euraclimates_kokous_..
Transcription
euraclimates_kokous_..
1 VENÄJÄ-YHTEISTYÖN KEHITTÄMISKOKOUS SISÄLLYS: KOKOUSKUTSU .................................................................................................................3 JOHDANTO: METLAN VENÄJÄ-YHTEISTYÖN KEHITTÄMISSUUNNITELMA..................4 KESKUSTELUA...................................................................................................................5 31. Tutkimusstrategian pohdiskelua .................................................................................6 32. Lähitavoitteena EU-hanke-esityksen laadinta FP7-ohjelmaan liittyen. .......................8 33. Lisäajatuksia liittyen Euraclimates-suunnitteluun .......................................................9 EURACLIMATES -PROJEKTISUUNNITTELU ..................................................................11 EURACLIMATES-TUTKIMUSPROJEKTIEN TIEDONHALLINTA .....................................13 ILMASTOTIEDON VISUALISOINTI HAVUPUIDEN VUOSILUSTOISTA...........................15 PAIKALLISILMASTOJEN MÄÄRITTÄMINEN MÄNNYN VUOSILUSTOISTA ...................16 THE EURACLIMATES PROJECT IN SHORT ...................................................................17 LIITTEET ...........................................................................................................................17 I Exciting views in European-Siberian tree-ring research ...........................................18 II Some recent comments and suggestions from MKH..............................................18 III Productive synergies suggested by M.K. Hughes and E. A. Vaganov....................19 B. Personal exchange and communications...............................................................21 C. “Proposal” activity...................................................................................................22 D. Other activity .......................................................................................................22 Some Words about the Institute of Plant and Animal Ecology (IPAE)...............................36 2 VENÄJÄ-YHTEISTYÖN KEHITTÄMISKOKOUS KOKOUSKUTSU Tervehdys kaikki, Siperia-yhteistyön suunnittelukokous pidetään maanantaina 27.3. kello 9.30 alkaen Vantaan yksikön kirjastorakennuksen kokoushuoneessa Signe. Mauri Timonen ja Kari Mielikäinen kertovat syyskuussa 2005 tekemänsä matkan pohjalta tuntojaan aiheista, joista venäläiset osapuolet ovat erityisen kiinnostuneita. Lisäksi kokouksessa pohditaan myös Venäjä-yhteistyöhön liittyvän ensimmäisen, Euraasia laajuisen, EUympäristönmuutosprojektimme sisältöä. Ohjelma: 09:30 Kari Mielikäinen: Metlan Venäjä-yhteistyön näkymät 09:50 Mauri Timonen: SPINEACLIMA - projektisuunnittelu: ehdotus Euraasian laajuisen monitieteisen ilmaston- ja ympäristönmuutostutkimuksen käynnistämiseksi. - mitä tehty, missä mennään, mitä jatkossa? 10:10 Keskustelua alustusten pohjalta. Toivotaan erityisesti mietittävän seuraavia ympäristömuutosten kannalta tärkeitä ydinasioita: - biodiversiteetti - fenologia 11.30 Lopetus > > Tervetuloa mukaan > > Kari > > P.S. Ellet itse pääse mukaan, mutta tiedät jonkun muun asiasta > kiinnostuneen, kerro hänelle ja yllytä mukaan. 3 Metla/VA/mt KOKOUSMUISTIO 27.03.2006 Aika 27.03.2006 klo 9.30 Paikka Signe-kabinetti/Vantaan yksikön kirjastorakennus Läsnä Kari Mielikäinen Mauri Timonen Jarkko Hantula Heikki Henttonen Sauli Härkönen Aleksi Lehtonen Harri Mäkinen Tiina Nieminen Juha Siitonen (KM) kokoonkutsuja (MT) sihteeri (JH) (HH) (SH) (AL) (HM) (TN) (JS) JOHDANTO: METLAN VENÄJÄ-YHTEISTYÖN KEHITTÄMISSUUNNITELMA Arizonan yliopiston puulustotutkimusyksikön (LTRR1) aiemman johtajan (1986-1996) ja nykyisen dendrokronologian professorin Malcolm K. Hughesin panos on ollut merkittävä uudistettaessa Metlan lustotutkimusta viimeisten 13 vuoden aikana. Hän käynnisti Suomen vierailullaan heinäkuussa 2004 seuraavan vaiheen, jonka tavoitteena on lustotutkimusyhteistyön virittäminen tieteenalan venäläisten huippututkijoiden kanssa. Venäläisestä yhteistyöstä vastaa Siperian metsien tutkimuksen johtaja, akateemikko professori Eugene A. Vaganov VN Sukachev -instituutista. Yhteistyö sai merkittävää lisäpontta, kun Metlan ylijohtaja Hannu Raitio kutsui molemmat professorit pääpuhujiksi Pallaksella 29.03.2005 pidettyyn ilmastoseminaariin. Siitä alkoi prosessi, joka on johtanut mm. virallisiin yhteistyösopimuksiin Venäjän tiedeakatemiaan kuuluvien VN Sukachev instituutin (SIFBRAS)sekä Plant and Animal Ecology –instituuttien (IPAE) kanssa sekä yhteisiin tutkimusprojektisuunnitteluihin. Sekä Hughes että Vaganov ovat hyödyntäneet vuosilustoista saatavaa ilmastotietoa ekologisia kysymyksiä käsittelevissä tutkimuksissaan. Lustotutkimukseen keskittyneillä Metlan kasvututkijoilla on ollut siten luontevaa kehittää yhteistyötä heidän kanssaan. Sen seurauksena on muodostunut useiden kymmenien tutkijoiden suomalais-venäläis-amerikkalainen yhteistyöverkko, joka pyrkii aktiivisesti hankkimaan synergiaetua erilaisista osaamisistaan. Paraikaa on meneillään Euraasian laajuisen ilmastonmuutostutkimukseen suunnittelu, johon tämäkin muistio liittyy. KM ja MT tutustuivat mainittujen instituuttien toimintaan syyskuussa 2005 tekemällään kaksiviikkoisella venäjänvierailullaan. Sen tuloksena laadittu yhteistyömuistio (liite xx) on toiminut viitteenä etsittäessä sopivia yhteistyömuotoja ja –kumppaneita. Välittömästi Venäjältä paluun jälkeen alkoi ns. EURACLIMATES-tutkimussuunnittelu, jonka ytimenä on Metlan ja Venäjän metsäntutkimuksen välisen tutkimusyhteistyön kehittäminen. Koska suunnittelun aihepiiriksi on muotoutunut pohjoisen havumetsävyöhykkeen ilmastonmuutos ja sen 1 LTRR = Laboratory of Tree-Ring Research. Linkki www.ltrr.arizona.edu 4 metsäekologiset vaikutukset, on ollut tarkoituksenmukaista laajentaa kysymyksenasettelu koko Euraasian aluetta koskevaksi. KM:n ja MT:n osallistuminen Metlan ilmastonmuutoksen tutkimusohjelman suunnittelukokoukseen Vantaalla 27.01.2006, MT:n osallistumiset Millennium-projektin alkukokoukseen Mallorcalla 12-17.02.2006 ja yhteistyöneuvotteluun professori Vaganovin kanssa 04-09.03.2006 Jenassa maaliskuun alussa 2006 sekä IPAElta saatu palaute ovat täsmentäneet EURACLIMATES-suunnittelua. Sitä on tarkoitus jatkaa Jekaterinburgin kansainvälisen ilmastokokouksen yhteydessä 5-7.6.2006 sekä Pekingin kansainvälisen lustotutkijoiden kokouksessa 11-17.06.2006. EURACLIMATES-suunnittelun ensimmäisenä konkreettisena tavoitteena on projektioesityksen jättäminen FP7-puiteohjelmaan vuoden 2007 alussa. KESKUSTELUA KM alusti Venäjä-yhteistyön yleisistä puitteista. MT kertoi EURACLIMATES-suunnittelun keskeisistä periaatteista. Alun perin on ollut puhetta kansainvälisen ilmastonmuutosta koskevan projektikokonaisuuden luomisesta. Kyse ei itse asiassa ole kuitenkaan varsinaisesta ilmastonmuutostutkimuksesta, vaan ilmaston vaihteluiden ja trendimäisten muutosten aiheuttamien metsäekologisten vaikutusten analysoimisesta. Ajatus ei siten poikkea paljoa siitä, miten Metlan ilmastonmuutosta koskevassa omassa tutkimusohjelman suunnittelussa aiotaan edetään. Lähestymistavat saattavat kuitenkin poiketa huomattavastikin toisistaan, tosin riippuen siitä, kuinka paljon suunnittelussa tehdään yhteistyötä ja toimitaan yhteisin menetelmin. Euraclimates-suunnittelussa on tavoitteena laatia viitekehys Euraasian laajuiselle metsäekologiselle ilmastonmuutoksen tutkimusohjelmalle, jossa tutkitaan ja vertaillaan eri alueilla ja erilaisissa olosuhteissa kehittyneiden paikallisten ekosysteemien ominaisuuksia toisiinsa sekä mahdollisuuksien mukaan projisoidaan vertaisalueiden tulevan kehityksen ennustamiseksi. Voidaan ajatella, että jollain alueella lämpimämmissä paikallisilmastoissa kehittyneiden metsäekosysteemien ominaisuudet kehittyvät samankaltaisesti niillä alueilla, joiden ilmasto- ja ekologinen historia ovat yhteismitallisia. Käydyssä keskustelussa todettiin tärkeäksi tutkia ilmastonmuutoksesta aiheutuvia sellaisia metsäekologisia vaikutuksia, jotka tavalla tai toisella uhkaavat ja vaikeuttavat metsätalouden harjoittamista. Asia jätettiin JH:n ja HH:n johtamien tutkimusryhmien mietittäväksi. <<<< jatkuu >> 5 Liite 2. TAUSTAINFORMAATIOTA: EURACLIMATES: PIENILMASTOT 6 ────────────────────────────────────────────────────────────────── 31. Tutkimusstrategian pohdiskelua Ensimmäisen euraasialaisen luonnon biodiversiteettimuutoksiin perustuvan ilmastonmuutostutkimusohjelman suunnittelu on käynnissä. Suunnittelun lähtökohtana ovat tuhannet maantieteellisten ja muiden syiden vuoksi toisistaan poikkeavat euraasialaiset paikallisilmastot, joiden aiheuttamissa olosuhteissa on kehittynyt toisistaan poikkeavia ekosysteemeitä. Suuralueen ekosysteemien kirjon muodostama biodiversiteettivaihtelu tarjoaa erinomaisen lähtökohdan pohjoisen pallonpuoliskon havumetsiä koskevalle ilmastonmuutostutkimukselle, jossa ilmastonmuutos määritellään lajien biodiversiteetissä tapahtuneiden pienten trendimäisten muutosten perusteella. Kartoittamalla systemaattisesti euraasialaisia ekosysteemejä, tutkimalla kysymyksenasettelun kannalta mielenkiintoisten kohteiden nykyisten ja menneiden ominaispiirteiden kehitysvaiheita, sekä vertaamalla niitä toisiinsa on mahdollista kehittää jopa ekosysteemien tulevaisuutta kuvaavia malleja. Euraasian metsäisistä alueilta on kerätty vuosikymmenien aikana suuri määrä ilmastotutkimuksiin soveltuvaa vuosilustoaineistoa. Suurin osa datasta on peräisin elävistä puista, mikä tarkoittaa 50-300 vuoden pituisia aikasarjoja. Ne sarjat, joiden kokoamisessa on käytetty myös muuta materiaalia, kuten esimerkiksi keloja, kantojuurakoita, vanhoja rakennushirsiä sekä järvien pohjamudissa ja ikiroudassa säilyneitä ns. megafossiilipuita, voivat olla paljon pidempiä, jopa yli 7000 vuoden pituisia. Niiden avulla päästään kurkistamaan yhtä pitkältä ajanjaksolta myös menneiden vuosisatojen ilmastoihin. Paikallisilmastojen kartoittamiseen käytetään vuosilustosarjoista lasketuja vuosikohtaisia trendipintalämpötilakarttoja. Suunnitteilla olevalla Google Earth-tyyppisellä visualisointisysteemillä, jossa maaston korkeusvaihtelu on korvattu kuukausi- ja muilla keskilämpötilamuuttujilla, on mahdollista ”etsiä” ilmastollisia poikkeavuuksia, anomalioita, laajojen alueiden nykyisistä ja menneistä ilmastoista. Nykyisten ja menneiden ilmastojen välillä saattaa olla huomattaviakin eroja, sillä olosuhteiden kehitys on ympäristötekijöiden summa. Esimerkiksi ilmaston trendimäiset lämpenemiset ja viilenemiset, vallitsevien tuulien suunnat, auringon aktiivisuuden vaihtelut yms. tekijät saavat aikaan jatkuvan ilmastonmuutoksen. Paikalliset ekosysteemit reagoivat joka kerta aiemmasta poikkeavalla tavalla. Siksi ”sukellukset” paikallisilmastojen menneisyyksiin ovat tärkeitä pyrittäessä ymmärtämään paikallisen ekosysteemin kehitystä. On mahdollista, että tutkittaessa laajojen alueiden, kuten Euraasian paikallisilmastoja, löydetään sellaisia vertailupareja, joissa ensimmäisen alueen jo historialliseksi muuttunut ilmaston kehitys on tulossa toisen alueen tulevaksi ilmastoksi. Vertailuparit voidaan paikallistaa esimerkiksi niiden ekologisen kehityksen ja ilmastohistorioiden yhteisiä ominaispiirteitä vertailemalla. Kyseessä siis on jonkinlainen ajoitustehtävä. Tiedämme ilmaston lämmenneen esimerkiksi Uralilla, Alpeilla ja Kölivuoristossa. Suomessa ei vielä ole tapahtunut kovin merkittävää lämpenemistä. Jos lämpeneminen kuitenkin jatkuu, voisivat em. alueilta saadut tulokset ekosysteemin muutoksista olla tietyin ehdoin sovellettavissa Suomenkin olosuhteisiin. Kun ajatellaan esimerkiksi sienten ja hyönteisten leviämistä uusille alueille ilmaston muuttuessa, saadaan niiltä alueilta, joissa muutos jo on tapahtunut, suoraan sovellettavaa tietoa muutosprosessissa olevan tulevaisuudesta! Suomalaiset tuhotutkijat, paikallistakaa Suomen ilmaston arvioitua kehitystä vastaavat paikallisilmastot Euraasiasta, tutkikaa kyseisten alueiden ekologiaa ja soveltaa ne Suomen olosuhteisiin. 6 Liite 2. TAUSTAINFORMAATIOTA: EURACLIMATES: PIENILMASTOT 7 ────────────────────────────────────────────────────────────────── Olemme laatineet useampia lähestymistapoja Euraasian laajuisen EuraClimatesprojektipakettimme laajan viitekehyksen määrittelemiseksi. Perusajatuksena on antaa tutkimusryhmille jokin yksiselitteinen kiinnekohta, joka auttaa siirtämään muualla saadut tulokset Suomen tulevassa ilmastossa kehittyvien ekosysteemien kehityskulun arvioimiseksi. Joidenkin alueiden ilmastohistoriaa päästään katselemaan ”matkustamalla” puiden vuosilustojen ilmastosignaalien mahdollistamassa aikakapselissa nykyhetkestä esimerkiksi 1000 vuotta taaksepäin, jolloin on mahdollista arvioida paikallista ilmastoa pikku jääkauden ja keskiajan lämpökauden aikana. Euraasian alueelta on kerätty vuosikymmenien aikana kymmeniin tuhansiin nouseva havupuiden vuosilustosarjojen joukko, joka mahdollistaa alueellisten ilmastokarttojen laatimisen sadoiksi ja jopa tuhansiksi vuosiksi ajassa taaksepäin. 7 Liite 3. EURACLIMATES: TUTKIMUSAIHIOITA PROJEKTISUUNNITTELUA VARTEN 8 ────────────────────────────────────────────────────────────────── 32. Lähitavoitteena EU-hanke-esityksen laadinta FP7-ohjelmaan liittyen. Projektiesityksen työpaketteihin sisällytetään mm. seuraavia asioita: - trendipintoihin perustuva alueellinen ilmastokartoitus ekosysteemien kartoitusta kiinnostavien ekologisten kohteiden paikallistamiseksi biodiversiteetti- ja fenologia-lähtöistä tutkimusta metsätuhoanalyysejä mm. professorien Henttonen ja Hantula viitoittamalla tavalla. hiiliasioita tiedonhallinnan, mallituksen sekä datojen/tulosten visualisointia (datan ja metadatan arkistointia, datalouhintaa, GIS-mallitusta, prosessimalleja jne.) Hanke-esityksen sisällön elementtejä 311. HIILIASIAT - hiilitase, hiilen sitoutuminen turpeeseen - Zotto 250 -projekti - Knorre A, Sievänen R, Nieminen T, 312. METSÄTUHOT - tuhosienten ja –hyönteisten aiheuttamat uhat - Professorien Hantula ja Henttonen päätös osallistua Venäjä-yhteistyön kehittämiseen omien tieteenalojensa puitteissa. - Venäjä-asiantuntijoiden määrä kasvussa (mm. Juha Siitonen) - Hantula J, Henttonen H, Kaitera J, Müller M, Siitonen J, Korhonen K 313. VUOSILUSTOTIEDON VERKOSTOSOVELLUKSET - Hantemirov R, Kukkola M, Levanic T, Mielikäinen T, Pöntinen, Timonen M, Timonen T, 314. MALLITUKSET - Vaganovin prosessimallit - Esper J, Hari P, Heinonen J, Hughes M, Häkkinen R, Mazepa V, Mikkola K, Sievänen R, Shishov V, Timonen M, Vaganov E, Wilson R, 315. BIODIVERSITEETTI 316. ilmaston vaihtelut = biodiversiteettien rikaus pienet muutokset kasvistossa ja eläimistössä määrittelevät ilmastonmuutoksen Shiatovin kuvaparivertailut Uralilla Moiseev P, FENOLOGIA - Huhta E, Häkkinen R, Kubin E, Moiseev P 8 Liite 3. EURACLIMATES: TUTKIMUSAIHIOITA PROJEKTISUUNNITTELUA VARTEN 9 ────────────────────────────────────────────────────────────────── 317. VUOSILUSTOANALYYSIT - Grudd, H, Hantemirov R, Helama S, Kirchhefer A, Kononov J, Kultti S, Mielikäinen K, Spiecker H, Touchan R 318. ILMASTO - Helama S, Hughes M, Jungner H, Macias M, Tuomenvirta H, Velicho A, Venäläinen A, 319. ISOTOOPIT - Robertson I, Loader N, 320. SOLUT - Gurskaya M, Gorlanova L, Kirdianov A, Saranpää P, 321. METSÄNRAJA - Kulman L, Moiseev P, Neuvonen S, Sutinen M-L, Sutinen R, Timonen M, 322. SATELLIITTIDATA - Mikkola K, Nikula A, 323. KYLMÄNKESTÄVYYS - Gurskaya M, Martz F, Sutinen M-L, 324. TIHEYSANALYYSIT - Kolström T, Meriläinen J, 325. DATAN HALLINTA - METIH-järjestelmän käyttöönotto 326. GRADIENTTITUTKIMUKSET - Helama S, Macias M, Timonen M, 327. DATOJEN JA TULOSTEN VISUALISOINNIT (”ILMASTOLENTOKONE”) - Mielikäinen T, Mikkola K, Timonen T, Timonen M, 33. Lisäajatuksia liittyen Euraclimates-suunnitteluun 321. KIINA 322. Kiinalaiset mukaan Euraclimates-ohjelmaan? Sypressi Tiibetissä ilmastonmuutoksen sanansaattaja Kiinan metsissä ainakin ”biomi”-yteensopivuutta kiinalaisen metsäasiantuntemuksen mukaantulo lisää tutkimuksen ”biodiversiteettiä”. SAB (SCIENTIFIC ADVISORY BOARD) - Venäläinen jäsen 9 Liite 3. EURACLIMATES: TUTKIMUSAIHIOITA PROJEKTISUUNNITTELUA VARTEN 10 ────────────────────────────────────────────────────────────────── - YHDYSHENKILÖT - Professori Vaganov haluaisi kehittää myös ministeriötasoista yhteistyötä Metlan ja Venäjän välillä. Tällä hetkellä yhteyksiä ainakin MMM:n Heikki Granholmiin ja Ympäristöministeriön Jaakko Ojalaan. - Lisätiedon saamiseksi yhteinen seminaari venäläisten kanssa välttämätön - Vaganovin hyväksyntä Spineaclima-viitekehyssuunnitelman periaatteille. - Laajemman jatkosuunnittelun pohjaksi tarvitaan lännestä itään ja etelästä pohjoiseen tehdyt ilmastolliset gradienttianalyysit. 10 Liite 4. PROJEKTIT 11 ────────────────────────────────────────────────────────────────── EURACLIMATES -PROJEKTISUUNNITTELU Mikä on EURACLIMATES? Se on lyhennelmä sanoista “EURAsian wide CLImate change Monitoring and Analysis based on Tree-ring and EcoSystem modelling.” Tavoitteena on: 1. Laatia viitekehys Euraasian laajuiselle metsäekologiselle ilmastonmuutoksen tutkimusohjelmalle, jonka keskeisenä toiminta-ajatuksena on hitaammin lämpenevien verrokkialueiden tulevan kehityksen arviointi lämpimämmissä paikallisilmastoissa kehittyneiden metsäekosysteemien ominaisuuksien, niiden vaihteluiden (biodiversiteetin) ja historiatietojen perusteella. 2. Yhtenäistää euraasialaista ilmastonmuutostutkimusta kehittämällä uusimpaan tekniikkaan perustuvaa integroitua tiedonhallintaa, joka parantaa erityisesti dendrokronologisten datojen ja metadatojen hyväksikäyttöä kansainvälisessä ekologisessa tutkimuksessa. 3. Tuottaa tietoa lämpenevän ilmaston aiheuttamista vaikutuksista metsäekosysteemien toimintaan ja tarvittavista käytännön toimenpiteistä. Ajatus tutkia vaihtelevissa paikallisilmastoissa kehittyneitä ekosysteemejä antaa mahdollisuuden verrata erilaisia kehityskulkuja toisiinsa. Vertailualueet määritellään yhteisen ilmasto- ja ekologisen historian perusteella. On varsin mahdollista, että lähtökohdiltaan samanlaisissa, mutta erilaisissa ilmasto-olosuhteissa kehittyneiden ekosysteemien tiedot ovat sekä taannehtivasti että etenevästi vertailukelpoisia. Tällöin esimerkiksi suotuisammissa ilmastollisessa vaiheessa kehittyneen ekosysteemin tietoja voidaan soveltaa hitaammin kehittyvän ekosysteemin tulevaisuuden ennustamiseen. Vertailtavien ekosysteemien ilmastohistorioiden jäljille päästään alueellisesti kattavien havupuiden vuosilustosarjojen avulla, joista pisimmät ovat yli 7000 vuoden pituisia. Männyn ilmastosignaali puutteellinen esimerkiksi Uralin alueella. Lehtikuusella ja katajalla parempi. Siksi tarvitaan vaihtoehtoisia lähestymistapoja: 1.Mänty (Pinus sylvestris), Euraasian laajuisesti 2. Pohjoisboreaaliset havupuumetsät, kaikki puulajit, joilla vahva ilmastosignaali (Pinus, Abies, Larix, Juniperus) 3. Biome-pohjainen lähestymistapa, erityisesti Boreal humid -alueet 4. Euraasian vuoristoalueet, joissa kasvaa mäntyä (Pinus sylvestris) 5. Muut mahdolliset lähestymistavat Some suggested projects: 1. SpineaClimates: climate change research based on Scots pine (Pinus sylvestris) tree-ring chronologies (Fig. 2) 2. TaigaClimates: climate change research based on the all sensitive northern timberline conifer species (Fig. 4) 3. EuraMountainClimates: Eurasian mountain timberlines climate change research (Fig. 1). 4. Boreal Zone Biome Climates: Eurasian climate change research in the Boreal humid and semiarid zones (Fig. 3). EuraClimates-viitekehykseen liitettäviä elementtejä: - dendroklimaattisella tutkimuksella tutkimusohjelmaa suuntaava vaikutus 11 Liite 4. PROJEKTIT 12 ────────────────────────────────────────────────────────────────── - - - - keskitytään Euraasian havumetsävyöhykkeeseen tutkimuksen puulajeiksi hyväksytään mäntymme (Pinus sylvestris) lisäksi kaikki muutkin ilmastoherkät havupuulajit (kuusi (Picea abies), lehtikuusi (Larix), kataja (Juniperus), … suunnittelun päätavoitteena ilmastonmuutoksen monipuolinen ja tehokas seuranta Euraasian alueella. Tarvitaan useammantyyppisiä lähestymistapoja: SpineaClimates, TaigaClimates, EuraMountainClimates, Boreal Zone Biome Climates jne.) alueellisesti ja ajallisesti kattavan (spatiotemporaalisen) perusverkoston muodostavat euraasianlaajuiset havupuukronologiat pyritään monipuoliseen ilmastonmuutoksen tutkimiseen ja seurantaan soveltamalla menetelmiä, jotka pystyvät mittaamaan pieniä muutoksia luonnossa. Niitä ovat erityisesti biodiversiteetti- ja fenologiamuutoksia koskevat mittaukset, erilaiset hiilimittaukset (Zotto-projekti, http://www.bgc-jena.mpg.de/bgc-systems/projects/zotto/overview.shtml ) metsäntutkimuksen näkökulmat (metsänhoito, patologia, eläintiede, käsittelyt, kasvun vaihtelu, kasvutrendit ym.) saatava sovitettu yleiseen kysymyksenasetteluun. Vrt. Metlan oman ilmastonmuutoksen tutkimusohjelmaan liittyvät näkökulmat). ilmastotutkimuksen apuna käytetään ilmastomittauksia ja ilmastoindeksejä (NAO, AO, Siperian indeksit ym. mukana myös muita ilmastoa kuvaavia prokseja (isotoopit, sedimentit, siitepölyt, lajistomuutoshavainnot satelliittikuvien hyödyntäminen tärkeätä laajan tutkimusalueen vuoksi . Tarvitaan GPS- ja GIS-tekniikoiden soveltamista. verrokkiaineistoina käytetään myös vihnemäntyyn liittyviä aineistoja ja tutkimustuloksia. (kasvunvaihtelu, metsänraja). metsätuhotutkimukset (Hantula, Henttonen, Siitonen, Muller, Kaitera ym. 12 Liite 5. EURACLIMATES: TIEDONHALLINTA 13 ────────────────────────────────────────────────────────────────── Tapio Timonen: EURACLIMATES-TUTKIMUSPROJEKTIEN TIEDONHALLINTA METIH - Metlan LustoTutkimustiedon Integroitu Hallintajärjestelmä Lustia-hankkeen (hankenro 2511) ohjelmistoratkaisuissa on noudatettu toimintatapaa, joka tekee sovelluksista helposti ylläpidettäviä ja käyttäjäystävällisiä sekä myös tulevaisuudessa toimivia. Olen pyrkinyt ratkaisemaan huolellisella suunnittelulla sovellusten käyttöä vaikeuttavat tekniset yksityiskohdat, jolloin loppukäyttäjät ja ylläpitäjät voivat keskittyä varsinaiseen tuotannolliseen toimintaan. Metlan lustoTutkimustiedon Integroitu Hallintajärjestelmä (METIH) tulee muokkaamaan tutkimuskäytäntöä tavalla, joka antaa tutkijoille aiempaa paremmat mahdollisuudet yksinkertaisempaan ja tehokkaampaan työskentelytapaan tutkimustiedon hallinnassa ja käsittelyssä (METIH-palvelut). METIH-järjestelmän tiedonhallinnassa sovelletaan tietotekniikan uusinta tietoa ja uusimpia menetelmiä. Esimerkkeinä niistä mainittakoon seuraavat: 1) Data- ja käyttöliittymätiedot on talletettu SQL Server -pohjaiseen tietokantaan. 2) Käyttöliittymän ulkoasu on sidottu XHTML-pohjaiseen ratkaisuun. 3) Ohjelmointikielenä on C# ja 4) kaiken taustalla on Microsoft .NET Framework -luokkakirjasto. Mainitut tekniikat ovat tämän päivän selkeästi hyväksyttyjä standardeja, mikä antaa elinaikaa sovelluksille pitkälle tulevaisuuteen. Vaikeasti ylläpidettävän koodin (C#) määrä minimoidaan huolellisella suunnittelulla. Järjestelmän joustavuutta on lisätty esimerkiksi ulkoistamalla SQL-komennot tietokantatauluihin, jolloin niitä voidaan muokata sovelluksesta käsin. METIH-järjestelmän ohjausrakenne on kokonaan XML-pohjainen. Silloin on käytännössä merkityksetöntä, mistä syöte tulee, sillä sen jatkokäsittely tehdään aina samaa XML-rakennetta soveltaen. Menettely mahdollistaa myös sellaisten laitteiden liittämisen järjestelmään, joista ei ole etukäteistietoa. Järjestelmän käyttöliittymässä on kielituki, mikä mahdollistaa sovellusten toteuttamisen myös kansainvälisissä projekteissa. METIH-järjestelmän käyttöliittymän runkoa ei ole sidottu mihinkään erityiseen dataan, mikä tekee siitä joustavan. Kun esimerkiksi tietokannan sisältö vaihdetaan uuteen, on kyseessä uusi, jo sellaisenaan toimiva sovellus eli Metih-palvelu. 13 Liite 5. EURACLIMATES: TIEDONHALLINTA 14 ────────────────────────────────────────────────────────────────── Kaavio 1. Lustia-lustotiedon hallintakaavio 14 Liite 6. EURACLIMATES: ILMASTONMUUTOKSET MÄNNYN VUOSILUSTOISTA 15 ────────────────────────────────────────────────────────────────── ILMASTOTIEDON VISUALISOINTI HAVUPUIDEN VUOSILUSTOISTA EuraClimates-projekteissa sovelletaan tietotekniikan mahdollisuuksia aikaan ja paikkaan sidottujen (spatiotemporaalisten) alueellisten ilmastokarttojen laatimiseen ja havainnollistamiseen. Karttojen aineistolähteenä ovat luonnon omat ”ilmastoasemat”, havupuut, joiden vuosilustoihin rekisteröityvät vuodesta toiseen kasvuympäristöissä tapahtuvat muutokset mitattaviksi ominaisuuksiksi. Parhaiksi pohjoisboreaalisen havumetsävyöhykkeen proksitiedon2 lähteiksi ovat osoittautuneet mänty (Pinus), kuusi (Picea), lehtikuusi (Larix) ja katajakin (Juniperus). Niiden vuosilustoista voidaan eräin edellytyksin päätellä myös ilmaston kesänaikainen ilmastohistoria. Tällöin edellytetään, että on olemassa jokin puun kasvuun vaikuttava ilmastollinen minimitekijä, ilmastosignaali. Suomen oloissa männyn kasvun minimitekijöinä ovat yleensä pohjoisessa lämpötila ja etelässä sademäärä. Euraasian alueelle on kehitetty useita yli 7000 vuoden pituisia sarjoja. Pisin niistä on Hohenheimin yliopistossa koottu Keski-Euroopan yhdistetty tammi- ja mäntysarja: 12 460 vuotta (Friedrich et al. 2004). Suomen metsänrajamännyn sarja on 7638 (Eronen et al.), Ruotsin Torneträskin vastaava 7400 (Grudd et al 2002), Irlannin tammisarja 7400 ja Venäjän lehtikuusisarja (Larix sibirica) 7310 (Hantemirov et al.) vuoden pituinen. Tähän lustosarja-”aateliston” joukkoon on luettava vielä 8820 vuoden pituinen Pohjois-Amerikan vihnemäntysarja (Pinus longaeva). On selvää, että sarjojen lukumäärä ja alueellinen peittävyys kasvaa, kun tarkasteltava aikajänne lyhenee. Jos tarkastellaan vain pelkästään elävien puiden lustosarjoja, nousee käyttökelpoisten sarjojen määrä jo pelkästään Suomessakin satoihin. Euraasian alueella on kerätty aktiivisesti vuosilustoaineistoja jo vuosikymmenien ajan. Ei lienee kaukaa haettu arvioida, että Euraasian elävien puiden sarjojen lukumäärä nousee kymmeniin tuhansiin. Tämän tutkimuksen tavoitteena on luoda alueellisesti kattavia ns. trendipintalämpötilasarjoja. Euraasian alueella voidaan helposti päästä useiden tuhansien vuosien mittaisiin lämpötilasarjoihin, joita voidaan analysoida GIS-tekniikan, prosessimallien ja muiden tilastollisten työvälineiden mahdollistamin keinoin. Ilmastonmuutosta havainnollistetaan kolmiulotteisin mallein Google Earth- ohjelmassa käytetyn visualisoinnin tapaan. Siinä liikutaan ohjaushiiriohjausta käytetään lentokoneen ohjaussauvana ja lennetään kaikkialla maapallolla halutussa korkeudessa ja katselukulmassa. Vaikutelma on täsmälleen sama kuin katsoisi lentokoneen ikkunasta. Männyn vuosilustoista mallitettu pisteittäinen ilmastodata mallitetaan GIS-tekniikan keinoin koko kohdealueella, joka voi vaihdella 100 km2:n pienalueesta alueesta Euraasian ja jopa koko pohjoisen pallonpuoliskon laajuiseksi tarkasteluksi männyn esiintymäalueella. Mielenkiintoiseksi tarkastelun tekee liikkuminen ajassa taaksepäin. Nyt meneillään oleva lämpökausi (Present warming), pikku jääkausi, keskiajan lämpökausi, sekä sitä edeltänyt hitaasti kohti atlanttisen kauden lämpöhuipennusta etenevä ja sen jälkeen vajoaminen takaisin jääkauden kylmyyteen, lukuun ottamatta 1000 vuoden lämpöjaksoa 11500 vuotta siten. Mutta oliko vaihtelua näinä kaikkina vuosina ja vuodenaikoina alueellisesti samanlaista, vai vaikuttavatko erilaisen pinnanmuodot ja luontaiset olosuhteet ilmastossa ristikkäisvaikutuksia, jotka edelleen muokkasivat ilmastoa omaan suuntaansa. 2 proksi = ilmastoa likimääräisesti kuvaava muuttuja 15 Liite 6. EURACLIMATES: ILMASTONMUUTOKSET MÄNNYN VUOSILUSTOISTA 16 ────────────────────────────────────────────────────────────────── Kun ilmasto nykyisen on lämpenemään päin, muodostavat ristikkäisvaikutuksen oman mielenkiintoisen mausteensa ilmastonmuutokseen. Kertyvät ominaisuudet saattavat horjuttaa vakiintuneita säärakenteita enemmän kuin osataan kuvitellakaan. Poistamalla jo ennakkoon selviä puiden ilmastosignaaliin vaikuttavia häiriötekijöitä luotettaviin tuloksiin voidaan päästä hyvinkin pienillä aineistoilla. Periaatteessa jo yksikin ideaaliolosuhteissa kasvanut puu voi sisältää kaiken tarvittavan informaation. Toisaalta umpimähkään tehty koepuuvalinta saattaa johtaa epäonnistumiseen, vaikka otanta kuinka paljon lisättäisiin. Hyvänä esimerkkinä ovat erilaiset jatkuvana epidemiana jatkuvat hyönteistuhot. Silloin on melko vaikeaa erottaa ilmastosignaalia ja hyönteisten kasvuun aiheuttamaa tuhovaikutusta, sillä taustatekijät aiheuttavat helposti hallitsemattomia ristikkäisvaikutuksia. Koepuuotannalla voidaan vaikuttaa tuloksiin. PAIKALLISILMASTOJEN MÄÄRITTÄMINEN MÄNNYN VUOSILUSTOISTA Esitutkimus EuraClimates-projektia varten Kootaan alueellisesti kattavista mäntylustosarjoista alueellisissa trendipintoja vastinvuosien vuosilustoista tulkittujen ilmastosignaalien, esimerkiksi heinäkuun keskilämpötilan avulla. Tutkimusten mukaan (mm. Helama, Macias, Vaganov) on euraasialaisesta ilmaston on löydettävissä sekä pohjois-, etelä-, itä-länsi- ja korkeussuuntaisia ilmastogradientteja. Kun lisäksi tarkasteluun otetaan mukaan ilmaston luontainen vaihtelu pitkän ajan keskiarvon molemmin puolin sekä sen trendimäinen muuttuminen, ollaankin jo moniulotteisen ilmastonmuutostutkimuksen synnyttämässä tutkimusasetelmassa. Ilmastonmuutos määritellään lukemattomilla tavoilla. Tässä yhteydessä sillä tarkoitetaan <<<jatkuu >>> Lähteet: Eronen, M., Zetterberg, P., Briffa, K., Lindholm, M., Meriläinen, J. & Timonen, M. 2002. Part 1: The supra-long Scots pine tree-ring record for northern Finnish Lapland; Chronology construction and initial inferences. The Holocene 12(6): 673-680. Friedrich, M., Remmele, S. , Kromer, B., Hofmann, J., Spurk, M., Kaiser, F., Orcel, C., Küppers, M. 2004. The 12,460-Year Hohenheim Oak and Pine Tree-Ring Chronology from Central Europe—a Unique Annual Record for Radiocarbon Calibration and Paleoenvironment Reconstructions. Radiocarbon, Volume 46, Number 3, 2004, pp. 1111-1122(12). Arizona Board of Regents (University of Arizona) Grudd, H., K.R. Briffa, W. Karlén, T.S. Bartholin, P.D. Jones and B. Kromer, 2002. A 7400-year tree-ring chronology in northern Swedish Lapland: natural climatic variability expressed on annual to millennial timescales, Holocene 12, 657-665, 2002. Hantemirov, R.M., Shiyatov, S.G., 2002. A continuous multimillennial ring-width chronology in Yamal, northwestern Siberia. Holocene 12 (6), 717–726. 16 Liite 7. EURACLIMATES: MT, MKH & EAV: PRODUCTIVE SYNERGIES 17 ──────────────────────────────────────────────────────────────── Mauri Timonen and Kari Mielikäinen: THE EURACLIMATES PROJECT IN SHORT This Eurasian wide research project planning deals with the global climate change subject. The first version of this overall plan was called The SPINEACLIMA Programme. Having received some important feedback, especially from Stepan Shiyatov’s researchers (Valeri Mazepa) , we have decided to split our planning into smaller projects that hopefully encounter better with regional research needs. The new name of this project entirety is The EURACLIMATES Project Planning. Those, who are going to attend the Ekaterinburg climate change meeting in June, 5-7th and the Beijing dendro meeting in June, 11-17th , will hear more details from the both of us. Professor Eugene Vaganov has principally accepted the basic idea of this planning, but much brain work will still be needed for developing and completing the ideas to be presented as final and successful project applications. Our aim is to develop a well-designed climate change project program plan that would support the general outlines of the existing global and Finnish climate change research. We, however, would also like to present some new and important aspects favoring our world-wide tree-ring research. In order to make things real, we need to cooperate closely and provide our best ideas to convince our financiers in EU, INTAS and also some other funding systems. Professors Vaganov, Shiyatov, Hughes and hopefully also some other influential professors will help us in completing the basic planning. Also China, led by Dr. Qi-Bin Zhang, might be willing to join this wide(st) climate change project in the northern hemisphere! The name of the whole Eurasian wide project planning: EURACLIMATES: Acronym for “EURAsian wide CLImate change Monitoring and Analysis using Tree-rings and Educated System analysis.” More detailed: General outlines for Eurasian wide climate change research, based on the networks of climatically sensitive conifer chronologies. Some projects of the project planning: 1. SpineaClimates: climate change research based on Scots pine (Pinus sylvestris) tree-ring chronologies (Fig. 2) 2. TaigaClimates: climate change research based on the all sensitive northern timberline conifer species (Fig. 4) 3. EuraMountainClimates: Eurasian mountain timberlines climate change research (Fig. 1). 4. Boreal Zone Biome Climates: Eurasian climate change research in the Boreal humid and semiarid zones (Fig. 3). 5. Other projects of the research program: listening to YOUR SUGGESTIONS ! LIITTEET 17 Liite 7. EURACLIMATES: MT, MKH & EAV: PRODUCTIVE SYNERGIES 18 ──────────────────────────────────────────────────────────────── IX PLANNING OF METLA’S NEW PRODUCTIVE SYNERGIES IN TREE-RING AND CLOSELY RELATED RESEARCH ────────────────────────── MT 20.04.2005 I Exciting views in European-Siberian tree-ring research ────────────────────────── Malcolm K. Hughes and Eugene A. Vaganov paid, during their recent visit to Finland, plenty of attention to Metla’s many-sided and regionally representative data networks. Unfortunately the majority of these well-replicated and nationwide networks have been planned for internal use, which causes some difficulties in applying them to wider global network systems. But while Metla is now generally focusing to specific topics in climate change research, it is a good time to consider the global integration of our permanently maintained data. Some of the data networks, such as Forest Focus3, VMI4, INKA and the tree-ring data administered by the Lustia project, seem to fit directly or with minor adjustments to research needs defined by Hughes and Vaganov. If we in Metla are successful in adopting the ideas presented in the Hughes-Vaganov paper, it may have great influence – not only on our treering research, but also on our whole spectrum of Finnish growth and yield studies. And considering climate change research in Metla, exposing our data networks and our methods to the suggested Finnish-Russian-US cooperation would bring together several top scientist groups. I believe, accompanied with outstanding research expertise and the unique Finnish network data sets, these groups might be successful in starting the next phase in building global data network systems and also making scientific breakthroughs in understanding climate and environmental changes. It is also exciting to note that our free-form research “alliance” have control on three over 7000 years long chronologies, each of them being developed by their own research teams. As these chronologies actually cover almost the whole northern hemisphere, we have a special data for screening global changes. A very tempting idea is to apply the Finnish data sets to VaganovShaskin’s growth process models, which probably will give a lot of further value to our Finnish forest modelling. I have discussed the Hughes-Vaganov paper tentatively with Director of Research, professor Kari Mielikäinen, Dr. Kari Korhonen, Dr. John Derome and acting professor Jari Hynynen. It seems there is general interest to work with the suggested subjects. As Kari (Mielikäinen) returns back to his former position as a professor of Growth and Yield, one of his main topics will be climate change studies. That’s great, because then there will be at least two Metla’s researchers working with the cooperation planning. I think the thoughts of the Hughes and Vaganov paper, are sensible from Metla’s point of view and will also fit to our renewing research strategy. I am confident with the future of our FinnishRussian-US cooperation. I hope things will be advancing about the way the Hughes-Vaganov paper puts it. We (MT, KM) hope to learn more in autumn 2005, as we visit the Sukachev Institute of Forest SB RAS in Krasnoyarsk, led by professor Vaganov, and the Institute of Plant and Animal Ecology (Ural Branch of the Russian Academy of Sciences), in Ekaterinburg, hosted by professor Shiatov. ────────────────────────── MKH 22.03.2005. II Some recent comments from MKH and suggestions ────────────────────────── The topics will emerge strongly during your TransSiberian journey this fall. Of course, at the base is just fundamental dendrochronology in the North, and Finland and Russia represent two great traditions in this that really should interact. I strongly urge you to make sure to meet with Stepan Shiyatov and get him talking about their 3 collections as well as their very important http://www.forestresearch.gov.uk/website/forestresearc dendroclimatological and dendroecological work h.nsf/ in Ekaterinburg, especially his wonderful repeat photography from the Polar Urals. if you need ByUnique/ADC18F784E680BD480256FA40054F561 4 some specific project title to begin, I think the http://www.metla.fi/ohjelma/vmi/index-en.htm 18 Liite 7. EURACLIMATES: MT, MKH & EAV: PRODUCTIVE SYNERGIES 19 ──────────────────────────────────────────────────────────────── most exciting to Gene and me was the possibility of combining the very good array of wellrecorded plots with detailed environmental data described in the afternoon up on Pallas mountain (Forest Focus) - this could be a superb opportunity to test ideas about modeling control of tree-ring variability. "Testing of process-based model of tree-ring formation in northern Finland"? Maybe you need a topic that mentions both countries - if it's OK to go a little beyond METLA, involving the Eronen group in an examination of forest density and climate over the Holocene would be wonderful link between all three groups, and of course a major part of our forthcoming workshop. Just a few random thoughts.... ────────────────────────── MKH & EAV 31.03. 2005 and MT 13.04.2005 (Memorandum: text by MKH, minor edits by MT) III Productive synergies suggested by M.K. Hughes and E. A. Vaganov ────────────────────────── During our visit to METLA’s Rovaniemi station, in our discussions with Mauri Timonen and other colleagues, and from the meeting at Pallas, we heard many interesting ideas, and saw a number of potential opportunities for productive research collaboration. Three possibilities seemed especially exciting to us, each strongly likely to produce very productive synergies. They concern: 1) Inventory/growth monitoring/dendrochronology 2) ICP/micrometeorology/ dynamics of tree-ring formation 3) Long tree-ring chronologies/Holocene environments/modeled climate. In each case, the scientific value to be derived from the superb infrastructure provided by the ongoing work of METLA, Metsähallitus and the Finnish Meteorological Institute could be enhanced by combination with modern dendrochronology and high-resolution paleoclimatology. These fields in turn would benefit greatly from integration with the existing Finnish activities and resources. The first two of these could well provide useful tools for the assessment of, for example, the role of the forest as source or sink in the carbon cycle under various climate scenarios. The third could help improve understanding of pre-industrial climate, its mechanisms and local expression in Finland, and hence provide challenges and inspiration for attempts to model future forest-climate interactions. We give a very short introduction to each of these ideas so that you might see how it might be pursued, and what benefit might be gained: 1) Inventory/growth monitoring/dendrochronology. As we understand it, METLA maintains a large number of plots for inventory, and a subset of these is also used for the monitoring of growth. Systematic dendrochronological sampling of this subset, from all age classes of trees, and indeed of all other plants with annual structures, would provide information on interannual variability that could be a) linked to statistical and processbased models of the climatic control of treering growth; b) tested for association with remotely sensed estimated of the interannual and interdecadal variability of biological production and hence carbon sequestration (Biondi, 1996; Biondi et al., 1992; Osawa et al., 1992). Having established such links it would be possible to develop predictive tools for the detailed results expected from future measurements of the plots, the differences between predicted and measured providing estimates of whether the same mechanisms continue to operate. Such studies would also provide a test of the potential utility of dendrochronological sampling as a complement to existing methods of growth monitoring. 2) ICP/micrometeorology/ dynamics of treering formation. The existing ICP monitoring sites offer a wonderful opportunity to clarify the nature and underlying mechanisms of inter- and intra-seasonal growth dynamics. Supplementing the growth bands and existing microclimate measurements with observations of shoot and cambial phenology and repeated within-season microcores for microanatomical analysis would provide an excellent test-bed for process-based models of tree-ring formation, for example those of Vaganov, Misson and others (Misson, 2004; Vaganov, 1996; Vaganov et al., 1999). Each of these models calculates intermediate quantities, such as transpiration rate which are being or could be measured at these sites, as well as the 19 Liite 7. EURACLIMATES: MT, MKH & EAV: PRODUCTIVE SYNERGIES 20 ──────────────────────────────────────────────────────────────── final products such as radial increment or cell numbers and dimensions. The more thoroughly tested such models are for specific Finnish conditions, the more appropriately they may be used, for example, in the consideration of the growth implications of various future climate scenarios, or in the diagnosis of observed variability. A pilot project in this area might be a tractable first specific collaborative project between IF (Institute of Forest, Krasnoyarsk) and METLA. 3) Northern Fennoscandia (especially Finland), the western United States and the northern territories of the Russian Federation contain remarkable concentrations of very long treering records, permitting the detailed examination of conditions at high temporal resolution through much of the mid- and late Holocene. Each of these records represents a very considerable investment of time and other resources over decades, and everything possible should be done to extract maximum scientific benefit from them. Because of their annual resolution, the long tree-ring chronologies offer a chance to examine the changing character of climate variability through much of the Holocene as well as the related environmental fluctuations. In the Finnish case, these studies are already well-embedded in a rich tradition of studies of Holocene environments. This provides the key to the effective exploitation of these records – the regional integration of independent kinds of records, for example, tree rings, varved sediments, and paleolimnological records, in a physically consistent framework probably derived by the use of both output from forced runs of Global Climate Models (Graham et al., in prep.), and from Models of Intermediate Complexity (Crucifix et al., 2002). We have discussed holding a small workshop in Rovaniemi in 2006 to develop ideas for this approach, including representatives of the main groups who have developed such multi-millennial chronologies in northern Eurasia and North America, colleagues who are experts in other records such as treelines, lake sediments and glaciers, and those concerned with the relevant climate models. Reference List: 1. Biondi, Franco. Decadal scale dynamics at the Gus Pearson Natural Area: evidence for inverse symmetric competition? Canadian Journal of Forestry Research. 1996; 26(8):1397-406. 2. Biondi, Franco; Klemmedson, James O., and Kuehl, Robert O. Dendrochronological anaylsis of single-tree interactions in mixed pine-oak stands of central Arizona, USA. Forest Ecology and Management. 1992; 48:321-333. 3. Crucifix, M. Loutre M. F. Tulkens P. FIchefet T. Berger A. Climate change during the Holocene: a study with and Earth system model of intermediate complexity. Climate Dynamics. 2002; 19:343-60. 4. Graham, N. E. ; Hughes, M. K.; Cobb, K. M.; Ammann, C.; Wigand, P. E; . Kennett, D. J; Kennett, J. P., and Stott, L. Tropical/mid-latitude teleconnections at the Medieval Climate Epoch - Little Ice Age Transition. In preparation. 5. Misson, Laurent. MAIDEN: a model for analyzing ecosystem processes in dendroecology. Canadian Journal of Forest Research. 2004; 34:874-887. 6. Osawa, A. Abaimov A. P. Zyraynova O. A. Reconstructing structural development of even-aged larch stands in Siberia. Canadian Journal of Forest Research. 2000; 30:580-588. 7. Vaganov, E. A. Analyses of seasonal treering formation and modeling in dendrochronology. in: Dean, J. S. Meko D. M. and Swetnam T. W., editors. Tree Rings, Environment and Humanity, ; Tucson, AZ. TUcson, AZ: Radiocarbon; 1996: 73-87. 8. Vaganov, E. A.; Hughes, M. K.; Kirdyanov, A. V.; Schweingruber, F. H., and Silkin, P. P. Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature. 1999; 400:149-151. 20 Liite 8. EURACLIMATES: VAGANOV, MIELIKÄINEN, TIMONEN: JOINT ACTIVITIES 21 ──────────────────────────────────────────────────────────────── Krasnoyarsk 17.09.2005/Eugene A. Vaganov: X PROJECTED JOINT ACTIVITIES IN DISCUSSIONS IN KRASNOYARSK 13-17. 09.2005 Working group: Eugene A. Vaganov, Kari Mielikäinen and Mauri Timonen ─────────────────────────────────────────────────────────── A. CONFERENCES, WORKSHOPS, TRAINING, FIELDWEEKS I. Finnish-Russian workshop with proposed title "Basic research and practice in boreal forests: advances, perspectives and limitations" - Time – 2007 - Place (Krasnoyarsk, Ekaterinburg) - Main directions: a) basic research in inventory and productivity of b) biodiversity of forest ecosystems and its protection and improvement; c) long-term studies of forest dynamics and productivity; d) towards to better management; e) international exchange of practical management (application of Finnish experience to manage Siberian forests). - Advisory committee: ... (will be defined) - Financially supporting sources: IF SB, RFBR (Russian Fund for Basic Research), Local administration,.... 2. Fieldweek for PhD students and undergraduate students with the title "Towards to improvement of forest inventory methods: comparison of Russia and Finnish ground and remote sensing methodologies". - Time - Summer of 2006 or 2007 - Place: Zotino (Krasnoyarsk) - Number of participants: 20 (10+10). - Duration: 3 weeks-1 month - Financial sources: (IF and METLA, ...) B. Personal exchange and communications 1. METLA member (?) Topic: application and improvement of process-based model to describe current and projected climatically induced changes of tree radial growth in Finland. - Time: winter 2005/2006, spring 2006. - Duration: 1,5-2 months working in IF - Financial support: partly from (accommodation). IF 2. Dr. A.Knorre (IF) fellowship to METLA Topic: extended analysis of ecosystem's productivity in boreal forests: comparison of Siberian and Finnish north forests. - Time: will be defined. - Duration: 3-4 months. - Financial sources: INTAS (proposal will be submitted if suitable for METLA as hosting institute) and IF. 3. METLA member (PhD student ?) training In IF. - Topic: analysis of long-term trends in tree growth (inventory and tree ring data from Finnish and Siberian database). - Time: will be defined - Duration: about 2 months in Krasnoyarsk (IF) - Financial sources: partly from IF (accommodation). 4. METLA member (PhD student?) training in IF. - Topic: Climate and seasonal variations in pine growth in Finland last during centuries inferred from anatomy of treerings. - Time: will be defined - Duration: 3-5 months - Financial sources: Partly from IF (accommodation) 5. IF member (PhD student) - Topic: Seasonal and interannual 21 Liite 8. EURACLIMATES: VAGANOV, MIELIKÄINEN, TIMONEN: JOINT ACTIVITIES 22 ──────────────────────────────────────────────────────────────── variations in photosynthesis and respiration measured by direct methods (towers) and seasonal growth and wood structure of annual rings (3-4 woody species). - Time: will be defined - Duration: 1,5-2 months - Financial sources: Partly from METLA (accommodation) C. “Proposal” activity There are several topics of joint interest to prepare the proposals for funding: a) Improving of aboveground inventory data: from trees to ecosystem b) Climatic trends and trends in productivity and biodiversity c) Climatic variations in northern Finland and northern Siberia on a millennial scale (aggregations of tree-ring chronologies, pollen data and lake sediment data) d) Pollution and ecosystem stability and succession e) Climatic change and northern forests acting as sink or source of carbon (natural and managed) f) Forest resources in Siberia as potential for Finnish investments. g) Genetic forest resources for Finnish management. D. Other activity 1. METLA could be a partner of ZOTTO (International Laboratory of High Tower in Zotino) ... must be discussed preliminary with Prof. E-D. Schultze. 2. Exchange of teaching professors (short courses of exactly defined topics; total uncertainty in financial sources) 3. NATO workshop (possible source), international, exact title, 30-40 participants, publication as a book in series 22 Liite 9. THE SIBERIAN BRANCH OF THE RUSSIAN ACADEMY OF SCIENCES 23 ──────────────────────────────────────────────────────── Some Words about The Siberian Branch of The Russian Academy of Sciences The Siberian Branch of the Russian Academy of Sciences (SB RAS) is a regional association of research and designing institutions, pilot and medium-scale production of the Russian Academy of Sciences as well as the services maintaining the functioning of the infrastructure of Siberian research centers located in seven regions, 2 territories and four republics (i.e. the general territory of about 10 million square kilometers)5. There are research centers of the SB RAS in Novosibirsk, Tomsk, Krasnoyarsk, Irkutsk, Yakutsk, Ulan-Ude, Kemerovo, Tyumen, Omsk, individual research institutes are located in Barnaul, Chita, Kyzyl. (see Scientific Potential of Siberia). There are 75 research institutions in SB RAS and 11 designing bureaus and pilot plants carrying out research in mathematics and physics, engineering and technology, chemistry and biology, Earth science, humanities and economics. (see Research Institute of SB RAS). About half of scientific potential of SB RAS is concentrated in Novosibirsk Research Centre. A wide network of biological and geological research stations carry out field and stationary research in biosphere and geosphere The research centers of SB RAS are integrated with Universities and other Siberian colleges forming regional research and educational centers (RREC) in Barnaul, Krasnoyarsk, Omsk, Tyumen. Universities and colleges of Novosibirsk, Tomsk, UlanUde, Yakutsk work in close contact with the research centers of the SB RAS. 5 Orignal text copied from http://www-sbras.nsc.ru/eng/welcome.html and modified by Mauri Timonen (mauri.timonen@metla.fi) 23 Liite 9. THE SIBERIAN BRANCH OF THE RUSSIAN ACADEMY OF SCIENCES 24 ──────────────────────────────────────────────────────── SB RAS STAFF The staff of the SB RAS is 40437 people, as of January 1, 1995. 78% of them work at research institutions and 11599 (22,3%) are employed by nonscientific organizations. The distribution of researchers with respect to research centers and cities • • • • • • • • • • • • Novosibirsk - 24768 (61,3%) Barnaul (+ Cherga) - 838 (2,1%) Irkutsk-4801 (11,9%) Chita -152 (0,4%) Tomsk-2970 (7,3%) Kyzyl -124 (0,Ç%) Yakutsk-2446 (6,0%) Krasnoyarsk-2397 (5,9%) Buryatia (Ulan-Ude) - 957 (2,4%) Omsk-506 (1,3%) Kemerovo - 280 (0.7%) Tyumen -198 (0.5%) In 1990 -1994 the general quantity of people employed by SB RAS decreased by 23.3% (in 1993 the decrease in researchersemployed by SB RAS was 1645, and decrease in parascientific employees was 1389). The dynamics of research staff of SB RAS. There are around 11 000 researchers working at present at SB RAS (in Novosibirsk research centre there are 6 000) including 1258 Doctors of sciences and 5278 Candidates of sciences (in Novosibirsk research centre respectively 811 and 2951). The age of researchers is below 33 -17.2%, 33-50 - 54.4%, over 50 - 28.4%. INFRASTRUCTURE The institutions and organization providing services and functioning of the infrastructure of research centres employ 29.5% of the general staff of SB RAS. This includes the personnel of pilot plants, experimental farms, geological field stations (8.4%); transportation, utilities, housing, repairs and supplies (8%), health service (6,6%) kindergartens and nursery schools (4.1%), cultural institutions (0.2%). FINANCING The basic budgetary financing of the SB RAS has been drastically reduced over last three years. The table below presents the per cent relation of the fundamental financing in comparable prices to 1990. The structure of financial support to research institutions of SB RAS has changed significantly. In 1990, the budgetary support was 39.2% of the general financing, 18.8% was special-purpose financing of the Ministry of Science, the institutes themselves earned about 42% from contracts with industry. Industrial crisis drastically reduced contracts with the institutes and they now represent about 10% of their financing. The loss of this source of income was offset, although by no means completely, by various grants and hard-currency earnings from contracts with foreign partners. Therefore, budgetary support, however reduced, constitutes the major part (65%) of the general financing of research institutions. 24 Liite 9. THE SIBERIAN BRANCH OF THE RUSSIAN ACADEMY OF SCIENCES 25 ──────────────────────────────────────────────────────── INTERNATIONAL RELATIONS The structure and content of SB RAS international relations have significantly changed over last three years. 18 International research Centres have been set up and are actively operating co-founded together with Siberian Branch of RAS by research institutions and Universities of European countries, the USA and Japan. These centres function as international non-governmental organizations (as open institutes or laboratories under the auspices of SB RAS) and carry out research on major interdisciplinary problems. In 1993 -1994 Institutes of the SB RAS held annually about 35 - 40 international conferences and symposia. About 1500 foreign scientists visit annually the Siberian Branch of the Russian Academy of Sciences. The expenses of the foreign trips of Siberian researchers were covered mostly by the inviting parties or by Soros Foundation. Only due to this the decline in the number of foreign trips was insignificant (from 1805 in 1992 to 1756 in 1993). GENERAL DIRECTIONS OF SCIENCE ORGANIZATION Siberian Branch of the Russian Academy of Sciences was established in order to form a regional component of the country's scientific potential and to promote the development of its eastern territories. Since the first days of its existence, the work of SB RAS has been based on the productive combination of fundamental and applied research and close relations of science and education. The specific features of SB RAS from the very beginning have been the following: • research centres have always been complex (multidisciplinary); • the research staff of the Institutes and their material resources have been widely used to promote higher education in the region; • regional component in establishing research centres and determining the directions of their research and applications of their results have always been very strong; • there is a variety of forms of cooperation with industry; • there has always been necessity to support the infrastructure, utilities and social sphere of research centres. COMPLEXITY The principle of complexity (multidiscipline character) of research centres which helped them to obtain important scientific results owing to the close interaction of industry and research now proved to reflect the major trends in the development of the world science. This trend consists in shifting the emphasis from individually initiated scientific projects to special-purpose projects aimed at certain, often global projects whose solution requires joint efforts and multidisciplinary approach. At present the Siberian Branch of the Russian Academy of Sciences is a welldeveloped and territorially distributed system of complex research centres embracing practically all main urban, political and national centres in Siberia. A powerful research and experimental base has been formed including nationally important pilot and experimental plants, a well-developed network of geological and biological research stations carrying out systematic research for long periods of time. Unfortunately, recently organized Tyumen and Omsk research centres could not achieve fully-fledged development because of reduced financing. In order to concentrate our efforts on the most important interdisciplinary problems of the world science, major projects of the Russian Academy of Sciences and national scientific and technical programmes the following priority scientific and technological programmes have been worked out and pursued in SB RAS: • fundamental and applied research in mathematics; • fundamental laws of matter structure in micro-and macroworld; 25 Liite 9. THE SIBERIAN BRANCH OF THE RUSSIAN ACADEMY OF SCIENCES 26 ──────────────────────────────────────────────────────── • theoretical study of solids intended for the development of new electronic development on their basis; • molecular electronics; • fundamental research in quantum optics and quantum electronics and development of new applications of results; • mathematical modelling, information technologies and computing engineering; • physic-technical and system studies of energy; • mechanics, theoretical studies of machine building and machine reliability; • theoretical studies aimed at the development of new materials and progressive technology; • study of chemical composition and reactivity of compounds, kinetics and mechanisms of chemical reactions; • new materials and substances for the creation of the new generation of mechanisms and technology; • physic-chemical basis of the evolution of living organisms, problems of genetics and selection, plant physiology and biotechnology; • environmental, genetic and evolutionary principles of rational utilization, reproduction and protection of biological resources; • complex investigation in regional and global geological processes and theoretical studies of prospecting and mining; • working out new methods of waste-free and complex processing and refining of mineral resources and y-products, oil, coal and timber; • economic and social research; • interrelation of general and regional process of historic development, scientific progress and culture of peoples and national groups in Siberia. COOPERATION OF SCIENCE AND EDUCATION The experience of SB RAS in productive interaction of research and education represented first by Novosibirsk State University established simultaneously with SB RAS has been expanded to all the cities where research centres are located and facilitated establishing closer relations with already existing Universities (in Irkutsk, Tomsk, Yakutsk) and setting up new Universities such as Krasnoyarsk (first established as an affiliation of Novosibirsk University), Altai, Kemerovo, Tyumen, Omsk Universities. An affiliation of the Novosibirsk University has been recently set up in Ulan-Ude. The cooperation with other higher educational institutions such as, in particular, Novosibirsk, Tomsk and Omsk Technical universities also has proved useful and productive. The integration of the research centres of SB RAS with Siberian Universities and colleges resulted in the creation of Regional Scientific and Educational Complexes (RSECs) in Barnaul, Krasnoyarsk and Omsk. Their efficient operation is hindered at present by the crisis of Russian science and higher education which can be attributed to insufficient financing as well as low prestige of higher education and learning especially in the field of natural sciences. PROGRAMME "SIBERIA'' Territorial distribution of research centres in Siberia and their close relations with national economy made it possible to work out in 1977 a regional scientific and technical programme "Siberia'' aimed at promotion and support of suggestions, feasibility studies and carrying out of scientific and technological projects, retraining programmes for experts for the solution of socio-economical, environmental, scientific and technical problems common to Siberia. This programme has from the very beginning brought closer and facilitated the coordination of operation of research, academic and industrial institutions of the region. As a result of its activity coordination councils were established, panel meetings and joint conferences were held which strengthened the ties of science 26 Liite 9. THE SIBERIAN BRANCH OF THE RUSSIAN ACADEMY OF SCIENCES 27 ──────────────────────────────────────────────────────── and industry, accelerated the scientific progress in industry and oriented their joint efforts to the regional requirements and needs. The regional scientific and technical programme "Siberia'' is primarily supported now by Interregional Association "Siberian Accord'' which unites at present 19 subjects (i.e. major administrative and political units) of Russian Federation which is at the same time its main customer. The financing of the programme "Siberia'' comes from different sources main of which are: 1. budgets of Siberian Subjects of Federation; 2. investments of different companies (with state, private and mixed ownership); 3. special-purpose budget allocations of the Russian Ministry of Science supporting regional scientific and technical programmes; 4. allocations of other Russian Ministries for the support of national projects. In 1993 programme "Siberia'' embraced 53 projects with the total cost of 1934 million roubles. Previously, without expert opinion of SB RAS specialists having at their disposal a wealth of information on Siberian nature and economy no decision on major economic project in Siberia had been made. Now the scientific expertise in the eastern part of the country is mostly neglected which has already led to some hasty decisions. CONNECTIONS WITH INDUSTRY SB RAS has always been interested in the practical application of its scientific, technological and designing results and maintained close connections with industrial enterprises and ministries. The system of information propagation and "implementation'' support has proved efficient enough and was represented by special industrial departments of the SB RAS Presidium, coordinative programmes with leading Ministries, exhibitions and reports to the Soviet Government in the end of each five-year plan period, direct implementaional contracts with enterprises etc. In the course of reforms brought about complete disintegration of the previously existing system of interactions between scientists of the SB RAS and the industry of the country. As a result, SB RAS temporarily had to change its priorities and focus on relations with foreign partners. Many of its Institutes (e.g. Novosibirsk Institute of Catalysis, Institute of Thermal Physics, Institute of Nuclear Physics, Unified Institute of Geology, geophysics and mineralogy etc) making use of already obtained results enter into contracts with foreign companies. SB RAS intended on the basis of scientific and industrial cooperation with foreign partners to expand existing research centres adding to their structure compact scienceintensive enterprises thus turning these research centres into a kind of technnoparks. An example of such an activity is setting up of a Russian-Thailand joint venture "Tyrus''specialized in the production of precious stones and the Russian-German Tomographic Centre in Novosibirsk research centre. Unfortunately, political and economic instability in our country make foreign investors who seem interested in this kind of business rather shy. The situation could be soon improved under two conditions: • adequate legislative protection of foreign investments; • parallel development of investment in science-intensive production in Russia itself. Technological and scientific parks seem promising because of the following: • insufficient financing and necessity to attract investments retaining at the same time the existing schools of fundamental research; 27 Liite 9. THE SIBERIAN BRANCH OF THE RUSSIAN ACADEMY OF SCIENCES 28 ──────────────────────────────────────────────────────── • possibility of creating new jobs for many researchers and higher-school professors as well as university and college graduates when many existing institutions are declaring redundancies to provide the inflow of young scientists and somehow to offset the "brain drain''; • future requirements for restructuring the industry of the Russian Federation and CIS taking into account the concept of sustainable development and based on progressive technologies; • the existing market relations must be developed and emphasis transferred to civilized production. The advantages of the research centres when under favorable economic conditions technoparks are established are as follows: • research centres are already well-developed multidisciplinary research units with considerable scientific and technological experience, skill and established relations with similar organizations; • there are complex designing bureaus and pilot plants and production within SB RAS research centres; • there are experimental plants and their equipment and machinery can provide the primary material basis for future science-intensive joint ventures; • availability of high-skilled labour force and retraining capacities of SB RAS and Siberian colleges and Universities; • availability of working premises which could be provided by some of the Institutes and other institutions of SB RAS declaring redundancies. The technological parks seem a promising idea but they can be established only as a result of stabilization of economical and political life in Russia. Previously, budgetary financing covered only half of the costs of SB RAS and the rest was earned by the Institutes entering in contracts mostly with industrial enterprises. The recent economic crisis resulted in the fact that the real financing now is one fifth of what it was in 1990. The sharp decline in industry, especially military and industrial complex practically destroyed this source of financing. To a certain extent this has been offset by contracts with foreign firms. At present the proportion of budgetary and nonbudgetary financing is 60:49, i.e. the real non-budgetary financing has reduced 5-6 times. Recently, the cost structure of the Institutes has changed significantly. The proportion of salaries and wages has grown from 1987 to 1993 from 37.5% to 64.5% and the proportion of costs of materials and equipment dropped from 27% to 5 %. The situation is deteriorating very rapidly. Many institutes have stopped purchases of equipment, conserved some larger plants, drastically reduced field works and some experimental research. Price hikes, especially with respect to energy, led to unheard of increase in overheads which was most painful to experimental basis and infrastructure (experimental plants, housing, nursery schools, health service etc.) The construction of resident houses for researchers must be now financed by researchers themselves and after a short period of optimism difficult financial situation made the scientific community in Siberia lose interest in such innovations. The faulty and insufficient budgetary financing made it necessary for SB RAS to set up a special bank "Sibakadembank'' allowing the Institutes of SB RAS to manipulate financial resources and be granted low-interest credits. Affiliations of the Bank have been opened also in Tomsk and Ulan-Ude. 28 Liite 9. THE SIBERIAN BRANCH OF THE RUSSIAN ACADEMY OF SCIENCES 29 ──────────────────────────────────────────────────────── LABOUR POTENTIAL, EQUIPMENT, LOOKING FOR NEW STRUCTURAL ORGANIZATION OF THE INSTITUTES The budgetary financing of the SB RAS is now one fifth or one sixth of what it used to be, say, in 1990 and the SB RAS is now on the verge of extinction. To declare more redundancies under conditions of decreased financing is senseless as it would mean the end of the Branch. Nevertheless, the number of people on the SB RAS payroll has reduced by 20.7% over last four years. It can be attributed to very small salaries, inadequate material and equipment supply, changes in housing policy of the country so that the Institute cannot now grant an apartment to a person working there. More and more scientists permanently or temporarily leave the country (about 160 researchers a year).Russian scientists are in high demand in the West which is an indirect proof of the generally high level of our science. Most researchers have been employed by leading organizations and corporations in the USA (35%), Germany (20%), France (15%), Japan (7%) and other countries. In order to retain its basic labour potential SB RAS introduced a contractual system of payment to its leading researchers which provided a social protection to actively working scientists. In addition, special measures have been taken to support young researchers. Special scholarships and fellowships have been established for postgraduate students much greater that those offered by the Government, a system of bonuses has been introduced for researchers taking their Doctorate degree (younger than 40) and Candidate degree (younger than 30), some institutes cover some or all the costs of young scientists attending international scientific conferences, the decision has been made to create a special housing fund for young scientists etc. About 4 000 researchers have left the SB RAS (200 Doctors and 1600 Candidates of Sciences). The measures taken by SB RAS helped it to some extent recover its scientific potential. Over the same period the general number of researchers reduced only by a thousand people whereas the number of Candidates decreased only by 420 people, and the number of Doctors even increased by 240 people. 16 international research centres set up by Siberian Branch of RAS and functioning as non-governmental organizations (as open institutes) to some extent helped us to deal with the problem of brain leakage. Some of our scientists come back. Foreign scientists come to Siberia attracted by unique natural objects, such as Lake Baikal, Altai mountains, Siberian taiga etc., pioneering experimental plants of the SB RAS and achievements of some of our scientific teams. One more difficult problem is the maintenance of the equipment and the largest experimental plants, such as solar radiotlescope and set of observatories in Irkutsk, experimental plant for the investigation of space particles in Yakutsk, system of unique accelerators of elementary particles in Novosibirsk etc. These plants help us to keep up to the world standards. It is quite evident, that the SB RAS will not be able to afford creating new centres. That is why we see our main task in operating and maintaining them and pin our hopes on the Ministry of Science of the Russian Federation which could provide assistance also through federal research centrees created by it. The General Meeting of SB RAS approved the suggestion of the Presidium of SB RAS to centralize part of the finances in order to coordinate the solution of the problems common for many of the Institutes. SUPPORTING INFRASTRUCTURE AND PRESERVATION OF RESEARCH CENTRES Siberian research centres were created in the sixties and represent almost perfectly the development trends of the world science. Novosibirsk research centre became the prototype of similar towns in Japan and France. Their emergence reflected the new 29 Liite 9. THE SIBERIAN BRANCH OF THE RUSSIAN ACADEMY OF SCIENCES 30 ──────────────────────────────────────────────────────── multidisciplinary approach to the solution of global environmental, energy, technological and other vital problems of humanity. Unfortunately, the unique Russian experiment may perish because such a combination of research, designing, industrial and social infrastructure providing efficient functioning of the SB RAS over the entire period of its existence now threatens the very existence of science in the eastern part of the country. SB RAS cannot any more afford maintaining these complexes and their complete separation from scientific and designing activity destroy the unified system of research centres. The situation calls for original decisions on the state level. Siberian research centres are situated at a considerable (up to 30 km) distance from the city centres and SB RAS has to maintain the utilities and power structures (large boilers, 700 km of cable networks, 630 km of water communications and sewage etc.). Siberian Branch has also to maintain around 900 objects of social infrastructure (residential houses, utilities, health and educational institutions, recreational facilities etc. with total area over 2 million square metres. The difficulties are aggravated by the fact that the major part of residential houses of the SB RAS was built in the sixties and seventies and therefore require capital repairs and renovations which is practically impossible due to the absence of funds. In this connection the Presidium of SB RAS had to divert some money from research. One of the most serious problems is also the maintenance of public utilities. Built more than 30 years ago their facilities require renovation the cost of which would be billions of roubles. This problem has been discussed heatedly for several years. For closed cities the problem has been somehow solved by special legislation. For Novosibirsk and other research centres of SB RAS it is an unsettled question. [ Back] [SBRAS Home Page] Webmas ter www@ wwwsbras. ict.nsk.s u © 1996, Siberian Branch of Russian Academy of Sciences, Novosibirsk 30 Liite 10. KRASNOYARSK SCIENCE CENTERK 31Krasnoyarsk ──────────────────────────────────────────────────────── Krasnoyarsk Science Centre The Krasnoyarsk region is one of the largest regions of Russia extending for nearly 3000 km from the mountains in Southern Siberia on the south to the Arctic Ocean on the north6. The southern part of the region is the best industrially and agriculturally developed in Siberia. Abundant natural resources, such as wood, non-ferrous and noble metals and coal, underlie the regional economy and industry. Highly developed are thermal and hydraulic power, machine engineering, metallurgy, petroleum chemistry and many others. Rich soils and favourable climate conditions provide efficient cattle breeding and high grain yield. Among the first academic institutions of Krasnoyarsk were the Institute of Physics, founded in 1956, and the Institute of Forest, moved from Moscow in 1958. The two institutes, together with the later founded institutes of Biophysics, Computational Modelling, Chemistry and Chemical Technologies, formed the Krasnoyarsk Science Centre of the Siberian Branch of the Academy of Sciences in 1979. A considerable part of studies performed by the Krasnoyarsk institutes is related to the biospheric role of ecosystems and rational land-use, which are central issues for the Sukachev Institute of Forest and the Institute of Biophysics. The Remote Sensing Satellite Ground Station, a common-use centre for processing and analysing data on forests, provides information support of the studies. Since 1996, the Krasnoyarsk Regional GIS-Centre has been successfully operating as a part of the Distributed Siberian Network of Regional GIS-Centres. The fact that the greatest portion of world boreal forests is located in Siberia, as well as the high scientific potential of the Institute of Forest, became fundamental for successful work of the Siberian International Centre for Ecological Research of Boreal Forests. Siberian taiga is the main subject of studies of the Sukachev Institute of Forest and the Siberian International Centre for Ecological Research of Boreal Forests. (The photo shows dead forest.) The Institute of Biophysics was a pioneer in elaborating closed artificial survival ecosystems, and on its basis an International Centre for Closed Ecological Systems has been operating there since 1991. −−−−−−−−− 11 Original text copied from http://www.sbras.nsc.ru/consult/krasnoyarsk.htm and modified by Mauri Timonen (mauri.timonen@metla.fi) 31 Liite 10. KRASNOYARSK SCIENCE CENTERK 32Krasnoyarsk ──────────────────────────────────────────────────────── The Kirensky Institute of Physics carries out fundamental studies in physics of magnetism and condensed media. Research results of the Institute are applied in designing new materials for electronics and advanced communication media. Research in the Institute of Computational Modelling focuses on intellectual information systems and methods of numerical modelling for a broad scope of problems from tsunami propagation to programmes of ecological safety for population and environment in emergency situations. In the Institute of Chemistry and Chemical Technology, scientific and technological fundamentals are being created for ecologically safe processing of ores and their concentrates, wood, coal, as well as renewable resources and non-traditional raw materials. The Special Design Office «Nauka» deals with pilot and industrial finishing of research results and their implementation. This is also the main focus of the departments of Radio Engineering and Electronics, Physics of Nano-Phase Materials, Industrial Ecology, and a number of other practiceoriented institutions founded by the «Nauka» Office and the institutes of the Centre, and affiliated to the Presidium of the Krasnoyarsk Centre. A holding, based on various marketing and commercial structures, monitors the activity of the technopark zone. The Krasnoyarsk Centre also involves laboratories of the Novosibirsk Institute of Archaeology and Ethnography, and the Institute of Economics and Industrial Engineering. All academic institutions of the Krasnoyarsk Centre of the SB RAS, together with higher schools and industrial enterprises of the Krasnoyarsk Territory, are among founders of the Regional Scientific and Educational Complex and participate in elaboration and implementation of research and development programmes funded from the federal and regional budgets. The Complex is responsible for finishing high technologies and attracting investments. • Scientist have worked out a high-resolution method for detection of forest fires with the use of images from 32 Liite 10. KRASNOYARSK SCIENCE CENTERK 33Krasnoyarsk ──────────────────────────────────────────────────────── • NOAA satellites. The window show forest fires in the Lower Angara Region in 1996. (left) Receiver for satellite monitoring that can work in hard conditions, including aboard a ship during storms, was designed in the Krasnoyarsk SC. Collaboration of the Krasnoyarsk Centre institutes with higher schools is developed in both research and education fields. About twenty joint chairs have been founded that are headed by scientists from the Centre, and some of them are located directly in the institutes. A recently created local information network provides an access to Internet for all institutes and major universities of Krasnoyarsk. The Krasnoyarsk Akademgorodok is sited in the suburbs, at the elevated bank of the Yenisei River. It comprises a number of institutes and laboratories with their logistic infrastructure, a residential zone with a scientists’ club, «House of Scientists», a hospital, shops and other social amenities. One of the University buildings, that used to be founded as a branch of the Novosibirsk University, is within the limits of Akademgorodok. There is a specialised secondary school that offers good training in physics and mathematics, humanities, chemistry, biology and arts. See also Short guide to the Siberian Branch of the Russian Academy of Sciences 33 Liite 11. V.N.SUKACHEV INSTITUTE OF FOREST OF SB RAS (SIFSBRAS) 34 ────────────────────────────────────────────────────────- V.N.SUKACHEV INSTITUTE OF FOREST, SIBERIAN BRANCH, RUSSIAN ACADEMY OF SCIENCES (SIF SB RAS) Director: Academician RAS, Professor, Dr. Vaganov Evgenii Alexandrovich The Institute staff numbers 401 people (including filials): 1 academician, 33 professors, 99 doctors, 76 Ph.D. course students, 18% research workers are young scientists (up to 33 age). The Institute has 4 sectors which contain 17 laboratories7. Academician Eugene A. Vaganov STRUCTURE OF INSTITUTE: I FORESTRY DEPARTMENT Head of department - Prof. Anatoly Platonovich Abaimov 1. Laboratory of forestry Prof. Anatoly Platonovich Abaimov 2. Laboratory of forest genetics and breeding Prof. Elena Nikolaevna Muratova 3. Laboratory of forest inventory and forest management Prof. Vladimir Alexeevich Sokolov 4. Laboratory of forest pyrology Prof. Valentin Vasilievich Furyaev 5. Sector of artificial forest phytocoenosis Ph.D. Genady Sergeevich Varaksin II FOREST MONITORING DEPARTMENT Head of department - Ph.D. Alexandr Alexandrovich Onuchin 6. Laboratory of forest monitoring Ph.D. Alexandr Alexandrovich Onuchin 7. Laboratory of biogeocoenology Prof. Stanislav Petrovich Efremov 8. Laboratory of forest soil Prof. Yury Ivanovich Ershov 9. Laboratory of forest zoology Ph.D. Yury Nikolayevich Baranchikov 10. Laboratory of forest biophysics Prof.Vyacheslav Ivanovich Kharuk III DENDROCLIMATOLOGY AND HISTORY OF FORESTS DEPARTMENT 11. Head of department Academician Eugene Alexandrovich Vaganov IV PHYSICAL AND CHEMICAL BIOLOGY AND BIOTECHNOLOGY OF TREE PLANTS DEPARTMENT 12. Head of department Prof. Sergey Redzhinaldovich Loskutov TOMSK'S FILIAL Director - Ph.D. Krivets Svetlana Arnoldovna 13. Laboratory of forestry and forest management Ph.D. Krivets Svetlana Arnoldovna 14. Laboratory of ecology and assessment of soil productivity Ph.D. Anatoly Grigorievich Dyukarev 15. Laboratory of growth and fruiting of trees Prof. Sergey Nikolaevich Goroshkevich 16. Laboratory of dynamic sand ecosystems stability Prof. Elena Eugenievna Timoshok WEST SIBERIAN FILIAL (NOVOSIBIRSK) 17. Director - Ph.D Valery Ivanovich Baranovsky −−−−−−−−−−12 Original text copied from http://forest.akadem.ru/english/structure.html and modified by Mauri Timonen ( mauri.timonen@metla.fi) 34 Liite 11. V.N.SUKACHEV INSTITUTE OF FOREST OF SB RAS (SIFSBRAS) 35 ────────────────────────────────────────────────────────- VN Sukachev Institute of Forest of SB RAS building in the scientist town called Akademgorodok, just beside the city of Krasnoyarsk. ”House of Scientists” is a hotel for visiting scientists in Krasnoyarsk Akademgorodok. VN Sukachev Institute is located just at 10 minute’s walking distance from House of Scientists. A bus ride to downtown 35 Liite 12. THE INSTITUTE OF PLANT AND ANIMAL ECOLOGY (IPAE) 36 ───────────────────────────────────────────────────────- Some Words about the Institute of Plant and Animal Ecology (IPAE) The Institute of Plant & Animal Ecology 202, 8 Marta St., Ekaterinburg, 620144, Russia Phone (343) 222-85-70 E-mail: common@ipan.uran.ru Institute of Plant and Animal Ecology was founded in 1944 and now it is a leading organization in the field of ecology of land and freshwater ecosystems studies8. The main elaborated problems are: - general mechanisms of development (functioning, dynamics, stability) of such natural ecosystems as populations and communities; - development of nature conservation fundamentals (ecological regulation, bioindication, ecotoxicology, radioecology); - climate reconstruction, structure and functioning ecosystems of Northern Eurasia during the last 20-30 thousand years; - analysis of biodiversity on the territories of the Urals and Western Siberia The Institute incorporates 13 laboratories, a zoological museum, a biophysical station (at the town of Zarechny in the Sverdlovsk Region ) and a Scientific Research Center (at the town of Labytnangi in the Tyumen Region). The Institute also possesses a large herbarium of plants. There are 287 personnel on staff at the Institute, including 2 full members and one corresponding member of the RAS, 24 doctors and 77 candidates of science. Director is academician Vladimir Bolshakov. Akademician Vladimir Bolshakov The Institute of Plant & Animal Ecology of the Ural Branch of the Russian Academy of Sciences was established on the 18th of June, 1944, under the name of the Biology Institute of the UB RAS. The first director of the Institute was a prominent physiologist and geneticist, professor V. V. Patrushev. The line of present-day research conducted by the Institute can be traced back to the scientific and administrative activities of academician S. S. Schwarz, who directed the Institute from 1955 to 1976. At that time, famous and outstanding scientists worked at the Institute, such as geneticist and radioecologist N. V. Timofeyev-Ressovsky, and botanist and geographer B. P. Kolesnikov. The Institute incorporates 13 laboratories, a zoological museum, a biophysical station (at the town of Zarechny in the Sverdlovsk Region ) and a Scientific Research Center (at the town of Labytnangi in the Tyumen Region). The Institute also possesses a large herbarium of plants. There are 287 personnel on staff at the Institute, including 2 full members and one corresponding member of the RAS, 24 doctors and 77 candidates of science. A principal area of scientific research is associated with the study of functioning, evolution and stability of living systems — such as populations, communities and ecosystems — at the super-organism level. The following scientific branches are studied: population ecology of plants and animals, historical ecology, radioecology, soil sciences, and applied ecology (such as environmental monitoring and expertise, standardization, recovery of biological resources, and sustainable development). In recent years, the following outstanding achievements have been made: 36 Liite 12. THE INSTITUTE OF PLANT AND ANIMAL ECOLOGY (IPAE) 37 ───────────────────────────────────────────────────────• principles of ecological mechanisms of evolutionary processes • • • • have been formulated as a result of the studies of population structure of different species under various environmental conditions; ecological peculiarities of plants and animals inhabiting mountainous and subarctic ecosystems have been revealed with demonstrations of both zonal and altitudinal adaptations to specific environments; results of complex studies (botanical, zoological, and hydrobiological) of ecosystems of the polar Urals and the Yamal Peninsula have been summarized for the period of 40 years. A description has been given of the dynamics of ecosystems, and a forecast has been made of the changes in these systems under Professor Stepan Shiyatov, the conditions of large-scale exploration of fossil fuel deposits. the head of the dendrochronological Some important characteristics of the tundra biome have been laboratory in the IPAE, summarized on a global scale; Ek t i b a cycle of radioecological and population studies has been completed in the field pertaining to impacts of radioactive contamination on the territories of a so-called East Ural Radioactive Trace and Totsky Nuclear Testing Site; some regularities have been described for transformation and stabilization mechanisms of populations and communities under the impacts of heavy metal contamination; For coniferous forests of the Middle Urals, methods of ecological standardization have been developed, critical toxic levels have been determined, and ecological standards have been established: • theoretical and methodological principles have been formulated for dendrochronological monitoring in Russia. With the use of dendrochronology methods, anthropogenic and climatic changes in forest-tundra vegetation in various sectors of Ural and Siberian subarctic have been reconstructed for a 500 to 600 year period (in areas of Western Siberia — over a 4500 year period); The building, where professor Stepan Shiyatov’s main office of his famous dendrochronological laboratory in Ekaterinburg locates. Dr. Pavel Moiseev (standing closest) and professor Shiyatov, coming out at the main door, ready to go home after the fruitful Finnish-Russian negotiations. 37 Liite 12. THE INSTITUTE OF PLANT AND ANIMAL ECOLOGY (IPAE) 38 ───────────────────────────────────────────────────────• studies have been conducted of population structure and dynamics of endemic and rare plant species of the Northern and Middle Urals and the northern part of West Siberia. Methodological principles of evaluation and protection of the species have been established; • some regular features of population dispersion, such as direction, speed, scale, and the extent of reversibility, of mammalian faunas in the late Cenozoic have been found for all the natural zones of the Urals; • a comprehensive survey of natural reproduction of populations of the semi-anadromous Coregonid fish is an example of a study in the Lower Ob basin. An evaluation system was developed for the ecological capacity of spawning locations; • resulting from the long-term field studies of the nature of the Urals and adjacent regions of the subarctic, the following books have been prepared and published: "Red Data Book of the Middle Urals Sverdlovsk and Perm Regions", "The Nature of Yamal", "Ecology of the Chanty-Mansi Autonomous District", and "Red Data Book of the Yamalo-Nenetz Autonomous District". 38 Liite 12. THE INSTITUTE OF PLANT AND ANIMAL ECOLOGY (IPAE) 39 ───────────────────────────────────────────────────────- Fig 1. The so far interested partners in the EuraClimates research programme planning. Considering the Finnish-Russian-Asian-European (any order equivalent!) wide climate change research, we actually need the whole Eurasian data in our use to be successful in detailed analysis. In order to keep our research well-controlled and scientifically sound, we need to focus on studying all the specific climatically sensitive conifer tree species. This figure gives some ideas for establishing a project called “The EURAMOUNTAINCLIMATES”. Why would we not go looking at the timberline forests in different locations in this huge area and try to find transferable and applicable climatic signals? This means e.g. that some on-going processes in the Alps or the Urals regions might indicate the Finnish climate change future. 39 Liite 12. THE INSTITUTE OF PLANT AND ANIMAL ECOLOGY (IPAE) 40 ───────────────────────────────────────────────────────- Fig 2. THE SPINEACLIMA REGION DEFINITION. Eurasian distribution of Scots pine (Pinus sylvestris). (Geographic distribution of the pines of the world, USDA Forest Service Misc. Publ. 991, 1966). http://en.wikipedia.org/wiki/Scots_Pine. 40 Liite 12. THE INSTITUTE OF PLANT AND ANIMAL ECOLOGY (IPAE) 41 ───────────────────────────────────────────────────────- Fig. 3. PROJECT “THE BOREAL ZONE CLIMATE BIOMES”. Climate change and timberline research will be concentrated mainly on ”Boreal Humid” and ”Boreal Interfrost” biomes. China possibly joins this subproject. 41 Liite 12. THE INSTITUTE OF PLANT AND ANIMAL ECOLOGY (IPAE) 42 ───────────────────────────────────────────────────────- Fig. 4. PROJECT “THE TAIGACLIMATES”. Climate change research will be concentrated on the areas close to the northern timberlines. 42 Liite 12. THE INSTITUTE OF PLANT AND ANIMAL ECOLOGY (IPAE) 43 ───────────────────────────────────────────────────────- 43
Similar documents
DendroForestry_Russi..
Uralin osastosta eli Akateemikko Vladimir Bolsakovin johtamasta IPAEsta (Institute of Plant and Animal Ecology) hän toteaa, että ” kuten käytäntö on osoittanut, konkreettinen yhteistyö tulee hankke...
More information