s - Latin American Journal of Aquatic Research
Transcription
s - Latin American Journal of Aquatic Research
Latin American Journal of Aquatic Research formerly Investigaciones Marinas ISSN 0718 -560X www.lajar.cl www.scielo.cl CHIEF EDITOR Sergio Palma Pontificia Universidad Católica de Valparaíso, Chile lajar@ucv.cl ASSOCIATE EDITORS Patricio Arana Pontificia Universidad Católica de Valparaíso, Chile parana@ucv.cl José Angel Alvarez Perez Universidade do Vale do Itajaí, Brasil angel.perez@univali.br Walter Helbling Estación de Fotobiología Playa Unión, Argentina whelbling@efpu.org.arl Nelson Silva Pontificia Universidad Católica de Valparaíso, Chile nsilva@ucv.cl EDITORIAL COMMITTEE Dagoberto Arcos Universidad Católica de la Santísima Concepción, Chile darcos@creaucsc.cl Patricio Bernal Comisión Oceanográfica Intergubernamental, Francia p.bernal@unesco.org Juan Carlos Castilla Pontificia Universidad Católica de Chile jcastill@bio.puc.cl Jorge Csirke Departamento de Pesca, FAO, Italia csirke@fao.org Fernando L. Diehl Asociación Brasilera de Oceanografía, Brasil fdiehl@terra.com.br Pierre Freón Institut de Recherche pour le Developpement, Francia pierre.freon@ird.fr Michel Hendrickx Universidad Nacional Autónoma de México michel@ola.icmyl.unam.mx Víctor Marín Universidad de Chile vmarin@antar.ciencias.uchile.cl Carlos Moreno Universidad Austral de Chile cmoreno@uach.cl Germán Pequeño Universidad Austral de Chile gpequeno@uach.cl Oscar Pizarro Universidad de Concepción, Chile orpa@profc.udec.cl Ricardo Prego Instituto de Investigaciones Marinas (CSIC), España prego@iim.csic.es Ingo Wehrtmann Universidad de Costa Rica ingowehrtmann@gmx.de Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso Casilla 1020, Valparaíso, Chile – Fax: (56-32) 2274206, E-mail: lajar@ucv.cl LATIN AMERICAN JOURNAL OF AQUATIC RESEARCH Lat. Am. J. Aquat. Res., 37(3) 2009 CONTENTS Patricio Arana, José Angel Alvarez Perez & Paulo Ricardo Pezzuto Deep-sea fisheries off Latin America: an introduction………………………..……………..……………………………. 281-284 Research Articles Mauricio Ahumada & Patricio Arana Pesca artesanal de cangrejo dorado (Chaceon chilensis) en el archipiélago de Juan Fernández, Chile. Artisanal fishing for golden crab (Chaceon chilensis) off the Juan Fernández archipelago, Chile…………………………...…..…………….. 285-296 Paulo Ricardo Pezzuto & Rodrigo Sant’Ana Sexual maturity of the deep-sea royal crab Chaceon ramosae Manning, Tavares & Albuquerque, 1989 (Brachyura: Geryonidae) in southern Brazil. Madurez sexual del cangrejo real Chaceon ramosae Manning, Tavares & Albuquerque, 1989 (Brachyura: Geryonidae) en el sur de Brasil………………………………………………………………….………………….. 297-312 Cristian Canales & Patricio Arana Crecimiento, mortalidad y evaluación de la población de cangrejo dorado (Chaceon chilensis) explotado en el archipiélago de Juan Fernández, Chile. Growth, mortality, and stock assessment of the golden crab (Chaceon chilensis) population exploited in the Juan Fernández archipelago, Chile……………………………………………………………….……...... 313-326 Rodrigo Dallagnolo; José Angel Alvarez Perez; Paulo Ricardo Pezzuto & Roberto Wahrlich The deep-sea shrimp fishery off Brazil (Decapoda: Aristeidae): development and present status. La pesquería de gambas de profundidad en Brasil (Decapoda: Aristeidae): desarrollo y estado actual…………………………………….……… 327-346 Aurora Guerrero & Patricio Arana Size structure and sexual maturity of the golden crab (Chaceon chilensis) exploited off Robinson Crusoe Island, Chile. Estructuras de tallas y madurez en el cangrejo dorado (Chaceon chilensis) explotado alrededor de la isla Robinson Crusoe, Chile…………………………………………………………………………………………………………………………….….….. 347-360 Aurora Guerrero & Patricio Arana Fishing yields and size structures of Patagonian toothfish (Dissostichus eleginoides) caught with pots and long-lines off far southern Chile. Rendimientos de pesca y estructuras de tallas de bacalao de profundidad (Dissostichus eleginoides) capturados con trampas y espineles en el extremo sur de Chile…………………………………………………………. 361-370 Edward Barriga, Carlos Salazar, Jacqueline Palacios, Miguel Romero & Aldo Rodríguez Distribución, abundancia y estructura poblacional del langostino rojo de profundidad Haliporoides diomedeae (Crustacea: Decapoda: Solenoceridae) frente a la zona norte de Perú (2007-2008). Distribution, abundance, and population structure of deep red shrimp Haliporoides diomedeae (Crustacea: Decapoda: Solenoceridae) off northern Perú (20072008)………………..……………………………………………………………………………………………………...………….. 371-380 Patricio Arana Reproductive aspects of the Patagonian toothfish (Dissostichus eleginoides) off southern Chile. Aspectos reproductivos del bacalao de profundidad (Dissostichus eleginoides), en el extremo austral de Chile. ………………………………… 381-394 Manuel Haimovici, Luciano Gomes Fischer, Carmem L.D.B.S. Rossi-Wongtschowski, Roberto Ávila Bernardes & Roberta Aguiar dos Santos Biomass and fishing potential yield of demersal resources from the outer shelf and upper slope of southern Brazil. Biomasa y rendimiento potencial de recursos demersales de la plataforma externa y talud superior del sur de Brasil… 395-408 José Angel Alvarez Perez, Tiago Nascimento Silva, Rafael Schroeder, Richard Schwarz & Rodrigo Silvestre Martins Biological patterns of the Argentine shortfin squid Illex argentinus in the slope trawl fishery off Brazil. Patrones biológicos del calamar argentino Illex argentinus en la pesquería de arrastre en el talud continental de Brasil………………. 409-428 www.scielo.cl/imar.htm www.lajar.cl Rodrigo Sant’Ana & Paulo Ricardo Pezzuto Sexual maturity of the deep-sea red crab Chaceon notialis Manning & Holthuis, 1989 (Brachyura: Geryonidae) in southern Brazil. Madurez sexual del cangrejo rojo de profundidad Chaceon notialis Manning & Holthuis, 1989 (Brachyura: Geryonidae) al sur de Brasil…………………………………………………………………………………………………….....……..... 429-442 Paulo Ricardo Pezzuto & Martin Coachman Dias Reproductive cycle and population structure of the deep-water shrimp Aristeus antillensis A. Milne Edwards & Bouvier, 1909 (Decapoda: Aristeidae) on southeast Brazilian continental slope. Ciclo reproductivo y estructura poblacional del camarón de aguas profundas Aristeus antillensis A. Milne Edwards & Bouvier, 1909 (Decapoda: Aristeidae) en el talud continental del sureste de Brasil………………………………………………………………………………………………………..... 443-454 Jacqueline Palacios, Edward Barriga, Carlos Salazar, Aldo Rodríguez & Miguel Romero Aspectos de la biología de Coryphaenoides delsolari Chirichigno & Iwamoto, 1977 frente a la zona norte del Perú. Aspects of the biology of Coryphaenoides delsolari Chirichigno & Iwamoto, 1977 off northern Perú………………...……….. 455-462 Aurora Guerrero & Patricio Arana Rendimientos, estructuras de tallas y madurez sexual del alfonsino (Beryx splendens) capturado en el cordón submarino de Juan Fernández, Chile. Fishing yields, size structures, and sexual maturity of alfonsino (Beryx splendens) caught on Juan Fernandez seamounts, Chile…………………………………………………………………………..……………….……. 463-478 Reviews Mauricio Gálvez-Larach Montes submarinos de Nazca y Salas y Gómez: una revisión para el manejo y conservación. Seamounts of Nazca and Salas y Gómez: a review for management and conservation purposes…………………………………….…………………. 479-500 Malcolm R. Clark Deep-sea seamount fisheries: a review of global status and future prospects. Pesquerías de aguas profundas realizadas en montes submarinos: revisión global de su estado y perspectivas futuras……………………………………………… 501-512 José Angel Alvarez Perez, Paulo Ricardo Pezzuto, Roberto Wahrlich & Ana Luisa de Souza Soares Deep-water fisheries in Brazil: history, status and perspectives. Pesquerías de aguas profundas en Brasil: historia, situación actual y perspectivas…………………………………………………………………………………………………………… 513-542 Ingo S. Wehrtmann & Vanessa Nielsen-Muñoz The deepwater fishery along the Pacific coast of Costa Rica, Central America. Pesca en aguas profundas a lo largo de la costa Pacífica de Costa Rica, América Central................................................................................................................... 543-554 Eleuterio Yáñez, Claudio Silva, Rodrigo Vega, Fernando Espíndola, Lorena Álvarez, Nelson Silva, Sergio Palma, Sergio Salinas, Eduardo Menschel, Verena Häussermann, Daniela Soto & Nadín Ramírez Seamounts in the southeastern Pacific Ocean and biodiversity on Juan Fernandez seamounts, Chile. Montes submarinos en el océano Pacífico suroriental y biodiversidad en el cordón submarino de Juan Fernández, Chile………………. 555-570 Short Communications Tiago Barros Carvalho, Ronaldo Ruy de Oliveira Filho & Tito Monteiro da Cruz Lotufo Note on the fisheries and biology of the golden crab (Chaceon fenneri) off the northern coast of Brazil. Nota sobre la biología y la pesca del cangrejo dorado (Chaceon fenneri) frente a la costa norte de Brasil…………………………… 571-576 www.scielo.cl/imar.htm www.lajar.cl Lat. Am. J. Aquat. Res., 37(3): 281-284, 2009 Deep-sea fisheries off Latin America: an introduction “Deep-sea fisheries off Latin America” P. Arana, J.A.A. Perez & P.R. Pezzuto (eds.) DOI: 10.3856/vol37-issue3-fulltext-1 281 Deep-sea fisheries off Latin America: an introduction Patricio Arana1, José Angel Alvarez Perez2 & Paulo Ricardo Pezzuto2 Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso P.O. Box 1020, Valparaíso, Chile 2 Centro de Ciências Tecnológicas da Terra e do Mar, Universidade do Vale do Itajaí Rua Uruguai 458, Centro, Itajaí, SC, Brazil 1 Recent assessments of the state of the world’s marine capture fisheries demonstrate that global catches have attained (or surpassed) maximum sustainable levels in the last two decades (Pauly et al., 2002). These reports also point out three critically related global trends: (a) fishing efforts in developing countries have increased in order to meet the high demands of the “overfished” developed world (Garcia & Grainger, 2005; Pauly et al., 2005), (b) catches have concentrated on smaller organisms of lower trophic levels (Pauly et al., 1998), and (c) fishing has gone deeper (Morato et al., 2006). It has been argued that developing coastal countries, concentrated in the Southern Hemisphere, have developed their offshore fishing capacity (through national fleet enhancement or foreign fishing agreements) in order to further production of both large, high-value and small, low-value fish (and shellfish); the former are destined for international markets and the latter to supply domestic food demands. Worldwide, this process has also been associated with the progressive occupation of deeper areas by commercial fleets, initially in search of better catches of shelf targets but eventually aiming at the exploitation of some highly profitable, typically deep-water species (Japp & Wilkinson, 2007). Largely embedded in the developing world, Latin America may be seen as a good example of such trends. It comprises 20 coastal countries whose Economic Exclusive Zones (EEZs) extend into the southwestern Atlantic, eastern Pacific, Southern Oceans, and Caribbean Sea. The region has historically contributed over 15% the world’s marine fish production, although most of this has concentrated on fishmeal produced by massive catches of small pelagic fish in upwelling zones off Peru and Chile. In recent decades, however, Latin American fisheries production not only increased continuously but also diversified, shifting its focus to the production of fish for human con-sumption (as opposed to fishmeal) and trading with the USA, EU, and Japan (Wiefels, 2003). As the new millennium progressed, Latin America became a major net export region reporting, in 2006, an 8 billion US$ surplus in fish and the fish products trade (Garcia & Grainger, 2005; FAO, 2009). Notwithstanding, several large Latin American countries have also experienced a growing domestic demand for seafood, and regional fishery development seems to have been motivated by obtaining hard currency rather than food security (Wiefels, 2003). In the context of said fishing development history, it stands to be asked: has fishing also gone deeper off Latin American countries? Deep-water fishing, normally defined as fishing conducted near the seafloor beyond the continental shelf break (including slope areas, seamounts, and seamount ridges), emerged in the 1950s through pioneer operations of Russian trawlers on the northern mid-Atlantic ridge (Troyanovsky & Lisovsky, 1995; Japp & Wilkinson, 2007). In the following decades (1960-2000), fishing technologies advanced and deepwater fisheries expanded to all oceanic regions of the world, being particularly important in northern temperate-water oceans (i.e. Northeast Atlantic) (Sissewine & Mace, 2007). In 2004, over 5.6 million tonnes of deepwater species were reported worldwide; of these, 2.4 million (43%) were blue ling (Molva dypterygia) catches obtained in the northeastern Atlantic along with other species, including Greenland halibut (Reinhardtius hippoglossoides), ling (Molva molva), northern prawn (Pandalus borealis), roundnose grenadier (Coryphaenoides rupestris), and others. The southeastern Pacific and southwestern Atlantic, where most Latin American countries fish, contributed no more than 3% of global deepwater catches in 2004. Nevertheless, over 350,000 tonnes of total catches were reported that year of Patagonian toothfish (Dissostichus eleginoides), Patagonian grenadier (Macruronus magellanicus), the pink cusk-eel (Genypterus blacodes), and southern blue whiting (Micromesistius 282 Lat. Am. J. Aquat. Res. australis) (Sissewine & Mace, 2007), all resources from temperate waters. Notwithstanding these official figures, considerable deepwater fishing activity has been reported off Latin America, particularly at lower latitudes and in tropical waters such as the Brazil slope area (Perez et al., 2003), the Nazca Ridge (Parin et al., 1997), and seamounts in the southeast Pacific Ocean and off the coast of Chile (Arana, 2003). Despite the lack of comprehensive and widely accessible information, these reports suggested that the Latin American fishery was also going deep. These were the feelings that motivated the Latin American Association of Marine Sciences (ALICMAR) to promote the first workshop fully focused on compiling comprehensive studies on deep-sea fisheries off Latin American countries in 2007 during the XII COLACMAR (Latin American Congress of Marine Science) held in Florianópolis, Brazil. During the event, nine oral presentations by researchers from New Zealand, Spain, Costa Rica, Brazil, Chile, and Uruguay offered a rich overview on the biology and fisheries of deepwater resources in Latin America, the eastern Atlantic, and seamounts around the world. A consensus emerged from the workshop participants that a thorough, perennial recording of this otherwise quite dispersed knowledge should be attempted in order to fully document and recognize Latin American deep-water fisheries, biology, and management. A contemporary agreement celebrated between the Pontificia Universidad Católica de Valparaíso (Chile) and Universidade do Vale do Itajaí (Brazil) during the XII COLACMAR produced the appropriate collaborative environment to envisage a joint edition of a volume of the Latin American Journal of Aquatic Research (LAJAR) especially devoted to the publication of invited and fully peer-reviewed papers on Latin American deep-sea fisheries and resources. Editorial Table 1. Main deep-water species dealt with in the papers published in this issue, by region and fishery status. Tabla 1. Principales especies que son tratadas en el presente número de la revista, por región y situación pesquera de cada una de ellas. Region Resources Fish Alfonsino Granadero Patagonian toothfish Orange roughy Tylefish Monkfish Argentine hake Wreckfish Brazilian codling Silver John dory Beryx splendens Coryphaenoides delsolari Dissostichus eleginoides Hoplostethus atlanticus Lopholatillus villarii Lophyus gastrophysus Merluccius hubbsi Polyprion americanus Urophycis mystacea Zenopsis conchifera Crustaceans Giand red shrimp Scarlet shrimp Alistado shrimp Golden crab Golden crab Red crab Royal crab Red royal shrimp Camellón shirmp Camellito shrimp Fidel shrimp Aristaeomorpha foliacea Aristaeopsis edwardsiana Aristeus antillensis Chaceon chilensis Chaceon fenneri Chaceon notialis Chaceon ramosae Haliporoides diomedeae Heterocarpus affinis Heterocarpus vicarius Solenocera agassizii Molluscs Argentine shortfin squid Illex argentinus Atlantic ocean Pacific ocean Status Seamounts elsewhere Potential resource Developing fishery Exploited/ overexploited Deep-sea fisheries off Latin America: an introduction efforts directed at contacting and enlisting/enrolling/recruiting as many contributors as possible from all regional countries resulted in a total of 20 articles that compile information on deep-water fisheries carried out between 2000 and 2008 off both the Pacific (11) and Atlantic (8) coasts of Latin America. The majority of the data presented originated from slope areas and seamounts within the EEZs of Brazil (8), Chile (7), Perú (2), and Costa Rica (1) as well as the high-seas (2). The studies span a variety of aspects of deep-sea fisheries including: (a) regional fishing development, (b) stock assessments and biological studies, (c) fishing management, and (d) biodiversity and conservation of deep Vulnerable Marine Ecosystems. Detailed information about 22 potential, developing, and exploited/overexploited deep-sea resources has been made available by these papers, most of which (12) focus on shellfish stocks including several shrimps, four geryonid crabs, and one squid (Table 1). This fact adds particular interest to this volume: unlike other areas of the World Ocean where deep-sea fisheries have been demonstrated to concentrate largely on bony and cartilaginous fishes (see reviews in FAO, 2007), benthic and demersal invertebrates are comparatively more important in Latin American fisheries. Not surprisingly, concerns about the sustainability of these fragile deep-water resources and their respective habitats have also emerged as a recurrent topic in this volume, as 45% of the reported species have already been revealed to be exploited or overexploited in the region despite their relatively recent fishing history (Table 1). Therefore, as the international community mobilizes research and diplomatic efforts to limit and regulate the economic exploitation of deep-sea environments in EEZs and on the high-seas by designing general agreements and recommendations (FAO, 2007) or establishing regional fishing management organizations (i.e. South Pacific Regional Fishing Management Organization; www.south pacificrfmo.org), this volume is intended to contribute the necessary knowledge to promote the sustainable management of Latin American deep-water environments and their respective resources. REFERENCES Arana, P. 2003. Experiencia chilena en faenas de pesca en aguas profundas y distantes: Evolución y perspectivas. In: E. Yáñez (ed.). Actividad pesquera y de acuicultura en Chile. Escuela de Ciencias del Mar, PUCV, pp. 57-79. Food and Agriculture Organization (FAO). 2007. Report and documentation of the expert consultation on deep- 283 sea fisheries in the high seas. Bangkok, Thailand, 2123 November 2006. FAO Fish. Rep., 838: 208 pp. Food and Agriculture Organization (FAO). 2009. The state of the world fisheries and aquaculture 2008. FAO, Rome, 196 pp. Garcia, S.M. & R.J.R. Grainger. 2005. Gloom and doom? The future of marine capture fisheries. Phil. Trans. R. Soc., B 360: 21-46. Japp, D.W. & S. Wilkinson. 2007. Deep-sea resources and fisheries. In: Report and documentation of the expert consultation on deep-sea fisheries in the high seas. Bangkok, Thailand, 21-23 November 2006. FAO Fish. Rep., 838: 39-59. Morato,T., R. Watson, T.J. Pitcher & D. Pauly. 2006. Fishing down the deep. Fish & Fisheries, 7: 24-34. Parin, N.V., A.N. Mironov & K.N. Nesis. 1997. Biology of the Nazca and Sala y Gómez submarine ridges, an outpost of the Indo-West Pacific fauna in the Eastern Pacific Ocean: composition and distribution of the fauna, its communities and history. In: A.V. Gebruk, E.C. Southward & P.A. Tyler (eds.). The biogeography of the oceans. Adv. Mar. Biol., 32: 145-242. Pauly, D., V. Christensen, J. Dalsgaard, R. Froese & F.C. Torres, Jr. 1998. Fishing down marine food webs. Science, 279: 860-863. Pauly, D., V. Christensen, S. Guénette, T.J. Pitcher, U.R. Sumaila, C.J. Walters, R. Watson & D. Zeller. 2002. Towards sustainability in world fisheries. Nature, 418: 689-695. Pauly, D., R. Watson & J. Alder. 2005. Global trends in world fisheries: impacts on marine ecosystems and food security. Phil. Trans. R. Soc., B 360: 5-12. Perez, J.A.A., R. Wahrlich, P.R. Pezzuto, P.R. Schwingel, F.R.A. Lopes & M. Rodrigues-Ribeiro. 2003. Deepsea fishery off southern Brazil: recent trends of the Brazilian fishing industry. J. Northw. Atl. Fish. Sci., 31: 1-18. Sissewine, M.P. & P. Mace. 2007. Can deep water fisheries be managed sustainably? In: Report and documentation of the expert consultation on deep-sea fisheries in the high seas. Bangkok, Thailand, 21-23 November 2006. FAO Fish. Rep., 838: 61-112. Troyanovsky, F.M. & S.F. Lisovsky. 1995. Russian (USSR) fisheries research in deep-waters (below 500 m) in the north Atlantic. In: A.G. Hooper (ed.) Deepwater fisheries of the north Atlantic oceanic slope. Kluwer Academic Publishers, Netherlands, pp. 357365. Wiefels, R. 2003. Study on the impact of international trade in fishery products on food security in Latin America – A regional approach. In: Report of the expert consultation on international fish trade and food security. Casablanca, Morocco, 27-30 January 2003. FAO Fish. Rep., 708: 155-161. 284 Lat. Am. J. Aquat. Res. Lat. Am. J. Aquat. Res., 37(3): 285-296,Pesca 2009 de Chaceon chilensis en el archipiélago de Juan Fernández “Deep-sea fisheries off Latin America” P. Arana, J.A.A. Perez & P.R. Pezzuto (eds.) DOI: 10.3856/vol37-issue3-fulltext-2 285 Research Article Pesca artesanal de cangrejo dorado (Chaceon chilensis) en el archipiélago de Juan Fernández, Chile 1 Mauricio Ahumada1 & Patricio Arana1 Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso P.O. Box 1020, Valparaíso, Chile RESUMEN. Se describe la pesca artesanal de cangrejo dorado (Chaceon chilensis) en las islas Robinson Crusoe y Santa Clara, en el archipiélago de Juan Fernández (Chile), desarrollada entre julio de 2005 y mayo de 2006. Se dan a conocer aspectos biológico-pesqueros relativos a esfuerzo y rendimientos de pesca, proporción sexual, así como los resultados de una evaluación directa de biomasa vulnerable mediante el método de área de influencia de las trampas. La extracción se efectuó fundamentalmente en el cuadrante NE de ambas islas, mediante botes de madera de 9,0 m de eslora. Se monitorearon 157 salidas de pesca y se capturaron 13.903 ejemplares, los cuales mayoritariamente fueron machos (97,5%). La CPUE promedio fue 16,7 ejemplares por trampa y de 13,5 ejemplares comerciales por trampa. A partir del muestreo sistemático, se detectó al recurso entre 300 y 1000 m de profundidad, con mayores rendimientos entre 400 y 500 m de profundidad (19,8 y 15,9 ejemplares por trampa). Se consideran y discuten dos escenarios de evaluación de stock para ejemplares de talla comercial en el área actualmente explotada (45,8 km2), el primero estimó un radio efectivo para las trampas de 13,4 m (área de 564,1 m2), con una biomasa vulnerable de 1.002 ton, equivalentes a 832.983 ejemplares, mientras que el segundo consideró un radio de 30,0 m con una biomasa vulnerable de 203 ton equivalente a 168.587 ejemplares. Palabras clave: pesca artesanal, Chaceon chilensis, cangrejo dorado, aguas profundas, archipiélago de Juan Fernández, Chile. Artisanal fishing for golden crab (Chaceon chilensis) off the Juan Fernández archipelago, Chile ABSTRACT. This work describes the artisanal golden crab (Chaceon chilensis) fishery off Robinson Crusoe and Santa Clara islands in the Juan Fernández archipelago (Chile) developed between July 2005 and May 2006. We report biological fishery aspects related to the fishing efforts and yields, the sexual proportion of the catch, and the results of a direct evaluation of the vulnerable biomass done using the trap area of influence method. The extraction was done mainly in the NE quadrant of both islands from wooden boats (9.0 m length). Monitoring was done during 157 fishing trips, in which 13,903 specimens were caught; most were males (97.5%). The average CPUEs were 16.7 specimens per trap and 13.5 commercial specimens per trap. Systematic sampling revealed the resource between 300 and 1000 m depth, with the greatest yields between 400 and 500 m depth (19.8 and 15.9 specimens per trap). Two stock assessment scenarios were considered and discussed for commercial-sized specimens in the currently exploited area (45.8 km2). The first scenario estimated an effective radius for the traps of 13.4 m (564.1 m2 in area), obtaining a vulnerable biomass of 1002 tons, equivalent to 832,983 specimens. The second scenario considered a radius of 30.0 m, giving a vulnerable biomass of 203 tons, or 168,587 specimens. Keywords: artisanal fishery, Chaceon chilensis, golden crab, deep waters, Juan Fernández archipelago, Chile. ________________________ Corresponding author: Patricio Arana (parana@ucv.cl) 286 Lat. Am. J. Aquat. Res. INTRODUCCIÓN El archipiélago de Juan Fernández se localiza aproximadamente a 360 mn frente a la costa continental de Chile central y comprende a un grupo de tres islas: Robinson Crusoe, Santa Clara y Alejandro Selkirk. Debido a la importancia ecológica de su flora y fauna, dicho territorio fue declarado Parque Nacional en 1935 y Reserva Mundial de la Biosfera en 1977. Las islas están pobladas por aproximadamente 600 habitantes, quienes han desarrollado tradicionalmente una actividad económica concentrada en la pesca artesanal de langosta de Juan Fernández (Jasus frontalis), y en menor medida, algunas especies de peces (Arana & Toro, 1985). Considerando la necesidad de diversificar las operaciones pesqueras, en 1997 se efectuaron faenas de pesca exploratoria tendientes a prospectar y evaluar recursos alternativos, trabajo que a la fecha ha derivado en la explotación incipiente de cangrejo dorado (Chaceon chilensis), por algunas embarcaciones del archipiélago (Arana, 2000a; 2000b). En la actualidad, la pesca de este cangrejo Geryonidae se efectúa exclusivamente por botes artesanales de madera de pequeño tamaño, a diferencia de otras especies del mismo género explotadas en el Atlántico americano, como C. quinquedens (Estados Unidos y Canadá) (Lawton & Duggan, 1998; Steimle et al., 2001), C. notialis en Uruguay, C. ramosae y C. notialis en el sudeste de Brasil (Pezzuto et al., 2002; Perez et al., 2003) y C. fenneri en la costa norte de Brasil (Carvaho et al., 2009). Así, dada la particularidad de esta pesquería, como la importancia ecológica de las islas, este trabajo tuvo por objeto recopilar información operacional de las faenas extractivas y biológicopesquera de Chaceon chilensis, además de estimar su biomasa vulnerable mediante un método de evaluación directa. MATERIALES Y MÉTODOS Se analizó la pesca artesanal de cangrejo dorado (Chaceon chilensis) en aguas circundantes a las islas Robinson Crusoe y Santa Clara, en el archipiélago de Juan Fernández, Chile (33°39’S-78°51’W) entre julio de 2005 y mayo de 2006 (Fig. 1). En dicho período, se caracterizó la captura por unidad de esfuerzo (CPUE) de la especie objetivo (número de individuos por trampa), recopilándose además información operativa de las faenas de pesca. Las embarcaciones utilizadas en las faenas extractivas correspondieron a botes de madera de doble proa con eslora y manga típicas de 9,0 y 2,0 m, equipadas con motores fuera de borda con potencias en torno a los 20 HP, y viradores verticales u horizontales, además de elementos de propulsión y mando alternativos. Los aparejos de pesca, correspondieron a trampas con forma de paralelepípedo recto, construidas de madera local, similares a las utilizadas en la captura de langosta, pero de mayor tamaño (1,5 m de largo). Su diseño consta de una entrada, localizada en el panel superior de la trampa con paredes recubiertas de material plástico, generalmente polietileno (PE) o cloruro de polivinilo (PVC), que facilita que los ejemplares se deslicen al interior, a la vez que obstaculiza su escape. Las trampas se adosaron a un sistema de señalización compuesto por boyas (generalmente 4 ó 5), mediante un cabo de polipropileno (PP) torcido de 8 mm de diámetro. Se calaron provistas de lastre y carnada, consistente en pescado fresco entero o trozado, fijada libremente al interior de cada aparejo, y dispuestas individualmente o formando tenas de dos aparejos. Al respecto, cabe señalar que la extracción de cangrejo dorado es una actividad reciente, en la cual participa un número reducido de embarcaciones, que efectúan una baja cantidad de lances, motivo por el cual, el trabajo se planificó bajo un esquema de censo de viajes de pesca, lances y captura. Se registró en cada lance el esfuerzo (número de trampas revisadas), la captura total y comercial (número de ejemplares), separada por sexo y condición de los ejemplares (machos, hembras y hembras ovíferas), mes, zona de pesca y profundidad, georreferenciándose los principales caladeros mediante GPS (Magellan Meridian Gold), y también se registró la fauna acompañante capturada incidentalmente por los aparejos de pesca. Se consideró como ejemplares comerciales a los individuos con un ancho cefalotorácico (AC) de al menos 130 mm, equivalente a 108 mm LC. La identificación de sexo y condición reproductiva de los ejemplares se efectuó considerando las diferencias morfológicas abdominales entre machos y hembras, además de la presencia o ausencia de huevos. Adicionalmente, entre el 23 de noviembre de 2005 y el 4 de marzo de 2006, se realizó la evaluación directa de cangrejo dorado mediante el método de área de influencia del aparejo de pesca (Arena et al., 1994). Para ello, se utilizaron dos embarcaciones artesanales, considerando como área de trabajo aquella situada en el cuadrante nororiente de la isla Robinson Crusoe, que corresponde al sector explotado actualmente por los pescadores artesanales. De esta manera, la abundancia y biomasa vulnerable, en una partición “t”, se calculó en términos de: ⎛ cpuet ⎜ ⎜ q t =1 ⎝ n ∑ ⎞ ⎟ At ⎟ ⎠ : abundancia vulnerable Pesca de Chaceon chilensis en el archipiélago de Juan Fernández 287 Figura 1. Distribución de los lances de pesca de cangrejo dorado (Chaceon chilensis), entre julio de 2005 y mayo de 2006, alrededor a las islas Robinson Crusoe y Santa Clara. Figure 1. Distribution of golden crab (Chaceon chilensis) fishery hauls around Robinson Crusoe and Santa Clara islands between July 2005 and May 2006. L ∑ ( Abundancial ⋅ wl ) : biomasa vulnerable l =1 donde, el coeficiente de capturabilidad “q” corresponde al cuociente entre la captura por unidad de esfuerzo (c/f) y la densidad del stock (D), y la biomasa vulnerable se expresó en función de la abundancia a la talla “l” (Abundancial) y al l-ésimo peso promedio ( wl ), según la relación longitud-peso, definida como: cpuet q At : Captura por trampa promedio en la partición “t” (unidades trampa-1) : Coeficiente de capturabilidad del recurso (km2 trampa-1) : Área de distribución del recurso, en la partición “t” (km2) Para efectuar la evaluación directa, se consideró el enfoque de Aedo & Arancibia (2003). Dichos autores diferencian entre el área de atracción del aparejo “Aatr”, correspondiente a la superficie en torno a la trampa dentro de la cual son atraídos los ejemplares, y el área efectiva de pesca “Aef”, definida como aquella en que la probabilidad teórica de captura de los ejemplares es 100%, que equivale al coeficiente de capturabilidad “q”. El diseño de muestreo fue sistemático y se efectuaron en tres zonas de manera aleatoria al interior del área de trabajo ya indicada, aproximadamente frente a los sectores denominados Cerro Alto, Bahía Cumberland y Puerto Francés, entre los veriles de 300 y 1000 m. Se planificaron ocho estaciones de muestreo, separadas entre sí por intervalos de 100 m de profundidad, las cuales fueron localizadas mediante la utilización de GPS y un ecosonda modelo Raythoon V8010 instalado a bordo de la embarcación. El diseño de muestreo contempló el calado de seis trampas por estación, correspondientes a aparejos empleados habitualmente por los pescadores en sus operaciones de pesca. En dos de las zonas (Cerro Alto y Bahía Cumberland) se utilizaron trampas individuales por línea de pesca, en tanto que frente a Puerto Francés, se usaron tenas con dos aparejos de pesca por línea (con separación de 30 m entre ambas trampas). La carnada y tiempo de reposo fueron los utilizados comúnmente por los pescadores de la isla (48 a 72 h), programándose un total de 48 lances por zona, con 144 lances para la totalidad de la prospección. 288 Lat. Am. J. Aquat. Res. Para estimar el radio de atracción del aparejo de pesca se consideró un diseño experimental que empleó tenas con dos trampas de pesca, las que fueron dispuestas en un caladero de C. chilensis, a una profundidad constante de 400 m, con distintas separaciones entre trampas, correspondientes a 30, 60, 90 y 120 m. Así, el área de atracción del aparejo “Aatr” se obtuvo empleando el método de aproximación numérica Raphson Newton (Burden & Faires, 2002), considerando la distancia entre trampas caladas “Smax”, correspondiente a aquella en donde la CPUE alcanzó un valor asintótico, según: ( cpue s = a 1 − exp −b⋅s ) : captura media por unidad de esfuerzo a una distancia “s” de separación de trampas ⎛S ⎞ Aatr = π ⎜ max ⎟ ⎝ 2 ⎠ RESULTADOS 2 : área de atracción de la trampa Para estimar el área efectiva “Aef”, se empleó un supuesto de área circular en torno a cada aparejo, considerando que Cp = 1 para una distancia d = 0, y Cp = 0,02 para una distancia “d”, equivalente al radio de atracción “ratr” (Aedo & Arancibia, 2003), conforme a la siguiente relación: C p = m ⋅ exp − n⋅d : probabilidad de captura teórica a una distancia “d” de la trampa. donde m = 1 , que supone que la probabilidad de captura a una distancia cero de la trampa es de 100% y n = ln(0,02) / ratr , parámetro correspondiente a la variación relativa de la probabilidad de captura teórica ante un cambio unitario de la distancia “d”. Conforme a lo anterior, se estimó el radio efectivo de pesca, según: ref = neal, según rutina numérica de Raphson Newton (Burden & Faires, 2002), utilizando la minimización de la suma del error cuadrático. La biomasa vulnerable se estimó extrapolando la CPUE promedio, obtenida mediante el diseño sistemático, al área de distribución “At” del recurso objetivo, considerando el sector delimitado por la posición de los lances comerciales monitoreados de pesca, el supuesto de un área efectiva circular en torno a la trampa (Arena et al., 1994) y una talla mínima comercial de 108 mm de LC. Además, se consideró la corrección del área de influencia de la trampa, en caso de solapamiento de áreas efectivas, según área de segmento circular. 1 − exp−n⋅ratr n : radio efectivo de pesca Adicionalmente, se consideró un escenario alternativo de evaluación, que consideró los radios de influencia de trampas (30 m), reportados en la evaluación directa de otros gerionídeos, destacando entre ellos a McElman & Elner (1982), Melville-Smith (1986) y Defeo et al. (1990). Para determinar la relación talla (LC)-peso de los ejemplares capturados, se obtuvo una muestra, pesando y midiendo los individuos en tierra; el peso mediante balanza electrónica (0,1 g de precisión) y la longitud cefalotorácica (LC) con pie de metro (0,1 mm de precisión). Para estimar los parámetros, se consideró una relación de poder, empleando un ajuste no li- Se determinó que ocho embarcaciones fueron utilizadas esporádicamente en la pesca de Chaceon chilensis, las que combinaron operaciones destinadas a la pesca de este recurso y de la langosta de Juan Fernández (Jasus frontalis). Desde el punto de vista operacional, las mareas fueron diurnas, con duraciones aproximadas de 12 h y una periodicidad media de 2,5 días. Durante las faenas de pesca, se distinguieron las actividades de captura de carnada, preparación de trampas, localización de caladeros, virado, revisión, calado de trampas y manipulación de la captura a bordo. La carnada utilizada correspondió a especies ícticas como Pseudocaranx chilensis, Seriola lalandi, Gymnotorax porphyreus, Caprodon sp. y ocasionalmente, pulpo (Octopus sp.). Con respecto al esfuerzo de pesca, se monitorearon 157 salidas de pesca, dicho valor correspondió a una muestra del total, dado que no fue posible recopilar datos en una de las embarcaciones durante todo el período de estudio. El número de salidas de pesca mensual varió entre un mínimo de siete (octubre, febrero y abril) y un máximo de 37 (agosto). El total de trampas viradas fue 831, mensualmente el número de aparejos virados estuvo comprendido entre 38 (febrero) y 128 (agosto) (Fig. 2). El esfuerzo de pesca orientado a C. chilensis se distribuyó entre julio y marzo en el cuadrante NE de la isla Robinson Crusoe, frente a los sectores La Vaquería, Bahía Cumberland y Puerto Francés, mientras que en abril y mayo de 2006, se incorporó el área al sur de la isla, frente a Bahía Villagra y Playa Larga (Fig. 2). Batimétricamente, las trampas se calaron entre 300 y 675 m, con un promedio global de 468 m de profundidad, indicador que mensualmente varió entre 439 y 508 m en septiembre y julio, respectivamente. Pesca de Chaceon chilensis en el archipiélago de Juan Fernández 289 Figura 2. Esfuerzo y CPUE, total y comercial (> 130 mm AC), de cangrejo dorado (Chaceon chilensis), entre julio de 2005 y mayo de 2006. Figure 2. Effort and CPUE for the total and commercial (> 130 mm AC) golden crab (Chaceon chilensis) fishery between July 2005 and May 2006. A partir de los datos obtenidos, se determinó una captura de 13.903 ejemplares, de los cuales 10.863 (78,1%) fueron desembarcados por su interés comercial. La captura de hembras resultó notoriamente con apenas 354 ejemplares, de las cuales 48 portaban huevos, que dado su menor tamaño relativo, no fueron desembarcadas. Además, se observó la presencia recurrente de manchas oscuras y eventuales perforaciones en la caparazón de los ejemplares. De las 831 trampas viradas, 116 presentaron fauna asociada correspondiente a 334 ejemplares de centolla de Juan Fernández (Paromola rathbuni), además de la presencia ocasional de anguila (Gymnothorax porphyreus) en trampas caladas en el rango de menor profundidad, aproximadamente a 300 m. A mayor profundidad se detectó ocasionalmente anguila blanca (Bassanago albescens), el gastrópodo Fusitritron magellanicum y un equinodermo sin identificar. La CPUE promedio de cangrejo dorado fue 88,7 ind salida-1, equivalente a 69,2 ejemplares comerciales por salida. Tomando en cuenta la unidad de esfuerzo de pesca en términos de trampa virada, el rendimiento promedio fue 16,7 ind trampa-1, en tanto que la CPUE promedio de ejemplares comerciales (mayores a 130 mm de ancho cefalotorácico) fue 13,5 ind trampa-1 (Tabla 1). Al desglosar los rendimientos de pesca mensualmente, éstos variaron entre 11,7 y 24,3 ind trampa-1 en diciembre y abril, respectivamente. Los rendimientos de las capturas comerciales, estuvieron comprendidos entre 8,4 (septiembre) y 20,3 ind trampa-1 (abril). Por sexo, se registró una marcada diferencia en el rendimiento de pesca, siendo el promedio en machos de 16,1 ind trampa-1, mientras que en hembras, sólo 0,4 ind trampa-1 (Tabla 2). A partir de una muestra de 264 ejemplares, con longitudes cefalotorácicas entre 82,6 y 142,2 mm y peso entre 309 y 1.768 g, se efectuó el ajuste de la relación de poder de talla (LC)-peso total en machos. Según el ajuste no lineal, se obtuvieron los siguientes parámetros: a = 0,0004 (Error estándar: 0,000067) y b = 3,0694 (Error estándar: 0,032472). Con respecto al muestreo sistemático realizado para desarrollar la evaluación directa, el recurso objetivo fue capturado en las tres zonas (Fig. 3), entre 300 y 1000 m de profundidad. De esta manera, la captura total fue 1.165 ejemplares, de los cuales 1.120 290 Lat. Am. J. Aquat. Res. Tabla 1. Promedio mensual y coeficiente de variación (%) de la captura total y comercial obtenida por salida de pesca y por trampa (n° ejemplares), en faenas de pesca de cangrejo dorado, temporada 2005/2006. Table 1. Monthly average and coefficient of variation (%) for the total and commercial catch obtained per fishing trip and per trap (no. of specimens) in golden crab fishery operations (2005-2006). Mes N° ind salida-1 N° ind comerciales salida-1 N° ind trampa-1 N° ind comerciales trampa-1 Julio 2005 59,0 (63,2%) 39,7 (65,0%) 14,6 (55,3%) 10,8 (50,6%) Agosto 46,0 (88,0%) 38,1 (91,5%) 13,2 (58,1%) 11,7 (47,1%) Septiembre 56,4 (68,7%) 35,9 (70,7%) 12,3 (61,1%) 8,4 (50,6%) Octubre 96,6 (61,3%) 72,9 (42,6%) 16,4 (50,5%) 12,7 (39,7%) Noviembre 119,6 (41,4%) 93,4 (51,3%) 16,0 (60,4%) 12,6 (68,9%) Diciembre 52,9 (71,4%) 49,6 (73,7%) 11,7 (54,0%) 11,0 (54,0%) Enero 2006 69,8 (59,4%) 57,8 (48,7%) 16,6 (56,7%) 13,7 (55,5%) Febrero 86,2 (59,2%) 80,7 (61,0%) 15,8 (59,5%) 15,2 (58,8%) Marzo 121,3 (64,1%) 97,1 (64,2%) 19,5 (47,8%) 15,9 (50,3%) Abril 233,4 (43,3%) 189,0 (42,0%) 24,3 (63,0%) 20,3 (55,7%) Mayo 232,8 (43,4%) 165,5 (44,3%) 23,0 (52,7%) 16,3 (53,2%) Promedio 88,7 (87,0%) 69,2 (87,0%) 16,7 (62,0%) 13,5 (60,0%) Tabla 2. Promedio mensual y coeficiente de variación (%) de la CPUE (n° ind trampa-1), mensual, por sexo y condición de los ejemplares (ovígera, no ovígera), en faenas de pesca de cangrejo dorado, temporada 2005-2006. Table 2. Monthly average and coefficient of variation (%) of CPUE (no. of specimens trap-1) by sex and condition of the specimens (ovigerous, not ovigerous), in golden crab fishery operations (2005-2006). machos hembras no ovíferas hembras ovíferas Mes N° ind trampa-1 N° ind trampa-1 N° ind trampa-1 Julio 2005 10,3 (55,3%) 0,31 (221,6%) 0,03 (479,5%) Agosto 13,0 (58,2%) 0,21 (295,4%) 0,06 (481,5%) Septiembre 12,1 (61,4%) 0,11 (309,0%) 0,02 (655,7%) Octubre 16,3 (51,1%) 0,14 (288,3%) 0,02 (640,3%) Noviembre 15,6 (61,8%) 0,36 (223,0%) 0,01 (745,0%) Diciembre 11,4 (53,9%) 0,24 (322,1%) 0,05 (416,2%) Enero 2006 15,9 (59,7%) 0,57 (208,7%) 0,07 (648,1%) Febrero 15,8 (59,3%) 0,05 (616,4%) - Marzo 18,5 (50,5%) 0,84 (262,6%) 0,08 (780,2%) Abril 23,8 (61,7%) 0,49 (283,6%) 0,04 (465,4%) Mayo 22,6 (51,9%) 0,23 (263,4%) 0,14 (284,6%) Promedio 16,1 (62,4%) 0,35 (312,0%) 0,05 (610,5%) Pesca de Chaceon chilensis en el archipiélago de Juan Fernández 291 Figura 3. Lances de pesca en las zonas de pesca empleadas para la evaluación directa de cangrejo dorado (Chaceon chilensis), alrededor de islas Robinson Crusoe y Santa Clara (Zona 1: Cerro Alto, Zona 2: Bahía Cumberland y Zona 3: Puerto Francés). Figure 3. Fishing hauls done along fishing zones used for direct golden crab (Chaceon chilensis) assessment around Robinson Crusoe and Santa Clara islands (Zone 1: Cerro Alto, Zone 2: Bahía Cumberland, Zone 3: Puerto Francés). (96,1%) fueron machos y 45 (3,9%) hembras, de éstas, sólo dos portaban huevos. En esta etapa, y al considerar la información batimétrica, los mayores rendimientos de pesca de machos se registraron entre 400 y 500 m, alcanzando 19,5 y 15,5 ind trampa-1, mientras que las hembras se capturaron exclusivamente en la estación de 300 m (1,3 ind trampa-1). Del mismo modo, sólo se registraron hembras portadoras en las estaciones de 500 y 600 m, con rendimientos promedio inferiores a 1,0 ind trampa-1 (Tabla 3). A partir de la experiencia de separación sucesiva de trampas de pesca, para estimar la CPUE promedio de acuerdo a las diferentes distancias consideradas, se ajustó la siguiente función (valor-p < 0,05) (Tabla 4): cpue s = 23,51 ( 1 − exp−0,036⋅s ) De acuerdo a esto, se estimó un radio de atracción (ratr) de 53,5 m, equivalente a un área de atracción (Aatr) de 9.007,5 m2. A partir del ajuste de la probabilidad de captura respecto de la distancia (m = 1,0, n = 0,072), se obtuvo finalmente un radio efectivo de pesca (ref) de 13,4 m, equivalente a un área efectiva de pesca (Aef) de 564,1 m2. El sector delimitado por la posición de los lances de pesca estuvo localizado al NE de las islas Robinson Crusoe y Santa Clara, comprendido entre 300 y 600 m de profundidad, con una superficie estimada en 45,8 km2. Así, para el primer escenario, consistente en la estimación del radio de influencia de la trampa (13,4 m), se estimó una biomasa vulnerable de 1.002 ton para el área explotada, equivalente a 832.983 ejemplares. Considerando con fines comparativos el segundo escenario y tomando en cuenta los radios de atracción reportados en literatura (30 m), la biomasa vulnerable de C. chilensis fue de 203 ton, que corresponde a 168.587 ejemplares sobre la talla comercial. DISCUSIÓN La pesca comercial de Chaceon chilensis en el archipiélago Juan Fernández, es una actividad reciente, pues sus operaciones comenzaron aproximadamente el año 2000, a partir de la realización de un proyecto de pesca exploratoria efectuado en 1996 y 1997, que identificó a esta especie como el principal recurso marino con potencial para diversificar la pesca artesa- 292 Lat. Am. J. Aquat. Res. Tabla 3. Capturas por trampa (unidades) de cangrejo dorado, por sexo y condición de los ejemplares, durante el experimento de separación de trampas en líneas de pesca (M: macho, HO: hembra ovígera, H: hembra). Table 3. Golden crab catches per trap (units) by sex and condition of the specimens during the experiment of trap separation on fishing lines (M: male, HO: ovigerous female, H: female). Profundidad (m) 300 400 500 600 700 800 900 1000 Total (300-1000) Zona 1 Cerro Alto Zona 2 Bahía Cumberland Zona 3 Puerto Francés Total general 12,67 10,33 2,33 0,00 26,67 26,67 0,00 0,00 11,83 11,83 0,00 0,00 4,83 4,83 0,00 0,00 2,50 2,33 0,17 0,00 0,83 0,83 0,00 0,00 0,50 0,50 0,00 0,00 8,55 8,19 0,36 0,00 8,50 7,50 1,00 0,00 16,67 16,17 0,50 0,00 8,50 7,50 0,83 0,17 11,50 10,33 1,00 0,17 4,20 4,20 0,00 0,00 0,50 0,50 0,00 0,00 0,00 0,00 0,00 0,00 7,20 6,66 0,49 0,05 22,00 21,33 0,67 0,00 16,00 15,83 0,17 0,00 27,33 27,17 0,17 0,00 5,67 5,50 0,17 0,00 2,67 2,67 0,00 0,00 4,00 3,83 0,17 0,00 1,83 1,83 0,00 0,00 5,67 5,67 0,00 0,00 10,65 10,48 0,17 0,00 14,39 13,06 1,33 0,00 19,78 19,56 0,22 0,00 15,89 15,50 0,33 0,06 7,33 6,89 0,39 0,06 3,06 3,00 0,06 0,00 1,78 1,72 0,06 0,00 0,78 0,78 0,00 0,00 5,67 5,67 0,00 0,00 8,89 8,55 0,33 0,02 nal en esas islas (Arana, 2000a). A la fecha, esta actividad ha sido desarrollada únicamente por algunas embarcaciones, de manera complementaria a la extracción del principal recurso objetivo, la langosta de Juan Fernández (Jasus frontalis). Total M H HO Total M H HO Total M H HO Total M H HO Total M H HO Total M H HO Total M H HO Total M H HO Total M H HO A partir de los datos de las operaciones comerciales de pesca, se determinó que la proporción sexual indicó un fuerte predominio de machos, con un promedio global de 97,5%. Este hecho es coincidente con lo indicado por Arana (2000a), quien en faenas de Pesca de Chaceon chilensis en el archipiélago de Juan Fernández Tabla 4. Parámetros de la función ajustada entre CPUE y separación entre trampas, para obtener el radio de atracción de las trampas. Table 4. Parameters of the adjusted function between the CPUE and the separation between the traps used to obtain their radii of attraction. Límite inferior Límite superior Parámetro Valor a 23,523 19,44 27,577 b 0,036 0,013 0,0599 pesca exploratoria realizadas en la misma zona en 1997, destacó la ausencia de hembras en prácticamente todos los lances de pesca. La tendencia antes mencionada fue igualmente confirmada en el muestreo sistemático realizado en la presente investigación en torno a la isla Robinson Crusoe, en que el porcentaje de machos fue de 96,1%. En este sentido, proporciones sexuales con marcadas diferencias entre machos y hembras es un hecho que ha sido documentado en diversos Geryonidae, y puede ser atribuida a la estratificación espacial de los sexos, batimétrica o latitudinalmente, tal cual ha sido reportado en C. maritae, C. affinis, C. quinquedens y C. fenneri (Kendall, 1990; Poupin et al., 1991; Lindberg & Lockhart, 1993; Pinho et al., 2001; LópezAbellán et al., 2002; Carvalho et al., 2009) y en C. notialis (P. Pezzuto, com. pers.), o a la menor capacidad de las trampas para capturar hembras (Otwell et al., 1984). De este modo, se ha reportado en C. maritae y C. fenneri la presencia y predominio de hembras en el rango de menor profundidad de su distribución (Lux et al., 1982; Lindberg & Lockhart, 1993), y en el caso de C. affinis, en el de mayor profundidad (Pinho et al., 2001; López-Abellán et al., 2002). Al respecto, en el presente estudio, pese a las escasas capturas de hembras, los mayores rendimientos se obtuvieron en trampas caladas a menor profundidad, alrededor de los 300 m, zona donde las capturas se mezclan con Paromola rathbuni (Retamal & Arana, 2000), cangrejo Homolidae no explotado comercialmente en estas islas. Este hecho indicaría que la captura ocasional de hembras de C. chilensis se debe a que éstas ocuparían zonas someras, no vulneradas en la actualidad por la actividad pesquera. Esta distribución resulta favorable a la liberación, desarrollo y dispersión larval, dada la mayor temperatura relativa a esa profundidad, como ha sido sugerido en C. quinquedens (Kelly et al., 1982; Lindberg & Lockhart, 1993). 293 Al respecto, el muestreo sistemático precisó que si bien la actividad pesquera comercial se concentró entre 375 y 525 m, el cangrejo dorado se distribuye, al menos, entre 300 y 1000 m. De esta manera, su presencia está asociada al Agua Intermedia Antártica (AIAA), cuyo núcleo se ubica a 600 m y se caracteriza por mínimos relativos de salinidad menores a 34,3, oxígeno disuelto con máximos relativos mayores a 2 mL L-1 y temperaturas de 5°C. Entre 200 y 400 m de profundidad, se asocia a la presencia de P. rathbuni, y se caracteriza por la presencia del Agua Ecuatorial Subsuperficial (AESS), que tiene un máximo relativo de salinidad de 34,5 y bajo contenido de oxígeno disuelto, menor a 2 mL L-1 (Arana et al., 2006). Por lo tanto, la presencia eventual de hembras de C. chilensis en torno a 300 m se asociaría a la profundidad de mezcla entre ambas masas de agua. El lapso de once meses que abarcó el monitoreo, sugería la detección de procesos asociados a reproducción o muda. Sin embargo, la presencia esporádica de hembras impidió precisar el período de portación; no obstante, se registraron ejemplares con huevos en todos los meses, a excepción de febrero, obteniéndose la mayor CPUE en mayo (0,14 hembras portadoras por trampa), lo cual indicaría un largo período de portación, como en Chaceon fenneri (Erdman & Blake, 1988). Igualmente, las capturas no mostraron signos claros que pudiesen dar indicios de períodos de muda. No obstante, la presencia recurrente de manchas y lesiones oscuras en la caparazón, que han sido detectadas también en Chaceon quinquedens y atribuidas a la acción de bacterias (Bullis et al., 1988; Young, 1991), la distinta coloración del exoesqueleto y la presencia o ausencia de epibiontes, pudiesen ser utilizadas como futuros indicadores del proceso de ecdisis en esta especie. La CPUE mensual, entre julio 2005 y mayo 2006, varió entre 11,7 y 24,3 ind trampa-1, rango superior al obtenido por Arana & Vega (2000), quienes reportaron intervalos promedio entre 3,5 y 8,1 kg trampa-1, equivalentes a 4,0 y 9,3 ind trampa-1, durante pescas experimentales efectuadas de marzo a junio de 2007, entre 175 y 626 m de profundidad, empleando aparejos de similar diseño al actual. La diferencia anterior puede ser atribuida a incrementos en el poder de pesca, producto de mejoras en la eficiencia de captura, debido al desarrollo de la actividad comercial de pesca sobre este cangrejo. Temporalmente, la CPUE aumentó entre julio de 2005 y mayo de 2006 (Fig. 1), pasando de 10,8 a 16,3 ejemplares comerciales por trampa. Dichos resultados deben ser examinados considerando las variaciones en el nivel de esfuerzo, y especialmente, conforme a la 294 Lat. Am. J. Aquat. Res. incorporación de caladeros no explotados con anterioridad en el área sur de Robinson Crusoe, durante abril y mayo (Fig. 2). Según el peso promedio de cada ejemplar (0,937 kg), la CPUE expresada en peso, resultaría superior a los rangos medios reportados por Pezzuto et al. (2002) para la flota cangrejera en Brasil de C. ramosae y C. notialis (1,8 y 4,5 kg trampa-1) en 2001 y 2002. Con relación a la evaluación de biomasa vulnerable, se consideró las limitaciones impuestas, tanto por la distribución del recurso objetivo, como por las dificultades operacionales asociadas a una pesquería artesanal, lo cual llevó a descartar el empleo de opciones metodológicas utilizadas en otras especies de cangrejos, como marcaje o fotografía submarina (Miller 1975; Melville-Smith, 1985). Del mismo modo, los resultados de este trabajo se deben considerar de acuerdo a los diversos supuestos del método empleado (Arena et al., 1994), destacando el área circular de influencia en torno al aparejo, además de factores que afectan las tasas de captura, como el tiempo de reposo, variaciones en el grado de atracción por la carnada, o la saturación de trampas, entre otros (Miller, 1990). En este sentido, el radio estimado es inferior al considerado en evaluaciones directas de distintas especies de los géneros Chaceon y Geryon, el cual ha variado entre 25 y 35 m (McElman & Elner, 1982; Melville-Smith, 1986; Defeo et al., 1990; Pezzuto et al., 2001), que también es menor al estimado por Barea & Defeo (1985) en C. quinquedens (33 m) e idéntico al estimado por Aedo & Arancibia (2003) para Cancer porteri (13,5 m). Lo anterior se puede atribuir a la alta imprecisión del método de evaluación directa, a la escasez de experiencias específicas de estimación del radio de influencia, así como a diferencias conceptuales respecto de la definición del área de influencia del aparejo de pesca de los autores indicados, con relación a lo indicado por Aedo & Arancibia (2003). Al respecto, los parámetros estimados de la función utilizada para calcular la CPUE asintótica presentaron varianzas importantes (Tabla 4), reflejando la multiplicidad de factores que pueden afectar su estimación, como la presencia y variación de corrientes marinas, o la correcta operación de los aparejos sobre el fondo marino, entre otros. La mayor parte de la información disponible relativa a la aplicación del método en Geryonidae (McElman & Elner, 1982; Defeo et al., 1990; Pezzuto et al., 2001), no considera estimaciones específicas del radio de atracción, a excepción de Barea & Defeo (1985) y Melville-Smith (1986), quienes calculan el área efectiva relacionando la CPUE mediante trampas, con fotografía submarina. El enfoque empleado en la estimación del área de atracción del aparejo difiere del tradicional, expuesto por Arena et al. (1994), autores que consideran como equivalentes los radios de atracción y efectivo de pesca. En este sentido, se puede demostrar que conforme a la aproximación metodológica de Aedo & Arancibia (2003), dado que n = ln(0,02) / ratr , se verifica que ref = 0,25 ratr , lo cual podría explicar la similitud entre los radios estimados por dichos autores para C. porteri, aplicado en el presente estudio, debido a la baja variación del radio efectivo, ante un cambio unitario en el radio de atracción. De acuerdo al radio de influencia estimado (13,4 m), la densidad de C. chilensis alcanzaría 181,9 ind ha-1. Al tomar en cuenta un radio de 30 m, ésta correspondería a 36,8 ind ha-1. Sin embargo, el comparar la estimación de densidad respecto a lo indicado por otros investigadores para Geryonidae, lamentablemente no contribuye a la discusión. En efecto, los valores publicados presentan alta variabilidad, por cuanto en C. maritae se han reportado densidades de 145,2 ind ha-1 (Melville-Smith, 1986), de 40 a 230 ind ha-1 mediante muestreo con trampas, y sobre 350 ind ha-1 empleando fotografía submarina (Melville-Smith, 1985). Igualmente, Wenner & Barans (1990) reportan sólo 1,9 ind ha-1 en C. fenneri mediante observaciones directas con sumergibles. Como alternativas futuras, se podría considerar opciones de evaluación directa de C. chilensis tales como marcaje, método que ha sido considerado como el más preciso en C. maritae (Melville-Smith, 1988; Le Roux, 2001) o la fotografía submarina, enfoque de mayor costo. Así, el marcaje podría ser un método directo de estimación, o utilizarse como validación del radio de influencia, ya sea contrastando sus resultados con las densidades estimadas con trampas, o permitiendo la estimación de los parámetros de la curva de probabilidad de captura al interior del área de atracción (McQuinn et al., 1988). De acuerdo a lo expuesto, tanto la existencia de una actividad comercial incipiente a la fecha, así como los niveles de biomasa vulnerable estimadas, indican que la explotación de C. chilensis es una opción viable de diversificación para la pesca artesanal en el archipiélago de Juan Fernández. En este sentido, dado que la extracción a la fecha ha estado circunscrita a una fracción de la distribución del recurso, de aproximadamente 45,8 km2, sin que ésta se realice alrededor a la totalidad de los fondos marinos con profundidades aptas para la presencia del cangrejo alrededor a Robinson Crusoe y Santa Clara, existen posibilidades de expansión de las faenas a potenciales caladeros de pesca localizados al sur y oeste de ambas islas, a la isla Alejandro Selkirk y además, a los montes submarinos adyacentes del cordón submarino de Juan Fernández. Pesca de Chaceon chilensis en el archipiélago de Juan Fernández AGRADECIMIENTOS Los autores agradecen a todos quienes facilitaron las labores de recopilación de datos en la isla Robinson Crusoe. En especial, a quienes desarrollaron tareas de muestreo a bordo, Sres. Waldo Chamorro P., Oscar Schiller C., Daniel Chamorro B., Julio Chamorro S., Daniel de Rodt S., David de Rodt S., Francisco Gallardo P., Maikel Pérez G., Robinson González A. y Manuel Chamorro R., y Srtas. Ana Jesús Contreras R. y María A. Erices O., además de los patrones de las embarcaciones “Margarita”, “Guaitecas” y “Don Pedro”, Sres. Pedro Chamorro, Mario Llanquín y Danilo Rodríguez, respectivamente, en cuyas naves se realizó gran parte del presente estudio. Igualmente, al Oceanógrafo, Sr. Pedro Apablaza B., quien tuvo a su cargo las tareas de jefe de base en Robinson Crusoe durante el desarrollo de este proyecto, y a los evaluadores del presente trabajo por sus oportunos aportes y recomendaciones. Este artículo fue generado como parte de los proyectos “Monitoreo biológico-pesquero de la langosta y el cangrejo dorado en el archipiélago de Juan Fernández (FIP N°2004-48) y “Evaluación de stock y distribución de la langosta y el cangrejo dorado en el archipiélago de Juan Fernández (FIP N°2005-21). REFERENCIAS Aedo, G. & H. Arancibia. 2003. Estimating attraction areas and effective fishing areas for Chilean lemon crab (Cancer porteri) using traps. Fish. Res., 60: 267172. Arana, P. 2000a. Pesca exploratoria con trampas alrededor de las islas Robinson Crusoe y Santa Clara, archipiélago de Juan Fernández, Chile. Invest. Mar., Valparaíso, 28: 39-52. Arana, P. 2000b. Estimación de abundancia y biomasa del cangrejo dorado (Chaceon chilensis), en el archipiélago de Juan Fernández, Chile. Invest. Mar., Valparaíso, 28: 53-68. Arana, P. & R. Vega. 2000. Pesca experimental del cangrejo dorado (Chaceon chilensis) en el archipiélago de Juan Fernández, Chile. Invest. Mar., Valparaíso, 28: 68-81. Arana, P. & C. Toro. 1985. Distribución del esfuerzo, rendimiento por trampa y composición de las capturas en la pesquería de la langosta de Juan Fernández Jasus frontalis. In: P. Arana (ed.). Investigaciones marinas en el archipiélago de Juan Fernández, Escuela de Ciencias del Mar, UCV, Valparaíso, pp. 157-185. Arana, P., M. Ahumada, A. Guerrero, V. Espejo, E. Yáñez, C. Silva, B. Ernst & J.M. Orensanz. 2006. Eva- 295 luación de stock y distribución de la langosta y el cangrejo dorado en el archipiélago de Juan Fernández (Proyecto FIP N°2005-21). Informe Final. Estud. Doc., Pont. Univ. Católica Valparaíso, 27/2006: 257 pp. Arena, G., L. Barea & O. Defeo. 1994. Theorical evaluation of trap capture for stock assessment Fish. Res., 60: 349-362. Barea, L. & O. Defeo. 1985. Primeros ensayos de captura del cangrejo batial Geryon quinquedens Smith en el Area Común de Pesca Argentino-Uruguaya (19821984). Contribuciones Departamento de Oceanografía (F.H.C.), Montevideo, 2(8): 189-203. Bullis, R., L. Leibovitz, L. Swanson & R. Young. 1988. Bacteriological investigation of shell disease in the deep-sea red crab, Geryon quinquedens. Biol. Bull., 175: 304. Burden, R. & D. Faires. 2002. Análisis numérico. Thomson Learning, New York, 839 pp. Carvalho, T.B., R.R. Oliveira & T.M.C. Lotufo. 2009. Note on the fisheries and biology of the golden crab (Chaceon fenneri) off the northern coast of Brazil. Lat. Am. J. Aquat. Res., 37(3): 571-576. Defeo, O., V. Little & L. Barea. 1990. Estimaciones del stock del cangrejo rojo (Geryon quinquedens) en la Zona Común de Pesca Argentino-Uruguaya. Frente Marítimo, 6(Secc. A): 53-66. Erdman, R. & N. Blake. 1988. Reproductive ecology of female golden crabs, Geryon fenneri Manning and Holthuis, from southeastern Florida. J. Crust. Biol., 8(3): 392-400. Kelly, P., S. Sulkin & W. Van Heukelem. 1982. A dispersal model for larvae of the deep sea red crab Geryon quinquedens based upon behavioral regulation of vertical migration in the hatching stage. Mar. Biol., 72: 35-43. Kendall, D. 1990. An assessment on the Georgia golden crab fishery. In: W.J. Lindberg & E.L. Wenner (eds.), Geryonid crabs and associated continental slope fauna: a research workshop report. South Carolina Sea Grant Consortium, Florida Sea Grant College Program Technical Paper, 58: 18-19 pp. Lawton, P. & D. Duggan. 1998. Scotian shelf red crab. DFO Science Stock Status Report C3-11. Department. of Fisheries and Oceans, Dartmouth, Nova Scotia, Canadá, 6 pp. Le Roux, L. 2001. The impact of emigration on population estimates of deep-sea red crab Chaceon maritae off Namibia. S. Afr. J. Mar. Sci., 23: 61-63. Lindberg, W. & F. Lockhart. 1993. Depth-stratified population structure of geryonid crabs in the eastern of Gulf of Mexico. J. Crust. Biol., 13(4): 713-722. López-Abellán, L., E. Balguerías & V. FernándezVergaz. 2002. Life history characteristics of the deep- 296 Lat. Am. J. Aquat. Res. sea crab Chaceon affinis population off Tenerife (Canary Islands). Fish. Res., 58: 231-239. Lux, F., A. Ganz & W. Rathjen. 1982. Marking studies on the red crab Geryon quinquedens Smith off southern New England. J. Shellfish Res., 2(1): 71-80. McElman, J.F. & R.W. Elner. 1982. Red crab (Geryon quinquedens) trap survey along the edge of the Scotian shelf, September 1980. Can. Tech. Rep. Fish. Aquat. Sci., 1084: 1-12. McQuinn, I., L. Gendron & J. Himmelman. 1988. Area of attraction and effective area fished by a whelk (Buccinum undatum) trap under variable condition. Can. J. Fish. Aquat. Sci., 45: 2054-2060. Melville-Smith, R. 1985. Density distribution by depth of Geryon maritae on the northern crab grounds of South West Africa/Namibia determined by photography in 1983, with notes on the portunid crab Bathynectes piperitus, South West Africa. S. Afr. J. Mar. Sci., 3: 55-62. Melville-Smith, R. 1986. Red crab (Geryon maritae) density in 1985 by technique of effective area fished per trap on the northern fishing grounds off south west Africa. S. Afr. J. Mar. Sci., 4: 257-263. Melville-Smith, R. 1988. Comparative population size estimates for a portion of the red crab Geryon maritae stock off the South West African coasts. S. Afr. J. Mar. Sci., 6: 23-31. Miller, R. 1975. Density of the commercial spider crab, Chionoecetes opilio, and calibration of effective area fished per trap using bottom photography. J. Fish. Res. Board Can., 32(6): 761-768. Miller, R. 1990. Effectiveness of crab and lobster traps. Can. J. Fish. Aquat. Sci., 47: 1228-1251. Otwell, W.S., J. Bellairs & D. Sweat. 1984. Initial development of a deep-sea crab fishery in the Gulf of Mexico. Florida Sea Grant College Report, 61: 1-29. Received: 1 January 2008: Accepted: 10 August 2008 Perez, J.A., R. Wahrlich, P. Pezzuto, P. Schwingel, F. Lopes & M. Rodrigues-Ribeiro. 2003. Deep-Sea fishery off southern Brazil: recent trends of the brazilian fishing industry. J. Northw. Atl. Fish. Sci., 31: 1-18. Pezzuto, P., J. Alvarez, R. Wahrlich, W. Guimaraes & F. de Alcantara. 2002. Avaliaçao da pescaria dos caranguejos de profundidade no sul do Brasil anos 20012002. Convenio UNIVALI-MAPA, 121 pp. Pinho, M.R., J. Gonçalves, H. Martins & G. Menezes. 2001. Some aspects of the biology of the deep-water crab, Chaceon affinis (Milne-Edwards and Bouvier, 1894) off the Azores. Fish. Res., 51: 283-295. Poupin, J., P. Buat & T. Ellis. 1991. Les crabes profonds des Iles Marquises (Chaceon sp. nov. - Decapoda Geryonidae). Service Mixte Control Biologique, Rapport Scientifique et Technique, 40: 1-21. Retamal, M.A. & P. Arana. 2000. Descripción y distribución de cinco crustáceos decápodos recolectados en aguas profundas en torno a las islas Robinson Crusoe y Santa Clara (archipiélago de Juan Fernández, Chile). Invest. Mar. Valparaíso, 28: 149-163. Steimle, F.W., C.A. Zetlin & S. Chang. 2001. Red deepsea crab, Chaceon (Geryon) quinquedens, life history and habitat characteristics. NOAA Tech. Memo. NMFS-NE-163. U.S. Dept. of Commerce, NOAA, NMFS, Woods Hole, MA, 27 pp. Wenner, E.L. & C.A. Barans. 1990. In situ estimates of density of golden crab, Chaceon fenneri, from habitats on the continental slope, southeastern U.S. Bull. Mar. Sci., 46(3): 723-734. Young, R. 1991. Prevalence and severity of shell disease among deep-sea red crabs Chaceon quinquedens Smith 1879 in relation to ocean dumping of sewage sludge. J. Shellfish Res., 10: 499-504. Lat. Am. J. Aquat. Res., 37(3): 297-312, 2009 “Deep-sea fisheries off Latin America” P. Arana, J.A.A. Perez & P.R. Pezzuto (eds.) DOI: 10.3856/vol37-issue3-fulltext-3 Sexual maturity of Chaceon ramosae 297 Research Article Sexual maturity of the deep-sea royal crab Chaceon ramosae Manning, Tavares & Albuquerque, 1989 (Brachyura: Geryonidae) in southern Brazil 1 Paulo Ricardo Pezzuto1 & Rodrigo Sant’Ana1 Universidade do Vale do Itajaí, Centro de Ciências Tecnológicas da Terra e do Mar, Rua Uruguai, 458 CEP 88.302-202, Itajaí, SC, Brazil ABSTRACT. The royal crab Chaceon ramosae is one of the three species of deep-sea crabs currently exploited in Brazil. The royal crab fishery started in 2001 with foreign vessels that were extensively monitored by observers and tracked by satellite. A management plan implemented in 2005 was based only on biomass dynamics, as biological knowledge of the resource was limited at that date. Samples taken aboard were used to determine size at first sexual maturity for males and females by studying the use of allometric growth of chelae and abdomen in relation to carapace width (CW), the proportion of females with opened vulvae and eggs in the pleopods, and males showing copula marks on the first ambulatory legs. Morphometric maturity was attained, on average, at 12.1 cm (males) and 10.7 cm (females). The CW50% was estimated to be 10.9 cm and 12.2 cm for females, respectively considering the vulva condition and eggs in the pleopods, and 13.6 cm for males. By size class, the maximum estimated proportions of ovigerous females by size class was 0.4 and of males with copula marks was 0.6, suggesting a bi-annual reproductive cycle for individuals of the species. The size composition analysis showed that immature individuals may comprise up to 70% of the catches. These results indicate the need to consider enhanced trap selectivity and lower mortality of ovigerous females as new and immediate goals to improve resource management. Keywords: deep-water resources, reproduction, trap fisheries, relative growth, sexual maturity, Geryonidae, Chaceon ramosae, continental slope, Brazil. Madurez sexual del cangrejo real Chaceon ramosae Manning, Tavares & Albuquerque, 1989 (Brachyura: Geryonidae) en el sur de Brasil RESUMEN. El cangrejo real Chaceon ramosae corresponde a una de las tres especies de cangrejos de profundidad que actualmente se explotan en Brasil. La pesca de cangrejo real comenzó en el año 2001 por barcos extranjeros que eran intensamente supervisados por observadores y rastreados por satélites. En el año de 2005 se implementó un plan de manejo, considerando solamente el estudio de la dinámica de la biomasa del recurso, ya que el conocimiento biológico todavía era limitado. A partir de muestras obtenidas a bordo de los barcos de pesca, se estimó la talla de primera madurez de machos y hembras a través de la utilización del crecimiento alométrico de la quela y el abdomen con respecto al ancho del caparazón (CW), proporción de hembras con vulvas abiertas y huevos en los pleópodos, y machos con marcas de cópula en las primeras patas ambulatorias. La madurez morfométrica de los machos fue obtenida en promedio a 12,1 cm CW y en las hembras a 10,7 cm CW. El CW50% fue estimado en 13,6 cm en machos y, en hembras considerando la condición de la vulva o los huevos en los pleópodos, en 10,9 y 12,2 cm respectivamente. La máxima proporción estimada de hembras ovígeras y machos con marcas de cópula por talla fueron de 0,4 y 0,6 respectivamente, lo que sugiere que el ciclo reproductivo a nivel individual es bi-anual. El análisis de la composición de tallas evidenció que individuos inmaduros componen hasta el 70% de las capturas. A partir de estos resultados, se consideró incrementar el efecto selectivo de las trampas y disminuir la captura de hembras ovígeras, como objetivos nuevos e inmediatos para mejorar el manejo de este recurso. Palabras clave: recursos de profundidad, reproducción, pesca con trampas, crecimiento relativo, madurez sexual, Geryonidae, Chaceon ramosae, talud continental, Brasil. ________________________ Corresponding author: Paulo Ricardo Pezzuto (pezzuto@univali.br) 298 Lat. Am. J. Aquat. Res. INTRODUCTION Geryonid crabs are widely distributed around the continental slopes of the world ocean (Hastie, 1995) and sustain commercial fisheries on both sides of the Atlantic. Chaceon maritae is fished for along southwestern Africa (Melville-Smith, 1988); C. quinquedens is targeted from Canada throughout the southeastern United States, where a fishery for C. fenneri also takes place (Erdman & Blake, 1988; NEFMC, 2002); and C. notialis has been exploited in Uruguayan waters since the 1990s (Defeo & Masello, 2000; Delgado & Defeo, 2004). Following the worldwide expansion of industrial fisheries to deep-water areas (Morato et al., 2006), since the end of the 1990s, the formerly coastal-based Brazilian fishing industry has directed longline, gillnet, trawl, and trap operations to previously unexploited grounds on the slope and seamounts, searching for new and valuable bottom resources, including deep-water crabs (Peres & Haimovici, 1998; Perez et al., 2002, 2003; Pezzuto et al., 2006a, 2006b; Haimovici et al., 2007; Carvalho et al., 2009). Revealed by trap vessels in 2001, commercial concentrations of the endemic deep-sea royal crab Chaceon ramosae (Manning et al., 1989) soon became the target of up to eight foreign processor vessels chartered by national companies. The species was also the most abundant and valuable by-catch item for several gill-netters and trawlers that targeted other deep-sea resources, namely monkfish (Lophius gastrophysus) and aristeid shrimps, in the same areas (Perez & Wahrlich, 2005; Pezzuto et al., 2006b). Annual royal crab landings (live weight) recorded between 2001 and 2005 ranged from 495 to 1,252 tons (mean = 789 ton yr-1), including both directed and incidental catches. The intense monitoring of trap vessels by observers and vessel monitoring systems (VMS) has resulted in a large fishery-based data set that was used to identify the species distribution and generate preliminary estimates of stock biomass and maximum sustainable yields (Pezzuto et al., 2002, 2006a). A management plan for the royal crab fishery was established in May 2005, based mostly on the biomass dynamics of the stock, including total allowable catch (600 ton live weight year-1, corresponding to the maximum sustainable yield), maximum number of permits (3 vessels), maximum number of traps per vessel (900 units), and minimum mesh size in traps (100 mm stretched). Biological measures such as minimum legal sizes, closed areas/seasons, or sex-selective harvest strategies would have been considered in the plan but no lifecycle parameters were available for the species at the time, even though biological data had been intensively collected by the onboard observers. Given their high value and k-strategist life-traits, geryonid crabs are expected to be highly vulnerable to over-exploitation, requiring severe fishing regulations for their sustainability (see review by Hastie, 1995). Given the need to improve the royal crab management plan with biological reference points, this paper investigates the sexual maturity of C. ramosae that are vulnerable to a directed fishery in southern Brazil and analyses the annual size structure of the catches, quantifying the contribution of “immature” and “mature” individuals in the fishery. MATERIAL AND METHODS Data source The maturity analysis was carried out with biological data collected by observers during 21 commercial trips conducted between 2002 and 2005 by the F/V Royalist. Measuring 35.7 m total length, this factory vessel operated in Brazilian waters from May 2001 to June 2006. During the study period, nearly 19,200 crabs were sampled at the main fishing ground of the species (i.e. 25° to 31°S and 300 to 1,100 m depth) (Table 1, Fig. 1). The size structure of the global catches, totaling 33,238 individuals, was studied using information collected simultaneously by observers on another seven commercial vessels operating in the same areas. Besides the data collected aboard, biological samples (frozen crabs) were regularly obtained for laboratory analysis. Nearly 50% of these specimens were collected aboard the F/V Royalist and the remaining came from the other vessels. Detailed information on most vessels and traps used in the royal crab fishery are available in Pezzuto et al. (2006a). Sampling Observers recorded the date, position, depth, number of traps line-1, soaking time, catch haul-1 (kg), and mean number of crab trap-1 for all hauls. Biological sampling was carried out on hauls selected by the observers in order to cover different depths and latitudes, according to the fishing strategy used by the vessel’s captain. Most vessels worked simultaneously with four trap lines. The maximum interval between successive samplings was 48 h and the mean soaking time of each line was 42.3 h (± 6.9 h). Crabs were randomly selected from traps positioned in the beginning, middle and end sections of the main line. Their sex was determined and their carapace width (CW, distance between the fifth antero-lateral spine tips) 299 Sexual maturity of Chaceon ramosae Table 1. Chaceon ramosae. Number of trips, hauls, and crabs sampled annually aboard the F/V Royalist in southern Brazil for size-at-maturity analysis. Tabla 1. Chaceon ramosae. Número de viajes, lances de pesca y muestreo de cangrejos a bordo del F/V Royalist en el sur de Brasil para el análisis de la madurez sexual. Year Trips Hauls Males Females Total Depth range (m) 2002 2003 2004 2005 Total 4 7 6 4 21 60 142 149 82 433 1,916 4,880 5,067 1,991 13,854 454 1,380 2,281 1,158 5,273 2,370 6,260 7,348 3,149 19,127 504 – 1,010 508 – 947 435 – 1,020 345 – 918 - Figure 1. Map showing the main fishing area for Chaceon ramosae in southern Brazil during the study period (gray area). The 100, 200, 500, and 1000 m isobaths are indicated. Figura 1. Mapa de la área principal de pesca de Chaceon ramosae en el sur de Brasil durante el período estudiado (área gris). Se indican las isóbatas de 100, 200, 500 y 1000 m. was measured to the nearest millimeter. Males were classified according to the presence or absence of copula marks (blackened areas in the merus of the second pereiopods, see Melville-Smith, 1987) on 125 hauls. Vulva condition (i.e. closed/immature or opened/mature; Delgado & Defeo, 2004) and the presence of eggs in the pleopods were recorded for females sampled from 285 and 180 hauls, respectively. Frozen crabs were processed in the laboratory according to the same procedures used aboard, but de- tailed measurements of body parts were also obtained for the relative growth analysis of secondary sexual characteristics (Hartnoll, 1982). Measurements were conducted with sliding calipers to the nearest 0.5 mm and included: abdomen width (AW, measured between the 4th and 5th abdominal somites), left and right cheliped lengths (LChL and RChL, maximum length of the upper portion of the propodus), and left and right maximum cheliped height (LChH and RChH, maximum height of the propodus measured in its exterior face). 300 Lat. Am. J. Aquat. Res. Data analysis Morphometric maturity was studied by analyzing the relative growth of 1,090 crabs processed at the laboratory (511 males, 579 females). A visual examination of scatter plots for several body parts versus CW (reference dimension) showed no clearly identifiable transition points in the data associated with morphometric maturity (Hartnoll, 1982). Therefore, an allometric equation (Y = a Xb) was fitted to the data by least squares regression and the transition points were iteratively searched by a specific routine of the software Regrans (Pezzuto, 1993). This routine seeks the CW value where the data could be split in two subsets resulting in the lowest combined residual sum of squares. A statistical test for coincidental regressions was conducted in order to check the validity of the transition points. The test compares the difference between the global sum of squares (i.e. calculated from a single model fitted to the data), and the pooled residual sum of squares (i.e. of the subsets located to the left and right sides of the transition point) (Zar, 1996). If a significant difference was found, ANCOVA (α = 0.05) was used to test the difference between the elevation and slopes of the two regressions, corresponding to the pre and post-pubertal growth phases (Zar, 1996). The relative growth pattern (i.e. negative allometric, isometric, or positive allometric) of each body dimension and phase (pre and post-pubertal) was identified by testing the allometric coefficient (slope) against the reference value “1” (Zar, 1996). Functional/sexual maturity was studied by estimating the mean sizes (CW50%) at which males and females are able to copulate and reproduce. Proportions of males showing copula marks and females with opened vulvae and eggs in the pleopods were calculated for 1-cm size (CW) classes, considering the total number of individuals caught during the hauls sampled aboard. The total numbers in the catches were previously estimated by multiplying the numbers in the samples by the ratio between the total catch weight and the sample weight. Proportions of ovigerous females were only analyzed on trips carried out between January and June, the main reproductive season of the species (Pezzuto et al., 2006c). A non-linear minimum squares estimation procedure was then used to fit a generalized logistic model (Restrepo & Watson, 1991) to the data as follows: PCW = β ( α1 −α 2 CW ) 1+ e (1) where PCW is the proportion of individuals in each size class, and α1, α2, and β are parameters. In this model, β is a more general parameter that allows for the asymptotic proportion of the model to be lower than or equal to 1. Therefore, a penalty function for β ≤ 1 was included in the parameter estimation procedure. This is of special interest for management purposes as it can indicate the maximum theoretical proportion of individuals presenting the maturity criteria in the largest size classes in a given period/area of study. Size at 50% maturity was given by the equation: α CW50% = 1 α2 (2) Confidence intervals for CW50% were estimated by a bootstrap procedure in which frequency distributions of individuals with copula marks, opened vulvae, and eggs in the pleopods were randomly resampled 250 times, resulting in a corresponding number of logistic curves for each case. Given the asymmetrical distribution of the results, the median of the 250 CW50% estimates were calculated and the 2.5 and 97.5% percentiles were used as 95% confidence limits (Haddon, 2001). The size-structure of the global catches was analyzed by sex in terms of the proportion of mature and immature individuals fished per year, considering all the individuals sampled aboard the eight vessels targeting C. ramose in the period. Before pooling the data from these vessels, trips, and hauls, the numbers sampled by size class and sex were raised to the total caught in the respective hauls following the same procedure described for the fuctional/sexual maturity analysis. RESULTS Morphometric maturity The relative growth of males showed significant transition points at 12.1 cm (CW) for all dimensions but AW, whose relationship with CW was described by a single model (Table 2, Fig. 2). Allometry in the growth of the chelae was always positive (b > 1) irrespective of the dimension (width or height) or subset considered (pre or post-pubertal phase), but the regressions calculated for crabs larger than 12.1 cm revealed a significant increase in their elevation (suggesting a sudden increase in chelae size) and a reduction in their slopes (Table 2, Fig. 2). Compared to the males, the females had more variable relative growth patterns. Transition points were found for all variables (including AW) and fluctuated mostly between 10.7 and 11.0 cm CW (Table 2, Fig. 3). Allometry was always positive before the transition points (pre-pubertal phase). However, in the post- 301 Sexual maturity of Chaceon ramosae Table 2. Chaceon ramosae. Regressions (Y = a Xb) fitted between carapace width (CW) (independent variable) and abdomen width (AW), left chelae length (LChL), left chelae height (LChH), right chelae length (RChL), and right chelae height (RChH) by sex. t-value: tests for Ho: b = 1 *: p < 0.05; **: p < 0.01, DF: degrees of freedom. Tabla 2. Chaceon ramosae. Regresiones (Y = a Xb) ajustadas entre el ancho del caparazón (CW) (variable independiente) y ancho del abdomen (AW), largo de la quela izquierda (LChL), altura de la quela izquierda (LChH), largo de la quela derecha (RChL) y altura de la quela derecha (RChH) por sexo. Valor de t: test para Ho: b = 1 *: p < 0,05; **: p < 0,01, DF: grados de libertad. Sex Males Females Body dimension Transition point (CW, cm) Subset a b r² t-value DF AW - Total 0.1835 1.1432 0.975 17.365** 501 LChL 12.1 Left 0.1629 1.1981 0.958 12.656** 256 Right 0.2202 1.1054 0.866 3.556** 217 LChH 12.1 Left 0.1279 1.2483 0.959 15.238** 254 Right 0.1892 1.1183 0.856 3.767** 216 RChL 12.1 Left 0.1770 1.1904 0.958 12.252** 257 Right 0.2309 1.1053 0.867 3.545** 215 RChH 12.1 Left 0.1542 1.2018 0.955 12.275** 253 Right 0.2039 1.1125 0.833 3.295** 215 AW 10.7 Left 0.1303 1.4701 0.962 20.956** 172 Right 0.2051 1.3009 0.784 8.136** 344 LChL 11.0 Left 0.1830 1.1193 0.965 7.696** 193 Right 0.3048 0.9122 0.655 - 2.146* 264 LChH 10.7 Left 0.1477 1.1600 0.968 9.536** 162 Right 0.2311 0.9777 0.716 - 0.613 289 RChL 11.0 Left 0.1934 1.1178 0.963 7.481** 195 Right 0.3410 0.8856 0.598 - 2.522* 259 RChH 9.8 Left 0.1648 1.1424 0.949 5.602** 111 Right 0.2441 0.9779 0.761 - 0.738 339 pubertal phase, the growth pattern of females became isometric for ChH and negative for ChL, yet remained positive for AW (Table 2, Fig. 3). Functional/sexual maturity The smallest male exhibiting copula marks measured 9.3 cm CW. A value of only 0.58 was estimated for the parameter β of the logistic function, as the proportion of males with darkened areas on their legs never reached 100% for any size class (Fig. 4). The onset of sexual maturity in males (CW50%) occurred at 13.6 cm with a confidence interval distinctly skewed to the bigger sizes (12.8-15.8 cm) (Table 3). The smallest female with opened vulvae was 7.4 cm CW. The proportion of individuals in this condi- tion increased continuously with size, attaining 100% in females larger than 13 cm (β = 1) (Fig. 4). The CW50% estimated by bootstrap was 10.9 cm with a narrow and almost symmetrical confidence interval (Table 3). Compared to the vulva condition, the presence of eggs in the pleopods suggested that sexual maturity in females was attained at larger sizes. The carapace width of the smallest ovigerous female was 8.0 cm and the respective CW50% increased from 10.9 cm (opened vulvae) to 12.2 cm (Table 3, Fig. 4). Additionally, despite that fact that more than 90% of the females larger than 12.2 cm presented opened vulvae, the proportion of females carrying eggs during the main reproductive period did not surpass 0.41 (Table 3, Fig. 4). 302 Lat. Am. J. Aquat. Res. Figure 2. Chaceon ramosae. Plots of relative growth of chelipod and abdomen dimensions for males. Arrows indicate transition points between different growth phases. Figura 2. Chaceon ramosae. Relaciones de crecimiento relativo de las dimensiones de la quela y abdomen para los machos. Las flechas indican los puntos de transición entre diferentes fases de crecimiento. Size-structure Figure 5 shows the global size structure of the royal crab catches recorded between 2002 and 2005. Males (3.9-19.2 cm) were larger than females (4.9-17.0 cm). The size frequency distribution of males was bimodal, peaking at 11.25 and 14.25 cm, whereas females displayed a narrower distribution with a single mode at 12.25 cm. In both sexes, the catches were slightly asymmetrical for the smaller individuals. The size catch composition analysis pointed out different scenarios depending on the maturity criterion considered. Throughout all the study period, the mean percentage of immature females in the catches varied from 15.9% (morphometric maturity) to 63.9% (functional maturity). For males, the participation of immature individuals fluctuated in a much narrower interval, varying from 33.1% to 54.8% (Table 4). On the other hand, the incidence of juveniles in the catches during the course of the fishery showed an inverse pattern for the sexes, irrespective of the maturity criterion chosen for the analysis. Whereas the amount of immature females decreased from 2002 to 2004, the numbers of undersized males increased continuously in the same period. Both functionally immature males and females peaked in 2005, with 66% and 70%, respectively (Table 4). 303 Sexual maturity of Chaceon ramosae Figure 3. Chaceon ramosae. Plots of relative growth of chelipod and abdomen dimensions for females. Arrows indicate transition points between different growth phases. Figura 3. Chaceon ramosae. Relaciones de crecimiento relativo de las dimensiones de la quela y abdomen para las hembras. Las flechas indican los puntos de transición entre diferentes fases de crecimiento. Table 3. Chaceon ramosae. Parameters (α1, α2, and β) of the logistic curves (± CI 95%) fitted to the proportion of females with opened vulvae, ovigerous females, and males showing copula marks by size class and the corresponding sizeat-maturity (CW50% ) estimated by the bootstrap procedure. Tabla 3. Chaceon ramosae. Parámetros (α1, α2 y β) del modelo logístico (± CI 95%) ajustados a la proporción de hembras con vulvas abiertas, hembras ovígeras y machos con marcas de cópula por clases de talla y las correspondientes tallas de primera madurez (CW50%) estimadas por un procedimiento bootstrap. Parameters β α1 α2 Bootstrap CW50% (cm) Females Opened vulvae Mean CI (95%) 1.00 0.97-1.06 14.55 11.39-17.71 1.32 1.03-1.61 Median 10.94 CI (2.5-97.5%) 10.59-11.11 Mean 0.40 11.56 0.94 Median 12.24 Ovigerous CI (95%) 0.37-0.44 8.58-14.53 0.69-1.19 CI (2.5-97.5%) 10.55-15.83 Males Copula marks Mean CI (95%) 0.58 0.55-0.62 12.93 10.51-15.35 0.95 0.77-1.14 Median 13.61 CI (2.5-97.5%) 12.83-15.79 304 Lat. Am. J. Aquat. Res. Figure 5. Chaceon ramosae. Size-frequency distribution of males and females caught in commercial fisheries in southern Brazil between 2002 and 2005. Figura 5. Chaceon ramosae. Distribución de frecuencia de tallas de machos y hembras capturados por la pesca comercial en el sur de Brasil entre 2002 y 2005. DISCUSSION Figure 4. Chaceon ramosae. a) Logistic model (solid line) fitted to the observed proportion (dashed line) of males showing copula marks, b) females with opened vulva, and c) eggs in the pleopods. Note the differences among Y-axis values. Figura 4. Chaceon ramosae. a) Modelo logístico (línea continua) ajustado a la proporción observada (línea discontinua) de machos con marcas de cópula, b) hembras con vulvas abiertas, c) huevos en los pleópodos. Note las diferencias entre los valores de los ejes Y. In this paper, the determination of size at maturity considered a scenario of indeterminate growth for C. ramosae, i.e. a non-terminal pubertal moult. In a recent paper, Delgado & Defeo (2004) estimated size-atmaturity for females of C. notialis under hypotheses of indeterminate and determinate growth, as MelvilleSmith (1987) suggested the existence of a terminal moult for C. maritae females. In addition, Steimle et al. (2001) considered determinate growth for C. quinquedens based on evidence supposedly obtained by Lux et al. (1982) and Lawton & Duggan (1998). In spite of some controversy in the literature, we agree with Hines (1990): there is no real evidence to support a true terminal moult in the group. MelvilleSmith’s (1987) assertion for C. maritae (see page 270) was preliminary and not based on any explicitly demonstrated data. In fact, in a seminal paper on the growth and age of the species (Melville-Smith, 1989), the author was categorical that: “a small number or recaptured females (three or 1.6 per cent) did moult after being tagged as mature animals. It therefore appears that mature females are capable of moulting more than once, but that there is probably a lengthy interval between moults. The longest period over which a mature female remained unmoulted was 1,217 days (3.3 years). The fact that few females reach 110 mm CW, suggests that it is unlikely that they moult more than twice after maturity”. In another paper dealing with mark-and-recapture techniques, Lux et al. (1982) found that some C. quinquedens females were 305 Sexual maturity of Chaceon ramosae Table 4. Chaceon ramosae. Percentages of immature and mature individuals in the commercial catches by sex and year, according to the different criteria of sexual maturity. SD: standard deviation. Tabla 4. Chaceon ramosae. Porcentaje de individuos inmaduros y maduros en las capturas comerciales por sexo y año según distintos criterios de determinación de madurez sexual. SD: desviación estándar. Females Year 2002 2003 2004 2005 Mean SD Males Relative growth Opened vulvae Eggs in the pleopods Relative growth Copula marks (10.7 cm) (10.9 cm) (12.3 cm) (12.1 cm) (13.6 cm) Immature Mature Immature Mature Immature Mature Immature Mature Immature Mature (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) 16.6 83.4 23.7 75.4 64.6 27.4 26.6 73.5 48.0 52.0 16.0 84.0 23.3 74.9 62.4 31.1 30.5 69.5 52.7 47.4 11.1 89.0 18.8 80.9 58.2 34.9 30.6 69.4 52.8 47.2 19.9 80.1 31.5 70.3 70.3 34.8 44.8 55.2 65.6 34.4 15.9 84.1 24.3 75.4 63.9 32.0 33.1 66.9 54.8 45.2 3.6 3.6 5.3 4.3 5.0 3.6 8.0 8.0 7.6 7.6 recaptured as ovigerous, mostly up to three years after being released although, two individuals were recaptured after five and seven years. These authors concluded that sperm stored since the last pretagging moult would remain viable for several years in the species and that, as found by Melville-Smith (1989), intermoult periods increase with age. However, a terminal moult was never suggested. On the contrary, they suggested that immature females mate after the pubertal moult and that mature females mate again after a subsequent moult (Lux et al., 1982). Attrill et al. (1991) discussed in detail the possibility of a terminal ecdysis in G. trispinosus and concluded that evidence for this is inconclusive but that it is possible that males and females stop growth two and four instars after the pubertal moult, when they are significantly larger than their respective sizes at maturity. Finally, although explicitly indicating a terminal moult for C. quinquedens, Lawton & Duggan (1998) do not clearly demonstrated any data in their paper that support this. It seems, therefore, that much more data on Geryonidae reproduction and growth patterns are necessary to better develop and support a terminal moult hypothesis for the group. Table 5 summarizes maximum sizes and sexual maturity data available for several Geryonidae species. The sizes at maturity estimated for both sexes (12.113.6 cm for males and 10.7-12.3 cm for females) as well as the range of sizes observed for ovigerous females in this study (8.0-16.2 cm) coincide with the general values reported for the group. In fact, estimates produced for C. ramosae were closer to those found for C. affinis, C. fenneri, and C. granulatus, which are all among the largest species in the family. Sizes at morphometric maturity are attained before the individuals of both sexes are functionally mature. In fact, relative growth changes occurred in males at 12.1 cm, whereas sexual activity revealed by copula marks was identified, on average, only at 13.6 cm. In females, both allometric changes and opened vulvae were observed at CWs 1.3 cm smaller than the CW50% estimated for ovigerous females. Because gonadal development was not investigated in this study, we were not able to conclude whether physiological and morphometric maturity are synchronous or not in the species. Physiological maturity seems to be correlated with changes in the relative growth pattern of secondary sexual traits and/or the vulvae condition, at least in C. quinquedens, C. maritae, C. fenner, C. chilensis, and C. notialis (Haefner Jr.; 1977; Melville-Smith, 1987; Erdman & Blake, 1988; Delgado & Defeo, 2004; Guerrero & Arana, 2009). On the other hand, first gonadal development is attained before (males) or after (females) morphometric maturation in C. affinis (Fernández-Vergaz et al., 2000). Whatever the size of C. ramosae at physiological maturity, the finding that morphometric maturity is attained before males copulate and females are able to oviposit and incubate eggs indicates that changes in form should play a role in the reproductive success of the species. Notwithstanding, it is noteworthy that changes in relative growth patterns in the morphometric maturity of C. ramosae were much more difficult to identify than in many other Brachyura such as, for instance, Majidae, Ocypodidae, and Pinnotheridae (e.g. Carmona-Suárez, 2003; Negreiros-Fransozo et al., 2003; Alves et al., 2005). In fact, changes in allometry patterns in Geryonidae have been found to be very subtle or even in 306 Lat. Am. J. Aquat. Res. Table 5. Summary of size-at-maturity values estimated for male and female geryonid crabs. When available, overall size ranges (including mature and/or immature individuals) of the samples are included for comparison among the species. Except for C. bicolor, C. chilensis and G. trispinosus, which were measured in terms of carapace length (CL), all values refer to carapace width, in centimeters. Methods of analysis are indicated as: a) morphometric data/relative growth, b) vulva condition, c) visual examination of abdomen development, d) smallest ovigerous female, e) gonadal development, f) mean size of ovigerous females, g) percentage of ovigerous females by size class, and h) copula marks; ?: not specified. Tabla 5. Resumen de tallas de primera madurez estimadas para machos y hembras de cangrejos gerionídeos. Cuando estaban disponibles, los rangos de tallas (incluyendo individuos maduros y/o inmaduros) en las muestras fueron incluidos para efecto de comparación entre las especies. Todas las medidas se refieren al ancho del caparazón, en centímetros, con excepción de C. bicolor, C. chilensis y G. trispinosus, cuyas medidas fueron el largo del caparazón (CL). Los métodos de análisis están indicados como: a: datos morfométricos/crecimiento relativo, b: condición de la vulva, c: examen visual del desarrollo del abdomen, d: hembra ovígera de menor tamaño, e: desarrollo gonadal, f: talla promedia de hembras ovígeras, g: porcentaje de hembras ovígeras por clase de talla, h: marcas de cópula, ?: no especificado. Females Species Chaceon affinis Males Ovigerous size range Overall size range 9.9a ; 10,8c, e ; 11,3 b 10.2 – 11.8b; 11.4f > 12.0 9.8 – 13.2 6.1 - 16.5 5.5 – 16.5 12.9 a - 6.5 – 18.9 5.0 – 19.0 Pinho et al. (2001) 13.2 f 11.5 – 16.5 6.1 – 16.5 - 5.2 – 18.9 López-Abellán et al. (2002) e Overall size range Chaceon bicolor - - - 9.4 (CL) Chaceon chilensis - - - 10.0(CL) a 4.6-19.0 - 8.5 – 17.0 - 8.8 – 19.3 Chaceon fenneri 9.7b, e 8.5 - 10.0 Chaceon granulatus Chaceon maritae Source Size-at-maturity Size at maturity b, e, g 5.9-16.3 (CL) Fernández-Vergaz et al. (2000) Hall et al. (2006) Guerrero & Arana (2009) Wenner et al. (1987) 9.7 - 14.7 8.9 - 15.6 - - Erdman & Blake (1988) - 11.0 – 14.3 - - - Hines (1988) - 13.4 – 17.0 11.4 – 17.4 > 6.2d 6.2 – 10.2 6.0 – 10.4 8.3a - 8.4 – 10.0b - ? 12.4 – 17.9 Hastie & Sounders (1992) - 6.5 – 16.4 Beyers & Wilke (1980) - - - - 7.6 – 8.0 e, h Gaertner & LaLoé (1986) Melville-Smith (1987) 6.5 - - - - Diop & Kojemiakine (1995) Chaceon notialis 7.0 – 9,1a, b, e - 4.6 – 11.4 - - Delgado & Defeo (2004) Chaceon quinquedens 8.0 - 9.1a, b, e, g 9.7 - 13,1 - - - Haefner (1977) 10.3f - 7.0 – 13.1 - 6.0 – 16.3 - 9.0 – 11.8 - Chaceon ramosae Chaceon sp. (= C. poupini) Geryon trispinosus 10.7-12.3 a, b, f, g a h McElman & Elner (1982) Hines (1988) 8.0 – 16.2 4.9 – 16.8 12.1 ; 13.6 3.9 – 19.0 This study 8.2 a ; > 9.0 b - 4.6 – 15.3 - 5.1 – 17.4 Poupin & Buat (1992) 1.2 – 1.5 (CL) a;e > 2.0 (CL) ~ 0.5 – 5.0 (CL) 3.5 (CL) a ~ 0.5 – 7.5 (CL) Attrill et al. (1991) Sexual maturity of Chaceon ramosae existent under visual or statistical analyses (e.g. Haefner, 1977; Gaertner & Laloé, 1986; FernándezVergaz et al., 2000; Pinho et al., 2001; Delgado & Defeo, 2004; Hall et al., 2006), rendering morphometric data very limited for estimating size at the onset of morphometric maturity in this group. The small geryonid Geryon trispinosus is probably an exception as its pubertal moult is characterized by significant changes in the relative growth of the abdomen and right chelae of females and males, respectively (Attrill et al., 1991). It is possible that the absence of remarkable allometric changes in Geryonidae result from constraints associated with mating behavior and survival in deep-water environments. Laboratory observations demonstrate that mating is a relatively prolonged process in Geryonidae. Males display a pre-copulatory behavior, forming a protective cage around the receptive female by using their locomotory legs. Preecdysis is then initiated in the female, lasting several days, and mating starts just after her ecdysis. The copulatory embrace lasts 7 to 11 days, during which the male actively protects the vulnerable soft-shelled female (Elner et al., 1987; Erdman & Blake, 1988). A similar behavior was described by Hartnoll (1969) as a common pattern in aquatic members of Cancridae and Portunidae, which recognize individuals for mating relying mostly on chemical and tactile stimuli (Type I). On the contrary, copula in several other Brachyura, including semi-terrestrial members of Grapsidae and Ocypodidae, is conducted with hard-shelled females and lasts only some minutes. A brief courtship occurs and recognition between individuals is based mostly on visual, tactile, and even auditory stimuli (Type II) (Hartnoll, 1969), in which we expect secondary sexual traits to play a very significant role for sexual attraction and selection. Christy (1987) distinguished eight kinds of mating associations in brachyuran crabs based on apparent modes of competition among males for mates. According to this classification, behaviors similar to those described above for Geryonidae should be expected in aquatic species in which receptive females are relatively uncommon, dispersed, mobile, and mate infrequently. In these cases, males tend to search for receptive females that release pheromones and defend them from other competing males; this seems to agree with the general knowledge about mating in Geryonidae. Considering this “search-and-defend” strategy (sensu Christy, 1987) and the opportunistic scavenging/predatory behavior reported for geryonid crabs (Hastie, 1995; Kitsos et al., 2005; Domingos et al., 2007, 2008), the increase in general body size might play a more significant role in the survivorship and 307 reproductive success of the group than, for instance, disproportionate chelae growth. Investing in a bigger body should improve the locomotory ability of the crabs and, consequently, their capacity to locate mates and food resources that are dispersed widely over the sea-bed. In addition, a larger size should reduce the costs of body maintenance, as less energy should be spent per unit biomass, a key advantage in an oligotrophic environment (Gage & Tyler, 1991). In a recent article, Bonduriansky (2007) argued that strong positive allometries in secondary sexual traits might even be exceptions in nature, especially in traits not totally dedicated to reproductive activities but primarily involved in individual maintenance (e.g. locomotory and sensorial appendices). In these cases, the gains obtained with disproportionate growth of the allometric trait, in terms of sexual selection, can be surpassed by viability costs of exaggeration, which might interfere with the general performance of the individual (e.g. movement, food acquisition). A similar reasoning was used by Attrill et al. (1991) to explain the relative reduction of the chela size in G. trispinosus males at the pubertal moult. As the male needs to carry the female for mating, the optimal outcome for the individuals could be a maximal increase in body size at maturity to allow successful courtship, making chela growth a lower priority. It is likely, therefore, that the lack of strong changes in allometry in the chelae of Geryonid males could reflect an absence or weakness of selective pressures for sexual selection in the group. The maximum theoretical proportion of males exhibiting copula marks (parameter β of the logistic function) was only 0.58 in C. ramosae. Three hypotheses can be posed to explain this relatively small value: a) abrasion marks are not necessarily formed on all recently paired males; b) a proportion of the recently paired males may have moulted before being caught; and c) not all mature males copulate in each reproductive season. The first hypothesis could be supported by Melville-Smith’s (1987) finding that no copula marks are found on very large males of the red crab C. maritae (CW > 120 mm), as their merus do not chafe against the female carapace when she is carried during the pre-copulatory embrace and mating. However, in C. ramosae, even the largest individuals exhibited copula marks on their legs. In addition, Melville-Smith’s findings on the disappearance of copula marks on large-sized red crabs did not explain why only 60% of the mature C. ramosae individuals of intermediate sizes had damaged shells, assuming that they all should have been abraded if mating had occurred. Moulting details are not known for the royal crab, precluding testing of the second hypothesis. On 308 Lat. Am. J. Aquat. Res. the other hand, the low growth rates attributable to geryonids and the increasing intermoult periods expected for large individuals (Lux et al., 1982; Melville-Smith, 1989; Arana, 2000) render improbable the moulting of nearly 40% of the adult males (i.e. eliminating the respective copula marks along with their old shells) between the last copula and their catch. The hypothesis that not all mature males copulate during each reproductive season will be analyzed in conjunction with the female pattern of sexual activity and maturity. The maximum theoretical proportion of ovigerous females in any size class did not surpass 40% in C. ramosae. Proportions smaller than 100% would be expected: a) if the catchability of breeding females is reduced due to behavioral limitations (e.g. reduced activity, difficulty for climbing the traps), and/or availability on the fishing grounds (Melville-Smith, 1987; Hastie & Saunders, 1992; Poupin & Baut, 1992) and/or, inevitably, b) if breeding among individuals in the population is not simultaneous during the reproductive season, such that some adult females are bearing eggs whereas others are not at the moment of being caught. The latter condition would be easily satisfied if females produced more than a single batch per season, since some time interval would occur between batches. In this case, only a fraction of the whole reproductively active population would be ovigerous at any time, resulting in a β parameter of the logistic model that is smaller than 1. However, evidence in the literature suggests that geryonid crabs have long breeding periods lasting 6 to 9 months (Hinsch, 1988; Erdman & Blake, 1988; Attrill et al., 1991; Erdman et al., 1991). Under this scenario, a maximum of 40% of the ovigerous C. ramosae females in any size class of the catch would characterize its reproduction as annual at the population level, as spawning takes place from January to June in areas shallower than 700 m (Pezzuto et al., 2006c), but would be nearly bi-annual at the individual level; this would also agree with the relatively small proportion of mature males exhibiting copula marks. Although this hypothesis should be better investigated, it is important to keep in mind that bi-annual cycles were suggested for C. affinis, C. fenneri and C. quinquedens, and were interpreted by some authors to be a consequence of the food-limited characteristic of deep-water environments (Erdman & Blake, 1988; Erdman et al., 1991; Pinho et al., 1998; López-Abellán et al., 2002). If confirmed, this biannual strategy would render the royal crab stock extremely vulnerable to the overfishing of recruits. Analyzing the percentages of immature crabs in the commercial catches reveals very distinct scenarios depending on the criteria used for determining size at sexual maturity. Considering the sizes at morphological maturity for both sexes and the vulva condition in females, commercial fleet operations are characterized by a relatively small proportion of immature individuals. More conservatively, however, when determining maturity through data on ovigerous females and males with copula marks, more than 50% of the catches between 2002 and 2005 corresponded to sexually immature individuals, with a severe peak of more than 70% in 2005. The excessively high and certainly biologically unsafe proportions of immature crabs in the catches were similar between the sexes, suggesting at least a relatively uniform impact of the fishery on the population structure of the resource. Global landings of C. ramosae exceeded the estimated maximum sustainable yield (MSY) in most years (Pezzuto et al., 2006c) and included ovigerous females whose catches are not yet limited. This fact, combined with the actual size composition of the catches and the hypothesis of a bi-annual reproductive cycle for the species, renders the fishery highly unsustainable. Therefore, the current management regime of the royal crab fishery should be improved by incorporating new regulations based on biological considerations. The new regulations should emphasize enhanced trap selectivity and the implementation of spatial-temporal restrictions on effort allocation in order to diminish the participation of immature individuals of both sexes and ovigerous females in the catches, contributing to the biological sustainability of the resource. In fact, based on the results of this paper and those of Pezzuto et al. (2006c), the management of the royal crab fishery has been changed very recently, incorporating, inter alia, an increased permitted minimum mesh size in the traps (from 100 to 120 mm stretched) and the annual closure of the spawning areas < 700 m depth from January 1 to June 30. As the vessels engaging in the fishery should be obligatorily monitored by observers on all trips, biological data will soon be available in order to verify the efficacy of these changes and to refine them, if necessary, in a continuous process of adaptive management. ACKNOWLEDGEMENTS The authors are indebted to all the observers, whose hard work resulted in most of the high-quality data available for this study, and to José Angel Alvarez Perez (CTTMar/UNIVALI) for the critical reading of the first version of this manuscript. The kind assistance provided by Helia del Carmen Farias Espinoza (CTTMar/UNIVALI) with the Spanish version of the Abstract and captions is fully appreciated. This work was funded by the Special Secretary of Aquaculture Sexual maturity of Chaceon ramosae and Fisheries (Brazilian Government – SEAP/PR/ 001/2003; SEAP/PR/078/2004; SEAP/PR/ 064/2005 and SEAP/PR/027/2007) and by a research grant to PRP from the National Research Council (CNPq) (Process 310820/2006-5). REFERENCES Alves, E.S., S.A. Rodrigues & P.R. Pezzuto. 2005. Estudo do crescimento relativo de Austinixa patagoniensis (Rathbun) (Decapoda, Pinnotheridae) simbionte de Callichirus major (Say) (Decapoda, Callianassidae) no mesolitoral da praia de Balneário Camboriú, Santa Catarina, Brasil. Rev. Bras. Zool., 22(3): 784-792. Arana, P. 2000. Estimación de abundancia y biomasa del cangrejo dorado (Chaceon chilensis), en el archipiélago de Juan Fernández, Chile. Invest. Mar. Valparaíso, 28: 53-68. Attrill, M. J., R.G. Hartnoll & A.L. Rice. 1991. Aspects of the biology of the deep-sea crab Geryon trispinosus from the Porcupine Seabight. J. Mar. Biol. Ass. U.K., 71: 311-328. Beyers, C.J.B. & C.G. Wilke. 1980. Quantitative stock survey and some biological and morphometric characteristics of the deep-sea red crab Geryon quinquedens off South West Africa. Fish. Bull. S. Afr., 13: 9-19. Bonduriansky, R. 2007. Sexual selection and allometry: a critical reappraisal of the evidence and ideas. Evolution, 61(4): 838-849. Carmona-Suárez, C.A. 2003. Reproductive biology and relative growth in the spider crab Maja crispata (Crustacea, Brachyura, Majidae). Sci. Mar., 67(1): 75-80. Carvalho, T.B., R.R. Oliveira Filho & T.M.C. Lotufo. 2009. Note on the fisheries and biology of the golden crab (Chaceon fenneri) off the northern coast of Brazil. Lat. Am. J. Aquat. Res., 37(3): 571-576. Christy, J.H. 1987. Competitive mating, mate choice and mating associations of Brachyuran crabs. Bull. Mar. Sci., 41(2): 177-191. Defeo, O. & A. Masello. 2000. La pesquería de cangrejo rojo Chaceon notialis en el Uruguay: un enfoque de manejo precautorio (1995-1996). In: M. Rey (ed.). Recursos pesqueros no tradicionales: moluscos, crustáceos y peces bentónicos marinos. Proyecto URU/92/003, INAPE/PNUD, Uruguay. pp. 7-22. Delgado, E. & O. Defeo. 2004. Sexual maturity in females of deep-sea red crab Chaceon notialis (Brachyura, Geryonidae) in the southwestern Atlantic Ocean. Invert. Reprod. Dev., 46(1): 55-62. Diop, M. & A. Kojemiakine. 1995. Le crab profound Geryon maritae de Mauritanie. I. Ecologie et biologie. Bulletin Scientifique du Centre National de Re- 309 cherches Oceanographiques et des Peches (Mauritania), 26: 3-13. Domingos, S.S., A.A.R. Athiê & C.L.D.B. RossiWongtschowski. 2007. Diet of Chaceon notialis (Decapoda, Brachyura) off the coast of Rio Grande, RS, Brazil. Braz. J. Oceanogr., 55(4): 327-329. Domingos, S.S., A.A.R. Athiê & C.L.D.B. RossiWongtschowski. 2008. Diet of Chaceon ramosae (Decapoda, Brachyura) on the southern Brazilian Exclusive Economic Zone. Braz. J. Oceanogr., 56(1): 59-63. Elner, R.W., S. Koshio & G.V. Hurley. 1987. Mating behavior of the deep-sea red crab, Geryon quinquedens Smith (Decapoda, Brachyura, Geryonidae). Crustaceana, 52(2): 194–201. Erdman, R.B. & N.J. Blake. 1988. Reproductive ecology of female golden crabs, Geryon fenneri Manning and Holthuis, from southeastern Florida. J. Crust. Biol., 8(3): 392-400. Erdman, R.B., N.J. Blake, F.D. Lockhart, W.J. Lindberg, H.M. Perry & R.S. Waller. 1991. Comparative reproduction of the deep-sea crabs Chaceon fenneri and C. quinquedens (Brachyura: Geryonidae) from the northeast Gulf of Mexico. Invert. Reprod. Dev., 19(3): 175-184. Fernández-Vergaz, V., L.J. López-Abellán & E. Balguerías. 2000. Morphometric, functional and sexual maturity of the deep-sea red crab Chaceon affinis inhabiting Canary Island waters: chronology of maturation. Mar. Ecol. Prog. Ser., 204: 169-178. Gaertner, D. & F. Laloé. 1986. Étude biométrique de la taille à première maturité sexuelle de Geryon maritae Manning et Holthuis, 1981 du Sénégal. Oceanol. Acta, 9(4): 479-487. Gage, J.D. & P.A. Tyler. 1991. Deep-sea biology: a natural history of organisms at the deep-sea floor. Cambridge University Press, Cambridge. 504 pp. Guerrero, A. & P. Arana. 2009. Size structure and sexual maturity of the golden crab (Chaceon chilensis) exploited off Robinson Crusoe Island, Chile. Lat. Am. J. Aquat. Res., 37(3): 347-360. Haddon, M. 2001. Modelling and quantitative methods in fisheries. Chapman & Hall/CRC, Boca Raton, 406 pp. Haefner Jr., P.A. 1977. Reproductive biology of the female deep-sea red crab, Geryon quinquedens, from the Chesapeake Bight. U.S. Fish. Bull., 75(1): 91102. Haimovici, M., A.O. Ávila-da-Silva,, S.H.B. Lucato, G. Velasco & L.H. Arantes. 2007. A pesca de linha-defundo na plataforma externa e talude superior da região Sudeste-Sul do Brasil em 1997 e 1998. In: C.L.D.B. Rossi-Wongtschowski, R.A. Bernardes & C. Cergole (eds.). Dinâmica das frotas pesqueira co- 310 Lat. Am. J. Aquat. Res. merciais da região Sudeste-Sul do Brasil. Série Documentos Revizee-Score Sul. Instituto Oceanográfico, São Paulo, pp. 8-325. Hall, N.G., K.D. Smith, S. de Lestang & I.C. Potter. 2006. Does the largest chelae of the males of three crab species undergo an allometric change that can be used to determine morphometric maturity? ICES J. Mar. Sci., 63: 140-150. Hartnoll, R.G. 1969. Mating in the Brachyura. Crustaceana, 16: 161-181. Hartnoll, R.G. 1982. Growth. In: L.G. Abele (ed.). The biology of Crustacea. Embryology, morphology and genetics. Vol. 2. Academic Press, London, pp. 111196. Hastie, L.C. 1995. Deep-water Geryonid crabs: a continental slope resource. Oceanogr. Mar. Biol. Ann. Rev., 33: 561-584. Hastie, L.C. & W.B. Saunders. 1992. On the distribution and fishery potential of the japanese red crab Chaceon granulatus in the Palauan Archipelago, Western Caroline Islands. Mar. Fish. Rev., 54(1): 26-32. Hines, A.H. 1988. Fecundity and reproductive output in two species of deep-sea crabs, Geryon fenneri and G. quinquedens (Decapoda: Brachyura). J. Crust. Biol., 8(4): 557-562. Hines, A.H. 1990. Commentary on life history and ecology of deep-sea crabs of the family Geryonidae. In: W.J. Lindberg & E.L. Wenner (ed.). Geryonid crabs and associated continental slope fauna: a research workshop report. South Carolina Sea Grant Consortium, Technical Paper 58, pp. 30-38. Hinsch, G.W. 1988. Morphology of the reproductive tract and seasonality of reproduction in the golden crab Geryon fenneri from the eastern Gulf of Mexico. J. Crust. Biol., 8(2): 254-261. Kitsos, M.S., S. Doulgeraki, A. Tselepides & A. Koukouras. 2005. Diet composition of the bathyal crabs, Chaceon mediterraneus Manning & Holthuis and Geryon longipes A. Milne-Edwards (Decapoda, Geryonidae) collected at different depths in the eastern Mediterranean. Crustaceana, 78(2): 171-184. Lawton, P. & D. Duggan. 1998. Scotian Red Crab. [Canadian] Maritimes Region. DFO Sci. Stock Status Rep. C3-11. 6 pp. López-Abellán, L.J.L., E. Balguerías & V. FernándezVergaz. 2002. Life history characteristics of the deepsea crab Chaceon affinis population off Tenerife (Canary Islands). Fish. Res., 58: 231-239. Lux, F.E., A.R. Ganz & W.F. Rathjen. 1982. Marking studies on the red crab Geryon quinquedens Smith off Southern New England. J. Shellfish Res., 2(1): 71-80. Manning, R.B., M.S. Tavares & E.F. Albuquerque. 1989. Chaceon ramosae, a new deep-water crab from Brazil (Crustacea: Decapoda: Geryonidae). Proc. Biol. Soc. Wash., 102(3): 646-650. McElman, J.F. & R.W. Elner. 1982. Red crab (Geryon quinquedens) trap survey along the edge of the Scotian shelf, September 1980. Can. Tech. Rep. Fish. Aquat. Sci., 1084: 1-12. Melville-Smith, R. 1987. The reproductive biology of Geryon maritae (Decapoda, Brachyura) off South West Africa/Namibia. Crustaceana, 53(3): 259-275. Melville-Smith, R. 1988. The commercial fishery for and population dynamics of red crab Geryon maritae off South West Africa, 1976-1986. S. Afr. J. mar. Sci., 6: 79-95. Melville-Smith, R. 1989. A growth model for the deepsea red crab (Geryon maritae) off South West Africa/Namibia (Decapoda, Brachyura). Crustaceana, 56(3): 279-292. Morato, T., R. Watson, T.J. Pitcher & D. Pauly. 2006. Fishing down the deep. Fish and Fisheries, 7:24-34. New England Fishery Management Council (NEFMC). 2002. Fishery management plan for deep-sea red crab (Chaceon quinquedens). Including an environmental impact statement, an initial regulatory flexibility act analysis, and a regulatory impact review. Volume 1, 446 pp. Negreiros-Fransozo, M.L., K.D. Colpo & T.M. Costa. 2003. Allometric growth in the fiddler crab Uca thayeri (Brachyura, Ocypodidae) from a subtropical mangrove. J. Crust. Biol., 23(2): 273-279. Peres, M.B. & M. Haimovici. 1998. A pesca dirigida ao cherne-poveiro Polyprion americanus (Poliprionidae, Teleostei) no sul do Brasil. Atlântica, 20: 141-161. Perez. J.A.A., R. Wahrlich, P.R. Pezzuto & F.R.A. Lopes. 2002. Estrutura e dinâmica da pescaria do peixesapo Lophius gastrophysus no sudeste e sul do Brasil. Bolm. Inst. Pesca, 28(2): 205-231. Perez. J.A.A., R. Wahrlich, P.R. Pezzuto, P.R. Schwingel, F.R.A. Lopes & M. Rodrigues-Ribeiro. 2003. Deep-sea fishery off Southern Brazil: recent trends of the Brazilian fishing industry. J. Northw. Atl. Fish. Sci., 31: 1-18. Perez. J.A.A. & R. Wahrlich. 2005. A by-catch assessment of the gillnet monkfish Lophius gastrophysus fishery off southern Brazil. Fish. Res., 72: 81-95. Pezzuto, P.R. 1993. Regrans: a “Basic” program for an extensive analysis of relative growth. 15: 93-105. Pezzuto, P.R., J.A.A. Perez, R. Warhlich, W.G. Vale & F.R.A. Lopes. 2002. Análise da pescaria dos caranguejos-de-profundidade no sul do Brasil – Anos 2001-2002. Relatório Final. Ações prioritárias ao desenvolvimento da pesca e aqüicultura no sul do Brasil. Convênio Ministério da Agricultura, Pecuária e Sexual maturity of Chaceon ramosae Abastecimento (MAPA), Universidade do Vale do Itajaí, MAPA/SARC/DPA/03/2001 e MAPA/SARC/ DENACOOP/176/2002. Universidade do Vale do Itajaí, Itajaí, pp. 121. Pezzuto, P.R., J.A.A. Perez & R. Warhlich. 2006a. O ordenamento das pescarias de caranguejos-deprofundidade (Chaceon spp.) (Decapoda: Geryonidae) no sul do Brasil. Bolm. Inst. Pesca, 32(2): 229-247. Pezzuto, P. R., J.A.A. Perez & R. Warhlich. 2006b. Deep-sea shrimps (Decapoda: Aristeidae): newtargets of the deep-water trawling fishery in Brazil. Braz. J. Oceanogr., 54(2/3): 123-134. Pezzuto, P.R., J.A.A. Perez, R. Warhlich, R. Sant’Ana, W.G. Vale & R.C. Santos. 2006c. Avaliação de estoque e biologia populacional dos caranguejos-deprofundidade (Chaceon notialis e Chaceon ramosae) nas regiões Sudeste e Sul do Brasil. Relatório Técnico apresentado à 4a Sessão Ordinária do Subcomitê Científico do Comitê Consultivo Permanente de Gestão dos Recursos Demersais de Profundidade (CPG/Demersais)/ SEAP/PR – Itajaí, SC, 0305/05/2006. DOC 11 SCC CPG 042006. Received: 12 May 2008; Accepted: 2 March 2009 311 Pinho, M.R., J.M. Gonçalves, H.R. Martins & G.M. Menezes. 2001. Some aspects of the biology of the deep-water crab, Chaceon affinis (Milne-Edwards and Bouvier, 1894) off the Azores. Fish. Res., 51: 283-295. Poupin, J. & P. Buat. 1992. Discovery of deep-sea crabs (Chaceon sp.) in French Polynesia (Decapoda: Geryonidae). J. Crust. Biol., 12(2): 270-281. Restrepo, V.R. & R.A. Watson. 1991. An approach to modeling crustacean egg-bearing fractions as a function of size and season. Can. J. Fish. Aquat. Sci., 48: 1431-1436. Steimle, F.W., C.A. Zetlin & S. Chang. 2001. Essential fish habitat source document: red deepsea crab, Chaceon (Geryon) quinquedens, life history and habitat characteristics. U.S. Department of Commerce, Woods Hole. NOAA Technical Memorandum NMFS-NE-163, 27 pp. Wenner, E.L., G.F. Ulrich & J.B. Wise. 1987. Exploration for golden crab, Geryon fenneri, in the South Atlantic Bight: distribution, population structure, and gear assessment. U.S. Fish. Bull., 85(3): 547-560. Zar, J. 1996. Biostatistical analysis. Prentice Hall, New Jersey, 662 pp. 312 Lat. Am. J. Aquat. Res. Lat. Am. J. Aquat. Res., 37(3): 313-326, 2009 Crecimiento, mortalidad y evaluación de Chaceon chilensis “Deep-sea fisheries off Latin America” P. Arana, J.A.A. Perez & P.R. Pezzuto (eds.) DOI: 10.3856/vol37-issue3-fulltext-4 Research Article Crecimiento, mortalidad y evaluación de la población de cangrejo dorado (Chaceon chilensis) explotado en el archipiélago de Juan Fernández, Chile 1 Cristian Canales1 & Patricio M. Arana2 Departamento de Evaluación de Recursos, División de Investigación Pesquera Instituto de Fomento Pesquero, Blanco 839, Valparaíso, Chile 2 Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso Casilla 1020, Valparaíso, Chile RESUMEN. Se analiza la información mensual de composición de tamaño recopilada en el monitoreo de la pesca artesanal sobre cangrejo dorado (Chaceon chilensis) realizado entre julio de 2005 y mayo de 2006, para evaluar los parámetros de crecimiento, mortalidad natural y puntos biológicos de referencia de los machos sobre los cuales se basa esta pesquería. Se estableció una longevidad promedio de 20 años y una mortalidad natural en torno a M = 0,27 año-1. La talla crítica se determinó a los 110 mm de longitud cefalotorácica (Lc), que es levemente inferior a la talla de primera captura de 114 mm de Lc. De acuerdo al análisis efectuado, se explotan individuos entre 4 y 10 años de vida. Mediante análisis de equilibrio se determina que la población se encuentra en 82% de la condición virginal, que se refleja en una talla promedio en las capturas de 128 mm de Lc. Una eventual reducción de la población a un límite del 40% de la condición original, se consigue aumentando en tres veces el nivel actual de desembarques, lo que se traduciría en una talla media en las capturas de 118 mm de Lc. Finalmente, se recomiendan distintos puntos biológicos de referencia para garantizar una explotación sustentable en el tiempo. Palabras clave: crecimiento, mortalidad, evaluación, cangrejo dorado, Chaceon chilensis, archipiélago de Juan Fernández, Chile. Growth, mortality, and stock assessment of the golden crab (Chaceon chilensis) population exploited in the Juan Fernández archipelago, Chile ABSTRACT. Monthly information on the size composition of golden crab (Chaceon chilensis) catches compiled while monitoring the artisanal fishery (July 2005 through May 2006) is analyzed in order to evaluate the growth parameters, natural mortality, and biological reference points in male specimens, the basis of the fishery. Average longevity was found to be 20 years and natural mortality around M = 0.27. The critical size was determined to be around 110 mm carapace length (Lc), slightly lower than that of the first catch (114 mm Lc). According to this analysis, individuals between 4 and 10 years of age are exploited. A balance analysis revealed that 82% of the population is virginal, as reflected in an average size-at-catch of about 128 mm Lc. Tripling the current level of landings would lead to an eventual reduction to a limit of 40% of the original population; this would result in an average catch size of 118 mm Lc. Finally, several biological reference points are recommended for guaranteeing sustainable exploitation over time. Keywords: growth, mortality, stock assessment, golden crab, Chaceon chilensis, Juan Fernandez Archipelago, Chile. ________________________ Corresponding author: Cristian Canales (ccanales@ifop.cl) 313 314 Lat. Am. J. Aquat. Res. INTRODUCCIÓN La existencia del cangrejo dorado de Juan Fernández (Chaceon chilensis Chirino-Gálvez & Manning, 1989) se determinó como resultado de la campaña de pesca exploratoria realizada en torno a las islas Robinson Crusoe y Santa Clara durante 1996 y 1997. La abundancia detectada como el gran tamaño de los ejemplares capturados motivó que fuera catalogado como recurso potencial, transformándose en una opción para los pescadores artesanales de la isla, quienes tradicionalmente han dependido exclusivamente de la extracción de la langosta de Juan Fernández (Jasus frontalis) (Arana, 2000). Se debe destacar que la distribución batimétrica del recurso a profundidades mayores a 200 m planteó nuevos requerimientos en términos del equipamiento de las embarcaciones, haciendo necesario contar con equipos viradores mecánicos o hidráulicos (Arana & Vega, 2000; Martínez & Alvarez, 2000). La abundancia de cangrejo dorado favoreció el desarrollo de una pesca experimental para establecer el aparejo de pesca más adecuado para su extracción y definir su distribución batimétrica, con énfasis en precisar si existían diferencias en los rendimientos por trampas respecto a la profundidad (Arana & Vega, 2000). Los resultados permitieron identificar que la fracción explotable de la población estaba constituida prácticamente por machos (98%), no teniendo mayores antecedentes respecto de la ubicación y atributos poblacionales de las hembras (Arana, 2000). De acuerdo a las estadísticas oficiales de desembarque, el desarrollo de la pesquería de cangrejo dorado de Juan Fernández se inicia a partir del año 2000. Primeramente se registra una captura de 13 ton, que luego se incrementa obteniéndose un total de 40 ton en 2004, para luego descender hasta 2 ton el 2006 debido principalmente a falta de poder comprador. Esta es una pesquería nueva y aún no se encuentra regulada por la autoridad pesquera chilena. Estudios sobre parámetros biológicos del grupo Geryonidae son escasos a nivel mundial, pero se sabe que en algunas especies existe una fuerte competencia talla-especifica en las capturas realizadas con trampa, lo cual determina una mayor proporción de ejemplares grandes (Miller, 1989), Por otro lado, Haefner (1978) postuló que estos animales requerirían de a lo menos 15 mudas para alcanzar la talla máxima. Así también, en estudios de marcaje se ha determinado que estos cangrejos presentan un crecimiento lento y que las capturas están compuestas por individuos viejos, de seis o más años (Lux et al., 1982). Dada la importancia que reviste la explotación de esta especie para la comunidad pesquera del archipiélago de Juan Fernández y la necesidad de establecer bases biológicas para un manejo sustentable, en el presente trabajo se determina los parámetros de crecimiento, mortalidad natural, madurez sexual y talla crítica. Con este fin se analiza la información mensual recopilada en la temporada de pesca 2005/2006, con la cual se establece el estado de situación del cangrejo dorado y sus puntos biológicos de referencia. MATERIALES Y MÉTODOS Información analizada Entre julio 2005 y mayo 2006, se realizaron actividades de monitoreo de esta pesquería desarrollada alrededor de las islas Robinson Crusoe y Santa Clara del archipiélago de Juan Fernández (Arana et al., 2006b). El área de estudio se localizó aproximadamente entre 33º35´-33º50´S y 78º40´-79º50´W, y las actividades extractivas cubrieron profundidades entre 200 y 1.000 m (Fig. 1). Se registró información en 155 salidas de pesca, se revisaron 813 trampas y se muestreó más de 13.000 individuos que corresponde al 94% de la captura total (Arana et al., 2006b). Cabe destacar, que una de las características especiales de esta pesquería es que la población vulnerada por los aparejos de pesca está constituida solo por machos, lo cual determina el análisis realizado sólo involucra a este sexo. Los individuos medidos fueron agrupados en rangos de 2 mm longitud cefalotorácica (Lc), con el objeto de amortiguar la variabilidad de medición y rescatar de mejor forma la distribución de frecuencia de tallas en las capturas. Parámetros de crecimiento Los parámetros del modelo de crecimiento de Von Bertanlanffy fueron determinados mediante la descomposición modal de las estructuras de tallas, donde cada componente modal se supone constituye un grupo de edad. El procedimiento aplicado consistió en identificar estadísticamente distribuciones normales subyacentes en las “nf” distribuciones de frecuencias de tallas analizadas, según se ilustra en el paquete computacional Elefan I (FAO) y el algoritmo Mix (MacDonald & Pitcher, 1979), el cual fue programado en Matlab V6.5 y resuelto bajo el principio de máxima verosimilitud (Sparre & Venema, 1997). El uso simultáneo de la composición de talla permite identificar las componentes modales con mayor precisión y objetividad, estimándose los parámetros de cada distribución en respuesta a la repetición de cada componente a lo largo de la muestra analizada Al realizar el análisis se supone que una determinada estructura de tallas (i) se encuentra compuesta por “na” distribuciones de edades, cada una de ellas 315 Crecimiento, mortalidad y evaluación de Chaceon chilensis Figura 1. Distribución de las trampas empleadas en faenas de pesca de cangrejo dorado, entre julio de 2005 y mayo de 2006. Figure 1. Distribution of the traps used in golden crab fishing operations between July 2005 and May 2006. siguiendo una distribución de densidad normal cuya talla media caracteriza cada grupo etario o estados de muda, según sea el caso. De esta manera, en cada grupo de edad (a) la talla media se establece como: L a = L00 ( 1 − exp − k ) + exp − k L a −1 σ a = CV L a (2) (3) Así, la composición de tallas de cada grupo modal queda representada de la forma: fˆl ,a ,i = π a ,i pl ,a ni (4) na ∑ π a ,i = 1 F̂l ,i = (1) donde L∞ y k son parámetros desconocidos por resolver, al igual que la talla modal del primer grupo de edad ( L1 ). La proporción de individuos a la talla (l) que comprende el a-ésimo grupo de edad queda representado por una distribución normal con media conocida (ec. 2) y desviación estándar σ, supuestamente proporcional a la talla media modal mediante el coeficiente de variación (CV): pl ,a ≈ N ( L a ,σ a2 ) i-ésima composición de tallas. De esta forma, la iésima composición de tallas muestral es estimada sumando sobre cada componente modal: (5) a donde π a,i es la proporción que compone cada grupo modal-etario y n el tamaño de muestra observado en la na ∑ f̂l ,a (6) a El problema se resume en determinar en las muestras los parámetros de crecimiento, el coeficiente de variación y las proporciones edad-específicas, de forma que minimicen el valor de un estimador de logverosimilitud penalizado, asumiendo para ello que la composición de talla responde a una distribución multinomial. En esta distribución, se emplea un tamaño muestral efectivo variable proporcional al tamaño de muestra (mi) observado de la i-ésima composición de tallas normalizado a 200 individuos, según: log L = L nf ∑∑ 200 ∑ mi i Fl ,i log( F̂l ,i ) + λ ( L00 − Λ )2 l m (7) i i La penalización λ *( Loo − Λ)2 corresponde a una restricción de los valores probables de la longitud asintótica modelada mediante pérdida cuadrática en torno a la talla de referencia “Λ”. Una vez resuelto el vector de parámetros, se realizó un retro cálculo siguiendo la ec. 1 para evaluar la talla modal mínima que podría tener un individuo de 1 año de edad y por ende la asignación de edad en las siguientes compo- 316 Lat. Am. J. Aquat. Res. nentes modales. Definido esto, esta misma aproximación permitió inferir el valor de t0 del modelo de Von Bertanlanffy. Se supone que cada componente modal es un grupo de edad, y al tener varias composiciones de tallas, cada grupo de edad debiera reproducirse de manera independiente en cuanto a la media y desviación estándar, variando solo la proporción relativa en las frecuencias de tallas. Método Modelo de Taylor (1958) Modelo de Alagaraja (1984) Modelo de curva de captura (Z=M) ⎛ M ⎞ 1 ⎟⎟ log ⎜⎜ k ⎝ M + bk ⎠ Definición bk M= b + k t0 M = 5 tmax bk M = 0 ,25 tmax k −1 − ln( 0,01 ) M= tmax e (8) k y to son parámetros de crecimiento, y b es el parámetro de alometría (9) tmax es la edad máxima (10) (11) ln( Ca ) = φ − Z a (12) Cabe señalar que en la aplicación del último modelo (curva de captura), se supone que la reciente actividad de pesca ha sido de bajo impacto y no ha alterado la estructura de edad de la población, de manera que Z = M. Aquí, la composición de edad de la captura se genera de manera directa asignando la edad a la marca de clase de cada intervalo de tallas. La talla crítica fue estimada evaluando primero la edad crítica y luego convirtiéndola a longitud mediante el modelo de crecimiento. Esta edad, que garantiza la máxima eficiencia de la pesquería respecto del crecimiento somático de los organismos, fue evaluada considerando la variación marginal de la biomasa por recluta, afectada sólo por causas naturales en relación con la edad. La edad crítica tcrit, corresponde a la edad donde esta variación es igual a cero y analíticamente conduce a la expresión derivada del modelo de rendimiento por recluta de Beverton y Holt: tcrit = t0 − Para el cálculo de la tasa instantánea de mortalidad natural se consideró el desempeño de diversos estimadores bio-analógicos, los cuales están basados en los parámetros vitales del recurso, como crecimiento, madurez sexual y longevidad. El detalle de los estimadores es: Estimador Modelo de Beverton & Holt (1956) Alverson & Carney (1975) Mortalidad natural (M) y talla crítica (tcr) (13) Análisis de equilibrio El estado de situación del cangrejo dorado se determinó según el modelo de Thompson & Bell, simulando una población estructurada en edad sometida a diferentes niveles de mortalidad por pesca. A partir de esto, se evaluó la reducción relativa de la población explotable y su talla promedio como índice de status a ser comparada con la talla promedio observada. Para Ca es la captura a la edad y φ intercepto esto, a falta de mayor información, se supone que la población se encuentra en promedio equilibrada en relación con su estructura poblacional y los reclutamientos. El modelo poblacional considera la sobrevivencia de un reclutamiento unitario desde la edad (a) de primera captura (tpc) a la edad máxima (tmax), de acuerdo a: 1 ⎧⎪ Na = ⎨ − Za −1 N exp ⎪⎩ a −1 a=t a = t pc + 1 : t max (14) y la captura por recluta corresponde al modelo de captura de Baranov: F N ( 1 − exp − Z a ) Cpr a = a a Za (15) donde la mortalidad total Z es la suma de la mortalidad natural (M) y la mortalidad por pesca Fa , la cual se define como: F a= Fcr S a (16) siendo Fcr la mortalidad por pesca de los grupos completamente reclutados y S a el patrón de explotación que considera los ejemplares de edad cuya talla es mayor o igual a 114 mm de Lc (observado en la pesquería). ⎧0 a < a( l < 114mm ) Sa = ⎨ ⎩1 a ≥ a( l ≥ 114mm ) (17) Crecimiento, mortalidad y evaluación de Chaceon chilensis De igual modo, la biomasa explotable por recluta (Bpr) se obtiene de la expresión: Bpr = ∑ Sa Na Wa (18) a lo cual permite evaluar en términos relativos la reducción poblacional en el largo plazo para distintos valores de Fcr. Aquí, Wa es el peso medio a la edad estimada mediante la relación peso-talla aplicado a la longitud media a la edad: W a = q ( L a )b (19) donde los parámetros de esa relación corresponden a los estimados por Arana et al. (2006) con q = 0,000428 y b = 3,069467. La talla media de los ejemplares completamente reclutados para distintas condiciones de explotación en equilibrio es una respuesta al stress ocasionado por F y se estimó proporcional a la talla media de la captura: ∑ La Cpra L cr a ∑ Cpra (20) a Conocido el valor de la talla promedio de las capturas monitoreadas (> 114 mm de Lc), se puede establecer la comparación con el valor Lcr teórico, lo que permite inferir en términos relativos el nivel de reducción de la población virginal. RESULTADOS Crecimiento Las composiciones de tallas de machos generadas en el muestreo cubrieron ejemplares entre 46 y 189,7 mm de longitud cefalotorácica (Lc), con tallas medias que fluctuaron mensualmente entre 114,4 y 130,3 mm de Lc (Tabla 1). En una primera inspección mostraron una persistente polimodalidad que se supone podrían componer grupos de muda o de edad (Fig. 2). De igual forma, cabe destacar que en los cinco primeros meses del monitoreo, se registraron de manera significativa los ejemplares más grandes, (140-160 mm Lc), situación que cambió radicalmente en los siguientes meses (enero a mayo de 2006), cuando el grupo de los individuos más grandes se redujo al rango 120-140 mm de Lc (Fig. 2). Los datos registrados permitieron distinguir los primeros 3 ó 4 grupos modales, pero luego y sobre la base del supuesto de proporcionalidad entre la varianza y la talla media por grupo de edad, se generó una superposición de componentes modales lo cual dificultó la identificación visual de estos grupos. El modelo aplicado supone que en la información disponible 317 existe un patrón subyacente en el crecimiento, y cuyas componentes modales podrán variar de acuerdo con factores no necesariamente atribuibles a una dinámica de cohorte, como por ejemplo, zona de pesca, mes o profundidad de captura. En este estudio, se considera que todas las composiciones de tallas recopiladas aportan información, pero su contribución o importancia relativa al ajuste es ponderada considerando sus respectivos tamaños de muestra. Uno de los parámetros de crecimiento relevantes es la longitud asintótica (L∞), que corresponde al valor promedio de los ejemplares más grandes de una población inexplorada y por ende no debería parecer extraño que el ejemplar más grande (189,7 mm de Lc en abril del 2006) supere este valor promedio. La talla promedio de los ejemplares más grandes alcanzó los 170 mm de Lc (julio del 2005), valor que sirvió de base para establecer una penalización de la longitud asintótica según se indica en la ec. 7. Siguiendo el procedimiento descrito, el ajuste del modelo de crecimiento se realizó considerando que la información disponible de este recurso en su fase explotada no permite identificar más de ocho componentes modales (o grupos de edades). Algunos ensayos previos consideraron supuestos de hasta 12 grupos de edad presentes en las capturas, pero la relación de desviación estándar vs la talla modal derivó, en general, en una importante superposición, donde el considerar más de ocho grupos etarios es irrelevante para mejorar el ajuste del modelo. El ajuste y convergencia del modelo se logró luego de 9.300 iteraciones. El resultado es un modelo que reproduce con el mínimo error la forma y variabilidad de cada una de las composiciones de tallas consideradas. El diagrama cuantil-cuantil (qq-plot) indica que los datos observados y predichos provienen de la misma distribución dado que se aproximan, salvo algunas excepciones, significativamente a la linealidad, lo cual se verifica con la normalidad de los residuales (Fig. 3). La composición de talla de julio, agosto y septiembre de 2005 mostró una fuerte participación de individuos mayores a 140 mm de Lc, talla que precisamente corresponde al grupo modal con los ejemplares más grandes observados en el monitoreo de esta pesquería (Fig. 4). Los parámetros del modelo fueron 92, de los cuales 88 representan la proporción de cada grupo de edad en las muestras mensuales de capturas (11 meses por 8 grupos) y los cuatro restantes corresponden a L∞, k, L1 y CV. Así, los parámetros de crecimiento estimados indican que este recurso presentaría un incremento corporal anual de moderado a lento, de k = 0,142 año-1 valor compatible con un recurso de mediana longevi- 318 Lat. Am. J. Aquat. Res. Tabla 1. Principales estadígrafos de la longitud cefalotorácica en la captura total del cangrejo dorado, temporada 2005-2006 (Fuente: Arana et al., 2006b). Table 1. Main statistics of the cephalothoracic length in the total golden crab catch for the 2005-2006 season (Source: Arana et al., 2006b). Mes N° ejemplares muestreados Media (mm) Mediana (mm) Desviación estándar (mm) Mínimo (mm) Máximo (mm) Julio Agosto Septiembre Octubre Noviembre Diciembre Enero Febrero Marzo Abril Mayo Total Hembras 5 23 5 7 20 18 23 4 108 36 24 273 Machos 880 1.175 544 669 1.568 640 666 725 2.269 1.818 1.800 12.754 Totales 885 1.198 549 676 1.588 658 689 729 2.377 1.854 1.824 13.027 Hembras 95,2 104,9 106,6 98,0 91,4 92,3 94,3 96,3 90,8 90,2 92,3 95,7 Machos 124,6 124,3 129,8 118,2 119,4 120,1 117,6 119,2 113,4 113,0 114,0 119,4 Totales 124,5 123,9 129,6 118,0 119,1 119,3 116,8 119,1 112,5 111,9 113,5 118,9 Hembras 92,0 110,6 107,0 91,5 90,8 93,0 95,2 96,6 91,2 93,2 95,6 93,2 Machos 130,0 127,3 132,8 121,3 121,7 122,6 120,7 122,2 116,4 119,4 115,1 120,6 Totales 129,5 126,3 132,6 121,0 121,5 122,2 120,2 122,1 115,2 119,1 114,9 120,2 Hembras 9,8 12,3 5,1 22,3 5,7 3,1 5,6 3,5 6,8 7,3 7,5 8,1 Machos 20,0 19,1 17,4 17,1 15,1 13,4 15,0 13,9 14,5 14,8 14,2 15,9 Totales 20,1 19,2 17,5 17,2 15,4 14,0 15,3 13,9 15,0 15,3 14,4 16,1 Hembras 86,2 80,1 97,2 80,0 76,1 85,4 84,1 91,0 73,2 68,7 71,6 68,7 Machos 46,0 74,3 79,0 76,6 69,8 63,1 77,8 80,4 72,4 74,4 75,1 46,0 Totales 46,0 74,3 79,0 76,6 69,8 63,1 77,8 80,4 72,4 68,7 71,6 46,0 Hembras 114,0 117,2 111,2 150,0 101,1 98,0 103,6 100,9 112,9 107,1 109,4 150,0 Machos 177,4 165,0 162,1 165,6 148,7 153,7 153,7 153,7 147,1 189,7 170,4 189,7 Totales 177,4 165,0 162,1 165,6 148,7 153,7 153,7 153,7 147,1 189,7 170,4 189,7 319 Crecimiento, mortalidad y evaluación de Chaceon chilensis 0.05 0.05 Julio n=880 0 80 Enero n=666 100 120 140 160 0.05 0 Agosto n=1175 0 80 100 120 140 160 Proporción 140 160 0 80 100 120 140 160 80 100 100 120 140 160 100 120 140 160 100 120 140 160 Marzo n=2269 120 140 160 0.05 0 80 0.05 Octubre n=669 80 Abril n=1818 100 120 140 160 0.05 0 80 0.05 Noviembre n=1568 0 120 0.05 Septiembre n=544 0 100 Febrero n=725 0.05 0 80 0.05 80 100 Mayo n=1800 120 140 160 120 140 160 0 80 0.05 Diciembre n=640 0 80 100 Longitud cefalotorácica (mm) Figura 2. Proporción de talla de los machos de cangrejo dorado entre julio de 2005 y mayo de 2006. Figure 2. Size proportions of male golden crabs between July 2005 and May 2006. Figura 3. Diagrama qq-plot de a) la proporción de capura a la talla, y b) histograma de los residuales del modelo de crecimiento ajustado a la información de las capturas de machos de cangrejo dorado. Figure 3. QQ-plot diagram of the a) size-at-catch proportions and b) histogram of the residuals from the growth model fit to the catch data for male golden crabs. 320 Lat. Am. J. Aquat. Res. 0.05 0.05 Julio Enero 0 0 73 87 99 110 119 127 133 139 73 Agosto 99 110 119 127 133 139 99 110 119 127 133 139 99 110 119 127 133 139 99 110 119 127 133 139 99 110 119 127 133 139 Febrero 0 0 73 87 99 110 119 127 133 139 73 87 0.05 0.05 Septiembre Proporción 87 0.05 0.05 Marzo 0 0 73 87 99 110 119 127 133 139 73 87 0.05 0.05 Octubre Abril 0 0 73 87 99 110 119 127 133 139 73 87 0.05 0.05 Noviembre Mayo 0 0 73 87 99 110 119 127 133 139 73 87 0.05 Diciembre 0 73 87 99 110 119 127 133 139 Longitud cefalotorácica (mm) Figura 4. Ajuste del modelo de crecimiento a las composiciones modales identificadas en las proporciones de tallas de las capturas de machos de cangrejo dorado. Las líneas verticales indican la longitud modal por grupo de edad. Figure 4. Fitting of the growth model to the modal compositions identified in the size-at-catch proportions of male golden crabs. The vertical lines indicate the modal length per age group. dad (20 años), y que la talla asintótica alcanzaría un valor L∞= 178,0 mm de Lc (Tabla 2). Este valor es significativamente mayor al promedio de los ejemplares mayores usado como penalización, lo cual desde una perspectiva bayesiana, significa que los datos empleados contienen información efectiva relacionada con el crecimiento del cangrejo dorado. Otro parámetro de interés corresponde a L1, que es la talla media del primer grupo de edad estimado en 73,4 mm de Lc y que en la práctica no es observado en la pesquería, sino el que le precede y estimado en 87,3 mm de Lc. Esto hace suponer que en la práctica, los grupos de edad que cubren el rango de tamaño en las capturas no son más de siete. El hecho que se estimen parámetros de composiciones modales (edades) que no están representadas en las composiciones de tallas de las capturas, indica que la edad de reclutamiento a la pesquería es mayor a 1 año de edad, o mejor dicho, que la pesquería se sustenta en individuos adultos. Tabla 2. Parámetros de crecimiento del cangrejo dorado. Entre paréntesis se entrega el error estándar de las estimaciones. Table 2. Growth parameters of golden crabs. The standard error of the estimate is given in parentheses. L∞ (mm) k (año-1) L1 (mm) CV t0 (años) 178,04 (7,756) 0,143 (0,019) 73,440 (1,950) 0,056 (0,002) 0,25 El modelo no considera de manera explícita la dinámica de sobrevivencia entre cohortes y meses, sino supone que la importancia relativa de cada grupo de edad en las composiciones modales de tallas es independiente y está sujeta a error de observación (e.g., muestreo) y/o proceso (e.g., migración edadespecífica). 321 Crecimiento, mortalidad y evaluación de Chaceon chilensis Para la asignación de los grupos de edad, en primer lugar se calcularon las tallas modales anteriores a L1 mediante la ec. 1, pero en forma retrospectiva. La mínima talla no-negativa fue estimada en 17,5 mm de Lc (Tabla 3) y asignada a individuos del grupo de edad 0. Las restantes edades fueron asignadas de manera cronológica hasta un máximo de 20 años, edad a la cual la talla media alcanza el 95% de su longitud asintótica (longevidad media). De igual forma, asignada la edad y conocida la talla media, el valor de t0 fue 0,253 años. De acuerdo con estos resultados, la pesquería del cangrejo dorado estaría compuesta principalmente por individuos entre 4 y 10 años de vida (Tabla 3, Fig. 5). Las ecuaciones de crecimiento de von Bertanlanffy en longitud y en peso en los machos de C. chilensis quedan definidas como: L a ( mm ) = 178,04 ( 1 − e−0 ,14 ( a −0 ,25 ) ) W a ( g ) = 3383 ( 1 − e −0 ,14 ( a −0 ,25 ) )3,06 Mortalidad natural (M) y talla crítica (Lcrit) La mortalidad natural fue inferida a partir de estimadores bioanalógicos y se supuso que la manipulación y devolución de ejemplares al mar bajo la talla de referencia para ser considerados como ejemplares comerciales no son causa de mortalidad adicional. El resultado de estos indican que tres de los cinco métodos propuestos satisfacen la restricción de plausibilidad dado por la relación 1,5 < M/k < 2,5 (Beverton & Holt, 1959). Estos métodos correspondieron a los propuestos por Beverton & Holt (1956), Alagaraja (1984) y Alverson & Carney (1975), los cuales entregaron valores de mortalidad natural entre 0,21 y 0,36 año-1, con un promedio de M = 0,27 año-1 (Tabla 4), que equivale a una sobrevivencia natural anual del 76%. En este mismo análisis, la pendiente de la curva de captura acumulada en la temporada entregó estimados muy elevados para ser considerados como “proxy” de mortalidad natural, lo cual se debería probablemente a la influencia que ha ejercido la actividad extractiva sobre la estructura de la población o procesos de desreclutamientos de los más grandes por migración ontogenética. La competencia por acceso a las trampas favorece a los individuos más grandes de la población (Miller & Addison, 1995), pero en ningún caso afecta los estimados de mortalidad que se basan precisamente en la longevidad, madurez y/o abundancia relativa a la talla en los individuos más longevos. Por su parte, la estimación de la talla crítica fue derivada siguiendo el perfil de los cambios en biomasa individual en relación a la talla (Fig. 6). Los resultados indican que la talla crítica es alcanzada a los 110 mm de Lc, equivalente a seis años de vida, la cual es muy Tabla 3. Longitud cefalotorácica media y edad teóricas en machos de cangrejo dorado. Table 3. Average theoretical cephalothoracic length and age for male golden crabs. Edad (años) Lc (mm) L/L∞ (%) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 17,45 38,84 57,37 73,44 87,37 99,44 109,91 118,98 126,84 133,66 139,57 144,69 149,13 152,98 156,32 159,21 161,72 163,89 165,78 167,41 168,82 10 22 32 41 49 56 62 67 71 75 78 81 84 86 88 89 91 92 93 94 95 Retro-cálculo Estimadas Proyectadas cercana a la edad de primera captura obtenida en la pesquería, que correspondería a individuos entre seis y siete años (114 mm de Lc). Figura 5. Modelo de crecimiento en machos de cangrejo dorado, en el que se indica el rango de edad presente en la pesquería. Figure 5. Growth model for male golden crabs, indicating the age range present in the fishery. 322 Lat. Am. J. Aquat. Res. Tabla 4. Estimación de la mortalidad natural en machos de cangrejo dorado mediante el empleo de diferentes métodos bioanalógicos. Table 4. Natural mortality in male golden crabs, estimated by different bio-analogical methods. M M/k Curva captura (Z) 0,48 3,36 Taylor 0,14 0,99 Beverton & Holt* 0,23 1,59 Alverson & Carney(*) 0,36 2,50 Alagaraja* 0,21 1,46 M promedio 0,27 (*) seleccionadas Evaluación de la población Conocido los parámetros de crecimiento y mortalidad, el análisis en condiciones de equilibrio permitió conocer las relaciones teóricas entre la longitud cefalotorácica promedio de los ejemplares completamente reclutados a la pesquería (> 114 mm de Lc) y los niveles de reducción de la biomasa virginal. Cabe señalar que los ejemplares de tallas inferiores a 114 mm de Lc son devueltos al mar y por ende considera que la selección de la fracción bajo esa longitud es nula. Los resultados del análisis de equilibrio generaron una curva que relaciona la talla media de los individuos mayores a 114 mm de Lc ( L cr ) con la reducción teórica de la biomasa virginal Bo. Se estima que la Lcr en condiciones virginales corresponde a 129 mm de Lc, que equivale al valor de la abscisa cuando la razón B/Bo es igual a 100% (Fig. 7). Por su parte, los muestreos de tallas de las capturas indican que la Figura 6. Curva de biomasa individual por recluta respecto a la talla en machos de cangrejo dorado. Figure 6. Individual biomass curve per recruit with respect to the size of male golden crabs. Lcr es de 128 mm de Lc, lo que ubica a la población explotable en un 82% de la población virginal (Fig. 8,Tabla 5). Esto corresponde a un valor de mortalidad por pesca en torno a F = 0,05, que es inferior a Puntos Biológicos de Referencia como es F40% = 0,34 (Mace, 1994) o F = 0,5 M sugerido por Gulland (1971) para poblaciones vírgenes. La reducción relativa de la biomasa desovante virginal ha sido empleada para definir puntos biológicos de referencia en muchas pesquerías. Varios estudios (Clark, 1991; Francis, 1993; Thompson, 1993; Mace, 1994) sugieren que se pueden producir rendimientos promedios equivalentes al Máximo Rendimiento Sostenido cuando la población se encuentra en el rango 0,3-0,5 de la condición virginal, y que muchas pesquerías no pueden generar producción sostenida si la reducción se ubica bajo 0,2 de Bo. En este sentido, una reducción de la población virginal a un 40% de Bo significa registrar en la pesque- Figura 7. a) Relación teórica entre la biomasa de largo plazo y la mortalidad por pesca, y b) relación teórica entre la talla media de completo reclutamiento (Lcr) y la reducción de biomasa virginal en machos de cangrejo dorado. Figure 7. a) Theoretical relationships between long-term biomass and fishing mortality, and b) between the average size of complete recruitment (Lcr) and the reduction of virginal biomass in male golden crabs. Crecimiento, mortalidad y evaluación de Chaceon chilensis Figura 8. Relación teórica entre la mortalidad por pesca y la talla media de completo reclutamiento (Lcr) en machos de cangrejo dorado. Figure 8. Theoretical relationship between fishing mortality and the average size of complete recruitment (Lcr) in male golden crabs. ría una L cr de 118 mm de Lc y en el caso de F = 0,5 M una longitud L cr de 123 mm de Lc (Tabla 5). Como estos valores son inferiores a la talla L cr actual, se deduce que este recurso podría soportar un incremento moderado de mortalidad por pesca sin mayor detrimento de la población, teniéndose como referentes que no se exceda el valor de referencia dado por F40% o que la talla L cr no caiga bajo los 118 mm de Lc. Lo anterior se consigue incrementando en tres veces los desembarques actuales. Finalmente, el criterio de explotación bioeconómico F0,1 (Gulland, 1983), que corresponde al valor de F donde la pendiente del rendimiento por recluta es igual al 10% de la pendiente original (Fig. 9), fue estimado en F0,1 = 0,35 y es similar al criterio F40% anteriormente señalado. Esto indica que no solo el mejor beneficio económico se lograría aumentando Tabla 5. Mortalidad por pesca, rendimiento por recluta, reducción de la biomasa virginal y talla media de completo reclutamiento en machos de cangrejo dorado. Table 5. Fishing mortality, yield per recruit, virginal biomass reduction, and full recruited mean length in male golden crabs. F (año-1) Y (g) B/Bo Lcr (mm) Fcr 0,050 197 84% 128 F = 0,5*M 0,135 390 66% 123 F40% 0,340 569 40% 119 F0.1 0,350 574 45% 118 323 Figura 9. Relación teórica entre la mortalidad por pesca con el rendimiento por recluta (línea gruesa) y su variación marginal (línea delgada) respecto de la mortalidad por pesca en machos de cangrejo dorado. En líneas segmentadas se indica el valor del 10% de la pendiente en el origen. Figure 9. Theoretical relationship between fishing mortality with the yield per recruit (thick line) and the marginal variation (thin line) with respect to fishing mortality in male golden crabs. The segmented lines indicate the 10% value of the initial slope. la mortalidad por pesca a este nivel, sino que dicho aumento no comprometería niveles biológicos sustentables de explotación en este recurso. DISCUSIÓN El monitoreo de las capturas del cangrejo dorado, permitió realizar exclusivamente el análisis de los machos, dado que este sexo representa más del 98% las capturas, integrando mayor cantidad de información a la que se contaba previamente. Se determinó que el cangrejo dorado es un recurso de mediana longevidad, cuya máxima expectativa de vida es de alrededor de 20 años y que la pesquería estaría compuesta por individuos de 4 a 10 años de edad. Por otra parte, se estableció que tanto los parámetros de crecimiento como el valor de mortalidad natural resultaron mayores a los estimados por Arana (2000) (L∞= 150 mm; k = 0,1 año-1; M = 0,15 año-1), diferencia que se estima estrechamente ligada a la mayor fuente de datos ahora disponible. Cabe mencionar que por lo general las estructuras de tallas o edades de ejemplares muy longevos tienden a ser simétricas, unimodales y muy estables en el tiempo, situación que en este caso no ocurrió. En general, la literatura disponible sobre crecimiento en el grupo Geryonidae es escasa a nivel mun- 324 Lat. Am. J. Aquat. Res. dial, aunque se postula que estos animales requerirían de 15 o más mudas para alcanzar la talla máxima (Haefner, 1978). Así, mediante estudios de marcaje realizados en Chaceon (Geryon) quinquedens de Nueva Inglaterra se ha determinado que estos cangrejos presentan un crecimiento lento y que la pesquería esta compuesta por individuos viejos, de seis o más años (Lux et al., 1982). Igualmente, Van Heukelem et al. (1983) señalan que los ejemplares de esta misma especie ingresan a la pesquería realizada frente a la costa Atlántica de los Estados Unidos cuanto tienen alrededor de seis años de vida. Un resultado semejante encuentra Melville-Smith (1989) en Chaceon (Geyon) maritae de Sud Africa/Namibia, quien mediante el desarrollo de un modelo hipotético, establece que esta especie puede ser explotada a partir de los seis años de vida, valores que son similares a los resultados alcanzados en el presente estudio. Durante los primeros siete años de vida el cangrejo dorado aumenta su tamaño a tasas crecientes, para luego invertir este patrón de crecimiento a tasas decrecientes (Fig. 4). Esto último podría encontrarse relacionado con el proceso de madurez sexual, en el cual parte importante de la energía empleada en el desarrollo corporal es orientada al proceso reproductivo y por ende la reducción en la tasa de crecimiento. En este sentido y de acuerdo con Charnov (1993) y Charnov & Berrigan (1990), una aproximación a la talla de primera madurez sexual se logra cuando el animal alcanza 2/3 de la longitud asintótica, la que en este estudio conlleva a una estimación de 118 mm de Lc. De acuerdo con Guerrero & Arana (2008), la talla de primera madurez sexual (TMS50%) es alcanzada en los machos a los 109 mm de Lc (equivalente a 125 mm de ancho cefalotorácico), que correspondería a individuos entre seis y siete años. Un resultado similar se obtiene cuando se evalúa el cambio de inflexión en el incremento marginal en el peso respecto de la edad. Sin perjuicio de lo anterior, cabe destacar que la competencia talla-específica en las trampas limitaría la presencia de ejemplares pequeños y con ello la talla del primer grupo de edad. La talla crítica del recurso estimada en 110 mm de Lc correspondería a una edad de seis años, la cual es ligeramente inferior a la talla de primera captura en torno a los 114 mm de Lc y ligeramente superior a la TMS50%, situación que además permite concluir que la explotación respecto al aprovechamiento somático del recurso es cercana a lo óptimo, pudiéndose incluso mejorar el rendimiento si esta talla se disminuye al valor de la talla crítica. De acuerdo con Beverton & Holt (1959), la mortalidad natural y el coeficiente de crecimiento k se rela- cionan en una razón que va de 1,5 a 2,5. En el presente estudio, dicha razón fue estimada en M/k=1,88, que resulta consistente con el rango antes mencionado. La estimación de la mortalidad natural se relaciona con la longevidad y puede ser errónea si los individuos más longevos de una población virginal no están debidamente representados en los muestreos. En el análisis esto no fue problema, debido a que existe una dominancia de ejemplares de gran talla producto de la probable competencia talla-específica por acceso a las trampas (Miller & Addison, 1995), lo cual provoca además que la proporción de ejemplares de menor tamaño esté sub-representada. Teniendo como resultado las fluctuaciones que han presentado las distribuciones de frecuencias de tallas mensuales entre julio 2005 y mayo 2006, la reducción de los ejemplares de mayor tamaño respecto a lo observado los primeros meses de pesca podría ser interpretado como un probable proceso de migración tallaespecífica. Otra posible explicación estaría en la fuerte conducta territorial y dominancia de los ejemplares más grandes sobre el resto de la población (Miller, 1989; Miller & Addison, 1995). De acuerdo con ello, las primeras trampas caladas capturarían los individuos más grandes y longevos, lo que posteriormente debiera generar mayor espacio y menor competencia para los más jóvenes. Esto explicaría la reducción de la talla promedio y posiblemente el aumento de los rendimientos debido a la mayor abundanciade los ejemplares más pequeños. Si bien no se descarta el impacto de la pesca, se estima que si tales variaciones en los tamaños promedio son explicadas por las causas anteriormente mencionadas, se trataría entonces de una población muy pequeña susceptible a la sobrepesca, lo que es incompatible con los buenos rendimientos hasta ahora obtenidos. Sin embargo, dado lo reciente del conocimiento de este recurso, resulta conveniente realizar nuevos estudios que permitan recopilar más antecedentes en relación a su etología y dinámica poblacional, para evaluar y corroborar las hipótesis formuladas. Recientemente, FAO (2008) denominó al cangrejo del género Chaceon como recurso de aguas profundas, caracterizado como especie de maduración tardía, lento crecimiento, alta longevidad, baja mortalidad natural, reclutamientos intermitentes y adultos que no desovan todos los años, calificación que ya había sido dada por Elner et al. (1987) una década antes. Por su parte, Chute (2006) indica que se trata de un recurso frágil, que puede ser fácilmente sobreexplotado, y si esto ocurre es de difícil recuperación, lo que genera especial precautoriedad en cuanto a posibles incrementos en los niveles de explotación. Crecimiento, mortalidad y evaluación de Chaceon chilensis Weinberg & Keith (2003) entregan referencialmente una aproximación talla-estructurada para evaluar la población del Chaceon quinquedens en el Atlántico noroeste, lo cual exige un mayor requerimiento de información de la que se dispone. No obstante, en el análisis indirecto de la condición de explotación del cangrejo dorado se logró establecer que la población se ubicaría en torno al 82% de su condición virginal, lo cual parece conservativo y permitiría elevar la presión de pesca si se quisiera reducir la población si se desea alcanzar un objetivo del 40%. Esto significa disminuir la talla promedio de 128 mm de Lc registrado en las capturas de la temporada 2005/06 a una talla de 118 mm de Lc. Al respecto, Serchuk (1977) determinó una talla de primera captura de 114 mm de Lc sobre la base de un estimado de M = 0,2, valores que se comparan adecuadamente con los reportados en este trabajo. Para lograr la conservación de la biomasa según se propone, se genera igualmente un nivel de mortalidad similar al óptimo bio-económico dado por el criterio F0.1 de Gulland (1983). Sin embargo, en términos de costo, una reducción armónica de la población implicaría elevar significativamente el esfuerzo de pesca actualmente ejercido, y lograr un aumento en el rendimiento equivalente a tres veces el actual. La situación actual de explotación parece ser adecuada respecto de los puntos biológicos de referencia deducidos en el presente trabajo. Esto se ha debido al establecimiento local de una talla de comercialización aproximada de 114 mm de Lc, que es cercana a la talla en la cual la biomasa por recluta es máxima junto al despliegue de un bajo nivel de esfuerzo. En efecto, son dos los puntos biológicos de referencia que debieran ser considerados para generar una explotación sostenible en el tiempo: una talla de primera captura mayor o igual a la talla crítica estimada en 110 mm de Lc, y mantener una talla promedio de las capturas por sobre los 118 mm de Lc, talla que en el largo plazo corresponde a una reducción de biomasa del 40% respecto de la biomasa virgen. Mientras estos indicadores sean asegurados, la explotación de este cangrejo sería biológicamente adecuada y sostenible en el tiempo. AGRADECIMIENTOS Los autores agradecen a los Sres. Mauricio Ahumada y Pedro Apablaza la supervisión de los muestreos en terreno y a los patrones de los botes que participaron en el monitoreo de la pesquería, Sres. Pedro Chamorro, Mario Llanquín y Danilo Rodríguez. 325 REFERENCIAS Alagaraja, K. 1984. Simple methods for estimation of parameters for assessing exploited fish stocks. Indian J. Fish., 31: 177-208. Alverson, D. & M. Carney. 1975. A graphic review of growth and decay of population cohort. J. Cons. Int. Explor. Mer, 36: 133-143. Arana, P. 2000. Estimación de abundancia y biomasa del cangrejo dorado (Chaceon chilensis) en el archipiélago de Juan Fernández, Chile. Invest. Mar., Valparaíso, 28: 53-68. Arana, P., S. Palma, A. Guerrero, M. Ahumada & A. Jofré. 2006. Monitoreo biológico-pesquero de la langosta y el cangrejo dorado en el archipiélago de Juan Fernández. Inf. Final FIP 2004-49. Estad. Doc., Pont. Univ. Católica Valpo., 32: 288 pp. Arana, P. & R. Vega. 2000. Pesca experimental de cangrejo dorado (Chaceon chilensis) en el archipiélago de Juan Fernández, Chile. Invest. Mar., Valparaíso, 28: 117-133. Beverton, R.J. & S.J. Holt. 1956. A review of methods for estimating mortality rates in fish populations, with special reference to sources of bias in match sampling. Rapp. P.-V. Réun. Cons. Perm. Int. Explor. Mer, 140: 67-83. Beverton, R.J. & S.J. Holt. 1959. A review of lifespan and mortality rates of fish in nature, and their relation to growth and other physiological characteristics. In: G.E.W. Wolstenholme & M. O’Connor (eds.). The lifespan of animals. CIBA Foundation, Colloquia on Ageing, 5: 142-180. Charnov, E.L. & D. Berrigan. 1990. Dimensionless numbers and life history evolution: age of maturity versus the adult life span. Evol. Ecol., 4: 273-275. Charnov, E.L. 1993. Life history invariants. Oxford University Press, London, 167 pp. Clark, W.G. 1991. Groundfish exploitation rates based on life history parameters. Can. J. Fish. Aquat. Sci., 48: 734-750. Chute, A. 2006. Status of fishery resources off the northeastern US species synopses. Deepsea red crab (Chaceon quinquedens). NEFSC - Resource Evaluation and Assessment Division. NEFSC On-line publication. http://www.nefsc.noaa.gov/sos/spsyn/iv/redcrab. Revised: 12 Jun 2008. Elner, R.W., S. Koshio & G.V. Hurley. 1987. Mating behavior of the deep-sea red crab, Geryon quinquedens, Smith (Decapoda, Brachyura, Geryonidae). Crustaceana, 52(2): 194-201. Francis, R.I.C.C. 1993. Monte Carlo evaluation of risks for biological reference points used in New Zealand fishery assessments. Can. Spec. Publ. Fish. Aquat. Sci., 120: 221-230. 326 Lat. Am. J. Aquat. Res. Guerrero, A. & P. Arana. 2009. Size structure and sexual maturity of the golden crab (Chaceon chilensis) exploited off Robinson Crusoe Island, Chile. Lat. Am. J. Aquat. Res., 37(3): 347-360. Gulland, J.A. 1971. The fish resources of the ocean. Fishing News (Books), West Byfleet, 255 pp. Gulland, J.A. 1983. Fish stock assessment: a manual of basic method. Wiley Intercience, Chichester, U.K., FAO/Wiley Series on Food and Agriculture, 1: 223 pp. Haefner, Jr., P.A. 1978. Seasonal aspects of the biology, distribution and relative abundance of the deep-sea red crab, Geryon quinquedens Smith, in the vicinity of the Norfolk Canyon, Western North Atlantic. Proc. Natl. Shellfish. Assoc., 68: 49-62. Lux, F.E., A.R. Ganz & W.F. Rathjen. 1982. Marking studies on the red crab Geryon quinquedens Smith off southern New England. J. Shelfish Res., 2(1): 71-80. MacDonald, P.D.M. & T.J. Pitcher. 1979. Age-groups from size-frequency data: a versatile and efficient method of analyzing distribution mixtures. J. Fish. Res. Board. Can., 36: 987-1001. Mace, P.M. 1994. Relationships between common biological reference points used as thresholds and targets of fisheries management strategies. Can. J. Fish. Aquat. Sci., 51: 110-122. Martínez, G. & C. Álvarez. 2000. Factibilidad técnicoeconómica de la explotación comercial del recurso cangrejo dorado de Juan Fernández (Chaceon chilensis). Invest. Mar., Valparaíso, 28: 203-218. Miller, R.J. 1989. Catchability of American lobster and cancer crabs by traps. Can. J. Fish. Aquat. Sci., 46: 1652-1657. Received: 8 July 2008; Accepted: 2 March 2009 Miller, R.J. & J.T. Addison. 1995. Trapping interactions of crabs and American lobster in laboratory tanks. Can. J. Fish. Aquat. Sci., 52: 315-324. Melville-Smith, R. 1989. A growth for the deep-sea red crab Geryon maritae off South West Africa/Namibia (Decapoda, Brachyura). Crustaceana, 56(3): 279-292. Organización de Naciones Unidas para la Agricultura y la Alimentación (FAO). 2008. Technical consultation on international guidelines for the management of deep sea fisheries in the high seas. TC:DSF/2008/Inf. 3. Rome (Italy), 4-8 February 2008. Serchuk, F.M. 1977. Assessment of red crab (Geryon quinquedens) populations in the Northwest Atlantic. September 1977. Woods Hole Lab. Ref. Doc., 72-23: 15 pp. Sparre, P. & S.C. Venema. 1997. Introducción a la evaluación de recursos pesqueros tropicales. Parte I. Manual. FAO, Doc. Tec. Pesca, 306.1, Rev. 2: 420 pp. Taylor, C.C. 1958. Cod growth and temperature. J. Cons. Int. Explor. Mer, 23(3): 366-370. Thompson, G.G. 1993. A proposal for a threshold stock size and maximum fishing mortality rate. Can. Spec. Publ. Fish. Aquat. Sci., 120: 303-320. Van Heukelen, W., M.C. Christman, C.E. Epifanio & S.D. Sulkin. 1983. Growth of Geryon quinquedens (Brachyura: Geryonidae) juveniles in the laboratory. US Fish. Bull., 81(4): 903-905. Weinberg, J.R. & C. Keith. 2003. Population sizestructure of harvested deep-sea red crabs (Chaceon quinquedens) in the northwest Atlantic Ocean. Crustaceana, 76(7): 819-833. Lat. Am. J. Aquat. Res., 37(3): 327-346, 2009 “Deep-sea fisheries off Latin America” P. Arana, J.A.A. Perez & P.R. Pezzuto (eds.) DOI: 10.3856/vol37-issue3-fulltext-5 Brazilian deep-sea shrimp fishery Research Article The deep-sea shrimp fishery off Brazil (Decapoda: Aristeidae): development and present status Rodrigo Dallagnolo1, José Angel Alvarez Perez1, Paulo Ricardo Pezzuto1 & Roberto Wahrlich1 1 Universidade do Vale do Itajaí, Centro de Ciências Tecnológicas da Terra e do Mar Rua Uruguai 458, CEP 88.302-202, Itajaí, SC, Brazil ABSTRACT. The development of a deep-sea fishery for aristeid shrimps off Brazil is reviewed from its early days in 2002. Descriptive data were collected by observers on board 75 directed fishing trips conducted in the study period, with a total of over 15,000 monitored trawls. An incipient fishing phase took place between November 2000 and October 2002, when aristeid shrimps were occasionally reported in the bycatch of operations mostly targeting the Argentine hake (Merluccius hubbsi). After that, a directed fishery was established for these resources. All nine vessels involved in this fishery (one national and eight chartered) concentrated on 11 limited grounds between 700 and 800 m deep and 18ºS and 34ºS. The main species caught between November 2002 and May 2007 was the “carabinero” Aristaeopsis edwardsiana (456,710 kg), followed by the “moruno” Aristaeomorpha foliacea (121,497 kg), and then the “alistado” Aristeus antillensis (27,919 kg). The trawlers operate in conjunction, such that the total area of each fishing ground was swept at least twice. This harvest pattern substantially reduced “carabinero” catch rates from 14 kg hour-1 in the first sampled trimester to 4 kg hour-1 in the last. Despite the inferred biomass reduction of this species, the fishery has continued without a formal management plan. Keywords: trawl fishery, deep-water shrimps, Aristeidae, Brazil. La pesquería de gambas de profundidad en Brasil (Decapoda: Aristeidae): desarrollo y estado actual RESUMEN. Se revisa el desarrollo de una pesquería en aguas profundas dirigida a gambas aristeideas en Brasil. Desde su inicio, en 2002, los datos descriptivos fueron obtenidos por observadores a bordo de 75 viajes de pesca realizadas en ese período que resultaron en más de 15.000 arrastres monitoreados. Una fase incipiente de la pesquería se estableció entre noviembre de 2000 y octubre de 2002, cuando gambas aristeideas fueron registradas en la captura accidental de operaciones de pesca dirigidas principalmente a la merluza-argentina (Merluccius hubbsi). A ésta sobrevino una fase dirigida en que participaron nueve arrastreros (uno nacional y ocho arrendados). Estos buques concentraron sus operaciones en 11 fondos de pesca angostos entre 700 y 800 m de profundidad y los paralelos 18ºS y 34ºS. Las principales especies capturadas entre noviembre de 2002 y mayo de 2007 fueron el “carabinero” Aristaeopsis edwardsiana (456,710 kg), seguido del “moruno” Aristaeomorpha foliacea (121,497 kg), y el “alistado” Aristeus antillensis (27,919 kg). Los arrastreros operaran de forma agregada y esto hace que el área total de cada zona de pesca haya sido arrastrada al menos dos veces. Este patrón de explotación ha producido reducciones substanciales en las tasas de captura del “carabinero” que varió de 14 kg hora-1 en el primer trimestre de monitoreo a 4 kg hora-1 en el último. A pesar de la aparente reducción de biomasa de esta especie, la pesquería ha continuado sin un plan formal de manejo. Palabras clave: pesca de arrastre, gambas de aguas profundas, Aristeidae, Brasil. ________________________ Corresponding author: Rodrigo Dallagnolo (rdallagnolo@univali.br) 327 328 Lat. Am. J. Aquat. Res. INTRODUCTION The recent development of deep-water fisheries off Brazil has been strongly influenced by a foreign vessel-chartering program implemented by the Brazilian government in 1998. From 2000 onwards, large vessels operating gillnets, longlines, trawls, and traps occupied virtually unexplored areas of the continental slope and established unprecedented fishing regimes on shellfish and finfish species, including deep-sea crabs (Chaceon notialis and C. ramosae), the argentine shortfin squid (Illex argentinus), the monkfish (Lophius gastrophysus), the Argentine hake (Merluccius hubbsi), and others (Perez et al., 2003). Because these chartered operations were intensely monitored by observers and VMS (satellite vessel monitoring systems) as part of their legal obligations, a large amount of fishing and biological data was made available and used in the elaboration of preliminary stock assessments and management plans for these resources (Perez et al., 2002a, 2002b, 2003, 2005; Wahrlich et al., 2004; Perez & Wahrlich, 2005; Pezzuto et al., 2006a). As these slope fisheries intensified, principally off the southeastern and southern sectors of the Brazilian coast, new resources were recorded as bycatch components, most notably, the valuable deep-sea shrimps of the family Aristeidae. In late 2002, as productive concentrations of these resources were identified, a new directed trawl fishery began to develop, the latest and deepest since the onset of the chartering program (Pezzuto et al., 2006b; Perez et al., 2009a). This paper reviews the initial five years of the deep-sea shrimp fishery off the Brazilian coast, adding complementary new data on the early development phase (2000-2004) previously described by Perez et al. (2009a) and Pezzuto et al. (2006b). The study also characterizes the temporal and spatial trends of the fishery through the subsequent, more dynamic period (2004-2007). MATERIAL AND METHODS Fishing data were obtained from commercial operations conducted on the continental slope off the southeastern and southern sectors of the Brazilian coast, delimited by the parallels 18ºS and 34ºS and by the 200 to 1000 m isobaths (Fig. 1). This gives a surface area of 250,000 km², averaging 1,600 km in length and 150 km in width and characterized by topographic irregularities including plateaus and submarine canyons (Zembruscki, 1979). All analyzed data originated from satellite VMS and observers on board all chartered-fleet fishing operations conducted from October 2000 to May 2007. Each trawl conducted by chartered vessels within this period was described by position, date, time, and depth (m) at deployment and retrieval, as well as the trawl speed (knots), trawl duration (h), head rope length (m), mesh size at cod-end (mm), and catch composition (kg). The nationalized trawler was the only one not subjected to the VMS or obligatory observers. Logbooks were the only source of this vessel’s catch and effort information, as provided by the vessel skipper for nine fishing trips between 2005 and 2006. Catch (kg), effort (trawled hour), and catch rate (kg hour-1) variability were summarized by year and trimester, considering the different aristeid shrimp species separately. Spatial patterns of the fishing area occupation, catch, and effort were analyzed through VMS-generated individual positions during the fishing trips as well as geographic trawl positions as recorded by observers. Deployment and retrieval positions for individual trawls conducted by the entire fleet in each year were plotted on a cartographic basis and fishing sectors were delimited, following Pezzuto et al. (2006b): (a) northern, between 18º20’S and 22ºS; (b) central, between 22ºS and 26ºS; and (c) southern, between 26ºS and the southernmost limit of the Brazilian EEZ (Fig. 1). Fishing sectors were further subdivided into fishing grounds as delimited by the isobaths that enclosed 80% of the fishing trawls. Each fishing ground was referenced by a capital letter N, C, or S, according to the sector (northern, central, or southern) in which it was identified and followed by a number that increased from south to north (i.e. C1 was the southernmost fishing ground of the central fishing sector). The surface areas of fishing sectors and fishing grounds were calculated by transforming latitude and longitude coordinates into UTM and then converting these into metric units. All geometric coordinates were referenced on the basis of Datum SAD 1969 (South American Datum) and their transformations considered three UTM zones that cover southeastern and southern Brazil (UTM 22, UTM 23 and UTM 24). RESULTS Trawlers, gear, and trawling operations A total of sixteen chartered trawlers operated in the Brazilian slope waters since the year 2000. Two of them, “Joana” and “Nuevo Apenino”, recorded aristeid shrimps as bycatch components. For another Brazilian deep-sea shrimp fishery 329 Figure 1. Study area in southeastern and southern Brazil, with an emphasis on the continental slope between 200 m and 1000 m depth and the latitudinal limits of the aristeid shrimp trawling operation sectors. Abbreviations refer to major states in the study area: MG: Minas Gerais, ES: Espírito Santo, RJ: Río de Janeiro, SP: Sāo Paulo, SC: Santa Catarina, RS: Río Grande do Sul, and PR: Paraná. Figura 1. Área de estudio en el sureste y sur de Brasil con énfasis en el talud continental entre 200 y 1000 m de profundidad y límites latitudinales de los sectores de operación de la pesca de arrastre dirigida a las gambas aristeideas. Las abreviaturas se refieren a los estados en el área de estudio, MG: Minas Gerais, ES: Espírito Santo, RJ: Río de Janeiro, SP: Sāo Paulo, SC: Santa Catarina, RS: Río Grande do Sul y PR: Paraná. eight trawlers, these shrimps were the main target species. All shrimp trawlers were longer than 30 m, powered by approximately 1,000 HP engines, and capable of performing fishing trips lasting over one month (Table 1). A variety of trawl nets were employed by these vessels, most of them differing in head rope length, which ranged from 45 to 95 m, and mesh size, which ranged from 40 to 80 mm (Figs. 2a and 2b). Excluding those fishing operations where deep-sea shrimps were considered to be by-catch, a total of 75 fishing trips, around 15,000 trawls, and over 63,000 trawled hours were focused on aristeid shrimps off southeastern and southern Brazil from 2002 to 2007 (Table 1). Trawl velocity ranged between 2 and 3 knots, although faster (4.0- 4.5 knots) and slower (under 2.0 knots) trawls were also recorded (Fig. 3a). The duration of trawls was normally distributed around a mean value of 4.06 h ( ± 0.007 SE) (Fig. 3b). The product of both variables (trawl velocity and duration) allowed us to estimate that each trawl swept an average linear extension of approximately 21 km, with maximum values of 73 km (Fig. 3c). Wing spread was estimated as approximately half of the head rope length as proposed by Sparre & Venema (1997). This measure, when multiplied by the trawl length values, indicated that each trawl swept a mean surface area of 0.73 km² (Fig. 3d). However, this surface frequently surpassed 1 km² and reached 2.3 km² in extreme cases. Catch composition Altogether, these trawlers caught approximately 600 ton of deep-sea shrimps. The “carabinero” shrimp (Aristaeopsis edwardsiana) was the most abundant in the catches, followed by the “moruno” shrimp (Aristaeomorpha foliacea) and finally the “alistado” shrimp (Aristeus antillensis) (Table 2). Catches of all three species increased steadily until 2005, a trend also observed in the total effort as expressed either in number of trawls or trawled hours. In 2006, the fishing effort decreased around 26% (trawled hours) and 24% (number of trawls), coinciding with a 45% and 66% decrease in catches of “carabinero” and “alistado” shrimps and a 21% increase in “moruno” shrimp catches. Retained and commercialized bycatch were mainly the deep-sea crab Chaceon spp. (128,950 kg), the Argentine hake Merluccius hubbsi (71,426 kg), the gulf hake Urophycis cirrata (25,076 kg), the monkfish Lophius gastrophysus (20,305 kg), and the Argentine 330 Lat. Am. J. Aquat. Res. Table 1. Technical characteristics of chartered trawlers and fishing operations that reported catches of aristeid shrimps (targeted and non-targeted) off the Brazilian coast from 2000 to 2007. Total number of trips, tows, and trawled hours include only fishing trips conducted during the “targeting phase” (i.e. excluding all trips by the vessels “Joana” and “Nuevo Apenino” and fishing trips of the vessels “Mar Maria” and “Costa Grande”, which were targeting demersal fishes on the upper slope). Tabla 1. Características técnicas de los arrastreros arrendados y de las operaciones de pesca con capturas de gambas aristeideas (pescas dirigidas y no dirigidas a estas especies) en la costa de Brasil entre 2000 y 2007. El número total de viajes, arrastres y horas de arrastre incluye solamente operaciones realizadas durante la “fase dirigida” (i.e. excluye todas los viajes de los buques “Joana” y “Nuevo Apenino”, y los viajes de los buques “Mar María” y “Costa Grande” que fueron dirigidos a peces demersales del talud superior). Total length (m) GT Main engine (Hp) Trips (n) Tows (n) Trawling hours São Tomé and Príncipe 60.0 890 1.700 26/10/2000 22/01/2001 2 300 1,073.2 Nuevo Apenino Spain 33.0 308 540 17/09/2001 28/07/2002 9 932 3,474.7 Costa Grande Spain 30.0 170 800 30/10/2002 29/07/2003 5 1,029 4,092.9 TB1 Mauritania 37.3 276 1.218 20/12/2004 10/09/2005 2 195 867.5 Kayar Senegal 29.0 252 650 09/11/2004 18/09/2005 6 887 3,828.7 Lago Castiñeras Spain 36.4 354 1.200 01/10/2004 03/11/2005 5 1,200 4,904.0 Favaios Portugal 34.0 920 900 04/08/2004 26/09/2006 10 2,354 9,861.5 Nationalized Brazil 31.1 --- 870 05/09/2005 10/12/2006 9 1,521 6,003.7 Albamar Spain 38.0 325 1.350 31/08/2004 29/05/2007 16 3,587 13,852.2 Mar Maria Spain 38.4 271 1.200 28/08/2002 In operation 22 4,828 19,976.8 75 15,601 63,387.3 Vessel Origin Joana Total Operations Start End Brazilian deep-sea shrimp fishery 331 Figure 2. Distribution of the a) head rope length and b) codend mesh size used in the fishing nets for the capture of aristeid shrimps off Brazil between November 2002 and May 2007. The vessels are identified as: ALB (Albamar). CGR (Costa Grande), FAV (Favaios), KAY (Kayar), LCAST (Lago Castiñeras), MMA (Mar Maria), NOE (Noé), and TB1 (TB1). The box in the middle indicates the quartiles of the distribution and the median (horizontal line). The “whiskers” show the largest/smallest observations that fall within a distance determined to be 1.5 times the length of the box. Figura 2. Distribución de a) las dimensiones de la relinga y b) de la malla del copo de la red utilizados en las redes de arrastre para la captura de gambas aristeideas en la costa de Brasil entre noviembre de 2002 y mayo de 2007. Se identifican los buques por las abreviaciones ALB (Albamar), CGR (Costa Grande), FAV (Favaios), KAY (Kayar), LCAST (Lago Castiñeras), MMA (Mar Maria), NOE (Noé) e TB1 (TB1). La “caja” central indica los quartiles de la distribución y la mediana (línea horizontal). Las lineas “wiskers” representan las mayores/ menores observaciones dentro de un rango definido como 1,5 veces el largo de la “caja”. shortfin squid Illex argentinus (49,887 kg) (Table 2). In addition, catches included a variety of discarded shellfish and finfish species typical of the lower slope. Although a comprehensive qualitative and quantitative analysis of discards has not been completed, the preliminary identification of specimens collected by observers included bonefishes of the family Synaphobranchidae, Macrouridae, Trachichtidae, Berycidae, Astronestidae, Oreosomatidae, Ipnopidae, Alocephalidae, Ophidiidae, and others. Invertebrates have also been frequently reported and collected, including deep-sea corals such as Flabellum cf. alabastrum (Pires, 2007). (366.9 m ± 6.3 SE) and targeting mainly monkfish and hake concentrations (Fig. 4c) conducted exploratory trawls in areas deeper than 500 m on two occasions, resulting in new catches (177.3 kg) of aristeid shrimps, particularly in the vicinity of the 700 m isobath (Fig. 4d, Table 3). Also in 2002, the trawler “Nuevo Apenino”, fishing for hake off the coasts of São Paulo and Rio de Janeiro states (Fig. 4e), conducted 27 trawls in areas deeper than 500 m; most of these produced positive catches of “carabinero” shrimps (Fig. 4f). These were the largest catches recorded during the early development phase (676.67 kg) and also the highest catch rates reported until then (8.9 kg hour-1 ± 2.5 SE) (Table 3). Fishery history Further concentrations of “carabinero” and “alistado” shrimps were also found in exploratory fishing conducted by the trawler “Mar Maria” in the northern sector of the Brazilian coast, off the coasts of the states of Amapá and Pará, between 1°-6°N and 45°51°W (Asano-Filho et al., 2005; Pezzuto et al., 2006b; Perez et al., 2009a) (Table 3). Whereas all aristeid shrimp catches reported above were minor components of the total catches, they were profitable enough to stimulate a new fishing phase, the deepest The Portuguese vessel “Joana” was the first trawler to operate under the chartering program and reported the first catches of “alistado” shrimps in nine out of 300 trawls conducted in late 2000 – early 2001 (Figs. 4a and 4b). One of them at occurred at 32°S (300 m depth; 2.1 kg) and the others were recorded off the coast of the states of São Paulo and Rio de Janeiro at 23°S (384-460 m depth; 18.9 kg) (Table 3). In 2002, the trawler “Costa Grande” operating on slope areas 332 Lat. Am. J. Aquat. Res. Figure 3. Fishing strategies adopted by the chartered trawlers for the aristeid shrimp fishery off Brazil between November 2002 and May 2007. Figura 3. Estrategias de pesca empleadas por los arrastreros arrendados en la pesca de gambas aristeideas en la costa de Brasil entre noviembre de 2002 y mayo de 2008. ever recorded in the country (Pezzuto et al., 2006b; Perez et al., 2009b). Thus, the chartered trawlers “Costa Grande” and “Mar Maria” pioneered the fishery, targeting aristeid shrimps in 2003 with lower slope trawling operations (Fig. 5). In the following year, as the former vessels abandoned Brazilian waters, five new trawlers entered the fishery under the chartering program composing, in 2003 and 2005, the largest fleet operating simultaneously on these slope areas. In 2006, this fleet was reduced to four units, including a new nationalized vessel. In 2007, only the latter vessel and “Mar Maria” maintained their operations on aristeid shrimps of Brazil (Fig. 5). Until the end of 2004, the central (22-26ºS) sector concentrated all the fishing effort. In 2005, the new vessels “Favaios”, “Albamar”, “Lago Castiñeras”, and “Kayar” started to fish in the northern (north of 22ºS) and southern (south of 26ºS) sectors, thereby expanding the fishery to the entire latitudinal extension of the slope off southeastern and southern Brazilian (Fig. 5). The “carabinero” shrimp dominated the catches in all fishing sectors and was particularly abundant in the central sector and virtually the only species caught in the southern sector. The “moruno” shrimp, which is the second species in terms of total catches, was caught predominantly in the central sector, although catches in 2005 were considerably higher in the northern sector. The “alistado” shrimp was caught most abundantly in the northern sector throughout the entire fishing period (Table 4). The fishing effort was particularly concentrated in the central sector, peaking in 2005 with 2,911 trawls and 11,844 trawled hours exerted on this sector. In 2007, the effort tended to be evenly distributed throughout the entire fishing area. 333 Brazilian deep-sea shrimp fishery Table 2. Annual fishing effort and catches (kg) of aristeid shrimp and the retained bycatch species off Brazil between 2002 and 2007. Data from 2007 are partial and include only the first semester. Tabla 2. Esfuerzo anual de pesca y capturas (kg) de gambas aristeideas y especies de la captura accesoria en la costa de Brasil entre 2002 y 2007. Datos de 2007 son parciales e incluyen solamente el primer semestre. Number of Aristaeopsis Aristaeomorpha Aristeus tows edwardsiana foliacea antillensis Chaceon spp. Meluccius hubbsi Illex argentinus 0.0 4,584.0 35,001.5 40.0 1,786.1 5,448.0 64,680.0 4,585.4 474.9 23,380.0 23,808.9 7,837.0 1,813.6 14,292.2 143,686.8 81,585.1 14,861.4 5,489.1 30,322.0 4,090.8 0.0 2,742.3 225.0 139,901.7 6,120 182,632.9 42,568.2 15,828.4 48,437.8 3,448.0 2,910.0 10,842.0 72.0 308,841.3 18,372.3 4,608 99,325.3 51,756.4 5,365.4 18,056.5 4,735.0 39,100.0 7,267.0 340.0 226,730.1 2007 3,193.8 856 19,865.0 7,426.0 762.0 4,170.0 342.0 0.0 626.0 0.0 33,491.0 Total 63,367.3 15,601 455,357.8 121,497.4 27,919.8 128,950.3 71,426.2 49,887.0 25,077.0 20,305.21 917,258.9 Year Trawling hours 2002 935 238 13,021.0 0.0 2003 6,183.4 1,503 58,928.5 2004 9,737.3 2,276 2005 24,945.6 2006 Lophius Total catch Urophycis cirrata gastrophysus (kg) 334 Lat. Am. J. Aquat. Res. Figure 4. Geographic position of all fishing tows (left column) and of the fishing tows with incidental catches of aristeid shrimp fishery (right column) conducted by the vessels Joana (a and b), Costa Grande (c and d) and Nuevo Apenino (e and f). Figura 4. Posición geográfica de todos los lances de pesca (columna de la izquierda) y de los lances de pesca con capturas incidentales de gambas aristeideas (columna de la derecha) realizados por los buques Joana, (a y b) Costa Grande (c y d) y Nuevo Apenino (e y f). 335 Brazilian deep-sea shrimp fishery Table 3. Summary of aristeid shrimp bycatch off Brazil between 2000 and 2002. Tabla 3. Resumen de las capturas accesorias de gambas aristeideas en la costa de Brasil entre 2000 y 2002. Vessel (trips) Fishing trip start Aristaeopsis edwardsiana (kg) Aristaeomorpha foliacea (kg) Total catch (kg) Joana (1) 26/10/2000 --- 2.1 143,815.0 Joana (2) 16/12/2000 --- 18.9 168,136.1 Costa Grande (1) 04/04/2002 166.7 --- 297,838.9 Costa Grande (2) 17/05/2002 10.6 120.0 76,761.4 Nuevo Apenino (9) 15/06/2002 676.7 --- 85,347.1 Mar Maria (1) 23/08/2002 498.5 207.6 51,427.8 Fishing grounds and intensity In all fishing sectors, the trawls tended to concentrate on a narrow bathymetric stratum between 700 and 750 m depth (Fig. 6). An analysis of the distribution of fishing trawls on a finer spatial resolution allowed the definition of particular fishing grounds within the defined sectors where fishing activity was intense. The central sector enclosed four localized fishing grounds intensely exploited since 2002 (Fig. 7a). The first trawling operations targeting “carabinero” shrimp concentrations occupied a northern fishing ground (C3). In the following year, the fishing area extended southwards, promoting the occupation of fishing grounds C1 and C2. By 2005, the last fishing ground (C4) was established in the northern extreme of this sector (Fig. 7a). The exploitation of the northern sector began in 2004 and was concentrated in two well-defined fishing grounds (N2 and N4) (Fig. 7b). In the following year, a small fishing ground was established on the western side of the Besnard seamount, a component of the “Vitória-Trindade” chain (N3). In 2006-2007, a last fishing ground began to be exploited at the southern extreme of this sector (N1) (Fig. 7b). Three fishing grounds were exploited within the southern sector between 2005 and 2007 (S1, S2, S3) (Fig. 7c); a major submarine canyon separates S1 and S2. The surface area of all the fishing grounds was limited, ranging between 125 km² and 1,227 km² (Table 5). In the central sector, the largest fishing grounds, C2 and C3, were trawled for almost 30,000 hours in total, accumulating nearly 45% of all fishing effort. The entire surface area of the fishing grounds C1, C2, and C3 was swept approximately two times. C4, the last ground to be fished by the trawl fleet, was swept 1.5 times over nearly one year of exploration (Fig. 8a). Most of the trawling efforts in the northern sector were concentrated in grounds N2 and N3 (Table 5). These grounds and N4 were fully swept at least 2.5 times, whereas N1 was swept 1.5 times. In the case of N3, which only began to be explored after mid-2005, the activity was much more intense than in the other grounds; in only six months, its surface area had been completely swept twice (Fig. 8b). In the southern sector, grounds S1 and S3 concentrated most of the trawling effort (Table 5) and had their entire surface areas swept once (Fig. 8c). Nevertheless, these grounds were less trawled than those of the central and northern sectors. The largest catches of “carabinero” shrimps were recorded in fishing grounds C2 and C3. The largest catches of “moruno” shrimp originated from fishing grounds C3, C4, and N1. The largest catches of “alistado” shrimp were obtained in fishing grounds N2 and N4. In the central sector, the “carabinero” shrimp dominated the trawlers’ catch except for the fishing ground C4, where “moruno” shrimp catches surpassed those of all other species (Table 5). However, an increasing proportion of the latter species was noticeable in the catches of 2006, particularly in fishing grounds C1, C2, and C3, as the proportion of “carabinero” shrimp declined (Fig. 9). In the northern sector, this trend was not observed with the same clarity (Fig. 10). The proportion of shrimp species in the catches from fishing ground N1 remained stable, whereas the proportion of shrimp species alternated in the catches from fishing grounds N2, N3, and N4 (Fig. 10). Catch rate The “carabinero” shrimp sustained the highest mean catch (14 to 4.7 kg hour-1) rates throughout the 336 Lat. Am. J. Aquat. Res. Figure 5. Daily fishing tows for the aristeid shrimp fishery off southeastern and southern Brazil. The first fishing day was 30 October 2002 and the last (1,673th) was 29 May 2007. Months and years are depicted over the x-axis. Each graph represents fishing operations of individual vessels denoted as: “Costa Grande” (CGR), “Mar Maria” (MMA), “Favaios” (FAV), “Albamar” (ALB), “Lago Castiñeras” (LCAST), “Kayar” (KAY), “TB1” (TB1), and Nationalized Vessel (NV). Figura 5. Lances de arrastre diarios realizados para la captura de las gambas aristeideas en el sureste y sur de Brasil. El primer día de pesca fue el 30 de octubre de 2002. El último día (1.673) fue el 29 de mayo de 2007. Meses y años están representados sobre el eje x. Cada gráfico representa las operaciones de buques individualizados denotados como: “Costa Grande” (CGR). “Mar Maria” (MMA). “Favaios” (FAV). “Albamar” (ALB). “Lago Castiñeras” (LCAST). “Kayar” (KAY). “TB1” (TB1) y Barcos nacionalizados (NV). 337 Brazilian deep-sea shrimp fishery Table 4. Geographic distribution of the fishing effort and catches of aristeid shrimps off Brazil between November 2002 and May 2007. Number of tows (tows); trawling hours (trawl); and catches of Aristaeopsis edwardsiana, Aristaeomorpha foliacea and Aristeus antillensis. Tabla 4. Distribución geográfica del esfuerzo pesquero y capturas de gambas aristeideas en la costa de Brasil entre noviembre de 2002 y mayo de 2007. Número de arrastres (tows); horas de arrastre (trawl); capturas de Aristaeopsis edwardsiana, Aristaeomorpha foliacea y Aristeus antillensis. Year Operation sector 2002 2003 2004 2005 2006 2007 Total 521 2,141.2 21,317.9 5,114.6 1,652.1 2,163 8,957.7 58,300.0 15,036.1 27,191.0 869 3,126.4 19,177.9 2,030.8 19,151.3 290 907.3 6,413.0 756.0 4,552.0 3,843 15,132.6 105,208.9 22,937.5 52,546.5 1,750 7,577.6 60,267.2 374.5 13,209.2 2,901 11,844.5 89,685.9 775.9 15,316.6 2,200 9,215.4 43,300.2 3,306.6 32,178.1 274 1,081.8 5,847.0 6.0 3,134.0 8,806 36,658.9 270,678.7 4,937.9 68,423.3 1,047 4,105.9 34,637.7 8.2 60.5 1,376 5,503.8 34,141.6 26.0 121.0 292 1,204.7 7,605.0 0.0 40.0 2,728 10,862.4 76,711.5 34.2 221.5 Northern tows (n) trawl (h) Aristaeopsis edwardsiana (kg) Aristeus antillensis (kg) Aristaeomorpha foliacea (kg) Central tows (n) trawl (h) Aristaeopsis edwardsiana (kg) Aristeus antillensis (kg) Aristaeomorpha foliacea (kg) Southern tows (n) trawl (h) Aristaeopsis edwardsiana (kg) Aristeus antillensis (kg) Aristaeomorpha foliacea (kg) 13 48 327.1 0.0 0.0 tows (n) Northward trawl (h) of Aristaeopsis edwardsiana (kg) 18º 20’S Aristeus antillensis (kg) Aristaeomorpha foliacea (kg) 47 130.8 44.0 0.0 0.0 5 18.5 0.0 0.0 0.0 9 37.5 9.2 8.2 0.0 163 526.6 2,705.6 2.0 306.0 1,503 6,183.4 58,928.5 474.9 4,585.4 2,276 9,737.3 81,585.1 5,489.1 14,861.4 6,120 24,945.6 182,632.9 15,828.4 42,568.2 4,608 18,372.3 99,325.3 5,365.4 51,756.4 Total tows (n) trawl (h) Aristaeopsis edwardsiana (kg) Aristeus antillensis (kg) Aristaeomorpha foliacea (kg) 238 935 13,021 0.0 0.0 238 935 13,021 0.0 0.0 1,443 6,004.6 58,557.4 474.9 4,585.4 entire period (2004-2007) (Fig. 11). These rates tended to decline locally and were generally higher as the different fishing sectors were exploited for the first time (Table 6). Annually, mean catch rates declined steadily in all fishing sectors. In the central sector, mean catch rates decreased 61% between 2002 and 2007. The same was observed in the northern sector, where mean catch rates declined 36% from 2004 to 2006, increasing slightly in 2007. In the southern sector, catch rates dropped 26% in the first year of exploitation (20052006), stabilizing in 2007. “Carabinero” shrimp catch rates also exhibited seasonal variations, peaking every year in the fourth trimester. This pattern has been 224 713.4 2,758.8 10.2 306.0 856 3,193.8 19,865.0 762.0 7,726.0 15,601 63,367.3 455,357.9 27,919.8 121,497.3 consistently observed in the central and southern sectors and is less pronounced in the northern sector. The catch rates for “moruno” shrimp were generally lower than those of the “carabinero” shrimp (6.3 to 0.76 kg hour-1) (Fig. 12). The annual variation of the former, however, exhibited a contrasting pattern in relation to the latter species i.e., it tended to increase in the last years of deep-sea shrimp exploration. In the central and northern sectors, the catch rates increased 327% and 835% from 2002 to 2006 (Table 6). In 2006, the “moruno” shrimp catch rates were comparable with those of the “carabinero” shrimp, unlike the early fishery, when the latter species was significantly more productive. Within-year catch rate variations 338 Lat. Am. J. Aquat. Res. Figure 6. Distribution of individual tow depths in operations targeting aristeid shrimps off Brazil by latitudinal sector between November 2002 and May 2007. The box in the middle indicates quartiles of the distribution and the median (horizontal line). The “whiskers” show the largest/smallest observations that fall within a distance determined to be 1.5 times the length of the box. Observations falling outside the referred limits are shown separately as individual dots. Figura 6. Distribución de las profundidades de los lances de pesca dirigidos a la captura de las gambas aristeideas por sector latitudinal en la costa de Brasil entre noviembre de 2002 y mayo de 2007. La “caja” central indica los quartiles de la distribución y la mediana (línea horizontal). Las líneas “whiskers” representan las menores/mayores observaciones dentro de un rango definido como 1,5 veces el largo de la “caja”. Observaciones fuera de los límites referidos son representadas por separado como puntos individuales. were clearly distinguished in the northern sector, with peaks in the fourth trimester. In the central sector, seasonal variations were not as clearly defined, although lower catch rates were generally obtained for each year in the first trimester. Catch rates of the “alistado” shrimp were, on average, the lowest among deep-sea shrimps (2.4 to 0.005 kg hour-1) (Fig. 13). In the northern sector, however, the contribution of this species to the total aristeid shrimp catch was significantly higher than in the central sector, where it never surpassed 1.0 kg hour-1 (Table 6). In the northern sector, catch rates decreased around 65% between 2004 and 2007. In contrast with the other deep-sea shrimps exploited off Brazil, no within-year cyclic variation could be distinguished for the catch rate of “alistado” shrimps. Figure 7. Fishing grounds on the middle slope of the a) central, b) north, and c) south sectors used by the chartered trawlers for the aristeid shrimp fishery off Brazil. Figura 7. Áreas de pesca en el talud central de los sectores a) central, b) norte y c) sur utilizados por los arrastreros fletados en la captura de gambas aristeideas en la costa de Brasil. DISCUSSION The descriptive analysis of the first five years of deepsea shrimp exploration off Brazil revealed general patterns closely resembling aristeid fisheries elsewhere in the world. In French Guiana, the main fishing grounds are located between 400 and 900 m deep and most catches occur in the second half of the year in the vicinity of the 700 m isobath (Guéguen, 2000). Trawl surveys conducted in that area in 1990 obtained shrimp catch rates ranging between 13.2 and 40.6 kg hour-1 (“carabinero”) and 0.09 and 0.74 kg hour-1 (“alistado”) (Guéguen, 1998, 2000, 2001). In the Mediterranean Sea, the “gambero rosso” (Aristaeomorpha foliacea), known as “moruno” in Brazil, and “gamba rosada” (Aristeus antennatus), a species similar to the Brazilian “alistado” (Aristeus antillensis), have been reported to concentrate at 700 m depth close to the borders of submarine canyons. Seasonal fluctuations Brazilian deep-sea shrimp fishery 339 in abundance have also been observed for both species; “gambero rosso” and “gamba rosada” are more productive in summer and winter-spring, respectively (Sardá, 2000). The highest catch rates of the “gambero rosso” shrimp were obtained off the coast of Algeria (around 12 kg hour-1), whereas “gamba rosada” shrimps were more productive on the coast of Tunisia (around 15 kg hour-1) (Sardà, 2000). In other regions of the Mediterranean, catch rates have been considerably lower. In the NW Mediterranean, for example, a “gambero rosso” shrimp fishery was sustained for ten years (1991-2001) with catch rates oscillating between 4.55 kg hour-1 and 7.54 kg hour-1 (Carbonell & Azevedo, 2003). Off Brazil, deepsea shrimp operations also concentrated around the 700 m isobath and catches included the “gambero rosso” exploited in the Mediterranean as well as the “alistado” (Aristeus antillensis) and “carabinero” (Aristaeopsis edwardsiana) shrimps also exploited off French Guiana. At least the “carabinero” and “moruno” shrimps showed seasonal concentrations in the main fishing areas and catch rates for all species ranged between 4.0 and 14.0 kg hour-1, within the ranges reported for the aristeid fisheries above. Interestingly, scientific surveys conducted in 2004 in the northern extreme of the study area (northern sector) lead to the conclusion that these shrimps could not sustain economic exploitation on the basis of very similar catch rate levels obtained in most samplings (Costa et al., 2005). Whereas these levels are indeed remarkably lower than those generally sustained by coastal shrimps, the high market prices of aristeid shrimps allow a profitable commercial exploitation even in the long-term (more than 10 years) such as that observed in the Mediterranean fisheries (Carbonell & Azevedo, 2003). Figure 8. Cumulative curves of the area swept daily by the aristeid shrimp trawl fishery off Brazil. Values were weighted by the surface of each fishing ground within the latitudinal sectors a) south, b) central, and c) north. Vertical lines delimit the years of exploitation. Figura 8. Curvas cumulativas de las áreas barridas diariamente por la pesca de arrastre dirigida a las gambas aristeideas en la costa de Brasil. Los valores fueron ponderados por la superficie de cada área de pesca dentro de los sectores latitudinales sur (a), central (b) y norte (c). Las líneas verticales delimitan los años de explotación. Another similar pattern found between the Brazilian aristeid shrimp fishery and those sustained elsewhere in the world is the alternation of dominant species on the fishing grounds. Off the Brazilian slope, catches were generally dominated by the “carabinero” shrimp. As catch rates of this species decreased, possibly as a consequence of heavy fishing, other species, usually the “moruno”, tended to exhibit higher proportions and to replace the “carabinero” in the catches. In the Gulf of Lion (Mediterranean Sea), the same scenario was observed on fishing grounds where the disappearance of “moruno” shrimp resulted in the increase of “alistado” shrimp in catches (Campillo, 1994 fide Cau et al., 2002), although ecological aspects related to this pattern are unclear. But it is possible that the species composition in the catches reflects the natural dominance pattern of the three species in the depth stratum exploited by the trawlers, which, in turn, 340 Lat. Am. J. Aquat. Res. Table 5. Catches, fishing effort, and surface areas of the fishing grounds explored by the chartered trawlers targeting aristeid shrimps off Brazil between November 2002 and May 2007. NA: tows conducted outside the fishing grounds and north of 18º20’S. Tabla 5. Capturas, esfuerzo de pesca y área de los fondos de pesca explotados por arrastreros arrendados para la pesca de gambas aristeideas en la costa de Brasil entre noviembre 2002 y mayo 2007. NA: arrastres realizados fuera de los fondos de pesca y al norte de 18º20’S. Fishing grounds Area (km²) Tows (total number) Trawling hours A. edwardsiana (kg) A. foliacea (kg) A. antillensis (kg) S1 766.808 1,383 5,701.7 41,858.9 61.2 24.7 S2 158.873 231 766.8 5,425.8 26.6 3.5 S3 496.853 1,096 4,334.2 29,324.8 133.8 6.0 C1 349.259 1,323 5,069.7 38,974.2 1,981.9 124.0 C2 1,226.655 3,811 16,207.4 124,660.1 16,472.1 1,297.5 C3 1,040.714 2,988 12,493.1 100,077.5 27,582.7 2,819.0 C4 202.300 404 1,794.7 6,822.8 22,386.6 697.4 N1 341.585 800 2,727.2 16,274.1 25,380.5 2,155.8 N2 463.798 1,682 6,769.7 47,427.7 9,308.8 9,413.2 N3 252.857 929 4,041.4 32,076.9 15,360.3 237.8 N4 124.521 412 1,538.1 9,090.4 2,481.3 11,098.5 NA 542 1,923.0 3,344.7 321.7 42.4 Total 15,601 63,367.1 455,357.8 121,497.4 27,919.8 Table 6. Annual mean yields (kg hour-1) of Aristaeopsis edwardsiana, Aristaeomorpha foliacea, and Aristeus antillensis obtained by chartered trawlers within each latitudinal sector. Standard errors are given between brackets. Tabla 6. Rendimientos anuales (kg hora-1) de Aristaeopsis edwardsiana, Aristaeomorpha foliacea y Aristeus antillensis obtenidos por arrastreros arrendados dentro de los sectores latitudinales. Valores del error estándard entre paréntesis. Aristaeopsis edwardsiana Aristaeomorpha foliacea Aristeus antillensis Year Central (kg hour-1) Northern (kg hour-1) Southern (kg hour-1) 2002 14.026 ( ± 0.830) --- --- 2003 9.380 ( ± 0.164) --- --- 0.774 ( ± 0.065) --- 0.082 ( ± 0.006) --- 2004 8.130 ( ± 0.116) 9.750 ( ± 0.257) --- 1.743 ( ± 0.088) 0.760 ( ± 0.053) 0.051 ( ± 0.004) 2.386 ( ± 0.193) 2005 7.686 ( ± 0.081) 6.468 ( ± 0.087) 8.492 ( ± 0.122) 1.264 ( ± 0.070) 3.084 ( ± 0.127) 0.062 ( ± 0.005) 1.757 ( ± 0.081) 2006 4.705 ( ± 0.055) 6.221 ( ± 0.123) 6.234 ( ± 0.090) 3.269 ( ± 0.180) 6.351 ( ± 0.270) 0.344 ( ± 0.034) 0.703 ( ± 0.055) 2007 5.380 ( ± 0.140) 7.076 ( ± 0.211) 6.362 ( ± 0.139) 3.046 ( ± 0.275) 5.088 ( ± 0.489) 0.005 ( ± 0.003) 0.825 ( ± 0.080) Central (kg hour-1) 0.000 Northern (kg hour-1) --- Central (kg hour-1) 0.000 Northern (kg hour-1) --- Brazilian deep-sea shrimp fishery Figure 9. Relative composition of the three species of aristeid shrimps in annual catches obtained by operations in the fishing grounds of the central sector, southeastern Brazil. Data from 2007 refer to the first semester only. Figura 9. Composición relativa de las tres especies de gambas aristeideas en las capturas anuales obtenidas en las áreas de pesca del sector central, sureste de Brasil. Datos de 2007 se refieren al primer semestre. 341 Figure 10. Relative composition of the three species of aristeid shrimps in annual catches obtained by operations in the fishing grounds of the north sector, southeastern Brazil. Data from 2007 refer to the first semester only. Figura 10. Composición relativa de las tres especies de gambas aristeideas en las capturas anuales obtenidas en las áreas de pesca del sector norte, sureste de Brasil. Datos de 2007 se refieren al primer semestre. Figure 11. Mean yields (kg hour-1) and standard errors (vertical bars) of Aristaeopsis edwardsiana for each quarter of the trawl fishery off Brazil in the a) central sector, b) north sector, and c) south sector. Figura 11. Rendimientos medios (kg hora-1) y error patrón (líneas verticales) de Aristaeopsis edwardsiana en cada trimestre de la pesquería de arrastre en la costra de Brasil. a) sector central, b) sector norte y c) sector sur. 342 Lat. Am. J. Aquat. Res. Figure 12. Mean yields (kg hour-1) and standard errors (vertical bars) of Aristaeomorpha foliacea for each quarter of fishery off Brazil in the a) central sector and b) north sector. Figura 12. Rendimientos medios (kg hora-1) y error patrón (líneas verticales) de Aristaeomorpha foliacea en cada trimestre de la pesquería de arrastre en la costa de Brasil. a) sector central y b) sector norte. Figure 13. Mean yields (kg hour-1) and standard errors (vertical bars) of Aristeus antillensis for each quarter of fishery off Brazil in the a) central sector and b) north sector. Figura 13. Rendimientos medios (kg hora-1) y error patrón (líneas verticales) de Aristeus antillensis en cada trimestre de la pesquería de arrastre en la costa de Brasil. a) sector central y b) sector norte. may be part of the potential outcome of a competition process in the slope areas. In this process, “carabinero” shrimps might have naturally predominated the fishing areas of Brazil, whereas “moruno” and “alistado” shrimps may have been limited to deeper or adjacent areas not exploited by the fishery. Because the “carabinero” attains larger sizes and matures later in life, the species may be better fit for survival and out-compete the others within the 700-800 m stratum. Fishing first removes the highly vulnerable “carabinero” shrimp, opening space on the fishing grounds for smaller and possibly faster-growing “moruno” to expand their distribution. Studies conducted by Pezzuto & Dias (2007) revealed that the “moruno” shrimp has a continuous, year-round reproductive pattern, whereas the “carabinero” shrimp has defined, seasonal reproductive activity. Such distinct reproductive strategies may also provide evidence to support a possible dominance oscillation. Although mostly hypothetical at this point, such an interpretation is partially supported by the results of trawling surveys conducted in the northern sector of the study area (Serejo et al., 2007), revealing discrete bathymetrically-defined crustacean assemblages on the slope. Aristeid shrimps, which occur in areas as deep as 1,800 m, seem to con centrate in the rather narrow 500-700 m depth stratum, as also reported in other areas of the world (Cartes & Sardà, 1992). Despite the biological and ecological similarities of these resources, fishery regimes have usually been established following different structural and motivational processes, including: a) Long-term fisheries normally developed in combination with the seasonal availability of other demersal resources. In French Guiana, an aristeid fishery has been carried out for 20 years by a local fleet of small trawlers as a seasonal alternative to their main target, the coastal penaeid shrimp Farfantepenaeus subtilis. Catches are concentrated between June and November, when the abundance of F. subtilis decreases on the shelf areas and that of the “carabinero” increases on the middle and lower slope (Guéguen, 1998). In the Mediterranean Sea, this fishery has existed for more than 60 years, conducted by regional fleets of trawlers generally smaller than those operating under the chartering program in Brazilian waters. Mediterranean trawlers concentrate on aristeid shrimp as long as their density is sustained over profitable 343 Brazilian deep-sea shrimp fishery levels, switching to other valuable resources otherwise (Maynou et al., 2003; Company et al., 2008). b) Opportunistic exploitation as valuable bycatch components of multispecies trawling operations. In Portugal, small catches of aristeid shrimps are part of a multi-specific, crustacean slope fishery (Monteiro et al., 2001). Only in recent years has a directed fishery for aristeid shrimp been proposed due to its high market value and the overexploitation of traditional resources (Figueiredo et al., 2001). c) Planned activities considering previously assessed local fishing potential. In Indonesian waters, a directed fishery for aristeid shrimp and other crustaceans only developed after stock assessment allowed for the definition of effort limits and maximum annual caches (Suman et al., 2006). On fishing grounds of the Ionian Sea, virginal populations of aristeid shrimps were intensely studied in order to subsidize the development of a directed fishery under precautionary effort limitations (Papaconstantinou & Kapiris, 2001, 2003). None of the processes above can be directly related to the development of the Brazilian fishery for aristeid shrimps. In this case, the activity was induced by fishing authorities as a way of obtaining knowledge on stock distribution and availability, fishing and processing technology, and market opportunities (Perez et al., 2003). This process, however, was not ruled by precaution or a previous delimitation of the stock potentiality but was mostly profit-oriented, fast, uncontrolled, and disorganized. Since its early days, an excessive number of large vessels were allowed to concentrate in very limited areas of the central slope, and the most productive grounds were fully swept (once to twice) in a very short time. The exploration of new sectors of the Brazilian slope were only initiated as catch rates of the “carabinero” shrimp dropped below profitable levels in the central sector. Such exploration, however, followed the same “clean-up” strategy and produced similar local density reductions in the northern and southern slope sectors. Pezzuto et al. (2006b) analyzed this fishery between October 2002 and August 2004, warning about the negative consequences of the kind of fishing regime promoted by the chartered fleet. They concluded that operating large chartered trawlers in very restricted areas of the slope was only justifiable as long as it complemented existing information on deep-sea shrimp concentrations with data from still unexplored areas. In that sense, the interruption of the entry of new vessels into the fishery was recommended, along with the establishment of a rotating harvesting strategy that would allow the effort to spread along the Brazilian EEZ. As demonstrated, however, the deep-sea shrimp fishery developed off Brazil after 2004 regardless of these recommendations. In 2007, only two vessels were operating, a natural consequence of the major reduction of catch rates verified in most exploited fishing areas. Although producing timely estimates for a valuable and sustainable fishery development, this process rendered a biologically unsafe and unsustainable scenario and proved to be a dangerous strategy, particularly when directed at fragile deep-sea resources. Whereas the fishing regime established for the aristeid shrimps off Brazil seems to be clearly incompatible with sustained activity, its continuity under any of the patterns described elsewhere in the world will depend on severe restrictions to the total effort and a complete plan for biomass restoration on most productive grounds. ACKNOWLEDGEMENTS The authors are thankful to the Brazilian Government (SEAP/PR/001/2003; SEAP/PR/078/2004; SEAP/PR/ 064/2005; SEAP/PR/027/2007), the team of fisheries observers, and the staff of “Grupo de Estudos Pesqueiros” for making available information indispensable to this study. REFERENCES Asano-Filho, M., F.C.A.F. Holanda, F.J.S. Santos & T.S.C. Júnior. 2005. Recursos pesqueiros de grandes profundidades na costa norte do Brasil. IBAMA, Brasília, 81 pp. Carbonell, A. & M. Azevedo. 2003. Application of nonequilibrium production models to the red shrimp (Aristeus antennatus Risso, 1816) fishery in the northwestern Mediterranean. Fish. Res., 65: 323-334. Cartes, J.E. & F. Sardà. 1992. Abundance and diversity of decapods crustaceans in the deep-Catalan Sea (western Mediterranean). J. Nat. Hist., 26: 13051323. Cau, A., A. Carbonell, M.C. Follessa, A. Mannini, G. Norrito, L. Orsi-Relini, C.Y. Politou, S. Ragonese & P. Rinelli. 2002. MEDITS-based information on the deep-water red shrimps Aristaeomorpha foliacea and Aristeus antennatus (Crustacea: Decapoda: Aristeidae). Sci. Mar., 66(2): 103-124. Company, J.B., P. Puig, F. Sardà, A. Palanques, M. Latasa & R. Scharek. 2008. Climate influence on deep sea populations. PLoS ONE, 3(1): e1431. doi:10.1371/journal.pone.0001431. Costa, P.A.S., A.S. Martins, G. Olavo, M. Haimovici & A.C. Braga. 2005. Pesca exploratória com arrasto de 344 Lat. Am. J. Aquat. Res. fundo no talude continental da região central da costa brasileira entre Salvador-BA e o Cabo de São ToméRJ. In: P.A.S Costa & G. Olavo (eds.). Pesca e potenciais de exploração de recursos vivos na região central da Zona Econômica Exclusiva brasileira. Museu Nacional, Rio de Janeiro, pp. 45-165. Figueiredo, M.J., I. Figueiredo & P. Machado. 2001. Deep-water shrimps (Crustacea: Decapoda) from off the Portuguese continental slope: an alternative future resource? Fish. Res., 51: 321-326. Guéguen, F. 1998. Biologie de la crevette profonde Plesiopenaeus edwardsianus en Guyane française. Life Sci., 321: 757-770. Guéguen, F. 2000. Distribution et abondance des crustacés decapods du talus continental (200-900 m) de Guyane française. Crustaceana, 73(6): 685-703. Guéguen, F. 2001. Notes sur la biologie de la crevette de profondeur Aristeus antillensis en Guyane française. Life Sci., 324: 689-700. Maynou, F., M. Demestre & P. Sánchez. 2003. Analyses of catch per unit effort by multivariate analysis and generalized liner models for deep-water crustacean fisheries off Barcelon (NW Mediterranean). Fish. Res., 65: 257-269. Monteiro, P., A. Araújo, K. Erzini & M. Castro. 2001. Discards of the Algarve (southern Portugal) crustacean trawl fishery. Hydrobiologia, 449: 267-277. Papaconstantinou, C. & K. Kapiris. 2001. Distribution and population structure of the red shrimp (Aristeus antennatus) on an unexploited fishing ground in the Greek Ionian Sea. Aquat. Living Resour., 14: 303312. Papaconstantinou, C. & K. Kapiris. 2003. The biology of the red shrimp (Aristaeomorpha foliacea) at an unexploited fishing ground in the Greek Ionian Sea. Fish. Res., 62: 37-51. Perez, J.A.A. & R. Wahrlich. 2005. A bycatch assessment of the gillnet monkfish Lophius gastrophysus fishery off southern Brazil. Fish. Res., 72: 81-95. Perez, J.A.A., P.R. Pezzuto & H.A. Andrade. 2005. Biomass assessment of the monkfish Lophius gastrophysus stock exploited by a new deep-water fishery in southern Brazil. Fish. Res., 72: 149-162. Perez, J.A.A., R. Wahrlich & P.R. Pezzuto (2009a). Chartered trawling on slope areas off Brazil. Mar. Fish. Rev., 71(2): 24-36. Perez, J.A.A., P.R. Pezzuto, R. Wahrlich & A.L.S. Soares. (2009b). Deep-water fisheries in Brazil: history, status and perspectives. Lat. Am. J. Aquat. Res., 37(3): 513-541. Perez, J.A.A., R. Wahrlich, P.R. Pezzuto & F.R.A. Lopes. 2002a. Estrutura e dinâmica da pescaria do peixe-sapo Lophius gastrophysus no Sudeste e Sul do Brasil. Bolm. Inst. Pesca, 28(2): 205-231. Perez, J.A.A., P. Pezzuto, H.A. Andrade, P.R. Schwingel, M. Rodrigues-Ribeiro & R. Wahrlich. 2002b. O Ordenamento de uma nova pescaria direcionada ao peixe-sapo (Lophius gastrophysus) no Sudeste e Sul do Brasil. Notas Téc. FACIMAR, 6: 65-83. Perez, J.A.A., R. Wahrlich, P.R. Pezzuto, P.R. Schwingel, F.R.A. Lopes & M. Rodrigues-Ribeiro. 2003. Deep-sea fishery off Southern Brazil: trends of the Brazilian fishing industry. J. Northw. Atl. Fish. Sci., 31: 1-18. Pezzuto, P. & M.C. Dias. 2007. Estrutura populacional e reprodução dos camarões-de-profundidade (Aristeidae) no talude do Sudeste e Sul do Brasil. Relatório Técnico apresentado а 5a Sessão Ordinária do Subcomitê Científico do Comitê Consultivo Permanente de Gestão dos Recursos Demersais de Profundidade (CPG/Demersais)/SEAP/PR. DOC 21 SCCCPG 05 2007. Itajaí, 197 pp. Pezzuto, P.R., J.A.A. Perez & R. Wahrlich. 2006a. O ordenamento das pescarias de caranguejos-deprofundidade (Chaceon spp.) (Decapoda: Geryonidae) no sul do Brasil. Bolm. Inst. Pesca, 32(2): 229247. Pezzuto, P.R., J.A.A. Perez & R. Wahrlich. 2006b. Deepsea shrimps (Decapoda: Aristeidae): new targets of the deep-water trawling fishery in Brazil. Braz. J. Ocean., 54(2/3): 123-134. Pires, D.O. 2007. The azooxanthellate coral fauna of Brazil. In: R.Y. George & S.D. Cairns (eds.). Conservation and adaptive management of seamount and deepsea coral ecosystems. University of Miami, Miami, pp. 265-272. Sardà, F. 2000. Final report of the study: analysis of the Mediterranean (including North Africa) deep-sea shrimps fishery: catches. effort and economics. DG XIV, Project 97/0018: 1-162. Serejo, C.S., P.S. Young, I.C. Cardoso, C. Tavares, C. Rodrigues, & T.C. Almeida. 2007. Abundância, diversidade e zonação dos crustáceos no taude da costa central do Brasil (11º-22ºS) coletados pelo Programa REVIZEE/ Score Central: prospecção pesqueira. In: P.A.S. Costa, G. Olavo & A.S. Martins (eds.). Biodiversidade da fauna marinha profunda na costa central brasileira. Museu Nacional, Rio de Janeiro, pp. 133162. Sparre, P. & S.C. Venema. 1997. Introduction to tropical fish stock assessment. FAO Fish. Tech. Pap., 306/1, Rev. 2: 440 pp. Suman, A., F. Wudianto & G. Bintoro. 2006. Species composition, distribution, and potential yield of deep sea shrimp resources in the Western Sumatera of the Brazilian deep-sea shrimp fishery Indian Ocean EEZ of Indonesian Waters. Ind. Fish. Res. J., 12(2): 2-10. Wahrlich, R., J.A.A. Perez & F.R.A. Lopes. 2004. Aspectos tecnológicos da pesca do peixe-sapo (Lophius gastrophysus) com rede de emalhar no sudeste e sul do Brasil. Bolm. Inst. Pesca, 30(1): 87-98. Received: 4 Jun 2008; Accepted: 3 July 2009 345 Zembruscki, S.G. 1979. Geomorologia da margem continental sul brasileira e das bacias oceânicas adjacentes. In: H.A.F. Chaves. (ed.). Geomorfologia da margem continental sul brasileira e das áreas oceânicas adjacentes. Série Projeto REMAC 7, Rio de Janeiro. pp. 129-177. 346 Lat. Am. J. Aquat. Res. Lat. Am. J. Aquat. Res., 37(3): 347-360, 2009 Size and maturity of the Juan Fernández golden crab “Deep-sea fisheries off Latin America” P. Arana, J.A.A. Perez & P.R. Pezzuto (eds.) DOI: 10.3856/vol37-issue3-fulltext-6 347 Research Article Size structure and sexual maturity of the golden crab (Chaceon chilensis) exploited off Robinson Crusoe Island, Chile 1 Aurora Guerrero1 & Patricio Arana1 Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso P.O. Box 1020, Valparaíso, Chile ABSTRACT. Golden crab (Chaceon chilensis) specimens were analyzed after being caught with traps by artisanal fishermen off Robinson Crusoe Island, Juan Fernández Archipelago, Chile. Of the 13,027 individuals caught between 300 and 1,000 m depth, 97.9% were male (12,754) and the rest female (273). The carapace length (CL) of the sampled crabs was measured and, on average, the males (CL: 118.9 mm) were larger than the females (CL: 94.3 mm). On the north side of the island, the specimens presented lower average sizes (112.2 mm) whereas, in the remaining zones, the average carapace lengths were similar (CL: 117.1-119.5 mm). In bathymetric terms, an increasing trend was seen between average size and depth, with sizes over 123 mm CL found beginning at 750 m depth. A comparison of linear regressions between the carapace length and chela length of males revealed physical maturity at 100 mm CL, whereas a numerical analysis showed the size at first sexual maturity (SSM50%) to be 109 mm CL. Keywords: golden crab, Chaceon chilensis, size distribution, maturity, Juan Fernandez Archipelago, Chile. Estructuras de tallas y madurez en el cangrejo dorado (Chaceon chilensis) explotado alrededor de la isla Robinson Crusoe, Chile RESUMEN. Se analizaron ejemplares de cangrejo dorado (Chaceon chilensis) capturados mediante trampas por pescadores artesanales en torno a la isla Robinson Crusoe del archipiélago de Juan Fernández (Chile), entre 300 y 1.000 m de profundidad. Se midió la longitud cefalotorácica (LC) de 13.027 individuos de los cuales 12.754 correspondieron a machos y únicamente 273 a hembras, con un claro predominio de machos (97,9%), fueron de talla promedio superior a las hembras (118,9 y 94,3 mm de LC, respectivamente). En el sector norte de la isla, se encontraron ejemplares con menor talla media (112,2 mm) que en las zonas restantes, la longitud cefalotorácica media presentó valores similares (117,1 a 119,5 mm de LC). Se encontró una tendencia creciente entre la talla media y la profundidad, registrándose a partir del estrato de 750 m tallas promedio superiores a 123 mm de LC. Mediante la comparación de regresiones lineales entre la longitud cefalotorácica y la longitud de la quela, en machos se estableció la talla de madurez física a los 100 mm de LC y mediante análisis numérico la talla de primera madurez sexual (TMS50%) a los 109 mm de LC. Palabras clave: cangrejo dorado, Chaceon chilensis, distribución de tallas, madurez, archipiélago de Juan Fernández, Chile. ________________________ Corresponding author: Patricio Arana (parana@ucv.cl) INTRODUCTION The golden crab (Chaceon chilensis Chirino-Gálvez & Manning, 1989) is a crustacean belonging to the family Geryonidae. This crab is distributed in the Juan Fernández underwater mountain range and off San Félix and San Ambrosio islands (Retamal, 1981; Chirino-Gálvez & Manning, 1989). Occasionally, this species has been detected off the central coast of Chile (Báez & Andrade, 1977; Andrade & Báez, 1980; Andrade, 1985, 1987). Moreover, Parin et al. (1997) reported the presence of a geryonid in the Nazca un- 348 Lat. Am. J. Aquat. Res. derwater mountain range that could correspond to C. chilensis; nonetheless, this finding has not been ratified. Golden crabs are generally distributed to 2,000 m depth (Dawson & Webber, 1991). Around Robinson Crusoe and Santa Clara islands, however, they have been found inhabiting muddy-sandy bottoms (Arana & Vega, 2000) from 100 m to 1000 m, the maximum depth explored off these islands (Arana, 2000a). Fishing activities are normally carried out between 450 and 550 m depth, where these crustaceans are most abundant (Arana et al., 2006). As a result of the exploratory fishing campaigns carried out (by the Pontificia Universidad Católica of Valparaíso) around Robinson Crusoe and Santa Clara islands in 1996 and 1997 (Arana, 2000a, 200b; Arana & Vega, 2000), C. chilensis was catalogued as a potential target resource for artisanal fishing in the Juan Fernández Archipelago. Because of its abundant, large specimens, the crab became an option for the island fishers, who are economically dependent on lobster (Jasus frontalis) extraction. Thus, regular artisanal fishing of the golden crab began in 2000; annual landings from 2000 to 2006 varied between 2 and 49 tons a year, with an average of around 17 tons a year (SERNAPESCA, 2008). In spite of the development of the fishery, knowledge on the golden crab population off Juan Fernández is still scarce. The data available was recorded during one exploratory and another experimental fishing trip done in 1996/1997 (Arana, 2000a; Arana & Vega, 2000). These campaigns revealed a scant presence of females in the catches and, on average, large-sized specimens. Thus, new biologicalfishing data on C. chilensis is necessary in order to examine possible changes in its population structure and to expand understanding of this resource. Therefore, our objective for the present study is to determine the structure of the exploited golden crab stock around Robinson Crusoe Island in terms of its distribution of size frequencies, sexual proportion, and size at first sexual maturity. MATERIAL AND METHODS General aspects The study was carried out around Robinson Crusoe Island in the Juan Fernández Archipelago, located approximately between 33º35´S and 33º50´S and between 78º40´W and 79º50´W. The information was gathered between July 2005 and May 2006 by sampling the specimens caught during the commercial fishing operations of artisanal fishers using 9-m-long wooden boats and rectangular traps (40x70x130 cm) built with native woods and set between 300 and 1,000 m depth. The operations were carried out in the fishing areas used by the fishers, which are located to the north (La Vaquería, Bahía Cumberland), northeast (Puerto Francés), southeast (Playa Larga), and south (Bahía Villagra) of the island (Fig. 1). Structure of the exploited stock To establish the size structure of the golden crab, the sampled specimens were separated by sex and then measured for the carapace length (CL; ± 1.0 mm), or the straight-line distance over the mid-dorsal axis from the post-ocular ridge to the posterior limit of the carapace. The size frequency distribution of C. chilensis was made by grouping the carapace length measurements in 1-mm intervals. In addition, the average size, variance, and standard deviation were calculated by sex, month, fishing zone, and the following depths: 350 = 300 to 399 m; 450 = 400 to 499 m; 550 = 500 to 599 m; 650 = 600 to 699 m 750 = 700 to 799 m 850+ = 800 to 1000 m The global sexual proportion of the samples taken was established in terms of the percentage of males present in the catches (% males). Size-weight relation A sub-sample was used to establish the size-weight relationship, measuring the total weight (± 1.0 g) and the carapace length (± 1.0 mm) of the specimens. We used the standard power function, in which WLC is the total whole weight (g) of an individual of CL (mm), a is the condition, and b the allometry. WLC = a LC b The parameters were obtained by minimizing the sum of the difference of the least squares for the observed and predicted values: E = ∑i =1( Wi − a LCi b )2 . m Student's t test was used to establish the type of relative growth (allometric - isometric) presented by the golden crab (Dixon & Massey, 1957). First sexual maturity It tends to be difficult to estimate the size or age at which male crustaceans mature since they lack external characteristics that can be used for these purposes. Based on the assumption that, beginning with the puberty molt, the organisms register a noteworthy variation in relative growth of some structures (George & Morgan, 1979; Conan & Comeau, 1986), the morphometric relationships between the carapace Size and maturity of the Juan Fernández golden crab 349 Figure 1. Golden crab fishing zones off Robinson Crusoe Island. Figura 1. Zonas de pesca de cangrejo dorado alrededor de la isla Robinson Crusoe. length and the chela length (both precise to ± 0.1 mm) were analyzed. This was done in order to establish the break in the relationship that could be attributed to the specimens’ physical maturity (Fernández-Vergaz et al.,2000). Hence, the methodologies proposed by Somerton (1980) and Udupa (1986) were taken into account when determining male maturity, testing the equality of two linear regressions using the F test (α, n1-2, n2- 2) ≤ F* (Neter & Wasserman, 1974). RESULTS During the development of this research, 13,027 individuals were measured, of which 12,754 were males and only 273 were females (Table 1). The sexual proportion in golden crabs was characterized by the recurrence of high levels of males throughout the analysis period, with a global average of 97.9% (Fig. 2). Between July 2005 and May 2006, females sizes ranged from CL 68.7 to 150.0 mm, with an average of 94.3 mm, whereas the males had a greater range of sizes (CL: 46.0 to 189.7 mm) and a significantly higher average (118.9 mm) (Fig. 3). The average size of the specimens caught showed a marked difference between males and females, with males averaging between 114.4 mm (March) and 130.3 mm (September) and females, lesser in numbers and mean size, averaging from 91.1 mm (March) to 107.0 mm (September) (Table 1). The size of the specimens was also analyzed by fishing zone. The lowest average value (112.2 mm) was found at La Vaquería, in the north sector of the island. In the remaining areas, the average carapace length of the golden crab was higher and similar: 117.1 mm in Bahía Villagra, 118.3 mm in Bahía Cumberland, and 119.5 mm in Puerto Francés and Playa Larga (Fig. 4, Table 2). The bathymetry revealed an increasing tendency between average size and depth; the specimens caught as of 750 m depth were larger than CL 123 mm, whereas those caught in the shallower strata averaged from 113.1 to 118.9 mm (Fig. 5, Table 3). The size frequency distribution for males was bimodal, with one mode around 100 mm and another, the most important, around 130 mm. On the other hand, the females showed a relatively uniform structure with only one modal size at 93 mm (Fig. 6). In monthly terms, the size range dropped from July 2005 to May 2006 and fewer large specimens were observed (Fig. 7). Regardless, throughout the analyzed period, the size structures of the males maintained two modes. In an analysis of size frequency distribution by fishing zone, the area corresponding to Bahía Cumberland stands out, having an ample size range and greater relative importance of specimens over CL 130 mm (Fig. 8). In bathymetric terms, the deeper strata are lacking smaller specimens; at over 800 m depth, only specimens over CL 100 mm (Fig. 9) are found. 350 Lat. Am. J. Aquat. Res. Table 1. Main statistics of the carapace length in golden crabs between July 2005 and May 2006. Tabla 1. Principales estadígrafos de la longitud cefalotorácica en cangrejo dorado, entre julio 2005 y mayo 2006. Month Number of sampled specimens (N) August September October November December January February March April May 880 1,198 544 669 1,575 562 678 725 2,269 1,819 1,801 12,720 5 23 5 7 16 17 24 4 108 36 24 269 Total 885 1,221 549 676 2 579 702 729 2 2 2 1 Males 46 - 177.4 74.3 - 165 79 -162.1 76.6 - 165.6 69.8 - 148.7 63.1 - 153.7 77.8 - 153.7 80.4 - 153.7 74.1 - 147.1 78,4 - 189.7 75.1 - 170.4 46 - 189.7 86.2 - 114 80.1 - 117.2 97.2 - 111.2 80 - 150 76.1 - 101,1 85.4 - 98 84.1 - 103.6 91 - 100.9 73.2 - 112.9 68.7 - 105.7 87 - 109.4 68.7 - 150 Total 46 - 177.4 74.3 - 165 79 - 162.1 76.6 - 165.6 69.8 - 148.7 63.1 - 153.7 77.8 - 153.7 80.4 -153.7 73.2 - 147.1 68.7 - 189.7 75.1 - 170.4 46 - 189.7 Males 124.6 123.9 129.8 118.2 119.3 119.4 117.7 119.3 114.0 117.1 114.3 118.5 Females 95.2 104.9 106.6 98.0 90.7 92.2 94.5 96.3 90.6 94.4 95.3 93.9 Total 124.5 123.6 129.6 118.0 119.0 118.6 116.9 119.1 112.9 116.6 114.1 118.0 Males 130.0 127.3 132.8 121.3 121.7 122.6 120.7 122.2 116.4 119.4 115.1 120.6 Females 92.0 110.6 107.0 91.5 90.8 93.0 95.2 96.6 91.2 93.2 95.6 93.2 Total 129.5 126.3 132.6 121.0 121.5 122.2 120.2 122.1 115.2 119.1 114.9 120.1 Males 20.0 19.2 17.4 17.1 15.2 13.5 15.0 13.8 14.4 13.5 14.1 16.1 Females 11.0 12.6 5.7 24.1 6.2 3.3 5.7 4.1 6.9 7.4 5.9 9.0 Total 20.1 19.3 17.5 17.3 15.4 14.1 15.3 13.9 15.0 13.7 14.2 16.3 Males Females Range (mm) Females Mean (mm) Median (mm) Standard deviation (mm) Total July Size and maturity of the Juan Fernández golden crab 351 Figure 2. Global sexual proportion (% males) of golden crabs recorded between July 2005 and May 2006. Figura 2. Proporción sexual global (% machos) en cangrejo dorado, registrado entre julio 2005 y mayo 2006. Figure 3. Average, standard deviation, and maximum and minimum carapace length of the golden crabs by sex. Figura 3. Promedio, desviación estándar y valores máximos y mínimos de la longitud cefalotorácica en cangrejo dorado, por sexo. Figure 4. Average, standard deviation, and maximum and minimum carapace length of male golden crabs by fishing zone. Figura 4. Promedio, desviación estándar y valores máximos y mínimos de la longitud cefalotorácica en machos de cangrejo dorado, por zona de pesca. Figure 5. Average, standard deviation, and maximum and minimum carapace length of male golden crabs by depth. Figura 5. Promedio, desviación estándar y valores máximos y mínimos de la longitud cefalotorácica en machos de cangrejo dorado, por estrato de profundidad. 352 Lat. Am. J. Aquat. Res. Table 2. Main statistics of the carapace length in male golden crabs by fishing zone. Tabla 2. Principales estadígrafos de la longitud cefalotorácica en machos de cangrejo dorado, por zona de pesca. Number of specimens 2 196 Mean (mm) 118.3 Standard deviation (mm) 7.2 Puerto Francés 5 929 119.5 3.9 Playa Larga 1 104 119.5 5.1 695 117.1 6.7 1 515 112.2 5.5 Fishing zone Bahía Cumberland Bahia Villagra La Vaquería Due to the limited catches of females, the sizeweight relationship was defined by analyzing a sample of 264 males. The estimated growth factor (b) was 3.0694, whereas the condition factor (a) was 0.0004. According to the isometry test, this shows an isometric growth factor (Table 4). The sexual maturity of the males was determined using the carapace length (CL) and chela length (QL) from a sample of 1,067 specimens whose sizes varied between CL 71 and 141 mm. Before establishing the CL QL-1 relationship, the values were grouped by determining the average QL in each range of CL 1 mm. These values, when graphed, revealed a break in the relationship between these two variables at CL 100 mm, establishing the following statistically different linear functions (Fig. 10), which show that physical maturity occurs at CL 100 mm in males: QL1 = 0.85697 CL − 7.47098 in the range between CL 71 and 100 mm; and QL2 = 0.99243 CL − 17.85592 in the range between CL 100 and 141 mm Given the two important modes found for male golden crabs, a bimodal distribution made up of mature and immature individuals was determined for the captured specimens. Thus, the maturing process occurs within the size range of the first modal group and, supposing a normal distribution within this, its ave age would be the established physical maturity size (CL: 100 mm). Using numerical approximation, it was possible to establish the fraction of mature specimens in each size range. Finally, through a non-linear fit of the data to the sigmoid curve, the curve’s parameters were set, thereby determining the first sexual maturity in male golden crab (SSM50%) at CL 109 mm (CW: 125 mm) (Fig. 11). Figure 6. Distribution of size frequencies in golden crabs by sex. Figura 6. Distribución de frecuencias de tallas en cangrejo dorado, por sexo. 353 Size and maturity of the Juan Fernández golden crab 2006 2005 6 6 Jul/05 n = 880 5 5 4 4 3 3 2 2 1 1 0 0 6 6 Aug/05 n = 1,198 5 Feb/06 n = 725 5 4 4 3 3 2 2 1 1 0 0 6 Relative frequency (%) Jan/06 n = 678 n = 544 Sep/05 6 5 5 4 4 3 3 2 2 1 1 0 0 6 n = 669 Oct/05 n = 2,269 6 5 5 4 4 3 3 2 2 1 1 0 0 Mar/06 n = 1,819 Apr/06 6 6 May/06 n = 1,801 Nov/05 n = 1,575 5 5 4 4 3 3 2 2 1 1 0 0 50 65 80 95 110 125 140 155 170 Carapace length (mm) 6 n = 562 Dec/05 5 4 3 2 1 0 50 65 80 95 110 125 140 155 170 Carapace length (mm) Figure 7. Monthly distribution of size frequencies in male golden crabs from July 2005 to May 2006. Figura 7. Distribución mensual de frecuencias de tallas en machos de cangrejo dorado, julio 2005 a mayo 2006. 354 Lat. Am. J. Aquat. Res. 6 10 Bahía Cumberland 5 N = 234 300 m N = 2,196 8 4 6 3 4 2 2 1 0 0 10 400 m 6 N = 395 8 Puerto Francés 5 N = 5,929 6 4 4 3 2 2 0 1 10 500 m 0 N = 268 6 6 Playa Larga N = 1,104 5 Relative frequency (%) Relative frequency (%) 8 4 3 2 1 0 4 2 0 10 600 m N = 123 8 6 4 6 Bahía Villagra N = 695 5 2 0 4 3 10 2 8 1 6 0 4 N = 57 700 m 2 6 La Vaquería N = 1,515 5 0 4 10 3 8 2 6 1 4 ≥ 800 m N = 67 2 0 45 65 85 105 125 145 165 0 50 60 70 80 90 100 110 120 130 140 150 160 Carapace length (mm) Carapace length (mm) Figure 8. Distribution of size frequencies in male golden crabs by fishing zone. Figura 8. Distribución de frecuencias de talla en machos de cangrejo dorado, por zona de pesca. Figure 9. Distribution of size frequencies in male golden crabs by depth. Figura 9. Distribución de frecuencias de talla en cangrejos dorados machos, por estrato de profundidad. 355 Size and maturity of the Juan Fernández golden crab Figure 10. Relationship between carapace length and chela length in male golden crabs. Figura 10. Relación entre la longitud cefalotorácica y la longitud de la quela en machos de cangrejo dorado. Figure 11. Ojive of maturity determined for male golden crabs. Figura 11. Ojiva de madurez determinada en machos de cangrejo dorado. Table 3. Main statistics of the carapace length in male golden crabs by depth. Tabla 3. Principales estadígrafos de la longitud cefalotorácica en machos de cangrejo dorado, por estrato de profundidad. Depth (m) Number of specimens Mean length (mm) Standard deviation (mm) 350 (300 - 399) 234 118.9 9.2 450 (400 - 499) 395 113.1 7.0 550 (500 - 599) 268 113.7 9.5 650 (600 - 699) 123 118.0 22.6 750 (700 - 799) 57 123.3 18.0 850+ (≥ 800) 67 124.7 7.2 356 Lat. Am. J. Aquat. Res. Table 4. Regression parameters by region and sex of the carapace length-total weight relationship in golden crab. Tabla 4. Parámetros de regresión, por región y sexo, de la relación longitud-peso de cangrejo dorado. Males Estimate Standard error t-Student p value Bottom limit Top limit a b 0.0004 0.000067 6.394724 0.000000 0.000297 0.000560 3.069 0.032472 94.52792 0.000000 3.005613 .133300 Correlation coefficient (R) Sample (n) 0.9958 264 DISCUSSION One characteristic of the golden crab fishery is the fact that it is carried out almost exclusively on male specimens. In fact, the percentage of males caught was 97.9%, similar to the value determined by Arana (2000a) prior to the development of commercial fishing; this author estimated a value of 98.1%, whereas Arana (2000b) and Arana & Vega (2000) estimated a value of 97.8%. Low proportions of females were also found by McElman & Elner (1982) for Geryon quinquedens over the Scottish platform; by Wenner et al. (1987) for Geryon fenneri off the coasts of South Carolina and Georgia; and by Kendall (1990) for the golden crab fishery of Georgia. Likewise, Pinho et al. (2001) determined a male predominance of 1.7:1 (63%) for Chaceon affinis off the Azore Islands, whereas López-Abellán et al. (2002) determined a male proportion of 57% (1:0.74) for this same species off the Canary Islands. According to Barea & Defeo (1986), this could be explained i) by the trap soak time, which would allow smaller specimens to escape (and females are, in general, smaller), and ii) by the low mobility of the females, which would not enter the traps. Another explanation could be a stratification of the sexes by depth or a different spatial distribution; however, such a situation has not yet been found in these islands. The results for the size of the specimens caught in this investigation differ from those obtained in the exploratory and experimental fishing campaigns carried out in 1996-1997. First, the size range in the present study is wider, including specimens from CL 46 to 189.7 mm. These sizes exceed the results of Arana (2000a), who recorded specimens between CL 86 and 140 mm, and those of Arana & Vega (2000), who reported individuals from 84 to 147-mm. In spite of the larger size rage found herein, the average size of the males (118.9 mm) was lower than in 1997 (123.0 mm). This is due to the increased representation of smaller specimens, evident when observing the size frequency distributions of the two relevant modal groups (CL: 130 and 100 mm). It should be noted that the first mode was not apparent in the size structures found by Arana (2000b) during the experimental fishing done in 1996-1997. The differences detected in both the size structure and the average size of the specimens caught is mainly due to the fact that the previous results correspond to the development of experimental fishing operations intended to evaluate catches using different kinds of traps and diverse depth ranges. Such variables are absent in commercial fishing, as the fishers have adopted one kind of fishing gear and determined the best places to fish for golden crab. Nonetheless, the difference in the size frequency distributions between both sexes coincides with reports by other authors for C. affinis (Pinho et al., 2001; López-Abellán et al., 2002) and shows a general pattern for geryonids. Similarly, Melville-Smith (1989) attributes this difference in C. maritae to the different molting process of males and females, stating that the unimodal structure of the latter could be the result of short intermolt periods in immature specimens and long periods after maturity. In general, sexual maturity studies have been based on functional characteristics that show mating capacity (Goshima et al., 2000; Gardner & Williams, 2002), physiological characteristics (the presence of spermatophores) (Warner, 1977; Melville-Smith, 1987; Comeau & Conan, 1992), and/or morphometric features such as the use of some physical trait to distinguish between mature and immature individuals (Somerton, 1980; Conan & Comeau, 1986; Comeau & Conan, 1992; Gardner & Williams, 2002). In this last case, the morphometric (or physical) maturity of the males has been determined by analyzing the relationships between body size and the dimension of some body parts (Hall et al., 2006). Due to the scarce female specimens caught for this study, it was not possible to establish the sexual maturity (SSM) of the female golden crabs. However, since females are smaller than males and the smallest female caught with eggs under the abdomen measured CL 81 mm, we can estimate an SSM for females to be around this carapace length (CW 95 mm, according to the CL/CW relationship determined by Arana, 2000b). Size and maturity of the Juan Fernández golden crab 357 Table 5. Estimates of size at sexual maturity for the genus Chaceon carried out by diverse authors. CW: carapace with, LC: carapace lengh. Tabla 5. Estimaciones de talla de madurez sexual en el género Chaceon efectuadas por diversos autores. CW: ancho cefalotorácico, LC: longitud cefalotorácica. Size at sexual maturity (mm) Males Females Author Type of measurement Species Location Methodology Chaceon affinis Canary Islands Morphometric relations Gonad maturity 129 - 99.3 109 CW CW Fernández-Vergaz et al. (2000) Chaceon affinis Azore Islands Macroscopic observation - 83 CL Pinho et al. (2001) Chaceon quinquedens Chesapeake Bay Morphometric relations Gonad maturity - 80-91 CW Haefner (1977) Chaceon quinquedens Canada Gonad maturity >115 - CW Lawton & Duggan (1998) Chaceon maritae Côte d'Ivoire Gonad development 105-115 80-90 CW Le Loueuff et al. (1978) Chaceon maritae Senegal Morphometric relations 100 83 CW Gaetner & Laloé (1986) Chaceon maritae Namibia Histological analysis >80 100 CW Melville-Smith (1987) Chaceon notialis Brasil Morphometric relations Vulva condition and eggs 69 97 84 CW Sant’Ana & Pezzuto (2009) Chaceon notialis Uruguay Gonad maturity - 70.2-71.7 CW Delgado & Defeo (2004) Chaceon chilensis Juan Fernández Archipelago Morphometric relations 109 - CW Present study 358 Lat. Am. J. Aquat. Res. In males, a change occurred in the relationship between carapace and chela length at CL 100 mm (that is, CW 115 mm). According to the growth estimate done for this resource, the size of the first physical (or morphometric) maturity corresponds to the change in the molting state, possibly between the modal classes of CL 100 and 109 mm. It should be noted that this length is comparable to estimates made by diverse authors for other Chaceon species (Table 5). The methodological focus used was based on the affirmation of Hartnoll (1974), who indicated that some species might present ontogenic variations in the relative growth pattern of some body parts that can be translated into differences in the development between sexes and/or between immature and mature specimens. In morphometric relationships, these changes contribute to the reproductive behavior and are required for successful reproduction. In some brachyurans, the size of the chela in males is particularly important in the reproductive process, whether for fighting over females, courting, copulating, or protecting the females after mating. It is important to note that males can be functionally and physiologically mature before being able to reproduce, and that the reproduction capacity is achieved upon reaching morphometric or physical maturity (Hall et al., 2006). From this point of view, the size at first sexual maturity (SSM50%) as such would occur at sizes greater than those of morphometric or physical maturity, as determined herein. Our results ratify that the golden crab fishery is sustained mainly by males, an important aspect for future fishery management and one that will require constant monitoring since a reduction in the number of males could influence the sustainability of the stock. Thus, it is also important to determine the size at which males reach sexual maturity (Conan & Comeau, 1986; Ennis et al., 1988; Wenner, 1990; Gardner & Williams, 2002), as this is an important reference parameter for management. The results obtained in this study are favorable since the average size of the males caught (CL: 118.9 mm) exceeded the SSM50% (CL: 109 mm). Finally, we would like to point out that, in the particular case of the Juan Fernández golden crab fishery, the fishers themselves have established a minimum saleable size of CW 130 mm (Arana et al., 2006), equivalent to CL 113 mm. This value is also higher than the SSM50%, and so we can conclude that the C. chilensis stock is, at least from this point of view, protected from overexploitation by recruitment, although the vulnerability presented due to the mainly male catches must also be taken into account. ACKNOWLEDGEMENTS The authors thank the Sindicato de Pescadores Artesanales del Archipélago de Juan Fernández, particularly those who collaborated with sampling off Robinson Crusoe Island and the fishermen Pedro Chamorro, Mario Llanquín, and Danilo Rodríguez, who allowed sampling of catches in their boats. This article was generated with results from two projects: “Monitoreo biológico-pesquero de la langosta y el cangrejo dorado en el archipiélago de Juan Fernández” (FIP Project 2004-48) and “Evaluación del stock y distribución de cangrejo dorado y langosta en el archipiélago de Juan Fernández” (FIP Project 2005-21), financed by the Fondo de Investigación Pesquera (FIP) and carried out by the Pontificia Universidad Católica de Valparaíso. REFERENCES Andrade, H. 1985. Crustáceos decápodos marinos del archipiélago de Juan Fernández. In: P. Arana (ed.). Investigaciones marinas en el archipiélago de Juan Fernández, Escuela de Ciencias del Mar, Universidad Católica de Valparaíso, Valparaíso, 109-116. Andrade, H. 1987. Distribución batimétrica y geográfica de macroinvertebrados del talud continental de Chile central. Cienc. Técnol. Mar, 11: 61-94. Andrade, H. & P. Báez. 1980. Crustáceos decápodos asociados a la pesquería de Heterocarpus reedi Bahamonde 1955 en la zona central de Chile. Bol. Mus. Nac. Hist. Nat. Chile, 37: 261-267. Arana, P. 2000a. Pesca exploratoria con trampas alrededor de las islas Robinson Crusoe y Santa Clara, archipiélago de Juan Fernández, Chile. Invest. Mar., Valparaíso, 28: 39-52. Arana, P. 2000b. Estimación de abundancia y biomasa del cangrejo dorado (Chaceon chilensis) en el archipiélago de Juan Fernández, Chile. Invest. Mar., Valparaíso, 28: 53-68. Arana, P. & R. Vega. 2000. Pesca experimental del cangrejo dorado (Chaceon chilensis) en el archipiélago de Juan Fernández, Chile. Invest. Mar., Valparaíso, 28: 69-81. Arana, P., S. Palma, A. Guerrero, M. Ahumada & A. Jofré. 2006. Monitoreo biológico-pesquero de la langosta y cangrejo dorado en el archipiélago de Juan Fernández. (Proyecto FIP Nº2004-48). Informe Final. Estud. Doc., Pont. Univ. Católica Valparaíso, 32/2006: 288 pp. Báez, P. & H. Andrade. 1977. Geryon affinis Milne Edwards y Bouvier 1894 frente a las costas de Chile (Crustacea, Decapoda, Brachyura, Geryonidae). An. Mus. Hist. Nat., Valparaíso, 10: 215-219. Size and maturity of the Juan Fernández golden crab Barea, L. & O. Defeo. 1986. Aspectos de la pesquería del cangrejo rojo (Geryon quinquedens) en la zona común de pesca argentino-uruguaya. Publ. Com. Téc. Mix. Fr. Mar., 1(1): 38-46. Chirino-Gálvez, L.A. & R.B. Manning. 1989. A new deep-sea crab of the genus Chaceon from Chile (Crustacea, Decapoda, Geryonidae). Proc. Biol. Soc. Washington, 102(2): 401-404. Comeau, M. & G.Y. Conan. 1992. Morphometry and gonad maturity of male snow crab Chionoecetes opilio. Can. J. Fish. Aquat. Sci., 49: 2460-2468. Conan, G.Y. & M. Comeau. 1986. Funcional maturity and terminal molt of male snow crab, Urionocetes opilio. Can. J. Fish. Aquat. Sci., 43: 1710-1719. Dawson, E.W. & W.R. Webber. 1991. The deep-sea red crab Chaceon ("Geryon"): a guide to information and reference list of the Family Geryonidae. Nat. Mus. New Zealand, Misc. Ser., 24: 83 pp. Delgado, E. & O. Defeo, 2004. Sexual maturity in females of deep-sea red crab Chaceon notialis (Brachyura, Geryonidae) in the southwestern Atlantic Ocean. Invertebr. Reprod. Dev., 46(1): 55-62. Dixon, W. & J. Massey. 1957. Introduction to statistical analysis. McGraw-Hill, New York, 488 pp. Ennis, G.P., R.G. Hooper & D.M. Taylor. 1988. Functional maturity in small male snow crabs (Chionoecetes opilio). Can. J. Fish. Aquat. Sci., 45: 21062109. Fernández-Vergaz, V., L.J. López-Abellán & E. Balguerías. 2000. Morphometric, functional and sexual maturity of the deep-sea red crab Chaceon affinis inhabiting Canary Island waters: chronology of maturation. Mar. Ecol. Prog. Ser., 204: 169 -178. Gaetner, D. & F. Laloé. 1986. Étude biométrique de la taille à première maturité sexuelle de Geryon maritae Manning et Holthuis, 1881 du Sénégal. Oceanol. Acta, 9: 479-487. Gardner, C. & H. Williams. 2002. Maturation in the male giant crab, Pseudocarcinus gigas, and the potential for sperm limitation in the Tasmanian fishery. Mar. Freshw. Res., 53: 661-667. George, R.W. & G.R. Morgan. 1979. Linear growth in the rock lobster (Panulirus versicolor) as a method for determining size at first physical maturity. Rapp. P.-V Reun. Cons. Explor. Mer, 175: 182-185. Goshima, S., M. Kanazawa, K. Yoshino & S. Wada. 2000. Maturity in male stone crab Haplogaster dentata (Anomura: Lithodidae) and its application for fishery management. J. Crust. Biol., 20: 641-646. Hall, N.G., K.D. Smith, S. de Lestang, & I.C. Potter. 2006. Does the largest chela of the males of three crab species undergo an allometric change that can be used to determine morphometric maturity? ICES J. Mar. Sci., 63: 140-150. 359 Haefner Jr., P. 1977. Reproductive biology of the female deep-sea red crab, Geryon quinquedens, from the Chesapeake Bight. US Fish. Bull., 75(1): 91-102. Hartnoll, R.G. 1974. Variation in growth pattern between some secondary characters in crabs (Decapoda; Brachyura). Crustaceana, 27: 131-136. Kendall, D. 1990. An assessment of the Georgia golden crab fishery. In: W.J. Lindberg & E.L. Wenner (eds.). Geryonid crabs and associated continental slope fauna: a research workshop report. South Carolina Sea Grant Consortium, Florida Sea Grant College Program Technical Paper, 58: 18-19 pp. Lawton, P. & D. Duggan. 1998. Scotian red crab (Canadian) maritimes region. DFO Sci. Stock Status Rep. C3-11, 6 pp. Le Loueuff, P., P. Cayre & A. Intes. 1978. Étude de crabe rouge profond Geryon quinquedens en Côte d’Ivory. II. Éléments de biologie et d’écologie avec référence aux résultats obtenus au Congo. Doc. Sci. Centre Rech. Océanogr., Abidjan, 9: 17-65. López-Abellán, L.J., E. Balguerías & V. FernándezVergaz. 2002. Life history of the deep-sea crab Chaceon affinis population off Tenerife (Canary Island). Fish. Res., 58: 231-239. McElman, J.F. & R.W. Elner. 1982. Red crab (Geryon quinquedens) trap survey along the edge of the Scotian shelf, September 1980. Can. Tech. Rep. Fish. Aquat. Sci., 1084: 1-12. Melville-Smith, R. 1987. The reproductive biology of Geryon maritae (Decapoda, Brachyura) off southwest Africa/Namibia. Crustaceana, 53: 11-27. Melville-Smith, R. 1989. A growth model for the deepsea red crab (Geryion maritae) off southwest Africa/Namibia (Decapoda, Brachyura). Crustaceana, 56(3): 279-291. Neter, J. & W. Wasserman. 1974. Applied linear statistical models. Regresion, anlalysis of variance, and experimental designs. Ed. Richard D. Irwin, Illinois, 842 pp. Parin, N.V., A.N. Mironov & K.N. Nesis. 1997. Biology of the Nazca and Sala y Gómez submarine ridges, an outpost of the Indo-West Pacific fauna in the eastern Pacific Ocean: composition and distribution of the fauna, its communities and history. Adv. Mar. Biol., 32: 145-242. Pinho, M.R., J.M. Gonçalves, H.R. Martins & G.M. Menezes. 2001. Some aspects of the biology of the deep-water crab, Chaceon affinis (Milne-Edwards and Bouvier, 1894) off the Azores. Fish. Res., 51: 283-295. Retamal, M.A. 1981. Catálogo ilustrado de los crustáceos decápodos de Chile. Gayana (Zool.), 44: 1-110. Sant’Ana, R. & P. Pezzuto. 2009. Sexual maturity of the deep-sea red crab Chaceon notialis, Manning & 360 Lat. Am. J. Aquat. Res. Holthuis, 1989 (Brachyura: Geryonidae) in southern Brazil. Lat. Am. J. Aquat. Res., 37(3): 429-442. Servicio Nacional de Pesca (SERNAPESCA). 2008. Anuario estadístico de pesca. http://www.sernapesca.cl/index.php?option=com_remostory&Itemid=54 &func=select&id=2. Revised: 30 March 2008. Somerton, D.A. 1980. A computer technique for estimating the size of sexual maturity in crabs. Can. Fish. Aquat. Sci., 37: 1488-1494. Udupa, K.S. 1986. Statistical method of estimating the size et first maturity in fishes. Fishbyte, 4(2): 8-11. Received: 1 abril 2009; Accepted: 4 August 2009 Warner, G.F. (ed). 1977. The biology of crabs. Elek Science, London, 202 pp. Wenner, E.L. 1990. Distribution and abundance of golden crab, Chaceon fenneri, in the South Atlantic Bight. In: W.J. Lindberg & E.L. Wenner (eds.). Geryonid crabs and associated continental slope fauna: a research workshop report. South Carolina Sea Grant Consortium, Florida Sea Grant College Program Technical Paper, 58: 6-7. Wenner, E., G.F. Ulrich & J.B. Wise. 1987. Exploration for golden crab, Geryon fenneri, in the South Atlantic bight: distribution, population structure, and gear assessment. US Fish. Bull., 85(3): 547-560. Lat. Am. J. Aquat. Res., 37(3): 361-370, 2009Fishing yields and size structures of Patagonian toothfish “Deep-sea fisheries off Latin America” P. Arana, J.A.A. Perez & P.R. Pezzuto (eds.) DOI: 10.3856/vol37-issue3-fulltext-7 361 Research Article Fishing yields and size structures of Patagonian toothfish (Dissostichus eleginoides) caught with pots and long-lines off far southern Chile 1 Aurora Guerrero1 & Patricio Arana1 Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso P.O. Box 1020, Valparaíso, Chile ABSTRACT. Herein, we compare information taken from the Patagonian toothfish (Dissostichus eleginoides) fishery operations carried out off the far southern coast of Chile (47°00’S-57°00’S) using pots (pots) and longlines. In January 2006 and from June to October 2006, 167 fishing hauls were done, 119 using long-lines and 48 using pots. The total Patagonian toothfish catch was 60.9 tons, of which 81.2% were caught with long-lines and 18.8% with pots. On average, 5,395 hooks and 147 pots were set per haul, with average yields of 0.08 kg hook-1 and 1.43 kg pot-1. The average depth for setting the gear was 1,581 m (long-lines) and 1,318 m (pots). Significant differences were found between these two types of gear, as well as between the time of setting and the time of retrieval. Greater fishing yields were obtained from the long-line fishery operations, with significant differences between the gear types in terms of the catch per haul (kg haul-1) and the catch per length of the specimens retained (kg 1000 m-1). On average, the individuals caught with pots (110.8 cm total length) were larger than those caught with long-lines (105.1 cm total length). Nonetheless, no significant differences were recorded for the size structures. In terms of interactions with birds, during setting, no birds were observed at the trapping operations, whereas a few specimens (≤ 10 birds) were seen during only 2.5% of the long-line operations. During retrieval, birds were observed during 34.9% of the hauls with pots and 62.8% of the longline operations. The presence of mammals around the fishery operations during setting and retrieval was similar for both types of gear. Keywords: yields, pot, long-line, Patagonian toothfish, Dissostichus eleginoides, Chile. Rendimientos de pesca y estructuras de tallas de bacalao de profundidad (Dissostichus eleginoides) capturados con trampas y espineles en el extremo sur de Chile RESUMEN. Se compara información proveniente de operaciones de pesca de bacalao de profundidad (Dissostichus eleginoides) efectuadas mediante trampas y espineles en enero de 2006 y entre junio y octubre de 2006, frente a la costa sur-austral de Chile (47°00’S-57°00’S). Se realizaron 167 lances de pesca, 119 correspondieron a operaciones de pesca con espinel y 48 con trampas, registrándose una captura total de bacalao de profundidad de 60,9 ton, de las cuales 81,2% fue extraída con espinel y 18,8% con trampas. Se calaron en promedio 5.395 anzuelos/lance y 147 trampas/lance, obteniéndose un rendimiento promedio de 0,08 kg anzuelo-1 y 1,43 kg trampa-1. La profundidad media de calado fue 1.581 m con espineles y 1.318 m con trampas, encontrándose diferencias significativas entre ambos aparejos, al igual que en el tiempo de calado y de virado. En las operaciones de pesca con espinel se obtuvo rendimientos de pesca superiores, siendo estas diferencias significativas entre los aparejos en términos de la captura por lance (kg lance-1) y la captura por longitud de retenida (kg 1000 m-1). Respecto del tamaño de los ejemplares capturados, aquellos pescados con trampas exhibieron talla promedio superior a los extraídos con espineles, registrándose valores medios de 110,8 y 105,1 cm de longitud total, respectivamente; sin embargo, la estructura de talla no registró diferencias significativas. En relación a la interacción con aves, durante el calado con trampas no se observó presencia de ellas, mientras que con espineles sólo en el 2,5% de los lances se detectaron algunos ejemplares (≤ 10 aves). En la etapa de virado, las aves se observaron en el 34,9% de los lances con trampas y en el 62,8% en las faenas con espineles. 362 Lat. Am. J. Aquat. Res. La presencia de mamíferos en las operaciones de pesca con ambos aparejos tanto en el calado como el virado fue similar. Palabras clave: rendimientos, trampa, espinel, bacalao de profundidad, Dissostichus eleginoides, Chile. ________________________ Corresponding author: Patricio Arana (parana@ucv.cl) INTRODUCTION The Patagonian toothfish (Dissostichus eleginoides Smitt, 1898) is a demersal species found widely in the southern realms of the Atlantic, Pacific, and Indian oceans, especially between 40º and 60º S. This species is found all along the continental coast of South America, from northern Peru to far southern Chile. Its bathymetry covers 70 to 2,800 m and, in Chilean waters, specimens have been caught at up to 2,500 m depth (Young et al., 1998). Most Patagonian toothfish fisheries are between 1,000 and 1,500 m (Young et al., 1996). Given its wide Antarctic circumpolar distribution, D. eleginoides is caught mainly around the southern cone of America, the Falkland/Malvinas islands, South Georgia Island, and numerous other islands and oceanic elevations (Gon & Heemstra, 1990). A large part of the distribution of this resource is located in the Sub Antarctic and the Antarctic and its exploitation therein is regulated by the standards adopted by the Convention for the Conservation of Live Antarctic Marine Resources (CCRVMA). In Chile, Patagonian toothfish fisheries began in 1955, but it was not until the 1970s that an artisanal fleet in the central sector of the country began commercial exploitation of the species. Later, this same group expanded operations northward and then southward, where fishing yields improved (Oyarzún et al., 2003a, 2003b). At present, the fishery is divided into two zones. The north zone, between Chile’s northern limit (18º21’S) and parallel 47º’S, is reserved exclusively for artisanal fishing whereas, in the south zone (47ºS to 57º’S), the resource is exploited through industrial fishing activities. Technologically, given the resource’s bathymetric distribution, any fishing gear used to catch Patagonian toothfish must meet strength standards that allow hauling aboard heavy, large-sized specimens, generally from depths over 1,000 m. At the end of the 1960s, Pavez et al. (1968) designed a special long-line to be used at such depths. This long-line was adopted by the artisanal fishers that first exploited this resource. Later attempts to use gills nets and large, heavy rectangular traps were not very effective and, thus, the long-line was determined to be the most efficient fishing technique (Zuleta et al., 1996). The worldwide Patagonian toothfish fishery relies largely on bottom-set long-lines. In Chile, the rapid expansion of the fishery as of the 1990s resulted in the introduction of new fishing techniques, consolidating the design of a new fishing gear, the Spanish longline, also known as “quebrado” or “retenida”. This new design was successful in allowing fishing under any sea conditions and at greater depths (Cascorbi, 2004). In Chilean waters, the gear used to catch D. eleginoides is regulated, and the use of any fishing gear or technique other than the long-line is prohibited. Nonetheless, the use of long-lines for Patagonian toothfish fishing operations has also had side effects such as sea bird mortalities, principally albatross (Diomedea spp.) and petrels (Macronectes giganteus) (Ashford et al., 1994, 1995, 1996; Barea et al., 1994; Moreno et al., 2003, among others). Likewise, interactions occur between fishery’s activities and whales, mostly sperm whales (Physeter macrocephalus) and orcas (Orcinus orca) (Salas et al., 1987; Ashford et al., 1996; Moreno et al., 2003). In these cases, the mammals feed on the specimens caught on the longlines when they are brought on deck, resulting in lost catches. The interaction is also dangerous for the whales, who could be harmed or killed when becoming tangled in the gear or when driven off by the fishers (Angliss & DeMaster, 1997). Thus, the evaluation of other fishing techniques for catching Patagonian toothfish became pertinent for both the institutions whose objective it is to safeguard the ecosystem’s conservation and for the users of the Patagonian toothfish fishery. One of the options being considered for the exploitation of this species is the use of pots or traps. In terms of the principle used for catching the resource, this method does not differ from the long-line: both are passive, use bait, and require a certain resting or soak period to attract the prey. No experiments have been done to evaluate this fishing alternative in Chilean waters. However, internationally, a study was done by the United Kingdom in waters off South Georgia Island (Subarea 48.3) in which pots were used for experimental fishing of Patagonian Fishing yields and size structures of Patagonian toothfish toothfish from March to May 2000 (Agnew et al., 2001). Therefore, participants in this fishery, with the consent of the Chilean fishing authority, promoted a research fishing campaign in order to evaluate the feasibility and convenience of using pots for the industrial fishing of Patagonian toothfish. The objective of this study was to compare fishing operations using this gear with those using long-lines, considering fishing yields as well as the main associated operational aspects. We also analyzed the respective size structures of the catches obtained with each type of gear and interactions with birds and mammals. MATERIALS AND METHODS This study analyzes information on Patagonian toothfish fishing operations using pots (traps) and longlines along the southern coast of Chile (47°S-57°S) 363 and from 630 to 2,269 m depth. The extractive activities were carried out in two periods: in January and from June to October 2006. The fishing operations were performed with the long-line factory vessel “Tierra del Fuego” (53.6 m long), which is normally used for commercial fishing of this species. The vessel was rigged to permit trap deployment without interfering with the equipment or the maneuvers required for long-line fishing. The main modifications were the implementation of a telescopic crane (Fig. 1a, 1b), the construction of a trap retrieval collar (Fig. 1c), and a rail (Fig. 1d) for moving the traps from the retrieval platform to the setting position (stern). A Spanish or “quebrado” type long-line was used. This gear is used frequently by the industrial fleet for commercial catches of Patagonian toothfish off far southern Chile. This gear usually consists of a mother line (PA ø3.5 mm), leaders (PA ø1.2 mm), and hooks (No. 9). The traps used were troncoconical in design; Figure 1. Rigging the vessel to operate with a) pots, b) telescopic crane, c) pot retrieval collar, and d) rail for moving the pots. Figura 1. Acondicionamiento de la nave para operar con a) trampas, b) grúa telescópica, c) anillo de recepción de trampas y d) riel para desplazamiento de trampas. 364 Lat. Am. J. Aquat. Res. with a circular base of 150 cm, an upper part of 86 cm; they were 90 cm high and made of FE (ø17 mm) and mesh panels (120 mm for the body and 38 mm for the mouth). These pots were operated using bait, specifically South American pilchard (Sardinops sagax), the same species used for long-line fishing. The pot fishing was done in the fishery grounds where the fleet typically operates and was randomly interspersed with long-line fishing. For each haul, the geographical position, date, depth, setting and retrieval time, gear soak time, and corresponding catch were noted, as were the characteristics of the gear used (mother line length, number of hooks/pots set). The main test statistics used to compare the pot and long-line fishing operations were the depth of setting and the setting, retrieval, and soak times; the corresponding average values were determined. A t-test (95% confidence interval and n1+n2 -2 g.l.) was used to compare the operational variables for the two types of fishing gear. In terms of fishing yields from long-line and trap operations, the catch per haul (kg haul-1), catch per hook set (kg hook-1), and catch per trap set (kg trap-1) were determined. It should be noted that the comparison of yields for different types of fishing gear is not a trivial matter, requiring a common unit of effort for both types of gear. Herein, the soak time (h) for each gear type and length of the mother line (m) were taken as the nominal unit of effort. These were used to determine the two indicators – catch per hour the gear was soaked (kg h-1) and catch per 1,000 m of mother line (kg 1,000 m-1) – used for the comparative analysis. To analyze the catches obtained per fishing gear, Patagonian toothfish specimens were measured at random according to their arrival on the processing deck. Each individual was sexed and total length (TL) was determined with an ichthyometer (± 1 cm). These records were used to determine the sexual proportion (% males) of the catches. Furthermore, the respective size frequency distributions were elucidated and individual measurements of total length were grouped in 2-cm intervals, thereby allowing us to compare the size structures of the Patagonian toothfish specimens caught with both types of fishing gear. In each case, we estimated the mean and median sizes, the variance, and the standard deviation. For purposes of comparison, in order to establish the differences in the size structures of the catches, the Kolmogorov-Smirnov test was used. Finally, in order to quantify the interaction of the gear with marine birds and mammals, we recorded the presence of these animals during setting and retrieval operations. These interactions were categorized as either many (> 10), few (≤ 10), or none (0). Later, we determined the percentage of hauls in which we recorded the presence/absence of these animals with the different types of fishing gear. Likewise, we noted the by-catch of birds, indicating the number of birds caught (live or dead) for each haul. RESULTS During the study, 167 fishing hauls were carried out from 1 to 28 January 2006 and from 17 June to 31 October 2006, spread over the entire study area (Fig. 2). Long-line fishing was done on 119 of the hauls and trap fishing on the remaining 48. The total catch of Patagonian toothfish was 60.9 ton, 81.2% from the long-lines and 18.8% from the pots. During the two fishing periods, 642,024 hooks were used, ranging from 2,704 to 10,296 hooks/haul ( x = 5.395 hooks haul-1), and 7,052 pots were used, ranging from 60 to 238 pots haul-1 ( x =147 pots haul-1). The average yield obtained by each gear was 0.08 kg hook-1 and 1.43 kg pot-1. The fishing hauls were done at average depths of 810 to 2,269 m (long-lines) and 630 to 2,020 m (pots). The average setting depth differed significantly by type of gear, averaging 1,581 m for long-lines and 1,318 m for pots (Fig. 3). The setting of the long-lines required 0.8 h for an average of 5,395 hooks haul-1, whereas setting the pots required 0.9 h for 147 pots haul-1. The average retrieval time was 5.2 h (long-lines) and 4.2 h (pots). Both setting and retrieval times differed significantly. The average soak time for the long-lines was 17.9 h and for the pots 19.1 h; this difference was not significant (Fig. 3). The fishing yields for the long-line operations were higher than those obtained with traps. The catch per haul with the traditional gear was 462.1 kg haul-1 whereas, with the pots, it was 253.6 kg haul-1. Likewise, when basing these values on the soak time and length of the mother line, they were 28.9 ton h-1 and 48.1 kg 1000 m-1 for long-lines and 17.3 kg h-1 and 28.6 kg 1000 m-1 for traps. Although the three indicators revealed clear differences between the types of gear, these were only statistically significant in terms of the catch per haul (kg haul-1) and the catch per length of mother line (kg 1000 m-1) (Fig. 4). During the study period, we sampled 2,058 specimens from long-lines and 663 from pots (Table 1). The global sexual proportion of the catches obtained with the two types of gear varied slightly, with more Fishing yields and size structures of Patagonian toothfish 365 Figure 2. Locations of the fishing hauls done with long-lines and pots during the study period. Figura 2. Posicionamiento de los lances de pesca con espinel y trampas efectuadas durante el período de estudio. Figure 3. Box plot of operational variables recorded with long-lines (e) and pots (t). Figura 3. Box plot de variables operacionales registradas con espinel (e) y trampas (t). males caught on long-lines than in pots (65.3% vs 49.6%). Nevertheless, males between 85 and 115 cm total length predominated the size structures of the catches from both types of gear (Fig. 5). On average, the trapped specimens were larger than those caught on long-lines (110.8 vs 105.1 cm TL) (Table 1). The size frequency distributions revealed, in both cases, a greater breadth of range in length for the females. The males showed an important mode of 101 cm TL (Fig. 6). The total size structures of the catches from both types of gear were similar. In fact, the results of the Kolmogorov- 366 Lat. Am. J. Aquat. Res. Figure 4. Box plot of yields obtained with long-lines (e) and pots (t). Figura 4. Box plot de los rendimientos obtenidos con espinel (e) y trampas (t). Smirnov test confirmed that no significant differences exist between the size frequency distributions for long-lines and pots (Fig. 7, Table 1). Regarding the matter of bird interactions, no birds were observed during trap setting and only a few (≤ 10 birds) were seen during 2.5% of the long-line settings. More birds were observed during retrieval, again with lower numbers for traps than long-lines. Birds were present, considering both observations of “few” and “many”, at only 34.9% of the trapping and 62.8% of the long-line operations (Table 2). During this study, bird mortality was 0.0031 birds 1000 hooks-1 and only occurred during long-line fishing. The presence of mammals around trapping and long-line fishing operations, both during setting and retrieval, was similar. In fact, with long-lines, mammals were observed in 80.7% of the setting and 99.1% of the retrieval operations whereas, with the pots, mammals were observed in 97.8% of the setting and 100% of the retrieval operations (Table 2). The personnel onboard reported that the trapped catch showed no evidence of attack by mammals. Figure 5. Sexual proportion of the size at catch of Patagonian toothfish obtained with long-lines and pots. Figura 5. Proporción sexual a la talla de las capturas de bacalao de profundidad obtenidas con espinel y trampas. 367 Fishing yields and size structures of Patagonian toothfish Table 1. Main statistics for total length of Patagonian toothfish caught with long-lines and pots and the results of the comparison of the respective size frequency distributions. Tabla 1. Principales estadígrafos de la longitud total en bacalao de profundidad capturado con espinel y trampas y resultados de la comparación de las respectivas distribuciones de frecuencias de tallas. Number of specimens Range (cm) Mean size (cm) Median (cm) Variance (cm2) Standard error (cm) Coefficient of variation Kolmogorov-Smirnov test Long-lines Males Females Total 1,331 727 2,058 57 - 171 55 - 183 55 - 183 103.1 108.8 105.1 103.5 110.0 104.8 287.2 619.9 411.7 0.5 0.9 0.5 0.2 0.2 0.2 Dn Dα=0.05 Males 325 67 - 203 104.9 103.5 321.3 1.0 0.2 0.023 0.26 Pots Females 338 63 - 221 116.4 113.3 982.1 1.7 0.3 Figure 6. Distribution of size frequencies in Patagonian toothfish by sex and fishing gear. Figura 6. Distribución de frecuencias de tallas en bacalao de profundidad por sexo y aparejo de pesca. Total 663 63 - 221 110.8 106.5 690.6 1.0 0.2 368 Lat. Am. J. Aquat. Res. Figure 7. Distribution of relative and accumulated size frequencies in Patagonian toothfish caught with long-lines and pots. Figura 7. Distribución de frecuencias de tallas relativas y acumuladas en bacalao de profundidad capturado con espinel y trampas. Table 2. Presence of birds and mammals (%) during gear setting and retrieval operations (long-lines and pots). Tabla 2. Presencia de aves y mamíferos (%) en las faenas de calado y virado de los aparejos (espinel y trampas). Percentage of hauls (%) Setting Retrieval N P M N P M None Few Many None Few Many (0 ind.) (≤ 10 ind.) (> 10 ind.) (0 ind.) (≤ 10 ind.) (> 10 ind.) Presence of birds 97.5 2.5 0.0 37.3 51.0 11.8 Presence of mammals 9.3 69.5 21.2 0.9 56.5 42.6 100.0 0,0 0.0 65.1 32.6 2.3 2.2 78.3 19.6 0.0 54.5 45.5 Number of individuals observed Presence of birds Presence of mammals DISCUSSION The fishing activity exercised on Patagonian toothfish has historically been the subject of studies and controversy. The intense exploitation to which the species has been subjected around the Antarctic continent and in the waters off southern Chile, as well as the implications of this for the ecosystem, have led to the constant evaluation of long-line fishing operations and Long-lines Pots discussions as to the possibility of using an alternative fishing gear that would allow efficient fishing without interfering with other marine populations. However, such a change requires more experiments to compare types of fishing gear. In this sense, the use of traps has been considered as an alternative to the long-line. However, a comparison of the two presents some difficulties since nominally the effort used for catching the resource with the Fishing yields and size structures of Patagonian toothfish two types of gear are not equivalent. Therefore, although hooks and traps use a similar fishing technique, requiring bait to attract the fish and soak time for the catch process to take place, the traditional yield indicators used to contrast the results of fishing operations cannot be used herein. In this case, one of the first aspects of the fishing operations to compare is whether both types of gear act on the same fraction of the stock from the point of view of its structure. According to the size frequency distributions, although the average specimens caught with pots were larger than those on the long-lines (110.8 vs 105.1 cm TL), the size structures revealed no significant differences. Thus, we can infer that the differences found are basically associated with factors related to the operation and effectiveness of the gear. Our analysis showed significant differences in the operation of the gear. The long-lines were set at greater depths; the pots were set at shallower depths due to problems with the retrieval equipment onboard that impeded deploying the traps any deeper. Likewise, gear operation differed significantly during setting and retrieval, with the maneuvering time being longer for long-lines during both operational phases. The total difference generated in the haul was 1.1 h (66 min). This value is, in practical terms, irrelevant and can be attributed to the greater depth at which the long-lines were set. The soak time recorded for the two types of gear differed, but not significantly. Gear soak time is defined a priori and usually does not exceed 24 h in order to prevent the catch being attacked by “mixines” or “pulguilla” predators (Anphipoda: Crustacea). Nonetheless, the soak time is subject to the weather conditions and, when these are adverse, can last up to three or more days. The fishing yields also differed, with greater values found for the long-lines than for the pots. The catch per haul with long-lines was nearly double that with pots (462.1 kg haul-1 vs 253.6 kg haul-1). The same was true for the yield in function of the length of the mother line (long-lines: 48.1 kg 1000 m-1 vs pots: 28.6 kg 1000 m-1). In spite of the lack of clarity regarding the equivalence in the catchability of these two types of gear – no hook-trap relationship has been defined and between-gear comparisons are complex – the results show that the long-lines are more effective. Hence, from this point of view, the use of pots is not an option for the near future. It should be noted that this experience of trapping Patagonian toothfish is unique in Chile. Only one similar experiment was found in the literature, a report by Agnew et al. (2001) of Shag Rocks and the waters 369 to the northeast of South Shetland Island in the South Atlantic. These authors reported lower yields per pot than those found herein (1.28 kg trap-1 vs 1.43 kg trap1 ). However, they operated under different conditions and in fishing zones with different abundances. One of the main advantages of the pots was the lack of incidents with birds. Nevertheless, birds were present around the fishing operations. The use of traps eliminated bird mortality as well as bait consumption by birds, thereby reducing the real fishing effort by up to 26% of the line (Brothers & Foster, 1997). It should be mentioned that, according to the number of hooks set, the bird mortality rate recorded in the present study (0.003 birds 1000 hooks-1) was significantly inferior to that obtained in 2001 by Moreno et al. (2003), who reported mortality of 0.36 birds 1000 hooks-1. Interactions with mammals were also altered. The trapping operation eliminated predatory attacks by mammals on the catch, with none of the caught specimens showing signs of having been attacked by these animals. This is an important factor for the fishery users, since such attacks reduce the effective catch on the long-line. Moreno et al. (2003) calculated a monetary loss of US$ 138 per haul caused by marine mammals and of US$ 92,684 for the entire fleet in the fishing season, due to the high value of this resource on the international markets. The present research shows the feasibility of employing pots for catching Patagonian toothfish. However, this gear was not sufficiently favorable for the fishers. The main difficulties in using the pots were operational aspects due, by and large, to the considerable depth at which this resource is caught, the weight of the gear, and the complexity of its operation. Longlines are clearly more efficient than pots. Here it is important to mention that, parallel to the execution of this project, the industrial fleet introduced “cachaloteras” (anti-predation devices) on their long-lines. This modification basically involves a net that wraps around the leaders and hooks during retrieval, impeding predation by sperm whales and orcas on the caught specimens, thereby incrementing the effectiveness of the long-lines. The experience of fishing with pots can be repeated successfully with other resources, mainly those available at lesser depths and that are affected by birds and/or mammals. Nonetheless, the use of these traps requires technological changes in the fishing vessels that should be analyzed and evaluated for the target species, particularly regarding those aspects related directly to the capacity of the winches to raise the gear. 370 Lat. Am. J. Aquat. Res. Finally, it is necessary to state that adopting the use of pots as a fishing method necessitates a study of the impact this change would produce on the exploited population. Such a study should include the “ghost fishing” that would arise due to the loss of pots, which continue to attract and trap specimens indefinitely, causing mortality that could become significant and that should be incorporated into the population evaluation models. An evaluation could be done of the use of biodegradable materials in some sections of the pot that would allow the organisms to escape after a certain time, thus minimizing or eliminating this additional source of mortality. ACKNOWLEDGEMENTS The authors thank Pesca Chile S.A., for allowing us to carry out the present investigation and, in particular, the ship-owners of the vessel “Tierra del Fuego” and all its crew, whose assistance was important during experimental fishing activities. We especially thank the Operations Manager, Mr. Enrique Gutiérrez, for his support and constant collaboration, which helped make this study a success. We also thank the Fishery Undersecretary, who permitted this project, and especially Mr. Marcelo García for his willingness to resolve administrative issues for the project. REFERENCES Agnew, D., T. Daw, M. Purves & G. Pilling. 2001. Fishing for toothfish using pots: results of trials undertaken around South Georgia, March-May 2000. CCAMLR Sci., 8: 93-105. Angliss, R. & D. DeMaster. 1997. Differentiating serious and non-serious injury of marine mammals taken incidental to commercial fishing operations: Report of the Serious Injury Workshop. April 1-2, Silver Spring, MD, USA, 51 pp. Ashford, J.R., J.P. Croxall, P.S. Rubilar & C. Moreno. 1994. Seabird interactions with longlining operations for Dissostichus eleginoides at the South Sandwich Islands and South Georgia. CCAMLR Sci., 1: 143153. Ashford, J.R., J.P. Croxall, P.S. Rubilar & C.A. Moreno. 1995. Seabird interactions with longlining operations for Dissostichus eleginoides around South Georgia, April to May 1994. CCAMLR Sci., 2: 111-121. Ashford, J.R., P.S. Rubilar & A.R. Martin. 1996. Interactions between cetaceans and longline fishery operations around South Geogia. Mar. Mamm. Sci., 12(3): 452-457. Received: 24 July 2008; Accepted: 5 August 2009 Barea, L., I. Loinaz, Y. Marin, C. Rios, A. Saralegui, A. Stagi, R. Vaz-Ferreira & N. Wilson. 1994. Mortality of albatrosses and other seabird produced by tuna long-line fisheries in Uruguay. CCAMLR Doc. WGIMALF-94/17. Brothers, N. & A.B. Foster. 1997. Seabird catch rates: an assessment of causes and solutions in Australia’s domestic tuna longline fishery. Mar. Ornit., 25: 37-42. Cascorbi, A. 2004. Seafood watch. Seafood Report: “Chilean Seabass”. Patagonian toothfish (Dissostichus eleginoides) and Antarctic toothfish (Dissostichus mawsoni). Doc. Monterey Bay Aquarium, 15 pp. Gon, O. & P.C. Heemstra. 1990. Fishes of the Southern Ocean. Nototheniidae: Genus Dissostichus. JLB. Smith Institute of Ichthyology, Grahamstown, South Africa, pp 285-289. Moreno, C., R. Hucke-Gaete & J. Arata. 2003. Interacción de la pesquería del bacalao de profundidad con mamíferos y aves marinas. Informe Final, Proyecto FIP 2001-31: 211 pp. Oyarzún, C., S. Gacitúa, M. Araya, L. Cubillos, R. Galleguillos, C. Pino, G. Aedo, M. Salamanca, M. Pedraza & J. Lamilla. 2003a. Asignación de edades y crecimiento de bacalao de profundidad. Informes Técnicos FIP-IT/2001-17: 1-74. Oyarzún, C., S. Gacitúa, M. Araya, L. Cubillos, R. Galleguillos, C. Pino, G. Aedo, M. Salamanca, M. Pedraza & J. Lamilla. 2003b. Monitoreo de la pesquería artesanal de bacalao de profundidad entre la VIII y IX Regiones. Informes Técnicos FIP-IT/2001-16: 1-98. Pavez, P., T. Melo & R. Méndez. 1968. Pesca exploratoria con espineles de profundidad. Informe Técnico convenio Universidad Católica de ValparaísoMinisterio de Agricultura, Chile, 45 pp. Salas, R., H. Robotham & G. Lizama. 1987. Investigación del bacalao en la VIII Región. Informe Técnico, Intendencia Región Bío-Bío e Instituto de Fomento Pesquero, Talcahuano, 183 pp. Young, Z., H. Robotham & R. Gili. 1996. Evaluación de la pesquería y del stock de bacalao de profundidad al sur del paralelo 47° L.S. Informe Final FIP 94-10: 44 pp. Young, Z., H. González & P. Gálvez. 1998. Análisis de la pesquería de bacalao de profundidad en la zona sur-austral. Informe Final FIP 96-40: 54 pp. Zuleta, A., C. Moreno, P. Rubilar & J. Guerra. 1996. Modelo de estrategias de explotación del bacalao de profundidad bajo incertidumbre del tamaño y rendimiento sustentable del stock. Informe Final Proyecto FIP 96-41: 165 pp. Lat. Am. J. Aquat. Res., 37(3): 371-380, 2009 Haliporoides diomedeae frente a la costa norte de Perú “Deep-sea fisheries off Latin America” P. Arana, J.A.A. Perez & P.R. Pezzuto (eds.) DOI: 10.3856/vol37-issue3-fulltext-8 Research Article Distribución, abundancia y estructura poblacional del langostino rojo de profundidad Haliporoides diomedeae (Crustacea: Decapoda: Solenoceridae) frente a la zona norte de Perú (2007-2008) Edward Barriga1, Carlos Salazar1, Jacqueline Palacios1, Miguel Romero1 & Aldo Rodríguez1 1 Instituto del Mar del Perú, Esquina Gamarra y General Valle s/n, Chucuito, Callao, Perú RESUMEN. Se determinó la distribución, abundancia relativa y estructura poblacional de Haliporoides diomedeae frente a la zona norte de Perú (3º30’S-10º00’S), con los resultados de dos cruceros desarrollados en 2007 y 2008 a bordo del B/O Miguel Oliver, que realizó investigaciones de la fauna bentodemersal entre 200 y 1.500 m de profundidad, mediante un muestreo al azar estratificado de arrastre de fondo. En 122 lances realizados en cuatro sectores y tres estratos se capturó un total de 48.056 kg, compuestos por ~347 especies de peces e invertebrados. H. diomedeae fue la especie de langostino más importante en las capturas (411 kg), con los mayores niveles de abundancia entre 600 y 1.600 m al norte de los 7ºS, con valores medios de captura por unidad de área (CPUA) entre 83,4 y 211 kg km-2 y una biomasa total estimada de 1.139,74 ton (± 245,6 ton). Las hembras presentaron una longitud cefalotorácica media de 40,6 mm, rango de 14,5 y 74,5 mm y grupo modal dominante de 30 mm, mientras que en los machos la media fue de 30,6 mm, rango 16 a 33 mm y grupo modal principal de 27 mm; para ambos sexos se identificaron seis grupos modales, dimorfismo sexual y gradiente batimétrica. La relación talla-peso fue de tipo alométrico. En general, las características de distribución, abundancia y estructura poblacional de H. diomedeae permiten considerarla como una especie potencialmente explotable en el norte del mar peruano. Palabras clave: Haliporoides diomedeae, distribución, abundancia, estructura poblacional, zona norte, Perú. Distribution, abundance, and population structure of deep red shrimp Haliporoides diomedeae (Crustacea: Decapoda: Solenoceridae) off northern Perú (2007-2008) ABSTRACT. The distribution, relative abundance, and population structure of Haliporoides diomedeae was determined off northern Perú (3º30’S-10º00’S) by analyzing data from two cruises carried out in 2007 and 2008 on board the B/O Miguel Oliver to assess the bentho-demersal fauna between 200 and 1,500 m depth, using a stratified random bottom trawl design. The total catch from the 122 hauls (covering four sectors and three strata) was 48,056 kg, with ~347 fish and invertebrate species. H. diomedeae was the most important shrimp in the catches (411 kg), with the highest abundance levels between 600 and 1,600 m depth north of 7º00’S. The mean catch per unit area (CPUA) was between 83.4 and 211 kg km-2. The total biomass was estimated to be 1,139.74 ton (± 245.6 ton). The mean carapace length of the females was 40.6 mm, with a range of 14.5 to 74.5 mm and a main modal group of 30 mm; the mean carapace length of the males was 30.6 mm, with a range of 16 to 63 mm and a main modal group of 27 mm. Males and females showed six modal groups, sexual dimorphism, and a bathymetric gradient. The length-weight relationship was allometric. Given the distribution, abundance, and size structure of H. diomedeae off the northern Peruvian coast, it can be considered a potentially exploitable species in the sea off northern Perú. Keywords: Haliporoides diomedeae, distribution, abundance, population structure, northern Perú. ________________________ Corresponding author: Edward Barriga (ebarriga@imarpe.gob.pe) 371 372 Lat. Am. J. Aquat. Res. INTRODUCCIÓN MATERIALES Y MÉTODOS Desde mediados de la década de los 60’s a la fecha, se ha desarrollado un importante número de exploraciones pesqueras en las zonas batial y arquibentónica del mar peruano, a bordo de diferentes buques de investigación (Del Solar & Álamo, 1970; Del Solar & Mistakides, 1971; Vílchez et al., 1971; Del Solar & Flores, 1972; Kameya et al., 1997, 2006b; JDSTA-IMARPE, 2004), para estudiar los componentes faunísticos de estos hábitat e identificar especies potenciales para el desarrollo de pesquerías de profundidad. Todas ellas han señalado a la gamba roja o langostino rojo de profundidad Haliporoides diomedeae (Faxon, 1893) como componente importante de su biocenosis, considerándose una especie potencialmente explotable en el norte de Perú, debido a la amplitud de su distribución y niveles de abundancia (Del Solar & Álamo, 1970; Vélez et al., 1992; Kameya et al., 2006a). Se describen y analizan los resultados de dos campañas de investigación efectuadas en el mar peruano, en la primavera de 2007 y 2008, a bordo del Buque Oceanográfico Español B/O Miguel Oliver, cubriendo la plataforma y talud continental entre 200 y 1.500 m de profundidad, desde Puerto Pizarro (3º30’S) a Huarmey (10º00’S) (Fig. 1). La evaluación se realizó mediante un muestreo al azar estratificado de fondo, usando una red de fondo tipo Lofoten con nomenclatura por diseño de 456 x 140 de Polietileno (PE) para fondos duros; con clasificación FAO perteneciente al grupo de redes de arrastre de fondo con puertas, operada por popa del buque (OTB-2 Código ISSCFG 03.1.2), con tamaño de malla en el copo de 35 mm. La duración promedio por operación de pesca (lance) fue de 30 min de arrastre efectivo, monitoreado por el sistema Net sonda ITI SIMRAD, a una velocidad media de 3 nudos. Todos los lances fueron realizados durante el día (6:00 a 18:00 h) con un promedio de cinco lances diarios. El área de estudio fue dividida en cuatro sectores y cada uno de ellos en tres estratos de profundidad (200500, 500-1000 y 1000-1500 m) (Tabla 1, Fig. 1), totalizando 12 estratos. Cada estrato fue a su vez dividido en unidades básicas de muestreo (UBM) de 9 mn2 de área (cuadrantes de 3 x 3 mn), de las que se seleccionó aleatoriamente una muestra, cuyo tamaño fue proporcional a la extensión del área. Los sectores A y B fueron estudiados durante la campaña 2007 (14 de septiembre al 10 de octubre) y los sectores C y D en la campaña 2008 (2 de septiembre al 2 de octubre). Previa a la ejecución de los lances, se realizó el levantamiento batimétrico de las UBM seleccionadas al azar y con estos insumos se planificó la estrategia de arrastre. Para la localización de áreas arrastrables se utilizó un ecosonda Multihaz SIMRAD EM-302 de rango medio de gran resolución, alta velocidad de adquisición de datos, fiabilidad y facilidad de operación. Se trabajó con una frecuencia de 30 Khz, con pulsos de tipo CW y Chirp (Fm), que aseguró una completa capacidad de “barrido”. En el caso que las UBM seleccionadas no presentaron condiciones de arrastre adecuadas, se optó por ubicar una zona adyacente o reasignar aleatoriamente una UBM alterna. Durante la ejecución de cada lance se registraron las principales características operacionales (velocidad de arrastre, tiempo efectivo, posición geográfica, rumbo, longitud del cable, entre otras). Asimismo, se utilizó el sistema Net sonda ITI SIMRAD, con sensores que registraron la abertura horizontal entre puertas y alas, abertura vertical, posición de la red, profundidad, temperatura y registro del cardumen que entra en la H. diomedeae es un crustáceo decápodo bentónico de la familia Solenoceridae, que se distribuye desde el golfo de Panamá (7º30’N) hasta los 42º30’S (Chile) (Arana et al., 2003), sobre el talud continental a profundidades que varían entre 240 y 1.866 m (Méndez, 1981). En Perú, diferentes estudios han contribuido significativamente al conocimiento de las características poblacionales y biológicas de esta especie (Del Solar & Álamo, 1970; Del Solar & Mistakides, 1971; Vílchez et al., 1971; Del Solar & Flores, 1972; Kameya et al., 1997; JDSTA-IMARPE, 2004). Sin embargo, hasta el momento no se ha desarrollado ninguna pesquería directa o indirecta de este recurso; manteniéndose las poblaciones de langostinos de profundidad en condiciones prístinas no sometidas a presión de pesca y potencialmente explotables. En Chile, la captura de H. diomedeae ha sido considerada como actividad asociada a la pesca de arrastre dirigida a camarón nailon (Heterocarpus reedi), adquiriendo a partir de 1999 una mayor importancia relativa dentro de la pesquería de crustáceos demersales, principalmente en la región de Valparaíso (Arana et al., 2002; SUBPESCA, 2004). En ese sentido, este documento tiene por objetivo fortalecer los conocimientos biológicos y poblacionales del langostino de profundidad H. diomedeae, como recurso potencialmente explotable en el norte del mar peruano, a partir de los resultados obtenidos en dos campañas de investigación realizadas en 2007 y 2008, en el marco del convenio de cooperación suscrito entre el Instituto del Mar de Perú y la Secretaría General del Mar de España. Haliporoides diomedeae frente a la costa norte de Perú boca de la red. La información monitoreada a través de este equipo permitió controlar los arrastres en sus diferentes fases y fue insumo para las estimaciones del área barrida. El área barrida (Abi) se estableció como el producto de la velocidad (Vi), tiempo efectivo de arrastre (ti) y abertura horizontal (Ahi) en cada lance: Abi = ti Vi Ahi La estimación de la biomasa se realizó mediante el método de área barrida, que consiste en calcular la densidad de la especie objetivo, relacionando su captura con el área o sector de barrido efectivo y extrapolándola a la totalidad del área de cada estrato. De este modo el principal supuesto es que este índice de densidad es proporcional a la abundancia presente en el área prospectada (estrato) (Alverson & Pereyra, 1969; Espino & Wosnitza-Mendo, 1984; Sparre & Venema, 1995), considerando un coeficiente de capturabilidad (factor de eficiencia) equivalente a la unidad. Como índice de densidad se utilizó la captura por unidad de área (CPUA expresada en kg km-2), que es la captura de la especie objetivo en el lance i por unidad de área barrida del mismo lance. CPUAi = Ci Abi Para el cálculo de la CPUA promedio ( CPUAe ) por estrato, se consideró la media aritmética de las CPUA de todos los lances efectuados en el estrato (n). CPUAe = ∑ CPUAi n La biomasa vulnerable (Be) presente en una unidad espacial (estrato) quedó determinada por el estimador de la captura por unidad de área ( CPUAe ), amplificado o expandido al área total (Ae) de la región o conglomerado (estrato), de acuerdo a la siguiente expresión: Be = CPUAe Ae y la biomasa total (Bt) corresponde a la sumatoria de las biomasas estimadas en todos los estratos (Be) Bt = e ∑ Be 1 En cada lance, todos los ejemplares de Haliporoides diomedeae fueron separaron por sexo y se les midió la longitud cefalotorácica (Lc) al mm inferior, con un calibre (vernier) de 0,1 mm de precisión, y su correspondiente peso corporal (g) con una balanza digital (0,01 g de precisión). Con estos datos se analizó la proporción sexual, estimada como el número de 373 hembras o machos en relación al número total de ejemplares muestreados por rango de talla; se obtuvo la estructura de tallas por distribución de frecuencias agrupadas en rangos de 1 mm de Lc (por sexo, sector y estrato) y en grupos modales que fueron determinados por el método de Bhattacharya siguiendo la rutina específica en el programa FiSAT II (Gayanilo & Pauly, 1997; Gayanilo et al., 2003). Se estimó la talla media y desviación estándar para cada caso; asimismo, se analizó la relación talla-peso a través de la función de poder tradicional, cuyos parámetros se estimaron con ajuste de mínimos cuadrados, linealizando la función mediante el logaritmo natural (ln) (Sparre & Venema, 1995). Toda la información, producto de los muestreos, fue inicialmente recopilada en formularios y posteriormente almacenada y procesada en hojas de cálculo Excel. RESULTADOS Durante las campañas de 2007 y 2008 se ejecutaron 122 operaciones de pesca (lances) que cubrieron todos los sectores y estratos del área de estudio (Tabla 1, Fig. 1). Se obtuvo 48.055,57 kg de captura total, de los cuales el 92% correspondió a 147 especies de peces, 4,2% a 68 especies de crustáceos, 1,3% a 34 especies de equinodermos, 1,1% a 35 especies de moluscos y el resto a 33 especies de otros grupos taxonómicos, como poliquetos y cnidarios. De todas las especies de langostinos capturados, la gamba roja Haliporoides diomedeae fue la más importante en las capturas (411 kg), con alta presencia en los lances efectuados a profundidades mayores de 500 m (Tabla 2), principalmente en los sectores A y B (norte de 7ºS), seguido en importancia por Benthesicymus tanneri, Heterocarpus vicarius, H. hostilis y Nematocarcinus agassizii. H. diomedeae se distribuyó entre 600 y 1600 m, estando ausente en profundidades menores a 500 m. Se distinguieron tres zonas con diferencias en distribución y abundancia: la primera, al norte de los 4º30’S con mayor abundancia entre 600 y 1000 m; la segunda, entre 4º30’S y 7º00’S con amplia presencia y con los mayores valores de abundancia entre 1000 y 1500 m de profundidad, y la tercera zona ubicada al sur de los 7ºS, con bajos niveles de abundancia relativa, entre 600 y 1200 m (Figs. 1 y 2). La mayor abundancia relativa de H. diomedeae se encontró en los estratos 2 y 3 de los sectores A y B, con valores medios entre 191,7 kg km-2 y 211 kg km-2, 374 Lat. Am. J. Aquat. Res. Tabla 1. Número de operaciones de pesca (lances) efectuados durante dos campañas de investigación (2007-2008), por sectores y estratos de profundidad. Table 1. Number of fishing operations (hauls) carried out during two research cruises (2007-2008), by sector and stratum. Sector Estrato (m) A B C D 3º30’S-5º00’S 5º00’S-7º00’S 7º00’S-8º30’S 8º30’S-10º00’S Total 1 200-500 13 7 18 10 48 2 500-1000 9 9 12 10 40 3 1000-1500 7 11 8 8 34 29 27 38 28 122 Total Figura 1. a) Distribución geográfica de las operaciones de pesca de arrastre por estrato y sector. b) Distribución y abundancia relativa (kg km-2) de Haliporoides diomedeae frente a la zona norte de Perú. Cruceros de investigación 2007 y 2008. Figure 1. a) Geographic distribution of trawl fishing operations (hauls) by strata and sector. b) Distribution and relative abundance (kg km-2) of Haliporoides diomedeae off northern Perú. Research cruises in 2007 and 2008. 375 Haliporoides diomedeae frente a la costa norte de Perú Tabla 2. Porcentaje de lances con presencia de Haliporoides diomedeae por sector y estrato, en dos cruceros de investigación frente a la zona norte de Perú (2007-2008). Table 2. Percentage of fishing operations (hauls) with catches of Haliporoides diomedeae during two research cruises off northern Perú (2007-2008) by sector and stratum. Estrato (m) 1 2 3 Total 200-500 500-1000 1000-1500 A 3º30’S-5º00’S 15.38 100,00 100,00 62,07 Sector B C 5º00’S-7º00’S 7º00’S-8º30’S 77,78 100,00 66,67 D 8º30’S-10º00’S 75,00 87,50 42,11 Total 4,17 80,00 82,35 50,82 70,00 37,50 35,71 Figura 2. Variación latitudinal y batimétrica de la distribución y abundancia relativa (log CPUA+1) de Haliporoides diomedeae frente a la zona norte de Perú (el tamaño de las burbujas es proporcional a los valores de abundancia relativa). Cruceros de investigación 2007 y 2008. Figure 2. Latitudinal and bathymetric variations of distribution and relative abundance (log CPUA+1) of Haliporoides diomedeae off northern Perú (bubble size is proportional to relative abundance). Research cruises in 2007 and 2008. respectivamente, mientras que en los sectores C y D la mayor abundancia se obtuvo en el estrato 2 con valores de 26,34 kg km-2 y 13,83 kg km-2 respectivamente (Tabla 3). La biomasa total estimada por el método de área barrida fue de 1.139,74 ton (± 245,6 ton), de las cuales el 89% se registró en los estratos 2 y 3, entre 3º30’S y 7º00’S (Tabla 4). Para determinar la estructura por tallas de H. diomedeae en el área evaluada, se midió la longitud cefalotorácica de 5.701 individuos, de los cuales el 64,4% fueron hembras y 35,6% machos. Las hembras presentaron una talla media de 40,6 mm en un rango de 14,5 y 74,5 mm con al menos seis grupos modales distinguibles (17, 30, 40, 48, 57 y 60 mm), de los cuales el Tabla 3. Captura por unidad de área (kg km-2) de Haliporoides diomedeae por sector y estrato. Table 3. Catch per unit of area (kg km-2) of Haliporoides diomedeae by sector and stratum. Sector B A Estrato CPUA (kg km-2) Desv. estándar CPUA (ton mn-2) Biomasa (ton) 1 0,05 0,15 0,0002 0,11 2 191,70 94,36 0,658 271,84 3 210,97 204,58 0,724 232,58 1 2 83,44 137,42 0,286 132,38 C 3 196,89 100,72 0,675 373,33 1 2 26,34 41,24 0,090 71,79 D 3 14,47 19,50 0,050 24,96 1 2 13,83 19,43 0,047 29,42 3 1,62 2,73 0,006 3,35 376 Lat. Am. J. Aquat. Res. Tabla 4. Biomasa (ton) estimada de Haliporoides diomedeae por sector. IC: intervalo de confianza, CV: coeficiente de variación. Table 4. Biomass (ton) of Haliporoides diomedeae by sector. IC: confidence interval, CV: coefficient of variation. Sector Total A B C D Biomasa (ton) 504,52 505,70 96,74 32,77 1139,74 IC (± ton) 169,08 164,91 62,93 23,96 245,59 17,10 16,64 33,19 37,30 10,99 CV % grupo de 30 mm fue el más abundante en el estrato 2 de todos los sectores, representando el 44% del total. Los machos se presentaron en un rango de tallas entre 16 y 63 mm de longitud cefalotorácica, talla media de 30,6 mm y seis grupos modales (17, 27, 34, 38, 43 y 50 mm) de los cuales el grupo de 27 mm fue el más abundante en las capturas (60%), principalmente en el estrato 2 de toda el área, mientras que el grupo de 34 mm lo fue en el estrato 3. La diversidad de grupos modales fue similar en todos los sectores (Fig. 3). Hembras y machos mostraron un gradiente batimétrico de tallas, los ejemplares más grandes se encontraron a mayor profundidad. No es claramente distinguible una gradiente latitudinal. La discriminación por grupos modales mostró un notable dimorfismo sexual, que se hizo más evidente a partir del grupo 2 (~28 mm). Las hembras y los machos del grupo 3 presentaron talla media de ~40 y ~34 mm respectivamente; el grupo 4 en hembras tuvo ~48 mm y en machos ~38 mm; y el grupo 5 tuvo una talla media de ~57 mm para hembras y ~43 mm en machos (Tabla 5). El análisis de la proporción sexual por tallas, permitió distinguir que en los grupos más juveniles hubo un predominio de machos en una proporción de 3:1 (tres machos por una hembra), situación que se revirtió a partir de 36 mm, donde las hembras fueron dominantes, alcanzando casi la totalidad en tallas superiores a 45 mm (Fig. 4). La alternancia observada en 30 y 34 mm fue basada en el dimorfismo sexual, es decir no hubo un grupo importante de machos formando un grupo modal en 30 mm (grupo 2, en el que los machos miden 27 mm), asimismo no hubo un grupo de hembras formando un grupo modal en 35 mm (grupo 3, donde las hembras tienen 40 mm). Figura 3. Frecuencia relativa (%) de la longitud cefalotorácica (mm) de Haliporoides diomedeae por sectores (A, B, C y D), en los estratos 2 y 3, en hembras y machos. Figure 3. Relative frequency (%) of carapace length (mm) of Haliporoides diomedeae by sectors (A, B, C, D) and strata 2 and 3, for females and males. Haliporoides diomedeae frente a la costa norte de Perú 377 Las relaciones talla (longitud cefalotorácica) y peso corporal (g) mostraron una relación del tipo alométrico negativo (Fig. 5), similar a lo reportado por Arana et al. (2003). Tabla 5. Longitud cefalotorácica (Lc mm) media y porcentaje de incidencia de los grupos modales por sexo de Haliporoides diomedeae. DE: desviación estándar. Table 5. Mean carapace length (Lc mm) and incidence (%) of modal groups by sex for Haliporoides diomedeae. DE: Standard deviation. Grupo 1 2 3 4 5 6 Hembras Lc Media DE % 17,2 1,6 1,13 29,6 2,7 42,78 40,0 1,9 20,15 47,8 3,1 23,54 56,8 2,4 7,37 61,7 2,2 5,03 Machos Lc Media DE 17,3 1,0 27,4 2,1 34,0 1,4 38,1 1,7 42,8 1,8 49,5 0,4 % 0,62 59,53 21,82 13,55 4,27 0,21 Figura 4. Proporción sexual de hembras y machos por rango de talla de Haliporoides diomedeae. Figure 4. Sexual proportion of females and males of Haliporoides diomedeae by size range. Figura 5. Representación de la relación talla-peso de Haliporoides diomedeae por sexo y ajuste de la curva de poder correspondiente, frente a la zona norte de Perú (2007-2008). a) Hembras, b) machos, y c) total. Figure 5. Length-weight relationship representation of Haliporoides diomedeae by sex and power curve adjust, off northern Perú (2007-2008). a) Females, b) males, and c) total. 378 Lat. Am. J. Aquat. Res. DISCUSIÓN La amplia presencia del langostino de profundidad Haliporoides diomedeae en el área estudiada, confirma la existencia de condiciones ambientales favorables para el desarrollo biológico y poblacional de esta especie, principalmente en el rango de 600 a 1500 m entre 4º30’S y 7º00’S, relacionado con la presencia del Agua Intermedia Antártica (Kameya et al., 1997), fondo fangoso-arenoso (Méndez, 1981) y fuertemente asociado con la distribución de los langostinos Heterocarpus hostilis y Nematocarcinus agassizii al norte de los 4º30’S y con Benthesicymus tanneri al sur de esta latitud, principalmente en profundidades mayores a 800 m. La situación anterior difiere con lo reportado para esta especie en la zona central de Chile, cuyo rango batimétrico está entre 330 y 682 m, asociado a camarón nailon (Heterocarpus reedi) y langostino amarillo (Cervimunida johni) sometidos a explotación, vulnerable a las redes de pesca de la flota arrastrera y con creciente presencia en las capturas (Arana et al., 2002, 2003). En cuanto a la abundancia relativa de H. diomedeae, los valores descritos en esta investigación son superiores a los indicados para los alrededores del Banco de Máncora en 1996, (Kameya et al., 1997); asimismo, mayores a los registrados para esta misma área entre 1998 y 2002, cuyos valores no superaron los 114 kg km-2, aunque ligeramente inferiores a los reportados en 2003 (553 kg km-2), en que se incluyeron todos los langostinos y cangrejos (JDSTAIMARPE, 2004). Por otro lado, en la costa central de Chile se han reportado densidades medias del orden de 552 y 714 kg km-2, y niveles de biomasa de ~645 ton en un área de 1.159,8 km2 (Arana et al., 2003), superiores en densidad media e inferiores al nivel de biomasa total observado en este estudio. El límite superior del rango de tallas y la talla media de H. diomedeae en ambos sexos, obtenidos en este estudio, fueron superiores a los anteriormente señalados para Perú (Méndez, 1981; Kameya et al., 1997), resaltando la existencia de langostinos de mayor talla a profundidades mayores a 1.000 m. Sin embargo, coinciden en la distribución polimodal de las frecuencias de tallas, con el grupo modal predominante de ~30 mm para hembras y ~27 mm para machos. En relación a la estructura de tallas observada en Chile (Arana et al., 2002, 2003, 2006), aunque se presentan rangos de tallas similares, las tallas medias para Perú son superiores tanto en machos como hembras (en este estudio); asimismo, es notorio que la estructura demográfica del stock del centro de Chile muestra escasa presencia de los grupos modales de tallas mayores, evidencia del efecto de la actividad pesquera que muestra una disminución paulatina de las tallas medias en las capturas en las principales zonas de pesca (SUBPESCA, 2004). Los aportes al conocimiento de la biología de esta especie en el Perú son escasos y principalmente han enfatizado las relaciones talla-peso (Méndez, 1981; Kameya et al., 1997), cuyos resultados son similares a los mostrados en este trabajo. Mayores contribuciones se han realizado en Chile, destacando la evidencia de dimorfismo sexual en estructura por tallas o grupos modales (confirmados en este estudio), parámetros de crecimiento individual y talla de madurez gonadal establecido para machos en 32,5 mm y 36,5-37,5 mm para hembras (Arana et al., 2002, 2003). En las zonas batial y arquibentónica de Perú se han identificado 247 especies de peces y 284 de invertebrados, cuyo grado de diversidad está asociado a la profundidad, con el más alto valor entre 500 y 1.000 m y en menor escala entre 1.000 y 1.500 m (Kameya et al., 2006b), zona donde se encontró la mayor abundancia de H. diomedeae. Esta situación permite prever que el ejercicio de cualquier actividad pesquera con redes de arrastre o artes de pesca poco selectivos en estas áreas orientadas a la pesquería del langostino rojo de profundidad, afectaría notablemente a un alto número de especies de peces e invertebrados que cohabitan con éste, las que serían capturadas como pesca incidental y probablemente descartadas, con los subsecuentes efectos sobre la biocenosis batial y arquibentónica de Perú. Siendo prioritaria para Perú la necesidad de identificar especies con potencial pesquero, que permitan satisfacer la demanda pesquera nacional e internacional, crear oportunidades de empleo, estimular la inversión pesquera y proveer pesquerías alternativas ante el decrecimiento de las pesquerías tradicionales (Kameya et al., 2006a), las especies de langostinos de profundidad, principalmente la gamba roja H. diomedeae, se perfilan con un importante potencial, no sólo por su disponibilidad sino por su apreciada demanda comercial. Los resultados de este trabajo ponen a disposición de la comunidad científica y pesquera nacional e internacional información reciente sobre distribución, disponibilidad, estructura poblacional y abundancia relativa de esta especie. Sin embargo, se estima prudente advertir que la decisión de establecer una actividad pesquera sostenible, amerita el desarrollo de programas de investigación previos que enfaticen estudios de biología reproductiva, ecología trófica, crecimiento, dinámica poblacional, así como estudios de rendimiento pesquero y selectividad, que provean información para el manejo y administración pesquera sostenible y responsable, con un enfoque ecosistémico y que dinamice el sector pesquero y la economía del país. Haliporoides diomedeae frente a la costa norte de Perú AGRADECIMIENTOS A la Secretaría General del Mar de España y al Instituto del Mar del Perú, de cuyas campañas de investigación se extrajeron los datos necesarios para este estudio; así como al grupo científico español y peruano que participó en los muestreos y análisis de datos. Al Dr. Wilmer Carbajal, quien contribuyó con su revisión, críticas y aportes a la elaboración de este trabajo; Asimismo, especial reconocimiento al Dr. Patricio Arana de la Pontificia Universidad Católica de Valparaíso de Chile, quien estimuló y propició la publicación de este documento. REFERENCIAS Alverson, D. & W. Pereyra. 1969. A study of demersal fishes and fisheries of the northeastern Pacific Ocean. An evaluation of exploratory fishing methods and analytical approaches to stock size and yield forecast. J. Fish. Res. Bd. Can., 26: 1985-2001. Arana, P., M. Ahumada & A. Guerrero. 2002. Pesca exploratoria de camarones de aguas profundas en las regiones V y VI, año 2002. Informe Final. Estud. Doc., Univ. Católica Valparaíso, 20/2002: 167 pp. Arana, P., M. Ahumada & A. Guerrero. 2003. Distribución y abundancia de la gamba Haliporoides diomedeae (Crustacea: Decapoda: Penaeidae) frente a la costa central de Chile. Invest. Mar., Valparaíso, 31(2): 57-71. Arana, P., M. Ahumada, A. Guerrero, T. Melo, D. Queirolo, M.A. Barbieri, R. Bahamonde, C. Canales & J.C. Quiroz. 2006. Evaluación directa de camarón nailon y gamba entre la II y VIII Regiones, año 2005 (Proyecto FIP Nº 2005-08). Informe Final. Estud. Doc., Univ. Católica Valparaíso, 100/2006: 368 pp. Del Solar, E. & V. Alamo. 1970. Exploración sobre distribución de langostinos y otros crustáceos de la zona norte. Crucero SNP-1 7009 (1era. Parte). Inst. Mar Perú. Ser. Inf. Esp., 70: 1-18. Del Solar, E. & M.N. Mistakides. 1971. Informe del Crucero SNP-1 7105. Exploración de crustáceos. Inst. Mar Perú. Ser. Inf. Esp., 89: 1-10. Del Solar, E. & L. Flores. 1972. Exploración de crustáceos (zona sur). Crucero SNP-1 7201 (1era. Parte). Inst. Mar Perú. Ser. Inf. Esp., 107: 1-8. Espino, M. & C. Wosnitza-Mendo. 1984. Manuales de evaluación de peces Nº 1. Área Barrida. Inf. Inst. Mar Perú, 86: 1-31. Received: 8 May 2009; Accepted: 18 August 2009 379 Gayanilo, F. & D. Pauly. 1997. FAO-ICLARM stock assessment tools (FiSAT) reference manual. FAO Comp. Inf. Ser. (Fisheries), 8: 262 pp. Gayanilo, F., P. Sparre & D. Pauly. 2003. FAOICLARM stock assessment tools (FiSAT) user guide (Rev. 1). FAO Comp. Inf. Ser. (Fisheries), 8: 176 pp. Japan Deep Sea Trawlers Association - Instituto del Mar del Perú (JDSTA-IMARPE). 2004. Feasibility study for fishery development on pelagic and demersal fish in relation to the “El Niño” phenomenon by R/V Shinkai-Maru and R/V Humboldt. Comprehensive Report, 76 pp. Kameya, A., M. Romero & S. Zacarías. 2006a. Peruvian deep ocean potential resources: fishes and shrimps. Deep-sea 2003: Conference on the Governance and Management of Deep-sea Fisheries. Part 2: Conference poster papers and workshop papers. FAO Fisheries Proceedings, 3/2: 40-41. Kameya, A., M. Romero & S. Zacarías. 2006b. The deep ocean biodiversity of the peruvian sea: fishes and invertebrates-peruvian activities. Deep-sea 2003: Conference on the Governance and Management of Deep-sea Fisheries.Part 2: Conference poster papers and workshop papers. FAO Fisheries Proceedings, 3/2: 42-43. Kameya, A., R. Castillo, L. Escudero, E. Tello, V. Blaskovi’c, J. Córdova, Y. Hooker, M. Gutiérrez & S. Mayor. 1997. Localización, distribución y concentración de langostinos rojos de profundidad, Crucero BIC Humboldt 9607-08 18 de julio al 6 de agosto de 1996. Pub. Esp. Inst. Mar Perú, 7: 47 pp. Méndez, M. 1981. Claves de identificación y distribución de los langostinos y camarones (Crustacea: Decapoda) del mar y ríos de la costa de Perú. Bol. Inst. Mar Perú, 5: 170. Sparre, P. & S.C. Venema. 1995. Introducción a la evaluación de recursos pesqueros tropicales. Parte 1. Manual FAO. Fish. Tech. Paper Nº306.1, Rev. 2, Roma, 420 pp. Subsecretaría de Pesca (SUBPESCA). 2004. Cuota global anual de captura de gamba entre la I y la X Región, año 2005. Inf. Téc. (R. Pesq.), 3: 12 pp. Vélez, J., A. Kameya, C. Yamashiro, N. Lostaunau & O. Valiente. 1992. Investigación del recurso potencial langostino rojo de profundidad a bordo del BIC “Fridrjof Nansen” (25 de abril-25 de mayo, 1990). Inf. Inst. Mar Perú-Callao, 104: 24 pp. Vilchez, R., E. del Solar & M. Viacava. 1971. Informe de Cruceros 7011 (3ra. Parte) y 7101. Inst. Mar Perú. Ser. Inf. Esp., 78: 1-14. 380 Lat. Am. J. Aquat. Res. Lat. Am. J. Aquat. Res., 37(3): 381-394, 2009 Reproductive aspects of the Patagonian toothfish off southern Chile “Deep-sea fisheries off Latin America” P. Arana, J.A.A. Perez & P.R. Pezzuto (eds.) DOI: 10.3856/vol37-issue3-fulltext-9 381 Research Article Reproductive aspects of the Patagonian toothfish (Dissostichus eleginoides) off southern Chile 1 Patricio Arana1 Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso P.O. Box 1020, Valparaíso, Chile ABSTRACT. We present the results for the reproductive biology of Patagonian toothfish (Dissostichus eleginoides) caught off southern Chile from January to March and June to November 2006. A total of 10,896 specimens were measured (55-220 cm total length, TL) and sexed (7,049 males, 64.7%; and 3,847 females, 35.3%). Macroscopic observations showed that gonad maturation begins at 60 cm TL in both sexes, with an average maturation size of 81 cm TL in males and 89 cm TL in females. This species appears to have an ample spawning period that occurs only off the far southern region of Chile. To date, no evidence indicates that this resource reproduces in any other areas of the Pacific Ocean off the coasts of South America, where no specimens were observed with mature gonads, percentages of atresia were high, and juvenile fish were not caught in trawl fishing operations targeting other commercial species. Keywords: size structure, reproduction, size at first maturity, Patagonian toothfish, Dissostichus eleginoides, Chile. Aspectos reproductivos del bacalao de profundidad (Dissostichus eleginoides) en el extremo austral de Chile RESUMEN. Se dan a conocer resultados sobre la biología reproductiva del bacalao de profundidad (Dissostichus eleginoides) capturado en el extremo sur-austral de Chile, entre enero y marzo y de junio a noviembre de 2006. En dicho período se midió y determinó el sexo a 10.896 ejemplares, comprendidos entre 55 y 220 cm de longitud total (LT), de los cuales 7.049 correspondieron a machos (64,7%) y 3.847 a hembras (35,3%). Mediante la observación macroscópica de las gónadas se determinó que en machos y hembras se observa el comienzo de la maduración gonádica a partir de 60 cm de LT, con una talla media de maduración (TMS50%) en machos a 81 cm y en hembras a 89 cm. Se sugiere que esta especie presenta un período amplio de desove y que este proceso se efectuaría únicamente en la región austral de Chile, destacándose que hasta ahora no se cuenta con evidencias que este recurso se reproduzca en otra zona del océano Pacífico frente a la costa de Sudamérica en atención a la ausencia de ejemplares maduros en las capturas, altos porcentajes de atresia y ausencia de peces juveniles en faenas de pesca de arrastre dirigidas a otras especies comerciales. Palabras clave: estructura de tallas, reproducción, talla de primera madurez sexual, bacalao de profundidad, Dissostichus eleginoides, Chile. ________________________ Corresponding author: P. Arana (parana@ucv.cl) INTRODUCTION The Patagonian toothfish (Dissostichus eleginoides Smith, 1898) is a demersal species distributed in the southern hemisphere, mainly between 40º and 60ºS and at depths of 500 to 2000 m. Most catches of this resource occur on the continental shelf off the southern cone of South America and around numerous 382 Lat. Am. J. Aquat. Res. islands and oceanic elevations in the southern sectors of the Atlantic, Pacific, and Indian oceans (Gon & Heemstra, 1990). The high fishery yields and the elevated price that Patagonian toothfish brings on international markets have awoken greater interest in extracting and commercializing its meat. In Chile, D. eleginoides is an important resource for industrial and artisanal fishing. Thus, it has been subjected to intense exploitation over a long period of time. This situation is worrisome, especially since this is a slow-growing species. In order to adapt the management measures intended to conserve this resource, we must understand its reproductive cycle and particularly its size at first sexual maturity. Previous studies have shown that this fish is a synchronous spawner (also known as a total or isochronal spawner), with two groups of different sized ovocytes; the larger diameter group is released during the first spawning (Young et al., 1999). D. eleginoides spawns in the southern part of the country in winter, mainly between July and August, presenting low fecundity in relation to its body weight (10-24 eggs per gram of weight) (Young et al., 1995). This agrees with that indicated by Agnew et al. (1999) for South Georgia Island. These authors observed massive spawning in July/August and suggested that a second, less intense spawning period occurs in April/May. Arana & Bustos (2006) detected a high percentage of specimens in an advanced state of maturity during experimental fishing operations for D. eleginoides off far-southern Chile in the second half of September and first half of October 2005. Given the uncertainty as to the spawning zones and periods of the Patagonian toothfish south of 50°S and the importance of understanding this species’ reproductive aspects for its adequate management, the present investigation set out to define the stock composition, reproductive period, and size at first sexual maturity for these fish, especially including the months in which this species is under a reproductive ban. MATERIALS AND METHODS The information analyzed was gathered on board a longline factory vessel during two commercial fishing campaigns: one from 01 January to 25 March 2006 and another from 17 June to 10 November 2006, totaling 130 days of operation. The extractive operations were carried out of far-southern Chile, between 49°49’S and 59°39’S (Fig. 1). From a bathymetric point of view, the hauls were done between 600 and 2,393 m depth. The extractive operations were done with Spanishtype or “quebrado” longlines and size 9 hooks, those commonly used by the industrial fleet (Guerrero & Arana, 2009). The South American pilchard or “sardina” (Sardinops sagax) was used as bait. For each fishing haul, random measurements were made of a certain number of Patagonian toothfish according to their arrival on the processing deck. The total length (TL) of each individual was measured with an ichthyometer (± 1 cm) and the total weight using a scale precise to ±10 g. At the same time, we determined the sex and state of maturity of the specimens through a visual, macroscopic examination of the gonads according to the scale proposed by Kock & Kellerman (1991) for Antarctic fishes (Table 1). Based on the information recorded, we determined the global sexual proportion and estimated the average and median sizes, variance, and standard deviations. In order to establish the composition of the catches for each sex, the size records were grouped by trimesters and the corresponding size frequency distributions were constructed. Likewise, we determined the sexual proportion by size based on the number of males caught as compared to all the specimens (males+females) in each length range. The size at first sexual maturity (TMS50%) was determined separately for males and females according to the percentage of specimens that presented mature sexual organs with respect to the total of specimens analyzed. The records were grouped every two centimeters in order to increase the number of observations in each length range. Individuals were considered to be mature at maturity stage 3 or higher (Everson & Murray, 1999; Young et al., 1999). The fit of the percentages of mature specimens vs. the size of the specimens was done using two procedures. In the first, the model parameters were estimated using the linearization of the logistic function: % M̂ ad LT = 1 1 + exp ( − a − b LT ) through which it is possible to estimate TMS50% = -a/ b s(TMS50%) = 1/ b where: %Mad TL : proportion of mature specimens at length TL (cm) a, b : model parameters TL : total length (cm) TMS50% : size at first sexual maturity of 50% s(TMS50%) : standard deviation of the TMS50% 383 Reproductive aspects of the Patagonian toothfish off southern Chile Figure 1. Area of Dissostichus eleginoides extraction operations. Figura 1. Lugares de captura de los ejemplares analizados de Dissostichus eleginoides. Table 1. Maturity scales based on ovarian and testis cycles in Notothenia coriiceps, Champsocephalus gunnari, Chaenocephalus aceratus and Pseudochaenichthys georgianus (from Kock & Kellerman, 1991). Tabla 1. Escala de madurez basada en ciclos de ovarios y testículos de Notothenia coriiceps, Champsocephalus gunnari, Chaenocephalus aceratus y Pseudochaenichthys georgianus (Kock & Kellerman, 1991). Female Maturity Stage Males Ovary small, firm, no eggs visible to the naked eye 1 Inmature Ovary more extended, firm, small oocytes visible, giving ovary a grainy appearance 2 Developing or resting 3 Developed Testis small, translucent, whitish, long, thin strips lying close to the vertebral column Testis white, flat, convoluted, easily visible to the naked eye, about 1/4 length of the body cavity Testis large, white and onvoluted, no milt produced when pressed or cut 4 Ripe 5 Shrunk Testis large, opalescent white, drops of milt produced when pressed or cut Testis shrunk, flabby, dirty white in colour Ovary large, starting to swell the body cavity, colour varies according to species, contains oocytes of two sizes Ovary large, filling or swelling the body cavity, when opened large ova spill out Ovary shrunken, flaccid, contains a few residual eggs and many small ova 384 Lat. Am. J. Aquat. Res. In the second procedure, the fit was made using the non-linear least squares routine, considering the Gauss-Newton method. The model was coded in MatLab language (v6.5) and solved using the function nlinfit.m, which, along with the resolved parameters, provided the vector of residuals and the “Jacobian” matrix of first-order partial derivatives, that is: ⎛ ∂% Mad LT ( a ,b , LT ) ∂% Mad LT f ( a ,b , LT ) ⎞ , J =⎜ ⎟ ∂a ∂b ⎠ ⎝ where Mad LT corresponds to the logistic models of sexual maturity at size TL. The variance-covariance matrix for the parameters was obtained with the equation: n males and females. The percentages of mature individuals based on size (stages ≥ 3) showed the usual sigmoid form; the fit of these values was adequate with both procedures used (Fig. 5). The linear and non-linear fits (Table 3) showed an average size of maturity (TMS50%) of 81 cm in males and 89 cm TL in females. Likewise, the maturity ogives show that not all the fish over the TMS50% spawned. Only 90% of the males measuring 95 cm TL or more reproduced. Although this situation was not as notorious for females, nonetheless, not all specimens over 110 cm TL spawned. ∑(% M̂ad LT − % Mad LT )2 DISCUSSION n− p Fish reproduction studies that determine size at first sexual maturity and the place, period, and duration of spawning make a necessary contribution, both from a scientific point of view and to fishery management especially for exploited species. In the particular case of the Patagonian toothfish, both aspects are relevant given the high longevity and slow growth of the species, plus the heavy fishing pressure to which it has been subjected, indicating that this resource is highly vulnerable to extreme situations. The high percentage females in maturity stage 3 and of both sexes in this and higher maturity stages in June and July indicate that the Patagonian toothfish spawns in these months (Fig. 4). Nonetheless, the high percentages of specimens in the post-spawning stage in the other months considered herein indicate that this species has a broad reproductive period. Despite this, the lack of information from the months prior to and following the analyzed periods impedes a more precise determination of the lapse in which the maximum release of sexual products occurs. As for size at first sexual maturity, the TMS50% values for males (81 cm TL) and females (89 cm TL) fall within the general range estimated by other authors (Table 4). The results for the females are similar to those presented by Moreno (1998), Prenski & Almeida (2000), Laptikhovsky & Brickle (2005), and Shust & Kozlov (2006); whereas the males’ results resemble the TMS50% values presented by CCRVMA (1997), Everson & Murray (1999), Prenski & Almeida (2000), and Laptikhovsky & Brickle (2005). In all cases, the larger mature size of the females is evident. According to the age estimates done by Oyarzún et al. (2003), males mature at around nine years and the females at around 11 years of age. The lack of spawning in some fish larger than the TMS50% is a phenomenon known for teleosts. A simi- v = ( J ' J )−1 LT =1 where n is the number of observations and p is the number of parameters. The standard error of each parameter was obtained by taking the square root of the elements that make up the diagonal of this matrix. In this case, we determined the standard error and the confidence range (95%) for the average value. RESULTS During the investigation, we analyzed a total of 10,896 individuals: 7,049 males and 3,847 females. The males presented total lengths between 55 and 202 cm and the females between 55 and 220 cm (Fig. 2). The average sizes of the specimens were similar in January and July, when males averaged 104 to 113 mm TL and females 110 to 122.5 cm TL. In August, however, the values decreased noticeably, remaining more or less constant until November, with averagesizes of 88.5 to 98.4 mm TL for the males and 88.6 to 98.6 cm TL for the females. The sexual proportion, except in August and November, was predominated by males (62.3-71.4%) (Table 2). In terms of sexual proportion at size, in the three trimesters examined, the males were predominant in number up to approximately 120 cm TL, after which the proportion of females was greater (Fig. 3). Between June and November (2006), we recorded the gonad maturity stage of 6,160 individuals: 3,950 males and 2,210 females. In the period analyzed, a high percentage of the specimens – both males and females – showed developing gonads in June and July; mature gonads from July to September, and spent gonads from August to October (Fig. 4). Our observation of the maturity stage of the gonads revealed that maturation began as of 60 cm TL in both Reproductive aspects of the Patagonian toothfish off southern Chile 385 Males 8 7 n= 2,542 Females 100 7 80 6 60 40 3 2 20 1 0 5 0 8 100 20 1 60 0 40 3 2 20 1 6 5 3 2 1 0 0 0 55 65 75 85 95 105 115 125 135 145 155 165 175 185 195 205 215 8 100 80 60 4 7 40 2 20 1 100 n= 1,325 80 6 5 60 40 3 2 20 1 0 0 55 65 75 85 95 105 115 125 135 145 155 165 175 185 195 205 215 20 0 0 0 55 65 75 85 95 105 115 125 135 145 155 165 175 185 195 205 215 0 8 7 n= 3,476 6 5 4 3 2 1 0 100 90 80 70 60 50 40 30 20 10 0 55 65 75 85 95 105 115 125 135 145 155 165 175 185 195 205 215 4 3 40 2 8 7 6 5 4 3 n= 3,738 100 80 60 40 2 1 0 20 0 55 65 75 85 95 105 115 125 135 145 155 165 175 185 195 205 215 Total length (cm) Figure 2. Trimester size frequency and accumulated frequency distributions in Patagonian toothfish (Dissostichus eleginoides). Figura 2. Distribuciones de frecuencias de tallas y frecuencia acumuladas trimestrales en bacalao de profundidad (Dissostichus eleginoides). Sep - Nov 5 8 60 3 55 65 75 85 95 105 115 125 135 145 155 165 175 185 195 205 215 n= 2,413 6 5 55 65 75 85 95 105 115 125 135 145 155 165 175 185 195 205 215 100 90 80 70 60 50 40 30 20 10 0 n= 1,382 4 4 100 80 6 1 0 8 n= 3,682 4 40 2 7 80 5 7 55 65 75 85 95 105 115 125 135 145 155 165 175 185 195 205 215 n= 2,094 6 8 Jun -Aug Relative frequency (%) 60 3 55 65 75 85 95 105 115 125 135 145 155 165 175 185 195 205 215 7 80 6 4 4 7 100 n= 1,140 Jan - Mar 5 8 Total 386 Lat. Am. J. Aquat. Res. Table 2. Monthly sexual proportion, mean size, median size, and standard deviation in Patagonian toothfish caught off the far southern tip of Chile. Tabla 2. Proporción sexual mensual, talla media, talla mediana y desviación estándar en bacalao de profundidad capturado en la región sur-austral de Chile. Month Monthly sexual proportion Range (cm) Mean size (cm) Median size (cm) Standard deviation (cm) January February March June July August September October November Males 62.3 68.6 71.4 67.6 59.6 41.2 68.5 59.4 49.4 Females 37.7 31.4 28.6 32.4 40.4 58.5 31.5 40.6 50.6 Males 80 - 138 57 - 169 59 - 192 58 - 202 57 - 159 58 - 152 55 - 156 56 - 144 59 - 132 Females 71 - 170 61 - 216 63 - 210 55 - 220 61 - 195 60 - 161 56 - 177 57 - 178 59 - 146 Total 71 - 170 57- 216 59 - 210 55 - 220 57 - 195 58 - 161 55 - 177 56 - 178 59 - 146 Males 104.2 107.6 110.6 106.9 113.7 88.9 92.3 98.4 88.5 Females 109.9 118.1 119.4 122.5 110.1 94.5 92.5 98.9 88.8 Total 106-4 111.0 113.1 111.9 114.7 92.2 92.4 98.6 88.6 Males 101.0 107.0 109.0 105.0 112.9 90.0 90.0 99.0 86.0 Females 102.5 117.0 117.0 120.0 109.2 89.5 87.0 96.0 86.0 Total 101.0 110.0 110.0 109.0 113.2 90.0 90.0 99.0 86.0 Males 12.6 16.8 17.4 16.8 20.3 17.2 16.6 16.8 14.2 Females 26.8 26.5 27.5 26.6 26.5 23.3 20.5 22.2 16.1 Total 19.5 21.0 21.2 21.8 23.6 21.2 17.9 19.2 15.2 Reproductive aspects of the Patagonian toothfish off southern Chile Figure 3. Sexual proportion at size in Patagonian toothfish . Figura 3. Proporción sexual a la talla en bacalao de profundidad. lar situation was described by Everson & Murray (1999) for this same species around South Georgia Island, where up to 43% of the sampled females did not spawn. It is reasonable to expect a certain percentage of atresia in large-sized females. Moreover, this situation can be found in species with extended reproductive periods, so that, at any given moment, it is possible to find spawning and spent individuals. During the spawning period, females have been reported to emerge to shallower waters (400 a 500 m), making it hard to find them in the commercial fishery operations carried out at greater depths (Chikov & Melnikov, 1990; Kock & Kellerman, 1991; Young et al., 1999). This fact explains, at least partially, the predominance of males in the catches in most of the months analyzed, although the low proportion of females could also indicate an actual different propor- 387 tion between the sexes or that the females are less attracted to the bait used in the fishing gear. This study allowed us to gather information on the reproductive process during the period of the reproductive ban decreed by the fishery authority for this resource between 53°S and 57°S, recognizing the occurrence of this process in the region. Nevertheless, the specimens caught in this period presented evidence of a progressive development of gonad maturity that spanned practically the entire lapse analyzed. This evidence indicates that the reproductive period of Patagonian toothfish is broader than that considered so far, with a certain number of mature specimens even in the second half of the year (June to November 2006). In the samples analyzed in October-November from far-southern Chile, when handling the specimens for purposes of registering their total length and sex, it was possible to induce ejaculation in males by palpating or placing slight pressure on the abdomen; the same occurred with females, which released massive amounts of eggs when slight pressure was applied to their abdomens (Figs. 6 to 8). Our results confirm that the Patagonian toothfish reproduces in the southern region of Chile and that the spawning period extends, partially or totally, to the last trimester of the year. Likewise, these results show the need to use the sizes determined herein as the TMS50% rather than those values that attribute sexual maturity to much larger sizes. This possible overestimation of lengths could be due to the analysis of small samples in periods of scant reproductive activity or the omission of small-sized specimens from the study. According to the available evidence, this resource does not reproduce off Chilean coasts north of 50°S, despite being present in the deep waters of this oceanic sector. Several studies done off north and central Chile verify this, mentioning the presence of specimens considered to be “maturing”. Thus, for example, the microscopic analyses and gonadosomatic indexes determined by Oliva et al. (1999) for the fish caught in the far north of the country during an annual cycle did not reveal a seasonal pattern; thus, these authors could not identify a possible spawning period. The same was found first by Martínez (1975) and then by Young et al. (1999), who noted no mature individuals in the north and central-south zones; rather, 95.6% and 99.7% of the males in these areas had “immature” testicles. Moreover, an important percentage of the females presented folicular atresia: on average, 82.0% in the north and 54.3% in the south (Young et al., 1999). More recently, Oyarzún et al. (2003) analyzed the monthly variation of the gonadosomatic index (GSI) calculated for samples of specimens landed at Lebu (37°35`S) and Corral (39°53`S), reporting no reproductive activity. 388 Lat. Am. J. Aquat. Res. Males Females n = 502 100 80.5 80 60 40 20 6.2 12.4 1.0 0.0 4 5 0 1 2 3 n = 888 100 80 55.4 60 40 20 23.6 15.7 5.3 0.0 0 1 2 3 4 Percentage 80 60 38.7 40 30.2 21.7 20 6.6 2.8 0 1 2 3 4 80 60 42.1 40 20 29.7 11.3 14.0 2.9 0 1 2 3 4 80 51.7 60 40 20 26.5 12.7 2.4 6.7 0 1 2 3 4 100 90 80 70 60 50 40 30 20 10 0 66.9 16.1 15.7 1 2 100 90 80 70 60 50 40 30 20 10 0 5 1.2 0.0 4 5 45.2 34.4 14.7 4.8 2 0.9 3 4 5 n = 106 55.7 25.5 12.3 3.8 2.8 2 3 4 5 n = 755 33.9 31.1 23.3 7.7 4.0 1 100 90 80 70 60 50 40 30 20 10 0 3 n = 544 1 5 n = 804 100 n = 248 1 5 n = 1,650 100 100 90 80 70 60 50 40 30 20 10 0 5 n = 106 100 100 90 80 70 60 50 40 30 20 10 0 2 3 4 5 n = 557 37.2 32.9 16.2 12.4 1.4 1 2 3 4 5 Maturity stage Figure 4. Maturity stage by sex and month in Patagonian toothfish (Dissostichus eleginoides). Figura 4. Estados de madurez, por sexo y mes en bacalao de profundidad (Dissostichus eleginoides). However, those individuals landed at Quellón (43°S), but caught farther south, showed high GSI values. Our results, and those of earlier studies, allow us to conclude that D. eleginoides reproduces massively in the far south of Chile. No similar situation has been shown in other parts of the country, suggesting that this resource does not reproduce off north and central Chile. The Patagonian toothfish is known to be stratified by size according to depth, with juveniles found in shallower strata than the adults; this is a defense mechanism that allows the former to avoid being preyed on by individuals of their own species. Despite 389 Reproductive aspects of the Patagonian toothfish off southern Chile this, trawlers operating in diverse Chilean fisheries on the continental shelf and upper slope to at least 500 m depth have not reported catches of D. eleginoides juveniles, strengthening the hypothesis that only adults, displaced from rearing zones in far southern Chile or from Atlantic sectors, are present in these waters. 1,0 % Mad = 0,9 % mature females 0,8 a 1 1 + e (8.069 − 0.089 LT ) 0,7 0,6 0,5 0,4 0,3 FEMALES 0,2 0,1 0,0 0 20 40 60 80 100 120 140 160 180 Total length (cm) 1,0 b 0,9 0,8 % mature males The size range and average sizes determined for Patagonian toothfish are generally found within the margins determined previously for the region where the present study was performed. Likewise, the average sizes reported herein agree with those established for specimens extracted with longlines from the waters around the Falkland/Malvinas Islands (Laptikhovsky et al., 2006). Nevertheless, the change in the average sizes found in the study area during the different months is striking, possibly indicating differences in the behavior of the resource or geographic or bathymetric displacements that reveal the arrival of largesized specimens in the first month of the year; in the second semester, the average size declines, reflecting a process of recruitment of smaller sizes or the displacement of larger sizes to areas where they are not fished. TMS50% = 89.89 cm 0,7 0,6 % Mad = 0,5 0,4 1 1 + e (8.379 − 0.103 LT ) 0,3 MALES 0,2 TMS50% = 81.319 cm 0,1 0,0 0 20 40 60 80 100 120 140 160 180 Total length (cm) Figure 5. Sexual maturity ogive in Patagonian toothfish off southern region of Chile. Figura 5. Ojiva de madurez sexual en bacalao de profundidad en la región sur-austral de Chile. Table 3. Logistic function results of the fit the data of maturity. Tabla 3. Resultado del ajuste de la función logística con los datos de madurez a la talla. Fit Linear Non-linear Sex Parameter a b TMS50% TMS50% limits lower upper Females 8.069 0.089 89.89 86.4 93.4 Males 0.379 0.103 81.31 78.4 84.4 Females 7.864 0.089 88.84 87.15 90.54 Males 80.31 78.93 81.69 8.277 0.103 The rapid change in average sizes determined in the three analyzed trimesters highlights the lower sizes towards the end of the year and the corresponding increment in the proportion of specimens that are caught under the TMS50% (Table 5). This situation is especially evident in the last trimester, when 47.5% of the females caught were smaller than those at maturity. This situation is worrisome since the decreasing sizes are due to extraction, which puts the conservation of the stock at risk. An alternative explanation could be that the females are not attracted to the bait during certain pe- riods or that they move away from the fishing areas normally used by the fleet. Another option is that, in the second semester, Patagonian toothfish come from the Atlantic sector, possibly juveniles that are recruited to the Pacific population. This would produce a progressive increment in the smaller size fraction and, therefore, the reduction of the quantity of specimens over the TMS50% (Fig. 2, Table 5). The fishermen know to expect a sudden increment in yields in the second half of September due to the apparent arrival of specimens from the Atlantic sector. Thus, they prefer to postpone the onset of fishing for this species, 390 Lat. Am. J. Aquat. Res. Table 4. Size at first sexual maturity (TMS50%) determined in Patagonian toothfish. Tabla 4. Tallas de primera madurez sexual (TMS50%) determinadas en el bacalao de profundidad. Geographic area Total length (cm) Author Males Females Both sexes 75.7 110.4 - CCRVMA (1997) 67 86 - Moreno (1998) 78.5 98.2 - Everson & Murray (1999) 75 101 - Agnew et al. (1999) - - 100 65 80 - 63 85 86 96 - Laptikhovsky & Bricckle (2005) Argentina 76.3 87.1 - Prenski & Almeyda (2000) Chile 105 117 - Moreno et al. (1997) - 128.7 - Young et al. (1999) 78-94 113-117 - Oyarzún et al. (2003) 81 89 - Present study South Georgia Island (Subarea 48.3) Head and MacDonald Islands Kerguelen Islands Falkland/Malvinas Islands Constable et al. (1999) Duhamel (1991) Lord et al. (2006) Figure 6. Female Dissostichus eleginoides gonad in an advanced stage of maturity. Figura 6. Gónada de hembra de Dissostichus eleginoides en avanzado estado de madurez. 391 Reproductive aspects of the Patagonian toothfish off southern Chile Figure 7. Ovas in a female Dissostichus eleginoides gonad. Figura 7. Óvulos en gónada de hembra de Dissostichus eleginoides. Table 5. Average size and weight of the specimens, and percentage of specimens under the size at first sexual maturity per period for each sex. Tabla 5. Talla y peso media de los ejemplares, y porcentaje de ejemplares bajo la talla de primera madurez sexual por período en cada sexo. Males Females n Mean size (cm) Jan - Mar 2,542 109.0 8.3 6.1 1,140 118.5 17.7 14.6 Jun - Aug 2,094 103.1 7.1 12.3 1,382 111.2 15.0 25.9 Sep - Nov 2,413 93.7 5.4 27.8 1,325 94.2 8.0 47.5 Total 7,049 Period Mean weight % below (kg) TMS50% first filling quotas for other resources (e.g., southern hake and pink cusk-eel). The displacement of the Patagonian toothfish from the far south of Chile or even from the Atlantic sector towards lower latitudes, should be confirmed by tagging, a methodology that is being used successfully in other regions where this species is found (e.g., Williams et al., 2002; Marlow et al., 2003; Agnew et al., 2006). Along with the scientific contribution of such a study in diverse biological aspects, it would allow us to determine whether the Patagonian toothfish effec- n Mean size Mean weight % below (cm) (kg) TMS50% 3,847 tively migrates northward along the western coast of the South American continent. This, in conjunction with the hypothesis (not yet proven with certainty) that D. eleginoides does not reproduces north of 47°S, would imply that these fish are only invaders, taking advantage of oceanographic conditions similar to those found in deeper waters. If this is so, it would also help explain the progressive decline in the yields off central and northern Chile, since the exploitation of these fish in the south would decrease the possibility of finding them farther north. 392 Lat. Am. J. Aquat. Res. Apablaza, Francisco Gallardo, Andrés Ruíz, Alejandro Stack, and Guillermo Stack for helping with on-board sampling operations. REFERENCES Figure 8. Gonad and ejaculation induced by pressure on the abdomen of Dissostichus eleginoides male. Figura 8. Gónada y eyaculación inducida por presión del abdomen de machos de Dissostichus eleginoides ACKNOWLEDGEMENTS The authors thank Pesca Chile S.A. for the support and facilities granted for carrying out the present research project. We also thank the crew and Mr. Pedro Agnew, D.J., L. Heaps, C. Jones, A. Watson, K. Berkieta & J. Pearce. 1999. Depth distribution and spawning pattern of Dissostichus eleginoides at South Georgia. CCAMLR Sci., 6: 19-36. Agnew, D.J., J. Moir Clark, P.A. McCarthy, M. Urwin, M. Ward, L. Jones, G. Breedt, S. du Plessis, J. Van Heerdon & G. Moreno. 2006. A study of Patagonian toothfish (Dissostichus eleginoides) post-tagging survivorship in Subarea 48.3. CCAMLR Sci., 13: 279289. Arana, P. & R. Bustos. 2006. Factibilidad técnica y operativa de la utilización de nasas en la Unidad de Pesquería de bacalao de profundidad (Dissostichus eleginoides). Estud. Doc., Pont. Univ. Católica Valparaíso, 4/2006: 112 pp. Comisión para la Conservación de los Recursos Vivos Marinos Antárticos (CCRVMA). 1997. Informe del Grupo de Trabajo para la evaluación de las poblaciones de peces. Informe de la Decimosexta Reunión del Comité Científico, SC-CAMLR-XVI: 251-447. Constable, A., D. Williams, T. Lamb & E. van Wijk. 1999. Revision of biological and population parameters for Dissostichus eleginoides on the Heard Island plateau (Division 58.5.2) based on a comprehensive survey of fishing grounds and recruitment areas in the region. CCAMLR, WG-FSA-99/68: 21 pp. Chicov, V. & Y. Melnikov. 1990. On the question of fecundity of Patagonian toothfish, Dissostichus eleginoides, in the region of the Kerguelen Islands. J. Ichthyol., 30(8): 122-125. Duhamel, G. 1991. Biology and harvesting of Dissostichus eleginoides around Kerguelen Islands (Division 58.5.1), CCRVMA, WG-FSA- 91/7: 21 pp. Everson, I. & A. Murray. 1999. Size at sexual maturity of Patagonian toothfish (Dissostichus eleginoides). CCAMLR Science, 6: 37-46. Fenaughty, J.M. 2006. Geographical differences in the condition, reproductive development, sex ratio and length distribution of Antarctic toothfish (Dissostichus eleginoides) from the Ross Sea, Antarctica (CCAMLR 88.1). CCAMLR Science, 13: 27-45. Guerrero, A. & P. Arana. 2009. Fishing yields and size structures of Patagonian toothfish (Dissostichus eleginoides) caught with pots and long-lines off far southern Chile. Lat. Am. J. Aquat. Res., 37(3): 361370. Gon, O. & P.C. Heemstra. 1990. Fishes of the Southern Ocean. Nototheniidae: Genus Dissostichus. JLB. Reproductive aspects of the Patagonian toothfish off southern Chile Smith Institute of Ichthyology, Grahamstown, South Africa, 285-289 pp. Kock, W. & H. Kellerman. 1991. Reproduction in Antarctic Notothenioids. A review. Antar. Sci., 3(2): 125150. Laptikhovsk, V., A. Arkhipkin & P. Brickle. 2006. Distribution and reproduction of the Patagonian toothfish Dissostichus eleginoides Smith around the Falkland Islands. J. Fish Biol., 68(3): 849-861. Laptikhovsk, V. & P. Brickle. 2005. The Patagonian toothfish fishery in Falkland Islands´s waters. Fish. Res., 74: 11-23. Lord, C., G. Duhamel & P. Pruvost. 2006. The Patagonian toothfish (Dissostichus eleginoides) fishery in the Kerguelen Island (Indian Ocean Sector of the Southern Ocean). CCAMLR Science, 13: 1-25. Marlow, T.R., D.J. Agnew, M.G. Purves & I. Everson. 2003. Movement and growth of tagged Dissostichus eleginoides around South Georgia and Shag Rocks (Subarea 48.3). CCAMLR Science, 10: 101-111. Martínez, C. 1975. Análisis biológico del “bacalao de profundidad” Dissostichus amissus (Gill & Townsend) Ser. Inf. Pesq. IFOP, 59: 16 pp. Moreno, C.A. 1998. Do the males of Dissostichus eleginoides grow faster, or only mature before females? CCRVMA, WG-FSA-98/17 Rev., 1: 8 pp. Moreno, C.A., P.S. Rubilar & A. Zuleta. 1997. Ficha técnica del bacalao de profundidad Dissostichus eleginoides Smitt, 1898. CCRVMA, WG-FSA-97/42: 18 pp. Received: 11 November 2008; Accepted: 19 August 2009 393 Oliva, J., Z. Young & C. Martínez. 1999. Caracterización de las pesquerías de cojinoba del norte y bacalao de profundidad en la I y II Regiones. Informe Final, Proyecto FIP 97-18: 106 pp. Oyarzún, C., S. Gacitúa, M. Araya, L. Cubillos, M. Salamanca, C. Pino, R. Galleguillos, G. Aedo & J. Lamilla. 2003. Asignación de edades y crecimiento de bacalao de profundidad. Informe Final, Proyecto FIP 2001-17: 130 pp. Prenski, L.B. & S. Almeida. 2000. Some biological aspect relevant to Patagonian toothfish (Dissostichus eleginoides) exploitation in the Argentine exclusive economic zone and adjacent ocean sector. Frente Marítimo, 18 Secc. A: 103-124. Shust, K.V. & A.N. Kozlov. 2006. Changes in size composition of the catches of toothfish Dissostichus eleginoides as a result of long term long-line fishing in the region of South Georgia and Shag Rocks. J. Ichthyol., 46(9): 752-758. Young, Z., R. Gili & L. Cid. 1995. Prospección de bacalao de profundidad entre las latitudes 43° y 47°S. Informe Técnico IFOP, 47 pp. Young, Z., J. Oliva, A. Olivares & E. Díaz. 1999. Aspectos reproductivos del recurso bacalao de profundidad en la I a X Regiones. Informe Final Proyecto FIP 9716: 51 pp. Williams, R., G.N. Tuck, A.J. Constable & T. Lamb. 2002. Movement, growth and available abundance to the fishery Dissostichus eleginoides Smitt, 1898 at Heard Island, derived from tagging experiments. CCAMLR Science, 9: 33-48. 394 Lat. Am. J. Aquat. Res. Lat. Am. J. Aquat. Res., 37(3): 395-408, 2009 Demersal biomass and potential yield from southern Brazil “Deep-sea fisheries off Latin America” P. Arana, J.A.A. Perez & P.R. Pezzuto (eds.) DOI: 10.3856/vol37-issue3-fulltext-10 395 Research Article Biomass and fishing potential yield of demersal resources from the outer shelf and upper slope of southern Brazil Manuel Haimovici¹, Luciano Gomes Fischer2, Carmem L.D.B.S. Rossi-Wongtschowski3, Roberto Ávila Bernardes3 & Roberta Aguiar dos Santos4 1 Instituto de Oceanografia, Fundação Universidade Federal de Rio Grande, FURG 2 Pós Graduação em Oceanografía Biológica, FURG 3 Instituto Oceanográfico da Universidade de São Paulo, IOUSP 4 Instituto Chico Mendes, ICMBio, Ministério do Meio Ambiente ABSTRACT. The relative abundance and fishing potential of the commercially valuable fishes and cephalopods with marketable size was assessed using two seasonal bottom trawl surveys performed in 2001 and 2002 on the outer shelf and upper slope (100-600 m depth) off the coast of southern Brazil. These surveys were part of REVIZEE, a national program designed to assess the fishery potential within the Economic Exclusive Zone. Of the 228 fish and cephalopod species caught during the surveys, only 27 species and genera were considered to be of commercial interest. Commercial-sized individuals of these species made up 52.3% of the total catch. The total biomass was estimated to be 167,193 ton (± 22%) and 165,460 ton (± 25%) in the winter-spring and summer-autumn surveys, respectively. The most abundant species were the Argentine short-fin squid Illex argentinus, a species with highly variable recruitment, followed by the Argentine hake Merluccius hubbsi, the gulf-hake Urophycis mystacea, and the monkfish Lophius gastrophysus. The latter three were intensively fished prior to the surveys, as well as the beardfish Polymixia lowei and silvery John dory Zenopsis conchifera, both relatively abundant but with a very low market value. The potential yield of the demersal fish species, not considering Illex argentinus, estimated with the Gulland equation for a mean natural mortality of M = 0.31, was 20,460 ton. When considering only Merluccius hubbsi, Urophycis mystacea, and Lophius gastrophysus, the potential yield decreased to 6,625 ton. The surveys showed that the fishery potential of the outer shelf and upper slope was substantially lower than that of the inner shelf. Therefore, this environment should be carefully monitored to avoid overfishing and fast depletion. Keywords: demersal fishes, stock assessment, biomass, Brazil. Biomasa y rendimiento potencial pesquero de recursos demersales de la plataforma externa y talud superior del sur de Brasil RESUMEN. Se evaluó la abundancia relativa y el potencial pesquero de peces y cefalópodos de especies y tamaños de valor comercial en dos muestreos estacionales con redes de arrastre de fondo realizados en los años 2001 y 2002 sobre la plataforma externa y talud superior, 100 a 600 m de profundidad, a lo largo del extremo sur de la costa brasilera, como parte de un programa nacional de evaluación del potencial pesquero de la Zona Económica Exclusiva (Programa REVIZEE). Del total de 228 especies de peces y cefalópodos capturados, sólo 27 especies y géneros fueron considerados de interés comercial. Los tamaños comercializables de estas especies representaron 52,3% de la captura total. La biomasa total estimada fue de 167.193 ton (± 22%) y 165.460 ton (± 25%) en los muestreos de invierno-primavera y verano-otoño respectivamente. Las especies más abundantes fueron el calamar argentino Illex argentinus, especie de reclutamiento muy variable, seguido de la merluza argentina Merluccius hubbsi, la brótola de profundidad Urophycis mystacea, el pez sapo o rapé Lophius gastrophysus, estas últimas intensamente explotadas en la época de los levantamientos, así como también Polymixia lowei y Zenopsis conchifera, ambas relativamente abundantes pero de escaso valor comercial. El rendimiento potencial de especies demersales excluido Illex argentinus, estimado a través de la ecuación de Gulland para un coeficiente de mortalidad natural medio de M = 0,31, fue de 20.460 ton. Cuando sólo 396 Lat. Am. J. Aquat. Res. Merluccius hubbsi, Urophycis mystacea y Lophius gastrophysus fueron considerados, el potencial disminuye a 6.625 ton. Los mustreos mostraron que el potencial pesquero de la plataforma continental externa y el talud superior es substancialmente inferior al de la plataforma interna, por lo tanto, este ambiente debe ser cuidadosamente controlado para evitar la sobrepesca y rápida depleción. Palabras clave: peces demersales, evaluación, biomasa Brasil. ________________________ Corresponding author: Manuel Haimovici (docmhm@furg.br) INTRODUCTION Exploratory bottom trawl surveys provide important information on the distribution and abundance of potential fish resources (Saville, 1977). Density estimates based on research surveys are subject to bias due to several factors, including the gear and its rigging, trawl depth, time of day, distribution, fish behavior and size, and others (Gunderson, 1993). More realistically, bottom trawl surveys produce relative abundance indices rather than absolute estimates, and potential yield must be carefully inferred. However, at the initial stages of fishery development, such surveys can be helpful, providing rough estimates of the biomass and the potential yield of the assessed resources (Gulland, 1983). Industrial fisheries in southern Brazil began in the late 1940s following the same development pattern observed worldwide in the second half of the 20th century (Yesaki & Bager, 1975). For two decades, bottom trawling expanded almost exclusively over the inner shelf at depths under 100 m and it peaked in the early 1970s (Haimovici et al., 1989; Valentini et al., 1991). Due to the combination of new fishing technologies, cheap fuel, elevated fish abundances, and increasing market demands, catches have decreased steadily since then, despite increased efforts (Haimovici, 1998). Fishing on the outer shelf for demersal fishes with bottom trawls or bottom gill-nets began off the state of Rio Grande do Sul in the mid-1980s, targeting elasmobranches and flatfishes (Haimovici, 1997). In the late 1990s, this effort expanded along the outer shelf off Santa Catarina State and, later, over the entire southern region (Perez & Pezzuto, 2006). Intense fishing on the upper slope started soon after, when large foreign fishing vessels with the capacity for onboard processing and freezing were authorized to fish on the upper slope (Perez et al., 2003). It is possible to contextualize Brazilian exploratory fishing by research vessels and the development of commercial fisheries as follows: early exploratory fishing to assess the demersal fishing potential on the outer shelf and slope started in the 1950s and 1960s onboard Portuguese, Japanese, and German research vessels. In the 1970s, the national fishery agency (SUDEPE), with support from the United Nations agency (PNUD), developed a series of surveys with large commercial bottom trawlers. These surveys were continued in the 1980s with the research vessel Atlântico Sul of the Federal University of Rio Grande (FURG). The main results of these surveys, including unpublished reports, were summarized in Haimovici et al. (2007). More recently, two seasonal bottom trawl surveys were performed in 2001 and 2002 as part of the Brazilian governmental program REVIZEE: Assessment of the Sustainable Yield of the Economic Exclusive Zone (Haimovici et al., 2008). This paper focuses on the distribution, relative abundance, and fishing potential of the main commercially valuable species on the outer shelf and upper slope of southern Brazil based on data obtained during the REVIZEE surveys. These surveys coincided with the rapid development of trawling and gillnet fishing on the upper slope and provided useful data on the distribution, seasonality, and yields of the demersal fish resources vulnerable to such gears. MATERIAL AND METHODS Study area The study area included southern Brazil’s outer shelf and slope between Cabo Frio (23°S) and Chui (34°35’S) (Fig. 1). Along this area, the shelf width ranged from 140 to 180 km, narrowed to 90 km along Cabo de Santa Marta Grande (29ºS), attained a maximum width of 250 km along the southeastern Brazilian Bight, and narrowed again to 50 km in Cabo Frio. The area encompassed by the 100 to 600 m isobaths covered 152,354 km2 (Table 1). Bottom sediments on the outer shelf were mostly mud rich in silts and clay, although large patches with biodetritic sediments and sand were found near the shelf break and along Cabo Frio; on the slope, muddy sediments were dominant (Martins et al., 1976; Figueiredo & Madureira, 2004). The most remarkable hydrographic characteristics on the shelf were the seasonal variation of the water temperature and water column stratification, which was strong in summer and weak or non-existent in winter (Castro & Miranda, 1998). Another important feature 397 Demersal biomass and potential yield from southern Brazil Figure 1. The study area and haul positions in the REVIZEE trawl surveys along the outer shelf and upper slope in southern Brazil. Figura 1. Área de estudio y posición de los arrastres en el levantamiento pesquero del programa REVIZEE realizado en la plataforma externa y talud superior del sur de Brasil. Table 1. Areas and number of hauls at each depth and latitude stratum in the REVIZEE bottom trawl surveys on the outer shelf and upper slope in southern Brazil (2001-2002) in winter-spring (w-s) and summer-autumn (s-a). Tabla 1. Áreas y número de lances en cada estrato de profundidad y latitud en los muestreos pesqueros de arrastre de fondo del Programa REVIZEE realizados en la plataforma externa y talud superior del sur de Brasil (2001-2002) in invierno-primavera (w-s) y verano-otoño (s-a). Stratum A (Chuí – Conceição) B (Conceição - Santa Marta Grande) 34°35'S - 31°30'S 31°30'S - 28°00'S Areas Depth (m) 2 Hauls Areas 2 Hauls C (Santa Marta Grande D (Ilha Bela - Cabo Frio) Ilha Bela) 28°00'S - 24°24'S Areas 2 24°24'S - 23°00'S Hauls Areas 2 Hauls km w-s s-a km w-s s-a km w-s s-a km w-s s-a 100-149 7,524 6 5 16,723 8 9 17,124 6 4 14,961 5 6 150-199 7,869 4 4 15,284 4 3 20,354 6 4 8,110 2 5 200-299 2,237 5 4 6,456 7 6 5,762 4 3 3,121 3 2 300-399 1,247 5 4 3,460 3 4 2,450 4 5 1,857 1 6 400-600 3,340 10 10 6,529 6 6 5,141 15 11 2,805 9 10 Total 22,217 30 27 48,452 28 28 50,830 35 27 30,855 20 29 398 Lat. Am. J. Aquat. Res. at latitudes over 30ºS was a shelf front that shifted northward in the cold season and southward in the warm months, separating the cold, less salty Subantarctic Surface Waters of the shelf from the warmer, saltier Shelf Subtropical Waters (Piola et al., 2000). On the upper slope, the Brazil Current ran southward in the upper layers and the Malvinas Current ran northward, meeting at a front that shifted seasonally in the north-south direction and was known as the western boundary of the Subtropical Convergence. Beneath the Brazil Current, the South Atlantic Central Waters (SACW) had temperatures between 10ºC and 17ºC and, below these, between 400 and 600 m, a mixture of SACW and Antarctic Intermediate Waters were found with bottom temperatures ranging from 4ºC to 10ºC. Vessels and gears Due to the large extension of the area under investigation, two research vessels were used: the R/V Soloncy Moura (26 m, 600 HP) from the Brazilian Environmental Agency (IBAMA) and the R/V Atlântico Sul (39.5 m, 860 HP) from the Federal University of Rio Grande (FURG). Both vessels were geared with Engel Star Ballon trawl nets with 439 meshes of 160 mm stretched between opposite knots in the mouth and 27 mm in the codend. The groundrope had a “rockhopper” of rubber discs (300, 200, and 130 mm in diameter) in its central 20.8 m with two lateral extensions of 9.8 m each; considering the 75 mm rubber discs, this totalled 40.4 m. The otter doors (550 kg rectangular Engel Hydro) were connected to the wings of the net by 5-m-long lengthening bridles and to the winch cables with 50-m bridles. These nets were similar to those used in commercial fishing on the upper slope by otter trawlers, although the mesh size in the codend was smaller in this study. Sampling The surveys were performed almost simultaneously, with the R/V Atlântico Sul operating from August to September 2001 and March to April 2002 between 28ºS and 34º35’S, and the R/V Soloncy Moura cruising from August to October 2001 and from February to April and in late June 2002 between 23ºS and 28ºS. Overall, 224 effective fishing hauls were performed between Cabo Frio and Chuí at depths between the 100 m and 600 m isobaths: 113 hauls were done in winter and spring 2001 and 2002 and 111 in summer and autumn 2002 (Table 1). After each tow, the fishes and cephalopods in the catch were classified, counted, and weighed. For large catches, random samples of 30 kg of small fish and cephalopods were classified and the number and weight of each species was recorded. For most of the tows, the length composition of the samples of all the species was also recorded. The total catch in number and weight and the mean weight for each haul was calculated for all species (Haimovici et al., 2008). The main scope of the surveys was to study the distribution and abundance of the whole fish fauna vulnerable to bottom trawls without much previous knowledge about the distribution pattern of each species (Haimovici et al., 2008). In this situation, systematic sampling was recommended to cover the whole study area (Saville, 1977; Gunderson, 1993); this was done by distributing the fishing stations along profiles perpendicular to the coastline, 55 miles apart and in depth ranges of 100-149, 150-199, 200-299, 300-399, and 400-600 m. Some depth ranges were not well represented along the profiles with sharp slopes, whereas additional stations were included to better represent larger areas in depth ranges with milder slopes. For the biomass analysis, hauls were grouped into four latitudinal areas named A to D from south to north (Fig. 1). Combining latitudinal and depth ranges, 20 strata were defined (Table 1). The surface of each stratum was calculated graphically with ArcView 3.2 Software, integrating the polygons determined by the latitudinal transects and isobaths obtained from the GEBCO (General Bathymetric Chart of the Oceans) database (http://www.gebco.net) and complemented with data from acoustic surveys of the REVIZEE Program (Madureira et al., 2005). Since the codends of the nets used for the bottom trawl surveys had smaller mesh than those used in commercial fishing, the samples included fishes weighing less than the minimum marketable weight (MMW). The MMW values for the main species in the catch were obtained from the literature or personal communications (Table 2). As the scope of this paper is to estimate the commercial biomass and potential yield for each of the main species, only hauls in which the mean weight was over the MMW were included. This assumption was necessary because the size composition of all species for all hauls was not always available. Preliminary tests showed that the hauls in which the mean weight was under the MMW had a very small fraction in weight over the MMW and those in which the mean weight was over the MMW had only a small fraction of the catch smaller than the marketable size. Density and biomass estimates Densities were calculated as catch per unit of areas (CPUA) in kg km-2. The swept areas were estimated by multiplying the distances between the beginning and the end of the hauls recorded by the satellite posi- 399 Demersal biomass and potential yield from southern Brazil Table 2. Minimum marketable individual weight (MMW) and minimum marketable total length or mantle length (MMTL) of the main commercially important species caught in the REVIZEE bottom trawl surveys on the outer-shelf and upper-slope in southern Brazil (2001-2002). Tabla 2. Peso mínimo de peces y calamares con valor comercial (MMW) y peso mínimo largo total o del manto (MMTL) de las principales especies capturadas en los muestreos de arrastre de fondo del Programa REVIZEE en la plataforma externa y talud superior del sur de Brasil (2001-2002). MMW MMTL Reference (g) (mm) % of hauls with mean weight over MMW Species Illex argentinus 83 100 180 Haimovici et al. (2006a) Urophycis mystacea 98 100 250 Haimovici et al. (2006b) Merluccius hubbsi 85 100 250 Haimovici et al. (1993) Lophius gastrophysus 100 350 290 Haimovici (pers. observ.) Zenopsis conchifera 67 350 280 Haimovici (pers. observ.) Polymixia lowei 91 100 200 Rossi-Wongtschowski (pers. observ.) tioning system and the width of the swept area calculated as 18.18 m or 45% of the length of the groundrope based on Alverson & Pereyra (1969). Geometry and net gearing, towing speed, and fish behavior can affect catchability (q); since none of these effects could be measured, a value of 1 was attributed to q as suggested by Alverson & Pereyra (1969) and Fogarty (1985). The mean densities (kg km-2) Di of each species i in each survey were calculated by weighing the mean densities in each stratum by the fraction of the total area of each stratum Ae (eq. 1). The variances of the mean density of each species in each stratum S D2 i were calculated by weighing the variances in each stratum SDie divided by the number of samples and multiplied by the square of the fraction of the area of each stratum (eq. 2). Di = S2 = Di ∑e Die ⎛⎜⎝ AAe ⎞⎟⎠ ∑ e (1) 2 S2 Die ⎛ A e ⎞ ⎟ ⎜ n e ⎜⎝ A ⎟⎠ (2) The biomass of each species in each survey was calculated as the sum of the products of the densities for the areas of all strata (eq. 3), and the total variances were calculated by multiplying the variances in each stratum by the respective squared areas. e Bi = ∑A 1 e D i.e (3) e var Bi = ∑A 2 2 e SDie (4) 1 The 90% confidence intervals of the biomass estimates were calculated based on Student’s “t” distribution for α = 0.1 and v degrees of freedom (Zar, 1984) according to equations (5) and (6). 2 ICα% = Bi ± tα,ν SD (5) ν = ∑ ( ne − 1) (6) ie e Potential yield Potential yield was calculated under the assumption that the maximum growth in mass of a population occurs at intermediate levels of abundance and is related to the population’s natural mortality. In its simplest form, populations can be assumed to grow following a logistic model in which maximum growth occurs when the biomass halves the virginal biomass (B∞) and fishing mortality (F) equals the natural mortality (M) (Graham, 1935). Provided unbiased estimates of virginal biomass and natural mortality are available, an approximation of the maximum equilibrium yield (Ymax) can be calculated by the formula Ymax= M (X B∞) (Gulland, 1971). The value of 0.5 for X, originally proposed by Gulland, was considered to be too high for most long-living species (Beddington & Cooke, 1983; Walters & Martell, 2002); thus, we used a value of 0.4 in our calculations. Natural mortality was calculated separately for each of the five most abundant commercially valuable fishes; this was inferred from the longevity equation 400 Lat. Am. J. Aquat. Res. proposed by Hoenig (1983) based on longevity estimated from growth studies (Table 3). A common value of M = 0.31 was calculated, weighing M estimates for each species or group of species by its contribution in weight to the catch of those species. excluded, the winter-spring biomass was 16% higher (158,281 ton) than the biomass estimated during the summer-autumn survey (136,813 ton). In the winterspring survey, bony fishes were 13% and elasmobranches 26% more abundant than in the summerautumn survey (Table 5). The total biomass of commercial sizes of marketable species was calculated by depth and latitude strata in both seasons (Fig. 2). On the outer shelf, biomass decreased from higher to lower latitudes in both surveys; elasmobranches were more abundant in the south (areas A and B), where commercial-sized Illex argentinus were absent. On the upper slope, biomass was higher in the central areas (B and C) in winter-spring and, in area B, in summer-autumn, and both bony fish and I. argentinus biomasses were larger. Elasmobranches were more abundant on the outer shelf than on the upper slope and in the southern area of the study. Overall density was 27% higher in the summerautumn survey. On the outer shelf, it was much higher in the south, particularly in winter-spring. On the upper slope, the difference was smaller but densities were still higher in the south. Both biomass and densities of commercially valuable fishes from the outer shelf were lower than those on the upper slope (Table 6). RESULTS The list of fishes and cephalopods caught in the REVIZEE bottom trawl surveys off southern Brazil included 228 species (Haimovici et al., 2008); few of them were of commercial interest. To select those species, we examined the marine fisheries landing reports for the southern states of Brazil (IBAMA, 2007). We also examined the literature and databases such as FISHBASE (Froese & Pauly, 2009) to find additional species that are commercially fished in other regions. This filtering resulted in 27 species and genera of interest (Table 4). The overall catch from both surveys was 32,715 kg, and the total catch of the 27 selected species was 24,946.3 kg (76.5%), 17,418 kg (52.9%) of which complied with the adopted size selection criteria (Table 4). Six species (Illex argentinus, Urophycis mystacea, Merluccius hubbsi, Polymixia lowei, Zenopsis conchifera, Lophius gastrophysus) accounted for 77.8% of the catch with commercial value; another 9.8% consisted of other bony fishes and 12.4% were cartilaginous fishes. The total biomass of commercial sizes for marketable species was estimated to be 167,193 ton (± 22%) in the winter-spring survey and 165,460 ton (± 25%) in the summer-autumn survey. However, if squids are Illex argentinus The mean mantle length of the Argentine short-fin squid Illex argentinus landed by commercial fishing was over 160 mm for males and 180 mm for females (Haimovici et al., 2006a), corresponding to approximately 100 g. In the surveys, 83% (in weight) of the Table 3 Hoenig (1983) equation-based estimates of the natural mortalities of the main commercially important species caught in the REVIZEE bottom trawl surveys on the outer-shelf and upper-slope in southern Brazil (2001-2002). Other fishes include Elasmobranchii, Sciaenidae and Paralichthyidae. Tabla 3. Mortalidad natural, estimada mediante la ecuación de Hoenig (1983), de las principales especies de interés comercial capturadas en los muestreos de arrastre de fondo del programa REVIZEE en la plataforma externa y talud superior del sur de Brasil (2001-2002). “Other fishes” incluye Elasmobranchii, Sciaenidae and Paralichthyidae. % of the catch Maximum age Mortality estimate Urophycis mystacea 9 14 0.30 Haimovici et al. (2006b) Merluccius hubbsi 17 12 0.35 Vaz-dos-Santos & Rossi-Wongtschowski (2005) Lophius gastrophysus 7 18 0.23 Lopes (2005) Zenopsis conchifera 19 15 0.28 Duarte-Pereira et al. (2005) Polymixia lowei 25 10 0.42 Rossi-Wongtschowski (pers. observ.) Other fishes 23 10 - 40 0.20 Species Reference for maximum age Demersal biomass and potential yield from southern Brazil Table 4. Total catch and catch in hauls with mean weight over minimum marketable weight (MMW) of the commercially valuable species in the REVIZEE bottom trawl surveys on the outer shelf and upper slope in southern Brazil (2001-2002). Tabla 4. Captura total y en los lances en los cuales el peso medio fue superior al menor peso comercializable (MMW) de las especies de interés comercial en los levantamientos pesqueros del programa REVIZEE realizados en la plataforma externa y talud superior del sur de Brasil (2001-2002). Under MMW (kg) Over MMW (kg) 383 1,240 411 24 0 51 26 145 1,734 3 178 996 536 479 341 175 118 7,796 3,445 2,553 2,316 1,292 1,113 651 430 230 169 163 58 0 0 0 0 0 139 0 19.8 14.7 13.3 7.4 6.4 3.7 2.5 1.3 1.0 0.9 0.3 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0 0 0 39 23 0 0 0 0 461 390 349 167 152 165 156 147 32 2.6 2.2 2.0 1.0 0.9 0.9 0.9 0.8 0.2 % of total catch Teleosts Polymixia lowei Zenopsis conchifera Merluccius hubbsi Urophycis mystacea Lophius gastrophysus Umbrina canosai Prionotus punctatus Paralichthys isosceles Trichiurus lepturus Genypterus brasiliensis Beryx splendens Helicolenus lahillei Trachurus lathami Ariomma bondi Thyrsitops lepidopoides Loligo plei Mullus argentinae Other teleosts Elasmobranches Atlantoraja cyclophora Atlantoraja platana Squalus mitsukurii Squalus megalops Mustelus schmitti Atlantoraja castelnaui Squatina argentina Squatina guggenheim Squatina punctata Cephalopods Illex argentinus Total 598 2,841 16.3 15,297 17,418 100.0 401 squids caught were over this size (Table 5). In the winter-spring survey, commercial-sized squids were concentrated between Solidão and Cabo de Santa Marta Grande at over 400 m depth, with an estimated biomass of 8,912 ton (± 106%). In summer-autumn, squid biomass increased sharply to 28,647 ton (± 62%) and larger densities were found in the 300 to 600 m depth range between Chuí and Cabo de Santa Marta Grande (Fig. 2). Specimens under the commercial size occurred mainly in the upper 300 m (Haimovici et al., 2008). Wide confidence intervals for the biomass were due to large catches in only a few hauls. The aggregated nature of the distribution of this school-forming squid was also observed in acoustic surveys by Madureira et al. (2005), who estimated total biomasses of I. argentinus as high as 31,742 ton in April and May 1997. As are all species of the genera, I. argentinus is a fast-growing, short-lived species with highly variable interannual abundance (Rodhouse et al., 1998); for a review, see Perez et al. (2009). Recorded commercial landings in 2002 reached 2,601 ton, far higher than in the previous and following years (Fig. 3). It is very likely that the high proportion of I. argentinus in the catch of the autumn 2002 survey corresponded to an exceptionally high recruitment. Urophycis mystacea The size distribution of commercial landings of the gulf-hake Urophycis mystacea in southern Brazil included fishes over 100 g and 250 mm TL (Haimovici et al., 2006b). In the surveys, 98% (in weight) of the gulf-hake caught exceeded this size (Table 5). This species does not seem to form dense schools; rather, it was caught in a large number of hauls but without outstanding individual catches. For this reason, biomass estimates were relatively precise compared with those of other species: 8,583 ton (± 24%) in winterspring and 11,204 ton (± 41%) in summer-autumn (Table 3). Larger catches occurred in the southern area in both seasons at depths over 150 m and further north at depths over 300 m (Fig. 2). Urophycis mystacea is a relatively slow-growing species that lives at least 14 years and reaches sexual maturity between three and six years (Martins & Haimovici, 2000; Haimovici et al., 2006b). This species was part of the bycatch of the bottom longline fishery that has targeted the wreckfish Polyprion americanus since the 1970s (Haimovici et al., 2003). Landings statistics of Urophycis brasiliensis and U. mystacea were not differentiated in most states. Pooled landings of both species were a little above 2,000 ton from 1996 to 2000, increased sharply to 6,013 ton and 8,192 ton in 2002, and decreased slowly in the follo- 402 Lat. Am. J. Aquat. Res. Table 5. Biomass estimates of the commercial size fraction of the important species in the REVIZEE bottom trawl surveys on the outer shelf and upper slope in southern Brazil (2001-2002) in winter-spring (w-s) and summer-autumn (s-a). The 90% confidence intervals are shown as percentage of the estimated biomasses Tabla 5. Biomasas estimadas de las especies y tamaños de interés comercial en los levantamientos de arrastre de fondo del programa REVIZEE realizados en la plataforma externa y talud superior del sur y sudeste de Brasil (2001-2002) en invierno-primavera (w-s) y verano-otoño (s-a). El intervalo de 90% de confianza está expresado como porcentaje de la biomasa. Depth ranges Shelf 100-199 m Upper slope 200-600 m Areas 92,555 km2 2 Total commercial biomass Illex argentinus Merluccius hubbsi Zenopsis conchifera Urophycis mystacea Polymixia lowei Lophius gastrophysus 42,168 km Total area 100-600 m 2 134,724 km ± IC 90% biomass w-s 92,398 74,795 167,193 22% s-a 69,167 96,292 165,460 25% w-s 5 8,907 8,912 106% s-a 0 28,647 28,647 62% w-s 3,079 11,376 14,455 43% s-a 3,111 12,968 16,078 32% w-s 6,456 21,760 28,216 61% s-a 242 20,760 21,003 87% w-s 3,049 5,535 8,583 24% s-a 5,453 5,751 11,204 41% w-s 0 14,854 14,854 85% s-a 15 17,713 17,728 69% w-s 9,993 6,002 15,994 27% s-a 5,213 5,758 10,971 23% Table 6. Mean densities (kg km-2) of pooled commercially important species in the REVIZEE bottom trawl surveys on the outer shelf and upper slope in southern Brazil (2001-2002). Tabla 6. Densidades medias (kg km-2) de las especies de importancia comercial en los muestreos pesqueros de arrastre de fondo del Programa REVIZEE realizados en la plataforma externa y talud superior del sur de Brasil (2001-2002). Latitudinal strata All latitudinal Latitudinal strata C and D strata A and B 100-199 m 200-600 m 100-200 m 200-600 m 100-200 m 200-600 m Area (km2) Winter-Spring surveys (2001-2002) Summer-Autumn surveys (2002) Total 31,952 38,719 37,655 44,029 69,607 82,749 152,355 2,143 1,059 0,636 0,767 0,829 0,904 0,904 1,485 1,642 0,577 0,743 0,782 1,164 1,164 wing years (Fig. 3). If we assume that landings of U. brasiliensis remained stable at 2,000 ton, those of U. mystacea peaked at approximately 6,000 ton in 2002 and decreased in the following years. Merluccius hubbsi Commercial landings of the Argentine hake Merluccius hubbsi in southern Brazil considered fish over 100 g and 250 mm (Haimovici et al., 1993). In the Demersal biomass and potential yield from southern Brazil 403 Figure 2. Estimated biomass of marketable species (tons) on the outer shelf and upper slope in the bottom trawl REVIZEE surveys in southern Brazil (2001-2002) (A-D are latitudinal strata defined in the text). Figura 2. Biomasa estimada de especies de valor comercial (ton), en los levantamientos de arrastre de fondo del programa REVIZEE en el sur de Brasil realizados en la plataforma externa y talud superior (2001-2002). (A-D estratos latitudinales definidos en el texto). Figure 3. Annual landings (tons) of the main species in bottom trawl and bottom gillnet catches on upper-slope of southern Brazil (Valentini & Pezzuto, 2006; IBAMA, 2007). Figura 3. Desembarques anuales (ton) de las principales especies demersales del talud superior de la flota de arrastreros de fondo y de enmalle de fondo de la pesca en el sur de Brasil (Valentini & Pezzuto, 2006; IBAMA, 2007). surveys, 85% (in weight) of the species caught were over this size. Biomass estimates were 14,445 ton (± 43%) in winter-spring and 16,078 ton (± 32%) in summer-autumn, with nearly 3/4 caught on the upper slope (Table 5). The largest concentrations of this species were found in the southern and northern parts of the study area at depths over 300 m (Fig. 4). However, smaller than commercial-sized specimens were far more abundant numerically and occurred in catches at all latitudes and in all depth ranges, particularly on the outer shelf (Haimovici et al., 2008). Annual landings of Argentine hake were below 300 ton until 2001; these were fished mostly off Rio de Janeiro and in Rio Grande do Sul in the years with a strong influence of cold waters from the Malvinas Current (Haimovici, 1997). Landings increased sharply in 2001 to 2,654 ton, peaked at 4,479 in 2002, and decreased to 1,565 by 2005 (Fig. 3). Polymixia lowei Commercial landings of the beardfish Polymixia lowei are rare and no information is available on its marketing. Occasionally, trawlers fishing on the upper slope 404 Lat. Am. J. Aquat. Res. Figure 4. Densities (kg km-2) of the commercial size catches of Illex argentinus, Urophycis mystacea, Merluccius hubbsi, Polymixia lowei, Zenopsis conchifera and Lophius gastrophysus captured in winter-spring (left) and summer-autumn (right) REVIZEE surveys (2001-2002) by depth and latitude in southern Brazil. For each species and survey, the diameters of the largest circles represent the largest densities. Figura 4. Densidades (kg km-2) de ejemplares de tamaño comercial de Illex argentinus, Urophycis mystacea, Merluccius hubbsi, Polymixia lowei, Zenopsis conchifera y Lophius gastrophysus capturados en invierno-primavera (izquierda) y verano-otoño (derecha) por profundidades y latitudes en los muestreos pesqueros del programa REVIZEE en el sur de Brasil (2001-2002). Para cada especie los diámetros de los círculos representan las mayores densidades. obtain large catches of specimens over 100 g and 200 mm total length; these specimens bring low prices when landed because, according to the fishermen, they have too many spines. In the surveys, 91% (in weight) of the P. lowei caught were over this size and the potential commercial biomass estimates were 14,827 ton (± 63%) in winter-spring and 17,721 ton (± 85 %) in summer-autumn (Table 5). Wide confidence intervals occurred due to large catches in a few hauls; this species was very abundant in a few hauls at depths over 300 m between 23ºS and 26ºS (Fig. 4). Specimens smaller than the commercial size were more frequent to the south of Cabo de Santa Marta Grande in the 150 to 300 m depth range and at all latitudes between 300 and 400 m (Haimovici et al., 2008). The maximum total length of this species is under 300 mm and its biology is poorly known. Zenopsis conchifera The silvery John dory Zenopsis conchifera is a benthopelagic species with low commercial value that is caught incidentally by large foreign trawlers on the Demersal biomass and potential yield from southern Brazil upper slope (Perez et al., 2003). Due to its laterally compressed body and large dermal bones along the body, only large specimens are adequate for filleting. Thus, only samples in which the mean weight of the fishes was over 350 g were considered for biomass estimates with commercial value. In the surveys, 67% (in weight) of the Z. conchifera caught were over this size and biomass estimates were 28,216 ton (± 61%) in winter-spring and 21,003 ton (± 87%) in summerautumn (Table 5). As large catches occurred in only a few hauls, the estimated confidence intervals of the biomass were large. Higher densities of commercialsized Z. conchifera were found at 300 to 400 m depth in all seasons in Cabo de Santa Marta Grande region and also along Ilha Bela in summer-autumn (Fig. 4). Specimens smaller than the commercial size occurred mostly over the shelf break (Haimovici et al., 2008). Lophius gastrophysus The monkfish Lophius gastrophysus was the fish with the highest commercial value among the frequently caught species. This fish has a very large head and specimens under 350 g are not considered to be of commercial interest and are not usually landed (Schwingel & Andrade, 2002). As few of the L. gastrophysus caught were smaller than this size, all their catches were considered to have commercial value. The winter-spring biomass was estimated to be 15,994 ton (± 27%), with 9,993 ton caught on the outer shelf and 6,002 ton on the upper slope; the summer-autumn biomass was 10,971 ton (± 23%), of which 47.5% were caught on the outer shelf (Table 5). The monkfish was caught along all the study area in both surveys. Larger densities were found in both surveys between Conceição and (area B) and also between Cabo de Santa Marta Grande and Cabo Frio (areas C and D) in summer-autumn (Fig. 4). The smallest specimens, of low commercial value, occurred mostly on the outer shelf and shelf break and the largest ones on the upper slope at depths between 250 and 550 m (Haimovici et al., 2008). The monkfish was exploited on the outer shelf of Rio de Janeiro by the local industrial fishing fleet for decades. Landings increased sharply due to the foreign gillnet fleet that operated from 1999 to 2002 all along the upper slope of southern Brazil (Perez et al., 2002; 2005). Total landings peaked at 7,094 ton in 2001 and 5,129 ton in 2002 and decreased to around 2,500 ton in the later years (Fig. 3). Fishing potential estimates Gulland’s formula was used for the first appraisal of the potential yield of the demersal fish resources vulnerable to bottom trawls on the outer shelf and upper 405 slope of southern Brazil. This approach is not adequate for short-lived species with highly variable recruitment and abundance such as Illex argentinus. Therefore, the values of this species were not included in the analysis. The biomasses estimated from the surveys cannot be considered to be unexploited stocks (Bo) since the outer shelf has been fished for years and landings of Argentine hake, gulf-hake, and monkfish, which were low until 2000, increased to around 13,500 ton in 2001 and 15,800 in 2002 (Fig. 3). Furthermore, the gulfhake has been caught as bycatch of the bottom longline fishery since the 1970s (Peres & Haimovici, 1998; Haimovici et al., 2004). Similarly, elasmobranches have been caught on the outer shelf by diverse gears since the 1980s (Vooren & Klippel, 2005). Thus, our best choice for the exploitable biomass (exBo) was the biomass estimate of commercially valuable fishes in the 2001 winter-spring survey, excluding I. argentinus (149,369 ton) and including the recorded catches of the most important species in 2001 (13,500 ton), for a total of around 165,000 ton. The potential yield of commercially valuable species was: Y = 0.4 · 0.31 · 165,000 ton = 20,460 ton. However, 12.4% of the total commercial size of marketable fish biomass were elasmobranches (Squatina spp. and other legally protected species), which have slow growth rates and low reproductive potential. Two potentially marketable species, Polymixia lowei and Zenopsis conchifera, which represented 18.3%, are presently discarded or have very little value. Thus, only three of the species (Argentine hake, gulf-hake, monkfish) are, at present, targeted by commercial fishing on the upper slope and their potential yield may provide a more realistic estimate of the fishing potential of the demersal fishes vulnerable to trawls in this environment. Their pooled biomass in the winterspring survey was 39,033 ton. When added to the 13,500 ton of these species caught in 2001, the total was 53,433 ton. Their common natural mortality was also estimated at 0.31 and their potential yield was: Y = 0.4 · 0.31 · 53,433 ton = 6,626. DISCUSSION The overall picture revealed by the surveys is that the demersal fish densities and fishery potential of the outer shelf and upper slope of southern Brazil is lower than that of the inner shelf and the same depth ranges farther south off Uruguay and Argentina but higher than in central and northeastern Brazil (MMA, 2006). This result is not unexpected since it agrees with the differences in productivity of the corresponding environments (Castello & Odebrecht, 2001). The influence 406 Lat. Am. J. Aquat. Res. of the nearby richer waters to the south is corroborated by the higher densities in the southern half of the study area. This pattern was also observed for fishes vulnerable to bottom longlines (Haimovici et al., 2004). However, the lower biomass and densities of commercially valuable fishes on the outer shelf (as compared to the upper slope; Fig. 3) may have another explanation: very intense fishing on the shelf over the last forty years could have reduced the abundance of species occurring on both the inner and outer shelf such as sciaenids, red porgy, flatfishes, and elasmobranches (Haimovici, 1997; Haimovici et al., 2006c). Commercially valuable species have also been fished on the upper slope but for a far shorter period of time. The pooled recorded catch of Argentine hake, gulfhake, and monkfish was 13,761 ton in 2001, 15,800 ton in 2002, and 9,413 ton in 2003. These values were respectively 107%, 138%, and 42% above the common potential yield, estimated to be 6,625 ton. This may have reduced their exploitable biomass substantially. In fact, reported landings of Argentine hake, gulf-hake, and monkfish in later years decreased to a fraction of those from 2001-2002. In part, this decrease coincided with the exit of most of the foreign fishing vessels in the former years (Perez et al., 2009). The estimates of the potential yield presented in this paper were subject to a considerable bias. Underestimates of the swept area due to both gear and fish behavior may have led to underestimates of the standing biomass. Additionally, incomplete landing reports affected the proposed correction factor. Considering that all three species were already exploited before the surveys and based on life story parameters, Perez (2006) concluded that sustainable yields for Argentine hake, gulf-hake, and monkfish should not be over 10% of the virginal exploitable biomass. His estimate does not differ substantially from our results based on bottom trawl survey biomass estimates. Presently, over 700 industrial fishing boats are operating along southern Brazil (unpublished data, Fisheries and Aquaculture Ministry), including trawlers and gill-net fishing boats. Despite being smaller than the foreign fishing boats and having poor fishing and processing technology, many of these could fish on the upper slope. However, the cost-benefit relationship does not appear to be attractive to most of them. For this reason, we believe that the abundance of these species and their fishing potential is likely to be far lower than expected in previous years and unlikely to have been as high as expected or higher than that reported in this paper. Theoretically, the fourth important fishing resource, Illex argentinus, with an estimated biomass of over 26,000 ton in the summer-autumn 2002 survey, could yield over 10,000 ton if an escape of 40% was allowed, as recommended in the literature (Beddington, 1990). However, this yield would demand a very high fishing effort in a very short fishing season, which is not economically feasible. In fact, landings of the short-fin Argentine squid only reached 2,500 ton in 2002 and were far lower in the previous and following years (Fig. 3). If managed, I. argentinus could be fished opportunistically, with high yields in some years and none in most of the others. The surveys did not reveal substantial new fishing resources vulnerable to bottom trawls between 100 and 600 m depth and showed limited potential of those already exploited; in fact, this potential was substantially lower than that on the inner shelf. Therefore, this environment cannot be considered to be a “new frontier” for the expansion of fishing, and exploitation must be carefully controlled to avoid overfishing. ACKNOWLEDGEMENTS We acknowledge onboard assistance of the R/V Atlântico Sul and R/V Soloncy Moura crews and colleagues at the Federal University of Rio Grande (FURG) and São Paulo (USP) and the Fisheries Institute of São Paulo State. We also thank two anonymous reviewers for their helpful comments. Logistical support for the research vessels was provided by CEPSUL/IBAMA and FURG. This research was based on surveys funded by the REVIZEE Program. The first author was partly supported by grants from the Brazilian Research Council (CNPq). CNPq and the REVIZEE Program provided grants for R.A.B., L.G.B., and R.A.S. REFERENCES Alverson, D.L. & W.T. Pereyra. 1969. Demersal fish exploration in the northeastern Pacific Ocean an evaluation of exploratory fishing methods and analytical approaches to stock size and yield forecasts. J. Fish. Bd. Canada, 26: 1985-2001. Beddington, J.R. & J.G. Cooke. 1983. The potential yield of fish stocks. FAO Fish. Tech. Pap., 242: 1-47. Beddington, J.R. 1990. Stock assessment and the provision of management advice for the short fin squid fishery in Falkland Islands waters. Fish. Res., 8: 351-365. Castello, J.P. & C. Odebrecht. 2001. The convergence ecosystem in the southwest Atlantic. In: U. Seeliger & B. Kjerfve (eds.). Coastal marine ecosystems of Latin America. Springer, Berlin, pp. 147-165. Demersal biomass and potential yield from southern Brazil Castro, B.M. & L.B. Miranda. 1998. Physical oceanography of the western Atlantic continental shelf located between 4°N and 34°S. In: A.R. Robinson & K.H. Brink (eds.). The sea. The global coastal ocean regional studies and synthesis. John Wiley & Sons, New York, 11: 209-251. Duarte-Pereira, M., J.L. Abreu-Silva, L.A Ebert & H.A. Andrade. 2005. Idade e crescimento do peixe galode-profundidade, Zenopsis conchifera (Lowe, 1852) capturado na plataforma e talude continental do sul e sudeste do Brasil: dados preliminares. II Congresso Brasileiro de Oceanografia. CBO´2005, 09 a 12 de outubro de 2005, Vitória, ES. Livro de resumos, pp. 1-3. Figueiredo, A. & L.S.P. Madureira. 2004. Topografia, composição, refletividade do substrato marinho e identificação de províncias sedimentares na Região Sudeste-Sul do Brasil. Série Documentos REVIZEEScore Sul. Instituto Oceanográfico da USP, São Paulo, 64 pp. Fogarty, M.J. 1985. Statistical considerations in the design of trawl surveys. FAO Fish Circ., 786: 21 pp. Froese, R. & D. Pauly (eds.). 2009. FishBase. World Wide Web electronic publication. http://www.fishbase.org. Revised: 15 July 2009. Graham, H.W. 1935. Modern theory of the exploiting a fishery, and application to the North Sea trawling. J. Cons. Inter. Explor. Mer, 10: 264-274. Gulland, J.A. 1983. Fish stock assessment, a manual of basic methods. FAO Wiley Series on Food and Agriculture, (1): 223 pp. Gulland, J.A (ed.). 1971. The fish resources of the ocean, pp. 146-152. Fishing News Books, Surrey, 255 pp. Gunderson, D.R. 1993. Survey of fisheries resources. John Wiley & Sons, New York, 248 pp. Haimovici, M., S. Pereira & P.C. Vieira. 1989. La pesca demersal en el sur de Brasil en el periodo 1975-1985. Frente Marítimo, Montevideo, 5(Sec A): 151-163. Haimovici, M. 1997. Recursos pesqueiros demersais da região sul. Avaliação do Potencial Sustentável de Recursos Vivos da Zona Econômica Exclusiva (REVIZEE). Fundação de Estudos do Mar (FEMAR), Rio de Janeiro, 81 pp. Haimovici, M. 1998. Present state and perspectives for the southern Brazil shelf demersal fisheries. Fish. Manag. Ecol., 5(4): 277-290. Haimovici, M., A.O. Ávila-da-Silva, S.H.B. Lucato, G. Velasco & L.H. Arantes. 2003. A pesca de linha-defundo na plataforma externa e talude superior da região sudeste-sul do Brasil em 1997 e 1998. In: M.C. Cergole & C.L.B.D. Rossi-Wongtschowski (eds.). Análise das principais pescarias comerciais do sudes- 407 te-sul do Brasil. Volume I: dinâmica das frotas pesqueiras. Programa REVIZEE-Score-Sul. Evoluir, São Paulo, 347-363. Haimovici, M., A.O. Ávila da Silva, S.L.S. Tutui, C. Bastos, R.A. Santos & L.G. Fischer. 2004. Prospecção pesqueira de espécies demersais com espinhel-defundo na região Sudeste-Sul do Brasil. In: M. Haimovici, A.O. Ávila-da-Silva & C.L.D.B. RossiWongtschowki (eds.). Prospecção pesqueira de espécies demersais com espinhel-de-fundo na Zona Econômica Exclusiva da Região sudeste-sul do Brasil, Série Relatórios REVIZEE-Score Sul Instituto Oceanográfico, Universidade do Sāo Paulo, Sāo Paulo, pp. 11-78. Haimovici, M., A.S. Martins & R.L. Teixeira. 1993. Distribución, alimentación y observaciones sobre la reproducción de la merluza Merluccius hubbsi en el sur de Brasil. Frente Marítimo, Montevideo, 14: 3340. Haimovici, M., J.A.A. Perez & R.A. Santos. 2006a. Diagnóstico e orientações para o ordenamento pesqueiro de Illex argentinus. In: M.C. Cergole, A.O. Ávila-daSilva & C.L.D.B. Rossi-Wongtschowski (eds.). Análise das principais pescarias comerciais da região sudeste-sul do Brasil: dinâmica populacional das espécies em explotação, Vol 2. Série Documentos REVIZEE–Score Sul. Instituto Oceanográfico, Universidade do Sāo Paulo, São Paulo, pp. 19-28. Haimovici, M., A.A. Ávila-da-Silva & L.G. Fischer. 2006b. Diagnóstico e orientações para o ordenamento pesqueiro de Urophycis mystacea. In: M.C. Cergole, A.O. Ávila-da-Silva & C.L.D.B. Rossi-Wongtschowski (eds.). Análise das principais pescarias comerciais da região sudeste-sul do Brasil: dinâmica populacional das espécies em explotação, Vol 2. Série Documentos REVIZEE–Score Sul, Universidade do Sāo Paulo, São Paulo, pp. 86-96. Haimovici, M., M. Vasconcellos, D.C. Kalikoski, P. Abdalah, J.P. Castello & D. Hellebrant. 2006c. Diagnóstico da pesca no Rio Grande do Sul. In: V. Isaac, A.S. Martins, M. Haimovici & J.M. Andriguetto (eds). A pesca marinha e estuarina do Brasil no Início do Século XXI: recursos, tecnologias, aspectos socioeconômicos e institucionais. Editora Universitária UFPA, Belém, pp. 157-180. Haimovici, M., C.L.B.D. Rossi-Wongtschowski, R.B. Ávila, L.G. Fischer, R.A. Santos, A.R. Rodrigues, C.M. Vooren & S. Santos. 2008. A prospecção pesqueira de espécies demersais com rede de arrasto-defundo na região sudeste-sul do Brasil. Programa REVIZEE, Série Relatórios Score Sul, IOUSP, 183 pp. Hoenig, J.M. 1983. Empirical use of longevity data to estimate mortality rates. U.S. Fish. Bull., 82:898-903. 408 Lat. Am. J. Aquat. Res. Instituto Brasileño del Medio Ambiente y de los Recursos Naturales Renovables (IBAMA). 2007. Estatística da pesca. Brasil 2005. Grande Unidades da Federação. Instituto Brasileiro do Meio Ambiente, Ministério do Meio Ambiente, Brasília, 108 pp. Lopes, F.R.A. 2005. Reprodução, idade e crescimento e do peixe-sapo Lophius gastrophysus (Ribeiro, 1915) na região sudeste e sul do Brasil. Dissertação de Mestrado. Universidade do Vale do Itajaí, Itajaí, 68 pp. Madureira, L.S.P. & C.L.D.B. Rossi-Wongtschowski (eds.). 2005. Prospecção de recursos pesqueiros pelágicos na Zona Econômica Exclusiva da Região sudeste-sul do Brasil: hidroacústica e biomassas. Série documentos REVIZEE-Score Sul. Instituto Oceanográfico, Universidade do Sāo Paulo, São Paulo, 144 pp. Martins, R.S. & M. Haimovici. 2000. Determinação de idade, crescimento e longevidade da abrótea de profundidade, Urophycis cirrata, Goode & Bean, 1896 (Teleostei; Phycidae) no extremo sul do Brasil. Atlântica, Rio Grande, 22: 57-60. Martins, L.R., C.M. Urien & I.R. Martins. 1976. Morfologia e sedimentos da plataforma continental Atlântica sul-americana entre o Cabo Orange e o Chuí (Brasil). Anais Hidrográficos, Rio de Janeiro, pp. 83-109. Perez, J.A.A. 2006. Potenciais de rendimento dos alvos da pesca de arrasto de talude do sudeste e sul do Brasil estimados a partir de parâmetros do ciclo de vida. Braz. J. Aquat. Sci. Technol., Itajaí, 10(2): 1-11. Peres, B.M. & M. Haimovici. 1998. A pesca dirigida ao cherne-poveiro Polyprion americanus Polyprionidae, Teleostei). Atlântica, 20: 141-161. Perez, J.A.A. & P.R. Pezzuto. 2006. A pesca de arrasto de talude do sudeste e sul do Brasil: tendências da frota nacional entre 2001 e 2003. Bol. Inst. Pesca, São Paulo, 32: 127-150. Perez, J.A.A., P.R. Pezzuto & H.A. Andrade. 2005. Biomass assessment of the monkfish Lophius gastrophysus stock exploited by a new deep-water fishery in southern Brazil. Fish. Res., 72: 149-162. Perez, J.A.A., R. Wahrlich & P.R. Pezzuto. 2009b. Chartered trawling on the slope off Brazilian coast. Mar. Fish. Rev., 71(2): 24-36. Perez, J.A.A., R. Wahrlich, P.R. Pezzuto & F.R.A. Lopes. 2002. Estrutura e dinâmica da pescaria do peixe-sapo Lophius gastrophysus no sudeste e sul do Brasil. Bol. Inst. Pesca, São Paulo, 28: 205-231. Perez, J.A.A., R. Wahrlich, P.R. Pezzuto, P.R. Schwingel, F.R.A. Lopes & M. Rodrigues-Ribeiro. 2003. Deep-sea fishery off southern Brazil: recent trends of the Brazilian fishing industry. J. Northw. Atl. Fish. Sci., 31: 1-18. Received: 14 October 2008; Accepted: 28 August 2009 Piola, A.R., E.J.D. Campos, O.O. Möller Jr., M.E. Charo & C. Martinez. 2000. Subtropical shelf front off eastern South America. J. Geophys. Res., 105(C3): 65656578. Ministério de Meio Ambiente (MMA). 2006. Programa REVIZEE: Avaliação do Potencial Sustentável de Recursos Vivos na Zona Econômica Exclusiva. Relatório Executivo Ministério de Meio Ambiente, Brasília, 279 pp. Rodhouse, P.G., E.G. Dawe & R.K. O’Dor (eds.). 1998. Squid Recruitment Dynamics. FAO Fish. Tech. Pap., Nº376: 273 pp. Saville, A. (ed.) 1977. Survey methods of appraising fishery resources. FAO Fish. Tech. Pap., 171: 76 pp. Schwingel, R.P. & H.A. Andrade. 2002. Capítulo 3: Aspectos biológicos e populacionais. In: Análise da Pescaria do Peixe-Sapo Lophius gastrophysus no sudeste e sul do Brasil. Convênio UNIVALI MAPA, Itajaí, 1-27. Valentini, H. & P.R. Pezzuto. 2006. Análise das principais pescarias comerciais da região sudeste-sul do Brasil com base na produção controlada do período 1986-2004. Série Documentos REVIZEE–Score Sul. Instituto Oceanográfico, Universidade do Sāo Paulo, São Paulo, 56 pp. Valentini, H., P.M.G. de Castro, G.J.M. Servo & L.A.B. de Castro. l991. Evolução da pesca das principais espécies demersais da costa sudeste do Brasil, pela frota de arrasteiros de parelha baseada em São Paulo de l968 a l987. Atlântica, Rio Grande, 13(1): 87-96. Vaz-dos-Santos, A. & C.L.D.B. Rossi-Wongtschowski. 2005. Merluccius hubbsi Marini, 1993. In: M.C. Cergole, A.O. Ávila-da-Silva & C.L.D.B Rossi Wongtschowski (eds.). Análise das principais pescarias comerciais da região sudeste-sul do Brasil: dinâmica a populacional das espécies em explotação. Série Documentos REVIZEE–Score Sul. Instituto Oceanográfico, Universidade do Sāo Paulo, São Paulo, pp. 8893. Vooren, C.M. & S. Klippel. (eds.) 2005. Ações para a conservação de tubarões e raias no sul do Brasil. 2005, Editora Igaré, Porto Alegre, 261 pp. Walters, C. & S.J.D. Martell. 2002. Stock assessment needs for sustainable fisheries. Bull. Mar. Sci., 70(2): 629-638. Yesaki, M. & K.J. Bager. 1975. Histórico da evolução da pesca industrial em Rio Grande. Programa de Pesquisa e Desenvolvimento Pesqueiro do Brasil. PNUD/FAO: Ministério da Agricultura SUDEPE, Rio de Janeiro, Ser. Doc. Téc., 11: 1-15. Zar, J.H. 1984. Biostatistical analysis. Prentice-Hall, Englevood Cliffs, 718 pp. Lat. Am. J. Aquat. Res., 37(3): 409-428, 2009 “Deep-sea fisheries off Latin America” P. Arana, J.A.A. Perez & P.R. Pezzuto (eds.) DOI: 10.3856/vol37-issue3-fulltext-11 Population biology of Illex argentinus off Brazil Research Article Biological patterns of the Argentine shortfin squid Illex argentinus in the slope trawl fishery off Brazil José Angel Alvarez Perez1, Tiago Nascimento Silva2, Rafael Schroeder1,3 Richard Schwarz1,3 & Rodrigo Silvestre Martins4,5 1 Grupo de Estudos Pesqueiros. Centro de Ciências Tecnológicas da Terra e do Mar. Universidade do Vale do Itajaí, Rua Uruguai 458, Centro, Itajaí, SC, Brazil 2 Biogás Energia Ambiental S.A., Rua Mogeiro 1580. Bairro Perus, 05206-240 São Paulo, SP, Brazil 3 Curso de Pós-Graduação em Ciência e Tecnologia Ambiental, Centro de Ciências Tecnológicas da Terra e do Mar, Universidade do Vale do Itajaí, Rua Uruguai 458, Centro, Itajaí, SC, Brazil 4 Marine and Coastal Management (MCM), Private Bag X2, Rogge Bay 8012, Cape Town, South Africa 5 Zoology Department and Marine Research Centre, University of Cape Town, Private Bag X3, Rondebosch 7701, Cape Town, South Africa ABSTRACT. Commercial exploitation of the Argentine shortfin squid (Illex argentinus) was virtually nonexistent in Brazilian waters until 2000 when foreign trawlers initiated their operations on slope grounds as part of a government-induced chartering program. Since then, the species has been included among the targets of a developing slope trawl fishing off southeastern and southern Brazil. Biological samples were collected from commercial catches of 25 national and seven foreign (chartered) trawlers between 23°-33°S and 170-740 m depth. These samples represent two periods of the commercial exploitation of Illex argentinus in Brazil: 20012003, when both chartered and national trawlers operated simultaneously, and 2006-2007, when only national vessels continued to exploit I. argentinus along with other slope stocks. Catches contained immature and maturing squid throughout the year, as well as at least two distinct, fully mature, spawning groups: one composed of small-sized males and females present year-round on the shelf-break/ upper slope (< 400 m), and the other consisting of large squid present only in austral winter-spring in southern (26°-29°S) and deep fishing grounds (400-700 m). The latter group has sustained the large winter catches reported since 2000 and the large sizes and concentrations of the specimens sparked the interest of the fishing industry as a potential target of the slope fishery. The reproductive attributes and temporal/ spatial distribution patterns of winter spawners support the hypothesis that relates this group to migrating concentrations of a north Patagonian shelf stock. If confirmed, the present data would underscore the need to consider multinational shared stock management strategies in the SW Atlantic. Keywords: ommastrephid squid, Illex argentinus, slope trawl fishery, southern Brazil. Patrones biológicos del calamar argentino Illex argentinus en la pesquería de arrastre en el talud continental de Brasil RESUMEN. La explotación comercial del calamar argentino (Illex argentinus) no existía en aguas brasileñas hasta el año 2000, cuando buques extranjeros iniciaron sus operaciones en el talud como parte de un programa gubernamental de arrendamiento. Desde entonces la especie forma parte de un conjunto de recursos que han motivado el desarrollo de una pesquería de arrastre en el talud del sur y sureste de Brasil. Se colectaron muestras biológicas de las capturas comerciales de 25 buques arrastreros nacionales y siete extranjeros entre los paralelos 23°-33°S y en profundidades de 170 a 740 m. Estas muestras representaron dos periodos de la explotación comercial de I. argentinus en Brasil: 2001-2003, cuando buques nacionales y extranjeros operaron simultáneamente, y 2006-2007 cuando sólo buques nacionales permanecieron explotando el calamar argentino en conjunto con otros recursos del talud. Las capturas estuvie- 409 410 Lat. Am. J. Aquat. Res. ron constituidas por calamares inmaduros y en-maduración a lo largo de todo el año, así como al menos dos grupos distintos de individuos maduros y desovantes: un grupo constituido por machos y hembras de pequeño tamaño que están presentes en todas las estaciones del año en el borde de la plataforma continental y talud superior (< 400 m), y otro grupo, constituido por calamares de gran tamaño, presente solamente durante el invierno-primavera australes en áreas sureñas (26°-29°S) y profundidad (400-700 m). Este grupo ha sostenido las grandes capturas invernales reportadas desde 2000 y, dado su largo tamaño y concentración, ha justificado el interés de la industria pesquera como un potencial recurso para la pesca en el talud. Características reproductivas y patrones de distribución temporales/ espaciales de los desovantes de invierno corroboran la hipótesis que les relaciona a concentraciones migratorias de stock del norte de la plataforma Patagónica. Si se confirma esta hipótesis, estos datos resaltan la importancia de considerar estrategias de manejo dirigidas a stocks compartidos en el Atlántico SW. Palabras clave: calamares omastréfidos, Illex argentinus, pesquería de arrastre de talud, sur de Brasil. ________________________ Corresponding author: José Angel Alvarez Perez (angel.perez@univali.br) INTRODUCTION Squids have long represented important bycatch components of the multispecific trawl fishery off Brazil (Costa & Haimovici, 1990; Perez & Pezzuto, 1998). On the continental shelf, loliginids have further become seasonal targets of both hand jigging and trawl fisheries, as they are densely concentrated in space and time (Perez, 2000; Martins & Perez, 2007). In recent years, however, commercial landings of the ommastrephid Argentine shortfin squid Illex argentinus (Castellanos, 1960) have been recorded in the southeastern and southern sectors of the Brazilian coast and have placed this squid among the main cephalopod resources exploited in the country (Perez et al., 2009a). The species is distributed in the SW Atlantic from Rio de Janeiro (23°S) to southern Argentina (54°S) sustaining, on the Patagonian shelf and around the Falkland (Malvinas) Islands, one of the largest cephalopod fisheries in the world (Boyle & Rodhouse, 2005). Off Brazil, several fishing surveys conducted since the 1970s have revealed important concentrations of paralarvae, juveniles, and spawning individuals, particularly in the shelf break and slope waters of the southern coast (south of 25°S) (Haimovici & Andriguetto Fo, 1986; Haimovici & Perez, 1991; Haimovici et al., 1995, 2007, 2008). In this area, the species has also been often found in stomach contents of large predators, and it is regarded as one of the key components of both pelagic and demersal trophic chains (Santos & Haimovici, 2000; Gasalla et al., 2007). Commercial exploitation of the Argentine shortfin squid was virtually non-existent in Brazilian waters until 2000, when foreign-chartered trawlers initiated their operations on the slope grounds south of 20°S (Perez et al., 2003, 2009b). In that year, the Portuguese trawler “Joana” landed approximately 48 ton of this species caught during one fishing trip between 2629°S and 235-401 m isobaths (Perez et al., 2003). In 2002, the South-Korean trawler “In Sung 207” exploited the same area in winter (June-September) catching, on average, 199 kg of I. argentinus per trawling hour. After four fishing trips, this vessel landed a total of 1,400 ton, the largest catch ever recorded in Brazilian waters (Perez et al., 2009b). In total, landings of I. argentinus that year reached 2,601 ton, nearly twice the amount recorded for other squids (mostly loliginids). These catches, however, decreased to 100-400 ton in the following years, as chartered trawlers either abandoned Brazilian waters or moved to deeper areas (> 700 m). Since then, national trawlers have included I. argentinus among the targets of a developing “upper slope” (250-500 m) trawl fishery (Perez & Pezzuto, 2006; Perez et al., 2009a). Preliminary assessments of this fishery have considered I. argentinus to be a seasonal resource with a fishing potential that has not been objectively defined but that is generally considered to be highly variable and unpredictable (Haimovici et al., 2006). The main questions regarding the biological aspects of I. argentinus commercial exploitation off Brazil, however, revolve around its complex population structure and potential connections with migrating stocks exploited off Uruguay and Argentina (Perez et al., 2003; Haimovici et al., 2006). As most ommastrephid squids, I. argentinus is a short-lived species (~1 year) that matures late in life and dies after a single and terminal spawning event (Haimovici et al., 1998). Because generations do not overlap in time, population resilience is highly dependent on recruitment and, consequently, annual abundances typically exhibit wide oscillations, as do commercial catches (Boyle & Rod- Population biology of Illex argentinus off Brazil 411 house, 2005). Associated with this extreme life history pattern, ommastrephids tend to combine extended spawning seasons, long reproductive migrations, and the passive transport of offspring by surface geostrophic currents to produce both seasonal and geographic population units (stocks); this complex structure is regarded as an evolutionary strategy to minimize the risks of semelparity (O’Dor, 1998). In the SW Atlantic, at least four stocks were distinguished from general size-at-maturity patterns: summer spawning stock (SSS), south Patagonian stock (SPS), Bonaerensis north Patagonian stock (BNS), and southern Brazil stock (SBS) (Brunetti, 1988; Haimovici et al., 1998). The latter group included the main concentrations of spawning squid found in winter months on the slope off southern Brazil (Haimovici & Perez, 1990; Santos & Haimovici, 1997). Growing biological evidence (i.e. maturation patterns, trophic relationships, the occurrence of certain parasites, statolith morphometrics), however, suggests that these squid are in fact BNS members that migrate north to spawn in Brazilian waters (Santos & Haimovici, 1997; Schwarz & Perez, 2007). Although local spawning was also observed occuring off Brazil throughout the year, winter spawning was potentially linked to recruitment off the northern Patagonian shelf through paralarval transport by the Falkland (Malvinas) – Brazil Current system (Haimovici et al., 1995). In this context, this study analyzes biological attributes of commercial catches of the Argentine shortfin squid off southern Brazil as a descriptive approach to assess both the population structure subject to the seasonal exploitation regime and the hypothesis of a shared stock scenario. MATERIAL AND METHODS Biological samples of the Argentine shortfin squid were obtained from commercial catches of 25 national and seven foreign (chartered) trawlers all derived from operations in the southeastern and southern sectors of the Brazilian coast (Fig. 1) between 23°-33°S and 170740 m depth. Samples represent two periods of the species’ commercial exploitation in Brazil: 20012003, when both chartered and national slope trawlers operated simultaneously, and 2006-2007, when only national vessels continued to exploit I. argentinus along with other slope stocks (Table 1) (Perez & Pezzuto, 2006; Perez et al., 2009b). Onboard observers collected samples from chartered trawlers for all fishing trips conducted principally between September 2001 and April 2003. After each positive trawl, a sample was taken from the catch Figure 1. Spatial distribution of Argentine shortfin squid Illex argentinus catches off southeastern and southern Brazil. a) chartered trawlers (2001-2003), b) national trawlers (2006-2007). Latitude and longitude were decimal transformed. Figura 1. Distribución espacial de las capturas del calamar argentino Illex argentinus en el sureste y sur de Brasil. a) arrastreros arrendados (2001-2003), b) arrastreros nacionales (2006-2007). Latitudes y longitudes fueron transformadas en valores decimales. and deep-frozen for posterior analysis in the laboratory ashore. Each sample had detailed information on trawl position (lat-long), date, time, and fishing effort (trawling hours). Samples from national trawlers were collected from landings at the harbors of Santa Ca- 412 Lat. Am. J. Aquat. Res. Table 1. Summary of data for the Argentine shortfin squid Illex argentinus obtained from chartered and national trawlers operating off Brazil between 2001 and 2007. N: number of individuals; Min-Max: smallest and largest mantle length (ML) and total wet body weight (BW). Tabla 1. Resumen de datos de calamar argentino Illex argentinus obtenidos en las operaciones de pesca de arrastreros arrendados y nacionales en Brasil entre 2001 y 2007. N: número de individuos, Min-Max: valores máximos y mínimos de la longitud del manto (ML) y peso total húmedo (BW). Males Trimester N Females ML (mm) Min-Max BW (g) Min – Max ML (mm) Min – Max BW (g) Min – Max 14 – 240 23 – 425 25 – 295 26 – 345 27 – 570 260 – 420 29 – 188 40 – 192 195 – 325 24 506 262 524 307 7 60 130 1 91 – 332 105 – 336 98 – 254 104 – 299 114 – 346 280 – 325 143 – 234 130 – 250 250 18 – 455 33 – 655 18 – 320 23 – 560 26 – 775 228 – 670 52 – 260 43 – 400 162 N Chartered Jan-Mar/2001 Apr-Jun/2001 Jul-Sep/2001 Oct-Dec/2001 Jan-Mar/2002 Apr-Jun/2002 Jul-Sep/2002 Oct-Dec/2002 Jan-Mar/2003 Apr-Jun/2003 Apr-Jun/2006 Jul-Sep/2006 32 966 395 466 153 4 73 131 7 78 – 195 110 – 278 115 – 221 115 – 239 119 – 316 221 – 275 105 – 191 123 – 200 229 – 259 Total 2227 78 – 316 14 – 570 1821 91 – 346 18 – 775 Jan-Mar/2001 Apr-Jun/2001 Jul-Sep/2001 Oct-Dec/2001 Jan-Mar/2002 Apr-Jun/2002 Jul-Sep/2002 Oct-Dec/2002 Jan-Mar/2003 Apr-Jun/2003 Apr-Jun/2006 Jul-Sep/2006 Oct-Dec/2006 Jan-Mar/2007 Apr-Jun/2007 Jul-Sep/2007 Oct-Dec/2007 Total 4 136 12 36 81 86 95 5 76 – 121 30 – 253 163 – 405 38 – 148 30 – 309 30 – 335 31 – 450 211 – 249 100 – 315 49 – 162 128 – 470 28 – 390 6 213 16 89 125 88 86 8 27 24 43 73 154 – 174 129 – 245 190 – 261 135 – 166 114 – 254 100 – 250 110 – 340 220 – 262 159 – 225 130 – 210 110 – 289 111 – 249 16 51 45 77 155 – 185 115 – 395 195 – 315 124 – 204 117 – 262 130 – 376 118 – 350 252 – 367 190 – 290 117 – 305 166 – 351 132 – 344 79 – 145 32 – 580 90 – 655 39 – 255 31 – 375 44 – 605 25 – 830 196 – 580 180 – 645 68 – 700 57 – 860 35 - 870 75 46 145 -246 160 - 289 50 -299 116 - 505 122 54 135 - 338 223 - 353 37 -740 184 -910 743 100 – 340 28 - 505 996 115 - 395 25 - 910 TOTAL 2970 78 – 340 14 - 570 2817 91 - 395 18 - 910 National 413 Population biology of Illex argentinus off Brazil tarina state (southern Brazil) as part of a daily fishery sampling program (Perez et al., 1998). From each landed catch, approximately 20 kg of squid were measured for their dorsal mantle length (ML) to the nearest centimeter, and a length stratified subsample was taken to the laboratory. These subsamples could not be related to individual trawls conducted during each fishing trip, but represented the entire fishing area covered by it. Information on the fishing area, effort (mean trawl duration, number of trawls per day, trip duration in days), and total catch were obtained during interviews with skippers at the time of the landings. In the laboratory, the ML and the total body weight (BW) were recorded to the nearest millimeter and gram, respectively. After dissecting the mantle, males and females were differentiated and maturity stages were assigned according to the macroscopic scale proposed by Brunetti (1990). This scale defined seven and eight maturity stages for males and females, respectively, including: immature (stages I and II), in maturation (stage III), early maturity (stage IV), advanced maturity (stage V), spawning (stage VI for males and stages VI and VII for females), and spent (stage VII for males and stage VIII for females). In females, the ovary and accessory organs (oviduct + nidamental glands + oviducal gland) were weighed (OW and AOW, respectively), the nidamental gland length was measured (NGL), and the gills were checked for the presence of spermatophores as signs of mating. In males, the testis and accessory organs (spermatophoric complex + Needhan’s sac + penis) were weighed (TW and AOW, respectively), the testis length was measured (TL), and the Needhans’s sac was examined for the presence of spermatophores. All weights were taken to the nearest 0.1 g and measurements to 0.1 mm. c) the Testis (TI) - Nidamental Gland (NGI) indices defined as TI = TL , ML NGI = NGL ML (3) A data bank was produced in which each squid was described by its origin (sample, landing date), sex, size (ML, BW), and reproductive characteristics (maturity stage, OW, TW, AOW, GSI, HI, TI/ NGI). Size-at-maturity was assessed from the cumulative ML frequency distribution of mature and spawning males and females (stages > IV). This distribution was linearized by the probit transformation of cumulative ML frequencies and a straight line was then fitted to the transformed frequency vs. ML class relationship using the least-squares method. Precise ML at different percentiles were then estimated by substituting the probit values in the estimated linear equation (i.e. probit 5 corresponds to 50% percentile): MLm = pf − c d (4) Maturation in males and females was expressed numerically by three indices: where pf is the probit transformed ML cumulative frequency and c and d are the intercept and the slope of the fitted line, respectively. Population differentiation among squid caught by commercial trawlers was explored through a multivariate Principal Component Analysis (PCA) applied separately for males and females. Variables included in this analysis involved size and reproductive attributes (BW, GSI, HI, TI/ NGI), day-of-the-year (DYR), decimal latitude (LAT), decimal longitude (LONG), and depth (DEPTH). A correlation matrix was calculated for the variables (previously standardized as a proportion of their mean) and new axes (factors) were extracted in the direction of greatest variance. These factors were linear combinations of the original variables and used to interpret the potential existence of biologically similar groups of squids and their occurrence in space and time. a) the Gonadosomatic index defined for males (GSIM) and females (GSIF) as: RESULTS GSI M = GSI F = TW + AOW 100 (BW − (TW + AOW )) OW + AOW (BW − (OW + AOW )) (1) 100 b) the Hayashi index (HI) defined for males (HIM) and females (HIF) as HI M = AOW TW + AOW , HI F = AOW OW + AOW (2) Size structure of catches Males and females caught during slope trawl fishing exhibited a bi-modal ML frequency distribution (Fig. 2). Males ranged from 78 to 340 mm ML, exhibiting one pronounced mode centered around 160 mm ML and a secondary mode between 220 and 240 mm ML. Females were generally larger, ranging from 91 to 395 mm ML. A main modal group was formed around 180 mm ML and a less pronounced one between 280-320 414 Lat. Am. J. Aquat. Res. mm ML (Fig. 2, Table 1). The overall size structures remained practically unchanged as the catches by the chartered and national trawlers in 2001-2007 were examined separately, although larger females were found in the former (Fig. 2). During the early exploitation period (2001-2003), the size structure of the chartered fleet catches varied with the season, latitude, and depth of commercial operations (Figs. 3 and 4). Large males (ML > 200 mm) dominated catches obtained in winter (JulySeptember) south of 28°S, between 350-540 m depth (Fig. 3). During the rest of the year, catches were generally unimodal, concentrating on individuals between 100-250 mm ML that originated north of 28°S and on the upper slope (< 400 m depth). In females, the patterns observed were virtually the same (Fig. 4), with an uniform group of individuals (100-250 mm ML long) dominating the catches throughout the year, except for winter months when a distinct group of large females was caught in southern (south of 28°S) and deeper (> 350 m) areas. Slope trawling between 2006-2007, as conducted by the national fleet, concentrated on the larger fractions of both males and females (Fig. 5). These fractions were generally obtained in areas south of 29°S (Fig. 1), inshore of the 400 m isobath, and in autumn (April-June) and winter (July-September) months. Maturation and maturity stages Males and females in all maturity stages were present in the slope trawling catches off southeastern and southern Brazil (Table 2). The spawning stage (stage VI) was the most frequently identified maturity condition in both sexes and nearly 50% off all individuals caught were at least in an early maturity stage (stage IV and higher). This overall maturity stage composition was observed in 2001-2003 but shifted towards a complete dominance of spawning (and spent) squid after 2003, as the national trawlers that continued to exploit the Argentine shortfin squid tended to catch and land larger males and females (Fig. 6). Catches included immature males and females as small as 78 and 91 mm ML, respectively. Spawning males (stage VI) and females (stage VII) attained the largest sizes (Table 2). Squids of both sexes enlarged homogenously as maturation progressed. At an advanced maturity-spawning condition (stages V, VI, and VII), however, two distinct size groups were found (Fig. 7). The first group was dominant in the samples and was composed of males and females ranging from 140-180 mm ML and 160-240 mm ML, respectively. The second group was less abundant but included larger individuals (males > 200 mm ML; Figure 2. Mantle length frequency distributions (in mm) of males and females of the Argentine shortfin squid Illex argentinus caught by commercial trawlers off Brazilian coast between 2001 and 2007. a) total catches, b) male catches obtained by chartered vs. national trawlers, c) female catches obtained by chartered vs. national trawlers. Figura 2. Distribución de tallas (largo de manto ML en mm) de machos y hembras del calamar argentino Illex argentinus capturados por arrastreros comerciales en la costa de Brasil entre 2001 y 2007. a) capturas totales, b) capturas de machos obtenidas por arrastreros arrendados y nacionales, c) capturas de hembras obtenidas por arrastreros arrendados y nacionales. Population biology of Illex argentinus off Brazil 415 Figure 3. Size structure of male Illex argentinus caught by chartered trawlers off Brazil between 2001 and 2003. Mantle length frequency distributions (in mm) are presented by latitudinal (left column) and depth (right column) strata. Colors differentiate maturity stages according to the Brunetti (1990) macroscopic scale. Figura 3. Estructura de tallas de machos del calamar argentino Illex argentinus capturados por arrastreros arrendados en Brasil entre 2001 y 2003. Las distribuciones de frecuencia de tallas (largo de manto ML en mm) están presentadas por estratos latitudinales (columna de la izquierda) y estratos batimétricos (columna de la derecha). Los colores diferencian los estadios de maduración sexual según la escala macroscópica de Brunetti (1990). 416 Lat. Am. J. Aquat. Res. Jan - Mar Jan - Mar Stages I+II IV+V VI+VII+VIII I+II IV+V VI+VII+VIII Apr - Jun Apr - Jun Stages Stages I+II IV+V VI+VII+VIII I+II IV+V VI+VII+VIII Jul - Sep Jul - Sep Stages Stages Stages I+II IV+V VI+VII+VIII I+II IV+V VI+VII+VIII Oct - Dec Oct - Dec Stages I+II IV+V VI+VII+VIII Stages I+II IV+V VI+VII+VIII Figure 4. Size structure of female Illex argentinus caught by chartered trawlers off Brazil between 2001 and 2003. Mantle length frequency distributions (in mm) are presented by latitudinal (left column) and depth (right column) strata. Colors differentiate maturity stages according to the Brunetti (1990) macroscopic scale. Figura 4. Estructura de tallas de hembras del calamar argentino Illex argentinus capturadas por arrastreros arrendados en Brasil entre 2001 y 2003. Las distribuciones de frecuencia de tallas (largo de manto ML en mm) están presentadas por estratos latitudinales (columna de la izquierda) y estratos batimétricos (columna de la derecha). Los colores diferencian los estadios de maduración sexual según la escala macroscópica de Brunetti (1990). 417 Population biology of Illex argentinus off Brazil MALES Stages MALES Stages I+II IV+V VI+VII I+II IV+V VI+VII FEMALES FEMALES Stages I+II IV+V VI+VII+VIII Stages I+II IV+V VI+VII+VIII Figure 5. Size structure of Illex argentinus caught by national trawlers off Brazil between 2006 and 2007. Mantle length frequency distributions (in mm) are presented for males and females by latitudinal (left column) and depth (right column) strata. Colors differentiate maturity stages according to the Brunetti (1990) macroscopic scale. Figura 5. Estructura de tallas del calamar argentino Illex argentinus capturados por arrastreros nacionales en Brasil entre 2006 y 2007. Las distribuciones de frecuencia de tallas (largo de manto ML en mm) de machos y hembras están presentadas por estratos latitudinales (columna de la izquierda) y estratos batimétricos (columna de la derecha). Los colores diferencian los estadios de maduración sexual según la escala macroscópica de Brunetti (1990). females > 260 mm ML). Male size-at-maturity was estimated to be 163.3 mm ML and 211.8 mm ML for the smaller and larger modal groups, respectively (Fig. 8). In females, size-at-maturity was estimated to be 201.3 mm ML for the smaller modal group and 292.3 mm ML for the larger one. The overall maturity condition of the squid in the catches oscillated in space and time (Fig. 9). The GSI variability in males and females indicated that gonads and accessory organs tended to be relatively larger in the second half of the year in both central and northern latitudinal strata. In the southern areas, however, they enlarged earlier, reaching a maximum in autumn. A similar pattern was also revealed by the Hayashi index, which expresses the advanced maturity condition when values are low (Table 2, Fig. 9). Sex ratio and mating activity Overall catches during the 2001-2003 period were slightly but significantly biased towards males (male/female ratio = 1.1; p = 0.001) (Table 3). Season, latitudinal, and depth strata, however, significantly affected this general pattern, particularly as females tended to outnumber males in winter months, both in shallow areas (< 250 m) and along the central latitudinal stratum (Table 3). A contrasting scenario characterized the 2006-2007 samples: females dominated all spatial and temporal situations except in the northern areas (Table 3). Spermatophore production and storage increased in stage IV males and peaked in fully mature males (stage V) (Table 2). Mating activity was evidenced in the subsequent maturity stages by a sharp decrease in the presence of spermatophores in the Needhan’s sac. Similarly, mated females (evidenced by the presence of spermatophores inside the mantle) were generally scarce in the catches obtained between 2001-2003 period (not mated/ mated female ratio = 1.8) (Table 4) except in winter months and > 400 m depths between 25°-29°S, where the opposite pattern was observed. On the other hand, mated females largely dominated landings in 2006-2007 (Table 4). 418 Lat. Am. J. Aquat. Res. Figure 6. Annual distribution of mantle length (ML in mm) (right column) and maturity stages (left column) of the Argentine squid Illex argentinus in commercial catches off Brazil. a and b, males; c and d, females. Size distributions are represented by cumulative frequencies. Figura 6. Distribución anual de tallas (largo de manto ML en mm) (columna de la derecha) y estadios de maduración sexual (columna de la izquierda) del calamar argentino Illex argentinus en capturas comerciales en Brasil. a y b, machos; c y d, hembras. Las distribuciones de tallas están representadas por las frecuencias cumulativas. Stock differentiation The association among squids caught by trawlers between 2001-2003 was analyzed from the scores produced by the first three PCA extracted factors (axes) that, together, explained 63% and 72% of the total variance in males and females (Table 5). In males, factor 1 was defined mainly by geographical variables (lat, long) and squid size (BW) (higher positive and negative weights, respectively). Consequently, in the graphic representation (Fig. 10), large mature males caught at southwesterly sites should be plotted on the left hemiplane, whereas small mature squid caught at northeasterly sites should appear in the right hemiplane. Depth and maturity condition, as expressed by the Hayashi Index (HI), were particularly important in factor 2 (Table 5); males caught in deep areas with enlarged accessory reproductive organs (i.e. Needham’s sac loaded with spermatophores) should be plotted on the left hemiplane and small mature males caught in shallower areas on the right one (Fig. 10). Factor 3 was highly influenced by seasonality, being mostly defined by the day-of-the-year (DYR) (Table 5); squid caught in spring and summer should be plotted in the extremes of the upper and lower hemiplanes, respectively, whereas autumn-winter squids should appear near the center of the axis (Fig. 10). A similar spatial scenario resulted from the three factors obtained with female variables except that factor 2 was also highly influenced by maturity indices (GSI and NGI) and high loads for the depth (DEPTH) variable were placed in factor 3 (Table 5). In the spatial representation of both males and females, a large group of squid corresponded to small mature animals caught throughout the year in shallower areas of the northeastern slope. In contrast, a smaller group of both sexes, detached from the former 419 Population biology of Illex argentinus off Brazil Table 2. Summary of the maturity conditions of the Argentine shortfin squid Illex argentinus in commercial trawl catches off Brazil between 2001 and 2007. Examined males and females were pooled by maturity stages (after Brunetti, 1990) and the relative and cumulative frequencies of each stage were calculated and expressed in percentages (% and Cum.% respectively). The largest (Max) and smallest (Min) mantle length of squid in each maturity stage are indicated. Males with no, few, and many spermatophores (spermat.) in the Needhan’s sac and females with and without spermatophores at the base of the gills were also quantified for each maturity stage. Tabla 2. Resumen de las condiciones de madurez sexual de calamar argentino Illex argentinus en capturas comerciales de la pesca de arrastre en Brasil entre 2001 y 2007. Los machos y hembras examinados fueron agrupados por estadios de madurez (según Brunetti, 1990). Para cada estadio se calcularon las frecuencias relativas y acumuladas expresadas en valores porcentuales (% y Cum.% respectivamente). Para cada estadio de madurez sexual se indica la longitud máxima (Max) y mínima (Min) del manto. También se contaron para cada estadio de madurez los machos con ninguno, pocos o muchos espermatóforos (spermat.) en la bolsa de Needhan y las hembras con y sin espermatóforos en las bases de las branquias. Maturity stages Immature+Maturing Mature Spawning+Spent I II III IV V VI VII VIII Total N % Cum.% 108 3.6 3.6 286 9.6 13.3 517 17.4 30.7 621 20.9 51.6 535 18.0 69.6 728 24.5 94.1 174 5.9 100.0 - 2969 ML Max Min 199 78 218 100 254 102 260 111 316 122 340 110 302 131 GSI Mean (SE) 1.02 (0.11) 1.93 (0.10) 3.56 4.86 5.58 5.09 4.27 (0.10) (0.12) (0.07) (0.08) (0.31) HI Mean (SE) 0.60 (0.02) 0.65 (0.01) 0.72 0.64 0.46 0.51 0.43 (0.01) (0.01) (0.01) (0.01) (0.02) N % Cum. % 109 11.9 11.9 286 31.2 43.1 517 56.4 99.6 0 0.0 99.6 2 0.2 99.8 1 0.1 99.9 1 0.1 100.0 - 916 No spermat. N % Cum. % 0 0.0 0.0 0 0.0 0.0 0 0.0 0.0 625 38.9 38.9 3 0.2 39.1 791 49.2 88.2 189 11.8 100.0 - 1608 Few spermat. N % Cum. % 0 0.0 0.0 0 0.0 0.0 0 0.0 0.0 0 0.0 0.0 540 0 0 100.0 0.0 0.0 100.0 100.0 100.0 - 540 Many spermat. N % Cum. % 183 6.5 6.5 365 13.0 19.5 344 12.2 31.7 366 13.0 44.7 383 13.6 58.3 643 22.8 81.1 399 14.2 95.2 ML Max Min 205 91 213 115 277 124 299 104 334 105 351 242 395 262 367 120 GSI Mean (CE) 2.4 (0.7) 2.6 (0.3) 3.7 (0.2) 13.6 (0.4) 25.2 (0.8) 25.1 (0.4) 19.5 (0.5) 16.0 (0.9) HI Mean (CE) 0.51 (0.01) 0.48 (0.01) 0.48 0.46 0.38 0.30 0.27 0.20 (0.01) (0.01) (0.01) (0.00) (0.01) (0.02) N % Cum. % 183 11.1 11.1 368 22.3 33.4 347 21.0 54.4 370 22.4 76.8 383 23.2 99.9 0 0.0 99.9 0 0.0 99.9 1 1652 0.1 100.0 N % Cum. % 0 0.0 0.0 0 0.0 0.0 1 0.1 0.1 1 0.1 0.1 2 0.1 0.3 665 49.1 49.4 529 39.1 88.5 157 1354 11.6 100.1 Males Females Mated Non-mated 340 78 134 2817 4.8 100.0 395 91 420 Lat. Am. J. Aquat. Res. Figure 7. Size distribution (mantle length in mm) of the Argentine squid Illex argentinus caught by commercial trawlers off Brazil between 2001-2007 according to sexual maturity stages (defined following Brunnetti, 1990). a) males, b) females. Figura 7. Distribución de tallas (largo de manto ML en mm) del calamar argentino Illex argentinus capturado por arrastreros comerciales en Brasil entre 2001-2007 según estadio de maduración sexual (definidos según Brunetti, 1990). a) machos, b) hembras. group, was composed of large mature animals caught in deep southwestern areas during a restricted period in the middle of the year (winter) (Fig. 10). DISCUSSION Interpreting the biological patterns of I. argentinus from commercial catches off Brazil requires the initial consideration that these patterns may combine the Figure 8. Mantle length (ML) cumulative frequency distribution of mature males (a) and females (b) Argentine squid Illex argentinus caught by commercial trawlers off Brazil between 2001 and 2007 (dark blue symbols). ML-at-maturity of two modal classes are indicated for both sexes as calculated after the probit transformation of frequencies (light blue symbols). Figura 8. Distribución acumulada de tallas (largo de manto ML en mm) de machos (a) y hembras (b) sexualmente maduras del calamar argentino Illex argentinus capturado por arrastreros comerciales en Brasil entre 2001 y 2007 (puntos azules oscuros). ML del inicio de la maduración sexual de las dos clases modales están indicados para los dos sexos según estimados por la transformación probit de frecuencias (puntos azules claros). mixed effects of three critical sources: (a) existing biologically distinct population units that may exhibit particular spatial/ temporal distribution patterns, (b) non-random spatial/ temporal fishing strategies that may or may not include squid as a principal target, and (c) on board discards (at least for the national trawl fleet). The two latter sources of bias limit our capacity to comprehensively address the entire population diversity of the species in Brazilian waters. On the other hand, it is possible to conclude, by confronting bio- Population biology of Illex argentinus off Brazil 421 Figure 9. Seasonal and latitudinal variability of maturity indices of the Argentine shortfin squid Illex argentinus caught by commercial trawlers off Brazil between 2001 and 2003. Symbols represent median values and vertical bars represent standard errors. a and c, males; b and d, females. Figura 9. Variabilidad temporal y latitudinal dos los índices de madurez sexual del calamar argentino Illex argentinus capturado por arrastreros comerciales en Brasil entre 2001 y 2003. Símbolos representan valores medianos y líneas verticales representan error estándar. a y c, machos; b y d, hembras. logical patterns of the catches with synoptic descriptions of the Illex population structure as produced by preceding trawl surveys (Haimovici & Perez, 1990, 1991; Santos & Haimovici, 1997), that different spawning groups can be identified in the commercial catches and, more importantly, that the availability/vulnerability of these groups and their specific biological features may have influenced the trawl fishing patterns on the slope off southern Brazil (Perez & Pezzuto, 2006; Perez et al., 2009b). Samples of commercial catches obtained between 2001-2003 contained immature and maturing squid throughout the year, as well as at least two distinguishable fully mature-spawning groups. The first group, composed of small-sized males and females, was present during all seasons on the shelf-break/ upper slope (< 400 m). In winter-spring, however, a distinctive group of large squid dominated the catches in southern (south of 28°S) and deep fishing grounds (400-700 m). Both groups had been previously identified in trawl surveys off southern Brazil, the latter being specifically referred to as the southern Brazil stock (SBS) (Haimovici et al., 1998). In the present study, this group was shown to sustain the exceptionally large catches obtained by the chartered trawler “In Sung 270” in September 2001 and also the winter catches produced by national trawlers, mostly from 2003 onwards (Perez & Pezzuto, 2006; Perez et al., 2009b). Unlike the upper slope concentrations of small squid, it seems evident that these large individuals, seasonally available in dense concentrations on the lower slope, attracted the attention of the fishing industry and became valued targets of the developing multispecies deep-water trawl fishery off southern Brazil (Perez & Pezzuto, 2006; Perez et al., 2009b). A relevant issue regarding this pattern, however, has been the fact that SBS squid could actually be connected to the Patagonian shelf stocks through spaw- 422 Lat. Am. J. Aquat. Res. Table 3. Sex ratio of the Argentine shortfin squid Illex argentinus in commercial trawl catches off Brazil in two periods: 2001-2003 and 2006-2007. M/F: male/ female ratio, p: probability (Π2). Values in bold correspond to probabilities obtained by contingency table analysis to compare the effects of trimesters, depth, and latitudinal strata on the sex-ratio. Table 3. Proporción de sexos del calamar argentino Illex argentinus en capturas de la pesca comercial de arrastre en Brasil en dos periodos: 2001-2003 y 2006-2007. M/F: fracción número de machos / número de hembras; p: probabilidad (Π2). Valores en negrita corresponden a probabilidades resultantes del análisis de la tabla de contingencia para comparar los efectos de trimestres, estratos batimétricos y estratos latitudinales sobre la proporción sexual. 2001-2003 Trimester Males Females M/F 2006-2007 p Males Females M/F p Jan-Mar Apr-Jun Jul-Sep 553 846 292 453 971 433 1.2 0.002 0.9 0.003 0.7 < 0.001 0 164 126 0 308 155 0.5 < 0.001 0.8 0.084 Oct-Dec p 1011 610 1.7 < 0.001 73 77 0.9 < 0.001 0.002 Depth strata < 250 m 224 313 0.7 < 0.001 46 60 0.8 250 - 400 > 400 m 1992 450 1822 288 1.1 0.006 1.6 < 0.001 145 172 214 266 0.7 0.6 p < 0.001 Latitudinal strata North 2015 0.74 0.736 1537 1.3 < 0.001 77 57 1.4 0.137 Centre South p 483 144 741 78 0.7 < 0.001 1.8 < 0.001 < 0.001 25 226 101 338 0.2 < 0.001 0.7 < 0.001 < 0.001 Total 2702 2467 1.1 363 540 0.7 ning migrations and paralarval transport, as described for other ommastrephid species elsewhere (Hatanaka et al., 1985). If confirmed, this hypothesis would directly characterize a shared stock scenario with important implications for management in Argentina, Uruguay, and Brazil (Haimovici et al., 2007). Population connections between I. argentinus occurring in the SW Atlantic were formerly addressed by Brunetti (1988), who defined three major stocks occurring off the coast of Argentina and Uruguay (SSS, SPS, and BNS) and concluded that squid distributed along southern Brazil were an extension of the northernmost stock (BNS). Because partly spawned or spent squid were never observed in BNS catches, the spawning location remained uncertain but was speculated to occur between July and September somewhere offshore, north of 38°S, under the Falkland (Malvinas) or Brazil Currents. Santos & Haimovici (1997) analyzed reproductive patterns of the 0.001 0.002 previously considered SBS members and also concluded that these squid were, in fact, members of BNS, but proposed alternatively that southern Brazil was their major winter-spring spawning ground. Taking into consideration records of elevated concentrations of I. argentinus paralarvae under the core of the Brazil Current (Haimovici et al., 1995) and other evidence derived from trophic relations, parasites, and body proportions (Santos, 1992), Santos & Haimovici (1997) further postulated that maturing BNS squid would migrate in early winter from northern Argentina to southern Brazil slope waters, where spawning would take place under the warm Brazil Current. During spring-summer, as the Subtropical Convergence retracted, egg masses and paralarvae would be transported southwards, allowing recruitment to occur on the southern feeding grounds off northern Argentina (Haimovici et al., 1998). Whereas this hypothesis still requires corroboration through high-resolution me- Population biology of Illex argentinus off Brazil Figure 10. Spatial representation of males (a) and females (b) of the Argentine shortfin squid Illex argentinus caught by commercial trawlers off Brazil between 2001 and 2003 according to the values generated by the first three factors obtained with Principal Component Analysis. The green line indicates small-sized mature squid caught all year round on the upper slope. The red line indicates large-sized mature squid caught in winter at depths over 400 m. Figura 10. Representación espacial de machos (a) y hembras (b) de calamar argentino Illex argentinus capturado por arrastreros comerciales en Brasil entre 2001 y 2003 según los valores generados por los tres primeros factores obtenidos con el Análisis de Componentes Principales. La línea verde indica el grupo de calamares sexualmente maduros de pequeño tamaño capturado a lo largo del año en el talud superior. La línea roja indica el grupo de calamares sexualmente maduros de mayor tamaño capturado en los meses de invierno a profundidades mayores de 400 m. 423 thods such as tagging experiments or genetic markers, the biological data from commercial catches off southern Brazil may provide further indirect evidence in its support. Initially, the sizes of mature squid present in winter catches off Brazil resembled those reported for members of both BNS and SBS, although precise comparisons were not possible because the different studies included different maturity stages for estimating sizeat-maturity. Nonetheless, mantle lengths of males and females of these groups were noticeably larger than those estimated for a presumably “local” upper -slope stock, suggesting that these squid were, in fact, biologically distinct (Table 6). Schwarz & Perez (2007) analyzed the morphology and morphometry of statoliths extracted from squid caught by commercial trawlers off Brazil and reached similar conclusions. Secondly, the majority of the squid present in the winter catches off Brazil were mated females in a spawning-spent condition, indicating that fishing was concentrated on a spawning event that could be related to a) the spawning seasons proposed for BNS and SBS and b) the spawning grounds proposed for the latter, namely the slope area between 27°S and 34°S (Brunetti, 1988; Santos & Haimovici, 1997) (Table 6). Within these grounds, commercial catches further revealed that large spawning squid concentrated in high densities during the day on the deep slope (400700 m). This pattern was also observed by both fishing and acoustic surveys conducted between 2001 and 2002, which further associated spawning squid concentrations with temperature ranges between 7° and 13°C (Madureira et al., 2005; Haimovici et al., 2008). The deep, cold environment off southern Brazil is generally associated with the influence of South Atlantic Central Water (SACW), which flows southwards over the slope as a deep layer of the Brazil Current (Castro et al., 2006). Temperature and salinity within this water mass range from 6-20°C and 34.636.0, respectively, characterizing a considerably colder, less saline environment than that of the overlaying Tropical Water, which is also transported, although superficially, by the Brazil Current. Considering that (a) spawning squid from the Patagonian shelf may require an optimal thermal environment ranging from 4° to 13°C (Brunetti et al., 1998) and (b) that pre-reproductive BNS members at the ArgentineUruguayan Common Fishing Zone (34º00'- 39º30'S) were shown to concentrate in subantarctic waters between 4-10ºC (Bazzino et al., 2005), it seems reasonable that a spawning migration towards Brazilian waters (Santos & Haimovici, 1997) would take place in association with deep water masses such as SACW. A final element in support of a connection between Bra- 424 Lat. Am. J. Aquat. Res. Table 4. Evidence of mating in female Argentine shortfin squid Illex argentinus caught in commercial trawl catches off Brazil in two periods: 2001-2003 and 2006-2007. N/M: not mated/mated female fraction, p-values correspond to probabilities obtained by contingency table Π2 analysis to compare the effects of trimesters, depth, and latitudinal strata on the mated condition of females. Tabla 4. Evidencias de cópula en hembras de calamar argentino Illex argentinus capturado por la pesca comercial de arrastre en Brasil en dos periodos: 2001-2003 y 2006-2007. N/M: fracción no-copuladas/copuladas. P: probabilidades resultantes del análisis Π2 para comparar los efectos de trimestres, estratos batimétricos y estratos latitudinales sobre la actividad de cópula de las hembras. 2001-2003 Trimester Jan-Mar Apr-Jun Jul-Sep Oct-Dec p Depth Strata < 250 m 250 - 400 > 400 m p Latitudinal strata North Centre South p Total p 2006-2007 Not-mated Mated N/M Not-mated Mated N/M 339 752 67 423 114 219 366 187 <0.001 3.0 3.4 0.2 2.3 20 26 25 288 128 52 <0.001 0.1 0.2 0.5 150 1281 107 163 541 181 <0.001 0.9 2.4 0.6 6 39 26 54 175 239 0.019 0.1 0.2 0.1 1201 262 47 336 479 31 <0.001 886 <0.001 3.6 0.5 1.5 23 9 38 0.7 0.1 0.1 1.8 71 34 92 299 <0.001 468 <0.001 1581 zilian and Patagonian squid stocks can be drawn from the combination of the commercial value of “big squid”, the opportunistic behavior of the trawl fishery, and the general evolutionary population strategies of ommastrephid squids (O’Dor, 1992). These squids normally exhibit complex population structures in association with geostrophic currents, protracted spawning, and latitudinal migrations as a strategy to spread – over space and time – the risks of their short, semelparous life cycle (O’Dor, 1998). Because cold, nutrient-enriched temperate waters tend to delay maturity and enhance survivorship of juvenile squid, stocks whose offspring drift, carried by geostrophic currents, to these waters attain larger sizes, are more abundant, and sustain larger fisheries (e.g. I. illecenbrosus, O’Dor & Coelho, 1993; Perez & O’Dor, 1998). Although these squid need to perform long migrations, their large body size favors swimming long distances (O’Dor, 1988). In contrast, those stocks that remain in food-poorer, warmer, tropical and sub- 0.2 tropical waters tend to grow fast but also to mature early at smaller sizes (O’Dor & Coelho, 1993). In a less productive environment, these squids are also less abundant and sustain significantly lower annual landings. By experiencing their early life in a highly productive and cold environment such as the Patagonian Shelf, BNS squid would tend to be abundant (actually sustaining large catches in the northern Patagonian Shelf) and to mature late in life at large sizes, fit for a ~2,000-km-long winter spawning migration towards Brazilian waters. Because these are cold-water squid, they would tend to reach the deep layers of the slope as they approach southern Brazil, concentrating within the 300-400-m-high SACW layer (Madureira et al., 2005; Castro et al., 2006) and, hence, becoming vulnerable to the slope trawling in winter and earlyspring. Off southern Brazil during this period of the year, winter spawners should be markedly distinct from the “local” spawners, both by their larger body 425 Population biology of Illex argentinus off Brazil Table 5. Principal Component Analysis employed to differentiate Argentine shortfin squid Illex argentinus stocks within the catches obtained by commercial trawlers off Brazil between 2001 and 2003. Variables included were: day-of-the-year (DYR), decimal latitude (LAT), decimal longitude (LONG), depth (DEPTH), body wet weight (BW), gonadosomatic index (GSI), Hayashi index (HI), Nidamental gland/ Testis Index. The linear coefficients of the variables (loadings) in the first three factors rotated by the PCA are indicated for males and females. The eigenvalues and the variance explained by each factor are indicated in the last three rows. Tabla 5. Análisis de Componentes Principales aplicada en la diferenciación de los stocks de calamar argentino Illex argentinus en las capturas de arrastreros comerciales en Brasil entre 2001 y 2003. Las variables incluidas fueron: día-delaño (DYR), latitud decimal (LAT), longitud decimal (LONG), profundidad (DEPTH), peso húmedo del cuerpo (BW), índice gonadosomático (GSI), índice de Hayashi (HI), índice de la glándula nidamental/ testículo. Los coeficientes lineales de las variables (pesos) en los tres primeros factores rotacionados por el PCA se indican para machos y hembras. Los valores propios y la varianza explicada por cada factor se indican en las últimas tres líneas. DYR 1 -0.105 Males Factor 2 -0.051 3 0.846 LAT 0.929 0.157 0.090 0.952 0.031 0.084 LONG 0.896 0.306 0.102 0.940 0.117 -0.008 DEPTH -0.006 0.694 -0.163 0.105 0.445 -0.686 BW -0.699 0.358 -0.020 -0.737 0.059 -0.282 GSI 0.149 0.310 0.453 0.027 0.873 0.114 HI 0.425 -0.683 -0.213 0.363 -0.685 0.014 NGI / TI 0.185 0.392 -0.427 0.128 0.766 0.263 Eigenvalue 2.403 1.447 1.195 2.639 2.037 1.079 Variance explained (%) 30.035 18.087 14.933 32.983 25.461 13.483 Cum. variance explained (%) 30.035 48.122 63.055 32.983 58.444 71.927 Component Females Factor 1 2 -0.379 0.043 3 0.662 Table 6. Summary of characteristics of two stocks of the Argentine shortfin squid Illex argentinus in waters of the northern Patagonian shelf (BNS) and southern Brazil (SBS) in comparison with spawning groups differentiated in the commercial trawl catches off southern Brazil between 2001 and 2007. Sizes at maturity refer to modal mantle lengths of males and females in different maturity stages (between parentheses) as defined by Brunetti (1990). Tabla 6. Resumen de las características de dos stocks de calamar argentino Illex argentinus en el norte de la plataforma patagónica (BNS) y el sur de Brasil (SBS) en comparación con los grupos desovantes diferenciados en las capturas comerciales de pesca de arrastre en el sur de Brasil entre 2001 y 2007. La talla de madurez sexual corresponde a la longitud modal del manto de machos y hembras en diferentes estadios de madurez (entre paréntesis) definidos por Brunetti (1990). Proposed stocks Spawning Grounds Spawning season Modal size at maturity (ML) 1 Commercial catches off Brazil Bonaerensis-north patagonic (BNS)1 Southern Brazil (SBS) 2 Large spawners3 Small spawners3 Slope, north of 38°S, under the Falkland/ Malvinas Current or Brazil Current Slope, between 27°S and 34°S under the Brazil Current Between 26° and 29°S, 360-520 m depth North of 28°S, shallower than 360 m depth July – September July – November July - September All year-round Males: ~200 mm Females: ~240 mm (Stages IV+V) Males: ~250 mm Females: ~300 mm (Stages > V) Males: 212 mm Females: 292 mm (Stages > IV) Males: 161 mm Females: 201 mm (Stages > IV) Brunetti et al. (1991), 2Santos & Haimovici (1997), 3This study. 426 Lat. Am. J. Aquat. Res. size and their deeper bathymetric distribution, attracting the attention first of the highly efficient and exploratory foreign chartered trawlers (Perez et al., 2009b) and later the more conservative but overcapitalized national trawl fleet (Perez & Pezzuto, 2006). In 2002, trawler skippers persistently tried to convince fishing biologists involved with this study that their large catches off Brazil were, in fact, a different squid species due to their obviously different body proportions and suggested that it be given a new name as a marketing strategy (Perez pers. observ.). Albeit anecdotal, this fact highlights the effect of the diversity of this species population (and particular biological attributes) on the observed exploitation patterns in the SW Atlantic, reinforcing the need to consider multinational, shared stock management strategies in the region. Other shellfish and finfish resources exploited in the deep waters off southern Brazil (e.g. deep-water crabs, hake, and others) seem to justify the same strategies (Perez et al., 2009a). ACKNOWLEDGEMENTS The authors are indebted to all observers, captains, and crews that allowed this large body of data to be collected during their commercial operations off southern Brazil. We also thank Rodrigo Sant’Ana for invaluable help with figures. Funding for this study was provided by the Special Secretariat for Aquaculture and Fisheries (SEAP/PR/027/2007) and the National Council for Scientific and Technological Development (CNPq) research grant (Process 306184/2007-9). REFERENCES Bazzino, G., R.A. Quiñones & W. Norbis. 2005. Environmental associations of shortfin squid Illex argentinus (Cephalopoda: Ommastrephidae) in the northern Patagonian Shelf. Fish. Res., 76: 401-416. Boyle, P.R. & P. Rodhouse. 2005. Cephalopods. Ecology and fisheries. Blackwell Publishing, Oxford, 451 pp. Brunetti, N.E. 1988. Contribución al conocimiento biológico-pesquero del calamar argentino (Cephalopda, Ommastrephidae, Illex argentinus). Tesis doctoral, Universidad Nacional de La Plata, Buenos Aires, 135 pp. Brunetti, N.E. 1990. Escala para la identificación de estadios de madurez sexual del calamar (Illex argentinus). Frente Marítimo, 7: 45-52. Brunetti, N.E., M.L. Ivanovic & B. Elena. 1998. Calamares omastréfidos (Cephalopoda: Ommastrephidae). In: E. Boschi (ed.). El mar argentino y sus recursos pesqueros, Instituto Nacional de Investigación y Desarrollo Pesquero, Mar del Plata, 2: 37-68. Brunetti, N.E., M.L. Ivanovic, E. Louge & H.E. Christiansen. 1991. Reproductive biology and fecundity of two stocks of the squid (Illex argentinus). Frente Marítimo, 8: 73-84. Castro Fo., J.A. Lorenzzetti, I.C.A. Silveira & L.B. Miranda. 2006. Estrutura termohalina e circulação na região entre o Cabo de São Tomé (RJ) e o Chuí (RS). In: C.L.D.B. Rossi-Wongtschowski & L.S-P. Madureira. (eds.). O ambiente oceanográfico da plataforma continental e do talude na região sudeste-sul do Brasil, São Paulo, EDUSP - Editora da Universidade de São Paulo, pp. 11-120. Costa, P.A.S. & M. Haimovici. 1990. A pesca de lulas e polvos no litoral do Rio de Janeiro. Ciência & Cultura, 42(12): 1124-1130. Gasalla, M. de los A., G. Velasco, C.L.D.B. RossiWongstchowski, M. Haimovici & L.S-P. Madureira. 2007. Modelo de equilíbrio de biomassa do ecossistema marinho da região Sudeste-Sul do Brasil entre 100-1000 m de profundidade. Série Documentos REVIZEE, Score Sul. Instituto Oceanográfico, Universidade de São Paulo, São Paulo, 56 pp. Haimovici, M. & J.M. Andriguetto Fo. 1986. Cefalópodes costeiros capturados na pesca de arrasto do litoral sul do Brasil. Arq. Biol. Tecnol., 29(3): 473-495. Haimovici, M. & J.A.A. Perez. 1990. Distribución y maduración sexual del calamar argentino, Illex argentinus (Castellanos, 1960) (Cephalopoda: Ommastrephidae), en el sur de Brasil. Sci. Mar., 54: 179-1895. Haimovici, M. & J.A.A Perez. 1991. Abundância e distribuição de cefalópodes em cruzeiros de prospecção pesqueira demersal na plataforma externa e talude continental do sul do Brasil. Atlântica, Rio Grande, 13(1): 189-200. Haimovici, M., E.G. Vidal & J.A.A. Perez. 1995. Larvae of Illex argentinus from five surveys on continental shelf of southern Brazil. ICES Mar. Sci. Symp., 199: 414-424. Haimovici, M., N.E. Brunetti, P.G. Rodhouse, J. Csirke & R.H. Leta. 1998. Chapter 3. Illex argentinus. In: P.G. Rodhouse, E.G. Dawe & R.K. O’Dor (eds.). Squid recruitment dynamics. The genus Illex as a model. The commercial Illex species. Influences on variability. FAO Fish. Tech. Pap., 376: 27-58. Haimovici, M., J.A.A. Perez & R.A. Santos. 2006. Diagnóstico do estoque e orientações para o ordenamento da pesca de Illex argentinus (Castellanos, 1960). In: C.L.D.B. Rossi-Wongtshchowski, A.O. Ávila-daSilva & M.C. Cergole (eds.). Análise das principais pescarias comerciais da região sudeste-sul do Brasil: dinâmica populacional das espécies em explotação. II. Série Documentos REVIZEE, Score Sul. Instituto Population biology of Illex argentinus off Brazil Oceanográfio, Universidade de São Paulo, São Paulo, pp. 19-27. Haimovici. M., A.O. Ávila da Silva, L.W. de Miranda & S. Klippel. 2007. Prospecções na região sudeste-sul. In: M. Haimovici (ed.). A prospecção pesqueira e abundância de estoques marinhos no Brasil nas décadas de 1960 a 1990. Levantamento de dados e avaliação crítica. Ministério do Meio Ambiente. Secretaria de Mudanças Climáticas e Qualidade Ambiental. Programa REVIZEE: Levantamento de Dados Pretéritos, Brasília, pp. 35-74. Haimovici, M., C.L.D.B. Rossi-Wongstchowski, R.A. Bernardes, L.G. Fisher, C.M. Vooren, R.A. dos Santos, A.R. Rodrigues & S. dos Santos. 2008. Prospecção pesqueira de espécies com rede de arrasto-defundo na região sudeste-sul do Brasil. Série Documentos REVIZEE, Score Sul. Instituto Oceanográfico, Universidade de São Paulo, São Paulo, 183 pp. Hatanaka, H., S. Kawahara, Y. Uozumi & S. Kasahara. 1985. Comparison of life cycles of five ommastrephid squids fished by Japan: Todarodes pacificus, Illex illecebrosus, Illex argentinus, Nototodarus sloani sloani, and Nototodarus sloani gouldi (Mollusca: Cephalopoda). NAFO Sci. Council Studies, 9: 59-68. Madureira, L.S-P., R.G.P. Habiaga, A.C. Duvoisin, D. Eliseire Jr., C.F. Soares, S.C. Weigert, C.S. Ferreira & P.A. Saldo. 2005. Identificação de registros acústicos do calamar argentino Illex argentinus (Castellanos, 1960) no talude da região sudeste-sul do Brasil. Série Documentos REVIZEE, Score Sul. Instituto Oceanográfico, Universidade de São Paulo, São Paulo, 32 pp. Martins, R.S. & J.A.A. Perez. 2007. The ecology of loliginid squid in shallow waters around Santa Catarina Island, southern Brazil. Bull. Mar. Sci., 80(1): 125-146. O’Dor, R.K. 1988. Energetic limits on squid distributions. Malacologia, 29(1): 113-119. O’Dor, R.K. 1992. Big squid in big currents. S. Afr. J. mar. Sci., 12: 225-235. O’Dor, R.K. 1998. Chapter 11. Squid life-history strategies. In: P.G. Rodhouse, E.G. Dawe & R.K. O’Dor (eds.). Squid recruitment dynamics. The genus Illex as a model. The commercial Illex species. Influences on variability. FAO Fish. Tech. Pap., 376: 233-250. O’Dor, R.K. & M.L. Coelho. 1993. Big squid, big currents and big fisheries. In: T. Okutani, R.K. O’Dor & T. Kubodera (eds.). Recent advances in cephalopod fisheries biology, Tokay University Press, Tokyo, pp. 385-396. Received: 23 March 2009; Accepted: 31 August 2009 427 Perez, J.A.A. 2000. Biomass dynamics of the squid Loligo plei and the development of a small-scale seasonal fishery off southern Brazil. Bull. Mar. Sci., 71(2): 633-651. Perez, J.A.A. & R.K. O’Dor. 1998. The impact of environmental gradients on the early life inshore migration of the short-finned squid Illex illecebrosus. S. Afr. J. mar. Sci., 20: 294-303. Perez, J.A.A. & P.R. Pezzuto. 1998. Valuable shellfish species in the by-catch of shrimp fishery in southern Brazil: spatial and temporal patterns. J. Shell. Res., 17: 303-309. Perez, J.A.A. & P.R. Pezzuto. 2006. A pesca de arrasto de talude do Sudeste e Sul do Brasil: tendências da frota nacional entre 2001 e 2003. Bolm. Inst. Pesca, São Paulo, 32: 127-150. Perez, J.A.A., R. Wahrlich & P.R. Pezzuto. 2009b. Chartered trawling on the slope off Brazilian coast. Mar. Fish. Rev., 71(2): 24-36. Perez, J.A.A., P.R. Pezzuto, R. Wahrlich & A.L.S. Soares. 2009a. Deep-water fisheries in Brazil: history, status and perspectives. Lat. Am. J. Aquat. Res., 37(3): 513-541. Perez, J.A.A., S.H.B. Lucato, H.A. de Andrade, P.R. Pezzuto & M. Rodrigues-Ribeiro. 1998. Programa de amostragem da pesca industrial desenvolvido para o porto de Itajaí, SC. Not. Téc. FACIMAR, 2: 93-108. Perez, J. A.A., R. Wahrlich, P.R. Pezzuto, P.R. Schwingel, F.R.A.Lopes & M. Rodrigues-Ribeiro. 2003. Deep-sea fishery off southern Brazil: recent trends of the Brazilian fishing industry. J. Northw. Atl. Fish. Sci., 31: 1-18. Santos, R.A. 1992. Relações tróficas do calamar argentino Illex argentinus (Castellanos, 1960) (Teuthoidea: Ommastrephidae) no sul do Brasil. MSc. Thesis. Fundação Universidade Federal do Rio Grande, Rio Grande, 83 pp. Santos, R.A. & M. Haimovici. 1997. Reproductive biology of winter-spring spawners of Illex argentinus (Cephalopoda: Ommastrephidae) off southern Brazil. Sci. Mar., 61(1): 53-64. Santos, R.A. & M. Haimovici. 2000. The Argentine shortfin squid Illex argentinus (Cephalopoda: Ommastrephidae) in the food webs off southern Brazil. Sarsia, 85: 49-60. Schwarz, R. & J.A.A. Perez. 2007. Diferenciação populacional do calamar argentino (Illex argentinus) (Cephalopoda: Teuthida) no sul do Brasil através da morfologia e morfometria do estatólito. Braz. J. Aquat. Sci. Technol., 11(1): 1-12. 428 Lat. Am. J. Aquat. Res. Lat. Am. J. Aquat. Res., 37(3): 429-442, 2009 “Deep-sea fisheries off Latin America” P. Arana, J.A.A. Perez & P.R. Pezzuto (eds.) DOI: 10.3856/vol37-issue3-fulltext-12 Sexual maturity of Chaceon notialis 429 Research Article Sexual maturity of the deep-sea red crab Chaceon notialis Manning & Holthuis, 1989 (Brachyura: Geryonidae) in southern Brazil 1 Rodrigo Sant’Ana1 & Paulo Ricardo Pezzuto1 Universidade do Vale do Itajaí, Centro de Ciências Tecnológicas da Terra e do Mar Rua Uruguai 458, CEP 88.302-202, Itajaí, SC, Brazil ABSTRACT. The red crab Chaceon notialis is one of the three deep-sea crab species currently exploited in Brazil. The red crab fishery started in 1998 with foreign vessels that, as of 2000, have been extensively monitored by observers and tracked by satellite. A management plan implemented in 2005 was based only on biomass dynamics, as biological knowledge of the resource was limited at that date. Samples taken aboard were used to determine size at first sexual maturity for males and females by studying the allometric growth of the chelae and abdomen in relation to the carapace width (CW), the proportion of females with opened vulvae and eggs in the pleopods, and males showing copula marks on the first ambulatory legs. Morphometric maturity was attained, on average, at 8.9 cm CW (males) and 8.8 cm CW (females). The CW50% was estimated to be 6.9 and 9.7 cm CW for females, considering the vulva condition and eggs in the pleopods, respectively, and 8.4 cm CW for males. The maximum estimated proportions of ovigerous females and males with copula marks by size class were 0.8 and 0.7, respectively, suggesting an annual reproductive cycle for the species, both at the populational and individuals levels. The size composition analysis showed that up to 97% of the females caught in the fishery were immature. Given these results, enhancing trap selectivity and minimizing the mortality of ovigerous females should be considered as new and immediate goals for the management of the resource. Keywords: reproduction, trap fisheries, relative growth, sexual maturity, Geryonidae, Chaceon notialis, Brazil. Madurez sexual del cangrejo rojo de profundidad Chaceon notialis Manning & Holthuis, 1989 (Brachyura: Geryonidae) al sur de Brasil RESUMEN. El cangrejo-rojo Chaceon notialis corresponde a una de las tres especies de cangrejos de profundidad que actualmente se explotan en Brasil. La pesca de cangrejo-rojo comenzó en el año 1998 por barcos extranjeros que, desde 2000 fueron intensamente vigilados por observadores y rastreados por satélites. En el año de 2005 se implementó un plan de manejo, considerando solamente el estudio de la dinámica de la biomasa del recurso, ya que el conocimiento biológico todavía era limitado. A partir de muestras obtenidas a bordo de los barcos de pesca, se estimó la talla de primera madurez de machos y hembras mediante la utilización del crecimiento alométrico de la quela y el abdomen, con respecto al ancho del caparazón (CW), proporción de hembras con vulvas abiertas y huevos en los pleópodos y machos con marcas de cópula en las primeras patas ambulatorias. La madurez morfométrica para los machos fue obtenida en promedio a 8,9 cm de CW y para las hembras a 8,8 cm de CW. El CW50% fue estimado en 8,4 cm para machos y para hembras, tomando en cuenta la condición de la vulva o los huevos en los pleópodos, en 6,9 y 9,7 cm respectivamente. Las máximas proporciones estimadas de hembras ovígeras y machos con marcas de cópula por talla fueron de 0,8 y 0,7 respectivamente, lo que sugiere que el ciclo reproductivo a nivel poblacional e individual es anual. El análisis de la composición de tallas indicó que el 97% de las hembras capturadas, eran inmaduras. A partir de estos resultados se consideró un aumento en la selectividad de las trampas y la 430 Lat. Am. J. Aquat. Res. disminución de las hembras ovígeras en las capturas como objetivos nuevos e inmediatos para el mejor manejo de este recurso. Palabras clave: reproducción, pesca con trampas, crecimiento relativo, madurez sexual, Geryonidae, Chaceon notialis, Brasil. ________________________ Corresponding author: Paulo Ricardo Pezzuto (pezzuto@univali.br) INTRODUCTION The red crab Chaceon notialis is one of two geryonid crabs known from the southwestern Atlantic Ocean. The species inhabits slope grounds off Brazil, Uruguay, and Argentina, between 120 and 1000 m depth (Manning & Holthuis, 1989; Pezzuto et al., 2002; Delgado & Defeo, 2004). In the late 1970s, investigations undertaken by the National Fishery Institute identified a potentially harvestable stock of the species in Uruguay (Niggermeyer et al., 1990). Red crab assessments conducted in the middle 1980s along the Uruguayan EEZ estimated an exploitable biomass of nearly 22,000 ton, corresponding to one of the highest geryonid stocks known in the whole world ocean (Defeo et al., 1991). A directed fishery for the species emerged in that country as of 1995, attaining annual landings of up to 4,102 ton since (Delgado & Defeo, 2004). In Brazil, the first commercial exploitation of red crabs dates from 1984 and 1985, when an exploratory fishery was conducted by two Japanese vessels near the border of the Brazilian and Uruguayan EEZs (Lima & Lima-Branco, 1991). Only after 1998 did the species become the target of a fully developed fishery carried out by another Japanese vessel (F/V Kinpo Maru 58) in the same region. Completely export oriented, this fishery yielded a total of 7,347 ton (live weight) between 1998 and 2006, with annual landings varying between 303 and 1,378 ton (Pezzuto et al., 2006b). This vessel was intensively monitored by observers and satellite vessel monitoring systems (VMS), producing a large fishery-based data set that was used to identify the species distribution and to generate preliminary estimates of stock biomass and maximum sustainable yield (Pezzuto et al., 2002, 2006b). A management plan for the red crab fishery was established in May 2005, based mostly on the biomass dynamics of the stock, including a total allowable catch (TAC) (1,050 ton live weight year-1, corresponding to the Maximum Sustainable Yield), maximum number of permits (two vessels), and minimum mesh size in the traps (100 mm stretched). Biological measures such as minimum legal sizes, closed areas/seasons, or sex-selective harvest strategies would have been considered in the plan but no life-cycle parameters were available for the species at the time, even though biological data had been intensively collected aboard by the observers. At the present time, information about the species is relatively scarce and includes biomass assessments (Defeo et al., 1991; Pezzuto et al., 2002), fishing dynamics (Defeo & Masello, 2000a, 2000b; Athiê & Rossi-Wongtschowski, 2004), contributions to the feeding of demersal fishes (Peres & Haimovici, 2003), management (Pezzuto et al., 2006a), diet (Domingos et al., 2007), and size at the onset of morphological and functional maturity of females caught in Uruguayan waters (Delgado & Defeo, 2004). No information about the maturity of females is available for the Brazilian part of the stock or for males exploited anywhere. Given their high value and k-strategist life-traits, geryonid crabs are expected to be highly vulnerable to overexploitation, requiring severe fishing regulations for their sustainability (see review by Hastie, 1995). Like biomass estimates and population structure data, knowledge about reproductive features can give the necessary support to develop management tactics intended to ensure appropriate biomass renewal rates for these fragile crabs. Size-at-maturity is, therefore, one of the most important biological parameters used for management purposes and has been widely studied in several Geryonid stocks (e.g. Haefner, 1977; Beyers & Wilke, 1980; Erdman & Blake, 1988; Attrill et al., 1991; Fernández-Vergaz et al., 2000; Delgado & Defeo, 2004; Pezzuto & Sant’Ana, 2009). Considering the need to improve the red crab management plan with biological reference points, this paper investigates the sexual maturity of C. notialis vulnerable to a directed fishery in southern Brazil and analyzes the annual size-structure of the catches, quantifying the contribution of immature and mature individuals to the fishery. Sexual maturity of Chaceon notialis MATERIAL AND METHODS Data source and sampling Maturity analyses were carried out with biological data collected by observers during 19 commercial trips conducted between 2001 and 2005 by the F/V Kinpo Maru 58, a 63-m-long factory vessel. This vessel fished in Brazilian waters from September 1999 to November 2007. It operated four sets of ground lines simultaneously; 450 ± 16 (SD) cylindrical-conical traps were attached to each line. The traps were spaced regularly at 18 m and measured 140 cm (Ø) at the base, 73 cm (Ø) at the top, and 65 cm in height; they were rigged with a 100-mm (stretched) mesh. The mean soak time was 38 h (Pezzuto et al., 2002, 2006a). Observers recorded, for all hauls, the date, position, depth, number of traps line-1, soak time, catch haul-1 (kg), and the mean number of crabs trap-1. During the study period, nearly 41,000 crabs were sampled aboard within the main fishing ground of the species (i.e. 31o to 35°S and 100 to 1,000 m depth) (Table 1, Fig. 1). Biological sampling was carried out on hauls especially selected by the observers in order to cover different depths and latitudes according to the commercial fishing strategy used by the vessel’s captain. The maximum interval between successive samplings was 48 h. All crabs caught in randomly selected traps positioned in the beginning, middle, and end sections of the main ground line were examined. The sex was determined and the carapace width (CW; distance between the fifth antero-lateral spine tips) was measured to the nearest millimeter. Males were classified according to the presence or absence of copula marks (blackened areas in the merus of the second pereiopods - (see Melville-Smith, 1987) for 125 hauls. The vulva condition (i.e. closed/immature or opened/mature; Delgado & Defeo, 2004) and the presence of eggs in the pleopods were recorded for females sampled from 285 and 180 hauls, respectively. The number of hauls on which such biological features were observed differed due to female-biased sex ratios in the catches and seasonal reproduction. Besides the data collected aboard, additional biological samples (frozen crabs) were regularly obtained by the observers for detailed laboratory analyses concerning the relative growth of body parts, as logistical constraints precluded taking new measurements in the field. In the laboratory, these crabs were measured (carapace width), sexed, and examined for copula marks, vulva condition, and the presence of eggs in the pleopods following the same procedures adopted 431 aboard. In addition, detailed measurements of body parts were also obtained for relative growth analyses of secondary sexual characteristics (Hartnoll, 1974, 1982). Measurements were conducted with sliding calipers to the nearest 0.5 mm and included the abdomen width (AW, measured between the 4th and 5th abdominal somites), left and right cheliped lengths (LChL and RChL, maximum length of the upper portion of the propodus), and left and right maximum cheliped height (LChH and RChH, maximum height of the propodus measured on its exterior face) for males and females. Data analysis According to Hartnoll (1974, 1982), most brachyuran crabs exhibit changes in the relative growth of their secondary sexual characteristics along their ontogeny. Such changes define the transition between different growth phases (i.e. pre- and post-pubertal growth) that occur at the puberty molt. In this paper, the morphometric maturity of C. notialis was studied by analyzing the relative growth of 512 crabs processed in the laboratory (266 males, 246 females). An allometric equation (Y = a CWb) was fitted to the data by least squares regression and the transition points (i.e. changes in slope and/or elevation) were iteratively searched by a specific routine of the software Regrans (Pezzuto, 1993). The routine seeks the CW value where the data could be split into two subsets resulting in the lowest combined residual sum of squares. A statistical test for coincidental regressions was conducted in order to check the validity of the transition points. The test compared the difference between the global sum of squares (i.e. calculated from a single model fitted to the data) and the pooled residual sum of squares (i.e. from the subsets located to the left and right sides of the transition point) (Zar, 1996). If a significant difference was found, an ANCOVA (α = 0.05) was used to test the difference between the elevations and slopes of the two regressions (Zar, 1996), which were assumed to correspond to the pre- and post-pubertal growth phases (sensu Hartnoll, 1974). The relative growth pattern (i.e. negative allometric, isometric, positive allometric) of each body dimension and phase (pre- and post-pubertal) was identified by testing the allometric coefficient (slope) against the reference value “1” (Zar, 1996). Functional/sexual maturity was also studied by estimating the mean sizes (CW50%) at which males and females were able to copulate and reproduce. Proportions of males showing copula marks and females with opened vulvae and eggs in the pleopods 432 Lat. Am. J. Aquat. Res. Table 1. Chaceon notialis. Number of trips, hauls, and crabs sampled aboard the F/V Kinpo Maru 58 on the slope of southern Brazil for the size at maturity analysis. Tabla 1. Chaceon notialis. Número de viajes, lances de pesca y cangrejos muestreados a bordo del F/V Kinpo Maru 58 en el sur de Brasil para el análisis de la madurez sexual. Year Trips Hauls Males Females Total Depth range (m) 2001 4 85 5,379 16,097 21,447 326 - 830 2002 4 83 2,156 4,842 6,999 182 - 970 2003 4 99 1,268 2,865 4,134 357 - 844 2004 4 112 2,073 4,183 6,257 264 - 901 2005 3 74 867 2,042 2,909 325 - 835 Total 19 451 11,744 30,030 41,774 182 - 970 Figure 1. Map showing the main fishing area of Chaceon notialis in southern Brazil during the study period (gray area). Isobaths of 100, 200, 500, and 1000 m are indicated. Figura 1. Mapa de la área principal de pesca de Chaceon notialis en el sur de Brasil durante el período de estudio (área gris). Se indican las isóbatas de 100, 200, 500 y 1000 m. were calculated for 1-cm size (CW) classes, considering the total number of individuals caught during the hauls sampled aboard. The total numbers in the catches were previously estimated by multiplying the numbers in the samples by the ratio between the total catch weight and the sample weight. Proportions of ovigerous females were analyzed only for trips carried out between July and December, the main reproductive season of the species (Pezzuto et al., 2006b). Sexual maturity of Chaceon notialis A non-linear minimum squares estimation procedure was then used to fit a generalized logistic model (Restrepo & Watson, 1991) to the data as follows: PCW = β 1 + e( α1 −α 2CW ) (1) where PCW is the proportion of individuals in each size class and α1, α2, and β are parameters. In this model, β is a more general parameter that allows for the asymptotic proportion of the model to be lower or equal to 1. Therefore, a penalty function for β ≤ 1 was included in the parameter estimation procedure. This is of special interest for management purposes as it can indicate the maximum theoretical proportion of individuals presenting the maturity criteria in the largest size classes in a given period/study area. Size at 50% maturity was given by the equation: α CW50% = 1 α2 (2) Confidence intervals for CW50% were estimated by a bootstrap procedure in which frequency distributions of individuals with copula marks, opened vulvae, and eggs in the pleopods were randomly resampled 250 times, resulting in a corresponding number of logistic curves for each case. Given the asymmetrical distribution of the results, the medians of the 250 CW50% estimates were calculated and the 2.5 and 97.5% percentiles used as 95% confidence intervals (CI) (Haddon, 2001). The size-structure of the global catches was studied using information collected by the observers during all trips. It was analyzed by sex in terms of the proportion of mature and immature individuals fished per year and considering the total number of individuals sampled aboard in the period. Before pooling the data from several trips and hauls, numbers sampled by size class and sex were raised to the total caught in the respective hauls following the same procedure described in the functional/sexual maturity analysis. Weighted averages (and the respective 95% CI) of the CW for ovigerous females were calculated by year following Defeo et al. (1992). Increasing or decreasing trends in mean sizes with time were tested by fitting a linear minimum squares regression to the data and testing the slope significance against 0 (Zar, 1996). RESULTS Morphometric maturity The relative growth of males showed significant changes along the ontogeny for all selected dimen- 433 sions (p < 0.05). Transitions occurred between 8.2 and 10.6 CW (mean = 8.9 ± 0.9 SD) and several dimensions showed different relative growth patterns before and after their transition points (Table 2, Fig. 2). Allometry in ChH was first isometric (b = 1) and then changed to allometric positive after the respective transition points. The allometry was also positive for ChL in larger sizes but was preceded by an isometric and allometric growth phase in the right and left chelae, respectively (Table 2, Fig. 2). As observed in males, relative growth in females was also characterized by significant changes along the ontogeny. For both chelae, the transition points in height and length occurred within a narrower range of CW values (8.5 to 9.5 cm) than in the abdomen, where growth changes were observed in comparatively smaller sizes (7.6 cm) (Table 2, Fig. 3). In all dimensions, relative growth was first allometric positive, changing to allometric negative for ChL (left and right) and ChH (right) and to isometric for AW and ChH (left) (Table 2, Fig. 3). Considering all the dimensions examined in females, the transition points of females occurred, on average, at 8.8 ± 0.8 cm CW. Functional/sexual maturity The smallest male observed with copula marks was an individual of 6.3 cm CW. A value of 0.68 was estimated for the parameter β of the logistic function, as the proportion of males with darkened areas on their legs never reached 100% for any size class (Fig. 4a). The onset of sexual maturity in males (CW50%) occurred at 8.4 cm (Table 3, Fig. 4a). The smallest female with opened vulvae measured 5.0 cm and all individuals larger than 10 cm showed this condition, resulting in an estimate of the size of functional maturity of 6.9 cm (CW) (Table 3, Fig. 4b). The presence of eggs in the pleopods was first observed in a female measuring 7.0 cm CW. Based on this characteristic, we estimated sexual maturity to occur at 9.7 cm, and the maximum theoretical proportion of individuals carrying eggs during the main reproductive period (β parameter) was 0.8 (Table 3, Fig. 4c). Size-structure The global size structure of red crab catches examined between 2001 and 2005 revealed that males were relatively larger than females, ranging from 4.9 to 17.5 cm and 3.5 to 14.3 cm, respectively. Both sexes showed normally distributed size frequencies, but males exhibited a fairly asymmetric distribution for smaller sizes (Fig. 5a). The size catch-composition analysis indicated different scenarios depending on the maturity criterion considered. 434 Lat. Am. J. Aquat. Res. Table 2. Chaceon notialis. Potential regressions (Y = a Xb) fitted between carapace width (CW) (independent variable) and abdomen width (AW), left chelae length (LChL), left chelae height (LChH), right chelae length (RChL), and right chelae height (RChH) by sex. t-value: tests for H0: b = 1; *: p < 0.05; **: p < 0.01; D.F. degrees of freedom. Tabla 2. Chaceon notialis. Regresiones potenciales (Y = a Xb) ajustadas entre el ancho del caparazón (CW) (variable independiente) y ancho del abdomen (AW), largo de la quela izquierda (LChL), altura de la quela izquierda (LChH), largo de la quela derecha (RChL) y altura de la quela derecha (RChH), por sexo. Valor de t: test para H0: b = 1; *: p < 0,05; **: p < 0,01. DF: grados de libertad. Sex Male Female Body dimension Transition point (CW, cm) AW 10.6 cm LChL 8.7 cm LChH 8.2 cm RChL 8.5 cm RChH 8.4 cm AW 7.6 cm LChL 8.5 cm LChH 9.5 cm RChL 9.4 cm RChH 9.2 cm Subset a b r2 t-value DF Left Right Left Right Left Right Left Right Left Right Left Right Left Right Left Right Left Right Left Right 0.2065 0.6700 0.1517 0.1813 0.1724 0.1108 0.2243 0.1720 0.2488 0.111 0.111 0.3984 0.2105 0.3524 0.1427 0.1745 0.2313 1.3287 0.1833 0.6631 1.1360 0.6562 1.2764 1.2166 1.1352 1.3857 1.1162 1.2738 0.9968 1.4200 1.6762 1.0642 1.0624 0.8328 1.2061 1.1035 1.0542 0.288 1.1180 0.5562 0.906 0.218 0.870 0.830 0.882 0.857 0.873 0.815 0.796 0.842 0.894 0.787 0.925 0.499 0.947 0.511 0.911 0.060 0.926 0.246 4.4812** -2.9893** 3.7573** 5.4830** 1.3055 9.6353** 1.700 6.3229** -0.0355 9.7315** 9.3888** 1.5456 2.355* -1.9526* 10.3876** 0.3951 2.2516* -3.3214** 5.0042** -2.6597** 147 119 47 196 18 202 41 199 34 205 66 180 132 97 210 19 190 30 182 36 Virtually all females caught during the study period (99%) were functionally mature (Table 4). However, a radically opposed scenario emerged when considering the morphometric (i.e. mean value of the CW transition points) and sexual maturity criteria, in which cases the proportion of immature females in the catches attained, on average, 67.9% and 96.7%, respectively (Table 4). Contrary to that observed in females, the contribution of immature males in the catches was always reduced (< 12%), irrespective of the maturity criteria chosen for analysis (Table 4). Weighted mean sizes (CW) of ovigerous females caught in the fishery tended to decrease along the years of exploitation from 8.6 cm in 2001 to 8.1 cm in 2005, but this trend was not significant (b = -0.0967; p = 0.12; t-value = -2.16) (Fig. 5b). DISCUSSION In this work, size at maturity estimates for C. notialis were obtained by taking into account a scenario of indeterminate growth, i.e. not considering the existence of a terminal molt in the species. This approach follows the arguments of Pezzuto & Sant’Ana (2009), which examined the maturity of the royal crab Chaceon ramosae in Brazil. The authors revealed that, whereas some controversy does exist, at present, few if any concrete bases can be found in the literature to support the hypothesis of deterministic growth in geryonids. In a recent paper, Delgado & Defeo (2004) studied the sexual maturity of C. notialis females in Uruguay considering either the presence or absence of a terminal molt in the species. The estimates produced in the present study were strikingly close to their results (obtained under the assumption that females continue to grow after the pubertal molt). The CW50% estimated from females with opened vulvae were virtually identical in both studies (6.9 cm in Brazil; 7.0 in Uruguay) and very similar to the size at maturity calculated by Delgado & Defeo (2004) from the percentages of females with gonads in an advanced developmental Sexual maturity of Chaceon notialis 435 Figure 2. Chaceon notialis. Plots of relative growth of chelipod and abdomen dimensions for males. Arrows indicate transition points between different growth phases. Figura 2. Chaceon notialis. Relaciones de crecimiento relativo de las dimensiones de la quela y abdomen para machos. Las flechas indican los puntos de transición entre las diferentes fases de crecimiento. stage (7.2 cm). In addition, the CW50% estimated in Brazil from ovigerous females (9.7 cm) matched the mean size of females with mature gonads taken from Uruguayan waters (~9.1 cm). The similarity among these results reinforces the suspicion that C. notialis may constitute a shared stock between Brazil and Uruguay (Lima & Lima-Branco, 1991; Defeo et al., 1992; Pezzuto et al., 2006a). As observed in most geryonids (Hastie, 1995), C. notialis males attain larger sizes than females (Nigge- meyer et al., 1990). Melville-Smith (1989), who found a similar pattern in C. maritae, argued that females would undergo smaller size increments per molt than males because of their higher reproductive investment. As a consequence of the larger sizes attained by males and their specialized copulatory behavior, which involves forming a protective cage around the receptive female by using their locomotory legs (Elner et al., 1987; Erdman & Blake, 1988), males also tend to mature at larger sizes (see review in Pezzuto 436 Lat. Am. J. Aquat. Res. Figure 3. Chaceon notialis. Plots of relative growth of chelipod and abdomen dimensions for females. Arrows indicate transition points between different growth phases. Figura 3. Chaceon notialis. Relaciones de crecimiento relativo entre la quela y abdomen en hembras. Las flechas indican los puntos de transición entre las diferentes fases de crecimiento. Sant’Ana, 2009). Therefore, it is noteworthy that C. notialis males seem to mature at relatively smaller sizes than females, as suggested in the present paper. In the northeast Atlantic, a similar result was found for an exploited population of C. affinis, whose males and females were found to mature at 94 mm and 109 mm, respectively (Robinson, 2008). However, as expected for the group, males of the same species mature at larger sizes than females in the Canary Islands, where no fishery for the species exists (Fernández-Vérgaz et al., 2000). Three hypotheses can be raised to explain this very unexpected result: (i) morphological and sexual sizes at maturity calculated in the present work for males of C. notialis are, in fact, underestimated; (ii) female sizes at sexual maturity (based on the proportion of ovigerous females in the catches) are overestimated; and (iii) all estimates are correct and a deviation does exist in the actual population structure of the species. The first hypothesis seems to be largely improbable as both morphological and sexual sizes at maturity were very similar despite being supported by completely 437 Sexual maturity of Chaceon notialis Table 3. Chaceon notialis. Parameters (α1, α2, and β) of the logistic curves (± C.I. 95%) fitted to the proportion of females with opened vulvae, ovigerous females and males showing copula marks by size class and the corresponding size at maturity (CW50%) estimated by the bootstrap procedure. Tabla 3. Chaceon notialis. Parámetros (α1, α2 y β) del modelo logístico (± I.C. 95%) ajustados a la proporción de hembras con vulvas abiertas, hembras ovígeras y machos con marcas de cópula por clases de talla y las correspondientes tallas de primera madurez (CW50%), estimadas por bootstrap. Parameters Β α1 α2 CW50% (cm) Bootstrap CW50% (cm) Female Opened vulvae Mean 0.98 12.75 1.96 6.85 Median 6.85 CI (95%) 0.95-1.00 10.55-14.95 1.54-2.18 CI (2.5-97.5%) 6.53-7.13 Ovigerous Mean 0.80 6.89 0.69 9.98 Median 9.73 distinct data, methods, and assumptions. On the other hand, the second hypothesis could be supported by the fact that sizes at maturity estimated from size-specific proportions of ovigerous females in the catches might be influenced by the catch composition, which might vary according to the abundance of mature and immature individuals in the fishing areas and/or due to differential attractiveness of the traps and vulnerability of females to these during the breeding phase (MelvilleSmith, 1987). However, using fishing-based data collected in the middle 1990s, Defeo & Masello (2000a) reported a marked reduction in the mean individual weight of males in comparison with the original sizestructure observed before the development of the commercial fishery in Uruguay. The authors considered this finding to be a first sign of overexploitation, especially because, this is a male-centered fishery, i.e., only males are retained in that country (Delgado & Defeo, 2004). As with the change in the male size structure, the recent tendency toward lower mean sizes of ovigerous females and the occurrence of smaller average females in Brazil with opened vulvae (6.8 cm) than observed from morphological analyses (8.9 cm) suggest that the third hypothesis could, in fact, be true. In this case, the population would be experiencing an adjustment in its reproductive parameters as a response to the overexploited condition of the stock. Not all mature males exhibited copula marks on their legs (maximum observed and predicted proportions of individuals showing this feature were 0.74 and 0.68, respectively). Pezzuto & Sant’Ana (2009) observed similar results for C. ramosae, with a slightly lower β parameter (0.58) in the logistic function. The authors pointed out that such a pattern might emerge CI (95%) 0.31-1.29 4.05-9.72 0.28-1.10 CI (2.5-97.5%) 7.29-11.01 Male Copula marks Mean 0.68 11.79 1.41 8.36 Median 8.40 CI (95%) 0.58-0.77 4.98-18.60 0.57-2.24 CI (2.5-97.5%) 7.95-10.0 from three main situations: a) if a proportion of the recently paired males molted before being caught; b) if abrasion marks are not necessarily formed in 100% of the recently paired males; and c) if not all mature males copulate during each reproductive season. Molting in C. notialis has not been investigated yet. Therefore, we are not able to test whether the first hypothesis could be valid for this species. However, given the low growth rates attributable to geryonid crabs and the increasing intermolt periods expected for large individuals (Lux et al., 1982; Melville-Smith, 1989; Arana, 2000), it seems quite improbable that nearly 30% of adult males had molted (i.e. eliminating the respective copula marks along with their old shells) between the last copula and being caught, as should be the case for supporting the first hypothesis. On the other hand, the second hypothesis seems to be highly plausible. The proportion of males with copula marks was not constant in the largest size classes used in the analysis but showed a slight reduction in the 12-cm size class. In addition, 28 males measuring between 13 and 16.5 cm CW were also sampled during the study and did not show any copula marks on their legs. These specimens were not included in the analysis given their smaller sample sizes as compared to the numbers available for the other size classes. Both facts support the idea that the probability of developing copula marks could be lower from some threshold size in mature individuals of this species. In fact, a similar pattern was reported by Melville-Smith (1987) for C. maritae: males larger than 12 cm CW did not exhibit any marks on their legs. In this species, damage to the integument of large-sized males is not produced because their merus do not chafe against the female 438 Lat. Am. J. Aquat. Res. carapace during the pre-copulatory embrace and mating (Melville-Smith, 1987). It is possible, therefore, that C. notialis behave in a similar way, with most mature males copulating in each reproductive period but not necessarily producing copula marks. Besides supporting said hypothesis, our results concerning the maximum proportion of ovigerous females by size (see below) also offer little if any support to the third hypothesis that individual males do not tend to reproduce each year. Figure 4. Chaceon notialis. Logistic model (solid line) fitted to the observed proportion (points) of males showing copula marks (a) and females with opened vulva (b) and eggs in the pleopods (c). Figura 4. Chaceon notialis. Modelo logístico (línea continua) ajustado a la proporción observada (puntos) de machos con marcas de cópula (a); hembras con vulvas abiertas (b); y huevos en los pleópodos (c). According to the logistic model fitted to the data, the maximum theoretical proportion of ovigerous females by size class was 80% (β = 0.8). β values near 1 (100%) are considerably high and suggest that reproduction in this species takes place on an annual basis, both at the populational and individual levels, as also found for C. maritae off Namibia (MelvilleSmith, 1987). On the other hand, the same does not occur with the royal-crab C. ramosae in Brazil, which has been exploited between 19 and 31°S (farther north than the C. notialis fishing grounds; see Figure 1 in Pezzuto & Sant’Ana, 2009). Catches of ovigerous royal-crab females are concentrated in the first semester of each year (Pezzuto et al., 2006b), but individual males and females seem to reproduce on a bi-annual basis only (Pezzuto & Sant’Ana, 2009). Bi-annual cycles were suggested for other geryonids and have been interpreted as a consequence of the food-limited characteristic of the deep-water environment (Erdman & Blake, 1988; Erdman et al., 1991; Pinho et al., 1998 in López-Abellán et al., 2002). In the case of C. notialis, an annual reproductive strategy would imply a significant energetic investment that should be compensated by comparatively higher food availability. In fact, the species occurs along subtropical/temperate latitudes strongly influenced by highly productive water masses including Subantarctic Water carried out by the Malvinas Current, the Subtropical Convergence formed between the Malvinas and Brazil currents, and discharge from La Plata River (Garcia & Garcia, 2008). Therefore, higher biological production levels should be expected to occur along the C. notialis distributional range than in the tropical waters under which C. ramosae occurs (see review on primary productivity along southeastern and southern Brazil in Gaeta & Brandini, 2006). These processes also seem to influence the biomass of the respective stocks. Defeo et al. (1991) concluded, based on surveys conducted in the middle 1980s, that C. notialis shows one of the highest biomasses estimated for geryonid crabs in the world, even considering only the portion of the stock found in Uruguay and northern Argentina. 439 Sexual maturity of Chaceon notialis Figure 5. Chaceon notialis. Size-frequency distribution of males and females (a) and variation of mean sizes of ovigerous females (b) caught in commercial fisheries in southern Brazil between 2001 and 2005. In (b), boxes and bars are, respectively, confidence intervals (95%) and standard deviations. Figura 5. Chaceon notialis. Distribución de frecuencia de tallas de machos y hembras (a) y variación de los tamaños promedios de las hembras ovígeras (b) capturadas por la pesca comercial en el sur de Brasil entre 2001 y 2005. En (b) se presentan los intervalos de confianza al 95% (cajas) y las desviaciones estándar. Table 4. Chaceon notialis. Percentages of immature and mature individuals in the commercial catches by sex and year, according to the different criteria for determining sexual maturity. SD: standard deviation. Tabla 4. Chaceon notialis. Porcentaje de individuos inmaduros y maduros en las capturas comerciales por sexo y año según los distintos criterios de determinación de la madurez sexual. SD: desviación estándar. Females Year Relative growth (8.8 cm) Opened vulvae (6.9 cm) Males Eggs in the pleopods (9.7 cm) Immature Mature Immature Mature Immature (%) (%) (%) (%) (%) Mature (%) Relative growth (8.9 cm) Copula marks (8.4 cm) Immature Mature Immature Mature (%) (%) (%) (%) 2001 59.9 40.1 0.0 100.0 94.9 5.1 3.4 96.6 1.2 98.9 2002 64.8 35.2 1.3 98.7 93.2 6.8 12.4 87.6 6.0 94.0 2003 67.8 32.2 0.2 99.8 98.5 1.5 8.3 91.7 2.9 97.1 2004 68.4 31.6 2.5 97.5 97.4 2.6 17.2 82.8 11.0 89.0 2005 78.4 21.6 0.8 99.3 99.6 0.4 17.7 82.3 10.3 89.7 Mean 67.9 32.1 0.9 99.1 96.7 3.3 11.8 88.2 6.3 93.7 SD 6.8 6.8 1.0 1.0 2.6 2.6 6.1 6.1 4.4 4.4 In spite of the relatively high value obtained for the maximum theoretical proportion of ovigerous females by size class, it must be stressed that, at present, the observed values peaked at a much lower level (0.61). Delgado & Defeo (2004) investigated the sexual maturity of the same species in Uruguay and observed that 65% of the morphologically mature females showed marks of mating. In addition, most of them lacked seminal contents in their reservoirs. Delgado & Defeo (2004) suggested that, due to the selective exploitation of males, the sperm supply might have become a limiting resource for the population. A similar concern was raised by Wahle et al. (2008) for the northwest Atlantic red crab C. quinquedens fishery, 440 Lat. Am. J. Aquat. Res. where the abundance of large males declined by 42% after three decades of selective harvesting. Our results could support the Delgado & Defeo (2004) hypothesis, considering that most C. notialis males caught in Brazil (supposedly in much lower numbers than in the original population structure) have shown signs of reproductive activity (copula marks), but a proportionally smaller portion of the females seem to have been effectively fertilized. Examining the temporal series of sex-ratio and ovigerous females caught by reproductive season (available at least for the Brazilian portion of the stock) could provide more support to test this hypothesis in the future. Analyzing the percentages of immature crabs in the commercial catches reveals distinct scenarios depending on the sex and maturity criteria analyzed. In Brazil, the participation of immature males in the catches, although higher in 2004 and 2005, has been quite low. On the contrary, most females caught in Brazil could be classified as immature, considering both morphometric and sexual sizes at maturity. Taking into account that a) contrary to the situation in Uruguay, the Brazilian fishery has been predominantly sustained by females, b) enforcement in Brazil has not been completely successful as catches have also surpassed the maximum estimated sustainable yield in most years and minimum mesh sizes restrictions have not been observed, c) mean sizes of ovigerous females seem to be declining over the years, and d) the stock biomass in the Brazilian EEZ was reduced by 30% in 2005 (Pezzuto et al., 2006b), the excessively high mortality levels imposed on immature females could contribute to a much more severe impact on the stock. This scenario points to a biologically unsustainable condition that should be changed by modifying and including new measures in the management of the C. notialis fishery in Brazil. These measures should emphasize enhancing trap selectivity (Tallack, 2007) and the implementation of spatial and temporal restrictions on effort allocation in order to reduce catches of immature and ovigerous females by the fleet. Based on the results from this paper and from Pezzuto et al. (2006b), the present management of the C. notialis fishery in Brazil has been changed recently, incorporating, inter alia, a 30% reduction in the TAC, an increase in the permitted minimum mesh size in the traps (from 100 to 120 mm stretched), and the closure of the spawning areas < 600 m depth to the fishery from 1 August to 31 December each year. As the vessels targeting C. notialis should be obligatorily monitored by observers on 100% of their trips, biological data will be available in order to verify the efficacy of these changes and to refine them, if necessary, in a continuous process of adaptive management. On the other hand, the establishment of collaborative efforts between Brazilian and Uruguayan fishing authorities and scientists should be encouraged in the near future in order to confirm the shared status of the stock and implement global management measures intended to ensure the biological sustainability of C. notialis. ACKNOWLEDGEMENTS The authors are indebted to all observers whose hard work resulted in most of the high-quality data available for this study. The kind assistance provided by Helia del Carmen Farias Espinoza (CTTMar/ UNIVALI) with the Spanish version of the Abstract and captions is fully appreciated. This work was funded by the Special Secretary of Aquaculture and Fisheries (Brazilian Government–SEAP/PR/001/ 2003, SEAP/PR/078/2004, SEAP/PR/064/2005, and SEAP/PR/027/2007) and by a research grant to P.R.P. from the National Research Council (CNPq) (Process 310820/2006-5). This work is part of the Bachelor thesis in Oceanography (UNIVALI) by R.S. REFERENCES Arana, P. 2000. Estimación de abundancia y biomasa del cangrejo dorado (Chaceon chilensis), en el archipiélago de Juan Fernández, Chile. Invest. Mar. Valparaíso, 28: 53-68. Athiê, A.A.R. & C.L.D.B. Rossi-Wongtschowski. 2004. Os caranguejos-de-profundidade na zona econômica exclusiva da região sudeste-sul do Brasil: análise das operações de pesca e das capturas do N/P Kinpo Maru no. 58. Série Documentos REVIZEE-Score Sul. Instituto Oceanográfico da Universidade de São Paulo, São Paulo, 64 pp. Attrill, M.J., R.G. Hartnoll & A.L. Rice. 1991. Aspects of the biology of the deep-sea crab Geryon trispinosus from the Porcupine Seabight. J. Mar. Biol. Ass. U.K., 71: 311-328. Beyers, C.J.B. & C.G. Wilke. 1980. Quantitative stock survey and some biological and morphometric characteristics of the deep-sea red crab Geryon quinquedens off southwest Africa. Fish. Bull. S. Afr., 13: 9-19. Defeo, O., V. Little & L. Barea. 1991. Stock assessment of the deep-sea red crab Chaceon notialis in the Argentinian-Uruguayan common fishing zone. Fish. Res., 11: 25-39. Defeo, O., L. Barea, F. Niggemeyer & V. Little. 1992. Abundancia, distribución y dimensionamiento de la pesquería del cangrejo rojo Geryon quinquedens Smith, 1879 en el Atlántico sudoccidental. Informe Sexual maturity of Chaceon notialis Técnico Nº38. Instituto Nacional de Pesca, Republica Oriental del Uruguay, pp. 1-72 . Defeo, O. & A. Masello. 2000a. La pesquería de cangrejo rojo Chaceon notialis en el Uruguay: un enfoque de manejo precautorio (1995-1996). In: M. Rey (ed.). Recursos pesqueros no tradicionales: moluscos, crustáceos y peces bentónicos marinos. Proyecto URU/92/003, INAPE/PNUD, Uruguay, pp. 7-22. Defeo, O. & A. Masello. 2000b. Análisis espaciotemporal de la pesquería de cangrejo rojo Chaceon notialis en el Uruguay: año 1996. In: M. Rey (ed.). Recursos pesqueros no tradicionales: moluscos, crustáceos y peces bentónicos marinos. Proyecto URU/92/003, INAPE/PNUD, Uruguay, pp. 23-37. Delgado, E. & O. Defeo. 2004. Sexual maturity in females of deep-sea red crab Chaceon notialis (Brachyura, Geryonidae) in the southwestern Atlantic Ocean. Invert. Reprod. Dev., 46(1): 55-62. Domingos, S.S., A.A.R. Athiê & C.L.D.B. RossiWongtschowski. 2007. Diet of Chaceon notialis (Decapoda, Brachyura) off the coast of Rio Grande, RS, Brazil. Braz. J. Oceanogr., 55(4): 327-329. Elner, R.W., S. Koshio & G.V. Hurley. 1987. Mating behavior of the deep-sea red crab, Geryon quinquedens Smith (Decapoda, Brachyura, Geryonidae). Crustaceana, 52(2): 194-201. Erdman, R.B. & N.J. Blake. 1988. Reproductive ecology of female golden crabs, Geryon fenneri Manning & Holthuis, from southeastern Florida. J. Crust. Biol., 8(3): 392-400. Erdman, R.B., N.J. Blake, F.D. Lockhart, W.J. Lindberg, H.M. Perry & R.S. Waller. 1991. Comparative reproduction of the deep-sea crabs Chaceon fenneri and C. quinquedens (Brachyura: Geryonidae) from the northeast Gulf of Mexico. Invert. Reprod. Dev., 19(3): 175-184. Fernández-Vergaz, V., L.J. López-Abellán & E. Balguerías. 2000. Morphometric, functional and sexual maturity of the deep-sea red crab Chaceon affinis inhabiting Canary island waters: chronology of maturation. Mar. Ecol. Prog. Ser., 204: 169-178. Gaeta, S.A. & F.P. Brandini. 2006. Produção primária do fitoplâncton na região entre o cabo de São Tomé (RJ) e o Chuí (RS). In: C.L.D.B. Rossi-Wongtschowski & L.S.P. Madureira (eds.). O ambiente oceanográfico da plataforma continental e do talude na região sudestesul do Brasil. Editora da Universidade de São Paulo, São Paulo, pp. 219-264. Garcia, C.A.E. & V.M.T. Garcia. 2008. Variability of chlorophyll-a from ocean color images in the La Plata continental shelf region. Cont. Shelf Res., 28: 15681578. 441 Haddon, M. 2001. Modelling and quantitative methods in fisheries. Chapman & Hall/CRC, Boca Raton, 406 pp. Haefner Jr., P.A. 1977. Reproductive biology of the female deep-sea red crab, Geryon quinquedens, from the Chesapeake Bight. U.S. Fish. Bull., 75(1): 91102. Hartnoll, R.G. 1974. Variation in growth patterns between some secondary sexual characters in crabs (Decapoda: Brachyura). Crustaceana, 27(2): 131-136. Hartnoll, R.G. 1982. Growth. In: L.G. Abele (ed.). The biology of Crustacea – embryology, morphology and genetics. Vol. 2. Academic Press, London, pp. 111196. Hastie, L.C. 1995. Deep-water geryonid crabs: a continental slope resource. Oceanogr. Mar. Biol. Ann. Rev., 33: 561-584. Lima, J.H.M.D. & R. Lima-Branco. 1991. Análise das operações de pesca do caranguejo-de-profundidade (Geryon quinquedens, Smith 1879) por barcos japoneses arrendados na região sul do Brasil - 1984/85. Atlântica, 13(1): 179-187. López-Abellán, L.J., E. Balguerías & V. FernandezVergaz. 2002. Life history characteristics of the deepsea crab Chaceon affinis population off Tenerife (Canary islands). Fish. Res., 58: 231-239. Lux, F.E., A.R. Ganz & W.F. Rathjen. 1982. Marking studies on the red crab Geryon quinquedens Smith off southern New England. J. Shellfish Res., 2(1): 71-80. Manning, R. & L.B. Holthuis. 1989. Two new genera and nine new species of geryonid crabs (Crustacea, Decapoda, Geyonidae). Proc. Biol. Soc. Wash., 102(1): 50-77. Melville-Smith, R. 1987. The reproductive biology of Geryon maritae (Decapoda, Brachyura) off South West Africa/Namibia. Crustaceana, 53(3): 259-275. Melville-Smith, R. 1989. A growth model for the deepsea red crab (Geryon maritae) off South West Africa/Namibia (Decapoda, Brachyura). Crustaceana, 56(3): 279-292. Niggermeyer, F., O. Defeo & L. Barea. 1990. Estructura espacio-temporal y aspectos de la dinamica poblacional del cangrejo rojo (Geryon quinquedens) en aguas de la zona comun de pesca Argentino-Uruguaya. Frente Maritimo, 6: 37-52. Peres, M.B. & M. Haimovici. 2003. Alimentação do cherne-poveiro Polyprion americanus (Polyprionidae, Teleostei) no sul do Brasil. Atlântica, 25(2): 201-208. Pezzuto, P.R. 1993. Regrans: a “Basic” program for an extensive analysis of relative growth. Atlântica, 15: 93-105. Pezzuto, P.R. & R. Sant’Ana. 2009. Sexual maturity of the deep-sea royal crab Chaceon ramosae Manning, Tavares & Albuquerque, 1989 (Brachyura: Geryoni- 442 Lat. Am. J. Aquat. Res. dae) in southern Brazil. Lat. Am. J. Aquat. Res. 37(3): 297-311. Pezzuto, P.R., J.A.A. Perez & R. Warhlich. 2006a. O ordenamento das pescarias de caranguejos-deprofundidade (Chaceon spp.) (Decapoda: Geryonidae) no sul do Brasil. Bolm. Inst. Pesca, 32(2): 229-247. Pezzuto, P.R., J.A.A. Perez, R. Warhlich, W.G. Vale & F.R.A. Lopes. 2002. Análise da pescaria dos caranguejos-de-profundidade no sul do Brasil–Anos 20012002. Relatório Final. Ações prioritárias ao desenvolvimento da pesca e aqüicultura no sul do Brasil. Convênio Ministério da Agricultura, Pecuária e Abastecimento (MAPA), Universidade do Vale do Itajaí, MAPA/SARC/DPA/03/2001 e MAPA/SARC/DENA COOP/176/2002. Universidade do Vale do Itajaí, Itajaí, pp. 121. Pezzuto, P.R., J.A.A. Perez, R. Warhlich, R. Sant’Ana, W.G. Vale & R.C. Santos. 2006b. Avaliação de estoque e biologia populacional dos caranguejos-deprofundidade (Chaceon notialis e Chaceon ramosae) nas regiões Sudeste e Sul do Brasil. Relatório Técnico apresentado à 4a Sessão Ordinária do Subcomitê Received: 6 May 2009; Accepted: 2 September 2009 Científico do Comitê Consultivo Permanente de Gestão dos Recursos Demersais de Profundidade (CPG/Demersais)/ SEAP/PR–Itajaí, SC, 03-05/05/ 2006. DOC 11 SCC CPG 042006. Robinson, M. 2008. Minimum landing size for Northeast Atlantic stocks of deep-water red crab, Chaceon affinis (Milne Edwards & Bouvier, 1894). ICES J. Mar. Sci., 65: 148-154. Restrepo, V.R. & R.A. Watson. 1991. An approach to modeling crustacean egg-bearing fractions as a function of size and season. Can. J. Fish. Aquat. Sci., 48: 1431-1436. Tallack, S.M.L. 2007. Escape ring selectivity, bycatch, and discard survivability in the New England fishery for deep-water red crab, Chaceon quinquedens. ICES J. Mar. Sci., 64: 1579-1586. Wahle, R.A., C.E. Bergeron, A.S. Chute, L.D. Jacobson & Y. Chen. 2008. The northwest Atlantic deep-sea red crab (Chaceon quinquedens) population before and after the onset of harvesting. ICES J. Mar. Sci., 65: 862-872. Zar, J. 1996. Biostatistical analysis. Prentice Hall, New Jersey, 662 pp. Lat. Am. J. Aquat. Res., 37(3): 443-454, 2009 Reproduction and population structure of Aristeus antillensis “Deep-sea fisheries off Latin America” P. Arana, J.A.A. Perez & P.R. Pezzuto (eds.) DOI: 10.3856/vol37-issue3-fulltext-13 443 Research Article Reproductive cycle and population structure of the deep-water shrimp Aristeus antillensis A. Milne Edwards & Bouvier, 1909 (Decapoda: Aristeidae) on southeast Brazilian continental slope 1 Paulo Ricardo Pezzuto1 & Martin Coachman Dias1 Universidade do Vale do Itajaí, Centro de Ciências Tecnológicas da Terra e do Mar Rua Uruguai, 458, CEP 88.302-202, Itajaí, SC, Brazil ABSTRACT. The “alistado shrimp” (Aristeus antillensis) is one of the targets of the trawling fleet operating since 2002 along the continental slope of the Brazilian Economic Exclusive Zone between 700 and 800 m depth. Catches of the species occur mainly in two small fishing grounds located on the east coast of Espírito Santo State (19-22°S). This paper aimed to obtain the first biological data for this species along the Brazilian coast. A total of 13,797 individuals were sampled aboard fishing vessels by observers on almost all fishing hauls, corresponding to 10 to 20% of the total catch recorded in the period. Males and females are sexually mature at 25.4 and 40.2 mm carapace length, respectively, based on an analysis of the proportions of individuals with fused petasma (males) and spermatophores in the thelycum (females). The proportion of impregnated females was higher than 80% year round, suggesting a continuous reproductive cycle, although preliminary information on gonadal development points to possible seasonal reproduction. In general, mature females, which attain larger sizes than males, dominate the catches (M:F = 0.12:1). However, populational groups including males and juveniles of both sexes occupy the fishing grounds in different periods of the year, probably reflecting migratory movements whose directions and driving forces are not completely understood yet. A depthstratified population structure by sex and size is hypothesized. Keywords: deep-water resource, sexual maturity, reproductive cycle, population structure, Aristeidae, Brazil. Ciclo reproductivo y estructura poblacional del camarón de aguas profundas Aristeus antillensis A. Milne Edwards & Bouvier, 1909 (Decapoda: Aristeidae) en el talud continental del sureste de Brasil RESUMEN. La gamba de aguas profundas Aristeus antillensis es uno de los recursos explotados por la flota de arrastre, que está operando desde el año 2002 en el talud continental de la Zona Económica Exclusiva de Brasil, entre 700 y 800 m de profundidad. Las capturas de esta especie se realizan básicamente en dos pequeños fondos de pesca que se encuentran en la costa este de la región de Espírito Santo (19-22°S). Este trabajo tiene por objetivo obtener los primeros antecedentes biológicos de esta especie en la costa brasileña. Un total de 13.797 camarones fueran muestreados en los buques pesqueros por observadores en casi todos los lances de pesca, que correspondieron entre 10 y 20% de las capturas totales en el período. Machos y hembras están sexualmente maduros a 25,4 y 40,2 mm respectivamente (longitud de carapazón), según el análisis de las proporciones de individuos con petasma unido (machos) y telicum con espermatóforo (hembras). La proporción de hembras con espermatóforo fue superior a 80% en todo el año, sugiriendo un ciclo reproductivo continuo. Sin embargo, informaciones preliminares sobre el desarrollo gonadal indican una posible estacionalidad en la reproducción. Generalmente, hembras adultas, que alcanzan tallas mayores que los machos, dominaron las capturas (M:F = 0,12:1). Sin embargo, grupos poblacionales, incluyendo machos e inmaduros de ambos sexos, ocupan los fondos de pesca en diferentes períodos del año, probablemente como reflejo de los movimientos 444 Lat. Am. J. Aquat. Res. migratorios, cuyas direcciones y fuerzas aún no son totalmente comprendidos. Se discute una posible estructura poblacional estratificada de sexos y tallas por el gradiente batimétrico. Palabras clave: recurso de profundidad, madurez sexual, ciclo reproductivo, estructura poblacional, Aristeidae, Brasil. ________________________ Corresponding author: Paulo Ricardo Pezzuto: (pezzuto@univali.br) INTRODUCTION Deep-water shrimps from the family Aristeidae represent an important and valuable fishery resource in many parts of the world (Crosnier & Tauter, 1968; Rainer, 1992; Guéguen, 1998; Kao et al., 1999; Ragonese et al., 2002; Tudela et al., 2003; Can & Aktas, 2005). On the Brazilian coast, the exploitation of aristeid shrimps started in 2002 as part of a governmental program launched to expand industrial fisheries to previously unexploited slope fishing grounds where valuable benthic and demersal resources concentrate. The history and dynamics of this fishery, which experienced a “boom and bust” developmental cycle, have been extensively reviewed by Pezzuto et al. (2006) and Dalagnollo et al. (2009). Since the beginning of the fishery, Aristaeopsis edwardsiana (“carabineiro” or scarlet shrimp), Aristaeomorpha foliacea (“moruno” or giant red shrimp), and Aristaeus antillensis (“alistado”) have been the targets of bottom stern-trawlers along almost all the Brazilian Economic Exclusive Zone (EEZ), but operations have concentrated mainly between 18°S and 34°S and from 700 to 800 m (Pezzuto et al., 2006; Dallagnolo et al., 2009). A. antillensis is the least abundant species in the catches, representing nearly 5% of the total deep-water shrimp landings recorded between November 2002 and May 2007. In part, this reflects the fact that most of the exploitable biomass of the species is largely concentrated in only two small fishing grounds (total area = 588.3 km2) located on the eastern coast of the Espírito Santo State (19-22°S) (Dallagnolo, 2008; Dallagnolo et al., 2009). Scientific surveys conducted in this area revealed otherwise, that A. antillensis exhibits a wider bathymetric distribution ranging between 200 and 1,144 m, with density peaks at 750 m deep (Pezzuto et al., 2006; Serejo et al., 2007). In general, aristeid shrimps are believed to be more vulnerable to overexploitation than coastal penaeids due to: a) their higher economic value; b) K-strategist life history, with lower growth rates and longer life spans; c) complex distribution patterns, with migratory movements across bathymetric gradients; and d) aggregated reproductive behavior, inducing the seasonal formation of highly vulnerable biomass concentrations in the fishing grounds (Ragonese & Bianchini, 1996; Sardá et al., 2003a, 2003b; Tudela et al., 2003; Pezzuto et al., 2006; Dallagnolo et al., 2007; Pezzuto & Dias, 2007). Biological information about A. antillensis is very scarce. As far as we know, the only specific studies available to date were carried out by Guéguen (2000, 2001), who described the bathymetric distribution, morphometry, overall sex-ratio, and sizefrequency distribution of the species on the continental slope of French Guiana, where A. antillensis is also a minor component of a seasonal industrial fishery for A. edwardsiana. However, despite not knowing the growth rates, longevity, and other biological characteristics of A. antillensis, high prices in the international market, low biomass levels, and a distribution concentrated in a few, small, easily accessible fishing areas in southeastern Brazil make the species highly susceptible to severe depletions in the near future. A management plan for the aristeid fishery is now being discussed and implemented in Brazil. This is mostly concerned with the sustainability of A. edwardsiana, the main target of the fishery. A total allowable catch (TAC) of 60,000 kg has been set for the three species together but, in order to protect A. antillensis from depletion, fishing operations north of 21°S must be stopped when its annual catches reach 4,350 kg, the estimated Maximum Sustainable Yield (MSY) for the species (Dallagnolo, 2008; Perez et al., 2009). As biological reference points based on size/sexstructure and reproduction are not available for the three species, this work aimed to provide the first results on the population structure and reproductive biology of A. antillensis in Brazilian waters in order to support additional recommendations for the sustainable exploitation of this new deep-water resource. MATERIALS AND METHODS Study site Commercial catches of aristeid shrimps occur in four fishing grounds (N1 to N4) over the continental slope of the Espírito Santo State (Fig. 1). However, A. antil- Reproduction and population structure of Aristeus antillensis 445 Figure 1. Main fishing grounds of Aristeus antillensis (N2 and N4) in southeastern Brazil. ES, MG, and RJ refer to Espírito Santo, Minas Gerais, and Rio de Janeiro states. Figura 1. Principales fondos de pesca del Aristeus antillensis (N2 y N4) en el sueste de Brasil. ES, MG y RJ se refieren a los estados de Espirito Santo, Minas Gerais y Rio de Janeiro. lensis is mostly found in only two of them: N2 and N4. These are located in an area with very distinct morphological and oceanographic characteristics on the Brazilian coast. They are situated close to or inside the Vitória Channel, a deep strait that separates the continental slope adjacent to the Abrolhos Bank from the scarp of the Besnard seamount, one of the main features of the Vitória-Trindade chain (20 to 21°S) (Fig. 1). In this area, the continental slope is very steep and narrow (18 km), exhibiting several small subparallel canyons extending from the shelf to nearly 800 m depth. Both canyons and the slope are supposed to receive a terrigenous influence from the discharge of the Rio Doce (França, 1979). Three water masses have been found to occupy the upper 1,500 m of the water column over the A. antillensis fishing grounds: a) Tropical Water (TW; T > 20°C; S > 36.2) occupies the surface layers (0 ~ 200 m) flowing towards the southwest; b) South Atlantic Central Water (SACW; T = 620°C; S = 34.6-36) is found below the TW up to 700 m depth, and c) Antarctic Intermediate Water (AIW; T = 3-4°C; S = 34.2-34.6) flows to the north between 700 and 1,500 m (Costa et al., 2005; Castro et al., 2006; Haimovici et al., 2007). The euphotic zone is dominated by oligotrophic warm tropical waters having low productivity and primary productivity that is not uniform either spatially or temporally. Lower and higher values are found, respectively, in the summer and winter months, whereas intermediate ones occur in the autumn and spring. Major estuaries such as Rio Doce, which opens to the sea in front of the N4 fishing ground, exert a positive influence on the inner shelf, creating areas of higher primary production. In addition, both the Abrolhos bank and Vitória-Trindade chain act as important topographic barriers to the Brazil Current, which carries the TW along the eastern coast of Brazil towards the south, producing a very complex hydrographic structure including vortices, upwellings, and vertical mixing processes (Valentin et al., 2007). One of these features, the “Vitória vortex”, forms south of the Abrolhos bank, enriching the euphotic zone with comparatively nutrient-rich SACW waters (Ciotti et al., 2007; Rezende et al., 2007; Valentin et al., 2007). Sampling and processing Fishing and biological data used in this work were collected by observers aboard all commercial vessels that operated off the Espírito Santo State (18°20’22°S, 360 to 890 m depth) between October 2003 and November 2008 (Fig. 1). Details about the fleet and gears can be found in Dallagnolo (2008) and Dallagnolo et al. (2009). For each trawl, the geographic coordinates, date, time, and depth (m) were recorded at deployment and retrieval, and trawl speed (nm h-1), trawl duration (h), head rope length (m), mesh size at cod-end (mm), and catch composition (kg) were also registered. A total of 13,797 individuals were sampled from almost all the fishing hauls, corresponding to 10% to 20% of the total catch recorded in the period. 446 Lat. Am. J. Aquat. Res. Only individuals caught between 650 and 800 m depth were considered in this study, as nearly 80% of the hauls with positive catches of the species occurred between these limits. As significant differences in size-sex structure with depth have been found for other Aristeids, including the congeneric species A. antennatus in the Mediterranean (Sardà & Cartes, 1993; Sardà et al., 2003b, 2004; Tudela et al., 2003), this procedure intended to eliminate possible noise caused by samples eventually taken in other depth strata where population characteristics could differ from those found in the main fishing grounds. Sex was identified macroscopically in all shrimps by the presence of petasma in males and thelycum in females. Carapace length (CL) was measured with sliding calipers (precision 1 mm) from the orbit to the dorsal mid-point of the posterior margin of the carapace. Numbers in the samples were raised to the total catch of each haul by multiplying them by the quotient between total catch and sample weights recorded by the observers. Size at maturity and the reproductive cycle were studied in an additional sample of 2,419 individuals examined aboard between July 2005 and November 2008 during the same trips. As most of these shrimps pertained to the medium and large size classes (i.e. males > 27 mm, females > 40 mm CL), this sample was added, respectively, to the 148 and 254 small males and females caught in northeastern Brazil by the same vessels in the same period and depths. Males were classified according to the following criteria: a) terminal ampullae empty (immature) or filled with sperm (mature), and b) petasma with their lobes fused (mature) or separated (immature). Females were examined only to identify the presence or absence of spermatophores plugged in their telicum (Sardá & Demestre, 1989; Belcari et al., 2003); macroscopic examinations of the gonads were not possible aboard due to logistical constraints. As we could not assess whether inseminated females were, in fact, physiologically mature, our estimates of size at maturity for A. antillensis refer only to the median size at which females are able to copulate and retain spermatophores in their telycum. Data analysis Size at maturity (CL50%) was estimated by examining the proportion of females (n = 2,351) carrying a spermatophore and males (n = 469) with fused petasma by size class. Because nearly 100% of the males in the smallest size class sampled (24 mm CL) showed their ampullae filled with sperm (i.e. were physiologically mature), no attempt was done to calculate size at maturity (CL50%) based on this criteria, as very biased estimates could result from modeling proportions in size classes not represented in the samples. A non-linear minimum squares estimation procedure was used to fit a generalized logistic model (Restrepo & Watson, 1991) to the data as follows: PCL = β 1 + e(α1 −α 2CL) (1) where PCL is the proportion of individuals in each size class, and α1, α2, and β are parameters. In this model, β is a more general parameter that allows for the asymptotic proportion of the model to be lower or equal to 1. Therefore, a penalty function for β ≤ 1 was included in the parameter estimation procedure. Size at maturity was given by the equation: α CL50% = 1 α2 (2) The reproductive cycle was studied by analyzing the monthly variation in the proportion of spermatophore-bearing females and males with terminal ampullae filled with sperm masses. Only potentially mature individuals (i.e. with CL larger than CL50%) were considered for this analysis. Temporal changes in the population structure of the alistado shrimp were investigated by examining size frequency distributions, sex ratio (M:F), and the proportion of immature (individuals smaller than CL50%) and mature individuals in the catches monitored between October 2003 and March 2007. Data were analyzed both globally (i.e. considering this whole sampling period) as well as grouped by month. For the sake of simplicity, seasons were defined here as summer (January to March), autumn (April to June), winter (July to September) and spring (October to December). RESULTS Size at maturity After exhibiting some fluctuation in the smaller size classes, the proportion of spermatophore-bearing females showed a sharp increase in individuals larger than 39 mm (CL) and stabilized around 0.9 between 48 and 56 mm (CL). Only individuals larger than 62 mm were all inseminated (Fig. 2a). No males smaller than 24 mm were sampled along the study period but nearly 32% of the individuals in this size class had fused petasma. This proportion increased steadily up to the 28-mm size class and oscillated around 0.9 up to the two largest size classes, where all shrimps had fused petasma (Fig. 2b). The logistic model fitted to the data indicated mean sizes at maturity of 40.2 (females) and 25.4 mm (males) (Table 1). 447 Reproduction and population structure of Aristeus antillensis Figure 2. Aristeus antillensis. Logistic model (solid line) fitted to the proportions (dashed line) of a) spermatophorebearing females and b) males with fused petasma by size class, sampled in fishing grounds N2 and N4 (southeastern Brazil) between 2005 and 2008. CL: carapace length. N males = 469; N females = 2,351. Figura 2. Aristeus antillensis. Modelos logísticos (línea continua) establecidos para las proporciones (línea descontinua) de a) hembras cargando espermatóforo y b) machos con petasma unido en grupo de tallas, muestreados en los fondos de pesca N2 y N4 (sudeste de Brasil) entre 2005 y 2008. CL: longitud del carapazón. N machos = 469; N hembras = 2.351. Table 1. Aristeus antillensis. Parameters (α1, α2, β) of the logistic curves (± CI 95%) fitted to the proportion of males with fused petasma and spermatophore-bearing females by size class and the corresponding sizes-at-maturity (CL50%). Tabla 1. Aristeus antillensis. Parámetros (α1, α2 y β) de las curvas logísticas (± CI 95%) ajustados para las proporciones de machos con petasma unido y hembras cargando espermatóforos por clase de talla, y las correspondientes tallas de primera madurez (CL50%). Males Parameter Females Mean CI (95%) Mean CI (95%) β 0.922 0.870 - 0.974 0.942 0.917 - 0.968 α1 19.264 10.830 - 27.699 35.881 26.078 - 45.684 α2 0.758 0.427 - 1.089 0.892 0.648 - 1.137 CL 50% (mm) 25.4 - 40.2 - Reproductive cycle The percentage of spermatophore-bearing females larger than the CL50% was higher than 80% during the entire year except in December when no data were available (Fig. 3a). Sexually mature males were much scarcer than females. Therefore, the analysis of the reproductive cycle was restricted to five months (late autumn to early austral spring). Proportions of males whose terminal ampullae contained sperm were very high from June to October, ranging between 87% (June) and 100% (October) (Fig. 3b). Population structure Catches of A. antillensis in the N2 and N4 fishing grounds were dominated by females and immature individuals of both sexes (Table 2). Females were significantly larger than males and represented nearly 90% of the individuals sampled along the study period. The global size-frequency distribution of males was polymodal and asymmetrical for larger sizes, with the main mode peaking at 30 mm. The female distribution was nearly bimodal, with the highest frequencies occurring between the 44 and 50-mm size classes (Fig. 4). 448 Lat. Am. J. Aquat. Res. Figure 3. Aristeus antillensis. Monthly proportion of females with spermatophores (a) and males with sperm in their terminal ampullae (b) sampled in fishing grounds N2 and N4 (southeastern Brazil) between 2005 and 2008. Figura 3. Aristeus antillensis. Proporción mensual de hembras portando espermatóforo (a) y machos con ampollas seminales llenas (b) muestreados en los fondos de pesca N2 y N4 (sudeste de Brasil) entre 2005 y 2008. Table 2. Aristeus antillensis. Number of shrimps sampled and caught (estimated), sex-ratio (M:F), numbers and percentages of sexually immature males and females in fishing grounds N2 and N4 during the study period. Tabla 2. Aristeus antillensis. Número de camarones muestreados y capturados (estimados), proporción sexual (M:F), número y porcentajes de machos y hembras en los fondos de pesca N2 y N4 durante el período de estudio. Number sampled Number caught (estimated) Immature (estimated) Immature (%) Males Females M:F Total 1,582 12,215 - 10,662 89,751 3,026 22,749 - 25,775 28% 25% - - 13,797 0.12:1 100,413 Figure 4. Aristeus antillensis. Global size-frequency distribution of males and females caught in fishing grounds N2 and N4 (southeastern Brazil) between 2003 and 2007. Arrows indicate the CL50% of males (left) and females (right). Figura 4. Aristeus antillensis. Distribución global de las frecuencias de talla de machos y hembras capturados en los fondos de pesca N2 y N4 (sudeste de Brasil) entre 2003 y 2007. Las flechas indican el CL50% de machos (izquierda) y hembras (derecha). Reproduction and population structure of Aristeus antillensis Monthly changes were observed in either the sexratio or in the percentage of immature individuals. Females always dominated the catches, but the proportion of males increased from June to October (Fig. 5). During most of the year, immature individuals of both sexes contributed with less than 15% of the catches. However, their occurrence increased sharply from late spring to mid-summer, especially for immature males, whose contribution exceeded 70% in February (Fig. 5). Examining monthly changes in size-frequency distributions by sex revealed that the fishing grounds are occupied by different populational groups along the year (Fig. 6). As previously shown in Figure 5, immature individuals (males and females smaller than 25.4 and 40.2 mm CL, respectively) were present in large numbers from December to February in conjunction with intermediate-sized mature males and females (~29 mm and ~45 mm CL, respectively). From April to June, males and immature females practically disappeared and the fishing grounds were occupied mostly by large-sized females measuring between 43 and 50 mm. Mature males (27-31 mm CL) appeared in large numbers in the winter (July to September) and gradually reduced their occurrence in October and November, when mostly large-sized females remained in the area. Figure 5. Aristeus antillensis. Monthly variation in the sex-ratio (M:F) and in the proportion of immature individuals of both sexes caught in fishing grounds N2 and N4 (southeastern Brazil) between 2003 and 2007. Figura 5. Aristeus antillensis. Variación mensual en la proporción sexual (M:F) y en las proporciones de inmaduros de los dos sexos capturados en los fondos de pesca N2 y N4 (sudeste de Brasil) entre 2003 y 2007. 449 DISCUSSION The present work represents the first contribution to the knowledge of the reproductive biology and population structure of the deep-sea shrimp Aristeus antillensis in Brazil, complementing the taxonomic (Tavares & Serejo, 2007), distributional (Araújo-Silva, 2002a, 2002b; Costa et al., 2005; Serejo et al., 2007), technological, and fishing (Asano Filho & Holanda, 2005; Pezzuto et al., 2006; Dallagnolo, 2008; Dallagnolo et al., 2009) data available on the species in Brazilian waters. Following the general rule verified for other aristeid species, A. antillensis exhibits strong sexual dimorphism, with females being significantly larger than males. Commercial catches have been shown to be dominated by females as well. In spite of the widespread latitudinal distribution of the slope trawling fleet operations along the region (Dallagnolo et al., 2009), catches of the species have been obtained mostly in the two fishing grounds selected for this study, producing nearly 73% of the species landings monitored by Dallagnolo (2008) between November 2002 and May 2007. Moreover, the species distribution was found to not be homogeneous along the bathymetric gradient; rather, the best catch rates and yields were concentrated in a very small depth range, declining steadily in areas deeper than 800 m (Pezzuto et al., 2006; Serejo et al., 2007; Dallagnolo et al., 2009). Although making only a small contribution to the total deep-sea shrimp landings in Brazil, the concentration of the catches in such small areas suggests a striking dependence of A. antillensis on some locally prevailing environmental conditions that are not yet totally understood. The dominance of mature females in the commercial catches raises the hypothesis that the otter trawls used in the fishery could be selective, retaining fewer small-sized males and juveniles. This explanation was also proposed by Guéguen (2001) in French Guiana, where females of the same species accounted for 99% of the catches obtained on four research cruises (depth range = 200 to 900 m). However, the temporal changes in the size-frequency distributions by sex reveal that males and juveniles were caught in large numbers in Brazil during some periods of the year. Therefore, without rejecting the possible contribution of the net cod-end selectivity to the catch-size composition, it is probable that, in fact, males and juveniles are not totally available during part of the year. In this case, part of the stock should move seasonally to and from the fishing grounds. Where they can be found the rest of the time is a question that needs to be investigated. 450 Lat. Am. J. Aquat. Res. Figure 6. Aristeus antillensis. Monthly size-frequency distributions of males and females caught in fishing grounds N2 and N4 (southeastern Brazil) between 2003 and 2007. Arrows indicate CL50% of males (left) and females (right). Figura 6. Aristeus antillensis. Distribución mensual de frecuencias de tallas de machos y hembras capturados en los fondos de pesca N2 y N4 (sudeste de Brasil) entre 2003 y 2007. Las flechas indican el CL50% de machos (izquierda) y hembras (derecha). Migratory movements of the congeneric A. antennatus have been largely observed in the Mediterranean, especially in the vicinity of submarine canyons (Sarda et al., 1997, 2003a, 2003b, 2004; Tudela et al., 2003). The species shows a well described segregation with depth: mature females concentrate in shallower Reproduction and population structure of Aristeus antillensis slope areas (500-900 m) and juveniles are largely dispersed along deeper grounds (i.e. > 1,000 m). Supposedly, this pattern contributes to resource optimization, concentrating reproductive potential and recruitment in different areas (Sardà & Cartes, 1993; Sardà et al., 2003a, 2003b). Apart from ontogenetic movements, seasonal migrations of this species have been attributed to the need to develop reproductive aggregations and/or exploit distinct energetic and trophic conditions. More recently, the role of climate and extreme bottom currents in the interannual displacement of the stock to the lower slope have also been demonstrated (Company et al., 2008). In southeastern Brazil, A. antillensis is known to inhabit slope grounds up to 1,144 m depth (Serejo et al., 2007) but, unfortunately, no information on its population structure is available outside of the fishing grounds examined in the present study. Analyzing the distribution, abundance, and zonation of crustaceans collected during two research cruises conducted in the shelf break and slope of the study area (maximum depth 2,178 m), Serejo et al. (2007) identified three main assemblages dispersed along different bathymetric ranges (< 500 m; 500 to 900 m; > 900 m). In spite of being found in deeper areas, A. antillensis was one of the main components of the intermediate group (500-900 m), which also included the giant isopods Bathynomus giganteus and B. miyarei, the aristeids Aristaeomorpha foliacea and Aristaeopsis edwardsiana, the sergestid Sergia prehensilis, and the carideans Plesionika spp., Glyphocrangron alispina, and Janicella spinicauda (Serejo et al., 2007). Studied concomitantly in the same area, cephalopods and bony demersal fishes also showed quite similar trends, as medium and lower slope assemblages of these megafaunal groups were found to be separated by depths situated roughly between 750 and 900 m (Costa et al., 2007; Haimovici et al., 2007). Taking into account the correspondence between the distributional patterns of the fish assemblages and the local water masses, Costa et al. (2007) suggested that the 4°C isotherm (corresponding to the upper limit of AIW) could determine the transition between the bathyal and abyssal fauna in the study area. Based on these findings, it is possible to hypothesize that, as observed for A. antennatus in the Mediterranean waters, males and juveniles of the species also inhabit deeper areas in southeastern Brazil, below the limit between SACW and the colder AIW. Childress et al. (1990) has demonstrated experimentally that metabolic rates of decapod crustaceans decline with increasing depth of occurrence as a response to the concurrent decline in temperature. In the Mediterranean, such segregation has been attributed mostly to a 451 food-resource optimization strategy since temperature remains constant around 13°C along the slope (Sardà & Cartes, 1993), whereas, in Brazil, water temperature could play a more significant role: the distribution of smaller-sized individuals (males and juveniles) in the colder areas dominated by AIW could partially compensate the higher expected size-specific metabolic demand. A wind-induced subsurface intrusion of SACW over the shelf bottoms is known to occur seasonally in south and southeastern Brazil in the austral summer. This water mass, whose upper levels are otherwise restricted to the shelf break, invades the inner shelf and enriches coastal waters with nutrients (Castro et al., 2006). It is not clear whether the seasonal movement of SACW exerts some influence at its base, also bringing part of the AIW to the upper levels of the slope. However, if this occurs, then the appearance of large numbers of males and juveniles in the catches – as observed from December to February – could support the hypothesis that they inhabit deeper waters, appearing in the fishing grounds during seasonal movements of the water masses. Whether A. antillensis shows a continuous or seasonal reproductive cycle is a question that needs to be investigated. Sexually mature males and large-sized females were observed simultaneously in the fishing grounds during austral winter when the sex-ratio (M:F) also increased, indicating that reproduction could occur mostly between July and September. However, as the proportion of impregnated females remained very high year round, a continuous reproductive cycle is also suspected. A definitive answer to this question depends on obtaining temporal series of macro- and microscopic gonadal development data. Although this was not possible for this study, an exploratory analysis was conducted based on a small subsample of 58 large-sized females (i.e. CL > CL50%) of A. antillensis caught in January, April, May, June, July, October, and December. Animals were selected aboard by the observers, frozen, and brought to the laboratory for processing. Gonads were examined macroscopically and classified in four stages (I undeveloped; II developing; III mature; IV spawning), taking into consideration the progressive increase in size and change in color verified along their development. From preliminary observations, the color scale used by Orsi-Relini & Relini (1998) and Kapiris & Thessalou-Legaki (2009) for A. antennatus (white, pink, light violet, dark violet) seemed to fit A. antillensis as well. All individuals sampled in the present study exhibited ovaries in stages I and II and 75% of them were impregnated, suggesting that, despite carrying spermatophores during the entire year, spawning 452 Lat. Am. J. Aquat. Res. could take place in a more limited spatial-temporal scale. Spermatophore-bearing females with immature gonads have also been observed in other aristeids, indicating that copula and gonadal development could take place in different periods of the year (Papaconstantinou & Kapiris, 2003; Politou et al., 2004; Kapiris & Thessalou-Legaki, 2009). In addition, based on the presence of spermatophores and mature ovaries in females of a virginal stock of A. antennatus, Kapiris & Thessalou-Legaki (2009) estimated sizes at maturity of 26.3 and 29.4 mm, respectively, indicating that gonadal maturity follows insemination in this species. Fishing for A. antillensis in southeastern Brazil relies mainly on large-sized individuals that seem to be mature. However, the spatially restricted distribution of the species, the significant contribution of juveniles in the summer catches, and the uncertainty about the actual size at sexual maturity of females cannot be disregarded for management purposes. Migratory movements from and to the fishing grounds seem to be the rule for the species, but neither the migratory directions nor the driving factors are completely understood. The existence of unavailable portions of the stock in deeper areas has been regarded as one of the main reasons for the sustainability of the A. antennatus fishery in Mediterranean waters (Sardà et al., 2003b). Since more definitive data are not available on size at sexual maturity of females, the reproductive cycle, and the distribution of the stock in different areas and depths, a precautionary approach should be developed for the management of the A. antillensis fishery in southeastern Brazil. ACKNOWLEDGEMENTS The authors are indebted to all observers whose hard work has made available most of the high-quality data used in this study. This paper is part of the Bachelor thesis in Oceanography (UNIVALI) by M.C.D. and was funded by the Special Secretary of Aquaculture and Fisheries (Brazilian Government–SEAP/PR/ 001/2003; SEAP/PR/078/2004; SEAP/PR/064/2005; SEAP/PR/027/2007) and by research grants from the National Research Council (CNPq) to P.R.P. (Process 310820/2006-5) and to M.C.D. (PIBIC/CNPq/UNIVALI – 2007/2008 and 2008/2009). REFERENCES Araújo-Silva, K.C., A.P.M. Muniz, M. Ramos-Porto, G.F.S. Viana & I.H.A. Cintra. 2002a. Camarões da superfamília Penaeoidea Rafinesque, 1815, capturados durante pescarias experimentais para o Programa REVIZEE/Norte (Crustacea: Decapoda). Bol. Téc. Cient. CEPNOR, Belém, 2(1): 9-40. Araújo-Silva, K.C., M. Ramos-Porto, I.H.A. Cintra, A.P.M. Muniz & M.C.N. Silva. 2002b. Crustáceos capturados durante o Programa REVIZEE na costa norte brasileira. Bol. Téc. Cient. CEPNOR, Belém, 2(1): 97-108. Asano Filho, M. & F.C.A.F. Holanda. 2005. Descrição dos métodos de captura dos camarões de profundidade na costa norte do Brasil, durante o Projeto Proarrasto. Bol. Téc. Cient. CEPNOR, Belém, 5(1): 141154. Belcari, P., C. Viva, M. Mori, & S. de Ranieri. 2003. Fishery and biology of Aristaeomorpha foliacea (Risso, 1827) (Crustacea: Decapoda) in the northern Tyrrhenian Sea (western Mediterranean). J. Northw. Atl. Fish. Sci., 31: 195-204. Can, M.F. & M. Aktas. 2005. A preliminary study on population structure and abundance of Aristaeomorpha foliacea (Risso, 1827) (Decapoda, Natantia) in the deep water of the northeastern Mediterranean. Crustaceana, 78(8): 941-946. Castro, B.M., J.A. Lorenzzetti, I.C.A. Silveira & L.B. Miranda. 2006. 1. Estrutura termohalina e circulação na região entre o Cabo de São Tomé (RJ) e o Chuí (RS). In: C.L.D.B. Rossi-Wongtschowski & L.S.P Madureira (ed.). O ambiente oceanográfico da plataforma continental e do talude na região sudeste-sul do Brasil. EDUSP, São Paulo, pp. 11-120. Childress, J.J., D.L. Cowles, J.A. Favuzzi & T.J. Mickel. 1990. Metabolic rates of benthic deep-sea decapods crustaceans decline with increasing depth primarily due to the decline in temperature. Deep-Sea Res., 37(6): 929-949. Ciotti, A.M., E. Gonzalez-Rodriguez, L. Andrade, R. Paranhos & W.F. Carvalho. 2007. Clorofila a, medidas bio-ópticas e produtividade primária. In: J.L. Valentin (ed.). Características hidrobiológicas da região central da Zona Econômica Exclusiva brasileira (Salvador, BA, ao Cabo de São Tomé, RJ). Série Documentos REVIZEE/SCORE-Central, Ministério do Meio Ambiente, Brasília, pp. 61-72. Company, J.B., P. Puig, F. Sarda, A. Palanques, M. Latasa & R. Scharek. 2008. Climate influence on deep sea populations. Plos ONE, 3(1): e1431. Costa, P.A.S., A.S. Martins, G. Olavo, M. Haimovici & A.C. Braga. 2005. Pesca exploratória com arrasto de fundo no talude continental da região central da costa brasileira entre Salvador-BA e o Cabo de São ToméRJ. In: P.A.S. Costa, A.S. Martins & G. Olavo (eds.). Pesca e potenciais de exploração de recursos vivos na região central da Zona Exonômica Exclusiva brasileira. Museu Nacional, Rio de Janeiro. Série Livros. Documentos REVIZEE/SCORE-Central, pp. 145165. Reproduction and population structure of Aristeus antillensis Costa, P.A.S., A.C. Braga, M.R.S. Melo, G.W. Nunan, A.S. Martins & G. Olavo. 2007. Assembléias de teloósteos demersais no talude da costa central brasileira. In: P.A.S. Costa, G. Olavo & A.S. Martins (eds.). Biodiversidade da fauna marinha profunda na costa central brasileira. Museu Nacional, Rio de Janeiro. Série Livros. Documentos REVIZEE/SCORE-Central, pp. 87-107. Crosnier, A. & J.J. Tauter. 1968. La pêche dês crevettiers espagnols au large du Congo et de l’Angola. Pêche Marit., 539-541. Dallagnolo, R. 2008. A pesca dos camarões-deprofundidade (Aristeidae) na região sudeste e sul do Brasil. MSc Thesis. Universidade do Vale do Itajaí, Itajaí, 197 pp. Dallagnolo, R., J.A.A. Perez, P.R. Pezzuto & R. Wahrlich. 2009. The deep-sea shrimp fishery off Brazil (Decapoda: Aristeidae): development and present status. Lat. Am. J. Aquat. Res., 327-345. Dallagnolo, R., J.A.A. Perez, P.R. Pezzuto & R. Wahrlich. 2007. Análise da pescaria de camarões-deprofundidade (Decapoda: Aristeidae) no talude das regiões Sudeste e Sul do Brasil. Relatório Técnico apresentado à 5ª Sessão Ordinária do Subcomitê Científico do Comitê Consultivo Permanente de Gestão de Recursos Demersais de Profundidade (CPG/Demersais)/SEAP/PR–Itajaí, SC, 11 – 13/06/2007. DOC 19 SCC CPG 052007 P5. França, A.M.C. 1979. Geomorfologia da margem continental leste brasileira e da bacia oceânica adjacente. In: H.A.F. Chaves (ed.). Geomorfologia da margem continental brasileira e das áreas oceânicas adjacentes. Projeto REMAC 8. Relatório Final, pp. 89-128. Guéguen, F. 1998. Biologie de la crevette profonde Plesiopenaeus edwardsianus en Guyane Française. C.R. Acad. Sci. Paris, 321: 757-770. Guéguen, F. 2000. Distribution et abondance des crustacés décapodes du talus continental (200-900 m) de Guyane Française. Crustaceana, 73(6): 685-703. Guéguen, F. 2001. Notes sur la biologie de la crevette de profondeur Aristeus antillensis em Guyane française. C.R. Acad. Sci. Paris. Sci. Vie, 324: 689-700. Haimovici, M., P.A.S. Costa, R.A. Santos, A.S. Martins & G. Olavo. 2007. Composição de espécies, distribuição e abundância de cefalópodes do talude da região central do Brasil. In: P.A.S. Costa, G. Olavo & A.S. Martins (eds.). Biodiversidade da fauna marinha profunda na costa central brasileira. Museu Nacional, Rio de Janeiro. Série Livros. Documentos REVIZEE/SCORE-Central, pp. 109-132. Kapiris, K. & M. Thessalou-Legaki. 2009. Comparative reproduction aspects of the deep-water shrimps Aristaeomorpha foliacea and Aristeus antennatus (Decapoda: Aristeidae) in the Greek Ionian Sea (eastern Mediterranean). Int. J. Zool., 2009: 9 pp. 453 Kao, H.C., T.Y. Chan & H.P. Yu. 1999. Ovary development of the deep-water srimp (Aristaeomorpha foliacea) (Risso, 1826) (Crustacea: Decapoda: Aristeidae) from Taiwan. Zool. Stud., 38(4): 373-378. Orsi-Relini, L. & G. Relini. 1998. Seventeen instars of adult life in female Aristeus antennatus (Crustacea: Decapoda: Aristeidae). A new interpretation of life span and growth. J. Nat Hist., 32: 1719-1734. Papaconstantinou, C. & K. Kapiris. 2003. The biology of the giant red shrimp (Aristaeomorpha foliacea) at an unexploited fishing ground in the Greek Ionian Sea. Fish. Res., 62: 37-51. Perez, J.A.A., P.R. Pezzuto, R. Wahrlich & A.L.S. Soares. 2009a. Deep-water fisheries in Brazil: history, status and perspectives. Lat. Am. J. Aquat. Res., 37(3): 513-541. Pezzuto, P.R. & M.C. Dias. 2007. Estrutura populacional e reprodução dos camarões-de-profundidade (Aristeidae) no talude do Sudeste e Sul do Brasil. Relatório Técnico apresentado à 5a Sessão Ordinária do Subcomitê Científico do Comitê Consultivo Permanente de Gestão dos Recursos Demersais de Profundidade (CPG/Demersais)/SEAP/PR–Itajaí, SC, 11-13/06/ 2007. DOC 21 SCC CPG 052007 P5. Pezzuto, P.R., J.A.A. Perez & R. Wahrlich. 2006. Deepsea shrimps (Decapoda: Aristeidae): new targets of the deep-water trawling fishery in Brazil. Braz. J. Ocean., 54(2-3): 123-134. Politou, C.Y., K. Kapiris, P. Maiorano, F. Capezzuto & J. Dokos. 2004. Deep-sea Mediterranean biology: the case of Aristaeomorpha foliacea (Risso, 1827) (Crustacea: Decapoda: Aristeidae). Sci. Mar., 68(3): 129139. Ragonese, S. & M.L. Bianchini. 1996. Growth, mortality and yeld-per-recruit of the deep-water shrimp Aristeus antennatus, (Crustacea: Aristeidae) of the Strait of Sicily (Mediterranean Sea). Fish. Res., 50(2): 258-274. Ragonese, S., M.L. Bianchini & L.D. Stefano. 2002. Trawl cod-end selectivity for deepwater red shrimp (Aristaeomorpha foliacea, Risso 1827) in the Strait of Sicily (Mediterranean Sea). Fish. Res., 57(2): 131144. Rainer, S.F. 1992. Diet of prawns from the continental slope of North-Western Australia. Bull. Mar. Sci., 50(2): 258-274. Restrepo, V.R. & R.A. Watson. 1991. An approach to modeling crustacean egg-bearing fractions as a function of size and season. Can. J. Fish. Aquat. Sci., 48(8): 1431-1436. Rezende, C.E., L. Andrade, M.S. Suzuki, B.C.M.T. Faro, A.S.M. Gonzáles & R. Paranhos. 2007. Hidroquímica. In: J.L. Valentin (ed.). Características hidrobiológicas da região central da Zona Econômica Exclusiva 454 Lat. Am. J. Aquat. Res. brasileira (Salvador, BA, ao Cabo de São Tomé, RJ). Série Documentos REVIZEE/SCORE-Central, Ministério do Meio Ambiente, Brasília, pp. 31-60. Sardà, F. & J.E. Cartes. 1993. Relationship between size and depth in decapod crutacean populations on the deep slope in the western Mediterranean. Deep-Sea Res., 40(11-12): 2389-2400. Sardà, F., J.B. Company & A. Castellón. 2003a. Intraspecific aggregation structure of a shoal of a western Mediterranenn (Catallan coast) deep-sea shrimp, Aristeus antennatus (Risso, 1816), during the reproductive period. J. Shellfish Res., 22(2): 569-579. Sardà, F., J.B. Company, & F. Maynou. 2003b. Deep-sea shrimp Aristeus antennatus (RISSO, 1816) in the Catalan Sea, a review and perspectives. J. Northw. Atl. Fish. Sci., 31: 127-136. Sardà, F. & M. Demestre. 1989. Shortening of the rostrum and rostral variability in Aristeus antennatus (Risso, 1816) (Decapoda: Aristeidae). J. Crust. Biol., 9(4): 570-577. Sardà, F., G. D’Onghia, C.Y. Politou, J.B. Company, P. Maiorano, & K. Kapiris. 2004. Deep-sea distribution, biological and ecological aspects of Aristeus antennatus (Risso, 1816) in the western and central Mediterranean Sea. Sci. Mar., 68(3): 117-127. Sardà, F., F. Maynou & L. Talló. 1997. Seasonal and spatial mobility patterns of rose shrimp Aristeus antennatus in the western Mediterranean: results of a long-term study. Mar. Ecol. Prog. Ser., 159: 133-141. Received: 26 Jun 2009; Accepted: 3 September 2009. Serejo, C.S., P.S. Young, C.I. Cardoso, C. Tavares, C. Rodrigues & T.C. Almeida. 2007. Abundância, diversidade e zonação dos crustáceos no talude da costa central do Brasil (11º-22ºS) coletados pelo Programa REVIZEE/Score Central: prospecção pesqueira. In: P.A.S. Costa, G. Olavo & A.S. Martins (eds.). Biodiversidade da fauna marinha profunda na costa central brasileira. Museu Nacional, Rio de Janeiro. Série Livros. Documentos REVIZEE/SCORE-Central, pp. 133-162. Tavares, C.R. & C.S. Serejo. 2007. Taxonomy of Aristeidae (Dendrobranchiata: Penaeoidea) from the central coast of Brazil, collected by the REVIZEE program, between 19º and 22ºS. Zootaxa, 1585: 1-44. Tudela, S., F. Sardà, F. Maynou & M. Demestre. 2003. Influence of submarine canyons on the distribution of the deep-water shrimp, Aristeus antennatus (Risso, 1816) in the NW Mediterranean. Crustaceana, 76(2): 217-225. Valentin, J.L., R. Paranhos, B.C.M.T. Faro & A.S.M. Gonzalez. 2007. Massas d’Água. In: J.L.Valentin, (ed.). Características hidrobiológicas da região central da Zona Econômica Exclusiva brasileira (Salvador, BA, ao Cabo de São Tomé, RJ). Série Documentos REVIZEE/SCORE-Central, Ministério do Meio Ambiente, Brasília, pp. 21-29. Lat. Am. J. Aquat. Res., 37(3): 455-462, 2009 Aspectos biológicos de Coryphaenoides delsolari en Perú “Deep-sea fisheries off Latin America” P. Arana, J.A.A. Perez & P.R. Pezzuto (eds.) DOI: 10.3856/vol37-issue3-fulltext-14 455 Research Article Aspectos de la biología de Coryphaenoides delsolari Chirichigno & Iwamoto, 1977 frente a la zona norte del Perú Jacqueline Palacios1, Edward Barriga1, Carlos Salazar1, Aldo Rodríguez1 & Miguel Romero1 1 Instituto del Mar del Perú, Esquina Gamarra y General Valle s/n, Chucuito, Callao, Perú RESUMEN. Para determinar la abundancia, distribución y estructura poblacional de Coryphaenoides delsolari frente a la zona norte de Perú, se analizaron los resultados de dos cruceros de evaluación realizados durante los años 2007 y 2008, mediante la aplicación del método de área barrida con red de arrastre de fondo. Se evaluó el área comprendida entre Puerto Pizarro (3º25’S) y Huarmey (10ºS), dividida en cuatro sectores y tres niveles de profundidad entre 200 y 1500 m. C. delsolari fue el pez más representativo de las capturas realizadas entre 500 y 1000 m más al norte de Pimentel (7ºS). La mayor abundancia fue de 3.178 kg km-2 y la biomasa total estimada fue de 9.669,45 ton (± 4.630,15 ton). La estructura de tallas mostró una estratificación latitudinal y los ejemplares de mayor tamaño se capturaron en latitudes menores. Las hembras fueron de mayor tamaño que los machos. La relación talla-peso fue de tipo alométrico negativo. Palabras clave: Coryphaenoides delsolari, biología, biomasa, distribución, granadero, zona norte, Perú. Aspects of the biology of Coryphaenoides delsolari Chirichigno & Iwamoto, 1977 off northern Perú ABSTRACT. In order to determine the abundance, distribution, and population structure of Coryphaenoides delsolari off the northern Perú, the results of two cruises carried out in 2007 and 2008 were analyzed. For this, the swept area method was implemented using bottom trawling from Puerto Pizarro (3°25’S) to Huarmey (10°S). The study area was divided into three levels between 200 and 1500 m depth. C. delsolari was the most representative fish in catches between 500 and 1000 m depth to the north of Pimentel (7°S). The highest relative abundance was 3,178 kg km-2 and the total biomass was estimated to be 9,669.45 ton (± 4,630.15 ton). The size structure was stratified latitudinally: the lower the latitude, the bigger the fishes. Females were larger than males. Finally, length-weight relationship was found to be negative and allometric. Keywords: Coryphaenoides delsolari, biology, biomass, distribution, grenadier, northern Perú. ________________________ Corresponding author: Jacqueline Palacios (jpalacios@imarpe.gob.pe) INTRODUCCIÓN Las investigaciones sobre los macrúridos, comenzaron durante la segunda mitad de los 1700s, cuando Gunnerus (1765) describió al roundnose grenadier Coryphaenoides rupestris. Desde entonces alrededor de 300 especies de la familia Macrouridae han sido identificadas en los océanos del mundo, de éstos más del 90% ocupan el talud continental a profundidades de 200 a 2000 m (Atkinson, 1995). El conocimiento de la biología de los macrúridos o “granaderos”, en aguas peruanas es aún limitado, a diferencia de los del Atlántico, que por su importancia comercial han sido mejor estudiados (Bergstad, 1990). Los granaderos son peces de profundidad, casi todos de hábitos bentopelágicos que se distribuyen principalmente sobre la parte alta del talud continental, entre 250 y 2000 m; pocas especies han sido capturadas a más de 5000 m. La familia Macrouridae es de distribución cosmopolita, excepto en latitudes altas del 456 Lat. Am. J. Aquat. Res. Ártico y el mayor número de especies se encuentra en aguas tropicales (FAO, 2004). Coryphaenoides delsolari se distribuye desde Colombia (Isla del Coco, 8°N) hasta Chile (32°S) (Chirichigno & Vélez, 1998) y habita el talud continental del mar peruano principalmente entre 250 y 2000 m (Fisher et al., 1995), condiciones batimétricas muy similares en las que habita el Coryphaenoides rupestris del Atlántico (Bergstad, 1990). Las campañas de investigación a bordo del buque español B/O Miguel Oliver durante los años 2007 y 2008, se realizaron en el marco de un convenio de cooperación entre el Instituto del Mar del Perú y la Subsecretaria General del Mar y Asuntos Marítimos de España, cuyo principal objetivo fue estudiar la distribución, concentración y características biológicas de la fauna del subsistema bentodemersal, recursos potenciales y su relación con las condiciones del ambiente marino, en la región batial y zona arquibentónica del área marina comprendida entre Puerto Pizarro (03º30’S) y Huarmey (10°S), en la zona norte de Perú. Los resultados de estas campañas resaltaron la presencia de Coryphaenoides delsolari como una de las especies de peces más importantes en el talud continental del área estudiada. En Perú, son escasos los estudios sobre las características biológicas y poblacionales de C. delsolari, por lo que los resultados de este estudio contribuirán a mejorar el conocimiento de esta especie y favorecer el establecimiento de las bases científicas ante la eventualidad del desarrollo de pesquerías de profundidad sobre esta u otras especies que comparten su hábitat. MATERIALES Y MÉTODOS La obtención de muestras de Coryphaenoides delsolari, se realizó a bordo del B/O Miguel Oliver, durante dos campañas de investigación, la primera entre Puerto Pizarro (3°25’S) y Pimentel (7°S) en septiembre del 2007 y la segunda entre Pimentel (7°S) y Huarmey (10°S) en septiembre del 2008. La evaluación de la distribución, abundancia y estructura de la fauna batial y arquibentónica se realizó con la aplicación del método de área barrida con redes de arrastre de fondo (Alverson & Pereyra, 1969; Espino & WosnitzaMendo, 1984; Sparre & Venema, 1995). El área total fue dividida en tres estratos de profundidad: 1) 200500 m, 2) 500-1000 m y 3) 1000-1500 m (Fig. 1), a las cuales se les asignó unidades básicas de muestreo (UBM) de 9 mn2 (3 mn x 3 mn), y donde se seleccionó aleatoriamente un número determinando de lances, proporcionalmente fijados de acuerdo a la extensión total de cada estrato. Asimismo, con fines analíticos y comparativos, el área total evaluada se dividió en cua- Figura 1. Ubicación de los lances de pesca de arrastre por estrato durante dos campañas de investigación (2007 y 2008). Figure 1. Location of the trawl fishing hauls by stratum during two research cruises (2007 and 2008). tro sectores de acuerdo a la latitud: sector A: 3º30’5º00’; sector B: 5º00’-7º00’; sector C: 7º00’-8º30’ y sector D: 8º30’-10º00’S. En cada UBM seleccionada se realizaron los lances de pesca con una red de arrastre de fondo tipo Lofoten con nomenclatura por diseño de 456x140 de polietileno para fondos duros. Este arte con clasificación FAO pertenece al grupo de redes de arrastre de fondo con puertas, con tamaño de malla en el copo de 35 mm, operado por popa del buque (OTB-2 Código ISSCFG 03.1.2), a una velocidad promedio de 3 nudos, durante 30 min de arrastre efectivo. En cada lance se anotaron las características operacionales de la red para determinar la unidad de esfuerzo (área barrida). En cada lance de pesca, se anotó la posición de calado, hora efectiva de arrastre, profundidad de arrastre y composición faunística de las capturas. Asimismo, se obtuvieron muestras para determinar la estructura de tallas, proporción sexual, relación talla-peso y madurez gonadal. Como índice de densidad se empleó la captura por unidad de área (CPUA), expresada en kg km-2, que es Aspectos biológicos de Coryphaenoides delsolari en Perú la captura de la especie objetivo en el lance i por el área barrida en el mismo lance: CPUAi = Ci Abi Para el cálculo de la CPUA promedio por estrato ( CPUA e ) se consideró la media aritmética de las CPUA de todos los lances efectuados en el estrato (n): CPUA e = ∑ CPUAi n La biomasa vulnerable (Be) presente en una unidad espacial (estrato) fue determinada por el estimador de la captura por unidad de área ( CPUA e ), amplificado o expandido al área total (Ae) de la región o conglomerado (estrato), de acuerdo a la siguiente expresión: Be = CPUA e ⋅ A e Mientras que, la biomasa total (Bt) es la sumatoria de las biomasas estimadas en todos los estratos (Be). e Bt = ∑ Be 1 La estructura de tallas se obtuvo mediante la distribución de frecuencias de las mediciones realizadas a cada individuo, la talla empleada fue la longitud preanal (LPA) agrupada cada 0,5 cm y en cada caso, se calculó la talla media y moda. Durante las capturas, frecuentemente se encontró la mayoría de los ejemplares con la “cola” (parte delgada y larga de la zona posterior del cuerpo) destruida total o parcialmente; por lo que fue necesario trabajar con la longitud preanal (LPA), medida que tiene consistencia en la representación de la longitud total del cuerpo (Lorance & Garren, 2003). La proporción sexual se estableció de acuerdo al porcentaje de hembras. Para la relación longitud-peso se utilizó la función potencial, cuyos parámetros se obtuvieron del ajuste de mínimos cuadrados, previa linealización de la función mediante logaritmo natural (ln). La clasificación por estados de madurez gonadal, se hizo mediante la escala empírica de Johansen (1924), agrupando los individuos en inmaduros (estados I y II), maduros (estados III, IV y V), desovantes (estado VI) y postdesovantes (VII y VIII). RESULTADOS 457 captura total de 48.055,57 kg. De este total, el 92% correspondió a 147 especies de peces, el 4,2% a 68 especies de crustáceos, 1,3 % a 34 especies de equinodermos, 1,1% a 35 especies de moluscos y el 1,7% restante a 33 especies de otros grupos taxonómicos (poliquetos, cnidarios, entre otros.) Del total de lances realizados durante las dos campañas de investigación, Coryphaenoides delsolari estuvo presente en el 85% de los lances efectuados en el estrato 2 de profundidad (500-1000 m), en el 25,6% de los lances efectuados en el estrato 3 (1000-1500 m), y ausente en el estrato 1 (200-500 m) (Tabla 1) y se capturaron 3.454,9 kg en toda el área de estudio. Distribución, densidad y biomasa La distribución de C. delsolari abarcó entre 500 y 1600 m de profundidad, con mayor concentración entre los 4° y 7°S, a profundidades entre 600 y 1000 m (Fig. 2). Los mayores registros de abundancia relativa se obtuvieron en la zona norte del área de estudio. La mayor abundancia se presentó en el estrato 2 de los sectores A y B, con valores medios de 1.634,72 kg km-2 y 3.178,52 kg km-2 respectivamente; mientras que en los sectores C y D se observó menor abundancia, con valores de 200,53 kg km-2 y 98,23 kg km-2 (Tabla 2). La biomasa total estimada por el método de área barrida fue de 9.669,45 ton (± 4.630,15 ton) y el 56% se registró en el sector B. Estructura de tallas La estructura de tallas obtenida de la medición de la longitud preanal (LPA) de 3.016 ejemplares, estuvo en el rango entre 1,5 y 21,5 cm de LPA, con seis grupos modales claramente distinguibles en 4, 8, 12, 15, 17 y 20 cm de LPA. De los cuales el grupo 3 (12 cm) fue el más abundante (50% del total de la población) y se obtuvo en los sectores A y B (Fig. 3). C. delsolari presentó estratificación latitudinal de tallas, observándose los de mayor tamaño en el norte y los más pequeños en el sur. En este contexto, los sectores A y B son los que tuvieron menor o escasa presencia de los grupos modales de 4 y 8 cm de LPA, a diferencia de los sectores C y D donde se observó la presencia de la mayoría de los grupos modales (6), con mayor representación de los tres primeros grupos modales (4, 8 y 12 cm de LPA), que constituyeron el 89% de la población total (Fig. 3). Capturas y estructura de la fauna Estructura por sexos Durante las campañas de investigación realizadas el 2007 y 2008 se efectuaron 122 lances de pesca cubriendo todos los sectores y estratos del área de estudio (Fig. 1), a partir de los cuales se obtuvo una El dimorfismo sexual se manifestó claramente al realizar el análisis de talla por sexo y se obtuvo que las hembras alcanzaron los mayores tamaños, con una media de 15,2 cm de LPA con predominio de los gru- 458 Lat. Am. J. Aquat. Res. Tabla 1. Porcentaje de incidencia de Coryphaenoides delsolari en los lances de pesca durante dos campañas de investigación (2007 y 2008). Table 1. Percentage of incidence de Coryphaenoides delsolari of fishing hauls during two research cruises (2007 and 2008). Sector A 3º30’-5º00’S B 5º00’-7º00’S C 7º00’-8º30’S D 8º30’-10º00’S Total 1 (200-500) - - - - - 2 (500-1000) 77,8 100,0 83,3 80,0 85,0 3 (1000-1500) 42,9 45,5 16,7 25,6 Total 34,5 51,9 31,3 34,4 Estrato de profundidad (m) 25,0 Figura 2. Variación latitudinal y batimétrica de la distribución y abundancia relativa (log CPUA+1) de Coryphaenoides delsolari en el área de estudio (el tamaño de las burbujas es proporcional a la abundancia relativa). Figure 2. Latitudinal and bathymetric variations of distribution and relative abundance (log CPUA+1) of Coryphaenoides delsolari in the study area (bubble size is proportional to relative abundance). pos modales de tamaños mayores (15, 17 y 20 LPA), a diferencia de los machos que tuvieron una media en 11,4 cm de LPA, con predominio de los grupos modales más pequeños (4, 8 y 12 LPA) en los sectores C y D (Fig. 4). Asimismo, la proporción de hembras confirmó lo mencionado anteriormente (las hembras alcanzaron mayor tamaño), los machos predominaron en tallas menores de 13 cm de LPA, con proporción promedio de 2 machos por 1 hembra, luego de esta talla el número de hembras se revierte, y a partir de 15,5 cm de LPA el dominio de las hembras fue de 100% (Fig. 5). Relación talla-peso La relación talla (longitud preanal, cm) - peso corporal (g) fue de tipo alométrico negativo para cada uno de los sexos y para ambos sexos juntos (Tabla 3), con una alta correlación entre ambos sexos (Fig. 6). Madurez gonadal El 92% de los individuos analizados fueron adultos (maduros, desovantes y postdesovantes). Apenas el 8% correspondió a juveniles que fueron de menor tamaño y se capturaron principalmente en los sectores C y D (Fig. 7). 459 Aspectos biológicos de Coryphaenoides delsolari en Perú Tabla 2. Captura por unidad de área (kg km-2) y biomasa de Coryphaenoides delsolari por sector y estrato. Table 2. Catch per unit of area (kg km-2) and biomass of Coryphaenoides delsolari by sector and stratum. Sector A Estrato B C 1 2 3 1 2 CPUA (kg km ) 0,00 1634,72 1081,57 0,00 3178,52 188,50 Desviación estándar 0,00 2955,52 2797,80 0,00 3485,83 508,90 Biomasa kg 0 2318031 1192320 0 5042939 357422 Biomasa ton 0,0 2318,0 1192,3 0,0 5042,9 357,42 -2 3 1 3 0,00 200,53 0,00 0,00 98,23 1,61 0,00 271,08 0,00 0,00 130,35 3,33 0 546494 0 0 208898 3347 0,0 546,5 0,0 0,0 208,9 3,3 Sector A B C D 3510,35 5400,36 546,49 212,25 9669,45 IC (±t) 3197,74 3322,12 388,56 158,91 4630,15 CV % 46,5 31,4 36,3 38,2 24,4 Actualmente, la mayoría de los recursos pesqueros marinos en el mundo, se encuentra en estado de plena y sobreexplotación; por lo tanto, la búsqueda de recursos inexplotados o subexplotados adquiere cada vez mayor relevancia. El Perú no es ajeno a esta realidad y existe la necesidad de identificar especies con potencial pesquero, que permitan satisfacer la demanda pesquera nacional e internacional, crear oportunidades de trabajo, estimular la inversión pesquera y proveer pesquerías alternativas frente al decrecimiento de las pesquerías tradicionales (Kameya et al., 2006). Asimismo, se tiene conocimiento de la importancia de algunos macrúridos (e.g. Coryphaenoides rupestris) como fuente de alimento humano y en particular por su contenido de grasa (Atkinson, 1995), por lo que C. delsolari puede constituir una especie potencial ante la demanda por la búsqueda de nuevas fuentes alimenticias. Asimismo, en el análisis de la longitud por sexo, se observó que al igual que el Coryphaenoides rupestris y Nezumia aequalis, las hembras de C. delsolari comparadas con los machos crecen más rápidamente, es decir existe un dimorfismo sexual que es característica similar para los macrúridos en general, de acuerdo con lo reportado por Bergstad (1990) y Coggan et al. (1999). El comportamiento de la relación talla-peso, es similar a la del C. rupestris. Savvatimsky & Atkinson (1993), comparan esta variable por sexos para dos áreas de manejo, sin encontrar grandes diferencias. 1 2 3 Total Biomasa (ton) DISCUSIÓN D 2 Los aportes al conocimiento de la biología de esta especie en Perú son escasos. Mayores aportes se han realizado en el conocimiento de macrúridos del Atlántico, destacando las diferencias tanto en estructura por tallas o grupos modales por sexos, los cuales también se confirman en este estudio. Kameya et al. (2006), han identificado para las zonas batial y arquibentónica 247 especies de peces y 284 de invertebrados, con mayor diversidad entre 500 y 1000 m de profundidad, zona donde se obtuvieron las mayores densidades de C. delsolari. En este sentido, de establecerse una pesquería, se deberá tener en cuenta las perturbaciones que podrían ocurrir sobre la estructura del ecosistema debido al alto descarte (bycatch) que tienen los artes de pesca poco selectivos como las redes de arrastre. A nivel mundial el desarrollo de la pesca de aguas profundas ha sido, en muchos casos, más rápido que la adquisición de los conocimientos necesarios para administrar satisfactoriamente los recursos. Los conocimientos sobre la biología de la población de muchas especies siguen siendo insuficientes y dado el carácter difuso de estas pesquerías, existe escasa información sobre los efectos de la pesca en las especies capturadas incidentalmente. En relación con los efectos sobre el bentos, la información obtenida de los escasos estudios realizados constituye motivo de preocupación, como en el caso de los corales de aguas profundas. Esto pone de relieve la necesidad de que los responsables de la administración de los recursos, donde los haya y tengan el mandato y la capacidad de hacerlo, consideren específicamente las repercusiones de una información científica insuficiente, de la falta o esca- 460 Lat. Am. J. Aquat. Res. 10 TOTAL N = 11026 L . Media = 12.5 cm Rango = 1.5 - 21.5 cm Frecuencia relativa 8 6 4 2 21.5 20.5 19.5 18.5 17.5 16.5 15.5 14.5 13.5 12.5 9.5 11.5 10.5 8.5 7.5 6.5 5.5 4.5 3.5 2.5 1.5 0 Longitud preanal 12 N = 3461 L . Media = 14.2 cm Rango = 6.0 - 20.0 cm SECTOR A 10 Frecuencia relativa 8 6 4 2 Figura 4. Estructura de tallas por sexos de Coryphaenoides delsolari durante dos campañas de investigación (2007 y 2008) Figura 4. Size composition by sex de Coryphaenoides delsolari during two research cruises (2007 and 2008). 21.5 20.5 19.5 18.5 17.5 16.5 15.5 14.5 13.5 12.5 11.5 10.5 9.5 8.5 7.5 6.5 5.5 4.5 3.5 2.5 1.5 0 Longitud preanal 14 N = 5617 L . Media = 13.2 cm Rango = 4.5 - 21.5 cm SECTOR B 12 Frecuencia relativa 10 8 6 4 2 21.5 20.5 19.5 18.5 17.5 16.5 15.5 14.5 13.5 12.5 11.5 10.5 9.5 8.5 7.5 6.5 5.5 4.5 3.5 2.5 1.5 0 Longitud preanal 10 N = 702 L . Media = 9.9 cm Rango = 2 - 21.5 cm SECTOR C Frecuencia relativa 8 Figura 5. Proporción de hembras por rango de tallas de Coryphaenoides delsolari durante dos campañas de investigación (2007 y 2008). Figure 5. Females sex ratio by range size of Coryphaenoides delsolari during two research cruises (2007 and 2008). 6 4 2 21.5 20.5 19.5 18.5 17.5 16.5 15.5 14.5 13.5 12.5 11.5 10.5 9.5 8.5 7.5 6.5 5.5 4.5 3.5 2.5 1.5 0 Longitud preanal 16 14 N = 1246 L . Media = 5.8 cm Rango = 1.5 - 21.5 cm SECTOR D Frecuencia relativa 12 10 8 6 4 2 21.5 20.5 19.5 18.5 17.5 16.5 15.5 14.5 13.5 12.5 11.5 10.5 9.5 8.5 7.5 6.5 5.5 4.5 3.5 2.5 1.5 0 Longitud preanal Figura 3. Estructura de tallas total y por sectores de Coryphaenoides delsolari durante dos campañas de investigación (2007 y 2008). Figure 3. Size composition (total and by sector) of Coryphaenoides delsolari during two research cruises (2007 and 2008). sez de datos sobre captura y esfuerzo, sobre capturas incidentales y el desconocimiento de las trayectorias pasadas del desarrollo de las pesquerías de aguas profundas. Lo que se sabe es que la productividad de varias de estas pesquerías será baja, en parte como consecuencia de la falta de alimento en hábitats de aguas medias y profundas. Para que tengan un significado operativo algunos paradigmas o el “enfoque de ecosistemas” en la ordenación de las pesquerías de aguas profundas, será necesario tener en cuenta explícitamente la conservación de la biodiversidad bentónica y mantener biomasas reproductoras mínimas de las poblaciones de peces que podrían ser pequeñas y estar sometidas a un aislamiento reproductivo (Fischer et al., 1995). Aspectos biológicos de Coryphaenoides delsolari en Perú 461 Tabla 3. Parámetros de la relación longitud-peso de Coryphaenoides delsolari por sexo y total, en el área de estudio (2007 y 2008). Table 3. Length-weight relationship parameters of Coryphaenoides delsolari by sex and total, in the study area (2007 and 2008). Parámetro Total Hembras Machos a 0,1752 0,2152 0,1725 b 2,8848 2,8014 2,8974 r 0,9772 0,9595 0,9381 n 1246 540 259 Figura 7. Madurez gonadal de hembras de Coryphaenoides delsolari por sector en toda el área evaluada durante dos campañas de investigación (2007 y 2008). Figure 7. Gonadal maturity of females of Coryphaenoides delsolari by sector throughout the assessed area during two research cruises (2007 and 2008). AGRADECIMIENTOS Los autores expresan su agradecimiento a la Secretaría General del Mar de España y al Instituto del Mar del Perú, por el acceso a la valiosa información de las campañas de investigación realizadas durante el 2007 y 2008; así como al grupo científico peruano y español que participó en los muestreos y análisis de datos a bordo del B/O Miguel Oliver. REFERENCIAS Figura 6. Relación longitud-peso de Coryphaenoides delsolari por sexo y ajuste de la curva de poder, en toda el área evaluada. a) total, b) hembras, c) machos. Figure 6. Length-weight relationship of Coryphaenoides delsolari by sex, in the assessed area. a) total, b) females, c) males. Atkinson D.B. 1995. The biology and fishery of roundnose grenadier (Coryphaenoides rupestris Gunnerus, 1765) in the northwest Atlantic. In: A.G. Hopper (ed.). Deep-water fisheries of the north Atlantic oceanic slope. Kluwer, Netherlands, pp. 51-111. Alverson, D. & W. Pereyra. 1969. A study of demersal fishes and fisheries of the northeastern Pacific Ocean. An evaluation of exploratory fishing methods and analytical approaches to stock size and yield forecast. J. Fish. Res. Bd. Can., 26: 1985-2001. Bergstad, O.A. 1990. Distribution, population structure, growth and reproduction of the roundnose grenadier Coryphaenoides rupestris (Pisces: Macrouridae) in the deep waters of the Skagerrak. Mar. Biol., 107: 2539. Chirichigno, N. & J. Velez. 1998. Clave para identificar los peces marinos del Perú. Publicación Especial. Instituto del Mar del Perú, Lima, 496 pp. 462 Lat. Am. J. Aquat. Res. Coggan, R.A., J.D. Gordon & N.R. Merrett. 1999. Aspects of the biology of Nezumia aequalis from the continental slope west of the British Isles. J. Fish Biol., 54: 152-170. Espino, M. & C. Wosnitza-Mendo. 1984. Manuales de evaluación de Peces Nº 1. Área Barrida. Informes Instituto del Mar de Perú, Lima, 86: 1-31. Organización de las Naciones Unidas para la Agricultura y la Alimentación (FAO). 2004. El estado mundial de la pesca y de la acuicultura. Parte 2. Temas de interés para los pescadores y acuicultores. Buena gestión y ordenación de las pesquerías de aguas profundas. pp. 99-109. Fischer, W., F. Krupp, W. Schneider, C. Sommer, K.E. Carpenter & V.H. Niem. 1995. Guía FAO para la identificación de especies para los fines de la pesca. Pacífico centro-oriental Vol. 3 Vertebrados–Parte 2. Roma, FAO, 3: 1201-1813. Received: 29 May 2009; Accepted: 11 September 2009 Kameya, A., M. Romero & S. Zacarias. 2006. The deep ocean biodiversity of the Peruvian sea: fishes and invertebrates–Peruvian activities. Deep-sea 2003: Conference on the Governance and Management of Deep-sea Fisheries. Part 2: Conference poster papers and workshop papers. FAO Fisheries Proceedings. Rome, FAO, 2/3: 42-43. Lorance, P. & F. Garren. 2003. Age estimation of roundnose grenadier (Coryphaenoides rupestris), effects of uncertainties on ages. J. Northw. Atl. Fish. Sci., 31: 387-399. Savvatimsky, P.I. & D.B. Atkinson. 1993. Length-weight relationships of roundnose grenadier (Coryphaenoides rupestris Gunn.) in different areas of the northwest Atlantic. Sci. Council Studies, 19: 71-78. Sparre P. & S.C. Venema. 1995. Introducción a la evaluación de recursos pesqueros tropicales. Parte 1. Manual FAO. Fish. Tech. Paper Nº306.1, Rev. 2, Roma, 420 pp. Lat. Am. J. Aquat. Res., 37(3): 463-478, 2009 Pesca de Beryx splendens en montañas submarinas de Juan Fernández, Chile “Deep-sea fisheries off Latin America” P. Arana, J.A.A. Perez & P.R. Pezzuto (eds.) DOI: 10.3856/vol37-issue3-fulltext-15 463 Research Article Rendimientos, estructuras de tallas y madurez sexual del alfonsino (Beryx splendens) capturado en el cordón submarino de Juan Fernández, Chile 1 Aurora Guerrero1 & Patricio Arana1 Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso Casilla 1020, Valparaíso, Chile RESUMEN. Se analiza la información recopilada en lances comerciales para la captura de alfonsino (Beryx splendens) realizados en montes submarinos del archipiélago de Juan Fernández (Chile), entre los años 2001 y 2003, que corresponden a la etapa de desarrollo inicial de esta pesquería. En dicho período se efectuaron 187 lances, de los cuales en 121 se obtuvo la especie objetivo, capturándose 525,1 ton, que constituyeron el 99,2% de la captura total. Por la configuración irregular de los fondos, los lances de pesca se caracterizaron por su corta duración (0,26-0,50 h), a profundidad media de 469,7 m. En este periodo se analizaron 14.773 ejemplares, 6.064 machos (41%) y 8.709 hembras (59%), evidenciando un predominio de hembras. La proporción sexual estructurada a la talla mostró un predominio de machos a tallas inferiores a 24 cm de longitud de horquilla (LH). En machos el tamaño medio fluctuó entre 34,6 y 36,8 cm de LH y en hembras entre 36,2 y 38,4 cm LH. Para determinar la madurez de las gónadas, se utilizó la escala macroscópica propuesta por Lehodey et al. (1997) y se estableció que los machos alcanzaron la primera madurez (TMS50%) a 34,3 cm LH y las hembras a los 33,3 cm LH. Los rendimientos promedio en el período analizado correspondieron entre 0,2 y 6,6 ton lance-1 y entre 1,8 y 19,0 ton h.a.-1, con medias de 4,3 ton lance-1 y 9,2 ton h.a.-1. Palabras clave: rendimientos, estructura de tallas, madurez, alfonsino, Beryx splendens, archipiélago de Juan Fernández, Chile. Fishing yields, size structures, and sexual maturity of alfonsino (Beryx splendens) caught on Juan Fernandez seamounts, Chile ABSTRACT. We analyzed information collected during commercial hauls targeting alfonsino (Beryx splendens) on seamounts of the Juan Fernández Archipelago (Chile) from the early stages of the fishery (20012003). Of the 187 hauls carried out in this period, 121 were successful; alfonsino catches reached 525.1 ton, constituting 99.2% of the total catch. Due to the irregularity of the sea bottom, short (0.26-0.50 h) fishing hauls were performed at mid-depth (469.7 m). We analyzed 14,773 specimens during the study period: 6,064 males (41%) and 8,709 females (59%), the latter being predominant. The size structure was dominated by males smaller than 24 cm fork length (LH). Average sizes fluctuated between 34.6 and 36.8 cm LH for males and between 36.2 and 38.4 cm LH for females. To determine gonad maturity, we used the macroscopic scale proposed by Lehodey et al. (1997); the males reached first maturity (TMS50%) at 34.3 cm LH and the females at 33.3 cm LH. The average yields for the study period ranged from 0.2 to 6.6 ton haul-1 and between 1.8 and 19.0 ton h.a.-1, with averages of 4.3 ton haul-1 and 9.2 ton h.a.-1. Keywords: yields, size structure, maturity, alfonsino, Beryx splendens, Juan Fernandez Archipelago, Chile. ________________________ Corresponding author: Patricio Arana (parana@ucv.cl) 464 Lat. Am. J. Aquat. Res. INTRODUCCION El alfonsino (Beryx splendens) es una especie de amplia distribución geográfica que vive en el talud continental y montes submarinos, tanto en aguas tropicales como subtropicales y en algunas áreas templadas (Busakhin, 1982). Se distribuye ampliamente en diversos océanos del mundo, excluyendo el Pacífico noreste y mar Mediterráneo (Paxton, 1999). En el Atlántico occidental se encuentra desde el golfo de Maine hasta el golfo de México (Maul, 1986), mientras que en el Atlántico oriental, desde el suroeste de Europa y las islas Canarias (Maul, 1990), hasta Sudáfrica (Heemstra, 1986). En el Indo-Pacífico, se encuentra desde el este de África, incluyendo Saya de Malha Bank (Fricke, 1999) hasta Japón, Hawai, Australia y Nueva Zelanda (Paulin et al., 1989). En Chile, si bien su distribución no está del todo definida, se ha reportado en áreas próximas al archipiélago de Juan Fernández (33º37’S-78º50’W) y en las islas Desventuradas (26º20’S-80º07’W), mientras que en la costa continental se ha registrado en forma incidental frente a Caldera (27º03’S), Coquimbo (29º58’S) y Valparaíso (33º30’S) (Lillo et al., 1999). Esta especie también ha sido registrada en la región sur-austral de Chile, hasta aproximadamente los 48ºS (Inada et al., 1986). La pesquería chilena de alfonsino se desarrolla en la cima de los montes pertenecientes al cordón submarino de Juan Fernández. Sus inicios datan de 1998, año en que se desembarcaron 144 ton. De acuerdo a lo indicado por Zuleta et al. (2008), las actividades extractivas asociadas a B. splendens entre 1998 y 2000, corresponden a lances de pesca que se realizaban en viajes cuyo objetivo era la captura de orange roughy (Hoplostethus atlanticus) y sólo a partir del 2001 se cambia el régimen operacional y se originan viajes con intencionalidad de pesca dirigida al alfonsino. Por su parte, el nivel de desembarque registrado en el 2000 (4.300 ton) evidencia que las actividades de pesca se intensifican sobre B. splendens a partir de ese año. Estos dos factores permiten suponer que el inicio propiamente tal de la pesquería se efectuó entre los años 2000 y 2001, con cifras ascendentes en los desembarque, los que continuaron hasta el 2003 (9.141 ton). En los años siguientes, los desembarques se redujeron, estabilizándose alrededor de 3.000 ton año-1 producto del establecimiento de cuotas globales de captura. El acelerado crecimiento de la pesquería de alfonsino durante ese período no fue acompañado en forma paralela por un incremento en la investigación de este recurso. Los estudios disponibles de la etapa temprana se refieren sólo a estudios sobre el crecimiento realizados por Gili et al. (2002) y los correspondientes a evaluaciones de biomasa a partir de cruceros de prospección, cuya finalidad también era determinar la biomasa de orange roughy; no obstante, estos sólo se realizan a partir del 2005. Independiente de lo anterior, y por iniciativa de la industria, la Escuela de Ciencias del Mar de la Pontificia Universidad Católica de Valparaíso, realizó actividades de monitoreo de faenas extractivas de alfonsino durante el período 2001-2003. Considerando la escasa disponibilidad de antecedentes que se tiene de la pesquería en sus primeros años de desarrollo, el presente estudio tiene como objetivo caracterizar esa etapa de la pesquería, tanto en términos operacionales como biológicos, particularmente con el fin de determinar las composiciones de tallas y tamaños medios de los ejemplares capturados y determinar la talla de primera madurez sexual del alfonsino. MATERIALES Y MÉTODOS Esta investigación se sustenta en el análisis de la información proveniente del monitoreo de faenas de pesca comercial de alfonsino (Beryx splendens) en el cordón submarino de Juan Fernández, realizado entre octubre de 2001 y mayo de 2003. Las actividades de pesca fueron ejecutadas con el PAM Boston Blenheim mediante red de arrastre de cuatro paneles, modelo Casanova, con tamaño de malla en el copo de 130 mm. Se registró la información de la posición (latitud y longitud) y duración (h) del lance, la profundidad media de operación de la red (m) y captura total (kg) de la especie objetivo y de la fauna acompañante relevante. Una vez virado el arte y desplegada la captura sobre cubierta y mientras la tripulación encajonaba la especie objetivo, se separó en forma aleatoria un número variable de ejemplares para el muestreo biológico. El número de individuos examinados dependió de la disponibilidad de tiempo entre lances. A los ejemplares se les determinó el sexo; mediante un ictiómetro (±1 cm) se midió la longitud de horquilla (LH) y se determinó el grado de madurez de sus gónadas, utilizando la escala macroscópica propuesta por Lehodey et al. (1997). Con la información obtenida se analizaron los registros de manera espacial (por zona de pesca) y temporalmente (mes/año). El área de operación se dividió en tres zonas, que corresponden a los lugares donde se concentra la especie objetivo: al este y al sur de la isla Robinson Crusoe (montes JF1a y JF1b, respectivamente) y al este de estas últimas a aproximadamente 50 mn (monte JF2) (Fig. 1). En cada caso, se determinó la captura promedio por lance y el rendimiento 465 Pesca de Beryx splendens en montañas submarinas de Juan Fernández, Chile 79°00'W 78°40' 78°00' 78°20' 77°40' Océano Pacífico 33°30'S 500 1000 400 1200 I. Robinsón Crusoe 1600 JF2 JF1a 300 300 33°40' 1800 275 300 250 100 200 200 JF1b 400 500 600 300 2200 800 500 800 800 1000 1000 Figura 1. Área de estudio y principales lugares de pesca de Beryx splendens, en el cordón submarino de Juan Fernández (isóbatas en metros). Figure 1. Study area and main fishing sites for Beryx splendens in the Juan Fernández seamount chain (isobaths in meters). promedio en términos de kilos por hora de arrastre (kg h.a.-1). Además, se georreferenciaron los lances de pesca y las capturas, para lo cual se empleó el programa Surfer (Versión 8). A partir de la información proveniente del muestreo de las capturas, se confeccionaron las respectivas distribuciones de frecuencias de tallas, separadamente, por sexo, mes y zona de pesca. Luego se determinó los principales estadígrafos de la longitud de horquilla (LH) de los ejemplares muestreados (media aritmética y desviación estándar). En forma paralela, se determinó la proporción sexual global y a la talla, mientras que los registros de madurez gonadal fueron agrupados por mes y zona de pesca. Además, se realizó la determinación de la talla de primera madurez (TMS50%) en machos y hembras, considerando que los ejemplares con sus gónadas en estado de madurez ≥ 4, se encontraban en proceso de maduración o ya maduros. El modelo generalizado para la determinación de la proporción de ejemplares maduros a la talla P(l) corresponde a: P(l) = [ 1 + exp (α − β l)] −1 cuyos parámetros α y β fueron estimados mediante Máxima Verosimilitud considerando que la variable responde a una distribución binomial, donde el negativo de la función de log verosimilitud (Roa et al., 1999) corresponde a la función: l= ∑[ h ln (P(l) + (n − h ) ln (1 − P(l)] l l l l quedando la talla al P% de madurez sexual expresada por: lp% = 1 ⎡1 ⎤ α ln −1 − α ⎢⎣ P ⎥⎦ β cuyo intervalo de confianza al 100(1-α)% es estimado como: IC = lp% + g (P) ± z a / 2 v(l p % ) donde ⎛ P ⎞ g( P) = ln ⎜ ⎟ ⎝1− P ⎠ y v (lp% ) = v (α) + 2lp% cov (α, β) + l2p% v (β) . en la cual zα / 2 es un cuantil de la distribución normal estándar y cov(α, β) la covarianza entre los parámetros tomada del inverso de la matriz hessiana. La talla de primera madurez sexual (TMS50%) fue determinada como la longitud en que el 50% de los ejemplares estaban maduros. El modelo fue programado y resuelto en lenguaje Matlab. RESULTADOS El monitoreo de las operaciones de pesca se realizó durante cinco etapas correspondientes a los periodos en que se efectuaron las operaciones extractivas de Beryx splendens: octubre y diciembre de 2001, marzo y mayo 2002, y marzo 2003. En total, se efectuaron 187 lances, de los cuales 121 fueron exitosos en que se 466 Lat. Am. J. Aquat. Res. sólo se registró mayor actividad de pesca en el 2002. (Fig. 4). Al sur de la isla Robinson Crusoe (monte JF1b), se registraron operaciones de pesca durante todos los meses analizados y se obtuvo mayor rendimiento promedio, con valores de 5,4 ton lance-1 y 11,8 ton h.a.-1 (Tabla 4). En las operaciones de pesca analizadas se muestrearon 14.773 ejemplares, de los cuales 6.064 fueron machos y 8.709 hembras (Tabla 5). Se observó mayor predominio de las hembras que representaron el 59% de las capturas y la proporción sexual estructurada a la talla mostró un predominio de machos a tallas inferiores a 24 cm LH (Fig. 5). registraron 525,1 ton de alfonsino, que constituyó el 99,2% de la captura total (Tabla 1). Dada la configuración de los fondos donde se concentra el alfonsino, los lances de pesca fueron de corta duración, con un promedio de 0,8 h (Tabla 2). No obstante, se observó un amplio rango de variación en la extensión de los mismos, con la moda en el rango 0,26-0,50 h (Fig. 2). La profundidad media de pesca fue 469,7 m y no se evidenciaron diferencias importantes entre zonas (Tabla 3), realizándose más del 70% de los lances entre 451 y 500 m (Fig. 3). Las faenas de pesca se efectuaron preferentemente en las cercanías de la isla Robinson Crusoe, ejecutándose 84 lances en los montes JF1a, 70 en JF1b y 33 en JF2, de los cuales el 60,7%, 72,8% y 57,6% registraron captura de alfonsino, respectivamente. Las actividades de pesca presentaron variación espacial entre años. Durante el año 2001, los lances se efectuaron principalmente en las cercanías de la isla Robinson Crusoe y de manera más intensiva en el sector del monte JF1a, situación que se reitera durante las opera ciones efectuadas en marzo de 2003. En el monte JF2 El tamaño medio de los ejemplares fluctuó entre 34,6 y 36,8 cm LH en machos y entre 36,2 y 38,4 cm LH en hembras, evidenciando el mayor tamaño de los machos. En términos globales, los ejemplares provenientes de la zona JF1a registraron tallas levemente superiores a los capturados en las otras dos zonas, con promedios de 37,4 cm en JF1a y 36,1 y 36,2 cm en los montes JF1b y JF2, respectivamente (Tabla 5). Tabla 1. Número de lances, captura de alfonsino y captura total, por zona (monte submarino) y período de pesca. Table 1. Number of hauls, alfonsino catches, and total catches per zone (seamount) and fishing period. Mes Zona de pesca (monte) Octubre 2001 JF 1a JF 1b JF2 Total Diciembre 2001 Total JF 1a JF 1b Marzo 2002 JF 1b JF2 Total Mayo 2002 JF 1b JF2 Total Marzo 2003 JF 1a JF 1b JF2 Total Total zona (monte) Total general JF 1a JF 1b JF2 N° de lances Captura (ton) Con captura Sin captura Total Total Alfonsino 21 4 2 27 17 15 32 17 4 21 14 12 26 13 1 1 15 51 51 19 121 7 8 5 20 9 2 11 6 4 10 2 4 6 17 1 1 19 33 19 14 66 28 12 7 47 26 17 43 23 8 31 16 16 32 30 2 2 34 84 70 33 187 98,4 24,7 2,0 125,1 61,0 54,7 115,6 114,2 3,4 117,6 81,0 41,2 122,2 47,0 1,3 0,3 48,5 206,3 275,8 46,9 529,1 97,6 24,7 2,0 124,4 60,4 54,2 114,7 112,7 3,2 115,9 81,0 41,2 122,2 46,5 1,2 0,3 48,0 204,6 273,8 46,7 525,1 467 Pesca de Beryx splendens en montañas submarinas de Juan Fernández, Chile Tabla 2. Media, varianza y desviación estándar en la duración de los lances (h). Table 2. Average, variance, and standard deviation for the duration of the haul (h). Período Marzo 2002 Mayo 2002 0,2-3,3 0,1-1,0 0,2-1,6 0,2-2,9 0,2-3,3 0,1-1,6 0,2-2,9 0,2-3,0 0,2-1,7 0,2-3,0 1,4 0,5 0,5 1,0 Mínimo y máximo (h) Diciembre 2001 JF1a JF1b JF2 Area total Media (h) Octubre 2001 JF1a JF1b JF2 Area total Desviación estándar (h) Zona de pesca (monte submarino) JF1a JF1b JF2 Area total 1,4 0,5 1,0 1,0 0,2 0,5 0,9 0,3 0,9 1,0 Marzo 2003 Total período 0,1-1,6 0,1-1,6 0,1-3,3 0,2-3,0 0,1-1,7 0,1-1,7 0,5 0,5 1,0 0,8 0,6 0,9 0,3 0,3 0,8 0,8 0,4 0,8 0,8 0,7 0,8 0,7 0,7 0,7 madurez gonadal. Destacó la presencia de ejemplares en post-desove (estado 7), registrada en los montes JF1a y JF1b en diciembre 2001 y en JF2 en febrero 2002. En los muestreos realizados en otros meses predominaron preferentemente los estados 2, 3 y 4 (Fig. 8). El ajuste de los datos por Máxima Verosimilitud correspondiente a los ejemplares maduros vs la talla entregó los siguientes resultados en la matriz varianzacovarianza y los parámetros estimados fueron los siguientes: Matriz varianza-covarianza Figura 2. Distribución de frecuencias de la duración en los lances de pesca. Figure 2. Frequencies distribution of the duration of the fishing hauls. Machos 0,4123 0,0003 0,0117 v(α) v(β) cov(α,β) Hembras 0,1472 0,0001 0,0041 Parámetros estimados Las distribuciones de frecuencias de tallas en ambos sexos y por zona de pesca presentaron generalmente una unimodal (Figs. 6 y 7), con una moda principal entre 36 y 38 cm LH en machos, y entre 38 y 40 cm LH en hembras. No obstante, se encontró mayor amplitud de tallas en marzo de 2002, cuando se registraron ejemplares de menor tamaño, generando un segundo grupo modal alrededor de los 23 cm LH y que básicamente corresponde a ejemplares provenientes del monte submarino JF1b (Fig. 6). Según la época en que fueron capturados los ejemplares examinados presentaron distintos grados de α β TMS50% v(TMS50%) Límite inferior TMS50% Límite superior TMS50% Machos Hembras 19,158 0,559 34,25 1,56 31,87 36,63 11,039 0,331 33,34 0,53 31,95 34,73 La proporción de individuos en estado de madurez ≥ 4, indicó que los machos alcanzaron la primera madurez (TMS50%) a una talla superior que las hembras. 468 Lat. Am. J. Aquat. Res. Tabla 3. Media, varianza y desviación estándar de la profundidad media de los lances de pesca. Table 3. Average, variance, and standard deviation for the average depth of the fishing hauls. Diciembre 2001 Marzo 2002 Mayo 2002 Mínimo y máximo (m) Zona de pesca (monte submarino) JF1a JF1b JF2 Area total 441-508 365-540 463-495 440-485 441-508 365-540 440-485 420-520 430-528 420-528 JF1a JF1b JF2 Area total JF1a JF1b JF2 468,6 474,3 472,9 465,2 Desviación estándar (m) Octubre 2001 Media (m) Período Area total 468,6 17,8 474,0 34,3 9,5 17,8 29,9 N = 121 % de lances 80 60 40 20 0 351-400 401-450 451-500 501-550 551-600 Rango de profundidad (m) Figura 3. Distribución batimétrica (m) de los arrastres de pesca de alfonsino. Figure 3. Bathymetric distribution (m) of trawls for alfonsino. En efecto, los machos la alcanzaron a los 34,2 cm LH y las hembras a los 33,3 cm LH (Fig. 9), no existiendo diferencias significativas en la talla de madurez entre ambos sexos. DISCUSIÓN La historia de esta pesquería, muestra un rápido desarrollo en un lapso reducido. Esto adquiere especial connotación si se considera que Beryx splendens es una especie de crecimiento lento asociada a ecosiste- 465,2 11,8 11,8 Marzo 2003 400-545 400-545 Total período 365-540 420-520 400-545 365-545 467,0 481,5 469,3 469,7 469,7 24,5 43,4 50,7 471,3 467,2 472,2 469,7 26,7 18,1 48,3 27,5 50,7 28,1 mas de aguas profundas y que tasas de explotación altas podrían ocasionar daños importantes a la población y dificultar su recuperación, elementos que pondrían en riesgo la sustentabilidad de esta pesquería. Como es frecuente en este campo, el grado de conocimiento del recurso tiene un marcado rezago respecto de la actividad extractiva. Así por lo general, la recopilación sistemática de información comienza cuando ya las faenas se han consolidado y difícilmente se dispone de datos que permitan caracterizar el stock de alfonsino en la etapa de desarrollo inicial de la pesquería, por lo que difícilmente se puede visualizar sus cambios antes variaciones tan importantes de explotación como las registradas en los años 2002 y 2003. En este sentido, la información analizada en esta investigación tiene justamente esa relevancia por cuanto los datos provienen de la etapa inicial de su desarrollo y eventualmente, puede constituir un punto de referencia hacia el futuro. Una de las particularidades de esta pesquería radica en la maniobra de arrastre, la que requiere gran habilidad de capitanes y tripulaciones experimentadas. Debido a que la operación se tiene que realizar con precisión y velocidad para interceptar la concentración de peces en fondos de configuración irregular. De acuerdo a los resultados obtenidos, los lances exitosos por lo general no superaron los 20 min de duración, tiempo que puede ser inferior, si se considera que los registros de bitácora usualmente toman en cuenta tiempos 469 Pesca de Beryx splendens en montañas submarinas de Juan Fernández, Chile 79°00'W 78°40' 2001 Octubre Diciembre 78°00' 78°20' 77°40' Océano Pacífico 33°30'S 500 1000 400 1200 I. Robinsón Crusoe 1600 1800 300 300 33°40' 275 300 250 100 200 200 400 500 600 300 2200 800 500 800 800 1000 1000 79°00'W 78°40' 2002 Marzo Mayo 33°30'S 78°00' 78°20' 77°40' Océano Pacífico 500 1000 400 1200 I. Robinsón Crusoe 1600 1800 300 300 33°40' 275 300 250 100 200 200 400 500 600 300 2200 800 500 800 800 1000 1000 79°00'W 78°40' 2003 Octubre 78°00' 78°20' 77°40' Océano Pacífico 33°30'S 500 1000 400 1200 I. Robinsón Crusoe 1600 1800 33°40' 300 300 275 300 250 100 200 200 400 500 600 300 2200 500 800 800 800 1000 1000 Figura 4. Distribución de lances de pesca de alfonsino por período y zona de pesca (isóbatas en metros). Figure 4. Distribution of hauls for alfonsino by period and fishing zone (isobaths in meters). 470 Lat. Am. J. Aquat. Res. Tabla 4. Número de lances con captura y rendimiento promedio de alfonsino por zona y período de pesca. Table 4. Number of hauls with catches and average alfonsino yields per zone and fishing period. Zona de pesca (monte submarino) JF1a Período de pesca N° lances con captura JF1b Rendimiento ton h.a.-1 9,4 N° lances con captura Area total JF2 Rendimiento 4 ton lance-1 6,2 ton h.a.-1 19,0 N° lances con captura Rendimiento ton ton lance-1 h.a-1 1,0 1,8 N° lances con captura Rendimiento 27 ton lance-1 4,6 ton h.a.-1 10,3 Octubre 2001 21 ton lance-1 4,7 Diciembre 2001 17 3,6 6,3 15 3,6 13,3 - - - 32 3,6 6,6 Marzo 2002 - - - 17 6,6 7,5 4 0,8 2,5 21 5,5 6,5 Mayo 2002 - - - 14 5,5 13,8 12 3,4 6,7 26 4,7 10,5 Marzo 2003 13 3,6 8,8 1 1,2 7,4 1 0,3 3,4 15 3,2 8,3 Total 51 4,0 8,2 51 5,4 11,8 19 2,5 5,1 121 4,3 9,2 2 Pesca de Beryx splendens en montañas submarinas de Juan Fernández, Chile 471 Tabla 5. Número de ejemplares muestreados (N), valor promedio y desviación estándar de la longitud horquilla en alfonsino. Table 5. Number of specimens sampled (N), average value, and standard deviation of the fork length in alfonsino. Zona de pesca (monte submarino) Area total N Machos 1.799 JF1a Media (cm) Desviación estándar (cm) 35,7 3,6 JF1b Media (cm) Desviación estándar (cm) 1.353 36,1 3,6 N N 329 JF2 Media (cm) Desviación estándar (cm) 35,1 3,0 N 117 Media (cm) Desviación estándar (cm) 33,2 4,2 Hembras 3.106 37,6 4,3 2.372 38,2 4,1 526 36,3 3,5 208 34,0 5,6 Total 4.905 36,9 4,2 3.725 37,4 4,1 855 35,8 3,4 325 33,7 5,2 996 35,5 2,7 375 35,9 3,1 621 35,2 2,5 Machos Hembras 1.330 37,2 3,3 618 38,1 3,6 712 36,4 2,9 Total 2.326 36,4 3,2 993 37,3 3,6 1.333 35,8 2,8 Machos 1.272 34,6 5,1 Hembras 1.738 36,2 5,2 Total 3.010 35,5 5,2 Machos 1.460 36,5 2,9 Hembras 1.772 37,5 3,4 Total 3.232 37,0 3,2 537 36,8 3,4 Machos Hembras Sin captura Sin captura 468 36,6 3,5 Sin captura 1.121 34,3 5,2 151 36,7 2,8 1.512 35,9 5,3 226 37,8 3,6 2.633 35,2 5,3 377 37,4 3,3 830 37,0 2,8 630 35,7 2,9 1.042 38,0 3,3 730 36,8 3,5 1.872 37,6 3,1 1.360 36,3 3,3 39 37,0 3,2 30 39,5 2,1 763 38,4 3,8 680 38,4 3,9 60 38,0 2,9 23 40,7 2,7 Total 1.300 37,8 3,8 1.148 37,7 3,8 99 37,6 3,1 53 40,0 2,5 Machos 6.064 35,7 3,8 2.196 36,2 3,5 2.940 35,4 4,0 928 35,7 3,3 Hembras 8.709 37,3 4,2 3.670 38,2 4,0 3.852 36,7 4,3 1.187 36,6 4,2 Total 14.773 36,6 4,1 5.866 37,4 4,0 6.792 36,1 4,2 2.115 36,2 3,8 472 Lat. Am. J. Aquat. Res. 100 % de machos 80 60 40 20 0 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Longitud horquilla (cm) Figura 5. Proporción sexual estructurada a la talla (porcentaje de machos) en alfonsino. Figure 5. Size-structured sexual proportion (percentage of males) in alfonsino. no necesariamente involucrados en la ejecución efectiva del lance. De acuerdo a antecedentes disponibles sobre la pesquería de alfonsino que en Nueva Zelanda, los lances no exceden 10 min de duración, lo que es atribuible a la configuración del fondo y también a la necesidad de no acumular demasiada pesca en el copo, a fin de asegurar la buena calidad de los ejemplares capturados. En términos operacionales, los resultados obtenidos indican que en los inicios de la pesquería las operaciones de pesca se desarrollaron en tres zonas de pesca cercanas a la isla Robinson Crusoe, las cuales, de acuerdo a los resultados obtenidos en estudios recientes (Niklitschek et al., 2007a, 2007b, Roa et al., 2008, Zuleta et al., 2008) se han mantenido hasta la actualidad, aunque durante los últimos años se han incorporado nuevas elevaciones submarinas, pero igualmente pertenecientes al cordón de Juan Fernández. Independiente, las zonas más intensamente explotadas corresponden a los montes JF1, y principalmente el monte JF1b. Los rendimientos estimados presentaron tendencia fluctuante entre temporadas con un promedio global de 4,3 ton lance-1 y 9,2 ton h.a.-1. Cabe destacar que durante el último período monitoreado se obtuvo un promedio inferior al registrado a inicios de la temporada, lo que posiblemente es consecuencia del mayor grado de explotación del alfonsino. De acuerdo a la estimación de rendimientos realizados por Young et al., 2008 (en Zuleta et al., 2008), la tendencia ha sido variable aunque acentuándose un patrón descendente en los últimos años, con valores en 2006 de 2,5 ton lance-1 y 5,7 ton h.a.-1, lo que muestra un mayor grado de explotación de alfonsino. La captura de alfonsino en estos montes submarinos revelan una menor presencia de machos, lo cual coincide con lo señalado por Niklitschek et al. (2007a) en el alfonsino capturado en 2006 y lo indicado por Roa et al. (2008) para el período 2004-2007 en esta misma área. Esto difiere de la relación 1:1 entre los sexos señalada por Lehodey et al. (1997) para Nueva Caledonia. De igual manera los resultados obtenidos en el presente estudio muestran la dominancia de las hembras a tallas superiores, lo que se puede atribuir a la mayor tasa de crecimiento de este sexo (Massey & Horn, 1990; Lehodey & Grandperrin, 1996; Gili et al., 2002) y/o a que los machos experimentarían una mayor mortalidad. El tamaño medio de los ejemplares capturados en las diferentes épocas fluctuó entre 34,6 y 36,8 cm LH en machos y entre 36,2 y 38,4 cm LH en hembras. Al contrastar estos valores con los indicados en 2005, 2006 y 2007 (Niklitschek et al., 2007a, 2007b; Roa et al., 2008), se observó una disminución en la talla media de los ejemplares. De acuerdo a la literatura disponible, el alfonsino capturado en aguas de jurisdicción nacional presenta una talla media mayor a la reportada en otras áreas marinas. Por ejemplo, en la pesquería desarrollada en Nueva Zelanda, los ejemplares registran tallas entre 20 y 30 cm LH, con dos modas claramente identificadas (20-22 y 24-25 cm) (Langley & Walker, 2002). Así también, en general, las capturas provenientes de faenas de arrastre vulneran ejemplares con tallas menores a las obtenidas con espineles (Seki & Tagami, 1986). No obstante, es probable que esto se deba a la estratificación de tallas en términos de profundidad; pues Lehodey et al. (1994), señalan un significativo aumento del tamaño de los ejemplares a medida que aumenta la profundidad. En la distribución de frecuencia de talla correspondiente al monte JF1b, se detectaron dos grupos modales relevantes (Fig. 6), lo cual coincide con lo reportado por otros autores (Lehodey et al., 1997; Langley & Walker, 2002). No obstante, no existe una clara explicación de este efecto, aunque se podría atribuir a movimientos migracionales u otros procesos de la dinámica del stock asociados al reclutamiento, reproducción o crecimiento, entre otros. Además, los resultados obtenidos permiten determinar el período en que se reproduce el alfonsino en el cordón submarino Juan Fernández, así como la talla en que maduran ambos sexos. De acuerdo a los datos reunidos, entre octubre 2001 y mayo 2002, se observaron ejemplares en diferentes estados de madurez en los meses y en zonas analizadas (Fig. 8). Sin embargo, en los registros realizados en marzo y mayo, se observó la mayor proporción de estadios de madurez avanzada y la presencia de ejemplares desovados, lo que Pesca de Beryx splendens en montañas submarinas de Juan Fernández, Chile MACHOS N = 1.799 HEMBRAS 18 16 14 12 10 8 6 4 2 0 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 18 16 14 12 10 8 6 4 2 0 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 18 16 14 12 10 8 6 4 2 0 N = 1.272 N = 1.460 18 16 14 12 10 8 6 4 2 0 18 16 14 12 10 8 6 4 2 0 N = 1.772 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 18 16 14 12 10 8 6 4 2 0 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 18 16 14 12 10 8 6 4 2 0 N = 763 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 Longitud horquilla (LH) cm Figura 6. Distribución de frecuencias de tallas en alfonsino, por sexo y temporada de pesca. Figure 6. Size frequencies distributions in alfonsino by sex and fishing season. N = 3.010 N = 3.232 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 18 16 14 12 10 8 6 4 2 0 N = 1.300 Marzo 2003 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 18 16 14 12 10 8 6 4 2 0 Mayo 2002 N = 537 N = 1.738 N = 2.326 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 18 16 14 12 10 8 6 4 2 0 18 16 14 12 10 8 6 4 2 0 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 18 16 14 12 10 8 6 4 2 0 N = 1.330 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 Marzo 2002 Frecuencia relativa (%) N = 996 N = 4.905 Diciembre 2001 18 16 14 12 10 8 6 4 2 0 N = 3.106 TOTAL 18 16 14 12 10 8 6 4 2 0 Ooctubre 2001 18 16 14 12 10 8 6 4 2 0 473 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 474 Lat. Am. J. Aquat. Res. MACHOS N = 2.196 18 16 14 12 10 8 6 4 2 0 18 16 14 12 10 8 6 4 2 0 N = 2.940 18 16 14 12 10 8 6 4 2 0 N = 928 18 16 14 12 10 8 6 4 2 0 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 18 16 14 12 10 8 6 4 2 0 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 18 16 14 12 10 8 6 4 2 0 N = 8.709 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 Longitud horquilla (LH) cm Figura 7. Distribución de frecuencias de tallas en alfonsino, por sexo y zona de pesca. Figure 7. Size frequencies distributions in alfonsino by sex and fishing zone. N = 2.115 18 16 14 12 10 8 6 4 2 0 N = 14.773 TOTAL 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 N = 1.187 N = 6.792 Monte JF2 N = 6.064 18 16 14 12 10 8 6 4 2 0 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 18 16 14 12 10 8 6 4 2 0 N = 3.852 N = 5.866 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 18 16 14 12 10 8 6 4 2 0 18 16 14 12 10 8 6 4 2 0 Monte JF1b Frecuencia relativa (%) 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 N = 3.670 TOTAL Monte JF1a 18 16 14 12 10 8 6 4 2 0 HEMBRAS 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 475 Pesca de Beryx splendens en montañas submarinas de Juan Fernández, Chile MONTE JF1a 2 3 4 5 6 3 4 5 6 3 4 5 6 7 7 1 2 3 4 5 6 7 MACHOS 3 4 5 6 7 N = 226 1 2 3 4 1 1 2 3 4 5 6 5 N = 30 1 2 3 4 5 6 70 60 50 40 30 20 10 0 7 7 7 3 4 5 6 6 7 N = 826 1 2 3 4 5 6 70 60 50 40 30 20 10 0 2 3 4 5 6 4 5 60 40 20 20 6 7 2 3 4 5 6 7 N = 1.044 0 2 3 4 5 6 7 N = 39 1 2 3 4 5 80 60 60 40 40 20 20 6 7 N = 60 0 2 3 4 5 6 7 1 ESTADO DE MADUREZ 7 N = 23 1 3 N = 1.516 1 40 0 N = 731 2 80 60 80 7 1 70 60 50 40 30 20 10 0 MARZO 2003 70 60 50 40 30 20 10 0 6 MAYO 2002 FRECUENCIA RELATIVA (%) N = 620 2 80 1 70 60 50 40 30 20 10 0 5 N = 709 MARZO 2003 2 4 N = 1.117 1 70 60 50 40 30 20 10 0 FEBRERO 2002 1 3 0 HEMBRAS N = 152 2 70 60 50 40 30 20 10 0 70 60 50 40 30 20 10 0 MAYO 2002 MONTE JF2 70 60 50 40 30 20 10 0 N = 622 1 N = 676 ESTADO DE MADUREZ HEMBRAS 70 60 50 40 30 20 10 0 FEBRERO 2002 2 2 70 60 50 40 30 20 10 0 N = 459 1 1 7 MACHOS N = 615 MARZO 2003 70 60 50 40 30 20 10 0 70 60 50 40 30 20 10 0 FRECUENCIA RELATIVA (%) N = 372 DICIEMBRE 2001 70 60 50 40 30 20 10 0 1 MONTE JF1b HEMBRAS DICIEMBRE 2001 FRECUENCIA RELATIVA (%) MACHOS 7 ESTADO DE MADUREZ Figura 8. Estados de madurez de alfonsino capturado en diferentes montes del cordón submarino de Juan Fernández. Figure 8. Maturity states in alfonsino caught on different seamounts in the Juan Fernández chain. 2 3 4 5 6 7 476 Lat. Am. J. Aquat. Res. sería indicativo que la reproducción de se realiza en el período invernal. La determinación de la época de reproducción en esta región del Pacífico en invierno coincide con el resultado obtenido en Nueva Zelanda, donde el máximo reproductivo ocurre en julio-agosto (Horn & Massey, 1989). Pese a ello, estudios realizados en otras zonas del hemisferio austral sugieren algo diferente, como por ejemplo que en el Atlántico sur-este esta especie se reproduciría entre enero y marzo (Alekseev et al., 1986), mientras que en aguas de Nueva Caledonia de noviembre a febrero (Lehodey & Grandperrin, 1996; Lehodey et al., 1997). Los resultados obtenidos hasta ahora deben considerarse como preliminares y deberán ser corroborados, al disponer de información que abarque a lo menos un ciclo anual de muestreo. La talla de primera madurez sexual (TMS50%) establecida a los 34,3 cm LH en machos y a los 33,3 cm en hembras (Fig. 9) significa que los ejemplares alcanzarían esta talla en el rango de edad entre 5 y 6 años, de acuerdo a los parámetros de crecimiento estimados por Gili et al. (2002). De acuerdo a la longitud infinita determinada por estos últimos autores, la TMS50% la alcanzarían los machos al 54% y las hembras al 57% de dicha longitud. Hembras 1,2 1,0 0,8 0,6 Proporción de ejemplares maduros 0,4 0,2 TMS50% = 33,3 cm 0,0 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Machos 1,2 1,0 0,8 0,6 0,4 0,2 Los valores determinados en esta investigación difieren con lo reportado por Roa et al. (2008) para alfonsinos capturados en estos mismos montes submarinos, donde determinaron una talla de primera madurez en hembras de 40 cm LH, sobre la base de observaciones histológicas de las gónadas. Cabe destacar que estos autores señalan que la escala macroscópica empleada ha sido mal aplicada, clasificando peces maduros como inmaduros lo que explicaría que se hayan identificado tan pocos peces maduros en las zonas de pesca a lo largo de la historia de esta pesquería. Por otra parte, los resultados obtenidos son prácticamente similares a los encontrados por Lehodey et al. (1997) en Nueva Caledonia, donde la TMS50% se determinó a 34,5 cm LH en machos y en 33,2 cm LH en hembras. Así también, Masuzawa et al. (1975) encontraron que los alfonsinos que desovan en el sur de Japón tienen tallas superiores a 34 cm LH. De acuerdo a los resultados de este estudio y a la luz de los resultados obtenidos por otros autores, queda en evidencia que el stock de alfonsino explotado en Juan Fernández ha experimentado una evolución decreciente en indicadores claves como son los rendimientos de pesca y la estructura de tallas, especialmente la talla media, lo cual se debería a las altas tasas de explotación que fueron aplicadas sobre un recurso que puede ser clasificado como de productividad moderada (González et al., 2003). No obstante, aun quedan temas importantes que estudiar, especialmente los relacionados con aspectos reproductivos, que a nivel nacional han estado sujetos a permanente discusión. Finalmente, se puede destacar que la pesquería del alfonsino y del orange roughy (Hoplostethus atlanticus) realizada en este mismo cordón submarino, representan dos recursos de alto interés y valor comercial. Por esta misma razón, así como por el hecho que estas especies son de crecimiento lento, bajo potencial reproductivo y el hecho que se concentran en lugares tan específicos como las cumbres de los montes submarinos y en periodos claramente definidos, requiere de especial preocupación de parte de la comunidad científica y autoridades, con el fin de apoyar la investigación de estas especies para contribuir a su sustentabilidad. TMS50% = 33,3 cm AGRADECIMIENTOS 0,0 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Longitud horquilla (cm) Figura 9. Función de madurez estimada para alfonsino y talla de primera madurez (TMS50%). Figure 9. Estimated maturity function for alfonsino and size of first maturity (TMS50%) Los autores agradecen la colaboración brindada por el capitán y tripulantes del PAM Boston Blenheim, nave en la cual se realizó el primer monitoreo de esta especie. Así también a los Sres Reinaldo Rehhof (Q.E.P.D.) y Raúl Bustos, por las labores de recolección de la información en las nueve mareas efectuadas con este fin. Así también, se agradece a los Sres. Enri- Pesca de Beryx splendens en montañas submarinas de Juan Fernández, Chile que Gutiérrez F., Gerente de Operaciones y Francisco González, Jefe de Flota, ambos de la empresa Pesca Chile S.A., por su apoyo y facilidades para realizar esta investigación. Igualmente se reconoce a los revisores anónimos sus comentarios y sugerencias al documento. REFERENCIAS Alekseev, F.E., E.I Alekseeva, I.A. Trunov & V.I. Shlibanov. 1986. Microscale warer circulation, ontogenic geographical differentiation and population structure of alfonsino, Beryx splendens Lowe, in the Atlantic Ocean. Int. Cons. Explor. Sea., Comm. Meet., C10: 1-16. Busakhin, S.B. 1982. Systematics and distribution of the family Berycidae (Ostheichthyes) of the word ocean. J. Ichthyol., 22(6): 1-21. Fricke, R., 1999. Fishes of the Mascarene Islands (Réunion, Mauritius, Rodriguez): an annotated checklist, with descriptions of new species. Koeltz Scientific Books, Koenigstein, Theses Zoologicae, 31: 759 pp. Gili, R., L. Cid., H. Pool, Z. Young, D. Tracey, P. Horn & P. Marriott. 2002. Estudio de edad, crecimiento y mortalidad natural de los recursos orange roughy y alfonsino. Informe Final FIP N° 2000-12: 107 pp. González, J.A., V. Rico, J.M. Lorenzo, S. Reis, J.G. Pajuelo, M. Afonso Dias, A. Mendonça, H.M. Krug & M.R. Pinho. 2003. Sex and reproduction of the alfonsino Beryx splendens (Pisces, Berycidae) from the Macronesian archipelagos. J. Appl. Ichthyol., 19: 104-108. Heemstra, P.C., 1986. Berycidae. In: M.M. Smith & P.C. Heemstra (eds.). Smiths' sea fishes. Springer-Verlag, Berlin, pp. 409-410. Horn, P. & B.R. Masey. 1989. Biology and abundance of alfonsino (Beryx splendens) and bluenose (Hyperoglyphe antarctica) off the lower east coast, North Island, New Zealand. N.Z. Fish. Tech. Rep., 15 pp. Inada, T., M. Takeda & H. Hatanaka. 1986. Important fishes trawled off Patagonia. Japan Marine Fishery Resource Research Center, Tokyo, 369 pp. Langley, A. & N. Walker. 2002. Characterisation of the alfonsino (Beryx splendens) fishery in BYX 3. New Zealand Fisheries Assessment Report 2002: 39 pp. Lehodey, P. & R. Grandperrin. 1996. Age and growth of the alfonsino Beryx splendens over the seamounts off New Caledonia. Mar. Biol., 125: 249-258. Lehodey, P., M. Marchal & R. Grandperrin. 1994. Modelling the distribution of alfonsino, Beryx splendens, over the seamounts of New Caledonia. U.S. Fish. Bull., 92(4): 748-759. Lehodey, P., R. Grandperrin & M. Marchal. 1997. Reproductive biology and ecology of a deep-demersal 477 fish, Beryx splendens, over the seamounts of New Caledonia. Mar. Biol., 128: 17-27. Lillo, S., R. Bahamonde, B. Leiva, M. Rojas, M.A. Barbieri, M. Donoso & R. Gili. 1999. Prospección del recurso orange roughy (Hoplostethus sp.) y su fauna acompañante entre la I y la X Región. Informe Final FIP 98-5: 127 pp. Massey, B.R. & P.L. Horn. 1990. Growth and age structure of alfonsino (Beryx splendens) from the lower east coast, North Island, New Zealand. N.Z. J. Mar. Freshwat. Res., 24(1): 121-136. Masuzawa, T., Y. Kurata & K. Onishi. 1975. Results of group study on population of demersal fishes in water from Sagami Bay to southern Izu Islands; population ecology of Japanese alfonsin and other demersal fishes. Pap. Fish. Res., 28: 1-105. Maul, G.E., 1986. Berycidae. En: P.J.P. Whitehead, M.L. Bauchot, J.-C. Hureau, J. Nielsen & E. Tortonese (eds.) Fishes of the north-eastern Atlantic and the Mediterranean. UNESCO, Paris. Vol. 2: 740-742. Maul, G.E., 1990. Berycidae. In: J.C. Quero, J.C. Hureau, C. Karrer, A. Post & L. Saldanha (eds.). Check-list of the fishes of the eastern tropical Atlantic (CLOFETA). JNICT, Lisbon; SEI, Paris; and UNESCO, Paris, 2: 626 pp. Niklitschek, E., D. Boyer, A. Lafon, M. Soule, J. Cornejo, I. Hampton, E. Hernández, R. Merino, P. Toledo, L. Castro, G. Aedo & M.G. Nacimento. 2007a. Evaluación hidrocústica y TS de alfonsino y orange roughy. Informe Final Proyecto FIP 2005-13: 276 pp. Niklitschek, E., J. Cornejo, E. Hernández, P. Toledo, C. Herranz, R. Merino, A. Lafon, L. Castro, R. Roa, & G. Aedo. 2007b. Evaluación hidroacústica de alfonsino y orange roughy, año 2006. Informe Final Proyecto FIP 2006-09: 221 pp. Paulin, C., A. Stewart, C. Roberts & P. McMillan, 1989. New Zealand fish: a complete guide. National Museum of New Zealand Misc. Ser., 19: 279 pp. Paxton, J.R., 1999. Berycidae. Alfonsinos. En: K.E. Carpenter & V.H. Niem (eds.) FAO species identification guide for fishery purposes. The living marine resources of the WCP. Vol. 4. Bony fishes part 2 (Mugilidae to Carangidae). FAO, Rome, 2218-2220. Roa, R., B. Ernst & F. Tapia. 1999. Estimation of size at sexual maturity: an evaluation of analytical and resampling procedures. U.S. Fish. Bull., 97: 570-580. Roa, R., E. Niklitschek, J. Lamilla, P. Toledo, C. Hernández, J. Cornejo & C. Herranz. 2008. Estudio biológico-pesquero y reproductivo del recurso alfonsino en el archipiélago de Juan Fernández. Informe Final Proyecto FIP 2006-09: 78 pp. Seki, M.P. & D.T. Tagami. 1986. Review and present status of handline and bottom longline fisheries for 478 Lat. Am. J. Aquat. Res. alfonsin. In: R.N. Uchida, S. Hayasi & G.W. Boehlert (eds.). Environment and resources of seamounts in the North Pacific. NOAA Tech. Rep. NMFS, 43: 3135. Received: 22 July 2009; Accepted: 14 September 2009 Zuleta, A., P. Rubilar, E. Niklitschek, P. Gálvez, Z. Young, M. Feltrim, A. Guerrero, F. Contreras & R. Tasheri. 2008. Bases técnicas para el monitoreo y evaluación de alfonsino. Informe Final Proyecto FIP 2004-41: 213 pp. Lat. Am. J. Aquat. Res., 37(3): 479-500, 2009 “Deep-sea fisheries off Latin America” P. Arana, J.A.A. Perez & P.R. Pezzuto (eds.) DOI: 10.3856/vol37-issue3-fulltext-16 Montes submarinos de Nazca y Salas y Gómez 479 Review Montes submarinos de Nazca y Salas y Gómez: una revisión para el manejo y conservación Mauricio Gálvez-Larach Environment, Society and Design Division, Lincoln University, Lincoln 7647, Canterbury, New Zealand Dirección actual: WWF-Chile, Carlos Anwandter 624, Casa 4. Valdivia, Chile RESUMEN. Con motivo de la creciente preocupación internacional por el manejo y conservación de ecosistemas marinos vulnerables, entre los que se cuentan los montes submarinos y los corales de aguas frías de las cordilleras de Nazca y Salas y Gómez, y en vista de la inminente creación de la Organización Regional de Administración Pesquera del Pacifico Sur, se hace necesaria una revisión de los principales antecedentes científicos sobre estas cadenas montañosas como un insumo para la toma de decisiones. El presente documento atiende dicha necesidad considerando los aspectos geológicos, oceanográficos, biológicos, ecológicos y pesqueros asociados a Nazca y, Salas y Gómez, junto con identificar las opciones de manejo. A pesar que los estudios en el área son escasos y fragmentados, se destaca su particularidad debido a los altos niveles de endemismo, alta diversidad de especies, alta concentración de montes submarinos, presencia de corales de aguas frías, mayor nivel de productividad en relación a las aguas circundantes y su potencialidad para actividades de océano-minería y pesca de fondo. Debido a la lejanía del área y los altos costos involucrados, una mayor cooperación internacional se requerirá para abordar futuros estudios, al tiempo que la creación de una red de Áreas Marinas Protegidas se identifica como la mejor opción para el manejo y conservación. Palabras clave: montes submarinos, Nazca y Salas y Gómez, ecosistemas marinos vulnerables, manejo pesquero y conservación. Seamounts of Nazca and Salas y Gómez: a review for management and conservation purposes ABSTRACT. Due to growing international awareness of the importance of the conservation and management of vulnerable marine ecosystems – of which the seamounts and deep-sea corals of the Nazca and Salas y Gómez submarine ridges are examples – and taking into account the imminent establishment of a South Pacific Regional Fisheries Management Organization, a scientific review of this seamount chain is needed to provide input for decision-making processes. This paper provides such a review, considering geological, oceanographic, biological, ecological, and fisheries issues associated with Nazca and Salas y Gómez, and also identifies some management options. Notwithstanding the limited and fragmented studies available, this distinctive area has a high level of endemism, rich biodiversity, seamount density, deep-sea corals, relatively elevated primary productivity (considering the surrounding waters), and the potential for bottom fisheries and ocean-mining activities. Because of the remoteness of the area and the high costs involved, strong international cooperation will be required to undertake future studies. A network of Marine Protected Areas is identified as the best management option for the area. Keywords: seamounts, Nazca and Salas y Gómez, vulnerable marine ecosystem, conservation and fisheries management. ________________________ Corresponding author: Mauricio Gálvez (mauricio.galvez@wwf.cl) 480 Lat. Am. J. Aquat. Res. INTRODUCCIÓN La protección de los ecosistemas marinos vulnerables (EMV) ha estado en la discusión pesquera internacional en los últimos años (Gálvez, 2007), siendo los montes submarinos (MS) y los corales de aguas frías los ecosistemas que enfrentan las amenazas más inmediatas. Esta preocupación, junto con la reciente iniciativa internacional para crear la Organización Regional de Administración Pesquera del Pacífico Sur (ORAP PS), ha puesto de manifiesto a dos importantes cordilleras submarinas que se extienden tanto en aguas de la alta mar como en aguas jurisdiccionales de Chile, a saber, las cordilleras de Nazca y Salas y Gómez (Fig. 1). Las bases para cualquier acción de manejo en ésta área deberán descansar, entre otros aspectos, sobre los mejores antecedentes científicos disponibles, por lo que una revisión de tales antecedentes resulta necesaria. Una revisión integral de la bibliografía científica disponible, no sólo es útil para aspectos de manejo, sino que además permite identificar los vacíos existentes, el diseño de nuevas investigaciones y el planteamiento de hipótesis científicas a explorar. En atención a esto, la presente revisión tiene por objetivo resumir la información disponible en relación a aspectos geológicos, oceanográficos, biológicos, ecológicos y pesqueros de Nazca y Salas y Gómez, al tiempo que proporciona una visión general de los impactos que se podrían derivar de la pesca y de las amenazas que enfrentan. Finalmente, se analiza el manejo actual del área y se consideran opciones de política orientadas a la conservación y estudio de los ecosistemas que sustentan estas importantes cordilleras submarinas. ESTADO DEL CONOCIMIENTO DE LOS MONTES SUBMARINOS Mientras la existencia de MS ha sido conocida por cientos de años, la biología de los mismos recibió escasa atención o esfuerzos de investigación hasta fines de 1950 (Hubbs, 1959). Incluso hoy, sólo una pequeña proporción de las decenas de miles de MS estimados han sido biológicamente muestreados (Clark et al., 2004) (Fig. 1). En una revisión de la biología de los MS, Wilson & Kaufmann (1987) reportaron que cerca de 96 MS habían sido biológicamente muestreados. Desde entonces el número se ha incrementado a cerca de 300. Pero incluso estas bajas cifras sobreestiman lo que es conocido acerca de la ecología de los MS. Esto es por una razón muy simple, la mayoría de los MS han sido muestreados de oportunidad – con pocas muestras biológicas tomadas durante estudios geológicos o de columna de agua, por ejemplo – o muestreados sólo para algunos tipos de animales o plantas marinas. Es raro disponer de estudios ecológicos comprehensivos. Varios de estos eventos de muestreo han sido reportados en la literatura sólo como resúmenes abreviados de datos, sin una lista completa de las especies colectadas o información de abundancia. Adicionalmente, mucho del trabajo publicado es de difícil acceso y arduo de sistematizar en una base común, dado que ha sido publicado en diferentes lenguajes, a menudo en literatura gris como reportes de gobierno difíciles de ubicar y/o acceder. Las áreas de MS con los muestreos biológicos más comprehensivos y para las cuales los resultados están publicados en literatura ampliamente disponible en idioma inglés se muestran en la Figura 1. Adicionalmente, una gran cantidad de información soviética de MS alrededor del mundo se ha puesto a disposición a través de Internet por parte del Instituto de Oceanología P.P. Shirshov (SeamountOnline, 2007). La biología de los MS es actualmente un área activa de investigación científica, prueba de ello son el Global Census of Marine Life on Seamounts (CenSeam) al amparo del NIWA de Nueva Zelanda, las investigaciones del CSIRO de Australia en MS y las patrocinadas por Fisheries and Ocean de Canadá, el programa Ocean Explorer de la NOAA de USA, el proyecto OASIS de varias instituciones europeas de investigación, y las diferentes bases de datos públicas que se han levantado en Internet. El impacto de la pesca sobre MS ha estado también en el centro de la discusión científica. A pesar de que Stone et al. (2004) indican que no existen verdaderos muestreos en MS antes y después de actividades de pesca comerciales – particularmente de pescas de arrastre –, y por lo tanto se desconoce el impacto de la misma sobre estos ecosistemas, se ha documentado que los corales de aguas frías tienen requerimientos de hábitat muy específicos y que pueden ser sensibles a la alteración del carácter del fondo marino por parte de artes de pesca, o a la creciente sedimentación resultante del arrastre de fondo (Commonwealth of Australia, 2002; ICES, 2006). Tales eventos pueden inhibir permanentemente la recuperación de arrecifes de coral de aguas frías o de jardines de octocoral (Rogers, 1999; ICES, 2006). Por otro lado, Koslow et al. (2001) en un estudio cercano a una comparación de un “antes y después” demuestran claramente el efecto del arrastre de fondo al constatar la gran disminución en la cobertura de formas de vida en el fondo marino, la reducción de la diversidad de especies, y la baja generalizada de abundancia en los MS de Nueva Caledonia que fueron objetos de pesca. Se ha señalado que los efectos adversos sobre MS deben ser analizados caso a caso; sin embargo, Morato et al. (2004, 2006) efectúan Montes submarinos de Nazca y Salas y Gómez 481 Figura 1. Distribución de 14.300 MS estimados (puntos grises). Los cuadrados muestran los montes biológicamente muestreados en forma extensiva, los círculos indican algún nivel de datos biológicos y los triángulos indican montes muestreados biológicamente pero cuyos datos no están disponibles en SeamountOnline (Clark et al., 2004). A: Cadenas Hawaianas y Emperador, B: Montes del Pacífico medio, C: Cordón de Norfolk, D: Cordón de Lord Howe, E: Cordón Chatman, F: Cordón Tasmania, G: Cadenas de Nazca y Salas y Gómez, H: Monte Gran Meteoro. Figure 1. Distribution of 14,300 estimated seamounts (gray points). Squares indicate seamounts with comprehensive biological data, circles indicate seamounts with some level of biological data, and triangles indicate seamounts that have been sampled biologically but for which data are not available in SeamountOnline (Clark et al., 2004). A: HawaiianEmperor seamount chain, B: Mid-Pacific rise, C: Norfolk Ridge, D: Lord Howe rise, E: Chatman rise, F: Tasman rise, G: Nazca and Salas y Gómez rises, H: Great Meteor seamount. un análisis general y demuestran la alta vulnerabilidad de las poblaciones de peces que habitan los MS. Salvo el proyecto de investigación INSPIRE centrado en los hidratos de gas submarino, en que participan científicos nacionales, Chile ha estado ajeno a las costosas investigaciones multidisciplinarias que implica el estudio de ambientes marinos de aguas profundas. No obstante, sobre aquellos montes que conforman las cordilleras de Nazca y Salas y Gómez se han realizado algunas investigaciones extranjeras de gran nivel, cuyos resultados aportan una comprensión suficiente de su riqueza y rareza biológica, y un entendimiento de la formación geomorfológica del área. Con todo, los datos e información disponibles para esta distintiva área marina son fragmentados, mucha información está dispersa en reportes de uso privado y hasta la fecha no ha sido sintetizada con una visión integradora. Las investigaciones científicas de expediciones rusas y soviéticas entre 1973 y 1987 en Nazca y Salas y Gómez, permitieron disponer de antecedentes inéditos y comprehensivos respecto de la fauna asociada a estos cordones montañosos, apreciándose sus caracte- rísticas únicas, tanto por la diversidad de especies como por el sorprendente grado de endemismo (Parin et al., 1997; Mironov et al., 2006). En otro campo, algunos estudios geológicos se han efectuado en el área, principalmente por parte de expediciones europeas y de USA, lo que ha permitido una mejor comprensión de la formación de dichas cadenas de montes, se ha precisado con alta resolución la batimetría de gran parte del área, al tiempo que se han determinado zonas ricas en minerales. Sin embargo, tanto los estudios biológicos como geológicos no han abarcado todos los principales MS de estos cordones, quedando con información parcial algunos montes de la parte central de la cordillera de Salas y Gómez, y particularmente con un escaso nivel de información biológica las áreas bajo jurisdicción chilena. Algunas expediciones oceanográficas realizadas por Chile se han efectuado en el área en el marco del programa CIMAR Islas Oceánicas (Fig. 2), aunque éstas no han sido orientadas específicamente a estudiar la dinámica oceánica asociada a los MS. La información biológica obtenida en el área, por los programas de observadores a bordo de la flota comercial chilena de alta mar, está fundamentalmente centrada en especies objetivo y el 482 Lat. Am. J. Aquat. Res. Figura 2. Localización de los cordones de MS de Salas y Gómez y Nazca. Rectángulos blancos indican montes con información geológica (Seamount Biogeosciences Network), números indican montes con información biológica (SeamountOnline), recta con puntos indican las estaciones oceanográficas del Crucero Cimar 5 Islas Oceánicas (Centro Nacional de Datos Oceanográficos de Chile), triángulos azules y rojos indican muestras de nódulos de manganeso y de corteza de cobalto-ferromanganeso (International Seabed Authority). En rojo se muestran las ZEEs insulares de Chile. Nombres asignados por expediciones rusas: 1 Needle, 2 Rock, 3 Ichthyologists, 4 Pillar, 5 Cupole, 6 Mayday, 7 Pearl, 8 Amber, 9 Western, 10 Baral, 11 Long, 12 Bolshaya, 13 Communard (Nasca 5), 14 New, 15 Dorofeev, 16 Albert, 17 Ikhtiandr, 18 Ecliptic, 19 Professor Mesyatzev, 20 Star, 21 Initial, 22 Soldatov, 23 Nasca 7, Nombres asignados por expediciones Chilenas: 24 Nazca #3, 25 Nazca #5, 26 Nazca #7, 27 Nazca #6, 28 Nazca #8. Figure 2. Location of Salas y Gómez and Nazca seamount chain. White rectangles indicate seamounts with geological data (Seamount Biogeosciences Network), numbers indicate seamounts with biological data (SeamountOnline), black lines with dots indicate oceanographic sampling points from Cimar 5 Islas Oceánicas research cruise (Centro Nacional de Datos Oceanográficos de Chile), and blue and red triangles indicate manganese nodules and cobalt-enriched ferromanganese crust samples (International Seabed Authority). The Chilean EEZs are circled in red. Seamount names given by Russian expeditions are: 1 Needle, 2 Rock, 3 Ichthyologists, 4 Pillar, 5 Cupole, 6 Mayday, 7 Pearl, 8 Amber, 9 Western, 10 Baral, 11 Long, 12 Bolshaya, 13 Communard (Nasca 5), 14 New, 15 Dorofeev, 16 Albert, 17 Ikhtiandr, 18 Ecliptic, 19 Professor Mesyatzev, 20 Star, 21 Initial, 22 Soldatov, 23 Nasca 7. Seamount names given by Chilean expeditions are: 24 Nazca #3, 25 Nazca #5, 26 Nazca #7, 27 Nazca #6, 28 Nazca #8. muestreo de la fauna acompañante no es total. Si bien es cierto que el conocimiento global de los MS está lejos de ser completo, para el caso de Nazca y Salas y Gómez, se ha obtenido información suficiente que debiera motivar el desarrollo de futuras investigaciones multidisciplinarias, a fin de disponer de un nivel de comprensión que permita una adecuada administración del área. Los países costeros de la cuenca suroriental de océano Pacífico, y en particular Chile, debieran tener un rol preponderante en dichas investigaciones, no sólo por el avance que esto debe suponer para sus científicos, sino que además por la responsabilidad que les cabe a estas naciones en la conservación de estas únicas cordilleras submarinas. GEOCEANOFRAFÍA DEL AREA Geomorfología y formación Los MS de Nazca y Salas y Gómez en conjunto son uno de los accidentes geográficos submarinos más relevantes del océano Pacífico suroriental y, con ciertas salvedades, comparable a la sección ChilenoArgentina de la cordillera terrestre de Los Andes por su extensión y altura. Nazca y Salas y Gómez son dos cadenas secuenciales de montes que en conjunto tienen una extensión de 2.900 km (Naar et al., 2001) con 100 km de ancho en el caso de Salas y Gómez (Haase et al., 1997) y 300 km en el caso de Nazca (Woods & Okal, 1994). El cordón de Salas y Gómez se dispone en dirección oeste-este y se localiza entre los paralelos 23°42’ y 29°12’S y meridianos 111°30’ y 86°30’W. En su extremo occidental intercepta la dorsal del Pacífico este al interior de la Zona Económica Exclusiva (ZEE) de Chile generada por la isla de Pascua y, en su extremo oriental, se confunde con el extremo occidental del cordón submarino de Nazca. El cordón de Nazca se extiende en dirección suroeste-noreste y se localiza entre los paralelos 15°00’ y 26°09’S y los meridianos 86°30’ y 76°06’W. Su extremo meridional está comprendido en la ZEE de Chile generada por la isla Montes submarinos de Nazca y Salas y Gómez San Félix, mientras que su extremo septentrional se atenúa frente a la costa peruana en la zona de subducción Perú-Chile (Fig. 2). El área de ambos cordones cubre una extensión cercana a 1,2 millones km2, lo cual representa aproximadamente el 5,04% de la alta mar en el área 87 de FAO (24.713.142 km² acorde con Sea Around Us, 2008). Adicionalmente, contiene 144 montes (de los cuales 51 están en aguas de la ZEE de Chile) con profundidades de su cima entre 0 y 2.700 m con un promedio de 893 m desde la superficie (Fig. 3a). La altura de estos MS desde el piso oceánico varía entre 1.000 m y 3.420 m con un promedio de 2.156 m, siendo el rango 2.000 m a 2.500 m el más frecuente (Fig. 3b). Dichos montes representan cerca del 54% de los MS en el océano Pacífico suroriental (Gálvez, 2006). La configuración de las montañas submarinas, tanto de Salas y Gómez como de Nazca, es variada y contempla desde pequeños montes de formas cónicas hasta atolones, pasando por intrincados guyots o mesetas (Fig. 3c), la mayoría de ellos de pequeño volúmenes (Fig. 3d). 483 Los MS de Nazca y Salas y Gómez son de origen volcánico, formados por el hotspot de Pascua (Naar et al., 2002) hace más de 30 millones de años, y que se encuentran alineadas debido al desplazamiento de la placa de Nazca. Las únicas dos cimas que se elevan por sobre el nivel del mar son la isla de Pascua y la isla Salas y Gómez. Los MS “recientemente” formados son Umu (2,7-5,8 Ma) y Pukao (6,4-6,6 Ma), mientras que los de mayor edad corresponden a cerca de 34 Ma y se ubican en el extremo norte de la cordillera de Nazca (Earth Reference Data and Models, 2007). Para mayor claridad, debe notarse que en esta sección el término hotspot es usado en su acepción geológica; es decir, como un sector que ha experimentado volcanismo activo por periodos prolongados de tiempo y que es estacionario en relación a las placas tectónicas. El concepto de ‘hotspot’ biológico (referido al final de esta revisión), fue introducido por el Dr. Norman Myers y, en ecología terrestre, denota una región con una considerable reserva de biodiversidad que adicionalmente está bajo alguna amenaza importante. Figura 3. Frecuencia porcentual de MS de Nazca y Salas y Gómez según a) rangos de profundidad (m) de la cima, b) altura del monte (m), c) tipo de monte, y d) volumen (km3) del monte. Gráficos a partir de 95 montes registrados (Fuente: Earth Reference Data and Models, 2007). Figure 3. Percentage frequency of Nazca and Salas y Gómez seamounts by a) summit depth range (m), b) seamount height (m), c) seamount type, and d) seamount volume (km3). Graphs are based on 95 mapped seamounts (Source: Reference Data and Models, 2007). 484 Lat. Am. J. Aquat. Res. Naar et al. (2002) confeccionaron mapas del área y tomaron muestras geológicas para evaluar la estabilidad del hotspot en la cuenca del Pacífico. Adicionalmente, mediante de modelos de movimiento de placas, testearon el modelo de convección de los mantos de Steinberger & O’Connel (1998 fide Naar et al., 2002) en el sentido de que el hotspot Hawaiano y el de Pascua están convergiendo a razón de 10 mm año-1. Acorde con estos autores, en los 30 Ma de edad de la cordillera de Nazca se predicen cerca de 600 km de convergencia entre estos dos hotspots. Por otro lado, Woods & Okal (1994) por medio de mediciones de velocidad del modo fundamental de las ondas de Rayleigh, a lo largo de las cordilleras de Nazca y Salas y Gómez, plantean que Nazca y las planicies de Tuamotu son imágenes reflejadas formadas por un hotspot coincidente con el centro de dispersión Farellón-Pacífico. Por otro lado, las mediciones en Salas y Gómez indicarían para estos autores que esta cadena fue formada como una zona de fractura permeable y no como una simple ruta de un hotspot. Otros modelos que han sido propuestos para el origen del hotspot de Pascua y la cordillera de Salas y Gómez son una línea caliente de manto (Bonatti et al., 1977), una fractura de propagación (Clark & Dymond, 1977), una dorsal oceánica incipiente (Mammerickx, 1981), y la ubicación de la isla de Pascua sobre un canal de pluma originado más al este cerca de la isla Salas y Gómez (Schilling et al., 1985; O’Connor et al., 1995). Los estudios de formación de las cordilleras submarinas de Nazca y Salas y Gómez no son concluyentes, ya que básicamente se basan en modelos de dinámica de placas y ondas, por lo que aún persiste un cierto nivel de controversia respecto a la formación de estas cadenas. Características oceanográficas físicas Varias características físicas de los MS, condiciones de estratificación y características del flujo oceánico son los elementos que interactúan para generar diferentes respuestas de dinámicas oceanográficas en los MS. Entre estas se cuentan las columnas de Taylor, la formación de domos de superficies de densidad, celdas de circulación cerradas y reforzamiento de mezclas verticales. Debido a las condiciones oceánicas de variabilidad del flujo, es probable que las condiciones locales en la dinámica de los MS y los procesos de interacción biofísica resultantes también sean variables. Esto hace difícil la cuantificación de una respuesta “idealizada” de un particular monte submarino a las interrupciones del régimen de flujos oceánicos. Es ampliamente aceptado que la dinámica de los MS genera condiciones que incrementan los flujos verticales de nutrientes y retención de materia orgánica, sus- tentando la productividad que alimenta a los niveles tróficos superiores. A la fecha, sin embargo, ha habido muy poca evidencia concreta y consistente que sustente estas aseveraciones. Esto probablemente es debido a las condiciones inestables de las características oceánicas forzantes, las que no permiten una respuesta “idealizada” como las columnas de Taylor y las celdas de circulación cerrada. Adicionalmente, los MS pueden verter pasivamente trazas tales como flujos de clorofila, proveyendo así una fuente de parches biofísicos en el océano circundante. Tal variabilidad impone un interesante desafío no solo para oceanógrafos, sino que también para el manejo de los MS (White & Mohn, 2002; White et al., 2007). A excepción de las investigaciones realizadas por las expediciones soviéticas ya mencionadas, no se dispone de otros estudios oceanográficos específicos que analicen la particular dinámica sobre los MS de Nazca y Salas y Gómez. No obstante, esto no implica que no se hayan tomado muestras oceanográficas (y paleoceanograficas (Shipboard Scientific Party, 2003)) en el área. Así por ejemplo, en mayo de 1994 se efectuaron mediciones en torno a isla de Pascua para realizar estudios hidrográficos y de circulación geostrófica (Moraga et al., 1999); en junio de 1995 la nave de investigación “Sonne” colectó muestras de temperatura y salinidad en la columna de agua del área de Nazca (Daneri et al., 2000). Igualmente, en el marco del programa Cimar 5 Islas Oceánicas de la Armada de Chile, en octubre de 1999 se efectuaron 32 estaciones oceanográficas entre Caldera (27°00’S, 71°46’W) e isla de Pascua (27°00’S, 107°35’W), donde se realizaron registros continuos de temperatura, salinidad y oxígeno en la columna de agua entre la superficie y los 2.500 m de profundidad (Fuenzalida et al., 2007; Rivera & Mujica, 2004). Dicho transecto cubre algunos montes de la cordillera de Salas y Gómez entre la longitud 100°28’W e isla de Pascua (Fig. 2). Finalmente, durante 2003 y 2005 se efectuaron muestreos oceanográficos (temperatura, salinidad y oxígeno) en la columna de agua hasta 240 m de profundidad en el área de Nazca, en el marco de un proyecto de caracterización de la zona como área de crianza del pez espada Xiphias gladius (Yáñez et al., 2004, 2006). Sin duda que todos los estudios mencionados fueron diseñados con objetivos diferentes. No obstante, éstos guardan una estrecha relación debido a las técnicas de muestreo empleadas y a las variables medidas. En atención a lo anterior, se debiera realizar el esfuerzo de compilar dichos datos en una base común, para evaluar la factibilidad de desarrollar análisis que den cuenta de la dinámica oceánica de las masas de agua asociadas a los MS de las cordilleras de Nazca y Salas y Gómez. Montes submarinos de Nazca y Salas y Gómez Características oceanográficas biológicas La biomasa de peces y otros zooplanctívoros es usualmente alta sobre MS someros, intermedios, y a veces, sobre los de gran profundidad. Esto no puede ser explicado en términos de control ‘bottom up’, el cual es impulsado por procesos de surgencia local y el resultante aumento de la producción primaria. Aunque procesos de surgencia ocasionalmente ocurren, éstos raramente penetran la capa fótica y no se ha observado que permanezcan lo suficiente sobre los MS como para afectar el crecimiento de las poblaciones locales de zooplancton. De hecho la biomasa zooplanctónica de los MS es menor sobre la cima de los mismos que en las aguas circundantes, especialmente en los MS someros (Koslow, 2007). El peso de la evidencia disponible indica que el enriquecimiento trófico sobre los MS se debe a contribuciones vía: (i) retención en el fondo del zooplancton migrante verticalmente, y (ii) flujos horizontales potenciados de alimento (partículas) suspendido. La retención en el fondo del zooplancton migrante, temprano en la mañana, es el mayor mecanismo para la acumulación y focalización trófica sobre los MS, particularmente los de profundidades someras e intermedias. Los flujos horizontales potenciados de presas planctónicas emergen para ser una de las vías principales de aportes tróficos sobre los MS profundos (Clark et al., 2004). Aparentemente, los fuertes flujos se mantienen debido a un sustantivo potenciamiento de las corrientes y a la amplificación de las ondas internas sobre la topografía de los MS. Las interacciones biofísicas son los mecanismos claves responsables para la mantención de las altas biomasas en niveles tróficos elevados. En consecuencia, el enriquecimiento biológico de los MS puede ser producto de un bombeo desde el fondo hacia arriba, impulsando por un subsidio trófico a los carnívoros, en vez de un enriquecimiento local de la producción primaria (Genin & Dower, 2007). Al igual que los estudios de oceanografía física, también son escasos los estudios disponibles de oceanografía biológica relativos a los MS de Nazca y Salas y Gómez. A pesar de esto, se cuenta con algunos análisis de datos tomados en el área, que corroboran que las aguas circundantes a los MS de Nazca y Salas y Gómez albergan una gran cantidad y diversidad de larvas; mientras que otros estiman tasas de producción primaria más elevadas que para el océano circundante. Así por ejemplo, Daneri et al. (2000) en un estudio de producción primaria en el Sistema de la Corriente de Humboldt y áreas oceánicas asociadas frente a Chile, indican bajos valores de producción primaria neta en el área oceánica frente al norte de Chile (0,7 ± 0,4 μg C l-1 h-1), pero notan que este índice mejora levemente en el área de la cordillera de Nazca (1,8 ± 1,2 μg C l-1 485 h-1). Por otro lado, Rivera & Mujica (2004) indican que el índice de diversidad de larvas de decápodos es notablemente alto en estaciones de muestreo cercanas a los MS de Nazca, si se compara con el mismo índice donde no hay asociaciones con MS. Adicionalmente, en dicha estación de muestreo estos autores registraron un phyllosoma de Scyllarus delfini (Scyllaridae) y larvas de carideos de los géneros Oplophorus, Nematocarcinus, Periclimenes y Lysmata, los que cuentan con especies endémicas en los MS y en sus islas asociadas, corroborando así que esta alta diversidad está estrechamente relacionada con dichos montes. Adicionalmente, durante 2003 y en la zona de la cordillera de Nazca, Yáñez et al. (2004) realizaron 14 lances de arrastre con una red IKMT para tomar muestras de micronecton superficial entre 5 y 70 m durante la medianoche. Los resultados obtenidos fueron analizados en la perspectiva de su relación con la dieta del pez espada, por lo que no se dispone de análisis que vinculen los resultados con la dinámica de los MS o las especies adultas que habitan los mismos. Finalmente, en el marco de los ya mencionados cruceros de investigación de la flota rusa, se tomaron múltiples muestras ictioplanctónicas en el área. Lamentablemente, los resultados de estas investigaciones están publicados en ruso (Belayanina, 1989, 1990), y hay pocas referencias a estos estudios en la literatura internacional. DESCRIPCIÓN BIOLÓGICA DE NAZCA Y SALAS Y GÓMEZ El estudio faunístico de las cordilleras submarinas del Pacífico suroriental comenzó en la década de 1950, pero las investigaciones más detalladas fueron hechas entre 1973 y 1987 durante varios cruceros de naves de investigación rusas, particularmente de los B/I "Ikhtiandr", "Professor Mesyatzev" y "Professor Shtokman". Una compilación de los resultados de estas investigaciones sobre las cordilleras submarinas de Nazca y Salas y Gómez fue efectuada por Parin et al. (1997) y actualizada por Mironov et al. (2006); en tanto que una comprehensiva base de datos con las especies identificadas por localidad de muestreo puede ser obtenida desde el sitio web de SeamountOnline (2007). Un resumen de los resultados de estos trabajos se muestra a continuación. Composición y distribución de especies En los 23 MS muestreados de las cordilleras de Nazca y Salas y Gómez (Fig. 2) se identificaron 208 géneros y 226 especies de invertebrados bentónicos y bentopelágicos; en tanto que 131 géneros y 170 especies de 486 Lat. Am. J. Aquat. Res. peces también fueron identificadas (Tabla 1). Siete géneros y 150 especies fueron descritas por primera vez: cuatro y 74 en invertebrados, tres y 76 en peces. Las comunidades de invertebrados de fondo en las cimas de los montes se caracterizan por la fuerte dominancia de pocas especies. A profundidades menores de 400 m la langosta enana (Projasus bahamondei) es dominante al este de los 83°W, mientras que los erizos predominan al oeste. En varias combinaciones y a grandes profundidades son más abundantes las esponjas, gorgónidos, estrellas de mar y camarones. El jurel (Trachurus symmetricus murphyi), usualmente domina las comunidades de peces bentopelágicas sobre los montes hacia el este de los 85°W. Otras especies abundantes son Emmelichthys cyanescens, E. elongatus, Decapterus muroadsi, Zenopsis oblongus, Epigonus elegans y Pentaceros quinquespinis, todas las cuales forman la base de pesquerías comerciales. Entre los peces se destaca la dominancia de Caelorinchus immaculatus (cordillera de Nazca) y Pterygotrigla picta. La mayor diversidad de peces se estimó a profundidades de entre 500 y 600 m; en tanto que los biotipos de comunidades de fondos blandos y rocosos difieren significativamente. Relaciones faunísticas y endemismo La fauna bentónica y bentopelágica de invertebrados y peces del área está mucho más relacionada con el Pacífico Indoccidental antes que con el Pacífico oriental (Fig. 4). Así por ejemplo, el mayor grado de afinidad es con el sur de Japón (85%), seguido del sureste de Australia (77%) y de Hawai (74%). De las especies registradas en Nazca y Salas y Gómez, 24 también han sido reportadas para otras regiones como Hawai (16 spp.), sur de Japón (11 spp.), Nueva Caledonia (5 spp.), Filipinas (5 spp.) y Australia (4 spp.). En el área es posible encontrar mayores niveles de similitud faunística entre algunos montes cuando se analizan los invertebrados, pero igualmente hay montes “vecinos” que son notablemente diferentes en su composición faunística en base a invertebrados. Las cordilleras de Nazca y Salas y Gómez en conjunto presentan tasas de endemismo de 41,2% para peces y de 46,3% para invertebrados que viven en el fondo (Parin et al., 1997; Mironov et al., 2006) con adiciones). Estas tasas de endemismo son las más altas encontradas en MS, e incluso superan a las de ecosistemas asociados a ventanas hidrotermales, uno de los hábitat más aislados e inusuales del océano (Richer de Forges et al., 2000). Considerando la fauna de invertebrados, Parin et al. (1997) postulan la provincia biogeográfica Salas y Gomesian entre 83ºW y 101ºW, mientras que de acuerdo a la fauna íctica, postulan la provincia biogeográfica Nazcaplatensis, que incluye las cordilleras de Salas y Gómez, la de Nazca y posiblemente el sublitoral y batial superior de las zonas de islas Desventuradas, archipiélago de Juan Fernández, e islas Salas y Gómez y Pascua. En cuanto a los invertebrados que habitan en esta zona es posible indicar que se han reportado 76 especies endémicas, y a nivel de género se han reportado dos endémicos (Pseudoplectella y Cribrosoconcha). Destacan en esta zona 25 especies del orden Scleractinia (corales pétreos formadores de arrecifes), de las cuales una especie es endémica, así como 25 especies del grupo de los gastrópodos Turridae de los cuales el 96% son endémicos (Tabla 2). Tabla 1. Familias, géneros y especies de invertebrados y peces registrados en Nazca y Salas y Gómez (Mironov et al., 2006). Table 1. Invertebrate and fish families, genera, and species registered in Nazca and Salas y Gómez (Mironov et al., 2006). Peces Invertebrados Géneros de invertebrados reportados (total) Géneros de invertebrados donde el número de especies es conocido Número de géneros de invertebrados representados por una especie Número de géneros de invertebrados representados por más de tres especies Familias de peces reportadas Géneros de peces reportados (número de especies) Número de géneros de peces representados por una especie Parin et al. (1997) Mironov et al. (2006) 177 143 (192 spp.) 117 (82%) 208 180 (226 spp.) 142 (79%) 4 3 64 128 (171 spp.) 106 (83%) 64 131 (170 spp.) 109 (83%) Montes submarinos de Nazca y Salas y Gómez 487 CORALES DE AGUAS FRÍAS Figura 4. Géneros de peces en la fauna de las cordilleras de Nazca y Salas y Gómez (bajo 800 m de profundidad) que ocurren en otras regiones. Fuente: Parin et al. (1997) y Mironov et al. (2006). Figure 4. Fish genera in Nazca and Salas y Gómez (under 800 m depth) occurring in other regions. Source: Parin et al. (1997) and Mironov et al. (2006). En cuanto a la fauna íctica que habita esta zona, es posible indicar que se han registrado 70 especies endémicas, de las cuales cinco especies (Mollisquama parini, Facciolella castlei, Gaidropsarus parini, Caelorinchus immaculatus, Plagiogeneion geminatus), sólo se encuentran al este del meridiano 83ºW, o límite de la provincia biogeográfica Salas y Gomesian. La mayoría de las especies endémicas pertenecen a Macrouridae (9 spp.) y Moriidae (6 spp.), mientras que las familias representadas sólo por especies endémicas son: Torpedinidae, Ophichthidae, Nettastomatidae, Congridae, Argentinidae, Photichthyidae, Sternoptychidae, Aulopidae, Gadidae, Chaunacidae, Ogcocephalidae, Polymixiidae, Pentacerotidae, Percophidae. Supuestamente existirían tres géneros endémicos: Mollisquama (Squalidae), Anatolantias (Serranidae) y Dactylopsaron (Percophidae). Según Parin et al. (1997) la composición faunística de los principales animales de las cordilleras de Nazca y Salas y Gómez puede ser explicada principalmente por dos procesos: una dispersión hacia el este de la fauna del Pacífico oeste y una activa especificación in situ. Estas dos hipótesis aún esperan ser comprobadas. Antecedentes generales Aunque su existencia ha sido conocida por siglos, la observación y estudio del hábitat de corales de aguas frías en su medio natural comenzó sólo en la década pasada, cuando se comenzó a usar instrumental sofisticado para explorar los ambientes de aguas profundas. El uso de estas tecnologías modernas, ha cambiado el paradigma convencional que los corales están confinados a regiones tropicales y subtropicales de aguas someras y cálidas. Los científicos han sido capaces de explorar una variedad de ecosistemas de coral avanzando en profundidad, oscuridad y aguas frías, particularmente en las altas latitudes (Koslow, 2007). Algunos de estos corales de aguas frías construyen bancos o arrecifes tan complejos como los de sus parientes tropicales. Mediante técnicas de datación radioactiva se sabe que algunos bancos y arrecifes vivos tienen 8.000 años de edad, y se cree que otros podrían llegar a 50.000 años (Roberts, 2007). Registros geológicos indican que los arrecifes de coral de aguas frías han existido por millones de años. Los sistemas de coral de aguas frías pueden ser encontrados en casi todos los mares y océanos del mundo: en fiordos, a lo largo del talud continental, y alrededor de bancos y MS alejados de la costa. Al vivir sin luz y en un ambiente relativamente rico en nutrientes, los ecosistemas de coral de aguas frías funcionan en una forma muy diferente a los sistemas de coral de aguas someras. Los corales de aguas frías, viviendo a profundidades en que no llega la luz, para su alimentación no disponen de algas simbióticas con dependencia lumínica; y por lo tanto, dependen del suministro de materia orgánica particulada transportada por las corrientes y del zooplancton. Para capturar su alimento en forma eficiente, muchos de estos corales producen una estructura ramificada tipo árbol, para soportar las colonias de pólipos que comparten un esqueleto común de carbonato de calcio. Estas estructuras forman un complejo hábitat tridimensional que proporciona una multitud de micro-nichos para la comunidad animal asociada (Freiwald, 2002; ver artículos en Freiwald & Roberts, 2005). Los arrecifes más espectaculares están construidos por corales pétreos, a profundidades de varios cientos de metros. Estos corales pétreos forman colonias que presentan grandes variaciones en tamaño, desde pequeñas y esparcidas colonias de no más de unos pocos metros de diámetro, hasta vastos y complejos arrecifes que miden varias decenas de kilómetros (e.g., arrecife de Lophelia de Mar de Røst al norte de Noruega cubre 488 Lat. Am. J. Aquat. Res. Tabla 2. Endemismo de los grupos de invertebrados encontrados en los MS de la Cordillera de Nazca y Salas y Gómez (Fuente: Mironov et al., 2006). Table 2. Endemism of invertebrates in the Nazca and Salas y Gómez seamount ridges (Source: Mironov et al., 2006). Grupos Nombre común Hyalospongiae Scleractinia Gastropoda Turridae Cirripedia Tanaidacea Macrura Brachiura & Anomura Bivalvia Septibranchia Brachiopoda Echinoidea Esponjas de cristal Corales pétreos Caracoles Crustáceos cirripedios Crustáceos Crustáceos decápodos Crustáceos decápodos Bivalvos Braquiópodos Erizos Total 100 km2 y algunas partes alcanzan 30 m desde el fondo marino). Estos arrecifes de coral de aguas frías están construidos por sólo algunas especies. Según Turley et al. (2007) sólo seis de las 700 especies conocidas forman arrecifes. En el Atlántico Norte, el Mar Mediterráneo y el Golfo de México, Lophelia pertusa y Madrepora oculata son los más abundantes constructores de arrecifes. En el talud continental de Florida y Carolina del Norte los arrecifes están principalmente construidos por Oculina varicosa. En el hemisferio sur, en los montes y bancos submarinos de Tasmania y Nueva Zelanda, Goniocorella dumosa y Solenosmilia variabilis son las especies más prominentes (Koslow, 2007). Los ecosistemas de corales de aguas frías no son dominio exclusivo de los corales pétreos. El Pacífico norte, por ejemplo, es conocido por poseer fabulosos ejemplos de ecosistemas de los llamados jardines de octocorales, que están entre los más ricos y notablemente coloridas comunidades encontradas en aguas profundas en altas latitudes. Sólo recientemente se ha comenzado a entender algunas de las complejidades de estos ocultos ecosistemas de corales de aguas frías. Así como sus contrapartes, los corales de aguas frías son refugio para miles de otras especies, en particular esponjas, poliquetos, crustáceos, moluscos, equinodermos, briozoos y peces comerciales (Rogers, 1999; Fosså et al., 2002; Husebø et al., 2002). Descubrimientos recientes están cambiando el conocimiento acerca del proceso de formación de arrecifes y donde ellos ocurren. Los investigadores están comenzando a entender que los arrecifes de aguas frías pertenecen a un continuo, donde en un extremo, la evolución de la simbiosis dependiente de la luz hapermitido a los corales sobrevivir bajo pobres regí- Nº de especies Endémicas 6 25 25 14 9 29 24 7 4 19 2 (33%) 1 (4%) 24 (96%) 11 (79%) 2 (22%) 10 (34%) 10 (41%) 7 (72%) 1 (25%) 8 (42%) 164 76 (46,3%) menes nutricionales en aguas someras tropicales, y por el otro extremo, una oferta suficiente de alimento permite a los corales prosperar como organismos carnívoros en aguas profundas y frías. Especies en Nazca y Salas y Gómez De los estudios de Parin et al. (1997) y Mironov et al. (2006), destacan en esta zona 25 especies de la subclase Zoantharia (Hexacorales) orden Scleractinia (corales pétreos formadores de arrecifes, Tabla 3), de las cuales una especie es endémica de la zona (Tabla 2). De estas especies, Desmophyllum dianthus de la familia Caryophylliidae junto con Madrepora oculata de la familia Oculinidae (Fig. 6 en Gálvez, 2007) son las dos especies para las cuales se dispone de mayor información biológica. Desmophyllum dianthus es una especie cosmopolita y ha sido descrita para un amplio rango de profundidades (25-2.460 m) en la costa de Chile (cordón de Nazca, Archipiélago de Juan Fernández, cercanías de Chiloé y Magallanes). Esta especie también se ha encontrado en los fiordos australes, y puede crecer hasta 40 cm y vivir en aguas someras de hasta 8 m de profundidad, registrándose grandes agregaciones bajo 20 m (Försterra et al., 2005). Los grandes bancos de más de 1.500 especímenes por m2 están generalmente restringidos a murallones verticales, creciendo los ejemplares hacia abajo, lo cual puede indicar sensorialidad a la sedimentación. Observaciones submarinas han detectado altas concentraciones de Desmophyllum dianthus a profundidades superiores a 250 m, los corales presentan una cubierta café que probablemente se deba a componentes de hierro/manganeso, lo que indicaría condiciones de anoxia. Montes submarinos de Nazca y Salas y Gómez 489 Tabla 3. Familias y especies de antipatarios y escleractinias en la cordillera de Nazca y Salas y Gómez (Fuente: SeamountOnline, 2007, *Molodtsova, 2005). Table 3. Families and species of antipatharia and scleractinia in Nazca and Salas y Gómez (Source: SeamountOnline, 2007, *Molodtsova, 2005). Familia Antipathidae Caryophylliidae Dendrophylliidae Flabellidae Fungiacyathidae Guyniidae Oculinidae Turbinoliidae Género Antipathes* Bathypathes Cirripathes Caryophyllia Conotrochus Crispatotrochus Deltocyathus Desmophyllum Paracyathus Dendrophyllia Enallopsammia Flabellum Javania Polymyces Fungiacyathus Stenocyathus Madrepora Idiotrochus Peponocyathus Especie calveri, C. diomedea, C. perculta, C. rugosa, C. solida funicolumna galapagensis andamanicus, D. stelluatus, D. vaughani dianthus humilis gracilis rostrata apertum cailleti wellsi paliferus, F. pliciseptus, F. stephanus vermiformis oculata kikutii australiensis, P. orientalis Madrepora es un género cosmopolita que ha desarrollado varias especies y dos de ellas, Madrepora oculata y M. carolina, están frecuentemente asociadas con arrecifes de coral de aguas frías. Las ramificaciones de las colonias de Madrepora generalmente son mucho más frágiles que las de Lophelia y tienden a quebrarse fácilmente, lo que limita considerablemente su capacidad para construir armazones. Incluso en áreas donde Madrepora domina la comunidad coralina no se encuentran gruesos armazones de arrecifes. Es muy frecuente que Madrepora construya arrecifes en asociación con otras especies, como L. pertusa y Goniocorella dumosa. Sin embargo, muchos aspectos biológicos y ecológicos aun permanecen no estudiados en relación a estos sistemas de arrecifes de coral de aguas frías. En el Pacífico suroriental Madrepora oculata ha sido identificada para las zonas de Nazca (MS Dorofeev, Ichthyandr y Ecliptic), Salas y Gómez (MS Cupole), en la zona sur austral (islas Diego Ramírez, Paso Drake, SSW isla Hornos) y en las cercanías de Valdivia. Para el Pacífico suroriental, M. oculata se ha registrado a profundidades de 59 m (SSW Isla Hornos) a 2.500 m (Valdivia) (SUBPESCA, 2005). Finalmente, Glynn & Ault (2000) informan del hallazgo de cuatro géneros de corales fósiles (Stylophora, Pocillopora, Leptoseris, Porites, todos corales de aguas someras tropicales y subtropicales) en el área de Nazca. Particularmente, las muestras fueron tomadas en estudios geológicos desde el monte submarino “Shoal Guyot” entre 205 y 227 m de profundidad (Allison et al., 1967 fide Glynn & Ault, 2000). Adicionalmente, es conocido que especies de los géneros Pocillopora y Porites son frecuentes en isla de Pascua, lo que para estos autores reafirma el estrecho lazo biogeográfico entre las regiones del Indo-Pacífico y Pacífico suroriental. PRÁCTICAS PESQUERAS EN NAZCA Y SALAS Y GÓMEZ Tecnologías de captura De acuerdo con Mirnov et al. (2006), los artes de pesca utilizados por las expediciones científicas rusas y soviéticas que realizaron capturas en el área entre 1973 y 1987, consistieron en redes de arrastre de fondo y media agua, palangres verticales y de fondo y 490 Lat. Am. J. Aquat. Res. trampas con carnada. En 1998 el área de Nazca también fue explorada por una expedición científica chilena, cuyo objetivo era la prospección de agregaciones de orange roughy (Hoplostethus atlanticus) con red de arrastre de fondo modelo Arrow, similar a las actualmente utilizadas en la captura de esta especie en aguas jurisdiccionales de Chile (Lillo et al., 1999). También se han documentado actividades ocasionales de pesca comercial, efectuadas en el área de Nazca por naves de compañías chilenas y naves rusas. Estas actividades han estado orientadas principalmente hacia la captura de langosta enana (Projasus bahamondei) y secundariamente hacia cangrejo dorado (Chaceon chilensis), usando líneas de trampas y carnada (Arana & Venturini, 1991; Weinborn et al., 1992; Arana, 2003). Las actividades comerciales de captura de alfonsino (Beryx splendens) en el área de Nazca, aun cuando han sido esporádicas, son más persistentes en el tiempo que las sobre langosta enana, así por ejemplo se ha documentado la captura de este pez por parte de flota chilena con redes de arrastre en 1998, 2002-2003 y 2005 (ver Anuarios Estadísticos de Pesca del Servicio Nacional de Pesca de Chile). No se conoce de información pública – para el área – de actividades de pesca comercial de fondo o demersal por parte de naves de otras naciones, aun cuando Arana (2003) indica que en 1991 y 1992 se hizo evidente la presencia de naves de distintas banderas en la zona. A pesar de esto, para el Pacífico suroriental (área 97 de FAO) se destacan algunos registros de captura en las bases estadísticas de FAO (2007), los que deben ser investigados en mayor detalle ya que son indicativos de probables actividades de pesca de fondo en el área. Prueba de ello son las capturas de orange roughy informadas por China entre 2001 y 2007, y las informadas por Korea entre 1999 y 2006 (Anon., 2008). A pesar de la escasa información disponible de actividades comerciales, se destaca que el área de los MS de Nazca y Salas y Gómez ha permitido la operación de artes de pesca de fondo de variados tipos. A partir de la información disponible para la flota chilena es posible indicar que las redes de arrastre utilizadas han sido de dos tipos: modelo Arrow para pesca de fondo (Lillo et al., 1999) y de cuatro paneles para pesca de alfonsino (SUBPESCA, 2006). Si bien el primer arte es operado, en cierto trayecto del lance, en contacto con el fondo marino, mientras que el segundo es desplegado sobre el fondo, ambos están diseñados para resistir impactos con el piso oceánico. Historia pesquera y capturas Es difícil acceder a registros fidedignos de capturas registradas en las zonas de Nazca y Salas y Gómez. Esto se debe a que usualmente los registros son oficialmente informados como efectuados en aguas internacionales y, en el mejor de los casos, se indica solamente el número clasificatorio de la macrozona FAO (área 87). Cuando se ha podido acceder a las bitácoras de pesca, ha sido posible tener certeza que las capturas fueron efectuadas en la zona bajo análisis, mientras que en otros casos, solamente se ha inferido que las capturas fueron efectuadas en la zona por los tipos de especies capturados. Dejando a parte aquellas especies pelágicas o altamente migratorias como la jibia (Dosidicus gigas), caballa (Scomber japonicus), jurel, reineta (Brama brama) y túnidos en general, se presenta una estimación de las capturas efectuadas en el área para cuatro especies de fondo de interés comercial (Tabla 4). IMPACTOS DE LA PESCA En el área no se han desarrollado estudios directos o indirectos orientados a determinar el impacto causado por actividades de pesca. Debido a lo anterior, la presente sección proporciona una perspectiva general respecto a este tópico. No obstante, se debe notar que Parin et al. (1997) indican que ramas de gorgónidos de hasta 1,7 m de altura fueron extraídas en el área por redes de arrastre de fondo. Más aun, estos mismos autores observan que “cambios significativos se notaron entre 1979-1980 y 1987 en la estructura de las comunidades del fondo. Los antipatarios fueron destruidos por el arrastre de fondo…, y [los cirripedios] se perdieron con su sustrato animal, [mientras] que las poblaciones de erizo… declinaron después de la destrucción” (Parin et al., 1997). Los eventos descritos son prueba de la fragilidad del ecosistema asociado a los montes submarinos de Nazca y Salas y Gómez. La recientemente acordada Guía Internacional de FAO para el Manejo de las Pesquerías de Aguas Profundas en la Alta Mar (FAO, 2008) distingue dos categorías de impactos adversos en ecosistemas de aguas profundas, sobre la estructura del ecosistema o sobre la función del mismo. Estas categorías serán brevemente descritas bajo los subtítulos de deterioro del hábitat e impactos ecosistémicos, respectivamente. Deterioro del hábitat Por deterioro del hábitat se entiende el “daño a las estructuras vivas del fondo marino (e.g., corales, esponjas, plantas marinas), así como la alteración de las estructuras geológicas (e.g., rocas, guijarros, grava, tierra y fango), que sirven como área de crianza, refugio y sustento para peces y organismos vivos del – o en estrecha relación con – el fondo” (Morgan & Chuenpagdee, 2003). Para el caso de áreas tales como 491 Montes submarinos de Nazca y Salas y Gómez Tabla 4. Estimaciones de captura (toneladas), para cuatro especies comerciales, por año en la zona de las cordilleras submarinas de Nazca y Salas y Gómez (Fuente: FAO (2007), Anon. (2008) y Servicio Nacional de Pesca). Table 4. Estimated catch (tons) for four commercial species, by year, in Nazca and Salas y Gómez (FAO, 2007; Anon., 2008; Fishery Statistic Yearbooks of National Fisheries Service, Chile). 1979 1980 1981 1982 1983 1984 1988 1989 1991 1992 1998 1999 2000 907 - 12 - 676 - 620 - 633 - 458 - 98 36 - - 144 - - - Projasus bahamondei - 8 4 - - - - - (*) (*) 22 5 Zeus faber - - - - - - - - - - 5 - 2001 2002 2003 2005 - 2 - 11 - 5 - (a) Beryx spp. Emmelichthyidae (a) Beryx spp. Emmelichthyidae Projasus bahamondei 1 - - - Zeus faber - - - - - (*) Se conoce que se efectuaron capturas en estos años por parte de naves chilenas. (a) Principalmente Beryx splendens. Desde 1998 las capturas corresponden a flota chilena exclusivamente los MS, que tienen altos niveles de endemismo, la utilización de artes de arrastre de fondo podría erradicar especies antes de que se conozca su existencia (Koslow et al., 2001). De acuerdo con Rogers (2004), “en los MS, los impactos humanos sobre corales de aguas frías han sido causados casi exclusivamente por actividades pesqueras” y “el impacto de portalones que pesan varias toneladas, cadenas y otras partes del arte de pesca aplastan y quiebran las estructuras de coral, reduciendo el hábitat coralino o removiéndolo completamente”. Las redes de arrastre para operar en MS son diseñadas con relingas inferiores de gran peso (compuestas de cadenas y bobinas) y portalones altamente resistentes al impacto. Además dichas redes poseen bajas alturas de despliegue vertical de la boca. Estas configuraciones se toman como ‘cautelas’ o resguardos para ayudar al capitán a evitar trabas de la red con el fondo. En el caso de otros artes de pesca como líneas de trampas y espineles, se considera que su impacto en el hábitat de fondo es de menor envergadura (Morgan & Chuenpagdee, 2003). No obstante, se ha documentado la captura de corales antipatarios en pesca de bacalao de profundidad con trampas (P. Arana, com. pers.) los que han sido depositados en la colección coralina de la Universidad Austral de Chile. Además se dispone de varias evidencias de captura de corales antipatarios y madreporarios en la pesquería de bacalao de profundidad con espineles (A. Bravo, com. pers.), los que se encuentran disponibles en la misma colección. Por lo tanto, el impacto negativo sobre los corales de aguas frías, por parte de artes de pesca de fondo, puede ser similar o mayor dependiendo de la intensidad de las operaciones de pesca que se desarrollen. En una escala de 1 a 5, siendo el valor máximo el de mayor impacto en el hábitat, Morgan & Chuenpagdee (2003) califican con nivel 5 el impacto físico y biológico de dragas y redes de arrastre de fondo sobre el hábitat; las redes de enmalle y trampas de fondo son calificadas con nivel 3 (impacto físico sobre el hábitat) y 2 (impacto biológico sobre el hábitat); mientras que los espineles de fondo son calificados con nivel 2 en ambos casos. Se ha argumentado que los impactos sobre el hábitat son específicos y dependen del tipo de arte de pesca, la temporada en que se desarrolle el estudio a los tipos de comunidades biológicas en el área bajo análisis, entre otros factores. Un reciente proyecto de investigación nacional, en desarrollo por la Pontificia Universidad Católica de Valparaíso, debiera proporcionar una idea más precisa de los impactos de ciertos artes de pesca en fondos marinos chilenos (particularmente MS), toda vez que su objetivo principal es “recopilar, sistematizar e incrementar el conocimiento existente sobre la distribución geográfica, biodiversidad e impacto pesquero, de los MS en la ZEE de Chile” (Yañez et al., 2008). Impactos ecosistémicos Los probables impactos ecosistémicos de pesquerías de arrastre de aguas profundas pueden ser caracterizados en dos sentidos. Primero, los impactos sobre las relaciones predador-presa, la trama trófica y otros impactos relacionados con la remoción de grandes cantidades de especies objetivos y especies de la fauna acompañante del ecosistema en el cual las mismas juegan un rol particular. Segundo, el impacto físico de 492 Lat. Am. J. Aquat. Res. la pesca sobre el fondo oceánico, en particular sobre corales, esponjas y otros organismos estrechamente vinculados al fondo marino y que conforman grupos de especies claves, ya que configuran la estructura básica del ecosistema bentónico donde estas pesquerías ocurren (Gianni, 2004). Desafortunadamente, existe una gran falta de información en relación con el primero de los dos tipos de impactos. De acuerdo con Butler et al. (2001), el efecto de la remoción de gran número de predadores tope en ecosistemas de profundidad es escasamente conocido. Koslow et al. (2000) indican que las dudas más importantes son en relación a las implicancias ecológicas de largo plazo en el agotamiento de especies de nivel trófico medio-alto en ecosistemas de aguas profundas y el impacto sobre las poblaciones de predadores y presas, y que para estos cuestionamientos actualmente hay pocas respuestas. No obstante, recientes estudios (Morato et al., 2004, 2006), basados en la historia de vida y las características ecológicas de las poblaciones que tradicionalmente habitan los MS, probaron la hipótesis que las poblaciones de peces de los MS generalmente tienen un mayor nivel de vulnerabilidad a la pesca, y que esta vulnerabilidad está correlacionada con sus parámetros poblacionales. Adicionalmente, determinaron que los resultados son similares cuando se consideran solamente especies comercialmente explotadas. Las características biológicas ligadas a una alta vulnerabilidad incluyen alta longevidad, maduración sexual tardía, bajas tasas de crecimiento y mortalidad natural. A partir de estos resultados, los autores concluyen que la pesca sobre MS tiende a ser no sustentable, dados los actuales niveles de explotación y las técnicas de captura. A igual conclusión llegan Johnston & Santillo (2004), luego de una revisión de la literatura internacional sobre el tema. En relación al segundo tipo de impacto ecosistémico, existe real preocupación por parte de la comunidad científica internacional en relación al efecto del arrastre de fondo sobre hábitat de aguas profundas, en particular sobre corales y otras especies sésiles como esponjas, las que forman la estructura base de ecosistemas biológicamente diversos de aguas profundas. De acuerdo con Rogers (2004) “las pesquerías nuevas de aguas profundas han sido a menudo caracterizadas por grandes cantidades de coral como fauna acompañante en los primeros años, y éstos han declinado en la medida que el hábitat de coral ha sido alterado”. Como ya se ha dicho, los corales de aguas profundas crecen lentamente y los arrecifes toman miles de años en desarrollarse; incluso hay evidencias que el reclutamiento de las larvas de coral es esporádico. Adicionalmente, estudios genéticos y reproductivos sugieren que en áreas donde los corales de aguas profundas son impactados por la pesca, las colonias pueden ser reducidas a pequeños parches donde la reproducción sexual no es viable (Le Goff-Vitry et al. fide Rogers, 2004). Dados estos factores, la recuperación de corales de aguas profundas, de impactos significativos de actividades de arrastre, es probable que sea extremadamente lenta, y donde el hábitat es completamente alterado puede que dicha recuperación nunca ocurra. Dado que dichos arrecifes son también el hábitat esencial para otros organismos, incluidas las especies de valor comercial (Husebo et al., 2002), éstos animales también serían afectados. La destrucción de hábitat esenciales para peces puede ser una de las causas adicionales por las cuales muchas pesquerías de aguas profundas, que han sido colapsadas en los últimos 20 años, no se hayan recuperado (Koslow, 2007). AMENAZAS Mucho se ha escrito en años recientes en relación a las amenazas que enfrenta la biodiversidad de los MS (e.g., Rogers, 1994; Gubbay, 1999, 2003; Butler et al., 2001; Koslow et al., 2001; Morato et al., 2006; Pitcher et al., 2007; Koslow, 2007). Sin duda, al igual que las principales cadenas de MS, la amenaza más inmediata en términos de su escala geográfica e impacto es la pesca comercial. Debido a que especies comerciales habitan el área y han sido sujeto de algunas capturas con buenos rendimientos (Arana, 2003) y se han estimado biomasas que aparentemente permitirían una explotación comercial (Pakhorukov et al., 2000), es probable que con otras especies del área ocurra lo mismo en el futuro cercano. Actualmente, las actividades de pesca comercial están tecnológicamente habilitadas para operar sin inconvenientes hasta aproximadamente los 1500 m de profundidad, y por lo tanto, pueden afectar negativamente elementos estructurales o especies claves de varios MS de Nazca y Salas y Gómez. La sensibilidad del área es alta, especialmente a aquellas prácticas pesqueras que usan artes de pesca que entran en contacto con las cimas o laderas de los MS. Por otro lado, debido a las altas probabilidades de encontrar ricos yacimientos de mineral en el área (Fig. 2), la minería submarina emerge como otra amenaza para la biodiversidad de los MS. Los efectos de estas probables actividades son en extremo inciertos, dado que dependerán de las tecnologías que se utilicen en la extracción. Sin embargo, Koslow (2007) indica que “un proyecto minero de 20 años de operación, para uno o dos yacimientos, tendría impactos severos sobre un área de al menos 10.000-20.000 km2, y probablemente varias veces mayor”. Dichos impactos estarían Montes submarinos de Nazca y Salas y Gómez relacionados con la remoción directa de fauna asociada al sedimento, y las perturbaciones producidas por la suspensión y resedimentación. Dado que actualmente se ve lejana la posibilidad de explotaciones mineras en el área de Nazca y Salas y Gómez, se estima que el escenario es óptimo para diseñar políticas, normas y estrategias que concilien la eventual explotación minera y la conservación de los ecosistemas y la biodiversidad asociada a los MS de estas cordilleras, situación que en el área de la alta mar ya ha comenzado a ser abordada por la Autoridad Internacional de los Fondos Marinos (AIFM). MANEJO Prácticas actuales de manejo Jurisdiccionalmente debemos distinguir las prácticas de manejo y conservación de recursos pesqueros y ecosistemas marinos en el área de las cordilleras submarinas de Nazca y Salas y Gómez en dos: (i) aquellas asociadas a la jurisdicción de Chile, y (ii) a la alta mar (aguas internacionales). Para el primer caso se considera el área que circunscriben las ZEEs y Mares Territoriales (MTs) asociados a isla de Pascua, isla Salas y Gómez e islas Desventuradas. En el segundo caso, se trata del área complementaria a la anterior y que cubre las cadenas de MS analizados. El área comprendida bajo jurisdicción chilena no está sometida a alguna medida de conservación general, y existe una flota nacional autorizada para efectuar prácticas pesqueras con los artes y aparejos comúnmente empleados por la flota industrial y artesanal, así como para el desarrollo de otras actividades productivas (e.g., extracción de hidrocarburos y minería submarina). La única restricción pesquera específica que rige para el área está referida a la pesquería de alfonsino, en que las capturas efectuadas en el área son descontadas de la cuota global anual de captura, debido a que la unidad de pesquería de esa especie ha sido fijada para el MT y ZEE, continental e insular, por fuera del área de reserva artesanal (Decreto exento Nº644 de 2004, Ministerio de Economía, Fomento y Reconstrucción, Chile). Un caso aparte, lo constituyen tres pequeñas áreas marinas inmediatamente adyacentes a isla de Pascua, las que han sido declaradas Áreas Marinas Costeras Protegidas (AMCP) (Decreto supremo Nº547 de 1999, Subsecretaría de Marina, Chile). En dichas áreas protegidas esta autorizada la realización de todas aquellas actividades de carácter científico, ecológico, arqueológico, cultural, educativo, turístico y deportivo, especialmente de tipo subacuático. Chile dispone de instrumentos legales para la administración y conservación marina de esta zona de 493 océano abierto, aunque la aplicación de dichos instrumentos requiere de un nivel de integración y articulación mayor para conciliar la aparente dicotomía entre explotación y preservación de especies marinas (Fernández & Castilla, 2005). Así por ejemplo, aparte de la clásica batería de medidas de manejo que dispone la Ley General de Pesca y Acuicultura, su artículo 3.d contempla la figura de Parques Marinos, en que las actividades quedan restringidas a aquellas que se autoricen para propósitos de observación, investigación o estudio, excluyendo las actividades pesqueras comerciales. Esta ley también contempla las Reservas Marinas orientadas a proteger stocks reproductivos a la vez que permite niveles de actividad pesquera, pero la aplicación de este instrumento está reservada a la zona costera. Pareciera que las ya mencionadas AMCP tienen un mayor potencial para la articulación conjunta de metas de conservación y explotación. Un ejemplo de esto es el AMCP “Lafken-Mapu-Lahual”, la que co-existe junto a seis Áreas de Manejo y Explotación de Recursos Bentónicos. Finalmente, atendiendo, además de las características ecológicas del área, la belleza escénica que podría importar alguno de los macizos submarinos de Nazca y Salas y Gómez, cabe también considerar la figura de Monumento Natural. Según Fernández & Castilla (2005), este último instrumento de protección se aplica al sector marino y tiene por fin preservar ecosistemas naturales permitiendo actividades de investigación y educacionales. En relación a la oceanominería, Saintard (2001) indica que el Estado de Chile ya cuenta con la estructura legal básica para que esta actividad también pueda efectuarse en aguas jurisdiccionales; más aún, ya se han suscrito contratos especiales de operación para sustancias minerales metálicas ubicadas en el subsuelo de los fondos marinos del Estrecho de Magallanes y de la bahía de Nassau (55°23’S, 67°50’W). Sin embargo, no es claro si las evaluaciones y estudios requeridos tienden a cautelar efectivamente la diversidad biológica y los ecosistemas marinos que pudieran ser afectados por estas actividades. En lo relativo a la sección de alta mar, recientemente se han establecido medidas de conservación en el área del Pacífico sur, las que también se aplican a los MS de Nazca y Salas y Gómez. Dichas medidas de protección se han generado en el marco de las negociaciones para crear la ORAP PS. Estas medidas tienen un carácter interino (desde 30 septiembre 2007 hasta la entrada en vigencia del acuerdo que crea la ORAP PS), son voluntarias y están principalmente referidas a actividades de pesca pelágica (con excepción de calamares) y de fondo. En lo que respecta a la pesca de fondo las medidas de administración interinas establecen lo siguiente: 494 Lat. Am. J. Aquat. Res. − Pueden ser revisadas por las partes que negocian la ORAP PS. Prueba de ello es la propuesta de Chile en la VI reunión de la ORAP PS en el sentido de complementar las medidas interinas sobre pesca pelágica, con el ‘congelamiento’ de las capturas de jurel. − Limitan la captura o el esfuerzo pesquero en las pesquerías de fondo a los niveles promedio anuales en el período comprendido entre el 1 de enero de 2002 y el 31 de diciembre de 2006. − No permiten la expansión de actividades de pesca de fondo a nuevas regiones (áreas donde, para el periodo anterior, no ha habido pesca de fondo). Sin embargo, permite tales actividades en dichas zonas en el marco de investigaciones para la evaluación de stocks, previa remisión a la secretaria interina de la ORAP PS del plan de investigación. − Cierran las áreas donde se conoce que existen (o es probable que se localicen) EMV. Sin embargo, se podrá operar en dichas áreas cuando, basados en una evaluación científica, se hayan establecido medidas de administración de los stocks pesqueros y se hayan tomado medidas para prevenir impactos adversos significativos sobre EMV. − Requieren del uso de sistemas de posicionamiento satelital para las naves de pesca de fondo y el embarque de observadores científicos. − Fijan el procedimiento para la confección, remisión y revisión (por parte del Grupo de Trabajo Científico, GTC) de las evaluaciones científicas de pesca de fondo. El estándar para guiar la confección y revisión de dichas evaluaciones científicas ha sido desarrollado por el GTC y está contenido en el borrador denominado “Benthic Assessment Framework”. La efectividad de estas medidas y su cumplimiento es algo que aun está por verse. Sin embargo, en relación a la efectividad de las mismas, se puede anticipar que en su diseño ya se perciben algunos vacíos, tales como (i) son de carácter voluntario, por lo que no obligan ni establecen sanciones para las partes; (ii) pueden ser revisadas (y por lo tanto flexibilizadas) a pedido de cualquiera de las partes; (iii) no consideran cursos de acción o medidas en caso que naves de países no parte de las negociaciones realicen actividades de pesca de fondo en el área; (iv) se podría permitir el desarrollo de actividades extractivas, bajo el expediente de evaluaciones directas de stocks, con impactos negativos en EMV; y, (v) la Federación Rusa ha manifestado abiertamente su oposición a elementos sustan- tivos de tales medidas, abriendo un espacio para la inefectividad de las mismas. Se ha indicado que las Áreas Marinas Protegidas (AMPs) en alta mar son una herramienta importante y legalmente factible, para la conservación y utilización sustentable de la biodiversidad marina (Kimbal, 2005; IUCN, 2006; Gjerde, 2007). En la Cumbre Mundial sobre el Desarrollo Sustentable de Johannesburgo 2002 los gobiernos han fijado el objetivo de desarrollar al 2012 una red de AMPs, sobre la base de la información científica y consistente con el derecho internacional. En apoyo a la consecución de este objetivo, la Asamblea General de las Naciones Unidas (resolución A/RES/61/105), las partes de la Convención sobre Diversidad Biológica (CBD), el Comité de Pesca de FAO y la conferencia de revisión del acuerdo de Nueva York (Anon., 2006) han hecho llamados para un mayor uso de las AMPs, de tal forma de apoyar un manejo pesquero sustentable y asistir en la protección de la biodiversidad marina. Es más, según Gjerde (2007), a nivel regional, hay programas activos para el desarrollo de AMPs en alta mar del Atlántico noreste, el Mediterráneo y el océano Austral, éste último en el marco de la Convención para la Conservación de los Recursos Vivos Marinos Antárticos (CCRVMA). En consecuencia, las AMPs se configuran como un potente elemento de administración y conservación que puede ser aplicado al área de los montes submarinos de Nazca y Salas y Gómez. La CONVEMAR considera los recursos minerales del suelo y subsuelo del área de alta mar como ‘patrimonio común de la humanidad’, y ha dispuesto que la AIFM actúe en nombre de la humanidad para manejar la explotación de esos recursos minerales. A pesar que actividades mineras en alta mar de las cordilleras submarinas de Nazca y Salas y Gómez parece algo bastante lejana, aunque posible debido a que se han constatado montes con un alto grado de cobalto en la corteza (Fig. 2), la ISA ha promulgado un código de prácticas mineras que regula el acceso y extracción de nódulos polimetálicos del fondo marino y esta desarrollando regulaciones adicionales para minerales que se encuentran en MS de alta mar (Stone et al., 2004) En síntesis, en la alta mar del Pacífico suroriental existen algunas medidas que regulan actividades pesqueras y de oceanominería, las que se han diseñado para evitar impactos adversos sobre ecosistemas marinos vulnerables, aunque éstas no parecen del todo efectivas particularmente ante los efectos adversos que pueden generar las actividades de pesca de fondo. Sin embargo, como lo notan Kimball (2005) y Gjerde (2007), actualmente existen oportunidades legales y enfoques científicos que avalan el establecimiento de medidas más efectivas como AMPs en alta mar. De Montes submarinos de Nazca y Salas y Gómez todos modos, se debe reconocer que aún queda trabajo por hacer para establecer, manejar y controlar de manera consistente e integrada las AMPs en alta mar; ya que como lo indica el grupo de trabajo especial para el estudio de biodiversidad marina en alta mar de Naciones Unidas, si bien CONVEMAR debe ser el instrumento rector, varias son las organizaciones con rol y mandato en esta temática (e.g., FAO, la AIFM, la Organización Marítima Internacional, la CBD y ORAPs). Para el caso de la zona bajo jurisdicción chilena no se dispone de medidas particularmente dirigidas a la conservación y administración de estos importantes cordones de MS. Habida consideración de la gran biodiversidad hasta ahora estudiada, la falta de tales medidas es notable. Opciones de manejo Dados los dos tipos de regímenes jurisdiccionales que afectan el área de Nazca y Salas y Gómez y la inminente creación de la ORAP PS, los aspectos de política y manejo pesquero merecen un análisis aparte y profundo, el que hasta la fecha no se ha efectuado o al menos no es públicamente conocido. De todas maneras, y so riesgo de una sobresimplificación, es posible identificar tres tipos de opciones para enfrentar las amenazas a la biodiversidad: 1. Una moratoria para toda el área, tanto en su componente de alta mar como de la zona bajo jurisdicción chilena, sería una buena alternativa mientras se consideran y desarrollan otras opciones para la gobernanza de los recursos marinos de fondo del área. Precedentes de largo alcance que se pueden invocar para tal acción son la moratoria de Naciones Unidas a las redes de enmalle de deriva y la moratoria a la caza de ballenas de la Comisión Ballenera Internacional. Adicionalmente, en una perspectiva más regional es posible indicar como ejemplo que varias ORAP han cerrado recientemente áreas a la pesca para proteger los ecosistemas marinos vulnerables que ahí se encuentran (Gjerde, 2007). Sin embargo, una medida de este estilo claramente deja fuera otros valores que deben ser igualmente considerados y ponderados, como los sociales y económicos ligados a la actividad pesquera. 2. La entrada en vigor de la ORAP PS con autoridad para regular las actividades de pesca de especies discretas de la alta mar y conservar los ecosistemas asociados. La efectividad de las ORAP con relación a las especies discretas ha sido fuertemente cuestionada en varios análisis internacionales y publicaciones. Quizás la única excepción destacable es la CCRVMA, quien desde sus orígenes ha tenido en cuenta el principio precautorio 495 y el enfoque ecosistémico. Por lo tanto, aún está por verse el mérito de las medidas interinas y otras que puedan acordarse en el seno de la ORAP PS. Adicionalmente, las acciones que ejerza la ORAP PS en relación a Nazca y Salas y Gómez no necesariamente salvaguardan dicho ecosistema en el área de la ZEE de Chile, al tiempo que parece difícil que medidas de manejo fijadas para la alta mar por la ORAP PS se extiendan a aguas de jurisdicción chilena. 3. La declaración de un sistema representativo de Áreas Marinas Protegidas (AMPs), tanto para alta mar como para aguas bajo jurisdicción de Chile. Con una iniciativa de este estilo, los asuntos jurisdiccionales no serían tocados, pero el nivel de coordinación requerido sería exigente. La conservación a través de la designación de AMPs requerirá una mezcla de medidas nacionales y supranacionales que sean legalmente efectivas y controlables en la práctica. Las AMPs, dependiendo del alcance que tengan, podrían permitir la inclusión y consideración de múltiples valores y visiones, no solo de los usuarios directos de los recursos hidrobiológicos, sino que además de otros actores como grupos de científicos, ONGs y público en general. En la zona bajo jurisdicción chilena existe un sustrato legal para la implementación de tales AMPs, en tanto que en el área de alta mar es posible indicar que hay ejemplos de programas activos para el desarrollo de AMPs tanto en el Atlántico noreste, como en el Mediterráneo y el océano Austral. Más aun, la reciente conferencia de revisión del Acuerdo de Nueva York, sobre especies transzonales y altamente migratorias, reconoce a las AMPs como una herramienta efectiva de conservación en la alta mar y recomienda a los países y ORAP que se desarrollen criterios para su aplicación (Anon., 2006). Un último desarrollo en materia de manejo y protección de EMV en la alta mar, y que esta en línea con la opción de manejo anterior, es la reciente Guía Internacional Para el Manejo de las Pesquerías de Aguas Profundas en la Alta Mar, adoptada por los miembros de FAO después de dos años de preparación y negociación (FAO, 2008). En su párrafo 66 se exhorta a los estados y ORAP a cerrar a la pesca de aguas profundas aquellas zonas de alta mar donde se hayan identificado o es probable que existan EMV. El cierre de tales áreas, como lo deja entrever el mismo reporte, debiera ser consistente y estar incorporado en planes de administración de pesquerías de aguas profundas, con lo cual – aunque no es explícitamente mencionado en el reporte final – se articula la figura de AMP explicitada en versiones preliminares de dicho reporte. 496 Lat. Am. J. Aquat. Res. CONCLUSIONES La literatura científica disponible en relación a los MS que conforman las cadenas de Nazca y Salas y Gómez es fragmentada, escasa y en algunos casos de difícil acceso, básicamente por el idioma en que ha sido escrita y porque algunos datos y reportes no son de carácter público. Sin embargo, algunos artículos (especialmente el de Parin et al., 1997) y bases de datos biológicas y geológicas de libre disposición se destacan como un esfuerzo integrador de la información generada por algunas expediciones, tal es el caso de los sitios web “SeamountsOnline” (datos biológicos) y “Earth Reference Data and Models” (datos geológicos). Los datos y análisis oceanográficos, que pueden ser asociados a los montes de esta zona, han sido generados en el contexto de estudios que no consideran a los MS como sujeto de análisis. Sin embargo, una compilación y sistematización de dicha información podría permitir un análisis preliminar del área o el planteamiento de hipótesis científicas para el desarrollo de futuras investigaciones. Existe una carencia total respecto de estudios que analicen los efectos de la pesca, tanto en las especies que habitan dichos montes como en el ecosistema mismo. Por lo anterior, el presente documento constituye el primer intento integrador de la información científica disponible, permite identificar las áreas en que se carece de dicha información y por lo tanto la programación de futuras investigaciones, al tiempo que realza la importancia de estas cordilleras submarinas como sujeto de conservación y administración por parte de la ORAP PS, y particularmente del Gobierno de Chile. Sin embargo, se reconoce que una visión verdaderamente holística respecto de este ecosistema debe incorporar no sólo estudios científicos, sino que también jurídicos, económicos y geopolíticos, con el objeto de sentar las bases que permitan una adecuada gobernanza y sustentabilidad de las comunidades biológicas, del ecosistema y de los eventuales usos de los recursos naturales en el área. Los montes de Nazca y Salas y Gómez son uno de los accidentes geográficos submarinos más relevantes del Pacífico suroriental. La principal hipótesis que explica su creación, indica que estos alineamientos montañosos son de origen volcánico y estarían formados por el hotspot de Pascua. En conjunto tienen una extensión de 2.900 km, y entre 100 y 300 km de ancho. El 65% de los 144 MS que componen Nazca y Salas y Gómez se localizan en aguas internacionales de la alta mar, mientras que el resto en aguas jurisdiccionales chilenas. La superficie marina proyectada por ambos cordones representa menos del 5% de la alta mar en las áreas FAO 87.2 y 87.3. Sin embargo, para estas mismas áreas contiene casi de la mitad de los MS. Hasta el momento, sólo la lejanía de dichos cordones submarinos ha permitido que no se valore en su real magnitud la importancia científica y ecológica que encierran. Los cordones de Nazca y Salas y Gómez alojan un conjunto de MS con una excepcional biodiversidad y una de las tasas de endemismo más altas reportadas para este tipo de ecosistemas (46,3% de 164 invertebrados y 41,2% de 171 peces identificados), las que incluso superan las de otros tan extraños como los campos de fuentes hidrotermales. No sólo especies son endémicas de dichos montes, sino que también nuevos géneros han sido descubiertos, los que también son únicos en el área. A pesar de su relativa cercanía con el continente americano, su fauna íctica de gran profundidad está más asociada con la que es posible encontrar a iguales profundidades en las cercanías de Japón, Australia, Hawai o Nueva Zelanda, antes que a lo largo de la costa sudamericana. Así, este impresionante alineamiento montañoso submarino, ha sido denominado con propiedad un ‘hotspot’ biológico y un reducto de la fauna del Pacífico indoccidental en el Pacífico suroriental. Especies altamente vulnerables han sido registradas para la zona de los MS de Nazca y Salas y Gómez, tales como algunos tipos de corales pétreos, esponjas y peces de baja resilencia. Estos ensambles biológicos y la inusualmente alta productividad primaria en el área, formarían la base del ecosistema epipelágico asociado, donde otras importantes especies ocurren. Adicionalmente, los montes de Nazca y Salas y Gómez alojan un conjunto de especies que han sido sujeto de actividades pesqueras en el área (Beryx splendens, Projasus bahamondei y más asociado a la zona pelágica, Xiphias gladius), o que conforman pesquerías comerciales en otras latitudes, tales como Trachurus symmetricus murpyi, Emmelichthys cyanescens, E. elongatus, Decapterus muroadsi, Zenopsis oblongus, Epigonus elegans, Helicolenus lengerichi, Pentaceros quinquespinis y Chaceon chilensis. Debido a esto, la pesca comercial emerge como una de las amenazas más inminentes para el área, particularmente en la zona bajo jurisdicción chilena ya que hasta la fecha no se han tomado medidas de manejo y conservación orientadas, y se ha empezado a verificar una baja pero incipiente actividad de la flota de arrastre chilena. RECOMENDACIONES Si bien hay muchas consideraciones económicas, político, jurídicas y prácticas que están más allá del ámbito de ésta revisión, se postula que, tomando en cuenta los objetivos superiores de la investigación y conser- Montes submarinos de Nazca y Salas y Gómez vación, las siguientes recomendaciones son pertinentes para el caso de los ecosistemas asociados a las cordilleras submarinas de Nazca y Salas y Gómez: − Por los altos costos que implican las investigaciones científicas, y el carácter jurisdiccional del área, se recomienda la búsqueda de una mayor coordinación y cooperación internacional para afrontar los estudios que los estamentos políticos requerirán para la toma de medidas de administración. Como punto de partida, tres actividades resultan relativamente fáciles de implementar: la traducción de varios documentos científicos redactados en ruso, la confección de una base de datos integral (biológica, geológica, oceanográfica y pesquera), y la incorporación de esta zona a programas internacionales de investigación científica como el CenSeam. − En atención a lo anterior, se recomienda la confección de estudios político-jurídicos, a fin de evaluar las alternativas legales y políticas, tanto en términos nacionales (i.e., Chile) como internacionales, para la creación de un sistema de AMPs, con su respectivo plan de administración, en la zona de Nazca y Salas y Gómez. Análisis económicos, como evaluaciones no basadas en el mercado, debieran ser parte de estos estudios, así como aspectos prácticos de control y fiscalización. − Finalmente, se recomienda la implementación de programas de información pública selectiva y masiva. Selectiva, en términos de desarrollar seminarios (o similares) de orden científico y legal a particulares audiencias que tengan algún interés directo con el área, con el objeto de compartir/difundir información especializada. Masiva, en términos de destacar la importancia ecológica y vulnerabilidad de los ecosistemas asociados a los MS de Nazca y Salas y Gómez. Programas de esta naturaleza, sin duda que aumentarán la transparencia en el proceso de manejo y darán un impulso al desarrollo de nuevas investigaciones. REFERENCIAS Anon. 2006. Report of the review conference on the agreement for the implementation of the provisions of the United Nations Convention on the Law of the Sea of 10 December 1982 relating to the Conservation and Management of Straddling Fish Stocks and Highly Migratory Fish Stocks. http://www.un.org/ Depts/los/ convention agreements/review_conf_ fish_stocks.htm. Revised: 11 February 2008. 497 Anon. 2008. Update of data submitted to the Interim Secretariat: Canberra 2008. SPRFMO Interim Secretariat Report. SPRFMO-VI-DIWG-10-Rev2. http://www.southpacificrfmo.org/workinggroups/public/sixth-d-and-iwg-meeting/. Revised: 26 October 2008. Arana, P. 2003. Experiencia chilena en faenas de pesca en aguas profundas y distantes: evolución y perspectivas. In: E. Yáñez (ed.). Actividad pesquera y de acuicultura en Chile. Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, pp. 57-79. Arana, P. & V. Venturini. 1991. Investigaciones biológico-pesqueras de crustáceos en la cordillera de Nazca (océano Pacífico suroriental). Informe Técnico de Pesca Chile, 47: 86 pp. (in russian). Belyanina, T.N. 1989. Ichthyoplankton in the regions of the Nazca and Salas y Gomes submarine ridges. J. Ichthyol., 29: 84-90. (in russian). Belyanina, T.N. 1990. Larvae and fingerlings of littleknown benthic and benthopelagic fishes from the Nasca and Salas y Gómez ridges. J. Ichthyol., 30(8): 1–11. Bonatti, E., C.G.A. Harrison, D.E. Fisher, J. Honnorez, J.G. Schilling, J.J. Stipp & M. Zentilli. 1977. Easter volcanic chain (southeast Pacific): a mantle hot line. J. Geophys. Res., 82(17): 2457-2478. Butler, A.J., J.A. Koslow, P.V.R. Snelgrove & S.K. Juniper. 2001. A review of the biodiversity of the deep sea. Environment Australia, Canberra, 2001. http://www.ea.gov.au/marine. Revised: 15 December 2006. Clark, J.G. & J. Dymond. 1977. Geochronology and petrochemistry of Easter and Salas y Gómez islands; implications for the origin of the Sala y Gómez Ridge. J. Volcanol. Geoth. Res., 2(1): 29-48. Clark, M., A. Rowden & A. Stocks. 2004. CenSeam: a global census on marine life on seamounts: a proposal for a new CoML field project. http://censeam.niwa. co.nz/science/censeam_proposal.pdf. Revised: 11 February 2008. Commonwealth of Australia. 2002. Tasmanian seamounts marine reserve management plan. Environment Australia. Canberra, 54 pp. http://www.environment.gov.au/coasts/mpa/publications/seamounts-plan. html. Revised: 10 December 2007. Daneri, G., V. Dellarossa, R. Quiñones, B. Jacob, P. Montero & O. Ulloa. 2000. Primary production and community respiration in the Humboldt current system off Chile and associated oceanic areas. Mar. Ecol. Prog. Ser., 197: 41-49. Earth Reference Data and Models. 2007. Seamount catalog. Seamount Biogeosciences Network. http://earthref.org/cgi-bin/sc-s0-main.cgi. Revised: 17 December 2007. 498 Lat. Am. J. Aquat. Res. Fernández, M. & J.C. Castilla. 2005. Marine conservation in Chile: historical perspective, lessons, and challenges. Conserv. Biol., 19(6): 1752-1762. Food and Agriculture Organisation, UN (FAO). 2007. FAO Fisheries Department, Fishery Information, Data and Statistics Unit. FishStat Plus: Universal Software for fishery statistical time series. Version 2.3.2000. Food and Agriculture Organisation, UN (FAO). 2008. International guidelines for the management of deepsea fisheries in the high seas. Versión no editada/publicada. ftp://ftp.fao.org/FI/DOCUMENT/tcdsf/2008 2nd/2_1e.pdf. Revised: 26 October 2008. Försterra, G., L. Beuck, V. Häussermann & A. Freiwald. 2005. Shallow water Desmophyllum dianthus (Scleractinia) from Chile: characteristics of the biocenoses, the bioeroding community, heterotrophic interactions and (palaeo)-bathymetrical implications. In: A. Freiwald & J.M. Roberts (eds.). Cold-water corals and ecosystems. Springer-Verlag, Berlin Heidelberg, pp. 937-977. Fosså, J.H., P.B. Mortensen & D.M. Furevik. 2002. The deep-water coral Lophelia pertusa in Norwegian waters: distribution and fishery impacts. Hydrobiologia, 13: 1-12 Freiwald, A. 2002. Reef-forming cold-water corals. In: G. Wefer, D. Billett, D. Hebbeln, B.B. Jorgensen, M. Schluter & T. Van Weering (eds.). Ocean margin systems. Springer, Heidelberg, pp. 365-385. Freiwald, A. & J.M. Roberts (eds.). 2005. Cold-water corals and ecosystems. Springer, Heidelberg, 1243 pp. Fuenzalida, R., W. Schneider, J.L. Blanco, J. Garcés & L. Bravo. 2007. Sistema de corrientes Chile-Perú y masas de agua entre Caldera e isla de Pascua. Cien. Tec. Mar, 30(2): 5-16. Gálvez, M. 2006. Sinopsis de ecosistemas marinos vulnerables y propuesta de cierre de áreas al arrastre de fondo y redes de enmalle. Documento de trabajo Subsecretaría de Pesca, Valparaíso, Informe Técnico, 069: 36 pp. Gálvez, M. 2007. Ecosistemas marinos vulnerables: ¿A la vuelta de la esquina? Rev. Chile Pesq., 171: 30-35. Genin, A. & J.F. Dower. 2007. Seamount plankton dynamics. In: T.J. Pitcher, T. Morato, P.B. Hart, M. Clark, N. Haggan, & R.S. Santos (eds.). Seamounts: ecology, conservation and management. Fish and Aquatic Resources Series, Blackwell, Oxford, pp. 85100. Gianni, M. 2004. High seas bottom trawl fisheries and their impact on the biodiversity of vulnerable deepsea ecosystems: Options for international action. IUCN/NRDC/CI/WWF. http://www.iucn.org/themes/ marine/ pubs/pubs.htm. Revised: 8 November 2007. Gjerde, K.M. 2007. High seas marine protected areas and deep sea fishing. In: FAO (ed.). FAO Report and documentation of the Expert Consultation on Deepsea Fisheries in the High Seas. Bangkok, Thailand, 21-23 November 2006. FAO Fisheries Report 838, pp. 141-180. http://www.fao.org/docrep/010/a1341e/ a1341 e00.htm. Revised: 10 February 2008. Glynn, P.W. & J.S. Ault. 2000. A biogeographic analysis and review of the far eastern Pacific coral reef region. Coral Reefs, 19: 1-23. Gubbay, S. 1999. The offshore directory. Review of a selection of habitats, communities and species of the north-east Atlantic. WWF-UK. North-East Atlantic Programme. http://www.ngo.grida.no/wwfneap/projects/reports/of fshore.pdf. Revised: 15 December 2007. Gubbay, S. 2003. Seamounts of the north-east Atlantic. Frankfurt, Stefanie Fine Schmidt. [http://www.ngo. grida.no/wwfneap/projects/reports/ seamount_report. pdf]. Revised: 20 October 2007. Haase, K.M., P. Stoffers & C.D. Garbe-Schonberg. 1997. The petrogenetic evolution of lavas from Easter Island and neighboring seamounts, near-ridge hotspot volcanoes in the SE Pacific. J. Petrology, 38(6): 785813. Hubbs, C.L. 1959. Initial discoveries of fish faunas on seamounts and offshore banks in the eastern Pacific. Pac. Sci., 13: 311-316. Husebø, A., L. Nøttestad, J.H. Fosså, D.M. Furevik & S.B. Jørgensen. 2002. Distribution and abundance of fish in deep-sea coral habitats. Hydrobiologia, 471: 91-99. Unión Mundial para la Naturaleza (IUCN). 2006. La Conservación de la biodiversidad marina en áreas más allá de los límites de la jurisdicción nacional (Ítems 26.3 y 27.1 de la agenda). Documento de posición presentado en la Octava Reunión de la Conferencia de las Partes en el Convenio sobre Diversidad Biológica (COP8), Curitiba, Brasil, 20-31 de marzo 2006, 5 pp. International Council for the Exploration of the Sea (ICES). 2006. Report of the working group on deepwater ecology (WGDEC) 4-7 December 2005, Miami, USA. ICES CM 2006/ACE: 04, 79 pp. Johnston, P.A. & D. Santillo. 2004. Conservation of seamount ecosystems: application of a marine protected areas concept. Arch. Fish Mar. Res., 51(1-3): 305-319. Kimball, L.A. 2005. The international legal regime of the high seas and the seabed beyond the limits of national jurisdiction and options for cooperation for the establishment of marine protected Areas (MPAs) in Marine Areas Beyond the Limits of National Jurisdiction. Secretariat of the Convention on Biological Diversity, Technical Series 19, 64 pp. http://www.bio- Montes submarinos de Nazca y Salas y Gómez div.org/doc/publications/cbd-ts-19.pdf. Revised: 20 October 2007. Koslow, T. 2007. The silent deep: the discovery, ecology and conservation of the deep sea. The University of Chicago Press, Chicago, 270 pp. Koslow J.A., G.W. Boehlert, J.D.M. Gordon, R.L. Haedrich, P. Lorance & N. Parin. 2000. Continental slope and deep-sea fisheries: implications for a fragile ecosystem. ICES J. Mar. Sci., 57: 548-557. Koslow, J.A., K. Gowlett-Holmes, J.K. Lowrly, G.C.B. Poore & A. Williams. 2001. Seamount benthic macrofauna off southern Tasmania: community structure and impact of trawling. Mar. Ecol. Prog. Ser., 213: 111-125. Lillo, S., R. Bahamonde, B. Leiva, M. Rojas, M.A. Barbieri, M. Donoso & R. Gili. 1999. Prospección del recurso Orange roughy (Hoplosthetus spp.) y su fauna acompañante entre la I y X Región. Informe Final FIP Nº98-05. http://www.fip.cl/prog_recurso/1998/9805. htm. Revised: 4 March 2007. Mammerickx, J. 1981. Depth anomalies in the Pacific: active, fossil and precursor. Earth Planet. Sci. Lett., 53: 147-157. Mironov, A.N., T.N. Molodtsova & N.V. Parin. 2006. Soviet and Russian studies on seamount biology. http://www.isa.org.jm/en/scientific/workshops/2006/ Mar06. Revised: 20 December 2007. Molodtsova T.N. 2005. A new species of Saropathes (Cnidaria, Anthozoa, Antipatharia) from the Norfolk Ridge (south-west Pacific, New Caledonia). Zoosystema, 27(4): 699-707. Moraga, J., A. Valle-Levinson & J. Olivares. 1999. Hydrography and geostrophy around Easter Island. Deep-Sea Res I, 46: 715-731. Morato, T., W.W.L. Cheung & T.J. Pitcher. 2004. Vulnerability of seamount fish to fishing: Fuzzy analysis of life-history attributes. In: T. Morato & D. Pauly (eds.). Seamounts: biodiversity and fisheries. Fisheries Centre Research Reports, 12(5): 51-60. Morato, T., R. Watson, T.J. Pitcher & D. Pauly. 2006. Fishing down the deep. Fish and Fisheries, 7(1): 2434. Morgan, L.E. & R. Chuenpagdee. 2003. Shifting gears: addressing the collateral impacts of fishing methods in U.S. waters. Island Press, Washington D.C., 42 pp. http://www.mcbi.org/publications/pub_pdfs/ shiftinggears.pdf. Revised: 15 July 2007. Naar, D.F., K. Johnson, D. Pyle, P. Wessel, R.A. Duncan & J. Mahoney. 2001. RAPA NUI 2001: Cruise report for Leg 6 of the Drift expedition aboard the R/V Revelle. http://www.soest.hawaii.edu/wessel/drft06rr/drft 06rr.report.html. Revised: 18 December 2007. 499 Naar, D.F., T.M. Kevin, P.W. Johnson & D. Pyle. 2002. Preliminary multibeam mapping and dredging results along the Nazca ridge and Easter/Salas y Gómez chain. Eos Trans AGU, 83(4), Ocean Sciences Meet. Suppl, Abstract OS32O-11. O’Connor, J.M., P. Stoffers & M.O. McWilliams. 1995. Time-space mapping of Easter Chain volcanism. Earth Planet. Sci. Lett., 136: 197-212. Pakhorukov, N.P., A.B. Levin & O.N. Danilyuk. 2000. Distribution and behavior of Spiny lobster, Projasus bahamondei on underwater Naska ridge (the Pacific ocean). Ecologiya Morya, 50: 53-57. Parin, N.V., A.N. Mironov & K.N. Nesis. 1997. Biology of the Nazca and Salas y Gómez submarine ridges, an outpost of the Indo-West Pacific fauna in the eastern Pacific ocean: composition and distribution of the fauna, its communities and history. Adv. Mar. Biol., 32: 145-242. Pitcher, T., T. Morato, P. Hart, M. Clark, N. Haggan & R. Santos (eds.). 2007. Seamounts: ecology, fisheries and conservation. Oxford, Fish. Aquat. Res. Ser., 12: 536 pp. Richer de Forges, B.; J.A. Koslow & G.C.B. Poore. 2000. Diversity and endemism of the benthic seamount fauna in the southwest Pacific. Nature, 405: 944–947. Rivera, J. & A. Mujica. 2004. Distribución horizontal de larvas de crustáceos decápodos capturadas entre Caldera e isla de Pascua (Pacífico sudoriental), octubre de 1999. Invest. Mar., 32(2): 37-58. Roberts, J.M. 2007. Deep-sea coral. Transcription of interview in the Science Show of ABC Radio National, June 2, 2007. http://www.abc.net.au/rn/ scienceshow/stories/2007/1936290.htm. Revised: 23 October 2008. Rogers, A.D. 1994. The biology of seamounts. Adv. Mar. Biol., 30: 305-350. Rogers, A.D. 1999. The biology of Lophelia pertusa (Linnaeus 1758) and other deep-water reef forming corals and impacts from human activities. Int. Rev. Hydrobiol., 84: 315-406. Rogers, A.D. 2004. The biology, ecology and vulnerability of deep-water coral reefs. IUCN Report. http: //www.iucn.org/themes/marine/pubs/pubs.htm. Revised: 22 September 2006. Saintard, J. 2001. La minería submarina: un nuevo referente para la minería chilena. [http://www.areaminera.com/contenidos/escribe/26.act]. Revised: 14 December 2007. Schilling, J.G., H. Sigurdsson, A.N. Davis & R.N. Hey. 1985. Easter microplate evolution. Nature, 317: 325331. 500 Lat. Am. J. Aquat. Res. Sea Around Us. 2008. A global database on marine fisheries and ecosystems. Fisheries Centre, University British Columbia, Vancouver. http://www.seaaroundus.org. Revised: 12 February 2008. SeamountOnline 2007. SeamountOnline: an online information system for seamount biology. [http://seamounts.sdsc.edu]. Revised: 17 December 2007. Shipboard Scientific Party. 2003. Site 1236. In: K.L. May, A.T. Miller & L.L. Peters (eds.). Proceedings of the Ocean Drilling Program, Volume 202, Initial Reports, Southeast Pacific Paleoceanographic Transects. College Station TX (Ocean Drilling Program), pp. 174. [http://www-odp.tamu.edu/publications/202_IR/ 202TOC.HTM]. Revised: 28 December 2007. Stone, G.S., L.P. Madin, K. Stocks, G. Hovermale, P. Hoagland, M. Schumacher, P. Etnoyer, C. Sotka & H. Tausig. 2004. Seamount biodiversity, exploitation and conservation. In: L.K. Glover & S.A. Earle (eds.). Defying ocean’s end, an agenda for action. Island Press, Washington, pp. 41-70. Subsecretaría de Pesca (SUBPESCA). 2006. Cuota global anual de captura alfonsino (Beryx splendens), año 2006. Inf. Téc. (R.Pesq.) Nº117. Subsecretaría de Pesca, Valparaíso, noviembre de 2005, 28 pp. Turley, C.M., J.M. Roberts & J.M. Guinotte. 2007. Corals in deep-water: will the unseen hand of ocean acidification destroy cold-water ecosystems? Coral Reefs, 26: 445–448 Weinborn, J.A., P. Báez & A.Y. Radtchenko. 1992. Langostas en el mar presencial. Rev. Chile Pesq., 67: 2124. White, M., I. Bashmachnikov, J. Arístegui & A. Martins. 2007. Physical processes and seamount productivity. Received: 27 February 2008; Accepted: 23 February 2009 In: T.J. Pitcher, T. Morato, P.J.B. Hart, M.R. Clark, N. Haggan & R.S. Santos (eds.). Seamounts: ecology, conservation and management. Fisheries of Aquatic Resaerch Service. Blackwell, Oxford, pp. 65-84. White, M. & C. Mohn. 2004. Seamounts: a review of physical processes and their influence on the seamount ecosystem. OASIS report, University Hamburg, 40 pp. http://www1.uni-hamburg.de/oasis// pages/publications/ oceanography.pdf. Revised: 4 December 2007. Wilson, R.R. & R.S. Kaufmann. 1987. Seamount biota and biogeography. In: B. Keating, P. Fryer, R. Batiza & G. Boehlert (eds.). Seamounts, Island and Atolls. Geophys. Monogr., 43: 355-377. Woods, M.T. & E.A. Okal. 1994. The structure of the Nazca Ridge and Sala y Gómez seamount chain from the dispersion of Rayleigh waves. Geophys. J. Int., 117(1): 205-222. Yáñez, E., C. Silva, J. Marabolí, F. Gómez, N. Silva, E. Morales, A. Bertrand, J. Chong, R. Rojas, A. Órdenes, J. Campalans & A. Gamonal. 2004. Caracterización ecológica y pesquera de la cordillera de Nazca como área de crianza del Pez espada. Informe Final, Proyecto FIP N° 2002–04: 389 pp. Yáñez, E., C. Silva, N. Silva, A. Órdenes, F. Leiva, P. Rojas & J. Chong. 2006. Caracterización ecológica y pesquera de la cordillera de Nazca como área de crianza del Pez espada, fase II. Informe Final, Proyecto FIP N° 2004–34: 236 pp. Yañez, E., C. Silva, R. Vega, L. Alvarez, N. Silva, S. Palma, S. Salinas, E. Menschel & V. Haussermann. 2008. Biodiversidad de montes submarinos. Informe Final, Proyecto FIP Nº 2006-57: 246 pp. Lat. Am. J. Aquat. Res., 37(3): 501-512, 2009 “Deep-sea fisheries off Latin America” P. Arana, J.A.A. Perez & P.R. Pezzuto (eds.) DOI: 10.3856/vol37-issue3-fulltext-17 Deep-sea seamount fisheries: a global review 501 Review Deep-sea seamount fisheries: a review of global status and future prospects Malcolm R. Clark NIWA, Private Bag 14-901, Wellington, New Zealand ABSTRACT. Seamounts support a large number and wide diversity of fish species. A number of these species can form aggregations for spawning or feeding and are the target of large-scale trawl fisheries. Since the 1970s, seamounts throughout the worlds’ oceans have been explored for commercial resources, starting with efforts by the Soviet Union and Japan, which deployed distant water fleets around the world. Since then, a large number of countries have pursued fisheries on seamounts, especially in the deep sea. The total cumulative catch from seamount trawl fisheries exceeds two million tonnes. Catch histories for many deep-sea species show rapidly declining landings, and careful management is required to increase the chances of sustainable fisheries. The low productivity of many seamount species limits the prospects for the large-scale exploitation of fish and invertebrate resources on seamounts. Keywords: deep-sea, fisheries, seamounts, fisheries management, sustainability, orange roughy, Hoplostethus atlanticus. Pesquerías de aguas profundas realizadas en montes submarinos: revisión global de su estado y perspectivas futuras RESUMEN. Los montes submarinos constituyen el hábitat de una vasta y amplia variedad de especies ícticas. Parte de estas especies pueden formar agregaciones reproductivas o alimenticias, siendo objeto de importantes pesquerías de arrastre. A partir de la década de los 70´ los montes submarinos en los diversos océanos fueron explorados en busca de recursos comerciales, labores que se iniciaron con la expansión de flotas de aguas distantes de la Unión Soviética y Japón alrededor del mundo. Desde ese momento, un gran número de otros países ha desarrollado pesquerías en montes submarinos, especialmente en aguas profundas. La captura total acumulada que se ha extraído en los montes submarinos excede a dos millones de toneladas. La historia de las faenas pesqueras realizadas en numerosas especies de aguas profundas muestra una rápida disminución en los desembarques, razón por la cual requieren de un cuidadoso manejo para incrementar la oportunidad de lograr la condición de pesquerías sustentables. La baja productividad observada en diversas especies indica una limitada posibilidad de desarrollar pesquerías a gran escala, tanto de peces como de invertebrados, en los montes submarinos. Palabras clave: aguas profundas, montes submarinos, pesquerías, manejo pesquero, sustentabilidad, orange roughy, Hoplostethus atlanticus. ________________________ Corresponding author: Malcolm R. Clark (m.clark@niwa.co.nz) INTRODUCTION Seamounts are prominent features of the seafloor throughout the oceans of the world. Their numbers are unknown, but recent studies based largely on satellite altimetry have estimated that there could be tens of thousands of large seamounts (Wessel, 2001; Kitch- ingman & Lai, 2004; Hillier & Watts, 2007). Their distribution is widespread throughout the world’s oceans, especially in the Pacific (Fig. 1). Seamounts support a large number and wide diversity of fish species. A total of almost 800 species have been recorded from seamounts (Froese & Sampang, 2004; Morato et al., 2006; Morato & Clark, 2007). 502 Lat. Am. J. Aquat. Res. Figure 1. Estimated global distribution of large seamounts (elevation > 1500 m). Based on data from Kitchingman & Lai (2004). Figura 1. Distribución mundial estimada de grandes montes submarinos (elevación > 1500 m). Según datos de Kitchingman & Lai (2004). Most of these also occur widely on the continental shelf and slope habitat, but seamounts can be an important habitat for commercially valuable species that may form dense aggregations for spawning or feeding (Clark, 2001) and on which a number of large-scale fisheries have developed in the deep-sea. Many of these fisheries, however, have not been sustainably fished or managed. A number have shown a ‘boom and bust’ pattern, with catches rapidly developing and declining within a decade (e.g. Uchida & Tagami, 1984; Clark, 2001; Vinnichenko, 2002a). These patterns have raised concerns over whether such fisheries can be sustainable (e.g. Roberts, 2002; Gianni, 2004; Stone et al., 2004). This paper briefly describes deep-sea seamount fish and trawl fisheries, reviews aspects of their sustainability, discusses what is required for effective management of both fisheries and the seamount habitat, and considers prospects for large-scale commercial exploitation of fish resources on seamounts. The study is restricted to demersal finfish, although seamount fisheries also occur for surface and midwater fish, crustaceans, and squids (see Rogers, 1994 and papers in Pitcher et al., 2007). Description of seamount fishes The definition of “deep sea” varies between organizations and countries. The FAO criterion is beyond the continental shelf/slope break, typically occurring at about 200 m. However, this depth-limit means a large number of shallow-water species are included where their depth distribution extends beyond 200 m. Hence, in this paper, the focus is on a more ecological definition that recognizes fish with low productivity relative to inshore continental shelf species, which are typically deeper than 400-500 m (FAO, 2008) (Table 1). It is not possible to generalize about biological characteristics, as deepwater seamount species span a wide range of productivity values (e.g. rubyfish are relatively short-lived and fast growing compared with orange roughy), but it is widely recognized that these deep-sea species are less productive and more vulnerable to fishing pressure than shelf species (e.g. Gordon, 2005; Japp & Wilkinson, 2007; Sissenwine & Mace, 2007). Deep-sea trawl fisheries occur on seamounts for a number of species. These include alfonsino (Beryx splendens), black cardinalfish (Epigonus telescopus), orange roughy (Hoplostethus atlanticus), southern boarfish (Pseudopentaceros richardsoni), macrourid rattails (primarily roundnose grenadier Coryphaenoides rupestris), oreos (several species of the family Oreosomatidae, including the smooth oreo Pseudocyttus maculatus and the black oreo Allocyttus niger), and toothfish (Patagonian toothfish Dissostichus eleginoides and Antarctic toothfish D. mawsoni) (Clark et al., 2007). Other fisheries occur over 503 Deep-sea seamount fisheries: a global review Table 1. Bathymetric distribution and biological characteristics of commercial fish species on seamounts. Depth is the main commercial range. Data on maximum age, resilience (population doubling time), and intrinsic extinction vulnerability, the latter based on Cheung et al. (2005) and consisting of a relative measure ranging from 1 (very low) to 100 (very high), are from Fishbase. Tabla 1. Distribución batimétrica y características biológicas de los peces comerciales capturados en montes submarinos. La profundidad se refiere a rangos en que se efectúan las pescas comerciales: edad máxima, productividad relativa (lapso en que se duplica la población) y vulnerabilidad intrínseca de extinción. De acuerdo a Cheung et al. (2005), una medida relativa varía de 1 (muy bajo) a 100 (muy alto), datos tomados de Fishbase. Species Scientific name Main depth range (m) Maximum age (years) Resilience (years) Intrinsic extinction vulnerability Alfonsino Beryx splendens 300-600 25 5-14 65 Cardinalfish Epigonus telescopus 500-800 100 14 70 Rubyfish Plagiogeneion rubiginosum 250-450 10 2-4 49 Blue ling Molva dypterygia 250-500 20 5-14 73 Black scabbardfish Aphanopus carbo 600-800 30 5-14 63 Sablefish Anoplopoma fimbria 500-1,000 115 >14 76 Pink maomao Caprodon spp. 300-450 2-4 50 Southern boarfish Pseudopentaceros richardsoni 600-900 2-4 42 Pelagic armourhead Pseudopentaceros wheeleri 250-600 11 7 57 Orange roughy Hoplostethus atlanticus 600-1,200 150 >14 74 Oreos Pseudocyttus maculatus, Allocyttus niger 600-1,200 100 >14 72 Bluenose Hyperoglyphe antarctica 300-700 15 5-14 74 Redfish 400-800 75 >14 75 Roundnose grenadier Sebastes spp. (S. marinus, S. mentella, S. proriger) Coryphaenoides rupestris 800-1,000 54 5-14 78 Toothfish Dissostichus spp. 500-1,500 20–30 5-14 86 Notothenid cods Notothenia spp. 200-600 15-20 5-14 58 seamounts, such as those for pelagic species (mainly tunas), near-bottom fishing for mackerels, and target species for smaller scale line fisheries (e.g. black scabbardfish Aphanopus carbo) (FAO, 2004; da Silva & Pinho, 2007). Many of the main commercial seamount species are widespread, especially through the Atlantic, Indian, and South Pacific oceans (Table 2). A number of Southern Hemisphere species are found in the North Atlantic, but do not extend into the North Pacific (e.g. orange roughy, oreos). Some species are more localised to the North Atlantic (e.g. roundnose grenadier, blue ling, Sebastes mentella, S. marinus), and sablefish occur only in the North Pacific. Seamount fisheries Global overview Seamount fisheries have taken place, or currently occur, on a large number of seamounts throughout the worlds’ oceans. These are prominent in the Pacific ocean, but also in the southern Indian ocean, the MidAtlantic Ridge in the north Atlantic, and off the African coast in the south Atlantic (Fig. 2). The largest seamount trawl fisheries have occurred in the Pacific ocean (Koslow, 2007; Clark et al., 2007). In the 1960s to 1980s, large-scale fisheries for pelagic armourhead and alfonsino took place on the Hawaiian and Emperor seamount chains in the north 504 Lat. Am. J. Aquat. Res. Table 2. Geographical distribution of commercial fish species (+ indicates occurrence in that ocean). Tabla 2. Distribución geográfica de las especies comerciales (+ indica presencia en un océano particular). North Atlantic South Atlantic North Pacific South Pacific Indian Ocean Alfonsino + + + + + Cardinalfish + + + + + + + Species Rubyfish Blue ling + Black scabbardfish + Sablefish + Pink maomao + Southern boarfish + Pelagic armourhead Orange roughy Southern Ocean + + + + + + + Oreos + + + + Bluenose + + + Redfish + Roundnose grenadier + + + Toothfish + + + + Notothenid cods + + + + Figure 2. The distribution of major seamount/ridge fishing grounds (from Clark et al., 2007). Figura 2. Principales montañas y cordilleras submarinas donde se realizan faenas de pesca comercial (tomado de Clark et al., 2007). 505 Deep-sea seamount fisheries: a global review Pacific. In total, about 800,000 ton of pelagic armourhead and about 80,000 ton of alfonsino were taken. In the southwest Pacific, fisheries for orange roughy, oreos, and alfonsino were large and continue to be locally important. Orange roughy has also been the target of fisheries on seamounts off the central coast of Chile in the southeastern Pacific, on the Mid-Atlantic Ridge in the north Atlantic, off the west coast of southern Africa, and in the southwest Indian ocean. Roundnose grenadier was an important fishery for the Soviet Union in the North Atlantic, where catches were over 200,000 tonnes. Smaller fisheries for alfonsino, mackerel, and cardinalfish have occurred on various seamounts in the mid-Atlantic, southeast Pacific, and off the coast of north Africa. In the southern ocean, fisheries for toothfish, notothenids, and icefish can occur on seamounts as well as on slope and bank areas. Most of these seamounts are fished with bottom trawls, but several are also subjected to midwater trawl and longline fisheries. In total, the international catch of the main commercial demersal fish species on seamounts by distantwater fishing fleets is estimated to be over 2.15 million tonnes of fish since 1968 (Table 3) (Clark et al., 2007). Hence, seamount fisheries have contributed only a very small proportion of the total global wildfish catch, which averaged about 60 million tonnes per year over the same period (Csirke, 2005). South American fisheries Most large volume deepwater fisheries have occurred in other regions, but several fisheries have developed off South America on seamounts. Off Brazil, a major programme of exploratory trawling between 2000 and 2006 covered a large part of the coast, although seamounts were of secondary importance in this work, which focused on the upper slope for finfish and shrimps (Perez et al., 2009b). Seamounts of the Fernando de Noronha and Vitoria-Trinidade chains have been exploited, although mainly with longlines (Hazin et al., 1998, Martins et al., 2005) and only limited trawling for groupers (Epinephelus spp.) (Perez et al. 2009a). During the 1980s, trawlers from the then Soviet Union fished on the Vitoria-Trinidade and Martin Vaz seamount chains and developed a fishery for alfonsino on the Rio Grande Rise (Clark et al., 2007). Table 3. Historic catches of the main fish species from seamounts, major fishing periods, and main gear types used in seamount fisheries (derived from data in Clark et al., 2007). Tabla 3. Capturas históricas de las especies más relevantes capturadas en montes submarinos, periodo de pesca más importante y principal tipo de arte de pesca empleado en la pesquería (datos tomados de Clark et al., 2007). Common name Alfonsino Orange roughy Oreos Cardinalfish Redfish Southern boarfish Pelagic armourhead Mackerel species Roundnose grenadier Blue ling Scabbard fish Sablefish Bluenose Rubyfish Pink maomao Notothenid cods Toothfish Total Total historical catch (ton) 166,950 419,100 145,150 52,100 54,450 9,600 800,000 148,200 217,000 10,000 75,000 1,400 2,500 1,500 2,000 36,250 12,250 2,153,470 Main fishery years 1978-present 1978-present 1970-present 1978-present 1996-present 1982-present 1968-1982 1970-1995 1974-present 1979-80 1973-2002 1995-present 1990-present 1995-present 1972-1976 1974-1991 1990-present Gear type Bottom and midwater trawl, some longline Bottom trawl Bottom trawl Bottom (and midwater trawl) Bottom and midwater trawl Bottom trawl Bottom and midwater trawl (Bottom) and midwater trawl Bottom, and midwater trawl Bottom trawl Bottom and midwater trawl (Bottom trawl), longline Bottom and midwater trawl Bottom and midwater trawl Bottom and midwater trawl Bottom trawl Bottom trawl, longline 506 Lat. Am. J. Aquat. Res. New Zealand fishery is really the only one that has persisted over time and much of this is due to fishing grounds in a restricted area of the Chatham Rise, to the east of the main New Zealand islands. Seamounts account for between 40 and 60% of the catch in New Zealand (Clark & O’Driscoll, 2003), even though serial depletion has occurred in some areas (Clark, 1999; Clark et al., 2000). The Australian fishery was very large for a number of years between 1989 and 1993, when high catch rates of spawning fish on St Helens seamount were regularly made, but the stocks were rapidly depleted and quotas were progressively reduced (Lack et al., 2003; Bax et al., 2005; Koslow, 2007). The St Helens fishery is now closed completely. A similar situation occurred in Namibia and Chile where, despite extensive research and precautionary management objectives, catches have not been sustained, and fisheries are now very small or just bycatch. The southwest Indian ocean is another area where large catches were taken for a short time, made worse by a total lack of any management on the High Seas, which saw an uncontrolled increase in effort in the early 2000s (from five vessels in 1999 to over 35 in 2000) and a sharp drop in catches and catch rates (FAO, 2002; Japp & James, 2005). Sissenwine & Mace (2007) described these catch histories as following two patterns: in the first, small stocks were fished down rapidly in only a few years before effective management could be implemented and, in the second, larger stocks were initially overestimated by research, and this was often coupled by non-conservative management practises and “fishing-down” phases, which lead to excessive depletion. In the southeastern Pacific, Soviet trawling occurred on the Nazca and Salas y Gomez Ridges for mackerel (Trachurus murphyi) and redbaits (Emmelichthys spp.), mainly in the 1970s but sporadic exploratory fishing also occurred in the 1980s (Clark et al., 2007; Gálvez, 2009). Off Chile, a commercial fishery for orange roughy and alfonsino developed on seamounts around the Juan Fernandez Archipelago in 1998 (Labbé & Arana, 2001, Guerrero & Arana, 2009). Orange roughy catches peaked at 1,870 ton in 2001, but declined thereafter (Paya et al., 2005). This fishery was closed except for a research quota in 2006 following decreasing catches and stock size estimates (Niklitschek et al., 2005, Sissenwine & Mace, 2007). SUSTAINABILITY OF DEEPWATER SEAMOUNT FISHERIES Deep-sea seamount fisheries, even within areas of national jurisdiction, have typically not maintained high catch levels over time. There are many examples of 'boom and bust' fisheries that developed and declined rapidly, sometimes within a few years or a decade (e.g. Uchida & Tagami, 1984; Koslow et al., 2000; Clark, 2001). Orange roughy is commonly cited as an example of this, as few of its fisheries in the world have proven to be sustainable (e.g. Branch, 2001; Clark, 2001; Lack et al., 2003; Sissenwine & Mace, 2007). New Zealand fisheries have dominated global catches (Fig. 3), although note that this figure includes continental slope habitats as well as seamounts. The 120000 Ireland SWIO Chile N. Atlantic Namibia Australia TasmanSea NewZealand Catch (ton) 100000 80000 60000 40000 20000 0 78 80 82 84 86 88 90 92 94 96 98 00 02 04 06 Year Figure 3. Estimated orange roughy catches for the main fishing areas around the world (compiled from various data sources). Figura 3. Capturas estimadas de orange roughy extraídas en las principales áreas de pesca del mundo donde se distribuye esta especie (datos provenientes de diversas fuentes). Deep-sea seamount fisheries: a global review Orange roughy is one of the least productive commercial species, but is not necessarily an extreme example. Fisheries for other deep-sea species have also shown low resilience to large catches, such as the pelagic armourhead fishery off Hawaii in the 1970s, alfonsino in the north Atlantic, roundnose grenadier on the Mid-Atlantic Ridge, and deepwater notothenids in the southern ocean (Clark et al., 2007). These fisheries have sometimes maintained catches by moving to new grounds or by switching to other species as the target species biomass has declined (e.g. increase in alfonsino catches as pelagic armourhead was overfished on the Hawaiian seamounts (Clark et al., 2007)). However, even relatively shallow species (e.g. pink maomao, Caprodon longimanus) can be rapidly depleted over seamounts, evidenced by a short-lived fishery on the Lord Howe Rise, where Japanese catch rates in 1976 decreased from 1.7 to 0.2 ton h-1 over one year with a catch of not much more than 1000 ton (Sasaki, 1986). Sissenwine & Mace (2007) listed 44 deep-sea (> 200 m) area species combinations, 27 of which included stocks classed as overexploited or depleted. No stocks were identified as recovering. Once overexploited, few deep-sea fisheries have shown signs of recovery. There are situations in which fishing success for orange roughy has improved with a reduction in effort levels, and fishers have reported increased catches of alfonsino and pelagic armourhead in some areas when the seamounts or fishing grounds have not been fished for a period. However, this may in part be related to fewer disturbances of aggregations with reduced trawling than an increase in stock size (Clark & Tracey, 1991). Orange roughy stocks in many areas generally continued to decline even when the catch has been reduced to levels thought by scientists to be sustainable. Some analyses have suggested depletion has not been excessive (Hilborn et al., 2006) but uncertainty about stock assessments and, in particular, assumptions about recruitment are critical in such evaluations. Irregular recruitment levels may be a key factor for the recovery of deep-sea species (Clark, 2001; Dunn, 2007). The example of orange roughy fisheries, in particular, has given strong insights into three generic aspects that contribute to the lack of sustainability of deep-sea seamount fisheries: Biological characteristics Deep species often exhibit high longevity (up to 100 years for several species, e.g. redfish, orange roughy), late maturation (sometimes > 20 years before becoming mature, e.g. orange roughy, oreos), slow growth, low fecundity (e.g. deepwater sharks, orange roughy), intermittent recruitment (occurs with most species, but 507 with long-lived species there could be decades between good year classes), and spawning may not occur every year (Morato et al., 2006; Morato & Clark, 2007). Intermittent spawning behaviour and the migration of aggregations to spawning grounds (“intermittent aggregation”) have also been proposed to explain why some decreases in stock size appear to have been greater than expected based solely on the fisheries catch or why the levels of depletion have varied between different fishing grounds (e.g. Butterworth & Brandao, 2005). These types of fish generally have low rates of natural mortality and low production rates, meaning recovery is slow. Table 1 indicates that several of the major deepwater commercial fish species have a population doubling time (“resilience”) of 14 years or greater (e.g. cardinalfish, orange roughy, redfish) and high vulnerability indices of 70 to 80. Their biology is not evolved to cope with high levels of natural predation and so they are more vulnerable to overfishing than shallow water shelf species. Habitat/fishery type Many species aggregate on seamounts or ridge peaks because of depth or oceanographic conditions (e.g. Koslow, 1997). Such aggregations will be more vulnerable to overfishing and rapid depletion than those in which species are more dispersed on shelf or slope habitats. When aggregations are formed for spawning, the effects may be greater because of the possible disruption of spawning processes and reduced reproductive success (although this has rarely been documented). Target trawling on seamounts is often localized, and the density of tows per seamount area can be high (e.g. O’Driscoll & Clark, 2005). Heavy bottom trawl gear is used to tow on the rough, hard bottom, which is often characteristic of seamounts, and the invertebrate fauna, often dominated by large, slowgrowing, sessile organisms, are especially vulnerable to damage by fishing gear (e.g. Clark & Koslow, 2007). Fishing grounds often occur offshore and so are carried out by large powerful vessels with the ability to work large gear, catch and process large amounts of fish, and stay at sea for long periods. Economic considerations can also be important. The market value of some of the deepwater species is high, which creates an incentive for commercial operators to target the species (Japp & Wilkinson, 2007). Good catches will offset the relatively high operating costs of vessels offshore and create pressure to continue fishing as stocks decline or if there are high costs associated with industry funding of research and management (e.g. Francis & Clark, 2005). 508 Lat. Am. J. Aquat. Res. Research and management limitations Francis & Clark (2005) described issues affecting the sustainability of orange roughy based on the New Zealand experience. As well as a lack of knowledge of the biological characteristics and processes (mentioned above), they emphasised how standard stock assessment techniques were often difficult to apply in the deep-sea environment and given the aggregating nature of the species. Punt (2005) and Sissenwine & Mace (2007) also discussed difficulties for estimating the stock size of orange roughy and how uncertain such stock assessments are likely to be. This uncertainty in the science has, at times, led to subsequent management responses being too slow or insufficient (Bax et al., 2005; Francis & Clark, 2005). Precautionary management is required and the standard target reference levels and management concepts (e.g. MSY, fishing down practices) applied in several deep-sea fishing countries (e.g. New Zealand) have proven risky and insufficiently conservative (Sissenwine & Mace, 2007). Management of seamount fisheries The “ecosystem approach” to fisheries management is now widely advocated and applied in deep-sea fisheries (FAO, 2003). However, the inherent restrictions on obtaining sufficient stock assessment or benthic habitat data (compared with nearshore shelf/slope fisheries) mean that management regimes typically operate at a low level of knowledge, and management action must occur in a highly precautionary manner. There is an increasing body of literature on data, reporting requirements, and appropriate management actions to help ensure the sustainability of deep-sea fisheries (Francis & Clark, 2003; FAO, 2007, 2008; Sissenwine & Mace, 2007; Probert et al., 2007; Morato & Pitcher, 2008; Rogers et al., 2008). Various management actions now include closed seamounts, fishing method or gear restrictions, depth limits, individual seamount catch quotas, bycatch quotas, and habitat exclusion areas (e.g. hydrothermal vents) (Probert et al., 2007). Closed areas are a common method to protect the habitat, but can be problematic because they can exclude fishing from productive grounds. Recent initiatives by some fishing consortia (e.g. southwest Indian Ocean Fisher’s Association, New Zealand Deepwater Group) have instigated “Benthic Protected Areas (BPAs)” which the fishers voluntarily avoid to prevent seafloor damage by bottom trawling. Industrial “buy-in” to environmental protection is a positive step as long as science is involved to help design the BPA distribution and size so they are representative and effective. Typically, the fine spatial scale needed to research and manage sea- mount stocks is problematic. Serial depletion of fish stocks can occur quickly (Clark, 1999), yet catch rates can be maintained even though biomass is being reduced (Clark, 2001; Lack et al., 2003; Francis & Clark, 2005; Sissenwine & Mace, 2007). There is no easy answer to setting appropriate precautionary catch limits for new seamount fisheries, although restricting effort to only a few vessels (e.g. Namibian orange roughy fisheries; Boyer et al., 2001) and imposing limits on the catch from a single seamount or feature (e.g. New Zealand; Rogers et al., 2008) can help reduce the risk of rapid over-exploitation. An analysis of seamount catch over time indicates that the initial orange roughy biomass on a single seamount feature may generally be only a few thousand tonnes (Clark et al., 2001). Effects of bottom trawling on the wider benthic community and habitat also need to be considered (e.g. Dayton et al., 1995; Hall, 1999; Clark & Koslow, 2007). The deep-sea fish community includes species that have low productivity and can be vulnerable to the effects of fishing, even if the fishery targets a different species. Seamounts can host endemic species or species with a very restricted geographical distribution (Rogers, 1994; Richer de Forges et al., 2000), as well as habitat-forming fauna such as deep-sea corals and sponges that are regarded as indicators of “vulnerable marine ecosystems” (FAO, 2008). This has been part of the justification for calls from NGOs in recent years for a moratorium on bottom trawling on the High Seas. Management, therefore, needs to balance exploitation and conservation, both of fisheries and seamount habitats (Probert et al., 2007). A mixture of protected and open seamounts is one strategy that appears to be successful off New Zealand (Brodie & Clark, 2003). Future prospects Seamount fisheries for deep-sea species in the future are likely to be small volume, high value fisheries. The track record of the deeper species such as orange roughy and oreos indicates that large catches will only last a few years, and highly precautionary catch limits may be needed if they are to be sustainable. More productive seamount species such as alfonsino, scabbardfish, grenadier, and armourheads are more resilient to heavy fishing and have been classified as less vulnerable (Gordon, 2005), but stocks appear to be variable and are still unlikely to withstand high catch levels for more than a few years. Where estimates have been made, the biomass of many fish stocks on seamounts is relatively low and does not exceed several hundreds of thousands of tonnes for even the most abundant species (e.g. Sasaki, 1986; Vinnichenko, Deep-sea seamount fisheries: a global review 1998, 2002b). An analysis of New Zealand seamount fisheries for orange roughy suggests that few seamounts can support long-term catches of more than a few hundred tonnes per year (Clark et al., 2001). Japp & Wilkinson (2007) and Sissenwine & Mace (2007) have both summarized “deep-sea” catches as reported in FAO statistics up to 2005. The catch trends for the main seamount species or family groupings typically show a decline after an initial rapid increase as the fisheries developed. Although FAO statistics cover very large regions of the world and do not distinguish seamounts from slope fisheries, these patterns are consistent with those estimated from specific seamount data by Clark et al. (2007). Clark et al. (2007) summarized the global status of the large offshore seamount fisheries. Their conclusions were that intense fishery pressure on the seamounts of the Corner Rise, north Azores area of the Mid-Atlantic Ridge, and the Vavilov, Walvis, southwest Indian, Emperor and Hawaiian ridges has resulted in the depression of many fish stocks, with no increase of catch in these areas likely within the next few years. Relatively new fishing grounds such as seamounts on the Norfolk, Lord Howe, Louisville, and south Tasman Rise have been targeted for deepwater species such as orange roughy and are also fully exploited. Some areas of the northern Mid-Atlantic Ridge and some offshore seamounts located in Antarctic waters and the central oceanic regions may have some potential for further exploitation. However, the volume of deep-sea species is likely to be small and short-lived if fisheries are not managed carefully. Such management will also need, in the future, to take account of balancing fisheries management with conservation of the benthic environment. ACKNOWLEDGEMENTS This paper is based on a presentation at the Deep Sea fisheries special session at the XII COLACMAR in Brazil, April 2007. My thanks to the Convenor of that session (Dr. Angel Perez) and the conference organizers for funding to attend the conference. The contents of the paper draw on a wide range of research over the last decade, but particularly a NIWA project on Seamounts: their importance to fisheries and marine ecosystems (FRST contract no. CO1X0508). Two anonymous journal referees made numerous useful comments to improve the manuscript. REFERENCES Bax, N.J., R. Tilzey, J. Lyle, S.E. Wayte, R. Kloser & A.D.M Smith. 2005. Providing management advice for deep-sea fisheries: lessons learned from Austra- 509 lia’s orange roughy fisheries. In: R. Shotton (ed.). Deep sea 2003: conference on the governance and management of deep-sea fisheries. Part 1. Conference papers. FAO Fish. Proc., No. 3/1: 259-272. Boyer, D.C., C.H. Kirchner, M.K. McAllister, A. Staby & B. Staalesen. 2001. The orange roughy fishery of Namibia: lessons to be learned about managing a developing fishery. In: A.I.L. Payne, S.C. Pillar & R.J.M. Crawford (eds.). A decade of Namibian fisheries science. S. Afr. J. Mar. Sci., 23: 205-221. Branch, T.A. 2001. A review of orange roughy Hoplostethus atlanticus fisheries, estimation methods, biology and stock structure. In: A.I.L. Payne, S.C. Pillar & R.J.M. Crawford (eds.). A decade of Namibian fisheries science. South Afr. J. Mar. Sci., 23: 181203. Brodie, S. & M.R. Clark. 2003. The New Zealand seamount management strategy – steps towards conserving offshore marine habitat. In: J.P. Beumer, A. Grant & D.C. Smith (eds.). Aquatic protected areas: what works best and how do we know? Proceedings of the World Congress on Aquatic Protected Areas, Cairns, Australia, August 2002. Australian Society of Fish Biology, Australia, pp. 664-673. Butterworth, D.S. & A. Brandāo. 2005. Experiences in Southern Africa in the management of deep-sea fisheries. In: R. Shotton (ed.). Proceedings of the Deep Sea Conference 2003. Queenstown, New Zealand, 15 December 2003. FAO Fisheries Proceedings, 3(1): 226-234. Cheung, W.W.L., T.J. Pitcher & D. Pauly. 2005. A fuzzy logic expert system to estimate intrinsic extinction vulnerabilities of marine fishes to fishing. Biol. Cons., 124: 97-111. Clark, M.R. 1999. Fisheries for orange roughy (Hoplostethus atlanticus) on seamounts in New Zealand. Oceanol. Acta, 22(6): 593-602. Clark, M.R. 2001. Are deepwater fisheries sustainable? The example of orange roughy. Fish. Res., 51: 123135. Clark, M.R. & J.A. Koslow. 2007. Impacts of fisheries on seamounts. In: T.J. Pitcher, T. Morato, P.J.B. Hart, M.R. Clark, N. Haggan & R.S. Santos (eds.). Seamounts: ecology, fisheries, and conservation. Blackwell Fisheries and Aquatic Resources Series, 12, Blackwell Publishing, Oxford, pp. 413-441. Clark, M.R. & R. O'Driscoll. 2003. Deepwater fisheries and aspects of their impact on seamount habitat in New Zealand. J. Northwest Atlantic Fish. Sci., 31: 441-458. Clark, M.R. & D.M. Tracey. 1991. Trawl survey of orange roughy on the Challenger Plateau July 1990. New Zealand Fish. Tech. Rep., 26: 20 pp. 510 Lat. Am. J. Aquat. Res. Clark, M.R., B. Bull & D.M. Tracey. 2001. The estimation of catch levels for new orange roughy fisheries on seamounts: a meta-analysis of seamount data. New Zealand Fish. Assess Rep., No. 2001/75: 40 pp. Clark, M.R., O.F. Anderson, R.I.C.C. Francis & D.M. Tracey. 2000. The effects of commercial exploitation on orange roughy (Hoplostethus atlanticus) from the continental slope of the Chatham Rise, New Zealand, from 1979 to 1997. Fish. Res., 45(3): 217-238. Clark, M.R., V.I. Vinnichenko, J.D.M. Gordon, G.Z. Beck-Bulat, N.N. Kukharev & A.F. Kakora. 2007. Large scale distant water trawl fisheries on seamounts. In: T.J. Pitcher, T. Morato, P.J.B. Hart, M.R. Clark, N. Haggan & R.S. Santos (eds.). Seamounts: ecology, fisheries, and conservation. Blackwell Fisheries and Aquatic Resources Series, 12 Blackwell Publishing, Oxford, pp. 361-399. Csirke, J. 2005. Global production and state of marine fishery resources. In: Review of the state of world marine fishery resources. FAO Fish. Tech. Pap., 457: 1-9. Da Silva, H.M. & M.R. Pinho. 2007. Small-scale fishing on seamounts. In: T.J. Pitcher, T. Morato, P.J.B. Hart, M.R. Clark, N. Haggan & R.S. Santos (eds.). Seamounts: ecology, fisheries, and conservation. Blackwell Fisheries and Aquatic Resources Series, 12 Blackwell Publishing, Oxford, pp. 335-360. Dayton, P.K., S.F. Thrush, M.T. Agardy & R.J. Hofman. 1995. Viewpoint: environmental effects of marine fishing. Aquat. Cons., 5: 205-232. Dunn, M. 2007. Orange roughy. What might the future hold? New Zealand Sci. Rev., 63(3-4): 70-75. Food and Agricultural Organization of the United Nations (FAO). 2002. Report of the second Ad-Hoc meeting on management of deepwater fisheries resources of the Southern Indian Ocean. FAO Fish. Rep., 677: 106 pp. Food and Agricultural Organization of the United Nations (FAO). 2003. Fisheries management. 2. The ecosystem approach to fisheries. FAO Technical Guidelines for Responsible Fisheries No 4, Suppl. 2, Rome, 112 pp. Food and Agricultural Organization of the United Nations (FAO). 2004. The state of world fisheries and aquaculture. Food and Agricultural Organization of the United Nations, Rome, Italy, 153 pp. Food and Agricultural Organization of the United Nations (FAO). 2007. Report and documentation of the expert consultation on deep-sea fisheries in the high seas: Bangkok, 21-23 November 2006. FAO Fish. Rep., 838: 203 pp. Food and Agricultural Organization of the United Nations (FAO). 2008. Report of the expert consultation on international guidelines for the management of deep-sea fisheries in the high seas: Bangkok, 11-14 September 2007. FAO Fish. Rep., 855: 39 pp. Francis, R.I.C.C. & M.R. Clark. 2005. Sustainability issues for orange roughy fisheries. Bull. Mar. Sci., 76: 337-351. Froese, R. & A. Sampang. 2004. Taxonomy and biology of seamount fishes. In: T. Morato & D. Pauly (eds.). Seamounts: biodiversity and fisheries. University of British Columbia. Fish. Centre Res. Rep., 12: 25-31. Gianni, M. 2004. High seas bottom trawl fisheries and their impacts on the biodiversity of vulnerable deep-sea ecosystems: options for international action. IUCN/NRDC/CI/WWF. [http://www.iucn.org/themes/marine /pubs/pubs.htm]. Revised: 15 July 2008. Gálvez, M. 2009. Montes submarinos de Nazca y Salas y Gómez: una revisión para el manejo y conservación. Lat. Am. J. Aquat. Res., 37(3): 479-500. Gordon, J.D.M. 2005. Environmental and biological aspects of deepwater demersal fishes. In: R. Shotton (ed.). Deep sea 2003: conference on the governance and management of deep-sea fisheries. Part 1. Conference papers. FAO Fish. Proc., 3/1: 70-88. Guerrero, A. & P. Arana. 2009. Fishing yields and size structures of Patagonian tootfish (Dissostichus eleginoides) caught with pots and long-lines off for southern Chile. Lat. Am. J. Aquat. Res., 37(3): 361-370. Hall, S.J. 1999. The effects of fishing on marine ecosystems and communities. Blackwell Scientific, Oxford, U.K., 274 pp. Hazin, F.H.V., J.R. Zagaglia, M.K. Broadhurst, P.E.P. Travassos & T.R.Q. Bezerra. 1998. Review of a small-scale pelagic longline fishery off northeastern Brazil. Mar. Fish. Rev., 60(3): 1-8. Hilborn, R., J. Annala & D.S. Holland. 2006. The cost of overfishing and management strategies for new fisheries on slow-growing fish: orange roughy (Hoplostethus atlanticus) in New Zealand. Can. J. Fish. Aquat. Sci., 63: 1-5. Hillier, J.K. & A.B. Watts. 2007. Global distribution of seamounts from ship-track bathymetry data. Geophys. Res. Lett., 34: L13304, doi: 10.1029/2007GL029874. Japp, D.W. & A. James. 2005. Potential exploitable deepwater resources and exploratory fishing off the South African coast and the development of the deepwater fishery on the south Madagascar ridge. In: R. Shotton (ed.). Deep sea 2003: conference on the governance and management of deep-sea fisheries. Part 1. Conference papers. FAO Fish. Proc., 3/1: 162-168. Japp, D.W. & S. Wilkinson. 2007. Deep-sea resources and fisheries. In: Report and documentation of the expert consultation on deep-sea fisheries in the high seas. FAO Fish. Rep., 838: 39-59. Deep-sea seamount fisheries: a global review Kitchingman, A. & S. Lai. 2004. Inferences on potential seamount locations from mid-resolution bathymetric data. In: T. Morato & D. Pauly (eds.). Seamounts: biodiversity and fisheries. University of British Columbia. Fish. Centre Res. Rep., 12: 7-12. Koslow, J.A. 1997. Seamounts and the ecology of deepsea fisheries. Amer. Sci., 85: 168-176. Koslow, J.A. 2007. The silent deep: the discovery, ecology and conservation of the deep sea. University of New South Wales Press, Sydney, 312 pp. Koslow, J.A., G.W. Boehlert, J.D.M. Gordon, R.L. Haedrich, P. Lorance & N. Parin. 2000. Continental slope and deep-sea fisheries: implications for a fragile ecosystem. ICES J. Mar. Sci., 57: 548-557. Lack, M., K. Short & A. Willock. 2003. Managing risk and uncertainty in deep-sea fisheries: lessons from orange roughy. TRAFFIC Oceania and WWF Endangered Seas Programme, 73 pp. Labbé, J. & P. Arana. 2001. Alimentación de orange roughy Hoplostethus atlanticus (Pisces: Trachichthyidae), en el archipiélago de Juan Fernández, Chile. Rev. Biol. Mar. Ocean., 36(1): 75-82. Martins, A.S., G. Olavo & P.A.S. Costa. 2005. A pesca de linha de alto mar realizada pelas frotas sediadas no Espirito Santo, Brasil. In: P.A.S. Costa, A.S. Martins & G. Olavo (eds.). Pesca e potenciais de exploracao de recursos vivos na regiao central da zona economica exclusiva brasileira. Serie Livros, 13. Museu Nacional, Rio de Janeiro, 177 pp. Morato, T. & M.R. Clark. 2007. Seamount fishes: ecology and life histories. In: T.J. Pitcher, T. Morato, P.J.B. Hart, M.R. Clark, N. Haggan & R.S. Santos (eds.). Seamounts: ecology, fisheries and conservation. Blackwell Fisheries and Aquatic Resources Series, 12. Blackwell Publishing, Oxford, 170-188. Morato, T. & T.J. Pitcher. 2008. Reconciling fisheries with conservation on seamounts. Am. Fish. Soc. Symp., 49: 1623-1634. Morato, T., W.L. Cheung & T.J. Pitcher. 2006. Vulnerability of seamount fish to fishing: fuzzy analysis of life history attributes. J. Fish Biol., 68(1): 209-221. Niklitschek, E., D. Boyer, R. Merino, I. Hampton, M. Soule, J. Nelson, J. Cornejo, A. Lafon, C. Oyarzún, R. Roa & T. Melo. 2005. Estimacion de la biomasa reproductive de orange roughy en sus principales zonas de concentracion. Universidad Austral de Chile, Valdivia, 159 pp. O'Driscoll, R.L. & M.R. Clark. 2005. Quantifying the relative intensity of fishing on New Zealand seamounts. New Zealand J. Mar. Freshw. Res., 39: 839– 850. Paya, I., M. Montecinos, V. Ojeda & L. Cid. 2005. An overview of the orange roughy (Hoplostethus sp.) fishery off Chile. In: R. Shotton (ed.). Deep sea 2003: 511 conference on the governance and management of deep-sea fisheries. Part 1: Conference poster papers and workshop papers. FAO Fish. Proc., No. 3/2: 97-116. Perez, J.A.A., R. Wahrlich & P.R. Pezzuto. 2009b. Chartered trawling on the slope off Brazilian coast. Mar. Fish. Rev., 71(2): 24-36. Perez, J.A.A, P.R. Pezzuto, R. Wahrlich & A.L.S. Soares. 2009a. Deep-water fisheries in Brazil: history, status and perspectives. Lat. Am. J. Aquat. Res., 37(3): 513-541. Pitcher, T.J., T. Morato, P.J.B. Hart, M.R. Clark, N. Haggan, R.S. Santos (eds.). 2007. Seamounts: ecology, fisheries, and conservation. Blackwell Fisheries and Aquatic Resources Series, 12. Blackwell Publishing, Oxford, 527 pp. Probert, P.K., S. Christiansen, K.M. Gjerde, S. Gubbay & R.S. Santos. 2007. Management and conservation of seamounts. In: T.J. Pitcher, T. Morato, P.J.B. Hart, M.R. Clark, N. Haggan & R.S. Santos (eds.). Seamounts: ecology, fisheries, and conservation. Blackwell Fisheries and Aquatic Resources Series 12, Blackwell Publishing, Oxford, pp. 442-475. Punt, A.E. 2005. The challenges of, and future prospects for, assessing deepwater marine resources: experience from Australia, New Zealand, Southern Africa and the United States. In: R. Shotton (ed.). Deep sea 2003: conference on the governance and management of deep-sea fisheries. Part 1. Conference papers. FAO Fish. Proc., No. 3/1: 138-148. Richer de Forges, B., J.A. Koslow & G.C.B. Poore. 2000. Diversity and endemism of the benthic seamount fauna in the southwest Pacific. Nature, 405: 944-947. Roberts, C.M. 2002. Deep impact: the rising toll of fishing in the deep sea. Trends in Ecol. Evol., 17: 242-245. Rogers, A.D. 1994. The biology of seamounts. Adv. Mar. Biol., 30: 305-350. Rogers, A.D., M.R. Clark, J.M. Hall-Spencer & K.M. Gjerde. 2008. The science behind the guidelines: a scientific guide to the FAO draft International guidelines (December 2007) for the management of deep-sea fisheries in the high seas and examples of how the guidelines may be practically implemented. IUCN, Switzerland, 39pp. Sasaki, T. 1986. Development and present status of Japanese trawl fisheries in the vicinity of seamounts. In: R.N. Uchida, S. Hayasi & G.W. Boehlert (eds.). Environment and resources of seamounts in the north Pacific. NOAA Tech. Rep. NMFS., 43: 21-30. Sissenwine, M.P. & P.M. Mace. 2007. Can deep water fisheries be managed sustainably? In: Report and 512 Lat. Am. J. Aquat. Res. documentation of the expert consultation on deep-sea fisheries in the high seas. FAO Fish. Rep., 838: 61111. Stone, G.S., L.P. Madin, K. Stocks, G. Hovermale, P. Hoagland, M. Schumacher, P. Etnoyer, C. Sotka & H. Tausig. 2004. Seamount biodiversity, exploitation and conservation. In: L.K. Glover & S.A. Earle (eds.). Defying ocean’s end. Island Press, Washington, pp. 45-70. Uchida, R.N. & D.T. Tagami. 1984. Groundfish fisheries and research in the vicinity of seamounts in the north Pacific Ocean. Mar. Fish. Rev., 46: 1-17. Received: 15 August 2008; Accepted: 9 March 2009 Vinnichenko, V.I. 1998. Alfonsino (Beryx splendens) biology and fishery on the seamounts in the open north Atlantic. ICES CM 1998/O 13: 1-15. Vinnichenko, V.I. 2002a. Prospects of fisheries on the seamounts. ICES CM 2002/M: 32 pp. Vinnichenko, V.I. 2002b. Russian investigations and fishery on seamounts in the Azores area. In: Proceedings of the XVIII e XIX semana das pescas dos Acores. Secretaria Regional da Agricultura e Pescas, Azores, pp. 115-129. Wessel, P. 2001. Global distribution of seamounts inferred from gridded Geosat/ERS-1 altimetry. J. Geophys. Res., 106(B9): 19431-19441. Lat. Am. J. Aquat. Res., 37(3): 513-541, 2009 “Deep-sea fisheries off Latin America” P. Arana, J.A.A. Perez & P.R. Pezzuto (eds.) DOI: 10.3856/vol37-issue3-fulltext-18 Deep-water fisheries in Brazil 513 Review Deep-water fisheries in Brazil: history, status and perspectives José Angel Alvarez Perez1, Paulo Ricardo Pezzuto1, Robeto Wahrlich1 & Ana Luisa de Souza Soares1 1 Universidade do Vale do Itajaí, Centro de Ciências Tecnológicas da Terra e do Mar Rua Uruguai 458, Centro, Itajaí , SC, Brazil ABSTRACT. The recent development of deep-water fisheries off Brazil is reviewed from biological, economic, and political perspectives. This process has been centered in the southeastern and southern sectors of the Brazilian coast (19°-34°S) and was motivated by the overfishing of the main coastal resources and a government-induced vessel-chartering program. Shelf break (100-250 m) operations by national hook-and-line and trawl vessels intensified in the 1990s. Around 2000-2001, however, foreign-chartered longliners, gillnetters, potters, and trawlers started to operate in Brazilian waters, leading the occupation of the upper slope (250500 m), mostly targeting monkfish (Lophyus gastrophysus), the Argentine hake (Merluccius hubbsi), the Brazilian codling (Urophycis mystacea), the wreckfish (Polyprion americanus), the Argentine short-fin squid (Illex argentinus), the red crab (Chaceon notialis), and the royal crab (Chaceon ramosae). Between 2004 and 2007, chartered trawlers established a valuable fishery on deep-water shrimps (family Aristeidae), heavily exploiting the lower slope (500-1000 m). Total catches of deep-water resources varied annually from 5,756 ton in 2000 to a maximum of 19,923 ton in 2002, decreasing to nearly 11,000 ton in 2006. Despite intensive data collection, the availability of timely stock assessments, and a formal participatory process for the discussion of management plans, deep-water stocks are already considered to be overexploited due to limitations of governance. Keywords: deep-water fishery, stock assessment, fishery management, southwest Atlantic, Brazil. Pesquerías de aguas profundas en Brasil: historia, situación actual y perspectivas RESUMEN. El reciente desarrollo de la pesca profunda en Brasil fue revisado desde perspectivas biológicas, económicas y políticas. Este proceso se ha centrado en los sectores sureste y sur de la costa de Brasil (19°34°S) y fue motivado por la sobrepesca de los principales recursos costeros en conjunto con una política gubernamental de arriendo de buques pesqueros. Las operaciones de pesca sobre el borde de la plataforma (100250 m) por buques palangreros y arrastreros se intensificaron en la década del 90. Sin embargo, entre 2000 y 2001 empezaron a operar buques arrendados para la pesca con palangre, red de enmalle, nasas y arrastre en aguas brasileras y lideraron el proceso de ocupación del talud superior (250-500 m) dirigido principalmente a la captura del rape (Lophyus gastrophysus), merluza argentina (Merluccius hubbsi), brótola de profundidad (Urophycis mystacea), chernia (Polyprion americanus), calamar argentino (Illex argentinus), cangrejo rojo (Chaceon notialis) y cangrejo real (Chaceon ramosae). Entre 2004 y 2007, buques arrendados establecieron una valorada pesquería de langostinos de profundidad (Familia Aristeidae) y explotaron intensamente los fondos del talud inferior (500-1000 m). Las capturas totales de recursos de aguas profundas variaron anualmente de 5.756 ton en 2000 a un máximo de 19.923 ton in 2002, decayendo a cerca de 11.000 ton en 2006. No obstante, que fueron recolectados datos pesqueros en forma intensas, estuviesen disponibles oportunamente evaluaciones de stock y se haya llevado a cabo un proceso formal de discusión participativa de planes de manejo para estas pesquerías, los stocks de aguas profundas han sido considerado en situación de sobrepesca debido a limitaciones de gobernabilidad. Palabras clave: pesca profunda, evaluación de stock, manejo pesquero, Atlántico sudoccidental, Brasil. ________________________ Corresponding author: José Angel Alvarez Perez (angel.perez@univali.br) 514 Lat. Am. J. Aquat. Res. INTRODUCTION The first records of demersal fishing beyond the continental shelf waters of the Atlantic date back to the 1960s when Soviet trawlers began to operate on the northern mid-Atlantic ridge (Troyanovsky & Lisovsky, 1995). This deep-water fishery, however, throve from the 1980s onwards as the abundance of shelf resources declined greatly and important technological and market limitations were overcome (Piñeiro et al., 2001; Gordon et al., 2003). Headed by French trawlers, a multispecies, deep-water fishery was established at depths of 800 to 1600 m during the 1990s, mostly in the northeast Atlantic (Charuau et al., 1995; Iglesias & Paz, 1995; Gordon, 2001; Piñeiro et al., 2001; Lorance & Dupuoy, 2001). Nearly ten years later, fishing activity on slope grounds began to emerge as a pattern off the Brazilian coast in the tropical and subtropical southwest Atlantic (Perez et al., 2003). The Brazilian Economic Exclusive Zone (EEZ) encompasses an area of 3.5 million km2, mostly bathed by southwest Atlantic waters; roughly 25% (911,000 km2) of this area is occupied by the continental shelf. Since its early development in the 1960s, a large-scale demersal fishery has been restrained to the inner shelf and is sustained by a few coastal resources, most notably shrimps (i.e. Farfantepenaeus spp.), spiny lobsters (Panulirus spp.), and groundfish of the families Sciaenidae (i.e. Micropogonias furnieri, Cynoscion spp., Macrodon ancylodon, Umbrina canosai), Pimelodidae (i.e. Brachyplatystoma vaillantii), Lutjanidae (i.e. Lutjanus spp.), and others (see Paiva et al., 1996 and Haimovici et al., 2006a for reviews). For nearly 40 years, deep-water fishing was essentially scientific or restricted to hand-line operations over slope grounds and seamounts targeting rockfish (Paiva et al., 1996; Peres & Haimovici, 1998). In addition, Soviet trawlers explored the Martin Vaz (20-21°S, 36-39°W) and Rio Grande Rise (28°-35°S, 20°38°W) seamounts in the 1980s (Clark et al., 2007). Despite a few government efforts to map the ocean floor and assess potential resources, commercial fishing was generally considered unproductive and uneconomical beyond the shelf break (Haimovici et al., 1994; Haimovici, 2007). At the end of the 1990s, a new scientific program set out to assess fishing potential in the Brazilian EEZ (REVIZEE Program; Anon, 2006a). By then, however, fishing was already expanding to the outer continental shelf and slope due to economic losses experi- enced by the industrial fleet, both overcapitalized and facing major reductions in the abundance of their main targets (Perez et al., 2001). Concurrent to this natural process and to the REVIZEE scientific exploration, in 1998, the Brazilian fishing authorities decided to catalyze the commercial occupation of the EEZ through a foreign vessel-chartering program. This program allowed national companies to operate in Brazilian waters with foreign vessels specialized in oceanic and deep-water fisheries provided that (a) these operations were intensely monitored by observers and satellite VMS (Vessel Monitoring System) and (b) that the data generated on commercial stocks, fishing and processing technology, and international market opportunities were made available to the government in order to subsidize a national policy on fishing in deep and oceanic areas. From 2000 onwards, unprecedented commercial exploration began of fishing grounds 200 to 1000 m deep, revealing the existence of profitable resources, efficient technologies, and international market demands (Perez et al., 2003). During the past six years, however, deep-water fishing has also come into conflict with traditional fishing practices and raised great concerns as to the sustainability of fragile stocks and deep ocean habitats as a whole. The present review intends to describe the development of the deep-water fishery off the Brazilian coast from biological, economic, and political perspectives, addressing the lessons learned in this new phase of Brazil’s fishing history and analyzing its prospects for the future. MONITORING AND DATA SOURCES The deep-water fishery developed off the coast of Brazil could possibly be the most intensely monitored fishing activity in the country. Besides the use of official data collection instruments (i.e. logbooks), observers and VMS programs were implemented for the first time in order to enforce the legal obligations of the chartered fleet. These programs were formerly structured and conducted as part of a scientific cooperation agreement established between the Brazilian government and the University of “Vale do Itajaí” (Santa Catarina, southern Brazil). In 2005, after a period of development and adjustments, these programs have become national policies and are incorporated into the agenda of the Special Secretariat of Aquaculture and Fishery, the Ministry of the Environment and Natural Resources, and the Brazilian Navy. Between 2000 and 2007, 311 fishing trips of the chartered fleet were fully observed and monitored by satellite VMS. Data on fishing position, depth, and 515 Deep-water fisheries in Brazil catch/bycatch from over 35,800 fishing sets conducted by trawlers, bottom gillnetters, bottom longliners, and potters were recorded and stored in a data bank (Table 1). Observers also collected biological samples of these catches and recorded biometric data (size, sex, and maturity, depending on the species) for around 713,810 individuals of the main target species (Table 1). Supplementary data was obtained during the same period from landings of deep-water operations conducted in the harbors of Santa Catarina State by the national fleet as reported by skippers in logbooks or during harbor interviews at the time of the landings. These data were extracted from the Santa Catarina State industrial fishing statistical service (www.univali.br/gep) and included biometric data taken from national gillnetters, stern trawlers, and double rig trawlers. Parallel sources of fishing and biological data have also originated from surveys conducted as part of the REVIZEE program (e.g., Cergole et al., 2005; Costa et al., 2005; Rossi-Wongtschowski et al., 2006) and fishery statistical systems operated in the states of Rio Grande do Sul, São Paulo, and Rio de Janeiro. Because deep-water fishing activity off the Brazilian coast is relatively recent, fishing data time-series have been of limited use for stock assessments. This limitation has been compensated, however, by the availability of a robust geo-referenced catch, effort, and biological data base provided by observed commercial operations and scientific surveys. In addition, in the laboratory, biological samples have further provided detailed information on the reproduction, age, and growth of some studied species. This combination of information has been critical for building an empirical framework for recommending, discussing, and implementing management plans for deep-water resources (Anon, 2005, 2006b, 2007). DEEP-WATER FISHING GROUNDS The continental margin off the Brazilian coast has been subdivided into five sectors: northern, northeastern, central, southeastern, and southern (Fig. 1) (Rossi-Wongtschowski et al., 2006). The continental shelf is wider in the northern, southeastern, and southern sectors, where it has been intensely occupied and exploited by traditional demersal fisheries (mostly trawling) during the past 40 years (see Haimovici et al., 2006a for review). Deep-water fishing activities have concentrated on the slope grounds of the southeastern and southern sectors. This area is highly undulated and morphologically characterized by the occurrence of several seaward protrusions and submarine canyons between 100 and 1000 m depth (Figueiredo Jr. & Madureira, 2004). The depth gradient is gentle (1:132 – 1:190) along a large central feature known as the Brazilian Bight between 29°S and 24°S, becoming steeper north of 23°S (1:10) and south of 32°S (1:13) (Figueiredo Jr. & Tessler, 2004) (Fig. 1). The slope floor is generally covered by mud, but there are areas where nodules of calcareous algae and beach rocks concentrate, predominantly north of 26°S. In addition, deep-water coralline reefs have been mapped along the lower slope of southeastern sector (20°-24°S), some of them hundreds of meters long, tens of meters wide, and up to 15 to 20 m high (see Pires, 2007 for review). Seamounts have been of secondary importance for deep-water fishing activity off the Brazilian coast. These structures ascend from the slope and ocean basin floor throughout the Brazilian EEZ (RossiWongtschowski et al., 2006). Particularly dense and accessible seamount concentrations are found in the central and northeastern sectors, most notably as part of the Ceará Plateau, Fernando de Noronha Chain, and Vitória-Trindade Chain. Hand-line fishing and trawling have been reported on seamounts of these chains (Fonteles-Filho & Ferreira, 1987; Martins et al., 2005; Clark et al., 2007). In 1982-1984 and 2000-2002, Soviet/Russian vessels also reported trawling on seamounts of the Rio Grande Rise area, outside the Brazilian EEZ (Clark et al., 2007). FLEET DYNAMICS Deep-water fisheries off Brazil rely on four basic fishing gears: hook-and-line (operated as hand-lines, vertical lines, and long-line settings), bottom gillnets, pots, and bottom trawls (Perez et al., 2003). The national fleet participated in the occupation of deep areas basically with longliners and trawlers, the former a practice recorded almost along the entire Brazilian coast at least since the 1960s (Peres & Haimovici, 1998) and the latter expanding to slope grounds by the end of the 1990s (Perez et al., 2001) (Table 2). Chartered vessels operated with both gears mentioned above but also introduced the use of deep-water gillnets and traps in the Brazilian EEZ (Perez et al., 2003; Wahrlich et al., 2004). Besides fishing technology, the deep-water chartered vessels also introduced other novel technological practices to the national vessels, including on board fish handling, processing, packing, and freezing (Wahrlich et al, 2004). Absorbing these practices were also important steps allowing the national industry to access EU and Asian seafood markets in the short term (Soares & Scheidt, 2005). Chartered fishing operations intensified from 2000 onwards, becoming gradually scarce between 2004 and 516 Lat. Am. J. Aquat. Res. Table 1. Summary of Brazilian deep-water fishing data collected between 2000 and 2007. Chartered fleet data were collected by on board observers for all the fishing operations conducted during this period. National fleet data originated from logbooks and interviews with skippers in the harbors of Santa Catarina State. S. trawl: stern trawl; D.R. trawl: double rig trawl. * data from the national fleet includes coastal and deep-water resources. Tabla 1. Resumen de los datos de pesca en aguas profundas de Brasil, obtenidos entre 2000 y 2007. Los datos de la flota arrendada fueron obtenidos por observadores a bordo en todas las operaciones de pesca realizadas en ese periodo. Los datos de la flota nacional provienen de las bitácoras de pesca y entrevistas a los capitanes de buques pesqueros en los puertos del Estado de Santa Catarina. S. trawl: arrastreros por popa; D.R. trawl: arrastreros duplos. *datos de la flota nacional que también incluye capturas de recursos costeros. Chartered fleet Fishing Gear Number of vessels National fleet Total Pot Gillnet Longline S. trawl Total Gillnet S. trawl D.R. trawl Total 8 10 4 15 37 11 42 374 416 453 Number of monitored trips 111 79 7 114 311 122 878 10,840 11,718 12,029 Number of monitored hauls 10,037 3,947 476 21,400 35,860 - - - - 35,860 Total landed catch (t)* 6,601 5,770 300 8,988 21,659 1,411 32,054 146,726 180,191 201,850 Number of sampled inds. Lophius gastrophysus - 157,656 - 55,268 212,924 4,492 1,238 11,237 16,967 229,891 Merluccius hubbsi - - - 15,238 15,238 - 201 2,731 2,932 18,170 Urophycis mystacea - - - - - 904 225 2,855 3,984 3,984 Zenopsis conchifera - - - 20,769 20,769 - - - - 20,769 Polyprion americanus - - 190 - 190 - - - - 190 Epinephelus nigritus - - - 1,271 1,271 - - - - 1,271 Aristaeopsis edwardsiana - - - 161,408 161,408 - - - - 161,408 Aristaeomorpha foliacea - - - 76,220 76,220 - - - - 76,220 Aristeus antillensis - - - 25,977 25,977 - - - - 25,977 Chaceon notialis 65,645 - - - 65,645 - - - - 65,645 Chaceon ramosae 126,518 1,543 - 1,988 130,049 - - - - 130,049 - - - 4,119 4,119 - 787 4,492 5,279 9,398 29,162 742,972 Illex argentinus Total (ton) Source: UNIVALI 713,810 Deep-water fisheries in Brazil 517 Figure 1. Continental margin off Brazil, SW Atlantic. a) northern and northeastern sectors, b) central, southeastern, and southern sectors. Dots represent fishing hauls conducted by the chartered trawlers. Chartered gillnetters, potters, and longliners operated in the same slope areas as those occupied by trawlers (see the lower map) but are not represented for clarity. Figura 1. Margen continental de Brasil, Atlántico sudoccidental. a) sectores norte y nordeste, b) sectores centro, sureste y sur. Los puntos representan lances de pesca realizados por arrastreros arrendados. Los buques de pesca de la flota arrendada que operan con enmalle, nasas y palangres operan en la misma área que los arrastreros, representados en el mapa inferior, pero no fueron incluidos para mayor claridad. 518 Lat. Am. J. Aquat. Res. 2007 as many foreign vessels moved away from the Brazilian EEZ. During this period, slope areas were shared by national and foreign vessels, the former predominating since 2004 (Table 2). Deep-water fishing operations of the national fleet involved the occupation of the shelf break (100-250 m) and upper slope grounds (250-500 m) of the southeastern and southern sectors (Perez et al., 2002a; Perez & Pezzuto, 2006). These patterns were attributed to the (a) depth-limitations of fishing gear operations, (b) proximity of traditional fishing grounds, (c) proximity of known markets for the country’s large urban centers (i.e. São Paulo, Rio de Janeiro), (d) limited autonomy at sea, (e) low-capacity fish conservation systems, and (f) latitudinal restrictions of fishing authorizations. These factors did not influence the chartered fleet, which, in contrast, was required to occupy areas off the shelf break (> 200 m) and explored a variety of habitats in a wide latitudinal and depth range (Fig. 2). In general, however, most operations concentrated south of 18°S; 96% of the hauls were conducted in the central, southeastern, and southern sectors (Table 3). Operations started off over the shelf break in 2000, rapidly expanding to completely occupy the upper slope between 2001 and 2002. Thereafter, fishing began on the lower slope (> 500 m) grounds, where the majority of deep-water fishing has taken place, centered on the 750 m isobath. By the end of 2007, over 97% of all deep fishing hauls conducted by chartered vessels off Brazil occurred below 250 m depth; the lower slope (>500 m) was the deep area most heavily exploited by foreign vessels (65.7% of conducted hauls) (Table 3). Hook and line fishing Hand-line fishing off Brazil was first a coastal activity in the central sector, specifically off the southern coast of Bahia State and the Abrolhos Archipelago (17°25'18°10'S, 38°33'-39°37'W). In the 1970s, the fleet expanded its activity towards the slope grounds of the southeastern and southern coasts (200-600 m depth) and changed its technology to vertical lines and finally bottom long-line (Peres & Haimovici, 1998). By the end of the 1990s, hand-line and long-line fleets were operating on slope grounds to the north and south of 29°S, respectively. The former targeted the tilefish (Lopholatilus villarii), snowy grouper (Epinephelus niveatus), sandperch (Pseudopercis numida), and catfish (Genidens barbus); whereas the latter targeted mainly the wreckfish (Polyprion americanus), but also produced important catches of Brazilian codling (Urophycis mystacea), red porgy (Pagrus pagrus), and pink cusk-eel (Genypterus brasiliensis) (Ávila-daSilva & Arantes, 2007; Haimovici et al., 2007). Four chartered long-line vessels operated off the southern sector of the Brazilian EEZ, three of them in 2000 and one between January and June of 2001 (Table 2). A total of 476 hauls were conducted during seven fishing trips, all of which targeted wreckfish concentrations south of 30°S and between 159 and 800 m (Fig. 2). In addition, these trips also landed important catches of pink cusk-eel, the school shark (Galeorhinus galeus), and tilefish (Table 4) (Perez et al., 2003). Because the national long-line fleet already heavily exploited wreckfish fishing grounds, regulations were implemented in 2001 that forced these vessels to explore deeper areas of the lower slope. The enforcement of these regulations stimulated foreign longliners to abandon the Brazilian EEZ within the year. Bottom gillnet fishing Deep-water gillnets were introduced in Brazil following similar experiences conducted off east Canada in the early 1990s (Kulka & Miri, 2001) and principally, the “rascos” operations in the deep areas of the NW Iberian Peninsula and Cantabric Sea (Bruno et al., 2001). The fishery started off in 2001 with two vessels and increased to a maximum of ten in 2002, most of them originating from Spain (Wahrlich et al., 2004) (Table 2). These vessels conducted 79 fishing trips (3,947 hauls), quickly occupying the upper slope grounds, between 200 and 500 m depth along the entire southeastern and southern sectors of the Brazilian coast (Fig. 2) (Perez et al., 2002a). The monkfish Lophius gastrophysus was the targeted species, representing numerically 40.7% of the entangled organisms. Catches of royal crabs (Chaceon ramosae), spider crabs (Majidae), beard fish (Polimixia lowei), silvery John dory (Zenopsis conchifera), Brazilian codling, Argentine hake (Merluccius hubbsi), wreckfish, angel shark (Squatina argentina), and various skates (Rajidae) were also important and, except for monkfish, most were discarded (Perez & Wahrlich, 2005). In mid-2002, following the preliminary assessments of monkfish and innumerable conflicts with national trawlers, government regulations prohibited foreign gillnetters to operate south of 21°S. That action defined the termination of chartered gillnet operations off Brazil, although a small national fleet continued the fishery. Composed of no more than five licensed units, this fleet assimilated the fishing technology and the international markets introduced by the chartered vessels (Wahrlich et al., 2004). 519 Deep-water fisheries in Brazil Table 2. Temporal distribution of national and foreign (chartered) deep-water fishing activity off Brazil. Slope trawling has been fragmented into shelf break, upper slope, and lower slope operations. Tabla 2. Distribución temporal de la actividad pesquera en aguas profundas realizadas por la flota nacional y extranjera (arrendada) en Brasil. Los arrastres en el talud fueron clasificados como operaciones efectuadas en el borde de la plataforma y en el talud superior e inferior. Only national vessels Only foreign vessels 1980-1990 1998 1999 2000 National + foreign vessels 2001 2002 2003 2004 2005 2006 2007 Longline Gillnet Pot Trawl- shelf break Trawl- upper slope Trawl- lower slope Pot fishing The first episode involving pot fishing for deep-water crabs was recorded in 1984-1985, when two chartered Japanese vessels operated off the southernmost extreme of the Brazilian EEZ (Lima & Branco, 1991). This activity began again in 1998 when another Japanese vessel initiated operations in precisely the same area as part of the government-induced chartering program (Perez et al., 2003). On both occasions, the species targeted was the red crab (Chaceon notialis), a stock whose distribution extends southwards to Uruguayan waters, where a similar pot fishery has existed since the 1990s (Defeo & Masello, 2000). The same single vessel continued to exploit the red crab off Brazil until 2007, operating on the upper and lower slope (200 to 900 m depths) south of 33°S (Pezzuto et al., 2006a). Figure 2. a) Latitudinal and b) depth distribution of hauls conducted by the chartered vessels on slope areas off Brazil from 2000 to 2007. LS: lower slope, US: upper slope, SB: shelf break. Figura 2. a) Distribución latitudinal, y b) batimétrica de los lances de pesca realizados por buques arrendados en las áreas del talud de Brasil en el periodo 2000-2007. LS: talud inferior, US: talud superior, SB: borde de la plataforma. Between 2001 and 2002, another four chartered pot vessels initiated their operations off southern Brazil flying the flags of Russia, Spain, and the UK. These vessels directed their efforts at another deep-water crab, the royal crab (Chaceon ramosae); concentrations of this resource had been revealed by incidental gillnet catches on board chartered vessels in 2001 (Perez & Wahrlich, 2005). Operations concentrated on the lower slope (500-900 m depth) within a major fishing area bounded by the parallels 27°S and 30°S (Fig. 2). In 2003, this area was expanded northward with the establishment of a new fishing ground off southeastern Brazil between 19°S and 25°S. Said expansion coincided with the entry of another two vessels from Spain and one from the USA, increasing the royal crab chartered pot vessel fleet to a maximum of 520 Lat. Am. J. Aquat. Res. Table 3. Spatial distribution of deep-water fishing hauls conducted by the foreign chartered fleet off Brazil between 2000 and 2007. Hauls are grouped by fishing gears, depth strata (and seamounts), and sectors of the Brazilian coast. Numbers in parentheses represent the proportion (%) of hauls conducted by gear in each depth strata and sector. In the last line, the number in parentheses represents the proportion of hauls conducted by fishing gear. Tabla 3. Distribución espacial de los lances de pesca en aguas profundas realizados por la flota extranjera arrendada en Brasil entre 2000 y 2007. Los lances fueron agrupados según método de pesca, estratos batimétricos (y montes submarinos) y sectores de la costa de Brasil. Los números entre paréntesis representan el porcentaje (%) de lances realizados por método de pesca en cada estrato batimétrico y sector. En la última línea los números entre paréntesis representan proporciones de lances realizados de acuerdo al método de pesca. Longline Gillnet Pot Trawl Total 6 (13.0) 9 (19.6) 28 (60.9) 0 (0.0) 37 (1.1) 3186 (92.3) 230 (6.7) 0 (0.0) 4 (0.1) 628 (9.5) 5925 (90.0) 0 (0.0) 612 (2.7) 5634 (24.8) 15360 (67.7) 965 (4.3) 659 (2.0) 9457 (28.9) 21543 (65.7) 965 (2.9) 0 (0.0) 0 (0.0) 0 (0.0) 4 (8.7) 42 (91.3) 46 (0.1) 0 (0.0) 6 (0.2) 10 (0.3) 2294 (66.4) 1143 (33.1) 3453 (10.5) 19 (0.3) 57 (0.9) 292 (4.4) 4498 (68.3) 1715 (26.1) 6581 (20.1) 55 (0.2) 1221 (5.4) 3850 (17.0) 17438 (76.9) 123 (0.5) 22687 (69.2) 74 (0.2) 1284 (3.9) 4152 (12.7) 24134 (74.0) 3023 (9.2) 32767 (100.0) Depth strata Shelf break (100-250) m Upper slope (250-500) m Lower slope (> 500) m Seamounts Coastal sector North Northeast Central Southeast South Total seven units operating simultaneously off Brazil. In the following four years, all the vessels exploited both the southeastern and southern fishing grounds but gradually abandoned Brazilian waters by 2007. Altogether, the chartered pot fleet operating on the southeastern and southern Brazilian slope (on both Chaceon species) totaled eight vessels that conducted 111 fishing trips and completed 10,037 hauls (Table 1). From 1999 to 2007, national vessels attempted the pot fishery for deep-water crabs on two known occasions. The first was in 2004-2005 and took place off southern Brazil on board one vessel built for deepwater crab fishing; this attempt ended abruptly with a wreck. Another incursion has been reported since 2006 off the coast of Ceará in the northeast sector of the Brazilian coast. There, one vessel formerly used for coastal lobster fishing has presumably exploited a third species of the genus Chaceon, the golden crab C. fenneri, at depths of 600 to 800 m (Carvalho et al., 2009). Trawl fishing Trawling on the slope areas off Brazil intensified since 1999 as a consequence of both the expansion of traditional fishing areas of the national fleet and the operation of foreign trawlers chartered to explore deep grounds within the Brazilian EEZ (Perez et al., 2001, 2003). Together, both national and foreign trawlers have concentrated their efforts in the southern and southeastern sectors of the Brazilian coast, exploiting Deep-water fisheries in Brazil Figure 3. Bathymetric distribution of hauls conducted by chartered vessels on slope areas off Brazil by year from 2000 to 2007. LS: lower slope, US: upper slope, SB: shelf break. Figura 3. Distribución batimétrica de los lances de pesca realizados anualmente por buques arrendados en las áreas de talud de Brasil, años 2000 a 2007. LS: talud inferior, US: talud superior, SB: borde de la plataforma. three discrete bathymetric strata: shelf break, (100-250 m), upper slope (250-500 m), and lower slope (> 500 m) (Perez & Pezzuto, 2006; Perez et al., 2009a) (Table 2). National trawlers used two types of trawl gear on the slope grounds: the double rig trawl traditionally used in the pink shrimp fisheries on the continental shelf and the stern trawl conducted by modified double rig trawlers and designed specifically to operate in deeper areas (Perez et al., 2002a; Perez & Pezzuto, 2006). Between 2001 and 2003, landings from 1,511 fishing trips conducted on slope areas off southeastern and southern Brazil by 255 double rig trawlers and 44 stern trawlers were recorded in the harbors of Santa Catarina State. In that period, these operations accounted for 27.8% of all fishing trips conducted with both types of gears in the state and 41.8% of all catches landed by them. The Argentine hake and Brazilian codling were the main targets of both types of trawlers (Table 4). Monkfish and the Argentine squid have also been important catch components, the latter restricted to winter months (July-September). Whereas these species were dominant in catches obtained on the upper slope, in shallower grounds of the shelf break, the catches were highly multispecific and in- 521 cluded a variety of shellfish, finfish, and elasmobranchs, namely soldier shrimps (Plesionika spp.), flounders (Paralichthys isosceles, P. triocellatus), pink cusk-eel, and deep-water skates (Table 4). A fleet composed of 37 chartered trawlers operated on deep areas off the Brazilian coast since 2000, completing, by 2007, 311 fishing trips and 35,860 trawls at depths of 100 to 1,173 m in the northern, northeastern, southeastern, and southern sectors of the Brazilian coast (Tables 1 to 3). In southeastern and southern Brazil, a preliminary “exploratory phase” of chartered trawling was established between late 2000 and mid-2001, when two large vessels flying the flags of Portugal and the Republic of South Korea conducted long fishing trips between 100 and 400 m depth (Perez et al., 2003; Perez et al., 2009a). By the end of 2001, the results of the preliminary exploration gave way to an “upper slope directed phase” characterized by the intense exploitation of two latitudinal strata, 23°S-25°S and 26°S-29°S, both between 250 and 400 m deep. This phase included the operations of seven trawlers, most of them originating from Spain, that targeted Argentine hake concentrations on the upper slope off southeastern Brazil. Catches of the Argentine squid were also particularly important in this period, along with the monkfish, silvery John dory, and Brazilian codling, the latter usually discarded due to the lack of an international market (Table 4). After sharing the upper slope and most of its demersal resources with the national fleet for nearly one year, most chartered trawlers left Brazilian waters by the end of 2002 (Perez et al., 2009a). Chartered trawling off Brazil continued, however, through the operation of another set of foreign vessels that established a third and still ongoing fishing phase directed at the lower slope and valuable concentrations of aristeid shrimps: Aristaeopsis edwardsiana (scarlet shrimp), Aristeomorpha foliacea (giant red shrimp), and Aristaeus antillensis (“alistado” shrimp) (Table 4) (Pezzuto et al., 2006b; Perez et al., 2009a). Two Spanish trawlers initiated this phase in late 2002-2003, establishing an intense fishing regime in a limited area bounded by the 24-26°S parallels and 700-750 m isobaths. In mid-2004, another five trawlers from Spain, Mauritania, and Senegal started operations within the same limited area mentioned above, moving gradually to new productive grounds to the north (19°30’-20°S) and, in 2005, to the south of 26°S (Pezzuto et al., 2006b; Dallagnolo et al., 2009). This phase directed at the lower slope was the longest to be sustained by chartered trawlers off Brazil, but it also declined in 2007 when most vessels abandoned Brazilian waters due to poor catch rates. Throughout this phase, 522 Lat. Am. J. Aquat. Res. Table 4. Landing composition of deep-water fishing operations off Brazil. “Main target-species” are species that generally compose more than 10% of the landed biomass and are always listed as targets. “Secondary target species” are species that compose from 1 to 10% of the landed biomass. “Valued bycatch” are species that represent less than 1% of the landed biomass but are generally retained for commercialization. Sources for landing composition of national longliners and handliners: Ávila-da-Silva & Arantes (2007), Haimovici & Velasco (2007), and Haimovici et al. (2007). Tabla 4. Composición de los desembarques correspondiente a las operaciones de pesca realizadas en aguas profunda en Brasil. “Main target-species” son especies que componen más del 10% de la biomasa desembarcada y siempre son nombradas como “objetivo” de la pesca. “Secondary target species” son especies que componen el 1-10% de la biomasa desembarcada. “Valued bycatch” son especies que componen menos de 1% de la biomasa de los desembarques, pero que en general son retenidos para su comercialización. Fuentes para la composición de los desembarques de barcos de palangre: Ávila-da-Silva & Arantes (2007), Haimovici & Velasco (2007) y Haimovici et al. (2007). Crustaceans Aristaeomorpha foliacea Aristaeopsis edwardsiana Aristeus antillensis Chaceon fenneri Chaceon notialis Chaceon ramosae Metanephrops rubellus Plesionika longirostris Scyllarides deceptor Mollusks Illex argentinus Octopus vulgaris Elasmobrachs Atlantoraja, Dipturus spp. Carcharhinus spp. Galeorhinus galeus Isurus oxyrinchus Rhinobatos spp. Squalus spp. Squatina argentina Teleosts Conger orbignyanus Cynoscion guatucupa Epinephelus nigritus Epinephelus niveatus Genidens barbus Genypterus brasiliensis Helicolenus dactylopterus Lophius gastrophysus Lopholatilus villarii Merluccius hubbsi Micropogonias furnieri Mullus argentinae Pagrus pagrus Paralichthys spp. Polimixia lowei Polyprion americanus Prionotus punctatus Pseudopercis spp. Trichiurus lepturus Umbrina canosai Urophycis mystacea Zenopsis conchifera Valued bycatch pe r er s lop e slo pe Up S pe Chartered tern rs tra lo p wl e -L Ste ow Chartered rn er tra slo wl pe -S ea mo u National Gil nt ln e t Chartered Gill ne t Secondary target-species Chartered Pot Chartered National Lo Lo ng li ne ne nd li National Ha ng lin e l- raw rn t Chartered National Ste Tra w l- Up Up p l- bre ak rn National Ste DR tra w Sh e lf lTra w DR National National Ste rn t raw l- Sh e lf bre ak Main target-species Deep-water fisheries in Brazil two national trawlers, one imported and another adapted to slope trawling, were also recorded in the fishing areas off southeastern Brazil. Chartered deep-sea trawling was also attempted in the northern and northeastern sectors of the Brazilian coast. Nearly 226 trawls were conducted between 428 and 1,158 m deep off the coast of Amapá State (4750°W) in late 2002, where productive concentrations of A. edwardsiana and A. antillensis were found (Pezzuto et al., 2006b). Additionally, a few trips by one chartered trawler were directed towards the flat tops of the seamounts making up the Ceará Plateau and Fernando de Noronha Chain. These seamounts rise from nearly 1,000 m at the base to 200 m at the top, where the gentle topography was found suitable for trawling. Catches in these areas were mostly composed of the Warsaw grouper (Epinephelus nigritus), whose catch rates decreased rapidly to unprofitable levels (Table 4). These areas have been abandoned ever since (Perez et al., 2009a). Other fisheries In 2003, a national pot fishery directed at the common octopus Octopus vulgaris developed in the southeastern sector of the Brazilian coast, with a maximum of 29 vessels operating in 2005. This fleet decreased to around 14 units in 2007, but substantial activity of illegal vessels has been reported, mostly off southern Brazil. Pot operations have concentrated on the outer shelf, although a considerable proportion of catches have originated from shelf-break areas (100-200 m deep) (Ávila-da-Silva & Tomás, 2007). In 2005, one vessel chartered for squid jigging conducted one experimental trip off southeastern and southern Brazil. This attempt was highly unsuccessful but may have been affected by the fact that the vessel did not operate during the winter months (JulySeptember), when trawl catches of Argentine squid are highest (Perez et al., 2009a). FISHERIES DEVELOPMENT AND SUSTAINABILITY Considering the year 2000 as a the reference for the start of a deep-sea fishing phase in Brazil, total landed catches of the main demersal “deep-sea” resources reported for the southeastern and southern sectors of Brazil, where this activity has concentrated, varied annually from 5,756 ton in 2000 to a maximum of 19,923 ton in 2002, decreasing to nearly 11,000 ton in 2006 (Table 5). These annual figures have represented 2 to 8% of the total catch landed annually in this pe- 523 riod (Valentini & Pezzuto, 2006). In this section, the main deep-water resources exploited off Brazil are presented along with existing descriptive information on historical catches (Table 5), abundance patterns and stock assessments (Table 6), and management/conservation measures (Table 7). Wreckfish, Polyprion americanus (Bloch & Schneider, 1801) The wreckfish is a large-sized serranid that constituted the main target of the hook-and-line fisheries, particularly those established between 100 and 500 m deep south of 30°S. Sparse catch records of this species date back to 1973, but a series of nominal catches has been available from 1986 onwards (Valentini & Pezzuto, 2006). Until 2004, annual reported landings oscillated around 700 to 800 ton (Table 5). These figures, however, may not be totally realistic considering that landing records may be contaminated by two other serranids (Epinephelus niveatus and E. flavolimbeatus) and that there has been a historical trend of unreported catches, particularly during the first half of this period (Haimovici & Peres, 2005). These authors estimated that landings declined nearly 79% since 1989 (dropping from 2,200 ton in that year to less than 460 ton in 2002), in association with abundance reductions ranging from 57 to 94%, according to CPUE time-series analysis. Part of this reduction has been attributed to a significant increment in fishing mortality during the 1990s as the result of (a) the rising demands of international markets and (b) increased fishing power through the dissemination of the use of long-line settings in the fleet. The species is long-lived. Catches include females and males as old as 76 and 62 years, respectively. Maturation is reached for the first time after nine to 10 years-of-age in both sexes and spawning occurs on localized areas off southern Brazil (Peres & Haimovici, 2003). In these areas, most of the local stock is highly vulnerable to the long-line directed fishery as well as unintentional mortality from slope trawling and monkfish gillnetting (Peres & Klippel, 2003; Perez & Wahrlich, 2005). Given the combination of these K-strategy features and the important biomass reductions mentioned previously, the Brazilian stock has been included, justifiably so, on the IUCN “red list” and Brazilian authorities imposed a moratorium since 2005 (Tables 6 and 7) (Cornish & Peres, 2003). Monkfish, Lophius gastrophysus Ribeiro, 1915 The monkfish is a lophiiform widely distributed along the Brazilian shelf and slope. It is traditionally a valuable component of the catches obtained by double 524 Lat. Am. J. Aquat. Res. Table 5. Annual landings (ton) of deep-water resources in southeastern and southern Brazil between 2000 and 2006. Brazilian codling includes two species: Urophycis brasiliensis (coastal) and U. mystacea (deep-water). Tabla 5. Desembarques anuales (ton) de recursos de aguas profundas en el sureste y sur de Brasil entre 2000 y 2006. “Brazilian codling” incluye dos especies: Urophycis brasiliensis (costera) y U. mystacea (aguas profundas). Species 2000 2001 2002 Year 2003 Total 2004 2005 2006 Teleosts Brazilian codling Urophycis spp. 1,901.3 5,991.7 7,847.0 5,273.6 3,491.2 4,547.8 4,825.0 33,877.6 Tilefish Lopholatilus villarii 533.2 Argentine hake Merluccius hubbsi 225.8 2,653.4 3,708.8 3,042.4 1,417.8 1,564.5 1,950.5 14,563.2 Silver john dory Zenopsis conchifera Monkfish Lophius gastrophysus Crustaceans Royal crab Chaceon ramosae Red crab Chaceon notialis Scarlet shrimp Aristaeopsis edwardsiana 0.0 709.2 0.0 597.6 82.5 572.5 147.1 545.2 42.3 560.8 85.1 717.0 4,235.5 31.0 388.0 1,934.4 7,063.9 5,073.1 2,556.3 2,410.7 2,544.6 2,516.5 24,099.5 2.0 593.6 1,252.3 746.0 849.9 494.5 171.4 4,109.7 1,157 1,183.6 1.089.0 1,377.7 1,092.5 675.7 302.8 5,899.8 0.0 0.0 13.0 58.9 81.6 182.6 99.3 435.4 Giant red shrimp Aristaeomorpha foliacea 0.0 0.0 0.0 4.6 14.9 42.6 51.7 113.8 Alistado shrimp Aristeus antillensis 0.0 0.0 0.3 0.5 5.5 15.8 5.4 27.5 Molluscs Argentine squid Illex argentinus 2.7 13.6 2,600.7 31.2 158.3 453.1 Total 292.5 3,552.1 5,756.4 18,209.0 19,923.0 13,810.8 10,109.9 11,167.1 11,028.1 91,302.1 Sources: IBAMA/DF, IBAMA/RJ, CEPSUL/IBAMA, CEPERG/IBAMA, IP-APTA and CTTMar/UNIVALI. rig trawling along the coast of Rio de Janeiro State. In 2001, an important cycle of commercial exploitation of the species began in Brazil and peaked in the following year, when over 150 trawlers and nine chartered vessels operating with bottom gillnets landed 7,094 ton (Table 5) (Perez et al., 2002a, 2003; Perez & Pezzuto, 2006). This fishing regime continued during most the following year, with landings of 5,129 ton, but changed in 2003 as the chartered vessels abandoned Brazilian waters. Since then, exploitation has been maintained mostly by double rig trawlers along with a few vessels of the national fleet transformed to fish with the new gillnet technology (Wahrlich et al., 2004). Landings decreased to roughly 50% from 2002 to 2003, remaining stable around 2,500 ton ever since (Table 5). Through data collected from national and chartered operations, catch-at-size, general linear models, and depletion models were combined in order to provide both pristine biomass and abundance index estimates for 2001 (Table 6) (Perez et al., 2005). Landing statis- tics indicated that fishing removed approximately 16% of the 62,776 ton of total estimated biomass and approximately 32% of the spawning stock. Alternatively, variations in the abundance indices suggested a more severe 30-60% biomass reduction in the main fishing grounds off southern Brazil throughout 2001. The latter scenario was favored by the establishment of a conservative reference point and the Gulland’s equation was used to predict a maximum sustainable yield (MSY) of 2,500 ton per year, or nearly 4% of the total biomass (Perez et al., 2002b). A later assessment combining life-history parameters and population models (Kirkwood et al., 1994; Perez, 2006) estimated an MSY for the species of around 6% virginal biomass and suggested that the former recommended annual catch was conservative enough to sustain the fishery at biologically safe levels. Notwithstanding, in 2002, as biomass reductions in the fishing areas reached nearly 50% of the 2001 levels, a lower annual catch (1,500 ton, nearly 2.5% of the virginal biomass) was recom- 525 Deep-water fisheries in Brazil Table 6. Abundance estimators, methods for stock assessment, reference points, and the status of deep-water fisheries/stocks exploited in southeastern and southern Brazil. t: year, B0: virginal or initial biomass, C: catch, Cref: catch in the year of reference, E: exploitation rate. Tabla 6. Estimadores de abundancia, métodos de evaluación del stock, puntos de referencia y estado de las pesquerías de aguas profundas/stocks explotados en el sureste y sur de Brasil. t: año, B0: biomasa inicial o virginal, C: captura, Cref: captura en el año de referencia, E: tasa de explotación. Stocks Elasmobranchs Galeorhinus galeus Teleosts Helicolenus lahillei Lophius gastrophysus Lopholatilus villarii Merluccius hubbsi Polyprion americanus Urophycis mystacea Zenopsis conchifera Abundance estimators/ indicators Stock assessment methods Reference points (limits) Stock status - - - Risk of extinction (1) Swept area (3),VPA, Depletion, GLM (4) Z; M; S (2) Gulland’s equation (4) 0.06B2001 (5); GLMt/GLM0; GLMt/GLMMSY (4, 6) Under-exploited (2) Overexploited (4, 7) VPA (8) Swept area (3), GLM (7) Thompson & Bell (8) Kirkwood et al., 2004 (5) F0,1; Fmax (8) 0.1B2002 (5) Overexploited (8) Fully exploited/ overexploited (5,7) - Ct/Cref; CPUEt/CPUEref (10) Kirkwood et al., 2004 (5) Kirkwood et al., 2004 (5) - Colapsed (10) 0.1B2002 (5) Fully exploited/ overexploited (9,5) Unknown Swept area (9,3), GLM (7) Swept area (3) 0.1B2002 (5) Crustaceans Bt/B0; Bt/BMSY; CPUEt/CPUE0; CPUEt/CPUEMSY; GLMt/GLM0; GLMt/GLMMSY (11) Bt/B0; Bt/BMSY; CPUEt/CPUE0; CPUEt/CPUEMSY; GLMt/GLM0; GLMt/GLMMSY (11) Bt/B0; Bt/BMSY; CPUEt/CPUE0; CPUEt/CPUEMSY; GLMt/GLM0; GLMt/GLMMSY (11) Aristaeopsis Edwardsiana Swept area, GLM (11) Kirkwood et al., 2004 (11) Aristaeomorpha foliacea Swept area, GLM (11) Kirkwood et al., 2004 (11) Aristeus antillensis Swept area, GLM (11) Kirkwood et al., 2004 (11) Chaceon notialis EFA, GLM, CPUE (12, 13) Gulland’s equation (12) Bt/B0; Bt/BMSY; CPUEt/CPUE0; CPUEt/CPUEMSY; GLMt/GLM0; GLMt/GLMMSY (13) Fully exploited (13) Chaceon ramosae EFA, GLM, CPUE (12, 8) Gulland’s equation (12) Bt/B0; Bt/BRMS; CPUEt/CPUE0; CPUEt/CPUERMS; GLMt/GLM0; GLMt/GLMRMS (13) Fully exploited/ Overexploited (13) Illex argentinus Swept area (14) - - Unknown Octopus vulgaris VPAe (15, 16) Bt/Catcht (16) - Under-exploited (16) Overexploited (11) Unknown Unknown Molluscs (1) Vooren & Klippel (2005), (2) Bernardes et al. (2005b), (3) Haimovici et al. (2008), (4) Perez et al. (2005), (5) Perez (2006), (6) Perez et al. (2002b), (7) Perez (2007a), (8) Ávila-da-Silva & Haimovici (2005), (9) Haimovici et al. (2006b), (10) Haimovici & Peres (2005), (11) Dalagnollo (2008), (12) Pezzuto et al. (2006a), (13) Pezzuto et al. (2006b), (14) Haimovici et al. (2006c), (15) Tomás (2002), (16) Tomás & Petrere Jr. (2005). 526 Lat. Am. J. Aquat. Res. mended (Anon, 2007). This MSY was used to define a TAC (Total Allowable Catch) as one of the elements of a management plan discussed and agreed on by fishing authorities in 2002-2003 (Table 7). This plan also included the definition of a bottom gillnet fleet of no more than nine units, a maximum of 1,500 nets per vessel, 280 mm mesh size (stretched), and no-fishing areas, among other measures (Perez et al., 2002b; Anon, 2005). Since the beginning of the monkfish production cycle, however, landed catches have been systematically higher than the maximum recommended catches (Table 5). That pattern is regarded to be the main cause of the major biomass reduction in 2002 and the stabilization at biologically insecure levels thereafter (Perez, 2007a; Anon, 2007). The monkfish was exploited throughout the southern and southeastern regions between the 100-600 m isobaths. Brazilian trawlers concentrated their activities on the shelf break (at 100-200 m) and chartered gillnet vessels in deeper areas of the upper slope (at 300-400 m). Because the stock size-structure is affected by the bathymetric gradient across the slope and both fishing gears differ markedly in mesh-size, trawler mortality concentrated on young, immature specimens (mostly males), whereas gillnet fishing tended to affect mostly large adult females, which are dominant in areas deeper than 300 m. After 2002, as chartered vessels no longer operated in the Brazilian EEZ, the deep fraction of the stock tended to be less affected than the one exploited by trawlers on the shelf break (Valentim et al., 2007). In recent years, trawlers targeting monkfish off southern Brazil have tended to occupy deeper areas of the slope and to include large individuals in their catch. These individuals also have predominated in the catches of the small national gillnet fleet (Anon, 2007). Argentine hake, Merluccius hubbsi Marini, 1933 The Argentine hake is a benthopelagic gadiform of the family Merluccidae that occurs in the SW Atlantic shelf and slope waters from 22° to 55°S. The highest densities occur over the Patagonian Shelf where the species has long sustained an important trawl fishery (Bezzi et al., 2004). Catches in Brazilian waters have mostly occurred in the southern sector and have been historically associated with the northward penetration of juveniles from the Patagonian stocks, particularly during years when the influence of the cold Malvinas/Falkland Current waters in the Brazilian EEZ was intense (Haimovici et al., 1994). From 1990 onwards, important catches have been reported off the coast of Rio de Janeiro State, in the southeastern sector; these come from what appears to be a distinct stock whose distribution is associated with the local upwelling of cold South Atlantic Central Waters (Vaz-dos-Santos & Rossi-Wongstchowski, 2005; Haimovici et al., 2008). This “Brazilian” stock has constituted one of the main targets of the slope trawling fishery conducted since 2000, both by national and foreign trawlers (Perez et al., 2003; Perez & Pezzuto, 2006; Perez et al, 2009a). The species also appeared amongst the most important components of the deep-water gillnet catches obtained by the chartered fleet in 2001-2002, although nearly 87% of these catches were discarded in the monkfish-oriented operations (Perez & Wahrlich, 2005). Annual landings through the 1980s and 1990s have been mostly under 1,000 ton (Valentini & Pezzuto, 2006). In 2001, landings reached 2,653 ton, almost 10 times the levels recorded in the previous years, increasing to over 3,000 ton in 2002 and 2003 (Table 5). Chartered trawlers contributed with 38.4% (1,018 ton) and 52.7% (1,953 ton) of the total landings in 2001 and 2002 respectively. In 2003, nearly 90% of the 3,042 ton landed were produced by national double rig trawler operations (Perez et al., 2009a). After 2003, annual landings were cut in half and stabilized around 1,400-1,500 ton (Table 5). Surveys conducted by the REVIZEE Program reported the highest densities between 250 and 550 m depths and within two latitudinal strata: one in the southernmost extreme of the Brazilian EEZ (33-34°S) and another in the southeastern sector (23-25°S) (Haimovici et al., 2008). The latter was the concentration primarily exploited by both national and foreign trawlers, with the largest catches being obtained at depths of 300 to 400 m (Perez & Pezzuto, 2006; Perez et al., 2009a). A direct swept area assessment estimated a total of 21,924 ton (± 5,922.2 95%CI) of Argentine hake in the southeastern sector in 2002, and an MSY of 2,215 ton (corresponding to 10% of the total stock biomass) was estimated based on life-history parameters (Table 6) (Haimovici et al., 2008; Perez, 2006). Between 2001 and 2003, catches were well above the estimated MSY and the total biomass decreased nearly 50% from 2003 onwards (Perez, 2007a; Anon, 2007). Vaz-dos-Santos & RossiWongstchowski (2005) further demonstrated that catches of the trawl fishery were highly concentrated on immature males and females (1-2 years old). These authors also estimated a 0.58 fishing mortality rate (F) that clearly surpassed the FMSY levels as defined by Perez (2006). All the above assessments converge into a scenario of overfishing that calls for an urgent upper slope trawling management plan (Table 7). 527 Deep-water fisheries in Brazil Table 7. Management elements of the deep-water fisheries in southeastern and southern Brazil. Logbooks and VMS: 100% coverage. Observers: 100% coverage. Exceptions are indicated in specific cases. Tabla 7. Elementos utilizados en el manejo de las pesquerías de aguas profundas en el sureste y sur de Brasil. Bitácoras a bordo y VMS: 100% de cobertura. Observadores: 100% de cobertura, Excepciones están indicadas en casos específicos. Bottom longline Double-rig trawl (shelf break) Bottom trawl (upper slope) Bottom trawl (lower slope) Gillnet Trap Trap Trap No 2008 2008 Now implementing 2008 2008 2005 Now implementing Target and accessory species Polyprion americanus (*); Lopholatilus villarii; Pseudopercis numida; Epinephelus niveatus; Urophycis mystacea; Galeorhinus galeus; Genypterus brasiliensis; Helicolenus lahillei Multispecies (**) Urophycis mystacea; Merluccius hubbsi; Zenopsis conchifera; Illex argentinus Aristaeopsis edwardsiana; Aristaeomorpha foliacea; Aristeus antillensis Lophius gastrophysus Chaceon notialis Chaceon ramosae Chaceon fenneri Fleet size Unlimited Unlimited among coastal pink-shrimp trawlers 17 (< 600 HP) 2 9 2 2 1 Brazilian EEZ 18o20’ S to the Southern limit of the Brazilian EEZ; 100-250 m depth 18o20’ S to the Southern limit of the Brazilian EEZ; 250-500 m depth 18o20’ S to 28o30’; 500-1000 m depth 21o’ S to the Southern limit of the Brazilian EEZ; > 250 m depth 32o S to the Southern limit of the Brazilian EEZ; > 200 m depth 19o S to 30o S; > 500 m depth NE coast > 200 m depth Jan-Dec March - May Jan-Dec Jan-Dec Jan-Dec Jan-Dec Jan-Dec Jan-Dec 1.500 ton.year-1 735 ton. year-1 420 ton.year-1 No Management plan Area Fishing season TAC No No No 60 ton.year-1. Individual (not-transferable) quotas of 7.5 ton.trimester-1 Effort limits No No No No Up to 1000 nets.vessel1 (maximum net length: 50 m) No Up to 900 traps.vessel-1 Minimum legal sizes Yes, species-specific No No No No No No No Gear restrictions No Double-rig trawl Stern trawl; minimum cod-end mesh size 90 mm stretched Stern trawl; minimum cod-end mesh size 60 mm stretched Minimum mesh size 280 mm stretched; nets tagged with vessel register Mesh size 120 mm stretched; escape panels; traps tagged with vessel register Mesh size 120 mm stretched; escape panels; traps tagged with vessel register Mesh size 120 mm stretched; escape panels; traps tagged with vessel register By-catch limits No Lophius gastrophysus (5%); other coastal species*** (15% of the total catch) Chaceon spp. (5%); Lophius gastrophysus (5%); Aristeidae shrimps (1% of the total catch) Chaceon spp. (15%); Lophius gastrophysus (5% of the total catch). Lopholatilus villari (5%); Chaceon spp. (5% of the total catch) No No No 528 Exclusión areas Rotation of harvestable areas Catch or processing limits Control Lat. Am. J. Aquat. Res. SE and S (****) Spawning time/area: August to December; < 600 m depth Spawning time/area: January to June; < 700 m depth No No SE and S (****) SE and S (****) SE (****); seamounts; coral bottoms; areas N of 21oS when catches of A. antillensis attain 4.4 ton No No No N and S from the exclusion area SE No No No No No No No No No Mutilation (only claw processing) prohibited Mutilation (only claw processing) prohibited Mutilation (only claw processing) prohibited Logbooks; VMS Logbooks; VMS; Obser-vers (20% coverage) Logbooks; VMS; Observers (50% coverage) Logbooks; VMS; Observers Logbooks; VMS; Observers Logbooks; VMS; Observers Logbooks; VMS; Observers Logbooks; VMS; Observers * Under moratory. ** Plesionika spp., Parapenaeus americanus; Rioraja agassizzi; Altantoraja cyclophora; A. castelnaui; A. platana; Sympterygia bonapartei; S. acuta; Genypterus brasiliensis; Paralichthys isosceles; P. triocellatus; Illex argentinus; Metanephrops rubellus; Mullus argentinae; Polymixia lowei; Helicolenus dactylopteru; Zenopsis conchifera. *** mainly Cynoscion striatus; Micropogonias furnieri; Umbrina canosai and Macrodon ancylodon. **** Exclusions areas named SE and S are defined, respectively, by the following coordinates: 23o40'S/44o00'W-24o15'S/45o00'W-24o26'S/43o30'W-25o0 0'S/44o30'W and 29o00'S/48o35'W29o00'S/47o40'W-30o00'S/49o20'W-30o00'S/47o40'W. Deep-water fisheries in Brazil Brazilian codling, Urophycis mystacea (Ribeiro, 1903) The Brazilian codling is another gadiform of great importance for the development of a deep-water fishery off Brazil. The species occurs over the slope throughout the entire latitudinal range of the southeastern and southern sectors of the Brazilian coast. High densities have been reported south of 30°S, where the species concentrates below the 150 m isobath, and also in some areas to the north of 30°S, although always deeper than 300 m (Haimovici et al., 2008). This gadid was a major target of slope trawling conducted by national vessels between 2001 and 2003, contributing 30.7% and 17.8% of the catches landed by double rig and stern trawlers, respectively (Perez & Pezzuto, 2006). Its proportion in the catches tended to be even higher on trips conducted in areas deeper than 250 m south of 29°S. In the catches of chartered trawlers, U. mystacea was regarded as incidental, possibly because operations were concentrated in the northern extreme of the southeastern sector of the Brazilian coast, an area where the species is less abundant (Perez et al., 2009a). In addition, most chartered trawlers have usually discarded this species as it lacked international markets. Between 1997 and 1998, Haimovici & Velasco (2007) reported that the Brazilian codling was relatively important in the landings of the long-line fleet operating off southern Brazil, pointing out that catches could be even higher than the figures recorded at the landings since the species was frequently used as bait for higher-priced species such as the wreckfish. In fact, the species was among the most abundant in the catches with long-lines, vertical lines, and traps conducted on the slope off southern Brazil under the REVIZEE program and also in commercial catches obtained by chartered longliners in 2000-2001 (Perez et al., 2003; Haimovici et al., 2004; Bernardes et al., 2005a). In the chartered gillnet fishery for monkfish, the Brazilian codling was one of the major components, although less than 25% of these catches were estimated to be actually retained and processed (Perez & Wahrlich, 2005). Recently, as the national deep-water gillnet fishery for monkfish expanded to deeper areas of the slope, catches of U. mystacea have also increased and been landed as valuable bycatch. The species is undoubtedly one of the most abundant components of the demersal habitats of the slope off southeastern and southern Brazil, and it is also one of the most intensely fished, both intentionally and non-intentionally, by several fishing methods (Haimovici et al., 2006a). Landed catches of the Brazilian codling have been historically pooled with those of a shallow-water cogeneric species: U. brasiliensis (Valentini & Pezzuto, 529 2006). Nevertheless, a three-fold increase in the landings recorded since 2001 has been attributed to catches of the slope form (U. mystacea) as a consequence of the trawl fishery’s expansion to deeper areas (Perez & Pezzuto, 2006). Total landings oscillated between 5,000 and 7,000 ton between 2001 and 2003, declining in the subsequent years (Table 5). Estimates derived from the landing composition in the harbors of Santa Catarina State, where U. mystacea has been found since 2003, indicate that between 70 and 80% of these figures correspond to catches of this species. Following the same estimation procedures previously described for the Argentine hake, an MSY of 1,182.4 ton has been estimated for this species, that is 9.5% of the total biomass available in fishing areas of southeastern and southern Brazil in 2002 (12,446 ton ± 4,605.0 ton 95% CI) (Perez, 2006; Haimovici et al., 2008). Even considering that reported landings overestimate U. mystacea total catches (see above), it has been demonstrated that these have greatly surpassed, at least since 2001, the limits estimated as potentially sustainable (Table 6) (Anon, 2007). Significant biomass reductions have been observed in 2004-2005, possibly as the outcome of an unsustainable fishing regime (Perez, 2007a). Similar conclusions have been drawn by Haimovici et al. (2006b), who argued that the species was probably subjected to excessive exploration rates (0.5-0.6) in 1997-1998, even before the slope trawling expansion in Brazil. The species is to be considered, along with the Argentine hake, in the upper slope trawling management plan (Table 7). Silvery John dory, Zenopsis conchifera (Lowe, 1852) This benthopelagic zeiform is distributed in shelf break and slope areas worldwide. Fishing surveys conducted off southeastern and southern Brazil since the 1970s have indicated a moderate potential for commercial exploitation, although this is generally hampered by the uncertain availability of favorable markets for this species (Haimovici et al., 1994). The recent survey conducted under the REVIZEE program revealed that the species is concentrated at depths of 200 to 400 m, particularly in two latitudinal strata: 2930°S and 23-25°S (Haimovici et al., 2008). Commercial catches were recorded for the first time in those areas by chartered trawlers during the 2000-2001 exploratory phase (Perez et al., 2003; Perez et al., 2009a). After that, in general, the species was still caught abundantly by these trawlers although it was usually discarded (Perez et al., 2009a). This may also have contributed to the small volumes recorded at the landing sites of the national trawlers that operate on the slope grounds (Table 5). 530 Lat. Am. J. Aquat. Res. In 2002, the biomass and calculated MSY were 38,876 ton (± 24491.9 ton 95% CI) and 4,895.5 ton (12.5% of total biomass), respectively (Table 6) (Perez, 2006; Haimovici et al., 2008). Whereas landings indicate that the stock has been largely underexploited (Table 5), the indirect impact may be significant given the considerable biomass that was likely discarded by national trawlers operating on the slope off southeastern and southern Brazil, where the species is highly vulnerable (Haimovici et al., 1994; Perez et al., 2009a). The species is also considered to be a target in the upper slope trawling management plan (Table 7). Red crab, Chaceon notialis Manning & Holthuis, 1989 Following the development of a directed fishery in Uruguayan waters since 1995 (Defeo & Masello, 2000), the exploitation of the red crab C. notialis started in Brazil in 1998, when the Japanese factory vessel Kinpo Maru No. 58 was chartered by a national company. The vessel was closely monitored by observers and VMS since 2000, making available all the fishing and biological data needed for describing and analyzing this valuable, new deep-water fishery. Between 2000 and 2004, red crab catches oscillated around 1,130 ton year-1 (Table 5) and were entirely exported to Asia as frozen processed crabs. After attaining a maximum of 1,377.7 ton in 2003, catches declined continuously until 2007, when the permit for Kinpo Maru No. 58 was cancelled by the national fishing authorities. The application of the Effective Fishing Area Method (Defeo et al., 1991; Arena et al., 1994) and Gulland’s Formula (Pezzuto et al., 2002) for the “Brazilian” part of the stock (33°00’S and 34°40’S) allowed the virginal biomass and the MSY to be estimated at 17,117.8 ton (16,453.6-7,779.0 CI95%) and 1,027 ton per year, respectively (Table 6). A management plan for the red-crab fishery was established in May 2005 (Pezzuto et al, 2006a) and included, inter alia, a total allowable catch of 1,050 ton live weight year-1, a maximum number of permits (2 vessels), and a minimum mesh size of 110 mm (stretched) in the pots (Table 7). Unregulated catches surpassed MSY in most years (Table 5) and, therefore, by the end of 2005, the stock biomass was reduced to nearly 60% of its original levels (Pezzuto et al., 2006a). Females naturally contributed 67 to 77% of the biomass exploited in Brazil and most of the catches were composed of immature individuals. Spawning seems to be localized both in space and time; in Brazil, ovigerous females were found concentrated at depths lower than 600 m, mostly from July to Decem- ber (Pezzuto et al., 2006b), following the same pattern previously reported for Uruguayan waters (Defeo et al., 1992). A review of the red crab management plan has been recently agreed on and was implemented in 2008 (Table 7). The main changes in the original rules include a TAC reduction to 735 ton year-1, a fishing ban in areas shallower than 600 m during the second half of the year, and a minimum mesh size in the pots of 120 mm (stretched). Royal crab, Chaceon ramosae Manning, Tavares & Albuquerque, 1989 Unlike Chaceon notialis, which was exploited in Brazil by a single pot vessel, the fishery for Chaceon ramosae started in 2001 and soon expanded to a fleet of up to eight foreign processor vessels chartered by national companies. The species was also the most abundant and valuable bycatch item of several chartered gillnetters and trawlers that targeted other deepsea resources, namely monkfish and aristeid shrimps (Perez & Wahrlich, 2005; Pezzuto et al. 2006c). In the first year of exploitation, catches of royal crabs summed 593.6 ton and exhibited a 2-fold increase in 2002 (Table 5). Catches declined in 2005 and 2006 as a direct response to lower catch rates and successive reductions in the number of vessels in the fishery, which was interrupted by the end of 2006 (Pezzuto et al., 2006b). In 2002, stock biomass and MSY were estimated to be 11,636.4 ton (11,271.512,007.7 ton CI 95%) and 593.5 ton, respectively (Table 6) (Pezzuto et al., 2002, 2006a). A management plan for the royal-crab fishery was only established in May 2005 and included, inter alia, a total allowable catch (600 ton live weight year-1), a maximum number of permits (3 vessels) and pots per vessel (900 units), and minimum mesh size in the pots (100 mm stretched) (Table 7). Delayed management was critical for the species, as catches surpassed the suggested TAC in most of the years and especially in 2002, when they were 211% higher than the MSY. In 2005, the stock biomass was reassessed at 44-48% of the 2001 levels (Pezzuto et al., 2006b). Males naturally predominated the catches and ovigerous females were concentrated in areas shallower than 700 m from January to June (Pezzuto et al., 2006b); more than 50% of the males and females caught between 2001 and 2005 were sexually immature (Pezzuto & Sant’Ana, 2009). The management plan for the royal crab fishery was recently reviewed in light of the new findings regarding stock biomass levels and biological characteristics of the species (Table 7). The newly established measures include: a) a 33% reduction, either in the TAC or the maximum number of permits, b) the closure of areas shallower Deep-water fisheries in Brazil than 700 m during the first half of the year in order to protect ovigerous females from fishing, and c) increasing the minimum mesh size in the pots from 100 to 120 mm (stretched). Golden crab, Chaceon fenneri (Manning & Holthuis, 1984) The golden crab Chaceon fenneri was first reported in the Brazilian EEZ by Sankarankutty et al. (2001) based on survey samples taken along the northeastern coast (1.5-4.0°S; 34.0-42.0°W). Previously known only in the northwestern Atlantic (Manning & Holthuis, 1989), the species supports a directed fishery in the United States (Erdman & Blake, 1988). Exploitation for golden crabs in Brazil has been very incipient as compared to royal and red crabs, supposedly due to operational and/or commercial limitations experienced by most of the foreign vessels which, besides targeting the latter species, conducted some exploratory fishing on the northeastern coast as well. A preliminary management plan has been recently discussed for this species, although adequate data on distribution, fishing potential, and biological characteristics are virtually inexistent (Table 7). Most information on this stock has been made available very recently, as fishing operations of a national pot vessels that entered the fishery have been continuously monitored. Carvalho et al. (2009) summarizes the preliminary results of this study. Scarlet shrimp, Aristaeopsis edwardsiana (Johnson, 1867) The scarlet shrimp (carabinero shrimp) is an aristeid shrimp distributed in slope areas worldwide. This is a high-valued deep-water species that has been commercially exploited by trawl fisheries at low latitudes of both the East and West Atlantic (Dallagnolo et al., 2009). Off Brazil, it has been the main target of the lower slope trawl fishery phase conducted by chartered vessels since 2003 (Pezzuto et al, 2006c; Perez et al., 2009a). The main concentrations have been exploited in the southeastern sector, between 22 and 26°S and from the 700 to 750 m isobaths. After 2004, fishing exploration continued within these bathymetric boundaries but expanded latitudinally to productive areas in the central and southern sectors of the Brazilian coast. Concentrations were also identified in northern Brazil, off the coast of Amapá State, where fishing was mostly exploratory (Pezzuto et al, 2006c; Perez et al., 2009a). Annual catches increased from 13.0 ton in 2002 to a maximum of 182.6 ton in 2005, declining to 19.9 ton in 2007 (Table 5). Through the use of commercial catch rate data and swept area procedures, a total ex- 531 ploitable biomass of 865.0 ton was estimated within the fishing areas south of 19°S in 2002 (Table 6). This biomass, regarded as virginal, was reduced by 41 to 49% by 2007 due to an intense trawling effort concentrated on spatially limited fishing grounds (Dallagnolo, 2008). Considerations of the species’ life-history (Kirkwood et al., 1994) allowed the definition of an MSY of around 6% of the virginal biomass or approximately 2.5 ton. Taking the total biomass at MSY as a limit reference point, it was concluded that the recent state of the scarlet shrimp stock has been biologically unsafe, demanding short-term restoration management actions (Table 6). Biological data have shown that males attain smaller sizes (maximum 72 mm carapace length) than females (maximum 106 mm carapace length). Sexual maturity was reached at 57-59 mm and 47.7 mm carapace length in males and females, respectively. The reproductive cycle is annual, with most activity concentrated in the second half of the year. The catch size-structure was dominated by females and included limited proportions (15-24%) of immature individuals (Anon, 2007). A management plan for this fishery has been recently proposed, including the other two aristeid shrimps (see below) as target species but using the scarlet shrimp fishing potential to limit annual catches (Table 7) (Dallagnolo, 2008). Giant red shrimp, Aristaeomorpha foliacea (Risso, 1827) The giant red shrimp (moruno shrimp) was the second most abundant aristeid shrimp caught by chartered trawlers on the lower slope off Brazil (Pezzuto et al., 2006c). Catches were generally associated with the chartered trawling activity directed at the larger, more abundant scarlet shrimp. Nevertheless, the species was found to dominate catches in particular fishing grounds of the southeastern and central sectors, principally in later years as densities of scarlet shrimp decreased (Dallagnolo et al., 2009). Total giant red shrimp catches increased continuously until 2005 and 2006, peaking at 42.6 and 51.7 ton, respectively, and then declining to 7.7 ton in 2007 (Table 5). Densities increased continuously on the slope off southeastern Brazil from 2002 to 2007, as estimated by commercial catch rate analysis. In this sector, the mean exploitable biomass peaked in 2007 at 205.6 ton (Dallagnolo, 2008). Off the central sector of the Brazilian coast, a maximum of 86.5 ton of exploitable biomass was estimated in 2006, declining by approximately 46% in 2007, possibly in response to harvest rates as high as 22-53.6% in 2005-2006. The estimated MSY for the giant red shrimp was 15-19% and 17-20% of the exploitable biomass for females 532 Lat. Am. J. Aquat. Res. and males, respectively (Table 6) (Dallagnolo, 2008). The largest males in the catches attained 62 mm and the largest females 91 mm carapace length. Maturity was reached, on average, in males and females with carapaces of 46 mm and 29 mm long, respectively, and reproduction was found to be continuous in the fishing grounds throughout the year. Immature individuals have been rare in the catches (Anon, 2007). Alistado shrimp, Aristeus antillensis A. Milne Edwards & Bouvier, 1909 The alistado shrimp was a minor component among the aristeid shrimps exploited off Brazil, accounting for approximately 5% of the total catches reported between 2000 and 2007. The species was known to occur in the western Atlantic as far south as French Guiana, where it has been exploited along with the scarlet shrimp (Guéguen, 2001). Chartered trawlers reported this species in the northern sector of the Brazilian coast, but commercial concentrations have been detected and exploited principally off central Brazil (Pezzuto et al., 2006c; Dallagnolo et al., 2009). Catches between 2005 and 2006 were considerably lower than those reported for the other shrimps, peaking in 2005 at 15.8 ton (Table 5). A mean virginal biomass of 49.8 ton was estimated for the fishing grounds of the central sector in 2004. This biomass was reduced by nearly half until 2007, particularly after a maximum harvest rate of 32% exerted by chartered trawlers in 2005 (Dallagnolo, 2008). The latter author also estimated an MSY for the species in 1922% of the exploitable biomass. The alistado is the smallest of aristeid shrimps exploited off Brazil; samples measured on board have included males and females as large as 55 and 67 mm carapace length. Catches have been greatly skewed towards large-sized females (Anon, 2007). Argentine short-fin squid, Illex argentinus (Castellanos, 1960) Illex argentinus is an ommastrephid squid distributed in the southwest Atlantic from the coast of Rio de Janeiro State to southern Argentina. On the Patagonian shelf and around the Falkland/Malvinas Islands, the species sustains one of the largest cephalopod fisheries in the world (Haimovici et al., 1998). Off Brazil, despite being regarded as a potential slopewater fishing resource since the 1970s (see review in Haimovici et al., 2007), records of commercial catches were scarce until the beginning of the chartered trawler operations in 2000 (Perez et al., 2003; Perez et al., 2009a). In austral winter 2002, a South Korean chartered trawler produced, in four complete fishing trips off southern Brazil, a total of 1,400 ton, the largest catches ever recorded in Brazilian waters. These catches were concentrated in a relatively small area off the “Santa Marta Grande” Cape between 26 and 29°S and the 250 and 500 m isobaths (Perez et al., 2009a) and were followed by operations of national trawlers. These trawlers contributed nearly 13% of the total reported landings in 2002 (2,600 ton) (Perez & Pezzuto, 2006). After that episode, annual landings were greatly reduced and sustained basically by national trawlers at around 100-400 ton per year (Table 5). These catches were obtained off southern Brazil below 250 m depth and have been highly seasonal, concentrated in late winter-early spring (SeptemberOctober) (Perez & Pezzuto, 2006). Trawl surveys conducted under the REVIZEE program estimated relative abundances much higher than those obtained by previous surveys off southern Brazil (Haimovici et al., 2006c, 2008). This pattern could be attributed to abundance fluctuations, a natural characteristic of this annual species (Haimovici et al., 1998, 2006c). In addition, size and maturity data, as obtained in both scientific and commercial catches, related productive areas and fishing episodes to the austral winter northward migrations of Patagonian stocks spawning over the lower slope of southern Brazil (Perez et al., 2009b). Other concentrations of smaller mature males and females occur throughout the year over the shelf break, but they have not been targeted by the slope trawling fishery. Whereas the ecological aspects involved in such migrations are not fully understood, it has been pointed out that any squid fishing developed off Brazil would have to consider a shared stock scenario with Argentina and Uruguay (Haimovici et al., 2006c). The species is currently considered within the upper slope trawl fishery management plan as one of the target species (Table 7). BYCATCH The detailed recording of catch compositions by observers on board chartered vessels has provided opportunities to assess the impact of deep-water fishing on the slope ecosystems of Brazil. The most comprehensive study to date has focused on a qualitative and quantitative bycatch analysis of the chartered gillnet fishery for monkfish during 2001 (Perez & Wahrlich, 2005). Absolute catches in numbers of non-targeted species were estimated for the entire chartered gillnet fleet in 2001 through their observed mean catch rates (individuals per sampled net). These catches ranged from (a) 33 to 459,833 for invertebrate species, most notably the royal crab and spider crabs (family Majidae); (b) 41 to 23,954 in elasmobranchs, principally 533 Deep-water fisheries in Brazil the angel shark and various skates (family Rajidae); (c) 41 to 110,665 in teleosts, namely the beardfish (Polimixia lowei), silvery John dory, Brazilian codling, Argentine hake, wreckfish; and (d) 8 to 711 turtle, cetacean, and bird species. Indirect mortality impacts tended to be higher in mobile bottom dwellers but bycatch abundances decreased and their basic composition changed southwards, where large teleosts, elasmobranchs, cetaceans, and birds were dominant over the small teleosts, crustaceans, and other invertebrates that characterized the bycatch composition in the northern area. Non-intentional mortality inflicted by bottom gillnets on large Kstrategists (wreckfish, sharks, rays, turtles, cetaceans, birds) was regarded as critical, although highly correlated with operations in the southernmost areas of the Brazilian EEZ, where these groups tend to concentrate. Assessments of the latter and other slope fisheries (including cephalopods and other invertebrates) have been mostly qualitative (Perez et al., 2004, Bastos, 2004). A total of 185 macro and mega invertebrates as well as sponges, cnidarians, annelids, crustaceans, mollusks, and echinoderms were recorded in both studies. Contrary to previous expectations, static gears such as pots and gillnets were shown to catch a higher number of sessile (~54%) than mobile species (~46%). This pattern has been attributed to the intensive entangling of sessile fauna (mostly cnidarians) in these gears during their retrieval, as the equipment is dragged for a relatively long distance over the bottom before being lifted from the seafloor. Considering the length of the pot (9 km) and gillnet (20 km) lines used during each fishing set, it has been argued that their impact on benthic fauna may not be as unimportant as previously thought. Closer attention has been paid the impact of the trawling fishery directed at aristeid shrimps on the lower slope because (a) this fishery produces diverse bycatch of truly deep-water benthopelagic fishes (families Synaphobranchidae, Macrouridae, Trachichthyidae, Berycidae, Astronestidae, Oreosomatidae, Ipnopidae, Alepocephalidae, Ophidiidae, and others) (unpub. data) and (b) removes deep-sea corals, particularly where they form slope and seamount reef formations (Pires, 2007). All the above assessments have been regarded as empirical evidence necessitating the inclusion of ecosystem-based measures in deep-water fishery management plans, mostly through reduced efforts, bycatch restrictions, and marine protected areas (Table 7) (Perez et al., 2002b, 2007b). ECONOMICS The chartering of foreign fishing vessels was a political instrument to develop deep-water fisheries off Brazil and contribute to increased of foreign currency, since most deep-water resources available in the Brazilian EEZ attained high prices in their main international markets. Soares (2007, 2008) analyzed the efficiency of this instrument by examining official records of revenues obtained by deep-water products exported between 2001 and 2006. In this period, a total of US$ 8.3 million were negotiated from exports of 1,838.2 ton of frozen monkfish products, 78.39% of which was destined to EU markets (mostly Spain) (Soares, 2008). As for deepsea crabs (Chaceon spp.), exports of 7,315.3 ton of frozen products in the same period rendered US$ 12.4 million. From 2004 onwards, deep-sea crab exports decreased as a direct consequence of the reduced effort by the chartered pot fleet (Soares, 2007). Aristeid deep-sea shrimps have not been distinguished in Brazilian exports, which aggregate all shrimp species exploited in the country. However, considering the estimated prices of scarlet and giant red shrimps in the European market (around US$ 20 per kg), the revenues accumulated between 2002 and March 2006 can be estimated to have reached US$ 8.8 million (Soares, 2007). Official figures such as those presented above, however, have raised considerable uncertainties about the economic importance of all deep-water fishing in Brazil, particularly because prices of several species negotiated by Brazil, as estimated from the total annual revenue – total annual catch ratio (i.e. monkfish US$ 4.54 kg-1; deep-sea crabs US$ 1.70 kg-1), have frequently remained significantly below known international prices (i.e. monkfish US$ 13.00 kg-1; deepsea crabs US$ 9.70 kg-1 1). The reasons behind such inconsistencies are not clear, but they seem to be most likely related to incorrect official records, either as a result of inadequate product definitions in Brazilian export customs or misreporting. In any case, a realistic figure of total revenues obtained by the export of deep-water resources is currently unavailable (Soares, 2007). According to chartering contracts signed by both national and foreign partners, it is known, however, that only 5 to 10% of the total revenues obtained by fish products generated by deep-water operations were retained by Brazilian companies. _____________________________ 1 Average values obtained www.bim.ie in several Spanish markets 534 Lat. Am. J. Aquat. Res. INSTITUTIONAL FRAMEWORK, DEVELOPMENT, MANAGEMENT, AND CONTROL In the 1960s, Brazilian fishing activity changed radically as the so-called “industrial” fleet was structured and unprecedented large-scale fishing regimes were established on the continental shelf. Nearly forty years later, deep-water fishing development passed another turning point in the country’s fishing history, largely provoked by the combination of increasingly uneconomic shelf resources and clear government incentives to promote the occupation of the Brazilian EEZ. This process involved new paradigms, not only of fishing practices, areas, resources, and markets, as described above, but also regarding the institutional framework, development, management, and control. Institutional framework Until 1998, fishing management and control were responsibilities of the Ministry of the Environment (MMA), which was strongly rooted in an almost 40year-old coastal fishing-oriented management model. Fishing administration was placed under this ministry nearly 10 years before, as fishing resources were recognized in the Federal Constitution of 1988 as pertaining to the environmental resources, whose protection and preservation were explicitly assured by the Law. The Constitution was promulgated after the end of more than two decades of dictatorial political regime and strongly reflected the new democratic atmosphere prevailing in the country. In fact, Article 225 stated explicitly that not only the Public Power but also the collectivity were both obligated to protect and preserve the environment for present and future generations. Such a political and institutional scenario opened the opportunity for participatory management practices to be attempted and reinforced in the following years (Marrul Filho, 2003). Mostly developed through punctual and “open” multiparty meetings (i.e. not organized under a formal structure in terms of composition and functioning), forums promoted by the MMA since the 1990s have focused mainly on overexploited coastal stocks demanding urgent management decisions. In 1999, through political pressure from the fishing industry interested in a more “development than environmentally-oriented philosophy”, a second management authority was created under the Ministry of Agriculture and Livestock (DPA/MAPA) with a mandate to develop and manage aquaculture and the economic exploitation of those stocks defined as “sub-exploited, unexploited, and highly migratory”; overexploited stocks remained under the jurisdiction of the MMA. In essence, although no modifications of the national fishing legal concepts were set up at that point, this divided mandate allowed mostly oceanic and deepwater fishing policies to be promoted under a more social and economic scope of development. Both legal entities have co-existed ever since, not without strong and continuous inter-institutional conflicts (Dias-Neto, 2003). Nonetheless, in 2003, DPA/MAPA was transformed into a Special Secretariat directly linked to the Presidency of the Republic (SEAP/PR), and again, in 2009, into the Ministry of Fishery and Aquaculture (MPA). Development Incentives for the development of the deep-water fishery in Brazil were materialized mostly in a short-term chartering program launched by DPA/MAPA. This, in essence, allowed national and overseas fishing companies to associate and operate foreign deep-water vessels under temporary fishing authorizations. The explicit objectives of the chartering program were: (i) to enhance the fish supply in the domestic market and to generate foreign currency; (ii) to improve competence and promote employment in the national fishing industry; (iii) to occupy rationally and sustainably the Brazilian EEZ; (iv) to stimulate the formation of a national fleet capable of operating in deep-waters and utilizing equipment that incorporates modern technology; (v) to expand and consolidate fishing enterprises; (vi) to generate knowledge on living resources of the continental shelf and EEZ; and (vii) to sustainably exploit fishing resources on the high-seas. This government strategy led to the explosive development of foreign fleets targeting new, valuable, fragile deepwater resources (Perez et al., 2002a, 2003, 2009a; Pezzuto et al. 2006a, 2006c), in some cases, paralleled by an expansion of coastal domestic fleets to the same areas and resources (e.g. Perez & Pezzuto, 2006). Not only did fishing efforts dramatically increase on virginal stocks for which the fishing potential was virtually unknown, but this process also stimulated conflicts between fleets and resulted in, within most of the national fishing industry, a disregard for fishing authorities (namely DPA/ MAPA, SEAP/PR) and established management plans (see below). Management Concerns about the sustainability of the target species as well as environmental, social, economic, and political impacts of such an uncontrolled scenario made indispensable the development of an institutional management framework that could provide investment dimensions, access limits, and controls. At the end of 2002, the Consultant Committee for the Management of Deep-water Resources (CPG) was created under the MAPA and was maintained by SEAP/PR after 2003. This committee inaugurated a new phase in the man- Deep-water fisheries in Brazil agement of marine resources in Brazil, as participatory practices finally crystallized in a formal and organized multiparty forum. Delegates of the fishing sector (shipowners, fisherman, and fishing industry workers) and governmental agencies compose the CPG, along with an Executive Secretariat and members of Scientific and Compliance Subcommittees (SCC and SC, respectively). Through annual ordinary meetings, the SCC2 produces the bulk of data and recommendations to be discussed and approved at the regular CPG meetings. Management plans and other recommendations from the CPG have consultant power only, as the final decision is under the jurisdiction of the Secretariat. Despite representing significant progress towards a more rational management process in Brazil, the CPG experience has not yet been totally successful. Fishing development and its negative impacts have occurred more rapidly than the bureaucracy (challenged by political and institutional pressures) has been able to deal with. Weak representativeness, the limited dependence of the users on deep-water resources, strong intra- and intersectoral (government and industry) disputes, incredulity regarding the enforcement of the agreed measures, limited administrative structures available to support the CPG activities, and general inexperience with formal management forums are some of the main problems that have limited the effective commitment of fishermen, the industry, and the government to the sustainable development of deepwater fishing in Brazil. Control Managing deep-water fishing induced significant scientific, technological, and administrative advances. Programs of fishery observers and satellite VMS were developed for the first time in the country by 2001 in response to greater demands for control measures and data acquisition on deep-water fishing. Inserted within pragmatic, government-induced, scientific research programs that focused fully on deep-water-fishing, such tools allowed large data sets and assessments to be promptly generated, not only on fisheries and targeted stocks, but also on the deep-water environments of Brazil as a whole. Today, both tools are incorporated into national policies for marine resource conservation, regardless of the exploration area and fishing resource, and with a potential for broadening current management practices. The monkfish fishery: a case study The deep-water monkfish fishery was the first to be developed under the new institutional framework, management process, and control practices. As such, it is not only an example of their first practical imple- 535 mentation process but also illustrates the complexities involved in attaining a sustainable use of this deepwater resource. Following the explosive start of the fishery in the late 1990s, under the DPA/MAPA jurisdiction, biological, technological, and operational data were collected intensively during 2001. A complete stock assessment and management recommendations were first made available to government and industry in April 2002, even before reaching the CPG foundation (Perez et al., 2002b). Scientific results and recommendations were subsequently analyzed and improved during the first two SCC meetings of 2002. Three other meetings of a special working group formed by the SCC, government, and industry members produced the first version of the monkfish management plan. This plan was approved under the CPG in December 2002 but was not implemented until January 2003, when the recently elected President of the Republic created the Special Secretariat for Aquaculture and Fishing (SEAP/PR), which absorbed all responsibilities previously attributed to MAPA. SEAP/PR then decided to reopen the debate on the monkfish fishery in 2003, considering not only the new institutional and political circumstances, but also the strong opposition by the part of the industry interested in a more free-access regime to the fishery. A new version of the management plan was discussed and approved in November but, again, it was not implemented. After more than four years of uncontrolled exploitation, in May 2004, the stock was declared to be overexploited. As a consequence, the jurisdiction on the species was shifted to the MMA, which also did not implement the plan, in spite of the negative situation of the stock. Therefore, in March 2005, scientists, members of the SCC, decided to adopt a strong political stance demanding legal intervention in the process in order to ensure the sustainability of the stock and respect for the Constitution. As a consequence, in May of the same year, MMA and SEAP/PR implemented, in cooperation, the monkfish management plan as previously approved under the last CPG sessions (Table 7). Even after that, enforcement of management rules has been poor and subsequent biomass assessments have not shown any signs of recovery. The management of other deep-water resources such as geryonid crabs, aristeid shrimps, and demersal fishes has faced the same difficulties, with negative consequences for the sustainability of the respective stocks. _____________________________ 2 All authors of this review have been permanent members of SCC CPG. The senior author has chaired the SCC since its creation in 2002. Lat. Am. J. Aquat. Res. 536 FUTURE PROSPECTS The recent deep-water fishing development off Brazil characterized what has been defined as a “gold-rush” fishing episode, both revealing valuable fishing opportunities on the slope areas of the EEZ and accumulating conflicts and environmental losses. Future prospects are highly uncertain and dependent on solving critical drawbacks that can be identified below as: Developing a domestic deep-water fishing industry. On the upper slope, the Argentine hake, Brazilian codling, Argentine squid, and monkfish have been quickly incorporated as targets of the national trawl and gillnet fleet. Yet, on the lower slope, national fishing for deep-water crabs and shrimps is currently interrupted and may only be economically viable for foreign vessels that can cope with the elevated costs, lack of a domestic market, and uncertainties about long-term economic sustainability. Unlike national vessels, these originate from “distant-water” fleets and are prepared to supply fishing products to the international market and to move to different fishing areas of the world when opportunities for higher profits arise through bi-lateral political arrangements. This picture is not likely to change in the near future unless new government incentives oriented at the formation of a national truly deep-water fleet are made available to the fishing industry. These incentives do exist in the form of a vessel-financing plan (Program PROFROTA), but they have been highly unsuccessful since they fail to neutralize the referred limitations and risks associated with deep-water operations. Even if such difficulties are overcome, it must be acknowledged that previous expectations of a large-scale slope fishery now seem incompatible with the demonstrated biological productivity. Sustainable and profitable deep-water fishing off Brazil, if ever achievable, will be restricted to a few highly controlled fishing units. Promoting social and economic benefits. Whereas environmental costs from the overexploitation of deep-water resources have been quantified through abundant and consistent data, benefits stemming from the economic earnings have been obscure and underestimated due to the failure of the national export recording systems or deliberate misreporting of values negotiated in the international market. It seems paradoxical that a public policy conceived to develop fishing would fail to promote an adequate dimensioning of the benefits obtained by it. Unless this scenario is reversed through strong actions from the fishing authorities, a more responsible political decision would be to promote full conservation of the deep areas within the Brazilian EEZ rather than the economic exploitation of its fragile renewable resources. Improving management practices. The CPG constituted an innovative institutional framework, setting a direct path through which scientific assessments became subsidies to a participatory process of building deep-water fisheries management plans. Such a framework can be regarded as an important advance in the country’s management practices and is thought to promote (a) the required rupture with the obsolete management model and (b) balanced exploitation of valuable, fragile deep-water stocks. Both the fishing industry and government, however, have so far failed to explore the legitimacy of this forum and turn its management proposals into effective actions. In combination with the institutional instability that has characterized the history of fishing management in Brazil (see Paiva, 2004 for a review), these political difficulties have contributed to the overfishing of deep-water resources. These resources may take a long time (if ever) to recover to biologically safe levels. Hence, the maintenance of the CPG as a promising management mechanism may be at risk, as the expectations of the industry for the effectiveness of this forum to promote sustainable fishing earnings are frustrated in the long run. Amongst these critical issues, however, are advances in monitoring and control systems, positive legacies that can radically contribute to public consciousness on the use of marine fishing resources in Brazil. It is now expected that these legacies and the lessons learned from this fishing episode may at least play a role in the education of scientists, fishers, and managers, allowing the definition of solutions that will help the country recover the sustainable potential of its valuable deep-water resources. ACKNOWLEDGEMENTS The Special Secretariat for Aquaculture and Fisheries (SEAP/PR/027/2007) and National Council for Scientific and Technological Development (CNPq) research grants to JAAP (Process 306184/2007-9) and PRP (Process 310820/2006-5) funded this study. REFERENCES Anon. 2005. Presidência da República. Secretaria Especial de Aqüicultura e Pesca. Comitê Consultivo Permanente de Gestão dos Recursos Demersais de Profundidade. Sub-Comitê Científico. Relatório da 3a Reunião Ordinária. Itajaí, SC, 14-16 de Março de 2005. SEAP/PR, Brasília, 34 pp. Anon. 2006a. Programa REVIZEE. Avaliação do potencial sustentável de recursos vivos na Zona Econômica Deep-water fisheries in Brazil Exclusiva. Relatório Executivo. Ministério do Meio Ambiente. Secretaria de Qualidade Ambiental nos Assentamentos Humanos, Brasília, 303 pp. Anon. 2006b. Presidência da República. Secretaria Especial de Aqüicultura e Pesca. Comitê Consultivo Permanente de Gestão dos Recursos Demersais de Profundidade. Sub-Comitê Científico. Relatório da 4a Reunião Ordinária. Itajaí, SC, 3-5 de Maio de 2006. SEAP/PR, Brasília, 56 pp. Anon. 2007. Presidência da República. Secretaria Especial de Aqüicultura e Pesca. Comitê Consultivo Permanente de Gestão dos Recursos Demersais de Profundidade. Sub-Comitê Científico. Relatório da 5a Reunião Ordinária. Itajaí, SC, 11-13 de junho de 2007. SEAP/PR, Brasília, 75 pp. Arena, G., L. Barea & O. Defeo. 1994. Theoretical evaluation of trap capture for stock assessment. Fish. Res., 19: 349-362. Ávila-da-Silva, A.O. & M. Haimovici. 2005. Lopholatilus villarii Miranda-Ribeiro, 1915. In: M.C. Cergole, A.O. Ávila-da-Silva & C.L.D.B. RossiWongtshchowski (eds.). Análise das principais pescarias comerciais da região sudeste-sul do Brasil: dinâmica populacional das espécies em explotação. Série Documentos REVIZEE, Score Sul. Instituto Oceanográfico, USP, São Paulo, pp. 74-80. Ávila-da-Silva, A.O. & L.H. Arantes. 2007. Análise da pesca de peixes demersais com linha-de-fundo pelas frotas do Rio de Janeiro e São Paulo de 1996 a 1999. In: C.L.D.B.Rossi-Wongtshchowski, A.O. Ávila-daSilva, M.C. Cergole. (eds.). Análise das principais pescarias comerciais da região sudeste-sul do Brasil: dinâmica populacional das espécies em explotação. II. Série Documentos REVIZEE, Score Sul. Instituto Oceanográfico, USP, São Paulo, pp. 277-294. Ávila-da-Silva, A.O. & A.R.G. Tomás. 2007. A pesca do polvo-comum, Octopus vulgaris, nas regiões sudeste e sul do Brasil. Relatório Técnico apresentado à 5a Sessão Ordinária do Subcomitê Científico do Comitê Consultivo Permanente de Gestão dos Recursos Demersais de Profundidade (CPG/Demersais)/ SEAP/PR, Itajaí, SC, 11-13/06/2007. DOC 27 SCC CPG 052007. SEAP/PR, Brasília, 17 pp. Bastos, M.S. 2004. Invertebrados bentônicos capturados pela frota pesqueira arrendada no sudeste e sul do Brasil. Bachelor Thesis, Curso de Oceanografia, Universidade do Vale do Itajaí, Santa Catarina, Brasil, 93 pp. Bernardes, R.A., G.P.M.B. Mello & M.C. Cergole. 2005b. Helicolenus lahillei (Norman, 1937). In: M.C. Cergole, A.O. Ávila-da-Silva & C.L.D.B. RossiWongtschowski (eds.). Análise das principais pescarias comerciais da região sudeste-sul do Brasil: dinâ- 537 mica populacional das espécies em explotação. Série Documentos REVIZEE, Score Sul. Instituto Oceanográfico, USP, São Paulo, pp. 57-61. Bernardes, R.A., C.L.D.B. Rossi-Wongstchowski, R. Wahrlich, P.C. Vieira, A.P. dos Santos & A.R. Rodrigues. 2005a. Prospecção pesqueira de recursos demersais com armadilhas e pargueiras na Zona Econômica Exclusiva da Região Sudeste-Sul do Brasil. Série Documentos REVIZEE – Score Sul. Instituto Oceanográfico, USP, São Paulo, pp. 112. Bezzi, S.I., M. Renzi, G. Irusta, B. Santos, L.S. Tringali, M.D. Ehrlich, F. Sánchez, S.B.G. de la Rosa, M. Simonazzi & R. Castrucci. 2004. Caracterización biológica y pesquera de la merluza (Merluccius hubbsi). In: R.P. Sánchez, & S.I. Veis (eds.). El mar argentino y sus recursos pesqueros. Tomo 4. Los peces marinos de interés pesquero. Caracterización biológica y evaluación del estado de explotación. pp. 157-205. Bruno, I., A.C. Fariña, J. Landa & R. Morlán. 2001. The gillnet fishery for anglerfish (Lophius piscatorius) in deep-water in the northwest of Iberian Peninsula. NAFO SCR Doc. 01/99. Serial N° N4487: 5 pp. Carvalho, T.B., R.R. Oliveira Filho & T.M.C. Lotufo. 2009. Note on the fisheries and biology of the golden crab (Chaceon fenneri) off the northern coast of Brazil. Lat. Am. J. Aquat. Res., 37(3): 571-576. Cergole, M.C., A.O. Ávila-da-Silva & C.L.D.B. RossiWongtshchowski (eds.). 2005. Análise das principais pescarias comerciais da região sudeste-sul do Brasil: dinâmica populacional das espécies em explotação. Série Documentos REVIZEE, Score Sul. Instituto Oceanográfio, USP, São Paulo, 176 pp. Charuau, A., H. Dupuoy & P. Lorance. 1995. French exploitation of the deep-water fisheries of the North Atlantic. In: A.G. Hooper (ed.). Deep-water fisheries of the north Atlantic oceanic slope. Kluwer Academic Publishers, Netherlands, pp. 337-356. Clark, M.R., V.I. Vinnichenko, J.D.M. Gordon, G.Z. Beck-Bulat, N.N. Kukharev & A.F. Nakora. 2007. Large scale distant water trawl fisheries on seamounts. In: T.J. Pitcher, T.J. Morato, P.J.B. Hart, M.R. Clark, N. Haggan & R.S. Santos (eds.). Seamounts: ecology, fisheries and conservation. Blackwell Fisheries and Aquatic Resources Series 12. Blackwell Publishing. Oxford, pp. 361-369. Cornish, A.S. & M.B. Peres. 2003. Polyprion americanus (Brazilian subpopulation). In: IUCN 2003. 2003 IUCN Red List of Threatened Species. (http:://www.iucnredlist.org/). Revised: 26 Jun 2008. Costa, P.A.S., A.S. Martins & G. Olavo. 2005. Pesca e potenciais de exploração de recursos vivos na região central da Zona Econômica Exclusiva Brasileira. Sé- 538 Lat. Am. J. Aquat. Res. rie Livros 13, Documentos REVIZEE/SCORE Central. Museu Nacional, Rio de Janeiro, 247 pp. Dallagnolo, R. 2008. A pesca de camarões-deprofundidade (Aristeidae) na região sudeste-sul do Brasil: avaliação da dinâmica de biomassa como ferramenta para gestão. MSc. Dissertation. Mestrado em Ciência e Tecnologia Ambiental, Centro de Ciências Tecnológicas da Terra e do Mar, Universidade do Vale do Itajaí, Itajaí, 215 pp. Dallagnolo, R., J.A.A. Perez, P.R. Pezzuto & R. Wahrlich. 2009. The deep-sea shrimp fishery off Brazil (Decapoda: Aristeidae): development and present status. Lat. Am. J. Aquat. Res., 37(3): 327-345. Defeo, O. & A. Masello. 2000. La pesquería de cangrejo rojo Chaceon notialis en el Uruguay: un enfoque de manejo precautorio (1995 y 1996). In: M. Rey (ed.). Recursos pesqueros no tradicionales: moluscos, crustáceos y peces bentónicos marinos. Proyecto URU/92/003. INAPE, Montevideo, pp. 7-22. Defeo, O., V. Little & L. Barea. 1991. Stock assessment of the deep-sea red crab Chaceon notialis in the Argentinian-Uruguayan common fishing zone. Fish. Res., 11: 25-39. Defeo, O., L. Barea, F. Niggemeyer & V. Little. 1992. Abundancia, distribución y dimensionamiento de la pesquería del cangrejo rojo Geryon quinquedens Smith, 1879 en el Atlántico sudoccidental. Instituto Nacional de Pesca, Uruguay. Informe Técnico, 38: 72 pp. Dias-Neto, J. 2003. Gestão do uso dos recursos pesqueiros marinhos no Brasil. Edições IBAMA, Brasília, 242 pp. Erdman, R.B. & N.J. Blake. 1988. Reproductive ecology of female golden crabs, Geryon fenneri Manning & Holthuis, from southeastern Florida. J. Crust. Biol., 8(3): 392-400. Figueiredo Jr., A.G. & L.S.P. Madureira. 2004. Topografia, composição e refletividade do substrato marinho e identificação de províncias sedimentares na região sudeste-sul do Brasil. Série Documentos REVIZEE, Score Sul. Instituto Oceanográfio, USP, São Paulo, 64 pp. Figueiredo Jr., A.G. & M.G. Tessler. 2004. Topografia e composição do substrato marinho da Região sudestesul do Brasil. Série Documentos REVIZEE, Score Sul. Instituto Oceanográfico, USP, São Paulo, 64 pp. Fontelles-Filho, A.A. & F.T.P. Ferreira. 1987. Distribuição geográfica da captura do pargo, Lutjanus purpureus Poey, e sua relação com os fatores oceanográficos nas regiões norte e nordeste do Brasil. Bolm. Ciên. Mar., Fortaleza, 45: 1-23. Gordon, J.D. 2001. Deep-water fisheries at the Atlantic frontier. Cont. Shelf Res., 21: 987-1003. Gordon, J.D., O.A. Bergstad, I. Figueiredo & G. Menezes. 2003. Deep-water fisheries of the northeast Atlantic: I. Description and current trends. J. Northw. Atl. Fish. Sci., 31: 137-150. Guéguen, F. 2001. Notes sur la biologie de la crevette de profondeur Aristeus antillensis en Guyane Française. C.R. Acad. Sci. Paris, 324: 689-700. Haimovici, M.. 2007. A prospecção pesqueira e abundância de estoques marinhos no Brasil nas décadas de 1960 a 1990: levantamento de dados e avaliação crítica. Programa REVIZEE. Avaliação do Potencial Sustentável de Recursos Vivos na Zona Econômica Exclusiva. MMA/ SMCQ, Brasília, 325 pp. Haimovici, M. & M.B. Peres. 2005. Polyprion americanus Bloch & Schneider, 1801. In: M.C. Cergole, A.O. Ávila-da-Silva & C.L.D.B. Rossi-Wongtshchowski (eds.). Análise das principais pescarias comerciais da região sudeste-sul do Brasil: dinâmica populacional das espécies em explotação. Série Documentos REVIZEE – Score Sul. Instituto Oceanográfico, USP, São Paulo, pp. 124-131. Haimovici, M. & G. Velasco. 2007. A pesca de espinhelde-fundo no sul do Brasil em 1997 e 1998. In: C.L.D.B. Rossi-Wongtshchowski, A.O. Ávila-daSilva & M.C. Cergole. (eds.). Análise das principais pescarias comerciais da região sudeste-sul do Brasil: dinâmica populacional das espécies em explotação. II. Série Documentos REVIZEE, Score Sul. Instituto Oceanográfico, USP, São Paulo, pp. 295-307. Haimovici, M., A.O. Ávila-da-Silva & C.L.D.B. RossiWongstchowski. 2004. Prospecção pesqueira de espécies demersais com espinhel-de-fundo na Zona Econômica Exclusiva da Região Sudeste-Sul do Brasil. Série Documentos REVIZEE, Score Sul. Instituto Oceanográfico, USP, São Paulo, pp. 112. Haimovici, M., A.O. Ávila-da-Silva & L.G. Fisher. 2006b. Diagnóstico do estoque e orientações para o ordenamento da pesca de Urophycis mystacea (Ribeiro, 1903). In: C.L.D.B. Rossi-Wongtshchowski, A.O. Ávila-da-Silva & M.C. Cergole (eds.). Análise das principais pescarias comerciais da região sudeste-sul do Brasil: dinâmica populacional das espécies em explotação. II. Série Documentos REVIZEE, Score Sul. Instituto Oceanográfico, USP, São Paulo, pp. 86-94. Haimovici, M.; J.A.A. Perez, & R.A. Santos. 2006c. Diagnóstico do estoque e orientações para o ordenamento da pesca de Illex argentinus (Castellanos, 1960). In: C.L.D.B. Rossi-Wongtshchowski, A.O. Ávila-da-Silva & M.C. Cergole (eds.). Análise das principais pescarias comerciais da região sudeste-sul do Brasil: dinâmica populacional das espécies em explotação. II. Série Documentos REVIZEE, Score Sul. Instituto Oceanográfio, USP, São Paulo, pp. 19-27. Haimovici, M., A.S. Martins, J.L. Figueiredo, & P.C. Vieira. 1994. Demersal bony fish of outer shelf and Deep-water fisheries in Brazil slope off southern Brazil subtropical convergence ecosystem. Mar. Ecol. Prog. Ser., 108: 59-77. Haimovici, M., A.O.Á vila-da-Silva, S.H.B. Lucato, G. Velasco &L.H. Arantes. 2007. A pesca de linha-defundo na plataforma externa e talude superior da região sudeste-sul do Brasil em 1997 e 1998. In: C.L.D.B. Rossi-Wongtshchowski, A.O. Ávila-daSilva & M.C. Cergole. (eds.). Análise das principais pescarias comerciais da região sudeste-sul do Brasil: dinâmica populacional das espécies em explotação. II. Série Documentos REVIZEE, Score Sul. Instituto Oceanográfico, USP, São Paulo, pp. 309-325. Haimovici, M., N.E. Brunetti, P.G. Rodhouse, J. Csirke & R.H. Leta. 1998. Chapter 3. Illex argentinus. In: P.G. Rodhouse, E.G. Dawe & R.K. O’Dor (eds.). Squid recruitment dynamics. The genus Illex as a model. The commercial Illex species. Influences on variability. FAO Fish. Tech. Pap., 376: 27-58. Haimovici. M., M.C. Cergole, R.P. Lessa, L.S. Madureira, S. Jablonski & C.L.D.B. RossiWongstchowski. 2006a. Capítulo 2. Panorama Nacional. In. MMA/ SQA. Programa REVIZEE: Avaliação do Potencial Sustentável de Recursos Vivos na Zona Econômica Exclusiva. Relatório Executivo, pp. 79-126. Haimovici, M., C.L.D.B. Rossi-Wongstchowski, R.A. Bernardes, L.G. Fisher, C.M. Vooren, R.A. dos Santos, A.R. Rodrigues & S. dos Santos. 2008. Prospecção pesqueira de espécies com rede de arrasto-defundo na região sudeste-sul do Brasil. Série Documentos REVIZEE, Score Sul. Instituto Oceanográfico, USP, São Paulo, 183 pp. Iglesias, S. & J. Paz. 1995. Spanish north Atlantic deepwater fisheries. In: A.G. Hooper (ed.) Deep-water fisheries of the north Atlantic oceanic slope. Kluwer Academic Publishers, Netherlands, pp. 287-295. Kirkwood, G.P., J.R. Beddington & J.R. Russouw. 1994. Harvesting species of different lifespans. In: P.J. Edwards, R. May & N.R. Webb (eds.). Large-scale ecology and conservation biology. Oxford Blackwell Scientific, pp. 199-227. Kulka, D.W. & C.M. Miri. 2001. The status of monkfish (Lophius americanus) in NAFO Divisions 2J, 3K, 3L, 3N, 3O and Subdivisions 3PS. NAFO SCR Doc. 01/47, N4425: 33 pp. Lima, J.H.M. & R.L. Branco. 1991. Análise das operações de pesca do caranguejo de profundidade (Geryon quinquedens Smith 1879) por barcos japoneses arrendados na região sul do Brasil – 1984/85. Atlântica, Rio Grande, 1(13): 179-187. Lorance, P. & H. Dupuoy. 2001. CPUE abundance indices of the main target species of the French deepwater fishery in ICES Sub-areas V-VII. Fish. Res., 51: 137-149. 539 Manning, R.B. & L.B. Holthuis. 1989. Two new genera and nine new species of geryonid crabs (Crustacea, Decapoda, Geryonidae). Proc. Biol. Soc. Wash., 102(1): 50-77. Marrul Filho, S. 2003. Crise e sustentabilidade no uso dos recursos pesqueiros. Edições IBAMA, Brasília, 147 pp. Martins, A.S., G. Olavo & P.A.S. Costa. 2005. A pesca de linha de alto mar realizada pelas frotas sediadas no Espírito Santo, Brasil. In: P.A.S. Costa, A.S. Martins & G. Olavo (eds.). Pesca e potenciais de exploração de recursos vivos na região central da Zona Econômica Exclusiva Brasileira. Série Livros, no. 13. Museu Nacional, Rio de Janeiro, pp. 35–55. Paiva, M.P. 2004. Administração pesqueira no Brasil. Editora Interciência, Rio de Janeiro, 177 pp. Paiva, M.P., C.A.S. Rocha, A.M.G. Gomes & M.F. Andrade. 1996. Fishing grounds of bottom liners on the continental shelf of south-east Brazil. Fish. Man. Ecol., 3: 25-33. Peres, M.B. & M. Haimovici. 1998. A pesca dirigida ao cherne-poveiro, Polyprion americanus (Polyprionidae, Teleostei) no sul do Brasil. Atlântica, Rio Grande, 20: 141-161. Peres, M.B. & M. Haimovici. 2003. Alimentação do cherne-poveiro Polyprion americanus (Polyprionidae, Teleostei) no sul do Brasil. Atlântica, Rio Grande, 25(2): 201-208. Peres, M.B. & S. Klippel. 2003. Reproductive biology of southwestern Atlantic wreckfish, Polyprion americanus (Teleostei: Polyprionidae). Environ. Biol. Fishes, 68(2): 163-173. Perez, J.A.A. 2006. Potenciais de rendimento dos alvos da pesca de arrasto de talude do sudeste e sul do Brasil estimados a partir de parâmetros do ciclo de vida. Braz. J. Aquat. Sci. Technol., 10(2): 1-11. Perez, J.A.A. 2007a. A dinâmica da biomassa dos estoques de abrótea-de-profundidade (Urophycis mystacea), merluza (Merluccius hubbsi) e peixe-sapo (Lophius gastrophysus) nas áreas de pesca de arrasto de talude do Sudeste e Sul do Brasil. Período 2001-2006. Relatório Técnico apresentado à 5a Sessão Ordinária do Subcomitê Científico do Comitê Consultivo Permanente de Gestão dos Recursos Demersais de Profundidade (CPG/Demersais)/ SEAP/PR, Itajaí, SC, 11-13/07/2007. DOC 13 SCC CPG 052007. SEAP/PR, Brasília, 19 pp. Perez, J.A.A. 2007b. No-take areas of demersal fishery in deep-waters of the Brazilian coast. In: A. P. Prates & D. Blanc (eds.). Aquatic protected areas as fisheries management tools. Ministry of the Environment. Secretariat for Biodiversity and Forests. Marine and Coastal Zone Division. Brasília, pp. 207-222. 540 Lat. Am. J. Aquat. Res. Perez, J.A.A. & R. Wahrlich. 2005. A bycatch assessment of the gillnet monkfish Lophius gastrophysus fishery off southern Brazil. Fish. Res., 72: 81-95. Perez, J.A.A. & P.R. Pezzuto. 2006. A pesca de arrasto de talude do Sudeste e Sul do Brasil: tendências da frota nacional entre 2001 e 2003. Bolm. Inst. Pesca, São Paulo, 32: 127-150. Perez, J.A.A., R. Martins & R.A. Santos. 2004. Cefalópodes capturados pela pesca comercial de talude no Sudeste e Sul do Brasil. Notas Técnicas da FACIMAR, 8: 65-74. Perez, J.A.A., P.R. Pezzuto & H.A. Andrade. 2005. Biomass assessment of the monkfish Lophius gastrophysus stock explotied by a new deep-water fishery in southern Brazil. Fish. Res., 72: 149-162. Perez, J.A.A., R. Wahrlich & P.R. Pezzuto. 2009b. Chartered trawling on the slope off Brazilian coast. Mar. Fish. Rev., 71(2): 24-36. Perez, J.A.A., R. Wahrlich, R., P.R. Pezzuto, & F.R.A. Lopes. 2002a. Estrutura e dinâmica da pescaria do peixe-sapo Lophius gastrophysus no Sudeste s Sul do Brasil. Bolm. Inst. Pesca, 28(2): 205-231. Perez, J.A.A., T.N. Silva, R. Schroeder, R. Schwarz & R.S. Martins 2009b. Biological patterns of the Argentine shortfin squid Illex argentinus in the slope trawl fishery off Brazil. Lat. Am. J. Aquat. Res., 37(3): 409-427. Perez, J.A.A., P.R. Pezzuto, L.F. Rodríguez, H. Valentini & C.M. Vooren. 2001. Relatório da reunião técnica de ordenamento da pesca demersal nas regiões Sudeste e Sul do Brasil. In: P.R. Pezzuto, J.A.A. Perez, L.F. Rodriguez & H. Valentíni (eds.). Reuniões de Ordenanento da Pesca Demersal no Sudeste e Sul do Brasil: 2000-2001. Notas Téc. FACIMAR, 5: 1-34. Perez, J.A.A., P.R. Pezzuto, H.A. Andrade, P.R. Schwingel, M. Rodrigues-Ribeiro & R. Wahrlich. 2002b. O ordenamento de uma nova pescaria direcionada ao peixe-sapo (Lophius gastrophysus) no sudeste e sul do Brasil. Notas Téc. FACIMAR, 6: 65-83. Perez, J.A.A., R. Wahrlich, P.R. Pezzuto, P.R. Schwingel, F.R.A. Lopes & M. Rodrigues-Ribeiro. 2003. Deep-sea fishery off southern Brazil: recent trends of the Brazilian fishing industry. J. Northw. Atl. Fish. Sci., 31: 1-18. Pezzuto, P.R. & R. Sant’Ana. 2009. Sexual maturity of the deep-sea royal crab Chaceon ramosae Manning, Tavares & Albuquerque, 1989 (Brachyura: Geryonidae) in southern Brazil. Lat. Am. J. Aquat. Res., 37(3): 297-311. Pezzuto, P.R., J.A.A. Perez & R. Wahrlich. 2006a. O ordenamento das pescarias de caranguejos-deprofundidade (Chaceon spp.) (Decapoda: Geryonidae) no sul do Brasil. Bolm. Inst. Pesca, 32(2): 229-247. Pezzuto, P.R., J.A.A. Perez & R. Wahrlich. 2006c. Deepsea shrimps (Decapoda: Aristeidae): new targets of the deep water trawling fishery in Brazil. Braz. J. Oceanogr., 54(2-3): 123-134. Pezzuto, P.R., J.A.A. Perez, R. Wahrlich, W.G. Vale & F.R.A. Lopes. 2002. Avaliação da pescaria do caranguejo-de-profundidade no sul do Brasil. Convênio Ministério da Agricultura, Pecuária e Abastecimento, Universidade do Vale do Itajaí (MAPA/SARC/DPA 03-2001; MAPA/SARC/DENA COOP/176/2002). Relatório Final, Itajaí-SC, 121 pp. Pezzuto, P.R., J.A.A. Perez, R. Wahrlich, R. Sant’Ana, W.G. Vale & R.C. Santos. 2006b. Avaliação de estoque e biologia populacional dos caranguejos-deprofundidade (Chaceon notialis e Chaceon ramosae) nas regiões sudeste e sul do Brasil. Relatório Técnico apresentado à 4a Sessão Ordinária do Subcomitê Científico do Comitê Consultivo Permanente de Gestão dos Recursos Demersais de Profundidade (CPG/Demersais)/ SEAP/PR, Itajaí, SC, 0305/05/2006. DOC 11 SCC CPG 042006. SEAP/PR, Brasília, 42 pp. Piñeiro, C.G., M. Casas & R. Bañón. 2001. The deepwater fisheries exploited by Spanish fleets in the northeast Atlantic: a review of the current status. Fish. Res., 51: 311-320. Pires, D.O. 2007. The azoxanthellate coral fauna of Brazil. In: R.Y. George, & S.D. Cairns (eds.). Conservation and adaptive management of seamount and deepsea coral ecosystems. Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, pp. 265-272. Rossi-Wongtshchowski, C.L.D.B., J.L. Valentin, S. Jablonski, A.C. Amaral, F.H. Hazin & M. El-Robrini. 2006. Capítulo 1. Ambiente marinho. In: Programa REVIZEE. Avaliação do Potencial Sustentável de Recursos Vivos na Zona Econômica Exclusiva. Relatório Executivo. Ministério do Meio Ambiente, Brasília, pp. 21-78. Sankarankutty, C., A.C. Ferreira, J.E.L. Oliveira & K.M.F. Cunha. 2001. Occurrence of Chaceon fenneri (Manning & Holthuis) (Crustacea, Brachyura, Geryonidae) in the northeast of Brazil. Rev. Bras. Zool., 18(2): 649-652. Soares, A.L. 2007. Síntese do Comércio Externo de Recursos Demersais -1999-2006. Relatório Técnico. Subcomitê Científico do Comitê Permanente de Gestão dos Recursos Demersais de Profundidade- SCCCPG Demersais/ SEAP-PR, Itajaí, June, 2007. Soares, A.L. 2008. El comercio exterior del rape brasileño. INFOPESCA Internacional. Nº 34, abr/jun 2008, pp.15-19. Soares, A.L.S. & G.S.S. Scheidt. 2005. Exportações brasileiras de caranguejos de profundidade (Chaceon Deep-water fisheries in Brazil ramosae e Chaceon notialis) 1999- março 2004. Braz. J. Aquat. Sci. Technol., 9(1): 13-17. Tomás, A.R.G. 2002. Dinâmica populacional e avaliação de estoques do polvo comum Octopus cf. vulgaris Cuvier, 1797 (Mollusca, Cephalopoda, Octopodidae) no sudeste-sul do Brasil. PhD. Thesis. Instituto de Biociências da Universidade Estadual Paulista “Julio de Mesquita Filho”, Rio Claro, 466 pp. Tomás, A.R.G. & M. Petrere Jr. 2005. Octopus vulgaris (Cuvier, 1797). In: M.C. Cergole, A.O. Ávila-daSilva & C.L.D.B. Rossi-Wongtschowski, (eds.). Análise das principais pescarias comerciais da região sudeste-sul do Brasil: dinâmica populacional das espécies em explotação. Série Documentos REVIZEE, Score Sul. Instituto Oceanográfico, USP, São Paulo, pp. 108-115. Troyanovsky, F.M. & S.F. Lisovsky. 1995. Russian (USSR) fisheries research in deep-waters (below 500 m.) in the north Atlantic. In: A.G. Hooper (ed.) Deepwater fisheries of the north Atlantic oceanic slope. Kluwer Academic Publishers, Netherlands, pp. 357365. Valentim, M.F.M, M. Vianna & E.P. Caramaschi. 2007. Lenght structure of monkfish, Lophius gastrophysus (Lophiiformes, Lophidae), landed in Rio de Janeiro. Braz. J. Aquat. Sci. Technol., 11(1): 31-36. Received: 26 August 2008; Accepted: 3 July 2009 541 Valentini, H. & P.R. Pezzuto. 2006. Análise das principais pescarias comerciais da Região Sudeste-Sul do Brasil com base na produção controlada do período 1986-2004. In: C.L.D.B. Rossi-Wongstchowski (ed.) Série Documentos REVIZEE, Score-Sul. Instituto Oceanográfico da USP, São Paulo, 56 pp. Vaz-dos-Santos, A.M. & C.L.D.B. RossiWongstchowski. 2005. Merluccius hubbsi Marini, 1993. In: M.C. Cergole, A.O. Ávila-da-Silva & C.L.D.B. Rossi-Wongtschowski (eds.). Análise das principais pescarias comerciais da região sudeste-sul do Brasil: dinâmica populacional das espécies em explotação. Série Documentos REVIZEE, Score Sul. Instituto Oceanográfico, USP, São Paulo, pp. 88-93. Vooren, C.M. & S. Klippel, 2005. Capítulo 13. Diretrizes para a conservação de espécies ameaçadas de elasmobrânquios. In: C.M. Vooren & S. Klippel (eds.). Ações para a conservação de tubarões e raias no sul do Brasil. Igaré, Porto Alegre, pp. 213-246. Wahrlich, R., J.A.A. Perez & F.R.A. Lopes. 2004. Aspectos tecnológicos da pesca do peixe-sapo (Lophius gastrophysus) com rede de emalhar no sudeste e sul do Brasil. Bolm. Inst. Pesca, 30(1): 87-98. 542 Lat. Am. J. Aquat. Res. Lat. Am. J. Aquat. Res., 37(3): 543-554, 2009 “Deep-sea fisheries off Latin America” P. Arana, J.A.A. Perez & P.R. Pezzuto (eds.) DOI: 10.3856/vol37-issue3-fulltext-19 Deepwater shrimp fishery in Pacific Costa Rica 543 Review The deepwater fishery along the Pacific coast of Costa Rica, Central America Ingo S. Wehrtmann1 & Vanessa Nielsen-Muñoz1 Unidad de Investigación Pesquera y Acuicultura (UNIP), Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Ciudad de la Investigación, Universidad de Costa Rica, 2060 San José, Costa Rica 1 ABSTRACT. Global catches of marine fishery resources declined during the last decades; however, there has been a trend of increasing exploitation of deepwater resources that are especially vulnerable to depletion. Such a tendency was noticeable in Pacific Latin America, too. In Costa Rica, the vast majority of the commercial fishing activities are concentrated on the Pacific coast. The target species for the deepwater fishery in Costa Rica are the two pandalids Heterocarpus affinis and H. vicarius as well as Solenocera agassizii, the latter one being the most important in terms of annual landings. Here we compile the information available from Costa Rica about each of the three target species. Furthermore, we describe research activities related to the Costa Rican deepwater resources and present available data about by-catch and discards in this fishery. Finally, the current situation of the administration and management of these resources in Costa Rica is described. Strengthening collaboration between governmental agencies, the fishery sector, non-governmental organizations, and the academic sector is recommended to avoid an uncontrolled overfishing of these valuable deepwater resources along the Pacific coast of Costa Rica. Keywords: shrimp, Pandalidae, Solenoceridae, Heterocarpus, Solenocera agassizii, fishery management, bycatch, discard, Costa Rica. Pesca en aguas profundas a lo largo de la costa Pacífica de Costa Rica, América Central RESUMEN. Las capturas globales de los recursos marinos pesqueros disminuyeron durante las últimas décadas. Sin embargo, se ha observado una tendencia de aumento en la explotación de los recursos de aguas profundas, los cuales son especialmente vulnerables a la extracción. Esta tendencia ha sido notable también en la pesca a lo largo del Pacífico de Latino América. En Costa Rica, la mayoría de las actividades pesqueras comerciales se concentran en la costa del Pacífico. Las especies objetivo de la pesca de aguas profundas en Costa Rica son los dos pandálidos Heterocarpus affinis y H. vicarius así como Solenocera agassizii, siendo esta última la más importante respecto a las capturas anuales. Se compila la información disponible sobre las tres especies objetivo de Costa Rica. Además, se describen las actividades de investigación relacionadas con los recursos de aguas profundas en Costa Rica y se presentan los datos disponibles sobre la fauna acompañante y el descarte en esa pesquería. Finalmente, se describe la situación actual de la administración y manejo de dichos recursos en Costa Rica. Se recomienda fortalecer la colaboración entre las agencias gubernamentales, el sector pesquero, las organizaciones no-gubernamentales y el sector académico para evitar la sobre-explotación sin control de estos valiosos recursos de aguas profundas del Pacífico de Costa Rica. Palabras clave: camarones, Pandalidae, Solenoceridae, Heterocarpus, Solenocera agassizii, manejo pesquero, fauna acompañante, descarte, Costa Rica. ________________________ Corresponding author: Ingo Wehrtmann: (ingowehrtmann@gmx.de) 544 Lat. Am. J. Aquat. Res. GENERAL BACKGROUND The Food and Agriculture Organization (FAO) of the United Nations started compiling global fishery statistics in the 1950s. Their data indicated a rapid increase in catches during the 1950s and 1960s; in the mid1980s a decline of the total catches became evident, and this trend accelerated between the late-1980s and early-1990s (Pauly et al., 2002, 2005; Zeller & Pauly, 2005). Global catches seemed to increase during the 1990s; however, the study by Watson & Pauly (2001) revealed a systematic distortion in world fisheries catch trends, mainly due to a substantial overreporting of catches from the People’s Republic of China. The corrected data indicated, in fact, a declining trend since the late 1980s (Watson & Pauly, 2001; Pauly et al., 2002; Schoijet, 2002). Moreover, this trend was also masked by an increasing exploitation of deepwater resources (Pauly et al., 2005). In general, fishing activities have concentrated on resources inhabiting shallow-water coastal areas. The decline of these resources together with the increasing demand and the development of new technologies resulted in an expansion of fisheries in offshore areas and deeper water (Pauly et al., 2005; Morato et al., 2006). In fact, the mean depth of bottom fish catches increased from around 103 m (early 1950s) to 145 m in 2001 (Morato et al., 2006). According to these authors, the depth increase was especially pronounced after 1978, with a rate of 13 m decade-1. Deepwater species are considered to have a longer life span, later sexual maturity, lower fecundity, and slower growth; all these life history characteristics make them especially vulnerable to depletion with a low capacity for recovery from over-exploitation (Cheung et al., 2005; Morato et al., 2006). A major limitation for the development and implementation of management measures is the lack of life history data of the exploited deepwater species (Polidoro et al., 2008). The trend toward the exploitation of deepwater resources is also noticeable in Pacific Latin America. The depletion of shallow water resources together with fishing restrictions aimed at preserving the threatened populations have fostered increasing interest, on the part of the fishing industry and scientists, in identifying alternative resources in deepwater systems (Arana et al., 2002; Wehrtmann & Echeverría-Sáenz, 2007). In recent years, several publications broadened our knowledge about the diversity (e.g., Retamal, 1993; Guzmán & Quiroga, 2005; MacPherson & Wehrtmann, in press), biology and ecology of deepwater decapods in Latin America (e.g., Campylonotus semistriatus: Arana & Ahumada, 2006; Haliporoides diomedeae: Arana et al., 2003; Neolithodes diomedeae and Paralomis otsuae: Bahamonde & Leiva, 2003). Moreover, Hendrickx (2003) published the results of several studies concerning the deepwater decapod fauna of the Golfo de California, Mexico. All these studies focused on Chilean and Mexican waters, and virtually nothing is known about deepwater resources in Central America: Wehrtmann & Echeverría-Sáenz (2007) described the crustacean fauna associated with the fishery of the deepwater shrimp Heterocarpus vicarius, and MacPherson & Wehrtmann (in press) provided information on the occurrence of lithodid crabs off Pacific Costa Rica. FISHERY IN COSTA RICA Although Costa Rica can be considered to be a relatively small country (land mass: 51,100 km2), its marine area, including Territorial Seas and Exclusive Economic Zones (EEZ), is considerable and roughly ten times larger than the land mass (589,683 km2: INCOPESCA, 2006). This surprising fact can be attributed to the 200-mile zone in the Pacific, including offshore Isla del Coco, that greatly enlarges the Exclusive Economic Zone of Costa Rica (Quesada-Alpízar, 2006a). Due to this situation, the marine territory of Costa Rica shares borders with Ecuador and Colombia. Starting around the 1990s, aquaculture began to contribute to the total shrimp production of Costa Rica. The importance of the aquaculture production increased steadily, although the fishery landings during the late 1990s and early 2000s still comprised the vast majority of the production of Costa Rica. This situation changed in recent years (2004-2007): the landing of the fishery sector decreased and, at the same time, aquaculture production increased considerably. Nowadays, the contribution of the aquaculture sector in Costa Rica is nearly of the same magnitude as that of the fishery landings (Fig. 1). The vast majority of commercial fishing activities and landings are concentrated on the Pacific coast of Costa Rica (Fig. 2), which covers approximately 1254 km versus only 212 km on the Caribbean coast (Cortés & Wehrtmann, 2009). In the Pacific, the Golfo de Nicoya is the most important fishery ground in the country, accounting for roughly 30% of the annual landings (Vargas, 1995; Cortés & Wehrtmann, 2009). However, commercial bottom trawling is not allowed in the inner part of the gulf and, thus, the small-scale fishery is the prevailing type of fishing activity in the Golfo de Nicoya. Deepwater shrimp fishery in Pacific Costa Rica 545 Figure 1. Fishery and aquaculture production in Costa Rica between the year 2000 and 2006 (data from FAO, 2009). Figura 1. Producción en pesca y acuicultura en Costa Rica durante los años 2000 y 2006 (datos: FAO, 2009). The semi-industrial shrimp fishery in Costa Rica originated in the 1950s with the introduction of bottom trawl nets; the first shrimp fishery statistics date from 1952 and indicate landings of 43.2 tons (TabashBlanco, 2007, and references cited therein). In the beginning, the principal target species of coastal shrimp fisheries were Penaeus (Litopenaeus) occidentalis Streets, 1871 and Penaeus (Litopenaeus) vannamei Boone, 1931; other shrimp species were discarded (Tabash-Blanco, 2007). Currently, the following shrimp species are commercially exploited along Pacific Costa Rica: Penaeus (Farfantepenaeus) californiensis Holmes, 1900 (“camarón café”), Penaeus (Farfantepenaeus) brevirostris Kingsley, 1878 (“camarón pinki” or “camarón rosado”), Penaeus (Litopenaeus) occidentalis (“camarón blanco del Pacífico”), Penaeus (Litopenaeus) stylirostris Stimpson, 1874 (“camarón azul”), Penaeus (Litopenaeus) vannamei (“camarón patiblanco”), Xiphopenaeus riveti Bouvier, 1907 (“camarón titi”), Solenocera agassizii Faxon, 1893 (“camarón fidel”), Heterocarpus vicarius Faxon, 1893 (“camarón camello” or “camarón camellito”), and H. affinis Faxon, 1893 (“camarón real” or “camarón camellón”). According to INCOPESCA (A. Chacón, 2009, pers. com.), between 1995 and 2005, the annual shrimp landings along the Pacific coast were distributed as follows: S. agassizii 27.7%; P. occidentalis, P. stylirostris, and P. vannamei 20.0%; H. vicarius 16.9%; P. brevirostris 15.0%; X. riveti 10.3%; and H. affinis 9.9%. Shrimp trawling in Costa Rica is restricted to the Pacific coast of the country, and the principal landing dock for the shrimp trawling fleet is the city of Puntarenas, Golfo de Nicoya, central Pacific. The marine fishery resources in Costa Rica are administrated by Figure 2. Main fishing grounds of the deepwater fishery (excluding Heterocarpus affinis) along the Pacific coast of Costa Rica. Figura 2. Principales áreas de pesca en aguas profundas (excluyendo Heterocarpus affinis) a lo largo de la costa del Pacífico de Costa Rica. the “Instituto Costarricense de Pesca y Acuicultura” (INCOPESCA), which was founded in 1994. According to this institution, the semi-industrial fishery fleet consists of 72 registered fishing vessels; however, only 52 of them are currently active and have valid fishing licenses. A total of 45 vessels can operate in coastal marine waters and seven in the deepwater fishery (Bolaños, 2005). Trawlers fishing for shallow water shrimp need to use a Turtle Excluder Device (TED), whereas no such device is obligatory for deepwater fishery in Costa Rica. A detailed description of the type of bottom trawl net used in the Costa Rican semi-industrial shrimp fishery is provided by Bolaños (2005). All vessels operate with two trawling nets (Fig. 3), and most nets have a distance of 44.5 mm between knots (Bolaños, 2005). EXPLOITED DEEPWATER SPECIES Currently, there are three deepwater decapod species that are of commercial interest in Costa Rica: the two pandalid shrimps, Heterocarpus affinis and H. vicarius, and Solenocera agassizii (Decapoda: Penaeoidea: Solenoceridae). Heterocarpus affinis (Fig. 4) Information regarding this species, locally known as “camarón camellón” or “camarón real”, is extremely 546 Lat. Am. J. Aquat. Res. Figure 3. A commercial shrimp trawler used for the deepwater fishery in Costa Rica. Photo: I.S. Wehrtmann. Figura 3. Barco camaronero comercial utilizado en la pesca en aguas profundas en Costa Rica. Foto: I.S. Wehrtmann. the data of H. affinis were pooled with those of H. vicarius. Starting in 1995, their data were separated. Landings of H. affinis increased steadily between 1995 and 1999; however, the highest annual landings were recorded in 2003 with 225,277 kg (Fig. 6). Subsequently, landings decreased drastically and, since 2006, no more landings have been recorded. As far as we know, H. affinis is not currently commercially exploited in Costa Rica. Figure 4. Lateral view of Heterocarpus affinis (“camarón camellón”). Photo: I.S. Wehrtmann. Figura 4. Vista lateral de Heterocarpus affinis (“camarón camellón”). Foto: I.S. Wehrtmann. scarce. Its known geographical distribution ranges from the Golfo de California, Mexico, to approximately 8º43’S, Peru (Hendrickx & Wicksten, 1989). The shrimp is known to occur between 760 and 1240 m depth (Hendrickx & Wicksten, 1989; Hendrickx, 2003). The species is considered to be a potential fishery resource in Peru (Hendrickx & Wicksten, 1989) and can attain maximum sizes of 153 mm TL (total length) (Hendrickx, 2003). When considering the annual landings, despite its large size, H. affinis is the least important deepwater species in Costa Rica (Fig. 5). At the beginning of the registration of annual shrimp landings in Costa Rica, Figure 5. Costa Rica: percentages of shrimp landings for each species or group of species (Penaeus spp.: P. occidentalis, P. stylirostris, and P. vannamei) during the periods of 1995-2000 and 2001-2006 (data from INCOPESCA). Figura 5. Costa Rica: porcentajes de las capturas de camarones por especie o grupo de especies (Penaeus spp.: P. occidentalis, P. stylirostris y P. vannamei) durante los períodos de 1995-2000 y 2001-2006 (datos de INCOPESCA). Deepwater shrimp fishery in Pacific Costa Rica Figure 6. Annual landings (1995-2006) of Heterocarpus affinis (“camarón camellón”) from the Pacific of Costa Rica (data from INCOPESCA). Figura 6. Capturas anuales (1995-2006) de Heterocarpus affinis (“camarón camellón”) a lo largo del Pacífico de Costa Rica (datos de INCOPESCA). Heterocarpus vicarius (Fig. 7) The geographic distribution of this species, locally called “camarón camello” or “camarón camellito”, ranges from the Golfo de California (Mexico) to Panama (Holthuis, 1980). The bathymetric distribution covers the range from 73 to 550 m (Holthuis, 1980); however, in Costa Rica, this species is commercially fished mainly between 200 and 350 m depth, partly co-occurring with the other deepwater species of commercial interest, S. agassizii. According to Holthuis (1980), H. vicarius reaches a maximum size of 110 mm TL and 29 mm carapace length (CL). Data from an ongoing monitoring program in Costa Rica revealed a sex proportion of 1:1 (n = 30,106); however, in January, February, and March, females were dominant (I.S. Wehrtmann, unpubl. data). Ovigerous females can be found year-round; however, elevated percentages of egg-bearing females (> 40%) generally occur between June-July and September-October. Information concerning the annual landings of H. vicarius in Costa Rica has been collected since 1995; previously, the data from H. affinis and H. vicarius were put together, making it impossible to separate the annual production of these two species. Considering the period between 1995 and 2006 (Fig. 8), annual H. vicarius landings were highest in 1996 and 1997 with 539,101 kg and 422,940 kg, respectively. Landings dropped to a low in 1999 and then increased continuously until 2003, reaching 316,745 kg. After a new drop in 2005, production increased in 2006 to 211,485 kg. Data from The Rainbow Jewels S.A., Puntarenas, Costa Rica (R. Diers, unpubl. data) indicated a considerable decrease to less than 100,000 kg in 2007. Currently, H. vicarius landings are negligible, and the commercial deepwater fishery focuses on S. agassizii. In fact, H. vicarius seems to have disappeared during the last two years from the fishing grounds between 547 150 and 400 m depth. This alarming situation raises the question as to whether this is the result of an overexploitation of the resource, if the species migrated to other (deeper?) areas, or if other environmental factors have caused or contributed to the almost complete disappearance of H. vicarius in the fishing area reported in our study. Figure 9 depicts the monthly landings of H. vicarius in 2004 (a “good” year) and 2007 (a “bad year”). In 2004, the highest landings occurred between February and August, representing 81% of the annual landings. In February and March alone, 36% of the yearly landings were obtained. Solenocera agassizii (Fig. 10) Three species of the genus Solenocera have been reported from the Pacific coast of Costa Rica (Hendrickx, 1995; Vargas & Wehrtmann, 2009): S. agassizii, S. mutator Burkenroad, 1938, and S. florea Burkenroad, 1938. Locally known as “camarón fidel”, S. agassizii is the most abundant and largest species of the genus along the Pacific coast of the Americas. According to Hendrickx (1995), males and females can attain sizes up to 115 and 140 mm TL, respectively. However, females can reach even larger sizes in Costa Rica (154 mm; I.S. Wehrtmann, unpubl. data). The species is commercially exploited in Costa Rica and Panama, and important quantities have also been reported from the coast of Nicaragua (Holthuis, 1980; Hendrickx, 1995; Puentes et al., 2007). The species can be found around the external portion of the continental shelf down to 384 m and prefers soft bottoms (Hendrickx, 1995). In Costa Rica, the species is fished mainly between 150 and 350 m depth (I.S. Wehrtmann, unpubl. data). In general, S. agassizii is the most important species in the commercial deepwater shrimp fishery in Costa Rica. From 1995 to 2000 and 2001 to 2006, this species comprised 27% and 29%, respectively, of all reported shrimp landings (Fig. 5). When revising the available historical data for this species, by far the highest yearly landing was observed in 1986 with 2.6 x 106 kg. Subsequently, the landings dropped to values well below 0.5 x 106 kg, with the exceptions of the years 1994, 1995, and 2005 (Fig. 11). Preliminary data for the years 2006 and 2007 indicate a considerable reduction of S. agassizii landings to roughly 0.25 x 106 kg per year (I.S. Wehrtmann, unpubl. data). Figure 12 compares the monthly landings of S. agassizii in 2004 and 2007, a “good” and a “bad” year, respectively, for the fishery of the species. In 2004, monthly landings increased continuously from July to October, whereas the lowest landings were observed in March and April. 548 Lat. Am. J. Aquat. Res. Figure 7. Lateral view of Heterocarpus vicarius (“camarón camello”). Photo: I.S. Wehrtmann. Figura 7. Vista lateral de Heterocarpus vicarius (“camarón camello”). Foto: I.S. Wehrtmann. Figure 8. Annual landings (1995-2006) of Heterocarpus vicarius (“camarón camello”) in the Pacific of Costa Rica (data from INCOPESCA). Figura 8. Capturas anuales (1995-2006) de Heterocarpus vicarius (“camarón camello”) a lo largo del Pacífico de Costa Rica (datos de INCOPESCA). The situation in 2007 did not reveal a clear pattern, 40% of the yearly landings were obtained in May, July, and December. RESEARCH ON DEEPWATER RESOURCES IN COSTA RICA Costa Rica does not have any research vessel, thus it is not surprising that most marine research carried out so far in this country concerns the flora and fauna of shallow water habitats (Wehrtmann et al., 2009). Despite of its economic importance for Costa Rica, surprisingly little information is available concerning the Figure 9. Monthly landings of Heterocarpus vicarius (“camarón camello”) in 2004 and 2007 (data from The Rainbow Jewels S.A., Puntarenas, Costa Rica) Figura 9. Capturas mensuales de Heterocarpus vicarius (“camarón camello”) en los años 2004 y 2007, con base en datos facilitados por The Rainbow Jewels, S.A. (Puntarenas, Costa Rica). different fishery and biological aspects of the shrimp resources commercially exploited along the Pacific coast. Most studies concerning decapods focus on shallow water penaeid shrimp (Tabash & Palacios, 1996; Tabash-Blanco & Chávez, 2006; TabashBlanco, 2007) and the blue crab (Callinectes arcuatus Ordway, 1863) (Fischer & Wolff, 2006). Additionally, Campos (1983) reported on discarded by-catch of fish and other organisms from the commercial shrimp fishery in the Golfo de Nicoya and Golfo de Papa- Deepwater shrimp fishery in Pacific Costa Rica 549 Figure 10. Lateral view of Solenocera agassizii (“camarón fidel”). Photo: I.S. Wehrtmann Figura 10. Vista lateral de Solenocera agassizii (“camarón fidel”). Foto: I.S. Wehrtmann Figure 11. Yearly landings (1986-2005) of Solenocera agassizii (“camarón fidel”) in the Pacific of Costa Rica (data from INCOPESCA). Figura 11. Capturas anuales (1986-2005) de Solenocera agassizii (“camarón fidel”) a lo largo del Pacífico de Costa Rica (datos de INCOPESCA). gayo, central and northern Pacific of Costa Rica, respectively. Our knowledge on deepwater resources in Costa Rica is even more limited. In fact, fishery-biological studies of these resources started in the year 2004, when the private fishery sector (Ristic AG, Germany, and The Rainbow Jewels S.A., Costa Rica) together with the Universidad de Costa Rica initiated a joint effort to investigate the commercially exploited species H. vicarius and S. agassizii in order to facilitate the development of a management plan for a sustainable fishery of these resources. This so-called “Public- Private-Partnership” (PPP) project, financed mainly through the German Federal Ministry for Economic Cooperation and Development (BMZ) and the participating private companies, permitted scientists to have regular access to samples taken between 150 and 400 m depth. More recently, a regional initiative between Costa Rica, Nicaragua, and El Salvador aimed at studying the deepwater resources and their sustainable use along the Pacific of Central America was funded and coordinated by the Consejo Superior Universitario Centroamericano (CSUCA), the German Association for Technical Cooperation (GTZ), and the University 550 Lat. Am. J. Aquat. Res. Figure 12. Monthly landings of Solenocera agassizii (“camarón fidel”) in 2004 and 2007, based on data provided by The Rainbow Jewels, S.A. (Puntarenas, Costa Rica). Figura 12. Capturas mensuales de Solenocera agassizii (“camarón fidel”) en los años 2004 y 2007, con base en datos facilitados por The Rainbow Jewels, S.A. (Puntarenas, Costa Rica). of Kassel (Germany). This project forms part of the Program University–Private Sector for Sustainable Development (PUEDES). These collaborative efforts between universities and the fishery sector have allowed the collection of valuable material, now deposited, e.g., in the Museo de Zoología of the Universidad de Costa Rica. Moreover, many students have benefited from the access to trawling vessels and the collected samples that allowed them to develop their own research projects and/or obtain important material for their theses. One example of such collaboration is the study on the diet composition of the threadfin anglerfish Lophiodes spilurus (Garman, 1899), one of the most abundant fish associated with the deepwater fishery in Costa Rican Pacific (Espinoza & Wehrtmann, 2008). Their results revealed that L. spilurus feeds exclusively on crustaceans (Decapoda and Stomatopoda) and benthic teleost fish along the Pacific of Costa Rica. However, our understanding of the trophic dynamics of deepwater ecosystems is far from complete. BY-CATCH AND DISCARDS Commercial bottom trawling is considered to be one of the primary causes of physical perturbation to the seabed on the continental shelf and upper slope (Watling & Norse 1998; Bozzano & Sardà, 2002). In general, these shrimp fishing gears are poorly selective; they catch and retain large quantities of non-target species, so-called “by-catch” (Andrew & Pepperell, 1992; Hall et al., 2000). Shrimp trawl fisheries, and tropical shrimp fisheries in particular, have been iden- tified as the single greatest source of discards, accounting for 27.3% of estimated total discards (Kelleher, 2005). In Costa Rica, practically the entire by-catch of the deepwater fishery is discarded. Even species which are of commercial value in other Central American countries ((e.g., the squat lobster Pleuroncodes planipes (Stimpson, 1860)) are thrown away. The crustacean fauna associated with the deepwater fishery of H. vicarius in the Pacific of Costa Rica was studied by Wehrtmann & Echeverría-Sáenz (2007). They encountered 28 decapods and two stomatopod species. Apart from the co-occurring target species S. agassizii, the most common by-catch species were Squilla biformis Bigelow, 1891 (Squillidae), Plesionika trispinus Squires & Barragan, 1976 (Pandalidae), and Pleuroncodes sp. (Galatheidae), reaching maximum total catch percentages of 81.5%, 91.8%, and 99.6% of individual catches, respectively. Crustaceans were predominant in all three depth ranges (200-249 m, 250-300 m, 301-350 m), and the percentage of fish as part of the total catch decreased continuously and inversely with depth from 16% (200240 m) to 8% (301-350 m). Figure 13 depicts the by-catch composition associated with the deepwater shrimp fishery along the Pacific coast of Costa Rica from 2004 to 2008. The most striking result is the continuous decrease and almost complete disappearance of one of the target species, H. vicarius; at the same time, the portion of stomatopods increased steadily, reaching more than 53% in 2008. Interestingly, the increase of stomatopods was not restricted to the Costa Rican fisheries, but was also observed in the Pleuroncodes fishery in El Salvador (F. Chicas & N. Hernández, unpubl. data). More studies are needed to document and to understand the processes related to the observed changes in the species composition of the deepwater fauna along the Pacific coast of Central America. Moreover, the steady increase of stomatopods as part of the by-catch fauna as well as the apparent disappearance of H. vicarius require further attention (Fig. 13). FISHERY MANAGEMENT The management of Costa Rican marine fishery resources is the responsibility of the “Instituto Costarricense de Pesca y Acuicultura” (INCOPESCA). This institution has the legal authority to regulate both (1) the sustainable use of hydrobiological resources and (2) the protection of related ecosystems. However, the Ministry of Environment, Energy, and Telecommunications (MINAET) is responsible for the design and establishment of protected areas and has jurisdiction Deepwater shrimp fishery in Pacific Costa Rica 551 Figure 13. Catch composition of the deepwater fishery in Costa Rica from 2004 to 2008, indicating the average fishing depth per year. Figura 13. Composición de las capturas de la pesca de aguas profundas en Costa Rica durante los años 2004-2008, indicando la profundidad promedio de pesca por año. over the marine resources within marine protected areas. Finally, the National Coast Guard is responsible for the protection of the marine resources and the enforcement of fishery management related regulations in the EEZ of Costa Rica. According to QuesadaAlpízar (2006b), the lack of an efficient legislation has limited INCOPESCA’s management capabilities, which, in turn, has led to increased deterioration of marine resources. As far as we know, no management plan has been implemented by INCOPESCA for the use of the deepwater resources in Costa Rica. In fact, due to the numerous limitations confronting INCOPESCA (e.g., lack of adequate infrastructure and human resources), information concerning biological-fishery aspects of these resources has been generated so far exclusively by the Universidad de Costa Rica in close collaboration with the private sector (Wehrtmann & EcheverríaSáenz, 2007). The statistics of the annual landings of deepwater shrimp are based upon the data provided by the fishery sector; since INCOPESCA does not have the manpower to verify these data, the fishery statistics presented by this institution may not necessarily reflect the real production of the different commercially exploited species. CONCLUSIONS AND RECOMMENDATIONS The situation of all three commercially exploited deepwater species (H. affinis, H. vicarius, and S. agassizii) in Costa Rica is alarming. Currently, the com- mercial fishery for the two pandalid shrimp, H. affinis and H. vicarius, has stopped. This has not been the result of an adequate and consequent management plan, but is related to the near disappearance of these resources within the current fishing grounds that forced the fishery sector to move on to other resources or to abandon the fishery, provoking important social and economical consequences. Together with their partners from the fishery sector and based on the data generated by this collaboration, during recent years, the Universidad de Costa Rica officially informed INCOPESCA twice about the alarming situation of the deepwater fishery and suggested a temporary closure of the fishery of selected species. Unfortunately, these suggestions have not been implemented by the national fishery authority. We see an urgent need to join forces between the private fishery sector, the governmental institutions (INCOPESCA, MINAET), non-governmental organizations interested in the sustainability of the marine ecosystem, and the academic sector. Such a joint effort is necessary because the special life history characteristics of these deepwater species make them vulnerable to depletion and they have only a limited capacity to recover from over-exploitation (Cheung et al., 2005; Morato et al., 2006). Therefore, solid information about the life history parameters of the exploited species is needed. Such basic information is essential for the development and the implementation of any management measure (Polidoro et al., 2008). The recent foundation of the Unidad de Investigación Pesquera y Acuicultura (UNIP) at the Universidad de 552 Lat. Am. J. Aquat. Res. Costa Rica (UCR), co-financed by the UCR and the fishery sector (The Rainbow Export Processing, S.A., Puntarenas), is certainly a promising step in the correct direction. Moreover, the UNIP will play a key role in the formation of much needed qualified personal to carry out the scientific analyses and to support the development and monitoring of adequate management programs. It is recommended that all relevant stakeholders establish, as a joint effort, a monitoring program of the deepwater resources and associated by-catch. Moreover, the use of more selective fishing methods should be encouraged in order to reduce the amount of discarded biomass as well as to study possibilities for an adequate (commercial) use of the discards. At the same time, the establishment of temporary and spatial fishery regulations should be considered to protect the threatened deepwater resources of Costa Rica. The Costa Rican fishery authorities are encouraged to revise the legal framework of the legislation and fishery management of the deepwater shrimp Heterocarpus reedi Bahamonde, 1955 in Chile, a species with a similar ecology to H. vicarius (Roa & Ernst, 1996). The Chilean management strategy includes public auctions of fishery quotas, accompanied by a scientific research program that acts as a basis for establishing future fishery quotas for the target species. The lack of efficient control mechanisms limits the implementation of any management plan in Costa Rica. However, the national fishery authorities have the responsibility to protect the marine resources and need to put into practice adequate measures to avoid uncontrolled overfishing of these valuable deepwater resources along the Pacific coast of Costa Rica. ACKNOWLEDGMENTS The study of the deepwater fishery in Costa Rica would not have been possible without the excellent collaboration of The Rainbow Jewels, S.A., Puntarenas, which allowed us to collect samples with their commercial shrimp trawlers. We would like to thank Ronny Gründler and René Diers, the previous and current general manager of the company, respectively, for their tremendous support during all these years. A special thanks goes to the crews of the commercial shrimp trawlers of this company, especially to the captain of the boat “Onuva”, Rigoberto Villalobos Cruz. Much of the research formed part of a so-called Public-Private Partnership project about the development of standards for sustainable deepwater shrimp fisheries in Pacific Costa, financed by the German Federal Ministry of Economic Cooperation and Development (BMZ), the company Ristic AG (Oberfer- rieden, Germany), and the Universidad de Costa Rica (project V.I. No. 111-A4-508). Adam Chacón (INCOPESCA) facilitated unpublished shrimp fishery data, which is greatly appreciated. Catalina Benavides (UNIP) helped us with the preparation of Figure 2. Finally, we are most grateful to the students and assistants (Silvia Echeverría, Fresia Villalobos, Jaime Nivia, Patricio Hernáez, Jeffry Ortiz, Tayler Clarke, Juliana Herrera, Edgar Villegas, just to mention some) who helped during the years with the collection and processing of the deepwater samples. To all of them: ¡Muchas gracias! Finally, we appreciated the constructive comments of the referees. REFERENCES Andrew, N.L. & J.G. Pepperell. 1992. The by-catch of shrimp trawl fisheries. In: M. Barnes, A.D. Ansell & R.N. Gibson (eds.). Oceanogr. Mar. Biol. Ann. Rev., 30. University of California Press, Berkeley, California, pp. 527-565. Arana, P. & M. Ahumada. 2006. Camarón navaja (Campylonotus semistriatus), crustáceo de aguas profundas frente a la costa central de Chile (Crustacea, Decapoda, Campylonotidae). Invest. Mar., Valparaíso, 34: 3-14. Arana, P., M. Ahumada & A. Guerrero. 2002. Pesca exploratoria de camarones de aguas profundas en las Regiones V y VI, año 2002. Informe Final. Estud. Doc., Univ. Católica Valparaíso, 20/2002: 167 pp. Arana, P., M. Ahumada & A. Guerrero. 2003. Distribución y abundancia de la gamba Haliporoides diomedeae (Crustacea: Decapoda: Penaeidae) frente a la costa central de Chile. Invest. Mar., Valparaíso, 31: 57-71. Bahamonde, R. & B. Leiva. 2003. Exploración pesquera de recursos no tradicionales en el talud de la I a la VI Región de Chile. In: E. Yáñez (ed.). Actividad pesquera y de acuicultura en Chile, Pontificia Universidad Católica de Valparaíso, Valparaíso, pp. 301-316. Bolaños, M. 2005. Costa Rica. Characterization of the Costa Rican semi-industrial coastal shrimp trawling fishery and the small scale artisanal shrimp trawling fishery. FAO Report Proj. EP/GLO/201/GEF: 1-39. Bozzano, A. & F. Sardà. 2002. Fishery discard consumption rate and scavenging activity in the northwestern Mediterranean Sea. ICES J. Mar. Sci., 59: 15-28. Campos, J.A. 1983. Estudio sobre la fauna de acompañamiento del camarón en Costa Rica. Rev. Biol. Trop., 31(2): 291-296. Cheung, W.W.L., T.J. Pitcher & D. Pauly. 2005. A fuzzy logic expert system to estimate intrinsic extinction vulnerability of marine fishes to fishing. Biol. Conserv., 124: 97-111. Deepwater shrimp fishery in Pacific Costa Rica Cortés, J. & I.S. Wehrtmann. 2009. Diversity of marine habitats of the Caribbean and Pacific of Costa Rica. In: I.S. Wehrtmann & J. Cortés (eds.). Marine biodiversity of Costa Rica, Central America. Springer Business Media B.V., Berlin, pp. 1-45. Espinoza, M. & I.S. Wehrtmann. 2008. Stomach content analyses of the threadfin anglerfish Lophiodes spilurus (Lophiiformes: Lophiidae) associated with deepwater shrimp fisheries from the central Pacific of Costa Rica. Rev. Biol. Trop., 56(4): 1959-1970. Fischer, S. & M. Wolff. 2006. Fisheries assessment of Callinectes arcuatus (Brachyura, Portunidae) in the Gulf of Nicoya, Costa Rica. Fish. Res., 77: 301-311. Food and Agriculture Organization (FAO). 2009. ftp://ftp.fao.org/fi/STAT/summary/a2.pdf. Revised: 28 May 2009. Guzmán, G. & E. Quiroga. 2005. New records of shrimps (Decapoda: Caridea and Dendrobranchiata) in deep waters off Chile. Gayana, 69(2): 285-290. Hall, M., D.L. Alverson & K.I. Metuzals. 2000. Bycatch: problems and solutions. Mar. Pollut. Bull., 41: 204-219. Hendrickx, M. 1995. Camarones. In: W. Fischer, F. Krupp, W. Schneider, C. Sommer, K.E. Carpenter & V.H. Niem (eds.), Guía FAO para la identificación de especies para los fines de pesca. Pacífico centrooriental. Vol. I. Plantas e invertebrados. FAO, Roma, pp. 417-537. Hendrickx, M.E. 2003. Size and abundance of deep water shrimps on the continental slope of the SE Gulf of California, Mexico. In: M.E. Hendrickx (ed.). Contributions to the study of east Pacific crustaceans 3. Inst. Cienc. Mar. Limnol., UNAM, México, pp. 227-234. 553 Pauly, D., R. Watson & J. Alder. 2005. Global trends in world fisheries: impact on marine ecosystems and food security. Phil. Trans. R. Soc. B., 360: 5-12. Pauly, D., V. Christensen, S. Guénette, T.J. Pitcher, U.R. Sumaila, C.J. Walters, R. Watson & D. Zeller. 2002. Towards sustainability in world fisheries. Nature, 418: 689-695. Polidoro, B.A, S.R. Livingstone, K.E. Carpenter, B. Hutchinson, R.B. Mast, N. Pilcher, Y. Sadovy de Mitcheson & S. Valenti. 2008. Status of the world’s marine species. In: J.C. Vié, C. Hilton-Taylor & S.N. Stuart (eds.). The 2008 Review of the IUCN Red List of Threatened Species. IUCN, Gland. Switzerland, pp. 1-7. Puentes, V., N. Madrid & L.A. Zapata. 2007. Catch composition of the deep sea shrimp fishery (Solenocera agassizi Faxon, 1893; Farfantepenaeus californiensis Holmes, 1900 and Farfantepenaeus brevirostris Kingsley, 1878) in the Colombian Pacific Ocean. Gayana, 71(1): 84-95. Quesada-Alpízar, M.A. 2006.a. Resumen ejecutivo. In: V. Nielsen-Muñoz & M.A. Quesada-Alpízar (eds.). Ambientes marino costeros de Costa Rica. Comisión Interdisciplinaria Marino Costera de la Zona Económica Exclusiva de Costa Rica, Informe Técnico. CIMAR, CI, TNC, San José, Costa Rica, 2006, pp. 710. Quesada-Alpízar, M.A. 2006b. Participation and fisheries management in Costa Rica: from theory to practice. Mar. Policy, 30: 641-650. Retamal, M.A. 1993. Crustáceos decápodos abisales de la zona Iquique-Arica. Estud. Oceanol., 12: 1-8. Hendrickx, M. & M. Wicksten. 1989. Los Pandalidae (Crustacea: Caridea) del Pacífico mexicano, con una clave para su identificación. Caldasia, 16(76): 71-86. Roa, R. & B. Ernst. 1996. Age structure, annual growth, and variance of size-at-age of the shrimp Heterocarpus reedi. Mar. Ecol. Prog. Ser., 137(1-3): 59-70. Holthuis, L.B. 1980. Shrimps and prawns of the world. An annotated catalogue of species of interest to fisheries. FAO Fish. Synop., 125: 1-271. Schoijet, M. 2002. La evolución de los recursos pesqueros a escala mundial. Problemas de desarrollo. Rev. Latinoam. Econom., 33(129): 103-125. Instituto Costarricense de Pesca y Acuicultura (INCOPESCA). 2006. Memoria institucional 20022006: Instituto Costarricense de Pesca y Acuicultura. Imprenta Nacional, San José, 92 pp. Tabash, F.A. & J.A. Palacios. 1996. Stock assessment of two penaeid prawn species, Penaeus occidentalis and Penaeus stylirostris (Decapoda: Penaeidae), in Golfo de Nicoya, Costa Rica. Rev. Biol. Trop., 44: 595-602. Kelleher, K. 2005. Discards in the world’s marine fisheries. An update. FAO Fish. Techn. Pap., 470: 1-131. Tabash-Blanco, F.A. 2007. Explotación de la pesquería de arrastre de camarón durante el período 1991-1999 en el Golfo de Nicoya, Costa Rica. Rev. Biol. Trop., 55(1): 207-218. MacPherson, E. & I.S. Wehrtmann. Occurrences of lithodid crabs (Decapoda: Lithodidae) from the Pacific coast of Costa Rica, Central America. Crustaceana. (In press). Morato, T., R. Watson, T. J. Pitcher & D. Pauly. 2006. Fishing down the deep. Fish & Fisheries, 7: 23-33. Tabash-Blanco, F.A & E.A. Chávez. 2006. Optimizing harvesting strategies of the white shrimp fisheries in the Gulf of Nicoya, Costa Rica. Crustaceana, 79: 327343. 554 Lat. Am. J. Aquat. Res. Vargas, J.A. 1995. The Gulf of Nicoya estuary: past, present and future cooperative research. Helgol. Meeresunters., 49: 821-828. Vargas, R. & I.S. Wehrtmann. 2009. Decapod crustaceans. In: I.S. Wehrtmann & J. Cortés (eds.). Marine biodiversity of Costa Rica, Central America. Monographiae Biologicae 86. Springer & Business Media B.V., Berlin, pp. 209-228. Watling, L. & E.A. Norse. 1998. Disturbance of the seabed by mobile fishing gear: a comparison to forest clearcutting. Conserv. Biol., 12: 1180-1197. Watson, R. & D. Pauly. 2001. Systematic distortions in world fisheries catch trends. Nature, 414: 534-536. Received: 5 June 2009; Accepted: 27 August 2009 Wehrtmann, I.S. & S. Echeverría-Sáenz. 2007. Crustacean fauna (Stomatopoda, Decapoda) associated with the deepwater fishery of Heterocarpus vicarius (Decapoda, Pandalidae) along the Pacific coast of Costa Rica. Rev. Biol. Trop., 55(Suppl. 1): 121-130. Wehrtmann, I.S., J. Cortés & S. Echeverría-Sáenz. 2009. Marine biodiversity of Costa Rica: perspectives and conclusions. In: I.S. Wehrtmann & J. Cortés (eds.). Marine biodiversity of Costa Rica, Central America. Monographiae Biologicae 86. Springer & Business Media B.V., Berlin, pp. 521-533. Zeller, D. & D. Pauly. 2005. Good news, bad news: global fisheries discards are declining, but so are total catches. Fish & Fisheries, 6: 156-159. Lat. Am. J. Aquat. Res., 37(3): 555-570, 2009 “Deep-sea fisheries off Latin America” P. Arana, J.A.A. Perez & P.R. Pezzuto (eds.) DOI: 10.3856/vol37-issue3-fulltext-20 Seamounts and biodiversity in Chile 555 Review Seamounts in the southeastern Pacific Ocean and biodiversity on Juan Fernandez seamounts, Chile Eleuterio Yáñez1, Claudio Silva1, Rodrigo Vega2, Fernando Espíndola3, Lorena Álvarez1, Nelson Silva1, Sergio Palma1, Sergio Salinas1, Eduardo Menschel2, Verena Häussermann4, Daniela Soto1 & Nadín Ramírez1 1 Pontificia Universidad Católica de Valparaíso, P.O. Box 1020, Valparaíso, Chile 2 Universidad Austral de Chile, P.O. Box 567, Valdivia, Chile 3 Instituto de Fomento Pesquero, P.O. Box 8-V, Valparaíso, Chile 4 Fundación Huinay, P.O. Box 462, Puerto Montt, Chile ABSTRACT. Seamounts are vulnerable marine ecosystems. In Chile, information on these ecosystems is quite scarce; thus, a compilation of information on their geographical distribution and biodiversity is presented herein. A total of 118 seamounts distributed in the Chilean EEZ are identified and characterized. Additionally, an in situ assessment was carried out on the Juan Fernandez seamounts 1 and 2 (JF1 and JF2), which were also oceanographically characterized. Phytoplankton, zooplankton, and marine invertebrate samples were collected and an exploratory fishing survey was executed using different gears. According to the bibliographical review, a total of 82 species have been collected on the JF1 and JF2 seamounts, highlighting findings of black coral species caught in lobster traps at the Juan Fernandez Archipelago. Submarine images of the marine substrate at JF1 and JF2 reveal characteristics attributable to the impact of bottom dredges, coinciding with the information obtained from the trawling fleet. The fishing activity was carried out primarily at JF2 (4,667 km of trawling). The monthly fishing effort increased considerably in 2002, 2003, and 2005, reaching values above 500 km of trawling and, thus, modifying the spatial structure of the resource aggregates on the JF2 seamount. Keywords: seamounts, identification, biodiversity, fishing impact, Juan Fernández Archipelago, southeastern Pacific. Montes submarinos en el océano Pacífico suroriental y biodiversidad en el cordón de Juan Fernández, Chile RESUMEN. Los montes submarinos constituyen ecosistemas marinos vulnerables. Chile presenta una escasa información acerca de estos ecosistemas, por lo que este trabajo recopila información sobre distribución geográfica y biodiversidad. Se identifican y caracterizan 118 montes en la ZEE de Chile. Adicionalmente, una evaluación in situ se desarrolló sobre los montes Juan Fernández 1 y 2 (JF1, JF2), caracterizándolos oceanográficamente. Se recolectaron muestras de fitoplancton, zooplancton e invertebrados marinos, y se realizó pesca exploratoria con diversos artes. La revisión bibliográfica establece que en JF1 y JF2, se han capturado un total de 82 especies, destacándose la presencia de corales negros en trampas langosteras en el archipiélago de Juan Fernández. Fotografías submarinas de los montes JF1 y JF2 presentan características atribuibles al impacto de artes de arrastre de fondo, concordante con información de la flota. El esfuerzo de pesca se realizó mayormente en JF2 (4.667 km arrastrados). El esfuerzo de pesca mensual se incrementó considerablemente durante el 2002, 2003 y 2005, alcanzando valores sobre 500 km arrastrados, modificando la estructura espacial de las agregaciones de recursos en el monte JF2. Palabras clave: montes submarinos, identificación, biodiversidad, impacto pesquero, archipiélago de Juan Fernández, Pacífico suroriental. 556 Lat. Am. J. Aquat. Res. INTRODUCTION The marine environment is currently under serious depletion as a result of overfishing, contamination, and the direct and indirect impacts of climate changes. The anthropogenic and climate impacts observed in many places have caused dramatic changes in ecosystems. This is the case of seamounts, vulnerable marine ecosystems in which a decrease of biostructureforming species and a collapse of oceanic fisheries have been observed. The vulnerability of these ecosystems is related to the possibility that a population, community, or habitat will experience a substantial alteration, which may be irreversible or of slow restoration (FAO, 2007). The international information on seamount biodiversity and ecology is limited, especially for those at depths exceeding 300 m (Tracey et al., 2004). Therefore, although thousands of seamounts are estimated to exist around the world, only around 200 have been biologically sampled, in most cases, during commercial fishing activities (Probert et al., 1997; Gálvez et al., 2006). In Chile, there is lack of information for an undetermined number of seamounts in the Economic Exclusive Zone (EEZ). Research on seamount biodiversity along the Chilean coast has been carried out since 1950, mainly by the Russian government on the Nazca and Salas and Gomez ridges, beyond the EEZs of Chile and Peru (Parin et al., 1997). The information on the Juan Fernandez Archipelago (33ºS-78ºW) is limited to the H.M.S. Challenger scientific expedition (1873-1876), the Pacific Swedish expedition (19161917), and the B/I Anton Bruun expedition (1966) (Rozbaczylo & Castilla, 1987), as well as the oceanographic cruises MARCHILE VIII and IX of 1972 and 1973, respectively (Cerda, 1977), the CIMAR 5 and 6 Oceanic Islands cruises in 1999 and 2000 (Rojas et al., 2004), and the scientific survey of B/I Koyo Maru in 2004 (Zuleta & Hamano, 2004). Furthermore, information has been systematically collected on fauna associated with bottom dredges over Chilean seamounts (Gálvez et al., 2006). The objective of this work, considering the international demand for information on vulnerable marine ecosystems such as seamounts (Resolution 59/25 of the ONU General Assembly), is to determine the geographical distribution of seamounts in the Chilean EEZ, including a biodiversity and fishing impact study on some seamounts of the Juan Fernandez Archipelago. generated using 2’ x 2’ resolution satellite altimetry data (Smith & Sandwell, 1997) and 1’ x 1’ resolution sounding data (GEBCO, 2003), according to the Kitchingman & Lai methodology (2004). Furthermore, in situ assessments were carried out on two seamounts of the Juan Fernandez Archipelago – Juan Fernandez 1 (JF1) and Juan Fernandez 2 (JF2) – through two exploratory campaigns at 247 and 292 m depth, the respective depths of their tops. The first was executed aboard the PAM Portugal II in July-August 2007, and the second was carried out aboard two artisanal boats in November-December 2007: Boat No. 58 Cumberland and L/M Alborada. All the relatively flat area accessible for fishing and sampling systems (over 700 m deep) was systematically gridded (0.5 x 0.5 tenths of degrees), and a grid was randomly selected for sampling. Three different depth strata were analyzed: pelagic, demersal, and benthic. Different fishing systems were also used: vertical longlines (1,264 hooks), handlines (12 hooks), fishing pots (108 traps), surface longlines (440 hooks), zooplankton nets (10 haul), dredging (5 haul), submarine camera observations (4 observation periods), and oceanographic surveys of the water column (CTD and Niskin Bottles). The surface oceanographic characteristics were analyzed using satellite information (NOAA, TOPEX, SeaWins, SeaWifs). Additionally, a bibliographical analysis was done to determine the different species previously collected during surveys, cruises, and commercial fishing activities carried out on these seamounts. Finally, an evaluation of the fishing effects index (FEI) (O’Driscoll & Clark, 2005) was done in the same area of study. This index involves data on the fishing effort executed on each seamount, the direction of the trawling, and the seamount area. On one hand, this index measures the fishing density on a seamount as a proportion of its area; on the other hand, it reflects a scale factor that is proportional to the directions the seamount was trawled. A high FEI value may be explained through a heavy effort relative to the seamount size and the fact it was trawled in all directions. The information used for this analysis corresponds to data from fishing binnacles of the industrial trawling fleet operating over orange roughy (Hoplostethus atlanticus) and alfonsino (Beryx splendens) between 2000 and 2006. The same data was used to analyze the spatial structure dynamics of the resources in 2001 and 2003 through geostatistical techniques. RESULTS MATERIALS AND METHODS The geographical seamount identification and distribution was determined through the analysis of images A total of 118 seamounts were identified in seven areas of the Chilean EEZ (Fig. 1): 35 around Easter Island (25º-30°S, 105º-112°W) (Fig. 2), 21 near San Seamounts and biodiversity in Chile Figure 1. Areas where seamounts were identified in the southeastern Pacific Ocean. NZ: northern zone, EI: eastern island, SF: San Félix island, ZC: central zone, JF: Juan Fernández Archipelago, SZ: southern zone, SAZ: far-southern zone. Figura 1. Localización de áreas donde se identificaron montes submarinos en el océano Pacífico suroriental. NZ: zona norte, EI: isla de Pascua, SF: isla San Félix, ZC: zona central, JF: archipiélago de Juan Fernández, SZ: zona sur, SAZ: zona sur austral. Felix Island (24°-29°S, 76°-84°W) (Fig. 3), 21 off northern Chile (18°-30°S, 71°-75°W) (Fig. 4), 15 around the Juan Fernandez Archipelago (30°-35°S, 76°-82°W) (Fig. 5), eight in the central area of the country (30°-40°S, 71°-76°W) (Fig. 6), nine in the southern area (40°-50°S, 73°-79°W) (Fig. 7), and 10 off far-southern Chile (50°-58°S, 70°-77°W) (Fig. 8). This identification included the geographical location, surface area, and depth of these seamount tops and the designation of codified names (see Yañez et al. 2008 for details). Seamounts JF1 and JF2 have volcanic substrate, which is mainly constituted by bare rock and sand. These seamounts are influenced by several water masses: Subtropical Water (STW), Subantarctic Water (SAAW), Equatorial Subsurface Water (ESSW), and Antarctic Intermediate Water (AAIW), but are predominantly influenced by SAAW and STW (Fig. 9). The vertical distribution of dissolved oxygen showed a two-layer structure. The well-oxygenated surface structure of approximately 100 m with concen- 557 Figure 2. Locations and codes assigned the seamounts identified in the Easter Island area (EI). Figura 2. Localización y código asignado a los montes submarinos identificados en la zona de Isla de Pascua (EI). Figure 3. Locations and codes assigned the seamounts identified in the area of San Felix Island (SF). Figura 3. Localización y código asignado a los montes submarinos identificados en la zona de isla San Félix (SF). 558 Lat. Am. J. Aquat. Res. Figure 5. Locations and codes assigned the seamounts identified in the area of the Juan Fernandez Archipelago (JF). Figura 5. Localización y código asignado a los montes submarinos identificados en el cordón de Juan Fernández (JF). Figure 4. Locations and codes assigned the seamounts identified in the northern zone (NZ) (18°-30°S). Figura 4. Localización y código asignado a los montes submarinos identificados en la zona norte (NZ) (18°30°S). trations greater than 5 mL L-1 (90-100% saturation) is the result of oxygen-atmosphere exchange and primary production in the area. Beneath this layer and at approximately 200 to 300 m depth, the dissolved oxygen was quickly reduced to concentrations of less than 1 mL L-1 (5-20% saturation); the latter drop was caused by the presence of ESSW coming from off Peru (Fig. 10). A slight current system was observed in July-August (winter) with sea surface temperature (SST) anomalies that were negative at JF1 and positive at JF2. The SST showed a typical cold condition of 10° to 17°C, surface salinity of approximately 34.3, and chlorophyll concentrations between 0.09 and 1 mg m-3. In November-December (spring), however, a greater amount of mesoscale structures such as shifts Figure 6. Locations and codes assigned the seamounts identified in the central zone (CZ) (30°-40°S). Figura 6. Localización y código asignado a los montes submarinos identificados en la zona central (CZ) (30°40°S). Seamounts and biodiversity in Chile 559 Figure 8. Locations and codes assigned the seamounts identified in the far-southern zone (SAZ) (50°-58°S). Figura 8. Localización y código asignado a los montes submarinos identificados en la zona sur-austral (SAZ) (50°-58°S). Figure 7. Locations and codes assigned the seamounts identified in the southern zone (SZ) (40°-50°S). Figura 7. Localización y código asignado a los montes submarinos identificados en la zona sur (SZ) (40°-50°S). Figure 9. T-S diagram of the oceanographic stations for the seamounts a) JF1 and b) JF2. Figura 9. Diagrama T-S de estaciones oceanográficas para los montes a) JF1 y b) JF2. 560 Lat. Am. J. Aquat. Res. Figure 10. Vertical distribution of dissolved oxygen at eight oceanographic stations. Figura 10. Distribución vertical de oxígeno disuelto en ocho estaciones oceanográficas. and currents were observed. The STW showed a cold condition that is typical of the season, with SST of 13 to 18°C; surface salinity close to 34.1, and a chlorophyll-a concentration around 4 mg m-3. The phytoplankton collected on the surveyed seamounts involved seven classes of organisms that were classified into 31 genera, 23 species, and other nonidentified species. Fifty percent of the organisms were classified as “other flagellates”, another 40% corresponded to the Dinophyceae class, and the remaining 7% included the Bacillariophyceae (3.3%), Ciliata (2.1%), Cianophyceae (1.4%), Dictyochophyceae (0.15%), Chlorophyceae (0.04%), and Acantharia (0.01%) (Table 1). Meanwhile, a total of 52,309 organisms were identified as zooplankton; these were distributed among 16 taxonomic groups belonging to the phyla Cnidaria, Ctenophora, Chaetognatha, Annelida, Nemertina, Arthropoda, Tunicata, and Vertebrata. An 87.8% of the organisms were chitinous (euphausiids, mysids, amphipods, ostracods, copepods, cirripedia, decapod crustacean larvae), 11.6% were gelatinous and semi-gelatinous (jellyfish, siphonophores, ctenophores, chaetognaths, salps, appendicularians, polychaetes, nemertins) and the remaining 0.6% corresponded to ichthyoplankton (Hygophum brunni, Sardinops sagax) (Table 2). The fishing methods allowed catches of two pelagic species, blue shark (Prionace glauca) and snoek (Thyrsites atun); two demersal species, croaker (Helicolenus lengerichi) and depth conger (Pseudoxenomystax nielseni); and two crustacean species, golden crab (Chaceon chilensis) and Juan Fernandez king crab (Paromola rathbuni). A total of 409 invertebrates were collected using a dredge. These represented important groups of species such as Echinoidea (Echinacea), Polychaeta, Porifera, Actinaria, and Asteroidea (Table 3). Due to the complexity of the identification, only two taxa have been identified to this date: 1) Asteroidea new species of Smilasterias and 2) Gorgonia species Callogorgia kinoshitae (Kükenthal, 1913). Only preliminary results are available for other species. The bibliographical review established that, during the 2001 to 2006 fishing activities, a total of 82 species were collected from the JF1 and JF2 seamounts; these belonged to four phyla (Chordata, Arthropoda, Mollusca, Echinodermata) and the families Macrouridae (9), Moridae (6), and Dalatiidae (4) stood out. The presence of black coral species (Parantipahes fernandenzii, Trisopathes spp., Leiopathes spp.) in lobster traps used around the Juan Fernandez Archipelago deserve mention (Arana et al., 2006). 561 Seamounts and biodiversity in Chile Table 1. Composition and abundance of nano-microplankton (cel L-1) on the seamounts Juan Fernández 1 and Juan Fernández 2. Only the mean of each taxonomic group is indicated. Tabla 1. Composición y abundancia de nano-microplancton (cel L-1) en los montes submarinos Juan Fernández 1 y Juan Fernández 2. Se indica el promedio de cada grupo. Station Species Acantharia Nasselaria Bacillariophyceae Bacteriastrum sp. Chaetoceros atlanticus Chaetoceros peruvianus Chaetoceros spp. Cylindrotheca closterium Dactyliosolen sp. Nitszchia longissima Nitszchia spp. Pennadas indeterminates Pleurosigma spp. Pseudonitzschia spp. Rhizosolenia alata Rhizosolenia bergonii Rhizosolenia spp. Thalassiothrix sp. Cianophyceae Ciliata Acanthostomella norvegica ? Ascampbeliella sp. Ciliates (> 15 μm) Ciliates (< 15 μm) Dictiocysta elegans Dictiocysta mitra Dictiocysta sp. Eutintinnus fraknoi Eutintinnus lusus-undae Depth (m) 1 0 0 0 60 0 0 0 0 0 20 0 0 20 0 0 0 0 20 0 0 140 0 0 40 0 0 0 40 0 20 2 50 20 20 140 0 0 0 0 0 0 0 0 80 0 60 0 0 0 0 0 160 0 0 60 0 20 0 0 20 20 0 50 0 0 0 0 1040 180 0 0 0 0 0 0 0 0 40 0 0 0 40 0 0 0 80 40 0 0 840 140 0 0 40 0 0 0 0 0 480 1820 600 160 0 0 0 0 200 140 0 0 40 20 0 0 80 0 0 0 200 0 3 0 0 0 880 80 0 0 0 0 0 40 0 180 0 500 20 40 0 20 0 540 0 0 320 0 0 0 20 40 80 4 50 0 0 960 0 0 0 0 0 80 0 0 80 0 760 0 0 40 0 0 200 0 0 0 0 0 0 0 0 160 0 0 0 320 0 0 0 0 0 0 0 0 80 0 200 0 0 0 40 780 320 0 20 160 0 0 40 0 0 40 5 50 s/i s/i s/i s/i s/i s/i s/i s/i s/i s/i s/i s/i s/i s/i s/i s/i s/i s/i s/i s/i s/i s/i s/i s/i s/i s/i 0 0 0 620 0 120 0 40 20 20 0 0 40 0 140 0 20 220 0 0 1837 0 0 740 920 0 40 0 0 20 6 50 0 0 540 0 0 0 0 20 0 0 0 320 0 0 0 0 200 0 0 3299 0 0 440 2759 0 40 0 0 40 0 0 0 20 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 560 0 0 500 0 0 0 0 0 0 7 50 0 0 160 0 0 0 0 0 0 0 0 40 0 40 0 0 80 0 0 80 0 0 80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 300 0 0 280 0 0 0 0 0 0 8 50 0 0 240 0 0 0 0 0 20 0 0 20 0 160 0 0 40 0 0 420 0 0 340 0 0 60 0 0 20 0 0 0 2720 320 0 40 160 320 280 0 0 320 0 1040 0 0 240 0 0 240 0 0 120 0 0 0 0 0 0 Mean 50 80 80 1760 0 0 0 40 160 200 0 0 160 0 1200 0 0 0 0 0 960 0 0 600 0 0 0 40 0 40 7 643 205 654 562 Laboea spp. Parundela caudata Protorhabdonella curta Rhabdonella chilensis Rhabdonella sp. Salpinguella sp. Steentrupiella pozzi Undella sp. Undella claparedei Xystonella treforti Dictyochophyceae Dictyocha fibula Dictyocha sp. Dictyocha speculum Dinophyceae Ceratium extensum Ceratium furca Ceratium fusus Ceratium tripos Athecate dinoflagellates (> 15 μm) Athecate dinoflagellates (< 15 μm) Thecate dinoflagellates Dinophysis sp. Dissodinium sp. Gonyaulax polygramma Ornithocercus sp. Oxytosum sp.1 Oxytosum sp.2 Podolampas sp. Prorocentrum sp. Protoperidinium conicum Protoperidinium sp. Scripsiella sp. Flagellata Flagellates/Ciliates (< 10 μm) Flagellates (< 10 μm) Lat. Am. J. Aquat. Res. 0 0 0 20 20 0 0 0 0 0 20 20 0 0 2039 0 40 40 0 100 1839 0 0 0 0 0 20 0 0 0 0 0 0 2759 0 2759 0 20 0 0 0 20 0 0 0 0 0 0 0 0 5038 0 40 40 0 280 4598 0 0 0 20 0 60 0 0 0 0 0 0 2759 0 2759 0 0 0 40 0 0 40 0 0 0 40 0 40 0 8677 0 0 80 0 200 8277 0 0 40 0 0 40 40 0 0 0 0 0 2759 0 2759 0 0 0 0 0 0 0 0 0 0 20 0 20 0 8937 0 40 20 0 380 8277 20 0 0 0 0 100 60 40 0 0 0 0 4139 0 4139 40 0 0 0 0 40 0 0 0 0 40 40 0 0 7897 0 40 80 0 320 7357 0 0 0 0 0 80 20 0 0 0 0 0 5058 0 5058 s/i 0 20 0 s/i 0 0 40 s/i 0 0 0 s/i 0 40 0 s/i 0 0 0 s/i 40 0 0 s/i 0 0 20 s/i 0 0 0 s/i 0 0 20 s/i 0 0 0 0 0 20 s/i 0 0 0 s/i 0 0 0 s/i 0 0 20 3959 10417 - 11456 s/i 0 0 0 s/i 40 0 20 80 120 s/i 40 s/i 0 0 20 40 460 s/i 240 3679 9657 s/i 11036 s/i 0 0 20 s/i 0 0 20 s/i 0 0 0 s/i 0 0 20 s/i 0 0 0 s/i 0 20 20 120 160 s/i 0 s/i 0 0 0 s/i 0 0 0 s/i 0 0 20 s/i 0 0 0 s/i 0 0 0 4598 13795 22072 s/i 0 0 0 4598 13795 s/i 22072 0 0 0 0 0 0 20 0 0 0 20 20 0 0 16336 20 40 160 0 380 11956 0 0 0 0 0 40 40 0 0 0 0 0 203249 46904 156346 20 0 20 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 60 0 0 0 40 0 20 0 6438 5958 20 0 20 20 0 80 0 0 580 300 5518 5518 0 0 0 0 0 0 0 0 0 0 160 20 140 20 0 0 0 0 0 0 0 0 0 0 4598 22992 0 0 4598 22992 0 20 0 0 0 0 0 0 0 0 20 0 20 0 14495 40 120 160 0 340 13795 0 0 0 0 0 20 20 0 0 0 0 0 12876 0 12876 0 0 0 0 120 80 0 0 40 0 0 0 0 0 40 0 0 80 0 0 0 0 0 40 0 0 0 0 0 0 0 80 80 27 0 0 0 0 80 0 0 0 80 10756 13616 15215 9416 0 0 0 20 0 0 60 0 40 0 40 0 380 1840 560 10116 11496 14255 0 0 0 40 0 0 0 0 0 0 0 0 0 40 0 120 120 120 20 80 0 0 0 0 0 0 40 0 0 0 0 0 40 0 0 160 32189 1839 6898 22839 0 0 0 32189 1839 6898 563 Seamounts and biodiversity in Chile Table 2. Composition and abundance of zooplankton (ind 1000 m-3) on the seamounts Juan Fernandez 1 and Juan Fernandez 2. Only the percentage of each taxonomic group is indicated. Tabla 2. Composición y abundancia de zooplancton (ind 1000 m-3) en los montes submarinos Juan Fernández 1 y Juan Fernández 2. Se indica solamente el porcentaje de cada grupo taxonómico. Station Species Euphausiacea Stratum (m) 1 2 3 4 (0-250) (0-250) (0-300) (0-300) 5 6 7 (0-350) (0-268) (0-250) 8 Total (0-250) Percentage (%) 1.29 2 4 118 35 7 9 158 9 342 Euphausia gibba 0 0 12 0 0 0 0 0 12 Euphausia gibboides 0 0 20 11 0 0 14 0 45 Euphausia mucronata 2 0 47 13 7 0 77 9 155 Euphausia sp. 0 0 12 0 0 0 24 0 36 Nematoscelis sp. 0 4 27 11 0 9 43 0 94 Mysidacea 0 0 0 11 11 0 5 0 27 0.10 Amphipoda 12 49 71 19 22 28 62 77 340 1.29 Vibilia armata 12 41 67 13 11 23 62 77 306 Acanthoscina acanthodes 0 4 4 3 7 0 0 0 18 Platyscelus sp. 0 4 0 3 4 5 0 0 16 Ostracoda 0 3 32 52 54 19 9 12 181 0.68 Copepoda 337 864 4338 2490 8917 1429 2766 1165 22306 84.38 Acartia sp. 4 33 39 21 254 28 38 0 417 Haloptilus longicornis 0 0 0 0 60 37 0 0 97 Haloptilus spiniceps 0 0 0 0 30 18 0 0 48 Haloptilus sp. 4 0 0 0 0 0 0 17 21 Calanus sp. 0 0 0 0 0 65 19 51 135 Canthocalanus pauper 24 17 125 118 0 0 0 0 284 Nannocalanus sp. 20 33 0 0 0 0 0 0 53 Candacia curta 0 0 8 0 0 0 0 26 34 Candacia sp. 4 17 0 75 15 18 0 0 129 Corycaeus sp. 8 17 55 0 30 0 10 0 120 Eucalanus inermis 0 0 0 0 30 28 0 0 58 Eucalanus sp. 4 50 16 0 0 9 77 17 173 Rhincalanus sp. 0 0 424 172 119 0 0 0 715 Euchaeta sp. 4 0 133 172 45 0 29 9 392 Heterorhabdus sp. 28 116 55 11 851 65 220 197 1543 Lucicutia sp. 4 17 24 43 30 111 134 77 440 Pleuromamma sp. 44 17 2031 0 2657 562 1148 308 6767 Pleuromamma borealis 4 66 0 976 0 0 0 0 1046 Oncaea conifera 8 0 149 86 0 9 19 26 297 Oncaea sp. 4 17 0 0 149 0 0 0 170 Oithona sp. 8 17 71 21 149 28 115 17 426 Pontellina sp. 0 0 0 0 0 0 19 0 19 161 364 643 236 3000 378 766 248 5796 Sapphirina sp. 4 50 0 32 15 18 19 120 258 Acrocalanus sp. 0 0 0 32 0 0 0 0 32 Paracalanus sp. 0 33 0 86 0 0 0 0 119 Clausocalanus sp. 564 Lat. Am. J. Aquat. Res. Euaetideus sp. 0 0 0 0 75 0 0 0 75 Euchirella sp. 0 0 149 161 478 55 96 43 982 Gaudius sp. 0 0 165 139 239 0 57 9 609 Scaphocalanus sp. 0 0 251 97 687 0 0 0 1035 Scolecithrix sp. 0 0 0 12 4 0 0 0 16 Cirripedia 4 0 0 0 0 0 0 0 4 0.20 Decapoda (larvae) 0 0 0 3 4 0 0 0 7 0.03 Emerita analoga 0 0 0 3 4 0 0 0 7 Medusae 0 0 0 3 8 5 0 0 16 Cunina peregrina 0 0 0 3 0 0 0 0 3 Obelia spp. 0 0 0 0 4 0 0 0 4 Rophalonema velatum 0 0 0 0 4 5 0 0 9 Siphonophorae 6 4 59 59 34 23 101 13 299 Abylopsis tetragona 0 0 16 5 4 9 5 0 39 Eudoxoides spiralis 2 0 0 0 0 0 0 0 2 Dimophyes arctica 0 0 8 3 0 0 0 0 11 Lensia conoidea 0 0 0 3 7 0 0 0 10 Lensia hotspur 0 0 0 0 4 0 0 0 4 Lensia leloupi 0 0 0 0 4 0 5 0 9 Lensia sp. 0 0 0 0 4 0 5 4 13 Praya sp. 0 0 0 32 0 0 0 0 32 Sphaeronectes gracilis 2 0 35 16 11 14 86 9 173 Sulculeolaria chuni 2 0 0 0 0 0 0 0 2 Sulculeolaria quadrivalvis 0 4 0 0 0 0 0 0 4 Ctenophora 0 8 8 0 0 9 5 9 39 Beroe cucumis 0 4 0 0 0 0 0 0 4 Pleurobrachia bachei 0 4 8 0 0 9 5 9 35 Chaetognatha 88 141 393 249 198 216 153 119 1557 Eukrohnia hamata 8 21 71 32 93 37 19 17 298 Sagitta decipiens 0 0 0 48 0 0 0 0 48 Sagitta enflata 30 62 129 113 0 101 67 77 579 Sagitta hexaptera 8 0 12 0 19 0 0 0 39 Sagitta minima 0 0 118 5 19 0 5 0 147 0.06 1.13 0.15 5.89 Sagitta tasmanica 0 0 4 8 30 0 0 4 46 Juvenil individuals 42 58 59 43 37 78 62 21 400 Salpida 38 62 537 21 70 18 53 17 816 Ihlea magalhanica 28 17 110 21 63 9 53 0 301 Pegea confoederata 10 45 427 0 7 9 0 17 515 Appendicularia 8 8 4 8 45 9 5 4 91 0.34 Polychaeta 8 0 55 56 56 23 48 9 255 0.96 Nemertina 0 0 0 0 0 0 5 0 5 0.02 Pisces (eggs and larvae) 0 74 4 42 7 0 24 0 151 0.57 Hygophum bruuni 0 0 4 8 0 0 19 0 31 Sardinops sagax 0 74 0 21 7 0 0 0 102 Myctophidae 0 0 0 13 0 0 5 0 18 986 2423 11147 5969 18700 3525 6716 2843 52309 Total 3.09 100.0 565 Seamounts and biodiversity in Chile Table 3. Invertebrate species collected with dredging. Tabla 3. Especies de invertebrados recolectados con rastra. Phylum/Class/Order Number of samples Phylum/Class/Order Number of samples Asteroidea 25 Ophiuroidea / Phynophiurida 3 Decapoda (spp.) 5 Polychaeta/ Terebellidae 12 Gastropoda (spp.) 6 Porifera + Ophiuroidea + Polychaeta 1 Echinoidea 38 Actiniaria + Polychaeta 1 Porifera (spp.) 34 Ophiuroidea 1 Gorgonia (spp.) 5 Porifera + Bryozoan + Polychaeta 1 Zoanthidea (spp.) 16 Lophophorates / Bryozoan 1 Holothuroidea 6 Bivalvia / Paleoheterodonta 1 Echinoidea/Echinacea (spp.) 142 Crustacea / Caridea 1 Actiniaria 27 Anthozoa / Actiniaria 3 Polychaeta (spp.) 55 Bivalvia (shell) (spp.) 6 Echinoidea + Ophiuroidea 6 Porifera + Polychaeta 3 Gorgonia / Ophioroida 10 Submarine images of the JF1 and JF2 marine substrate showed characteristics ascribed to the impact of bottom dredges, coinciding with the information from the trawling fleet, whose activity was primarily executed on the flat surface area of the seamounts (Gálvez et al., 2006). When analyzed, this information revealed that the fishing activity was mainly concentrated on the JF2 seamount, reaching 4,667 km of trawling; in comparison, trawling on the JF1 and JF4 seamounts reached values of 1,526 km and 906 km, respectively. In spite of these results, the FEI showed higher values for seamounts JF4 and JF2 (10.5 km-1 and 11.7 km-1, respectively) than for JF1. Although heavy fishing activity was executed on the latter, its FEI was 2.51 km-1 due to its larger area, which is estimated to be 608 km2 (Table 4). Table 4. Name, mean latitude and longitude, and the estimated area, effort, and relative fishing effect index (FEI) of six seamounts where extractive activity was conducted between 2000 and 2006. Tabla 4. Nombre del monte, latitud y longitud media, área estimada, esfuerzo estimado e índice relativo de pesca (FEI) de seis montes donde se efectuó actividad extractiva durante 2000-2006. Seamount JF1 JF2 JF3 JF4 JF5 JF6 Latitude (S) 33°39.0' 33°33.6' 33°23.4' 33°26.4' 33°43.8' 34°04.8' Longitude (W) 78°26.4' 77°41.4' 77°25.2' 76°52.8' 79°37.2' 80°15.6' In general terms, the fishing effort, measured as the total trawling distance, increased considerably in 2002, 2003, and 2005, with values that exceeded the Area (km2) 608 443 62 91 17 s/i Effort (km) 1.526 4.667 395 906 50 s/i FEI (km-1) 2.51 10.54 6.42 11.70 1.52 s/i 500 km of trawling. Later, a considerable decrease was observed by the end of the analyzed period (20012006), followed by the same values observed at the 566 Lat. Am. J. Aquat. Res. beginning of the fishing activity. The high level of observed fishing effort seems to have modified the spatial structure of the resource aggregates exploited at the JF2 seamount. In 2001, the aggregates at this seamount showed a symmetrical spatial distribution up to 4 km; however, that value that did not exceed 1 km in 2003 (Fig. 11). The spatial variability was affected by a decrease in the relative abundance of the resources exploited on this seamount (orange roughy and alfonsino) (Fig. 12). Figure 11. Theoretical and adjusted spherical model for the catch rate variogram on seamount JF2 in 2001 and 2003. Figura 11. Modelo esférico teórico y ajustado para el variograma de las tasas de captura en el monte submarino JF2 en 2001 y 2003. Figure 12. Distribution of the catch rates for the seamount JF2 in 2001 and 2003; maps were generated by ordinary punctual kriging. Figura 12. Distribución de las tasas de captura para el monte submarino JF2 en 2001 y 2003; mapas generados mediante estimación espacial krigging puntual ordinario. Seamounts and biodiversity in Chile DISCUSSION A total of 118 seamounts were identified in the continental and insular EEZ of Chile. A method similar to that used by Kitchingman & Lai (2004) was put into practice, considering statistical (standard deviation, filters, hillshading) and visual (judgment, 3D cartography) analyses for the identification of potential seamounts. The number of identified seamounts is influenced by the depth standard deviation as well as filter size and type (kernel 5*5 nearest-neighbor) and visual analysis criteria. Furthermore, the identification sensitivity is directly affected by the spatial resolution of the bathymetric data. The information on the diversity of the phytoplankton organisms collected in the area, along with the data analyzed by Pizarro et al. (2006), allow the preliminary inference that the nano- and microplankton structure detected with the analysis of the water samples collected in late winter 2007 indicate the presence of a clearly oligotrophic environment. Small organisms predominate such environments and the systems are mainly supported by regenerated production and the probable entry of allochthonous nutrients from adjacent islands or elements advected from the seamounts or the coastal areas of Chile through large upwelling plumes that are generally observed on satellite images. Regarding the diversity of zooplankton organisms, most species and/or genera identified around the seamounts corresponded to organisms that are characteristic of the oceanic waters of the Humboldt Current System, which are found in low densities off the coast. The taxonomic composition of the zooplankton in this area is characterized by the presence of copepods (84.4% zooplankton), which coincides with results for oceanic waters in similar ecosystems of other oceans (Schnack-Schiel & Mizdalski, 2002). The quantity of zooplankton was quite scarce, in agreement with the low densities reported around the Juan Fernandez Archipelago (Palma, 1985) and the oceanic waters along the Chilean coast (Palma & Silva, 2006), and with other studies that have shown low densities on seamounts with abrupt topographies. This contradicts the results of Schwartz (2005) for seamounts from the Eastern Central Pacific. In fact, the biomass values were quite low compared to those detected in Chile’s coastal waters. The diversity of pelagic, demersal, and benthic organisms from this area was restricted to four fish species and two crustacean species. This was basically due to the fishing systems used in the surveys, which prioritized direct, non-intrusive sampling methods such as submarine images and gears like traps and 567 longlines. One fish was the blue shark (Prionace glauca), a species considered to be epipelagic and of circumpolar distribution (Compagno, 1984). This shark is abundant in the southeastern Pacific and is captured by multiple fleets using surface longlines. The sawfish (Thyrsites atun), on the other hand, is considered to be a benthopelagic fish with a wellknown distribution on continental shelves or around islands (Nakamura & Parin, 1993). Among demersal fish, the croaker (Helicolenus lengerichi) has been cited as one of the five species of the Scorpaenidae family present around the Juan Fernandez Archipelago (Pequeño & Sáez, 2000), whereas the conger Bassanago albescens has been caught with a low incidence (Lillo et al., 1999) as part of the by-catch of orange roughy fishing activities on Juan Fernandez seamounts. The golden crab (Chaceon chilensis) and the Juan Fernandez king crab (Paromola rathbuni) have been cited as two of the five decapod crustacean species captured during surveys and experimental trap fishing activities around Robinson Crusoe and Santa Clara islands (Retamal & Arana, 2000). The presence of the Juan Fernandez king crab was originally reported for the Juan Fernandez Archipelago (Retamal, 1981) and the Desventuradas Islands (Báez & Ruiz, 1985) and is considered to be endemic to this area of the southeastern Pacific. This decapod is distributed between 100 and 300 m depth, with a greater abundance at 200 m around Robinson Crusoe and Santa Clara islands (Retamal & Arana, 2000). Furthermore, the golden crab has been reported off Zapallar and Quintero, along the central coast of continental Chile (Báez & Andrade, 1977; Andrade & Báez, 1980; Andrade, 1987), the Juan Fernandez Archipelago and San Félix and San Ambrosio islands (Retamal, 1981; Chirino-Gálvez & Manning, 1989), and along the undersea Nazca Ridge mainly at 90°W (Parin et al., 1997). The golden crab is generally distributed between 200 m and 2,000 m of depth (Dawson & Webber, 1991). It was found at depths of 400 and 800 m along the undersea Nazca Ridge (Parin et al., 1997) and was caught at 100 and 1,000 m around Robinson Crusoe and Santa Clara islands, with a greater abundance at 300 m and between 500 and 600 m (Arana, 2000). The submarine images of the plains of seamounts JF1 and JF2 (up to 600 m approximately) suggest the presence of a marine substrate with similar characteristics to those reported in the literature for places that have been strongly impacted by trawling gears (FAO, 2007; Clark & Koslow, 2007). Johnston & Santillo (2004) have suggested that sustainable seamount fisheries require good knowledge of the biology and ecology of the species to be 568 Lat. Am. J. Aquat. Res. exploited. Regarding the orange roughy fisheries on seamounts within the Chilean EEZ, there has been a trend towards increased global quotas in spite of the ignorance regarding the stock abundance at the Juan Fernandez Archipelago (Young et al., 2000; Gálvez et al., 2006). Despite this increase, the quota has never been totally extracted and the landing proportion has been observed to decrease. The FEI provides a measure of relative intensity of the trawling fishing activities on a seamount, thereby allowing the categorization of the seamounts according to trawling density and direction. Due to the fact that the trawling was reported to last close to a minute and the trawling velocity is generally constant, then the trawling length estimation offers an adequate indicator of the scanned area. The distribution of the trawling direction on the studied seamounts was not random, suggesting that the fishermen have some degree of knowledge and, thus, prefer certain areas (trawling routes), whereas other adjacent areas do not seem to be affected by fishing activities. O’Driscoll & Clark (2005) have suggested that the FEI cannot directly assess the fishing impact on a seamount. Therefore, it should be necessarily related to other ecological indexes in order to obtain an ecological impact index of the trawling fishing over the substrate and associated fauna that could vary according to the substrate and fishing intensity. Furthermore, strong spatial variability of the relative densities of the fishing resources associated with seamount JF2 in 2001 and 2003 was observed. This spatial variability was associated with a decrease in the relative abundance of the two main fishing resources exploited on this seamount (orange roughy and alfonsino) and a strong spatial contraction of said resources, which was represented by a significant change in the variogram range. The effect of the commercial exploitation on seamount JF2 caused an 85% reduction in the range of values between 2001 and 2003. Pankhurst (1998) indicated that orange roughy aggregates in the same period and place on the seamounts of New Zealand, which makes it quite predictable. These dense aggregations cause an elevated backscattered acoustic amplitude that is easily identified. Thus, the resource is highly vulnerable to commercial fishing. Besides, it has also been suggested that, during productive periods, orange roughy aggregations tend to remain still during certain periods or even for many days (Bull et al., 2001). One of the objectives of the current international approach for marine biodiversity conservation is the identification and protection of the discrete areas that are defined from the representativeness of the existing ecosystems and/or their role as an essential habitat for the conservation of vulnerable or threatened species. Therefore, the demand for the identification and prioritization of possible protected marine areas in the Chilean seamounts requires some knowledge of the structure and singularity of its communities and the role such areas play in the life cycle of the species identified as special conservation subjects. In this sense, the extent of the knowledge necessary for the adequate conservation of biodiversity on seamounts in the Chilean EEZ is huge and this study is just one step towards an increase in the available information. Obviously, most attention is directed towards those areas currently under fishing exploitation, where it is crucial to take conservation measures for the development of sustainable activities. ACKNOWLEDGEMENTS The authors would like to thank the crews of PAM Portugal II, the L/M Alborada, and the boat Cumberland for their great disposition and assistance with the works carried out on board. Furthermore, we wish to thank the Fondo de Investigación Pesquera de Chile for their support of FIP project No. 2006-57. REFERENCES Andrade, H. 1987. Distribución batimétrica y geográfica de macroinvertebrados del talud continental de Chile central. Cienc. Tecnol. Mar, 11: 61-94. Andrade, H. & P. Báez. 1980. Crustáceos decápodos asociados a la pesquería de Heterocarpus reedi Bahamonde 1955 en la zona central de Chile. Bol. Mus. Nac. Hist. Nat. Chil., 37: 261-267. Arana, P. 2000. Pesca exploratoria con trampas alrededor de las islas Robinson Crusoe y Santa Clara, archipiélago de Juan Fernández, Chile. Invest. Mar., Valparaíso, 28: 39-52. Arana, P., M. Ahumada, A. Guerrero, V. Espejo, E. Yañez, C. Silva, B. Ernst & J.M. Orensanz. 2006. Evaluación de stock y distribución de la langosta y el cangrejo dorado en el archipiélago de Juan Fernández (Proyecto FIP N°2005-21). Informe final. Pont. Univ. Católica Valparaíso, Estud. Doc., 27/2006: 257 pp. Báez, P. & H. Andrade. 1977. Geryon affinis Milne Edwards & Bouvier, 1894, frente a las costas de Chile (Crustacea, Decapoda, Brachyura, Geryonidae). An. Mus. Hist. Nat., Valparaíso, 10: 215-219. Báez, P. & R. Ruiz. 1985. Crustáceos de las islas oceánicas de Chile depositados en el Museo Nacional de Historia Natural de Santiago. In: P. Arana (ed.). Investigaciones marinas en el archipiélago de Juan Fernández. Escuela Ciencias del Mar, Universidad Cató lica de Valparaíso, Valparaíso, pp. 93-108. Seamounts and biodiversity in Chile Bull, B., I. Tracey & A. Hart. 2001. Diel variation in spawning orange roughy (Hoplostethus atlanticus) abundance over a seamount feature on the north-west Chatham Rise. N.Z. J. Mar. Freshw. Res., 35: 435444. Cerda, R. 1977. Pesca exploratoria con espineles en los montes submarinos situados entre Valparaíso y el archipiélago de Juan Fernández. Cienc. Tecnol. Mar, 3: 3-8. Chirino-Gálvez, L.A. & R.B. Manning. 1989. A new deep-sea crab of the genus Chaceon from Chile (Crustacea, Decapoda, Geryonidae). Proc. Biol. Soc. Wash., 102(2): 401-404. Clark, M.R. & J.A. Koslow. 2007. Impacts of fisheries on seamounts. In: T.J. Pitcher, T. Morato, P.J.B. Hart, M.R. Clark, N. Haggan & R. Santos (eds.). Seamounts: ecology, fisheries & conservation. Fish and Aquatic Resources Series, 12, Blackwell Publishing, Oxford, 527 pp. Compagno, L. 1984. FAO species catalogue. Sharks of the world. Part. 2. Carcharhiniformes. FAO Fish. Synop., 125(4): 249 pp. Dawson, E.W. & W.R. Webber. 1991. The deep-sea red crab Chaceon (“Geryon”): A guide to information and reference list of the Family Geryonidae. Nat. Mus. New Zealand, Misc. Ser., 24: 83 pp. Organización de las Naciones Unidas para la Agricultura y la Alimentación (FAO). 2007. Report and documentation of the Expert Consultation on Deep-sea Fisheries in the High Seas, Bangkok, Thailand, 21-23 November 2006. FAO Fish. Rep., 838: 203 pp. Gálvez, P., J. Sateler, J. González & P. Toledo. 2006. Programa de seguimiento del estado de situación de las principales pesquerías nacionales: Pesquería demersal centro-sur y aguas profundas, 2005. Informe SUBPESCA-IFOP: 70 pp. General Bathymetric Chart of the Oceans (GEBCO). 2003. IHO-UNESCO, General Bathymetric Chart of the Oceans, Digital Edition. www.ngdc.noaa.gov/ mgg/gebco. Revised: 30 April 2009. Johnston, P & D. Santillo. 2004. Conservation of seamount ecosystems: application of a marine protected areas concept. Arch. Fish. Mar. Res., 51: 305-319. Kitchingman, A. & S. Lai. 2004. Inferences of potential seamount locations from mid-resolution bathymetric data. In: T. Morato & D. Pauly (eds.). Seamounts: biodiversity and fisheries. Fish. Centre Res. Rep., 12(5): 7-12. Lillo, S., R. Bahamonde, B. Leiva, M. Rojas, M.A. Barbieri, M. Donoso & R. Gili. 1999. Prospección del recurso orange roughy (Hoplostethus spp.) y su fauna acompañante entre la I y la X Región. Informe Técnico FIP 98-05: 141 pp. 569 Nakamura, I. & N.V. Parin. 1993. FAO species catalogue. Snake mackerels and cutlassfishes of the world (families Gempylidae and Trichiuridae). An annotated and illustrated catalogue of the snake mackerels, snoeks, escolars, gemfishes, sackfishes, domine, oilfish, cutlassfishes, scabbardfishes, hairtails, and frostfishes known to date. FAO Fish. Synop., 125(15): 1136. O’Driscoll, R.L. & M.R. Clark. 2005. Quantifying the relative intensity of fishing on New Zealand seamounts. N.Z. J. Mar. Freshw. Res., 39: 839-850. Palma, S. 1985. Plancton marino de las aguas circundantes al archipiélago de Juan Fernández. En: P. Arana (ed.). Investigaciones Marinas en el archipiélago de Juan Fernández. Escuela de Ciencias del Mar, Universidad Católica de Valparaíso, Valparaíso, pp. 5969. Palma, S. & N. Silva. 2006. Epipelagic siphonophore assemblages associated with water masses along a transect between Chile and Easter Island (eastern South Pacific Ocean). J. Plankton Res., 28(12): 11431151. Pankhurst, N. 1998. Spawning dynamics of orange roughy, Hoplostethus atlanticus in midslope waters of New Zealand. Environ. Biol. Fish., 21(2): 101-211. Parin, N., A. Mironov & K. Nesis. 1997. Biology of the Nazca and Sala y Gómez submarine ridges, an outpost of the Indo-West Pacific fauna in the Eastern Pacific Ocean: Composition and distribution of the fauna, its communities and history. Adv. Mar. Biol., 32: 147-242. Pequeño, G. & S. Sáez. 2000. Los peces litorales del archipiélago de Juan Fernández (Chile): endemismo y relaciones ictiogeográficas. Invest. Mar., Valparaíso, 28: 27-37. Pizarro, G., V. Montecino, R. Astoreca, G. Alarcón, G. Yuras & L. Guzmán. 2006. Variabilidad espacial de condiciones bio-ópticas de la columna de agua entre las costas de Chile insular y continental. Primavera 1999 y 2000. Cienc. Tecnol. Mar, 29(1): 45-58. Probert, P., D. McKnight & S. Grove. 1997. Benthic invertebrate bycatch from a deep-water trawl fishery, Chatham Rise, New Zealand. Aquatic Conserv: Mar. Freshw. Ecosyst., 7: 27-40. Retamal, M. 1981. Catálogo ilustrado de los crustáceos decápodos de Chile. Gayana Zool., 44: 1-110. Retamal, M. & P. Arana. 2000. Descripción y distribución de cinco crustáceos decápodos recolectados en aguas profundas en torno a las islas Robinson Crusoe y Santa Clara (archipiélago de Juan Fernández, Chile). Invest. Mar., Valparaíso, 28:149-163. Rojas, R., Y. Guerrero, J. González & N. Silva. 2004. Datos del crucero oceanográfico CIMAR 5 Islas Oceánicas. Centro Nacional de Datos Oceanográfi- 570 Lat. Am. J. Aquat. Res. cos, Servicio Hidrográfico y Oceanográfico de la Armada de Chile, Valparaíso, CD-ROM. Rozbaczylo, N. & J.C. Castilla. 1987. Invertebrados marinos del archipiélago del archipiélago de Juan Fernández. In: J.C. Castilla (ed). Islas oceánicas chilenas: conocimiento científico y necesidades de investigaciones. Ediciones Universidad Católica de Chile, Santiago, pp. 167-190. Schwartz, R. 2005. The effect of deep seamount on zooplankton abundance and biodiversity. Sea Cruise S199 09 june 2005, 15 pp. Schnack-Schiel, S. & E. Mizdalski. 2002. Occurrence and distribution pattern of copepods in the vicinity of the Great Meteor seamount, northeast Atlantic, in september 1998. Abstracts from Theme Session on Oceanography and Ecology of Seamounts-Indications of Unique Ecosystems (M). ICES CM:2002/M: 35 pp. Received: 11 May 2009; Accepted: 1 October 2009 Smith, W. & D. Sandwell. 1997. Global seafloor topography from satellite altimetry and ship depth soundings, Science, 277: 1957-1962. Tracey, D., B. Bull, M. Clark & K. Mackay. 2004. Fish species composition on seamounts and adjacent slope in New Zealand waters. N.Z. J. Mar. Freshw. Res., 38: 163-182. Yáñez, E., C. Silva, R. Vega, L. Álvarez, N. Silva, S. Palma, S. Salinas, E. Menschel, V. Haussermann, D. Soto & N. Ramírez. 2008. Biodiversidad de montes submarinos. Informe Final Proyecto FIP 2006-57: 246 pp. Young, Z., A. Zuleta & R. Tasheri. 2000. Investigación CTP de orange roughy. Subsecretaria de PescaInstituto de Fomento Pesquero, Valparaíso, 30 pp. Zuleta, A. & A. Hamano. 2004. Exploración científica del B/E Koyo-Maru al monte submarino bajo O’Higgins frente a Chile. Informe del Crucero, 22 pp. Lat. Am. J. Aquat. Res., 37(3): 571-576, 2009 “Deep-sea fisheries off Latin America” P. Arana, J.A.A. Perez & P.R. Pezzuto (eds.) DOI: 10.3856/vol37-issue3-fulltext-21 Golden crab fisheries off northeast Brazil 571 Short Communication Note on the fisheries and biology of the golden crab (Chaceon fenneri) off the northern coast of Brazil Tiago Barros Carvalho1, Ronaldo Ruy de Oliveira Filho1 & Tito Monteiro da Cruz Lotufo1 1 Laboratório de Ecologia Animal, Instituto de Ciências do Mar (LABOMAR) Universidade Federal do Ceará, Av. Abolição 3207, CEP 60165-081, Fortaleza, CE, Brazil ABSTRACT. The occurrence of golden crabs (Chaceon fenneri) off the northern coast of Brazil was first reported in 2001. Since then, a few companies and boats have exploited this resource. In the state of Ceará, one company has been fishing for these crabs with a single boat since 2003. The production and fishing effort of this company indicated a decrease in the number of trips and total catches per year. Data collected on one trip in 2006 showed that the CPUE was highest at over 650 m depth. As registered for other geryonid crabs, C. fenneri was segregated by sex along the northern slope of Brazil. Male crabs were significantly larger than females, presenting an isometric relationship between carapace width and length and an allometric relationship between carapace width and body weight. Keywords: biology, fishery, Chaceon fenneri, golden crab, Geryonidae, Brazil. Nota sobre la biología y la pesca del cangrejo dorado (Chaceon fenneri) frente a la costa norte de Brasil RESUMEN. La presencia de cangrejos dorados (Chaceon fenneri) frente a la costa norte de Brasil fue primeramente descrita en 2001. Desde entonces, algunas embarcaciones y compañías se han dedicado a explotar este recurso. En el Estado de Ceará, una sola compañía ha estado pescando estos crustáceos desde el año 2003 con una sola embarcación. Se presenta la producción y esfuerzo pesquero aplicado por esa compañía, indicando la disminución en el número de viajes y captura total por año. Registros recolectados en un viaje realizado el 2006 muestran que los mayores valores de CPUE se obtienen a profundidades mayores de 650 m. Al igual que lo registrado en otros Geryonidae, agregaciones por sexo se determinaron en C. fenneri a lo largo del talud en la región norte de Brasil. Los machos fueron significativamente más grandes que las hembras, presentando una relación isométrica entre el ancho y longitud del caparazón; como también, una relación alométrica entre el ancho y el peso. Palabras clave: biología, pesca, Chaceon fenneri, cangrejo dorado, Geryonidae, Brasil. ________________________ Corresponding author: Tito Monteiro da Cruz Lotufo (tmlotufo@ufc.br) Chaceon fenneri (Manning & Holthuis, 1984) is a geryonid crab (Brachyura: Geryonidae) occurring on the western Atlantic from the Gulf of Mexico to northeast Brazil. As all the other Geryonidae, C. fenneri is found along the continental slope between 200 and 1500 m deep. These animals present the usual Chaceon features, such as a large hexagonal cephalothorax ranging in width from 7.5 to 20 cm, ornamented by five antero-lateral teeth on each side, and distinguished by its cream to tan color, with laterally compressed dactyls on the walking legs (Manning & Holthuis, 1989). Geryonid crabs are found throughout the planet oceans, except for the east Pacific, in depths ranging from around 100 m to more than 2800 m (Manning, 1990). The family comprises four genera and 24 species, many of them of commercial importance to industrial and artisanal fisheries. In Brazil, fishing for 572 Lat. Am. J. Aquat. Res. geryonid crabs started in the 1980s. Incipient efforts were restricted to the southeast/south coast and targeted Chaceon ramosae and Chaceon notialis, and were only definitely established in the late 1990s, stimulated by government policies (Pezzuto et al., 2006). C. notialis is distributed south to 33ºS, reaching Argentina, and is the most important geryonid in terms of Brazilian fisheries, with an estimated stock of 17,117.80 tons (Pezzuto et al., 2002). C. ramosae is found between 27ºS and 30ºS, and almost half of the reported production comes from gill nets instead of the usual traps (Pezzuto et al., 2006). The first record of C. fenneri from Brazil was presented by Sankarankutty et al. (2001), based on specimens collected during a survey of the REVIZEE Program on the northeast coast. Since then, a few fishing boats from Natal and Fortaleza harbors have targeted the species. Today, only one company (based at Fortaleza) is known to be exploiting this resource, dedicating a single boat to this fishery. This study describes the C. fenneri fishery off the coast of Ceará, presenting data on a few biological descriptors such as size structure, sex ratio, and spatial and bathymetric distribution. The data related to production were obtained from the Interfrios Company, comprising the period between April 2003 and August 2007. Data regarding population estimations were obtained onboard the crab fishing boat, Incopesca I, property of Industria Naval do Ceará (INACE), from 19 to 23 July 2006. The fishing stations were located about 40 nm north of the Ceará coast, and were determined by the boat’s crew with the aid of charts, GPS, and sonar. During five days of fishing, the traps were deployed nine times at six different stations (Fig. 1). The traps used were circular, with an iron structure and a 9-mm PE (polyethylene) net; they were baited with fish carcasses. A total of 198 traps were used (65 traps per fishing station). On average, the traps were soaked for 17 h (deployment to retrieval) at sites with depths ranging from 500 to 800 m. Once the traps were retrieved, the boat’s crew visually selected the crabs and all small crabs (CW < ~12.5 cm) were released. For each trap, we recorded the total number of crabs of each sex that were caught and released. After landing, the individuals were measured for carapace length (CL) and width (CW) using a caliper and weighed on an electronic semianalytic scale (0.001 g precision). The CW was measured including the lateral spines. The CPUE was calculated in terms of the mean number of crabs caught per trap and the effective CPUE (CPUE eff.) using only the number of processed crabs. Statistical analy- ses were done with the software Statistica 7.0 (Statoft Inc.) and JMP 7.0.1 (SAS Institute Inc.). From April 2003 to August 2007, a total of 37 fishing trips were conducted, resulting in 41,794 kg of golden crabs, for an average of 1,478.13 kg trip-1 (Table 1). The data on crab production from 2003 to the present show an irregular downward trend in effort and production. It is worth noting that Table 1 shows only the number of trips, since the company did not provide the number of days at sea or amount of traps deployed per trip. On the other hand, even considering large differences in effort per trip, an average of only five trips were conducted in each of the last four years. Until 2003, almost all production was exported, mainly to European countries, an activity that was favored by the currency exchange rates at that time. In 2004, the economic setting changed and the Brazilian currency appreciated strongly, impacting many activities such as shrimp and crab exportations. The fishing company tried to boost the local market with a feeble campaign restricted to Fortaleza, where the consumption of mangrove crabs (Ucides cordatus) is the largest in Brazil. In the following years, INACE kept fishing for crabs in an attempt to maintain the commercial channels opened. Today, golden crabs are sold to states in the southeast/south (São Paulo, Rio de Janeiro, and Paraná) and are exported to the United States of America. Biologically, the data obtained so far reveal many similarities with other geryonid crabs. Table 2 shows the deployment depths of the traps, number of traps used, CPUE, and numbers of males and females captured and released. Males and females show a tendency for bathymetric segregation (χ2 = 2806.26, d.f. = 8, p < 0.000001), with males being more frequent at deeper sites and females more common in shallower areas. In the south Atlantic Bight, Wenner (1990) found a different pattern for this species, with more abundant males between 274 and 549 m depth and females predominating at the deeper sites (733-823 m). On the other hand, Lindberg & Lockhart (1993) showed that, in the Gulf of Mexico, Chaceon fenneri followed the same pattern found in Brazil. In Chaceon notialis, a species fished in more austral waters of the western Atlantic, females were also concentrated in shallower areas (Defeo et al., 1991). Pinho et al. (2001) reported that the situation of Chaceon affinis in the Azores was similar to that described by Wenner (1990) for C. fenneri in the south Atlantic Bight, with males dominating in shallower areas. Gender segregation was also registered for other geryonids (Lindberg & Lockhart, 1993; Pinho et al., 2001; López-Abellán et al., 2002), and it seems that the distribution of these 573 Golden crab fisheries off northeast Brazil Figure 1. Location of the fishing stations for golden crabs off Ceará coast, Brazil. Figura 1. Localización de los lugares en donde se realizaron las faenas de pesca frente a la costa de Ceará, Brasil. Table 1. Yearly data on the number of fishing trips and amount of golden crabs caught off the Ceará coast. Tabla 1. Datos anuales correspondientes al número de viajes de pesca y cantidad de cangrejos dorados frente a la costa de Ceará. Year Number of trips -1 Average (kg trip ) -1 Total (kg year ) 2003 2004 2005 2006 2007 16 03 08 04 06 1,478 1,503 783 1,033 540 23,650 4,510 6,263 4,131 3,240 species may be affected by their reproductive cycle or other unknown conditions. In the north Atlantic, C. fenneri co-occur with another Chaceon species: C. quinquedens. The bathymetric distributions of these two species overlap, with C. quinquedens occurring mainly at deeper sites (Lindberg & Lockhart, 1993). In Brazil, no other geryonid species are captured in the traps, only the giant isopod Bathynomus giganteus. As no competitors seem to be present, the bathymetric range of C. fenneri in Brazil may extend to deeper limits. In a subsequent attempt to capture golden crabs in February 2007, traps were mistakenly deployed at 450 m and only ovigerous females were caught; these were promptly released. On the same trip, attempts between 650 and 820 m depth were unsuccessful and not a single specimen was caught. This may indicate the reproductive period of C. fenneri in Brazil, although much more data are needed to support this. In southeastern Florida, the oviposition period of golden crabs occurs between August and October, with an incubation time of approximately six months, for hatching in 574 Lat. Am. J. Aquat. Res. February and March (Erdman & Blake, 1988). Other authors have also reported a bathymetric migration of females related to the reproductive period (Lindberg et al., 1990; López-Abellán et al., 2002). If female golden crabs indeed migrate to shallower areas for oviposition or hatching, the establishment of exclusion depth ranges may constitute an important measure for resource administration. Table 2 shows that about 42% of the females were released, compared to only 10% of the males. Although the overall sex ratio was almost 1:1, the activity has a greater impact on males, especially due to their larger sizes. Regarding the CPUE, Table 2 shows that the best results were obtained at the deeper sites. These data must be analyzed carefully given the small number of sites and depths analyzed. At depths shallower than 650 m, the average CPUE was 2.975 crabs trap-1 (S.E. = 0.890) whereas, at the deeper sites (≥ 650 m), the average CPUE was 3.552 crabs trap-1 (S.E. = 0.397). All sites were located at depths beyond 580 m, so it was not possible to compare the bathymetric distributions between Ceará and the north Atlantic. Wenner (1990) studied the bathymetric distribution of C. fenneri in the south Atlantic Bight, pointing out that maximum yields (12 crabs trap-1) were obtained in the 458-549 m range. Later on, Lindberg & Lockhart (1993) found a larger density of C. fenneri in the Gulf of Mexico between 350 and 550 m, with the largest animals being captured at 350 m depth. More recently, Harper et al. (2000) reported that the golden crab fishery in the Gulf of Mexico from 1995 to 2000 targeted mostly sites between 300 and 500 m deep. Future prospection must be conducted at these depths in order to establish the bathymetric distribution of this species along Brazil’s northeast continental slope. Since the fishing effort on the golden crab stock of the Brazilian northern slope is still very small, the prospects in terms of resource administration are good. Although the volume of data regarding the population of golden crabs along Brazil’s northern continental slope is scanty, more data can be gathered in order to estimate the maximum sustainable yield and establish the rules for this fishery. As for the sizes of the animals, Table 3 summarizes the variables measured. These data are biased and by no means represent the natural population. Males are consistently larger and heavier than females, corroborating the values presented by Sankarankutty et al. (2001). The average CL and CW shown in Table 4 are almost the same as those obtained by Harper et al. (2000) in the Gulf of Mexico. For males, the relationship between CW and CL indicates isometric growth, as shown by the regression Table 2. Fishing depth, number of traps deployed, and amount of C. fenneri males and females caught during one fishing trip. The CPUE is presented in terms of captured (CPUE) and processed crabs (CPUE eff.). Tabla 2. Profundidad de pesca y número de trampas caladas y cantidad de machos y hembras de C. fenneri en un viaje de pesca. La CPUE está presentada en términos de captura (CPUE) y de cangrejos procesados (CPUE eff.). Set # Depth (m) Males Females Released males Released females Total captured Total released Total processed No. traps CPUE CPUE eff. 1 650 208 28 9 14 236 23 213 71 3.32 3.00 2 580 72 281 10 253 353 263 90 65 5.43 1.39 3 640 144 18 3 10 162 13 149 62 2.61 2.40 4 650 61 106 5 31 167 36 131 71 2.35 1.85 5 580 61 114 7 20 175 27 148 65 2.69 2.28 6 650 29 211 0 19 240 19 221 64 3.75 3.45 7 680 153 76 11 12 229 23 206 65 3.52 3.17 8 790 256 91 52 35 347 87 260 72 4.82 3.61 9 580 15 60 1 20 75 21 54 64 1.17 0.84 999 985 98 414 1984 512 1472 599 Total 575 Golden crab fisheries off northeast Brazil Table 3. The mean, standard deviation, mode, and median for carapace width (CW), carapace length (CL), and the weight of golden crabs captured off the Ceará coast. Tabla 3. Media, desviación estándar, modas y mediana en el ancho del caparazón (CW), largo del caparazón (CL) y peso de los cangrejos dorados capturados frente a la costa de Ceará. Mean Standard deviation Mode Median Males (N = 87) CW (cm) CL (cm) Weight (g) 14.56 12.64 980.17 0.91 0.82 209.97 14.4 12.9 858 14.4 12.7 970 Females (N = 23) CW (cm) CL (cm) Weight (g) 13.56 11.77 701.70 0.75 0.58 70.75 14.5 12.4 720 13.40 11.80 720.00 presented in Figure 2 (CL = 0.2831992 + 0.8484187 · CW; R2 = 0.89). The regression with weight, on the other hand, indicates an allometric relationship (Fig. 3; Weight = 0.2263566574 CW3.1212672783; R2 = 0.83). The data available for females was insufficient for the same analysis. It is worth noting that the values used for these calculations are restricted to large adults processed by the fishing company. A more thorough investigation on the size structure of the population, spatial and bathymetric distribution, and reproductive biology is required for a correct management of this resource. As this population has not yet been strongly targeted by fisheries, the need for further data is urgent. Figure 3. Regression of carapace width (CW) vs. weight for male golden crabs caught off the Ceará coast. Figura 3. Regresión entre el ancho del caparazón y el peso en machos de cangrejos dorados capturados frente a la costa de Ceará. ACKNOWLEDGEMENTS The authors are deeply indebted to Industria Naval do Cerará (INACE) and Interfrios for providing data and making this study possible, and to Luiz Bezerra for the help with the map. The authors also wish to thank Dr. Paulo Pezzuto and two anonymous referees for their thoughtful comments on the manuscript. Figure 2. Scatter plot of carapace width (CW) vs. carapace length (CL), with regression lines and confidence curves for male golden crabs collected off Ceará coast. Figura 2. Gráfico con las mediciones de ancho del caparazón (CW) vs largo del caparazón, con líneas de regresión y curvas de confianza, en cangrejos dorados capturados frente a la costa de Ceará. REFERENCES Defeo, O., V. Little & L. Barea. 1991. Stock assessment of the deep-sea red crab Chaceon notialis in the Argentinian-Uruguayan common fishing zone. Fish. Res., 11(1): 25-39. 576 Lat. Am. J. Aquat. Res. Erdman, R.B. & N.J. Blake. 1988. Reproductive ecology of female golden crabs, Geryon feneri Manning & Holthius, from southeastern Florida. J. Crust. Biol., 8(3): 392-400. Harper, D.E., P.B. Eyo & G.P. Scott. 2000. Updated golden crab fishery trends and production model analysis based on trip report logbook and trip interview data collection programs. Report to the South Atlantic Fishery Management Council, Golden Crab Advisory Comitee, 15 pp. Lindberg, W.J. & F.D. Lockhart. 1993. Depth-stratified population structure of geryonid crabs in the eastern Gulf of Mexico. J. Crust. Biol., 13(4): 713-722. Lindberg, W.J., F.D. Lockhart, N.J. Blake, R.B. Erdman, H.M. Perry & R.S Waller. 1990. Patterns of population structure and abundance for golden and red crabs in the eastern Gulf of Mexico. In: W.J. Lindberg & E.L. Wenner (eds.). Geryonid crabs and associated continental slope fauna: a research workshop report, Technical Paper 58, Florida Sea Grant College, Florida, pp. 8-9. López-Abellán, J., E. Balguerías & V. FernándezVergaz. 2002. Life history characteristics of the deepsea crab Chaceon affinis population off Tenerife (Canary Islands). Fish. Res., 58: 231-239. Manning, R. 1990. Studies on systematics of geryonid crabs. In: W.J. Lindberg & E.L. Wenner (eds.). Geryonid crabs and associated continental slope fauna: a research workshop report, Technical Paper 58, Florida Sea Grant College, Florida, pp. 1-2. Received: 24 April 2008; Accepted: 30 March 2009 Manning, R.B. & L.B. Holthuis. 1989. Two new genera and nine new species of geryonid crabs (Crustacea, Decapoda, Geryonidae). Proc. Biol. Soc. Wash., 102(1): 50-77. Pezzuto, P.R., J.A.A. Perez & R. Wahrlich. 2006. O ordenamento das pescarias de caranguejos-deprofundidade (Chaceon spp.) (Decapoda: Geryonidae) no sul do Brasil. Bolm. Inst. Pesca, São Paulo, 32(2): 229-247. Pezzuto, P.R., J.A.A. Perez, R. Wahrlich, W.G. Vale & F.R.A. Lopes. 2002. Análise das pescarias dos caranguejos-de-profundidade no sul do Brasil, Anos 20012002. Ministério da Agricultura Pecuária e Abastecimento and Universidade do Vale de Itajaí, Relatório Final, 121 pp. Pinho, M.R., J.M. Gonçalves, H.R. Martins & G.M. Menezes. 2001. Some aspects of the biology of the deep-water crab, Chaceon affinis (Milne-Edwards & Bouvier, 1894) off the Azores. Fish. Res., 51: 283295. Sankarankutty, C., A.C. Ferreira, J.E.L. Oliveira & K.M.F. Cunha. 2001. Occurrence of Chaceon fenneri (Manning & Holthuis) (Crustacea, Brachyura, Geryonidae) in the northeast Brazil. Rev. Bras. Zool., 18(2): 649-652. Wenner, E.W. 1990. Distribution and abundance of golden crab, Chaceon fenneri, in the south Atlantic Bight. In: W.J. Lindberg & E.L. Wenner (eds.). Geryonid crabs and associated continental slope fauna: a research workshop report, Technical Paper 58, Florida Sea Grant College, Florida, pp. 6-7.