Mensajero Estelar No. 71 Julio
Transcription
Mensajero Estelar No. 71 Julio
SOVAFA ACA Sociedad Venezolana de Aficionados a la Astronomía Asociación Carabobeña de Astronomía Mensajero Estelar Año 38 Nº 71 Julio - Septiembre de 2014 Contenido 1.- Noticias 2.- Radiantes del Trimestre 3.- Fases de la Luna 4.- Ocultación de Marte, Jul. 06 5.- Luz Solar y Tensión sanguínea 6.- El Niño 2014 7.- Colapso de Hielo en Plataforma Antártica W 8.- Optical Response of the atmosphere during… 9.- Punto de Inflexión www.sovafa.com, www.sovafa.org @sovafa, 10.- Evidence of Solar Wind modulatión of… 11.- Planetas Acuosos 12.- El Almanaque Nautico y el Aficionado 13.- El Niño Histórico en Venezuela 14.- Lado Oculto de la Luna… 15.- Alberto Ramos 16.- Seminario: Los Métodos de la Ciencia 17.- Primera evidencia directa de la Inflación 18.- Reporte de Observación Eclipse Lunar @astrorecord, jesusotero@hotmail.com Noticias 1.- El lago Superior continúa con un alto porcentaje de hielo en Mayo 05 de 2014. Este año la superficie del lago se cubrió de hielo en un 95,1% y ahora esta es de un 59,7%, el año pasado el hielo desapareció completamente el 12 de abril. Esto al parecer se debe a vientos polares que han hecho que las temperaturas promedios en la zona estén muy por debajo de la media para estos meses. 2.- El 18 de Agosto ocurrirá una conjunción entre Venus y Júpiter. La separación entre ambos cuerpos será de 15´ de arco, media Luna. La máxima aproximación ocurrirá a las 05:00 GMT. 3.- Este año parece que se formará El Niño. Las mediciones de la superficie del agua superficial en el Pacífico parecen indicarlo. De Aparecer será entre Junio y Julio de 2014. 4.- Un gigantesco glaciar 8 veces mayor que la isla de Manhattan y bautizado como B31 se desprendió del Glaciar de Pine Island, en la Antártica y flota a la deriva en el Océano Glaciar Antártico. 5.- Meteorólogos descubren que la aparición de nubes noctulicentes se ha incrementado entre 2002 y 2012, pero aún no es claro a qué se debe este fenómeno. 6.- Confirmado el elemento 117 de la tabla periódica, bautizado como Ununseptio, con una vida media de millonésimas de segundo. 7.- La zona ecológica alrededor de las estrellas podría ser más grande que lo que se había considerado hasta ahora, en especial en regiones alrededor de estrellas enanas. Esto eleva la posibilidad de la vida en el Universo. 8.- Según observaciones realizadas por los hermanos Carlos y Raúl de la Fuente Marcos, especialistas en dinámica orbital de la Universidad Complutense de Madrid, podrían existir 2 planetas gigantes más allá de la órbita de Plutón. Esto lo creen debido a extraños patrones orbitales de 2 objetos transplutonianos. El primero de estos planetas tendría un tamaño entre el de Marte y Saturno y se encontraría a 200 UA, el otro tendría una órbita resonante con este y estaría a 250 UA. 9.- Utilizando la interferometría con dos radiotelescopios, el Dr. Roger Deane de Sur África detecto 3 Agujeros Negros Supermasivos que orbitan en torno a un centro de masa común en el núcleo de una galaxia espiral a más de 4.000 millones de Años Luz de la nuestra. 10.- Un equipo de astrónomos descubrió una estrella enana blanca muy fría, con temperaturas del orden de los 3.000º K, la más fría detectada hasta el momento. Esta orbita alrededor del Pulsar PSR J2222 – 0137 cada 2,5 días. Lo interesante en ella es que su temperatura es tan baja que el Carbóno en ella debe haberse cristalizado convirtiéndola en un diamante del tamaño de nuestro planeta. 11.- El 5 de junio la NASA probó un instrumento de comunicación a base de luz llamado OPALS (Optical Payload for Lasercomm Sciences), en el que desde la Estación Espacial Internacional se envió datos a Tierra. El Nuevo instrumento es unas 1.000 veces más veloz que sus predecesores, que usaban ondas de radio. Con este nuevo instrumento se envió 50 Mega Bites de información por segundo. 12.- Una fuerte oleada de calor precede al Monzón en India este año. Las temperaturas en el Sub Continente Asiático y otros lugares de Asia fueron registros records, llegando a mantenerse sobre los 43º C por días. 13.- Este 30 de Junio se cumplió una década desde que la sonda Cassini arribó al Sistema de Saturno, ha sido una década de descubrimientos que tienen que ver con Biología, dinámica atmosférica, Mecánica, y otras ciencias. 14.- El Curiosity cumplió un año marciano sobre la superficie de este planeta el día 24 de Junio. En este año de 687 días Curiosity ha estudiado suelo, rocas, luz, clima, y atmósfera de Marte. 15.- El estudio de las galaxias enanas del Universo ha demostrado que estas contribuyeron mucho más que lo que se cree en la formación de estrellas en el Universo Temprano. 16.- El Satélite QuickScat enviado para una misión de tres años de estudio de los patrones de circulación oceánica, cumplió 15 años de servicio este 19 de junio pasado. Han sido 15 años de datos que han fortalecido el conocimiento de la circulación atmosférica y de corrientes marinas en el planeta. 17.- Gigantescos Sprites fueron fotografiados en el Oeste de USA. Estos alcanzaron alturas colosales después de cada descarga eléctrica de una gran tormenta, alcanzando 46 millas de altura. INVITACIÓN Este nuevo número del Mensajero posee trabajos de astrónomos profesionales como el Dr. Marcos Peñalosa; Drs. C J Scott, R G Harrison, M J Owens, M Lockwood and L Barnard, Penn State University, NASA, y otros. Son trabajos muy interesantes que le dan realce a nuestro boletín, pero a parte de los trabajos de cálculo del Ingeniero Carlos Gil de ACA, y los escritos de Jesús Otero, pocos son los miembros de SOVAFA y ACA que han contribuido a nuestro Mensajero. No es necesario escribir un tratado científico, basta con una observación, un artículo divulgativo, una actividad astronómica. Anímate y escribe algo en nuestro Mensajero. Lluvias de Estrellas del Trimestre Radiante α Oriónidas Capricórnidas Nu Geminíadas Fecha Jul. 09 - 25 Jun. 04 – Ago. 2 Jul. 09 - 18 Máximo Jul. 12 Jul. 18 Jul. 12 T.H.Z. 50 10 60 α 05h 42m 20h 44m 06h 32m δ 12° .- 14° 21º Lamda Geminiadas Perseidas 31 Vulpecúlidas Corona Austrálidas Jul. 04 - 29 Jul. 20 – Ago. 23 Sep. Sep. 29 Jul. 12 Ago. 12 - 13 30 80 - 120 07h 20m 03h 00m 13º 58° Sept. 29 ¿? 18h 33m .- 37° Hora 04:30 22:00 02:00 20:00 19:00 Las lluvias de estrellas aquí listadas se encuentran todas activas, algunas de ellas son de difícil observación pues sus meteoros son de poco brillo. Hay que ver cuál es la fase lunar el día de la observación, pues la luz de la Luna puede afectar mucho la observación del radiante. Máximo es el día en que se espera que la lluvia de estrellas llegue a su máximo número de meteoros. THZ es el número de meteoros que veríamos del radiante si este se encontrara en el zenit. α y δ son Ascensión Recta y Declinación. Hora se refiere a la hora en la cual puede empezar a observarse el radiante. Viene en Hora Legal de Venezuela. Las Perseidas son uno de los radiantes meteóricos más interesantes del año, dan un buen número de meteoros brillantes, son rápidos, y algunos dejan estelas. Las Vulpecúlidas es un radiante que produjo un número importante de Meteoros el AÑO PASADO, no está catalogado. Fue descubierto por Jesús Otero. No se da coordenadas, fechas de máximo, THZ, ni posición, debido a que solo se le observó por una hora y se desconoce si este radiante es un nuevo radiante o es un radiante esporádico. Urgen observaciones sobre esta lluvia de estrellas. La Luna interferirá con la observación entre el 5 y el 13 de septiembre, pero el resto del mes podrá realizarse observaciones de al menos 2 horas. Las Un Geminíadas son muy difíciles de observar desde Venezuela, así como las Lambda Geminíadas. Esto es mejor observarlo con radar. Si observa cualquiera de estos radiantes o una actividad meteórica inusual envíe un informe a jesusotero@hotmail.com o un mensaje al Twitter: αastrorecord Fases de la Luna Luna Nueva Fecha Hora Jun. 27 08:09 Jul. 26 22:42 Ago. 25 14:12 Sep. 24 06:12 Cuarto Creciente Fecha Hora Jul. 05 11:59 Ago. 04 00:50 Sep. 02 11:11 Oct. 01 19:32 Luna Llena Fecha Hora Jul. 12 11:25 Ago. 10 18:10 Sep. 09 01:38 Oct. 08 10:49 t Cuarto Menguante Fecha Hora Jul.19 02:08 Ago. 17 12:26 Sep. 16 02:05 Oct. 15 19:12 En Luna Nueva la Luna no se puede ver, pues está en Conjunción con el Sol. En Cuarto Creciente la Luna se observa en la tarde y primeras horas de la noche. En Luna Llena la Luna sale al ocultarse el Sol y se observa durante toda la noche. En Cuarto Menguante la Luna sale tarde, se observa de madrugada y primeras horas de la mañana. Estos datos son muy importantes a la hora de planificar sus observaciones, ya sean planetarias, de radiantes, u objetos de espacio profundo. Téngalas en cuenta para la observación de eventos astronómicos. t = Eclipse Total de Luna El Eclipse Total de Luna de Oct. 08 podrá observarse en el momento de la totalidad desde Venezuela. Este es un proyecto importante de observación y estamos involucrados en un proyecto internacional. Estén pendientes de consultar: www.sovafa.com y leer el manual de observación de Eclipses Lunares. Ocultación de Marte, Jul. 06. El día 06 de Julio ocurrirá una ocultación del planeta Marte por la Luna, que será visible en casi toda Venezuela, excluyendo al Norte de Zulia, y los estados Falcón, Distrito Capital, Vargas, y Nueva Esparta. Ocultación y Aparición de Marte en T.U. para ciudades de Venezuela en Jul.05, 2014 Datos tomados de IOTA International Ocultation and Timming Asociation Desaparición Ciudad 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE h Acarigua Anaco Barcelona Barinas Barquisimeto Caicara De Orinoco Calabozo Canaima Carora Carrizal Ciudad Bolivar Cumana El Dorado Elorza Guanare Guasdualito Guayana Higuerote La Fria Maracaibo Maracaibo Maracay Maturin Merida Palmarito Puerto Ayacucho Puerto Cabello San Antonio San Carlos San Cristobal San Felipe San Fernando De Apure San Fernando Deatabapo San Juan De Los Morros San Tome Santa Barbara Santo Domingo Tucupita Tumeremo Valencia Valera Valle De La Pascua m 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 U.T. Sun Moon s Alt Alt Az 34 41 45 28 37 33 35 35 36 37 38 50 37 26 31 23 39 47 22 35 41 42 45 26 25 26 44 21 36 21 40 31 24 40 40 25 21 43 38 40 30 38 26 52 41 39 13 16 7 19 35 52 26 10 38 2 2 45 53 38 47 47 52 19 16 38 46 57 0 25 15 54 22 47 53 9 17 56 40 18 46 56 39 42 33 26 25 35 32 30 31 27 33 30 27 24 25 36 34 37 25 26 39 34 29 29 24 37 36 34 29 39 32 39 31 32 35 29 27 37 39 24 25 30 35 29 CA o 253 256 255 253 253 255 254 257 253 255 256 256 257 254 253 254 256 255 252 252 254 254 256 253 254 256 254 252 254 252 254 255 257 254 256 252 253 256 257 254 253 255 PA o 17N 16N 8N 25N 12N 29N 21N 36N 11N 17N 25N 2N 33N 34N 22N 34N 24N 3N 29N 8N 8N 8N 12N 26N 31N 40N 4N 31N 15N 31N 8N 28N 47N 12N 20N 24N 33N 18N 30N 9N 20N 18N WA o 39 38 30 47 34 51 43 58 33 39 47 24 55 56 44 56 46 25 51 30 31 30 35 48 53 62 26 53 37 53 30 50 69 34 42 46 55 41 53 31 42 40 a m/o 15 14 7 23 10 27 19 34 9 15 24 1 32 32 20 32 23 1 27 6 7 6 11 24 30 38 2 30 14 30 7 26 46 10 18 22 31 17 29 7 18 16 b m/o +2.0 +1.4 +1.3 +2.1 +2.1 +1.6 +1.8 +1.3 +2.3 +1.7 +1.3 +9.9 +1.2 +2.0 +2.1 +2.2 +1.2 +9.9 +2.4 +9.9 +1.9 +1.9 +1.2 +2.3 +2.1 +1.8 +9.9 +2.4 +2.0 +2.4 +2.1 +1.8 +1.8 +1.8 +1.3 +2.4 +2.3 +1.1 +1.1 +1.9 +2.2 +1.6 +5.1 +4.8 +8.2 +3.4 +7.3 +2.5 +3.9 +1.7 +8.0 +4.8 +2.8 +9.9 +1.9 +2.1 +4.0 +2.2 +2.9 +9.9 +2.9 +9.9 +8.9 +9.7 +5.8 +3.3 +2.4 +1.5 +9.9 +2.6 +5.5 +2.5 +9.6 +2.7 +1.0 +6.7 +3.8 +3.7 +2.4 +3.9 +2.1 +8.5 +4.5 +4.4 Reaparicion Ciudad 268 269 270 271 VE VE VE VE h Acarigua Anaco Barcelona Barinas m 3 3 3 3 U.T. Sun Moon s Alt Alt Az 3 5 9 7 3 43 7 22 26 20 21 26 256 257 257 256 CA o PA o WA o a m/o b m/o -25N 357 333 +1.1 -7.0 -26N 356 332 +1.1 -6.6 -19N 3 339 +9.9 +9.9 -32N 350 326 +1.1 -5.3 Reaparicion Ciudad 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE VE h Barquisimeto Caicara De Orinoco Calabozo Canaima Carora Carrizal Ciudad Bolivar Cumana El Dorado Elorza Guanare Guasdualito Guayana Higuerote La Fria Maracaibo Maracaibo Maracay Maturin Merida Palmarito Puerto Ayacucho Puerto Cabello San Antonio San Carlos San Cristobal San Felipe San Fernando De Apure San Fernando Deatabapo San Juan De Los Morros San Tome Santa Barbara Santo Domingo Tucupita Tumeremo Valencia Valera Valle De La Pascua m 2 3 3 3 2 3 3 3 3 3 3 3 3 2 3 2 2 2 3 3 3 3 2 3 3 3 2 3 3 3 3 3 3 3 3 2 3 3 U.T. Sun Moon s Alt Alt Az 59 16 8 24 57 6 17 0 24 15 5 13 17 57 7 51 59 58 8 6 12 22 55 8 3 9 57 14 26 2 12 3 10 13 22 59 2 8 4 34 52 51 15 46 8 8 17 24 40 22 10 22 2 27 41 47 27 28 26 21 17 37 5 7 22 7 37 36 17 29 19 40 34 36 52 44 27 20 23 15 28 23 17 21 14 24 26 25 16 24 28 31 25 25 19 27 25 20 26 28 25 28 27 22 20 24 19 28 27 16 14 25 27 21 255 258 257 259 255 257 258 256 259 257 256 257 259 256 256 253 256 255 258 256 257 259 255 256 256 256 255 258 259 256 258 255 256 258 259 255 255 257 CA o PA o -20N -39N -30N -48N -18N -27N -37N -13N -46N -42N -29N -41N -36N -12N -35N -14N -18N -17N -24N -33N -39N -50N -13N -38N -24N -38N -16N -37N -57N -21N -31N -30N -39N -30N -43N -18N -27N -28N o 2 343 352 334 4 356 345 9 336 340 353 341 346 10 347 8 5 5 358 349 343 333 10 344 358 344 6 345 325 1 351 352 343 352 339 4 355 354 WA a b m/o m/o 339 319 328 311 340 332 322 345 313 316 329 317 322 346 323 344 341 342 335 326 319 309 346 321 334 321 342 321 302 337 328 328 319 328 316 340 331 330 +1.0 +1.0 +1.1 +0.9 +9.9 +1.1 +1.0 +9.9 +0.8 +1.1 +1.1 +1.1 +1.0 +9.9 +1.2 +9.9 +9.9 +9.9 +1.1 +1.2 +1.1 +1.0 +9.9 +1.2 +1.1 +1.2 +9.9 +1.1 +1.0 +1.1 +1.1 +1.1 +1.2 +1.0 +0.9 +9.9 +1.1 +1.1 -9.2 -4.2 -5.7 -3.2 +9.9 -6.6 -4.5 +9.9 -3.4 -3.9 -5.9 -4.0 -4.6 +9.9 -4.8 +9.9 +9.9 +9.9 -7.5 -5.2 -4.3 -3.1 +9.9 -4.5 -7.4 -4.5 +9.9 -4.4 -2.6 -8.6 -5.5 -5.7 -4.3 -5.6 -3.7 +9.9 -6.4 -6.2 Si observa recuerde sincronizar su reloj con la Hora Legal de Venezuela, y al hacer su reporte restar 4h 30m. Su observación es muy útil para los astrómetras. Envíe su observación a: jesusotero@hotmail.com. Es muy importante que tome los contactos: 1- Marte toca aparentemente el Disco Lunar; 2 – Marte se sumerge detrás de la Luna, (desaparece); 3 – Marte aparece nuevamente emergiendo detrás de la Luna, y ; 4 – Marte se separa de la Luna. Es importante, si se observa en grupo, no copiar los datos de otra persona, cada observador debe reportar sus propios datos y suministrar las características de su telescopio, tales como: Apertura del objetivo, Distancia Focal, Ocular utilizado, tipo del telescopio, marca del telescopio, etc. Para facilitar la recepción de datos, se sugiere enviar estos en grupo por Sociedad, asociación, o grupo astronómico, y realizar esto en las 24 horas siguientes al evento. Si fotografía envíe su foto en alta resolución en formato jpg. Buena suerte y cielos despejados. La Luz Solar puede bajar la presión sanguínea La Hipertensión y las enfermedades cardiovasculares correlacionadas con la latitud y entrada al invierno. Científicos han aprendido como la exposición a la Luz Solar reducen la presión sanguínea University of Southaptom Un estudio realizado en el Reino Unido ha demostrado el mecanismo por el cual la exposición a la luz solar disminuye la presión sanguínea, y reduce el riesgo de sufrir un ataque cardíaco. El estudio, publicado en Enero 20 de 2014, en el Journal of Investigative Dermatoligy, muestra que la luz solar logra esto en el cuerpo humano al reducir los niveles de una pequeña molécula mensajera, Oxido de Nitrito (NO), en la piel y sangre. El Oxido Nítrico, así como sus productos secundarios, abundantes en la piel, están relacionados con la regulación de la presión cardíaca. Al exponernos a la luz solar, pequeñas cantidades de NO pasan de la piel a la sangre bajando el tono de los vasos sanguíneos, y reduciendo la presión, lo que hace disminuir el riesgo de ataque cardíaco. El conocimiento común muestra que la disminución a la exposición de la luz solar, disminuye el riesgo de sufrir de cáncer de piel, pero no exponerse incrementa el riesgo de enfermedades cardíacas. La incidencia de enfermedades cardíacas esta correlacionado con la latitud y el avance del invierno. Esto es, Presión Arterial Alta e incremento en la incidencia de enfermedades cardiovasculares, se han observado en invierno y en países alejados del Ecuador, donde la radiación UV del Sol es baja. Las enfermedades cardiovasculares están asociadas a presión sanguínea alta, y causan el 30% de las muertes a nivel global cada año. Durante un estudio, la piel de 24 individuos sanos fue expuesta a luz Ultra Violeta (UVA), en lámparas de bronceado, en 2 sesiones de 20 minutos cada una. En una, los voluntarios fueron expuestos a los Rayos UV y al calor de las lámparas, en la otra, los rayos UV fueron bloqueados y solo se les expuso al calor. Los resultados sugieren que la exposición a los UVA dilata los vasos sanguíneos, reduciendo significativamente la presión sanguínea, sin alterar los niveles metabólicos en la circulación, sin cambiar los niveles de vitamina D. Otros estudios indican que los Óxidos de Nitrito preformados que quedan en la piel, mantienen estos efectos. Los datos fueron consistentes con las variaciones estacionales de la presión sanguínea y riesgo cardiovascular a latitudes medias. Estos resultados son significativos en los futuros debates acerca de los potenciales beneficios para la salud de la exposición a la Luz Solar, y el rol de la Vitamina D en el proceso. Puede ser el momento oportuno para discutir los riesgos y beneficios de de luz solar para la salud, y revisar las advertencias que se hacen al público. Quitando la exposición excesiva a la luz solar, lo cual es crítico para prevenir el Cáncer de Piel, el miedo a hacerlo por miedo a esto, o debido a ciertos estilos de vida que evitan la exposición al Sol, pueden causar enfermedades cardiovasculares. Tal vez con excepción de la salud ósea, los efectos de tomar vitamina D, han sido desechados. Al parecer los NO de la piel son muy importantes contribuidores a la salud Cardiovascular. En estudios futuros se buscará más datos críticos, así como descubrir estrategias nutricionales, a fin de maximizar el almacenamiento de Óxidos de Nitrito en la piel, y como llevarlos al sistema sanguíneo más eficientemente. El Niño 2014. ¿Qué es El Niño de todos modos? NASA El Niño es un fenómeno que se produce a veces en el Océano Pacífico, pero como es tan grande afecta al clima en el mundo entero. El clima depende bastante de la temperatura de los océanos. Donde el océano está tibio, se forman más nubes y cae más lluvia en esa región del mundo. En el Océano Pacífico, cerca del ecuador, el Sol hace que el agua en la superficie sea especialmente tibia. Normalmente los fuertes vientos del ecuador empujan el agua tibia de la superficie cerca de Sudamérica al oeste hacia Indonesia. Cuando esto sucede, el agua más fría inferior sube a la superficie del océano cerca de Sudamérica. Sin embargo, en el otoño y el invierno de 1997-1998, estos vientos fueron mucho más débiles que lo normal. Incluso, en octubre, soplaron en la dirección contraria (hacia Sudamérica en vez de hacia Indonesia). Debido a esto el agua superficial tibia del ecuador se acumuló en la costa sudamericana (alrededor de Perú) y luego se trasladó al norte hacia California y al sur hacia Chile. Muchos peces que vivían en las aguas normalmente más frías de la costa de Perú se alejaron o se murieron. Los pescadores llaman a este fenómeno de aguas costeras tibias y mala pesca "El Niño", en alusión al "Niño Cristo," ya que en los años en que se produce este fenómeno, aparece en la época de Navidad. En 1997 y 1998, se formaron muchas nubes de lluvia sobre esta parte tibia del océano. Estas nubes se trasladaron tierra adentro y produjeron mucho más lluvia que lo normal en Sudamérica, Centroamérica y los Estados Unidos. Mientras que en otras partes del mundo hubo sequía. En todo el mundo hubo patrones climatológicos poco usuales, creando lagos en desiertos y montones de carbón en selvas tropicales. ¿Cómo podemos saber qué le pasa a las temperaturas de los océanos en la Tierra? ¡La mejor forma es subir al espacio! ¿Cómo tomar la temperatura de los océanos desde el espacio? Donde el océano es más tibio, el nivel del mar es levemente superior. En 2008, el satélite Jason-2 (también llamada la superficie del océano Topography Mission) fue puesto en órbita alrededor de la Tierra. Se continuó con las mediciones que se realizan por Jason-1, lanzado en 2001. Ambos satélites tienen una sensibilidad a bordo del altímetro. Un altímetro mide la altura de sí misma hacia la superficie de la Tierra (tierra o agua). Jason-1 utiliza el radar para medir las pequeñas colinas y valles de la superficie del océano. Esta información ayuda a los científicos a comprender la circulación oceánica y predecir los fenómenos climáticos como El Niño. Jason-1 fue lanzado en 2001 y todavía está trabajando! Jason-2, también llamada la superficie del océano Topography Mission, continúa el trabajo iniciado por Jason-1. Jason-2 fue lanzado en 2008 y todavía está en órbita y la recogida de datos. Con la información del TOPEX/Poseidón, se pueden crear mapas topográficos de las partes más altas y más bajas de la superficie del océano. En los mapas planos, se usan distintos colores para indicar las diferentes alturas del océano. En estos mapas, los colores violeta, azul y verde indican las partes más frías del océano donde el nivel del mar es un poco menor. Los colores rojo, rosado y blanco son las partes más tibias donde la superficie del océano sobresale un poco. La superficie del agua donde el océano es más tibio es sólo unos 2 metros (un poco menos de 7 pies) más alta que en las áreas más frías. Mientras preparas tu budín de El Niño, piensa en el satélite Jason-1 y Jason-2. Es como una furgoneta llena de instrumentos en el espacio. Viaja alrededor del mundo 4.700 veces al año trazando mapas de la superficie del mar. Jason-1 y Jason-2 son dos de varios satélites que mantienen un ojo en nuestros océanos y añadir a la información que obtenemos de los buques y boyas. Aguas cálidas se están moviendo desde el Pacífico Occidental hacia Suramérica con un patrón más fuerte que el de 1997 – 1998, El Niño más intenso registrado en el siglo XX. El evento se espera comience a desarrollarse en Julio y pudiera ser muy intenso. Capa de Hielo Oeste de la Antártida Según 2 estudios realizados en los glaciares del Oeste de la Antártida, el Colapso de la cubierta de hielo luce inevitable, un evento que podría levantar el nivel de los océanos más de 1 metro. El primer estudio liderado por Eric Rignot del JPL, se realizó utilizando satélites de NASA y observaciones desde aviones, el segundo fue liderado por Ian Joughin, de la Universidad de Washington, y utilizó un modelo de computadora para comparar observaciones de derretimiento reciente, con escenarios de derretimientos proyectados, para ver cual encajaba mejor. Ambos estudios concluyeron que el segmento de hielo del Mar de Admunsen comenzó un declive irreversible que terminara con la pérdida total de hielo, posiblemente en unos pocos cientos de años. La región del Mar de Admunsen contiene varios glaciares de rápido movimiento, los que incluyen a Pine Island, Haynes, Pope, Smith, y Kohler. Muchos glaciares antárticos poseen plataformas que funcionan como represas, pero no hay casi nada en esta región, por lo que los glaciares fluyen libremente y estos glaciares drenan un tercio del hielo de la cubierta de hielo Oeste de la Antártida. En otro estudio publicado en Marzo de 2014 por Ringot, Mouginot, y Scheuchl se demostró que estos glaciares se han acelerado, (Ver foto). Estas medidas entre 1996 y 2008 se muestran como Rojas donde se aceleró la perdida de hielo y en Azul donde se frenó. La mayoría de los glaciares se han acelerado y los cambios se observan incluso tierra adentro. Un trabajo más reciente de Rignot examina en Mayo de 2014, el por qué estos glaciares se están acelerando, esto lo hizo analizando observaciones satelitales. Observó que esta región se ha retirado significativamente entre 1992 y 2011. Por ejemplo: El Glaciar de Pine Island se ha retraído 31 km tierra adentro; el Smith/Kohler 35 Km; Thwaites 14 km; y Haynes 10 Km. Esto sugiere más declive en el futuro. La mayor parte del derretimiento viene de abajo. Las corrientes oceánicas calidad derriten el hielo y le permiten fluir más rápidamente al volverse más fino el hielo y haciendo retroceder el frente del glaciar. Los glaciares del Mar de Admunsen han entrado en este círculo vicioso, y al parecer nada lo detendrá. La tierra debajo de los glaciares en esta zona están debajo del mar, el agua que sale de los glaciares entra directamente a mar, no hay topografía que frene el agua. Estas tres cosas: El derretimiento acelerado; el retroceso de los frentes de glaciar; y falta de topografía que frene la salida de agua de los glaciares, apuntan a un colapso de la Capa de Hielo del Oeste Antártico. Este escenario es igual en los estudios de Joughin, el cual dice que este colapso podría ser total en 100 o 200 años como máximo. Este segmento posee agua suficiente para elevar el nivel marino en 1,2 m. OPTICAL RESPONSE OF THE ATMOSPHERE DURING THE CARIBBEAN TOTAL SOLAR ECLIPSES OF 26 FEBRUARY 1998 AND OF 3 FEBRUARY 1916 AT FALCÓN STATE, VENEZUELA MARCOS A. PEÑALOZA-MURILLO_ University of Essex, Environmental Research Laboratory, Central Campus. Wivenhoe Park, Colchester, Essex CO4 3SQ, UK and Universidad de Los Andes, Facultad de Ciencias, Equipo Interdisciplinario e Interdepartamental de Investigación Atmosférica Mérida, Edo. Mérida. Venezuela Abstract. An investigation of the optical response of the atmosphere before, during, and after the total solar eclipse of 26 February 1998 at the Caribbean Peninsula of Paraguaná (Falcón State) in Venezuela, was made by measuring Photometrically the intensity of the sky brightness in three strategic directions: zenith, horizon anti-parallel or opposite the umbra path, and horizon perpendicular to this path. From these measurements, and by applying in an inverse way an empirical photometric model, very rough estimations of the extinction coefficient, and also of the average optical depth, were obtained in one of these particular directions. However based on meteorological measurements such as those of relative humidity and temperature, and applying a different model, a better estimation in the visual of the total global extinction coefficient of the sky (except the horizon), were made considering the contribution of each component: Atmospheric aerosol, water vapour, ozone, and Rayleigh scattering. It is shown that this global coefficient is mostly dependent upon aerosol extinction. In spite of the strong reduction of sky brightness photometrically observed during the totality, the results show that the sky was not dark. This is confirmed by the results obtained for the total global extinction coefficient. Additionally it is estimated that the total solar eclipse that took place also in Falcón State, Venezuela, at the beginning of the last century on 3 February 1916, was ∼30% darker that the 1998 eclipse, and that atmospheric aerosol played a relevant and similar role in the scattering of sunlight during the totality as it was for 1998’s. Visual observations made during each event, which show that at length only one or two bright stars could be seen in the sky, support the results obtained for both eclipses. Keywords: Atmospheric aerosol influence, meteorological measurements, photometric measurements, sky brightness, solar eclipse, tropic 1. Introduction On Thursday 26th February 1998 the last total solar eclipse for Latin America of the past century and millennium, and the eclipse No. 51 (out of 73) in the Saros Series 130 of solar eclipses, took place. In Particular it was seen from northern South America, some Caribbean islands (Kuiper and van der Woude, 1998), and some Pacific islands near the Latin-American west coast (for a general description _ Permanent affiliation: E-mail: mpenaloa@ula.ve Earth, Moon and Planets 91: 125–159, 2002. © 2003 Kluwer Academic Publishers. Printed in the Netherlands. and coverage, see New Scientist, April 1998, Sky & Telescope, May 1998, and Journal of the British Astronomical Association, June 1998). Venezuela was one of three continental countries where this eclipse could be observed (Figure 1) and, in fact, it was the fourth time during that century that the Moon shadow cone swept or touched Venezuelan territory. The first one was on 3 February 1916, the second one was on 1 October 1940 (USNO, 1939), and the third one on 12 October 1977 (Fiala, 1976). These last two, unfortunately, either passed over a very remote región in the jungle (southern Amazonas state) which at that time was almost uninhabited and hard to reach, or occurred when the eclipsed Sun was already at the sunset (at Puerto Ayacucho, Amazonas State capital), respectively. Neglecting these two, the first one and the most recent one have been the total solar eclipses that have draw the attention of Venezuelan people, mainly, because one was at the end of the morning (1916) and the other during the first half of the afternoon (1998) both covering well-populated regions of the country (Ugueto, 1916; Espenak and Anderson, 1996). Ugueto (1916) and del Castillo et al. (1916) published reports in which they account for some astronomical, atmospheric and meteorological observations for the eclipse of 1916. Other reports, such as those by Sifontes (1920), Röhl (1932) and Peñaloza (1975), however, account only for meteorological or astronomical observations in three of the solar partial eclipses which took place in Venezuela in the twentieth century many times. Thus eighty-two years had to elapse from 1916 until a new opportunity arrived for observing a total eclipse of the Sun from Venezuela. The present research focused on carrying out photometric observations of the visual sky brightness at the zenith and on the horizon during the total solar eclipse on 26 February 1998 at the Caribbean Peninsula of Paraguaná (Figure 2). This is located in the northern part of the north-west Venezuelan State of Falcón. Ignoring the light of the solar corona and air-glow, the visual sky brightness during a total solar eclipse is produced in part by atmospheric aerosol particles which at least scatter light taking place within the penumbra (first order scattering) and scatter light taking place within the umbra (second order scattering) as a consequence of a first order scattering within the penumbra, as depicted in Figure 3 (Zirker, 1995). Therefore the ambient or environmental conditions of the air of a particular area or region determine the local conditions by which the visual sky brightness is produced and thereby observed during a total solar eclipse. The sky could be darker or brighter depending on the air quality during the totality around the observation zone. It is interesting to note that reports of darkness during total solar eclipses in the ninetieth century indicate that they were darker than those of the twentieth century (Silverman andMullen, 1974). This is, of course, circumstantial since it depends on the local air quality of the observation site which, in turn, depends on the variability of atmospheric pollution. Today pollution is stronger and potentially can contribute to make less dark the sky during a total solar eclipse when it is being observed from urban or industrial areas. It is interesting to highlight that before 1944 it was believed that the general brightness of the sky during the full phase of a total solar eclipse was due to the brightness of the solar corona. It was not until Betenska (1944) definitely OPTICAL RESPONSE OF THE ATMOSPHERE DURING SOLAR ECLIPSES 127 Figure 1. The eclipse path through northern South America and the Caribbean. The shadow passed overMaracaibo city, the biggest one along the path and the second biggest one of Venezuela (Espenak and Anderson, 1996). confirmed that the part played by the light of the solar corona in the general brightness of the sky and the illumination of the landscape is insignificant and that this brightness is related to the light coming from the surrounding atmosphere and which penetrates into the shadow. However an early account given by Lockyer (1927) on the total solar of eclipse of 29 June 1927 in England (Marriot, 1999) showed that the light emitted by the corona was evidently not very great because this observer could not record any perceptible shadow being cast by it on a white sheet, in spite of the fact that the corona was exceedingly bright (on this point, see The Illumination Engineer, July 1928, p. 128). This lead to the idea that the illumination during totality is due mainly to diffused daylight by the atmosphere. Although the sky brightness is dependent not only on the particular direction of sight but also on the solar elevation during a solar eclipse (Schaefer, 1993), as on a normal day, the photometric observations were made in the zenith and in the horizon. The closer toward the zenith is looked at, the larger is the proportion of multiply-scattered light observed. Looking towards the horizon the scattered light will include a proportion that is singly scattered. The zenith has been the sky point most photometrically observed during the occurrence of a total solar eclipse (Silverman and Mullen, 1974). Since Halley (1715) made the first report of his solar eclipse visual observations, it also has been thoroughly reported by The Photometric results presented in the first part of this paper are observational and no theoretical evaluation is made. Potential theoretical interpretation of them (or of future eclipses) could be attempted considering the approximate models published by Gedzelman (1975), and Shaw (1978), respectively. Unfortunately the equipment used in this work did not allow for measurements depending on a specific wavelength. Figure 2. Clear picture of the head-shaped Peninsula of Paraguan´a from space taken by the KIDSAT camera on board the space shuttle. This peninsula is a semi-arid zone connected to mainland through a very narrow strip of land called the Isthmus of the Medanos (seen in the picture like a “neck”). The Gulf of Venezuela is to the left (photo courtesy of NASA). Figure 3. During a total solar eclipse multiple scattering in the Earth’s atmosphere can take place. An instrument in the umbral shadow measuring towards the zenith receives sunlight that has been scattered twice as in (a); towards the horizon, the instrument measures sunlight scattered once as in (b) (adapted from Zirker, 1995). an appreciable number of observers that it is on the horizon that major dramatic changes in brightness and colour take place during a total solar eclipse. In addition it is necessary to take into account the particular characteristics of each eclipse observation site (surface albedo, geometrical and terrain factors, environmental measurements related to atmospheric aerosol characterisation, etc.), and also the characteristic of the measurements made (wavelength, instrumentation, region of the sky measured, etc). By applying, empirical models given by Schaefer (1993), results derived from these photometric easurements and those made by others of meteorological parameters, such as relative humidity and temperature, during the whole eclipse, are presented for the extinction coefficient. Based on these results an estimation of the sky darkness or brightness degree during the totality of the 1998 eclipse is made for the observation site onsidering the contribution of each atmospheric component, namely, atmospheric aerosol, water vapour, ozone, and ayleigh scattering. Using the meteorological data published by Ugueto (1916) for the 1916 total solar eclipse, additional results were obtained and a comparison between these two eclipses could be made. The paper closes with a summary of the results obtained and conclusions. 2. Local Circumstances of the Eclipse Observation Site For Venezuela the eclipse covered the north–western part of the country, including Maracaibo, the second Biggest Venezuelan city. Then, the Moon shadow swept, in a south–west to north–east direction, the Gulf of Venezuela passing next over the Paraguaná Peninsula (Espenak and Anderson, 1996) where the observation site for this project was chosen. In particular, this site was located in a semi-remote and semi-arid flat area in the northern part of the Peninsula called Punta de Barco, at 69◦55_54__ W, 12◦09_52.8__ N, and 0 m above sea level, as reported by ARVAL amateur team (from Caracas, and hereafter referred to simply as the Arval Observatory), where the central line of the totality crossed through (Figure 4). The former installations of the booster station of “La Voz de Venezuela” Radio at this place, near the beach, served as a camp and to set up the equipment. For this place the eclipse astronomical circumstances were: first contact at 12:38:20, second contact at 14:09:18, midtotality at 14:11:10, third contact at 14:13:02, fourth contact at 15:35:43, all these times are given in local time (UT-4). The Sun altitudes were 69◦ for the 1st contact, 62◦ for the mideclipse, and 45◦ for the 4th contact. The totality lasted 3 min 44 s (Arval Observatory). To the unaided eye the atmospheric conditions for the day of the eclipse were in general good and acceptable. However some cloudiness near the horizon was reported by the ARVAL Observatory around the observation site being the maximum of 5/8 at 10:30 am and the minimum of 1/8 between 12:30 pm and 5:00 pm. A variation of approximately −5 ◦C in temperatura was noted between 12:42 and 14:12 (local time) due to the eclipse. Figure 5 displays a sequence of six satellite images taken on 26th February 1998 of western Venezuela by the NASA satellite GOES-10, including Paraguaná Peninsula, showing the cloudiness variation at different times over this region. Note that at 11:08:00 am, local time, there were some clouds around the zenith of the observation site (Figure 5a). Later on the 1/8 cloudiness referred to above was located to the north of the Peninsula over the sea (Figures 5b–f), and the zone remained practically with clear sky. In particular Figure 5c shows the shadow falling to the west before crossing the peninsular area (at 01:44:00 pm local time), and Figure 5d shows the shadow crossing it (at 02:08:00 pm local time). The penumbra is also seen in these pictures. Anderson (1999) analysing two of the GOES images, describes the general pattern cloudiness and its processes originated in this region, as well as in the northern part of the country, due to this crossing. 3. Instrumentation and Experimental Procedure The photometric measurements were made by means of three different photosensors: one photosensor was a Macam detector, model SD10Q-Cos (No. 1738), 15 mm2 area, hemispherical field-of-view (∼180◦), covering wavelengths from 400 nm to 700 nm and with a maximum spectral response at 560 nm; the second was an RS (stock no. 308-067), 5 mm2 area, 17.1◦ field-of-view, covering wavelengths from 300–1200 nm, and a maximum spectral response at 900 nm; and a third one was an Ealing Electro-Optics (EEO) Broad Band Silicon Detector, 0.38 cm2 area, hemispherical field-of-view (∼180◦), in combination with a photopic filter (400–700 nm), both used with an EEO Research Radiometer/Photometer unit. Figure 4. Map of the Paraguan´a Peninsula showing the central line of the shadow (green line) crossing it. This line entered at Punta Jacuque and left the Peninsula at Punta de Barco (just in the top to the right) where the observations were made (map courtesy of ARVAL Observatory). Figure 5. Sequence of six satellite images taken on 26th February 1998 of western Venezuela by the NASA satellite GOES-10, including Paraguan´a Peninsula, showing the cloudiness variation at different times. The zone remained practically with clear sky. In (c) the shadow is seen falling to the west before crossing the peninsular area, and in (d) the shadow is crossing it. The penumbra is also seen in these pictures (images courtesy of NASA). The photosensors were calibrated at Essex University before they were taken to Venezuela (Peñaloza, 1999). To perform this, a Wotan Xenophot HLX quartz diffuser bulb, with a tungsten filament, was used as a light source, and to compare, a LI-COR integrating quantum/radiometer/photometer, model LI-188B was also used. Different glass neutral density filters were applied in the calibration procedure in order to obtain the respective calibration curves in kilorayleighs (kR). All photosensors during calibration were illuminated totally to account for the wide field-of-view of two of them. The rayleigh, a photometric unit introduced by Hunten et al. (1956) for the airglow and aurora, has been almost niversally adopted by experimentalists in aeronomy (Baker and Romick, 1976). Also it has been adopted in contemporary works dealing with the sky brightness during solar eclipses (Sharp et al., 1966; Dandekar, 1968; Velasquez, 1971; Dandekar and Turtle, 1971; Lloyd and Silverman, 1971; Miller and Fastie, 1972; Carman et al., 1981). Historically, the rayleigh unit was defined as an emission rate of 1 million photons per second from an extended column of 1-cm cross (Baker and Romick, 1976). In SI units this is equal to 1010 photons s−1 m−2 per column. As stated by Baker (1974) the justification to use a radiance (or surface brightness) unit like this relies on the fact that in gaseous photophysics the photon is conveniently treated statistically along with the concentration of the other particles of the medium; this unit gives a measure of the rate at which photons coming down from a region of the sky would strike each square centimetre of normal area per time unit, and the word “column” is inserted to convey the idea of an emission-rate from a column of unspecified length. The factor to convert photons per second into watts of light energy is simply hc/λ times the photon rate, where the constants have their usual meanings and λ is the wavelength. For a full appreciation of this unit and further details, the reader is referred to the works by Baker (1974), and Baker and Romick (1976). In the in situ experimental procedure, and by applying the corresponding eclipse map given by Espenak and Anderson (1996), an arrangement of the three photosensors was set up so that the Macam’s, covered with a white diffuser size of 64 mm2, pointed to the horizon, perpendicular to the totality path (altitude 0◦, azimuth 150◦); the EEO’s also to the horizon but anti-parallel to the totality path (altitude 0◦, azimuth 240◦); the RS’s, covered with a white flashed opal glass diffuser of 25 mm diameter, to the zenith. This direction determined that this photosensor (device diameter, 8.26 mm) was housed in a cylindrical black case, 57.88-mm height and 25.66-mm width (for a narrow field-of-view of 17.1◦). Previous technical checking against the horizon and zenith during a normal day (see below), and based on the fact that it has been noted that in past total solar eclipses the horizon is brighter than the zenith, showed that the appropriate distribution and setting of the photosensors was that referred to above. Because the horizon detectors have wide field-ofview it was not necessary to measure exactly their altitude within a degree precision. Otherwise, with small field-of-view detectors, the exact altitude of the instrument should be stated to the nearest degree since a precise knowledge of this parameter is vital for any comparison with models; the sky brightness vary greatly with even the change of one degree in altitude near the horizon. The arrangement was installed in the roof of the booster radio station wáter tank supply, high enough over the ground to have a good view all over the horizon. The photosensors were directed inland, opposite the sea. In this way the predominant surface albedo was that corresponding to a semi-desertic ground. Buildings belonging to the booster station and other obstacles in different lines of sight to the sea prevented the horizon photosensors from pointing in those directions. The zenith distance of the Sun during the eclipse was quite enough apart so that it was not necessary to screen it in order to carry out the zenith measurements. Due to the light colour of the water tank roof’s surface, care was taken to put the photosensor arrangement just on one edge of the roof in order to avoid possible interference of the shadow bands which were abundant after the third contact according to unaided eye observations made on this surface. 4. Observations The output signal measurements from the sensors were simultaneously acquired with a data-logger, at a rate of one eading per minute per channel for six hours (from 11:00 am to 5:00 pm), to cover part of day light under normal or noneclipse conditions for reference purposes. The resolution value of 1 μA corresponding to the channel used to acquire the current signal from the Macam sensor, prevented from measuring signals below this quantity. Therefore minimum values related to these measurements during the totality, which were below this limit, had to be interpolated by using the second and third contact values, respectively. Figure 6 shows the profile of the horizon sky brightness perpendicular to the shadow path obtained with the Macam sensor, in the wavelength range of 400–700 nm, from 11:00 am to 5:00 pm Venezuelan local time. As can be seen the stability of the device was very good as it was for the other instruments. This brightness is presented along the ordinate on a logarithmic scale in the unit of kR, and the minimum value obtained during the totality was approximately 6 × 102 kR. The horizon sky brightness profile obtained with the EEO detector in the direction of the shadow path but opposed to it (anti-parallel) are shown in Figure 7. As in Figure 6, this brightness is presented on a logarithmic scale in kR. Between 13:38 and 14:35 this sensor caught some significant spurious or extraneous signals of unknown origin (some of which, in turn, were also detected by the Macam sensor in a lesser magnitude and removed from the raw data) whose origin or source could not be identified. James (1998) measuring the zenith sky brightness at the same location (Punta de Barco) with a portable luxmeter but with hemispherical view also obtained some offset points during the totality. These spurious signals also OPTICAL RESPONSE OF THE ATMOSPHERE DURING SOLAR ECLIPSES 135 Figure 6. Plot showing the horizon sky brightness profile perpendicular to the shadow path obtained with the Macam sensor, in the wavelength range of 400–700 nm, from 11:00 am to 5:00 pm Venezuelan local time. Figure 7. Plot showing the horizon sky brightness profile obtained with the EEO detector in the direction of the shadow path but opposed to it (anti-parallel), in the same wavelength range (photopic), and in the same time period, as in Figure 6. had to be removed from the raw data of this sensor. Yet in this case, however, by using the second and third contact again, values corresponding to this period including those during the totality were extrapolated and interpolated, respectively. In this case the minimum value obtained for the totality was approximately 3×105 kR. Figure 8 shows the profile corresponding to the zenith sky brightness in the same units, obtained with the RS photosensor in the wavelength range of 300 – 1200 nm. During the totality the minimum value obtained for this celestial point was approximately 2.7 × 10 kR. Percent obscuration at the ground level is presented for the zenith curve at the top axis of Figure 9, for a period of about 16 min that includes second and third contacts Figure 8. Profile of the zenith sky brightness obtained with the RS photosensor, with a narrow field-of-view, the wavelength range of 300–1200 nm, and in the same time period in Figure 6. . 5. Extinction Coefficient and Optical Depth Estimations A direct estimation of the total extinction coefficient in the visual, kg [in mag/air mass (defined below)], towards the zenith due to the contributing components, is given by: kg = kR + ka + koz + kwv, (1) where kR is the Rayleigh scattering component, koz is the ozone component, ka is the atmospheric aerosols component, and kwv is the water vapour component. In general, for other directions it is more complicated, and the extinction coefficient as defined by Schaefer (1993) should be taken into account. However, for all but low horizon observations, an approximate usage of Equation (1) is adequate to describe the general state of the atmosphere because the air masses are basically identical for all components when the horizon area is avoided. Hence kg will be called the global total extinction coefficient. Then the components, given in Equation (1), according to Schaefer (1993, 1998), are: kR = 113700(n − 1)2 exp[−H/He)]λ −4, (2) Figure 9. Zenith sky brightness as a function of the percent solar’s disk obscuration (top axis) by the Moon, at the ground level, for a central period of 22 min around the total phase that includes the second and third contacts. koz = (0.031/3.0){3.0 + 0.4[φ cos(αs) − cos(3φ)]}, (3) ka = 0.12[0.55/λ]1.3[1 − (0.32/ ln S)]4/3[1 + 0.33 sin(αs)] exp(−H/1.5), (4) kwv = 0.94WλS exp(t/15)exp(−H/8200). (5) In Equations (2)–(5), n is the index of refraction at sea level, λ is the wavelength (in microns), H is the observer’s height (in km) above sea level, He is the scale height (in km), φ is the observer’s latitude (in radians), αs is the right ascension of the Sun, Wλ is a function of the wavelength, t the air temperature (in ◦C) and S is the relative humidity. Equation (5) can be found in Schaefer (1998). A stellar magnitude, mag, is a logarithmic unit of intensity, where one magnitude corresponds to roughly a factor of 2.52 in brightness regardless in what units the intensity is given. This is the basic unit of brightness used by astronomers; if I is an intensity, the magnitude is defined by the expression C−2.52 log10 I, where C is an arbitrary constant (Young, 1990; Hearnshaw, 1992). In general, on the other hand, the unit of atmospheric distance is given by the local relative optical path length, which is defined as the ratio of the optical path length along any trajectory to the vertical path length in the zenith direction (one air mass). Therefore the units of astronomical extinction are magnitudes per air mass (mag/air mass); one magnitude per air mass equals 2.52 log10e (∼= 1.086) optical depths per air mass (Taylor et al., 1977; Bruin, 1981) (see Equation (13) below). It is well known that atmospheric aerosols come from many sources (sea spray, windborne desert dust, etc.). Fortunately there are a variety of trends which can be used to provide a reasonable guess for the aerosol extinction coefficient, ka. Thus Equation (4) is based on an evaluation of trends for time of the year, relative humidity, altitude, and wavelength. Additional sources of extinction such as volcanic aerosol layers and urban pollution, not included in this analysis, have to be treated, respectively, in a different and appropriate manner. Schaefer (1993) states that the use of the equations above allow for the extinction to be reasonably estimated for any site in the world provided that urban areas and special situation of volcanic events are not included._ Therefore for application purposes of this model, it must be stressed that only a remote or a semi-remote site has to be considered. Therefore for Rayleigh scattering He = 8.2 km (Allen, 1973). For visual wavelengths (λ = 0.55 μm), and for Punta de Barco site in particular, these equations are reduced to: kR = 0.1066, (6) koz = (0.031/3.0){3.0 + 0.4[0.21 cos(αs) − 0.80]}, (7) ka = 0.12[1 − (0.32/ ln S)]4/3[1 + 0.33 sin(αs)], (8) kwv = 0.029S exp(t/15). (9) By applying Equation (1), taking into account Equations (6)–(9), kg can be found for the atmosphere of this articular ocation during the day of the eclipse. To find αs calculations with the AstroScript software provided by DuffetSmith (1997) were performed. The values for S and t were taken from the data published in the ARVAL Observatory web site, whose team was in the same location making meteorological observations. Figure 10 displays the variation of the relative humidity (in %) on 25/02/98, from 07:30:00 to 17:30:00 (local time), and on 26/02/98, from 09:30:00 to 17:30:00 (local time), and Figure 11 displays the same variable during the whole eclipse, from 12:42:00 to 15:39:00 (local time). Figure 12 presents the temperature measurements made the day of the eclipse also by the ARVAL Observatory. _ Indeed the aerosol density can vary by large factors. But the bulk of the variance arises due to effects of altitude, relative humidity, and time of year. Equation (4) incorporates these effects by giving the equations for the best correlation between the quantities involved. When these correlations are accounted for, a large fraction of the variance in the “standardized” aerosol density (i.e., standardized to sea level, zero relative humidity, temperate northern latitudes, and near the equinoxes) is eliminated. Even so, there can still be large variations around the best value of the specific equations involved due to manmade pollution, forest fire, volcanoes, etc. Nevertheless, from a very large data base with >105 measurements from >300 sites worldwide, the scatter of Equation (4) is remarkably good (B. Schaeffer, personal communication, 1999). Figure 10. Variation of relative humidity the day before (25/02/98), from 07:30 to 17:30 (local time), and the day of the eclipse (26/02/98), from 09:30 to 17:30 (local time), measured by the ARVAL Observatory at Punta de Barco (Paraguan´a Peninsula, Falc´on, Venezuela). Figure 11. Variation of the same variable as in Figure 10 but during the whole eclipse, from 12:42 to 15:39 (local time), measured by the ARVAL Observatory at the same location as in Figure 10. Figure 12. Variation of temperature during the eclipse between 12:42 and 15:39 (local time), measured by the ARVAL Observatory at Punta de Barco (Paraguan´a Peninsula, Falc´on, Venezuela). It is important to note that the primary analysis of this paper is not to calculate, in a particular direction, the extinction coefficient, k, via photometric measurements of the sky brightness by applying Equation (13). However, they can in principle be useful to explore this possibility in the way described next. Being the horizon direction unacceptable for the aforementioned model, the photometric measurements made of the horizon sky brightness under noneclipse and eclipse conditions could be used to estimate, in a rough way, the extinction of the atmosphere (and its corresponding optical depth) in this particular direction along that day, using a photometric model presented by Schaefer (1993). By experience it is well known that these parameters can vary quite widely with altitude and azimuth as well as from hour to hour, from minute to minute, and so on, within a given day. So the best that can be done is to use an average value to represent the sky conditions for a given date and direction. Ideally, the sky brightness should be calculated taking into account multiple scattering. However in a first approximation, according to Schaefer (1993), a semiquantitative estimation of the cloudless sky brightness in nanolamberts (nL) during daylight can be given to 20% accuracy by, Bday = Nλf (ρsun)10−0.4kX(Zsun)[1 − 10−0.4kX(Z)], (10) where k is the total extinction coefficient, defined here in units of stellar magnitudes per air mass; Zsun and Z are the zenith distance of the Sun, and the sky direction, respectively; ρsun is the separation between the sky direction and the Sun; X(Zsun) and X(Z) are the respective air mass functions; Nλ is a coefficient depending on wavelength λ (for the visual it is equal to 11,700); and f (ρsun) is an approximate scattering phase function given by Krisciunas and Schaefer (1991), f (ρsun) = 105.36[1.06 + cos2 ρsun] + 106.15−(ρsun/40degree) +6.2 × 107(ρsun) −2, (11) with ρsun measured in degree. This function gives values much too high for small values of ρsun. Schaefer (private communication 1999) suggests that for ρsun < 20_ it should be replaced by a different expression (note that the angular diameter of the Sun is about ∼ 32_ at mean Earth distance so in fact for ρsun < 15_ the Sun is being looked at). Therefore for the purpose of the present work, in which values of ρsun _ 15_ are involved, the use of Equation (11) is sufficiently valid. For altitudes near the horizon, but not below, X(Z) = [cos Z + 0.025 exp(−11 cos Z)]−1, (12) is a convenient and a fairly good approximation for reasonable elevations above sea level and aerosol density (Rozenberg, 1966). Given the values of Bday obtained from the photometric measurements, and by solving numerically Equation (10), approximate values of k were found for different values of the other parameters calculated from Equations (11)– (12). Then the results can be used to estimate the optical depth (in any direction Z) for different values of k by applying, k = 1.086τ, (13) where k is given in mag/air mass, and τ is the optical depth (Schaefer, 1993); this optical depth depends, in a proportional manner, on the geometrical path, air density, characteristics of components, and sec Z. By comparison, the difference between the extinction coefficient given by Equation (1) and that given by Equation (13), can be distinguished. Although Equation (10) is transcendental for k, it could be solved for most of the input data by applying a omputer code. To find values of Zsun the AstroScript software by Duffet-Smith (1997) was used. Because the angle ρsun was available only for the horizon anti-parallel direction (opposite the shadow path), the calculation of k was only possible for that particular direction. Zenith direction was not considered since during total solar eclipses, second order scattering plays an important role in the zenith sky brightness (Figure 3). Although in Equation (10) the two terms involving powers of ten account for not only the case of single scattered light but also for double scattered light, the term representing the phase function [Equation (11)] only account for single scattering; therefore, Equation (10) cannot be applied to the zenith direction. Note that Equation (10), through the factor Nλ, is wavelength-dependent. Thus an integral over the spectral responsivity of the detector must be made. Also this equation is dependent on direction; using a wide field-of-view detector an integration over sky position in the field of view must be made. Finally, it is emphasised that the changing sky brightness during the totality is primarily due to varying fractions of atmospheric illumination within the penumbra; therefore, any comparison can only be correctly made with a detailed model involving the multiple scattering of light and the geometry of the specific eclipse. However by taking into account that the photometric measurements made with the EEO’s sensor were integrated in the visual range (400–700 nm ), a value of 11,700 for Nλ is given for this range (Schaefer, 1993). By its wide field-of-view, the detector considered (EEO) also integrates in a hemispherical way the light over the sky position. However considering that the sky brightness decreases from the horizon to higher altitudes (except in that area close to the Sun) (Jeske, 1988), and that the sensor collects the light on the horizon between 0◦ and 180◦ on this plane but in altitude only between 0◦ and 90◦, the light mostly comes from the horizon. Thirdly, a single scattering process in the penumbra produces much of this light. In this manner, the values of Bday to be used in Equation (10) are instrumentally integrated and the corresponding values of k can potentially be interpreted as a rough estimate of this parameter in that direction, in that spectral range. For qualitative purposes these values can be considered suffice to outlook the variation of the extinction coefficient in the visual and in the specified direction. In the calculations a conversion factor of 47.6 nL/kR was applied which was obtained from the data given in Table II of the paper by Dandekar (1968). There it is stated that 0.9 mL is equivalent to 21.0 kR/Å; taking into account that the effective width of the visual is ∼900 Å, 1 kR = 9 × 105 nL/(900 Å × 21 kR/Å) = 47.6 nL. As it is known, one lambert is equal to one lumen (lm) per square centimetre and a lux (lx) is one lumen per square metre. The latter has recently been used by Shiozaki et al. (1999), Darula and Kittler (2000), and Darula et al. (2001) in their papers related to variations of daylight during solar eclipses. In other recent paper on sky brightness when the sun has been in eclipse at dawn, the candle per square metre unit has been used by Liu and Zhou (1999). This demonstrates that photometric measurements and their units, in its different forms, continue nowadays being used to study the sky brightness during solar eclipses since the first reliable instrumental observations of this type were made in the last quarter of the ninetieth century by Abney and Thorpe (1889); moreover, these are justified when they have to be associated to visual observations (as in this paper). In order to have a conversion factor from any of these units of luminous flux to radiant flux (i.e., [lm W −1]), a quantity called luminous efficiency of the radiation has to be defined which, in turn, depends on wavelength (Middleton, 1952). For example, it has a value of 685 lm W−1 at 5550 Å (McCluney, 1968). The method to obtain the integrated factor, as well as other conversion factors between radiometric-photometric units, implies an integration process over the wavelength range of interest which takes into account this efficiency and the specific radiometric quantity involved. For further details the reader is referred to Lovell (1953), Meyer-Arendt (1968) andMcCluney (1968) who give basic comprehensive treatments on this matter. 6. Results, Discussion and Analysis Due to the different sensors used and their variability in solar wavelength sensitivity span and spectral response, a strict intercomparison among these curves is not possible. Nonetheless some useful information can be obtained. First of all with the support of Figure 7, it can be estimated that the horizon sky brightness is reduced by about three orders of magnitude as compared with that due to the uneclipsed Sun during the morning and also during the afternoon. Note that the curve is not symmetric around the midtotality. Given the specific direction involved (perpendicular to the Sun track vertical plane) this is a consistent feature because in normal conditions the horizon sky brightness had decreased steadily, from the morning until late in the afternoon. The minimum value observed in this case during the totality was approximately 7 × 10 kR (70 kR). For comparison note that the brightness of the night sky is about 250 R (0.250 kR) and the aurora lies between 1 and 1000 kR (Jerrard and McNeill, 1986). Therefore the horizon sky brightness in this particular direction, and during the totality, turned out to be ∼ 280 times brighter than that of the night sky, or alternatively, ∼ 36 times brighter than that of the typical sky at full Moon. The maximum value observed during the morning (pre-eclipse) was ∼ 6.5 × 104 kR, and the maximum value during the afternoon (post-eclipse) was ∼ 2.2 × 104 kR which are values, in order of magnitude, near those typical of the brightness for a normal day light clear sky (6.95 × 105 kR). This indicates that the horizon sky brightness in that direction, and under noneclipse conditions, was 10 times less bright than that of a typical daytime. Taking the maximum (noneclipse condition) and minimum (totality) values as references, the reduction in brightness was a factor of 103. This kind of reduction has been observed by Dandekar and Turtle (1971) during the total solar eclipse on 7 March 1970, at solar azimuth 180◦ and a distance 90◦ away from the Sun, at 630 nm wavelength. From Figure 7, it could be estimated that the horizon sky brightness, opposite the umbra path, is reduced by only one order of magnitude as compared with that due to the uneclipsed Sun during the morning and also the afternoon. It is convenient to bear in mind that this is the direction containing the Sun track vertical plane. During the morning this direction is opposed to the Sun, and during the afternoon it is approximately in the direction of the area just below the Sun. The curve is not symmetrical around the midtotality but it is inverse to that of Figure 6. The sky brightness on a normal day increases from that particular direction as long as the Sun is going down towards its sunset. The minimum value estimated during the totality was approximately 2.4×105 kR. The maximum value observed during the morning (pre-eclipse) was ∼ 3×106 kR, and during the afternoon (posteclipse), ∼ 1.5×107 kR. In comparing these two latter figures with that of a typical daytime sky, it is noticed that in this particular direction the horizon was brighter than that of a typical daytime sky by a factor of 10 and 102, respectively. However this last factor is possibly enhanced to this order of magnitude due to a significant contribution of the direct solar radiation arriving at the detector, given the direction considered which is, during the afternoon, towards the sky area below the Sun. From Figure 8, the zenith sky brightness has a reduction of about three orders of magnitude as compared with that due to the uneclipsed Sun. This reduction is similar to that obtained for the horizon perpendicular to the shadow path. Recalling that the Sun never was into the field-of-view of the RS detector (17.1◦/2 = 8.55◦), the maximum zenith sky brightness preand post-eclipse was ∼104 kR during the period covered, indicating that this brightness was constant throughout the period covered for the uneclipsed Sun, that is to say, regardless of the position of the Sun. This is consistent with the zenith sky brightness measurements made by Dandekar (1968), Velazques (1971), and Shaw (1975). For the totality, the minimum value was ∼ 2.7 × 10 kR (27 kR) being approximately 108 times brighter than the night sky, or alternatively, ∼14 times brighter than that of the typical sky at full Moon. This last result is quite consistent to that obtained by James (1998) who inferred that the zenith sky brightness at the same location (Punta de Barco) was equivalent to ∼10 times the fullMoon sky brightness. Silverman andMullen (1975) reviewing the sky brightness during eclipses consider many related possibilities as references; among them are: photometric results, star sightings, twilights, comparison with moonlight, and visibility of printed or written letters, instrument parts, and objects. They state that an estimate of the brightness ten times that of a full Moon is, of course, considerably less than the true value. Thus it is reasonable to think that the result obtained in this work is more reliable. Ignoring this discrepancy it can be said that the zenith was somewhat brighter than a typical full-Moon-sky. From this result quoted it can be noticed that the zenith brightness turned out to be less bright than the horizon which, in turn, is a result consistent with those obtained in past total solar eclipses. In particular, it has been found that the horizon Figure 13. Profile of the global total extinction coefficient in the visual and those for each component contributing to it, between the first and fourth contacts, calculated from meteorological data provided by the ARVAL Observatory and using an empirical model by Schaefer (1993), at Punta de Barco (Paraguan´a Peninsula), Venezuela. Note that the total profile is controlled by the aerosol profile. The water vapour profile is also included for comparison purposes. perpendicular to the shadow path is approximately 2.6 times brighter than the zenith. This result is very similar to that found by Schaefer (1986) who studied the brightness of the night sky (roughly twice) for a set of “standard” observing conditions at Cerro Tololo Interamerican (Chile) and Kitt Peak National observatories. From Figure 9 the brightness begins to change just 6 min preceding and following the totality. In terms of solar obscuration, this change begins to occur when the solar disc has been obscured by 91.99%. In terms of solar brightness it begins to appear when the sun magnitude has fallen by 3 units, approximately, few minutes before the onset of totality at second contact (Hughes, 2000). Yet this change is even more drastic when this percentage yields 98.81% as can be seen in this figure. Below this value effects associated with total solar eclipses can be interpreted in terms of attenuated, but otherwise essentially unchanged Sun (Sharp et al., 1971). Figure 13 shows the profile of the global total extinction coefficient in the visual, kg, and those for each component contributing to it, between 12:42 and 15:39 (local time), are also shown. It is evident that the aerosol is the main contributor to this coefficient in comparison with the other two (water vapour, Rayleigh and ozone extinction) so that ka _ kwv > kR > koz. It is also seen that it is strongly dependent on relative humidity (see Figure 11) which rises during the totality and just after it (see Figures 10 and 11). This last feature is consistent with observations made of relative humidity in past eclipses (Ugueto, 1916; Brooks et al., 1941; González, 1997). The calculation of kg in the way shown by Equations (1), (6)–(9), is very useful because it gives an estimation of the general darkness of the sky during the totality. Table I presents values for kg, for seven different situations at night, taken from Schaefer (1986). Note from this table that a very poor night has a kg = 0.50 mag/air mass; from Figure 13 it can been seen that, for example, at 14:07 (local time) this coefficient increased to a value of 0.86 mag/air mass, and for 14:12 a value of 1.11 mag/air mass was obtained, indicating a very poor “night” during the totality. In fact only Mercury, with an apparent visual magnitude (mV) of −0.2, Jupiter (mV = −2.6) and Venus (mV = −4.22) were seen clearly close to the Sun by this author, and only two stars, Deneb (α Cyg) with mV = 1.25 (Allen, 1973), and Fomalhaut (α PsA) with mV = 1.16 (Allen, 1973), were reported present, respectively, by Schaefer (1998), on Aruba island very close to the Paraguaná Peninsula, which can be seen on the horizon from Punta de Barco (actually 31 km off the peninsula coast; see Figure 2), and by the ARVAL Observatory at this last observation site. According to the criterion given by Silverman and Mullen (1975) a dark eclipse can be qualified as such if stars of third magnitude (mV = 3) can be observed. In comparing the above reported star sightings with this criterion, it is certain that the eclipse here was not dark at all even in the centre line of the path where the observation site was located. It is expected that this limit decreases due to a dependence of it on the distance to the nearest edge of the shadow. The most probable cause explaining the results reported in this work resides in the influence of the aerosol contained in the troposphere, on the scattering of light coming from the penumbra and in the umbra itself (see Figure 3). It is well known that some of atmospheric aerosol species are hygroscopic, and their optical properties are a strong function of relative humidity (Hegg et al., 1993; Tang, 1996). As this parameter increases during the total phase of a solar eclipse leading to a decrease in water vapour content of the air (Bose et al., 1997), the wáter uptake by aerosols also increases, and the scattering of light by them likewise. This can explain the fact that the extinction coefficient of aerosols increases during the totality of an eclipse of the Sun, increasing the sky brightness at the same time. Moreover the Paraguaná Peninsula (∼=2396 km2) is a semi-arid zone connected to mainland through a very narrow isthmus or strip of land 30 km (18 miles) in length by 5 km (3 miles) in width, called the Isthmus of the Medanos (Figure 2). It is arid but with some parts constituted by big and tall shifting sand-dunes called the Medanos of Coro (Coro city is the capital of Falcón State) that have been formed by the gusting east winds. The tallest of these “Medanos” can reach heights over 25 m (81 ft), along the isthmus (as well as a small section of the continental coast nearby). Possibly the natural aerosol background of the region TABLE I Global extinction coefficient values for different ambient conditions (Schaefer, 1986) kg (mag/air mass) Description 0.10 Best night on dry mountain top 0.15 Average night on dry mountain top 0.20 Poor night on dry mountain top 0.20 Best night at dry sea level site 0.25 Average night at dry sea level site 0.25 Best night at humid sea level site 0.30 Average night at humid sea level site 0.40 Average night at poor site with much dust or humidity 0.50 Very poor night These descriptions are provided so that estimates of the average can be deduced in the absence of better data. Variations around the stated mean will occur at different sites, times of day, and times of year. A “dry sea level site”, for example, may have quite clear skies or it may have morning hazes or it may have substantial amounts of windborn dust. The user should guard against known climate change. is a mixture externally composed of marine hygroscopic aerosol and dust particles from these sand-dunes aloft with a high scattering altogether. During the eclipse the effect referred to above could have been enhanced by an additional increase of the normal aerosol background of the zone, due to the presence of thousands of cars, coaches, and other motor vehicles which visited the Peninsula. It seems probable that it could contribute to make the aerosol internal mixture more complex but not enough to increase appreciably the aerosol concentration in the area as to be considered highly polluted. It is interesting to note that a few previous works have been enough to demonstrate the influences of the meteorological parameter changes upon atmospheric aerosol properties as a consequence of solar eclipses. Perhaps Maske et al. (1982), Manohar et al. (1985), and Fernández et al. (1993) were the first authors in revealing direct and indirectly these influences, in particular, from the solar eclipse of 16 February 1980 in India (Fiala and Lukac, 1978; Bhattacharyya, 1978; Maske et al., 1982; Manohar et al., 1985) and from the solar eclipse of 11 July 1991 in Costa Rica (Fernández et al., 1993). In the report of Maske et al. (1982) observational results are presented indicating that an increases of the concentration of suspended particulates was detected during this eclipse, being well above the usual range of suspended matter in clean mountain air. In the same event, from the lowered atmospheric conductivity measurements made at Raichur by Manohar et al. (1985), they suggested the formation of small particles due to high humidity conditions by the eclipse forcing as the explanation for the atmospheric conductivity decreases and the subsequently increasing in the atmospheric electric field: in the presence of such particles, small ions are lost through diffusion over the surfaces of these particles leaving large ions that produce a shift in the size distribution from small ions to large ions. Interestingly, from the measurements made by Fernández et al. (1993) of direct solar radiation during the 1991 solar eclipse in Central America (Fernández et al., 1992), they were able to deduce an increasing of aerosols in the atmosphere through an analysis of the Ångstrom’s parameters (turbidity coefficient β and growth exponent α), thus corroborating the finding of Maske et al. (1982). As a response to the totality these parameters acquired unusual values varying in opposite directions, β rising and α diminishing in the indicated interval. According to their explanation this is indicative of a presence of a high number of large particles in comparison with a low number of small particles. As mentioned above, they agree that aerosols may have been salt particles from the sea and dust particles from the ground. The efficiency of such particles as condensation nuclei depends on their properties. Hygroscopic particles are of special interest: When RH is high, they absorb wáter and grow. Therefore, their size augment during the eclipse as temperature falls sensibly; as a result, RH rises in a comparatively short time, effect this that, in passing and historically speaking, was already noted as early as 1927 precisely in the solar eclipse of 29 June but at Jokkmokk, northern Sweden, on the Arctic Polar Circle (Stenz, 1929). Later reports on direct atmospheric aerosol measurements under solar eclipse situation correspond to Dani and Devara (1996), Sapra et al. (1997a,b), Niranjan and Thulasiraman (1998), Bansal and Verma (1998) and Singh et al. (1999) which dealt with the solar eclipse of 24 October 1995 also in India (Espenak and Anderson, 1994). In the second and third of these works a 2–4 fold increases in the aerosol number and mass concentration, occurred mainly in the sub-micron size and after a time lag of about 80 min from the beginning of the eclipse, were reported at Bhabha Atomic Research Centre in Trombay where the phenomenon reached a partial maximum of 72% obscurity. In the fourth one, Niranjan and Thulasiraman (1998), working with a network of 5 multiwavelength radiometers, detected an increases of the aerosol optical depth in a tropical site located on the east coast of India (Visakhapatnam) as a result of a change in the local meteorological parameters, associated with the reduction in the solar flux due to a total solar eclipse. Certainly this increases is related to a change in the optical properties of the coastal aerosol due to a change in the ambient relative humidity. They also reported a change in the aerosol size distribution. Similar results, found at Robertsgunj (Uttar Pradesh), were previously reported in the first of these works (Dani and Devara, 1996). Observations made at Roorkee (90–92% maximum obscurity), described in the last two of these reports, also concluded that the aerosol concentration increased during the phenomenon. Figure 14 depicts a general view of the variation of the extinction coefficient for the horizon direction, opposite (anti-parallel) the shadow path, between 11:00 and 17:00 local time. It fluctuates in an irregular way between 0.99 and 0.09 mag/air mass, the average being equal to 0.57 (∼0.60) mag/air mass. In general irregular fluctuating behaviour is typical for this coefficient in the troposphere, mainly in the boundary layer, on a daily basis. By applying Equation (13) a gross mean value of 0.55 for the optical depth was found in that particular direction along that day. Note that during the total phase, and after the third contact (14:13:02, local time) an increase of the extinction coefficient is detected as a consequence of the atmospheric response to the eclipse; this result is consistent with that obtained for the global total extinction coefficient at Punta de Barco (see Figure 15) and with that expected to happen during and just after this phase (Maske et al., 1982; Fernández et al., 1993; Dani and Devara, 1996; Sapra et al., 1997a, b; Niranjan and Thulasiraman, 1998). Figure 14. Variation of the extinction coefficient in the horizon direction, opposite (anti-parallel) the shadow path, between 11:00 and 17:00 local time, the day of the eclipse. The values are gross estimates. However this profile can portray or represent the variation of this parameter at that day, and in that direction. Note that during the total phase, and after the third contact (14:13:02, local time) an increase of the extinction coefficient was detected. Figure 15. The shadow path of the total solar eclipse of 3 February 1916 through Venezuela. Tucacas town is located on the coast, and Barquisimeto city is about the centre of the map. Both are indicated as a black dot (map reproduced from Ugueto’s report). 7. Comparison with the Total Solar Eclipse of 3 February 1916 As mentioned earlier, the total eclipse of 3 February 1916 was the first total solar eclipse observed from Venezuela in the last century. The shadow path can be seen in Figure 15. Coincidentally it also passed over Falcón State and occurred on a Thursday in a similar month as it was for 1998. A special expedition from the Cagigal Observatory of Caracas went to a small coastal town called Tucacas (68◦18_13.5__ W, 10◦47_37.9__ N, 0 m above sea level) to make astronomical, atmospheric and meteorological observations a few days previous to the eclipse and during that day (Ugueto, 1916). The local circumstances for this location as deduced observationally by the expedition were: first contact at 9:55:28.6, second contact at 11:26:48.6, third contact at 11:29:19.8, and fourth contact at 13:00:51.2, all these times being given in local time (UT-4.30 at that time). The totality lasted ∼2 min 24 s. The atmospheric conditions for the eclipse day were described as very good although some clouds were present momentarily at 11:15. A variation in temperature of −9.2 ◦C was noted between 10:05 and 11:25 (local time). For Tucacas town Equation (6) and Equation (9) remain the same and Equations (7)–(8) are reduced to, koz = (0.031/3.0){3.0 + 0.4[0.19 cos(αs) − 0.84]}, (14) ka = 0.12[1 − (0.32/ ln S)]4/3[1 + 0.33 sin(αs)], (15) to find, according to Equation (1), the total extinction coefficient in the visual for that particular location during that eclipse. The data for S and t were taken from Ugueto (1916), and the data for αs was calculated using the software by Duffet- Smith (1997). Figure 16 presents the temperature measurements made the day of this eclipse by the Cagigal Observatory team. Figure 16. Variation of temperature during the eclipse of 3 February 1916 between 09:55 and 12:55 (local time), measured by the Cagigal Observatory team at Tucacas (Falc´on, Venezuela). Figure 17 shows the extinction profile for each of the different components contributing to the total extinction as well as the total extinction and relative humidity profiles. It can be seen that, again, the total extinction in the visual is strongly dependent on aerosol extinction (ka _ kwv > kR > koz). During the totality a value of 0.78 mag/air mass for the total global extinction coefficient in the visual was obtained at 11:25, indicating also a poor “night” (k > 0.5). In fact, only Venus, Jupiter and Vega (α Lyr), with mV = 0.04 (Allen, 1973), were reported (Ugueto, 1916). In comparing this result with that obtained for the total solar eclipse of 1998 at 14:12 (kg ∼= 1.11 mag/air mass), it can be inferred that the eclipse of 1916 was darker than 1998’s by a factor of ∼0.70; in other words, 30% less bright. This outcome can be appreciated better in terms of visual observations. During the totality of the 1916 eclipse the Cagigal Observatory team could see just one star (Vega) which is less bright than those (Deneb and Fomalhaut) seen by the ARVAL Figure 17. Profile of the global total extinction coefficient in the visual and those for each component contributing to it, during the solar eclipse of 3 February 1916, at Tucacas town (Falc´on State, Venezuela) between the first and fourth contacts, calculated from meteorological data provided by Ugueto (1916) and using the same model as in Figure 13. Note again that the total extinction profile is controlled by the aerosol extinction profile. The water vapour profile is also included for comparison purposes. Observatory team, and Schaefer (1998), respectively, during the totality of the 1998 eclipse. It is surprising, then, that despite its closeness to Vega in the sky, Deneb, being brighter than Vega, was not reported as sighted by the Cagigal team. Because Tucacas town and Punta de Barco are hot places during the day and throughout the year, the change in temperature during the central phase of the respective eclipses had to be appreciably noted even more for the times when it occurred: the first one at the end of the morning, and the second one near the middle of the afternoon. The first one was “fresher” than the other. In the first one the temperature descended from about 34.2 ◦C to 25 ◦C; in the second one from about 30.9 ◦C to 25.2 ◦C. Consequently between both eclipses a significant difference of 4.2 ◦C in the reduction of temperature was found. It is fair to mention that the Cagigal group also made photometric measurements of the sky during the first part of the eclipse. They used a Heyde aktino photometer which was calibrated with a lamp with only three readings. Subsequently six measurements were made before the second contact, and just one during the totality. The first one, at 09:20 (local time), gave 16.5 instrumental units, and at totality 1.5 instrumental units. Because the units were not specified nor the sky area covered or direction to which their instrument was pointed, a photometric comparison with the 1998 eclipse could not be made. Figure 18 gives a plot of their measurements from which can be seen the reduction of the sky brightness. Figure 18. Plot of the photometric measurements made by the Cagigal Observatory group of Caracas, using a Heyde aktino photometer, of the sky brightness during the total solar eclipse of 3 February 1916 at Tucacas town (Falc´on State), Venezuela. Because the units were not specified, no comparison could be made. 8. Overview and Conclusions This paper presents the results of photometric measurements of the intensity of the sky brightness obtained before, during, and after the total solar eclipse of 26 February 1998 at the Caribbean Peninsula of Paraguaná (Falcón State) in Venezuela, in three particular directions: Zenith, horizon anti-parallel or opposite to the Umbra path, and horizon perpendicular to this path. These measurements during the totality showed that there was a decrease of three orders of magnitude in the zenith sky brightness as compared to that for noneclipse conditions on that day. Also it was observed that there was a decrease in the horizon sky brightness, perpendicular to the shadow path, by the same order of magnitude as compared with that for the normal day sky in this event. The directions considered on the horizon, and the period of time covered, account for the asymmetry observed in the curves obtained before and after the totality. As a result, consistent with those general obtained for total solar eclipses, the zenith brightness turned out to be less intense tan the horizon. In particular, using the sky brightness at full Moon as a reference, the minimum value corresponding to the horizon perpendicular to the shadow path was 36 times, and that to the zenith was ∼14 times brighter, respectively. The zenith brightness during the totality turned out to be 4 times brighter than that measured OPTICAL RESPONSE OF THE ATMOSPHERE DURING SOLAR ECLIPSES by James (1998) for the same location. As in previous eclipses, the change in this brightness began to be appreciable when the solar disc was obscured 98.81%. This paper also presents, in global terms, an estimate of the total extinction coefficient in the visual and their components, produced by Rayleigh scattering, ozone, water vapour and atmospheric aerosol extinction. The results show that atmospheric aerosol is the major component contributing to the total extinction coefficient in the visual, and ozone is a minor one. During the totality this coefficient attained a value of 1.11 mag/air mass which indicates that the darkness produced was indeed very poor. Besides three very bright planets which were clearly seen close to the Sun, only two bright stars were reported to have been sighted at the same time. Therefore, as a first conclusion, the most probable cause explaining this result is the influence of the atmospheric aerosol scattering on the sky brightness during the total phase of the eclipse. This conclusion is supported by comparisons made with the total solar eclipse of 3 February 1916. The results obtained show that the total global extinction coefficient in the visual is strongly dependent on atmospheric aerosol extinction and less on ozone. During the totality a value of 0.78 mag/air mass was estimated for this coefficient indicating that the darkness produced in that eclipse was also poor. Only one bright star was reported along with three bright planets in the sky of the observation site. Even so, and as a second conclusion, this eclipse was 30% darker than 1998’s. Also the temperature variation was greater in the first one than in the second one. In addition to the above estimates, photometric measurements were used to make estimations of the extinction coefficient (within at least 20% accuracy) before, during, and after the phenomenon for the horizon direction, opposite the shadow path, in the visual. From these estimations a calculation of the mean optical depth in that particular direction was made. The results indicate that the extinction coefficient fluctuated in an irregular manner (between ∼0.1–∼1.0 mag/air mass) for the horizon direction. On average a value of ∼0.60 mag/air mass was found. The corresponding value for the optical depth was 0.55. An increase of the extinction coefficient during and after the total phase was detected. It has been photometrically demonstrated that the sky during the totality of the 1998 eclipse was very bright on the horizon as well as at the zenith. This is corroborated by direct visual observations made by this author and by others in the same area which point out that only three planets and only two bright stars could be seen. This general result has in turn been corroborated by applying an empirical model in which astronomical and meteorological data was used. By taking into account the two eclipses considered here, it seems in general terms that, observing phenomena of this type just near the sea, brighter skies are produced during the totality. This conclusion is supported by the results reported by Niranjan and Thulasiraman (1998) of the tropical total solar eclipse of 24 October 1995 for a seaside location on the east coast of India, along with the results reported by Fernández et al. (1983) of the tropical total solar eclipse of 11 July 1991 for some towns along the west coast of Costa Rica on the Pacific Ocean. It is highly recommended, using future total solar eclipses, to make spectral measurements of the radiance of the eclipsed sky, towards the zenith, in order to attempt additional tests such as those made by Shaw (1978, 1979) of his model (Shaw, 1978). Near the horizon a model explaining the sky colour during a total solar eclipse has been proposed by Gedzelman (1975), which evidently depends on wavelength. In future eclipses of this type an experimental verification of this model is also suggested and expected because so far none has been done. The central focus of this paper has been first to put emphasis in the influence exerted by atmospheric aerosol on the sky brightness during a tropical total solar eclipse, by using astronomical and meteorological data in an empirical model, and second, along with direct visual reports of stars and planets, to present consistent photometric measurements of this brightness. Nonetheless, based on the work of Darula and Kittler (2000), and Shiozaki et al. (1999), an alternative and interesting approach to study daylight levels at the crucial stages of a solar eclipse has recently been published by Darula et al. (2001) which has been applied by them to the partial solar eclipse of 11 August 1999 over Athens and Bratislava. In the special and extreme case of an eclipsed rising sun, Liu and Zhou (1999) have developed an empirical model to estimate the sky brightness for analysing the curious optical effect known as “double dawn” (Stephenson, 1992; Liu et al., 1999). Possibly past total solar eclipses were darker (Schove and Fletcher, 1987) than the present ones in populated areas given the anthropogenic alteration of the particle composition of the air today. People at the beginning of the last century, and earlier, could enjoy more this kind of phenomenon from cities and towns. Quoting Ugueto’s historical report of 1916 (in translation from the Spanish): “Through the different phases of the eclipse the book known as “Connaissance des Temps” was set to a distance so that the title on a blue background could be read easily by an observer with normal sight and in broad daylight; the following observations were obtained: At 10h 31m one could read it from 4 metres, at 11h 5m from 3 metres, and during the totality from 0.80 to 1 metre”. From another report (del Castillo et al., 1916) of the observation of the same eclipse in Venezuela, but for a different location (Barquisimeto city; see Figure 15), the following statement was written (in translation from the Spanish): “At the moment of the totality one could read, even though with some little effort. On the Imitation of Christ, trans. by Fray Luis de Granada, B. Herder Ed., Friburgh, 1905 [8 point types] one could not read it; and on the History of the Earth by L. de Launay, José Ruiz Ed. Madrid, 1907, [12 point types] it could”. Following the division proposed by Silverman and Mullen (1975) it seems that the 1916 eclipse, at Tucacas, can be classified as a light eclipse. A dark eclipse, on the contrary, is that in which print, dials, objects, etc., cannot be distinguished according to this division. For the 1998 eclipse at Punta de Barco James (1998) reported that small numbers and markings on cameras and lenses, which had been completely invisible during totality from Chile in 1994 (the specific location was not specified), were easily seen at that location; this, in turn, classifies the 1998 eclipse at Punta de Barco as a light eclipse too. As expected (Meeus, 1982), it will take a long time before another total solar eclipse takes place in Venezuela. Although this will not occur for another 72 years, on 28th September 2071, it is to be hoped that the results presented in this work will contribute to the series of solar eclipse studies in this country started with the pioneering reports on the eclipse of 3 February 1916 and that will keep their continuity in time. Acknowledgements First I wish to acknowledge in Venezuela the indispensable financial support provided by the Fundación Polar (Caracas) to cover international and national travel expenses; their co-operation is highly appreciated. Also this acknowledge is extended to Prof. C. Noguera, Faculty of Engineering, Universidad Central (Caracas), and his eclipse team, who provided transport and logistic assistance. Particular thanks are given to Ing◦. V. Castro and relatives, wardens of the “Radio Nacional de Venezuela” booster station at Punta de Barco (Paraguaná, Falcón), for his hospitality, friendship, and logistic support. Thanks are also due to Lic. F. Galea of the Biblioteca Central, Universidad Central (Caracas), who kindly provided a copy of the Ugueto’s report of 1916 eclipse, and a copy of del Castillo’s 1916 eclipse report. I am also indebted to A. Valencia, A. Arnal, and A. Laya of ARVAL Observatory team (Caracas) for providing the meteorological data from their web site, the map of Paraguaná Peninsula presented in this work, and bibliographical assistance. In England, at the University of Essex, I am grateful to Dr. S. Nogues, and Mr. P. Beckwith for their assistance in calibrating the equipment. Mr. T. Trill also gave additional technical support. Mr. T. Vigors and Mr. S. Doubtfire gave very useful computing assistance. Dr. I. Colbeck provided valuable additional financial and administrative support and supplied the equipment used in this work. Also I wish to thank him, along with Mr.M. O’Really, for their collaboration in the revision and correction of the typescript. Dr. D. H. Fremlin and Dr. E. Izquierdo made fruitful mathematical comments. In the United States special thanks are given to Dr. S. Silverman and Dr. J. M. Pasachoff for providing important bibliographical material and scientific information, to Dr. B. Schaefer for his valuable discussion and comments which contributed to improve this paper, and to Dr. F. Espenak for his kindly help in providing eclipse obscuration and other 1998 eclipse calculations. Mr. P. Poitevin helpfully provided a copy of the Sifontes’ report from Belgium. Dr. E. Hanna, Dr. B. K. Sapra and Mr. G. Comello supplied relevant references from England, India and The Netherlands, respectively. The University of Los Andes (Mérida-Venezuela), through CELCIEC (Fac. Ciencias), helped to post-edit the figures. References Abney, W. de W. and Thorpe: 1889, Phil. Trans. Roy. Soc. Lond. 180, 363. Allen, C.W.: 1973, Astrophysical Quantities, 3rd edn., The Athlone Press, University of London, pp. 176, 239–241. Anderson, J.: 1999, ‘Meteorological Changes during a Solar Eclipse’, Weather 54, 207–215. Baker, D. J.: 1974, ‘Rayleigh, the Unit of Light Radiance’, Appl. Opt. 13, 2160–2163. Baker, D. J. and Romick, G. J.: 1976, ‘The Rayleigh: Interpretation of the Unit in Terms of Column Emission Rate or Apparent Radiance Expressed in SI Units’, Appl. Opt. 15, 1966–1968. Bansal, M. K. and Verma, T. S.: 1998, ‘Aerosol Measurements at Roorkee Relating to the Total Solar Eclipse of 24 Oct. 1995’, Indian J. Radio Space Phys. 27, 260–263. Betenska, N.: 1944, ‘Concerning the Brightness of the Sky and the Illumination of the Earth during the Full Phase of a Solar Eclipse’, J. Br. Astron. Assoc. 54, 124–125. Bhattacharyya, J. C.: 1978, The Eclipse of February 16, 1980 – Path of Totality in India, Report of India Institute of Astrophysics, Bangalore. Bose, S., Lal, M., and Ghosh, A. B.: 1997, ‘Measurements of Water Vapour over Delhi during the Solar Eclipse – 1995’, Kodaikanal Obs. Bull. 13, 183–187. Brooks, Ch. F., Fergunson, S. P., Kimball, H. H., Haurwitz, B., Brooks, E. S., Namias, J., Pierce, Ch. H.,Wexler, H., and Brooks, E.M.: 1941, Eclipse Meteorology with Special Reference to the Total Solar Eclipse of August 31, 1932, Harvard Meteorological Studies No. 5, Harvard University (Blue Hill Meteorological Observatory), Milton, MA, 109 pp. Bruin, F.: 1981, ‘Atmospheric Refraction and Extinction near the Horizon’, Arch. Hist. Exact Sci. 25, 1–17. Carman, E. H., Skinner, N. J., and Heeran, M. P.:1981, ‘Zenith Sky Brightness and Airglow Emissions during the Equatorial Solar Eclipse of 30 June 1973’, Appl. Opt. 20, 778–785. Dandekar, B. S.: 1968, ‘Measurements of the Zenith Sky Brightness and Color during the Total Solar Eclipse of 12 November 1966 at Quehua, Bolivia’, Appl. Opt. 7, 705–710. Dandekar, B. S. and Turtle, J. P.: 1971, ‘Day Sky Brightness and Polarization during the Total Solar Eclipse of 7 March 1970’, Appl. Opt. 10, 1220–1224. Dani, K. K. and Devara, P. C. S.: 1996, ‘Multispectral Measurements of Aerosol, Optical Thickness around the Total Eclipse of 24 October 1995 over Robertgunj, India’, J. Aerosol Sci. 27, S73–S74. del Castillo, E. A., Freitez, R., Wohnsiedler, S., Torrealba, J. Ma., Fortuna, R., del Castillo, J. M., García, J., de los Santos, F., Briceño, A. S., and Alvarado, R.: 1916, Our Contribution to the Observations of the Total Solar Eclipse of 3 February 1916, Tipografía Alvarez. Barquisimeto, Venezuela, 27 pp. (in Spanish). Darula, S. and Kittler, R.: 2000, ‘Daylight during Solar Eclipse’, CTU Rep. 4, 29–32. Darula, S., Kambezides, H. D., and Kittler, R.: 2001, ‘Daylight Levels during the Solar Eclipse of 11 August 1999’, Meteorol. Atmos. Phys. 76, 251–256. Duffett-Smith, P.: 1997, Easy PC Astronomy, Cambridge University Press, 151 pp. Espenak, F. and Anderson, J.: 1994, Total Solar Eclipse of 1995 October 24, NASA Reference Publication 1344, 73 pp. Espenak, F. and Anderson, J.: 1996, Total Solar Eclipse of 1998 February 26, NASA Reference Publication 1383, 97 pp. Fernández, W., Castro V., Wright, J., Hidalgo, H., and Sáenz, A.: 1993, ‘Changes in Solar Irradiance and Atmospheric Turbidity in Costa Rica during the Total Solar Eclipse of July 11, 1991’, Earth Moon Planets 63, 119–132. Fernández, W., Azofeifa, D. E., and Villalobos, J. A.: 1992, ‘El Eclipse Total de Sol del 11 de julio de 1991: Aspectos Generales’, in W. Fernández (ed.), El Eclipse Total de Sol del 11 de Julio de 1991: Observaciones Científicas Realizadas en Costa Rica, Editorial de la Universidad de Costa Rica, San José. Fiala, A. D.: 1976, Solar Eclipses of 1977, US Naval Observatory Circular No. 156, Washington, D.C., pp. 24–29. Fiala, A. D. and Lukac, R. L.: 1978, Total Solar Eclipse of 16 February 1980, US Naval Observatory Circular No. 158, Washington, D.C. Gedzelman, S. D.: 1975, ‘Sky Color near the Horizon during a Total Solar Eclipse’, Appl. Opt. 14, 2831–2837. González, G.: 1997, ‘Ground-Level Humidity, Pressure and Temperature Measurements during the October 24, 1995 Total Solar Eclipse’, Kodaikanal Obs. Bull. 13, 151–154. Halley, E.: 1715, Phil. Trans. Roy. Soc. 20, 145. Hearnshaw, J. B.: 1992, ‘Origins of Stellar Magnitude Scale’, Sky Telesc. 84, 494–499. Hegg, D., Larson, T., and Yuen, P-F.: 1993, ‘A Theoretical Study of the Effect of Relative Humidity on Light Scattering by Tropospheric Aerosols’, J. Geophys. Res. 98D, 18435–18439. Hughes, D. W.: 2000, ‘Brightness during a Solar Eclipse’, J. Br. Astron. Assoc. 110, 203–205. Hunten, D. M., Roach, F. E., and Chamberlain, J.W.: 1956, ‘A Photometric Unit for the Airglow and Aurora’, J. Atmos. Terr. Phys. 8, 345–346. James, N.: 1998, ‘The Total Eclipse from Venezuela’, J. Br. Astron. Assoc. 108, 127–128. Jerrard. H. G. and McNeill, D. B.: 1986, A Dictionary of Scientific Units, Chapman and Hall, Ltd., 5th edn., London, 117 pp. Jeske, H.: 1988, ‘Meteorology Optics and Radiometeorology’, in G. Fischer (ed.), Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, New Series, V/4b, Springer-Verlag, Berlin, pp. 187–348. Krisciunas, K. and Schaefer, B. E.: 1991, ‘A Model of the Brightness of Moonlight’, Publ. Astron. Soc. Pacific 102, 1033–1039. Kuiper, J. and van der Woude, M.: 1998, ‘De Totale Zonsverduistring van 26 Februari 1998(1)’, Meteorologica 2, 26–29, (Kuiper, J.) (2) 3, 32–33, (3) 4, 21–23. Lloyd, J. W. F. and Silverman, S. M.: 1971, ‘Measurements of the Zenith Sky Intensity and Spectral Distribution during the Solar Eclipse of 12 November 1966 at Bagé, Brazil, and on an Aircraft’, Appl. Opt. 10, 1215–1219. Liu, C-Y. and Zhou, X-L.: 1999, ‘The Sky Brightness When the Rising Sun Is in Eclipse’, Chin. Astron. Astrophys. 23, 249–257. Liu, C-Y., Li, J., and Zhou, X-L.: 1999, ‘Study on “Double Dawn” ’, Sci. China (A) 42, 1224–1232. Lockyer, W. J. S.: 1927, ‘The Degree of Darkness during the Total Solar Eclipse of 1927 June 29’, Mon. Not. R. Astron. Soc. 88, 97–101. Lovell, D. J.: 1953, ‘The Concept of Radiation Measurements’, Am. J. Phys. 21, 459–452. Manohar, G. K., Kandalgaonkar, S. S., and Ramana-Murty, Bh. V.: 1985, ‘Anomalous Behaviour of Electric Field in the Neighbourhood of Totality of Solar Eclipse’, Indian J. Radio Space Phys. 14, 80–81. Marriott, R. A.: 1999, ‘1927: A British Eclipse’, J. Br. Astron. Assoc. 109, 117–143. Maske, S. J., Nand, K., Behere P. G., Kachare, S. D., Ghanekar, S. G., and Vaidehi, P.: 1982, ‘How Air Pollutant Behaved on the Day of the Solar Eclipse on 16 February 1980’, J. Meteorol. Dept. India 33, 133–134. McCluney, W. R.: 1968, ‘Radiometry and Photometry’, Am. J. Phys. 36, 977–979. Meeus, J.: 1982, ‘The Frequency of Total and Annular Solar Eclipses for a Given Place’, J. Br. Astron. Assoc. 92, 124– 126. Meyer-Arendt, J. R.: 1968, ‘Radiometry and Photometry: Units and Conversion Factors’, Appl. Opt. 7, 2081–2084. Middleton, W. E. K.: 1952, Vision through the Atmosphere, University of Toronto Press, pp. 6–17. Miller, R. E. and Fastie, W. G.: 1972, ‘Skylight Intensity, Polarization and Airglow Measurements during the Total Solar Eclipse of 30 May 1965’, J. Atmos. Terr. Phys. 34, 1541–1546. Niranjan, K. and Thulasiraman, S.: 1998, ‘Aerosol Optical Depth and Size Distribution Changes during the Total Solar Eclipse of 24 October 1995’, Terr. Atmos. Oceanic Sci. 9, 255–262. Peñaloza, M., M.A.: 1975, A Determination of the Local Circumstances of the Partial Solar Eclipse of 13 December 1974 from Photographic Observations, University of the Andes, Faculty of Science, Department of Physics, Mérida, Venezuela, Internal Report (in Spanish). Peñaloza, M., M.A., 1999, ‘An Investigation of Aerosol Optical Properties: Atmospheric Implications and Influences’, Ph.D. Thesis, University of Essex, Colchester, UK, 365 pp. Röhl, E.: 1932, ‘Partial Eclipse of the Sun of 31 August 1932’, Bol. Soc. Venezolana Ciens, Nat. No. 10, 393–397 (in Spanish). Rosenberg, G. V.: 1966, Twilight: A Study in Atmospheric Optics, Plenum, New York, 160 pp. Sapra, B. K., Mayya, Y. S., Sawant, V. D., and Nambi, K. S. V.: 1997a, ‘Aerosol Measurements at Trombay Relating to the 1995 Eclipse’, Curr. Sci. 72, 321–325. Sapra, B. K., Sunny, F., Kulkarni, P. B., Mahadevan, T. N., and Pandit, G. G.: 1997b, ‘Atmospheric Characteristics at Trombay Relating to the October 1995 Solar Eclipse’, Kodaikanal Obs. Bull. 13, 161–166. Schaefer, B. E.: 1986, ‘Atmospheric Extinction Effects on Stellar Alignments’, J. Hist. Astron. Suppl. (Archaeoastron.) 27, S32–S42. Schaefer, B. E.: 1993, ‘Astronomy and the Limits of Vision’, Vistas Astron. 36, 311–361. Schaefer, B. E.: 1998, ‘To the Visual Limits’, Sky Telesc. 95, 57–60. Schove, D. J. and Fletcher, A.: 1987, Chronology of Eclipses and Comets – AD 1∼1000, The Boyde Press, Suffolk, UK, 356 pp. Sharp,W. E., Lloyd, J.W. F., and Silverman, S. M.: 1966, ‘Zenith Skylight Intensity and Color during the Total Solar Eclipse of 20 July 1963’, Appl. Opt. 5, 787–792. Sharp, W. E., Silverman, S. M., and Lloyd, J. W. F.: 1971, ‘Summary of Sky Brightness Measurements during Eclipses of the Sun’, Appl. Opt. 10, 1207–1210. Shaw, G. E.: 1975, ‘Sky Brightness and Polarization during the 1973 African Eclipse’, Appl. Opt. 14, 388–394. Shaw, G. E.: 1978, ‘Sky Radiance during a Total Solar Eclipse: A Theoretical Model’, Appl. Opt. 17, 272–276. Shaw, G. E.: 1979, ‘Sky Brightness during the 26 February 1979 Eclipse’, Appl. Opt. 18, 2362–2363. Shiozaki, M., Koga, Y., Nakamura, H., Shimazaki, S., and Kojo, S.: 1999, ‘Variations in Daylight during Solar Eclipses’, in Proceedings of the CIE Session, CIE Publ. No. 133, Vol. 1, 267–271. Sifontes, E.: 1920, ‘Meteorological Variations during an Eclipse – The Annular Eclipse of the Sun of 22 November 1919, Seen in Bolivar City, (Venezuela) SA, as a Partial Eclipse’, in Contributions to the Study of the Tropical Climatology in the South Zone of the Orinoco River, Part 3, Ciudad Bolivar, Venezuela, pp. 34–36 (in Spanish). Silverman, S. M. and Mullen, E. G.: 1974, Sky Brightness during Eclipses: A Compendium from Literature, AFCRL-TR74-0363, Special Report No. 180, Hanscom USAFB,Massachusetts, 196 pp. Silverman, S. M. and Mullen, E. G.: 1975, ‘Sky Brightness during Eclipses: A Review’, Appl. Opt. 14, 2838–2843. Singh, A. K., Nivas, S., Kumar, A., Rai, J., and Nigam, M. J.: 1999, ‘Variations in Atmospheric Aerosols and Electric Conductivity at Roorkee during the Total Solar Eclipse of October 1995’, Indian J. Radio Space Phys. 28, 1–10. Stenz, L. E.: 1929, ‘Radiation solaire à l’opacité atmosphérique pendant l’éclipse du soleil du 29.VI.1927 à Jokkmokk, Gerlands Beitr. Geophysik. XXI, 270–289. Stephenson, F. R.: 1992, ‘A Re-Investigation of the “Double Dawn” Event Recorded in the Bamboo Annals’, Quart. J. Roy. Astron. Soc. 33, 91–98. Tang, N. I.: 1996, ‘Chemical and Size Effects of Hygroscopic Aerosols on Light Scattering Coefficients’, J. Geophys. Res. 101D, 19245–19250. Taylor, B. J., Lucke, P. B., and Laulainen, N. S.: 1977, ‘Analyses of Atmospheric Extinction Data Obtained by Astronomers – I. A Time-Trend Analysis of Data with Internal Accidental Errors Obtained at Four Observatories’, Atmos. Environ. 11, 1–20. Ugueto, L.: 1916, The Total Solar Eclipse of 3 February 1916 in Venezuela, Ministry of Public Instruction – Cagigal Observatory, Litografía Comercio, Caracas, 42 pp. (in Spanish). USNO: 1939, Total Eclipse of the Sun – October 1, 1940 (Supplement to the American Ephemeris, 1940). The US Nautical Almanac Office – US Naval Observatory (USNO), Washington, D.C., 57 pp. Velasquez, D. A.: 1971, ‘Zenith Sky Brightness and Color Change during the Total Solar Eclipse of 12 November 1966 at Santa Inés, Perú’, Appl. Opt. 10, 1211–1214. Young, A. T.: 1990, ‘How We Perceive Star Brightness’, Sky Telesc. 79, 311–313. Zirker, J. B.: 1995, Total Eclipses of the Sun, Princeton University Press, 134 pp. Kepler 62e y 62f Planetas Acuosos "Estos planetas no se parecen a nada en nuestro sistema solar. Están cubiertos con océanos infinitos", dijo Lisa Kaltenegger, del Instituto de Astronomía Max Planck, que estudió los planetas. Se trata de los dos planetas de la estrella Kepler-62, que se encuentra a 1200 años luz de la Tierra, en la constelación de Lira. Dos de sus cinco planetas, llamados Kepler-62e y Kepler-62f, están en la zona habitable de la estrella, es decir, están a una distancia de su sol que les permite mantener la temperatura necesaria para que exista el agua en estado Líquido lo que es imprescindible para la aparición de la vida. En estos planetas hay agua y mucha. La vida podría existir, por tanto, pero no se sabe si podría existir alguna civilización. "La vida en estos planetas debería sobrevivir debajo del agua, lo que hace difícil conseguir los metales, desarrollar la metalurgia y crear la electricidad requeridos para la existencia de una civilización", señala Kaltnegger. "Sin embargo, los mundos podrían tener una gran belleza, con un océano azul bajo un sol de color naranja. Y quién sabe, quizá podría existir vida lo suficientemente inteligente para desarrollar tecnología hasta un nivel que nos sorprendería", añade Kaltnegger. Búsqueda de Agua en otros Planetas Jesús H. Otero A. La búsqueda de agua en los planetas extrasolares será más precisa y menos cara gracias a un nuevo método creado por astrónomos europeos. Lo que hicieron Jayne Birkby de la Universidad de Leiden y sus colegas fue poner al revés el método actual para buscar agua en los exoplanetas. Ahora los astrónomos estudian las fluctuaciones de la radiación de la estrella causada por la gravitación del planeta, pero Birkby estudió los cambios del espectro del planeta provocados por la estrella. Los astrónomos comprobaron con éxito su técnica estudiando el planeta gigante HD 189733b en la constelación de la Zorra (Vulpecula). Este gigante gaseoso, localizado a 63 años luz de la Tierra, tiene una temperatura que alcanza unos 1500 grados, y está muy cerca de su estrella, a la que orbita en dos días. Anteriormente se encontraron agua y monóxido de carbono en su atmósfera, así que era un buen candidato para comprobar el método. La nueva técnica hará una búsqueda de agua y de otros elementos cruciales para la existencia de vida más precisa y 'barata', ya que se podrán usar los telescopios en la Tierra en vez de los telescopios espaciales. Los científicos esperan que el telescopio E-ELT, cuyo lanzamiento está previsto en 2020, tenga la resolución requerida para buscar agua en los planetas más pequeños, parecidos a la Tierra. Punto de Inflexión Avaaz La última era de hielo ocurrió en seis meses. En solo seis meses, el planeta desató un ejército de bloques de hielo tan grandes como edificios por toda Europa y Estados Unidos. Fue un punto de inflexión climático que rompió el equilibrio del planeta por completo y puso en riesgo la supervivencia de todo y de todos. Ahora estamos al borde de vivir Tres puntos de inflexión iguales a este. En palabras de un destacado científico de la NASA, estamos ante un momento en el que podemos irnos al carajo. Ante este horrendo panorama, solo nos queda reaccionar ahora mismo de forma masiva y coordinada para cambiar el futuro que nos espera. Un acuerdo global con pasos básicos para acabar con las energías contaminantes puede salvarnos. Es por ello que la ONU ha convocado una reunión urgente sobre el cambio climático con los principales líderes del mundo en poco más de 100 días. Si les recibimos el 21 de septiembre con la movilización global por el medio ambiente más grande de la historia, podremos romper el poder de las megas mineras, y petroleras que están impidiendo que incluso los mejores políticos hagan lo correcto. Es imposible ignorar el peso de esta tarea. Pero cada pequeña acción unida a la siguiente se traducirá en la fuerza de millones de personas, ahogando las voces de los opositores y dando a nuestros jefes de gobierno la razón más poderosa para reaccionar ya y construir juntos un futuro limpio, verde y lleno de esperanza. Haz clic abajo para unirte: Los "puntos de inflexión" son espirales que se retroalimentan, donde el cambio climático revierte sobre sí mismo, provocando consecuencias catastróficas aceleradas. Ahora mismo, el gas metano, que es 25 veces peor que el CO2 para el cambio climático, está congelado debajo del hielo. Pero, a medida que el hielo se derrita, el gas se filtrará, causando un deshielo aún mayor. Cada deshielo nos hace perder otro de los escudos reflectantes que utilizamos para mantener el planeta fresco. En otras palabras, más metano y menos hielo aumentarán el cambio climático y todo empezaría a salirse fuera de control. Y éste es solo un ejemplo. Por eso los científicos han subido el tono y están pidiendo a gritos que actuemos ya. Aunque parezca desolador, tenemos las herramientas y sabemos cuál es el plan necesario para asegurarnos de que no caigamos en un punto de no retorno que acabe con nosotros del todo. Y, aunque requerirá una cooperación global de una envergadura mayor que nunca, nuestro movimiento de 36 millones de miembros tiene el poder ciudadano necesario como para motivar a los líderes de cada país a que den los primeros pasos. Está creciendo la expectativa sobre la cumbre climática de Paris 2015, donde se podría sellar un acuerdo global. Justamente hace unos días, Estados Unidos y China anunciaron nuevos planes para frenar la contaminación en sus países. En solo 100 días nosotros podemos dar un paso a otro nivel. Ocupar las calles es una de las herramientas más efectivas para crear cambio social porque demuestra poder, unión y coordinación en tiempo récord. A veces es la única vía: hay ejemplos clásicos como el movimiento antiApartheid de Sudáfrica hasta la lucha por los derechos civiles en los EE UU. Es el momento de aplicar ese poder al asunto más importante de nuestro tiempo: la supervivencia y un futuro próspero para nuestras familias, sus familias y las generaciones venideras. Evidence for solar wind modulation of lightning C J Scott, R G Harrison, M J Owens, M Lockwood and L Barnard CJ Scott et al 2014 Environ Res. Lett.9 055004 C J Scott IOP Publishing Ltd Abstract The response of lightning rates over Europe to arrival of high speed solar wind streams at Earth is investigated using a superposed epoch analysis. Fast solar wind stream arrival is determined from modulation of the solar wind V y component, measured by the Advanced Composition Explorer spacecraft. Lightning rate changes around these event times are determined from the very low frequency arrival time difference (ATD) system of the UK Met Office. Arrival of high speed streams at Earth is found to be preceded by a decrease in total solar irradiance and an increase in sunspot number and Mg II emissions. These are consistent with the high speed stream's source being co-located with an active region appearing on the Eastern solar limb and rotating at the 27 d period of the Sun. Arrival of the high speed stream at Earth also coincides with a small (~1%) but rapid decrease in galactic cosmic ray flux, a moderate (~6%) increase in lower energy solar energetic protons (SEPs), and a substantial, statistically significant increase in lightning rates. These changes persist for around 40 d in all three quantities. The lightning rate increase is corroborated by an increase in the total number of thunder days observed by UK Met stations, again persisting for around 40 d after the arrival of a high speed solar wind stream. This result appears to contradict earlier studies that found an anti-correlation between sunspot number and thunder days over solar cycle timescales. The increase in lightning rates and thunder days that we observe coincides with an increased flux of SEPs which, while not being detected at ground level, nevertheless penetrate the atmosphere to tropospheric altitudes. This effect could be further amplified by an increase in mean lightning stroke intensity that brings more strokes above the detection threshold of the ATD system. In order to remove any potential seasonal bias the analysis was repeated for daily solar wind triggers occurring during the summer months (June to August). Though this reduced the number of solar wind triggers to 32, the response in both lightning and thunder day data remained statistically significant. This modulation of lightning by regular and predictable solar wind events may be beneficial to medium range forecasting of hazardous weather. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. 1. Introduction The Sun undergoes an approximately 11 year activity cycle driven by the differential rotation rate of the solar convection zone. This differential rotation of the solar plasma distorts the solar magnetic field, gradually converting a polar field into a toroidal one throughout the solar cycle (Babcock 1961). As the magnetic field becomes more distorted, complex regions of intense magnetic field emerge through the photosphere. Observed in visible light, the emerged magnetic flux tubes with larger diameters appear darker than the surrounding photosphere and are known as sunspots. Solar influences on the terrestrial atmosphere, and, in particular, effects on electrified storms have been studied for many years, as summarized by Schlegel et al (2001). Stringfellow (1974), found a correlation between sunspot number and day on which thunder was heard ('thunder days') in the UK while other studies (Pinto et al 2013) have found an anticorrelation between solar cycle variations and thunder days. Brooks (1934) analysed data from a variety of locations and found a large variation in the relationship between sunspots and thunderstorm activity. Markson (1981) demonstrated a positive correlation between galactic cosmic ray (GCR) flux and ionospheric potential which, it has been argued, indicates a sensitivity of thundercloud electrification to ambient electrical conditions. Mechanisms have subsequently been postulated by which solar activity could influence the frequency of terrestrial lightning through modulation of the solar irradiance, the GCR flux or some combination of these two. These are discussed below. Increase in GCR flux may directly trigger lightning through 'runaway breakdown' of electrons, leading to breakdown (Roussel-Dupré et al 2008). This is supported by recent observations of energetic photons from thunderstorms, as predicted by runaway breakdown theory (e.g. Gurevich and Zybin 2005). In a study using 16 years of lightning data over the USA, Chronis (2009) found lightning activity dropped 4–5 d after a transient reduction in GCRs (a Forbush decrease), with a positive correlation between lightning and GCRs during the winter. Before the final triggering of lightning however, an increase in atmospheric ionization may also reduce the effectiveness of thunderstorm charging processes. In the extreme case of a simulated nuclear winter, in which atmospheric ionization was assumed to be vastly increased, Spangler and Rosenkilde (1979) estimated that charging of thunderstorms would be inhibited. However, following the Chernobyl reactor accident, in which lower troposphere ionization increases occurred, an increase in lightning was observed as radioactivity passed over Sweden, so the response may be complex (Israelsson et al 1987). For example, changes in atmospheric conductivity also occur with natural variation in cosmic ray ionization (Harrison and Usoskin 2010). Hence establishing the sign of the response in lightning to GCRs may therefore be complicated by competing processes, in which different regional meteorological characteristics also play a role. The analysis here uses well-defined marker events in the solar wind to investigate the response in lighting over the UK, as detected by a very low frequency lightning detection system. 2. Solar modulation of GCRs While most of the solar atmosphere is retained by gravity, energetic particles can still escape and form a continuous stream of plasma into interplanetary space known as the solar wind. There is also an extremely energetic, but intermittent, population of particles known as solar energetic protons (SEPs). The solar wind speed varies between 400 and 2000 km s−1 and is modulated by the local solar magnetic field at its point of emergence. Source regions connected to the heliospheric magnetic field (HMF) through 'open' field lines are associated with high speed solar wind streams while source regions with 'closed' magnetic topology are associated with slow solar wind streams. Despite differential rotation of the solar convection zone and surface, the magnetic field in the solar atmosphere means it rotates as if it were a solid body, resulting in a modulation of the solar wind at Earth of a period close to 27 d as fast and slow solar wind streams sweep past our planet. The passage of a fast solar wind stream also generates a temporary enhancement in plasma density and magnetic field strength of the solar wind at Earth called a 'co-rotating interaction region' (CIR) which further modulates the GCR flux (Rouillard and Lockwood 2007). Because CIRs persist for several solar rotations the decreases in GCR flux they cause tend to recur at Earth every 27 d, whereas the transient Forbush decreases do not. Transient Forbush decreases at Earth are caused by the passage of coronal mass ejections (CMEs). A CME is generated after a reconfiguration of complex regions of magnetic field in the solar atmosphere which result in vast magnetic 'clouds' of solar plasma erupting into interplanetary space. A typical CME contains around one billion tonnes of material travelling at up to 2500 km s −1. The CMEs add to the quiet solar wind outflow driven by the high temperatures of the solar atmosphere and as CMEs and the solar wind propagate away from the Sun, they extend the solar magnetic field into interplanetary space where it becomes known as the HMF. The occurrence rate of CMEs is modulated by the solar activity cycle, with more occurring at solar maximum. The relative strength of the HMF is therefore greater at the peak of the cycle (Owens and Lockwood 2012). The HMF modulates the flux of highly energetic particles, GCRs, which are pervasive throughout the solar system. These particles have been accelerated to such high energies (typically 0.5 GeV– 100 GeV) by extreme events in the Universe such as supernovae. On entering the Earth's atmosphere, these particles collide with gas particles, generating neutrons that can be detected by monitoring stations on the ground (e.g. Usoskin et al 2009). The GCR flux measured in this way is inversely proportional to the strength of the HMF, which in turn approximately follows solar activity and sunspot number (e.g. Rouillard and Lockwood 2004). The passage of a CME past Earth is known to further modulate the GCR flux as it brings with it a localized cloud of magnetized plasma. This enhanced field results in a temporary reduction in the GCR flux, (a Forbush decrease) used as marker events for comparison with lightning in the study of Chronis (2009). While Earth-directed CMEs generate the largest Forbush decreases in cosmic ray flux, there are relatively few of these events in any given solar cycle. In their analysis, for example, Usoskin et al (2008) identified 39 strong Forbush decreases in data from the World Neutron Monitor Network since 1964. Instead, in this paper, we consider the arrival of high-speed solar wind streams at Earth from 2000 to 2005 and combine these in a superposed epoch analysis to look for a modulation in lightning rates in data from the arrival time difference (ATD) lightning detection network of the UK Met Office (Lee 1989). While these solar wind streams cause smaller decreases in GCR flux than CMEs, they are sufficiently numerous to allow a meaningful statistical analysis (for comparison, Usoskin et al (2008) identified 14 Forbush events between 2000 and 2005). 3. Method 3.1. Identifying trigger events The arrival of high speed solar wind streams at Earth can be inferred from sudden changes in the V y component of the solar wind in the Geocentic-Solar-Ecliptic (GSE) frame of reference i.e., anti-parallel with the Earth's orbital direction (e.g. McPherron et al 2004; Denton et al 2009; Davis et al 2012). Here we used solar wind data from the Advanced Composition Explorer (ACE) spacecraft (Stone 1998), orbiting the L1 Lagrangian point 0.01 au upstream from the Earth in the solar wind, along the Sun–Earth line (the X direction of the GSE frame). Arrival of a high-speed stream at Earth was identified if the solar wind V y component increased by more than 75 km s−1 over 5 h. While the exact V y threshold used is arbitrary, our results are robust to different choices; the threshold described presents a good compromise, generating 532 pronounced events. These event times were used as markers around which responses in other solar wind and geophysical parameters were averaged, which is essentially the super-posed epoch or compositing technique originally described by Chree (1908). Compositing provides a useful way of investigating weak yet repeated signals that may otherwise be swamped by larger random variations. By aligning the secondary data according to the times identified in the primary data (the 'trigger' times) and calculating the median response, random responses will average out to zero while any (even small but) consistent signal will remain. Medians rather than means are calculated to ensure that the combined result is not dominated by one or more large outliers in the data. In our study, 'trigger' times were the times at which enhancements were observed in the solar wind V y component. Repeating the analysis many times using random trigger times, the probability of whether a given response exceeds that expected by chance can be found by calculating the 95 and 99 percentiles of these random responses. The significance of any response can be further investigated by comparing the data used to calculate median values at a range of times before and after the 'trigger' time using a two-sided Kolmogorov−Smirnov test. 3.2. Geophysical parameters considered In our study we first ensured that we were correctly identifying the arrival of solar wind streams by calculating the median solar-wind velocity, V y, and magnetic field strength, B t from periods of data corresponding to an interval of 60 d around the trigger times identified. These times were then used to calculate the associated median variability in solar parameters (total solar irradiance (TSI), sunspot number, Mg II emission, SEP flux and GCR flux), terrestrial lightning rates and thunderstorm activity. The speed and density of the solar wind were calculated using data from the NASA ACE Spacecraft (Stone et al 1998). The associated variations in TSI, sunspot number and Mg II emissions were used to investigate whether there was any solar variation associated with the generation of high-speed streams. The TSI data used is the PMOD composite of observations (Fröhlich 2006) which is consistent with other solar indicators and with irradiance modelling in its long-term behaviour (Lockwood and Fröhlich 2008). The Mg II emission index (Heath and Schlesinger 1986) was included in this analysis as this is often used as a proxy for many UV emissions (Viereck et al 2001). Information about the solar wind energetic particles or SEPs was obtained from the GOES dataset (GOES N Databook 2006), which combines data from several spacecraft. Proton energies are recorded in seven channels, each identified by its low energy detection threshold. They are; > 1 Mev, >5 Mev, >10 Mev, >30 Mev, >50 Mev, >60 Mev and >100 Mev. The GCR flux incident at Earth was determined using data from the neutron monitoring station at Oulu (Kananen et al 1991). This flagship dataset is a widely-used standard within the solar-terrestrial physics community. It is a continuous, well-calibrated dataset, which, because of the station's high latitude location, records cosmic rays of energies down to the atmospheric cut-off of about 1 GeV (at lower latitudes, the geomagnetic field shielding gives higher cut-off energies). Lightning rates were obtained from the ATD system of the UK Met Office (Lee 1989). This system uses a series of radio receivers located around Western Europe to detect the broad-band radio emission emitted by lightning. Accurate timing of the arrival of such 'sferics' at a range of stations allows the location of lightning to be determined with an accuracy of 5 km over the UK. The ATD system has been designed to have greatest efficiency in detecting cloud-toground (CG) lightning over Europe. The current study uses ATD data between September 2000 and June 2005, as this represents a period when the detection sensitivity of the system was not subject to modifications influencing its sensitivity. After this period the system was expanded and increased in sensitivity to form ATDnet, which detects a much larger number of smaller sferics. While the ATD system from 2000–2005 was capable of detecting lightning worldwide, the sensitivity of the network was reduced for large distances. In order to ensure some uniformity of the lightning measurements within our analysis we therefore restricted our data to any event that occurred within a radius of 500 km from central England. The time range of the ATD data used in this study encompasses 405 of the 532 trigger events identified in the ACE spacecraft data. The presence of thunderstorm activity is also recorded at manned UK Met Office observing sites. Conventionally, a 'thunder day' is considered as any day on which thunder was heard at an observing site. While this observation is subject to false positives (such as vehicle noise or explosions being misidentified as thunder) and is of a lower time resolution compared with the lightning data, it provides an independent measure of the presence of thunderstorm activity on a given day. 4. Results After identifying when high-speed solar wind streams arrived at Earth (as described in section 3.1), these times were used to define t = 0 in all the geophysical datasets and the median response was calculated for each parameter as a function of event time t for ±60 d around this time. 4.1. Solar wind Figure 1 presents the median change in solar wind parameters measured by the ACE spacecraft. The top panel shows the distribution of 'trigger' events within the epoch under consideration. As expected, the maximum number of triggers (532) is seen at event time t = 0. Plotting the distribution of triggers used in this study demonstrates that there are no other times within 60 d of the trigger time at which there is such a large number of high-speed streams arriving at Earth. This is demonstrated by the middle panel of figure 1 in which the median response in the solar wind V y component is presented. Around event time t = 0, the tangential solar wind decreases from a background level just below 0−35 km s −1 and then increases to over 60 km s−1, all within a period of around 2 d, with the greatest change at time zero. The grey band, in this and subsequent plots, represents the standard error in the median for all the data points within each time bin of the composite analysis. Outside this time window there are no other changes in V y that greatly exceed the 95 and 99 percentiles of the data (represented by the dot-dashed and dashed lines respectively) though there is a hint of the solar rotation rate with slight enhancements in V y at ± 27 d and ± 54 d. These percentiles were estimated by repeating the composite analysis one hundred times using the same number of trigger times drawn at random from within the scope of the study. The percentiles were then estimated by sorting the distributions in each time bin and ascertaining the 95 and 99 percentiles. The bottom panel of figure 1 shows the associated median change in magnetic field strength associated with high-speed solar wind streams. At t = 0, the total magnetic field strength, B t, peaks at about 13 nT compared with the background of around 6 nT. The field rapidly increases and decays over 2 d around the peak. Other than this peak around t = 0, there are no significant enhancements in the median solar wind magnetic field magnitude though again there are hints of the solar rotation rate in enhancements at ±27 d and ±54 d. Figure 1. The response of solar wind parameters in a superposed epoch analysis using enhancements in ACE V y data as the trigger times, during 2000 to 2005. The top panel presents the number of triggers within each hourly time bin of the superposed epoch analysis. 532 events were identified in the ACE solar wind data corresponding to times at which the V y component of the solar wind increased by more than 75 km s−1 in 5 h. Such an enhancement is indicative of the arrival of a high-speed solar wind stream at Earth. The middle panel contains the median response of the V y component of the solar wind as measured by the ACE spacecraft. In this, and subsequent plots, the median response is represented by a solid line, the standard error in this median as a grey area around the line while the dashed lines and the dotted lines correspond to the 95% and 99% levels of the dataset respectively. These percentile levels were calculated by repeating the analysis many times using random trigger times and determining the levels in each time bin that contained 95 and 99% of the data points. The lower panel contains the median response in the magnitude of the interplanetary magnetic field, B t. 4.2. Solar irradiance Three associated measures of solar activity are compared in figure 2. The median TSI (figure 2, top panel) shows a small (0.01%) but significant decrease some 7 d ahead of the arrival of fast solar wind streams at Earth. This decrease is associated with a rise in the median sunspot number, which lasts for around 12 d. This is the time taken for half a solar rotation (13.5 d) with respect to the Earth and is likely to be caused by the appearance and rotation of active regions on the solar surface. In the photosphere, active magnetic regions manifest themselves as sunspots—darker cooler regions where the convection of the plasma has been suppressed by the strength of the local magnetic fields. Sunspots have been used as a proxy of solar activity for many hundreds of years. The peak sunspot number and minimum TSI will, on average, be when the sunspots are close to the centre of the solar disk and this occurs between t = −6 d and t = −4 d which is close to the delay expected for the (radial) solar wind from such a region to reach Earth. The complex magnetic field topology around such regions is likely to lead to areas of open solar flux along which fast solar wind streams can emerge and so it is not unexpected that the two phenomena should be linked. The bottom panel of figure 2 presents the median Mg II index of solar emission. This broad emission, centred on a wavelength on 279.9 nm, has been found to be a convenient proxy for UV emissions at other wavelengths. It presents similar behaviour as sunspot number, peaking between 8 d and 2 d before t = 0. The downward overall trends in these parameters results from this study using data from the declining phase of the solar cycle. All three of these distributions appear towards the lower end of their percentile ranges which is a consequence of a minority of triggers coming from the times of enhanced solar activity at the beginning of the study period. We have chosen not to subtract a median value from each epoch of data before calculating the median in these parameters to be consistent with the analysis of all the other parameters in which we are looking for a threshold effect where absolute values are pertinent to their relative weighting. Figure 2. The top panel contains the median total solar irradiance (TSI) measured around the times of the highspeed solar wind streams arriving at Earth. The middle panel contains the median response in sunspot number (SSN). The third panel contains the median response in the Mg II emission. 4.3. Energetic particles at Earth Figure 3 presents the response of high energy GCR and lower energy SEP fluxes to the arrival of fast solar wind streams at Earth. The top panel presents the median daily change in cosmic ray flux at Earth, as measured by the Oulu neutron counter. With the approach of the solar wind stream and its associated increase in magnetic shielding, the average GCR flux decreases by 1.4% from around 141 570 counts to a minimum of 139 571 at t = 0. This minimum is significantly outside the 95 and 99 percentiles of the dataset (the dashed and dotted lines, respectively). Before the decrease, the count rates are higher than average (just above the 99 percentile) as was shown to be a persistent feature ahead of CIR s (Rouillard and Lockwood 2007) and demonstrating that the interaction regions are significant depressors of the overall average GCR flux. The decrease starts some 5–10 d before t = 0 and the subsequent recovery to pre-event levels takes around 40 d. This is because the fast/slow solar wind interaction establishes a planar interaction front that is wound into a spiral configuration. Because of the large gyroradius of GCRs in the heliosphere, this can deflect GCRs that would have reached Earth even before it arrives at the Earth (at t < 0), but becomes a more effective shield as it passes over Earth, giving the sudden decline in fluxes seen at t = 0. As the interaction front moves outward GCRs can diffuse into its wake, giving the gradual recovery to pre-event levels that we observe. Figure 3. Median response in galactic cosmic ray flux (top panel) as measured by the ground-based neutron monitor at Oulu, Finland. The second, third and fourth panels present median proton flux measurements from the GOES satellite dataset for three energy channels; >1 Mev (top), >30 Mev (middle) and > 100 Mev (lower). The median response in each parameter is represented by a solid line, the standard error in this median as a grey area around the line while the dashed lines and the dotted lines correspond to the 95% and 99% levels of the dataset respectively. These percentile levels were calculated by repeating the analysis many times using random trigger times and determining the levels in each time bin that contained 95 and 99% of the data points. Associated with the CIRs are enhancements in SEPs. The lower panels presents a selection of energy channels (>1 Mev, > 30 Mev, >100 Mev) measured by the GOES satellites (GOES N Databook 2006). These channels demonstrate the evolution of SEP flux through the observed energy spectrum. There is a doubling in the median proton flux in the lower energy channel (>1 MeV) for 10 d around t = 0, along with subsequent smaller enhancements 27 and 54 d later. Fluxes of protons with energies exceeding 30 Mev (third panel) reveal a 9% increase in particle flux in the 3 d ahead of t = 0, dropping to a level 5% above the pre-trigger levels and decaying from this level over the subsequent 50 d. The highest energy protons (>100 MeV) are once again enhanced over the pre-trigger levels by around 9% and remain elevated for the subsequent 40 d, varying in intensity with a period of 18 d. 4.4. Lightning and thunder days The top panel of figure 4 presents the median daily response in lightning rates as measured by the ATD system of the UK Met Office. Since the meteorological conditions necessary to produce lightning are not always present, these data are dominated by times for which there was little or no lightning. In order to calculate a meaningful median, these zero values were not included in our calculations by requiring a minimum mean lightning rate of one stroke per hour. This is not unreasonable since it is just recognition of the fact that convective instability must be present for lightning to occur. This reduces the number of data points included in each time bin of the composite analysis to a mean value of 135 ± 2 (of 405 trigger events) with no bin containing fewer than 93 data points, ensuring that any median value is taken from a distribution containing sufficient points that the median would not be influenced by outliers. There is a significant enhancement in median lightning rates starting 10 d before t = 0 compared with median lightning rates from earlier times. This enhanced lightning rate decays back to pre-event levels over the next 50 d. While the lightning rates remain enhanced for many days, there is a variation of around 8 d within these enhanced values and a relatively low response from t = 0 d to t = 5 d. The mean lightning rate for the 40 d before t = 0 is 321 ± 17 while the mean lightning rate for the 40 d after t = 0 is 422 ± 30. A spectral analysis of the daily ATD counts revealed no significant periodicities in the original data. Figure 4. The top panel contains the median daily lightning rate over the UK as measured by the arrival time difference (ATD) system of the UK Met Office, during 2000–2005. The lower panel shows the median response in thunder days recorded at all UK Met Stations scaled by the number of stations making manual measurements each day. The median response in each parameter is represented by a solid line, the standard error in this median as a grey area around the line while the dashed lines and the dotted lines correspond to the 95% and 99% levels of the dataset respectively. These percentile levels were calculated by repeating the analysis many times using random trigger times and determining the levels in each time bin that contained 95 and 99% of the data points. Because operation of the lightning detection system depends on the propagation properties of the ionosphere, which may also be influenced by the solar changes, we also consider a less sensitive but highly robust measure of thunderstorms, manual acoustic detection of thunder on 'thunder days'. If thunder has been heard by an observer within a 24 h period, a value of 1 is recorded while the absence of thunder over the same period is recorded as 0. Such a binary measurement contains less information than a count of lightning strokes. The advantage of using such data is that it does provide an independent measure of the presence of thunder storms. Since a thunder day is a record of thunder being heard, it is potentially susceptible to other noises, such as explosions or nearby traffic, being wrongly identified as thunder. Such errors are likely to be localized and can be minimized by taking a median value across a number of stations and by setting a threshold to ensure that the results are not dominated by the measurements where little or no lightning is occurring. This threshold was set at 3% of the observed range of values to allow a similar number of (though not necessarily the same) events on average to be recorded as was seen in the daily medians of ATD lightning data (top panel, figure 4). The median fraction of stations on which thunder was heard at around 450 Met stations situated in marine and land locations across the UK is shown in the second panel of figure 4. Since the number of manned stations is expected to have varied throughout the interval being studied, thunder day counts were normalized by the number of stations known to have made manual thunder day observations each day. The number of thunder days after t = 10 is clearly enhanced compared with the number of thunder days prior to t = 10, with an encouraging agreement between the most significant peaks (exceeding the 99th percentile) and the peak lightning rates seen in the ATD data. As the thunder day data effectively records the presence of lightning with sufficient energy to generate audible thunder (Mackerras 1977), it provides an independent measure compared with the radio detection of lightning rates used by the ATD system. The mean fraction of stations recording thunder in the 40 d before t = 0 was 0.0424 ± 0.001 compared with 0.0445 ± 0.002 for the 40 d after t = 0. The significance of the enhancements in lightning and thunder day rates was investigated by conducting Kolmogorov−Smirnov tests on these distributions over 40 d before and after t = 0. This test determines whether the two distributions represent subgroups from the same population or whether they come from statistically distinct distributions. One additional advantage of this test is that it is independent of the shape of the event distribution being investigated. For both the ATD data and the thunder day distributions, values in the 40 d after t = 0 were significantly (to confidence levels >99.9%) different from the distributions of the same parameters in the 40 d before t = 0. Using hourly triggers to identify responses in daily data can result in multiple-selection of response data in a given time bin, effectively weighting the response by the longevity of the solar wind stream. Repeating the analysis for hourly lightning data generates a similar, if noisier, response which passes the KS test at confidence levels far in excess of 99.9%. Such a reanalysis is not possible for the thunder data since it is a daily measurement. There is a sufficiently large number of trigger times within the epoch under consideration that it is highly likely that a small number of lightning data points corresponding to the same trigger time will appear in several time bins of the composite analysis. The top panel of figure 1 shows that while most trigger times are assembled at time = 0, there are a small number of triggers distributed throughout the composite time frame being considered. The fact that the lightning distributions before and after time = 0 pass the Kolmogorov−Smirnov test despite this cross-contamination of points strengthens the statistical significance of this result. Though the selection of solar wind triggers is independent of any seasonal changes at Earth, they could nevertheless introduce a seasonal bias into the analysis of lightning data if they are not evenly distributed throughout the year. Lightning rates increase dramatically in spring and decline rapidly in autumn. Any bias in the number of trigger events between spring and autumn could therefore potentially introduce a bias throughout the 121 d time period of the superposed epoch analysis. This is indeed the case for the above analysis, with more trigger events occurring in the spring (132) than in the autumn (100) months. In order to investigate the possibility that the observed increase in lightning rates was due to a seasonal bias, we repeated the analysis for triggers occurring during the summer months only and further restricted the selection of triggers to ensure that only one trigger per day could contribute to the analysis. Given that the width of the superposed epoch analysis window is of the order of four months, it would still be possible, despite the restriction in trigger times, for data outside of the summer months to be convolved in the final result. In order to discount this possibility, no data falling outside the summer months were used when calculating the median values in each daily time bin in the restricted superposed epoch analysis. The results of this analysis are presented in figure 5. It can be seen that the responses in both daily lightning and thunder day data are preserved and that the thunder day response is in fact more pronounced. As before, these responses were tested using a Kolmolgorov−Smirnov test to see if the median values for the 40 d either side of t = 0 were drawn from different distributions. Both passed at 99.9% ( 0.1% probabilities that these results occurred by chance). The mean values also passed a two sample T-test at 99.1% and 99.9% confidence levels (0.9% 0.1% that these results occurred by chance) for lightning and thunder data respectively. Figure 5. Median lightning rates (top panel) and thunder days (lower panel) in response to a restricted set of 36 solar wind trigger occurring during the months of June−August. In order that any seasonal bias does not influence the median values in each time bin of the superposed epoch analysis, all data from times outside this strict seasonal window were excluded before median values were calculated. While these distributions were calculated from a much smaller number of triggers (32), the presence of lightning during the summer months ensured that a high proportion of data in each time bin contained lightning (with a mean of 17.7 ± 0.3). 5. Discussion Having determined that the arrival of fast solar wind streams at Earth is associated with a subsequent increase in lightning rates, some possible mechanisms can be considered. Figures 4 and 5 present evidence that lightning and thunder rates are enhanced following the passage of an interaction region over similar timescales to the observed depression in GCR fluxes reaching Earth. This appears to contradict the results of earlier studies that have indicated an anti-correlation between sunspots and thunder days (Pinto et al 2013). While sunspots themselves are merely a convenient proxy for solar activity, the mechanism for the observed anti-correlation is thought to be through the modulation of the HMF throughout the solar cycle. At sunspot maximum, the HMF is stronger, providing greater shielding from energetic GCRs at Earth. With GCRs implicated in the triggering of lightning (Roussel-Dupré et al 2008; Gurevich and Zybin 2005), this provides a mechanism by which sunspot number and thunder days would be anti-correlated over solar cycle timescales. In contrast, our study, taken from the declining phase of a single solar cycle, considers the response in lightning rates to the arrival of high-speed solar wind streams at Earth. These co-rotating solar wind streams are associated with a localized enhancement of the HMF and a concomitant drop in GCR flux that ought to, at face value, have the same effect as solar cycle variations. However the physics of these short timescale events is very different. The enhancement of the HMF is at the fast/slow stream interface in the solar wind, resulting in a relatively small (though long-lived) ~2% decrease in GCR flux. An explanation may be found in the enhancement of lower energy protons of solar origin measured in bands between > 1 Mev and > 100 Mev also associated with these high-speed streams. For those channels with higher energies (>30 Mev) these fluxes are enhanced to around 9% above pre-event levels for 40−50 d after t = 0. Of these, only higher energy particles (>500 Mev) are capable of penetrating the atmosphere far enough to directly modulate atmospheric conductivity in the lower atmosphere (e.g. Calisto et al 2012; Cliver 2006). The evolution in particle distribution seen in the energy channels presented (particle fluxes starting earlier and remaining elevated for longer as the energy threshold increases) is likely to continue beyond the highest detection threshold available on the GOES spacecraft. Furthermore, these particles, being more localized and of lower energies that GCRs, can be significantly deflected by the Earth's magnetic field, modulating their spectrum further. This could explain why the modulation of lightning rates begins before the arrival of the high-speed stream at Earth and peaks between 12 and 18 d afterwards. Particles > 500 Mev have sufficient energies to modulate the atmospheric conductivity above and within thunderclouds though they do not have sufficient energy to be detected at ground level. If these particles are subsequently responsible for the observed modulation in lightning rates it would explain why this result is in apparent contradiction to earlier studies which found an anti-correlation between sunspot number and thunder days. Studies carried out on solar-cycle timescales will be detecting the modulation of GCRs by the HMF. Enhancements of this field during times of high solar activity (large sunspot number) will shield the Earth from GCRs, reducing the rate at which they could trigger lightning. In our study however, the ~2% decrease in GCR flux is accompanied by a 9% increase in the flux of SEPs, the higher energy flux of which could penetrate the atmosphere far enough to trigger lightning in the same way that GCRs are thought to do (e.g. Gurevich and Karashtin 2013). Indeed, the sharpest drop in GCR flux around t = 0 is accompanied by a relative drop in lightning rates, indicating that the total lightning rate is in fact a convolution of triggering by two distinct populations of particles. While the exact mechanism by which this occurs is still unknown, this study demonstrates that solar wind and atmospheric conditions on these small timescales are very different from the long-term average. It is perhaps not surprising therefore that the response in lightning rates to co-rotating solar wind streams differs from that over a solar cycle. While a small 27 recurrence can be seen either side of t = 0 in the median response in GCR flux (top panel, figure 3) no such recurrence is apparent in the lightning data (top panel, figure 4). While the arrival times of solar wind streams at Earth can be determined with some precision (figure 1), the subsequent elevation of SEPs lasts for tens of days. If this elevated particle flux is indeed responsible for the observed modulation of lightning rates, any 27 d recurrence would be blurred out in the median values of elevated particle flux and lightning rate. Some further inferences are possible from the upgrade of the ATD lightning detection system to ATDnet which occurred in 2007 following our analysis period, which led to a much more sensitive lightning detection network for meteorological purposes. The number of lightning strokes detected increased by an order of magnitude, preventing continued detection of the solar wind effects observed between 2000 and 2005. This implies that, in the earlier period considered here, it may have been the magnitude of individual lightning strokes that was increased. Such a shift would bring more lightning strokes above the detection threshold of the ATD system and appear as an increase in the number of strokes. The lack of response in later, more sensitive ATD data is also consistent with a change in the spectrum of lightning magnitude. In the more recent ATD data the detection threshold is much lower, allowing a greater number of smaller lightning strokes to be detected. Without any record of lighting stroke magnitude however, this cannot be tested with the current dataset. A worthwhile future study would be to repeat this analysis using data from a global lightning network such as the World Wide Lightning Location Network (Rodger et al 2005). It is, however, unlikely that the relatively small changes observed in TSI, SSN and Mg II index (figure 2) could in themselves explain the increased lightning rates through direct modulation of solar irradiance. Furthermore, if irradiance effects were the origin of the changes observed, the much greater variability apparent in these parameters throughout the eleven year solar activity cycle would be expected to modulate the lightning rates over a far greater range than has been observed. Clearly the existence of suitable weather conditions allowing thunderstorms to form is a pre-requisite for modulation of lightning. The approximately 8 d periodicity seen in peak lightning rates after t = 0 is more comparable with the timescales of weather systems than individual storms though the cause of such a period in our observations remains unexplained. The data presented above does provide evidence that, if weather conditions are suitable to generate active convection and electrified storms, lightning rates appear to be modulated by the SEPs associated with high-speed solar wind streams. Since these high-speed streams co-rotate with the 27 d solar rotation, their arrival at Earth is predictable in advance. This, coupled with an increasing understanding of energetic particle effects on the atmosphere, makes it worthwhile pointing out the potential benefits to forecasting hazardous weather. Acknowledgements The authors would like to thank the UK Met Office for use of data from their ATD network and observing stations which were made available via the British Atmospheric Data Centre, the Sodankyla Geophysical Observatory for the use of the Oulu cosmic ray data (http://cosmicrays.oulu.fi), D J McComas (Southwest Research Institute) and N Ness (Bartol Research Institute) for the use of ACE data which were made available via CDAweb (http://cdaweb.gsfc.nasa.gov). The thunder day data were obtained from the Met Office Integrated Data Archiving System (MIDAS) land and marine surface stations (1853-current), made available by the NCAS British Atmospheric Data Centre. References - Babcock H W 1961 The topology of the sun’s magnetic field and the 22-year cycle Astrophys. J. 133 572–87 - Brooks C E P 1934 The variation of the annual frequency of thunderstorms in relation to sunspots Q. J. R. Meteorol. Soc. 60 53–166 - - - - Calisto M, Verronen P T, Rozanov E and Peter T 2012 Influence of a carrington-like event on the atmospheric chemistry, temperature and dynamics Atmos. Chem. Phys. 12 8679–86 Chree C 1908 Magnetic declination at kew observatory, 1890 to 1900 Phil. Trans. R. Soc. A 208 205–46 Chronis T G 2009 Investigating possible links between incoming cosmic ray fluxes and lightning activity over the United States J. Clim. 22 5748 Cliver E W 2006 The unusual relativistic solar proton events on 1979 August 21 Astrophys. J. 639 1206–17 Davis C J, Davies J A, Owens M J and Lockwood M 2012 Predicting the arrival of high-speed solar wind streams at Earth using the stereo heliospheric imagers Space Weather 10 S02003 Denton M H, Ulich T and Tutunen E 2009 Modification of mid-latitude ionospheric parameters in the F2 layer by persistent high-speed solar wind streams Space Weather 7 S04006 Fröhlich C 2006 Solar irradiance variability since 1978: revision of the PMOD composite during solar cycle 21 Space Sci. Rev. 125 53–65 GOES N Databook 2006 (http://goes.gsfc.nasa.gov/text/goes.databookn.html) Gurevich A V and Karashtin A N 2013 Runaway breakdown and hydrometeors in lightning initiation Phys. Rev. Lett. 110 185005 Gurevich A V and Zybin K P 2005 Runaway breakdown and the mysteries of lightning Phys. Today 58 37 Harrison R G and Usoskin I 2010 Solar modulation in surface atmospheric electricity J. Atmos. Sol.-Terr. Phys. 72 176–82 Heath D F and Schlesinger B M 1986 The Mb 280-nm doublet as a monitor for changes in solar ultraviolet irradiance J. Geophys. Res. 91 8672–82 Israelsson S, Schütte T, Pisler E and Lundquist S 1987 Increased occurrence of lightning flashes in Sweden during 1986 J. Geophys. Res. 92 10996–8 Kananen H, Tanskanen P J, Gentile L C, Shea M A and Smart D F 1991 A quarter of a century of relativistic solar cosmic ray events recorded by the oulu neutron monitor Proc. 22nd ICRC 1–5 145–8 Lee A C L 1989 Ground truth confirmation and theoretical limits of an experimental VLF arrival time difference lightning flash location system Q. J. R. Meteorol. Soc. 115 1147–66 Lockwood M and Fröhlich C 2008 Recent oppositely-directed trends in solar climate forcings and the global mean surface air temperature: II. Different reconstructions of the total solar irradiance variation and dependence on response timescale Proc. R. Soc. (Lond) 464 1367–85 Mackerras D 1977 Lightning occurrence in a subtropical area Electrical Processes in Atmospheres. ed H Dolezalek and R Reiter (Darmstadt: Dr Dietrich Steinkopff Verlag) 497–502 Markson R 1981 Modulation of the Earth’s electric field by cosmic radiation Nature 291 304–8 McPherron R L, Siscoe G and Arge C N 2004 Probabilistic forecasting of the 3-h Ap index IEEE Trans. Plasma Sci. 32 1425 Owens M J and Lockwood M 2012 Cyclic loss of open solar flux since 1868: the link to heliospheric current sheet tilt and implications for the maunder minimum J. Geophys. Res. 117 A04102 Pinto Neto O, Pinto I R C A and Pinto O Jr 2013 The reoationship between thunderstorm and solar activity for Brazil from 1951 to 2009 J. Atmos. Sol.-Terr. Phys. 98 12–21 Rodger C J, Brundell J B and Dowden R L 2005 Location accuracy of VLF world wide lightning location (WWLL) network: post-algorithm upgrade Ann. Geophys. 23 277–90 Rouillard A and Lockwood M 2004 Oscillations in the open solar magnetic flux with period 1.68 years: imprint on galactic cosmic rays and implications for heliospheric shielding Ann. Geophys. 46 4381–95 Rouillard A P and Lockwood M 2007 The latitudinal effect of co-rotating interaction regions on galactic cosmic rays Sol. Phys. 245 191–206 Roussel-Dupré R, Colman J J, Symbalisty E et al 2008 Physical processes related to discharges in planetary atmospheres Space Sci. Rev. 137 1–4, 51–82 Schlegel K, Diendorfer G, Thern S and Schmidt M 2001 Thunderstorms, lightning and solar activity—Middle Europe J. Atmos. Sol.-Terr. Phys. 63 1705–13 Spangler J D and Rosenkilde C E 1979 Infinite cloud model of electrification by the precipitation mechanism in the presence of high rates of ion generation J. Geophys. Res. 84 3184–90 Stone E C et al 1998 The advanced composition explorer Space Sci. Rev. 86 1–22 Stringfellow M F 1974 Lightning incidence in Britain and the solar cycle Nature 249 332–3 Usoskin I G, Braun I, Gladysheva O G, Hörandel J R, Jämsén T, Kovaltsov G A and Starodubtsev S A 2008 Forbush decreases of cosmic rays: energy dependence of the recovery phase J. Geophys. Res. 113 A07102 Usoskin I G, Desorgher L, Velinov P, Storini M, Fluckiger E, Butikofer R and Kovaltsov G A 2009 Ionisation of the Earth’s upper atmosphere by solar and galactic cosmic rays Acta Geophys. 57 88–101 Viereck R, Puga L, McMullin D, Judge D, Weber M and Tobiska W K 2001 The Mg II index: a proxy for solar EUV Geophys. Res. Lett. 28 1343–6 El Almanaque Náutico y el Astrónomo Aficionado - Carlos Gil, ACA Introducción Este artículo está dedicado a la astronomía de posición y constara de dos publicaciones, en el primero se describe que es el Almanaque Náutico, como obtener el Tiempo Sideral (TS) y las coordenadas Horarias del Sol (☼), la segunda parte, estará dirigida al uso y aplicación del resto de la información contenida en el mismo. El Almanaque Náutico es una herramienta de ayuda para el navegante, pero que el astrónomo aficionado puede hacer uso del mismo, conociendo como está diseñado y cuál es su contenido. Es editado por el Departamento de Hidrografía dela de Marina de países con tradición náutica, tales como Alemania, Brasil, China, Estados Unidos de Norte América, España, Francia, Italia, Japón, Noruega, entre otros, viene redactado en el idioma oficial del país emisor. En este artículo se asume la utilización del Almanaque Náutico 2.014, publicado por la Dirección de Hidrografía y Navegación, y el Centro de Hidrografía de la Marina de Brasil bajo el No. DN 5 -70, el cual puede ser obtenido de internet como un documento PDF. Al final de la descripción de este artículo se encontraran extractos de dicho texto, elegidos para que se adecuen a los ejemplos presentados en este escrito. Antes de seguir adelante e iniciar a describir el contenido y uso del material impreso en Almanaque Náutico, se hace necesario revisar las definiciones relacionas con las Coordenadas Geográficas, Horizontales, Horarias y Ecuatoriales, el Meridiano de Greenwich, el Meridiano del Punto del Equinoccio de Primavera o Primer Puntos de Aries, el Tiempo Sideral, el Angulo Sideral, los Husos Horarios, la Hora Zonal y la Hora Local, del lugar donde se realiza la observación o se determina la posición de un buque en el mar. El Meridiano de Greenwich.Es conocido como meridiano cero, meridiano base o primer meridiano, es el meridiano a partir del cual se miden las longitudes y se corresponde con la circunferencia imaginaria que une los polos y recibe su nombre por pasar por la localidad inglesa de Greenwich. El meridiano fue adoptado como referencia en la conferencia internacional celebrada en 1884 en Washington y definitivamente aceptadas por la Conferencia Internacional de la Hora de Paris (1912) Entre los acuerdos adoptados en la reunión de Washington se destacan, la adopción de un único meridiano de referencia, el meridiano que atraviesa el Observatorio de Greenwich, será el meridiano inicial, las longitudes alrededor del globo al este y al oeste se tomarán hasta los 180º, desde el meridiano inicial, los días náuticos y astronómicos comenzaran a la medianoche. Coordenadas Geográficas. La Tierra es considera como una esfera y sobre ellas se definen los paralelos y meridianos. Los meridianos son círculos máximos que pasan por ambos polos y los paralelos son círculos que parten de un máximo que ocurre en el ecuador y van disminuyendo su longitud a medida que se acercan a los polos La latitud (Ø). Se cuenta a partir del paralelo que divide la tierra en dos partes iguales, denominado Ecuador, La latitud mide el ángulo entre cualquier punto y ecuador. Las líneas de latitud se denominan paralelos, es decir asumen los valores que van desde el cero (0º) en el ecuador, hasta los noventa grados (90º) en los polos. Longitud (λ).Se inicia a partir de un círculo máximo, denominado meridiano de referencia, al cual se le asigna el valor cero grados (0º). La longitud mide el ángulo a lo largo del ecuador desde cualquier punto de la Tierra. La longitud se cuenta en grados desde el meridiano de referencia (0º), hasta alcanzar el lado opuesto del meridiano de referencia, es decir el meridiano ubicado a 180º, se establece que el Angulo medido de la longitud hacia oeste se considera negativo y el medido hacia el este del meridiano de referencia es positivo. Combinando estos dos ángulos, se puede expresar la posición de cualquier punto de la superficie de la Tierra. Por ejemplo Puerto Cabello (Venezuela), tiene latitud 10º 28’ N, y longitud 68º 01’ W. Así un vector dibujado desde el centro de la tierra al punto 10º 28’ grados norte del ecuador y 68º 01’ grados al oeste del meridiano de referencia pasará por Puerto Cabello. Tiempo Universal El tiempo universal coordinado o UTC es el principal estándar de tiempo por el cual el mundo regula los relojes y el tiempo. Es uno de los varios sucesores estrechamente relacionados con el tiempo medio de Greenwich (GMT). Para la mayoría de los propósitos comunes, UTC es sinónimo de GMT, pero GMT ya no es el estándar definido con más precisión para la comunidad científica. La hora GMT se basa en la posición media del Sol y fue definida por primera vez a partir del mediodía de Greenwich, pero el 1 de enero de 1.925, se adoptó la convención de que la jornada comenzase a la media noche, atrasando aquel día 12 horas y desde entonces el GMT se sigue definiendo a partir de la medianoche de Greenwich. Esta hora carece de cierta fiabilidad ya que se basa en el movimiento medio del Sol. Fue por esto por lo que se definió la hora UTC, que tiene una gran precisión, ya que está dada por relojes atómicos. Husos Horarios.En geografía, huso horario es cada una de las veinticuatro áreas en que se divide la Tierra, siguiendo la misma definición de tiempo cronométrico, están centrados en meridianos de una longitud que es un múltiplo de 15°, lo que implica que cubren 7,5º hacia el este u oeste del eje central del huso. Anteriormente, se usaba el tiempo solar aparente, con lo que la diferencia de hora entre el tiempo coordinado una ciudad y otra era de unos pocos minutos en el caso de que las ciudades comparadas que no se encontraran sobre un mismo meridiano. El empleo de los husos horarios corrigió el problema parcialmente, al sincronizar los relojes de una región al mismo tiempo solar medio. Todos los husos horarios se definen en relación con el denominado tiempo universal coordinado (UTC), huso horario centrado sobre el meridiano de Greenwich. Puesto que la Tierra gira de oeste a este, al pasar de un huso horario a otro en dirección este hay que sumar una hora. Por el contrario, al pasar de este a oeste hay que restar una hora. El meridiano de 180°, conocido como línea internacional de cambio de fecha, marca el cambio de día. Tiempo Sidéreo. El tiempo sidéreo, también denominado tiempo sideral, es el tiempo medido por el movimiento diurno aparente del equinoccio vernal o punto de Aries, que se aproxima, aunque sin ser idéntico, al movimiento de las estrellas. Se diferencia en la precesión del equinoccio vernal con respecto a las estrellas. De forma más precisa, el tiempo sidéreo se define como el ángulo horario del equinoccio vernal. Cuando el equinoccio vernal culmina en el meridiano local, el tiempo sidéreo local es 00.00 La figura de la izquierda, representa una proyección de la esfera terrestre sobre el ecuador. En donde N representa el polo Norte, El segmento Nϓ representa el meridiano del Punto de Aries y segmento NG el meridiano de Greenwich. El arco de circunferencia ϓG representa el valor del Angulo Horario de Aries, medido con respecto al meridano de Greenwich, el cual se cuenta en sentido del movimiento de las agujas o en grados sexagesimales desde 0º hasta los 360º. Tiempo sidéreo local (TSL) y Tiempo sidéreo de Greenwich Los valores locales del tiempo sidéreo varían de acuerdo con la longitud del observador. Si nos movemos una longitud de 15º hacia el este o hacia el oeste, el tiempo sidéreo aumenta o disminuye una hora sidérea. El tiempo sidéreo de Greenwich es el Tiempo sidéreo local para un observador situado en el Meridiano de Greenwich. Coordenadas Horizontales. Las coordenadas horizontales en lugar son: A = Azimut y h = Altura. El plano fundamental en este sistema de sobre la esfera celeste es el plano horizontal astronómico local, o sea, un plano paralelo al horizonte astronómico del lugar y que pasa por el centro de la esfera. El eje fundamental es la vertical astronómica del lugar, o recta paralela a la vertical del lugar (hilo de la plomada) y que pasa por el centro de la esfera celeste. Como sabemos esta corta a la esfera en dos puntos: El Zenit astronómico Z y el nadir astronómico Z’. El Azimut(A)de un astro X, es por definición es el arco del horizonte celeste comprendido entre el punto cardinal Sur S y el punto X’, donde el circulo secundario, que pasa por el astro X, corta al horizonte. Este círculo secundario que pasa por el Zenit y Nadir, se le llama Círculo Vertical o simplemente vertical del astro. El azimut se cuenta a partir del punto S en el sentido S-W-N-E, de 0º a 360º. La Altura(h) de un astro X, es por definición, el arco X’X del circulo vertical del astro X, comprendido entre X y el horizonte. Se cuenta a partir a partir del horizonte de 0 º y 90 º, positivamente hacia el zenit y negativamente hacia el nadir. El círculo menor que pasa por el astro X y es paralelo al horizonte se llama almicantarat. Coordenadas Horarias. En este sistema de coordenadas celestes, el plano fundamental es el ecuador celeste, que define como eje fundamental el eje polar que pasa por los polos celestes norte, N, y sur S. Se llaman círculos horarios o meridianos celestes los círculos secundarios que paran por los polos y paralelos celestes los círculos menores paralelos al ecuador. El ángulo horario (H) en el sentido retrogrado o sea W-N-E-S, en otras palabras en el sentido de las agujas del reloj. La declinación (δ) de un astro E, es por definición, el arco XX del circulo horario que pasa por el astro E, comprendido entre E y el ecuador. Se cuenta a partir del ecuador de 0 º a 90 º, positivamente hacia polo N y negativamente hacia el polo S. Como consecuencia del movimiento diurno respecto del lugar de observación, el astro recorre su paralelo con movimiento uniforme, si prescindimos de las pequeñas irregularidades de la rotación terrestre y de las variaciones del polo, que son muy pequeñas en un intervalo de tiempo (una noche), resulta que: la declinación δ es constante y el ángulo horario H varia proporcional con el tiempo. Este sistema de coordenadas, depende del lugar del lugar del observador sobre la superficie de la tierra, llamándose por lo tanto coordenadas locales. En este sistema el movimiento diurno afecta solamente al ángulo horario H, mientras que la declinación δ, permanece prácticamente invariable. Coordenadas Ecuatoriales. Este sistema de coordenadas celeste es independiente por completo de la posición del observador, siendo su plano fundamental es el ecuador celeste y el eje fundamental es el eje polar. La ascensión recta (α), es por definición, el arco de ecuador comprendido entre los círculos horarios que pasan por el punto vernal ϓ , es decir en el sentido contrario al giro de las agujas del reloj. La declinación (δ) de un astro, es por definición, el arco del círculo horario que pasa por el astro, comprendido entre el astro y el ecuador. Se cuenta a partir del ecuador de 0 º a 90 º, positivamente hacia polo N y negativamente hacia el polo S. En astronomía se denomina punto Aries o punto vernal al punto de la eclíptica a partir del cual el Sol pasa del hemisferio sur terrestre al hemisferio norte, lo que ocurre en el equinoccio de primavera sobre el 21 de marzo (iniciándose la primavera en el hemisferio norte y el otoño en el hemisferio sur). El punto Aries es el origen de la ascensión recta, y en dicho punto tanto la ascensión como la declinación son nulas. Debido a la precesión de los equinoccios este punto retrocede 50,290966” al año. Ahora el punto Ariesno se halla en la constelación Aries (como cuando fue calculado por primera vez, hace por lo menos un par de miles de años) sino en su vecina Piscis Angulo horario sideral (SHA) En los apartados anteriores se han mencionado las definiciones de los sistemas de coordenadas utilizados por Los astrónomos y topógrafos, los cuales hacen uso de la ascensión recta (α) para determinar la posición de un astro. Los navegantes no utilizan la Ascensión Recta (α) y definen un nuevo ángulo para fijar la posición del astro a observar, tomando como referencia el meridiano del Punto de Aries o Punto Vernal (ϓ). Debido a que el meridiano de Greenwich gira con la Tierra de oeste a este, y en cambio, cada círculo horario se mantiene fijo, manteniendo la posición prácticamente estacionaria correspondiente a cada astro en el firmamento, es porque lo que los ángulos horarios, de todos los astros celestes aumentan aproximadamente 15º por hora (360º en 24 horas), en contraste con las estrellas (15º2,46’/h), el ángulo horario en Greenwich, GHA del Sol, la Luna y los planetas aumenta en fracciones ligeramente diferentes (y variables). Este fenómeno se debe al giro de los planetas (incluida la propia Tierra) giran alrededor del Sol y en el caso de la Luna, a su giro alrededor de la Tierra, introducen un movimiento aparente adicional de estos astros en el firmamento. En muchos casos resulta adecuado medir la distancia angular entre el círculo horario de un astro y el del punto de referencia sobre la esfera celeste, en vez de tomar como tal, al meridiano de Greenwich,porque el ángulo así obtenido es independiente de la rotación de la Tierra. El ángulo sidéreo (SHA), se define como la distancia angular de un astro al círculo horario (meridiano superior) del primer punto de Aries (Nϓ El valor del ángulo horario del astro en Greenwich (GHA) del astro (☼), resulta ser la suma de su SHA y el GHA Aries, que a su vez es el GHA del primer punto de Aries: GHA = SHA + GHA Aries (1) La figura anterior nos relaciona en forma directa, la Ascensión Recta del cuerpo celeste (☼), que se mide desde el meridiano del primer punto de Aries o punto vernal (Nϓ), hasta el meridiano donde se localiza el astro (N☼),quedando para completar una circunferencia el Angulo Sidéreo del astro (☼), por lo cual tenemos que: ☼ ] (2) El símbolo ubicado entre el corche significa que la AR y SHA deben estar expresados en horas, si la ascensión recta viene expresada en grados, dividimos el valor de la ascensión recta entre 15, recordando que 15 º de arco, son equivalentes una hora de tiempo. Las formulas (1) y (2), nos permiten obtener el valor de la ascensión recta o del SHA conociendo cualquier de ellos. Que contiene un Almanaque Náutico? Un Almanaque Náutico, es una publicación impresa o digitalizada, que contiene información relacionadas con las efemérides del Punto de Aries, los planetas utilizados en la navegación, Estrellas, el Sol, la Luna, los eclipses de sol y de luna, tablas de conversión de unidades tiempo en unidades de arcos e instrucciones para el uso del mismo, así como otras informaciones relacionadas con el tópico de la navegación. La información que se puede extraer del Almanaque Náutico, esta tabulada en referencia al Tiempo Universal (TU) del meridiano de Greenwich y por lo tanto para hacer uso del Almanaque en cualquier momento, se hace necesario conocer del Tiempo Universal (TUG) y la Fecha en Greenwich. La información relacionada con el TUG, TSG y las Coordenadas Horarias las encontramos en El Almanaque en las hojas denominadas Efemérides o también conocidas como las Hojas de Uso Diario, las cuales presentan la siguiente información. En la parte superior de las mismas, para las fechas correspondiente al año para el cual está editado observamos, así por ejemplo, los días 1,2 y 3 del mes de Enero del 2.014se localizan en las páginas #12 y #13, los días 4, 5 y 6 de Mayo del 2.014, en las páginas #94 y #95. La página (#12) y sus similares, en su encabezamiento observamos la primera fila dedicada las fechas correspondiente a los días 1,2 y 3 de Enero 2014, la segunda fila , se observan siete (7) columnas, que leídas de izquierda a derecha, la primera se corresponde con el Tiempo Universal (TU), la segunda con el valor de AHGϓ o Tiempo Sideral, de la tercera a la sexta columna, se localizan los planetas Venus, Martes, Júpiter y Saturno, el número que aparee a la derecha del nombre de los planetas en estas columnas se corresponde con la magnitud de brillo de cada uno de ellos para eses día en particular, la séptima columna esta dedicadas a las estrellas más visibles para el navegante. En la tercera fila, desde la segunda columna hasta sexta columna, están descritas las iniciales del Angulo Horario en Greenwich (AHG) y la declinación (δ), de cada uno de los elementos mencionados en la segunda fila. En la columna dedicada a las estrellas, encontramos el nombre de cada una de estas y las iniciales del Angulo Sidéreo (ARV) y la declinación (δ). En la cuarta fila encontramos en la primera columna las iniciales del día (d) y la hora (h), de la segunda columna a séptima columna observamos el valor de las unidades utilizados para los valores dados expresadas en grado (º) y minutos (‘) de arco. La columna del Punto de Aries (ϓ), nos da información sobre el Angulo Horario de este en Greenwich. Su valor se obtiene entrando con la hora del tiempo universal (TU), expresada en unidades exactas de horas, las cuales van desde las 0 horas hasta las 23horas, el valor obtenido del Angulo Horario del punto de Aries en Greenwich (AHGϓ), vienen expresados en grados y minutos de arco. Como las observaciones astronómicas no se realizan en unidades exactas de tiempo sino en fracciones expresadas en horas, minutos y segundo, se hace necesario hacer uso de las “páginas amarillas”, las cuales permiten convertir minutos y segundos de tiempo en unidades de arco equivalentes. Las páginas amarillas muestran las tablas de interpolación (Acrésimos e Correςões), que permiten convertir unidades de tiempo en unidades de arco. Están numeradas en forma consecutiva en la superior desde los 0 minutos hasta los 59 minutos, cada una ella dividida en 60 segundo. La parte inferior de las mismas, están numeradas desde la página II hasta la XXII. Se anexan la página XXV que contiene los minutos 46ᵐ y 47ᵐ La segunda página (#13), correspondiente a los días 1,2y 3 de Enero 2.014, se observan siete (7) columnas, que leídas de izquierda a derecha, muestran en la primera columna El Tiempo Universal y debajo de ella se aprecia el número del día, en este caso corresponde al día primero (1) de Enero y las horas contadas desde las 00 horas hasta las 23 horas. La segunda columna presenta las coordenadas horarias del Sol, la tercera columna contiene los datos referidos a la luna, las próximas ochos columnas están referidas a la latitud y los valores relacionados con el crepúsculo náutico y civil, como también el orto y ocaso del sol y la luna. El uso de esta página será descrita en el próximo articulo. USO PRÁCTICO DEL ALMANAQUE NAUTICO. Los ejemplos planteados para conocer el uso y manejo del Almanaque Náutico están referidos al uso de las páginas #94 y #95, correspondientes a los días 4, 5 y 6 de Mayo del 2.014, estas se encuentran al final del artículo. Dado que este almanaque náutico está escrito en el idioma portugués se hace necesario recordar que los días de la semana se denominan en este idioma, Domingo (Domingo), lunes (segunda - feria), martes (terςa feria), miércoles (quarta - feria), jueves (quinta – feria), viernes (sexta - feria), Sábado (Sábado). Ejemplo #1. Determinar el Angulo Horario del punto Vernal o Punto de Aries en Greenwich (AHGϓ), a las 7 horas de tiempo universal (TU), del día lunes5 de mayo del 2.014. Solución. Buscamos en las páginas de Uso Diario o de las Efemérides del Almanaque Náutico (pagina #94), la fecha a la cual se desea conocer el Angulo Horario del Punto Vernal o Punto de Aries en Greenwich (AHGϓ), en este caso, es el día 5 lunes (segunda – feria) de Mayo del 2.014. Seleccionamos en la primera columna dedicada al TU en la fecha dada (día 5, que corresponde a la Segunda Feria), nos desplazamos por la columna marcada con la hora, hasta localizar el valor de las 7 horas y en la columna opuesta a su derecha leemos el valor correspondiente al ángulo horario en Greenwich, GAH =328 º04,7’. Fecha Lunes 04-05-2014 TU 7.00 horas TU H m S Grados Minutos 7 0.00 0.00 328 4.70 0.00 0.00 0 0.00 Del A. Náutico A H G ϓ Correcciones Valor del AHGϓ a las 7 horas de TU del día lunes 5/05/14 AHGϓ 328 4.70 Ejercicio #2.- Determinar el Angulo Horario del punto Vernal o Punto de Aries en Greenwich (AHGϓ), a las 17 horas, 46 minutos y 23 segundos de tiempo universal, del día domingo 4 de mayo del 2.014. Solución. Procedemos como en el ejercicio #1, para la fecha del Domingo (Domingo) 4 de mayo, localizando el valor del ángulo horario de ϓ en Greenwich, a las 17 horas, con un valor de 117º 30.2’. Faltándonos complementar el valor de los 46 minutos y 23 segundos del Tiempo Universal dado, este valor se localiza en las páginas de corrección (Acrésimos e Correςões), en este caso (46 ᵐ,es la numero XXV), en la cual recorremos la columna de los segundos hasta encontrar el valor 23, y en la columna correspondiente a ϓ leemos el valor de 11º 37,7’.El Angulo del Punto Vernal o de Aries en Greenwich a la hora solicitada del Tiempo Universal, es la suma de los dos valores antes obtenidos, a continuación se muestra el esquema tradicional de realizar este tipo de cálculo. Fecha Domingo 04-05-2014 TU 17.00 horas 46.00 minutos 23.00 segundos Del A. Náutico A H G ϓ TU H m S Grados Minutos 17 0.00 0.00 117.00 30.20 46.00 23.00 11.00 37.70 128.00 67.90 Correcciones Valor del AHGϓ a las 17 horas, 46 minutos y 23 segundos de TU del día domingo 4/05/14 129.00 7.90 Ejemplo #3. Calcular el Tiempo Universal local, para realizaruna observación en un lugar cuyas coordenadas geográficas son latitud 46ᵐ 23ˢ y el valor del AHGϓ = 129º 7.9’. Gds min Seg Gds (Ø) - Norte 8.00 15.00 0.00 8.2500 (λ) - Oeste 60.00 20.00 12.00 60.3367 Data Coordenadas geográficas Hrs min seg HL 22.00 43.00 50.00 Fecha 05-05-14 H min Seg Fecha HL 22.00 45.00 50.00 05-05-14 (λ) - Oeste 4.00 1.00 21.00 TUG 26.00 46.00 71.00 24.00 0.00 0.00 TUG 2.00 46.00 TUG 2.00 47.00 Hrs min seg 4.00 1.00 21.00 Solución 06-05-14 Cambio de fecha, con 71.00 06-05-14 esta se accede al Almanaque Náutico. 11.00 06-05-14 Del Almanaque Náutico Gds Min Seg AHϒ 253.00 51.50 0.00 11.00 49.70 0.00 2.00 Corrección 47.00 11.00 AHGϒ 06-05-14 264.00 101.20 0.00 AHGϒ 06-05-14 265.00 41.20 0.00 Longitud (λ) - Oeste 60.00 20.20 0.00 AHLϒ 205.00 21.00 0.00 Hrs Min Seg 13.00 41.00 24.00 HLϒ (TSL) 05-05-14 05-05-14 06-05-14 Anexos. A continuación se encuentran las páginas#12, #13, #94 y #95 del Almanaque Náutico correspondiente al año 2.014 y la página XXV de las correcciones. - - El Fenómeno de El Niño Histórico en Venezuela Marcos A. Peñaloza-Murillo mpenaloza@ula.ve Universidad de los Andes. Facultad de Ciencias. Departamento de Física. Mérida El ritmo intermitente e incesante de la Naturaleza impone una variación cíclica de sus propiedades y de sus manifestaciones. En particular, el aire y el agua que nuestro planeta contiene, tienen sus propios pasos, sus propios ciclos. Las mareas, la lluvia, los huracanes, las sequías, las crecidas, las estaciones, los tornados, el invierno, el verano, las inundaciones, las corrientes marinas, las nevadas, las tormentas de polvo, el viento, el calor, el frío, El Niño, La Niña, etc., van y vienen, se alejan y retornan, con diferentes lapsos e intensidades, en un intercambio intricado y complejo de energía, movimiento y masa. Dentro del limitado entorno de nuestro más cercano ambiente, podemos sentir o percibir directa o indirectamente las fases de eso ciclos. Los pescadores peruanos del siglo 19, que venían notando y comentando sobre una contracorriente costera cálida que baja de vez en cuando, después de Navidad, hacia Ecuador y Perú, y que ahuyentan a las anchoas porque se quedan sin alimento, obtenido, vía zooplancton y fitoplancton marino de aguas frías, nunca se imaginaron que estaban ante una de las manifestaciones regionales de un viejo fenómeno climatológico de globales proporciones conocido hoy día como El Niño – Oscilación Sur (ENOS). Los eventos meteorológicos extremos ocurridos en Venezuela en las últimas décadas, han venido ocasionando apreciables impactos ambientales con la mayor consecuencia social, económica y política jamás vista en toda su historia, debido a una creciente vulnerabilidad por grave deterioro de sus estructuras socio-económicas. Por la naturaleza misma de su propia climatología tropical, Venezuela se caracteriza por tener anualmente temporadas lluviosas (invierno) y una sola temporada seca (verano), las cuales han recibido significativa atención y detallado estudio. Como consecuencia, tales eventos extremos (amenazas) son del tipo de extraordinarias sequías y del tipo de abundantes precipitaciones, siendo estas últimas, generadoras de grandes inundaciones y deslaves como los ocurridos recientemente en 1987 en Aragua, en 1999 en Vargas, en 2005 en Mérida y a finales de 2010 en todo el país debido presumiblemente al fenómeno inverso: La Niña. Diversas han sido las causas que se han propuesto para explicar el origen de estos eventos extremos y, entre ellas, ENOS ha sido una de ellas. Considerando que ENOS es reconocido como un fenómeno natural recurrente de vieja data en la historia (no producido por un presunto “cambio climático global” antropogénico como muchos creen), el interés por saber desde cuándo se tienen noticias e información sobre su presencia y sus efectos en Venezuela, cobra crucial importancia en el registro histórico de la variabilidad climática del país. En investigación inédita en realización en la Universidad de los Andes (Mérida), hemos podido descubrir que al menos las grandes sequías que afligieron al país en los años de 1607-08, 1618, 1661, 1728, 1760, 1772, 1776-78, 1812, 1869, 1891, 1925-26, 1940-41 y 1957 se debieron a eventos El Niño que ocurrieron en los siglos 17, 18, 19 y 20. En particular, los veranos de 1728, 1891 y 1925-26 fueron muy severos. En 1942, después de El Niño de 1940-41, hubo grandes lluvias por lo que se presume un evento La Niña como causa. Se ve, entonces, que estos eventos (Niño-Niña) no tienen nada de raro, contrario a lo que se ha afirmado en otra parte [El Nacional, 30-12-2010 (opinión)]. Hace más de 4 años y medio, El Niño, como nunca antes, comenzaba a estar de boca en boca de todos los venezolanos por la fuerte sequía que se comenzaba a sentir. Este último El Niño de 2010 pasará a la historia del país como el más famoso de todos, por la gigantesca y descarada manipulación mediática que el sector oficial hizo de él para echarle la culpa de la crisis del sistema eléctrico nacional. Aún peor es la engañosa y persistente manipulación oficial según la cual El Niño es causado por el “cambio climático” producido por economías capitalistas (¿incluyendo a China?); esto no es cierto. Se estima que en el pasado han ocurrido varios Mega-El Niño como el de 178993. Después de en un período de transición entre La Niña y El Niño, éste último ya está de regreso en 2014 con sus efectos de sequía sobre Venezuela. Resuelto el Problema del Lado Oculto de la Luna Penn State University, Astrophisics Dept. Cuando un navío espacial nos envió por primera vez imágenes del lado oculto de la Luna, se observó que carecía de las regiones oscuras que llamamos Mares. ¿Por qué? Imágenes compuestas: Izquierda – Lado oculto de la Luna tomada con el Lunar Reconnaissance Orbiter en Junio de 2009. Nótese la ausencia de grandes áreas oscuras. Derecha: Imagen compuesta de la cara visible de la Luna, en ella si se observan las grandes áreas oscuras que llamamos “Mares”. Los Mares oscuros – grandes áreas planas de Basalto en el lado visible de la Luna – se les dice a veces El hombre en la Luna. Nada como ellas existe al otro lado, pero ¿por qué existen en el lado visible y no en el otro? Un atrofísico de la Universidad de Pensilvania, cree que tiene la respuesta. Piensa que la ausencia de Mares, la cual se debe a la diferencia de grosor de la Corteza entre ambos hemisferios, es una consecuencia de cómo fue originalmente formada la Luna. El investigador reportó sus resultados el 9 de Junio en Astrophysical Journal Letters. La ausencia de Mares en el hemisferio oculto fue llamado: “El problema de las Tierras altas del Lado Oculto”, y viene de 1959, cuando la sonda rusa Luna 3 transmitió las primeras imágenes. Los investigadores notaron de inmediato la ausencia de “Mares” en el lado oculto. Los investigadores de Penn State University buscaron en los orígenes de la Luna. Se cree que este objeto se formó al inicio del Sistema Solar, cuando un objeto del tamaño de Marte impactó a la Tierra, los escombros de este choque eventualmente formaron la Luna. Poco después del gran impacto la Tierra y la Luna estaban muy calientes, dicen los investigadores, La Tierra y el objeto no solo se fundieron, partes de él se vaporizaron, creando un disco de rocas, magma, y vapor alrededor de la Tierra. La geometría fue similar a la de exoplanetas rocosos muy cercanos a sus estrellas. La Luna estaba 10 o 20 veces más cercana a la Tierra que ahora, y rápidamente asumió la posición Tidal asegurada con la rotación. Desde ese momento enseñó siempre la misma cara a la Tierra. El seguro Tidal es producto de la gravedad de ambos objetos. La rotación lunar se frenó casi desde el mismo momento de la formación de la Luna La Luna, al ser más pequeña se enfrió rápidamente. La Tierra estaba a 2.500º C y radiaba hacia la Luna, el lado oculto así se enfrió más rápido, mientras el lado visible se mantuvo fundido, creando un gradiente de temperatura entre ambos lados. Este gradiente térmico es importante en la formación de la corteza, en la Luna, esta es rica en Aluminio y Calcio, elementos difíciles de vaporizar. Estos se condensaron en la atmósfera del lado frío, pues el lado visible era muy caliente. Cientos de millones de años después, estos elementos se combinaron con Silicatos en el Manto lunar para formar feldespatos Plagioclasicos, que eventualmente se movieron a la superficie para formar la corteza. El Lado Oculto tiene más de estos minerales y es más gruesa. La Luna ya se ha enfriado completamente y no hay nada derretido debajo de la superficie. Después de enfriarse la corteza, grandes meteoroides impactaron con el lado visible de la Luna y la quebraron, liberando vastos lagos de lava basáltica que formaron los “Mares” del hemisferio visible, creando las características que conocemos como la del Hombre en la Luna Sin embargo, cuando los grandes meteoritos impactaron el lado oculto, en la mayoría de los casos, la corteza era muy gruesa, y ninguna lava basáltica fue liberada, creando un lado oculto con valles, cráteres, y tierras altas, pero casi ningún “mar” Murió Nuestro Querido Amigo y Compañero de Estrellas Alberto Ramos Por: Jesús H. Otero A. El Sábado 21 de Junio, a la 01:40 horas, dejo de existir físicamente nuestro querido amigo de tantas aventuras astronómicas Alberto Ramos. Un hombre amigo como pocos, un padre ejemplar, un esposo amante y magnífico, con una hermosa familia, con quienes compartía é inculcaba su pasión por la Astronomía. Murió el día del Solsticio de Verano, para quedar brillando en nuestros corazones y recuerdos mientras existamos. Alberto, te fuiste físicamente, pero estarás con nosotros y en nuestros recuerdos por siempre. Cada vez que demos una charla; observemos un evento astronómico; hagamos un Astrocamp, Taller, o Seminario; o simplemente conversemos sobre astronomía, veamos fotografías, o contemos anécdotas. No te diremos adiós, solo hasta luego. Prepáranos el camino entre las estrellas, donde nos esperaras con tu sonrisa y buen humor. Seminario: Los Métodos de la Ciencia Por: Jesús H. Otero A. Un Seminario muy interesante llamado: Breve Historia de los Métodos de la Ciencia, fue dictado por el Dr. Iván Machín en el Campamento Nora, en los Altos Mirandinos. Fueron dos días muy intensos mentalmente, pero sentimos que el tiempo voló, por lo interesante del mismo. Recorrimos la evolución del Método Científico desde los Griegos hasta el Bosón de Higgs. El grupo fue pequeño, pero muy selecto. Dos Ingenieros, Un Geógrafo, Un Músico, Tres estudiantes de Geofísica, y Una estudiante de Bachillerato. Las preguntas profundas, y el Seminario excelente, y no podía sr de otra manera siendo dictado por el Dr. Iván Machín. En la noche aprovechamos observar el firmamento, y al nublarse hicimos una interesante charla sobre el Cambio Climático. Primera evidencia directa de la Inflación Cósmica Astrofísicos dicen que este trabajo ofrece nuevas perspectivas sobre algunas de las preguntas más básicas: ¿Por Qué existimos?, ¿Cómo empezó el Universo De acuerdo a las teorías astronómicas, hace unos 14 mil millones de años atrás, nuestro Universo comenzó a existir en un evento extraordinario que llamamos Big Bang. En las primeras millonésimas de segundo, el Universo se expandió exponencialmente, estirándose más allá de de la vista de nuestros mejores telescopios. Hoy, (Marzo 16, 2014), investigadores de él BICEP2, en colaboración con el Harvard-Smithsonian Center for Astrophysics, anunciaron la primera evidencia directa de esta Inflación Cósmica. Sus datos también muestran las primeras imágenes de Ondas Gravitacionales, o rupturas del Espacio –Tiempo, descritas algunas veces como: “El primer tremor del Big Bang”. Finalmente los datos confirman la profunda conección entre la Mecánica Quántica y la Relatividad General. “Detectar estos signos es una de las más importantes metas en la Cosmología actual. Mucho trabajo de mucha gente ha llevado este punto”, dice John Kovak, líder colaborador del BICEP2 Estos resultados vienen de observaciones realizadas por el Telescopio BICEP2, del fondo de microondas cósmicas. Un suave resplandor dejado por el Big Bang. Pequeñas fluctuaciones de este resplandor proveen pistas sobre las condiciones del Universo temprano. Por ejemplo, pequeñas diferencias de temperaturas a través del cielo, muestran que partes del Universo eran más densas, y donde eventualmente se condensarían galaxias y cúmulos de galaxias. Desde que la radiación de fondo de Microondas es una forma de luz, exhibe propiedades de la Luz, incluyendo la polarización. En la Tierra, la luz es difuminada por la atmósfera y se polariza. En el espacio, la radiación de fondo también es polarizada por átomos y electrones. “Nuestro equipo busca un tipo especial de polarización llamado Modos B, los que representan un retorcimiento en los patrones de polarización de la Luz antigua”, dice Jamie Bock, co líder del Caltech/JPL. Las ondas gravitacionales comprimen el espacio mientras viajan, y esto produce un patrón distintivo en la radiación de fondo cósmica. Las ondas gravitacionales comportamiento muy parecido a las ondas de luz y pueden mostrar polarizaciones a la derecha o izquierda. “El patrón de modo B curvado es una firma única de las ondas gravitacionales debido a su comportamiento. Esta es la primera imagen directa del ondas gravitacionales a través del espacio primordial”, dice Chao Lin Kuo, co líder de Standford/SLAC. El equipo examinó escalas espaciales en el cielo en intervalos de entre 1º y 5º.. Para hacerlo viajaron al Polo Sur a fin de tomar ventaja de su aire frío y estable. “El Polo Sur es lo más cerca que se puede estar del espacio sin salir de la Tierra. Es uno de los lugares más secos y transparentes del planeta, perfecto para buscar Microondas del Big Bang”. El equipo se impresionó al detectar signos de polarización del Modo B más intensos que lo que muchos cosmólogos habían predicho. El equipo analizó sus datos durante 3 años a fin de descubrir cualquier error, también consideraron si el polvo de nuestra galaxia podía producir los patrones observados, pero los datos sugieren que es muy improbable. “Esto era como buscar una aguja en un pajar, pero encontramos una palanca” dijo Clem Pryke de la Universidad de Minesota. Al preguntársele al teórico Avi Loeb, de la Universidad de Harvard sobre las implicaciones de este descubrimiento dijo: “Este trabajo ofrece una nueva visión sobre algunas preguntas muy importantes como: ¿Por qué existimos?, ¿Cómo comenzó el Universo? Estos resultados no solo son humo de un disparo de la Inflación, ellos también nos dicen cuando empezó la Inflación y cuan poderosa fue. Reporte Eclipse Total de Luna Abril 15, 2014. Las siguientes observaciones fueron realizadas desde el sector Pozo de Rosas de los Altos mirandinos. Durante la observación solo fue posible obtener los tiempos de dos de los contactos, puesto que la nubosidad impidió la observación precisa del resto. Sin embrago, se realizo la toma de varias fotografías cuando las circunstancias así lo permitieron. Nº 1 2 3 Tabla de datos P1 U1 No se observo diferencia. 1h 28m 14s 1h 28m 14s Nublado U2 Nublado Max U3 Parcialmente nublado 3h 54m 34s 3h 54m 34s 3h 54m 34s Nota: Los dos primeros observadores forman parte de SOVAFA. Instrumentos: - Telescopio reflector Bushnell 76mm. - Cámara digital canon - Cámara digital fujifilm - Reloj Casio con HLV Fotografías Fotografías U4 P2 No visible Observador Isabel Farinha Airlene Lugo María Lugo Planeta Marte A partir de esta fotografía, los observadores concluyen que el numero de Danjon que presento la luna fue de L2. Sin embrago, a simple vista, aproximadamente en el punto máximo del eclipse, parecía que dicho numero era L1 puesto que los detalles eran poco visibles y parte de la luna parecía no distinguirse del resto del cielo. Reporte Eclipse Total de Luna, Abril 15, 2014. Jesús H. Otero A. y otros Un grupo de observadores de SOVAFA nos reunimos en las instalaciones del Caracas Sports Club a fin de observar el Eclipse Total de Luna de Abril 15, 2014. Al inicio de la observación las condiciones atmosféricas eran ideales, pero al acercarse la hora del inicio de la totalidad las condiciones se hicieron menos favorables, para finalmente nublarse por completo justo después del inicio de esta. Esta nubosidad nos impidió obtener el Número de Danjon, ya que este debe medirse en la mitad de la totalidad, y a esta hora la Luna estaba totalmente oculta tras las nubes. Los observadores solo pudieron observar desde el comienzo del Eclipse hasta la llegada de la Totalidad, luego de esto, la Luna se ocultó para no volver a observarse más. Félix León desde Vista Alegre tuvo más suerte que nosotros y logró unas buenas fotografías, pero a él también se le nubló el cielo y no pudo observar el medio de la Totalidad. Se realizaron mediciones de los tiempos de los contactos, pero el paso de estratos no nos permitió medir los contactos con los cráteres y mares. Julio Veloso y Alfredo Castillo filmaron el evento hasta la llegada de la totalidad. Tabla de Datos Contacto 1 05h 58m 21s 05h 58m 32s 05h 58m 59s 05h 59m 00s 05h 59m 02s Contacto 2 07h 06m 56s 07h 06m 59s 07h 07m 11s 07h 07m 12s 07h 07m 07s Instrumento Binocular 10 x 50 Telescopio Orión 5” Telescopio 8” Binocular 10 x 50 Telescopio Optron 3” Observador Jesús Otero Marianna Mazzone Daniel Amado/ Bettina Steinhold Julio Veloso / Alfredo Castillo Foto: Felix León Las malas condiciones atmosféricas impidieron la observación de Anthony Higuera y Tamara de Higuera desde Puerto Ordaz, Oliver López desde Cabudare, José L. Herrera desde la Boyera, así como la de otros observadores en todo el país.