special - ALU
Transcription
special - ALU
OFFICIAL INTERNATIONAL MEDIA PARTNER Special 2009: Automotive Aluminium in innovative light-weight car design Upgrading of gas-fired billet heaters Dr. Ing. h.c. F. Porsche AG Giesel Verlag GmbH · Postfach 120158 · D-30907 Isernhagen · www.alu-web.de – PVST H 13410 – Dt. Post AG – Entgelt bezahlt OFFICIAL INTERNATIONAL MEDIA PARTNER Hilfsmaßnahmen für energieintensive Betriebe in Vorbereitung Volume 85 · September 2009 International Journal for Industry, Research and Application 9 Linear testing. Testing head for linear testing. Helical testing. Ultrasonic testing equipment Leading technology in the aluminum casthouse. There are many benefits in one-stop shopping – even for industrial goods. Reliable, cooperative planning, specifications, which meet exactly your demands and individual service-packages to operate on first-class level throughout the whole lifetime of the plant – this can be realized by one of the most experienced suppliers: Hertwich Engineering. Major benefits Hertwich Engineering is dedicated to leading technology in the aluminum casthouse. We add value by designing integrated turnkey solutions. From melting and remelting to testing and packing. The results are convincing: highest quality of products at lowest cost-of-ownership. This has been proven by numerous plants all over the world. Ultrasonic testing equipment Linear testing for inspection of center cracks Helical testing for 100 % detection of metal volume - Designed to fulfil ASTM B594 - Inspection of billets to Class A, as required for automotive and aerospace industries - Angle Beam technique for 100 % fault finding Faulty logs can be back tracked to mold number of casting station Statistical data analysis helps to pinpoint reasons for defects and contributes to minimize scrap at the source MEETING your EXPECTATIONS HERTWICH ENGINEERING GMBH Weinbergerstrasse 6 5280 Braunau, Austria Phone: +43 (0) 7722 806-0 Fax: +43 (0) 7722 806-122 E-mail: info@hertwich.com Internet: www.hertwich.com editorial Volker Karow Chefredakteur Editor in Chief Aluminium für umweltbewusste Mobilität Aluminium for environmentally aware mobility ALUMINIUM · 9/2009 Die Automobilindustrie steckt weltweit in der Krise. Sie ist von Überkapazitäten geprägt und viele traditionsreiche Autobauer haben in den vergangenen Jahren zu wenig in innovative, von Leichtbau und Energie effizienz gekennzeichnete Fahrzeugund Motorenkonzepte investiert bzw. geforscht. Die Insolvenz von General Motors ist nur das sichtbarste Zeichen einer verfehlten Modellpolitik. Die Spuren der Krise werden auch auf der diesjährigen Internationalen Automobil-Ausstellung sichtbar sein, wenngleich sich die Branche selbstbewusst und mit zahlreichen Modellneuheiten präsentiert. Mit rund 700 Ausstellern bleibt die IAA deutlich hinter der Präsenz vor zwei Jahren zurück. Es sind vor allem die Zulie ferer, die, unter der Absatzkrise leidend, reihenweise auf eine Messeteilnahme in diesem Jahr verzichten. Der Verband der Automobilindus trie (VDA) als Ausrichter zeigt sich trotz des schwierigen wirtschaftli chen Umfeldes davon überzeugt, dass diese IAA ein Erfolg wird. VDA-Präsident Matthias Wissmann verspricht ein „beeindruckendes Innovationsfeuerwerk“ und „Antworten auf die Anforderungen von heute und die Herausforderungen von morgen“. Die weitere Optimierung der klassischen Antriebsarten – Clean Diesel und hoch aufladende Ottomotoren mit Direkteinspritzung – werde auf der IAA ebenso zu sehen sein wie die Fortschritte bei der Elektrifizierung des Automobils, vom Mild Hybrid bis zum Pkw mit reinem Elektroantrieb. Neben der weiteren Reduzierung des Verbrauchs und damit auch der CO2Emissionen stehen neuartige Assis tenzsysteme im Vordergrund, die das Autofahren noch sicherer und komfortabler machen. Bei alldem darf der Werkstoff Aluminium nicht vergessen werden. Das Leichtmetall hat sich längst seinen unverzichtbaren Platz im Automobil gesichert. Es trägt wesentlich dazu bei, die umweltpolitischen Ziele einer energieeffizienten und CO2-mindernden Mobilität zu realisieren. Das Special dieser Ausgabe zeugt davon, dass Aluminium als Guss-, Walz-, Strangpress- oder Schmiedeteil im Pkw eine feste Größe ist. The automobile industry is still in crisis worldwide. It is marked by excess capacities, and many automobile manufacturers, though rich in tradition, have invested or researched too little in innovative vehicles and engine concepts that embody lightweight construction and energy efficiency. The insolvency of General Motors is only the most easily visible sign of a policy model that has failed. Traces of the crisis are also evident at this year’s International Motor Show (IAA) in Frankfurt, Germany, even though the sector is presenting itself self-confidently and with numerous model innovations. With around 700 exhibitors, this IAA is lagging substantially behind the exhibitor count of two years ago. And of course, it is mainly the supplier industries, which have been drastically affected by the sales crisis, that have given up participation in this year’s fair in droves. The German Association of the Automotive Industry (VDA), as organiser of the event, seems convinced that despite the difficult economic environment this IAA will be a success. VDA President Matthias Wissmann promises “an impressive array of innovations” and “solutions for today’s needs and tomorrow’s challenges”. The further optimisation of conventional drive systems such as clean diesel and supercharged gasoline engines with direct injection will be on show at the IAA, as also will advances in automotive electrification, ranging from mild hybrids to all-electric cars. The focus will be on a consistent further reduction of fuel consumption and CO2 emissions, as well as on all-new assistance systems that make driving even safer and easier. In all this, the material aluminium should not be forgotten. The light metal has long secured for itself a key role in automotive engineering. It contributes substantially towards realising the environmental policy aims of energy-efficient and low-CO2 mobility. The Special section in this issue shows that aluminium, whether in the form of castings, rolled products, extrusions or forged components, has an established and important role to play in automobiles. i N H A lt editoriAl Aluminium für umweltbewusste Mobilität .................................. A Kt U e l l e S Personen, Unternehmen, Märkte, Produkte ................................ 6 WirtSCHAFt Englischsprachige Artikel: s. nebenstehendes Verzeichnis 14 Aluminiumpreise .............................................................. 10 Hilfsmaßnahmen für energieintensive Unternehmen in Vorbereitung ... 18 SPeCiAl: AlUMiNiUM iM AUtoMoBil Englischsprachige Artikel: s. nebenstehendes Verzeichnis Porsche Panamera – eine Synthese aus Sportlichkeit, Komfort und Effizienz ....................................... 20 BMW X1 – Premiumfahrzeug im Kompaktsegment .................... 21 KS Kolbenschmidt: Technologiepaket bei Ottokolben ausgebaut ... 22 Zylinderköpfe von Honsel für die neuen VW-Dieselmotoren ......... 26 20 Hochfeste Aluminium-Fahrwerksteile mit optimaler Topologie........ 4 t e CH N o lo G i e Englischsprachige Artikel: s. nebenstehendes Verzeichnis Kundenspezifische, energieoptimierte Wärmebehandlungsanlagen für Aluminium .............................. 7 Wärmebehandlungsanlagen für die Aluminiumindustrie ............... 40 Modernisierung von bestehenden gasbeheizten Bolzenerwärmungsanlagen ................................ 41 22 i N t e r N At i o N A l e B r A N C H e N N e W S ................... 47 reSeArCH Englischsprachige Artikel: s. nebenstehendes Verzeichnis V e r A N S tA lt U N G e N / d o K U M e N tAt i o N Englischsprachige Artikel: s. nebenstehendes Verzeichnis Veranstaltung: Schweißen & Schneiden, 14.-19. Sept. 2009 .......... 57 Patente ......................................................................... 58 Literaturservice ................................................................ 61 Impressum ..................................................................... 81 28 Vorschau........................................................................ 82 B e Z U G S Q U e l l e N V e r Z e i C H N i S ............................ 64 Der ALUMINIUM-Branchentreff des Giesel Verlags: www.alu-web.de 4 S t e l l e N A N G e B o t .................................................... 6 ALUMINIUM · 9/2009 CONTENTS EDITORIAL Aluminium for environmentally aware mobility ........................... 3 NEWS IN BRIEF People, companies, markets, products ..................................... 7 ECONOMICS The curse of globalisation – must we expect crises in the aluminium industry that are more abrupt in future? .............. 14 41 SPECIAL: AUTOMOTIVE Porsche Panamera – a unique combination of comfort, performance and efficiency .................................. 20 KS Kolbenschmidt: Gasoline engine piston technology packages expanded . . . . . . . . .................................... 22 Cylinder heads from Honsel for new VW diesel engines ............... 26 Aluminium in innovative light-weight car design ........................ 28 43 T E CH N O LO GY Heat-treatment equipment for the aluminium industry ................ 40 Upgrading of existing gas-fired billet heaters ............................ 41 ABB maintenance turns around plant critical equipment .............. 43 C O M PA N Y N E W S W O R L D W I D E Aluminium smelting industry . . . . . . . . . . . . ................................... 45 Bauxite and alumina activities . . . . . . . . . . .................................... 47 This issue contains an enclosure from GDA Gesamtverband der Aluminiumindustrie e. V. to which we draw your kind attention. Recycling and secondary smelting . . . . . .................................... 48 Aluminium semis . . . . . . . . . . . . . . . . . . . . . . . . . . .................................... 49 On the move. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................... 50 Inserenten dieser Ausgabe Suppliers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................... 51 List of advertisers Alro – new annealing furnace put into operation ...................... 51 Stellenangebot / Job advertisement 6 Insolvenzversteigerung Scheffler GmbH 8 RESEARCH On the dissolution of alumina in a low-melting electrolyte for aluminium production .......................... 52 E V E N T S / D O C U M E N TAT I O N ALUMINIUM CHINA 2009 exceedingly successful ....................... 57 Literature service . . . . . . . . . . . . . . . . . . . . . . . . . . .................................... 61 Imprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................................... 81 Preview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................... 82 S O U R C E O F S U P P LY L I S T I N G ............................... 64 ALUMINIUM · 9/2009 ABB Switzerland Ltd., Schweiz 84 Buss ChemTech AG, Schweiz 9 Astech Angewandte Sensortechnik GmbH 23 Coiltec Maschinenvertriebs GmbH 18 35 Drache Umwelttechnik GmbH Edimet SpA, Italy 15 Elpo GmbH 39 GoIndustry Dove Bid, USA 7 Hermann Gutmann Werke AG 27 Haarmann Holding GmbH 31 Hertwich Engineering GmbH, Österreich 2 Inotherm Industrieofenund Wärmetechnik GmbH 18, 27 Messe Essen GmbH 17 11 Reed Exhibitions Deutschland GmbH Sapa GmbH 19 Zhengzhou Zhongshi Cell 13 Technology Co., Ltd, China 5 Aktuelles Trimet und Atag gründen Joint Venture KSM Castings erweitert Aluminium-Fahrwerksgießerei Die Trimet Aluminium AG, Essen, und die KS Aluminium-Technologie, Neckarsulm, werden künftig im Aluminiumdruckguss zusammenarbeiten. Dazu wurde ein Joint Venture (KS Atag Trimet Guss GmbH) zur Herstellung von Zylinderkurbelgehäusen aus Aluminiumlegierungen gegründet, das von beiden Gesellschaften zu je 50 Prozent gehalten wird. Die Genehmigung des Ge meinschaftsunternehmens mit Sitz in Harzgerode (Sachsen-Anhalt) durch das Bundeskartellamt ist erfolgt. Die KS Atag Trimet Guss wird mit dem Schwerpunkt Automotive die Kompetenzen der Partner auf den Gebieten der Metallveredelung, der Gusstechnologie sowie des Rohmaterial- und Energiemanagements zusammenführen und so Synergiepotenziale aus allen Bereichen nutzen. Beide Partner führen ihre bestehenden Produk tionsstandorte weiter und bleiben auch künftig unter ihren eingeführten Produktnamen am Markt präsent. Das Joint Venture beschäftigt rund 50 Mitarbeiter. KSM Castings mit Sitz in Hildesheim errichtete in den Jahren 2001/02 am Standort Wernigerode eine der modernsten Aluminium-Fahrwerksgießereien in Europa und baute diese in der Folge weiter aus. Anfang Mai 2009 wurde eine zusätzliche Produktionshalle für jährlich drei Millionen Pumpengehäuse in Betrieb genommen. Im Juli dieses Jahres wurde der zweite Ausbau des Werkes abgeschlossen. Mit einer eigens für die Herstellung sicherheitsrelevanter Fahrwerksteile im Gegendruck-Kokillengussverfahren errichteten Fertigung für Porsche und VW baut KSM Castings damit auch in wirtschaftlich schwierigen Zeiten seinen Standort in Wernigerode weiter aus. KSM Castings beschäftigt aktuell mehr als 200 Mitarbeiter am Standort Wernigerode und befindet sich trotz der Krise in der Automobilindustrie dank mehrerer Neuaufträge weiterhin in einer Wachstumsphase. In den Ausbau des Werkes wurden circa 25 Mio. Euro investiert. Stellenanzeige Wir suchen den /die Verkaufs-Ingenieur /-in für den Bereich Aluminium Aufgabengebiet: – Technische Beratung und Betreuung der Kunden – Erarbeitung individueller Feuerfest-Lösungen – Erschließung neuer und erweiterter Produkt- und Marktpotentiale Tube des Jahres 2009 gekürt Auf dem diesjährigen Kongress in Istanbul feierte der europäische Verband der Tubenhersteller etma sein 50jähriges Bestehen. Auf mittlerweile 28 Jahre bringt es der Branchenwettbewerb „Tube des Jahres“, der erstmals 1981 durchgeführt wurde. Bei diesem Preis wählen sieben Experten aus dem etma-Mitgliederkreis die jeweils beste und innovativste Tube in den Kategorien Aluminium-, Laminat- und Kunststoff sowie Prototypen. Sie verfügen über ein abgeschlossenes Studium im Bereich Gießereitechnik, Schwerpunkt Aluminium, und haben idealerweise bereits Erfahrungen in der Aluminiumindustrie gesammelt. Wir erwarten Eigeninitiative, Durchsetzungskraft und Kreativität. Reisebereitschaft und die Freude am Verkaufen machen Sie zu einem/-r idealen Bewerber/-in für uns. Wir bieten ambitionierten Kandidaten eine nicht alltägliche Karrierechance in einem internationalen wachsenden Unternehmen mit sehr guten Entwicklungschancen. Bitte richten Sie Ihre Bewerbung unter Berücksichtigung der Chiffre-Nr AL-1759 an die Giesel Verlag GmbH, Postfach 12 01 58, 30907 Isernhagen. etma Da Sie in einem internationalen Umfeld arbeiten, sind gute Englischkenntnisse von Vorteil. Im Jubiläumsjahr 2009 erhielt bei den Aluminiumtuben das Produkt „Essensity Soft Permanent Colour Cream“ der Firma Schwarzkopf Professional die meisten Stimmen. Hergestellt wurde die Tube von Tubex Wasungen aus Deutschland. Sie wurde mit einem weißen Mattlack mit speziellem Haptikeffekt versehen und mit dem Computer-to-Plate-Verfahren in einem bewusst puristischen Design bedruckt. Die Kombination aus hochwertigem weißen Mattlack, den ins Auge fallenden grünen Grafikelementen und der auf das Druckbild abgestimmten Verschlussfarbe geben der Tube ihre extravagante Note. ALUMINIUM · 9/2009 News in brief Economic conditions hit alufoil production Zenergy to supply EAFA Given current economic conditions figures for the first half of 2009 show a 13 percent fall in the European alufoil Alufoil tray production to 371,400 tonnes, compared to the corresponding period a year earlier. Thicker alufoil gauges, used mainly for the manufacture of semi-rigid foil trays and technical applications for the automotive and building sectors were the worst affected falling by 26 percent, while thinner gauges used mainly in flexible packaging and household foil were better off declining by 7 percent. Despite this slump in production, representatives of the alufoil industry are looking ahead more optimistically than some months ago. “It is not all bad news for the alufoil sector as the one-off effect of stock reduction along the supply chain seems to be over”, says Stefan Glimm, Executive Director of the European Aluminium Foil Association (EAFA). “Data for the last two months show a bottoming out in particular for thicker gauges and exports.” Aluminium foil is an essential part of many flexible packaging and container applications. Other uses include automotive and heat exchange components, insulation material and many other industrial applications. Rusal agrees terms of debt restructuring UC Rusal has agreed the principal terms of a long-term debt restructuring with the Coordinating Committee which represents more than 70 international lenders. According to the agreement, Rusal will settle its debt to international banks within seven years. The restructuring will be split into two phases. During the first period of four years, Rusal will focus on maximising efficiencies across the business and taking full advantage of the recovery in demand. Rusal has periodical debt reduction targets in place and will seek to repay a total of five billion US-dollars of debt owed to all lenders by the fourth quarter 2013. During this period principal repayments will be made on a ‘pay-if-you-can’ basis based on the performance of the business, thereby ensuring the full sustainability and integrity of its operations. Interest will be paid partly in cash, at a rate ranging from Libor +1.75% to 3.5%, with the remaining portion to be capitalised. Furthermore, in order to preserve cash for lenders and the business, no dividends will be paid until the net debt to Ebitda ratio reaches 3x. The second phase of the restructuring will involve the refinancing of the remaining debt by existing lenders for an additional three years. Such refinancing will be at Rusal’s option, as it may opt for an alternative refinancing of the debt on market terms should this prove more favourable to the company. ALUMINIUM · 9/2009 innovative induction heater to Sapa Profili Zenergy Power has received a further commercial order for a low-energy, high-productivity induction heater. The facility, which is based on Zenergy’s superconductor technology, has been purchased by the Italian subsidiary of Sapa, Sapa Profili Srl. The induction heater ordered by Sapa will be used as a replacement for a conventional gas-fired heating furnace currently installed at its aluminium plant located in Bolzano, Northern Italy. It is anticipated that the replacement of the plant’s conventional equipment with Zenergy’s superconductor-based heater will lead to improved operational efficiency and thus enhance the plant’s overall commercial potential. In particular, Sapa will exploit the superconducting heater’s processing versatility to enable the heating of several different types of aluminium alloy at the same plant. By Order of a Secured Creditor (2) Complete Aluminum Extrusion Facilities of Signature Aluminum, Inc. Live & Webcast Auction Sale Date: Thursday, 24 th September 2009 at 10:00 AM CDT Auction Locations: Temroc Metals, 4375 Willow Drive, Hamel (Minneapolis), MN 55340 (Live & Webcast) Atlantic Aluminum, 18631 MC Highway 71, Lumber Bridge (Fayetteville), NC 28357 (Webcast only, to be sold from MN location) Inspection: Hamel - Wednesday, 23rd September 2009 from 10:00 AM to 4:00 PM CDT or by appointment; Lumber Bridge – By Appointment Only Assets include: • 5-Axis 6-Sided CNC Profile Machining Center: Handtmann PBZ-NT-800 A.S. (2002) • 4-Axis CNC Vertical Machining Centers: (7) Haas; Fadal; Chiron • Aluminum Extrusion Presses, Billet Ovens, & Aging Ovens: (2) Sutton 1650-Ton; Wean 2250-Ton; Lombard 1250-Ton • Hydraulic Press Brakes: (6) Accurpress 150, 130, 100 & 60-Ton; Cincinnati 135-Ton • CMMs: (3) Brown & Sharpe (Late as 2002); Numerex • Toolroom Equipment: Mills; Lathes; Presses; Welding Systems; Cutoff Saws; Shot Blast & Inspection Equipment • Paint Line: Electrostatic • Material Handling & Plant Support Equipment: Bridge Cranes; Forklifts; Air Compressors; Parts; Spares; Office Equipment & Much More Also available as an entirety: Complete billet casting and extrusion facility with 4 press lines located in Greenville, PA. For further information, please contact: BRYAN GOODMAN Tel: +1 410 654 7500 ext. 235 Email: bryan.goodman@go-dove.com *Virtual Brochure is Available on the Website For more information and terms of sale, please visit www.Go-Dove.com Aktuelles Aluminium im Automobil Gerhardi nimmt neue Strangpresse in Betrieb Aluminium ist ein unverzichtbarer Werkstoff im Automobil geworden: Gussteile für Kurbelgehäuse und als Strukturbauteile in der Karosserie sind heute Stand der Technik. Aber auch Halbzeuge und Schmiedeteile finden in Fahrzeugen zunehmend Anwendung. Vor diesem Hintergrund veranstaltet der Gesamtverband der Aluminiumindustrie (GDA), Düsseldorf, am 23./24. November 2009 einen europäischen Kongress zum Thema „Aluminium im Automobil – Werkstoff für Leichtbau und Design“. Auf dem Kongress werden sowohl die unterschiedlichen Einsatzmöglichkeiten von Aluminium, die derzeit im Pkw verwendet werden, vorgestellt und über mögliche Weiterentwicklungen diskutiert, die die Fahrzeuge der Zukunft noch leichter und energieeffizienter werden lassen. Hochkarätige Vertreter aus der Automobil- und Aluminiumindustrie sowie von Hochschulen werden innovative aktuelle und visionäre Lösungen präsentieren. Programminfos und Anmeldeformulare unter www.aluminium-congress.com. Im Beisein zahlreicher Gäste aus dem Kunden- und Liefe rantenkreis, von politischen Vertretern der Landesregierung NRW, des Märkischen Kreises und der Stadt Lüdenscheid, des Ausrüsters GIA und der Industrie- und Handelskammer zu Hagen und, natürlich, des Gesellschafterkreises hat Gerhardi Alutechnik GmbH & Co. KG am 20. August 2009 seine neue 33-MN-Strangpresse in Betrieb genommen. Mit der von dem spanischen Ausrüster GIA gelieferten Presse will Gerhardi seine Profilproduktion bis 2013 auf rund 13.000 Tonnen verdoppeln. Der NRW-Landesminister für Arbeit, Gesundheit und Soziales, Karl-Josef Laumann, begrüßte das „klare Ja“ zum Standort Lüdenscheid und die mutige Investition in die Zukunft. Geschäftsführer Christoph Deiters machte deutlich: „Die neue Strangpresse braucht Futter und ich möchte Sie, die Kunden, bitten, sie mit Aufträgen zu füttern.“ Betriebsrat Martin Eickbaum ergänzte in seinem Grußwort: „Und wenn Sie, die Gäste, die Anlage gleich sehen – ich kann Ihnen sagen: Das ist schon ein Hammer.“ Europäischer Aluminium Kongress, 23./24. Nov. ‘09 Kontakt: Anncathrin Wener (GDA), Tel: 0211 4796 282, anncathrin.wener@aluinfo.de INSOLVENZVERSTEIGERUNG Scheffler GmbH Fotos: ALUMINIUM Dieselstraße 109 – 111, 33442 Herzebrock-Clarholz Di., 13. Oktober 2009, 10.00 Uhr 12 Aluminium-Druckgussmaschinen, z.B. Frech DAK 720-71 Zuhaltekraft 8.000 kN Bj. 04, 2x DAK 580-62 Zuhaltekraft 6.400 kN Bj. 99/01, 3x DAK 450-40RC/54 Zuhaltekraft 5.000 kN Bj. 01, DSD H 700 R Zuhaltekraft 7.000 kN Bj. 03, 6 4-SäulenHydraulik-Entgratpressen Reis z.B. SEP 9-30 Dialog, CLP30D, SEP 9-100W, Presskraft 300-1.000 kN bis Bj. 99, Aluminium Schachtschmelzofen Striko MH 800/500 oel Etamax II Schmelzleistung 500 kg/h max. Betriebstemperatur 750 °C Bj. 91, Durchlauf-Gleitschliffanlage Trowal/Schneyder m. Trockenkanal, 3 Rund-Gleitschliffanlagen Rössler R 300 A / RM 600, Wasseraufbereitungsanlage Rössler ZH 800 HA Turbo-Floc Bj. 00, kompl. Werkzeugbau mit CNC-Bearbeitungszentren, CNC-Drehmaschine Gildemeister, Werkzeugfräsmaschinen, Bohrmaschinen u.v.a.m. Offizielle Inbetriebnahme der neuen Gerhardi-Strangpresse durch den NRW-Arbeitsminister Karl-Josef Laumann (2.v.l.). Im Vordergrund Geschäftsführer Christoph Deiters sowie Stephanie Hueck aus dem Gesellschafterkreis von Gerhardi Alutechnik. Besichtigung: Mo., 12. Oktober 2009 von 12.00 – 17.00 Uhr sowie am Versteigerungstag von 08.00 – 09.45 Uhr Zahlung: sofort bar, LZB-Scheck o. bankbestätigtem V-Scheck. Ausgabe der Bieterkarte nur gegen eine Kaution von € 100,–. Ausführlicher Katalog unter www.industrie-rat.de sowie Faxabruf 01805 / 77 69 66 07 Gesamtansicht der 33-MN-Strangpresse ALUMINIUM · 9/2009 News in brief Aluminium Automotive Applications KAP gets cheaper power under MoU Aluminium has become an indispensable material in automobiles: today, castings for engine blocks, cylinder heads and gearbox casings as well as structural components in the body area are state of the art. But semi-finished products in the form of sheet, extruded profiles and forgings are also increasingly finding use in vehicles: for example, as body sheet and crashrelevant components such as bumper crossbeams or longitudinal chassis beams. Against this background the German trade association GDA, Düsseldorf, is organising the European Aluminium Congress titled ‘Aluminium Automotive Applications – Material for Lightweight Construction and Struggling Kombinat Aluminijuma Podgorica (KAP), owned by heavily indebted Oleg Deripaska’s EN+ Group, acquired cheaper energy under an MoU with the Montenegrin government. The future is looking more positive for the aluminium smelter under the recently signed deal, which enables KAP to buy power at a cheaper rate of 20.44 euros (USD28.66) MWh while the LME price is under USD1,700 per tonne. The Montenegrin government sold KAP to EN+ Group in June 2005. In return the government would provide KAP with 135m euros in loan guarantees which would be used to pay its debts and go towards working capital at the plant. paw European Aluminium Congress, 23 / 24 Nov 2009, Düsseldorf, Germany Design’ from 23 to 24 November 2009. At the congress, the various applications of aluminium currently being used in motor cars will be presented. Moreover, top-class representatives from the car and aluminium industry and from universities will present and discuss currently used and far-sighted innovative solutions. Further information as well as various registration forms can be found on the special congress website at www.aluminium-congress.com. Contact: Anncathrin Wener, GDA Tel: +49 211 4796 282 anncathrin.wener@aluinfo.de Aluminium jumps over USD2,000 hurdle A lack of aluminium combined with stronger demand from carmakers has pushed up prices of the metal, even though stocks in LME warehouses are at record highs. Aluminium breached the USD1,800/t threshold in July, a level last seen in November 2008, and even jumped over the USD2,000/ t hurdle in early August. The idea of shortages may seem odd at first glance, but a close inspection reveals that a lot of the 4.5m tonnes of aluminium stored in LME warehouses is tied up in deals to release cash for producers. That demand could come from the car industry, which has help from government stimuli to junk old cars for new cars, and is gradually reviving after months of collapsing sales. Lack of material is already being reflected in premiums paid for physical material over futures contracts. In June, Japanese primary aluminium consumers agreed to a 30 percent hike in premiums for the current quarter. In Europe, the premium has risen to USD65 a tonne compared with USD10 in March. About 70 percent of the stocks in LME warehouses (3.15m tonnes) is thought to be tied up in financing deals until May 2010. paw SUCCESS IS BASED ON COLLABORATION USE BCT TECHNOLOGY TO INCREASE Profit Productivity Reliability Flexibility We maintain proactive cooperation to fulfil your requirements in order to build your project successfully. We are your responsible partner with the realisation of entire anode plants from raw material to formed anodes, as well as the supply of key equipment. We are committed to excellence to ensure you a reliable and efficient plant performance. Whenever, wherever supported by our service team. Y O U R PA R T N E R F O R T E C H N O L O G I E S ALUMINIUM · 9/2009 BCT Preheater BCT Paste Kneader BCT Cooler Anode Press Green Anode Plant Pitch Melting Plant Coke Processing Plant HTM Plant BUSS ChemTech AG Hohenrainstrasse 10, CH-4133 Pratteln 1/Schweiz Tel. +41 (0) 618 256 462, Fax +41 (0) 618 256 737 info @ buss-ct.com www.buss-ct.com w i r t s c h af t W 10 ALUMINIUM · 9/2009 ALUMINIUM 2010 8 th World Trade Fair & Conference Weltweit wichtigster Treffpunkt für Aluminium Innovationen | Produkte | Technologien Ideen | Anwendungen | Networking 14. - 16. September, Messe Essen www.aluminium-messe.com Organiser: Institutional Patron: Partner: wirtsChAFt Produktionsdaten der deutschen Aluminiumindustrie Primäraluminium Sekundäraluminium Walzprodukte > 0,2 mm Produktion (in 1.000 t) +/in % * +/in % * Press- & Ziehprodukte** Produktion (in 1.000 t) +/in % * Produktion (in 1.000 t) Produktion (in 1.000 t) +/in % * Jun 50,8 9,2 68,4 -8,2 164,2 Jul 52,1 7,0 62,5 -14,4 166,7 -0,3 53,6 3,7 -0,2 53,5 0,4 Aug 51,8 5,8 49,4 -24,6 147,2 -10,6 49,5 -3,9 Sep 49,9 6,2 61,9 -13,7 157,7 0,6 51,6 2,8 Okt 51,2 2,0 57,9 -23,9 152,7 -10,6 50,4 -9,0 Nov 47,2 -5,0 48,1 -35,8 123,4 -20,8 40,4 -24,8 Dez 44,8 -14,1 28,8 -49,7 90,7 -23,8 23,2 -25,0 Jan 40,6 -23,1 40,3 -43,3 108,6 -29,6 34,4 -33,2 Feb 33,9 -31,3 36,7 -47,0 117,1 -26,5 31,8 -40,1 Mrz 27,5 -47,7 45,6 -29,0 133,2 -19,9 33,0 -31,9 Apr 17,5 -65,5 40,3 -45,6 121,3 -30,8 33,1 -40,1 Mai 17,5 -66,8 45,9 -29,7 120,0 -24,6 33,6 -29,1 Jun 18,2 -64,2 48,8 -28,7 135,8 -17,3 37,5 -30,1 * gegenüber dem Vorjahresmonat, ** Stangen, Profile, Rohre; Mitteilung des Gesamtverbandes der Aluminiumindustrie (GDA), Düsseldorf Primäraluminium walzprodukte > 0,2 mm 12 sekundäraluminium Press- und Ziehprodukte ALUMINIUM · 9/2009 CELL TECHNOLOGY economics The curse of globalisation – must we expect crises in the aluminium industry that are more abrupt in future? B.G. Rüttimann, Singen; U.P. Fischer, Zollikerberg Rio Tinto large extent, local and in part closed. Unemployment was practically unheard of. By the 1980s at the latest, this imbalance between supply and demand had shifted in the developed countries and no longer favoured producers; market segmentation and response to specific customer demands were called for in order to counter increased competition. The end of the Cold War and the opening up of eastern Europe brought new opportunities and risks after 1990: The increasing disintegration of value chains and co-operation that has its branches worldwide obstruct the view of real aggregate demand … not only was the market expanded by over 100 Economic cycles are experiencwhole of 2008 will be ten percent million potential new customers, there ing more frequent and more proless than expectations? Why didn’t was additional competitive pressure nounced fluctuations in all sectors. Arcelor Mittal order a single tonne of with very favourable production costs The economic system is swinging iron ore from Vale between October in the eastern European countries. from massive over-demand direct2008 and March 2009? Why is Dow The globalisation in the West that took ly into a severe sales crisis. MoreChemicals temporarily closing a third place at the same time and allowed over, even experts appear to be of all of its production facilities? Why companies to pursue new markets in surprised by such extreme swings. are Rieter and GF cutting shipments the rapidly growing economies made Are managers blind? No, they are of their products to the car industry it possible for companies to continue merely looking at the wrong types by 50 percent practically overnight? with their growth-oriented business of demand, namely the local deWhy are Chinese ports suddenly full strategies. The paradigm of unlimmand that has been made visible of iron ore carriers and American ited growth was still embedded in the for them, which today differs from ports full to overflowing with vehicles minds of managers – also urged on by the real aggregate demand sigfrom BMW and Mercedes? In order short term oriented investors luring nificantly more than it did in the to answer these questions one has to the managers with excessive bonuses past. The reason for this lies in the analyse more closely the global value (and salaries). These compensation increasing disintegration of value chains in these sectors and above all packages are very strongly dependchains and globally networked cothe changes they have undergone as a ent on the size of the companies. In operation. These trends obstruct result of globalisation since the beginthe meantime, there have been fundathe view of the real aggregate ning of the 1990s. mental changes in the structure of the demand. Essentially each stage of value chain, abetted not least by low industry concentrates on its direct transport costs and advanced means The strategy of unlimited growth competitors, customers or suppliof telecommunication: a network ers and not on the value chain as of suppliers and sub-suppliers with Starting in the 1960s, our industrial a whole. This is a strategic error. branches worldwide is now striving system has experienced continual – to a large extent in an uncoordinated growth. Demand for all types of conmanner – to achieve a supposed cost sumer goods far exceeded supply; Why does the mining giant Rio Tinto optimum within the value chain. during this period, production and only discover in November 2008 supply was easy. Markets were, to a that its sales of raw materials for the There began a parallel race to cap- 14 ALUMINIUM · 9/2009 ECONOMICS ruined healthy balance sheets – we are now seeing the results. A lack of farsightedness and inadequate systemic thinking? Not only that but also a sizeable portion of naivety and the lack of courage to prepare a Plan B in case there is a period of bad weather and to present it to the shareholders. But this is precisely what responsible management is all about. ture the new markets (market and cost leadership) while at the same time securing existing markets – directly by enormous investments in increasing capacity and indirectly by optimising capacity by means of mergers and takeovers, and spurred on by the megalomania of the managers. This strategy aimed at unlimited growth was financed by readily available liquidity and low interest rates. The target markets both for expansion of production capacity and increased turnover were mostly the upcoming BRIC countries, but in addition to Russia there were also other eastern European countries with favourable labour costs. Unfortunately, all competitors had the same idea, that is to say the same business model. The managers appear not to want to think about where this might lead. A simple calculation of the additional overall capacities and the real growth would reveal the resultant imbalance in the market. Furthermore, the company takeovers and mergers have not only overstrained the organisations but also completely …making it particularly difficult for industries detached from the end markets … of overcapacities, higher fixed costs and lower marginal costs. The effect of the fall in prices is thus significantly more serious than the reduced quantity because it brings the potential competitiveness of the company into question – there are indications ➝ EXTRUSION - DIECASTING - FOUNDRY - ROLLING - FINISHING - MACHINING - WELDING - RECYCLING metef-foundeq adnord.it What happens now when there is a small fall in demand? Distracted by increasing turnover and blinded by extrapolated business plans based on wrong assumptions, the managers suddenly and astonishingly discover that, oops, they are producing too much – supply is significantly greater than the real demand. It is interesting that this realisation was first triggered by the American subprime crisis and the overheated economy subsequently collapsed like a house of cards. And it gets even worse because prices also go into free fall as a result Vimetco The great disenchantment 14-17 April 2010 Garda Exhibition Centre Montichiari Brescia Italy no. 1 metal expo in the world INTERNATIONAL ALUMINIUM EXHIBITION 8th EDITION INTERNATIONAL FOUNDRY EQUIPMENT EXHIBITION 5th EDITION Two events one great international appointment in constant growth: a unique opportunity to get together and do business Organizing Secretariat: EDIMET SPA, via Brescia 117 25018 Montichiari (BS) Italy Ph. +39 030 9981045 Fax +39 030 9981055 info@metef.com ALUMINIUM · 9/2009 Supporters: AIB - AIFM - AIM - AITAL - AMAFOND - ASSOFOND ASSOMET - CCIAA BS - CEMAFON - CIAL - EAA - ESTAL FACE - FEDERFINITURA - IIS - OEA - QUALITAL - UNCSAAL www.metef.com 15 economics And nothing learned…? If we fail to learn from this, we can paraphrase German dramatist Bertolt 16 Brecht and say, “And when the whole shebang is over, it will start from the beginning again.” As soon as the pipeline of intermediate stock is empty, the aggregate demand will again work its way along the value chain via the components to the semis and finally through to the raw materials suppliers. The pipeline is very long so considerable lead times are necessary before material reaches the final seller. That is why we are already hearing cries of “Can’t you supply it tomorrow? Where are the goods, I need them immediately?” reverberating today ... and have not learned anything. There are unpleasant forms of feedback from dynamic systems that we gladly ignore. Actually, this phenomenon is known as the Forrester–Burbidge effect and was already being modelled 40 years ago on a small scale (using simple value chains). The time it takes to pass warehouse that is on the move. If we also take into account the increased investment activities on a global scale for installing additional production capacities, one recognises the dangerous multiplier again, but on a large scale. The throughput times for investments to expand capacity and open up markets – from the instant a decision is made, via the planning through to commissioning – is measured on a timescale of years. Whether the new capacities come on stream when the economic cycle is on a downward slope instead of on an upward one is to a large extent random. It is paradoxical that the decision to create new capacities is usually based on the maximum amplitude of the swing, which far exceeds the aggregate demand. The consequence is expensive overcapacity, which in the worst case is subsidised with taxpay- Norsk Hydro of trouble ahead. The current crisis is far more pronounced than the consequences of the dotcom bubble bursting in 2000. What has happened in the past few months is a consequence of the widely branched global value chain. The supposedly strong increase in turnover is mainly due to an ever-longer ‘pipeline’ (see also: Dynamics of the ‘pipeline filling’ effect in the aluminium semis industry, ALUMINIUM, 5/2001, p. 336ff). This building up of an intermediate stock, which was even strongly supported by increasing prices for raw materials, came to an abrupt end and was suddenly replaced by destocking. Thus as the aggregate demand fell, the producing companies were immediately affected – and the more so the further they were from the end market because the downstream demand was immediately met by the well-filled ‘pipeline’. In such a situation, an attempt is also made to compensate for liquidity losses resulting from reduced operative income by further cutbacks in stocks. In the present crisis, this phenomenon has increased drastically as a result of the financing of the net working capital becoming ever more difficult or even impossible because of the restrictions on giving credit. If the fall in production is unduly large compared with a company’s fixed costs, restructuring and redundancies are inevitable. If the abrupt cut-back in production resulting from the emptying of the ‘supply chain’ is also superimposed on possible interest and capital repayments for short-sighted purchases of companies, it is no longer possible to rule out bankruptcies. And all of this because one has lost sight along the value chain of the end market. The question as to whether state aid and demand-stimulating spending programmes should be carried out at the taxpayer’s expense is another problem in the making. …to react in good time to imbalances in the real economy through the production stage means the effects on the stock quantities are limited to something of the order of several weeks or months by. Supposedly skilful negotiating on the part of the purchaser as a result of large quantity discounts exaggerates this effect still further. Everyone suboptimises his area and thus even damages the others by thinking lean. On top of the globalisation effects of a broadly branched value chain (which benefits from cheap production locations in far away places) there are the long transport times, in other words a ers’ money, and later on has to be reorganised again using taxpayers’ money. The destruction of vertically integrated industrial concerns that can actually see the end market and their replacement by companies specialising in a single stage of the value chain, mostly accompanied by horizontal mergers, is particularly apparent in mature industries (see also: Which globalisation for the aluminium industry?, ALUMINIUM, Part I in 12/2008, p. 16ff, Part II in 3/2008, p. 16ff). The prospects have probably not improved. ALUMINIUM · 9/2009 ECONOMICS What can be done? The main problem is the distorted perception of the actual aggregate demand of the individual stages of the value chain. The momentum of the value chain, which is influenced by systemic feedback not directly linked to the actual aggregate demand, dominates more and more the further one gets from the end market. Three major, interrelated approaches to supply-chain management are necessary: • Firstly, a shortening of the value chain by means of integration using an exchange of information and a reduction in the throughput time using lean techniques. In general, the lean approach, which means eliminating every possible source of wastage, will become even more important in future. The result will be a smaller amplitude with faster reaction time. • Secondly, the reduced amplitude will allow better planning of the necessary production capacity, which is based on the real aggregate demand. This will not eliminate the expansion of overcapacities but it will at least reduce it. • Thirdly, taking all value chains into account with which one is in competition, instead of only one’s own stage. This applies to existing capacities as well as to planned extensions. In addition, real-economy planning is necessary in order to avoid the serious socio-economic consequences that we are currently experiencing. Now this is consistent with the ideal world we know from theoretical books. In practice, this means that the modelling of scenarios should not remain an academic exercise and supervisory boards should insist on planning based facts; some shareholders (true company owners with social responsibility) and the employees will be grateful. The other shareholders (pure speculators) on the other hand will probably view the current crisis more as an opportunity to again get involved in the stock exchange in a big way. New opportunity for the one and possible unemployment for the other, who can actually do nothing for the mistakes of managers. Authors Bruno G. Rüttimann, Dr. Ing. MBA, studied at the Polytechnic Institute in Milan and the Bocconi School of Economics. As a Master Black Belt in Lean Six Sigma he is introducing Continuous Improvement techniques at Alcan Engineered Products. He is the author of Modeling Economic Globalization, Monsenstein & Vannerdat, 2006. Urs P. Fischer, lic. rer. pol, studied Economics at the University of Bern. He worked for many years in various financial positions and as business unit president at Alcan/Alusuisse and is now an advisor to the managements of international groups. He is the owner of the management consultancy firm Lean Solution. ALUMINIUM · 9/2009 ?d^cjh# :HH:CL:A9>C<H=DL &) Ä &.H:EI#'%%.!<:GB6CN DkZg&!%%%^ciZgcVi^dcVaZm]^W^idghl^aaWZegZhZci^c\ i]Z^g^ccdkVi^dch[gdbVaaÒZaYhd[_d^c^c\iZX]cdad\n# :meZg^ZcXZXadhZ"jei]ZldgaY^ccdkVi^dch^cbdYZgc _d^c^c\egdXZhhZhVcY^cXjii^c\VcYhjg[VX^c\[dg VeeVgVijhVcYiVc`XdchigjXi^dc!Wg^Y\Z"Wj^aY^c\! kZ]^XaZXdchigjXi^dc!i]ZVZgdheVXZ^cYjhign!d[[h]dgZ iZX]cdad\n!e^eZa^cZXdchigjXi^dc!gV^akZ]^XaZ XdchigjXi^dcVcYh]^e"Wj^aY^c\# NDJG7G6C8=>HB::I>C<>C:HH:C>C'%%.# 7:I=:G: B:HH::HH:C<bW= IZa# ).%'%&"(&%&"((. k^h^idg5ZhhZc"lZaY^c\#Xdb lll#ZhhZc"lZaY^c\#Xdb W I R T SC H A F T Seit Jahren beklagt die deutsche NE-Metallindustrie die hohen heimischen Strompreise und verweist darauf, dass die europäischen Wettbewerber mit günstigen Industriestrompreisen versorgt werden. Mehr als einmal ist von führenden Branchen- und Unternehmensvertretern darauf hingewiesen worden, dass die energieintensiven Betriebe diese Kostennachteile auf Dauer nicht tragen können. Inzwischen scheint auch in Berlin und Brüssel die Einsicht zu wachsen, dass dieser Entwicklung entgegengesteuert werden muss. Mit kurz-, mittelund langfristigen Maßnahmen soll die Position der energieintensiven Betriebe in Deutschland nun gestärkt werden. Heinz-Peter Schlüter, Inhaber und Aufsichtsratsvorsitzender der Trimet Aluminium AG zeigte sich in einem Gespräch mit Journalisten am Hüttenstandort Essen erfreut darüber, dass die Bundesregierung konkrete Schritte eingeleitet hat, um den Erhalt der klimaschonend produzierenden Aluminiumhütten in Deutschland zu sichern. Der dazu aufgelegte drei gliedrige Maßnahmenplan wurde vom energiepolitischen Sprecher der SPD-Bundestagsfraktion Rolf Hempelmann erläutert, der das laufende Verfahren wesentlich vorangetrieben und mit gestaltet hat. Der Plan umfasst eine • Soforthilfe für 2009 über einen Sonderfonds im Konjunkturpaket 2 • Überbrückungslösung für die Jahre 2010 bis 2012 Planung, Konstruktion und Ausführung von Industrieofenanlagen Konstantinstraße 1a 41238 Mönchengladbach Telefon Telefax E-mail Internet 18 +49 (0) 2166 / 98 79 90 +49 (0) 2166 / 98 79 96 info@inotherm-gmbh.de www.inotherm-gmbh.de Jürgen Clemens Hilfsmaßnahmen für energieintensive Betriebe in Vorbereitung Nehmen zu den geplanten Hilfsmaßnahmen für energieintensive Unternehmen Stellung, v.l.n.r.: Heinz-Peter Schlüter, Rolf Hempelmann (MdB), Heribert Hauck • Befreiung der stromintensiven Unternehmen von den CO2-Kosten im Strom im Rahmen der Emissionshandelsrichtlinie für die 3. Handelsperiode ab 2013. Zur Stützung der stromintensiven Unternehmen der NE-Metallproduk tion hat die Bundesregierung für das zweite Halbjahr 2009 einen Förderbetrag in Höhe von 40 Mio. Euro bereitgestellt. Das Bundeswirtschaftsministerium hat eine Richtlinie zu dieser Fördermaßnahme erarbeitet, die Ende Juli zur Notifizierung nach Brüssel ging. Hempelmann zeigte sich überzeugt, dass Brüssel dieser Regelung zustimmen wird. Bemessungsgrundlage für die Hilfsgelder ist der für die Elektrolyse benötigte Strom des dem Antragsmonat jeweils vorvergangenen Monats. Dies kompensiert circa die Hälfte der CO2-Kosten im Strom. Bei der Trimet schlugen diese Kosten im letzten Geschäftsjahr mit insgesamt 33 Mio. Euro zu Buche, das Unternehmen erhofft sich daher rund 16,5 Mio. Euro aus dem Fonds. Als Überbrückungslösung bis 2012 wird eine Vergütung abschaltbarer Leistung zur Sicherung der Netzstabilität angestrebt. Hierzu wurde eine Studie in Auftrag gegeben, die die technisch-wirtschaftlichen sowie rechtlichen Rahmenbedingungen zur Umsetzung dieser Lösung untersucht und substanziiert. Alternativ bzw. ergänzend hierzu hat die Bundesregierung die Fortsetzung der Förderung über Haushaltsmittel für den Zeitraum 2010 bis 2012 zugesagt. Heribert Hauck, Leiter des Trimet-Ressorts Energiewirtschaft, verwies darauf, dass Aluminiumhütten durch die gleichmäßige Abnahme von Grundlaststrom wesentlich zur Netzstabilität beitragen und den Netzbetreibern auf diese Weise die Vorhaltung teurer Regelenergie ersparen. Eine Ausgleichszahlung dafür erfolge jedoch nicht, sodass heute allein die Stromkonzerne von den so vermiedenen Kosten profitierten. Darüber hinaus wurde im Dezember 2008 in Brüssel die Emissionshandelsrichtlinie 3 beschlossen, die für stromintensive Unternehmen, die dem sogenannten Carbon-LeakageRisiko unterliegen, eine Befreiung von den direkten, aber auch indirekten, We purchase and supply: n Rolling mills cold/hot n Roll grinding machines n Continuous casters n Levellers/straighteners n Drawing machines n Slitting lines n Cut-to-length lines n Coilers n Coil carriages n Rollformers n Tube welding machines n Extrusion presses n Joining presses n Packing lines for strips Please ask for our sales list! COILTEC Maschinenvertriebs GmbH · Silberkaute 4 · 57258 Freudenberg Phone +49 (0) 2734/271190 · Fax +49 (0) 2734/271195 www.coiltec.de · email: info@coiltec.de ALUMINIUM · 9/2009 w i rt s c haft Zeithorizont benötige. Dies gelte im Strom eingepreisten CO2-Kosten Trimet fährt Öfen wieder hoch besonders mit Blick auf die Kunden erlaubt. Die Modalitäten zur Befreiaus der Automobilindustrie, die langung insbesondere von den indirekten Angesichts einer inzwischen leicht fristige Liefer- und Preisgarantien bei CO2-Kosten im Strom müssen jedoch erhöhten Nachfrage gegenüber dem der Abnahme von Aluminiumprodrastischen Nachfrageeinbruch im noch präzisiert und in nationales dukten verlangten. Die könne Trimet Januar / Februar dieses Jahres und geRecht umgesetzt werden, damit diese aber nur abgeben, „wenn wir selbst Möglichkeit zu einer belastbaren Plastiegener Aluminiumpreise seit dem längerfristige Planungssicherheit hanungsgrundlage wird. Tiefststand im März fährt Trimet seiben. Nota bene: Planungssicherheit Schlüter und Hauck betonten, ne Produktion von Hüttenaluminium in der Herstellung von Aluminium dass eine vollständige Befreiung von am Standort Essen wieder hoch. „Wir ist untrennbar verbunden mit Pladen im Strompreis nachgewiesenen strengen uns an, dass wir im ersten nungssicherheit in der bezahlbaren CO2-Kosten notwendig sei. Beide Quartal 2010 wieder voll produzieBeschaffung des Rohstoffes Strom“, ren“, sagte Schlüter. verwiesen darauf, dass die Preisbilsagte Schlüter. dung bei Strom nach der sogenann■ ten Merit Order erfolgt, das heißt nach dem letzten, teuren Kraftwerk, das für ein schnelles, flexibles Angebot in der Spitzenlast sorgt. Unternehmen wie Trimet brauchten als Grundlastabneh mer jedoch keine derartige Flexibilität und seien somit auch nicht an den damit verbundenen höheren Kosten zu beteiligen. Industriestrompreise wie in europäischen Nachbarländern nähmen WE MAKE SURE THAT FUTURE PROSPECTS LOOK BRIGHT. dagegen Rücksicht WITH SOLUTIONS FOR EVERY STANDARD. auf eine Grundlast abnahme. Eine „fla che“ Stromabnahme, verbunden mit dem möglichen Verzicht auf „primäre As the market leader for alumi- is you need and where you need it. Regelreserve“ und nium profiles Sapa means more Together with market knowledge die Unterstützung than customized solutions: we also based on many years’ experience der Netzstabilität supply standard products with this makes us a strong partner „rechtfertigen subwhich you can work successfully with whom you can look calmly stanziell Industrielong term. As a group that ope- into the future. For further informastrompreise bzw. rates worldwide we react quickly tion go to www.sapagroup.com/ Preise mit Sonderand flexibly, regardless of what it europeantrading konditionen“ auch für die heimischen energieintensi ven Betriebe, so Schlüter. Er betonte, dass Trimet wie alle Sapa GmbH Industriebetriebe European Trading Business dringend Planungssicherheit über einen längerfristigen ALUMINIUM · 9/2009 19 A L U M I N I U M im A u t o m o b il Porsche Panamera – eine Synthese aus Sportlichkeit, Komfort und Effizienz Bereits im April 2009 ist im Porsche-Werk Leipzig die Serienproduktion der vierten Baureihe Panamera angelaufen. In der derzeit modernsten Automobilfabrik der Welt montiert der Sportwagenhersteller mit neuesten Fertigungsmethoden den viertürigen Gran Turismo gemeinsam mit dem Geländewagen Cayenne auf einer Linie. Mit dem Panamera will Porsche neue Käuferschichten aus der Oberklasse gewinnen. Abbildungen: Dr. Ing. h.c. F. Porsche AG Der Panamera zeichnet sich durch hohen Komfort, ein außergewöhnliches Raumangebot und extrem sportliche Fahreigenschaften bei gleichzeitig geringem Verbrauch aus. Zur Markteinführung am 12. September in Deutsch- Produktionsanlauf des neuen Panamera Production start-up for the new Panamera land ging der Sportwagen zunächst in drei Varianten an den Start, die mit einem 400 PS starken V8-Saugmotor bzw. mit einem V8-Biturbo-Aggregat 20 mit 500 PS ausgestattet sind. Die Motoren werden mit kraftstoffsparender Benzin-Direkteinspritzung angeboten. Porsche plant, über den gesamten Lebenszyklus hinweg jährlich rund 20.000 Fahrzeuge abzusetzen. Fünf technische Innovationen, die erstmals in einem Serienmodell der Oberklasse eingeführt werden, zeichnen den Panamera aus: darunter das erste Start-Stopp-System in Verbindung mit einem automatisch schaltenden Getriebe und die aktive Aerodynamik mit einem beim Panamera Turbo mehrdimensional verstellbaren, ausfahrbaren Heckspoiler. Das Fahrwerk verbindet Sportlichkeit mit Komfort. In der Grundabstimmung bietet es sehr hohen Reisekomfort, verwandelt sich aber auf Knopfdruck dank des aktiven Dämpfersys tems PASM in ein fahraktives Sportfahrwerk. Darüber hinaus ermöglicht die beim Pana mera Turbo serienmäßige, ansonsten optionale adaptive Luftfederung mit schaltbarem Zusatzvolumen in jeder Feder – ein absolutes Novum im Automobilbau – eine noch größere Spreizung zwischen sportlichen und komfortablen Fahrwerksprogrammen. Die Karosserie ist eine Synthese aus sportwagentypischem Leichtbau, großzügigem Platzangebot und effizienter Aerodynamik. Porsche setzt in der Karosserie des Panamera einen Materialmix Porsche Panamera – a unique combination of comfort, performance and efficiency Already in April 2009 series production of Porsche’s fourth model line, the Panamera, started in the carmaker’s Leipzig plant. In the world’s most modern automotive factory to date the manufacturer of premium sports vehicles is assembling the four-door Gran Turismo together with the Cayenne sports utility vehicle on one line using the latest production methods. With the Panamera Porsche has its eyes firmly set on new groups of buyers from the luxury class. The vehicle is characterised by a high degree of comfort, exceptional space and extremely sporty driving features with low consumption. For its market introduction on 12 September in Germany, the Gran Turismo was launched in three variations, equipped with a 400-hp V8 induction engine or with a V8 biturbo engine with 500 hp. The engines feature the most advanced direct fuel injection. Porsche is planning to sell yearly some 20,000 vehicles over the entire lifecycle. The Panamera is marked by five technological innovations which are for the first time seen in a production car in the luxury performance range: these include the first automatic start/ stop in conjunction with automatic transmission and active aerodynamics with a multi-stage, adjustable rear spoiler moving up when required on the Panamera Turbo. The chassis and suspension of the Panamera combines sporting performance and superior comfort. In its basic setting it offers a very high standard of driving comfort. But then, at the touch of a button on the active PASM damper system, it turns into a thoroughbred sports suspension. As another highlight the adaptive air suspension with its extra volume added on whenever required – an absolute innovation in automotive technology – featured as standard on the Turbo and otherwise coming as an option on the other models, offers an even ALUMINIUM · 9/2009 S AML im A LPU E M ICN II U A u t o m o b il greater variation of sporting and comfort features. The body is the synthesis of lightweight technology typical of a sports car, generous spaciousness and efficient aerodynamics. A broad range of lightweight materials is used on the body, including all kinds of steel grades, light alloys such as aluminium and magnesium, as well as plastics. The lightweight doors feature a load-bearing structure made of lasertreated pressure-cast aluminium, an aluminium outer skin and door window frames made of thin-walled pressure-cast magnesium. Thanks to this lightweight structure, the Panamera S, for example, weighs just 1,770 kg. The Panamera is the first car in its segment with a complete cover on the under-floor also extending all round the drivetrain tunnel and rear-end silencers. This clearly helps to reduce both air resistance and lift forces on Leichtbaukarosserie aus einem intelligenten Materialmix inklusive Aluminium Lightweight body with intelligent mix of materials, including aluminium the axles, which in practice means lower fuel consumption and higher driving dynamics. The visible highlight of the overall aerodynamic package is the active four-way rear spoiler on the Panamera Turbo. Through its efficient management of control angles and surface geometry geared to driving conditions, the rear spoiler optimises the car’s aerodynamics and performance all in one. ■ au t o m o t i v e aus Stählen unterschiedlicher Güte, Leichtmetallen wie Aluminium und Magnesium sowie Kunststoffen ein. Die Leichtbautüren besitzen eine tragende Struktur aus laserbearbeitetem Aluminiumdruckguss, eine Aluminiumaußenhaut und einen Türfensterrahmen aus dünnwandigem Magnesiumdruckguss. Durch den Einsatz dieser Leichtbaukomponenten wiegt der Panamera S lediglich 1.770 kg – das ist für einen Sportwagen dieser Dimensionen bemerkenswert wenig. Erstmals in diesem Fahrzeugsegment wird beim Panamera die Verkleidung des Unterbodens auch im Bereich des Tunnels und der Nachschalldämpfer umgesetzt. Sie hilft, den Luftwiderstand und den Auftrieb an den Achsen zu reduzieren. In der Praxis heißt das: weniger Kraftstoffverbrauch und höhere Fahrdynamik. Sichtbares Highlight des aerodynamischen Gesamtpaketes ist der aktive Vier-Wege-Heckspoiler beim Panamera Turbo. Durch sein fahrsitu ationsabhängiges Management von Anstellwinkel und Flächengeometrie optimiert er Aerodynamik und Performance. ■ BMW X1 – Premiumfahrzeug im Kompaktsegment ALUMINIUM · 9/2009 21 zienz erreicht der X1 sDrive18d mit Hinterradantrieb und einem Durchschnittsverbrauch nach EU von 5,2 Litern je 100 Kilometer sowie einem CO2-Wert von 136 g/km. Die Motorenpalette bei den Dieselaggregaten setzt auf ein Vollaluminium-Kurbelgehäuse, der xDrive28i wird von einem Reihensechszylinder-Benzinmotor mit Magnesium-Aluminium-Verbundkurbelgehäuse angetrieben. Das Fahrwerk umfasst eine DoppelgelenkDruckstrebenbzw. Aluminium-Doppelgelenk-Zugstrebenachse vorn und eine Fünflenker-Hinterachse in Stahlleichtbauweise. Die Produktion des X1 erfolgt im BMW-Werk Leipzig. Dort wird das neue Modell parallel zur dreitürigen Variante, dem Coupé und dem Cabrio der 1er-Reihe gefertigt. Markteinführung des X1 für Europa ist am 24. Oktober 2009. ■ BMW AG Mit dem X1 ergänzt BMW seine XModelle um ein Premiumfahrzeug im Kompaktsegment. Die erhöhte Sitzposition, ein großzügiges Raumgefühl und der variabel nutzbare Innenraum bieten „ideale Voraussetzungen für einen von Agilität, Spontaneität und Vielseitigkeit geprägten Einsatz im urbanen Umfeld und darüber hinaus“, heißt es bei BMW. Der 4,45 Meter lange Fünftürer ist trotz seiner geringen Abmessungen gegenüber den X3-, X5- und X6-Modellen klar als BMW X-Modell erkennbar. Je nach Modellvariante stehen kraftvolle, wirtschaftliche und emissionsarme Benzin- und Dieselmotoren, das Allradsystem xDrive sowie umfangreiche Funktionen wie Brems energie-Rückgewinnung, Auto-Start/ Stop und Schaltpunktanzeige für eine kraftstoffsparende Fahrweise zur Verfügung. Herausragende Effi- ALUMINIUM · 9/2009 21 A L U M I N I U M im A u t o m o b il KS Kolbenschmidt GmbH Technologiepaket bei Ottokolben ausgebaut Downsizing, Aufladung, Direkt einspritzung und höhere Leistungsdichten sind die wesentlichen Trends, wenn es um moderne Ottomotoren geht. Für die Motorkomponente Kolben heißt das: hohe Festigkeit und Zuverlässigkeit bei möglichst wenig Gewicht und möglichst geringer Reibung. Die Antwort der KS Kolbenschmidt GmbH auf diese Anforderungen ist ein auf Leichtbau und reduzierte Reibung abgestimmtes Technologiepaket, das in verbrauchs- und CO2-optimierten Motorengenerationen zum Einsatz kommt. Bausteine des Pakets sind die neu entwickelte Hochleistungslegierung KS 309, das weiter ausgebaute Leichtbaukonzept LiteKS-2 und die Kolben beschichtung NanofriKS, die mittlerweile in Serie läuft. KS Kolbenschmidt GmbH Werkstoffseitig wird das Technologiepaket von Kolbenschmidt durch die Legierung KS 309 komplettiert. Sie erzielt eine um 20 bis 25 Prozent höhere Kolbenfestigkeit im relevanten Temperaturbereich von 200 bis 350 Grad Celsius. Damit unterstützt sie optimal die Anforderungen reibungsund gewichtsoptimierter Kolben, wie sie in heutigen und zukünftigen Motoren zum Einsatz kommen werden. Zusätzlich wurde KS 309 mit einem besonderen Fokus auf die Gießbarkeit entwickelt, um auch innerhalb der Prozesstechnologie weitere Potenziale hinsichtlich Leichtbau und Gewichtsreduktion durch dünnwandigeren Aluminiumguss realisieren zu können. Die bereits auf der IAA 2007 vorgestellte, damals neu entwickelte Schaftbeschichtung NanofriKS spielt bei der Entwicklung moderner Ottokolben ebenfalls eine zentrale Rolle. Sie wurde 2008 erstmalig bei einem großen europäischen Kunden in Serie eingeführt. Es folgten zahlreiche weitere Serienprojekte in Europa, Nordamerika und Japan. Wie motorische Reibleistungsuntersuchungen inzwischen bestätigten, weist die Schaft- Downsizing, turbocharging, direct injection and higher power densities are the buzzwords associated with modern gasoline engines. For their pistons, these trends spell a need for higher strength and reliability combined with low weight and as little friction as possible. The response by KS Kolbenschmidt, Neckarsulm/Germany, to these challenges is to assemble lightweight and reduced friction technology packages used in engine generations designed for reduced consumption and CO2 emissions. The elements of the package are the newly developed high-performance KS 309 alloy, the further advanced LiteKS-2 lightweight concept and the Nano friKS piston coating which has meanwhile gone into series production. 22 Images: Kolbenschmidt Gasoline engine piston technology packages expanded Produktion bei Kolbenschmidt The KS 309 alloy is another addition to the materials ingredients and achieves up to 20 to 25 percent higher piston strength at the critical temperature range from 200 to 350°C. This is an alloy that acts as a perfect foil to the low-friction, low-weight pistons to be Production at Kolbenschmidt used in present and future engine generations. Also, KS 309 has been engineered for good casting properties to enable, within the process technology options, further potential for lightweight manufacturability and weight reductions through thinnerwalled aluminium castings. Introduced at the 2007 International Motor Show (IAA), the newly developed NanofriKS shaft coating likewise plays a lead role in the design of today’s gasoline engine pistons. It was first launched into series production for a major European OEM in 2008, followed by many other such projects in Europe, North America and Japan. As meanwhile endorsed by engine friction analyses, piston shafts coated with nanoparticles show up to ten percent less friction compared with conventional piston coatings, and up to 50 percent less wear. The outcome: enhanced reliability and optimum piston performance. Nanocoating is also used on the LiteKS-2 lightweight pistons likewise premiering at the IAA 2007. Since then, this type of piston has met with positive customer response throughout and has been playing a ALUMINIUM · 9/2009 key role in current global gasoline engine projects. Since its introduction, LiteKS-2 has been further developed and now has even higher weight savings of altogether 25 percent and up to 50 percent less shaft friction over standard gasoline pistons. Together with the new KS 309 performance alloy and the NanofriKS shaft coating, KS Kolbenschmidt is offering a high-technology package tailored to customer needs, one that in terms of friction and weight reductions makes a major contribution to the development of low-CO2 gasoline engines. beschichtung mit Nanopartikeln im Vergleich zu bestehenden Kolbenbeschichtungen bis zu zehn Prozent weniger Reibung und bis zu fünfzig Prozent weniger Verschleiß auf. Dies gewährleistet eine hohe Zuverlässigkeit und optimale Performance im Motorbetrieb. Zum Einsatz kommt die Nanobeschichtung unter anderem im Leichtbaukolben LiteKS-2, der ebenfalls 2007 vorgestellt wurde. Er stieß seither auf eine durchweg hohe Kundenresonanz und spielt die Hauptrolle in allen aktuellen globalen Otto-Serienprojekten des Herstellers. In den letzten zwei Jahren wurde LiteKS-2 weiAtag: sophisticated casting techterentwickelt. Der Kolben weist jetzt nology for downsized engines noch größere Gewichtseinsparungen von insgesamt etwa 25 Prozent bei As mentioned above, downsizing konstant hoher Schaftreibungsredukaccompanied by performance comtion von bis zu 50 Prozent gegenüber pensation through specific output Standard-Ottokolben auf. Zusammen mit der neuen Legierung KS 309 sowie der Schaftbeschichtung NanofriKS bietet KS Kolbenschmidt damit ein auf die Bedürfnisse seiner Kunden maßgeschneidertes Hochleistungstechnologiepaket an, das hinsichtlich NanofriskS-Beschichtung NanofriskS piston coating Reibung und Gewichtsreduktion einen wesentlichen enhancement is a trend that entails a Beitrag zur Entwicklung CO2-optisharp rise in engine component stress. So, there is a concurrent demand for mierter Ottomotoren leisten wird. small, lightweight yet high-strength engine blocks that are, moreover, Atag: Weiterentwickelte Gießvery economical to manufacture. technik für downgesizte Motoren Against this background, KS Aluminium-Technologie (Atag) – which Ähnlich wie KS Kolbenschmidt rebelongs to Kolbenschmidt Pierburg agiert die Schwestergesellschaft KS as well as sister company KS KolbenAluminium-Technologie GmbH – beischmidt – is focusing more closely on de gehören zur Obergesellschaft Kolthe volume production of aluminium benschmidt Pierburg – auf den Trend engine blocks, specifically for small zum Downsizing. Die damit einhergeyet high-duty engines. hende Leistungskompensation durch eine Steigerung der spezifischen Advances in both diesel engine Leistung führt zu einer drastischen combustion and direct-injection Erhöhung der Bauteilbeanspruchung gasoline engines with either turboim Motor. Dies verlangt nach sehr charger or compressor entail higher wirtschaftlich herstellbaren, kleinen, ignition pressures and, specifically, leichten und dennoch hochfesten bearing block burdens. On the other Zylinderkurbelgehäusen. Vor ➝ hand, the repeated shrinkage in ➝ ALUMINIUM · 9/2009 23 au t o m o t i v e Non Contact Measurement with Light A u t o m o b il Velocity + Length S AML im A LPU E M ICN II U VLM 250 Angewandte Sensortechnik Schonenfahrerstr. 5 D-18057 Rostock Germany Tel. #49 381 44073-0 FAX #49 381 44073-20 www.astech.de info@astech.de ALUMINIUM · 9/2009 23 A L U M I N I U M im A u t o m o b il Produktion bei Atag diesem Hintergrund richtet sich die KS Aluminium-Technologie (Atag) stärker auf die Volumenfertigung von Aluminium-Zylinderkurbelgehäusen speziell für kleine Hochleistungsmotoren aus. Die weitere Optimierung der dieselmotorischen Verbrennung, aber auch die Benzindirekteinspritzung mit Abgasturboaufladung oder Kompressor beim Ottomotor lassen die Zünddrücke und damit speziell die Lagerstuhlbeanspruchung weiter steigen. Andererseits verstärken die stetige Reduzierung von Hubraum und Zylinderzahl den Kostendruck, dies verlangt möglichst kostengünstige Bauteilkonzepte. Verfahrensbedingt eignet sich gerade der Druckguss für eine kosteneffiziente Massenfertigung, doch liefert herkömmlicher Druckguss nicht die erforderliche Bauteilqualität. Atag stellte bereits zur IAA 2007 mit ihrem „Modularen Druckgusskonzept“ Lösungen zur Festigungssteigerung downgesizter Zylinderkurbelgehäuse vor. Basierend darauf entwickelte das Unternehmen Kurbelgehäuse für einen kleinen R4Zylinder-DI-Dieselmotor mit einem Zünddruck von mehr als 200 bar. 24 Production at Atag Die erforderliche statische und dynamische Festigkeitssteigerung basiert dabei auf uneingeschränkt wärmebehandelbarem Druckguss. Dieser beinhaltet neben zahlreichen Einzelmaßnahmen eine optimal behandelte Schmelze, eine stark evakuierte Druckgießform und ein innovatives Formkühlungskonzept. Die geringen Gaseinschlüsse entsprechen einem niedrigen Porositätsgrad auf Kokillengussniveau. Dies ist eine Grundvoraussetzung für höhere Festigkeit und deren weiterer Steigerung mittels einer Wärmebehandlung. Die geringe Porosität im Zylinderbohrungsbereich eröffnet zudem die Option einer Laufflächenbeschichtung. Darüber hinaus hat Atag ein innovatives Schwerkraft-Kippgießverfahren entwickelt, das den besonderen Anforderungen hoch beanspruchter Motoren gerecht wird. Hintergrund ist hier, dass sich Gusslegierungen in Form hochwertiger AlSiMgPrimärlegierungen im Motorbetrieb großer Anforderungen hinsichtlich der thermomechanischen Festigkeit gegenübersehen. Die heutigen Anforderungen an die Lebensdauer von Motoren können nur mit einem äußerst feinen Gussgefüge lokal im engine displacement and number of cylinders has stepped up cost pressure and called for components engineered for maximum cost efficiency. In terms of manufacturing process, pressure die-casting is ideal for highvolume, low-cost production, albeit in its conventional form failing to deliver the necessary component quality. Already at the IAA 2007, Atag presented in the form of its modular die-casting strategy a number of options including some for enhancing the strength of downsized engine blocks. On the basis of this particular modular option, the company has developed engine blocks for a small inline 4-cylinder diesel engine with an ignition pressure that breaks the 200-bar barrier. The necessary gain in strength (both static and dynamic) is based on the use of diecast parts with unlimited heat-treatability. This is the outcome of, besides numerous individual measures, optimum melt treatment, a largely evacuated die, and an innovative die-cooling system. The much reduced gas occlusions signify a low level of porosity on a par with permanent-mould casting. In fact, this is ALUMINIUM · 9/2009 S AML im A LPU E M ICN II U A u t o m o b il a prime requisite for added strength which is further enhanced through heat treatment. Moreover, the slight porosity in the cylinder bore zone opens up the option of coating the working surface. Furthermore, Atag has developed an innovative inhouse gravity tilt casting technique intended for the special operating environment of high-duty engines, as aluminium in the form of aluminium castings from high-grade AlSiMg primary alloys poses vast challenges regarding thermal strength. Durability benchmarks are only addressable with the aid of an extremely fine microstructure in the combustion zone of the fire deck. One solution to this problem is the new gravity tilt casting process as it guarantees a largely low-turbulence mould-filling at the camshaft end and a rising layer-by-layer filling of the mould promoted by the tilting action. A decisive factor is the highly intense chilling of the combustion zone at the fire deck side. The achievable low dendrite arm spacing reaches benchmark level. Another plank in the Atag business strategy of reducing dependency on engine products is the casting of large and technologically challenging chassis/suspension parts in aluminium, a move that will bolster the company’s automotive business. ■ au t o m o t i v e Mit ihrem modularen Druckgusskonzept steigert Atag die Festigkeit downgesizter Zylinderkurbelgehäuse Atag has developed the modular die-casting concept for enhancing the strength of downsized engine blocks Brennraumbereich des Feuerdecks erfüllt werden. Das neue Schwerkraft-Kippgießverfahren trägt zur Problemlösung bei, indem es für eine weitgehend turbulenzarme Formfüllung auf der Nockenwellenseite und eine vom Kippvorgang begünstigte, schichtend steigende Füllung der Kokille sorgt. Von entscheidender Bedeutung ist dabei eine höchst intensive Abschreckung des Brennraumbereichs auf der Feuerdeckseite. Hierbei erreicht der erzielbare, geringe Dendritenarmabstand Atag zufolge „Benchmarkniveau“. Zukünftig soll ein gänzlich neues Produktfeld das Atag-Geschäft unabhängiger vom Antriebskonzept machen. Dazu gehört beispielsweise das Gießen großer und komplexer, mithin gießtechnisch herausfordernder Fahrwerksteile aus Aluminium. Mit dieser Neuausrichtung wird das Unternehmen sein Automotive-Geschäft weiter stärken. ■ Sectional view of cylinder head cast by gravity tilt casting technique ALUMINIUM · 9/2009 25 ALUMINIUM · 9/2009 25 A L U M I N I U M im A u t o m o b il Zylinderköpfe von Honsel für die neuen VW-Dieselmotoren Cylinder heads from Honsel for new VW diesel engines Zu den Highlights, die Honsel auf der diesjährigen Ausstellung „Zulieferer Innovativ“ in Ingolstadt präsentierte, gehörten die Zylinderköpfe für die neuen, auf Common Rail-Technologie basierenden Zweiliter-Dieselmotoren von Volkswagen und Audi, die im VW Golf VI, Tiguan und Passat sowie im Audi A3, A4 und Q5 zum Einsatz kommen. Die Motoren sind besonders sparsam und leis tungsstark. Among the highlights which Honsel presented at a suppliers exhibition in Ingolstadt, Germany, were the cylinder heads for the Volkswagen Group’s new 2.0 litre diesel engines with common-rail high-pressure injection to be used in the VW Golf VI, Tiguan and Passat, as well as the Audi A3, A4 and Q5. These engines are especially economical and powerful. Honsel Kokillengießverfahren hergestellt. Bei diesem Gießverfahren wird das flüssige Aluminium über eine spezielle Angussleiste turbulenzarm in den Formhohlraum gefüllt. Während des Gießvorgangs wird die Kokille gekippt, was die Gefahr der Oxidbildung des Aluminiums reduziert. Das Ergebnis ist ein poren- und oxidarmes Gefüge, auch in den nur 2,5 mm dünnen Bauteilwänden. Dies ist besonders wichtig, um das Potenzial des Aluminiumwerkstoffs über den vollen Querschnitt ausnutzen zu können. Schließlich sind die Zylinderköpfe Mit steigender Effizienz nimmt die gerade an diesen filigranen Stellen Belastung der einzelnen Komponenbesonders stark belastet. ten zu, insbesondere der aus AlumiVolkswagen hat Honsel schon in nium gegossenen Zylinderköpfe. Das einer sehr frühen Entwicklungshase von Honsel eingesetzte Kipp-Kokilder neuen Dieselmotorenbaureihe einbezogen, sodass die gießereispezifische Auslegung des Bauteils und die entsprechende Fertigungsvorbereitung in sehr kurzer Zeit umgesetzt werden konnte. Innerhalb von nur zwölf Wochen stellte Honsel erste Prototypen für Motorentests Im Kipp-Kokillenguss produzierter Zylinderkopf von Honsel zur Verfügung. Cylinder head from Honsel, produced in permanent mould tilt casting process Im Zeitraum von zwei Jahren erfolgten die weitere Serienentwicklengießverfahren ermöglicht es, die lung und der Aufbau der Serienferhohen Anforderungen zu erfüllen und tigung. Dabei halfen Formfüll- und die notwendige Gefügequalität zu geErstarrungssimulationen, die Werkwährleisten. zeugauslegung und Gießtechnik zu Die Zylinderköpfe müssen vor optimieren. Parallel wurden Funktion allem hohe Festigkeitsanforderungen erfüllen, um die hohen Zünddrüund Festigkeit des Bauteils zusammen cke zu ertragen, sind aber auch sehr mit Volkswagen ständig weiterentwidünnwandig konstruiert, um wähckelt. rend des Motorbetriebs eine optimale Nachdem im November 2006 die Brennraumkühlung zu gewährleisten erste Seriengießmaschine in Betrieb und insgesamt Gewicht einzusparen. genommen wurde, lieferte Honsel alDa zudem eine besonders hohe Gusslein 2008 rund 300.000 Zylinderköpfe qualität im Bereich des Brennraums für den neuen Zweiliter-Dieselmotor gefordert ist, werden sie im Kippan Volkswagen. 26 With increasing efficiency, however, stress on the individual components grows, especially on the cylinder heads cast in aluminium. The permanent mould tilt casting method applied by Honsel meets these high demands and contributes to the required structural quality. To cope with the high ignition pressures, the cylinder heads have to meet high demands regarding strength. At the same time, they are designed with very thin walls to ensure optimum combustion chamber cooling and to reduce the overall weight. As a particularly high casting quality is also needed in the area of the combustion chamber, they are produced in the permanent mould tilt casting method. In this casting process, the liquid aluminium is poured into the mould cavity with low turbulence via a special gating strip. The mould is tilted during the casting process to reduce the risk of the aluminium forming oxides. The result is a low-pore and low-oxide joint, even in the only 2.5 mm thin walls of the component. This is especially important to exploit the potential of the aluminium over the entire cross-section. After all, the cylinder heads face particularly strong loads at these delicate points. Volkswagen involved Honsel already at a very early stage into the development of the new series of diesel engines, so that the foundry-specific design of the component and the corresponding production preparation could be realised in the shortest possible time: Honsel provided the first prototypes for engine testing within only twelve weeks. Further series de- ALUMINIUM · 9/2009 S AML im A LPU E M ICN II U A u t o m o b il velopment and the set-up for series production took place over a period of two years. Mould pouring and solidification simulations helped to optimise the tooling design and casting technique. In parallel, the function and strength of the component underwent continuous further development together with Volkswagen. After putting the first series casting machine into operation in November 2006, Honsel delivered 300,000 cylinder heads for the new engine to Volkswagen in 2008 alone. Financial restructuring of Honsel completed successfully The financial restructuring of Honsel has been successfully completed, and the company’s new capital and shareholder structure has now been put in place. Honsel’s term debt to the lenders under its syndicated credit agreements has been reduced from over 510 to 140 million euros. The main shareholder, RHJ International, is injecting 50 million euros of new capital in return for a 51% shareholding in the restructured Honsel group. In return for waiving a large portion of the debt held by them, a consortium of senior lenders, led by BlueBay Asset Management and Oaktree, will take a 49% stake in Honsel. The company’s employees are also making a significant contribution to restructuring the company and securing its future. A combination of reduced hours and shorter working weeks is designed to avoid redundancies and retain know-how within the company. Moreover, non-tariff and managerial staff are waiving substantial portions of their salaries. Honsel sees attractive market opportunities in the medium and long term due to the stricter requirements for reduction of fuel consumption and CO2 emissions. This will lead to the increased use of light metal components, particularly for powerful yet economical small engines. With high strength components and a breakthrough method for coating cylinder linings, Honsel is generating new opportunities for car manufacturers to use weight-reducing light metals. ■ Finanzielle Restrukturierung erfolgreich abgeschlossen Die finanzielle Restrukturierung der Honsel AG ist inzwischen erfolgreich abgeschlossen worden. Damit ist die neue Kapital- und Eigentümerstruktur des Unternehmens wirksam. Die Verbindlichkeiten gegenüber den Banken sinken von 510 auf 140 Mio. Euro. Der Hauptanteilseigner RHJ International S.A. führt 50 Mio. Euro neues Kapital zu und wird weiterhin 51 Prozent der Anteile halten. Im Gegenzug für einen weitgehenden Schuldenverzicht übernimmt ein Konsortium von Kreditgebern, geführt durch BlueBay Asset Management und Oaktree, 49 Prozent der Anteile an dem Leichtmetallzulieferer. Einen wesentlichen Beitrag zur Restrukturierung und Zukunftssicherung erbringen auch die Mitarbeiter von Honsel. Mit einer auf die betrieblichen Erfordernisse abgestellten Kombination aus Kurzarbeit und verringerter Wochenarbeitszeit sollen betriebsbedingte Kündigungen vermieden und das Know-how im au t o m o t i v e Unternehmen gehalten werden. Die außertariflichen und leitenden Angestellten leisten einen erheblichen Gehaltsverzicht. Anzeige Mittel- und langfristig attraktive Marktchancen sieht das Unternehmen aufgrund der verschärften Forderungen zur Reduktion von Kraftstoffverbrauch und CO2-Emissionen. Dies wird zu einem erhöhten Einsatz von Leichtmetallkomponenten führen, nicht zuletzt für leistungsstarke und zugleich verbrauchsarme kleine Motoren. Mit besonders belastbaren Komponenten und einem innovativen Verfahren zur Beschichtung von Zylinderlaufflächen eröffnet Honsel den Automobilherstellern gerade beim Downsizing neue Perspektiven für den Einsatz von Gewicht sparendem Leichtmetall. ■ w w w. g u t m a n n - g ro u p . c o m MEHR ERFAHRUNG. MEHR KOMPETENZ. MEHR NUT ZEN. GUTMANN - EINE GRUPPE MIT PROFIL ALUMINIUM · 9/2009 HERMANN GUTMANN WERKE AG | GARTNER EXTRUSION GMBH | NORDALU GMBH Automotive Aluminium in innovative light-weight car design J. Hirsch, Bonn1 This paper presents principal aspects and recent trends in average and specific use of aluminium in passenger cars. Aspects of material selection and innovative concepts of car construction using light-weight materials that help to meet economical and environmental requirements are discussed as well as special aluminium alloys developed for the increasing demands in higher strength and better formability for light weighting and crash worthiness aspects and the specific advances of aluminium semi products as castings, extrusions and sheet. Examples are presented for successful aluminium solutions in the most advanced SLC ’SuperLIGHTCar’ concept, which reaches 34% weight reduction within a cost increment of 7.8 €/kg saved. The European automotive industry is known world wide as the technically most advanced and innovative. Based on economical and political pressure to reduce fuel consumption and CO2 emission the efforts for light weighting in automobile design and constructions have increased significantly and specific solutions based on the inten1 closures and hang-on parts (e.g. Daimler E-class, Renault, Peugeot) and other structural components [1-3]. The average total aluminium content per European car was 132 kg in 2005 [9]. It has been analysed systematically as: • Power-train (engine, fuel system, liquid lines): 69 kg (25 compo- nents analysed) in engine block and cylinder head, transmission housings and radiators • Chassis and suspension (cradle, axle): 37 kg (17 components analysed) in wheels, suspension arms and steering systems • Car body (body-in-white (BIW), hoods, doors, wings, bumpers and interiors): 26 kg (20 components analysed) in bonnets and doors, front structure and bumper beams. This shows that for the body the most potential exists. Seen as one component the BIW is the heaviest part of a conventional car with a share between 25 and 30% of the complete car’s weight, depending mainly on options installed, engine size, and integrated safety features. State-of-the-art for the body in white (BIW) As state-of-the-art for a BIW ’extrusion intensive design’ the Aston Martin Vanquish, model year 2001, is mentioned with a volume of 350 cars Images: Hydro This paper was presented at the Volkswagen Conference ’Innovative Developments for Lightweight Vehile Structures’ on 26/27 May 2009. sive use of aluminium as modified or new alloys have been developed in the last decades [1-5]. The European automotive industry has more than doubled the average amount of aluminium used in passenger cars during the last decade and will do even more so in the coming years. The European automotive industry’, in close co-operation with the European aluminium industry, has developed and introduced numerous innovative light-weighting solutions based on established and improved aluminium alloys [2-9] and optimized aluminium oriented car design. Synergic effect together with a multimaterial exploitation can guarantee an optimum design solution. One of the main advances of aluminium is its availability in a large variety of semifinished forms, such as shape castings, extrusions and sheet, all suitable for mass production and innovative solutions. Compact and highly integrated parts meet the high demands for high performance, quality and cost efficient manufacturability. Challenges involved here are mainly joining and surface treatment issues for which many suitable solutions have been developed. Aluminium semis are applied as castings, extrusions and sheet increases, e. g. in engine blocks and power train parts, space frames (e. g. Audi A8, BMW Z8, Lotus Elise), sheet structures (Honda NSX, Jaguar) or as Fig. 1: State-of-the-art ’body in white’ multimaterial concept 28 ALUMINIUM · 9/2009 S AML im A LPU E M ICN II U A u t o m o b il per year. It has a BIW mass of 145 kg (excluding closures and outer skin), consisting of 40 extrusion (100 kg) and 40 sheet parts (45 kg) with joining methods used of rivets and adhesive bonding. With a volume of 2,500 cars per year the BMW Z8 Roadster has a BIW mass of 300 kg with 86 straight and 24 bend extrusion parts, 24 bent parts, no castings and 290 sheet parts. As joining methods MIG welding and rivets (1,000 pcs) are applied. The state-of-the-art space frame concept is the Audi A8 (D3), model year 2002, with a scheduled volume of 25,000 cars per year and a BIW mass of 277 kg, consisting of 59 extrusions with 61 kg, 31 castings with 39 kg and 170 sheet parts with 177 kg. Rivets (2,400 pcs), MIG, laser, laserhybrid welds, roll-folding, adhesive bonding are the main joining methods applied. In the category of ’stamped sheet monocoque’ the Jaguar XJ, model year 2002, must be mentioned with 30,000 cars per year (scheduled) and a BIW mass of 295 kg, consisting of 22 extrusions with 21 kg, 15 castings with 15 kg and 273 sheets with 259 kg. Joining methods used are mainly adhesive, rivets (3,000 pcs), clinches and MIG welding. For the new concept of ’multi-material designs’ (for high volume cars) is an alternative to the all-aluminium designs of BIW’s mentioned above. It consists of applications of aluminium together with high and ultra-high strength steels, magnesium and plastics or composites, where applicable. The principle idea is to use the ‘best’ material for the appropriate functions. The additional goal is to achieve an overall cost efficient light-weight design. Here, state-of-the-art in this area is BMW 5 (E60) (Fig. 1) which uses 20% as deep drawing steels, 42% as higher strength steels, 20% as highest strength steels and 18% aluminium alloys. The front-end substructure consists of 16.4 kg steel and 29.4 kg in 86 aluminium parts (as stamped sheet, extrusions, high-pressure die castings, and hydroformed tubes). Wrought aluminium alloys for automotive applications In the multi-material SLC design the contribution of the aluminium concern new alloys as well as alternative production methods for aluminium parts. Aluminium sheet is predominantly used for BIW panels and closures. Despite the existing ‘all aluminium vehicles’ like Audi A8 and Jaguar XJ, aluminium in mass produced vehicles needs to reduce development time and other additional costs in new production methods and/or new alloys. The main aluminium alloy classes for automotive sheet application are the non-heat treatable Al-Mg (EN 5xxx series) and the heat treatable AlMg-Si (EN 6xxx series) alloy system, some especially tailored by variations in chemical composition and processing, e. g. Al-Mg alloys optimized for strength and corrosion resistance for use in chassis or Al-Mg-Si alloys applied for autobody sheets have been improved for formability, surface appearance and age hardening response. The specific properties and principal differences are illustrated in Fig. 2. The effects of varying alloy additions and process parameters as described au t o m o t i v e in [4] are well developed and controlled for enhanced performance and efficient manufacturing. Age hardening Al-Mg-Si alloys: 6xxx series alloys contain magnesium and silicon. Current 6xxx alloys used for autobody sheets are AA6016 (Europe) and AA6111 (America) and, more recently, AA6181A was added for recycling aspects. In the US, AA6111 is often used for outer panels in gauges of 0.9 to 1.0 mm which combines high strength with good formability. In Europe, EN-6016 is preferred and applied in gauges of around 1 to 1.2 mm. It shows a superior formability and filiform corrosion resistance and allows flat hems even on parts with local pre-deformation. However, the bake-hardened strength of AA6016 is significantly lower than that of AA6111 [6]. In recent years alloy and processing modifications have been introduced to meet the increased requirements [5]. Higher strength alloys may allow outer panel thickness reductions with no loss of dent resistance, provided stiffness requirements are met. As paintbake temperatures decrease, there is increasing demand for a significantly higher age hardening response. However, for some parts formability remains the major difficulty. Therefore special alloy modifications with either improved formability or strength have recently been developed by European aluminium sheet manufacturers and agreed upon as standards by the automotive industry. Non heat-treatable Al-Mg-Mn alloys: Al-Mg-Mn alloys show an optimum combination of formability and strength achieved by the mechanism of solid solution and deformation hard ening due to their specific high strain hardening. Further improvement in properties required for specific applications (e. g. surface appearance, corrosion resistance, thermal stability) have been achieved by small additions of other alloy elements and/or modified processing routes [4, 7, 8, 9], e. g. stretcher strain free (SSF) sheet, avoiding Lüders-lines [10]. Non heat-treatable Al-Mg-Mn alloys are applied in Europe for auto mobile parts in larger quantities as hot and cold rolled sheet and hydro- ➝ Fig. 2: EN-AW 5xxx and 6xxx alloys competing for car body sheets ALUMINIUM · 9/2009 29 ALUMINIUM · 9/2009 29 Automotive formed tubes, due to their good formability which can always be regained during complex forming operations by inter-annealing where quenching is needed for age hardening. In chassis parts or wheel applications the benefit is twofold since the weight reduction in the unsprung mass of moving parts additionally enhances driving comfort and reduces noise levels. A well established high Mg containing alloy, AlMg5Mn (AA5182), is used for high strength and complex stampings. For 5xxx alloys containing > 3% Mg the precipitation of ßMg5Al8 particles at grain boundaries can result in susceptibility to intergranular corrosion cracking (ICC) by long term exposure at > 80°C. For these conditions special high Mg alloys have been developed with a good compromise for sufficient strength and ICC resistance. For all other cases special high Mg alloys (> 6% Mg) have been introduced which show high strength and strain hardening, thus also enhancing formability. Al-Mg-Mn alloy sheet has also been successfully applied or is currently being tested in many parts for structural support, pedal boxes, heat reflectors, lever arms, etc. Al-Mn EN-AW 3xxx alloys are applied for heat-exchangers which is another success story of aluminium sheet and extrusion applications that started in Europe many years ago. It is an increasing market with intensive R&D, established for advanced lightweight technology for radiators and air conditioning systems in cars (and elsewhere) world wide. New aluminium alloys for auto motive applications: Several new product developments were introduced in the SLC project to meet Fig. 3: Door inner produced from TWB 30 specific demands of the BIW that cannot be met by the present aluminium alloys. For example, a high Mg 5xxx alloy specially dedicated to warm forming [12]. New 6xxx alloys and 7xxx alloys for structural applications were introduced [11], such as ‘crash alloy’ is used for the crash members in the front structure of the SLC model or a ‘roof alloy’ with special attention when placed on steel structure. Here a 6xxx alloy (6013 type) has been introduced [11] with fast paint bake response to withstand the thermally induced plastic deformation. The final SLC structure has a magnesium roof where the finished roof is mounted after the BIW has passed through the paint line. High strength 7xxx alloys applied in aerospace have been tested in the SLC study to determine their potential for weight saving replacing steel in the Golf V Bpillar for a side impact simulation. The alloy selected was a 7081 type alloy with yield strength around 600 MPa in an artificially aged temper. The result of the impact simulation shows that a 3.5mm thick 7081 matches the performance of 2 mm thick boron steel. More importantly the aluminium part is 2.4 kg lighter, so achieving a weight saving of around 40% [11]. Other aspects investigated in detail in the SLC project were: • Heat forming is a new technique for making complex aluminium tubular shapes using internal gas pressure to form hollow bodies or tubes within a warm environment [12]. It provides a competitive alternative to hydro- or superplastic- (SPF) forming. • Tailor welded blanks (TWBs) is a mature product for steel automotive applications easy to apply to aluminium. There is only one example of alu- minium TWBs in series production; the backplate of the front wheel house of the Lamborghini Gallardo [11]. The SLC project proved that aluminium TWBs can be applied for demanding deep drawn parts at higher volumes. Fig. 3 shows the geometry of the TWB and a final result of a pressed part of door inner. The aluminium TWBs have been successfully stamped to produce inner door panels, using a two-step operation to obtain 140 mm deep drawing depth without breaks in laser weld seam. Geometrical accuracy of stamped panel was checked and found to be acceptable for production use, showing that the process is technical feasible. Laser brazing steel-aluminium: The next logical step after steel TWBs and aluminium TWBs is a combination steel-aluminium TWB. This, however, is more complicated because of the joining of steel to aluminium. Conventional fusion welding is gives poor quality joints due to the formation of brittle Fe-Al intermetallics. Besides the well-known technologies such as mechanical fastening and adhesive bonding, a recently developed technology called laser brazing shows good potential for joining steel to aluminium [11]. Aluminium in the final SLC body concept The final SLC-body concept (Fig. 4) chosen shows an optimum between weight reduction of 95 kg (34%), i. e. a weight saving of 41% vs. reference (from 65 to 110 kg) and a additional part costs of 7.8 €/kg. It has an Mg roof and a steel floor frame (i. e. lighter on top than underneath) and torsion ring of the side structure in form-hardened high strength steel combined with an aluminium sheets frame. For the inner B-pillar TWB steel sheets are used with an external aluminium skin. Aluminium is used as sheet panels and as extrusion in front rail and for bumper and crash elements and in the rear underbody rail and wheelhouse structure as HPDC (high pressure die cast). Compared to the good formable (conventional) steel grades aluminium is less formable, so the manufacturability of such parts is not obvious. ➝ ALUMINIUM · 9/2009 AUtoMobIL AUtoMotIvE Fig. 4: Final SLC-body multi material concept The procedure is to start with a simulation and by mutual agreement with design and engineering departments, to adapt the design of a part so it can be produced (simulated) while it fulfils all requirements. This interactive development procedure can take some time, but in case of the SLC demonstrator it is sufficient to show the feasibility, not necessarily to develop a failure free simulation. Aluminium sheet forming simulation As an example the side panel is shown based on present steel design. It is a very difficult part for aluminium be- PROFHAL ALUMINIUM PROFIL BEARBEITUNG GMBH © Kastenhuber Wergeagentur/Fotodesign · Tel. (0 9142) 204 558 Ein Unternehmen der HAARMANN-GRUPPE Dettenheimer Straße 30 D-91781 Weißenburg Tel. +49-(0)91 41-8 55 65-0 www.profhal.de ALUMINIUM · 9/2009 31 cause of steep deep drawing around sharp corners. Easiest – but unrealistic – solutions for SLC are to split the panel into more sections or to drastically change the design by creating corners with larger radii. Here the simulation strategy is to investigate different options to control material flow to lower the strain in critical areas, using AutoForm incremental software 4.1. Input material data are taken from the SLC SP2 database generated, tool geometry is generated by the program based in the CAD files of the parts. Fig. 5 shows the initial simulation. It is obvious that a straightforward pressing of the part will not lead to an OK part. Indicated at the problem areas are the options to improve the material flow. To improve the formability of the side panel draw beads are included in the centre sections and the radius is adjusted to 10 mm in the doors. Increasing the radius and the draw beads are clearly an improve- ➝ PROFHAL entwickelt, fertigt und veredelt hochwertige Aluminium-Profil-SystemKomponenten für unterschiedlichste Anwendungsgebiete. INDIVIDUELLE LÖSUNGEN AUS ALUMINIUM ALUMINIUM · 9/2009 31 www.haarmann-gruppe.de S AML I M A LPU E M ICN II U A L U M I N I U M im A u t o m o b il Fig. 5: Initial simulation of SLC side panel in aluminium ment. It is obvious that the new simulation is safer (more green area). Some critical areas disappeared and some have become less critical. This can also be observed when comparing the FLD plots. The red area is clearly shifted from critical deep drawing on the left side to the middle section. One option to go forward is to further optimise the deep drawing process with simulation in order to reduce the red zones. However, this middle zone of an FLC is typically an area that is also strongly influenced by friction and typically friction is one of the parameters that can easily be controlled in prototyping. Therefore, this is the point where simulation shows that the side panel is feasible in aluminium. The proposed layout of the deep drawing process behind the simulation from Fig. 6 is taken as the starting point for the prototype toolmakers. The part being produced now is perfect. Thus simulations are used as a last but necessary step to describe conditions of the deep drawing process for the manufacturability of aluminium parts. Aluminium makes an important contribution to this multi-material concept due to the favourable combination of low density and low production costs, with aluminium solutions easily applicable for high volume production. Extrusions Another wide field of aluminium solutions and applications is opened by 32 making use of the well established technology of aluminium extrusions. Here quite complex shapes of profiles can be achieved allowing innovative light weight design with integrated functions. In Europe complete new and flexible car concepts (e. g. the aluminium space frame) and complex sub-structures (e. g. in chassis parts, bumpers, crash elements, air bags, etc.) have been developed using aluminium extrusions. Their high potential for complex design and functional integration is most suitable for cost-effective mass production. Medium strength AA6xxx and high strength AA7xxx age hardening alloys are used, since the required quenching occurs during the extrusion process. Formability and final strength is controlled by subsequent heating for age hardening. Extrusions are applied for bumper beams and crash elements/boxes, also in the SLC car. Castings The highest volume of aluminium components in cars are castings, such as engine blocks, cylinder heads and special chassis parts. The substitution of cast iron engine blocks continues. Even diesel engines, which continue to gain a substantial increase in market share in Europe now, are being cast in aluminium where, due to the high requirements on strength and durability, cast iron has generally been used. However, progress in aluminium alloy development (Al- Si-Cu-Mg-Fe-type) and new casting techniques came up with improved material properties and functional integration that enables aluminium to meet the requirements. Aluminium castings are also gaining acceptance in the construction of space frame, axle parts and structural components. Complex parts are produced by special casting methods that ensure optimal mechanical properties and allow enhanced functional integration [5]. For high pressure die cast HPDC new AlSiMgMn alloys have been developed with enhanced strength and ductility combination. In the SLC project structural parts in the wheel house architecture have been designed using advanced aluminium die cast with an integrated striker plate. Summary and Conclusions Due to its low weight, good formability and corrosion resistance, aluminium is the material of choice for many automotive applications such as chassis, autobody and many structural components [13]. Aluminium alloys tailored by suitable variations in chemical composition and processing best fit many requirements, like the non-heat treatable Al-Mg alloys used in chassis optimized for superb resistance against intercrystalline corrosion and concurrent high strength or the heat treatable AlMgSi alloys for extrusions and autobody sheet modified for improved age hardening response during the automotive paint bake cycle. ALUMINIUM · 9/2009 S AML im A LPU E M ICN II U A u t o m o b il With a sound knowledge about the specific material properties and effects excellent light weight solutions for automotive applications have been successfully applied by the European automobile industries. Intensive R&D and continuous collaboration of material suppliers and application engineers provided optimum solutions for sometimes contradicting aspects of the specific requirements, e. g. for the specific material selection and optimum combinations of strength and formability. Material specific processing routes and individual solutions have been developed in close cooperation with OEM partners and suppliers. Applying the full knowledge about the physical processes involved and the microstructure/properties correlation a tuning of properties is possible in order to produce optimum and stable products required for the high demands in automobile applications. The examples given for the successful prove the major breakthrough in automotive applications for aluminium that has been achieved during recent years by developing innovative light weight and cost efficient solutions. With the reference of the SLC project results it is expected that in the near future the use of aluminium with specifically improved properties will grow in many automobile applications meeting the increased economical and ecological demands. Due to the positive experience gained in the project and from former successful applications its volume fraction used in cars of all classes and all sizes will grow significantly. The SLC concept shows clearly that aluminium can be used for the car body structure and that there can be a weight advantage of at least 30% without losing performance. For most parts the present grades used for exterior panels can be applied. In some cases where very high strengths are demanded, 7xxx series alloys can be used to maintain this significant weight advantage. For large volume aluminium solutions are most cost effective. Castings will be applied for areas where strong part integration is feasible. Extrusions can be easily applied as straight profiles, but also forming of an extruded profile is a competitive process for high volumes, e. g. as bumper beams as used in the SLC prototype car. Aluminium is the ideal lightweighting material as it allows a weight saving of up to 50% over competing materials in most applications without compromising safety. Acknowledgement The research activity presented in this paper has been performed within the European funded project SLC (Sustainable Production Technologies of Emission Reduced Light weight Car concepts) Proposal/Contract no.: 516465 [8] in the EU 6th Framework Programme which is gratefully acknowledged. The authors also thank the SLC consortium and the European Aluminium Association EAA for their support. The support of Dr. Wieser, Mr. Brünger, Dr. Jupp, Dr. Brinkman is gratefully acknowledged. au t o m o t i v e References [1] Automobil-Produktion, Juni 2001, S.136 [2] Aluminium materials technology for automobile construction, ed. by W.J. Bartz, Mech. Eng. Publ. London (1993) p.1 [3] Aluminiumwerkstofftechnik für den Automobilbau, Kontakt & Studium Werkstoffe, Band 375, TAE, Expert Verlag, Ehningen (1992) [4] J. Hirsch, ICAA5 (4) Materials Science Forum Volume, 242 Transtec Publications, Switzerland, (1997) p.33-50 [5] J. Hirsch, Automotive Trends in Aluminium – The European Perspective, ICAA9, edt. J.F. Nie, A.J. Morton, B.C. Muddle, Mater. Forum 28, Inst. of Mat. Eng. Australasia Ltd., ISBN 1876855 223, Vol.1, p. 15-23 [6] A.K. Gupta, G.B. Burger, P.W. Jeffrey, D.J. Lloyd; ICAA4, Proc. 4th Int. Conf. on Al alloys, Atlanta/GA USA (1994) ed. by T.H. Sanders, E.A. Starke, Vol.3, p.177 [7] E. Brünger, O. Engler, J. Hirsch, Al-MgSi Sheet for Autobody Application, in ‘Virtual Fabrication of Aluminium Products’ chapter I-6, Wiley-VCH Verlag, Weinheim 2006, (ISBN: 3-527-31363-X), pp. 51-61 [8] H.P. Falkenstein, W. Gruhl, G. Scharf, Metallwissenschaft und Technik 37/12 (1983), p.1197, H.P. Falkenstein, VDIBerichte 65 (1984), VDI-Verlag Düsseldorf [9] KGP study, Aluminium average content for new European Cars in 2005 [10] E. Gold, W. Horn, J. Maier, Metall 42/3 (1988) p 248 [11] C. Lahaye, J. Hirsch, D. Bassan, B. Criqui, P. Urban, M. Goede, in: Aluminium Alloys, Their Physical and Mechanical Properties, edited by J. Hirsch et. al. proceedings ICAA-11 (2008) Aachen, ISBN10: 3-527-32367-8, p. 236-237 [12] J. Hirsch, E. Brünger, St. Keller, K. Kipry, in: Aluminium Alloys, Their Physical and Mechanical Properties, edited by J. Hirsch et. al. proceedings ICAA-11 (2008) Aachen, ISBN-10: 3-527-32367-8, p. 23882393 [13] Aluminium Automotive Manual, Internet address: www.eaa.net/aam Author Fig. 6: Final simulation of SLC side panel in aluminium ALUMINIUM · 9/2009 33 Prof. Dr.-Ing. Jürgen Hirsch is Senior Scientist at the R&D Centre of Hydro Aluminium Deutschland, located in Bonn. Mr Hirsch is an internationally renowned scientist in research and development of aluminium alloys and their application. He is author of numerous publications of metallurgic-related topics, especially aluminium, and received several awards for his scientific work. ALUMINIUM · 9/2009 33 A L U M I N I U M im A u t o m o b il Hochfeste Aluminium-Fahrwerksteile mit optimaler Topologie G. Proske, J. Krämer, Meinerzhagen Die hohen Energiekosten und die Forderung nach CO2-Reduktion lassen den Leichtbau und die Leichtmetalle noch stärker in den Fokus der Konstrukteure rücken. Um die Bauteilabmessungen bzw. -querschnitte zu reduzieren und somit Gewicht zu sparen, ist der Einsatz von immer höherfesten Legierungen erforderlich. Darüber hinaus bedarf es entsprechender Konstruktionstools, um die Bauteile optimal bezüglich Spannung und Topologie auszulegen. und DIN EN 586-2 [2] verwendet. Bedingt durch steigende Anforderungen an die geschmiedeten Fahrwerkskomponenten konnten die garantierten Mindestwerte dieser Legierung im voll wärmebehandelten Zustand (T6 = lösungsgeglüht, abgeschreckt und maximal ausgehärtet) im Laufe der Jahre durch Optimierung der gesamten Prozesskette (Gießen, Strangpressen, Schmieden und Wärmebehandlung) ausgehend von der Festigkeitsklasse F31 über F34 auf mittlerweile F38 (Tab. 1) gesteigert werden. Anfang der neunziger Jahre wurde von Otto Fuchs der Werkstoff EN AW6110A = EN AW-AlMgSiCu = AS28 entwickelt [3]. Auch für diesen Werkstoff konnten im Laufe der Jahre die garantierten Mindestwerte aufgrund von Prozessoptimierungen ausgehend von F38 auf F42 erhöht werden. Neben diesen beiden seit Jahren von Otto Fuchs erfolgreich eingesetzten Legierungen wird seit kurzem der Werkstoff AS29 angeboten. Hierbei handelt es sich um eine Eigenentwick- Abb. 2: Roh- und Fertigteil einer Zugstrebe aus der OF-Legierung AS29 lung auf Basis der Legierung AS28 = EN AW-6110A. Nachfolgend werden die Eigenschaften dieser Legierung im Vergleich zu den Werkstoffen AS10 und AS28 vorgestellt. Ziel war eine weitere Steigerung der statischen Festigkeit auf F45 und der dynamischen Festigkeit bei ausreichender Duktilität und Korrosionsbeständigkeit. Alle Eigenschaften wurden an Proben aus Zugstreben (Abb. 2) oder an den Zugstreben selber ermittelt, die unter Serienbedingungen geschmiedet und wärmebehandelt wurden. Die Untersuchungen erfolgten im Zustand T6. Die an den Zugstreben aus dieser Legierung ermittelten Streckgren- Abbildungen: Otto Fuchs Geschmiedete Aluminiumbauteile haben sich in zahlreichen Anwendungen in der Automobilindustrie fest etabliert. Durch den Einsatz von stranggepresstem Vormaterial und den nachfolgenden Schmiedeprozess wird ein poren- und lunkerfreies Gefüge eingestellt. Dieses Gefüge in Verbindung mit der abschließenden Wärmebehandlung führt zu Bauteilen mit ausgezeichneten statischen und dyna mischen Festigkeitseigenschaften in Kombination mit guter Duktilität und Zähigkeit. Die Otto Fuchs KG mit Sitz in Mei nerzhagen fertigt seit etwa 40 Jahren geschmiedete Komponenten aus Aluminiumlegierungen der 6000er Serie für die Automobilindustrie und ist Marktführer im Bereich geschmiedeter stabförmiger Fahrwerksteile wie Querlenker, Zug- und Druckstreben (Abb. 1). In Europa wird hauptsächlich die Legierung EN AW-6082 = EN AWAlSi1MgMn = Otto Fuchs(OF-)Legierung AS10 gemäß DIN EN 573-3 [1] Tab. 1: Festigkeitsklassen der Aluminiumlegierungen EN AW-6082 T6 und EN AW-6110A T6 Abb. 1: Geschmiedete Aluminium-Fahrwerksteile der Otto Fuchs KG 34 Abb. 3: Typische Festigkeitswerte der Zugstreben aus den OF-Legierungen AS10, AS28 und AS29 im voll ausgehärteten Zustand ALUMINIUM · 9/2009 S AML im A LPU E M ICN II U A u t o m o b il zen- und Zugfestigkeitswerte liegen typischerweise bei 440 bzw. 470 MPa (Abb. 3) und damit etwa 25 bzw. 30 MPa bei nahezu unveränderter Bruchdehnung oberhalb der Werte für die Legierung AS28. Im Fahrwerksbereich werden die Mehrzahl der Bauteile, wie Zug- und Druckstreben, auf Missbrauch ausgelegt, das heißt, dass diese nicht vor Erreichen einer Mindestkraft, aber spätestens bei Erreichen einer Maximalkraft versagen dürfen bzw. müssen. Auslegungskriterium ist in diesem Fall die Steifigkeit der Bauteile, die sehr stark geometrieabhängig ist, während die Festigkeitseigenschaften nur einen geringen Einfluss haben. Die für die Untersuchung ausgewählte Zugstrebe hat bei Verwendung der Legierung AS28 im Vergleich zu der Legierungen AS10 eine um etwa 15 Prozent höhere Knickkraft. Durch Einsatz von AS29 kann die Knickkraft bei dieser Strebe gegenüber AS28 um weitere circa fünf Prozent gesteigert werden. Interessant sind die Werkstoffe AS29 und AS28 besonders für Bau- A L U M I N I U M im A u t o m o b il Abb. 4: Ermüdungsversuche an Zugstreben aus den OF-Legierungen AS10, AS28 und AS29 teile, die nicht auf Steifigkeit, sondern auf eine dynamische Belastung hin ausgelegt werden müssen. Im Falle der untersuchten Zugstrebe (Abb. 2) lagen die auf einem Bauteilprüfstand bei dynamischer Belastung ermittel ten Lebensdauern für die Bauteile aus der Legierung AS28 etwa um den Faktor 2 bis 3 (Abb. 4) höher als die aus der Legierung AS10. Durch die Verwendung der noch höherfesten Legierung AS29 konnte die Lebensdauer gegenüber AS28 noch einmal Spouts and Stoppers etwa um den Faktor 2 bis 3 gesteigert werden. Die Lebensdauersteigerung gegenüber AS10 und AS28 ist von der Bauteilgeometrie (z. B. Kerbwirkung) abhängig und kann je nach der Ausführung von Kerben und Radien unterschiedlich ausgeprägt sein Neben der Beständigkeit gegenüber allgemeiner Korrosion (Salzsprühnebelprüfung nach DIN EN ISO 9227) wurde auch die interkristalline Korrosionsbeständigkeit (gemäß IGC 04.24.123) im Vergleich zu den ➝ Ceramic Foam Filters C D C D m u i m n u i i n i m fo r A lumsttiinngg cas Drache umwelttechnik Drache Umwelttechnik GmbH · mail@drache-gmbh.de · ALUMINIUM · 9/2009 35 www.drache-gmbh.de ALUMINIUM · 9/2009 35 A L U M I N I U M im A u t o m o b il Legierungen AS10 und AS28 überprüft. Die Angriffstiefen bei der allgemeinen Korrosion (Abb. 5) als auch bei der interkristallinen Korrosion sind im Vergleich zu der Legierung AS10 etwas höher, aber nahezu identisch mit den Ergebnissen der Legierung AS28, die bereits seit Jahren ungeschützt, wie die Legierung AS10, im Fahrwerksbereich erfolgreich eingesetzt wird. Mit der OF-Legierung AS29 gibt es eine Legierung der 6000er Serie mit höchsten statischen und dynami schen Festigkeitseigenschaften, vergleichbar mit denen der hochfesten 7000er Legierung 7075 bei einer deutlich höheren Bruchdehnung und deutlich besserem Korrosionsverhalten. Aufgrund der hohen Festigkeitswerte und der guten Schweißbarkeit wird diese Legierung bereits für laser geschweißte Luftfahrtprofile verwendet, die unter anderem im Airbus A318 und A380 eingesetzt werden. Neben der richtigen Legierungsauswahl ist die Topologieoptimierung bei Otto Fuchs ein wichtiges Hilfsmittel, um gewichtsoptimierte Bauteile auszulegen. Dabei werden auf Basis von linear-elastischen FEM-Berechnungen wenig belastete Teile einer Ausgangsgeometrie (Abb. 6a) entfernt. Zurück bleibt eine Struktur, die nur noch aus „tragenden“ Elementen besteht. In der Vergangenheit waren diese Strukturen größtenteils für eine Fertigung nicht geeignet, da oft Hohlräume oder sehr filigrane Verstrebungen im Bauteil entstanden (Abb. 6b). Inzwischen können aber Fertigungsrestriktionen für Schmiedeteile berücksichtigt werden, zum Beispiel die Vermeidung von Hinterschnitten. Die Ergebnisse sind aber immer noch keine fertigen Schmiedeteile. Oft sind in dem topologieoptimierten Bauteil Bereiche vorhanden, die durch die idealisierte Lagerung im Modell zu Abb. 5: Korrosionsversuche an Zugstreben aus den OF-Legierungen AS10, AS28 und AS29: Salzsprühnebelprüfung nach DIN EN ISO 9227 [4], Dauer 240 Std.; Interkristalline Korrosion nach IGC 04.24.103 [5] wenig belastet werden und dadurch sehr dünn ausfallen. Hier muss der Konstrukteur manuell eingreifen, um aus dem errechten „Designvorschlag“ ein schmiedefähiges Bauteil (Abb. 6c) zu gestalten. Danach kann ein „Feintuning“ des Bauteils durch eine Shape-Optimierung erfolgen. Dazu wird das auf Basis der Topologieoptimierung neu konstruierte Teil erneut vernetzt und wieder mit den überlagerten Betriebslasten beaufschlagt. Stark belastete Elemente des Netzes wachsen (unter Einhaltung des Bauraumes) nach außen, während wenig belastete Elemente schrumpfen. Es ergibt sich eine gleichmäßigere Spannungsverteilung. Natürlich wird der Schmiedeprozess eines auf diese Art optimierten Teils nicht einfacher; aufgrund von Durchbrüchen und Rippen ist eine sehr genaue Vorformauslegung nötig, um Schmiedefehler zu vermeiden. Oft sind Verfahren zur Materialvordosierung, wie Reck- oder Querwalzen notwendig, um fehlerfrei und wirtschaftlich zu fertigen. Auch diese Verfahren können und werden inzwischen im Unternehmen durch eine Umformsimulation abgebildet. Mit den Werkstoffen AS10, AS28 und AS29 hat die Otto Fuchs KG drei Legierungen, die ein breites Eigenschaftsspektrum bzw. Anforderungsprofil abdecken. Zusammen mit Simulationsverfahren zur Topologieoptimierung wie auch zum Umformprozess können so gewichts- und eigenschaftsoptimierte Bauteile entwickelt und sicher in Großserie hergestellt werden. Literatur [1] DIN EN 573-3, Aluminium und Aluminiumlegierungen – Chemische Zusammensetzung und Form von Halbzeug – Teil 3: Chemische Zusammensetzung und Erzeugnisformen [2] DIN EN 586-2; Aluminium und Aluminiumlegierungen – Schmiedestücke – Teil 2: Mechanische Eigenschaften und zusätzliche Eigenschaftsanforderungen [3] AS28: Ein neuer hochfester Konstruktionswerkstoff auf der Legierungsbasis Al-Mg-Si, Sonderdruck aus: Leichtmetalle im Automobilbau 95/96, Sonderdruck von ATZ und MTZ, Franckh-Kosmos-VerlagsGmbH & Co., Stuttgart [4] DIN EN ISO 9227; Korrosionsprüfungen in künstlichen Atmosphären – Salzsprühnebelprüfungen (ISO 9227: 2006) [5] Alliages d’Aluminium, Essai de Susceptibilité à la Corrosion intergranulaire Autoren Dr. Gerhard Proske, Otto Fuchs KG, Meinerzhagen, Werkstofftechnologie und Pressteile Automotive. Abb. 6: Entwicklung der Geometrie durch Topologieoptimierung 36 Jürgen Krämer, Otto Fuchs KG, Meinerzhagen, Produkt- und Verfahrensentwicklung FEM-Simulation ALUMINIUM · 9/2009 technologie Kundenspezifische, energieoptimierte Wärmebehandlungsanlagen für Aluminium V. Burkhardt, Backnang Wärmebehandlung, allgemeine Defi nition: Wärmebehandlung versteht sich als eine Folge von Wärmebehandlungsschritten, in deren Verlauf ein Werkstück ganz oder teilweise einer Zeit-Temperatur-Folge unter worfen wird, um eine Änderung seines Gefüges und/oder seiner Eigenschaften herbeizuführen. Eine Warmformgebung oder mit Erwärmung verbundene Verfahren des Oberflächenschutzes fallen nicht unter „Wärmebehandlung“. Unter Ausscheidungshärten, die unter anderem bei Aluminiumlegierungen angewendet werden, versteht man in der Wärmebehandlung alle Maßnahmen, die das temperaturabhängige Lösungsvermögen der Mischkristalle nutzen, um eine Festigkeitssteigerung herbeizuführen. Gefügekunde: Die Eigenschaften eines Werkstoffs werden durch sein Gefüge bestimmt, auch wenn in der Wärmebehandlung eher Härtewerte oder Härteverlaufskurven und selte ner bestimmte Gefüge vorgeschrieben werden. Die Gefügestruktur wird durch Wärmeeinwirkung und Verformungen beeinflusst und je nach Werkstoff und Temperatur verändert. Dadurch kann es zu Spannungen innerhalb des Werkstücks kommen, die teilweise erwünscht, manchmal jedoch für die weitere Verwendung ungeeignet sind. Abbildungen: Elpo Die Wärmebehandlung muss dementsprechend gezielt eingesetzt werden, um die je nach gestellter Anforderung geeigneten Gefüge einzustellen. Die Gefügekunde ist daher eine Grundlage zum Verständnis der inneren Vorgänge bei der Wärmebehandlung und ihrer Ergebnisse. Eine detaillierte Beschreibung dieser Vorgänge würde jedoch den Rahmen dieses Beitrages sprengen, es sei daher auf die entsprechende Fachliteratur verwiesen. Aluminiumwerkstoffe in der Auto mobilindustrie: Die Automobilindustrie setzt seit den achtziger Jahren auf den leichten Werkstoff Aluminium. Der wesentliche Vorteil von Aluminium gegenüber Stahl ist das günstige Verhältnisse von Festigkeit zu Dichte. Die Festigkeit entspricht der des allgemeinen Baustahls, bei dreimal niedrigerer Dichte gegenüber Stahl und Kupfer. In diesem Zusammenhang wird auch der Begriff der Spezifischen Festigkeit eingeführt: Spe zifische Dichte = Festigkeit/Dichte. Weiterhin zeichnet sich Aluminium durch hohe thermische und elektrische Leitfähigkeit aus, die nur von Silber, Kupfer und Gold übertroffen wird, sowie durch gute Witterungsund sehr gute Korrosionsbeständigkeit aufgrund einer stabilen Oxidbildung. Gute technologische Eigenschaften wie Verformbarkeit, Schweißbarkeit und Legierbarkeit sind weitere Vorteile von Aluminium und Aluminiumlegierungen. Neben der metallurgischen Wei terentwicklung hat im Laufe der Zeit auch eine intensive Entwicklung hinsichtlich der Ver arbeitbarkeit statt gefunden. Die heu tigen Entwicklungs schwerpunkte bei der Verarbeitung Abb. 1: Zeit-Temperatur-Verlauf einer Wärmebehandlung in allgemeiner Darstellung von Aluminium lie- ALUMINIUM · 9/2009 gen im Bereich der Gießtechnologie und der Wärmebehandlung. Wärmebehandelt werden heute hauptsächlich Zylinderköpfe und Kurbelgehäuse, aber auch Formteile für Achsträger, Rahmen, Konsolen und Seitenteile. Die Abläufe bei der Wärmebehandlung von Aluminiumlegierungen erfolgt in drei Schritten: • Lösungsglühen mit dem Ziel, ein homogenes Mischkristall zu erhalten. Als Maßnahme dient das vollständige Lösen des Legierungsbestandteils in der Aluminiummatrix durch Wärmebehandlung. • Abschrecken mit dem Ziel, ein übersättigtes Mischkristall zu erhalten. Als Maßnahme dient das Einfrieren des durch die Glühung erzielten Zustands. Dies wird durch Abschrecken der Glühtemperatur auf Raumtemperatur erreicht. • Aushärten mit dem Ziel, die härtende Phase aus dem übersättigten Mischkristall auszuscheiden. Als Maßnahme dient die Kaltaushärtung (bei Raumtemperatur) und die Warmaushärtung (bei circa 120 bis 200 °C). Es erfolgt, je nach Dauer, eine Konzentrationsverschiebung in Richtung Gleichgewicht. Nachfolgend werden die Anforderungen und realisierten Anlagenausführungen zum Warmaushärten/Auslagern von Aluminiumlegierungen an Hand eines typischen Anforderungsprofils dargestellt. Anforderungsprofil zur Warmausla gerung von Bauteilen aus Alumini umlegierungen (z. B. Kurbelgehäuse, Zylinderköpfe): Aufheizen: von ca. 20 °C auf max. 250 °C +/- 5 °C in 60 min Halten: bei 250 °C +/- 5 °C, Dauer: 150 min +/- 10 min Abkühlen: auf 25 °C +/- 5 °C in 120 min. Wichtige Anforderung: Die Haltetemperatur von 250 °C +/- 5 °C darf das Zeitfenster von 150 min +/- 10 min in keinem Falle unter- oder überschreiten. 37 technologie Abb. 4: Zweispurige Wärmebehandlungsanlage bestehend aus Anwärmofen, Halteofen und Kühler Abb. 2 und 3: Wärmebehandlung im Kammerofen Nach dem Lösungsglühen und Abschrecken soll wie vorstehend beschrieben bei der Warmauslagerung das Ausscheiden der härtenden Phase aus dem übersättigten Mischkristall in einer vorgegebenen Zeit-Temperatur-Kurve erfolgen. Um über das Werkstück verteilt nur sehr geringe Unterschiede hinsichtlich der Festigkeitswerte zu erzielen, ist daher eine sehr geringe Temperaturtoleranz äußerst wichtig. Der in Abb. 1 dargestellte allgemeine Verlauf einer Wärmebehandlung gibt den Zusammenhang zwischen Zeit und Temperatur für ein Werkstück an. Die Haltedauer muss demnach so groß gewählt werden, dass auch im 38 Werkstückkern die geforderte Temperatur erreicht ist und somit der Ausscheidungsprozess ablaufen kann. Ein Überhitzen und Unterschreiten der vorgegebenen Zeit-Temperatur-Kurve muss vermieden werden, um die geforderten Werkstückeigen schaften zu garantieren. Für die Wirtschaftlichkeit eines Bauteils ist die exakte Wärmebehandlung von ausschlaggebender Bedeutung. Die Ofenanlage: Die besondere Herausforderung gemäß dem Anforderungsprofil liegt im gleichmäßigen Aufheizen innerhalb der Zeit-Tempe ratur-Vorgabe, ohne die maximal vor gegebene Temperatur zu überschrei ten, sowie im gleichmäßigen Halten bzw. Kühlen innerhalb dieser Vorgaben. Prinzipiell unterscheidet man zwischen diskontinuierlichem Betrieb (z. B. im Kammerofen, Abb. 2, 3) und kontinuierlichem Betrieb im Durchlaufofen. Bei den Durchlaufanlagen (Abb. 4, 6) wird zwischen ein- und mehrspurigen Anlagen unterschieden. Die Wärmeübertragung an das Wärmebehandlungsgut erfolgt für bei de Ofentypen über Konvektion. Das Aufheizen erfolgt im ersten Teil der Anlage (bei Durchlauföfen). Durch intensive Luftumwälzung und Luft- führung wird gewährleistet, dass zum einen die erforderliche Zeit-Temperatur-Kennlinie eingehalten wird und zum anderen keine lokale „Überhitzung“ an den Teilen auftritt. Im Haltebereich des Ofens werden die Teile auf Temperatur gehalten, um den eigentlichen Warmauslagerungsprozess durchzuführen. Auch hier ist eine gezielte Luftführung erforderlich, unter Umständen abweichend zu der in der Anwärmzone, um die geforderten Temperaturtoleranzen an allen Werkstückbereichen einzuhalten. Die Abkühlung im nachfolgenden Kühler kann meist so schnell wie möglich erfolgen, es sind aber auch Wärmebehandlungen gefordert, bei denen ein vorgegebener Temperaturgradient nicht über- oder unterschritten werden darf. Ofen und Kühler sind durch elektromotorisch betrieben Hubtore voneinander getrennt. Das Zeit-Temperatur-Diagramm einer Durchlaufanlage während einer Ofenfahrt wird in Abb. 5 dargestellt. Die Messkurve 1 zeigt die Lufttemperatur, die Messkurven 2, 3 und 4 zei gen die Temperatur an den verschiedenen Stellen in den Gussteilen des Glühgestells. Abb. 5: Typisches Zeit-Temperatur-Diagramm, Fa. Elpo GmbH ALUMINIUM · 9/2009 technologie Die Glühgestelle: Bei der Glühgestellkonstruktion ist darauf zu achten, dass die Chargierung so gewählt wird, dass bei einer optimalen Auslastung noch eine ausreichende Anströmung der Teile gewährleistet wird. Üblicherweise ist die Ausführung der Gestelle derart, dass die Werkstücke in mehreren senkrechten und waagrechten Reihen gestapelt werden. Der Transport der Glühgestelle durch den Ofen kann unterschiedlich durchgeführt werden: entweder auf Schienen, wobei die Gestelle durch den Ofen geschoben werden, oder auf Doppelspur-Kettenförderer, wobei die Gestelle auf dem Kettenförderer abgestellt werden. Die Fördertechnik: Eine erhöhte Aufmerksamkeit kommt bei diesen Anlagen einer zuverlässigen und auf die Anwendung angepassten Förder technik zu. Diese beginnt an der Aufnahme der Bauteile, beinhaltet die Förderung durch die Wärmebehandlungsanlage bis zur Abnahme und schließt auch die umliegende Logistik ein. Dabei ist es von großem Vorteil für den Kunden, wenn Fördertechnik und Ofenanlage für die Thermoprozesstechnik von ein und demselben Lieferanten stammen, da diese Kom- bination besonders flexible und kundenspezifische Lösungen ermöglicht. Die Elpo GmbH aus dem süddeutschen Backnang ist unter anderem spezialisiert auf Wärmebehandlungsöfen für Aluminium, einschließlich der zugehörigen Fördertechnik. Weiterhin werden von Elpo Schlichtetrockner, Mikrowellentrockner, Konvektionstrockner für unterschiedlichste Anwendungsfälle, Kühler und Warmhalteöfen sowie Förder- und Handlingtechnik entwickelt, konstruiert und in eigenen Produktionsstätten gefertigt. Autor Abb. 6: Durchlaufanlage mit Hubtor Dipl.-Ing.(FH) Volker Burkhardt, Verkauf / Kundenbetreuung bei der Elpo GmbH Luft- und Trocknungstechnik mit Sitz in Backnang. Heat-treatment equipment for the aluminium industry Die Firma Schwartz in Simmerath ist spezialisiert auf den Bau von Wärmebehandlungsanlagen für das Anwärmen, Lösungsglühen mit Abschrecken, Warmauslagern und Kühlen von Aluminiumbolzen und Formteilen in der Aluminiumindustrie. Zu Schwartz GmbH of Simmerath, Germany, specialises in the manufacture of heat treatment equipment for preheating, solution-heat treating and quenching, artificial aging and cooling of aluminium billets and shaped parts. The heat treatment lines also include the requisite automated handling systems for transfers between furnaces, forging press and packing station. The systems implemented in the partly patented furnaces are designed to ensure short and uniform heating and low energy consumption. The figure shows a furnace during assembly in the company’s works in 2008. This furnace for heating of aluminium billets and disks is rated for a maximum capacity of 4 tonnes per hour. The conveyor system can accommodate a multitude of billet diameters and disk sizes. Loading of the furnace and transfer from furnace to forging press are handled by robots. To achieve uniform and quick heating of different height feedstocks the inside height of the furnace automatically adapts to the feedstock in accordance with a preselected program. ■ Schwartz Wärmebehandlungsanlagen für die Aluminiumindustrie Montage des Durchlaufofens Conveyor furnace during assembly den Ofenanlagen gehören die für den automatisierten Betrieb notwendigen Übergabeeinrichtungen zur Schmiedepresse, zwischen den Behandlungsanlagen bis zur Verpackung. Die 40 angewandten teilweise patentierten Ofensysteme gewährleisten eine kurze und gleichmäßige Erwärmung bei geringem Energiebedarf. Die Abbildung zeigt eine Ofenanlage für das Erwärmen von Aluminiumbolzen und -scheiben mit einer max. Leistung von 4 t/h bei der Montage. Der Ofen wurde 2008 im eigenen Werk Simmerath aufgebaut. Das eingesetzte Transportsystem lässt die Behandlung einer Vielzahl von Bolzendurchmessern und Scheiben zu. Die Beschickung des Ofens sowie die Übergabe vom Ofen zur Schmiedepresse erfolgen mittels Roboter. Damit eine gleichmäßige, schnelle Erwärmung bei unterschiedlichen Guthöhen erreicht werden kann, wird die Innenhöhe des Ofens über ein vorgewähltes Programm elektromotorisch dem Glühgut angepasst. ■ ALUMINIUM · 9/2009 technology Bereit für die Zukunft: Modernisierung von bestehenden gasbeheizten Bolzenerwärmungsanlagen O. Flamm und D. Menzler, Simmerath; Y. Karamahmut, Grand Rapids Fit for the future: upgrading of existing gas-fired billet heaters O. Flamm and D. Menzler, Simmerath; Y. Karamahmut, Grand Rapids Abbildungen: Otto Junker As demands on thermal equipment available to Otto Junker on an excluare becoming more exacting in many sive basis. fields, existing gas-fired billet heaters The new burner nozzles are charare not exempt from the modernisaacterised by a very broad control ratio tion drive. In this context, Otto Junker and stable flame formation over the places the focus not merely on asset entire control range. Their ignition bemaintenance which restores the plant haviour is very good, even at very low approximately to its as-delivered conoutput levels. The choice of appropridition. The company rather relies on ate metallic and ceramic materials concepts aimed at boosting the sysensures a clearly increased nozzle life. tem’s efficiency and utility value for The new mixer provides optimum the benefit of the user. These essenmixing of fuel gas and air and has a tially comprise the following: markedly reduced interior pressure • increase in throughput rate loss over the entire control range. Thanks to the lambda control system, • more homogenous heating quality the impact of air pressure, air humid• more uniform heating power ity and air temperature variations on input into the billets the combustion process and exhaust • reduction in energy consumption gas quality are reliably compensated • lower maintenance costs for. Fluctuations in fuel gas qual• improved exhaust gas quality. ity can be balanced out in the same The aforementioned targets can be manner. In this way the equipment easily achieved by implementing the performance will remain constant at action package outlined in the followall times, summer and winter, day and ing. The scope of this upgrade packnight. At the same time, exhaust air age can be adapted and implemented quality has been improved and stabiin line with the technical state of the lised – an important achievement in equipment to be revamped. view of today’s pollution-based taxes For maximum success, new-genand charges. In addition, the ability to eration burner nozzles are installed in the heating system and a newly developed fuel gas/air mixer as well as a pilot nozzle with integrated lambda probe are retrofitted in each zone. The fuel gas control train of each zone is fitted with a linear actuator for fine-adjustment of the fuel gas input. The nozzles, mixers and lambda control system are developed by a partner company and adapted for industrial ap- Regelstrecken von Brenngas und Verbrennungsluft plication in cooperation with einer Heizzone nach Einbau der Lambda-Regelung Otto Junker. The patented Fuel gas and combustion air control trains of a technologies have been made heating zone upon installation of lambda control ALUMINIUM · 9/2009 Aufgrund der in vielen Bereichen steigenden Anforderungen an thermische Anlagen stehen auch für derzeit im Einsatz befindliche gasbeheizte Bolzenerwärmungsanlagen Modernisierungen an. Das Hauptaugenmerk legt Otto Junker hierbei nicht auf reine Substanz erhaltende Maßnahmen, die die Anlagen wieder annähernd in den Lieferzustand zurückversetzen; vielmehr sind die Konzepte auf Stei gerungen von Gebrauchs- und Nutzwert zugunsten der Betreiber ausgerichtet. Dies sind im Wesentlichen: • Steigerung der Durchsatzleistung • Vergleichmäßigung der Erwärmungsqualität • Vergleichmäßigung des Leistungs- eintrags in die Bolzen • Senkung des Energieverbrauchs • Senkung der Wartungskosten • Verbesserung der Abgasqualität. Diese Ziele können leicht erreicht werden, wenn das nachfolgend beschriebene Maßnahmenpaket umgesetzt wird. Dies lässt sich je nach technischem Stand der umzubauenden Anlage anpassen und umsetzen. Um den größtmöglichen Erfolg zu erzielen, wird eine neue Generation von Brennerdüsen in der Beheizung eingesetzt sowie je Heizzone ein neu entwickelter Brenngas/Luft-Mischer und eine Pilotdüse mit integrierter Lambdasonde nachgerüstet. In der Brenngasregelstrecke jeder Zone wird ein Linearstellglied zur Feinregelung der Brenngasmenge nachgerüstet. Die Düsen und Mischer sowie die Lambdaregelung wurden von einem Partnerunternehmen entwickelt und in Zusammenarbeit mit Otto Junker für den Industrieeinsatz adaptiert. Die patentierten Technologien stehen Otto Junker exklusiv zur Verfügung. Die neuen Brennerdüsen zeichnen sich durch ein sehr großes Regelverhältnis und eine über den gesamten Regelbereich sehr stabile Flammenbildung aus. Das Zündverhalten, auch bei kleinen bis sehr kleinen Leistungen, 41 technologie Luft-Mischer und Lambdaregelung (siehe Foto) wurde sehr erfolgreich im Presswerk der Hydro Aluminium in Uphusen durchgeführt. Hier wurde eine von Elhaus gelieferte Bolzen erwärmungsanlage modifiziert. Bei Vergleichsmessungen vor und nach der Umrüstung wurde die Leistungsfähigkeit des Konzepts unter Beweis gestellt (siehe Grafik). Die erreichten Werte sprechen für sich, die Anlagenleistung konnte um mehr als zehn Prozent gesteigert und der spezifi sche Brenngasverbrauch in gleicher Größenordnung gesenkt werden. Die CO2-Emission hängt ab vom Lambdawert. Demzufolge schwankt die CO2-Emission nach dem Umbau nicht mehr in Abhängigkeit der sich ständig ändernden Randbedingungen, sondern wird über den Lambdawert auf einen konstanten Wert geregelt. Je nach Aufwand, der sich durch den Zustand der Anlagen und ihre ursprüngliche technische Ausstattung ergibt, beträgt die Amortisationszeit für solche Umrüstungen zwei bis drei Jahre mit künftig fallender Tendenz. Prädestiniert für die Umrüstungen sind naturgemäß die Anlagen, die von der Otto Junker GmbH und der Elhaus Industrieanlagen GmbH geliefert wurden. Technisch lassen sich natürlich nach eingehender vorheriger Prüfung auch die Anlagen an derer Hersteller umrüsten. pre-select a specific lambda value at any time gives the operator increased flexibility since the plant can be run in an exhaust gas optimised, energy consumption optimised or output optimised mode, depending on current production needs. For the few products requiring maximum throughput from the billet heater, heating power can be raised at any time by simply reducing the lambda value setpoint (assuming a sufficient fuel gas supply). In such special cases, the associated higher specific fuel gas consumption will usually be found acceptable. A complete revamp comprising burner nozzles, fuel gas/air mixer and lambda control system (see photo) has been very successfully implemented at Hydro Aluminium’s extrusion plant in Uphusen, Germany. In this case, the upgrade involved a billet heater originally supplied by Elhaus. The performance of the new system was demonstrated by comparative measurements before and after the upgrade (see chart). The values achieved speak for themselves – equipment output was raised by more than ten percent while the specific fuel gas consumption was reduced by about the same margin. Since CO2 emissions depend on the lambda value, the CO2 output of the upgraded system will no longer vary with ever changing boundary conditions but is kept constant by the lambda control system. Depending on project cost, which is a function of the equipment condition and original technical equipment level, the payback period for such an upgrade is in the region of two to three years and will decline in the future. Naturally, equipment supplied by Otto Junker GmbH and Elhaus Industrieanlagen GmbH are specifically predestined for this kind of upgrade. However, from an engineering viewpoint, it goes without saying that systems made by other manufacturers can likewise be revamped following a detailed prior analysis. Autoren Authors Oliver Flamm und Dr. Dirk Menzler, Otto Junker GmbH, Simmerath. Oliver Flamm and Dr. Dirk Menzler, Otto Junker, Simmerath, Germany. Yildirim Karamahmut, High-Tec Engineering, Grand Rapids, Michigan, USA. Yildirim Karamahmut, High-Tec Engi neering, Grand Rapids, Michigan, USA. Bolzentemperatur und Bolzentemperaturgradient vor und nach der Umrüstung Billet temperature and billet temperature gradient before and after the upgrade ist sehr gut. Die entsprechende Wahl metallischer und keramischer Werkstoffe sorgt für eine deutlich erhöhte Standzeit der Düsen. Der neue Mischer gewährleistet eine optimale Vermischung von Brenngas und Luft bei deutlich reduziertem inneren Druckverlust über den gesamten Regelbereich. Durch die Lambdaregelung werden die Einflüsse auf Verbrennung und Abgasqualität, wie sie durch Schwankungen des Luftdrucks, der Luftfeuchte und der Lufttemperatur auftreten, ausgeglichen. Ebenso lassen sich Schwankungen in der Brenngasqualität ausregeln. Dadurch wird die Anlage, egal ob Sommer oder Winter, ob Tag oder Nacht, mit derselben Ofenleistung betrieben. Zusätzlich wird die Qualität des Abgases verbessert und stabi lisiert, was im Hinblick auf abgasbezogene Steuern und Abgaben von hoher Bedeutung ist. Darüber hinaus bietet die jederzeit mögliche Vorwahl eines bestimmten Lambdawertes dem Betreiber eine erhöhte Flexibilität der Anlage; es kann je nach Erfordernis abgas-, energieverbrauchs- oder leistungsoptimiert produziert werden. Durch einfache Absenkung des Soll-Lambdawertes kann für die wenigen Produkte, die der Bolzenerwärmungsanlage die maximale Durchsatzleistung abverlangen, die Heizleistung gesteigert werden – ausreichender Brenngasanschluss vorausgesetzt. In solchen Sonderfällen kann der dann höhere spezifische Brenngasverbrauch meist akzeptiert werden. Eine komplette Umrüstung, bestehend aus Brennerdüsen, Brenngas/ 42 ALUMINIUM · 9/2009 technology When ABB formed the mainte nance alliance at the Hydro Kurri Kurri aluminium smelting plant in Newcastle, Australia, the ABB Full Service team was taking over the maintenance for four business units. One of them, the carbon plant, is responsible for manufacturing the anodes that are consumed in the production of aluminium. At that time, the power and free conveyors in the carbon plant were suffering from years of poor maintenance due to design variations, inconsistent parts supply and poor turnaround time. The previous off-site contrac tor, who had been responsible for carriage repairs, was unable to ramp up the refurbishments, nor achieve the higher quality stand ards imposed by the ABB Mainte nance Alliance Reliability Team. “The carriage repair project has had great success in targeting the defects on this equipment. We have gone from a position of vulnerability to a position of structure behind our carriage repairs”, says Kevin Heame, Production Team Coordinator for the Kurri Kurri smelter. Power and free conveyor improvement project – The power and free (P&F) conveyor is responsible for carrying the anodes through the production processes to the bake furnace where the green anodes are converted. When the ABB maintenance alliance started in 2006, the system was in desperate need of repair. The losses in produc- Diagrams: ABB ABB maintenance turns around plant critical equipment Fig. 1: Damage distribution – P&F stockpile tion due to damaged carriages were nearing the point where production would need to stop, since the lost time per shift was approaching the length of time that the shift operated. Performance of the conveyors was as low as 70 percent of the target minimum, which was the minimum number of carriages on the conveyor to prevent lost time. ABB immediately focused on bringing the carriages back into the system as quickly as possible and increasing the reliability of the entire system. Within four months, the ABB onsite maintenance team led the plant to: • Increase productivity by 30 percent • Achieve performance target of greenmix and baked chain • Annual ROI of 84,000 percent • Recover four hours of lost time per shift. ABB also developed an in-house refurbishment programme, which ensures that stringent quality assurance procedures will be adhered to for years to come. Identifying a root cause for system failure – A significant problem ABB identified was that operators were removing the carriages from the system whenever they jammed. Once a carriage was removed, it joined the pile of some 200 carriages that were waiting to be refurbished. This inefficient method was addressed by making the carriage removal a maintenance task. ABB developed a troubleshooting guide for the maintenance crew, who would then perform a series of inspections leading to several in-service repairs before the carriage was removed. This procedure not only made addressing the issues more efficient, but it also reduced the annual ➝ Fig. 2: Number of carriages on carbon plant power and free conveyors ALUMINIUM · 9/2009 43 Norsk Hydro technology Aerial view of the Kurri Kurri plant in Australia maintenance costs by USD14,000 eliminating unnecessary freight and material handling charges. Improving the refurbishment programme – Once the system inefficiencies were eliminated, ABB took a closer look at the repair process for the carriages. Here issues were identified with throughput, quality of repairs and lead times for parts. The assessment resulted in the set-up of an internal refurbishment programme using the on-site work shop, since they had the necessary tools and jigs to perform the repairs efficiently. Streamlining the repair process – ABB then examined the specific problems occurring with the equipment, so data was captured, compared and the results are shown in Figure 1. An overwhelming 50 percent of the carriages in the stockpile were due to damage with the front trolley. This information then allowed ABB to focus on specific equipment improvements. Using this information, a cannibalisation programme was developed, and over 80 carriages were identified for rapid return to the system by substituting some small and easy to change parts from other damaged carriages thus avoiding the longer standard repair process. Combined with quality 44 assurance checks, the central work shop was able to quickly turn around large numbers of carriages and provide enough work for operations to continue until the shipment of new parts arrive, allowing the complete carriage refurbishments to proceed. Once the number of working carriages had begun to stabilise, focus shifted to prepare a detailed refurbishment procedure which enabled quality repairs and the implementation of a quality assurance programme. The comprehensive document detailed the complete overhaul of the carriages providing tradesmen with a valuable tool to ensure compliance on a daily basis regardless of who was doing the repair. Figure 2 shows the improvement that was achieved on the two conveyor lines. Starting with both lines well below the minimum target, performance was improved to over the miniThe Kurri Kurri aluminium smelter has been operational since 1969 and is currently owned and operated by Hydro. The plant is located close to Newcastle in New South Wales, Australia. Production capacity of the smelter is currently at 153,000 tonnes annually. mum target on both lines for the first time since ABB took over the maintenance. The greenmix part of the plant is where all the raw material batching, mixing and forming occurs, whilst the baked section is where the formed raw ingredients, that is the output of the greenmix plant are consolidated by baking. ABB’s project leader Adam Cooper says: “This has been an excellent example how ABB’s tools and system analysis methodologies can help customers like Hydro Kurri Kurri. We were able to develop an innovative solution that resulted in a reliable system and increased productivity for the plant.” Since the power and free conveyor is a bottle neck piece of equipment that actually runs through the entire carbon plant, the refurbishment of the system has enabled the plant to operate at much higher efficiency than before. This not only promotes safety, but also increases operator morale since they no longer have such a high interaction with defective equipment. This improvement has also enabled the ABB maintenance alliance personnel to spend their time on other equipment, further increasing the reliability and stability of operation of the plant. ■ ALUMINIUM · 9/2009 Co m pa n y n e w s w o r l d w i d e Aluminium smelting industry It also plans to build a 90 MW power plant and a 2m tpy bauxite mine, and to expand its 138,000 tpy alumina refinery in Belgaum to 313,000 tpy in 2011. Hindalco is raising USD500m to finance the expansions. Norsk Hydro Rio rejects USD80m lifeline for Anglesey as it prepares for closure Chinalco likely to back Rio rights-issue China’s state-owned Chinalco is likely to participate in global miner Rio Tinto’s USD15.2bn rights offer, in a sign China is keen to retain its interest in the world’s top iron ore miner. Strong demand for the Rio offer, the fifthbiggest on record, is expected to ease pressure on Rio to sell assets at throwaway prices and to give it the stability to pursue growth amid signs that the global economy is on the mend. Rio is raising money to cut a USD38bn debt mountain it accumulated when it bought Canadian aluminium group Alcan at the top of the commodities market in 2007. The key issue for Rio is to decide whether to sell some downstream Alcan assets now, or whether to hold them for 3 to 5 years to realise better value. Chinalco’s aluminium relations with Rio soured early in June after the indebted miner called off a bigger equity partnership that would have seen the Chinese group invest another USD19.5bn into dual-listed Rio Tinto. Instead, Rio ditched the deal in favour of the rights issue and an iron ore joint venture with rival BHP Billiton, raising howls of protest from China. Rio’s 21-for-40 rights issue was priced at a steep discount of AD28.29 per Australian-listed share and 1,400 pence per London-listed share. Chinalco, Rio’s top shareholder, owns about 9% of the combined group ALUMINIUM · 9/2009 and a full take-up of the rights would cost it around USD1.5bn. If Chinalco takes up its entitlement in full, it would bring down its average hold ing cost in Rio. Chinalco bought its initial stake at 60 pounds (USD99.69) a share in February 2008 in a raid on the London-listed stock. Hindalco may go slow on Aditya Aluminium project India’s Hindalco Industries Ltd may go slow on its Aditya Aluminium project in Orissa state, which envisions a 1.5m tpy alumina refinery and a 360,000 tpy aluminium smelter. It is facing problems getting the required land and water supplies as well as environmental clearance. It is unclear what the delay will be, but mechanical completion of the plant had been expected in 2011, and full production by 2013. Hindalco also plans to build two aluminium smelters of 360,000 tpy each in Jharkhand and Madhya Pradesh states in the next four years. The Mahan Smelter in Madhya Pradesh is due for completion in late 2010, with first metal expected in 2011. Equipment for the captive 900 MW power plant has been ordered, together with around 40% of the smelter equipment. To feed its three new smelters Hindalco is also building Utkal Alumina, a 1.5m tpy alumina refinery, by early 2011, with first alumina in July 2011. Rio Tinto Alcan will continue with plans to close its Anglesey aluminium smelter in Wales after it rejected a £48m (USD79m) government bailout on 1 July. There is no possibility of a realistic subsidy being available, and without a permanent power solution, any subsidy would only provide interim relief and would not represent a sustainable solution. Rio has looked at other options, but has not identified any alternative and affordable source of power. The 145,000 tpy aluminium smelter is owned by Rio with a 51% stake, and by Kaiser Aluminum which has the remaining 49%. The Anglesey plant employs around 500 people. German Neuss aluminium plant stays open near term Hydro Aluminium, the German unit of Norwegian group Norsk Hydro, is to keep its large German aluminium plant at Neuss open for the immediate future while a new German state aid plan for metal companies is assessed. Hydro said in April it would stop production at the loss-making aluminium plant at Neuss in June because of high German electricity costs and weak demand. But the Neuss plant will remain in operation at its current reduced level while the details of a new German government plan to help the non-ferrous metals industry are assessed. Germany’s ruling government coalition has decided to give extra aid of €40m (USD55.91m) in 2009 to help the NF metals industry overcome the impact of the economic slowdown and high German power costs. The Neuss plant has capacity to produce 230,000 tpy of primary aluminium, but is currently producing only about 4,000 tpm or about 50,000 tpy. ➝ 45 Co m pa n y n e w s w o r l d w i d e The €40m aid package for 2009 could be paid out to firms in around two months. Details of how the aid will be paid out were being worked out by Germany’s Economy Ministry, and the plan would have to be approved by the EU Commission. German metals producers faced electricity costs as much as 30% higher than neighbouring countries. Greenland delays decision on Alcoa plant Greenland has delayed a decision on joining Alcoa Inc. in a planned aluminium venture, and has scaled back its possible stake to 10 to 30%. More time was needed to estimate construction costs at the smelter and hydropower venture in Maniitsoq. Greenland’s parliament will decide on the venture in spring 2010 instead of this autumn as earlier planned. Alcoa and Greenland announced in 2007 they would explore building a plant and said construction could begin in 2010, with production starting in 2014. The proposal consists of a smelter with a capacity of at least 350,000 tpy and two hydropower plants. Annual revenue is estimated at 3 to 4 billion Danish crowns (USD566-754.7m). Since Alcoa is only looking for a 50% share, the door could be open to other partners. Vedanta to double output at Orissa aluminium smelter Vedanta Aluminium will double production at its new smelter at Jharsuguda, Orissa, to 500,000 tpy in the near future. The smelter will get alumina from Vedanta’s Lanjigarh refinery, which is also ramping up production, to 1.4m tpy in the next month from 1m tpy. Vedanta’s aluminium smelting capacity in India has, however, fallen as it has decommissioned two 50,000 tpy potlines at its plant in Korba, Chhattisgarh state. Vedanta is also likely to decommission another 50,000 tpy of old smelting capacity at Korba within a year, leaving a 245,000 tpy smelter commissioned only a few years ago. Vedanta plans to replace the old smelters under a 600,000 tpy 46 brownfield expansion plan. It aims to produce over 1m tpy of aluminium by 2010/11.The 600,000 tpy fresh smelting capacity at Korba is expected to be commissioned by 2010/11. Venezuela will announce aluminium recovery plan in the near future The priority of Venezuela’s government will be to invest some 410m Bolivares (USD190m) in local bauxite and alumina producer CVG Bauxilum. Bauxilum has been producing only 3,200 to 3,500 tpd of alumina, while its capacity is 5,800 tpd (2.11m tpy). Alcasa’s situation is also very difficult, since almost 400 of its 680 electrolytic cells are idle at the moment on the lack of technological update. Alcasa has been producing only some 350 tpd (126,000 tpy) of aluminium, well below its installed capability of around 550 tpd (200,000 tpy). Venalum has been operating near its installed capacity of 1,180 tpd (430,000 tpy), although there were some output losses due to protests. The whole aluminium sector would need some USD5.5bn to fully recover, according to a study recently completed by the Chinese government at the request of Venezuela’s authorities. Production costs in Venezuela are around USD3,700 per tonne of aluminium, while prices were still in the USD1,800/t level. The government will pay delayed benefits and wages to the sector’s workers, totalling roughly 213m Bolivares in three instalments – one on 31 July, the second on 15 September and the last on 31 October. Century to restart construction at Iceland smelter Despite lingering concerns about oversupply in the aluminium market, Century Aluminum Co. is preparing to restart major construction at and expand the capacity of its proposed primary smelter in Iceland. Plans for the smelter in Helguvik, Iceland, were effectively put on hold late in 2008 due to tightening credit markets, the collapse of the Icelandic economy, and the downturn within the alumin- ium industry. Century is now ramping up construction and is planning to expand the eventual capacity of the smelter to 360,000 tpy from its previous target of 250,000 tpy. Century has reconfigured the phasing of the project. Originally, the company hoped to build a 250,000 tpy smelter in two stages, with the first 150,000 tpy first stage going online in late 2010. Now Century plans building the smelter in four phases of 90,000 tpy each. The company did not disclose when the first phase might be completed. Century is still formulating how much it plans on spending on construction costs in 2009. When built, Helguvik will be Century’s second plant in Iceland. Its low-cost Grundartangi smelter shipped at a rate of approx. 276,000 tpy during the second quarter. Century recalls 28 workers to Hawesville smelter Century Aluminum Co. has brought back 28 workers to its Hawesville/ Kentucky smelter as the company plans to restart 21 pots that have been left idled or damaged. Seven workers will replace retiring employees, while the remaining 21 will be tasked with rebooting the pots that were allowed to go out. While the repairs will not directly lead to increased production, they will allow the facility to operate more efficiently. The Hawesville smelter has a nameplate capacity of 244,000 tpy over five potlines, each with 112 pots. But the company is only running four potlines currently, equating to an annualized production rate of 180,000 tpy. The rationale for bring back the employees is twofold. First, LME prices are in the midst of a rally. Three-month aluminium closed second-ring trade at USD1,837 per tonne on 28 July, a 17.3% gain from the USD1,565 level seen on 13 July, based largely on improved demand and a tightening marketplace. Additionally, the company just completed a new long-term power contract with Big Rivers Electric Corp., which will supply the smelter with electricity through 2023. ■ ALUMINIUM · 9/2009 Co m pa n y n e w s w o r l d w i d e UC Rusal Bauxite and alumina activities Vedanta’s India bauxite mining to begin by October Vedanta Resources Plc. will begin bauxite mining for its alumina plant in eastern India by October and will invest USD1.23bn to expand its capacity sixfold by 2011. The start of the mining to feed the alumina refinery in India’s eastern state of Orissa has been delayed for at least four years by protests from indigenous people, who consider the area that will be mined as sacred ground. In August 2008, India’s Supreme Court allowed the London-listed company to proceed to mine bauxite from open-cast mines. Vedanta has so far invested USD823m in the plant, and will spend another USD1.23bn to expand the capacity to 6m tpy from 1m tpy by 2011. The company has deposited USD28m with the government as payments to ensure it preserves wildlife, does reforestation projects and launches development work for residents. The Orissa Mining Corp., Vedanta’s joint-venture partner, will supply 150m tpy of bauxite to Vedanta’s plant from various locations, including Niyamgiri, which has a 79m-tonne deposit. Venezuela’s CVG Bauxilum announces USD110m recovery plan Venezuelan bauxite and alumina producer CVG Bauxilum has announced an immediate recovery plan worth 236.5 million bolivares (USD110m) ALUMINIUM · 9/2009 to enable it to produce 3,200 tpd of alumina throughout the second half. CVG Bauxilum expects a total output of 1.4m tonnes for 2009 once the recovery plan has been completed. The boost in output for the second half would allow the company to feed the domestic market and attend sale commitments in the international market. Around 183.85m bolivares (USD85.5m) will be used to revamp works and to purchase raw materials in Venezuela and other countries. The remaining money will be used to pay the company’s workforce labour benefits. CVG Bauxilum did not say when it intends to finalise the 236.5m bolivares (USD110m) investment, but it is likely that the capital will be spent by December. The company is aiming to produce 1.65m tonnes of alumina in 2010 and, afterwards, intends to reach its installed capability of 2m tpy, with further investment of 610.6m bolivares (USD284m). Chinese firm buys 2.5m t of alumina from Trafigura China’s CPI Mengdong Energy Group, the parent of smelter HMHJ Aluminium, has agreed to import 2.5m tonnes of alumina from international trading house Trafigura Group. The alumina will be shipped in equal amounts to the Chinese buyer over ten years from 2010. The alumina will be priced at less than 14% of the price of the three-month aluminium contract of the LME. The contract also set the maximum and minimum prices for alumina. That term price was about 10% lower than prices for current spot alumina to China. Trafigura’s contract will cover 18% of HMHJ’s alumina needs in 2010, which are about 1.4 m tonnes. HMHJ’s facilities in Inner Mongolia can turn out 700,000 tonnes of primary aluminium in 2010 and that output will consume around 1.4m tonnes of alumina. China produced more than 90% of its alumina needs in the first half of this year at 10.62m tonnes. Alumar refinery completes 2m tpy alumina expansion The Alumar alumina refinery in Brazil has increased production as a result of a 2m tpy expansion project. With the project 98% complete, the refinery will ramp up to full production throughout the second half of the year. Total production capacity will increase to 3.5m tpy from 1.5m tpy. Alcoa is the majority stakeholder with 54%, while BHP holds a 36% stake and Rio Tinto Alcan holds the remaining 10% share. Nalco expects to get Andhra Pradesh bauxite mines soon India’s Nalco expects to receive mining leases for its proposed 4.2m tpy of bauxite and 1.4m tpy alumina projects in September 2009. Now that the Andhra Pradesh government has recommended that the central government should grant bauxite mining leases to Nalco in East Godavari and Visakapatnam districts of the state, Nalco has crossed the first hurdle to the Rs70bn (USD1.4bn) bauxite mining and alumina refinery project. The leases cover 85m tonnes of bauxite reserves of the same quality as Nalco’s other mines, 20 km away in Orissa state. However, due to a lack of land, ore from the Andhra Pradesh mines will have to be transported 20 to 30 km to the refinery, unlike Nalco’s current operations, where mine and refinery are nearby. Nalco is one of the world’s lowest cost alumina producers ➝ 47 Co m pa n y n e w s w o r l d w i d e at around USD120 per tonne. Nalco will apply for forest and environment clearance after it receives the mining leases, and it may take five to seven years before alumina production starts at the export-oriented refinery. Pisolite Hills bauxite resource upgraded by 30% Cape Alumina has raised the bauxite resource on its proposed 7m tpy Pisolite Hills project in Queensland, Australia, by 30% to 130m tonnes. This upgraded estimate will form a ‘pivotal component’ of the bankable feasibility study due to commence in September 2009. There is potential for an initial 12 to 15 year operation at Pisolite Hills at a target production rate of 7m tpy. The bauxite is suitable as a blending feed for the new breed of low-temperature Bayer-process refineries in China. Cape Alumina expects to start construction on the Pisolite Hills project in early 2011. Steele/Alabama, and Morgantown/ Kentucky. At the ingot casting section of the sheet mill in Lewisport/ Kentucky recalls for 25 people have occurred, partly due to increased activity and partly to replace retirees. Aleris is reorganising under Chapter 11 court protection. ■ Commercial Alloys Corp.’s aluminium smelters in Minerva/Ohio, and Scottsboro/Alabama, which have been part of a Chapter 11 bankruptcy case since November 2008, were sold to an investment group headed by David Kozin of Chicago-based Imperial Zinc Corp. Imperial Coldwater Group LLC, which shares Imperial Zinc’s address, paid USD1.3m for the two facilities, plus a value not yet established for the inventory. The draft of the ‘final asset purchase agreement’ was filed in U.S. Bankruptcy Court for the Northern District of Ohio. Three scrap veterans at Imperial’s branch in Angola/Indiana – David Riddell, Aaron Stankewicz and Corbin Grimes – will handle metal purchase and some other responsibilities. At one time, all three worked for Imco Recycling, a company which had been eventually merged into Aleris International Inc. The Scottsboro plant is idle, while Trimet Recycling and secondary smelting Aleris recalls workers on auto restarts Aleris International Inc. said more than 100 aluminium workers have been recalled during July at its specification alloy and recycling plants in Coldwater and Saginaw/Michigan, Investment group buying two Commercial Alloys smelters Novelis may stop buying scrap from AB InBev Novelis Inc. has come close to saying it will drop its long-time arrangement for buying much of its can scrap through AnheuserBusch Inbev (AB InBev), a major customer for the resulting aluminium canstock. Novelis North America announced it will change its used beverage can (UBC) procurement strategy at the end of its current contractual commitments. Come January, the most likely outcome will be an expanded purchasing unit at Novelis buying directly from recyclers and municipalities, although there has been no rumour about the company recruiting scrap traders. Long-shot possibilities are outsourcing to a nationwide scrapyard chain or 48 to Coca-Cola Recycling LLC, which so far plays only a minor role as a direct scrap supplier to Novelis, but which has greatly expanded its staff and capabilities over the past 18 months. It is part of Coca-Cola Enterprises Inc. A stumbling block would be that Coca-Cola would probably want a fee-based tolling arrangement, with a fixed conversion charge, while Novelis likely would favour a buy-sell structure for flexibility and confidentiality. AB InBev has the twin roles of supplying Novelis with UBCs and of buying the canstock made from it. The two sides of the arrangement involve different segments of AB InBev. The sort of relation- ship Anheuser-Busch and Novelis have had can be very stressful, as the rolling mill’s customer obtains intimate knowledge over time of margins between material cost and product price, partly from data fed into the detailed pricing formulas written into the contracts. If Novelis does begin purchasing directly from a long roster of suppliers, it will need to make concessions to recycler paranoia about credit risk from debtladen scrap consumers. If the industry’s relationships get shaken up, AB InBev might be tempted to strengthen ties to the smallest of the major canstock producers, Wise Metals Group. ALUMINIUM · 9/2009 Co m pa n y n e w s w o r l d w i d e the Minerva plant was producing 1,800 to 2,270 tpm. Once the Minerva plant is up and running close to capacity, the Scottsboro smelter will be fired up. The Minerva smelter is expected to produce 3,600 to 4,100 tpm by the end of 2009. Commercial Alloys, based in Twinsburg/Ohio, also operated scrapyards there and in Jacksonville/Florida, which had been purchased by Reserve Management Group, Solon/Ohio. UK diecaster Thomas Brothers plans to close in October Leeds-based aluminium diecaster Thomas Brothers plans to close in October as a result of falling demand for its products and a loss of customers. The gravity diecasting company specialises in the manufacture of high quality aluminium castings for general and automotive industries, and has over 35 years experience in the industry. The company employs about 27 people. India’s Hindalco to close down wheel plant to USD65m from about USD280m through debt-for-equity swaps with first- and second-lien term loan lenders in an effort to provide a stable financial foundation for its operations. The company and its domestic affiliates will complete a pre-negotiated restructuring under its Chapter 11 filing in the U.S. Bankruptcy Court for the District of Delaware. None of the company’s foreign operations are included. J.L. French has a USD15m debtor-in-possession (DIP) facility to fund working capital needs that might arise during the reorganisation, and expects to emerge from Chapter 11 within 90 days. J.L. French manufactures engineered aluminium die-cast automotive parts, including oil pans, engine front covers, engine blocks and transmission cases. Southwire to pay USD335,000 EPA fine at Hawesville plant Southwire Co. has agreed to pay USD335,000 in civil penalties to the state of Kentucky for a 2006 violation of the federal Clean Air Act. The fine related to testing, operational, monitoring and record-keeping requirements at the Carrollton/Georgia-based company’s secondary aluminium production facility in Hawesville/Kentucky. The fine represents the largest civil settlement obtained for violations of the Secondary Aluminium Maximum Achievable Control Technology (MACT) regulations at a single facility in the Southeastern United States. The Kentucky Energy and Environ mental Cabinet Department of Air Quality has since confirmed that the air pollutant levels from the Hawesville facility now meet industry standards established by the MACT rule, which regulates the emission of metallic hazardous air pollutants, dioxins/furans, and hydrogen chloride and fluoride and chlorine associated with secondary aluminium production. Because the facility has come into compliance with the MACT standards, the settlement requires no further action to address compliance with the Clean Air Act at the facility. ■ Aluminium semis Auto supplier J.L. French files for Chapter 11 J.L. French Automotive Castings Inc. filed for Chapter 11 protection on 13 July in response to U.S. automotive production declines and industrywide credit restrictions. The Sheboygan/Wisconsin-based aluminium automotive components manufacturer also plans to reduce its secured debt ALUMINIUM · 9/2009 Vimetco Hindalco Industries intends to shut down an aluminium alloy wheels plant at Silvassa in western India, and will take steps to sell the plant’s assets. The company did not give any reason for shutting the plant, which has the capacity to make 300,000 wheels a year, but said it would not have any impact on the operations and financials of the company. The plant’s wheels were approved for supply to most major automakers including Maruti Suzuki, Tata Motors, Ford and Hyundai. NORTH AMERICA Work starts on rebuilding Alcoa press in Cleveland Work has begun on the initial stages of rebuilding Alcoa’s giant aerospace forging press in Cleveland, but without any word on the vast majority of funds needed to bring back the disabled equipment. Engineering work had begun and some parts had been ordered as part of a preliminary USD22m allocated by the parent company for repairing the 50,000 tonne press, built originally by Mesta Machine Co. Among the parts needed would be castings for the base, ➝ 49 Co m pa n y n e w s w o r l d w i d e which also would require the dismantling of the press. The Cleveland facility, and the big press in particular, plays a critical role in supplying large aluminium forgings for the new F-35 Joint Strike Fighter for Lockheed Martin Co. Alcoa has been able to produce the forgings on other equipment at Cleveland, although it is assumed in the aerospace industry that the 50,000 t press would be required for the aircraft’s full production stage. Alcoa continues to forge parts for the F-35. The total cost to bring back the press – believed to be one of only three of its approximate size in the United States – is estimated at more than USD110m, including USD60m million to USD70m for rebuilding the press itself, with the remainder for such associated projects as new manipulator arms. On the move Alain Belda, Alcoa’s Executive Chairman, retired as an executive officer on 1 August. But Belda will continue to serve as Chairman of the Board until his term as a director expires at the next annual meeting of shareholders on 23 April 2010. Belda was Alcoa’s CEO from 2001 until May 2008. Alcoa expects Klaus Kleinfeld, Alcoa President and CEO, to succeed Belda as chairman of the board. Additionally, Alcoa appointed Tim D. Myers President, Alcoa Wheel and Transportation Products, with responsibility for forged wheels and aluminium structures. Alcoa appointed Nicholas DeRoma as Executive Vice President, Chief Legal & Compliance Officer. In addition to leading Alcoa’s legal and compliance operations worldwide, Mr DeRoma will also serve on the Alcoa Executive Council. He succeeds Michael Schell, who continues as Executive Vice President, Business Development, and a member of the Executive Council. Aluminium Bahrain (Alba)’s Board of Directors announced the appointment of Mohammed Mahmoud as Alba’s new Chief Operating Officer, a newly created position. 50 In September 2008, Alcoa declared force majeure on the press after cracks were discovered in its lower base. Aluminium extruder to be sold Patrick Industries Inc. has agreed to sell its aluminium extrusion operation in Mishawaka/Indiana to Patrick Aluminum Inc. for USD7.4m. Although classified as a discontinued operation in the fourth quarter of 2008, the plant is capable of producing and painting semi-fabricated and fabricated aluminium extrusions for structural and non-structural uses. Patrick Aluminum is a unit of UMC Acquisition Corp., Lynwood/California. The extrusion operation will continue to operate under the name Patrick Metals. ASIA Hindalco plans to relocate Novelis plants to India Hindalco Industries is making meticulous plans to relocate plants owned by its subsidiary Novelis to India from Europe. The sheet mill at Rogerstone in the UK employing 440 workers is already closed, and one more plant in the UK is also likely to be closed. Novelis plants in Europe bought their metal from Hindalco and other sources for sheet making, and these shipping costs can be avoided with the relocation. Hindalco is reportedly talking to five leading can makers to supply aluminium sheet, including Poland’s Rexam, which is building a plant near Mumbai in Taloja, and Britain’s Can Pac, which is setting up a plant to make one billion cans a year in India. India’s safeguard duty on rolled products and foils protects it from cheap imports for the next five years. EUROPE Armenal reports increase in production In June, Armenal produced nearly 2,500 tonnes of foil, a 12% improve- ment on its nominal design capacity, taking the rolling mill’s half-year production to over 10,000 tonnes. The company reported a 77% production increase from January to June 2009 compared to the first half of 2008 and expects to see its output double by the end of this year. Armenal, in parallel with the expansion of output, was making improvements in practically every technical and economic indicator, including a 60% reduction in production costs and fewer rejects due to production defects. The company has enough orders on hand to keep the foil mill running until the end of this year. Its products are mainly exported to the United States with the Middle East becoming a rapidly growing market for them. Sapa’s agreement with Indalex complete At the end of July, Sapa completed its purchase of the US aluminium extrusion company Indalex. Sapa acquired Indalex’s eleven active plants, six in the US and five in Canada, with two casthouses and 29 presses, and a total capacity of about 315,000 tpy. Indalex’s sales in 2008 were about 200,000 tonnes, representing USD900m. The company employs 1,400 The Author The author, Dipl.-Ing. R. P. Pawlek, is founder of TS+C, Technical Info Services and Consulting, Sierre (Switzerland), a new service for the primary aluminium industry. He is also the publisher of the standard works Alumina Refineries and Producers of the World and Primary Aluminium Smelters and Producers of the World. These reference works are continually updated and contain useful technical and economic information on all alumina refineries and primary aluminium smelters of the world. They are available as loose-leaf files and/or CD-ROMs from the Aluminium-Verlag, Marketing & Kommunikation GmbH in Düsseldorf, Germany. ALUMINIUM · 9/2009 Co m pa n y n e w s w o r l d w i d e people. Through this acquisition Sapa strengthens its geographical coverage and logistical efficiencies to better serve North America, including an expansion into Canada. The acquisition represents an underlying enterprise value of approx, USD95m. AFRICA Anglo sells 28% of South African Hulamin Mining group Anglo American Plc. sold 28% of South Africa’s Hulamin Ltd for 732m rand (USD93m) to focus on its core mining operations. Anglo, which is fighting off an unwelcome merger approach from rival Xstrata, retained a 17% stake in Hulamin, which makes semi-fabricated aluminium. The disposal was in line with Anglo American’s strategic commitment to focus on its core mining operations. Anglo sold 61m shares to Coronation Asset Management at 12 rand per share, compared to Hulamin’s price in Johannesburg of 10.55 rand. Hulamin posted a sharp drop in interim profit and said that, although order intake was recovering, annual earnings would fall by at least 20%. At the end of July Anglo sold its remaining stake in Hulamin, bringing the transaction to a total of 1.16bn rand (USD149.4m). Anglo sold its residual 35.8m shares in the aluminium products company to South African institutions at the same price of 12 rand per share as for the first stake. Suppliers BWG GmbH acquires metal treatment technology from VITS BWG Bergwerk- und WalzwerkMaschinenbau GmbH has announced the acquisition from VITS of technology for the thermal treatment of metal strip. BWG has formed a Thermal Strip Treatment product division to add to its established range of highquality cost-effective equipment and services. This technology transfer allows BGW to better meet the ever growing challenges and needs of the steel and aluminium industries. By adding these products to its existing portfolio, BWG has broadened its core competence in the field of metallurgical strip processing. The supply of thermal strip treatment equipment is a logical addition to the supply of coil coating lines and aluminium annealing lines, thus enabling the company to offer integrated technical solutions. The new division is fully integrated into BWG at its headquarters in Duisburg, Germany. BWG is an internationally active family-owned company. It delivers strip treatment lines and coil and slab handling equipment as well as carrying out modernisation of existing process lines and supplying specialist equipment such as Levelflex tension levellers, temper mills, side trimmers and slab deburrers. ■ Alro – new annealing furnace put into operation ALUMINIUM · 9/2009 Management Council, in accordance with SAE Aerospace Standard AS 70003, following the testing of aluminium alloys produced at Slatina for heat treatment, conductivity measurement, tensile testing, hardness and metallographic analysis. Over the last seven years, Alro has invested in total more than 255 million US-dollars. This year, the company will complete all investments started in 2008, which are budgeted to reach approximately six million US-dollars. Vimetco Alro SA, the largest aluminium producer in Central and Eastern Europe, has commissioned its annealing furnace with controlled atmosphere, following an investment of three million US-dollars. The new technology improves the surface quality of Alro’s aluminium products and the reliability of its mechanical properties. The project, which began in 2007, will also result in lower consumption of energy. The start-up of the furnace is part of an investment programme focused on increasing production of high added value products, in line with Alro’s long-term strategic goals. The investment has also improved quality and allowed the best response in meeting customer needs regarding product range and specifications. The modernisation programme has enabled Alro to receive the NADCAP (National Aerospace and Defence Contractor Accreditation Programme) performance certification for conformity with aerospace industry requirements, in 2008. The certificate was awarded by the NADCAP 51 research On the dissolution of alumina in a low-melting electrolyte for aluminium production S. Rolseth, J. Thonstad, H. Gudbrandsen, K.S. Osen, and J. Kvello, Trondheim In studies of inert anodes for aluminium production, so-called low-melting electrolytes have been tested, operating at temperatures as low as 750°C. Dissolution of alumina may then become critical, because of lower solubility and lower rate of dissolution. The rate of alumina dissolution was tested in a particular electrolyte operating at 750°C, using a very fine-grained alumina as well as industrial grade alumina. The rate of dissolution was markedly slower in the low-melting electrolyte, and the fine-grained material dissolved more slowly than commercial grade alumina, because it showed greater tendency to agglomeration and because it was calcined at high temperature. However, crushed samples of commercial alumina also dissolved more slowly than the normal grade. Introduction In the conventional Hall-Héroult process for aluminium electrolysis, the cryolite-based (Na3AlF6) electrolyte normally contains 10-13 wt% excess AlF3, 3-6 wt% CaF2 and 2-4 wt% Al2O3, operating at about 960°C. In modern cells the alumina feeding is performed by so-called point feeders, whereby alumina is fed frequently in small batches. This ensures rapid and usually trouble-free supply of alumina to the molten electrolyte (often called bath). When trying to replace the carbon anode by oxygen-evolving, so-called inert anodes, it is desirable to lower the electrolyte temperature in order to reduce the corrosion rate of the anode material. This is achieved by increasing the content of excess AlF3, in some cases as far as ~37 wt% AlF3 (55 mol% NaF, 45 mol% AlF3, molar ratio NaF/AlF3, CR=1.22), allowing an operating temperature of about 750°C. At the same time the solubility of alumina decreases from about 52 10 wt% to about 3 wt% [1]. Thereby the rate of dissolution of alumina may become critical. When a batch of alumina is being fed to aluminium cells, rapid and complete dissolution is desirable in order to control the concentration of alumina in the bath and to avoid so-called anode effects and to avoid accumulation of undissolved alumina (sludge). Dissolution tests performed in cryolite melts at around 1,000°C have shown that when the alumina gets effectively dispersed in the bath, the dissolution is very rapid, i. e. it is completed in less than 10 s [2], but the dissolution process is normally slowed down because the alumina has a tendency to form clumps/aggregates. When cold alumina is added as a batch to the molten bath, it is difficult to achieve complete dispersion of the alumina particles. When hitting the bath, the alumina spreads out, and bath freezes on to the alumina. This results in the formation of flakeshaped agglomerates. The formation of such agglomerates strongly reduces the contact area between alumina and bath compared to what would be the case if all the alumina grains were effectively dispersed in the bath. A large contact area between alumina and bath is obviously important in order to ensure rapid heating and dissolution of the alumina, since the dissolution process, which is strongly endothermic, has been found to be mass transfer controlled [3]. The importance of this becomes even more evident if the alumina is added to a low-melting bath rich in aluminium fluoride, where the alumina solubility is lower [1]. One remedy would be to establish a large contact area between alumina and bath. Beck and Brooks [4] have patented a process where very finegrained alumina is used in low-melting baths, keeping the particles in suspension in a bath agitated by gasinduced convection. The purpose of the present work was to study the dissolution rate of finegrained alumina when added batchwise to a low-melting bath with the composition given above. The results are compared with the well-documented behaviour of regular alumina in conventional baths at around 960°C. Experimental As mentioned above the process of alumina dissolution in cryolite-based melts involves the formation and break-up of agglomerates. In a laboratory cell for studies of alumina dissolution, the convection pattern in the melt should be as close as possible to that existing in industrial cells. That is difficult to achieve on a laboratory scale. In industrial cells the anode gas escaping up along the anode side sets up strong convection, making the bath move upwards close to the anode side and down in the middle of the channel between two anodes. At the same time the bubbles, when reaching the bath surface, create an undulating surface with bath splashing over newly formed alumina agglomerates. Effect of convection in the bath The objective with the laboratory set-up was to combine the effects of convection and an undulating bath surface. Convection in the bath was ensured by mechanical stirring of the melt with an impeller. Bubbling of argon gas through the bath was intended to simulate the surface effect created by escaping gas bubbles. A description of the gas stirrer arrangement is given elsewhere [5]. The inner diameter of the crucible was 20 cm. The amount of bath was 6500 g, and the composition of the industrial type electrolyte that was tested initially was 10 wt% AlF3, 5 wt% CaF2, and the initial Al2O3 concentration was 2 wt%, the balance be- ALUMINIUM · 9/2009 research Fig. 1: Sketch of the cell used for the dissolution experiments. Dimension: Graphite crucible i. d. = 200 mm ing cryolite. In Figure 1 a sketch of the experimental arrangement is shown. The in situ alumina probe measured the so-called critical current density by a linear sweep voltammetric method [6, 7]. The critical current density is correlated to the alumina concentration. A few bath samples were taken and analysed for alumina, to serve as a control and calibration in each experiment. The advantage of the alumina probe was that it gave quick and instantaneous results, yielding up to one measurement per second. To test out the method industrial grade alumina was used initially. The alumina was added in one batch since the intention was to simulate the operation of point feeders. The batch size was 0.45 g/cm2 bath surface corresponding to an increase in alumina concentration in the bath by 2.2 wt%. Dissolution curves for one experiment with mechanical stirring only and one experiment with gas bubbling together with mechanical stirring are shown in Figures 2 and 3 respectively. Data from the sweep measurements show how much of the alumina is dissolved as a function of time. The bath temperature recorded during the dissolution run is also given on the graphs (right hand axis), showing a marked drop in temperature upon addition. As can be seen from the dissolution curves, gas bubbling enhanced the dissolution rate. This appears to be due both to an increase in the quantity which was dissolved initially and an increase in the dissolution rate of the remainder of the batch. The increase in the initial dissolution rate is reflected in a faster and higher temperature drop in the case when gas bubbling was applied (Fig. 3). Experiments in low-melting baths As indicated above the composition of the low-melting bath was 55 mol% Fig. 2: Dissolution curve from an experiment with no gas stirring. Bath convection maintained by mechanical stirring only ALUMINIUM · 9/2009 NaF and 45 mol% AlF3, which corresponds to a NaF/AlF3 molar ratio (CR) of 1.22. The alumina sensor was not applied in these initial experiments. Frequent bath samples were taken for 20 minutes, and sampling was continued at less frequent intervals up until 2 hours after the addition. In some experiments a second batch was added at this time (2 hours after the first batch), and sampling was continued for another 2 hours. Tests were performed with fine-grained ‘superground’ Alcoa A152 Alumina (grain size ~ 1 µm). For comparison experiments with industrial grade primary alumina (grain size 30-150 µm) were also performed. Visual observations were made when a batch of alumina was added. It was observed that the part of the batch that was dispersed quickly on the surface was rapidly soaked by bath, and it was no longer visible after about 10 seconds. However, some lumps could form and remain as floating ‘rafts’ on the surface for up to 1 to 3 minutes before they were soaked by bath and started to sink as one piece. Figures 4 and 5 shows the results from sample analysis and recorded temperatures for two samples of finegrained (~1 µm) alumina. In addition dissolution rates were calculated for the initial rapid phase. After the first jump in alumina concentration a slower dissolution took place, and the dissolution rate was estimated for the next 30 minutes as well. After 2 hours only 60% of the added alumina had been dissolved, indicating very slow dissolution of the remaining agglomerates. Table 1 summarises results from five experiments for the initial ➝ Fig. 3: Dissolution curve from an experiment with both gas bubbling and mechanical stirring 53 research Experiment 2 Experiment 1 CR = 1.22 CR = 1.22 Adding 2 wt% Al2O3 at time 0 Fig. 4: Dissolution curves, only one addition made of 2 wt% finegrained alumina. Squares: alumina concentration. Line: electrolyte temperature rapid stage of alumina dissolution, where 1 to 4 represent fine-grained alumina and 5 represents regular industrial metallurgical grade (MG) alumina. This rapid dissolution occurred within a time frame of 30 to 85 seconds. The data show a marked difference between experiments no 1 to 4 and experiment no 5 (primary industrial alumina). With the exception of experiment 1 (2 wt% addition), experiment 5 shows the highest initial dissolution rate and by far the highest percentage of initially dissolved material. An explanation for this difference can be the tendency of the fine-grained material to form clumps/agglomerates of sintered alumina on the surface of the bath, which then dissolved slowly in the bath. The relatively coarse-grained regular alumina (experiment no 5) showed a different behaviour on the surface of the bath. It was free-flowExperiment Wt% added 1 2 3 4 5 Adding 1 wt% Al2O3 at time 0 and time 120 Fig. 5: Dissolution curves, two subsequent additions made of 1 wt% fine-grained alumina. Squares: alumina concentration. Line: electrolyte temperature normal baths at around 975°C show typically that more than 50% of the sample was dissolved initially, and the sample was completely dissolved after about 12 minutes. If we compare with experiment 5 in the present work, it seems that the portion that dissolves initially was about the same, but the remaining part dissolved more slowly. The time for total dissolution of the samples in the low-melting bath under study was more than one hour, which means that the time for total dissolution was increased by a factor of five or more compared to conventional baths. ing and it spread across the surface of the melt, so it did not stick together forming clumps, as experienced for the fine-grained material. The proportion of the batches which had dissolved after 2 hours is shown in Table 2. The results show that the 2 wt% additions in experiments 1 and 3 were less efficient than the 1 wt% additions. In the case of the 2 wt% batch sizes the alumina took longer to get wetted and sink into the bath, so it may have formed more strongly sintered agglomerates. For the second batch added in experiments 2, 4 and 5 there was also a marked difference in the dissolution, in the sense that the fine-grained alumina dissolved more slowly. The regular alumina was completely dissolved after 30-60 minutes. Previous studies [5] of the dissolution of regular primary aluminas in Addition of large batches of 6 wt-% industrial grade alumina to low-melting baths (CR=1.22) and to industrial type bath (CR=2.3) In these experiments the concentration of dissolved alumina was moni- Batch 1 Batch 2 Dissolution rate [g/min] Percent of batch dissolved Dissolution rate [g/min] 2 1 2 1 1 53 32 17 25 44 21.5 25 19 25 72 Percent of batch dissolved 22 26 53 17 22 63 Table 1: Dissolution in first rapid phase of the dissolution process Batch 1 Batch 2 Experiment Dissolution rate [g/min] Percent of batch dissolved after 2 hours Dissolution rate [g/min] Percent of batch dissolved after 2 hours 1 2 3 4 5 0.71 0.81 0.55 0.50 0.46 60 94 44.5 75 100 0.49 0.34 0.65 48 55 82 Table 2: Dissolution rates in the period from 2 to 30 minutes after alumina addition and the total percentage that was dissolved after 2 hours 54 ALUMINIUM · 9/2009 research Fig. 6: Dissolution curve, industrial electrolyte and industrial grade alumina. Small points: alumina concentration measured by the alumina probe. Squares: bath samples analysed for alumina concentration (Leco). Line: bath temperature tored by the alumina probe in addition to control analysis of bath samples taken at regular intervals during the runs. Figures 6 and 7 show the dissolution behaviour in ‘standard’ bath and in low-melting bath respectively. The results in Figure 6 show that the sandy, industrial grade primary alumina was completely dissolved after approximately 30 minutes. This is about 2.5 times longer than in the comparable experiment in Figure 3, where only 2 wt-% alumina was added. When comparing the results shown in Figures 6 and 7 there is a striking difference in the initial dissolution. The fine-grained alumina showed a delayed response, and as expected it did not dissolve completely, but levelled off after 50 minutes at about 3 wt-%, which is close to saturation [1]. The undissolved alumina remained partly as a sludge at the bottom of the crucible and partly in suspension in the bath. The conclusion of these experiments is the same as for the previous tests, i. e. the dissolution rate in the low-melting electrolyte was considerably slower than the dissolution of regular alumina in normal Hall-Heroult bath. This is not surprising in view of the following facts, • Less driving force (lower concentration gradient) • Expected lower mass transfer coefficient (due to lower temperature) • Greater tendency to clumping. The tendency to clumping is probably related to the ‘fineness’ of the pow- ALUMINIUM · 9/2009 Fig. 7: Dissolution curve for the first 60 minutes after addition of industrial grade alumina to low-melting electrolyte. Small points: alumina concentration measured by the alumina probe. Squares: bath samples analysed for alumina concentration (Leco). Line: bath temperature der. This also makes it more difficult to handle (low fluidity, dusting, etc). If it is desired to maintain a permanent suspension of alumina in the electrolyte, it would be preferable if it could be achieved with a coarser-grained alumina. Visual observations of alumina dissolution in well-stirred, low melting baths mental set-up is sketched in Figure 8. The melt was agitated by a propellershaped platinum stirrer placed in the centre of the crucible, operating at 254 rpm. A Pt/Pt10Rh (Type S) thermocouple was also immersed in the melt, as shown in Figure 8. The amount of bath was 140 g, and the temperature was 740 ± 3°C prior to each addition. The experiments were carried out as visual observation of the time needed for a batch of 0.5 wt-% alumina to dissolve. The melt became opaque immediately after the addition. The time counted from the moment of addition till the bottom of the crucible became visible again, was taken as a measure of the time of dissolution. Table 3 lists the various types of alumina that were tested in these experiments. An interesting parameter gleaned from these curves is the ‘cut size’ (d0.5), meaning that 50% of ➝ The background for these experiments was the unexpected slow dissolution observed for fine-grained alumina in low-melting baths. One hypothesis was that the alumina calcination temperature could be an important factor, since the fine-grained material had been calcined at 1,600°C. The objective of these experiments was to test this hypothesis to see if the special quality alumina was suited as a feed material for aluminium electrolysis. The experiments were carried out in an open furnace, where the low-melting bath was kept in a platinum crucible. The bath composition was as before 45 mol% AlF3 and 55 mol% NaF, i. e. CR = 1.22. Fig. 8. Experimental set-up for visual study of alumina dissolution in The experi- low-melting bath 55 research the mass has particle diameter less than d0.5). The results showed that there was a marked difference in dissolution time of the various aluminas; in fact more than one order of magnitude. The best dissolution behaviour was observed for the ‘normal’ metal grade alumina, as shown in Figure 9. In this case relatively short dissolution times were observed, similar to those previously observed for commercial aluminas in cryolite. The longest dissolution times were observed for crushed MG alumina, calcined at 1,600°C, where the dissolution time was of the order of 5 to 20 minutes in the alumina concentration range of 1 to 2 wt-% (see. Fig. 9). Even crushed MG alumina pre-dried to 300°C, showed dissolution times 4 to 10 times higher than the ‘normal’ grade alumina in this concentration range. In view of the observations made in these experiments it appears that the fineness of the alumina is a determining factor for the dissolution process. A high content of the alpha phase seem to have an additional detrimental effect, i. e. it increases the time of dissolution. It has previously been found that high alpha alumina dissolves somewhat more slowly than the gamma phase alumina in cryolitic melts at 1,030°C [2] and it is possible that this difference is enhanced in lowmelting baths, where the solubility of alumina is lower. However, no simple relationship could be found between Type, description Metal grade, commercial alumina A-152, fine, 1 µm, highly calcined alumina, from Alcoa Crushed MG* alumina, calcined at 1600°C Crushed MG alumina, pre-dried at 300°C * Term d0.5 /µm MG A152 CMG 1600 CMG 300 82.95 1.86 4.51 5.45 MG – Metal Grade Table 3: Materials tested and cut sizes (see text) these parameters and the time of dissolution. For example, the slowest dissolving alumina in these experiments was the CMG 1600 material. Table 3 shows that 50% of the mass of this material has particles with diameter 4.5 µm or less (d0.5=4.507 µm), compared to 1.86 µm for the A152 material. These materials have both been calcined at 1,600°C and have thus been converted to 100% α-alumina, but the finer A152 (d0.5=1.86) dissolves more rapidly than the coarser CMG 1600 (d0.5=4.5 µm). Conclusion It can be concluded from this investigation that if the only selection criterion is the rate of dissolution in low-melting baths, the normal industrial grade alumina is the best choice. The main concern will probably be the ability to operate the bath at near saturation concentration with respect to alumina. Hence, the problem of maintaining slurry and avoiding forming sludge, i. e. alumina deposits, must be given high priority, and operating with fine-grained alumina might be the only option. In that case finely ground low-calcined alumina appears to be the best choice. Acknowledgement Permission to publish given by Golden Northwest Alumunum Holding Company, is gratefully acknowledged. References [1] E.J. Frazer and J. Thonstad, “Alumina solubility and diffusion coefficient in lowtemperature fluoride electrolytes”, to be published. [2] J. Thonstad, F. Nordmo, J. B. Paulsen, “Dissolution of Alumina in Molten Cryolite”. Met Trans. 1972, pp. 403-408. [3] J. Thonstad, A. Solheim, S. Rolseth, O. Skaar, “The Dissolution of Alumina in Cryolite Melts”, Light Metals 1988, pp. 655-661. [4] T. Beck and R. J. Brooks. “Non-Consumable Anode and Lining for Aluminum Electrolytic Reduction Cell”, United States Patent No. 5,284,562, 1994. [5] S. Rolseth, R. Hovland, O. Kobbeltvedt, ”Alumina Agglomeration and Dissolution in Cryolitic melts”, Light Metals 1994, pp.351-357. [6] O. Kobbeltvedt, S. Rolseth and J. Thonstad, “On the Mechanism of Alumina Dissolution with Relevance to Point Feeding Aluminium Cells”, Light Metals 1996, pp. 421-427. [7] R. G. Haverkamp, B. J. Welch and J. B. Metson, ”An Electrochemical Method for Measuring the Dissolution Rate of Alumina in Molten Cryolite”, Bulletin of Electrochemistry, Vol.8, pp.334-340, 1992. Authors S. Rolseth, H. Gudbrandsen, K.S. Osen and J. Kvello are from SINTEF Materials and Chemistry, Trondheim, Norway. Fig. 9: Results from three parallel runs with ‘normal’ MG alumina in low-melting bath. Time observed to obtain transparent melt after addition of batches of 0.5 wt-% alumina. Time plotted as a function of the concentration of alumina dissolved in the bath, determined from bath samples taken before the addition 56 J. Thonstad is from Department of Materials Technology and Electrochemistry, Norwegian University of Science and Technology, Trondheim, Norway. ALUMINIUM · 9/2009 E v en t s ALUMINIUM CHINA 2009 exceedingly successful ALUMINIUM CHINA 2009 brought together 265 exhibitors from 30 countries and regions, and 8,786 trade visitors, including 480 VIPs and 30 delegations from 32 provinces in China and 61 countries around the world. The number of visitor was up by 30% compared with the 2008 event and also a record compared to 2007 when the industry was at its peak. 47% of the visitors were from aluminium applications industries such as building and construction, transportation, electronics and machinery manufacturing, while nearly 66% of visitors had purchasing recommendation and decision-making authority. Leading the exhibitors this year were some of the industry’s top companies such as the Aluminium Corporation of China, Nanshan Aluminium, Dubal, Novelis, SMS Metallurgy, Siemens VAI, Wagstaff, Pyrotek, Jieru Heavy Industry Equipment, Fata Hunter, Achenbach, Toshiba Mitsubishi-Electric Industrial Systems and others, who presented the latest products and leading technologies and, taken together, inspired the Asian and the global community with confidence in an imminent recovery. The performance of the show in Shanghai generated superb feedback from participants, and three-quarters of the international hall space had already been booked for the 2010 trade fair by the end of the event. The ALUMINIUM · 9/2009 on-site exhibitor survey showed that more than 92% of the exhibitors were satisfied or completely satisfied with their participation, 86% were satisfied with the number of visitors, while 87% are satisfied with the visitor quality. The marketing manager from Emmegi China commented: “We received a huge number of professional visitors this year, who were genuinely interested in our products. We rebooked our stand for 2010 as soon as we could and expect to expand our market activities even more next year.” this year: to meet old friends, find out about the latest technologies, and reach agreements with a number of suppliers at the show.” The associated 2009 China Aluminium Fabrication Forum, organised by the China Non Ferrous Metal Industry Association along with China’s aluminium information and consultancy provider Antaike, was moderated by experts and senior executives from IAI, AA, JAA, London Metal Exchange and provided important information on the latest trends in Reed Exhibitions Those who attended ALUMINIUM CHINA 2009 some weeks ago, the fifth time that the event has taken place in China, could be forgiven for thinking that the industrial downturn and economic crisis have never spread as far as China. Shanghai is still buzzing with exhilarating business activities, entertainment and the spending spree mentality, and the world’s most important aluminium industry gathering of the year, ALUMINIUM CHINA, was attended by 8,786 qualified trade visitors and over 4,000 exhibiting staff from 61 countries and regions, a recordbreaking result despite the difficult economic situation. More than 8,700 business people visited the Aluminium China 2009 fair The on-site visitor survey showed the same encouraging results, with 97% of those attending being content with their visit this year. The deputy plant manager for the casting unit of the Chinalco Luoyang branch declared: “I was able to achieve all my goals the global aluminium market. In light of the positive feedback from exhibitors, organiser Reed Exhibitions has confirmed that ALUMINIUM CHINA 2010 will again be held at the Shanghai New International Expo Centre, from 9 to 11 June. ■ Schweißen & Schneiden 2009 Die ganze Welt der Schweißtechnik steht im Mittelpunkt der Fachmesse „Schweißen & Schneiden. Vom 14. bis 19. September 2009 präsentiert die in ternational wichtigste und umfassendste Messe der Branche in Essen einen lücken losen Überblick zu aktuellen Entwick lungen und Innovationen rund um das Fügen, Trennen und Beschichten. Alle namhaften Hersteller sowie die Anbieter von Dienstleistungen werden ihre Inno vationen vorstellen. Zur mittlerweile 17. Auflage dieser Messe werden rund 1.000 Aussteller aus über 30 Nationen erwar tet. Aus circa 90 Ländern werden die Fachbesucher nach Essen reisen, um sich über das Weltmarktangebot zu infor mieren und Investitionen zu realisieren. Kontakt: Messe Essen GmbH www.messe-essen.de 57 p a t en t e Patentblatt Juni 2009 Fortsetzung aus 7/8 2009 Verfahren zur Herstellung eines Leichtmetall-Verbundgussteils sowie Leichtmetall-Verbundgussteil. BMW AG, 80809 München, DE. (B22D 19/00, EP 1 433 552, EP-AT: 04.11.2003) Verfahren zur Herstellung von Gussteilen aus Leichtmetalllegierungen mit Kühlung vor dem Pressen. Process Conception Ingenierie S.A., Meudon, FR. (C22F 1/04, PS 601 34 207, EP 1213367, EP-AT: 16.11.2001) Verfahren zum Herstellen von Zylinderblöcken aus Leichtmetall mit eingeschweißten Leichtmetall-Zylinderbüchsen und Einrichtung zur Durchführung des Verfahrens. Volkswagen AG, 38440 Wolfsburg, DE. (B23P 13/00, PS 100 19 783, AT: 20.04.2000) Legierung umfassend Mg und Sr und hieraus gefertigte galvanische Opferanode. Magontec GmbH, 46240 Bottrop, DE. (C23F 13714, OS 10 2007 061 561, AT: 18.12.2007 Metallpulverherstellung durch Reduk tion der Oxide mit gasförmigem Magnesium. H.C. Starck GmbH, 38642 Goslar, DE; H.C. Starck Inc., Newton Massachusetts 02161-1951, US. (B22F 1/00, EPA 2055412, EP-AT: 05.05.1999) Verfahren zum Löten von einem Werkstück aus einer Magnesiumlegierung unter Verwendung einer stromfreien Plattierung von Nickel-Phosphor, eines Flüssigmittels und einem bleifreien Zinnlegierungs-Lotmaterial. Magtech Technology Co., Ltd, Taipei Hsi 236, TW. (B23K 1/00, EPA 2055419, EP-AT: 20.05.2008) Bauteil aus einer Magnesiumlegierung und Verfahren zu dessen Herstellung. Hon Hai Precision Industry Co. Ltd., Tucheng City, Taipei Hsien, TW. (F16S 5/00, OS 10 2008 060 794, AT: 05.12.2008 Hochresistente Aluminiumbasis-Legierungen und daraus hergestellte Artikel. Federalnoe Gosudarstvennoe Unitarnoe Predpryatie „Vserossiysky“ Nauchno-Issledovatelsky Institut Neorganicheskikh Materialov, Moskau/Moscow, RU; JointStock Co. „Samara Metallurgical Plant“, Samara, RU. (C22C 21/10, PS 600 19 803, EP 1241275, EP-AT: 28.09.2000) Längliches Halteelement. Corus Bausysteme GmbH, 56070 Koblenz, DE. (E04D 3/362, PS 603 20 126, EP 1552081, EPAT: 29.08.2003) Wärmetauscherprofil. Erbslöh Aluminium GmbH, 42553 Velbert, DE. (F28F 1/02, GM 20 2006 005 013, AT: 29.03.2006) 58 Verfahren zur Herstellung geprägter Deckelelemente für Behälter und Deckelelemente für Behälter. Alcan Technology & Management Ltd., Neuhausen am Rheinfall, CH. (B41F 19/02, EP 1 892 096, EP-AT: 28.09.2006) Verfahren zum Auftragen einer Schutzbeschichtung auf Kohlenstoff enthaltenden Bestandteilen von Elektrolysezellen. Alcan International Ltd., Montreal, Quebec, CA. (C25C 3/08, EP 1 693 486, EP-AT: 09.02.2001) Konstruktionselement für die Luftfahrt mit Variation der anwendungstechnischen Eigenschaften. Alcan Rhenalu, Courbevoie, FR. (C22F 1/053, PS 60 2005 006 764, EP 1727921, EP-AT: 21.03.2005) Verbundprofil für Fenster, Türen oder dergleichen mit einem Aufsatzprofil. Alcoa Aluminium Deutschland, Inc., 58642 Iserlohn, DE.(E06B 3/30, EPA 2055884, EP-AT: 14.11.2007) Verkleidungsprofil. Corus Bausysteme GmbH, 56070 Koblenz, DE. (E04F 19/02, GM 201 01 392, AT: 26.01.2001) Aus Leichtmetall bestehendes Profilrohr. RK Rose & Krieger GmbH Verbindungs- und Positioniersysteme, 32423 Minden, DE. (F16S 3/02, GM 299 10 111, AT: 10.06.1999) Verfahren zur Reinigung eines schmelzflüssigen Metalls. Aleris Switzerland GmbH, Schaffhausen, CH. (C22B 21/06, PS 60 2005 006 254, EP 1727917, EP-AT: 17.02.2005) Verfahren zur Herstellung einer Bau strebe durch Crimpen, und so erhaltene Baustrebe. Norsk Hydro ASA, 0240 Oslo, NO. (E06B 3/273, EPA 2055883, EP-AT: 23.10.2008) Verbindungsstück und Verbindung von Profilen mit diesem Stück. Norsk Hydro ASA, 0240 Oslo, NO. (E06B 3/96, EPA 2055885, EP-AT: 31.10.2008) Vorrichtung zur Betätigung einer Tür oder einem ähnlichem Element, das aus Profilen erstellt ist. Norsk Hydro ASA, 0240 Oslo, NO. (E05B 1/00, EPA 2050899, EP-AT: 17.10.2008) Verfahren zur Herstellung eines Absorberblechs für Sonnenkollektoren. Hydro Aluminium Deutschland GmbH, 51149 Köln, DE. (F24J 2/48, EPA 2054676, EP-AT: 24.08.2007) Verfahren und Vorrichtung zum Erzeugen einer Konversionsschicht. Hydro Aluminium Deutschland GmbH, 51149 Köln, DE. (C25D 11/04, EPA 2055809, EP-AT: 03.11.2008) Beheizbare Bade- oder Duschwanne. Hydro Aluminium Deutschland GmbH, 51149 Köln, DE. (F24 H 1/00, OS 10 2007 062 526, AT: 20.12.2007) Druckplattenträger und Verfahren zur Herstellung eines Druckplattenträgers oder einer Offsetdruckplatte. Hydro Aluminium Deutschland GmbH, 51149 Köln, DE. (B41N 1/08, PS 199 02 527, AT: 22.01.1999) Vorrichtung zum Rotationsgießen. Hydro Aluminium Mandl & Berger GmbH, Linz, AT. (B22D 23/00, GM 201 22 596, AT: 06.03.2001) Lamellenanordnung für Fassaden. Hydro Building Systems GmbH, 89077 Ulm, DE. (E04F 13/21, GM 20 2006 003 166, AT: 01.03.2006) Verfahren und Einrichtung zum kontinuierlichen oder halbkontinuierlichen Stranggießen von Metall. Norsk Hydro ASA, Oslo, NO. (B22D 11/06, EP 1 648 635, EP-AT: 25.06.2004) Fresnel-Spiegel und Verfahren zu dessen Herstellung. Erbslöh Aluminium GmbH, 42553 Velbert, DE. (F21V 7/04, OS 10 2007 061 153, AT: 17.12.2007) Zweiteiliger Kolben für einen Verbrennungsmotor. Mahle International GmbH, 70376 Stuttgart, DE. (F02F 3/00, OS 10 2007 060 472, AT: 14.12.2007) Kühlkörper für Halbleiterbauelemente oder dgl. Geräte sowie Verfahren zu seiner Herstellung. Alcan Technology & Management AG, 8212 Neuhausen am Rheinfall, CH. (H01L 23/367, EPA 2054930, EP-AT: 09.08.2007) Rahmen mit Fenster- oder Türflügel. Norsk Hydro ASA, 0240 Oslo, NO. (E06B 3/46, EPA 2053189, EP-AT: 23.10.2008) ALUMINIUM veröffentlicht unter dieser Rubrik regelmäßig einen Überblick über wichtige, den Werkstoff Aluminium betreffende Patente. Die ausführlichen Patentblätter und auch weiterführende Informationen dazu stehen der Redaktion nicht zur Verfügung. Interessenten können diese beziehen oder einsehen bei der Mitteldeutschen Informations-, Patent-, Online-Service GmbH (mipo), Julius-Ebeling-Str. 6, D-06112 Halle an der Saale, Tel. 0345/29398-0 Fax 0345/29398-40, www.mipo.de Die Gesellschaft bietet darüber hinaus weitere Patent-Dienstleistungen an. ALUMINIUM · 9/2009 p a t en t e Kolben für einen Verbrennungsmotor sowie Verfahren zu seiner Herstellung. Mahle International GmbH, 70376 Stuttgart, DE. (F02F 3/00, OS 10 2007 061 601, AT: 20.12.2007) Mehrteiliger Kolben für einen Verbrennungsmotor. Mahle GmbH, 70376 Stuttgart, DE. (F02F 3/00, EP 1 660 769, EP-AT: 19.08.2004) Vorrichtung zum kontinuierlichen Gießen von Metallblöcken. Novelis Inc., Toronto, Ontario M5J 1S9, CA. (B22D 11/14, EPA 2058064, EP-AT: 09.12.2004) Plattiertes Blechprodukt und Herstellungsverfahren dafür. Novelis Inc., Toronto, Ontario M5J 1S9, CA. (B32B 15/01, EPA 2055473, EP-AT: 05.11.2007) Bauelement mit Al-Papier-Schicht. Novelis Deutschland GmbH, 37075 Göttingen, DE. (E04 2/02, OS 10 2007 060 239, AT: 14.12.2007) Wärmegedämmtes Verbundprofil, insbesondere für Fenster, Türen, Fassaden und dergleichen. Norsk Hydro A/S, Oslo, NO. (E06B 3/263, PS 501 14 114, EP 1170454, EP-AT: 23.05.2001) Verfahren und System zur automatischen Analyse von Partikeln. Norsk Hydro ASA, Oslo, NO. (G01N 15/02, PS 601 34 013, EP 1287330, EP-AT: 23.04.2001) Gießpulver für das Stranggießen und Verfahren zur Verwendung des Pulvers. Sumitomo Metal Industries, Ltd., Osaka, JP. (B22D 11/10, PS 698 09 659, EP 0899041, EP-AT: 26.08.1998) Patentblatt Juli 2009 Al-Mg-Legierungsextrusionsmaterial mit hervorragenden Kaltverfestigungseigenschaften für Kaltverformungsverfahren. Denso Corp., Kariya-shi, Aichiken, JP; Kabushiki Kaisha Kobe Seiko Sho, Kobe, Hyogo, JP. (C22C 21/06, OS 10 2008 054 436, AT: 09.12.2008) Verfahren zur Herstellung von Flugzeugstrukturelementen aus Al-Si-MgLegierung. Alcan Rhenalu, Courbevoie, FR. (C22F 1/05, PS 601 34 357, EP 1143027, EP-AT: 03.04.2001) Dach eines Kraftfahrzeuges aus einem an einem Stahlrahmen befestigten Blech aus einer Al-Si-Mg-Legierung. Alcan Rhenalu, Paris, FR. (C22C 21/08, EP 1 633 900, EP-AT: 17.06.2004) Leichtmetallrad. Sumitomo Rubber Industries Ltd., Kobe, Hyogo, JP. (B60B 3/10, PS 602 27 440, EP 1241023, EP-AT: 14.03.2002) ALUMINIUM · 9/2009 Al-Ni-Seltenerdmetall Sputtertarget. Kabushiki Kaisha Kobe Seiko Sho, Kobe, Hyogo, JP; Kobelco Research Institute, Inc., Kobe, Hyogo, JP. (C23C 14/34, PS 60 2006 001 532, EP 1700928, EP-AT: 30.01.2006) Anorganisches Alpha-AluminiumMembransubstrat und Herstellungsverfahren dafür. Corning Inc., Corning NY 14831, US. (C04B 38/06, EPA 2061734, EP-AT: 11.12.2007) Sammeln von Aluminium in Elektrolyse zellen. Moltech Invent S.A., 2134 Luxembourg, LU. (C25C 3/08, EPA 2064370, EP-AT: 20.06.2007) Rüttelmaschine zur Abformung von ungebrannten Anodenblöcken, insbesondere für die Aluminium-Schmelzflusselektrolyse. Outokumpu Oyj, Espoo, FI. (C25C 3/12, PS 100 44 677, AT: 09.09.2000) Verfahren zur Ausbildung und Feinverteilung feiner Wasserstoffbläschen in Wasserstoff enthaltenden Aluminium-Gusslegierungsschmelzen. Schäfer Chemische Fabrik GmbH, 53773 Hennef, DE. (C22C 1/08, PS 10 2004 006 034, AT: 06.02.2004) Werkstoff auf der Basis einer Aluminiumlegierung, Verfahren zu seiner Herstellung sowie Verwendung hierfür. Mahle GmbH, 70376 Stuttgart, DE; PEAK Werkstoff GmbH, 42553 Velbert, DE. (C22C 21/02, OS 10 2004 007 704, AT: 16.02.2004) Druckgussbauteile aus Aluminium- und Magnesiumlegierungen mit mechani schen Verbindungen und Verfahren zum Verbinden. Daimler AG, 70327 Stuttgart, DE. (F16B 4/00, OS 10 2004 039 748, AT: 17.08.2004) Rapid-Prototyping durch Al/Mg-3DDruck. General Motors Corp., Detroit, Mich., US. (B22F 7/00, OS 11 2005 002 040, WO-AT: 16.05.2005) Tür- und Fensterprofile, außen Holz und innen liegend Aluminium. Noka Holzverarbeitungs-GmbH, 26683 Saterland, DE. (E06B 3/08, GM 201 04 502, AT: 14.03.2001) Schweißloses Verbindungselement, Stütze für Sanitär und Möbel aus Aluminium, Edelstahl. Schikoff, Robert, 90471 Nürnberg, DE. (F16B 19/02, GM 20 2009 001 743, AT: 11.02.2009) Verbessertes Verfahren zur Herstellung von Filterhilfsmitteln in Aluminiumraffinerien. BHP Billiton Worsley Alumina Pty. Ltd., Collie, Western Australia, AU. (B01D 37/02, EP 1 301 260, EP-AT: 20.07.2001) Kolben mit einem Aluminiumeinsatzstück und Verfahren zur seiner Herstellung. Renault S.A.S., Boulogne Billancourt, FR. (F02F 3/00, PS 60 2004 014 825, EP 1439301, EP-AT: 14.01.2004) Verfahren zur Behandlung von Aluminium in einem Ofen. L’Air Liquide, Société Anonyme pour l‘Etude et l‘Exploitation des Procédés Georges Claude, Paris, FR. (C22B 21/00, EP 1 625 241, EP-AT: 30.03.2004) Verfahren zur Verarbeitung von Aluminium in einem Rotations- oder Flammofen. L’Air Liquide, Société Anonyme pour l‘Etude et l‘Exploitation des Procédés Georges Claude, Paris, FR. (F27B 7/20, PS 60 2005 007 710, EP 1721111, EP-AT: 07.02.2005) Stranggepresstes Produkt aus Aluminiumlegierung, Verfahren zu seiner Herstellung, Mehrfachleitungsrohr für Wärmetauscher und Verfahren zur Herstellung vom Wärmetauscher mit dem Mehrfachleitungsrohr. Denso Corp., Kariya, Aichi, JP; Sumitomo Light Metal Industries, Ltd., Tokio/Tokyo, JP. (C22C 21/00, PS 60 2006 001 552, EP 1746174, EP-AT: 21.07.2006) Verfahren zum Diffusionsfügen von Mg/Al-Bauteilen. General Motors Corp., Detroit, Mich., US. (B23K 35/28, PS 602 16 369, EP 1273385, EP-AT: 08.05.2002) Beschichtetes, Aluminium enthaltendes Material und Verfahren zur dessen Herstellung. Denso Corp., Kariya, Aichi, JP; Nihon Parkerizing Co., Ltd., Tokio/ Tokyo, JP. (B05D 7/16, PS 695 28 854, EP 0676250, EP-AT: 07.04.1995) Verfahren zur Oberflächenbehandlung von Aluminium enthaltenden Metallen. Denso Corp., Kariya, Aichi, JP; Nihon Parkerizing Co., Ltd., Tokio/Tokyo, JP. (C23C 22/83, PS 698 11 818, EP 0911427, EPAT: 22.10.1998) Verfahren zum Vollformgießen von Aluminium mit beschichtetem Modell. General Motors Corp., Detroit, Mich., US. (B22C 3/00, PS 698 18 379, EP 0899038, EP-AT: 31.07.1998) Hubkolbenmaschine mit Aluminiumblock und Aluminiumkolben. General Motors Corp., Detroit, Mich., US. (F02F 3/10, PS 699 08 837, EP 0937889, EP-AT: 21.01.1999) Verfahren zur simultanen elektrolyti schen Abscheidung von Zink und Magnesium auf einem Substrat aus Blech und Verfahren zur Herstellung eines korrosionsgeschützten, lackierten Form teils aus Blech. ThyssenKrupp Steel AG, 47166 Duisburg, DE. (C25D 3/56, PS 10 2004 037 673, AT: 04.08.2004) ➝ 59 p a t en t e Aluminiumlegierung vom Typ Al-Zn-Mg und Verfahren zu deren Herstellung. Aluminium Lend GmbH & Co.Kg., 5651 Lend, AT. (C22C 21/10, EPA 2061912, EP-AT: 03.09.2007) Hochfeste, nicht brennbare Magnesiumlegierung. National Institute of Advanced Industrial Science and Technology, Tokio/Tokyo, JP. (C22C 23/00, WO 2008 026333, WO-AT: 28.02.2007) Hochfestes Aluminiumlegierungshartlötblech. Aleris Aluminum Koblenz GmbH, 56070 Koblenz, DE. (B32B 15/01, PS 60 2004 013 327, EP 1648694, EP-AT: 09.07.2004) Aluminiumlegierung für Motorbauteile. GM Global Technology Operations, Inc., Detroit, Mich., US. (C22C 21/12, OS 10 2007 042 099, AT: 05.09.2007) Druckgussteile aus einer kriechbeständigen Magnesiumlegierung. General Motors Corp. (n.d.Ges.d. Staates Delaware), Detroit, Mich., US. (C22C 23/02, PS 600 09 783, EP 1048743, EP-AT: 31.01.2000) Aus einem profilgewalzten Metallprodukt hergestelltes Rohr und Herstellungsverfahren dafür. Aleris Aluminum Koblenz GmbH, 56070 Koblenz, DE. (F28D 1/03, EP 1 802 932, EP-AT: 04.10.2005) Zusammensetzung und Verfahren zur Behandlung von Magnesiumlegierungen. Université Pierre et Marie Curie, Paris, FR. (C23C 22/57, PS 602 27 065, EP 1390565, EP-AT: 31.05.2002) Aluminiumband für lithografische Druckplattenträger und dessen Herstellung. Hydro Aluminium Deutschland GmbH, 51149 Köln, DE. (C22F 1/04, EPA 2067871, EP-AT: 30.11.2007) Aluminiumlegierung für Motorblöcke. General Motors Corp., Detroit, Mich., US. (C22C 21/02, OS 11 2004 001 160, WOAT: 26.03.2004) Folienverpackung. Alcan Technology & Management Ltd., 8212 Neuhausen am Rheinfall, CH. (B65D 75/28, EPA 2065316, EP-AT: 27.11.2007) Elektrolysezelle und Verfahren zu ihrem Betrieb. Norsk Hydro ASA, 0240 Oslo, NO. (C25C 3/16, EPA 2066831, EP-AT: 12.09.2007) Verfahren zur Streckformung von ausgehärteten Blechen aus Aluminiumlegierung. General Motors Corp., Detroit, Mich., US. (B21D 22/22, PS 699 23 742, EP 0992300, EP-AT: 02.09.1999) Gegenstand aus einer mit Kunststoff hinterspritzten Aluminiumfolie. Alcan Technology & Management Ltd., 8212 Neuhausen am Rheinfall, CH. (C25D 11/08, EPA 2063001, EP-AT: 20.11.2007) Lamelle, insbesondere Sonnenschutzlamelle. Hydro Building Systems GmbH, 89077 Ulm, DE. (E06B 9/386, PS 10 2006 005 240, AT: 06.02.2006) Verfahren zum Herstellen eines Gegenstandes aus Metall, insb. aus einer hochfesten Aluminiumlegierung sowie Verfahren zum Richten eines solchen Gegenstandes. Otto Fuchs KG, 58540 Meinerzhagen, DE. (B23P 13/00, OS 10 2008 003 882, AT: 10.01.2008) Verfahren zum Herstellen von Gussteilen aus Leichtmetall mit Einsätzen. Georg Fischer GmbH, 58791 Werdohl, DE. (B22D 19/00, EPA 2070612, EP-AT: 11.12.2007) Verfahren zum Leichtmetall-Legierungs-Sintern. Schwäbische Hüttenwer ke Automotive GmbH & Co. KG, 73433 Aalen, DE. (C22C 1/04, PS 50 2004 007 370, EP 1709209, EP-AT: 26.11.2004) Preform für Verbundwerkstoffe mit einer Metallmatrix aus Magnesium. Her Majesty in Right of Canada AS represented by the Minister of Natural Resources, Ottawa, Ontario, CA. (C22C 47/06, PS 100 34 631, AT: 17.07.2000) Druckgussbauteile aus Al- und Mg-Legierungen mit mechanischen Verbindungen und Verfahren zum Verbinden. Daimler AG, 70327 Stuttgart, DE. (F16B 4/00, OS 10 2004 039 748, AT: 17.08.2004) Verfahren zum Diffusionsfügen von Mg/Al-Bauteilen. General Motors Corp., Detroit, Mich., US. (B23K 35/28, PS 602 16 369, EP 1273385, EP-AT: 08.05.2002) Verfahren zur elektrolytischen Herstellung von Magnesium und dessen Legierungen. General Motors Corp., Detroit, Mich., US. (C25C 3/04, PS 696 03 668, EP 0747509, EP-AT: 13.05.1996) Verkleidungselement. Hermann Gutmann Werke AG, 91781 Weißenburg, DE. (E04F 13/08, EPA 1854938, EP-AT: 27.04.2007) 60 Flächige Beleuchtungseinrichtung. Alcan Technology & Management Ltd., Neuhausen am Rheinfall, CH. (F21K 7/00, EP 1 861 651, EP-AT: 08.03.2006) Geschweißtes Strukturelement mit mindestens zwei Aluminiumlegierungsteilen, die verschiedene metallurgische Zustände haben, und Verfahren zur Herstellung eines solchen Elements. Alcan Rhenalu, Paris, FR. (B23K 20/12, EP 1 799 391, EP-AT: 12.09.2005) Reibrührschweißteile sowie Systeme und Verfahren zu ihrer Herstellung. Alcoa Inc., Pittsburgh, PA 15212-5858, US. (B23K 20/12, EPA 2067563, EP-AT: 12.11.2008) Vorrichtung und Verfahren zur kontinuierlichen Metallschmelzezuführung unter Druck. Alcoa Inc., Alcoa Center, Pa., US. (B22D 17/20, PS 602 27 580, EP 1714718, EP-AT: 18.04.2002) Aluminiumlegierungsprodukt mit verbesserten Eigenschaftskombinati onen. Alcoa Inc., Pittsburgh, Pa., US. (C22C 21/10, EP 1 565 586, EP-AT: 17.11.2003) Unterstruktur für ein Dach oder eine Fassade. Corus Bausysteme GmbH, 56070 Koblenz, DE. (E04D 3/36, OS 102 97 074, WO-AT: 09.08.2002) Dachkonstruktion und Befestigungsvorrichtung dafür. Corus Bausysteme GmbH, 56070 Koblenz, DE. (E04D 3/362, GM 203 05 954, AT: 11.04.2003) Fahrzeugkarosserie mit einem Karosserieelement. BMW AG, 80809 München, DE; Norsk Hydro ASA, Oslo, NO. (B62D 65/02, OS 10 2007 058 783, AT: 06.12.2007) Schiebetür oder Schiebefenster mit thermisch isolierter Führungsschiene. Norsk Hydro ASA, Oslo, NO. (E06B 3/46, PS 60 2006 001 448, EP 1772582, EP-AT: 03.10.2006) Glashalteleiste, Rahmenkonstruktion sowie Verfahren zur Montage einer Glashalteleiste. Hermann Gutmann Werke AG, 91781 Weissenburg, DE. (E06B 3/58, EPA 2060728, EP-AT: 10.11.2008) Verfahren zur Herstellung einer Leichtmetalllaufbuchse mit einer äußeren rauen Oberfläche. Mahle GmbH, 70376 Stuttgart, DE. (B22C 9/02, OS 102 18 714, AT: 26.04.2002) Kolben für einen Verbrennungsmotor und Verfahren zur Beschichtung seiner Nabenbohrungen. Mahle International GmbH, 70376 Stuttgart, DE. (F02F 3/10, EP 1 877 659, EP-AT: 09.12.2005) Einteiliger Kühlkanalkolben für einen Verbrennungsmotor. Mahle GmbH, 70376 Stuttgart, DE. (F02F 3/22, EP 1 546 536, EP-AT: 19.09.2003) Legierungen auf Magnesiumbasis mit hoher Festigkeit / Duktilität für kons truktive Anwendungen. GM Global Technology Operations, Inc., Detroit, Mich., US. (C22C 23/02, OS 11 2007 001 169, WO-AT: 16.05.2007) ALUMINIUM · 9/2009 li t e r a t u r se r v ice Bauelement mit Al-Papier-Schicht. Novelis Deutschland GmbH, 37075 Göttingen, DE. (E04C 2/02, EPA 2071094, EPAT: 20.12.2007) Magnesiumlegierungselement und Herstellungsverfahren dafür. Sumitomo Electric Industries, Ltd., Osaka-shi, Osaka 541-0041, JP. (C22C 23/02, EPA 2060642, EP-AT: 10.07.2007) Hartlötblech mit sehr langer Haltbarkeit und großer Formbarkeit. Alcoa Inc., Pittsburgh, PA 15212-5858, US. (B32B 15/20, EPA 2065180, EP-AT: 17.04.2003 L. H. Kallien, Chr. Böhnlein Druckgießen Giesserei 96, 07/2009, S. 18-26 Großabnehmer von Gussteilen haben vermehrt begonnen, ihre erlangte Marktstärke gegenüber den Metallgießern zu nutzen, um Einkaufsbedingungen und Zahlungsmodalitäten zu ihren Gunsten durchzusetzen. Aufkommende Lieferkonzepte wie „Just in time“ verlangten vom Druckgießer ein deutlich hohes Maß an Flexibilität. Die Einhaltung stetig steigender Qualitätsanforderungen stellte die gesamte Branche auf eine harte Probe – etwa die geforderte Null-Fehler-Produktion mit 99,994 Prozent korrekten Teilen Ende der achtziger Jahre. Aus heutiger Sicht lässt sich diesbezüglich jedoch eine klare Aussage treffen. Aufgrund dieser geänderten Rahmenbedingungen sahen sich viele Betriebe einer Marktsituation gegenüber, die nur durch konsequente Steigerung von Produktivität, Flexibilität, Prozesssicherheit und Qualität zu bewältigen war. Auch der Blick über die Grenzen nach Japan Ende der achtziger Jahre bestätigte die geringe Kapazitätsauslastung der heimischen Druckgießereien und führte Anfang der neunziger Jahre zu einem verstärkten Interesse an Lean Production. Behandelt werden im Einzelnen: Druckgießverfahren, Werkstoffverbünde, Druckgießprozess, Druckgießmaschine, Druckgießwerkzeug, Trenn- und Schmierstoffe, Schmelze, Qualität, Simulation, Gusswerkstoffe. 11 Abb., 125 Qu. ALUMINIUM 9 (2009) Aluminium-Industrie, Druckguss W. Lori Störfaktor Reibung. Die Bedeutung der Reibung in Schraubenverbindungen Konstruktionspraxis 7/2009, S. 50-51 Der Ingenieur hat ständig mit Reibung zu tun – bewusst und unbewusst. In der Praxis zeigt sich immer wieder, dass die Bedeutung der Reibung falsch eingeschätzt wird. Beim drehmomentgesteuerten Anziehen kann dies fatale Folgen haben. Der Zusammenhang zwischen Anziehmoment und der Zielgröße Montagevorspannkraft ist wesentlich von der Reibung abhängig. In der Schraubenverbindung ist eine Reibung unvermeidbar und kann zum Fluch oder Segen werden. Schließlich entstehen durch Reibung und Verschleiß jährlich Verluste in Höhe von etwa fünf Prozent des Bruttosozialproduktes. Doch was ist Reibung und wie wirkt sie sich aus? 3 Abb., 3 Tab. ALUMINIUM 9 (2009) Verbinden H. Zak, B. Tonn, S. Kores Warmfeste Aluminiumgusslegierungen für Zylinderköpfe in direktem Wettbewerb Giesserei-Praxis 6/2009, S. 199-202 In dieser Arbeit wurden die warmfesten Zylinderkopflegierungen AlSi6Cu4, AlSil2CuNiMg, AlCu5NiSbZr und AlMg3SilScZr unter einheitlichen Bedingungen getestet, um eindeutige Aussagen über die tatsächlichen Eigenschaftsprofile dieser Werkstoffe zu treffen. Die beste Kombination aus gießtech- ALUMINIUM · 9/2009 Alpha-Aluminiumoxid-Pulver. Sumitomo Chemical Co., Ltd., Tokyo 104-8260, JP. (C01F 7/44, EPA 2070873, EP-AT: 18.09.2007) Strukturelement. Norsk Hydro ASA, 0240 Olso, NO. (B62D 25/08, EPA 2070807, EP-AT: 02.12.2008) nischen und mechanischen Eigenschaften sowie ein attraktives Preisleistungsverhältnis verleiht der Legierung AlSil2CuNiMg die größte Chance, sich im Einsatz bei hoch belasteten Aluminiumzylinderköpfen in naher Zukunft durchzusetzen. Die kontinuierliche Zunahme der Motorleistung in Verbindung mit höheren Leistungsdichten stellt permanent wachsende technische Anforderungen an die Zylinderkopflegierungen. Der anhaltende Zwang zur Gewichts- und Kostenreduzierung sowie die Gewährleistung einer prozesssicheren Herstellbarkeit der Zylinderköpfe verschärft das Spannungsfeld für die Weiterentwicklung von diesen Motorenkomponenten noch weiter. Das am Zylinderkopf auftretende Lastkollektiv wird in statische und dynamische Beanspruchungen unterteilt. 7 Abb., 6 Tab., 16 Qu. ALUMINIUM 9 (2009) Legierungen J. Zähr, M. Schnick, U. Fussel, M. Sende, S. Rose, M. Speiseder, A. Lang, G. Wilhelm Untersuchungen zur Oberflächenreinigung beim Lichtbogenschweißen von Aluminiumlegierungen mit nicht abschmelzender Elektrode Schweißen und Schneiden 61 (2009), Heft 6, S. 302-311 Vorgestellt werden Untersuchungen zum Einfluss der Schweißparameter sowie der Zusammensetzung von Prozessgas und Grundwerkstoff auf die Breite und Regelmäßigkeit der Reinigungszone beim WIG-Schweißen von Aluminium mit Gleichstrom und plusgepolter Elektrode. Die Untersuchungen belegen einen großen Einfluss der Schutzgasabdeckung, der verwendeten Prozessgase sowie der Zusammensetzung des Grundwerkstoffs. Außerdem werden durch Hochgeschwindigkeitskinematographie sowie Rasterelektronenmikroskopaufnahmen zwei unterschiedliche Lichtbogenansätze am katodisch gepolten Aluminium identifiziert. Es werden die Ursachen der unterschiedlichen Ansatzmodi erläutert und Möglichkeiten dargestellt, wie der Lichtbogenansatz und die Reinigungswirkung gezielt beeinflusst werden können. 16 Abb., 3 Tab., 21 Qu. ALUMINIUM 9 (2009) Schweißen A. Pithan, H. Fuchs, S. Röpke Potenziale von Aluminiumlegierungen für hoch belastete Zylinderköpfe Giesserei-Praxis 6/2009, S. 203-207 Steigende spezifische Leistungen von Verbrennungsmotoren – insbesondere von modernen Dieselmotoren – stellen an den Zylinderkopf immer höhere Anforderungen Ein typisches Beispiel ist der aktuelle 2,0l-4V-TDI-Motor mit Common-RailEinspritzung von Volkswagen. Die Belastungen äußern sich vor allem in hohen Zünddrücken und Temperaturen. Moderne Dieselmotoren arbeiten heute mit Zünddrücken bis zu 180 bar, aber auch solche von 200 bar und mehr sind bereits in der Automobilindustrie im Gespräch. Die Betriebstemperaturen bei den Zylinderköpfen betragen dabei im Brennraum 220 bis 250 °C. Aufgabe ist es, Bauteile zu entwickeln, die diesen Belastungen zuverlässig standhalten. Dabei ist die optimale ➝ 61 L i t e r a t u r e se r v ice Kombination von Konstruktion, Gießverfahren und Werkstoff gefordert. Untersuchungen zum Einsatz geeigneter Zylinderkopflegierungen haben gezeigt, dass die Legierung allein die Forderungen nicht erfüllen kann. Ein funktionierendes Bauteil erhält man nur durch geeignete Konstruktion und ein werkstoffgerechtes Herstellungsverfahren. Dies beinhaltet neben dem Gießen vor allem auch die Wärmebehandlung. Bei den Bauteilfestigkeiten ist zu beobachten, dass die nominellen statischen Werte durch Eigenspannungen – z.B. aus der Warmbehandlung – überlagert werden können. Dies kann dazu führen, dass das nominelle Potenzial des Werkstoffs nicht immer genutzt wird. 13 Abb., 3 Tab. Anwendung ALUMINIUM 9 (2009) R. A. P. Fielding Homogenization of Aluminium Alloy Extrusion Billet Part III: The Application of the Continuous Homogenization Process to AA6xxx Series Alloys Light Metal Age, April 2009, S. 8-17 The majority of AA6xxx extrusion alloy billets are homogenized in one of the 90 continuous furnaces manufactured by Hertwich Engineering since their first prototype was supplied to Amag in Austria in 1980. The advantages of this technology and issues specific to the design, operation and control of these furnaces are discussed. The productivity and, to a large degree, the recovery from the extrusion of an aluminium alloy billet is dependent on its thermal history from alloying and casting through homogenization until its entry to the extrusion die. As was pointed out by Reiso, an optimum billet structure for one extruder may not be the optimum for another. Whether a prime or a secondary producer supplies the extrusion billet, variations in the chemical composition, the preparation of the melt, or the casting and homogenization processes, can be detected at the extrusion press. Additionally, in the extrusion plant, the specific pressure of the presses and the design of the extrusion dies affect the choice of die, billet and container temperatures. The rate of heating the billet before entering the extrusion press varies between induction and gas-fired furnaces. All of these factors have an influence on the optimum billet structure. As a consequence, the production of extrusions, from molten metal to the age ovens, must be looked upon as a whole. What happens at one stage of the production process is not independent of the other stages. 5 figures, 27 sources Strangpressen ALUMINIUM 9 (2009) J. C. LaBelle, T. Dolby Hex Washer-Head Fastener Pull-Over in Moderately Thin Aluminium Light Metal Age, April 2009, S. 40-43 Pull-over, also termed pull-through, is a mode of failure for a tension-loaded fastener in which the sheet, plate or extrusion locally tears and/or deforms sufficiently to allow the head to pass completely through. Screws are used to resist tensile design loads in a variety of aluminium structures including skylights, curtain walls, and window framing. The Aluminium Design Manual (ADM) includes equation 5.4.2.2-1 for pull-over of tapping screws installed in aluminium. This formula, however, was based on testing of relatively thin aluminium, 1.02 mm (0.040“) maximum, using hex-head fasteners with loose washers that were a metal/rubber combination. Subsequently, limited testing indicated that this equation was likely conservative for greater thicknesses. Thus, a testing programme was initiated in order to study behaviour and provide design guidance for the pull-over mode for hex-head screws with integral or loose metal-washers, and pan-head screws, installed in moderately thin aluminium. Thicknesses ranged from about 1.02 mm (0.040“) to 6.35 mm (0.25“). Testing covered a range of fastener-plate combinations (sets) including four screw diameters, five plate thicknesses, and several alloy-tempers. In total, 162 specimens were tested (Fig. 1), usually with eight tests for each combination (set) of screw size, plate thickness, and alloy-temper. Pull-over occurred in all of the tests except for those with nominal 6.35 mm (1/4“) thick plates. In these tests, screw failure occurred. Data analysis included comparisons between test results and predicted (nominal) values based on the ADM. In all cases, the ADM pull-over prediction was substantially less than the test average for the new data. A simple design equation was developed to more accurately, yet conservatively, model pull-over behaviour for screws installed in aluminium with a minimum thickness of 1.02 mm (0.040“) and prescribed hole sizes. 4 figures, 5 tables, 7 sources. ALUMINIUM 9 (2009) Verarbeitung, erste Stufe Sh. Akhtar, G. Timelli, F. Bonollo, L. Arnberg, M. Di Sabatino A comparative study of defects and mechanical properties in high pressure die cast and gravity die cast aluminium alloys International Foundry Research/Giessereiforschung 61 (2009) No. 2, S. 36-48 Defects such as pores, hot tears, entrained oxides or macrosegregation may occur in aluminium die castings, impairing their mechanical properties. The nature, extent and distribution of such defects will, however, differ between die casting processes. To investigate these differences, a comparative study between gravity castings of an A356 alloy and high pressure die castings of an A380 alloy was carried out. The defect distributions of the castings were investigated by metallography, radiography and fractography, and the tensile properties were measured. The gravity die castings were produced in a step mould with and without filter and at different controlled hydrogen concentrations in the melt. The U-shaped pressure die castings were produced with systematic variations of process parameters such as plunger speed, commutation point between first and second phase and pouring temperature. It has been found that both castings contain defects, primarily pores and oxides, and that the presence and distribution of these defects are highly sensitive to the process conditions. Significant variations of the defect distribution have, however, also been found in castings produced under the same conditions, particularly in the pressure die castings indicating the stochastic nature of defects in die castings. The dominating defect type in the gravity die casting is hydrogen porosity mainly at high hydrogen melt concentrations, whereas in the high pressure die castings, oxides and entrapped air porosity dominate. The tensile properties in both types of castings are affected by the amount and distribution of defects. This effect is particularly prominent for the pressure die castings where the defect area fraction has been found to determine the tensile strength. In the gravity castings, hydrogen porosity decreases the tensile strength, but this effect becomes significant only at quite high hydrogen melt concentrations. The tensile properties as well as the porosity also depended on the cross section of the castings. 26 figures, 4 tables, 27 sources ALUMINIUM 9 (2009) Formguss, Gusslegierungen Für Schrifttum zum Thema „Aluminium“ ist der Gesamtverband der Aluminiumindustrie e.V. (GDA) der kompetente Ansprechpartner. Die hier referierten Beiträge repräsentieren lediglich einen Ausschnitt aus dem umfassenden aktuellen Bestand der GDA-Bibliothek. Die von der Aluminium-Zentrale seit den dreißiger Jahren kontinuierlich aufgebaute Fach-Bibliothek wird duch den GDA weitergeführt, ausgebaut und auf die neuen Medien umgestellt. Sie steht allen Interessenten offen. Ansprechpartner ist Dr. Karsten Hein, E-Mail: karsten.hein@aluinfo.de 62 ALUMINIUM · 9/2009 International Journal for Industry, Research and Application How do your products and services come to appear every month in the list of supply sources, on the internet – www.Alu-web.de – and in the annual list of supply sources published by ALUMINIUM ? Please mark the main group relevant to you q Smelting technology q Rolling technology q Extrusion q Foundry Indicate the sub-group and/or key word (if necessary, ask us for the list of key words) _______________________ _______________________ _______________________ _______________________ _______________________ _______________________ Enter your text, not forgetting your on-line address: Line 1: ............................................................................................................................................ Line 2: ............................................................................................................................................ Line 3: ............................................................................................................................................ Line 4: ............................................................................................................................................ Line 5: ............................................................................................................................................ Line 6: ............................................................................................................................................ (Maximum 35 characters per line, including spaces. Price per line for each issue EUR 5,50 + VAT – minimum order 10 issues = 1 year. Logos are calculated according to the lines they occupy: 1 line = 2 mm). _______________________________________________________________ Company stamp / Signature Place/Date … and send this form to us by fax or post: Fax number +49-511/7304-157 For information Giesel Verlag GmbH, ALUMINIUM Tel.: -142 Rehkamp 3, D-30916 Isernhagen We will gladly send you a quotation! Lieferverzeichnis 1 Smelting technology Hüttentechnik 1.1 Raw materials 1.2 Storage facilities for smelting 1.3 Anode production 1.4 Anode rodding 1.4.1Anode baking 1.4.2Anode clearing 1.4.3Fixing of new anodes to the anodes bars 1.5 Casthouse (foundry) 1.6 Casting machines 1.7 Current supply 1.8 Electrolysis cell (pot) 1.9 Potroom 1.10 Laboratory 1.11 Emptying the cathode shell 1.12 Cathode repair shop 1.13 Second-hand plant 1.14 Aluminium alloys 1.15 Storage and transport 1.16 Smelting manufactures 1.1 Raw Materials/Rohstoffe Raw Materials / Rohstoffe Trimet Aluminium AG Aluminiumallee 1 D-45356 Essen Tel.: +49 (0) 201 / 3660 Fax: +49 (0) 201 / 366506 E-Mail: info@trimet.de Internet: www.trimet.de 1.2Storage facilities for smelting Lagermöglichkeiten i.d. Hütte FLSmidth Möller GmbH Haderslebener Straße 7 D-25421 Pinneberg Telefon: 04101 788-0 Telefax: 04101 788-115 E-Mail: moeller@flsmidth.com Internet: www.flsmidthmoeller.com Kontakt: Herr Dipl.-Ing. Timo Letz Outotec GmbH Albin-Köbis-Str. 8, D-51147 Köln Phone: +49 (0) 2203 / 9921-0 E-mail: aluminium@outotec.com www.outotec.com Conveying systems bulk materials Förderanlagen für Schüttgüter (Hüttenaluminiumherstellung) FLSmidth Möller GmbH Internet: www.flsmidthmoeller.com see Storage facilities for smelting 1.2 64 1.1 Rohstoffe 1.2 Lagermöglichkeiten in der Hütte 1.3 Anodenherstellung 1.4 Anodenschlägerei 1.4.1Anodenbrennen 1.4.2Anodenschlägerei 1.4.3Befestigen von neuen Anoden an der -stange 1.5 Gießerei 1.6 Gießmaschinen 1.7 Stromversorgung 1.8 Elektrolyseofen 1.9 Elektrolysehalle 1.10 Labor 1.11 Ofenwannenentleeren 1.12 Kathodenreparaturwerkstatt 1.13 Gebrauchtanlagen 1.14 Aluminiumlegierungen 1.15 Lager und Transport 1.16 Hüttenerzeugnisse Unloading/Loading equipment Entlade-/Beladeeinrichtungen FLSmidth Möller GmbH www.flsmidthmoeller.com see Storage facilities for smelting 1.2 Alumina and pet coke shipunloaders Contact: Andreas Haeuser, ha@neuero.de Hydraulic presses for prebaked anodes / Hydraulische Pressen zur Herstellung von Anoden LAEIS GmbH Am Scheerleck 7, L-6868 Wecker, Luxembourg Phone:+352 27612 0 Fax: +352 27612 109 E-Mail: info@laeis-gmbh.com Internet: www.laeis-gmbh.com Contact: Dr. Alfred Kaiser 1.3 Anode production Anodenherstellung Mixing Technology for Anode pastes Mischtechnologie für Anodenmassen see Storage facilities for smelting 1.2 Auto firing systems Automatische Feuerungssysteme Riedhammer GmbH D-90411 Nürnberg Phone: +49 (0) 911 5218 0, Fax: -5218 231 E-Mail: frank.goede@riedhammer.de Internet: www.riedhammer.de Exhaust gas treatment Abgasbehandlung Alstom Norway AS Tel. +47 22 12 70 00 Internet: www.environment.power.alstom.com Buss AG CH-4133 Pratteln Phone: +41 61 825 66 00 E-Mail: info@busscorp.com Internet: www.busscorp.com Open top and closed type baking furnaces Offene und geschlossene Ringöfen Riedhammer GmbH D-90411 Nürnberg Phone: +49 (0) 911 5218 0, Fax: -5218 231 E-Mail: frank.goede@riedhammer.de Internet: www.riedhammer.de ALUMINIUM · 9/2009 Lieferverzeichnis 1.4 Anode rodding Anodenanschlägerei 1.4.3Fixing of new anodes to the anodes bars Clay / Tonerde Fixing the nipples to the anodes by casting in Trimet Aluminium AG Aluminiumallee 1 D-45356 Essen Tel.: +49 (0) 201 / 3660 Fax: +49 (0) 201 / 366506 E-Mail: info@trimet.de Internet: www.trimet.de see Storage facilities for smelting 1.2 Removal of bath residues from the surface of spent anodes Entfernen der Badreste von der Oberfläche der verbrauchten Anoden Befestigen von neuen Anoden a. d. Anodenstange Befestigen der Nippel mit der Anode durch Eingießen SERMAS INDUSTRIE E-Mail: sermas@sermas.com see Casting Machines 1.6 Degassing, filtration and grain refinement Glama Maschinenbau GmbH Hornstraße 19 D-45964 Gladbeck Telefon 02043 / 9738-0 Telefax 02043 / 9738-50 Transport of finished anode elements to the pot room Transport der fertigen Anodenelemente in Elektrolysehalle Hovestr. 10 . D-48431 Rheine Telefon + 49 (0) 59 71 58-0 Fax + 49 (0) 59 71 58-209 E-Mail info@windhoff.de Internetwww.windhoff.de 1.4.1Anode baking 1.5 Casthouse (foundry) Gießerei HERTWICH ENGINEERING GmbH Maschinen und Industrieanlagen Weinbergerstraße 6, A-5280 Braunau am Inn Phone +437722/806-0 Fax +437722/806-122 E-Mail: info@hertwich.com Internet: www.hertwich.com INOTHERM INDUSTRIEOFENUND WÄRMETECHNIK GMBH Konstantinstraße 1a D 41238 Mönchengladbach Telefon +49 (02166) 987990 Telefax +49 (02166) 987996 E-Mail: info@inotherm-gmbh.de Internet: www.inotherm-gmbh.de Anodenbrennen Anode charging Anodenchargieren SERMAS INDUSTRIE E-Mail: sermas@sermas.com see Casting Machines 1.6 Anode storage Anodenlager SERMAS INDUSTRIE E-Mail: sermas@sermas.com see Casting Machines 1.6 1.4.2Anode clearing Entgasung, Filtern, Kornfeinung Drache Umwelttechnik GmbH Werner-v.-Siemens-Straße 9/24-26 D 65582 Diez/Lahn Telefon 06432/607-0 Telefax 06432/607-52 Internet: www.drache-gmbh.de Gautschi Engineering GmbH see Casting equipment 3.1 Dross skimming of liquid metal Abkrätzen des Flüssigmetalls Glama Maschinenbau GmbH see Anode rodding 1.4 Dross skimming of the melt Abkrätzen der Schmelze E-Mail: sermas@sermas.com see Casting machines 1.6 Furnace charging with molten metal see Equipment and accessories 3.1 Signode® System Gmbh Packaging Equipment Non-Ferrous Specialist Team DSWE Magnusstr. 18, 46535 Dinslaken/Germany Telefon: +49 (0) 2064 / 69-210 Telefax: +49 (0) 2064 / 69-489 E-Mail: g.laks@signode-europe.com Internet: www.signode.com Contact: Mr. Gerard Laks Ofenbeschickung mit Flüssigmetall Glama Maschinenbau GmbH see Anode rodding 1.4 Melting/holding/casting furnaces Schmelz-/Halte- und Gießöfen Gautschi Engineering GmbH see Casting equipment 3.1 Anodenschlägerei Separation of spent anodes from the anode bars Trennen von den Anodenstangen SERMAS INDUSTRIE E-Mail: sermas@sermas.com see Casting Machines 1.6 ALUMINIUM · 9/2009 Stopinc AG Bösch 83 a CH-6331 Hünenberg Tel. +41/41-785 75 00 Fax +41/41-785 75 01 E-Mail: interstop@stopinc.ch Internet: www.stopinc.ch HERTWICH ENGINEERING GmbH see Casthouse (foundry) 1.5 65 Lieferverzeichnis 1.6 Casting machines Gießmaschinen Pig casting machines (sow casters) Sistem Teknik Ltd. Sti. Des San. Sit. 102 SOK No: 6/8 Y.Dudullu, TR-34775 Istanbul/Turkey Tel.: +90 216 420 86 24 Fax:+90 216 420 23 22 E-Mail: info@sistemteknik.com Internet: www.sistemteknik.com Masselgießmaschine (Sowcaster) Gautschi Engineering GmbH see Casting equipment 3.1 see Storage facilities for smelting 1.2 Metal treatment in the holding furnace Metallbehandlung in Halteöfen Gautschi Engineering GmbH see Casting equipment 3.1 Transfer to the casting furnace Rolling and extrusion ingot and T-bars Formatgießerei (Walzbarren oder Pressbolzen oder T-Barren) Gautschi Engineering GmbH see Casting equipment 3.1 HERTWICH ENGINEERING GmbH see Casthouse (foundry) 1.5 343 Chemin du Stade 38210 Saint Quentin sur Isère Tel. +33 (0) 476 074 242 Fax +33 (0) 476 936 776 E-Mail: sermas@sermas.com Internet: www.sermas.com Heat treatment of extrusion ingot (homogenisation) Formatebehandlung (homogenisieren) Gautschi Engineering GmbH see Casting equipment 3.1 Überführung in Gießofen Glama Maschinenbau GmbH see Anode rodding 1.4 Drache Umwelttechnik GmbH Werner-v.-Siemens-Straße 9/24-26 D 65582 Diez/Lahn Telefon 06432/607-0 Telefax 06432/607-52 Internet: www.drache-gmbh.de HERTWICH ENGINEERING GmbH see Casthouse (foundry) 1.5 Horizontal continuous casting Gautschi Engineering GmbH see Casting equipment 3.1 Horizontales Stranggießen Gautschi Engineering GmbH see Casting equipment 3.1 see Billet Heating Furnaces 1.5 Windhoff Bahn- und Anlagentechnik GmbH see Anode rodding 1.4 Transport of liquid metal to the casthouse Vertical semi-continuous DC casting / Vertikales Stranggießen HERTWICH ENGINEERING GmbH see Casthouse (foundry) 1.5 Gautschi Engineering GmbH see Casting equipment 3.1 Transport v. Flüssigmetall in Gießereien Glama Maschinenbau GmbH see Anode rodding 1.4 Marx GmbH & Co. KG www.marx-gmbh.de see Melt operations 4.13 Scales / Waagen Gautschi Engineering GmbH see Casting equipment 3.1 Windhoff Bahn- und Anlagentechnik GmbH see Anode rodding 1.4 Treatment of casthouse off gases Behandlung der Gießereiabgase Gautschi Engineering GmbH see Casting equipment 3.1 66 HERTWICH ENGINEERING GmbH see Casthouse (foundry) 1.5 Wagstaff, Inc. 3910 N. Flora Rd. Spokane, WA 99216 USA +1 509 922 1404 phone +1 509 924 0241 fax E-Mail: info@wagstaff.com Internet: www.wagstaff.com 1.8 Electrolysis cell (pot) HERTWICH ENGINEERING GmbH see Casthouse (foundry) 1.5 Sawing / Sägen Gautschi Engineering GmbH see Casting equipment 3.1 Elektrolyseofen Calcium silicate boards Calciumsilikatplatten Promat GmbH – Techn. Wärmedämmung Scheifenkamp 16, D-40878 Ratingen Tel. +49 (0) 2102 / 493-0, Fax -493 115 verkauf3@promat.de, www.promat.de ALUMINIUM · 9/2009 Lieferverzeichnis Pot feeding systems Beschickungseinrichtungen für Elektrolysezellen FLSmidth Möller GmbH www.flsmidthmoeller.com see Storage facilities for smelting 1.2 1.9 Potroom Elektrolysehalle T.T. Tomorrow Technology S.p.A. Via dell’Artigianato 18 Due Carrare, Padova 35020, Italy Telefon+39 049 912 8800 Telefax +39 049 912 8888 E-Mail: gmagarotto@tomorrowtechnology.it Contact: Giovanni Magarotto Anode changing machine Anodenwechselmaschine Glama Maschinenbau GmbH see Anode rodding 1.4 Anode transport equipment Anoden Transporteinrichtungen Glama Maschinenbau GmbH see Anode rodding 1.4 Dry absorption units for electrolysis exhaust gases Trockenabsorptionsanlage für Elektrolyseofenabgase Alstom Norway AS Tel. +47 22 12 70 00 Internet: www.environment.power.alstom.com HF Measurementtechnology HF Messtechnik Opsis ab Box 244, S-24402 Furulund, Schweden Tel. +46 (0) 46-72 25 00, Fax -72 25 01 E-Mail: info@opsis.se Internet: www.opsis.se Tapping vehicles Schöpffahrzeuge Glama Maschinenbau GmbH see Anode rodding 1.4 2 1.16 Smelting manufactories Hüttenerzeugnisse Rolling ingots Walzbarren 1.11Emptying the cathode shell Ofenwannenentleeren Cathode bar casting units Kathodenbarreneingießanlage E-Mail: sermas@sermas.com see Casting machines 1.6 Alcan Aluminium Valais SA CH-3960 Sierre Telefon: 0041 27 / 4575111 Telefax: 0041 27 / 4576425 Extrusion Strangpressen 2.1 Extrusion billet preparation 2.1.1Extrusion billet production 2.2 Extrusion equipment 2.3 Section handling 2.4 Heat treatment 2.5 Measurement and control equipment 2.6 Die preparation and care 2.7 Second-hand extrusion plant 2.8 Consultancy, expert opinion 2.9 Surface finishing of sections 2.10 Machining of sections 2.11 Equipment and accessories 2.12 Services 2.1 Extrusion billet preparation SMS Siemag Aktiengesellschaft Logistiksysteme see Rolling mill technology 3.0 Crustbreakers / Krustenbrecher Glama Maschinenbau GmbH see Anode rodding 1.4 1.15 Storage and transport Lager und Transport 2.1 Pressbolzenbereitstellung 2.1.1Pressbolzenherstellung 2.2 Strangpresseinrichtungen 2.3 Profilhandling 2.4 Wärmebehandlung 2.5 Mess- und Regeleinrichtungen 2.6 Werkzeugbereitstellung und -pflege 2.7 Gebrauchte Strangpressanlagen 2.8 Beratung, Gutachten 2.9 Oberflächenveredlung von Profilen 2.10 Profilbearbeitung 2.11 Ausrüstungen und Hilfsmittel 2.12 Dienstleistungen Billet heating furnaces Öfen zur Bolzenerwärmung Pressbolzenbereitstellung Signode® System Gmbh Packaging Equipment Non-Ferrous Specialist Team DSWE Magnusstr. 18, 46535 Dinslaken/Germany Telefon: +49 (0) 2064 / 69-210 Telefax: +49 (0) 2064 / 69-489 E-Mail: g.laks@signode-europe.com Internet: www.signode.com Contact: Mr. Gerard Laks ALUMINIUM · 9/2009 Am großen Teich 16+27 D-58640 Iserlohn Tel. +49 (0) 2371 / 4346-0 Fax +49 (0) 2371 / 4346-43 E-Mail: verkauf@ias-gmbh.de Internet: www.ias-gmbh.de Marx GmbH & Co. KG www.marx-gmbh.de see Melt operations 4.13 67 Lieferverzeichnis Press control systems Pressensteuersysteme Oilgear Towler GmbH see Extrusion Equipment 2.2 Sistem Teknik Ltd. Sti. Des San. Sit. 102 SOK No: 6/8 Y.Dudullu, TR-34775 Istanbul/Turkey Tel.: +90 216 420 86 24 Fax:+90 216 420 23 22 E-Mail: info@sistemteknik.com Internet: www.sistemteknik.com SMS Meer GmbH see Extrusion equipment 2.2 2.1.1Extrusion billet production Pressbolzenherstellung Billet transport and storage equipment Bolzen-Transport- u. Lagereinricht. Temperature measurement Packaging equipment H+H Herrmann + Hieber GmbH Fördersysteme für Paletten und schwere Lasten Rechbergstraße 46 D-73770 Denkendorf/Stuttgart Tel. +49 (0) 711 / 9 34 67-0 Fax +49 (0) 711 / 3 46 0911 E-Mail: info@herrmannhieber.de Internet: www.herrmannhieber.de Vollert Anlagenbau GmbH + Co. KG Stadtseestraße 12 D-74189 Weinsberg Tel. +49 (0) 7134 / 52-220 Fax +49 (0) 7134 / 52-222 E-Mail intralogistik@vollert.de Internet www.vollert.de Temperaturmessung SERMAS INDUSTRIE E-Mail: sermas@sermas.com See Casting Machines 1.6 Puller equipment 2.2 Extrusion equipment Strangpresseinrichtungen Oilgear Towler GmbH Im Gotthelf 8 D 65795 Hattersheim Tel. +49 (0) 6145 3770 Fax +49 (0) 6145 30770 E-Mail: info@oilgear.de Internet: www.oilgear.de Verpackungseinrichtungen Ausziehvorrichtungen/Puller SMS Meer GmbH see Extrusion equipment 2.2 Heating and control equipment for intelligent billet containers SMS Meer GmbH see Extrusion equipment 2.2 Heizungs- und Kontrollausrüstung für intelligente Blockaufnehmer Section cooling Profilkühlung SMS Meer GmbH Schloemann Extrusion Ohlerkirchweg 66 D-41069 Mönchengladbach Tel. +49 (0) 2161 / 3500 Fax +49 (0) 2161 / 3501667 E-Mail: info@sms-meer.com Internet: www.sms-meer.com Marx GmbH & Co. KG www.marx-gmbh.de see Melt operations 4.13 2.3 Section handling Containers / Rezipienten Profilhandling SMS Meer GmbH see Extrusion equipment 2.2 Section saws Profilsägen Signode® System Gmbh SMS Meer GmbH see Extrusion equipment 2.2 68 Packaging Equipment Non-Ferrous Specialist Team DSWE Magnusstr. 18, 46535 Dinslaken/Germany Telefon: +49 (0) 2064 / 69-210 Telefax: +49 (0) 2064 / 69-489 E-Mail: g.laks@signode-europe.com Internet: www.signode.com Contact: Mr. Gerard Laks SMS Meer GmbH see Extrusion equipment 2.2 ALUMINIUM · 9/2009 Lieferverzeichnis Section store equipment Profil-Lagereinrichtungen H+H Herrmann + Hieber GmbH Fördersysteme für Paletten und schwere Lasten Rechbergstraße 46 D-73770 Denkendorf/Stuttgart Tel. +49 (0) 711 / 9 34 67-0 Fax +49 (0) 711 / 3 46 0911 E-Mail: info@herrmannhieber.de Internet: www.herrmannhieber.de Kasto Maschinenbau GmbH & Co. KG Industriestr. 14, D-77855 Achern Tel.: +49 (0) 7841 61-0 / Fax: +49 (0) 7841 61 300 kasto@kasto.de / www.kasto.de Hersteller von Band- und Kreissägemaschinen sowie Langgut- und Blechlagersystemen Vollert Anlagenbau GmbH + Co. KG see Packaging equipment 2.3 Stretching equipment Reckeinrichtungen Annealing furnaces Glühöfen see Equipment and accessories 3.1 SMS Meer GmbH see Extrusion equipment 2.2 Heat treatment furnaces Wärmebehandlungsöfen INOTHERM INDUSTRIEOFENUND WÄRMETECHNIK GMBH see Casthouse (foundry) 1.5 Transport equipment for extruded sections Transporteinrichtungen für Profilabschnitte H+H Herrmann + Hieber GmbH Fördersysteme für Paletten und schwere Lasten Rechbergstraße 46 D-73770 Denkendorf/Stuttgart Tel. +49 (0) 711 / 9 34 67-0 Fax +49 (0) 711 / 3 46 0911 E-Mail: info@herrmannhieber.de Internet: www.herrmannhieber.de see Billet Heating Furnaces 2.1 Custom designed heat processing equipment Kundenspezifische Wärmebehandlungsanlagen Sistem Teknik Ltd. Sti. see Billet Heating Furnaces 2.1 Section transport equipment Profiltransporteinrichtungen SMS Meer GmbH see Extrusion equipment 2.2 Nijverheidsweg 3 NL-7071 CH Ulft Netherlands Tel.: +31 315 641352 Fax: +31 315 641852 E-Mail: info@unifour.nl Internet: www.unifour.nl Sales Contact: Paul Overmans Vollert Anlagenbau GmbH + Co. KG see Packaging equipment 2.3 Wärmebehandlung ALUMINIUM · 9/2009 Homogenisieröfen HERTWICH ENGINEERING GmbH see Casthouse (foundry) 1.5 BSN Thermprozesstechnik GmbH Kammerbruchstraße 64 D-52152 Simmerath Tel. 02473-9277-0 · Fax: 02473-9277-111 info@bsn-therm.de · www.bsn-therm.de Ofenanlagen zum Wärmebehandeln von Alu miniumlegierungen, Buntmetallen und Stählen Seco/warwick s.a. see Heat treatment 2.4 Stapler / Entstapler SMS Meer GmbH see Extrusion equipment 2.2 2.4 Heat treatment Stackers / Destackers Homogenising furnaces Seco/warwick s.a. Sobieskiego 8, 66-200 Swiebodzin PL tel./fax +48 68 4111 600 (655) Fax +49 (0) 711 / 3 46 0911 info@secowarwick.com.pl www.secowarwick.com.pl see Billet Heating Furnaces 2.1 69 Lieferverzeichnis Extrusion dies 2.5 Measurement and control equipment Strangpresswerkzeuge Mess- und Regeleinrichtungen Ausrüstungen und Hilfsmittel Extrusion plant control systems Presswerkssteuerungen Haarmann Holding GmbH Karmeliterstraße 6 D-52064 Aachen Telefon: 02 41 / 9 18 - 500 Telefax: 02 41 / 9 18 - 5010 E-Mail: info@haarmann-gruppe.de Internet: www.haarmann-gruppe.de SMS Meer GmbH see Extrusion equipment 2.2 Hardening technology 2.6 Die preparation and care Werkzeugbereitstellung und -pflege Härtetechnik Inductiv heating equipment Induktiv beheizte Erwärmungseinrichtungen Am großen Teich 16+27 D-58640 Iserlohn Tel. +49 (0) 2371 / 4346-0 Fax +49 (0) 2371 / 4346-43 E-Mail: verkauf@ias-gmbh.de Internet: www.ias-gmbh.de Haarmann Holding GmbH see Die preparation and care 2.6 Ageing furnace for extrusions Die heating furnaces 2.11Equipment and accessories Werkzeuganwärmöfen Marx GmbH & Co. KG www.marx-gmbh.de see Melt operations 4.13 Auslagerungsöfen für Strangpressprofile 2.7 Second-hand extrusion plant Gebr. Strangpressanlagen Qualiteam International/ExtruPreX Champs Elyséesweg 17, NL-6213 AA Maastricht Tel. +31-43-3 25 67 77 Internet: www.extruprex.com 2.10 Machining of sections Sistem Teknik Ltd. Sti. see Billet Heating Furnaces 2.1 Processing of Profiles Nijverheidsweg 3 NL-7071 CH Ulft Netherlands Tel.: +31 315 641352 Fax: +31 315 641852 E-Mail: info@unifour.nl Internet: www.unifour.nl Sales Contact: Paul Overmans Profilbearbeitung Profilbearbeitung Tensai (International) AG Extal Division Steinengraben 40 CH-4051 Basel Telefon+41 (0) 61 284 98 10 Telefax +41 (0) 61 284 98 20 E-Mail: tensai@tensai.com see Billet Heating Furnaces 2.1 Nijverheidsweg 3 NL-7071 CH Ulft Netherlands Tel.: +31 315 641352 Fax: +31 315 641852 E-Mail: info@unifour.nl Internet: www.unifour.nl Sales Contact: Paul Overmans 2.12 Services Dienstleistungen Haarmann Holding GmbH see Die preparation and care 2.6 Could not find your „keywords“? Please ask for our complete „Supply sources for the aluminium industry“. E-Mail: P.Kapsali@giesel.de 70 ALUMINIUM · 9/2009 Lieferverzeichnis 3 Rolling mill technology Walzwerktechnik 3.1 Casting equipment 3.2 Rolling bar machining 3.3 Rolling bar furnaces 3.4 Hot rolling equipment 3.5 Strip casting units and accessories 3.6 Cold rolling equipment 3.7 Thin strip / foil rolling plant 3.8 Auxiliary equipment 3.9 Adjustment devices 3.10 Process technology / Automation technology 3.11 Coolant / lubricant preparation 3.12 Air extraction systems 3.13 Fire extinguishing units 3.14 Storage and dispatch 3.15 Second-hand rolling equipment 3.16 Coil storage systems 3.17 Strip Processing Lines 3.18 Productions Management Systems 3.0 Rolling mill technology Walzwerktechnik 3.1 Gießanlagen 3.2 Walzbarrenbearbeitung 3.3 Walzbarrenvorbereitung 3.4 Warmwalzanlagen 3.5 Bandgießanlagen und Zubehör 3.6 Kaltwalzanlagen 3.7 Feinband-/Folienwalzwerke 3.8 Nebeneinrichtungen 3.9 Adjustageeinrichtungen 3.10 Prozesstechnik / Automatisierungstechnik 3.11 Kühl-/Schmiermittel-Aufbereitung 3.12 Abluftsysteme 3.13 Feuerlöschanlagen 3.14 Lagerung und Versand 3.15 Gebrauchtanlagen 3.16 Coil storage systems 3.17 Bandprozesslinien 3.18 Produktions Management Systeme 3.1 Casting equipment Melt purification units Filling level indicators and controls Gautschi Engineering GmbH see Casting equipment 3.1 Gießanlagen Füllstandsanzeiger und -regler Gautschi Engineering GmbH see Casting equipment 3.1 SMS Siemag Aktiengesellschaft Eduard-Schloemann-Straße 4 D-40237 Düsseldorf Telefon: +49 (0) 211 881-0 Telefax: +49 (0) 211 881-49 02 E-Mail: communications@sms-siemag.com Internet: www.sms-siemag.com Geschäftsbereiche: Warmflach- und Kaltwalzwerke Wiesenstraße 30 D-57271 Hilchenbach-Dahlbruch Telefon: +49 (0) 2733 29-0 Telefax: +49 (0) 2733 29-2852 Bandanlagen Walderstraße 51/53 D-40724 Hilden Telefon: +49 (0) 211 881-5100 Telefax: +49 (0) 211 881-5200 Elektrik + Automation Ivo-Beucker-Straße 43 D-40237 Düsseldorf Telefon: +49 (0) 211 881-5895 Telefax: +49 (0) 211 881-775895 Logistiksysteme Obere Industriestraße 8 D-57250 Netphen Telefon: +49 (0) 2738 21-0 Telefax: +49 (0) 2738 21-1299 E-Mail: info@siemag.com Internet: www.siemag.com www.alu-web.de ALUMINIUM · 9/2009 Wagstaff, Inc. Schmelzereinigungsanlagen Metal filters / Metallfilter Gautschi Engineering GmbH see Casting equipment 3.1 see Casting machines 1.6 Melting and holding furnaces Schmelz- und Warmhalteöfen Gautschi Engineering GmbH Geschäftsbereich Aluminium Konstanzer Straße 37 Postfach 170 CH 8274 Tägerwilen Telefon +41/71/6666666 Telefax +41/71/6666688 E-Mail: aluminium@gautschi-engineering.com Kontakt: Stefan Blum, Tel. +41/71/6666621 LOI Thermprocess GmbH Am Lichtbogen 29 D-45141 Essen Germany Telefon +49 (0) 201 / 18 91-1 Telefax +49 (0) 201 / 18 91-321 E-Mail: info@loi-italimpianti.de Internet: www.loi-italimpianti.com Seco/warwick s.a. see Heat treatment 2.4 3.2 Rolling bar machining Walzbarrenbearbeitung Band saws / Bandsägen SMS Meer GmbH Ohlerkirchweg 66 D-41069 Mönchengladbach Tel. +49 (0) 2161 / 3500 Fax +49 (0) 2161 / 3501667 E-Mail: info@sms-meer.com Internet: www.sms-meer.com Slab milling machines Barrenfräsmaschinen SMS Meer GmbH see Rolling bar machining 3.2 71 Lieferverzeichnis 3.3 Rolling bar furnaces Roller tracks Rollengänge BSN Thermprozesstechnik GmbH see Heat Treatment 2.4 Gautschi Engineering GmbH see Casting equipment 3.1 Walzbarrenvorbereitung Homogenising furnaces SMS Siemag Aktiengesellschaft see Rolling mill technology 3.0 Homogenisieröfen Gautschi Engineering GmbH see Casting equipment 3.1 Spools / Haspel 3.4 Hot rolling equipment Warmwalzanlagen Hot rolling units / complete plants Warmwalzanlagen/Komplettanlagen Achenbach Buschhütten GmbH Siegener Str. 152, D-57223 Kreuztal Tel. +49 (0) 2732/7990, info@achenbach.de Internet: www.achenbach.de HERTWICH ENGINEERING GmbH see Casthouse (foundry) 1.5 SMS Siemag Aktiengesellschaft see Rolling mill technology 3.0 see Cold rolling units / complete plants 3.6 3.5 Strip casting units and accessories Coil transport systems Annealing furnaces Glühöfen Ebner Industrieofenbau Ges.m.b.H. Ruflinger Str. 111, A-4060 Leonding Tel.+43 / 732 / 68 68 Fax+43 / 732 / 68 68-1000 Internet: www.ebner.cc E-Mail: sales@ebner.cc Gautschi Engineering GmbH see Casting equipment 3.1 see Equipment and accessories 3.1 schwartz GmbH Windhoff Bahn- und Anlagentechnik GmbH see Anode rodding 1.4 Drive systems / Antriebe SMS Siemag Aktiengesellschaft see Rolling mill technology 3.0 Cores & shells for continuous casting lines Bruno Presezzi SpA Via per Ornago 8 I-20040 Burago Molgora (Mi) – Italy Tel. +39 039 63502 229 Fax +39 039 6081373 E-Mail: aluminium.dept@brunopresezzi.com Internet: www.brunopresezzi.com Contact: Franco Gramaglia Revamps, equipments & spare parts for continuous casting lines Revamps, equipments & spare parts for continuous casting lines Bruno Presezzi SpA Via per Ornago 8 I-20040 Burago Molgora (Mi) – Italy Tel. +39 039 63502 229 Fax +39 039 6081373 E-Mail: aluminium.dept@brunopresezzi.com Internet: www.brunopresezzi.com Contact: Franco Gramaglia Barrenanwärmanlagen Rolling mill modernisation Twin-roll continuous casting lines (complete lines) SMS Siemag Aktiengesellschaft see Rolling mill technology 3.0 Bruno Presezzi SpA Via per Ornago 8 I-20040 Burago Molgora (Mi) – Italy Tel. +39 039 63502 229 Fax +39 039 6081373 E-Mail: aluminium.dept@brunopresezzi.com Internet: www.brunopresezzi.com Contact: Franco Gramaglia Walzwerksmodernisierung Ebner Industrieofenbau Ges.m.b.H. see Annealing furnaces 3.3 Gautschi Engineering GmbH see Casting equipment 3.1 72 Cores & shells for continuous casting lines Vollert Anlagenbau GmbH + Co. KG see Packaging equipment 2.3 Bandgießanlagen und Zubehör see Heat treatment 2.4 Bar heating furnaces Bundtransportsysteme Twin-roll continuous casting lines (complete lines) ALUMINIUM · 9/2009 Lieferverzeichnis 3.6 Cold rolling equipment Kaltwalzanlagen Cold rolling units / complete plants Kaltwalzanlagen/Komplettanlagen Process optimisation systems Prozessoptimierungssysteme Gautschi Engineering GmbH see Casting equipment 3.1 Achenbach Buschhütten GmbH Siegener Str. 152, D-57223 Kreuztal Tel. +49 (0) 2732/7990, info@achenbach.de Internet: www.achenbach.de Process simulation BSN Thermprozesstechnik GmbH see Heat Treatment 2.4 Signode® System Gmbh Packaging Equipment Non-Ferrous Specialist Team DSWE Magnusstr. 18, 46535 Dinslaken/Germany Telefon: +49 (0) 2064 / 69-210 Telefax: +49 (0) 2064 / 69-489 E-Mail: g.laks@signode-europe.com Internet: www.signode.com Contact: Mr. Gerard Laks SMS Siemag Aktiengesellschaft see Rolling mill technology 3.0 Prozesssimulation Gautschi Engineering GmbH see Casting equipment 3.1 Drive systems / Antriebe SMS Siemag Aktiengesellschaft see Rolling mill technology 3.0 Coil annealing furnaces Bundglühöfen Gautschi Engineering GmbH see Casting equipment 3.1 SMS Siemag Aktiengesellschaft see Rolling mill technology 3.0 Revamps, equipments & spare parts Heating furnaces / Anwärmöfen see Equipment and accessories 3.1 Gautschi Engineering GmbH see Casting equipment 3.1 Revamps, equipments & spare parts Bruno Presezzi SpA Via per Ornago 8 I-20040 Burago Molgora (Mi) – Italy Tel. +39 039 63502 229 Fax +39 039 6081373 E-Mail: aluminium.dept@brunopresezzi.com Internet: www.brunopresezzi.com Contact: Franco Gramaglia Roll exchange equipment Seco/warwick s.a. see Heat treatment 2.4 Coil transport systems Bundtransportsysteme Vollert Anlagenbau GmbH + Co. KG see Packaging equipment 2.3 Windhoff Bahn- und Anlagentechnik GmbH see Anode rodding 1.4 ALUMINIUM · 9/2009 Walzenwechseleinrichtungen Hier könnte Ihr BezugsquellenEintrag stehen. Rufen Sie an: Tel. 0511 / 73 04-148 Beate Schaefer SMS Siemag Aktiengesellschaft see Rolling mill technology 3.0 Vollert Anlagenbau GmbH + Co. KG see Packaging equipment 2.3 Windhoff Bahn- und Anlagentechnik GmbH see Anode rodding 1.4 73 Lieferverzeichnis Rolling mill modernization Walzwerkmodernisierung 3.7 Thin strip / foil rolling plant Achenbach Buschhütten GmbH Siegener Str. 152, D-57223 Kreuztal Tel. +49 (0) 2732/7990, info@achenbach.de Internet: www.achenbach.de Feinband-/Folienwalzwerke Achenbach Buschhütten GmbH Siegener Str. 152, D-57223 Kreuztal Tel. +49 (0) 2732/7990, info@achenbach.de Internet: www.achenbach.de Thin strip / foil rolling mills / complete plant Feinband- / Folienwalzwerke / Komplettanlagen SMS Siemag Aktiengesellschaft see Rolling mill technology 3.0 see Cold rolling units / complete plants 3.6 see Cold rolling units / complete plants 3.6 Slitting lines-CTL Längs- und Querteilanlagen see Cold rolling units / complete plants 3.6 Strip shears Bandscheren see Cold rolling units / complete plants 3.6 Signode® System Gmbh Packaging Equipment Non-Ferrous Specialist Team DSWE Magnusstr. 18, 46535 Dinslaken/Germany Telefon: +49 (0) 2064 / 69-210 Telefax: +49 (0) 2064 / 69-489 E-Mail: g.laks@signode-europe.com Internet: www.signode.com Contact: Mr. Gerard Laks Coil annealing furnaces Bundglühöfen Bruno Presezzi SpA Via per Ornago 8 I-20040 Burago Molgora (Mi) – Italy Tel. +39 039 63502 229 Fax +39 039 6081373 E-Mail: aluminium.dept@brunopresezzi.com Internet: www.brunopresezzi.com Contact: Franco Gramaglia Rolling mill modernization Walzwerkmodernisierung Gautschi Engineering GmbH see Casting equipment 3.1 see Equipment and accessories 3.1 SMS Siemag Aktiengesellschaft see Rolling mill technology 3.0 Revamps, equipments & spare parts Revamps, equipments & spare parts schwartz GmbH see Cold colling equipment 3.6 Achenbach Buschhütten GmbH Siegener Str. 152, D-57223 Kreuztal Tel. +49 (0) 2732/7990, info@achenbach.de Internet: www.achenbach.de 3.9 Adjustment devices Adjustageeinrichtungen Sheet and plate stretchers Trimming equipment Besäumeinrichtungen see Cold rolling units / complete plants 3.6 Seco/warwick s.a. see Heat treatment 2.4 www.alu-web.de 74 Blech- und Plattenstrecker Heating furnaces SMS Siemag Aktiengesellschaft see Rolling mill technology 3.0 Anwärmöfen Gautschi Engineering GmbH see Casting equipment 3.1 SMS Meer GmbH see Rolling bar machining 3.2 INOTHERM INDUSTRIEOFENUND WÄRMETECHNIK GMBH see Casthouse (foundry) 1.5 Cable sheathing presses Kabelummantelungspressen SMS Meer GmbH see Rolling bar machining 3.2 ALUMINIUM · 9/2009 Lieferverzeichnis Cable undulating machines Kabelwellmaschinen Strip thickness measurement and control equipment Banddickenmess- und -regeleinrichtungen SMS Siemag Aktiengesellschaft see Rolling mill technology 3.0 SMS Meer GmbH see Rolling bar machining 3.2 Transverse cutting units Querteilanlagen Abb Automation Technologies AB Force Measurement S-72159 Västeras, Sweden Phone:+46 21 325 000 Fax: +46 21 340 005 E-Mail: pressductor@se.abb.com Internet: www.abb.com/pressductor SERMAS INDUSTRIE E-Mail: sermas@sermas.com See Casting Machines 1.6 3.10 Process technology / Automation technology Prozesstechnik / Automatisierungstechnik 3.11 Coolant / lubricant preparation Kühl-/SchmiermittelAufbereitung Rolling oil recovery and treatment units Walzöl-Wiederaufbereitungsanlagen Achenbach Buschhütten GmbH Siegener Str. 152, D-57223 Kreuztal Tel. +49 (0) 2732/7990, info@achenbach.de Internet: www.achenbach.de SMS Siemag Aktiengesellschaft see Rolling mill technology 3.0 Process control technology Prozessleittechnik SMS Siemag Aktiengesellschaft see Rolling mill technology 3.0 Filter for rolling oils and emulsions Filter für Walzöle und Emulsionen SMS Siemag Aktiengesellschaft see Rolling mill technology 3.0 Wagstaff, Inc. see Casting machines 1.6 Strip flatness measurement and control equipment Bandplanheitsmess- und -regeleinrichtungen Rolling oil rectification units Hier könnte Ihr BezugsquellenEintrag Achenbach Buschhütten GmbH Siegener Str. 152, D-57223 Kreuztal Tel. +49 (0) 2732/7990, info@achenbach.de Internet: www.achenbach.de Walzölrektifikationsanlagen Abb Automation Technologies AB Force Measurement S-72159 Västeras, Sweden Phone:+46 21 325 000 Fax: +46 21 340 005 E-Mail: pressductor@se.abb.com Internet: www.abb.com/pressductor Achenbach Buschhütten GmbH Siegener Str. 152, D-57223 Kreuztal Tel. +49 (0) 2732/7990, info@achenbach.de Internet: www.achenbach.de Achenbach Buschhütten GmbH Siegener Str. 152, D-57223 Kreuztal Tel. +49 (0) 2732/7990, info@achenbach.de Internet: www.achenbach.de SMS Siemag Aktiengesellschaft see Rolling mill technology 3.0 stehen. Rufen Sie an: Tel. 0511 / 73 04-148 Beate Schaefer ALUMINIUM · 9/2009 75 Lieferverzeichnis Strip Annealing Lines Bandglühlinien 3.12 Air extraction systems Abluft-Systeme Exhaust air purification systems (active) Abluft-Reinigungssysteme (aktiv) Vollert Anlagenbau GmbH + Co. KG see Packaging equipment 2.3 3.17 Strip Processing Lines Achenbach Buschhütten GmbH Siegener Str. 152, D-57223 Kreuztal Tel. +49 (0) 2732/7990, info@achenbach.de Internet: www.achenbach.de Bandprozesslinien Colour Coating Lines Bandlackierlinien www.bwg-online.com see Strip Processing Lines 3.17 SMS Siemag Aktiengesellschaft see Rolling mill technology 3.0 Filtering plants and systems Filteranlagen und Systeme Lithographic Sheet Lines Lithografielinien www.bwg-online.com see Strip Processing Lines 3.17 www.bwg-online.com see Strip Processing Lines 3.17 Strip Processing Lines Bandprozesslinien BWG Bergwerk- und WalzwerkMaschinenbau GmbH Mercatorstraße 74 – 78 D-47051 Duisburg Tel.:+49 (0) 203-9929-0 Fax:+49 (0) 203-9929-400 E-Mail: bwg@bwg-online.de Internet: www.bwg-online.com 3.18Production Management systems Produktions Management Systeme see Cold rolling units / complete plants 3.6 Dantherm Filtration GmbH Industriestr. 9, D-77948 Friesenheim Tel.: +49 (0) 7821 / 966-0, Fax: - 966-245 E-Mail: info.de@danthermfiltration.com Internet: www.danthermfiltration.com Stretch Levelling Lines Streckrichtanlagen www.bwg-online.com see Strip Processing Lines 3.17 4Production AG Production Optimising Solutions Carlo-Schmid-Str. 12, D-52146 Würselen Tel.:+49 (0) 2405 4135-0 info@4production.de, www.4production.com A PSI Group Company 3.14 Storage and dispatch Lagerung und Versand Could not find your „keywords“? SMS Siemag Aktiengesellschaft Logistiksysteme see Rolling mill technology 3.0 3.16 Coil storage systems Please ask for our complete „Supply sources for the aluminium industry“. Bundlagersysteme E-Mail: SMS Siemag Aktiengesellschaft Logistiksysteme see Rolling mill technology 3.0 76 P.Kapsali@giesel.de ALUMINIUM · 9/2009 Lieferverzeichnis 4 Foundry Gießerei 4.1 Work protection and ergonomics 4.2 Heat-resistant technology 4.3 Conveyor and storage technology 4.4 Mould and core production 4.5 Mould accessories and accessory materials 4.6 Foundry equipment 4.7 Casting machines and equipment 4.8 Handling technology 4.9 Construction and design 4.10 Measurement technology and materials testing 4.11 Metallic charge materials 4.12 Finshing of raw castings 4.13 Melt operations 4.14 Melt preparation 4.15 Melt treatment devices 4.16 Control and regulation technology 4.17 Environment protection and disposal 4.18 Dross recovery 4.19 Gussteile 4.1 Arbeitsschutz und Ergonomie 4.2 Feuerfesttechnik 4.3 Förder- und Lagertechnik 4.4 Form- und Kernherstellung 4.5 Formzubehör, Hilfsmittel 4.6 Gießereianlagen 4.7 Gießmaschinen und Gießeinrichtungen 4.8 Handhabungstechnik 4.9 Konstruktion und Design 4.10 Messtechnik und Materialprüfung 4.11 Metallische Einsatzstoffe 4.12 Rohgussnachbehandlung 4.13 Schmelzbetrieb 4.14 Schmelzvorbereitung 4.15 Schmelzebehandlungseinrichtungen 4.16 Steuerungs- und Regelungstechnik 4.17 Umweltschutz und Entsorgung 4.18 Schlackenrückgewinnung 4.19 Cast parts 4.2 Heat-resistent technology 4.6 Foundry equipment Refractories Casting machines Feuerfesttechnik Feuerfeststoffe Promat GmbH – Techn. Wärmedämmung Scheifenkamp 16, D-40878 Ratingen Tel. +49 (0) 2102 / 493-0, Fax -493 115 verkauf3@promat.de, www.promat.de Gießereianlagen Gießmaschinen see Equipment and accessories 3.1 Gießereimaschinen und Gießeinrichtungen Förder- und Lagertechnik HERTWICH ENGINEERING GmbH see Casthouse (foundry) 1.5 Vollert Anlagenbau GmbH + Co. KG see Packaging equipment 2.3 Heat treatment furnaces 4.5 Mold accessories and accessory materials 4.7 Casting machines and equipment 4.3 Conveyor and storage technology Seco/warwick s.a. see Heat treatment 2.4 Wärmebehandlungsöfen Molten Metall Level Control Ostra Hamnen 7 SE-430 91 Hono / Schweden Tel.: +46 31 764 5520, Fax: +46 31 764 5529 E-Mail: info@precimeter.com Internet: www.precimeter.com Sales contact: Jan Strömbeck see Foundry equipment 4.6 Formzubehör, Hilfmittel Wagstaff, Inc. see Casting machines 1.6 Fluxes Flussmittel Solvay Fluor GmbH Hans-Böckler-Allee 20 D-30173 Hannover Telefon +49 (0) 511 / 857-0 Telefax +49 (0) 511 / 857-2146 Internet: www.solvay-fluor.de www.alu-web.de ALUMINIUM · 9/2009 see Billet Heating Furnaces 2.1 Solution annealing furnaces/plant Lösungsglühöfen/anlagen ERNST REINHARDT GMBH Postfach 1880, D-78008 VS-Villingen Tel. 07721/8441-0, Fax 8441-44 E-Mail: info@ernstreinhardt.de Internet: www.Ernst-Reinhardt.com Mould parting agents Kokillentrennmittel Schröder KG Schmierstofftechnik Postfach 1170 D-57251 Freudenberg Tel. 02734/7071 Fax 02734/20784 www.schroeder-schmierstoffe.de 77 Lieferverzeichnis 4.8 Handling technology Vollert Anlagenbau GmbH + Co. KG see Packaging equipment 2.3 Manipulators Recycling / Recycling Handhabungstechnik Manipulatoren Trimet Aluminium AG Niederlassung Gelsenkirchen Am Stadthafen 51-65 D-45681 Gelsenkirchen Tel.: +49 (0) 209 / 94089-0 Fax: +49 (0) 209 / 94089-60 Internet: www.trimet.de HERTWICH ENGINEERING GmbH see Casthouse (foundry) 1.5 see Equipment and accessories 3.1 SERMAS INDUSTRIE E-Mail: sermas@sermas.com See Casting Machines 1.6 4.9 Construction and Design Konstruktion und Design Thermcon Ovens BV see Extrusion 2 4.11 Metallic charge materials Metallische Einsatzstoffe Aluminium alloys Trimet Aluminium AG Niederlassung Harzgerode Aluminiumallee 1 06493 Harzgerode Tel.: 039484 / 50-0 Fax: 039484 / 50-100 Internet: www.trimet.de Aluminiumlegierungen Marx GmbH & Co. KG Lilienthalstr. 6-18 D-58638 Iserhohn Tel.: +49 (0) 2371 / 2105-0, Fax: -11 E-Mail: info@marx-gmbh.de Internet: www.marx-gmbh.de 4.13 Melt operations Schmelzbetrieb Heat treatment furnaces Seco/warwick s.a. see Heat treatment 2.4 Wärmebehandlungsanlagen Holding furnaces Aleris Recycling (German Works) GmbH Aluminiumstraße 3 D-41515 Grevenbroich Telefon+49 (0) 2181/16 45 0 Telefax +49 (0) 2181/16 45 100 E-Mail: recycling@aleris.com Internet: www.aleris-recycling.com Metallhandelsgesellschaft Schoof & Haslacher mbH & Co. KG Postfach 600714, D 81207 München Telefon 089/829133-0 Telefax 089/8201154 E-Mail: info@metallhandelsgesellschaft.de Internet: www.metallhandelsgesellschaft.de Pre alloys / Vorlegierungen Metallhandelsgesellschaft Schoof & Haslacher mbH & Co. KG Postfach 600714, D 81207 München Telefon 089/829133-0 Telefax 089/8201154 E-Mail: info@metallhandelsgesellschaft.de Internet: www.metallhandelsgesellschaft.de 78 see Billet Heating Furnaces 2.1 Melting furnaces Schmelzöfen Büttgenbachstraße 14 D-40549 Düsseldorf/Germany Tel.: +49 (0) 211 / 5 00 91-43 Fax: +49 (0) 211 / 50 13 97 E-Mail: info@bloomeng.de Internet: www.bloomeng.com Sales Contact: Klaus Rixen Gautschi Engineering GmbH see Casting equipment 3.1 Warmhalteöfen Büttgenbachstraße 14 D-40549 Düsseldorf/Germany Tel.: +49 (0) 211 / 5 00 91-43 Fax: +49 (0) 211 / 50 13 97 E-Mail: info@bloomeng.de Internet: www.bloomeng.com Sales Contact: Klaus Rixen Gautschi Engineering GmbH see Casting equipment 3.1 see Equipment and accessories 3.1 Seco/warwick s.a. see Heat treatment 2.4 ALUMINIUM · 9/2009 Lieferverzeichnis Heat treatment furnaces Wärmebehandlungsanlagen Gautschi Engineering GmbH see Casting equipment 3.1 4.15 Melt treatment devices Schmelzbehandlungseinrichtungen Metaullics Systems Europe B.V. Ebweg 14 NL-2991 LT Barendrecht Tel. +31-180/590890 Fax +31-180/551040 E-Mail: info@metaullics.nl Internet: www.metaullics.com 4.17 Environment protection and disposal Umweltschutz und Entsorgung Dust removal / Entstaubung NEOTECHNIK GmbH Entstaubungsanlagen Postfach 110261, D-33662 Bielefeld Tel. 05205/7503-0, Fax 05205/7503-77 info@neotechnik.com, www.neotechnik.com HERTWICH ENGINEERING GmbH see Casthouse (foundry) 1.5 4.16 Control and regulation technology see Equipment and accessories 3.1 Steuerungs- und Regelungstechnik Flue gas cleaning Rauchgasreinigung HCL measurements Seco/warwick s.a. see Heat treatment 2.4 4.14 Melt preparation Schmelzvorbereitung Ceraflux India Pvt. Ltd. F - 59 & 60, MIDC, Gokul Shirgaon, Kolhapur - 416 234. Maharastra (India) E-Mail: cerafluxindia@dataone.in cerafluxindia@gmail.com Web: www.ceraflux.com HCL Messungen Opsis ab Box 244, S-24402 Furulund, Schweden Tel. +46 (0) 46-72 25 00, Fax -72 25 01 E-Mail: info@opsis.se Internet: www.opsis.se Do you need more information? E-Mail: P.Kapsali@giesel.de Degassing, filtration 4.19 Cast parts / Gussteile Trimet Aluminium AG Niederlassung Harzgerode Aluminiumallee 1 06493 Harzgerode Tel.: 039484 / 50-0 Fax: 039484 / 50-100 Internet: www.trimet.de Entgasung, Filtration Drache Umwelttechnik GmbH Werner-v.-Siemens-Straße 9/24-26 D 65582 Diez/Lahn Telefon 06432/607-0 Telefax 06432/607-52 Internet: http://www.drache-gmbh.de Gautschi Engineering GmbH see Casting equipment 3.1 Melt treatment agents Dantherm Filtration GmbH Industriestr. 9, D-77948 Friesenheim Tel.: +49 (0) 7821 / 966-0, Fax: - 966-245 E-Mail: info.de@danthermfiltration.com Internet: www.danthermfiltration.com Schmelzebehandlungsmittel Gautschi Engineering GmbH see Casting equipment 3.1 ALUMINIUM · 9/2009 5 Materials and Recycling Werkstoffe und Recycling Alu-web.de der AluminiumBranchentreff. Haben Sie schon Ihren Basiseintrag bestellt? Nein, dann sofort anrufen: 0511/73 04-142 Panagiota Kapsali Granulated aluminium Aluminiumgranulate ECKA Granulate Austria GmbH Bürmooser Landesstraße 19 A-5113 St. Georgen/Salzburg Telefon+43 6272 2919-12 Telefax +43 6272 8439 Kontakt: Ditmar Klein E-Mail: d.klein@ecka-granules.com 79 Lieferverzeichnis 6 Machining and Application Bearbeitung und Anwendung Machining of aluminium Cleaning / Reinigung Aluminiumbearbeitung AG & Co. KGaA Haarmann Holding GmbH Henkel siehe Prozesse für die Oberflächentechnik 6.1 see Die preparation and care 2.6 6.1 Surface treatment processes Prozesse für die Oberflächenbehandlung Joining / Fügen Henkel AG & Co. KGaA siehe Prozesse für die Oberflächentechnik 6.1 Pretreatment before coating Henkel AG & Co. KGaA D-40191 Düsseldorf Tel. +49 (0) 211 / 797-30 00 Fax +49 (0) 211 / 798-23 23 Internet: www.henkel-technologies.com Adhesive bonding / Verkleben Henkel AG & Co. KGaA siehe Prozesse für die Oberflächentechnik 6.1 Anodising / Anodisation Henkel AG & Co. KGaA siehe Prozesse für die Oberflächentechnik 6.1 Vorbehandlung vor der Beschichtung Henkel AG & Co. KGaA siehe Prozesse für die Oberflächentechnik 6.1 Ausrüstung für Schmiedeund Fließpresstechnik Hydraulic Presses Hydraulische Pressen Lasco Umformtechnik GmbH Hahnweg 139, D-96450 Coburg Tel. +49 (0) 9561 642-0 Fax +49 (0) 9561 642-333 E-Mail: lasco@lasco.de Internet: www.lasco.com 8 Literature Literatur Technikcal literature Fachliteratur Taschenbuch des Metallhandels Fundamentals of Extrusion Technology 6.2 Semi products Halbzeuge Giesel Verlag GmbH Verlag für Fachmedien Ein Unternehmen der Klett-Gruppe Rehkamp 3 · 30916 Isernhagen Tel. 0511 / 73 04-122 · Fax 0511 / 73 04-157 Internet: www.alu-bookshop.de. Wires / Drähte Drahtwerk Elisental W. Erdmann GmbH & Co. Werdohler Str. 40, D-58809 Neuenrade Postfach 12 60, D-58804 Neuenrade Tel. +49(0)2392/697-0, Fax 49(0)2392/62044 E-Mail: info@elisental.de Internet: www.elisental.de Could not find your „keywords“? Please ask for our complete „Supply sources for the aluminium industry“. Telefon: 0411/7304-142 Panagiota Kapsali 80 6.3 Equipment for forging and impact extrusion Technical journals Fachzeitschriften Giesel Verlag GmbH Ein Unternehmen der Klett-Gruppe Rehkamp 3 · 30916 Isernhagen Tel. 0511 / 73 04-122 · Fax 0511 / 73 04-157 ALUMINIUM · 9/2009 IMPRESSUM / IMPRINT International ALUMINIUM Journal 85. Jahrgang 1.1.2009 Redaktion / Editorial office Dipl.-Vw. Volker Karow Chefredakteur, Editor in Chief Franz-Meyers-Str. 16, 53340 Meckenheim Tel: +49(0)2225 8359 643 Fax: +49(0)2225 18458 E-Mail: vkarow@online.de Dipl.-Ing. Rudolf P. Pawlek Fax: +41 274 555 926 Hüttenindustrie und Recycling Dipl.-Ing. Bernhard Rieth Walzwerkstechnik und Bandverarbeitung Verlag / Publishing house Giesel Verlag GmbH, Verlag für Fachmedien, Unternehmen der Klett-Gruppe, Postfach 120158, 30907 Isernhagen; Rehkamp 3, 30916 Isernhagen, Tel: 0511/7304-0, Fax: 0511/7304-157. E-mail: giesel@giesel.de Internet: www.alu-web.de. Postbank/postal cheque account Hannover, BLZ/routing code: 25010030; Kto.Nr./ account no. 90898-306, Bankkonto/ bank account Commerzbank AG, BLZ/ routing code: 25040066, Kto.-Nr./account no. 1500222 Geschäftsleitung / Managing Director Georg Dörner Tel: 05 11/73 04-166 E-Mail: G.Doerner@giesel.de Anzeigenverkauf / Manager Advertising Sales Panagiota Kapsali Tel: 05 11/ 73 04-142 E-Mail: P.Kapsali@giesel.de Anzeigendisposition / Advertising layout Beate Schaefer Tel: 05 11/ 73 04-148 E-Mail: B.Schaefer@giesel.de Vertriebsleitung / General Manager Distribution Jutta Illhardt Tel: 05 11/ 73 04-126 E-Mail: J.Illhardt@giesel.de Abonnenten-Service / Reader service Kirsten Voß Tel: 05 11/ 73 04-122 E-Mail: Vertrieb@giesel.de Herstellung & Druck / Printing house BWH GmbH, Beckstr. 10 D-30457 Hannover Jahresbezugspreis EUR 285,- (Inland inkl. 7% Mehrwertsteuer und Versandkosten). Europa EUR 289,- inkl. Versandkosten. Übersee US$ 375,- inkl. Normalpost; Luftpost zuzügl. US$ 82,-. Preise für Studenten auf Anfrage. ALUMINIUM erscheint zehnmal pro Jahr. Kündigungen jeweils sechs Wochen zum Ende der Bezugszeit. Subscription rates EUR 285.00 p.a. (domestic incl. V.A.T.) plus postage. Europe EUR 289.00 incl. surface mail. Outside Europe US$ 375.00 incl. surface mail, air mail plus US$ 82.00. ALUMINIUM · 9/2009 ALUMINIUM is published monthly (10 issues a year). Cancellations six weeks prior to the end of a year. Anzeigenpreise / Advertisement rates Preisliste Nr. 49 vom 1.1.2009. Price list No. 49 from 1.1.2009. Die Zeitschrift und alle in ihr enthaltenen Beiträge und Abbildungen sind urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verlages unzulässig und strafbar. Das gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Bearbeitung in elektronischen Systemen. Der Verlag übernimmt keine Gewähr für die Richtigkeit der in diesem Heft mitgeteilten Informationen und haftet nicht für abgeleitete Folgen. Haftung bei Leistungsminderung durch höhere Gewalt oder andere vom Verlag nicht verschuldete Umstände (z. B. Streik) ist ausgeschlossen. This journal and all contributions contained therein are protected by copyright. Any utilization outside the strict limits of copyright legislation without the express consent of the publisher ist prohibited and actionable at law. This applies in particular to reproduction, translations, microfilming and storage or processing in electronic systems. The publisher offers no guarantee that the information in this volume is accurate and accepts no liability for consequences deriving therefrom. No liability whatsoever is accepted for perfomance lag caused by force majeure or by circumstances beyond the publisher’s control (e.g. industrial action). ISSN: 0002-6689 © Giesel Verlag GmbH Verlagsrepräsentanz / Representatives Nielsen-Gebiet 1 (Schleswig-Holstein, Hamburg, Bremen, Niedersachsen außer Raum Osnabrück): Giesel Verlag GmbH, Panagiota Kapsali Rehkamp 3, 30916 Isernhagen Tel: 05 11/73 04-142, Fax: 05 11/73 04-222 E-Mail: P.Kapsali@giesel.de www.giesel-verlag.de Nielsen-Gebiet 2 (Nordrhein-Westfalen, Raum Osnabrück): Medienbüro Jürgen Wickenhöfer Minkelsches Feld 39, 46499 Hamminkeln Tel: 0 28 52 / 9 4180 Fax: 0 28 52 / 9 4181 E-Mail: info@jwmedien.de www.jwmedien.de Nielsen-Gebiet 3a (Hessen, Saarland, Rheinland-Pfalz): multilexa GmbH, publisher services Linsenhofer Straße 51, 98529 Suhl Tel: 03681/4550478 Fax: 03681/4553042 E-Mail: thomas.werner@multilexa.com www.multilexa.com Nielsen-Gebiet 3 b (Baden-Württemberg): G. Fahr, Verlags- und Pressebüro e. K. Marktplatz 10, 72654 Neckartenzlingen Tel: 0 71 27/30 84 Fax: 07127/2 14 78 E-Mail: info@verlagsbuero-fahr.de Nielsen-Gebiet 4 (Bayern): G. Fahr, Verlags- und Pressebüro e.K. Marktplatz 10, 72654 Neckartenzlingen Tel: 0 8362/5054990 Fax: 08362/5054992 E-Mail: info@verlagsbuero-fahr.de Nielsen-Gebiet 5, 6 + 7 (Berlin, Mecklenburg-Vorpommern, Brandenburg, Sachsen-Anhalt Sachsen, Thüringen): multilexa GmbH, publisher services Linsenhofer Straße 51, 98529 Suhl Tel: 03681/4550478 Fax: 03681/4553042 E-Mail: thomas.werner@multilexa.com www.multilexa.com Scandinavia, Denmark, Netherlands, Belgium, Luxembourg multilexa GmbH, publisher services Linsenhofer Straße 51, 98529 Suhl, Germany Tel: +49 (0)3681/4550478 Fax: +49 (0)3681/4553042 E-Mail: thomas.werner@multilexa.com www.multilexa.com Switzerland JORDI PUBLIPRESS Postfach 154 · CH-3427 Utzenstorf Tel. +41 (0)32 666 30 90, Fax +41 (0)32 666 30 99 E-Mail: info@jordipublipress.ch www.jordipublipress.ch Austria Verlagsbüro Katrin Forstner Wiengasse 6/7/3, A-1140 Wien Tel: +43(0)1 9235352 Fax: +43(0)1 9 797189 E-Mail: katrin.forstner@chello.at Italy MEDIAPOINT & COMMUNICATIONS SRL Corte Lambruschini – Corso Buenos Aires, 8 Vo piano – Interno 7, I-16129 Genova Tel: +39(0)10 5 70 49 48, Fax: +39(0)10 5 53 00 88 E-Mail: info@mediapointsrl.it www.mediapointsrl.it USA, Canada, Africa, GCC countries etc. Marketing Xpertise Rieth Dipl.-Ing. Bernhard Rieth Strümper Berg 10, D-40670 Meerbusch Tel: +49 (0)2159 962 643 Fax: +49 (0)2159 962 644 E-Mail: marketing.xpertise@t-online.de United Kingdom Marketing Xpertise Rieth Dipl.-Ing. Bernhard Rieth Strümper Berg 10, D-40670 Meerbusch Tel: +49 (0)2159 962 643 Fax: +49 (0)2159 962 644 E-Mail: marketing.xpertise@t-online.de France DEF & Communication Axelle Chrismann 48 boulevard Jean Jaurès F-92110 Clichy Tel: +33 (0)1 47 30 71 80, Fax: +33 (0)1 47 30 01 89 E-Mail: achrismann@wanadoo.fr Der ALUMINIUM-Branchentreff des Giesel Verlages: www.alu-web.de 81 VORSCHAU / PREVIEW IM NÄCHSTEN HEFT IN THE NEXT ISSUE Special: Aluminiumbearbeitung Special: Machining of aluminium Neue Entwicklungen und Trends. Verfahren, Werkzeuge und Maschinen. Geplante Beiträge: • Portalfräsmaschine für die Bearbeitung von Aluminiumblöcken und -blechen • Kombinierte Bohr-/Fräsanlage zur Endbearbeitung von Karosserien • Halb- und vollautomatische Gehrungssägen in größeren Abmessungen New developments and trends. Process technology, tools and machinery. Subjects covered include: Technologie • Energieeffizienz bei der Erzeugung und dem Verbrauch von Druckluft, am Beispiel Alunorf • Portal milling machine for aluminium slabs and sheet • Combined milling and drilling facility for the final machining of car body • Semi and fully automatic vertical miter bandsaws for precise mitre cuts Technology • CVD coated aluminium extrusion dies Other topics Weitere Themen • Latest international news from the industry • Aktuelles aus der Branche; Kurzberichte Date of publication: Advertisement deadline: Editorial deadline: Erscheinungstermin: 5. Oktober 2009 Anzeigenschluss: 18. September 2009 Redaktionsschluss: 14. September 2009 5 October 2009 18 September 2009 14 September 2009 Abonnement-Bestellung Subscription-Order ❒ Ja, wir möchten die Zeitschrift ALUMINIUM ab sofort zum Jahresbezugspreis von EUR 285,- inkl. Mehrwertsteuer (Ausland EUR 289,-) und Versandkosten abonnieren. Das Magazin erscheint zehn Mal pro Jahr. Das Abonnement kann mit einer sechswöchigen Frist zum Bezugsjahresende gekündigt werden. ❒ Yes, we want to subscribe to ALUMINIUM. The rate is EUR 289.00 per year incl. postage. Outside Europe US$ 375.00 incl. surface mail, air mail plus US$ 82.00 The magazine is published ten times a year. Cancellations six weeks prior to the end of a subscription year. Name / name Firma / company Anschrift / address Umsatzsteuer-Ident.-Nr. / VAT Reg.-No. Datum / date Unterschrift/Signature Fax: +49 (0) 511 73 04 157 82 ALUMINIUM · 9/2009 www. alu-web.de special thank-you gift Company First name, last name Department Address Postcode, city Country Telephone Fax E-mail (for the notification) VAT ID number Giesel Verlag GmbH Postfach 120 158 30907 Isernhagen · Germany Tel. +49 511 7304-122 Fax +49 511 7304-157 www.giesel-verlag.de · vertrieb@giesel.de . Anz.Fast BWH Lower power plant investment and operation costs? Certainly. To power your operation while lowering consumption we provide you with stable highly efficient electrical energy supply,distribution and conditioning. To increase employee productivity and engineering efficiency, we offer you powerful control systems. To improve dynamic performance and reduce power losses, we provide drive systems based on Direct Torque Control technology. To ensure environmental compliance, reduce product standard deviation and increase production, apply our expert and optimization solutions. Maximize the return on project investment through our vast, knowledge, know-how and extensive experience. Using ABB quality products helps you achieve industry leading productivity. www.abb.com/aluminium ABB Switzerland Ltd 5405 Baden 5 Dättwil Phone: +41 58 586 84 44 Fax: +41 58 686 73 33 E-mail: process.industries@ch.abb.com