our planning into smaller projects that hopefully encounter better with
regional research needs. The new name of this project entirety is The EURACLIMATES Project
Planning. Those, who are going to attend the Ekaterinburg climate change meeting in June, 5-7th
and the Beijing dendro meeting in June, 11-17th , will hear more details from the both of us.
Professor Eugene Vaganov has principally accepted the basic idea of this planning, but much
brain work will still be needed for developing and completing the ideas to be presented as final
and successful project applications.
Our aim is to develop a well-designed climate change project program plan that would support the
general outlines of the existing global and Finnish climate change research. We, however, would
also like to present some new and important aspects favoring our world-wide tree-ring research.
In order to make things real, we need to cooperate closely and provide our best ideas to convince
our financiers in EU, INTAS and also some other funding systems.
Professors Vaganov, Shiyatov, Hughes and hopefully also some other influential professors will
help us in completing the basic planning. Also China, led by Dr. Qi-Bin Zhang, might be willing
to join this wide(st) climate change project in the northern hemisphere!
The name of the whole Eurasian wide project planning:
EURACLIMATES: Acronym for “EURAsian wide CLImate change Monitoring and Analysis using
Tree-rings and Educated System analysis.”
More detailed: General outlines for Eurasian wide climate change research, based on the networks of
climatically sensitive conifer chronologies.
Some projects of the project planning:
1. SpineaClimates: climate change research based on Scots pine (Pinus sylvestris) tree-ring chronologies
(Fig. 2)
2. TaigaClimates: climate change research based on the all sensitive northern timberline conifer species
(Fig. 4)
3. EuraMountainClimates: Eurasian mountain timberlines climate change research (Fig. 1).
4. Boreal Zone Biome Climates: Eurasian climate change research in the Boreal humid and semiarid
zones (Fig. 3).
5. Other projects of the research program: listening to YOUR SUGGESTIONS !
LIITTEET
17
Liite 7. EURACLIMATES: MT, MKH & EAV: PRODUCTIVE SYNERGIES
18
────────────────────────────────────────────────────────────────
IX PLANNING OF METLA’S NEW PRODUCTIVE SYNERGIES IN
TREE-RING AND CLOSELY RELATED RESEARCH
──────────────────────────
MT 20.04.2005
I Exciting views in European-Siberian tree-ring
research
──────────────────────────
Malcolm K. Hughes and Eugene A. Vaganov
paid, during their recent visit to Finland, plenty
of attention to Metla’s many-sided and regionally
representative data networks. Unfortunately the
majority of these well-replicated and nationwide
networks have been planned for internal use,
which causes some difficulties in applying them
to wider global network systems. But while
Metla is now generally focusing to specific
topics in climate change research, it is a good
time to consider the global integration of our
permanently maintained data. Some of the data
networks, such as Forest Focus3, VMI4, INKA
and the tree-ring data administered by the Lustia
project, seem to fit directly or with minor
adjustments to research needs defined by Hughes
and Vaganov.
If we in Metla are successful in adopting the
ideas presented in the Hughes-Vaganov paper, it
may have great influence – not only on our treering research, but also on our whole spectrum of
Finnish growth and yield studies.
And
considering climate change research in Metla,
exposing our data networks and our methods to
the suggested Finnish-Russian-US cooperation
would bring together several top scientist groups.
I believe, accompanied with outstanding research
expertise and the unique Finnish network data
sets, these groups might be successful in starting
the next phase in building global data network
systems
and
also
making
scientific
breakthroughs in understanding climate and
environmental changes.
It is also exciting to note that our free-form
research “alliance” have control on three over
7000 years long chronologies, each of them being
developed by their own research teams. As these
chronologies actually cover almost the whole
northern hemisphere, we have a special data for
screening global changes. A very tempting idea
is to apply the Finnish data sets to VaganovShaskin’s growth process models, which
probably will give a lot of further value to our
Finnish forest modelling.
I have discussed the Hughes-Vaganov paper
tentatively with Director of Research, professor
Kari Mielikäinen, Dr. Kari Korhonen, Dr. John
Derome and acting professor Jari Hynynen. It
seems there is general interest to work with the
suggested subjects. As Kari (Mielikäinen)
returns back to his former position as a professor
of Growth and Yield, one of his main topics will
be climate change studies. That’s great, because
then there will be at least two Metla’s
researchers working with the cooperation
planning. I think the thoughts of the Hughes
and Vaganov paper, are sensible from Metla’s
point of view and will also fit to our renewing
research strategy.
I am confident with the future of our FinnishRussian-US cooperation. I hope things will be
advancing about the way the Hughes-Vaganov
paper puts it. We (MT, KM) hope to learn more
in autumn 2005, as we visit the Sukachev
Institute of Forest SB RAS in Krasnoyarsk, led
by professor Vaganov, and the Institute of Plant
and Animal Ecology (Ural Branch of the Russian
Academy of Sciences), in Ekaterinburg, hosted
by professor Shiatov.
──────────────────────────
MKH 22.03.2005.
II Some recent comments
from MKH
and suggestions
──────────────────────────
The topics will emerge strongly during your
TransSiberian journey this fall. Of course, at the
base is just fundamental dendrochronology in the
North, and Finland and Russia represent two
great traditions in this that really should interact.
I strongly urge you to make sure to meet with
Stepan Shiyatov and get him talking about their
3
collections as well as their very important
http://www.forestresearch.gov.uk/website/forestresearc dendroclimatological and dendroecological work
h.nsf/
in Ekaterinburg, especially his wonderful repeat
photography from the Polar Urals. if you need
ByUnique/ADC18F784E680BD480256FA40054F561
4
some specific project title to begin, I think the
http://www.metla.fi/ohjelma/vmi/index-en.htm
18
Liite 7. EURACLIMATES: MT, MKH & EAV: PRODUCTIVE SYNERGIES
19
────────────────────────────────────────────────────────────────
most exciting to Gene and me was the possibility
of combining the very good array of wellrecorded plots with detailed environmental data
described in the afternoon up on Pallas mountain
(Forest Focus) - this could be a superb
opportunity to test ideas about modeling control
of tree-ring variability. "Testing of process-based
model of tree-ring formation in northern
Finland"? Maybe you need a topic that mentions
both countries - if it's OK to go a little beyond
METLA, involving the Eronen group in an
examination of forest density and climate over
the Holocene would be wonderful link between
all three groups, and of course a major part of our
forthcoming workshop. Just a few random
thoughts....
──────────────────────────
MKH & EAV 31.03. 2005 and MT 13.04.2005
(Memorandum: text by MKH, minor edits by MT)
III Productive synergies suggested by M.K.
Hughes and E. A. Vaganov
──────────────────────────
During our visit to METLA’s Rovaniemi station,
in our discussions with Mauri Timonen and other
colleagues, and from the meeting at Pallas, we
heard many interesting ideas, and saw a number
of potential opportunities for productive research
collaboration. Three possibilities seemed
especially exciting to us, each strongly likely to
produce very productive synergies. They
concern:
1) Inventory/growth
monitoring/dendrochronology
2) ICP/micrometeorology/ dynamics of tree-ring
formation
3) Long
tree-ring
chronologies/Holocene
environments/modeled climate.
In each case, the scientific value to be derived
from the superb infrastructure provided by the
ongoing work of METLA, Metsähallitus and the
Finnish Meteorological Institute could be
enhanced by combination with modern
dendrochronology
and
high-resolution
paleoclimatology. These fields in turn would
benefit greatly from integration with the existing
Finnish activities and resources.
The first two of these could well provide
useful tools for the assessment of, for example,
the role of the forest as source or sink in the
carbon cycle under various climate scenarios.
The third could help improve understanding of
pre-industrial climate, its mechanisms and local
expression in Finland, and hence provide
challenges and inspiration for attempts to model
future forest-climate interactions. We give a very
short introduction to each of these ideas so that
you might see how it might be pursued, and what
benefit might be gained:
1) Inventory/growth
monitoring/dendrochronology.
As
we
understand it, METLA maintains a large
number of plots for inventory, and a subset
of these is also used for the monitoring of
growth. Systematic dendrochronological
sampling of this subset, from all age classes
of trees, and indeed of all other plants with
annual
structures,
would
provide
information on interannual variability that
could be a) linked to statistical and processbased models of the climatic control of treering growth; b) tested for association with
remotely sensed estimated of the interannual
and interdecadal variability of biological
production and hence carbon sequestration
(Biondi, 1996; Biondi et al., 1992; Osawa et
al., 1992).
Having established such links it would be
possible to develop predictive tools for the
detailed results expected from future
measurements of the plots, the differences
between predicted and measured providing
estimates of whether the same mechanisms
continue to operate. Such studies would also
provide a test of the potential utility of
dendrochronological
sampling
as
a
complement to existing methods of growth
monitoring.
2)
ICP/micrometeorology/ dynamics of treering formation. The existing ICP monitoring
sites offer a wonderful opportunity to clarify
the nature and underlying mechanisms of
inter- and intra-seasonal growth dynamics.
Supplementing the growth bands and
existing microclimate measurements with
observations of shoot and cambial
phenology and repeated within-season
microcores for microanatomical analysis
would provide an excellent test-bed for
process-based models of tree-ring formation,
for example those of Vaganov, Misson and
others (Misson, 2004; Vaganov, 1996;
Vaganov et al., 1999). Each of these models
calculates intermediate quantities, such as
transpiration rate which are being or could
be measured at these sites, as well as the
19
Liite 7. EURACLIMATES: MT, MKH & EAV: PRODUCTIVE SYNERGIES
20
────────────────────────────────────────────────────────────────
final products such as radial increment or
cell numbers and dimensions.
The more thoroughly tested such models
are for specific Finnish conditions, the more
appropriately they may be used, for
example, in the consideration of the growth
implications of various future climate
scenarios, or in the diagnosis of observed
variability. A pilot project in this area might
be a tractable first specific collaborative
project between IF (Institute of Forest,
Krasnoyarsk) and METLA.
3)
Northern Fennoscandia (especially Finland),
the western United States and the northern
territories of the Russian Federation contain
remarkable concentrations of very long treering records, permitting the detailed
examination of conditions at high temporal
resolution through much of the mid- and late
Holocene. Each of these records represents a
very considerable investment of time and
other resources over decades, and everything
possible should be done to extract maximum
scientific benefit from them. Because of
their annual resolution, the long tree-ring
chronologies offer a chance to examine the
changing character of climate variability
through much of the Holocene as well as the
related environmental fluctuations.
In the Finnish case, these studies are
already well-embedded in a rich tradition of
studies of Holocene environments. This
provides the key to the effective exploitation
of these records – the regional integration of
independent kinds of records, for example,
tree rings, varved sediments, and
paleolimnological records, in a physically
consistent framework probably derived by
the use of both output from forced runs of
Global Climate Models (Graham et al., in
prep.), and from Models of Intermediate
Complexity (Crucifix et al., 2002).
We have discussed holding a small
workshop in Rovaniemi in 2006 to develop
ideas for this approach, including
representatives of the main groups who have
developed
such
multi-millennial
chronologies in northern Eurasia and North
America, colleagues who are experts in
other records such as treelines, lake
sediments and glaciers, and those concerned
with the relevant climate models.
Reference List:
1. Biondi, Franco. Decadal scale dynamics at
the Gus Pearson Natural Area: evidence for
inverse symmetric competition? Canadian
Journal of Forestry Research. 1996;
26(8):1397-406.
2. Biondi, Franco; Klemmedson, James O.,
and Kuehl, Robert O. Dendrochronological
anaylsis of single-tree interactions in mixed
pine-oak stands of central Arizona, USA.
Forest Ecology and Management. 1992;
48:321-333.
3. Crucifix, M. Loutre M. F. Tulkens P.
FIchefet T. Berger A. Climate change during
the Holocene: a study with and Earth system
model of intermediate complexity. Climate
Dynamics. 2002; 19:343-60.
4. Graham, N. E. ; Hughes, M. K.; Cobb, K.
M.; Ammann, C.; Wigand, P. E; . Kennett,
D. J; Kennett, J. P., and Stott, L.
Tropical/mid-latitude teleconnections at the
Medieval Climate Epoch - Little Ice Age
Transition. In preparation.
5. Misson, Laurent. MAIDEN: a model for
analyzing
ecosystem
processes
in
dendroecology. Canadian Journal of Forest
Research. 2004; 34:874-887.
6. Osawa, A. Abaimov A. P. Zyraynova O. A.
Reconstructing structural development of
even-aged larch stands in Siberia. Canadian
Journal of Forest Research. 2000; 30:580-588.
7. Vaganov, E. A. Analyses of seasonal treering
formation
and
modeling
in
dendrochronology. in: Dean, J. S. Meko D. M.
and Swetnam T. W., editors. Tree Rings,
Environment and Humanity,
;
Tucson, AZ. TUcson, AZ: Radiocarbon;
1996: 73-87.
8. Vaganov, E. A.; Hughes, M. K.; Kirdyanov,
A. V.; Schweingruber, F. H., and Silkin, P.
P. Influence of snowfall and melt timing on
tree growth in subarctic Eurasia. Nature.
1999; 400:149-151.
20
Liite 8. EURACLIMATES: VAGANOV, MIELIKÄINEN, TIMONEN: JOINT ACTIVITIES
21
────────────────────────────────────────────────────────────────
Krasnoyarsk 17.09.2005/Eugene A. Vaganov:
X PROJECTED JOINT ACTIVITIES IN DISCUSSIONS
IN KRASNOYARSK 13-17. 09.2005
Working group: Eugene A. Vaganov, Kari Mielikäinen and Mauri Timonen
───────────────────────────────────────────────────────────
A. CONFERENCES, WORKSHOPS, TRAINING, FIELDWEEKS
I. Finnish-Russian workshop with proposed
title "Basic research and practice in boreal
forests:
advances,
perspectives
and
limitations"
- Time – 2007
- Place (Krasnoyarsk, Ekaterinburg)
- Main directions:
a) basic research in inventory and
productivity of
b) biodiversity of forest ecosystems and its
protection and improvement;
c) long-term studies of forest dynamics and
productivity;
d) towards to better management;
e) international exchange of practical
management (application of Finnish
experience to manage Siberian forests).
- Advisory committee: ... (will be defined)
- Financially supporting sources: IF SB, RFBR
(Russian Fund for Basic Research), Local
administration,....
2.
Fieldweek for PhD students and
undergraduate students with the title
"Towards to improvement of forest
inventory methods: comparison of Russia
and Finnish ground and remote sensing
methodologies".
- Time - Summer of 2006 or 2007
- Place: Zotino (Krasnoyarsk)
- Number of participants: 20 (10+10).
- Duration: 3 weeks-1 month
- Financial sources: (IF and METLA, ...)
B. Personal exchange and communications
1. METLA member (?)
Topic: application and improvement of
process-based model to describe current and
projected climatically induced changes of tree
radial growth in Finland.
- Time: winter 2005/2006, spring 2006.
- Duration: 1,5-2 months working in IF
- Financial support: partly from
(accommodation).
IF
2. Dr. A.Knorre (IF) fellowship to METLA
Topic: extended analysis of ecosystem's
productivity in boreal forests: comparison
of Siberian and Finnish north forests.
- Time: will be defined.
- Duration: 3-4 months.
- Financial sources: INTAS (proposal will be
submitted if suitable for METLA as hosting
institute) and IF.
3. METLA member (PhD student ?) training In IF.
- Topic: analysis of long-term trends in tree
growth (inventory and tree ring data from
Finnish and Siberian database).
- Time: will be defined
- Duration: about 2 months in Krasnoyarsk (IF)
- Financial sources: partly from IF
(accommodation).
4. METLA member (PhD student?) training in IF.
- Topic: Climate and seasonal variations in
pine growth in Finland last during
centuries inferred from anatomy of treerings.
- Time: will be defined
- Duration: 3-5 months
- Financial sources: Partly from IF
(accommodation)
5. IF member (PhD student)
- Topic: Seasonal and interannual
21
Liite 8. EURACLIMATES: VAGANOV, MIELIKÄINEN, TIMONEN: JOINT ACTIVITIES
22
────────────────────────────────────────────────────────────────
variations in photosynthesis and
respiration measured by direct methods
(towers) and seasonal growth and wood
structure of annual rings (3-4 woody
species).
- Time: will be defined
- Duration: 1,5-2 months
- Financial sources: Partly from METLA
(accommodation)
C. “Proposal” activity
There are several topics of joint interest to prepare
the proposals for funding:
a) Improving of aboveground inventory data:
from trees to ecosystem
b) Climatic trends and trends in productivity and
biodiversity
c) Climatic variations in northern Finland and
northern Siberia on a millennial scale
(aggregations of tree-ring chronologies, pollen
data and lake sediment data)
d)
Pollution and ecosystem stability and
succession
e) Climatic change and northern forests acting as
sink or source of carbon (natural and
managed)
f) Forest resources in Siberia as potential for
Finnish investments.
g) Genetic forest resources for Finnish
management.
D. Other activity
1.
METLA could be a partner of ZOTTO
(International Laboratory of High Tower in
Zotino) ... must be discussed preliminary with
Prof. E-D. Schultze.
2. Exchange of teaching professors (short courses
of exactly defined topics; total uncertainty in
financial sources)
3. NATO workshop (possible source), international,
exact title, 30-40 participants, publication as a
book in series
22
Liite 9. THE SIBERIAN BRANCH OF THE RUSSIAN ACADEMY OF SCIENCES
23
────────────────────────────────────────────────────────
Some Words about The Siberian Branch of The Russian
Academy of Sciences
The Siberian Branch of the Russian Academy of Sciences (SB RAS) is a regional
association of research and designing institutions, pilot and medium-scale production of
the Russian Academy of Sciences as well as the services maintaining the functioning of
the infrastructure of Siberian research centers located in seven regions, 2 territories
and
four republics (i.e. the general territory of about 10 million square kilometers)5.
There are research centers of the SB RAS in Novosibirsk, Tomsk, Krasnoyarsk, Irkutsk,
Yakutsk, Ulan-Ude, Kemerovo, Tyumen, Omsk, individual research institutes are
located in Barnaul, Chita, Kyzyl. (see Scientific Potential of Siberia).
There are 75 research institutions in SB RAS and 11 designing bureaus and pilot plants
carrying out research in mathematics and physics, engineering and technology,
chemistry and biology, Earth science, humanities and economics. (see Research Institute
of SB RAS). About half of scientific potential of SB RAS is concentrated in
Novosibirsk Research Centre.
A wide network of biological and geological research stations carry out field
and stationary research in biosphere and geosphere
The research centers of SB RAS are integrated with Universities and other Siberian
colleges forming regional research and educational centers (RREC) in Barnaul,
Krasnoyarsk, Omsk, Tyumen. Universities and colleges of Novosibirsk, Tomsk, UlanUde, Yakutsk work in close contact with the research centers of the SB RAS.
5
Orignal text copied from http://www-sbras.nsc.ru/eng/welcome.html and modified by Mauri Timonen
(mauri.timonen@metla.fi)
23
Liite 9. THE SIBERIAN BRANCH OF THE RUSSIAN ACADEMY OF SCIENCES
24
────────────────────────────────────────────────────────
SB RAS STAFF
The staff of the SB RAS is 40437 people, as of January 1, 1995. 78% of them work
at research institutions and 11599 (22,3%) are employed by nonscientific
organizations.
The distribution of researchers with respect to research centers and cities
•
•
•
•
•
•
•
•
•
•
•
•
Novosibirsk - 24768 (61,3%)
Barnaul (+ Cherga) - 838 (2,1%)
Irkutsk-4801 (11,9%)
Chita -152 (0,4%)
Tomsk-2970 (7,3%)
Kyzyl -124 (0,Ç%)
Yakutsk-2446 (6,0%)
Krasnoyarsk-2397 (5,9%)
Buryatia (Ulan-Ude) - 957 (2,4%)
Omsk-506 (1,3%)
Kemerovo - 280 (0.7%)
Tyumen -198 (0.5%)
In 1990 -1994 the general quantity of people employed by SB RAS decreased by 23.3% (in
1993 the decrease in researchersemployed by SB RAS was 1645, and decrease in parascientific
employees was 1389). The dynamics of research staff of SB RAS.
There are around 11 000 researchers working at present at SB RAS (in Novosibirsk
research centre there are 6 000) including 1258 Doctors of sciences and 5278
Candidates of sciences (in Novosibirsk research centre respectively 811 and 2951). The
age of researchers is below 33 -17.2%, 33-50 - 54.4%, over 50 - 28.4%.
INFRASTRUCTURE
The institutions and organization providing services and functioning of the
infrastructure of research centres employ 29.5% of the general staff of SB RAS. This
includes the personnel of pilot plants, experimental farms, geological field stations
(8.4%); transportation, utilities, housing, repairs and supplies (8%), health service
(6,6%) kindergartens and nursery schools (4.1%), cultural institutions (0.2%).
FINANCING
The basic budgetary financing of the SB RAS has been drastically reduced over last
three years. The table below presents the per cent relation of the fundamental financing
in comparable prices to 1990.
The structure of financial support to research institutions of SB RAS has changed
significantly. In 1990, the budgetary support was 39.2% of the general financing,
18.8% was special-purpose financing of the Ministry of Science, the institutes
themselves earned about 42% from contracts with industry.
Industrial crisis drastically reduced contracts with the institutes and they now represent
about 10% of their financing. The loss of this source of income was offset, although by
no means completely, by various grants and hard-currency earnings from contracts with
foreign partners. Therefore, budgetary support, however reduced, constitutes the major
part (65%) of the general financing of research institutions.
24
Liite 9. THE SIBERIAN BRANCH OF THE RUSSIAN ACADEMY OF SCIENCES
25
────────────────────────────────────────────────────────
INTERNATIONAL RELATIONS
The structure and content of SB RAS international relations have significantly changed
over last three years. 18 International research Centres have been set up and are actively
operating co-founded together with Siberian Branch of RAS by research institutions
and Universities of European countries, the USA and Japan. These centres function as
international non-governmental organizations (as open institutes or laboratories under
the auspices of SB RAS) and carry out research on major interdisciplinary problems.
In 1993 -1994 Institutes of the SB RAS held annually about 35 - 40 international
conferences and symposia. About 1500 foreign scientists visit annually the Siberian
Branch of the Russian Academy of Sciences. The expenses of the foreign trips of
Siberian researchers were covered mostly by the inviting parties or by Soros
Foundation. Only due to this the decline in the number of foreign trips was insignificant
(from 1805 in 1992 to 1756 in 1993).
GENERAL DIRECTIONS OF SCIENCE ORGANIZATION
Siberian Branch of the Russian Academy of Sciences was established in order to form a
regional component of the country's scientific potential and to promote the development
of its eastern territories. Since the first days of its existence, the work of SB RAS has
been based on the productive combination of fundamental and applied research and
close relations of science and education. The specific features of SB RAS from the very
beginning have been the following:
• research centres have always been complex (multidisciplinary);
• the research staff of the Institutes and their material resources have been widely
used to promote higher education in
the region;
• regional component in establishing research centres and determining the directions
of their research and applications of
their results have always been very strong;
• there is a variety of forms of cooperation with industry;
• there has always been necessity to support the infrastructure, utilities and social sphere of
research centres.
COMPLEXITY
The principle of complexity (multidiscipline character) of research centres which helped
them to obtain important scientific results owing to the close interaction of industry and
research now proved to reflect the major trends in the development of the world science.
This trend consists in shifting the emphasis from individually initiated scientific
projects to special-purpose projects aimed at certain, often global projects whose
solution requires joint efforts and multidisciplinary approach.
At present the Siberian Branch of the Russian Academy of Sciences is a welldeveloped and territorially distributed system of complex research centres embracing
practically all main urban, political and national centres in Siberia. A powerful
research and experimental base has been formed including nationally important pilot
and experimental plants, a well-developed network of geological and biological
research stations carrying out systematic research for long periods of time.
Unfortunately, recently organized Tyumen and Omsk research centres could not achieve
fully-fledged development because of reduced financing.
In order to concentrate our efforts on the most important interdisciplinary problems of
the world science, major projects of the Russian Academy of Sciences and national
scientific and technical programmes the following priority scientific and technological
programmes have been worked out and pursued in SB RAS:
• fundamental and applied research in mathematics;
• fundamental laws of matter structure in micro-and macroworld;
25
Liite 9. THE SIBERIAN BRANCH OF THE RUSSIAN ACADEMY OF SCIENCES
26
────────────────────────────────────────────────────────
• theoretical study of solids intended for the development of new electronic development on
their basis;
• molecular electronics;
• fundamental research in quantum optics and quantum electronics and development of new
applications of results;
• mathematical modelling, information technologies and computing engineering;
• physic-technical and system studies of energy;
• mechanics, theoretical studies of machine building and machine reliability;
• theoretical studies aimed at the development of new materials and progressive technology;
• study of chemical composition and reactivity of compounds, kinetics and mechanisms of
chemical reactions;
• new materials and substances for the creation of the new generation of mechanisms and
technology;
• physic-chemical basis of the evolution of living organisms, problems of genetics
and selection, plant physiology and
biotechnology;
• environmental, genetic and evolutionary principles of rational utilization,
reproduction and protection of biological
resources;
• complex investigation in regional and global geological processes and theoretical studies
of prospecting and mining;
• working out new methods of waste-free and complex processing and refining of
mineral resources and y-products, oil,
coal and timber;
• economic and social research;
• interrelation of general and regional process of historic development, scientific
progress and culture of peoples and
national groups in Siberia.
COOPERATION OF SCIENCE AND EDUCATION
The experience of SB RAS in productive interaction of research and education
represented first by Novosibirsk State University established simultaneously with SB
RAS has been expanded to all the cities where research centres are located and
facilitated establishing closer relations with already existing Universities (in Irkutsk,
Tomsk, Yakutsk) and setting up new Universities such as Krasnoyarsk (first
established as an affiliation of Novosibirsk University), Altai, Kemerovo, Tyumen,
Omsk Universities. An affiliation of the Novosibirsk University has been recently set up
in Ulan-Ude. The cooperation with other higher educational institutions such as, in
particular, Novosibirsk, Tomsk and Omsk Technical universities also has proved
useful and productive.
The integration of the research centres of SB RAS with Siberian Universities and
colleges resulted in the creation of Regional Scientific and Educational Complexes
(RSECs) in Barnaul, Krasnoyarsk and Omsk. Their efficient operation is hindered at
present by the crisis of Russian science and higher education which can be attributed to
insufficient financing as well as low prestige of higher education and learning
especially in the field of natural sciences.
PROGRAMME "SIBERIA''
Territorial distribution of research centres in Siberia and their close relations with
national economy made it possible to work out in 1977 a regional scientific and
technical programme "Siberia'' aimed at promotion and support of suggestions,
feasibility studies and carrying out of scientific and technological projects, retraining
programmes for experts for the solution of socio-economical, environmental, scientific
and technical problems common to Siberia.
This programme has from the very beginning brought closer and facilitated the
coordination of operation of research, academic and industrial institutions of the
region. As a result of its activity coordination councils were established, panel
meetings and joint conferences were held which strengthened the ties of science
26
Liite 9. THE SIBERIAN BRANCH OF THE RUSSIAN ACADEMY OF SCIENCES
27
────────────────────────────────────────────────────────
and industry, accelerated the scientific progress in industry and oriented their joint
efforts to the regional requirements and needs.
The regional scientific and technical programme "Siberia'' is primarily supported now
by Interregional Association "Siberian Accord'' which unites at present 19 subjects
(i.e. major administrative and political units) of Russian Federation which is at the
same time its main customer. The financing of the programme "Siberia'' comes from
different sources main of which are:
1. budgets of Siberian Subjects of Federation;
2. investments of different companies (with state, private and mixed ownership);
3. special-purpose budget allocations of the Russian Ministry of Science
supporting regional scientific and technical
programmes;
4. allocations of other Russian Ministries for the support of national projects.
In 1993 programme "Siberia'' embraced 53 projects with the total cost of 1934 million roubles.
Previously, without expert opinion of SB RAS specialists having at their disposal a
wealth of information on Siberian nature and economy no decision on major economic
project in Siberia had been made. Now the scientific expertise in the eastern part of the
country is mostly neglected which has already led to some hasty decisions.
CONNECTIONS WITH INDUSTRY
SB RAS has always been interested in the practical application of its scientific,
technological and designing results and maintained close connections with industrial
enterprises and ministries. The system of information propagation and
"implementation'' support has proved efficient enough and was represented by special
industrial departments of the SB RAS Presidium, coordinative programmes with leading
Ministries, exhibitions and reports to the Soviet Government in the end of each five-year
plan period, direct implementaional contracts with enterprises etc.
In the course of reforms brought about complete disintegration of the previously
existing system of interactions between scientists of the SB RAS and the industry of
the country.
As a result, SB RAS temporarily had to change its priorities and focus on relations with
foreign partners. Many of its Institutes (e.g. Novosibirsk Institute of Catalysis, Institute
of Thermal Physics, Institute of Nuclear Physics, Unified Institute of Geology,
geophysics and mineralogy etc) making use of already obtained results enter into
contracts with foreign companies.
SB RAS intended on the basis of scientific and industrial cooperation with foreign
partners to expand existing research centres adding to their structure compact scienceintensive enterprises thus turning these research centres into a kind of technnoparks. An
example of such an activity is setting up of a Russian-Thailand joint venture
"Tyrus''specialized in the production of precious stones and the Russian-German
Tomographic Centre in Novosibirsk research centre. Unfortunately, political and
economic instability in our country make foreign investors who seem interested in this
kind of business rather shy.
The situation could be soon improved under two conditions:
• adequate legislative protection of foreign investments;
• parallel development of investment in science-intensive production in Russia itself.
Technological and scientific parks seem promising because of the following:
• insufficient financing and necessity to attract investments retaining at the
same time the existing schools of
fundamental research;
27
Liite 9. THE SIBERIAN BRANCH OF THE RUSSIAN ACADEMY OF SCIENCES
28
────────────────────────────────────────────────────────
• possibility of creating new jobs for many researchers and higher-school professors
as well as university and college
graduates when many existing institutions are declaring redundancies to provide
the inflow of young scientists and
somehow to offset the "brain drain'';
• future requirements for restructuring the industry of the Russian Federation and
CIS taking into account the concept of
sustainable development and based on progressive technologies;
• the existing market relations must be developed and emphasis transferred to civilized
production.
The advantages of the research centres when under favorable economic conditions technoparks
are established are as follows:
• research centres are already well-developed multidisciplinary research
units with considerable scientific and
technological experience, skill and established relations with similar
organizations;
• there are complex designing bureaus and pilot plants and production within SB RAS
research centres;
• there are experimental plants and their equipment and machinery can provide the
primary material basis for future
science-intensive joint ventures;
• availability of high-skilled labour force and retraining capacities of SB RAS and Siberian
colleges and Universities;
• availability of working premises which could be provided by some of the Institutes
and other institutions of SB RAS
declaring redundancies.
The technological parks seem a promising idea but they can be established only as a
result of stabilization of economical and political life in Russia.
Previously, budgetary financing covered only half of the costs of SB RAS and the rest
was earned by the Institutes entering in contracts mostly with industrial enterprises.
The recent economic crisis resulted in the fact that the real financing now is one fifth of
what it was in 1990. The sharp decline in industry, especially military and industrial
complex practically destroyed this source of financing. To a certain extent this has been
offset by contracts with foreign firms. At present the proportion of budgetary and nonbudgetary financing is 60:49, i.e. the real non-budgetary financing has reduced 5-6
times.
Recently, the cost structure of the Institutes has changed significantly. The proportion
of salaries and wages has grown from 1987 to 1993 from 37.5% to 64.5% and the
proportion of costs of materials and equipment dropped from 27% to 5 %.
The situation is deteriorating very rapidly. Many institutes have stopped purchases
of equipment, conserved some larger plants, drastically reduced field works and
some experimental research.
Price hikes, especially with respect to energy, led to unheard of increase in overheads
which was most painful to experimental basis and infrastructure (experimental plants,
housing, nursery schools, health service etc.)
The construction of resident houses for researchers must be now financed by
researchers themselves and after a short period of optimism difficult financial
situation made the scientific community in Siberia lose interest in such innovations.
The faulty and insufficient budgetary financing made it necessary for SB RAS to set up
a special bank "Sibakadembank'' allowing the Institutes of SB RAS to manipulate
financial resources and be granted low-interest credits. Affiliations of the Bank have
been opened also in Tomsk and Ulan-Ude.
28
Liite 9. THE SIBERIAN BRANCH OF THE RUSSIAN ACADEMY OF SCIENCES
29
────────────────────────────────────────────────────────
LABOUR POTENTIAL, EQUIPMENT, LOOKING FOR NEW
STRUCTURAL ORGANIZATION OF THE INSTITUTES
The budgetary financing of the SB RAS is now one fifth or one sixth of what it used
to be, say, in 1990 and the SB RAS is now on the verge of extinction.
To declare more redundancies under conditions of decreased financing is senseless as it
would mean the end of the Branch. Nevertheless, the number of people on the SB RAS
payroll has reduced by 20.7% over last four years. It can be attributed to very small
salaries, inadequate material and equipment supply, changes in housing policy of the
country so that the Institute cannot now grant an apartment to a person working there.
More and more scientists permanently or temporarily leave the country (about 160
researchers a year).Russian scientists are in high demand in the West which is an
indirect proof of the generally high level of our science. Most researchers have been
employed by leading organizations and corporations in the USA (35%), Germany
(20%), France (15%), Japan (7%) and other countries.
In order to retain its basic labour potential SB RAS introduced a contractual system of
payment to its leading researchers which provided a social protection to actively
working scientists. In addition, special measures have been taken to support young
researchers. Special scholarships and fellowships have been established for postgraduate students much greater that those offered by the Government, a system of
bonuses has been introduced for researchers taking their Doctorate degree (younger than
40) and Candidate degree (younger than 30), some institutes cover some or all the costs
of young scientists attending international scientific conferences, the decision has been
made to create a special housing fund for young scientists etc.
About 4 000 researchers have left the SB RAS (200 Doctors and 1600 Candidates of
Sciences). The measures taken by SB RAS helped it to some extent recover its scientific
potential. Over the same period the general number of researchers reduced only by a
thousand people whereas the number of Candidates decreased only by 420 people, and
the number of Doctors even increased by 240 people.
16 international research centres set up by Siberian Branch of RAS and functioning as
non-governmental organizations (as open institutes) to some extent helped us to deal
with the problem of brain leakage. Some of our scientists come back. Foreign scientists
come to Siberia attracted by unique natural objects, such as Lake Baikal, Altai
mountains, Siberian taiga etc., pioneering experimental plants of the SB RAS and
achievements of some of our scientific teams.
One more difficult problem is the maintenance of the equipment and the largest
experimental plants, such as solar radiotlescope and set of observatories in Irkutsk,
experimental plant for the investigation of space particles in Yakutsk, system of
unique accelerators of elementary particles in Novosibirsk etc. These plants help us
to keep up to the world standards.
It is quite evident, that the SB RAS will not be able to afford creating new centres. That
is why we see our main task in operating and maintaining them and pin our hopes on
the Ministry of Science of the Russian Federation which could provide assistance also
through federal research centrees created by it.
The General Meeting of SB RAS approved the suggestion of the Presidium of SB RAS
to centralize part of the finances in order to coordinate the solution of the problems
common for many of the Institutes.
SUPPORTING INFRASTRUCTURE AND PRESERVATION OF RESEARCH CENTRES
Siberian research centres were created in the sixties and represent almost perfectly the
development trends of the world science. Novosibirsk research centre became the
prototype of similar towns in Japan and France. Their emergence reflected the new
29
Liite 9. THE SIBERIAN BRANCH OF THE RUSSIAN ACADEMY OF SCIENCES
30
────────────────────────────────────────────────────────
multidisciplinary approach to the solution of global environmental, energy,
technological and other vital problems of humanity.
Unfortunately, the unique Russian experiment may perish because such a combination
of research, designing, industrial and social infrastructure providing efficient functioning
of the SB RAS over the entire period of its existence now threatens the very existence of
science in the eastern part of the country. SB RAS cannot any more afford maintaining
these complexes and their complete separation from scientific and designing activity
destroy the unified system of research centres. The situation calls for original decisions
on the state level.
Siberian research centres are situated at a considerable (up to 30 km) distance from the
city centres and SB RAS has to maintain the utilities and power structures (large boilers,
700 km of cable networks, 630 km of water communications and sewage etc.). Siberian
Branch has also to maintain around 900 objects of social infrastructure (residential
houses, utilities, health and educational institutions, recreational facilities etc. with total
area over 2 million square metres.
The difficulties are aggravated by the fact that the major part of residential houses of
the SB RAS was built in the sixties and seventies and therefore require capital repairs
and renovations which is practically impossible due to the absence of funds. In this
connection the Presidium of SB RAS had to divert some money from research.
One of the most serious problems is also the maintenance of public utilities. Built
more than 30 years ago their facilities require renovation the cost of which would be
billions of roubles.
This problem has been discussed heatedly for several years. For closed cities the
problem has been somehow solved by special legislation. For Novosibirsk and other
research centres of SB RAS it is an unsettled question.
[ Back] [SBRAS Home Page]
Webmas
ter
www@
wwwsbras.
ict.nsk.s
u
© 1996, Siberian Branch of Russian Academy of Sciences, Novosibirsk
30
Liite 10. KRASNOYARSK SCIENCE CENTERK
31Krasnoyarsk
────────────────────────────────────────────────────────
Krasnoyarsk Science Centre
The Krasnoyarsk region is one of the largest regions
of Russia extending for nearly 3000 km from the
mountains in Southern Siberia on the south to the
Arctic Ocean on the north6. The southern part of the
region is the best industrially and agriculturally
developed in Siberia. Abundant natural resources,
such as wood, non-ferrous and noble metals and coal,
underlie the regional economy and industry. Highly
developed are thermal and hydraulic power, machine
engineering, metallurgy, petroleum chemistry and
many others. Rich soils and favourable climate
conditions provide efficient cattle breeding and high
grain yield.
Among the first academic institutions of Krasnoyarsk were the Institute of Physics, founded in 1956,
and the Institute of Forest, moved from Moscow in 1958. The two institutes, together with the later
founded institutes of Biophysics, Computational Modelling, Chemistry and Chemical Technologies,
formed the Krasnoyarsk Science Centre of the Siberian Branch of the Academy of Sciences in 1979.
A considerable part of studies performed by the Krasnoyarsk institutes is related to the biospheric role
of ecosystems and rational land-use, which are central issues for the Sukachev Institute of Forest and
the Institute of Biophysics. The Remote Sensing Satellite Ground Station, a common-use centre for
processing and analysing data on forests, provides information support of the studies. Since 1996, the
Krasnoyarsk Regional GIS-Centre has been successfully operating as a part of the Distributed Siberian
Network of Regional GIS-Centres.
The fact that the greatest portion of world boreal
forests is located in Siberia, as well as the high
scientific potential of the Institute of Forest,
became fundamental for successful work of the
Siberian International Centre for Ecological
Research of Boreal Forests.
Siberian taiga is the main subject of studies of the
Sukachev Institute of Forest and the Siberian
International Centre for Ecological Research of
Boreal Forests. (The photo shows dead forest.)
The Institute of Biophysics was a pioneer in elaborating closed artificial survival ecosystems, and on
its basis an International Centre for Closed Ecological Systems has been operating there since 1991.
−−−−−−−−−
11 Original text copied from http://www.sbras.nsc.ru/consult/krasnoyarsk.htm and modified by Mauri Timonen
(mauri.timonen@metla.fi)
31
Liite 10. KRASNOYARSK SCIENCE CENTERK
32Krasnoyarsk
────────────────────────────────────────────────────────
The Kirensky Institute of Physics carries out fundamental studies in physics of magnetism and
condensed media. Research results of the Institute are applied in designing new materials for
electronics and advanced communication media.
Research in the Institute of Computational Modelling focuses on intellectual information systems and
methods of numerical modelling for a broad scope of problems from tsunami propagation to
programmes of ecological safety for population and environment in emergency situations.
In the Institute of Chemistry and Chemical Technology, scientific and technological fundamentals are
being created for ecologically safe processing of ores and their concentrates, wood, coal, as well as
renewable resources and non-traditional raw materials.
The Special Design Office «Nauka» deals with pilot and industrial finishing of research results and
their implementation. This is also the main focus of the departments of Radio Engineering and
Electronics, Physics of Nano-Phase Materials, Industrial Ecology, and a number of other practiceoriented institutions founded by the «Nauka» Office and the institutes of the Centre, and affiliated to
the Presidium of the Krasnoyarsk Centre. A holding, based on various marketing and commercial
structures, monitors the activity of the technopark zone.
The Krasnoyarsk Centre also involves laboratories of the Novosibirsk Institute of Archaeology and
Ethnography, and the Institute of Economics and Industrial Engineering.
All academic institutions of the Krasnoyarsk Centre of the SB RAS, together with higher schools and
industrial enterprises of the Krasnoyarsk Territory, are among founders of the Regional Scientific and
Educational Complex and participate in elaboration and implementation of research and development
programmes funded from the federal and regional budgets. The Complex is responsible for finishing
high technologies and attracting investments.
•
Scientist have worked out a high-resolution method for detection of forest fires with the use of images from
32
Liite 10. KRASNOYARSK SCIENCE CENTERK
33Krasnoyarsk
────────────────────────────────────────────────────────
•
NOAA satellites. The window show forest fires in the Lower Angara Region in 1996. (left)
Receiver for satellite monitoring that can work in hard conditions, including aboard a ship during storms, was
designed in the Krasnoyarsk SC.
Collaboration of the Krasnoyarsk Centre institutes with higher schools is developed in both research
and education fields. About twenty joint chairs have been founded that are headed by scientists from
the Centre, and some of them are located directly in the institutes. A recently created local information
network provides an access to Internet for all institutes and major universities of Krasnoyarsk.
The Krasnoyarsk Akademgorodok is sited in the suburbs, at the elevated bank of the Yenisei River. It
comprises a number of institutes and laboratories with their logistic infrastructure, a residential zone
with a scientists’ club, «House of Scientists», a hospital, shops and other social amenities. One of the
University buildings, that used to be founded as a branch of the Novosibirsk University, is within the
limits of Akademgorodok. There is a specialised secondary school that offers good training in physics
and mathematics, humanities, chemistry, biology and arts.
See also Short guide to the Siberian Branch of the Russian Academy of Sciences
33
Liite 11. V.N.SUKACHEV INSTITUTE OF FOREST OF SB RAS (SIFSBRAS)
34
────────────────────────────────────────────────────────-
V.N.SUKACHEV INSTITUTE OF FOREST,
SIBERIAN BRANCH, RUSSIAN ACADEMY OF
SCIENCES (SIF SB RAS)
Director: Academician RAS, Professor, Dr.
Vaganov Evgenii Alexandrovich
The Institute staff numbers 401 people (including
filials): 1 academician, 33 professors, 99 doctors,
76 Ph.D. course students, 18% research workers
are young scientists (up to 33 age). The Institute
has 4 sectors which contain 17 laboratories7.
Academician Eugene
A. Vaganov
STRUCTURE OF INSTITUTE:
I FORESTRY DEPARTMENT
Head of department - Prof. Anatoly Platonovich Abaimov
1. Laboratory of forestry
Prof. Anatoly Platonovich Abaimov
2. Laboratory of forest genetics and breeding
Prof. Elena Nikolaevna Muratova
3. Laboratory of forest inventory and forest management
Prof. Vladimir Alexeevich Sokolov
4. Laboratory of forest pyrology
Prof. Valentin Vasilievich Furyaev
5. Sector of artificial forest phytocoenosis
Ph.D. Genady Sergeevich Varaksin
II FOREST MONITORING DEPARTMENT
Head of department - Ph.D. Alexandr Alexandrovich Onuchin
6. Laboratory of forest monitoring
Ph.D. Alexandr Alexandrovich Onuchin
7. Laboratory of biogeocoenology
Prof. Stanislav Petrovich Efremov
8. Laboratory of forest soil
Prof. Yury Ivanovich Ershov
9. Laboratory of forest zoology
Ph.D. Yury Nikolayevich Baranchikov
10. Laboratory of forest biophysics
Prof.Vyacheslav Ivanovich Kharuk
III DENDROCLIMATOLOGY AND HISTORY OF FORESTS DEPARTMENT
11. Head of department Academician Eugene Alexandrovich Vaganov
IV PHYSICAL AND CHEMICAL BIOLOGY AND BIOTECHNOLOGY OF TREE PLANTS
DEPARTMENT
12. Head of department Prof. Sergey Redzhinaldovich Loskutov
TOMSK'S FILIAL
Director - Ph.D. Krivets Svetlana Arnoldovna
13. Laboratory of forestry and forest management Ph.D. Krivets Svetlana Arnoldovna
14. Laboratory of ecology and assessment of soil productivity
Ph.D. Anatoly Grigorievich
Dyukarev
15. Laboratory of growth and fruiting of trees
Prof. Sergey Nikolaevich Goroshkevich
16. Laboratory of dynamic sand ecosystems stability Prof. Elena Eugenievna Timoshok
WEST SIBERIAN FILIAL (NOVOSIBIRSK)
17. Director - Ph.D Valery Ivanovich Baranovsky
−−−−−−−−−−12 Original text copied from http://forest.akadem.ru/english/structure.html and modified by Mauri
Timonen ( mauri.timonen@metla.fi)
34
Liite 11. V.N.SUKACHEV INSTITUTE OF FOREST OF SB RAS (SIFSBRAS)
35
────────────────────────────────────────────────────────-
VN Sukachev Institute of Forest of SB RAS building in the scientist town called Akademgorodok, just
beside the city of Krasnoyarsk.
”House of
Scientists” is a hotel
for visiting
scientists in
Krasnoyarsk
Akademgorodok. VN
Sukachev Institute
is located just at 10
minute’s walking
distance from House
of Scientists. A bus
ride to downtown
35
Liite 12. THE INSTITUTE OF PLANT AND ANIMAL ECOLOGY (IPAE)
36
───────────────────────────────────────────────────────-
Some Words about the Institute of Plant and Animal Ecology (IPAE)
The Institute of Plant & Animal Ecology
202, 8 Marta St., Ekaterinburg,
620144, Russia
Phone (343) 222-85-70
E-mail: common@ipan.uran.ru
Institute of Plant and Animal Ecology was founded in
1944 and now it is a leading organization in the field
of ecology of land and freshwater ecosystems
studies8.
The main elaborated problems are:
- general mechanisms of development (functioning,
dynamics, stability) of such natural ecosystems as
populations and communities;
- development of nature conservation fundamentals
(ecological regulation, bioindication, ecotoxicology, radioecology);
- climate reconstruction, structure and functioning ecosystems of Northern
Eurasia during the last 20-30 thousand years;
- analysis of biodiversity on the territories of the Urals and Western Siberia
The Institute incorporates 13 laboratories, a zoological museum, a biophysical
station (at the town of Zarechny in the Sverdlovsk Region ) and a Scientific
Research Center (at the town of Labytnangi in the Tyumen Region). The
Institute also possesses a large herbarium of plants. There are 287 personnel on
staff at the Institute, including 2 full members and one corresponding member
of the RAS, 24 doctors and 77 candidates of science. Director is academician
Vladimir Bolshakov.
Akademician
Vladimir Bolshakov
The Institute of Plant & Animal Ecology of the Ural Branch of the Russian Academy of Sciences
was established on the 18th of June, 1944, under the name of the Biology Institute of the UB
RAS. The first director of the Institute was a prominent physiologist and geneticist, professor V.
V. Patrushev. The line of present-day research conducted by the Institute can be traced back to
the scientific and administrative activities of academician S. S. Schwarz, who directed the
Institute from 1955 to 1976. At that time, famous and outstanding scientists worked at the
Institute, such as geneticist and radioecologist N. V. Timofeyev-Ressovsky, and botanist and
geographer B. P. Kolesnikov.
The Institute incorporates 13 laboratories, a zoological museum, a biophysical station (at the
town of Zarechny in the Sverdlovsk Region ) and a Scientific Research Center (at the town of
Labytnangi in the Tyumen Region). The Institute also possesses a large herbarium of plants.
There are 287 personnel on staff at the Institute, including 2 full members and one
corresponding member of the RAS, 24 doctors and 77 candidates of science.
A principal area of scientific research is associated with the study of functioning, evolution
and stability of living systems — such as populations, communities and ecosystems — at the
super-organism level. The following scientific branches are studied: population ecology of
plants and animals, historical ecology, radioecology, soil sciences, and applied ecology (such as
environmental monitoring and expertise, standardization, recovery of biological resources, and
sustainable development). In recent years, the following outstanding achievements have been
made:
36
Liite 12. THE INSTITUTE OF PLANT AND ANIMAL ECOLOGY (IPAE)
37
───────────────────────────────────────────────────────• principles of ecological mechanisms of evolutionary processes
•
•
•
•
have been formulated as a result of the studies of population
structure of different species under various environmental
conditions;
ecological peculiarities of plants and animals inhabiting
mountainous and subarctic ecosystems have been revealed with
demonstrations of both zonal and altitudinal adaptations to
specific environments;
results of complex studies (botanical, zoological, and
hydrobiological) of ecosystems of the polar Urals and the Yamal
Peninsula have been summarized for the period of 40 years. A
description has been given of the dynamics of ecosystems, and a
forecast has been made of the changes in these systems under
Professor Stepan Shiyatov,
the conditions of large-scale exploration of fossil fuel deposits.
the head of the
dendrochronological
Some important characteristics of the tundra biome have been
laboratory in the IPAE,
summarized on a global scale;
Ek t i b
a cycle of radioecological and population studies has been
completed in the field pertaining to impacts of radioactive contamination on the
territories of a so-called East Ural Radioactive Trace and Totsky Nuclear Testing Site;
some regularities have been described for transformation and stabilization mechanisms of
populations and communities under the impacts of heavy metal contamination;
For coniferous forests of the Middle Urals, methods of ecological standardization have been
developed, critical toxic levels have been determined, and ecological standards have been
established:
• theoretical and methodological principles have been formulated for dendrochronological
monitoring in Russia. With the use of dendrochronology methods, anthropogenic and
climatic changes in forest-tundra vegetation in various sectors of Ural and Siberian
subarctic have been reconstructed for a 500 to 600 year period (in areas of Western
Siberia — over a 4500 year period);
The building, where professor Stepan
Shiyatov’s main office of his famous
dendrochronological laboratory in
Ekaterinburg locates. Dr. Pavel
Moiseev (standing closest) and professor Shiyatov, coming out at the
main door, ready to go home after
the fruitful Finnish-Russian
negotiations.
37
Liite 12. THE INSTITUTE OF PLANT AND ANIMAL ECOLOGY (IPAE)
38
───────────────────────────────────────────────────────• studies have been conducted of population structure and dynamics of endemic and rare
plant species of the Northern and Middle Urals and the northern part of West Siberia.
Methodological principles of evaluation and protection of the species have been
established;
• some regular features of population dispersion, such as direction, speed, scale, and the
extent of reversibility, of mammalian faunas in the late Cenozoic have been found for all
the natural zones of the Urals;
• a comprehensive survey of natural reproduction of populations of the semi-anadromous
Coregonid fish is an example of a study in the Lower Ob basin. An evaluation system was
developed for the ecological capacity of spawning locations;
• resulting from the long-term field studies of the nature of the Urals and adjacent regions
of the subarctic, the following books have been prepared and published: "Red Data Book
of the Middle Urals Sverdlovsk and Perm Regions", "The Nature of Yamal", "Ecology of the
Chanty-Mansi Autonomous District", and "Red Data Book of the Yamalo-Nenetz
Autonomous District".
38
Liite 12. THE INSTITUTE OF PLANT AND ANIMAL ECOLOGY (IPAE)
39
───────────────────────────────────────────────────────-
Fig 1. The so far interested partners in the EuraClimates research programme planning. Considering the Finnish-Russian-Asian-European (any
order equivalent!) wide climate change research, we actually need the whole Eurasian data in our use to be successful in detailed analysis. In order
to keep our research well-controlled and scientifically sound, we need to focus on studying all the specific climatically sensitive conifer tree species.
This figure gives some ideas for establishing a project called “The EURAMOUNTAINCLIMATES”. Why would we not go looking at the timberline
forests in different locations in this huge area and try to find transferable and applicable climatic signals? This means e.g. that some on-going
processes in the Alps or the Urals regions might indicate the Finnish climate change future.
39
Liite 12. THE INSTITUTE OF PLANT AND ANIMAL ECOLOGY (IPAE)
40
───────────────────────────────────────────────────────-
Fig 2. THE SPINEACLIMA REGION DEFINITION. Eurasian distribution of Scots pine (Pinus sylvestris). (Geographic distribution of the pines of the world,
USDA Forest Service Misc. Publ. 991, 1966). http://en.wikipedia.org/wiki/Scots_Pine.
40
Liite 12. THE INSTITUTE OF PLANT AND ANIMAL ECOLOGY (IPAE)
41
───────────────────────────────────────────────────────-
Fig. 3. PROJECT “THE BOREAL ZONE CLIMATE BIOMES”. Climate change and timberline research will be concentrated mainly on ”Boreal Humid”
and ”Boreal Interfrost” biomes. China possibly joins this subproject.
41
Liite 12. THE INSTITUTE OF PLANT AND ANIMAL ECOLOGY (IPAE)
42
───────────────────────────────────────────────────────-
Fig. 4. PROJECT “THE TAIGACLIMATES”. Climate change research will be concentrated on the areas close to the northern timberlines.
42
Liite 12. THE INSTITUTE OF PLANT AND ANIMAL ECOLOGY (IPAE)
43
───────────────────────────────────────────────────────-
43