special - ALU

Transcription

special - ALU
OFFICIAL INTERNATIONAL
MEDIA PARTNER
Special 2009:
Automotive
Aluminium in innovative
light-weight car design
Upgrading of
gas-fired billet heaters
Dr. Ing. h.c. F. Porsche AG
Giesel Verlag GmbH · Postfach 120158 · D-30907 Isernhagen · www.alu-web.de – PVST H 13410 – Dt. Post AG – Entgelt bezahlt
OFFICIAL INTERNATIONAL
MEDIA PARTNER
Hilfsmaßnahmen
für energieintensive
Betriebe in Vorbereitung
Volume 85 · September 2009
International Journal for Industry, Research and Application
9
Linear testing.
Testing head for linear testing.
Helical testing.
Ultrasonic testing
equipment
Leading technology in the aluminum casthouse.
There are many benefits in one-stop shopping –
even for industrial goods. Reliable, cooperative
planning, specifications, which meet exactly your
demands and individual service-packages to operate
on first-class level throughout the whole lifetime of
the plant – this can be realized by one of the most
experienced suppliers: Hertwich Engineering.
Major benefits
Hertwich Engineering is dedicated to leading technology in the aluminum casthouse. We add value
by designing integrated turnkey solutions. From
melting and remelting to testing and packing. The
results are convincing: highest quality of products
at lowest cost-of-ownership. This has been proven
by numerous plants all over the world.
Ultrasonic testing equipment
Linear testing for inspection of center cracks
Helical testing for 100 % detection of metal
volume
- Designed to fulfil ASTM B594
- Inspection of billets to Class A, as required
for automotive and aerospace industries
- Angle Beam technique for 100 % fault finding
Faulty logs can be back tracked to mold number
of casting station
Statistical data analysis helps to pinpoint reasons
for defects and contributes to minimize scrap at
the source
MEETING your EXPECTATIONS
HERTWICH ENGINEERING GMBH
Weinbergerstrasse 6
5280 Braunau, Austria
Phone: +43 (0) 7722 806-0
Fax:
+43 (0) 7722 806-122
E-mail: info@hertwich.com
Internet: www.hertwich.com
editorial
Volker Karow
Chefredakteur
Editor in Chief
Aluminium
für umweltbewusste Mobilität
Aluminium for
environ­mentally
aware mobility
ALUMINIUM · 9/2009
Die Automobilindustrie steckt weltweit in der Krise. Sie ist von Überkapazitäten geprägt und viele traditionsreiche Autobauer haben in den
vergangenen Jahren zu wenig in innovative, von Leichtbau und Energie­
effizienz gekennzeichnete Fahrzeugund Motorenkonzepte investiert bzw.
geforscht. Die Insolvenz von General
Motors ist nur das sichtbarste Zei­chen
einer verfehlten Modellpolitik.
Die Spuren der Krise werden auch
auf der diesjährigen Internationalen
Automobil-Ausstellung sichtbar sein,
wenngleich sich die Branche selbstbewusst und mit zahlreichen Modellneuheiten präsentiert. Mit rund 700
Ausstellern bleibt die IAA deutlich
hinter der Präsenz vor zwei Jahren
zurück. Es sind vor allem die Zulie­
ferer, die, unter der Absatzkrise leidend, reihenweise auf eine Messeteilnahme in diesem Jahr verzichten.
Der Verband der Automobilindus­
trie (VDA) als Ausrichter zeigt sich
trotz des schwierigen wirtschaftli­
chen Umfeldes davon überzeugt, dass
diese IAA ein Erfolg wird. VDA-Präsident Matthias Wissmann verspricht
ein „beeindruckendes Innovationsfeuerwerk“ und „Antworten auf die
Anforderungen von heute und die
Herausforderungen von morgen“. Die
weitere Optimierung der klassischen
Antriebsarten – Clean Diesel und
hoch aufladende Ottomotoren mit
Direkteinspritzung – werde auf der
IAA ebenso zu sehen sein wie die
Fortschritte bei der Elektrifizierung
des Automobils, vom Mild Hybrid bis
zum Pkw mit reinem Elektroantrieb.
Neben der weiteren Reduzierung des
Verbrauchs und damit auch der CO2Emissionen stehen neuartige Assis­
tenzsysteme im Vordergrund, die das
Autofahren noch sicherer und komfortabler machen.
Bei alldem darf der Werkstoff Aluminium nicht vergessen werden. Das
Leichtmetall hat sich längst seinen
unverzichtbaren Platz im Automobil
gesichert. Es trägt wesentlich dazu
bei, die umweltpolitischen Ziele einer energieeffizienten und CO2-mindernden Mobilität zu realisieren. Das
Special dieser Ausgabe zeugt davon,
dass Aluminium als Guss-, Walz-,
Strangpress- oder Schmiedeteil im
Pkw eine feste Größe ist.
The automobile industry is still in
crisis worldwide. It is marked by excess capacities, and many automobile
manufacturers, though rich in tradition, have invested or researched too
little in innovative vehicles and engine
concepts that embody lightweight
construction and energy efficiency.
The insolvency of General Motors is
only the most easily visible sign of a
policy model that has failed.
Traces of the crisis are also evident at this year’s International Motor
Show (IAA) in Frankfurt, Germany,
even though the sector is presenting
itself self-confidently and with numerous model innovations. With around
700 exhibitors, this IAA is lagging
substantially behind the exhibitor
count of two years ago. And of course,
it is mainly the supplier industries,
which have been drastically affected
by the sales crisis, that have given
up participation in this year’s fair in
droves.
The German Association of the Automotive Industry (VDA), as organiser
of the event, seems convinced that
despite the difficult economic environment this IAA will be a success.
VDA President Matthias Wissmann
promises “an impressive array of innovations” and “solutions for today’s
needs and tomorrow’s challenges”.
The further optimisation of conventional drive systems such as clean diesel and supercharged gasoline engines
with direct injection will be on show
at the IAA, as also will advances in automotive electrification, ranging from
mild hybrids to all-electric cars. The
focus will be on a consistent further
reduction of fuel consumption and
CO2 emissions, as well as on all-new
assistance systems that make driving
even safer and easier.
In all this, the material aluminium
should not be forgotten. The light
metal has long secured for itself a key
role in automotive engineering. It contributes substantially towards realising the environmental policy aims of
energy-efficient and low-CO2 mobility. The Special section in this issue
shows that aluminium, whether in the
form of castings, rolled products, extrusions or forged components, has an
established and important role to play
in automobiles.
i N H A lt
editoriAl
Aluminium für umweltbewusste Mobilität .................................. A Kt U e l l e S
Personen, Unternehmen, Märkte, Produkte ................................ 6
WirtSCHAFt
Englischsprachige Artikel: s. nebenstehendes Verzeichnis
14
Aluminiumpreise .............................................................. 10
Hilfsmaßnahmen für energieintensive Unternehmen in Vorbereitung ... 18
SPeCiAl: AlUMiNiUM iM AUtoMoBil
Englischsprachige Artikel: s. nebenstehendes Verzeichnis
Porsche Panamera – eine Synthese aus
Sportlichkeit, Komfort und Effizienz ....................................... 20
BMW X1 – Premiumfahrzeug im Kompaktsegment .................... 21
KS Kolbenschmidt: Technologiepaket bei Ottokolben ausgebaut ... 22
Zylinderköpfe von Honsel für die neuen VW-Dieselmotoren ......... 26
20
Hochfeste Aluminium-Fahrwerksteile mit optimaler Topologie........ 4
t e CH N o lo G i e
Englischsprachige Artikel: s. nebenstehendes Verzeichnis
Kundenspezifische, energieoptimierte
Wärmebehandlungsanlagen für Aluminium .............................. 7
Wärmebehandlungsanlagen für die Aluminiumindustrie ............... 40
Modernisierung von bestehenden
gasbeheizten Bolzenerwärmungsanlagen ................................ 41
22
i N t e r N At i o N A l e B r A N C H e N N e W S ................... 47
reSeArCH
Englischsprachige Artikel: s. nebenstehendes Verzeichnis
V e r A N S tA lt U N G e N / d o K U M e N tAt i o N
Englischsprachige Artikel: s. nebenstehendes Verzeichnis
Veranstaltung: Schweißen & Schneiden, 14.-19. Sept. 2009 .......... 57
Patente ......................................................................... 58
Literaturservice ................................................................ 61
Impressum ..................................................................... 81
28
Vorschau........................................................................ 82
B e Z U G S Q U e l l e N V e r Z e i C H N i S ............................ 64
Der ALUMINIUM-Branchentreff
des Giesel Verlags: www.alu-web.de
4
S t e l l e N A N G e B o t .................................................... 6
ALUMINIUM · 9/2009
CONTENTS
EDITORIAL
Aluminium for environmentally aware mobility ........................... 3
NEWS IN BRIEF
People, companies, markets, products ..................................... 7
ECONOMICS
The curse of globalisation – must we expect crises
in the aluminium industry that are more abrupt in future? .............. 14
41
SPECIAL: AUTOMOTIVE
Porsche Panamera – a unique combination
of comfort, performance and efficiency .................................. 20
KS Kolbenschmidt: Gasoline engine piston
technology packages expanded . . . . . . . . .................................... 22
Cylinder heads from Honsel for new VW diesel engines ............... 26
Aluminium in innovative light-weight car design ........................ 28
43
T E CH N O LO GY
Heat-treatment equipment for the aluminium industry ................ 40
Upgrading of existing gas-fired billet heaters ............................ 41
ABB maintenance turns around plant critical equipment .............. 43
C O M PA N Y N E W S W O R L D W I D E
Aluminium smelting industry . . . . . . . . . . . . ................................... 45
Bauxite and alumina activities . . . . . . . . . . .................................... 47
This issue contains
an enclosure from
GDA Gesamtverband der
Aluminiumindustrie e. V.
to which we draw
your kind attention.
Recycling and secondary smelting . . . . . .................................... 48
Aluminium semis . . . . . . . . . . . . . . . . . . . . . . . . . . .................................... 49
On the move. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................... 50
Inserenten
dieser Ausgabe
Suppliers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................... 51
List of advertisers
Alro – new annealing furnace put into operation ...................... 51
Stellenangebot / Job advertisement
6
Insolvenzversteigerung Scheffler GmbH
8
RESEARCH
On the dissolution of alumina in a
low-melting electrolyte for aluminium production .......................... 52
E V E N T S / D O C U M E N TAT I O N
ALUMINIUM CHINA 2009 exceedingly successful ....................... 57
Literature service . . . . . . . . . . . . . . . . . . . . . . . . . . .................................... 61
Imprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................................... 81
Preview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................... 82
S O U R C E O F S U P P LY L I S T I N G ............................... 64
ALUMINIUM · 9/2009
ABB Switzerland Ltd., Schweiz
84
Buss ChemTech AG, Schweiz
9
Astech Angewandte Sensortechnik GmbH
23
Coiltec Maschinenvertriebs GmbH
18
35
Drache Umwelttechnik GmbH
Edimet SpA, Italy
15
Elpo GmbH
39
GoIndustry Dove Bid, USA
7
Hermann Gutmann Werke AG
27
Haarmann Holding GmbH
31
Hertwich Engineering GmbH, Österreich
2
Inotherm Industrieofenund Wärmetechnik GmbH
18, 27
Messe Essen GmbH
17
11
Reed Exhibitions Deutschland GmbH
Sapa GmbH
19
Zhengzhou Zhongshi Cell
13
Technology Co., Ltd, China
5
Aktuelles
Trimet und Atag
gründen Joint Venture
KSM Castings erweitert
Aluminium-Fahrwerksgießerei
Die Trimet Aluminium AG, Essen, und die KS Aluminium-Technologie, Neckarsulm, werden künftig im
Aluminiumdruckguss zusammenarbeiten. Dazu wurde
ein Joint Venture (KS Atag Trimet Guss GmbH) zur Herstellung von Zylinderkurbelgehäusen aus Aluminiumlegierungen gegründet, das von beiden Gesellschaften zu
je 50 Prozent gehalten wird. Die Genehmigung des Ge­
meinschaftsunternehmens mit Sitz in Harzgerode (Sachsen-Anhalt) durch das Bundeskartellamt ist erfolgt.
Die KS Atag Trimet Guss wird mit dem Schwerpunkt
Automotive die Kompetenzen der Partner auf den Gebieten der Metallveredelung, der Gusstechnologie sowie
des Rohmaterial- und Energiemanagements zusammenführen und so Synergiepotenziale aus allen Bereichen
nutzen. Beide Partner führen ihre bestehenden Produk­
tionsstandorte weiter und bleiben auch künftig unter ihren eingeführten Produktnamen am Markt präsent. Das
Joint Venture beschäftigt rund 50 Mitarbeiter.
KSM Castings mit Sitz in Hildesheim errichtete in den
Jahren 2001/02 am Standort Wernigerode eine der modernsten Aluminium-Fahrwerksgießereien in Europa
und baute diese in der Folge weiter aus. Anfang Mai 2009
wurde eine zusätzliche Produktionshalle für jährlich drei
Millionen Pumpengehäuse in Betrieb genommen.
Im Juli dieses Jahres wurde der zweite Ausbau des
Werkes abgeschlossen. Mit einer eigens für die Herstellung sicherheitsrelevanter Fahrwerksteile im Gegendruck-Kokillengussverfahren errichteten Fertigung für
Porsche und VW baut KSM Castings damit auch in wirtschaftlich schwierigen Zeiten seinen Standort in Wernigerode weiter aus.
KSM Castings beschäftigt aktuell mehr als 200 Mitarbeiter am Standort Wernigerode und befindet sich trotz
der Krise in der Automobilindustrie dank mehrerer Neuaufträge weiterhin in einer Wachstumsphase. In den Ausbau des Werkes wurden circa 25 Mio. Euro investiert.
Stellenanzeige
Wir suchen den /die
Verkaufs-Ingenieur /-in
für den Bereich Aluminium
Aufgabengebiet:
– Technische Beratung und
Betreuung der Kunden
– Erarbeitung individueller
Feuerfest-Lösungen
– Erschließung neuer und erweiterter
Produkt- und Marktpotentiale
Tube des Jahres 2009 gekürt
Auf dem diesjährigen Kongress in Istanbul feierte der
europäische Verband der Tubenhersteller etma sein 50jähriges Bestehen. Auf mittlerweile 28 Jahre bringt es der
Branchenwettbewerb „Tube des Jahres“, der erstmals
1981 durchgeführt wurde. Bei diesem Preis wählen sieben Experten aus dem etma-Mitgliederkreis die jeweils
beste und innovativste Tube in den Kategorien Aluminium-, Laminat- und Kunststoff sowie Prototypen.
Sie verfügen über ein abgeschlossenes Studium
im Bereich Gießereitechnik, Schwerpunkt
Aluminium, und haben idealerweise bereits Erfahrungen in der Aluminiumindustrie gesammelt.
Wir erwarten Eigeninitiative, Durchsetzungskraft und Kreativität. Reisebereitschaft und die
Freude am Verkaufen machen Sie zu einem/-r
idealen Bewerber/-in für uns.
Wir bieten ambitionierten Kandidaten eine
nicht alltägliche Karrierechance in einem internationalen wachsenden Unternehmen mit sehr
guten Entwicklungschancen.
Bitte richten Sie Ihre Bewerbung unter
Berücksichtigung der Chiffre-Nr AL-1759 an
die Giesel Verlag GmbH, Postfach 12 01 58,
30907 Isernhagen.
etma
Da Sie in einem internationalen Umfeld arbeiten, sind gute Englischkenntnisse von Vorteil.
Im Jubiläumsjahr 2009 erhielt bei den Aluminiumtuben
das Produkt „Essensity Soft Permanent Colour Cream“
der Firma Schwarzkopf Professional die meis­ten Stimmen. Hergestellt wurde die Tube von Tubex Wasungen
aus Deutschland. Sie wurde mit einem weißen Mattlack
mit speziellem Haptikeffekt versehen und mit dem Computer-to-Plate-Verfahren in einem bewusst puristischen
Design bedruckt. Die Kombination aus hochwertigem
weißen Mattlack, den ins Auge fallenden grünen Grafikelementen und der auf das Druckbild abgestimmten Verschlussfarbe geben der Tube ihre extravagante Note.
ALUMINIUM · 9/2009
News in brief
Economic conditions hit alufoil production Zenergy to supply
EAFA
Given current economic conditions
figures for the first half of 2009 show a
13 percent fall in the European alufoil
Alufoil tray
production to 371,400 tonnes, compared to the corresponding period a
year earlier.
Thicker alufoil gauges, used mainly for the manufacture of semi-rigid
foil trays and technical applications
for the automotive and building sectors were the worst affected falling
by 26 percent, while thinner gauges
used mainly in flexible packaging
and household foil were better off
declining by 7 percent.
Despite this slump in production, representatives of the alufoil
industry are looking ahead more
optimistically than some months
ago. “It is not all bad news for the
alufoil sector as the one-off effect
of stock reduction along the supply
chain seems to be over”, says Stefan Glimm, Executive Director of
the European Aluminium Foil Association (EAFA). “Data for the last
two months show a bottoming out
in particular for thicker gauges and
exports.”
Aluminium foil is an essential
part of many flexible packaging and
container applications. Other uses include automotive and heat exchange
components, insulation material and
many other industrial applications.
Rusal agrees terms
of debt restructuring
UC Rusal has agreed the principal terms of a long-term debt
restructuring with the Coordinating Committee which represents more than 70 international lenders. According to the
agreement, Rusal will settle its debt to international banks
within seven years. The restructuring will be split into two
phases. During the first period of four years, Rusal will focus
on maximising efficiencies across the business and taking
full advantage of the recovery in demand. Rusal has periodical debt reduction targets in place and will seek to repay a
total of five billion US-dollars of debt owed to all lenders by
the fourth quarter 2013.
During this period principal repayments will be made on
a ‘pay-if-you-can’ basis based on the performance of the business, thereby ensuring the full sustainability and integrity of
its operations. Interest will be paid partly in cash, at a rate
ranging from Libor +1.75% to 3.5%, with the remaining portion to be capitalised. Furthermore, in order to preserve cash
for lenders and the business, no dividends will be paid until
the net debt to Ebitda ratio reaches 3x.
The second phase of the restructuring will involve the
refinancing of the remaining debt by existing lenders for an
additional three years. Such refinancing will be at Rusal’s
option, as it may opt for an alternative refinancing of the
debt on market terms should this prove more favourable to
the company.
ALUMINIUM · 9/2009
innovative induction
heater to Sapa Profili
Zenergy Power has received a further
commercial order for a low-energy,
high-productivity induction heater.
The facility, which is based on Zenergy’s superconductor technology, has
been purchased by the Italian subsidiary of Sapa, Sapa Profili Srl.
The induction heater ordered by
Sapa will be used as a replacement
for a conventional gas-fired heating furnace currently installed at its
aluminium plant located in Bolzano,
Northern Italy. It is anticipated that
the replacement of the plant’s conventional equipment with Zenergy’s superconductor-based heater will lead
to improved operational efficiency
and thus enhance the plant’s overall
commercial potential. In particular,
Sapa will exploit the superconducting heater’s processing versatility to
enable the heating of several different
types of aluminium alloy at the same
plant.
By Order of a Secured Creditor
(2) Complete Aluminum Extrusion
Facilities of Signature Aluminum, Inc.
Live & Webcast Auction
Sale Date: Thursday, 24 th September 2009 at 10:00 AM CDT
Auction Locations:
Temroc Metals, 4375 Willow Drive, Hamel (Minneapolis),
MN 55340 (Live & Webcast)
Atlantic Aluminum, 18631 MC Highway 71, Lumber Bridge
(Fayetteville), NC 28357 (Webcast only, to be sold from MN location)
Inspection: Hamel - Wednesday, 23rd September 2009
from 10:00 AM to 4:00 PM CDT or by appointment;
Lumber Bridge – By Appointment Only
Assets include:
• 5-Axis 6-Sided CNC Profile Machining Center: Handtmann
PBZ-NT-800 A.S. (2002)
• 4-Axis CNC Vertical Machining Centers: (7) Haas; Fadal; Chiron
• Aluminum Extrusion Presses, Billet Ovens, & Aging Ovens:
(2) Sutton 1650-Ton; Wean 2250-Ton; Lombard 1250-Ton
• Hydraulic Press Brakes: (6) Accurpress 150, 130, 100 & 60-Ton;
Cincinnati 135-Ton
• CMMs: (3) Brown & Sharpe (Late as 2002); Numerex
• Toolroom Equipment: Mills; Lathes; Presses; Welding Systems;
Cutoff Saws; Shot Blast & Inspection Equipment
• Paint Line: Electrostatic
• Material Handling & Plant Support Equipment: Bridge Cranes;
Forklifts; Air Compressors; Parts; Spares; Office Equipment &
Much More
Also available as an entirety: Complete billet casting and
extrusion facility with 4 press lines located in Greenville, PA.
For further information, please contact: BRYAN GOODMAN
Tel: +1 410 654 7500 ext. 235 Email: bryan.goodman@go-dove.com
*Virtual Brochure is Available on the Website
For more information and
terms of sale, please visit
www.Go-Dove.com
Aktuelles
Aluminium im Automobil
Gerhardi nimmt neue
Strangpresse in Betrieb
Aluminium ist ein unverzichtbarer Werkstoff im Automobil geworden: Gussteile für Kurbelgehäuse und als
Strukturbauteile in der Karosserie sind heute Stand der
Technik. Aber auch Halbzeuge und Schmiedeteile finden in Fahrzeugen zunehmend Anwendung.
Vor diesem Hintergrund veranstaltet der Gesamtverband der Alumi­niumindustrie (GDA), Düsseldorf, am
23./24. November 2009 einen europäischen Kongress
zum Thema „Aluminium im Automobil – Werkstoff für
Leichtbau und Design“. Auf dem Kongress werden sowohl die unterschiedlichen Einsatzmöglichkeiten von
Aluminium, die derzeit im Pkw verwendet werden, vorgestellt und über mögliche Weiterentwicklungen diskutiert, die die Fahrzeuge der Zukunft noch leichter und
energieeffizienter werden lassen. Hochkarätige Vertreter
aus der Automobil- und Aluminiumindustrie sowie von
Hochschulen werden innovative aktuelle und visionäre
Lösungen präsentieren. Programminfos und Anmeldeformulare unter www.aluminium-congress.com.
Im Beisein zahlreicher Gäste aus dem Kunden- und Liefe­
rantenkreis, von politischen Vertretern der Landesregierung
NRW, des Märkischen Kreises und der Stadt Lüdenscheid,
des Ausrüsters GIA und der Industrie- und Handelskammer
zu Hagen und, natürlich, des Gesellschafterkreises hat Gerhardi Alutechnik GmbH & Co. KG am 20. August 2009 seine
neue 33-MN-Strangpresse in Betrieb genommen. Mit der
von dem spanischen Ausrüster GIA gelieferten Presse will
Gerhardi seine Profilproduktion bis 2013 auf rund 13.000
Tonnen verdoppeln.
Der NRW-Landesminister für Arbeit, Gesundheit und
Soziales, Karl-Josef Laumann, begrüßte das „klare Ja“ zum
Standort Lüdenscheid und die mutige Investition in die Zukunft. Geschäftsführer Christoph Deiters machte deutlich:
„Die neue Strangpresse braucht Futter und ich möchte Sie,
die Kunden, bitten, sie mit Aufträgen zu füttern.“ Betriebsrat
Martin Eickbaum ergänzte in seinem Grußwort: „Und wenn
Sie, die Gäste, die Anlage gleich sehen – ich kann Ihnen
sagen: Das ist schon ein Hammer.“
Europäischer Aluminium Kongress, 23./24. Nov. ‘09
Kontakt: Anncathrin Wener (GDA), Tel: 0211 4796 282,
anncathrin.wener@aluinfo.de
INSOLVENZVERSTEIGERUNG
Scheffler GmbH
Fotos: ALUMINIUM
Dieselstraße 109 – 111, 33442 Herzebrock-Clarholz
Di., 13. Oktober 2009, 10.00 Uhr
12 Aluminium-Druckgussmaschinen, z.B. Frech DAK 720-71
Zuhaltekraft 8.000 kN Bj. 04, 2x DAK 580-62 Zuhaltekraft 6.400
kN Bj. 99/01, 3x DAK 450-40RC/54 Zuhaltekraft 5.000 kN Bj.
01, DSD H 700 R Zuhaltekraft 7.000 kN Bj. 03, 6 4-SäulenHydraulik-Entgratpressen Reis z.B. SEP 9-30 Dialog, CLP30D, SEP 9-100W, Presskraft 300-1.000 kN bis Bj. 99,
Aluminium Schachtschmelzofen Striko MH 800/500 oel Etamax II Schmelzleistung 500 kg/h max. Betriebstemperatur 750
°C Bj. 91, Durchlauf-Gleitschliffanlage Trowal/Schneyder m.
Trockenkanal, 3 Rund-Gleitschliffanlagen Rössler R 300 A /
RM 600, Wasseraufbereitungsanlage Rössler ZH 800 HA
Turbo-Floc Bj. 00, kompl. Werkzeugbau mit CNC-Bearbeitungszentren, CNC-Drehmaschine Gildemeister, Werkzeugfräsmaschinen, Bohrmaschinen u.v.a.m.
Offizielle Inbetriebnahme der neuen Gerhardi-Strangpresse durch
den NRW-Arbeitsminister Karl-Josef Laumann (2.v.l.). Im Vordergrund Geschäftsführer Christoph Deiters sowie Stephanie Hueck aus
dem Gesellschafterkreis von Gerhardi Alutechnik.
Besichtigung: Mo., 12. Oktober 2009 von 12.00 – 17.00 Uhr
sowie am Versteigerungstag von 08.00 – 09.45 Uhr
Zahlung: sofort bar, LZB-Scheck o. bankbestätigtem V-Scheck.
Ausgabe der Bieterkarte nur gegen eine Kaution von € 100,–.
Ausführlicher Katalog unter www.industrie-rat.de
sowie Faxabruf 01805 / 77 69 66 07
Gesamtansicht der 33-MN-Strangpresse
ALUMINIUM · 9/2009
News in brief
Aluminium Automotive Applications
KAP gets cheaper
power under MoU
Aluminium has become an indispensable material in automobiles: today,
castings for engine blocks, cylinder
heads and gearbox casings as well as
structural components in the body
area are state of the art. But semi-finished products in the form of sheet,
extruded profiles and forgings are also
increasingly finding use in vehicles:
for example, as body sheet and crashrelevant components such as bumper
crossbeams or longitudinal chassis
beams. Against this background the
German trade association GDA, Düsseldorf, is organising the European
Aluminium Congress titled ‘Aluminium Automotive Applications – Material for Lightweight Construction and
Struggling Kombinat Aluminijuma
Podgorica (KAP), owned by heavily indebted Oleg Deripaska’s EN+ Group,
acquired cheaper energy under an
MoU with the Montenegrin government. The future is looking more positive for the aluminium smelter under
the recently signed deal, which enables
KAP to buy power at a cheaper rate of
20.44 euros (USD28.66) MWh while
the LME price is under USD1,700 per
tonne. The Montenegrin government
sold KAP to EN+ Group in June 2005.
In return the government would provide KAP with 135m euros in loan
guarantees which would be used to
pay its debts and go towards working
capital at the plant.
paw
European Aluminium Congress, 23 / 24 Nov 2009, Düsseldorf, Germany
Design’ from 23 to 24 November 2009.
At the congress, the various applications of aluminium currently being
used in motor cars will be presented.
Moreover, top-class representatives
from the car and aluminium industry
and from universities will present and
discuss currently used and far-sighted
innovative solutions.
Further information as well as various registration forms can be found
on the special congress website at
www.aluminium-congress.com.
Contact:
Anncathrin Wener, GDA
Tel: +49 211 4796 282
anncathrin.wener@aluinfo.de
Aluminium jumps
over USD2,000 hurdle
A lack of aluminium combined with
stronger demand from carmakers has
pushed up prices of the metal, even
though stocks in LME warehouses are
at record highs. Aluminium breached
the USD1,800/t threshold in July, a
level last seen in November 2008,
and even jumped over the USD2,000/
t hurdle in early August. The idea of
shortages may seem odd at first glance,
but a close inspection reveals that a
lot of the 4.5m tonnes of aluminium
stored in LME warehouses is tied up
in deals to release cash for producers.
That demand could come from the car
industry, which has help from government stimuli to junk old cars for new
cars, and is gradually reviving after
months of collapsing sales.
Lack of material is already being
reflected in premiums paid for physical material over futures contracts.
In June, Japanese primary aluminium
consumers agreed to a 30 percent
hike in premiums for the current
quarter. In Europe, the premium has
risen to USD65 a tonne compared
with USD10 in March. About 70 percent of the stocks in LME warehouses
(3.15m tonnes) is thought to be tied up
in financing deals until May 2010.
paw
SUCCESS IS BASED ON COLLABORATION
USE BCT TECHNOLOGY
TO INCREASE
Profit
Productivity
Reliability
Flexibility
We maintain proactive cooperation to fulfil your requirements in order to build your project successfully.
We are your responsible partner with the realisation of entire anode plants from raw material to formed anodes,
as well as the supply of key equipment.
We are committed to excellence to ensure you a reliable and efficient plant performance. Whenever, wherever
supported by our service team.
Y O U R PA R T N E R F O R T E C H N O L O G I E S
ALUMINIUM · 9/2009
BCT Preheater
BCT Paste Kneader
BCT Cooler
Anode Press
Green Anode Plant
Pitch Melting Plant
Coke Processing Plant
HTM Plant
BUSS ChemTech AG
Hohenrainstrasse 10, CH-4133 Pratteln 1/Schweiz
Tel. +41 (0) 618 256 462, Fax +41 (0) 618 256 737
info @ buss-ct.com
www.buss-ct.com
w i r t s c h af t
W
10
ALUMINIUM · 9/2009
ALUMINIUM 2010
8 th World Trade Fair & Conference
Weltweit
wichtigster Treffpunkt für Aluminium
Innovationen | Produkte | Technologien
Ideen | Anwendungen | Networking
14. - 16. September, Messe Essen
www.aluminium-messe.com
Organiser:
Institutional Patron:
Partner:
wirtsChAFt
Produktionsdaten der deutschen Aluminiumindustrie
Primäraluminium
Sekundäraluminium
Walzprodukte > 0,2 mm
Produktion
(in 1.000 t)
+/in % *
+/in % *
Press- & Ziehprodukte**
Produktion
(in 1.000 t)
+/in % *
Produktion
(in 1.000 t)
Produktion
(in 1.000 t)
+/in % *
Jun
50,8
9,2
68,4
-8,2
164,2
Jul
52,1
7,0
62,5
-14,4
166,7
-0,3
53,6
3,7
-0,2
53,5
0,4
Aug
51,8
5,8
49,4
-24,6
147,2
-10,6
49,5
-3,9
Sep
49,9
6,2
61,9
-13,7
157,7
0,6
51,6
2,8
Okt
51,2
2,0
57,9
-23,9
152,7
-10,6
50,4
-9,0
Nov
47,2
-5,0
48,1
-35,8
123,4
-20,8
40,4
-24,8
Dez
44,8
-14,1
28,8
-49,7
90,7
-23,8
23,2
-25,0
Jan
40,6
-23,1
40,3
-43,3
108,6
-29,6
34,4
-33,2
Feb
33,9
-31,3
36,7
-47,0
117,1
-26,5
31,8
-40,1
Mrz
27,5
-47,7
45,6
-29,0
133,2
-19,9
33,0
-31,9
Apr
17,5
-65,5
40,3
-45,6
121,3
-30,8
33,1
-40,1
Mai
17,5
-66,8
45,9
-29,7
120,0
-24,6
33,6
-29,1
Jun
18,2
-64,2
48,8
-28,7
135,8
-17,3
37,5
-30,1
* gegenüber dem Vorjahresmonat, ** Stangen, Profile, Rohre; Mitteilung des Gesamtverbandes der Aluminiumindustrie (GDA), Düsseldorf
Primäraluminium
walzprodukte > 0,2 mm
12
sekundäraluminium
Press- und Ziehprodukte
ALUMINIUM · 9/2009
CELL TECHNOLOGY
economics
The curse of globalisation – must we expect crises in
the aluminium industry that are more abrupt in future?
B.G. Rüttimann, Singen; U.P. Fischer, Zollikerberg
Rio Tinto
large extent, local and
in part closed. Unemployment was practically unheard of. By
the 1980s at the latest,
this imbalance between
supply and demand had
shifted in the developed
countries and no longer
favoured
producers;
market segmentation
and response to specific customer demands
were called for in order
to counter increased
competition.
The end of the Cold
War and the opening
up of eastern Europe
brought new opportunities and risks after 1990:
The increasing disintegration of value chains and co-operation that has its branches worldwide obstruct
the view of real aggregate demand …
not only was the market
expanded by over 100
Economic cycles are experiencwhole of 2008 will be ten percent
million potential new customers, there
ing more frequent and more proless than expectations? Why didn’t
was additional competitive pressure
nounced fluctuations in all sectors.
Arcelor Mittal order a single tonne of
with very favourable production costs
The economic system is swinging
iron ore from Vale between October
in the eastern European countries.
from massive over-demand direct2008 and March 2009? Why is Dow
The globalisation in the West that took
ly into a severe sales crisis. MoreChemicals temporarily closing a third
place at the same time and allowed
over, even experts appear to be
of all of its production facilities? Why
companies to pursue new markets in
surprised by such extreme swings.
are Rieter and GF cutting shipments
the rapidly growing economies made
Are managers blind? No, they are
of their products to the car industry
it possible for companies to continue
merely looking at the wrong types
by 50 percent practically overnight?
with their growth-oriented business
of demand, namely the local deWhy are Chinese ports suddenly full
strategies. The paradigm of unlimmand that has been made visible
of iron ore carriers and American
ited growth was still embedded in the
for them, which today differs from
ports full to overflowing with vehicles
minds of managers – also urged on by
the real aggregate demand sigfrom BMW and Mercedes? In order
short term oriented investors luring
nificantly more than it did in the
to answer these questions one has to
the managers with excessive bonuses
past. The reason for this lies in the
analyse more closely the global value
(and salaries). These compensation
increasing disintegration of value
chains in these sectors and above all
packages are very strongly dependchains and globally networked cothe changes they have undergone as a
ent on the size of the companies. In
operation. These trends obstruct
result of globalisation since the beginthe meantime, there have been fundathe view of the real aggregate
ning of the 1990s.
mental changes in the structure of the
demand. Essentially each stage of
value chain, abetted not least by low
industry concentrates on its direct
transport costs and advanced means
The strategy of unlimited growth
competitors, customers or suppliof telecommunication: a network
ers and not on the value chain as
of suppliers and sub-suppliers with
Starting in the 1960s, our industrial
a whole. This is a strategic error.
branches worldwide is now striving
system has experienced continual
– to a large extent in an uncoordinated
growth. Demand for all types of conmanner – to achieve a supposed cost
sumer goods far exceeded supply;
Why does the mining giant Rio Tinto
optimum within the value chain.
during this period, production and
only discover in November 2008
supply was easy. Markets were, to a
that its sales of raw materials for the
There began a parallel race to cap-
14
ALUMINIUM · 9/2009
ECONOMICS
ruined healthy balance sheets – we
are now seeing the results. A lack of
farsightedness and inadequate systemic thinking? Not only that but also
a sizeable portion of naivety and the
lack of courage to prepare a Plan B in
case there is a period of bad weather
and to present it to the shareholders.
But this is precisely what responsible
management is all about.
ture the new markets (market and cost
leadership) while at the same time securing existing markets – directly by
enormous investments in increasing
capacity and indirectly by optimising capacity by means of mergers and
takeovers, and spurred on by the megalomania of the managers. This strategy aimed at unlimited growth was
financed by readily available liquidity
and low interest rates. The target markets both for expansion of production
capacity and increased turnover were
mostly the upcoming BRIC countries,
but in addition to Russia there were
also other eastern European countries
with favourable labour costs.
Unfortunately, all competitors had
the same idea, that is to say the same
business model. The managers appear
not to want to think about where this
might lead. A simple calculation of
the additional overall capacities and
the real growth would reveal the resultant imbalance in the market. Furthermore, the company takeovers and
mergers have not only overstrained
the organisations but also completely
…making it particularly difficult for industries detached from the end markets …
of overcapacities, higher fixed costs
and lower marginal costs. The effect
of the fall in prices is thus significantly
more serious than the reduced quantity because it brings the potential
competitiveness of the company into
question – there are indications ➝
EXTRUSION - DIECASTING - FOUNDRY - ROLLING - FINISHING - MACHINING - WELDING - RECYCLING
metef-foundeq
adnord.it
What happens now when there is a
small fall in demand? Distracted by
increasing turnover and blinded by
extrapolated business plans based
on wrong assumptions, the managers
suddenly and astonishingly discover
that, oops, they are producing too
much – supply is significantly greater
than the real demand. It is interesting
that this realisation was first triggered
by the American subprime crisis and
the overheated economy subsequently collapsed like a house of cards.
And it gets even worse because
prices also go into free fall as a result
Vimetco
The great disenchantment
14-17 April 2010
Garda Exhibition Centre Montichiari Brescia Italy
no. 1 metal expo in the world
INTERNATIONAL
ALUMINIUM EXHIBITION
8th EDITION
INTERNATIONAL
FOUNDRY EQUIPMENT EXHIBITION
5th EDITION
Two events one great international
appointment in constant growth:
a unique opportunity to get together
and do business
Organizing Secretariat: EDIMET SPA,
via Brescia 117 25018 Montichiari (BS) Italy
Ph. +39 030 9981045 Fax +39 030 9981055
info@metef.com
ALUMINIUM · 9/2009
Supporters:
AIB - AIFM - AIM - AITAL - AMAFOND - ASSOFOND
ASSOMET - CCIAA BS - CEMAFON - CIAL - EAA - ESTAL
FACE - FEDERFINITURA - IIS - OEA - QUALITAL - UNCSAAL
www.metef.com
15
economics
And nothing learned…?
If we fail to learn from this, we can
paraphrase German dramatist Bertolt
16
Brecht and say, “And when the whole
shebang is over, it will start from the
beginning again.” As soon as the pipeline of intermediate stock is empty,
the aggregate demand will again work
its way along the value chain via the
components to the semis and finally
through to the raw materials suppliers.
The pipeline is very long so considerable lead times are necessary before
material reaches the final seller. That
is why we are already hearing cries of
“Can’t you supply it tomorrow? Where
are the goods, I need them immediately?” reverberating today ... and have
not learned anything. There are unpleasant forms of feedback from dynamic systems that we gladly ignore.
Actually, this phenomenon is known
as the Forrester–Burbidge effect and
was already being modelled 40 years
ago on a small scale (using simple value chains). The time it takes to pass
warehouse that is on the move.
If we also take into account the
increased investment activities on a
global scale for installing additional
production capacities, one recognises the dangerous multiplier again,
but on a large scale. The throughput
times for investments to expand capacity and open up markets – from
the instant a decision is made, via the
planning through to commissioning
– is measured on a timescale of years.
Whether the new capacities come on
stream when the economic cycle is
on a downward slope instead of on
an upward one is to a large extent
random. It is paradoxical that the decision to create new capacities is usually based on the maximum amplitude
of the swing, which far exceeds the aggregate demand. The consequence is
expensive overcapacity, which in the
worst case is subsidised with taxpay-
Norsk Hydro
of trouble ahead. The current crisis is
far more pronounced than the consequences of the dotcom bubble bursting in 2000.
What has happened in the past few
months is a consequence of the widely
branched global value chain. The supposedly strong increase in turnover is
mainly due to an ever-longer ‘pipeline’
(see also: Dynamics of the ‘pipeline
filling’ effect in the aluminium semis
industry, ALUMINIUM, 5/2001, p.
336ff). This building up of an intermediate stock, which was even strongly
supported by increasing prices for
raw materials, came to an abrupt
end and was suddenly replaced by
destocking. Thus as the aggregate demand fell, the producing companies
were immediately affected – and the
more so the further they were from
the end market because the downstream demand was immediately met
by the well-filled ‘pipeline’.
In such a situation, an attempt
is also made to compensate for
liquidity losses resulting from
reduced operative income by
further cutbacks in stocks. In the
present crisis, this phenomenon
has increased drastically as a
result of the financing of the net
working capital becoming ever
more difficult or even impossible because of the restrictions on
giving credit. If the fall in production is unduly large compared
with a company’s fixed costs,
restructuring and redundancies are inevitable. If the abrupt
cut-back in production resulting
from the emptying of the ‘supply
chain’ is also superimposed on
possible interest and capital repayments for short-sighted purchases
of companies, it is no longer possible
to rule out bankruptcies. And all of
this because one has lost sight along
the value chain of the end market.
The question as to whether state aid
and demand-stimulating spending
programmes should be carried out
at the taxpayer’s expense is another
problem in the making.
…to react in good time to imbalances in the real economy
through the production stage means
the effects on the stock quantities are
limited to something of the order of
several weeks or months by. Supposedly skilful negotiating on the part
of the purchaser as a result of large
quantity discounts exaggerates this
effect still further. Everyone suboptimises his area and thus even damages the others by thinking lean. On
top of the globalisation effects of a
broadly branched value chain (which
benefits from cheap production locations in far away places) there are the
long transport times, in other words a
ers’ money, and later on has to be reorganised again using taxpayers’ money.
The destruction of vertically integrated industrial concerns that can
actually see the end market and their
replacement by companies specialising in a single stage of the value chain,
mostly accompanied by horizontal
mergers, is particularly apparent in
mature industries (see also: Which
globalisation for the aluminium industry?, ALUMINIUM, Part I in 12/2008, p. 16ff, Part II in 3/2008, p.
16ff). The prospects have probably
not improved.
ALUMINIUM · 9/2009
ECONOMICS
What can be done?
The main problem is the distorted perception of
the actual aggregate demand of the individual
stages of the value chain. The momentum of the
value chain, which is influenced by systemic
feedback not directly linked to the actual aggregate demand, dominates more and more the further one gets from the end market. Three major,
interrelated approaches to supply-chain management are necessary:
• Firstly, a shortening of the value chain by means
of integration using an exchange of information
and a reduction in the throughput time using lean
techniques. In general, the lean approach, which
means eliminating every possible source of wastage, will become even more important in future.
The result will be a smaller amplitude with faster
reaction time.
• Secondly, the reduced amplitude will allow
better planning of the necessary production capacity, which is based on the real aggregate demand. This will not eliminate the expansion of
overcapacities but it will at least reduce it.
• Thirdly, taking all value chains into account
with which one is in competition, instead of only
one’s own stage. This applies to existing capacities as well as to planned extensions.
In addition, real-economy planning is necessary in order to avoid the serious socio-economic
consequences that we are currently experiencing. Now this is consistent with the ideal world
we know from theoretical books. In practice, this
means that the modelling of scenarios should not
remain an academic exercise and supervisory
boards should insist on planning based facts;
some share­holders (true company owners with
social responsibility) and the employees will be
grateful. The other shareholders (pure speculators) on the other hand will probably view the current crisis more as an opportunity to again get
involved in the stock exchange in a big way. New
opportunity for the one and possible unemployment for the other, who can actually do nothing
for the mistakes of managers.
Authors
Bruno G. Rüttimann, Dr. Ing. MBA, studied at the Polytechnic Institute in Milan and the Bocconi School of
Economics. As a Master Black Belt in Lean Six Sigma
he is introducing Continuous Improvement techniques
at Alcan Engineered Products. He is the author of Modeling Economic Globalization, Monsenstein & Vannerdat, 2006.
Urs P. Fischer, lic. rer. pol, studied Eco­nomics at the
University of Bern. He worked for many years in various financial positions and as business unit president at
Alcan/Alusuisse and is now an advisor to the managements of international groups. He is the owner of the
management consultancy firm Lean Solution.
ALUMINIUM · 9/2009
?d^cjh#
:HH:CL:A9>C<H=DL
&) Ä &.H:EI#'%%.!<:GB6CN
DkZg&!%%%^ciZgcVi^dcVaZm]^W^idghl^aaWZegZhZci^c\
i]Z^g^ccdkVi^dch[gdbVaaÒZaYhd[_d^c^c\iZX]cdad\n#
:meZg^ZcXZXadhZ"jei]ZldgaY^ccdkVi^dch^cbdYZgc
_d^c^c\egdXZhhZhVcY^cXjii^c\VcYhjg[VX^c\[dg
VeeVgVijhVcYiVc`XdchigjXi^dc!Wg^Y\Z"Wj^aY^c\!
kZ]^XaZXdchigjXi^dc!i]ZVZgdheVXZ^cYjhign!d[[h]dgZ
iZX]cdad\n!e^eZa^cZXdchigjXi^dc!gV^akZ]^XaZ
XdchigjXi^dcVcYh]^e"Wj^aY^c\#
NDJG7G6C8=>HB::I>C<>C:HH:C>C'%%.#
7:I=:G:
B:HH::HH:C<bW=
IZa# ).%'%&"(&%&"((.
k^h^idg5ZhhZc"lZaY^c\#Xdb
lll#ZhhZc"lZaY^c\#Xdb
W I R T SC H A F T
Seit Jahren beklagt die deutsche NE-Metallindustrie die
hohen heimischen Strompreise
und ver­weist darauf, dass die
euro­päischen Wett­bewerber mit
günstigen Industriestrompreisen
versorgt werden. Mehr als einmal
ist von führenden Branchen- und
Unternehmensvertretern darauf
hingewiesen worden, dass die
energieintensiven Betriebe diese
Kostennachteile auf Dauer nicht
tragen können. Inzwischen scheint
auch in Berlin und Brüssel die
Einsicht zu wachsen, dass dieser
Entwicklung entgegengesteuert
werden muss. Mit kurz-, mittelund langfristigen Maßnahmen soll
die Position der energieintensiven
Betriebe in Deutschland nun gestärkt werden.
Heinz-Peter Schlüter, Inhaber und
Aufsichtsratsvorsitzender der Trimet
Aluminium AG zeigte sich in einem
Gespräch mit Journalisten am Hüttenstandort Essen erfreut darüber,
dass die Bundesregierung konkrete
Schritte eingeleitet hat, um den Erhalt
der klimaschonend produzierenden
Aluminiumhütten in Deutschland
zu sichern. Der dazu aufgelegte drei­
gliedrige Maßnahmenplan wurde
vom energiepolitischen Sprecher der
SPD-Bundestagsfraktion Rolf Hempelmann erläutert, der das laufende
Verfahren wesentlich vorangetrieben
und mit gestaltet hat. Der Plan umfasst
eine
• Soforthilfe für 2009 über einen
Sonderfonds im Konjunkturpaket 2
• Überbrückungslösung für die Jahre
2010 bis 2012
Planung, Konstruktion und Ausführung von Industrieofenanlagen
Konstantinstraße 1a
41238 Mönchengladbach
Telefon
Telefax
E-mail
Internet
18
+49 (0) 2166 / 98 79 90
+49 (0) 2166 / 98 79 96
info@inotherm-gmbh.de
www.inotherm-gmbh.de
Jürgen Clemens
Hilfsmaßnahmen für energieintensive Betriebe in Vorbereitung
Nehmen zu den geplanten Hilfsmaßnahmen für energieintensive Unternehmen Stellung,
v.l.n.r.: Heinz-Peter Schlüter, Rolf Hempelmann (MdB), Heribert Hauck
• Befreiung der stromintensiven Unternehmen von den CO2-Kosten im
Strom im Rahmen der Emissionshandelsrichtlinie für die 3. Handelsperiode ab 2013.
Zur Stützung der stromintensiven
Unternehmen der NE-Metallproduk­
tion hat die Bundesregierung für das
zweite Halbjahr 2009 einen Förderbetrag in Höhe von 40 Mio. Euro bereitgestellt. Das Bundeswirtschaftsministerium hat eine Richtlinie zu
dieser Fördermaßnahme erarbeitet,
die Ende Juli zur Notifizierung nach
Brüssel ging. Hempelmann zeigte sich
überzeugt, dass Brüssel dieser Regelung zustimmen wird.
Bemessungsgrundlage für die
Hilfsgelder ist der für die Elektrolyse
benötigte Strom des dem Antragsmonat jeweils vorvergangenen Monats.
Dies kompensiert circa die Hälfte der
CO2-Kosten im Strom. Bei der Trimet schlugen diese Kosten im letzten
Geschäftsjahr mit insgesamt 33 Mio.
Euro zu Buche, das Unternehmen erhofft sich daher rund 16,5 Mio. Euro
aus dem Fonds.
Als Überbrückungslösung bis 2012
wird eine Vergütung abschaltbarer
Leistung zur Sicherung der Netzstabilität angestrebt. Hierzu wurde
eine Studie in Auftrag gegeben, die
die technisch-wirtschaftlichen sowie
rechtlichen Rahmenbedingungen zur
Umsetzung dieser Lösung untersucht
und substanziiert. Alternativ bzw. ergänzend hierzu hat die Bundesregierung die Fortsetzung der Förderung
über Haushaltsmittel für den Zeitraum 2010 bis 2012 zugesagt.
Heribert Hauck, Leiter des Trimet-Ressorts Energiewirtschaft, verwies darauf, dass Aluminiumhütten
durch die gleichmäßige Abnahme von
Grundlaststrom wesentlich zur Netzstabilität beitragen und den Netzbetreibern auf diese Weise die Vorhaltung teurer Regel­energie ersparen.
Eine Ausgleichszahlung dafür erfolge
jedoch nicht, sodass heute allein die
Stromkonzerne von den so vermiedenen Kosten profitierten.
Darüber hinaus wurde im Dezember 2008 in Brüssel die Emissionshandelsrichtlinie 3 beschlossen, die
für stromintensive Unternehmen, die
dem sogenannten Carbon-LeakageRisiko unterliegen, eine Befreiung von
den direkten, aber auch indirekten,
We purchase and supply:
n Rolling mills cold/hot
n Roll grinding machines
n Continuous casters
n Levellers/straighteners
n Drawing machines
n Slitting lines
n Cut-to-length lines
n Coilers
n Coil carriages
n Rollformers
n Tube welding machines
n Extrusion presses
n Joining presses
n Packing lines for strips
Please ask for our sales list!
COILTEC Maschinenvertriebs GmbH · Silberkaute 4 · 57258 Freudenberg
Phone +49 (0) 2734/271190 · Fax +49 (0) 2734/271195
www.coiltec.de · email: info@coiltec.de
ALUMINIUM · 9/2009
w i rt s c haft
Zeithorizont benötige. Dies gelte
im Strom eingepreisten CO2-Kosten
Trimet fährt Öfen wieder hoch
besonders mit Blick auf die Kunden
erlaubt. Die Modalitäten zur Befreiaus der Automobilindustrie, die langung insbesondere von den indirekten
Angesichts einer inzwischen leicht
fristige Liefer- und Preisgarantien bei
CO2-Kosten im Strom müssen jedoch
erhöhten Nachfrage gegenüber dem
der Abnahme von Aluminiumprodrastischen Nachfrageeinbruch im
noch präzisiert und in nationales
dukten verlangten. Die könne Trimet
Januar / Februar dieses Jahres und geRecht umgesetzt werden, damit diese
aber nur abgeben, „wenn wir selbst
Möglichkeit zu einer belastbaren Plastiegener Aluminiumpreise seit dem
längerfristige Planungssicherheit hanungsgrundlage wird.
Tiefststand im März fährt Trimet seiben. Nota bene: Planungssicherheit
Schlüter und Hauck betonten,
ne Produktion von Hüttenaluminium
in der Herstellung von Aluminium
dass eine vollständige Befreiung von
am Standort Essen wieder hoch. „Wir
ist untrennbar verbunden mit Pladen im Strompreis nachgewiesenen
strengen uns an, dass wir im ersten
nungssicherheit in der bezahlbaren
CO2-Kosten notwendig sei. Beide
Quartal 2010 wieder voll produzieBeschaffung des Rohstoffes Strom“,
ren“, sagte Schlüter.
ver­wiesen darauf, dass die Preisbilsagte Schlüter.
dung bei Strom nach der sogenann■
ten Merit Order erfolgt, das heißt nach
dem letzten, teuren
Kraftwerk, das für
ein schnelles, flexibles Angebot in der
Spitzenlast
sorgt.
Unternehmen wie
Trimet brauchten
als Grundlastabneh­
mer jedoch keine
derartige Flexibilität und seien somit
auch nicht an den
damit verbundenen
höheren Kosten zu
beteiligen. Industriestrompreise wie in
europäischen Nachbarländern nähmen
WE MAKE SURE THAT FUTURE PROSPECTS LOOK BRIGHT.
dagegen Rücksicht
WITH SOLUTIONS FOR EVERY STANDARD.
auf eine Grundlast­
abnahme. Eine „fla­
che“ Stromabnahme, verbunden mit
dem möglichen Verzicht auf „primäre
As the market leader for alumi- is you need and where you need it.
Regelreserve“ und
nium profiles Sapa means more Together with market knowledge
die Unterstützung
than customized solutions: we also based on many years’ experience
der Netzstabilität
supply standard products with this makes us a strong partner
„rechtfertigen subwhich you can work successfully with whom you can look calmly
stanziell Industrielong term. As a group that ope- into the future. For further informastrompreise
bzw.
rates worldwide we react quickly tion go to www.sapagroup.com/
Preise mit Sonderand flexibly, regardless of what it europeantrading
konditionen“ auch
für die heimischen
energieintensi­
ven Betriebe, so
Schlüter.
Er betonte, dass
Trimet wie alle
Sapa GmbH
Industriebetriebe
European Trading Business
dringend Planungssicherheit über einen längerfristigen
ALUMINIUM · 9/2009
19
A L U M I N I U M im A u t o m o b il
Porsche Panamera – eine Synthese
aus Sportlichkeit, Komfort und Effizienz
Bereits im April 2009 ist im
Porsche-Werk Leipzig die Serienproduktion der vierten Baureihe
Panamera angelaufen. In der derzeit modernsten Automobilfabrik
der Welt montiert der Sportwagenhersteller mit neuesten Fertigungsmethoden den viertürigen
Gran Turismo gemeinsam mit dem
Geländewagen Cayenne auf einer
Linie. Mit dem Panamera will Porsche neue Käuferschichten aus der
Oberklasse gewinnen.
Abbildungen: Dr. Ing. h.c. F. Porsche AG
Der Panamera zeichnet sich durch hohen Komfort, ein außergewöhnliches
Raumangebot und extrem sportliche
Fahreigenschaften bei gleichzeitig geringem Verbrauch aus. Zur Markteinführung am 12. September in Deutsch-
Produktionsanlauf des neuen Panamera
Production start-up for the new Panamera
land ging der Sportwagen zunächst in
drei Varianten an den Start, die mit
einem 400 PS starken V8-Saugmotor
bzw. mit einem V8-Biturbo-Aggregat
20
mit 500 PS ausgestattet sind. Die Motoren werden mit kraftstoffsparender
Benzin-Direkteinspritzung angeboten. Porsche plant, über den gesamten
Lebenszyklus hinweg jährlich rund
20.000 Fahrzeuge abzusetzen.
Fünf technische Innovationen,
die erstmals in einem Serienmodell
der Oberklasse eingeführt werden,
zeichnen den Panamera aus: darunter das erste Start-Stopp-System in
Verbindung mit einem automatisch
schaltenden Getriebe und die aktive
Aerodynamik mit einem beim Panamera Turbo mehrdimensional verstellbaren, ausfahrbaren Heckspoiler.
Das Fahrwerk verbindet Sportlichkeit mit Komfort. In der Grundabstimmung bietet es sehr hohen Reisekomfort, verwandelt sich aber auf Knopfdruck
dank
des
aktiven
Dämpfersys­
tems PASM in
ein fahraktives
Sportfahrwerk.
Darüber hinaus
ermöglicht
die beim Pana­
mera
Turbo
serienmäßige,
ansonsten optionale adaptive
Luftfederung
mit schaltbarem
Zusatzvolumen
in jeder Feder
– ein absolutes Novum im
Automobilbau
– eine noch
größere Spreizung zwischen
sportlichen und
komfortablen
Fahrwerksprogrammen.
Die Karosserie ist eine
Synthese aus
sportwagentypischem Leichtbau, großzügigem
Platzangebot und effizienter Aerodynamik. Porsche setzt in der Karosserie des Panamera einen Materialmix
Porsche Panamera – a
unique combination
of comfort, performance and efficiency
Already in April 2009 series production of Porsche’s fourth model
line, the Panamera, started in the
carmaker’s Leipzig plant. In the
world’s most modern automotive
factory to date the manufacturer of
premium sports vehicles is assembling the four-door Gran Turismo
together with the Cayenne sports
utility vehicle on one line using
the latest production methods.
With the Panamera Porsche has its
eyes firmly set on new groups of
buyers from the luxury class.
The vehicle is characterised by a high
degree of comfort, exceptional space
and extremely sporty driving features
with low consumption. For its market
introduction on 12 September in Germany, the Gran Turismo was launched
in three variations, equipped with a
400-hp V8 induction engine or with
a V8 biturbo engine with 500 hp. The
engines feature the most advanced direct fuel injection. Porsche is planning
to sell yearly some 20,000 vehicles
over the entire lifecycle.
The Panamera is marked by five
technological innovations which are
for the first time seen in a production
car in the luxury performance range:
these include the first automatic start/
stop in conjunction with automatic
transmission and active aerodynamics with a multi-stage, adjustable rear
spoiler moving up when required on
the Panamera Turbo.
The chassis and suspension of the
Panamera combines sporting performance and superior comfort. In
its basic setting it offers a very high
standard of driving comfort. But then,
at the touch of a button on the active
PASM damper system, it turns into a
thoroughbred sports suspension. As
another highlight the adaptive air suspension with its extra volume added
on whenever required – an absolute
innovation in automotive technology
– featured as standard on the Turbo
and otherwise coming as an option
on the other models, offers an even
ALUMINIUM · 9/2009
S
AML im
A LPU E
M ICN II U
A u t o m o b il
greater variation of sporting and comfort features.
The body is the synthesis of lightweight technology typical of a sports
car, generous spaciousness and
efficient aerodynamics.
A broad range of
lightweight
materials
is used on
the body,
including
all kinds
of
steel
grades,
light alloys
such as aluminium and magnesium, as well as plastics. The lightweight doors feature a
load-bearing structure made of lasertreated pressure-cast aluminium, an
aluminium outer skin and door window frames made of thin-walled pressure-cast magnesium. Thanks to this
lightweight structure, the Panamera S,
for example, weighs just 1,770 kg.
The Panamera is the first car in its
segment with a complete cover on the
under-floor also extending all round
the drivetrain tunnel and rear-end silencers. This clearly helps to reduce
both air resistance
and lift forces on
Leichtbaukarosserie aus einem intelligenten Materialmix inklusive Aluminium
Lightweight body with intelligent
mix of materials, including aluminium
the axles, which in practice means
lower fuel consumption and higher
driving dynamics. The visible highlight of the overall aerodynamic package is the active four-way rear spoiler
on the Panamera Turbo. Through its
efficient management of control angles and surface geometry geared to
driving conditions, the rear spoiler
optimises the car’s aerodynamics and
performance all in one.
■
au t o m o t i v e
aus Stählen unterschiedlicher Güte,
Leichtmetallen wie Aluminium und
Magnesium sowie Kunststoffen ein.
Die Leichtbautüren besitzen eine tragende Struktur aus laserbearbeitetem
Aluminiumdruckguss, eine Aluminiumaußenhaut und einen Türfensterrahmen aus dünnwandigem Magnesiumdruckguss. Durch den Einsatz
dieser Leichtbaukomponenten wiegt
der Panamera S lediglich 1.770 kg
– das ist für einen Sportwagen dieser
Dimensionen bemerkenswert wenig.
Erstmals in diesem Fahrzeugsegment wird beim Panamera die Verkleidung des Unterbodens auch im
Bereich des Tunnels und der Nachschalldämpfer umgesetzt. Sie hilft,
den Luftwiderstand und den Auftrieb
an den Achsen zu reduzieren. In der
Praxis heißt das: weniger Kraftstoffverbrauch und höhere Fahrdynamik.
Sichtbares Highlight des aerodynamischen Gesamtpaketes ist der aktive Vier-Wege-Heckspoiler beim
Panamera Turbo. Durch sein fahrsitu­
ationsabhängiges Management von
Anstellwinkel und Flächengeometrie
optimiert er Aerodynamik und Performance.
■
BMW X1 – Premiumfahrzeug im Kompaktsegment
ALUMINIUM
· 9/2009
21
zienz erreicht der X1 sDrive18d mit
Hinterradantrieb und einem Durchschnittsverbrauch nach EU von 5,2
Litern je 100 Kilometer sowie einem
CO2-Wert von 136 g/km.
Die Motorenpalette bei den Dieselaggregaten setzt auf ein Vollaluminium-Kurbelgehäuse, der xDrive28i
wird von einem Reihensechszylinder-Benzinmotor mit Magnesium-Aluminium-Verbundkurbelgehäuse
angetrieben.
Das Fahrwerk
umfasst
eine
Doppel­gelenkDruckstrebenbzw. Aluminium-Doppelgelenk-Zugstrebenachse vorn
und eine Fünflenker-Hinterachse in
Stahlleichtbauweise.
Die Produktion des X1 erfolgt im
BMW-Werk Leipzig. Dort wird das
neue Modell parallel zur dreitürigen
Variante, dem Coupé und dem Cabrio
der 1er-Reihe gefertigt. Markteinführung des X1 für Europa ist am 24. Oktober 2009.
■
BMW AG
Mit dem X1 ergänzt BMW seine XModelle um ein Premiumfahrzeug im
Kompaktsegment. Die erhöhte Sitzposition, ein großzügiges Raumgefühl
und der variabel nutzbare Innenraum
bieten „ideale Voraussetzungen für
einen von Agilität, Spontaneität und
Vielseitigkeit geprägten Einsatz im urbanen Umfeld und darüber hinaus“,
heißt es bei BMW. Der 4,45 Meter lange Fünftürer ist trotz seiner geringen
Abmessungen gegenüber den X3-,
X5- und X6-Modellen klar als BMW
X-Modell erkennbar.
Je nach Modellvariante stehen
kraftvolle, wirtschaftliche und emissionsarme Benzin- und Dieselmotoren, das Allradsystem xDrive sowie
umfangreiche Funktionen wie Brems­
energie-Rückgewinnung, Auto-Start/
Stop und Schaltpunktanzeige für
eine kraftstoffsparende Fahrweise
zur Verfügung. Herausragende Effi-
ALUMINIUM · 9/2009
21
A L U M I N I U M im A u t o m o b il
KS Kolbenschmidt GmbH
Technologiepaket bei Ottokolben ausgebaut
Downsizing, Aufladung, Direkt­
einspritzung und höhere Leistungsdichten sind die wesentlichen Trends, wenn es um
moderne Ottomotoren geht. Für
die Motorkomponente Kolben
heißt das: hohe Festigkeit und
Zuverlässigkeit bei möglichst
wenig Gewicht und möglichst
geringer Reibung. Die Antwort
der KS Kol­benschmidt GmbH auf
diese Anforderungen ist ein auf
Leichtbau und reduzierte Reibung
ab­gestimmtes Technologiepaket,
das in verbrauchs- und CO2-optimierten Motorengenerationen
zum Einsatz kommt. Bausteine des
Pakets sind die neu entwickelte
Hochleistungslegierung KS 309,
das weiter ausgebaute Leichtbaukonzept LiteKS-2 und die Kolben­
beschichtung NanofriKS, die mittlerweile in Serie läuft.
KS Kolbenschmidt GmbH
Werkstoffseitig wird das Technologiepaket von Kolbenschmidt durch die
Legierung KS 309 komplettiert. Sie
erzielt eine um 20 bis 25 Prozent höhere Kolbenfestigkeit im relevanten
Temperaturbereich von 200 bis 350
Grad Celsius. Damit unterstützt sie
optimal die Anforderungen reibungsund gewichtsoptimierter Kolben, wie
sie in heutigen und zukünftigen Motoren zum Einsatz kommen werden.
Zusätzlich wurde KS 309 mit einem
besonderen Fokus auf die Gießbarkeit entwickelt, um auch innerhalb
der Prozesstechnologie weitere Potenziale hinsichtlich Leichtbau und
Gewichtsreduktion durch dünnwandigeren Aluminiumguss realisieren
zu können.
Die bereits auf der IAA 2007 vorgestellte, damals neu entwickelte
Schaftbeschichtung NanofriKS spielt
bei der Entwicklung moderner Ottokolben ebenfalls eine zentrale Rolle.
Sie wurde 2008 erstmalig bei einem
großen europäischen Kunden in Serie
eingeführt. Es folgten zahlreiche weitere Serienprojekte in Europa, Nordamerika und Japan. Wie motorische
Reibleistungsuntersuchungen inzwischen bestätigten, weist die Schaft-
Downsizing, turbocharging, direct
injection and higher power densities are the buzzwords associated
with modern gasoline engines.
For their pistons, these trends
spell a need for higher strength
and reliability combined with
low weight and as little friction
as possible. The response by KS
Kolbenschmidt, Neckarsulm/Germany, to these challenges is to
assemble lightweight and reduced
friction technology packages used
in engine generations designed for
reduced consumption and CO2
emissions. The elements of the
package are the newly developed
high-performance KS 309 alloy,
the further advanced LiteKS-2
lightweight concept and the Nano­
friKS piston coating which has
meanwhile gone into series production.
22
Images: Kolbenschmidt
Gasoline engine piston
technology packages expanded
Produktion bei Kolbenschmidt
The KS 309 alloy is another addition to the materials ingredients and
achieves up to 20 to 25 percent higher
piston strength at the critical temperature range from 200 to 350°C. This is
an alloy that acts as a perfect foil to the
low-friction, low-weight pistons to be
Production at Kolbenschmidt
used in present and future engine
generations. Also, KS 309 has been
engineered for good casting properties to enable, within the process
technology options, further potential
for lightweight manufacturability and
weight reductions through thinnerwalled aluminium castings.
Introduced at the 2007 International Motor Show (IAA), the newly
developed NanofriKS shaft coating
likewise plays a lead role in the design
of today’s gasoline engine pistons. It
was first launched into series production for a major European OEM
in 2008, followed by many other such
projects in Europe, North America
and Japan. As meanwhile endorsed
by engine friction analyses, piston
shafts coated with nanoparticles show
up to ten percent less friction compared with conventional piston coatings, and up to 50 percent less wear.
The outcome: enhanced reliability
and optimum piston performance.
Nanocoating is also used on the
LiteKS-2 lightweight pistons likewise premiering at the IAA 2007.
Since then, this type of piston has
met with positive customer response
throughout and has been playing a
ALUMINIUM · 9/2009
key role in current global gasoline engine projects. Since its introduction,
LiteKS-2 has been further developed
and now has even higher weight savings of altogether 25 percent and up
to 50 percent less shaft friction over
standard gasoline pistons. Together
with the new KS 309 performance
alloy and the NanofriKS shaft coating, KS Kolbenschmidt is offering a
high-technology package tailored to
customer needs, one that in terms of
friction and weight reductions makes
a major contribution to the development of low-CO2 gasoline engines.
beschichtung mit Nanopartikeln im
Vergleich zu bestehenden Kolbenbeschichtungen bis zu zehn Prozent
weniger Reibung und bis zu fünfzig
Prozent weniger Verschleiß auf. Dies
gewährleistet eine hohe Zuverlässigkeit und optimale Performance im
Motorbetrieb.
Zum Einsatz kommt die Nanobeschichtung unter anderem im Leichtbaukolben LiteKS-2, der ebenfalls
2007 vorgestellt wurde. Er stieß seither auf eine durchweg hohe Kundenresonanz und spielt die Hauptrolle in
allen aktuellen globalen Otto-Serienprojekten des Herstellers. In den letzten zwei Jahren wurde LiteKS-2 weiAtag: sophisticated casting techterentwickelt. Der Kolben weist jetzt
nology for downsized engines
noch größere Gewichtseinsparungen
von insgesamt etwa 25 Prozent bei
As mentioned above, downsizing
konstant hoher Schaftreibungsredukaccompanied by performance comtion von bis zu 50 Prozent gegenüber
pensation through specific output
Standard-Ottokolben auf. Zusammen mit der neuen
Legierung KS 309
sowie der Schaftbeschichtung NanofriKS bietet KS
Kolbenschmidt
damit ein auf die
Bedürfnisse
seiner Kunden maßgeschneidertes
Hochleistungstechnologiepaket an,
das
hinsichtlich
NanofriskS-Beschichtung
NanofriskS piston coating
Reibung und Gewichtsreduktion einen wesentlichen
enhancement is a trend that entails a
Beitrag zur Entwicklung CO2-optisharp rise in engine component stress.
So, there is a concurrent demand for
mierter Ottomotoren leisten wird.
small, lightweight yet high-strength
engine blocks that are, moreover,
Atag: Weiterentwickelte Gießvery economical to manufacture.
technik für downgesizte Motoren
Against this background, KS Aluminium-Technologie (Atag) – which
Ähnlich wie KS Kolbenschmidt rebelongs to Kolbenschmidt Pierburg
agiert die Schwestergesellschaft KS
as well as sister company KS KolbenAluminium-Technologie GmbH – beischmidt – is focusing more closely on
de gehören zur Obergesellschaft Kolthe volume production of aluminium
benschmidt Pierburg – auf den Trend
engine blocks, specifically for small
zum Downsizing. Die damit einhergeyet high-duty engines.
hende Leistungskompensation durch
eine Steigerung der spezifischen
Advances in both diesel engine
Leistung führt zu einer drastischen
combustion and direct-injection
Erhöhung der Bauteilbeanspruchung
gasoline engines with either turboim Motor. Dies verlangt nach sehr
charger or compressor entail higher
wirtschaftlich herstellbaren, kleinen,
ignition pressures and, specifically,
leichten und dennoch hochfesten
bearing block burdens. On the other
Zylinderkurbelgehäusen. Vor ➝
hand, the repeated shrinkage in ➝
ALUMINIUM
· 9/2009
23
au t o m o t i v e
Non Contact Measurement with Light
A u t o m o b il
Velocity + Length
S
AML im
A LPU E
M ICN II U
VLM 250
Angewandte Sensortechnik
Schonenfahrerstr. 5
D-18057 Rostock
Germany
Tel. #49 381 44073-0
FAX #49 381 44073-20
www.astech.de
info@astech.de
ALUMINIUM · 9/2009
23
A L U M I N I U M im A u t o m o b il
Produktion bei Atag
diesem Hintergrund richtet sich die
KS Aluminium-Technologie (Atag)
stärker auf die Volumenfertigung von
Aluminium-Zylinderkurbelgehäusen
speziell für kleine Hochleistungsmotoren aus.
Die weitere Optimierung der dieselmotorischen Verbrennung, aber
auch die Benzindirekteinspritzung
mit Abgasturboaufladung oder Kompressor beim Ottomotor lassen die
Zünddrücke und damit speziell die
Lagerstuhlbeanspruchung
weiter
steigen. Andererseits verstärken die
stetige Reduzierung von Hubraum
und Zylinderzahl den Kostendruck,
dies verlangt möglichst kostengünstige Bauteilkonzepte. Verfahrensbedingt eignet sich gerade der Druckguss für eine kosteneffiziente Massenfertigung, doch liefert herkömmlicher
Druckguss nicht die erforderliche
Bauteilqualität.
Atag stellte bereits zur IAA 2007
mit ihrem „Modularen Druckgusskonzept“ Lösungen zur Festigungssteigerung downgesizter Zylinderkurbelgehäuse vor. Basierend darauf
entwickelte das Unternehmen Kurbelgehäuse für einen kleinen R4Zylinder-DI-Dieselmotor mit einem
Zünddruck von mehr als 200 bar.
24
Production at Atag
Die erforderliche statische und dynamische Festigkeitssteigerung basiert
dabei auf uneingeschränkt wärmebehandelbarem Druckguss. Dieser
beinhaltet neben zahlreichen Einzelmaßnahmen eine optimal behandelte Schmelze, eine stark evakuierte
Druckgießform und ein innovatives
Formkühlungskonzept. Die geringen
Gaseinschlüsse entsprechen einem
niedrigen Porositätsgrad auf Kokillengussniveau. Dies ist eine Grundvoraussetzung für höhere Festigkeit
und deren weiterer Steigerung mittels
einer Wärmebehandlung. Die geringe
Porosität im Zylinderbohrungsbereich eröffnet zudem die Option einer
Laufflächenbeschichtung.
Darüber hinaus hat Atag ein innovatives Schwerkraft-Kippgießverfahren entwickelt, das den besonderen
Anforderungen hoch beanspruchter
Motoren gerecht wird. Hintergrund
ist hier, dass sich Gusslegierungen
in Form hochwertiger AlSiMgPrimär­legierungen im Motorbetrieb
großer Anforderungen hinsichtlich
der thermomechanischen Festigkeit gegenübersehen. Die heutigen
Anforderungen an die Lebensdauer
von Motoren können nur mit einem
äußerst feinen Gussgefüge lokal im
engine displacement and number of
cylinders has stepped up cost pressure and called for components engineered for maximum cost efficiency.
In terms of manufacturing process,
pressure die-casting is ideal for highvolume, low-cost production, albeit
in its conventional form failing to
deliver the necessary component
quality.
Already at the IAA 2007, Atag
presented in the form of its modular
die-casting strategy a number of options including some for enhancing
the strength of downsized engine
blocks. On the basis of this particular modular option, the company has
developed engine blocks for a small
inline 4-cylinder diesel engine with
an ignition pressure that breaks the
200-bar barrier.
The necessary gain in strength
(both static and dynamic) is based on
the use of diecast parts with unlimited heat-treatability. This is the outcome of, besides numerous individual
measures, optimum melt treatment, a
largely evacuated die, and an innovative die-cooling system. The much
reduced gas occlusions signify a low
level of porosity on a par with permanent-mould casting. In fact, this is
ALUMINIUM · 9/2009
S
AML im
A LPU E
M ICN II U
A u t o m o b il
a prime requisite for added strength
which is further enhanced through
heat treatment. Moreover, the slight
porosity in the cylinder bore zone
opens up the option of coating the
working surface.
Furthermore, Atag has developed
an innovative inhouse gravity tilt
casting technique intended for the
special operating environment of
high-duty engines, as aluminium in
the form of aluminium castings from
high-grade AlSiMg primary alloys
poses vast challenges regarding thermal strength. Durability benchmarks
are only addressable with the aid of
an extremely fine microstructure
in the combustion zone of the fire
deck.
One solution to this problem is the
new gravity tilt casting process as it
guarantees a largely low-turbulence
mould-filling at the camshaft end and
a rising layer-by-layer filling of the
mould promoted by the tilting action.
A decisive factor is the highly intense
chilling of the combustion zone at the
fire deck side. The achievable low
dendrite arm spacing reaches benchmark level.
Another plank in the Atag business
strategy of reducing dependency on
engine products is the casting of large
and technologically challenging chassis/suspension parts in aluminium, a
move that will bolster the company’s
automotive business.
■
au t o m o t i v e
Mit ihrem modularen Druckgusskonzept steigert Atag die Festigkeit downgesizter
Zylinderkurbelgehäuse
Atag has developed the modular die-casting concept for enhancing the strength of downsized engine blocks
Brennraumbereich des Feuerdecks
erfüllt werden.
Das neue Schwerkraft-Kippgießverfahren trägt zur Problemlösung
bei, indem es für eine weitgehend
turbulenzarme Formfüllung auf der
Nockenwellenseite und eine vom
Kippvorgang begünstigte, schichtend
steigende Füllung der Kokille sorgt.
Von entscheidender Bedeutung ist
dabei eine höchst intensive Abschreckung des Brennraumbereichs auf der
Feuerdeckseite. Hierbei erreicht der
erzielbare, geringe Dendritenarmabstand Atag zufolge „Benchmarkniveau“.
Zukünftig soll ein gänzlich neues
Produktfeld das Atag-Geschäft unabhängiger vom Antriebskonzept machen. Dazu gehört beispielsweise das
Gießen großer und komplexer, mithin gießtechnisch herausfordernder
Fahrwerksteile aus Aluminium. Mit
dieser Neuausrichtung wird das Unternehmen sein Automotive-Geschäft
weiter stärken.
■
Sectional view of cylinder head cast by gravity tilt casting technique
ALUMINIUM
· 9/2009
25
ALUMINIUM · 9/2009
25
A L U M I N I U M im A u t o m o b il
Zylinderköpfe von Honsel für
die neuen VW-Dieselmotoren
Cylinder heads from
Honsel for new VW
diesel engines
Zu den Highlights, die Honsel
auf der diesjährigen Ausstellung
„Zulieferer Innovativ“ in Ingolstadt präsentierte, gehörten die
Zylinderköpfe für die neuen, auf
Common Rail-Technologie basierenden Zweiliter-Dieselmotoren
von Volkswagen und Audi, die im
VW Golf VI, Tiguan und Passat sowie im Audi A3, A4 und Q5 zum
Einsatz kommen. Die Motoren
sind besonders sparsam und leis­
tungsstark.
Among the highlights which
Honsel presented at a suppliers
exhibition in Ingolstadt, Germany,
were the cylinder heads for the
Volkswagen Group’s new 2.0 litre
diesel engines with common-rail
high-pressure injection to be used
in the VW Golf VI, Tiguan and Passat, as well as the Audi A3, A4 and
Q5. These engines are especially
economical and powerful.
Honsel
Kokillengießverfahren
hergestellt.
Bei diesem Gießverfahren wird das
flüssige Aluminium über eine spezielle Angussleiste turbulenzarm in
den Formhohlraum gefüllt. Während
des Gießvorgangs wird die Kokille gekippt, was die Gefahr der Oxidbildung
des Aluminiums reduziert. Das Ergebnis ist ein poren- und oxidarmes Gefüge, auch in den nur 2,5 mm dünnen
Bauteilwänden. Dies ist besonders
wichtig, um das Potenzial des Aluminiumwerkstoffs über den vollen
Querschnitt ausnutzen zu können.
Schließlich sind die Zylinderköpfe
Mit steigender Effizienz nimmt die
gerade an diesen filigranen Stellen
Belastung der einzelnen Komponenbesonders stark belastet.
ten zu, insbesondere der aus AlumiVolkswagen hat Honsel schon in
nium gegossenen Zylinderköpfe. Das
einer sehr frühen Entwicklungshase
von Honsel eingesetzte Kipp-Kokilder neuen Dieselmotorenbaureihe einbezogen,
sodass die gießereispezifische
Auslegung des
Bauteils und die
entsprechende
Fertigungsvorbereitung
in
sehr kurzer Zeit
umgesetzt werden konnte. Innerhalb von nur
zwölf Wochen
stellte
Honsel
erste Prototypen
für Motorentests
Im Kipp-Kokillenguss produzierter Zylinderkopf von Honsel
zur Verfügung.
Cylinder head from Honsel, produced in permanent mould
tilt casting process
Im
Zeitraum
von zwei Jahren
erfolgten die weitere Serienentwicklengießverfahren ermöglicht es, die
lung und der Aufbau der Serienferhohen Anforderungen zu erfüllen und
tigung. Dabei halfen Formfüll- und
die notwendige Gefügequalität zu geErstarrungssimulationen, die Werkwährleisten.
zeugauslegung und Gießtechnik zu
Die Zylinderköpfe müssen vor
optimieren. Parallel wurden Funktion
allem hohe Festigkeitsanforderungen
erfüllen, um die hohen Zünddrüund Festigkeit des Bauteils zusammen
cke zu ertragen, sind aber auch sehr
mit Volkswagen ständig weiterentwidünnwandig konstruiert, um wähckelt.
rend des Motorbetriebs eine optimale
Nachdem im November 2006 die
Brennraumkühlung zu gewährleisten
erste Seriengießmaschine in Betrieb
und insgesamt Gewicht einzusparen.
genommen wurde, lieferte Honsel alDa zudem eine besonders hohe Gusslein 2008 rund 300.000 Zylinderköpfe
qualität im Bereich des Brennraums
für den neuen Zweiliter-Dieselmotor
gefordert ist, werden sie im Kippan Volkswagen.
26
With increasing efficiency, however,
stress on the individual components
grows, especially on the cylinder
heads cast in aluminium. The permanent mould tilt casting method
applied by Honsel meets these high
demands and contributes to the required structural quality.
To cope with the high ignition pressures, the cylinder heads have to meet
high demands regarding strength. At
the same time, they are designed with
very thin walls to ensure optimum
combustion chamber cooling and to
reduce the overall weight.
As a particularly high casting quality is also needed in the area of the
combustion chamber, they are produced in the permanent mould tilt
casting method. In this casting process, the liquid aluminium is poured
into the mould cavity with low turbulence via a special gating strip. The
mould is tilted during the casting
process to reduce the risk of the aluminium forming oxides. The result is a
low-pore and low-oxide joint, even in
the only 2.5 mm thin walls of the component. This is especially important to
exploit the potential of the aluminium
over the entire cross-section. After all,
the cylinder heads face particularly
strong loads at these delicate points.
Volkswagen involved Honsel already at a very early stage into the development of the new series of diesel
engines, so that the foundry-specific
design of the component and the corresponding production preparation
could be realised in the shortest possible time: Honsel provided the first
prototypes for engine testing within
only twelve weeks. Further series de-
ALUMINIUM · 9/2009
S
AML im
A LPU E
M ICN II U
A u t o m o b il
velopment and the set-up for series
production took place over a period
of two years. Mould pouring and solidification simulations helped to optimise the tooling design and casting
technique. In parallel, the function
and strength of the component underwent continuous further development together with Volkswagen.
After putting the first series casting
machine into operation in November
2006, Honsel delivered 300,000 cylinder heads for the new engine to
Volkswagen in 2008 alone.
Financial restructuring of
Honsel completed successfully
The financial restructuring of Honsel
has been successfully completed, and
the company’s new capital and shareholder structure has now been put in
place. Honsel’s term debt to the lenders under its syndicated credit agreements has been reduced from over
510 to 140 million euros. The main
shareholder, RHJ International, is injecting 50 million euros of new capital in return for a 51% shareholding
in the restructured Honsel group. In
return for waiving a large portion of
the debt held by them, a consortium of
senior lenders, led by BlueBay Asset
Management and Oaktree, will take a
49% stake in Honsel.
The company’s employees are also
making a significant contribution to
restructuring the company and securing its future. A combination of
reduced hours and shorter working
weeks is designed to avoid redundancies and retain know-how within the
company. Moreover, non-tariff and
managerial staff are waiving substantial portions of their salaries.
Honsel sees attractive market opportunities in the medium and long
term due to the stricter requirements
for reduction of fuel consumption and
CO2 emissions. This will lead to the
increased use of light metal components, particularly for powerful yet
economical small engines. With high
strength components and a breakthrough method for coating cylinder
linings, Honsel is generating new opportunities for car manufacturers to
use weight-reducing light metals.
■
Finanzielle Restrukturierung
erfolgreich abgeschlossen
Die finanzielle Restrukturierung der
Honsel AG ist inzwischen erfolgreich
abgeschlossen worden. Damit ist die
neue Kapital- und Eigentümerstruktur
des Unternehmens wirksam. Die Verbindlichkeiten gegenüber den Banken
sinken von 510 auf 140 Mio. Euro. Der
Hauptanteilseigner RHJ International
S.A. führt 50 Mio. Euro neues Kapital zu und wird weiterhin 51 Prozent
der Anteile halten. Im Gegenzug für
einen weitgehenden Schuldenverzicht übernimmt ein Konsortium von
Kreditgebern, geführt durch BlueBay
Asset Management und Oaktree, 49
Prozent der Anteile an dem Leichtmetallzulieferer.
Einen wesentlichen Beitrag zur
Restrukturierung und Zukunftssicherung erbringen auch die Mitarbeiter von Honsel. Mit einer auf die
betrieblichen Erfordernisse abgestellten Kombination aus Kurzarbeit
und verringerter Wochenarbeitszeit
sollen betriebsbedingte Kündigungen
vermieden und das Know-how im
au t o m o t i v e
Unternehmen gehalten werden. Die
außertariflichen und leitenden Angestellten leisten einen erheblichen
Gehaltsverzicht.
Anzeige
Mittel- und langfristig attraktive
Marktchancen sieht das Unternehmen aufgrund der verschärften Forderungen zur Reduktion von Kraftstoffverbrauch und CO2-Emissionen.
Dies wird zu einem erhöhten Einsatz
von Leichtmetallkomponenten führen, nicht zuletzt für leistungsstarke
und zugleich verbrauchsarme kleine
Motoren. Mit besonders belastbaren
Komponenten und einem innovativen
Verfahren zur Beschichtung von Zylinderlaufflächen eröffnet Honsel den
Automobilherstellern gerade beim
Downsizing neue Perspektiven für
den Einsatz von Gewicht sparendem
Leichtmetall.
■
w w w. g u t m a n n - g ro u p . c o m
MEHR ERFAHRUNG. MEHR KOMPETENZ. MEHR NUT ZEN.
GUTMANN - EINE GRUPPE MIT PROFIL
ALUMINIUM · 9/2009
HERMANN GUTMANN WERKE AG | GARTNER EXTRUSION GMBH | NORDALU GMBH
Automotive
Aluminium in innovative light-weight car design
J. Hirsch, Bonn1
This paper presents principal
aspects and recent trends in average and specific use of aluminium
in passenger cars. Aspects of
material selection and innovative
concepts of car construction using
light-weight materials that help to
meet economical and environmental requirements are discussed
as well as special aluminium
alloys developed for the increasing demands in higher strength
and better formability for light
weighting and crash worthiness
aspects and the specific advances
of aluminium semi products as
castings, extrusions and sheet.
Examples are presented for successful aluminium solutions in the
most advanced SLC ’SuperLIGHTCar’ concept, which reaches 34%
weight reduction within a cost
increment of 7.8 €/kg saved.
The European automotive industry is
known world wide as the technically
most advanced and innovative. Based
on economical and political pressure
to reduce fuel consumption and CO2
emission the efforts for light weighting
in automobile design and constructions have increased significantly and
specific solutions based on the inten1
closures and hang-on parts (e.g. Daimler E-class, Renault, Peugeot) and other structural components [1-3].
The average total aluminium content per European car was 132 kg in
2005 [9]. It has been analysed systematically as:
• Power-train (engine, fuel system, liquid lines): 69 kg (25 compo-
nents analysed) in engine block and cylinder head, transmission housings and radiators
• Chassis and suspension (cradle, axle): 37 kg (17 components analysed) in wheels, suspension arms and steering systems
• Car body (body-in-white (BIW), hoods, doors, wings, bumpers and interiors): 26 kg (20 components analysed) in bonnets and doors, front structure and bumper beams.
This shows that for the body the most
potential exists. Seen as one component the BIW is the heaviest part of
a conventional car with a share between 25 and 30% of the complete
car’s weight, depending mainly on
options installed, engine size, and integrated safety features.
State-of-the-art
for the body in white (BIW)
As state-of-the-art for a BIW ’extrusion intensive design’ the Aston Martin Vanquish, model year 2001, is
mentioned with a volume of 350 cars
Images: Hydro
This paper was presented at the Volkswagen
Conference ’Innovative Developments for Lightweight Vehile Structures’ on 26/27 May 2009.
sive use of aluminium as modified or
new alloys have been developed in
the last decades [1-5]. The European
automotive industry has more than
doubled the average amount of aluminium used in passenger cars during
the last decade and will do even more
so in the coming years.
The European automotive industry’, in close co-operation with the
European aluminium industry, has
developed and introduced numerous
innovative light-weighting solutions
based on established and improved
aluminium alloys [2-9] and optimized
aluminium oriented car design. Synergic effect together with a multimaterial exploitation can guarantee
an optimum design solution. One of
the main advances of aluminium is its
availability in a large variety of semifinished forms, such as shape castings,
extrusions and sheet, all suitable for
mass production and innovative solutions. Compact and highly integrated
parts meet the high demands for high
performance, quality and cost efficient manufacturability. Challenges
involved here are mainly joining and
surface treatment issues for which
many suitable solutions have been
developed. Aluminium semis are applied as castings, extrusions and sheet
increases, e. g. in engine blocks and
power train parts, space frames (e. g.
Audi A8, BMW Z8, Lotus Elise), sheet
structures (Honda NSX, Jaguar) or as
Fig. 1: State-of-the-art ’body in white’ multimaterial concept
28
ALUMINIUM · 9/2009
S
AML im
A LPU E
M ICN II U
A u t o m o b il
per year. It has a BIW mass of 145 kg
(excluding closures and outer skin),
consisting of 40 extrusion (100 kg)
and 40 sheet parts (45 kg) with join­ing
methods used of rivets and adhesive
bonding. With a volume of 2,500 cars
per year the BMW Z8 Roadster has a
BIW mass of 300 kg with 86 straight
and 24 bend extrusion parts, 24 bent
parts, no castings and 290 sheet parts.
As joining methods MIG welding and
rivets (1,000 pcs) are applied.
The state-of-the-art space frame
concept is the Audi A8 (D3), model
year 2002, with a scheduled volume
of 25,000 cars per year and a BIW
mass of 277 kg, consisting of 59 extrusions with 61 kg, 31 castings with
39 kg and 170 sheet parts with 177 kg.
Rivets (2,400 pcs), MIG, laser, laserhybrid welds, roll-folding, adhesive
bonding are the main joining methods applied.
In the category of ’stamped sheet
monocoque’ the Jaguar XJ, model
year 2002, must be mentioned with
30,000 cars per year (scheduled) and
a BIW mass of 295 kg, consisting of
22 extrusions with 21 kg, 15 castings
with 15 kg and 273 sheets with 259
kg. Joining methods used are mainly
adhesive, rivets (3,000 pcs), clinches
and MIG welding.
For the new concept of ’multi-material designs’ (for high volume cars)
is an alternative to the all-aluminium
designs of BIW’s mentioned above. It
consists of applications of aluminium
together with high and ultra-high
strength steels, magnesium and plastics or composites, where applicable.
The principle idea is to use the ‘best’
material for the appropriate functions.
The additional goal is to achieve an
overall cost efficient light-weight design. Here, state-of-the-art in this area
is BMW 5 (E60) (Fig. 1) which uses
20% as deep drawing steels, 42% as
higher strength steels, 20% as highest
strength steels and 18% aluminium
alloys. The front-end substructure
consists of 16.4 kg steel and 29.4 kg
in 86 aluminium parts (as stamped
sheet, extrusions, high-pressure die
castings, and hydroformed tubes).
Wrought aluminium alloys
for automotive applications
In the multi-material SLC design the
contribution of the aluminium con­cern
new alloys as well as alternative production methods for aluminium parts.
Aluminium sheet is predominantly
used for BIW panels and closures.
Despite the existing ‘all aluminium
vehicles’ like Audi A8 and Jaguar XJ,
aluminium in mass produced vehicles
needs to reduce development time and
other additional costs in new production methods and/or new alloys.
The main aluminium alloy classes
for automotive sheet application are
the non-heat treatable Al-Mg (EN
5xxx series) and the heat treatable AlMg-Si (EN 6xxx series) alloy system,
some especially tailored by variations
in chemical composition and processing, e. g. Al-Mg alloys optimized for
strength and corrosion resistance for
use in chassis or Al-Mg-Si alloys applied for autobody sheets have been
improved for formability, surface appearance and age hardening response.
The specific properties and principal
differences are illustrated in Fig. 2.
The effects of varying alloy additions
and process parameters as described
au t o m o t i v e
in [4] are well developed and controlled for enhanced performance and efficient manufacturing.
Age hardening Al-Mg-Si alloys:
6xxx series alloys contain magnesium and silicon. Current 6xxx alloys
used for autobody sheets are AA6016
(Europe) and AA6111 (America)
and, more recently, AA6181A was
added for recycling aspects. In the
US, AA6111 is often used for outer
panels in gauges of 0.9 to 1.0 mm
which combines high strength with
good formability. In Europe, EN-6016
is preferred and applied in gauges of
around 1 to 1.2 mm. It shows a superior formability and filiform corrosion
resistance and allows flat hems even
on parts with local pre-deformation.
However, the bake-hardened strength
of AA6016 is significantly lower than
that of AA6111 [6].
In recent years alloy and processing
modifications have been introduced to
meet the increased requirements [5].
Higher strength alloys may allow outer
panel thickness reductions with no
loss of dent resistance, provided stiffness requirements are met. As paintbake temperatures decrease, there is
increasing demand for a significantly
higher age hardening response. However, for some parts formability remains the major difficulty. Therefore
special alloy modifications with either
improved formability or strength have
recently been developed by European
aluminium sheet manufacturers and
agreed upon as standards by the automotive industry.
Non heat-treatable Al-Mg-Mn alloys: Al-Mg-Mn alloys show an optimum combination of formability and
strength achieved by the mechanism
of solid solution and deformation hard­
ening due to their specific high strain
hardening. Further improvement in
properties required for specific applications (e. g. surface appearance,
corrosion resistance, thermal stability) have been achieved by small additions of other alloy elements and/or
modified processing routes [4, 7, 8, 9],
e. g. stretcher strain free (SSF) sheet,
avoiding Lüders-lines [10].
Non heat-treatable Al-Mg-Mn alloys are applied in Europe for auto­
mobile parts in larger quantities as hot
and cold rolled sheet and hydro- ➝
Fig. 2: EN-AW 5xxx and 6xxx alloys competing for car body sheets
ALUMINIUM
· 9/2009
29
ALUMINIUM · 9/2009
29
Automotive
formed tubes, due to their good formability which can always be regained
during complex forming operations
by inter-annealing where quenching
is needed for age hardening. In chassis
parts or wheel applications the benefit is twofold since the weight reduction in the unsprung mass of moving
parts additionally enhances driving
comfort and reduces noise levels.
A well established high Mg containing alloy, AlMg5Mn (AA5182), is
used for high strength and complex
stampings. For 5xxx alloys containing > 3% Mg the precipitation of ßMg5Al8 particles at grain boundaries
can result in susceptibility to intergranular corrosion cracking (ICC)
by long term exposure at > 80°C. For
these conditions special high Mg alloys have been developed with a good
compromise for sufficient strength
and ICC resistance.
For all other cases special high
Mg alloys (> 6% Mg) have been introduced which show high strength and
strain hardening, thus also enhancing
formability. Al-Mg-Mn alloy sheet
has also been successfully applied or
is currently being tested in many parts
for structural support, pedal boxes,
heat reflectors, lever arms, etc.
Al-Mn EN-AW 3xxx alloys are applied for heat-exchangers which is
another success story of aluminium
sheet and extrusion applications that
started in Europe many years ago. It
is an increasing market with intensive
R&D, established for advanced lightweight technology for radiators and
air conditioning systems in cars (and
elsewhere) world wide.
New aluminium alloys for auto­
motive applications: Several new
product developments were introduced in the SLC project to meet
Fig. 3: Door inner produced from TWB
30
specific demands of the BIW that cannot be met by the present aluminium
alloys. For example, a high Mg 5xxx
alloy specially dedicated to warm
forming [12]. New 6xxx alloys and
7xxx alloys for structural applications
were introduced [11], such as ‘crash
alloy’ is used for the crash members in
the front structure of the SLC model
or a ‘roof alloy’ with special attention when placed on steel structure.
Here a 6xxx alloy (6013 type) has
been introduced [11] with fast paint
bake response to withstand the thermally induced plastic deformation.
The final SLC structure has a magnesium roof where the finished roof
is mounted after the BIW has passed
through the paint line. High strength
7xxx alloys applied in aerospace
have been tested in the SLC study to
determine their potential for weight
saving replacing steel in the Golf V Bpillar for a side impact simulation. The
alloy selected was a 7081 type alloy
with yield strength around 600 MPa in
an artificially aged temper. The result
of the impact simulation shows that a
3.5mm thick 7081 matches the performance of 2 mm thick boron steel.
More importantly the aluminium part
is 2.4 kg lighter, so achieving a weight
saving of around 40% [11].
Other aspects investigated in detail in the SLC project were:
• Heat forming is a new technique for
making complex aluminium tubular
shapes using internal gas pressure to
form hollow bodies or tubes within a
warm environment [12]. It provides a
competitive alternative to hydro- or
superplastic- (SPF) forming.
• Tailor welded blanks (TWBs) is a
mature product for steel automotive
applications easy to apply to aluminium. There is only one example of alu-
minium TWBs in series production;
the backplate of the front wheel house
of the Lamborghini Gallardo [11]. The
SLC project proved that aluminium
TWBs can be applied for demanding
deep drawn parts at higher volumes.
Fig. 3 shows the geometry of the TWB
and a final result of a pressed part of
door inner. The aluminium TWBs
have been successfully stamped to
produce inner door panels, using a
two-step operation to obtain 140 mm
deep drawing depth without breaks
in laser weld seam. Geometrical accuracy of stamped panel was checked
and found to be acceptable for production use, showing that the process
is technical feasible.
Laser brazing steel-aluminium:
The next logical step after steel TWBs
and aluminium TWBs is a combination steel-aluminium TWB. This, however, is more complicated because
of the joining of steel to aluminium.
Conventional fusion welding is gives
poor quality joints due to the formation of brittle Fe-Al intermetallics.
Besides the well-known technologies
such as mechanical fastening and adhesive bonding, a recently developed
technology called laser brazing shows
good potential for joining steel to
aluminium [11].
Aluminium in the
final SLC body concept
The final SLC-body concept (Fig. 4)
chosen shows an optimum between
weight reduction of 95 kg (34%), i. e.
a weight saving of 41% vs. reference
(from 65 to 110 kg) and a additional
part costs of 7.8 €/kg. It has an Mg roof
and a steel floor frame (i. e. lighter on
top than underneath) and torsion ring
of the side structure in form-hardened
high strength steel combined with an
aluminium sheets frame. For the inner B-pillar TWB steel sheets are used
with an external aluminium skin. Aluminium is used as sheet panels and as
extrusion in front rail and for bumper
and crash elements and in the rear
underbody rail and wheelhouse structure as HPDC (high pressure die cast).
Compared to the good formable (conventional) steel grades aluminium is
less formable, so the manufacturability of such parts is not obvious. ➝
ALUMINIUM · 9/2009
AUtoMobIL
AUtoMotIvE
Fig. 4: Final SLC-body multi material concept
The procedure is to start with a simulation and by mutual agreement with
design and engineering departments,
to adapt the design of a part so it
can be produced (simulated) while it
fulfils all requirements. This interactive development procedure can take
some time, but in case of the SLC demonstrator it is sufficient to show the
feasibility, not necessarily to develop
a failure free simulation.
Aluminium sheet
forming simulation
As an example the side panel is shown
based on present steel design. It is a
very difficult part for aluminium be-
PROFHAL ALUMINIUM PROFIL
BEARBEITUNG GMBH
© Kastenhuber Wergeagentur/Fotodesign · Tel. (0 9142) 204 558
Ein Unternehmen der
HAARMANN-GRUPPE
Dettenheimer Straße 30
D-91781 Weißenburg
Tel. +49-(0)91 41-8 55 65-0
www.profhal.de
ALUMINIUM
· 9/2009
31
cause of steep deep drawing around
sharp corners. Easiest – but unrealistic – solutions for SLC are to split the
panel into more sections or to drastically change the design by creating
corners with larger radii. Here the
simulation strategy is to investigate
different options to control material
flow to lower the strain in critical
areas, using AutoForm incremental
software 4.1. Input material data are
taken from the SLC SP2 database
generated, tool geometry is generated
by the program based in the CAD
files of the parts. Fig. 5 shows the
initial simulation. It is obvious that a
straightforward pressing of the part
will not lead to an OK part. Indicated
at the problem areas are the options
to improve the material flow.
To improve the formability of the
side panel draw beads are included
in the centre sections and the radius
is adjusted to 10 mm in the doors.
Increasing the radius and the draw
beads are clearly an improve- ➝
PROFHAL entwickelt, fertigt und veredelt
hochwertige Aluminium-Profil-SystemKomponenten für unterschiedlichste
Anwendungsgebiete.
INDIVIDUELLE LÖSUNGEN
AUS ALUMINIUM
ALUMINIUM · 9/2009
31
www.haarmann-gruppe.de
S
AML I M
A LPU E
M ICN II U
A L U M I N I U M im A u t o m o b il
Fig. 5: Initial simulation of SLC side panel in aluminium
ment. It is obvious that the new simulation is safer (more green area). Some
critical areas disappeared and some
have become less critical. This can
also be observed when comparing
the FLD plots. The red area is clearly
shifted from critical deep drawing on
the left side to the middle section. One
option to go forward is to further optimise the deep drawing process with
simulation in order to reduce the red
zones. However, this middle zone of
an FLC is typically an area that is also
strongly influenced by friction and
typically friction is one of the parameters that can easily be controlled in
prototyping.
Therefore, this is the point where
simulation shows that the side panel
is feasible in aluminium. The proposed layout of the deep drawing process behind the simulation from Fig.
6 is taken as the starting point for the
prototype toolmakers. The part being
produced now is perfect. Thus simulations are used as a last but necessary
step to describe conditions of the deep
drawing process for the manufacturability of aluminium parts. Aluminium
makes an important contribution to
this multi-material concept due to the
favourable combination of low density and low production costs, with
aluminium solutions easily applicable
for high volume production.
Extrusions
Another wide field of aluminium solutions and applications is opened by
32
making use of the well established
technology of aluminium extrusions.
Here quite complex shapes of profiles
can be achieved allowing innovative
light weight design with integrated
functions. In Europe complete new
and flexible car concepts (e. g. the
aluminium space frame) and complex sub-structures (e. g. in chassis
parts, bumpers, crash elements, air
bags, etc.) have been developed using
aluminium extrusions. Their high potential for complex design and functional integration is most suitable
for cost-effective mass production.
Medium strength AA6xxx and high
strength AA7xxx age hardening alloys
are used, since the required quenching occurs during the extrusion process. Formability and final strength
is controlled by subsequent heating
for age hardening. Extrusions are applied for bumper beams and crash elements/boxes, also in the SLC car.
Castings
The highest volume of aluminium
components in cars are castings,
such as engine blocks, cylinder heads
and special chassis parts. The substitution of cast iron engine blocks continues. Even diesel engines, which
continue to gain a substantial increase
in market share in Europe now, are
being cast in aluminium where, due
to the high requirements on strength
and durability, cast iron has generally been used. However, progress
in aluminium alloy development (Al-
Si-Cu-Mg-Fe-type) and new casting
techniques came up with improved
material properties and functional
integration that enables aluminium
to meet the requirements. Aluminium
castings are also gaining acceptance
in the construction of space frame,
axle parts and structural components.
Complex parts are produced by special casting methods that ensure optimal mechanical properties and allow enhanced functional integration
[5]. For high pressure die cast HPDC
new AlSiMgMn alloys have been developed with enhanced strength and
ductility combination. In the SLC
project structural parts in the wheel
house architecture have been designed using advanced aluminium die
cast with an integrated striker plate.
Summary and Conclusions
Due to its low weight, good formability
and corrosion resistance, aluminium
is the material of choice for many automotive applications such as chassis,
autobody and many structural components [13]. Aluminium alloys tailored
by suitable variations in chemical
composition and processing best fit
many requirements, like the non-heat
treatable Al-Mg alloys used in chassis optimized for superb resistance
against intercrystalline corrosion and
concurrent high strength or the heat
treatable AlMgSi alloys for extrusions
and autobody sheet modified for improved age hardening response during the automotive paint bake cycle.
ALUMINIUM · 9/2009
S
AML im
A LPU E
M ICN II U
A u t o m o b il
With a sound knowledge about the
specific material properties and effects excellent light weight solutions
for automotive applications have
been successfully applied by the
European automobile industries.
Intensive R&D and continuous collaboration of material suppliers and
application engineers provided optimum solutions for sometimes contradicting aspects of the specific requirements, e. g. for the specific material
selection and optimum combinations
of strength and formability.
Material specific processing
routes and individual solutions have
been developed in close cooperation
with OEM partners and suppliers.
Applying the full knowledge about
the physical processes involved and
the microstructure/properties correlation a tuning of properties is possible in order to produce optimum
and stable products required for the
high demands in automobile applications.
The examples given for the successful prove the major breakthrough
in automotive applications for aluminium that has been achieved during recent years by developing innovative light weight and cost efficient
solutions. With the reference of the
SLC project results it is expected that
in the near future the use of aluminium with specifically improved properties will grow in many automobile
applications meeting the increased
economical and ecological demands.
Due to the positive experience gained
in the project and from former successful applications its volume fraction used in cars of all classes and
all sizes will grow significantly.
The SLC concept shows clearly that
aluminium can be used for the car
body structure and that there can be
a weight advantage of at least 30%
without losing performance. For
most parts the present grades used
for exterior panels can be applied.
In some cases where very high
strengths are demanded, 7xxx series
alloys can be used to maintain this
significant weight advantage. For
large volume aluminium solutions
are most cost effective. Castings will
be applied for areas where strong
part integration is feasible. Extrusions
can be easily applied as straight profiles, but also forming of an extruded
profile is a competitive process for
high volumes, e. g. as bumper beams
as used in the SLC prototype car.
Aluminium is the ideal lightweighting material as it allows a
weight saving of up to 50% over
competing materials in most applications without compromising safety.
Acknowledgement
The research activity presented in
this paper has been performed within the European funded project SLC
(Sustainable Production Technologies of Emission Reduced Light weight
Car concepts) Proposal/Contract no.:
516465 [8] in the EU 6th Framework
Programme which is gratefully acknowledged.
The authors also thank the SLC
consortium and the European Aluminium Association EAA for their
support.
The support of Dr. Wieser, Mr.
Brünger, Dr. Jupp, Dr. Brinkman is
gratefully acknowledged.
au t o m o t i v e
References
[1] Automobil-Produktion, Juni 2001,
S.136
[2] Aluminium materials technology for
automobile construction, ed. by W.J. Bartz,
Mech. Eng. Publ. London (1993) p.1
[3] Aluminiumwerkstofftechnik für den
Automobilbau, Kontakt & Studium Werkstoffe, Band 375, TAE, Expert Verlag, Ehningen (1992)
[4] J. Hirsch, ICAA5 (4) Materials Science
Forum Volume, 242 Transtec Publications,
Switzerland, (1997) p.33-50
[5] J. Hirsch, Automotive Trends in Aluminium – The European Perspective,
ICAA9, edt. J.F. Nie, A.J. Morton, B.C.
Muddle, Mater. Forum 28, Inst. of Mat.
Eng. Australasia Ltd., ISBN 1876855 223,
Vol.1, p. 15-23
[6] A.K. Gupta, G.B. Burger, P.W. Jeffrey,
D.J. Lloyd; ICAA4, Proc. 4th Int. Conf. on Al
alloys, Atlanta/GA USA (1994) ed. by T.H.
Sanders, E.A. Starke, Vol.3, p.177
[7] E. Brünger, O. Engler, J. Hirsch, Al-MgSi Sheet for Autobody Application, in ‘Virtual Fabrication of Aluminium Products’
chapter I-6, Wiley-VCH Verlag, Weinheim
2006, (ISBN: 3-527-31363-X), pp. 51-61
[8] H.P. Falkenstein, W. Gruhl, G. Scharf,
Metallwissenschaft und Technik 37/12
(1983), p.1197, H.P. Falkenstein, VDIBerichte 65 (1984), VDI-Verlag Düsseldorf
[9] KGP study, Aluminium average content for new European Cars in 2005
[10] E. Gold, W. Horn, J. Maier, Metall 42/3
(1988) p 248
[11] C. Lahaye, J. Hirsch, D. Bassan, B.
Criqui, P. Urban, M. Goede, in: Aluminium Alloys, Their Physical and Mechanical
Properties, edited by J. Hirsch et. al. proceedings ICAA-11 (2008) Aachen, ISBN10: 3-527-32367-8, p. 236-237
[12] J. Hirsch, E. Brünger, St. Keller, K.
Kipry, in: Aluminium Alloys, Their Physical and Mechanical Properties, edited by J.
Hirsch et. al. proceedings ICAA-11 (2008)
Aachen, ISBN-10: 3-527-32367-8, p. 23882393
[13] Aluminium Automotive Manual, Internet address: www.eaa.net/aam
Author
Fig. 6: Final simulation of SLC side panel in aluminium
ALUMINIUM
· 9/2009
33
Prof. Dr.-Ing. Jürgen Hirsch is Senior
Scientist at the R&D Centre of Hydro Aluminium Deutschland, located in Bonn.
Mr Hirsch is an internationally renowned
scientist in research and development of
aluminium alloys and their application.
He is author of numerous publications of
metallurgic-related topics, especially aluminium, and received several awards for
his scientific work.
ALUMINIUM · 9/2009
33
A L U M I N I U M im A u t o m o b il
Hochfeste Aluminium-Fahrwerksteile
mit optimaler Topologie
G. Proske, J. Krämer, Meinerzhagen
Die hohen Energiekosten und die
Forderung nach CO2-Reduktion
lassen den Leichtbau und die
Leichtmetalle noch stärker in den
Fokus der Konstrukteure rücken.
Um die Bauteilabmessungen bzw.
-querschnitte zu reduzieren und
somit Gewicht zu sparen, ist der
Einsatz von immer höherfesten
Legierungen erforderlich. Darüber
hinaus bedarf es entsprechender
Konstruktionstools, um die Bauteile optimal bezüglich Spannung
und Topologie auszulegen.
und DIN EN 586-2 [2] verwendet. Bedingt durch steigende Anforderungen
an die geschmiedeten Fahrwerkskomponenten konnten die garantierten
Mindestwerte dieser Legierung im
voll wärmebehandelten Zustand (T6 =
lösungsgeglüht, abgeschreckt und maximal ausgehärtet) im Laufe der Jahre durch Optimierung der gesamten
Prozesskette (Gießen, Strangpressen,
Schmieden und Wärmebehandlung)
ausgehend von der Festigkeitsklasse
F31 über F34 auf mittlerweile F38
(Tab. 1) gesteigert werden.
Anfang der neunziger Jahre wurde
von Otto Fuchs der Werkstoff EN AW6110A = EN AW-AlMgSiCu = AS28
entwickelt [3]. Auch für diesen Werkstoff konnten im Laufe der Jahre die
garantierten Mindestwerte aufgrund
von Prozessoptimierungen ausgehend von F38 auf F42 erhöht werden.
Neben diesen beiden seit Jahren
von Otto Fuchs erfolgreich eingesetzten Legierungen wird seit kurzem der
Werkstoff AS29 angeboten. Hierbei
handelt es sich um eine Eigenentwick-
Abb. 2: Roh- und Fertigteil einer Zugstrebe
aus der OF-Legierung AS29
lung auf Basis der Legierung AS28 =
EN AW-6110A. Nachfolgend werden
die Eigenschaften dieser Legierung im
Vergleich zu den Werkstoffen AS10
und AS28 vorgestellt. Ziel war eine
weitere Steigerung der statischen Festigkeit auf F45 und der dynamischen
Festigkeit bei ausreichender Duktilität und Korrosionsbeständigkeit. Alle
Eigenschaften wurden an Proben
aus Zugstreben (Abb. 2) oder an den
Zugstreben selber ermittelt, die unter
Serienbedingungen geschmiedet und
wärmebehandelt wurden. Die Untersuchungen erfolgten im Zustand T6.
Die an den Zugstreben aus dieser
Legierung ermittelten Streckgren-
Abbildungen: Otto Fuchs
Geschmiedete
Aluminiumbauteile
ha­ben sich in zahlreichen Anwendungen in der Automobilindustrie
fest etabliert. Durch den Einsatz von
stranggepresstem Vormaterial und
den nachfolgenden Schmiedeprozess
wird ein poren- und lunkerfreies Gefüge eingestellt. Dieses Gefüge in Verbindung mit der abschließenden Wärmebehandlung führt zu Bauteilen mit
ausgezeichneten statischen und dyna­
mischen Festigkeitseigenschaften in
Kombination mit guter Duktilität und
Zähigkeit.
Die Otto Fuchs KG mit Sitz in Mei­
nerzhagen fertigt seit etwa 40 Jahren geschmiedete Komponenten aus
Aluminiumlegierungen der 6000er
Serie für die Automobilindustrie
und ist Marktführer im Bereich geschmiedeter stabförmiger Fahrwerksteile wie Querlenker, Zug- und Druckstreben (Abb. 1).
In Europa wird hauptsächlich die
Legierung EN AW-6082 = EN AWAlSi1MgMn = Otto Fuchs(OF-)Legierung AS10 gemäß DIN EN 573-3 [1]
Tab. 1: Festigkeitsklassen der Aluminiumlegierungen EN AW-6082 T6 und EN AW-6110A T6
Abb. 1: Geschmiedete Aluminium-Fahrwerksteile der Otto Fuchs KG
34
Abb. 3: Typische Festigkeitswerte der Zugstreben aus den OF-Legierungen AS10,
AS28 und AS29 im voll ausgehärteten Zustand
ALUMINIUM · 9/2009
S
AML im
A LPU E
M ICN II U
A u t o m o b il
zen- und Zugfestigkeitswerte liegen
typischerweise bei 440 bzw. 470
MPa (Abb. 3) und damit etwa 25 bzw.
30 MPa bei nahezu unveränderter
Bruchdehnung oberhalb der Werte
für die Legierung AS28.
Im Fahrwerksbereich werden die
Mehrzahl der Bauteile, wie Zug- und
Druckstreben, auf Missbrauch ausgelegt, das heißt, dass diese nicht vor
Erreichen einer Mindestkraft, aber
spätestens bei Erreichen einer Maximalkraft versagen dürfen bzw. müssen. Auslegungskriterium ist in diesem Fall die Steifigkeit der Bauteile,
die sehr stark geometrieabhängig ist,
während die Festigkeitseigenschaften
nur einen geringen Einfluss haben.
Die für die Untersuchung ausgewählte Zugstrebe hat bei Verwendung der
Legierung AS28 im Vergleich zu der
Legierungen AS10 eine um etwa 15
Prozent höhere Knickkraft. Durch
Einsatz von AS29 kann die Knickkraft
bei dieser Strebe gegenüber AS28 um
weitere circa fünf Prozent gesteigert
werden.
Interessant sind die Werkstoffe
AS29 und AS28 besonders für Bau-
A L U M I N I U M im A u t o m o b il
Abb. 4: Ermüdungsversuche an Zugstreben aus den OF-Legierungen AS10, AS28 und AS29
teile, die nicht auf Steifigkeit, sondern
auf eine dynamische Belastung hin
ausgelegt werden müssen. Im Falle
der untersuchten Zugstrebe (Abb. 2)
lagen die auf einem Bauteilprüfstand
bei dynamischer Belastung ermittel­
ten Lebensdauern für die Bauteile
aus der Legierung AS28 etwa um den
Faktor 2 bis 3 (Abb. 4) höher als die
aus der Legierung AS10. Durch die
Verwendung der noch höherfesten
Legierung AS29 konnte die Lebensdauer gegenüber AS28 noch einmal
Spouts and
Stoppers
etwa um den Faktor 2 bis 3 gesteigert
werden. Die Lebensdauersteigerung
gegenüber AS10 und AS28 ist von
der Bauteilgeometrie (z. B. Kerbwirkung) abhängig und kann je nach der
Ausführung von Kerben und Radien
unterschiedlich ausgeprägt sein
Neben der Beständigkeit gegenüber allgemeiner Korrosion (Salzsprühnebelprüfung nach DIN EN ISO
9227) wurde auch die interkristalline
Korrosionsbeständigkeit (gemäß IGC
04.24.123) im Vergleich zu den ➝
Ceramic Foam
Filters
C
D
C
D
m
u
i
m
n
u
i
i
n
i
m
fo r A lumsttiinngg
cas
Drache
umwelttechnik
Drache Umwelttechnik GmbH · mail@drache-gmbh.de ·
ALUMINIUM
· 9/2009
35
www.drache-gmbh.de
ALUMINIUM · 9/2009
35
A L U M I N I U M im A u t o m o b il
Legierungen AS10 und AS28 überprüft. Die Angriffstiefen bei der allgemeinen Korrosion (Abb. 5) als auch
bei der interkristallinen Korrosion
sind im Vergleich zu der Legierung
AS10 etwas höher, aber nahezu identisch mit den Ergebnissen der Legierung AS28, die bereits seit Jahren
ungeschützt, wie die Legierung AS10,
im Fahrwerksbereich erfolgreich eingesetzt wird.
Mit der OF-Legierung AS29 gibt
es eine Legierung der 6000er Serie
mit höchsten statischen und dynami­
schen Festigkeitseigenschaften, vergleichbar mit denen der hochfesten
7000er Legierung 7075 bei einer
deutlich höheren Bruchdehnung und
deutlich besserem Korrosionsverhalten. Aufgrund der hohen Festigkeitswerte und der guten Schweißbarkeit
wird diese Legierung bereits für laser­
geschweißte Luftfahrtprofile verwendet, die unter anderem im Airbus
A318 und A380 eingesetzt werden.
Neben der richtigen Legierungsauswahl ist die Topologieoptimierung
bei Otto Fuchs ein wichtiges Hilfsmittel, um gewichtsoptimierte Bauteile
auszulegen. Dabei werden auf Basis
von linear-elastischen FEM-Berechnungen wenig belastete Teile einer
Ausgangsgeometrie (Abb. 6a) entfernt. Zurück bleibt eine Struktur, die
nur noch aus „tragenden“ Elementen
besteht. In der Vergangenheit waren
diese Strukturen größtenteils für eine
Fertigung nicht geeignet, da oft Hohlräume oder sehr filigrane Verstrebungen im Bauteil entstanden (Abb.
6b). Inzwischen können aber Fertigungsrestriktionen für Schmiedeteile
berücksichtigt werden, zum Beispiel
die Vermeidung von Hinterschnitten.
Die Ergebnisse sind aber immer noch
keine fertigen Schmiedeteile. Oft sind
in dem topologieoptimierten Bauteil
Bereiche vorhanden, die durch die
idealisierte Lagerung im Modell zu
Abb. 5: Korrosionsversuche an Zugstreben aus den OF-Legierungen AS10, AS28 und
AS29: Salzsprühnebelprüfung nach DIN EN ISO 9227 [4], Dauer 240 Std.; Interkristalline
Korrosion nach IGC 04.24.103 [5]
wenig belastet werden und dadurch
sehr dünn ausfallen. Hier muss der
Konstrukteur manuell eingreifen, um
aus dem errechten „Designvorschlag“
ein schmiedefähiges Bauteil (Abb.
6c) zu gestalten. Danach kann ein
„Feintuning“ des Bauteils durch eine
Shape-Optimierung erfolgen. Dazu
wird das auf Basis der Topologieoptimierung neu konstruierte Teil erneut
vernetzt und wieder mit den überlagerten Betriebslasten beaufschlagt.
Stark belas­tete Elemente des Netzes
wachsen (unter Einhaltung des Bauraumes) nach außen, während wenig
belastete Elemente schrumpfen. Es
ergibt sich eine gleichmäßigere Spannungsverteilung.
Natürlich wird der Schmiedeprozess eines auf diese Art optimierten
Teils nicht einfacher; aufgrund von
Durchbrüchen und Rippen ist eine
sehr genaue Vorformauslegung nötig,
um Schmiedefehler zu vermeiden.
Oft sind Verfahren zur Materialvordosierung, wie Reck- oder Querwalzen notwendig, um fehlerfrei und
wirtschaftlich zu fertigen. Auch diese
Verfahren können und werden inzwischen im Unternehmen durch eine
Umformsimulation abgebildet.
Mit den Werkstoffen AS10, AS28
und AS29 hat die Otto Fuchs KG
drei Legierungen, die ein breites Eigenschaftsspektrum bzw. Anforderungsprofil abdecken. Zusammen mit
Simulationsverfahren zur Topologieoptimierung wie auch zum Umformprozess können so gewichts- und
eigenschaftsoptimierte Bauteile entwickelt und sicher in Großserie hergestellt werden.
Literatur
[1] DIN EN 573-3, Aluminium und Aluminiumlegierungen – Chemische Zusammensetzung und Form von Halbzeug
– Teil 3: Chemische Zusammensetzung
und Erzeugnisformen
[2] DIN EN 586-2; Aluminium und Aluminiumlegierungen – Schmiedestücke – Teil
2: Mechanische Eigenschaften und zusätzliche Eigenschaftsanforderungen
[3] AS28: Ein neuer hochfester Konstruktionswerkstoff auf der Legierungsbasis
Al-Mg-Si, Sonderdruck aus: Leichtmetalle
im Automobilbau 95/96, Sonderdruck von
ATZ und MTZ, Franckh-Kosmos-VerlagsGmbH & Co., Stuttgart
[4] DIN EN ISO 9227; Korrosionsprüfungen
in künstlichen Atmosphären – Salzsprühnebelprüfungen (ISO 9227: 2006)
[5] Alliages d’Aluminium, Essai de Susceptibilité à la Corrosion intergranulaire
Autoren
Dr. Gerhard Proske, Otto Fuchs KG,
Meinerzhagen, Werkstofftechnologie und
Pressteile Automotive.
Abb. 6: Entwicklung der Geometrie durch Topologieoptimierung
36
Jürgen Krämer, Otto Fuchs KG, Meinerzhagen, Produkt- und Verfahrensentwicklung FEM-Simulation
ALUMINIUM · 9/2009
technologie
Kundenspezifische, energieoptimierte
Wärmebehandlungsanlagen für Aluminium
V. Burkhardt, Backnang
Wärmebehandlung, allgemeine Defi­
nition: Wärmebehandlung versteht
sich als eine Folge von Wärmebehandlungsschritten, in deren Verlauf
ein Werkstück ganz oder teilweise
einer Zeit-Temperatur-Folge unter­
worfen wird, um eine Änderung
sei­nes Gefüges und/oder seiner
Eigen­schaften herbeizuführen. Eine
Warmformgebung oder mit Erwärmung verbundene Verfahren des
Oberflächenschutzes fallen nicht
unter „Wärmebehandlung“. Unter
Aus­scheidungshärten, die unter anderem bei Aluminiumlegierungen
angewendet werden, versteht man in
der Wärmebehandlung alle Maßnahmen, die das temperaturabhängige
Lösungsvermögen der Mischkristalle
nutzen, um eine Festigkeitssteigerung
herbeizuführen.
Gefügekunde: Die Eigenschaften
eines Werkstoffs werden durch sein
Gefüge bestimmt, auch wenn in der
Wärmebehandlung eher Härtewerte
oder Härteverlaufskurven und selte­
ner bestimmte Gefüge vorgeschrieben werden. Die Gefügestruktur wird
durch Wärmeeinwirkung und Verformungen beeinflusst und je nach
Werkstoff und Temperatur verändert.
Dadurch kann es zu Spannungen innerhalb des Werkstücks kommen,
die teilweise erwünscht, manchmal
jedoch für die weitere Verwendung
ungeeignet sind.
Abbildungen: Elpo
Die Wärmebehandlung muss dementsprechend gezielt eingesetzt werden,
um die je nach gestellter Anforderung
geeigneten Gefüge einzustellen. Die
Gefügekunde ist daher eine Grundlage zum Verständnis der inneren
Vor­gänge bei der Wärmebehandlung
und ihrer Ergebnisse. Eine detaillierte
Beschreibung dieser Vorgänge würde
jedoch den Rahmen dieses Beitrages
sprengen, es sei daher auf die entsprechende Fachliteratur verwiesen.
Aluminiumwerkstoffe in der Auto­
mobilindustrie: Die Automobilindustrie setzt seit den achtziger Jahren auf
den leichten Werkstoff Aluminium.
Der wesentliche Vorteil von Aluminium gegenüber Stahl ist das günstige
Verhältnisse von Festigkeit zu Dichte. Die Festigkeit entspricht der des
allgemeinen Baustahls, bei dreimal
niedrigerer Dichte gegenüber Stahl
und Kupfer. In diesem Zusammenhang wird auch der Begriff der Spezifischen Festigkeit eingeführt: Spe­
zifische Dichte = Festigkeit/Dichte.
Weiterhin zeichnet sich Aluminium durch hohe thermische und elektrische Leitfähigkeit aus, die nur von
Silber, Kupfer und Gold übertroffen
wird, sowie durch gute Witterungsund sehr gute Korrosionsbeständig­keit
aufgrund einer stabilen Oxidbildung.
Gute technologische Eigenschaften
wie Verformbarkeit, Schweißbarkeit
und Legierbarkeit sind weitere Vorteile von Aluminium und Aluminiumlegierungen.
Neben der metallurgischen Wei­
ter­entwicklung hat
im Laufe der Zeit
auch eine intensi­ve
Entwicklung hinsichtlich der Ver­
arbeitbarkeit statt­
gefunden. Die heu­
tigen Entwicklungs­
schwerpunkte bei
der
Verarbeitung
Abb. 1: Zeit-Temperatur-Verlauf einer Wärmebehandlung in
allgemeiner Darstellung
von Aluminium lie-
ALUMINIUM · 9/2009
gen im Bereich der Gießtechnologie
und der Wärmebehandlung. Wärmebehandelt werden heute hauptsächlich Zylinderköpfe und Kurbelgehäuse, aber auch Formteile für Achsträger,
Rahmen, Konsolen und Seitenteile.
Die Abläufe bei der Wärmebehandlung von Aluminiumlegierungen
erfolgt in drei Schritten:
• Lösungsglühen mit dem Ziel, ein
homogenes Mischkristall zu erhalten.
Als Maßnahme dient das vollständige
Lösen des Legierungsbestandteils in
der Aluminiummatrix durch Wärmebehandlung.
• Abschrecken mit dem Ziel, ein
übersättigtes Mischkristall zu erhalten. Als Maßnahme dient das Einfrieren des durch die Glühung erzielten
Zustands. Dies wird durch Abschrecken der Glühtemperatur auf Raumtemperatur erreicht.
• Aushärten mit dem Ziel, die härtende Phase aus dem übersättigten
Mischkristall auszuscheiden. Als
Maßnahme dient die Kaltaushärtung (bei Raumtemperatur) und die
Warmaushärtung (bei circa 120 bis
200 °C). Es erfolgt, je nach Dauer,
eine Konzentrationsverschiebung in
Richtung Gleichgewicht.
Nachfolgend werden die Anforderungen und realisierten Anlagenausführungen zum Warmaushärten/Auslagern von Aluminiumlegierungen an
Hand eines typischen Anforderungsprofils dargestellt.
Anforderungsprofil zur Warmausla­
gerung von Bauteilen aus Alumini­
umlegierungen (z. B. Kurbelgehäuse,
Zylinderköpfe):
Aufheizen: von ca. 20 °C auf max.
250 °C +/- 5 °C in 60 min
Halten: bei 250 °C +/- 5 °C, Dauer:
150 min +/- 10 min
Abkühlen: auf 25 °C +/- 5 °C in
120 min.
Wichtige Anforderung: Die Haltetemperatur von 250 °C +/- 5 °C darf
das Zeitfenster von 150 min +/- 10
min in keinem Falle unter- oder überschreiten.
37
technologie
Abb. 4: Zweispurige Wärmebehandlungsanlage bestehend aus Anwärmofen, Halteofen
und Kühler
Abb. 2 und 3: Wärmebehandlung im
Kammerofen
Nach dem Lösungsglühen und Abschrecken soll wie vorstehend beschrieben bei der Warmauslagerung
das Ausscheiden der härtenden Phase
aus dem übersättigten Mischkristall
in einer vorgegebenen Zeit-Temperatur-Kurve erfolgen. Um über das
Werkstück verteilt nur sehr geringe
Unterschiede hinsichtlich der Festigkeitswerte zu erzielen, ist daher eine
sehr geringe Temperaturtoleranz äußerst wichtig.
Der in Abb. 1 dargestellte allgemeine Verlauf einer Wärmebehandlung
gibt den Zusammenhang zwischen
Zeit und Temperatur für ein Werkstück an.
Die Haltedauer muss demnach so
groß gewählt werden, dass auch im
38
Werkstückkern die geforderte Temperatur erreicht ist und somit der Ausscheidungsprozess ablaufen kann.
Ein Überhitzen und Unterschreiten der vorgegebenen Zeit-Temperatur-Kurve muss vermieden werden,
um die geforderten Werkstückeigen­
schaften zu garantieren. Für die Wirtschaftlichkeit eines Bauteils ist die
exakte Wärmebehandlung von ausschlaggebender Bedeutung.
Die Ofenanlage: Die besondere
Herausforderung gemäß dem Anforderungsprofil liegt im gleichmäßigen
Aufheizen innerhalb der Zeit-Tempe­
ratur-Vorgabe, ohne die maximal vor­
gegebene Temperatur zu überschrei­
ten, sowie im gleichmäßigen Halten
bzw. Kühlen innerhalb dieser Vorgaben.
Prinzipiell unterscheidet man zwischen diskontinuierlichem Betrieb
(z. B. im Kammerofen, Abb. 2, 3) und
kontinuierlichem Betrieb im Durchlaufofen. Bei den Durchlaufanlagen
(Abb. 4, 6) wird zwischen ein- und
mehrspurigen Anlagen unterschieden. Die Wärmeübertragung an das
Wärmebehandlungsgut erfolgt für bei­
de Ofen­typen über Konvektion. Das
Aufheizen erfolgt im ersten Teil der
Anlage (bei Durchlauföfen). Durch
intensive Luftumwälzung und Luft-
führung wird gewährleistet, dass zum
einen die erforderliche Zeit-Temperatur-Kennlinie eingehalten wird und
zum anderen keine lokale „Überhitzung“ an den Teilen auftritt.
Im Haltebereich des Ofens werden
die Teile auf Temperatur gehalten, um
den eigentlichen Warmauslagerungsprozess durchzuführen. Auch hier ist
eine gezielte Luftführung erforderlich, unter Umständen abweichend
zu der in der Anwärmzone, um die
geforderten Temperaturtoleranzen
an allen Werkstückbereichen einzuhalten.
Die Abkühlung im nachfolgenden
Kühler kann meist so schnell wie
möglich erfolgen, es sind aber auch
Wärmebehandlungen gefordert, bei
denen ein vorgegebener Temperaturgradient nicht über- oder unterschritten werden darf.
Ofen und Kühler sind durch elektromotorisch betrieben Hubtore voneinander getrennt.
Das Zeit-Temperatur-Diagramm
einer Durchlaufanlage während einer
Ofenfahrt wird in Abb. 5 dargestellt.
Die Messkurve 1 zeigt die Lufttemperatur, die Messkurven 2, 3 und 4 zei­
gen die Temperatur an den verschiedenen Stellen in den Gussteilen des
Glühgestells.
Abb. 5: Typisches Zeit-Temperatur-Diagramm, Fa. Elpo GmbH
ALUMINIUM · 9/2009
technologie
Die Glühgestelle: Bei der Glühgestellkonstruktion ist darauf zu achten, dass
die Chargierung so gewählt wird, dass
bei einer optimalen Auslastung noch
eine ausreichende Anströmung der
Teile gewährleistet wird. Üblicherweise ist die Ausführung der Gestelle
derart, dass die Werkstücke in mehreren senkrechten und waagrechten
Reihen gestapelt werden.
Der Transport der Glühgestelle
durch den Ofen kann unterschiedlich
durchgeführt werden: entweder auf
Schienen, wobei die Gestelle durch
den Ofen geschoben werden, oder auf
Doppelspur-Kettenförderer, wobei
die Gestelle auf dem Kettenförderer
abgestellt werden.
Die Fördertechnik: Eine erhöhte
Aufmerksamkeit kommt bei diesen
Anlagen einer zuverlässigen und auf
die Anwendung angepassten Förder­
technik zu. Diese beginnt an der Aufnahme der Bauteile, beinhaltet die
Förderung durch die Wärmebehandlungsanlage bis zur Abnahme und
schließt auch die umliegende Logistik
ein. Dabei ist es von großem Vorteil
für den Kunden, wenn Fördertechnik
und Ofenanlage für die Thermoprozesstechnik von ein und demselben
Lieferanten stammen, da diese Kom-
bination besonders flexible und kundenspezifische Lösungen ermöglicht.
Die Elpo GmbH aus dem süddeutschen Backnang ist unter anderem
spezialisiert auf Wärmebehandlungsöfen für Aluminium, einschließlich
der zugehörigen Fördertechnik. Weiterhin werden von Elpo Schlichtetrockner, Mikrowellentrockner, Konvektionstrockner für unterschiedlichste Anwendungsfälle, Kühler und
Warmhalteöfen sowie Förder- und
Handlingtechnik entwickelt, konstruiert und in eigenen Produktionsstätten gefertigt.
Autor
Abb. 6: Durchlaufanlage mit Hubtor
Dipl.-Ing.(FH) Volker Burkhardt, Verkauf
/ Kundenbetreuung bei der Elpo GmbH
Luft- und Trocknungstechnik mit Sitz in
Backnang.
Heat-treatment
equipment for the
aluminium industry
Die Firma Schwartz in Simmerath ist
spezialisiert auf den Bau von Wärmebehandlungsanlagen für das Anwärmen, Lösungsglühen mit Abschrecken, Warmauslagern und Kühlen
von Aluminiumbolzen und Formteilen in der Aluminiumindustrie. Zu
Schwartz GmbH of Simmerath, Germany, specialises in the manufacture
of heat treatment equipment for preheating, solution-heat treating and
quenching, artificial aging and cooling
of aluminium billets and shaped parts.
The heat treatment lines also include
the requisite automated handling systems for transfers between furnaces,
forging press and packing station. The
systems implemented in the partly
patented furnaces are designed to ensure short and uniform heating and
low energy consumption.
The figure shows a furnace during assembly in the company’s works
in 2008. This furnace for heating of
aluminium billets and disks is rated
for a maximum capacity of 4 tonnes
per hour. The conveyor system can
accommodate a multitude of billet
diameters and disk sizes. Loading of
the furnace and transfer from furnace
to forging press are handled by robots.
To achieve uniform and quick heating of different height feedstocks the
inside height of the furnace automatically adapts to the feedstock in accordance with a preselected program. ■
Schwartz
Wärmebehandlungsanlagen
für die Aluminiumindustrie
Montage des Durchlaufofens
Conveyor furnace during assembly
den Ofenanlagen gehören die für den
automatisierten Betrieb notwendigen
Übergabeeinrichtungen zur Schmiedepresse, zwischen den Behandlungsanlagen bis zur Verpackung. Die
40
angewandten teilweise patentierten
Ofensysteme gewährleisten eine kurze und gleichmäßige Erwärmung bei
geringem Energiebedarf.
Die Abbildung zeigt eine Ofenanlage für das Erwärmen von Aluminiumbolzen und -scheiben mit einer
max. Leistung von 4
t/h bei der Montage.
Der Ofen wurde 2008
im eigenen Werk Simmerath aufgebaut. Das
eingesetzte Transportsystem lässt die Behandlung einer Vielzahl von Bolzendurchmessern und Scheiben
zu. Die Beschickung
des Ofens sowie die
Übergabe vom Ofen
zur
Schmiedepresse erfolgen mittels
Roboter. Damit eine
gleichmäßige, schnelle Erwärmung bei unterschiedlichen
Guthöhen erreicht werden kann, wird
die Innenhöhe des Ofens über ein
vorgewähltes Programm elektromotorisch dem Glühgut angepasst.
■
ALUMINIUM · 9/2009
technology
Bereit für die Zukunft: Modernisierung von bestehenden gasbeheizten Bolzenerwärmungsanlagen
O. Flamm und D. Menzler, Simmerath; Y. Karamahmut, Grand Rapids
Fit for the future: upgrading of
existing gas-fired billet heaters
O. Flamm and D. Menzler, Simmerath; Y. Karamahmut, Grand Rapids
Abbildungen: Otto Junker
As demands on thermal equipment
available to Otto Junker on an excluare becoming more exacting in many
sive basis.
fields, existing gas-fired billet heaters
The new burner nozzles are charare not exempt from the modernisaacterised by a very broad control ratio
tion drive. In this context, Otto Junker
and stable flame formation over the
places the focus not merely on asset
entire control range. Their ignition bemaintenance which restores the plant
haviour is very good, even at very low
approximately to its as-delivered conoutput levels. The choice of appropridition. The company rather relies on
ate metallic and ceramic materials
concepts aimed at boosting the sysensures a clearly increased nozzle life.
tem’s efficiency and utility value for
The new mixer provides optimum
the benefit of the user. These essenmixing of fuel gas and air and has a
tially comprise the following:
markedly reduced interior pressure
• increase in throughput rate
loss over the entire control range.
Thanks to the lambda control system,
• more homogenous heating quality
the impact of air pressure, air humid• more uniform heating power ity and air temperature variations on
input into the billets
the combustion process and exhaust
• reduction in energy consumption
gas quality are reliably compensated
• lower maintenance costs
for. Fluctuations in fuel gas qual• improved exhaust gas quality.
ity can be balanced out in the same
The aforementioned targets can be
manner. In this way the equipment
easily achieved by implementing the
performance will remain constant at
action package outlined in the followall times, summer and winter, day and
ing. The scope of this upgrade packnight. At the same time, exhaust air
age can be adapted and implemented
quality has been improved and stabiin line with the technical state of the
lised – an important achievement in
equipment to be revamped.
view of today’s pollution-based taxes
For maximum success, new-genand charges. In addition, the ability to
eration burner nozzles are installed
in the heating system and a
newly developed fuel gas/air
mixer as well as a pilot nozzle
with integrated lambda probe
are retrofitted in each zone.
The fuel gas control train of
each zone is fitted with a linear actuator for fine-adjustment
of the fuel gas input.
The nozzles, mixers and
lambda control system are developed by a partner company
and adapted for industrial ap- Regelstrecken von Brenngas und Verbrennungsluft
plication in cooperation with einer Heizzone nach Einbau der Lambda-Regelung
Otto Junker. The patented Fuel gas and combustion air control trains of a
technologies have been made heating zone upon installation of lambda control
ALUMINIUM · 9/2009
Aufgrund der in vielen Bereichen steigenden Anforderungen an thermische
Anlagen stehen auch für derzeit im
Einsatz befindliche gasbeheizte Bolzenerwärmungsanlagen Modernisierungen an. Das Hauptaugenmerk legt
Otto Junker hierbei nicht auf reine
Substanz erhaltende Maßnahmen,
die die Anlagen wieder annähernd in
den Lieferzustand zurückversetzen;
vielmehr sind die Konzepte auf Stei­
gerungen von Gebrauchs- und Nutzwert zugunsten der Betreiber ausgerichtet. Dies sind im Wesentlichen:
• Steigerung der Durchsatzleistung
• Vergleichmäßigung der Erwärmungsqualität
• Vergleichmäßigung des Leistungs-
eintrags in die Bolzen
• Senkung des Energieverbrauchs
• Senkung der Wartungskosten
• Verbesserung der Abgasqualität.
Diese Ziele können leicht erreicht
werden, wenn das nachfolgend beschriebene Maßnahmenpaket umgesetzt wird. Dies lässt sich je nach
technischem Stand der umzubauenden Anlage anpassen und umsetzen.
Um den größtmöglichen Erfolg zu
erzielen, wird eine neue Genera­tion
von Brennerdüsen in der Beheizung
eingesetzt sowie je Heizzone ein neu
entwickelter Brenngas/Luft-Mischer
und eine Pilotdüse mit integrierter
Lambdasonde nachgerüstet. In der
Brenngasregelstrecke jeder Zone wird
ein Linearstellglied zur Feinregelung
der Brenngasmenge nachgerüstet.
Die Düsen und Mischer sowie die
Lambdaregelung wurden von einem
Partnerunternehmen entwickelt und
in Zusammenarbeit mit Otto Junker
für den Industrieeinsatz adaptiert.
Die patentierten Technologien stehen
Otto Junker exklusiv zur Verfügung.
Die neuen Brennerdüsen zeichnen
sich durch ein sehr großes Regelverhältnis und eine über den gesamten
Regelbereich sehr stabile Flammenbildung aus. Das Zündverhalten, auch
bei kleinen bis sehr kleinen Leistungen,
41
technologie
Luft-Mischer und Lambdaregelung
(siehe Foto) wurde sehr erfolgreich
im Presswerk der Hydro Aluminium
in Uphusen durchgeführt. Hier wurde eine von Elhaus gelieferte Bolzen­
erwärmungsanlage modifiziert. Bei
Vergleichsmessungen vor und nach
der Umrüstung wurde die Leistungsfähigkeit des Konzepts unter Beweis
gestellt (siehe Grafik). Die erreichten
Werte sprechen für sich, die Anlagenleistung konnte um mehr als zehn
Prozent gesteigert und der spezifi­
sche Brenngasverbrauch in gleicher
Größenordnung gesenkt werden. Die
CO2-Emission hängt ab vom Lambdawert. Demzufolge schwankt die
CO2-Emission nach dem Umbau nicht
mehr in Abhängigkeit der sich ständig
ändernden Randbedingungen, sondern wird über den Lambdawert auf
einen konstanten Wert geregelt.
Je nach Aufwand, der sich durch
den Zustand der Anlagen und ihre ursprüngliche technische Ausstattung
ergibt, beträgt die Amortisationszeit
für solche Umrüstungen zwei bis drei
Jahre mit künftig fallender Tendenz.
Prädestiniert für die Umrüstungen
sind naturgemäß die Anlagen, die
von der Otto Junker GmbH und der
Elhaus Industrieanlagen GmbH geliefert wurden. Technisch lassen sich
natürlich nach eingehender vorheriger Prüfung auch die Anlagen an­
derer Hersteller umrüs­ten.
pre-select a specific lambda value at
any time gives the operator increased
flexibility since the plant can be run
in an exhaust gas optimised, energy
consumption optimised or output optimised mode, depending on current
production needs. For the few products requiring maximum throughput
from the billet heater, heating power
can be raised at any time by simply
reducing the lambda value setpoint
(assuming a sufficient fuel gas supply).
In such special cases, the associated
higher specific fuel gas consumption
will usually be found acceptable.
A complete revamp comprising
burner nozzles, fuel gas/air mixer and
lambda control system (see photo) has
been very successfully implemented
at Hydro Aluminium’s extrusion plant
in Uphusen, Germany. In this case,
the upgrade involved a billet heater
originally supplied by Elhaus. The
performance of the new system was
demonstrated by comparative measurements before and after the upgrade
(see chart). The values achieved speak
for themselves – equipment output
was raised by more than ten percent
while the specific fuel gas consumption was reduced by about the same
margin. Since CO2 emissions depend
on the lambda value, the CO2 output
of the upgraded system will no longer
vary with ever changing boundary
conditions but is kept constant by the
lambda control system.
Depending on project cost, which
is a function of the equipment condition and original technical equipment
level, the payback period for such an
upgrade is in the region of two to
three years and will decline in the future. Naturally, equipment supplied
by Otto Junker GmbH and Elhaus
Industrieanlagen GmbH are specifically predestined for this kind of upgrade. However, from an engineering
viewpoint, it goes without saying that
systems made by other manufacturers
can likewise be revamped following a
detailed prior analysis.
Autoren
Authors
Oliver Flamm und Dr. Dirk Menzler, Otto
Junker GmbH, Simmerath.
Oliver Flamm and Dr. Dirk Menzler, Otto
Junker, Simmerath, Germany.
Yildirim Karamahmut, High-Tec Engineering, Grand Rapids, Michigan, USA.
Yildirim Karamahmut, High-Tec Engi­
neering, Grand Rapids, Michigan, USA.
Bolzentemperatur und Bolzentemperaturgradient vor und nach der Umrüstung
Billet temperature and billet temperature gradient before and after the upgrade
ist sehr gut. Die entsprechende Wahl
metallischer und keramischer Werkstoffe sorgt für eine deutlich erhöhte
Standzeit der Düsen.
Der neue Mischer gewährleistet
eine optimale Vermischung von
Brenn­gas und Luft bei deutlich reduziertem inneren Druckverlust über
den gesamten Regelbereich. Durch
die Lambdaregelung werden die Einflüsse auf Verbrennung und Abgasqualität, wie sie durch Schwankungen
des Luftdrucks, der Luftfeuchte und
der Lufttemperatur auftreten, ausgeglichen. Ebenso lassen sich Schwankungen in der Brenngasqualität ausregeln. Dadurch wird die Anlage, egal
ob Sommer oder Winter, ob Tag oder
Nacht, mit derselben Ofenleistung
betrieben. Zusätzlich wird die Qualität des Abgases verbessert und stabi­
lisiert, was im Hinblick auf abgasbezogene Steuern und Abgaben von
hoher Bedeutung ist.
Darüber hinaus bietet die jederzeit
mögliche Vorwahl eines bestimmten
Lambdawertes dem Betreiber eine erhöhte Flexibilität der Anlage; es kann
je nach Erfordernis abgas-, energieverbrauchs- oder leistungsoptimiert
produziert werden. Durch einfache
Absenkung des Soll-Lambdawertes
kann für die wenigen Produkte, die
der Bolzenerwärmungsanlage die
maximale Durchsatzleistung abverlangen, die Heizleistung gesteigert
werden – ausreichender Brenngasanschluss vorausgesetzt. In solchen
Sonderfällen kann der dann höhere
spezifische Brenngasverbrauch meist
akzeptiert werden.
Eine komplette Umrüstung, bestehend aus Brennerdüsen, Brenngas/
42
ALUMINIUM · 9/2009
technology
When ABB formed the mainte­
nance alliance at the Hydro Kurri
Kurri aluminium smelting plant
in Newcastle, Australia, the ABB
Full Service team was taking
over the maintenance for four
business units. One of them, the
carbon plant, is responsible for
manufacturing the anodes that
are consumed in the production
of aluminium. At that time, the
power and free conveyors in the
carbon plant were suffering from
years of poor maintenance due
to design variations, inconsistent
parts supply and poor turnaround
time. The previous off-site contrac­
tor, who had been responsible for
carriage repairs, was unable to
ramp up the refurbishments, nor
achieve the higher quality stand­
ards imposed by the ABB Mainte­
nance Alliance Reliability Team.
“The carriage repair project has had
great success in targeting the defects on
this equipment. We have gone from a
position of vulnerability to a position of
structure behind our carriage repairs”,
says Kevin Heame, Production Team Coordinator for the Kurri Kurri smelter.
Power and free conveyor improve­ment
project – The power and free (P&F)
conveyor is responsible for carrying
the anodes through the production
processes to the bake furnace where
the green anodes are converted. When
the ABB maintenance alliance started
in 2006, the system was in desperate
need of repair. The losses in produc-
Diagrams: ABB
ABB maintenance turns around plant critical equipment
Fig. 1: Damage distribution – P&F stockpile
tion due to damaged carriages were
nearing the point where production
would need to stop, since the lost time
per shift was approaching the length
of time that the shift operated. Performance of the conveyors was as low
as 70 percent of the target minimum,
which was the minimum number of
carriages on the conveyor to prevent
lost time. ABB immediately focused
on bringing the carriages back into
the system as quickly as possible and
increasing the reliability of the entire
system.
Within four months, the ABB onsite maintenance team led the plant
to:
• Increase productivity by 30 percent
• Achieve performance target of greenmix and baked chain
• Annual ROI of 84,000 percent
• Recover four hours of lost time per shift.
ABB also developed an in-house refurbishment programme, which ensures that stringent quality assurance
procedures will be adhered to for
years to come.
Identifying a root cause for system
failure – A significant problem ABB
identified was that operators were removing the carriages from the system
whenever they jammed. Once a carriage was removed, it joined the pile
of some 200 carriages that were waiting to be refurbished. This inefficient
method was addressed by making
the carriage removal a maintenance
task. ABB developed a troubleshooting guide for the maintenance crew,
who would then perform a series of
inspections leading to several in-service repairs before the carriage was removed. This procedure not only made
addressing the issues more efficient,
but it also reduced the annual ➝
Fig. 2: Number of carriages on carbon plant power and free conveyors
ALUMINIUM · 9/2009
43
Norsk Hydro
technology
Aerial view of the Kurri Kurri plant in Australia
maintenance costs by USD14,000
eliminating unnecessary freight and
material handling charges.
Improving the refurbishment
programme – Once the system inefficiencies were eliminated, ABB took
a closer look at the repair process
for the carriages. Here issues were
identified with throughput, quality of
repairs and lead times for parts. The
assessment resulted in the set-up of
an internal refurbishment programme
using the on-site work shop, since
they had the necessary tools and jigs
to perform the repairs efficiently.
Streamlining the repair process –
ABB then examined the specific problems occurring with the equipment, so
data was captured, compared and the
results are shown in Figure 1. An overwhelming 50 percent of the carriages
in the stock­pile were due to damage
with the front trolley. This information
then allowed ABB to focus on specific
equipment improvements.
Using this information, a cannibalisation programme was developed, and
over 80 carriages were identified for
rapid return to the system by substituting some small and easy to change
parts from other damaged carriages
thus avoiding the longer standard repair process. Combined with quality
44
assurance checks, the central work
shop was able to quickly turn around
large numbers of carriages and provide enough work for operations to
continue until the shipment of new
parts arrive, allowing the complete
carriage refurbishments to proceed.
Once the number of working carriages had begun to stabilise, focus
shifted to prepare a detailed refurbishment procedure which enabled quality repairs and the implementation of
a quality assurance programme. The
comprehensive document detailed
the complete overhaul of the carriages
providing tradesmen with a valuable
tool to ensure compliance on a daily
basis regardless of who was doing the
repair.
Figure 2 shows the improvement
that was achieved on the two conveyor lines. Starting with both lines well
below the minimum target, performance was improved to over the miniThe Kurri Kurri aluminium smelter has
been operational since 1969 and is
currently owned and operated by Hydro.
The plant is located close to Newcastle in
New South Wales, Australia. Production
capacity of the smelter is currently at
153,000 tonnes annually.
mum target on both lines for the first
time since ABB took over the maintenance. The greenmix part of the plant
is where all the raw material batching, mixing and forming occurs, whilst
the baked section is where the formed
raw ingredients, that is the output of
the greenmix plant are consolidated
by baking. ABB’s project leader Adam
Cooper says: “This has been an excellent example how ABB’s tools and system analysis methodologies can help
customers like Hydro Kurri Kurri.
We were able to develop an innovative solution that resulted in a reliable
system and increased productivity for
the plant.”
Since the power and free conveyor
is a bottle neck piece of equipment
that actually runs through the entire
carbon plant, the refurbishment of the
system has enabled the plant to operate at much higher efficiency than
before. This not only promotes safety,
but also increases operator morale
since they no longer have such a high
interaction with defective equipment.
This improvement has also enabled
the ABB maintenance alliance personnel to spend their time on other
equipment, further increasing the reliability and stability of operation of
the plant.
■
ALUMINIUM · 9/2009
Co m pa n y n e w s w o r l d w i d e
Aluminium smelting industry
It also plans to build a 90 MW power
plant and a 2m tpy bauxite mine, and
to expand its 138,000 tpy alumina refinery in Belgaum to 313,000 tpy in
2011. Hindalco is raising USD500m to
finance the expansions.
Norsk Hydro
Rio rejects USD80m
lifeline for Anglesey
as it prepares for closure
Chinalco likely to
back Rio rights-issue
China’s state-owned Chinalco is likely
to participate in global miner Rio Tinto’s USD15.2bn rights offer, in a sign
China is keen to retain its interest in
the world’s top iron ore miner. Strong
demand for the Rio offer, the fifthbiggest on record, is expected to ease
pressure on Rio to sell assets at throwaway prices and to give it the stability
to pursue growth amid signs that the
global economy is on the mend.
Rio is raising money to cut a
USD38bn debt mountain it accumulated when it bought Canadian aluminium group Alcan at the top of the
commodities market in 2007. The key
issue for Rio is to decide whether to
sell some downstream Alcan assets
now, or whether to hold them for 3 to
5 years to realise better value.
Chinalco’s aluminium relations
with Rio soured early in June after
the indebted miner called off a bigger
equity partnership that would have
seen the Chinese group invest an­other
USD19.5bn into dual-listed Rio Tinto.
Instead, Rio ditched the deal in favour
of the rights issue and an iron ore joint
venture with rival BHP Billiton, raising howls of protest from China. Rio’s
21-for-40 rights issue was priced at a
steep discount of AD28.29 per Australian-listed share and 1,400 pence
per London-listed share.
Chinalco, Rio’s top shareholder,
owns about 9% of the combined group
ALUMINIUM · 9/2009
and a full take-up of the rights would
cost it around USD1.5bn. If Chinalco takes up its entitlement in full,
it would bring down its average hold­
ing cost in Rio. Chinalco bought its
ini­tial stake at 60 pounds (USD99.69)
a share in February 2008 in a raid on
the London-listed stock.
Hindalco may go slow
on Aditya Aluminium project
India’s Hindalco Industries Ltd may
go slow on its Aditya Aluminium
project in Orissa state, which envisions a 1.5m tpy alumina refinery and
a 360,000 tpy aluminium smelter.
It is facing problems getting the required land and water supplies as
well as environmental clearance. It
is unclear what the delay will be, but
mechanical completion of the plant
had been expected in 2011, and full
production by 2013. Hindalco also
plans to build two aluminium smelters of 360,000 tpy each in Jharkhand
and Madhya Pradesh states in the
next four years. The Mahan Smelter
in Madhya Pradesh is due for completion in late 2010, with first metal
expected in 2011. Equipment for the
captive 900 MW power plant has been
ordered, together with around 40% of
the smelter equipment.
To feed its three new smelters Hindalco is also building Utkal Alumina,
a 1.5m tpy alumina refinery, by early
2011, with first alumina in July 2011.
Rio Tinto Alcan will continue with
plans to close its Anglesey aluminium
smelter in Wales after it rejected a
£48m (USD79m) government bailout
on 1 July. There is no possibility of a
realistic subsidy being available, and
without a permanent power solution,
any subsidy would only provide interim relief and would not represent
a sustainable solution. Rio has looked
at other options, but has not identified
any alternative and affordable source
of power. The 145,000 tpy aluminium
smelter is owned by Rio with a 51%
stake, and by Kaiser Aluminum which
has the remaining 49%. The Anglesey
plant employs around 500 people.
German Neuss aluminium
plant stays open near term
Hydro Aluminium, the German unit
of Norwegian group Norsk Hydro, is
to keep its large German aluminium
plant at Neuss open for the immediate
future while a new German state aid
plan for metal companies is assessed.
Hydro said in April it would stop production at the loss-making aluminium
plant at Neuss in June because of high
German electricity costs and weak
demand. But the Neuss plant will
remain in operation at its current reduced level while the details of a new
German government plan to help the
non-ferrous metals industry are assessed. Germany’s ruling government
coalition has decided to give extra aid
of €40m (USD55.91m) in 2009 to help
the NF metals industry overcome the
impact of the economic slowdown
and high German power costs. The
Neuss plant has capacity to produce
230,000 tpy of primary aluminium,
but is currently producing only about
4,000 tpm or about 50,000 tpy.
➝
45
Co m pa n y n e w s w o r l d w i d e
The €40m aid package for 2009 could
be paid out to firms in around two
months. Details of how the aid will be
paid out were being worked out by
Germany’s Economy Ministry, and
the plan would have to be approved
by the EU Commission.
German metals producers faced
electricity costs as much as 30% higher than neighbouring countries.
Greenland delays
decision on Alcoa plant
Greenland has delayed a decision on
joining Alcoa Inc. in a planned aluminium venture, and has scaled back its
possible stake to 10 to 30%. More time
was needed to estimate construction
costs at the smelter and hydropower
venture in Maniitsoq. Greenland’s
parliament will decide on the venture
in spring 2010 instead of this autumn
as earlier planned. Alcoa and Greenland announced in 2007 they would
explore building a plant and said construction could begin in 2010, with
production starting in 2014. The proposal consists of a smelter with a capacity of at least 350,000 tpy and two
hydropower plants. Annual revenue
is estimated at 3 to 4 billion Danish
crowns (USD566-754.7m). Since Alcoa is only looking for a 50% share, the
door could be open to other partners.
Vedanta to double output
at Orissa aluminium smelter
Vedanta Aluminium will double production at its new smelter at Jharsuguda, Orissa, to 500,000 tpy in the near
future. The smelter will get alumina
from Vedanta’s Lanjigarh refinery,
which is also ramping up production, to 1.4m tpy in the next month
from 1m tpy. Vedanta’s aluminium
smelting capacity in India has, however, fallen as it has decommissioned
two 50,000 tpy potlines at its plant in
Korba, Chhattisgarh state. Vedanta is
also likely to decommission another
50,000 tpy of old smelting capacity at
Korba within a year, leaving a 245,000
tpy smelter commissioned only a few
years ago. Vedanta plans to replace
the old smelters under a 600,000 tpy
46
brownfield expansion plan. It aims to
produce over 1m tpy of aluminium by
2010/11.The 600,000 tpy fresh smelting capacity at Korba is expected to be
commissioned by 2010/11.
Venezuela will announce
alu­minium recovery plan
in the near future
The priority of Venezuela’s government will be to invest some 410m
Bolivares (USD190m) in local bauxite
and alumina producer CVG Bauxilum.
Bauxilum has been producing only
3,200 to 3,500 tpd of alumina, while
its capacity is 5,800 tpd (2.11m tpy).
Alcasa’s situation is also very difficult,
since almost 400 of its 680 electrolytic
cells are idle at the moment on the lack
of technological update. Alcasa has
been producing only some 350 tpd
(126,000 tpy) of aluminium, well below
its installed capability of around 550
tpd (200,000 tpy). Venalum has been
operating near its installed capacity
of 1,180 tpd (430,000 tpy), although
there were some output losses due to
protests. The whole aluminium sector
would need some USD5.5bn to fully
recover, according to a study recently
completed by the Chinese government
at the request of Venezuela’s authorities. Production costs in Venezuela
are around USD3,700 per tonne of
aluminium, while prices were still in
the USD1,800/t level. The government
will pay delayed benefits and wages to
the sector’s workers, totalling roughly
213m Bolivares in three instalments
– one on 31 July, the second on 15 September and the last on 31 October.
Century to restart
construction at Iceland smelter
Despite lingering concerns about
oversupply in the aluminium market,
Century Aluminum Co. is preparing
to restart major construction at and
expand the capacity of its proposed
primary smelter in Iceland. Plans for
the smelter in Helguvik, Iceland, were
effectively put on hold late in 2008
due to tightening credit markets, the
collapse of the Icelandic economy,
and the downturn within the alumin-
ium industry. Century is now ramping up construction and is planning
to expand the eventual capacity of
the smelter to 360,000 tpy from its
previous target of 250,000 tpy. Century has reconfigured the phasing of
the project. Originally, the company
hoped to build a 250,000 tpy smelter
in two stages, with the first 150,000
tpy first stage going online in late
2010.
Now Century plans building the
smelter in four phases of 90,000 tpy
each. The company did not disclose
when the first phase might be completed. Century is still formulating
how much it plans on spending on
construction costs in 2009. When
built, Helguvik will be Century’s
second plant in Iceland. Its low-cost
Grundartangi smelter shipped at a
rate of approx. 276,000 tpy during the
second quarter.
Century recalls 28 workers
to Hawesville smelter
Century Aluminum Co. has brought
back 28 workers to its Hawesville/
Kentucky smelter as the company
plans to restart 21 pots that have been
left idled or damaged. Seven workers
will replace retiring employees, while
the remaining 21 will be tasked with
rebooting the pots that were allowed
to go out. While the repairs will not
directly lead to increased production,
they will allow the facility to operate more efficiently. The Hawesville
smelter has a nameplate capacity of
244,000 tpy over five potlines, each
with 112 pots. But the company is
only running four potlines currently,
equating to an annualized production
rate of 180,000 tpy. The rationale for
bring back the employees is twofold.
First, LME prices are in the midst of a
rally. Three-month aluminium closed
second-ring trade at USD1,837 per
tonne on 28 July, a 17.3% gain from
the USD1,565 level seen on 13 July,
based largely on improved demand
and a tightening marketplace. Additionally, the company just completed
a new long-term power contract with
Big Rivers Electric Corp., which will
supply the smelter with electricity
through 2023.
■
ALUMINIUM · 9/2009
Co m pa n y n e w s w o r l d w i d e
UC Rusal
Bauxite and alumina activities
Vedanta’s India bauxite
mining to begin by October
Vedanta Resources Plc. will begin
bauxite mining for its alumina plant
in eastern India by October and will
invest USD1.23bn to expand its capacity sixfold by 2011. The start of the
mining to feed the alumina refinery
in India’s eastern state of Orissa has
been delayed for at least four years by
protests from indigenous people, who
consider the area that will be mined
as sacred ground. In August 2008,
India’s Supreme Court allowed the
London-listed company to proceed to
mine bauxite from open-cast mines.
Vedanta has so far invested USD823m
in the plant, and will spend another
USD1.23bn to expand the capacity to
6m tpy from 1m tpy by 2011. The company has deposited USD28m with the
government as payments to ensure it
preserves wildlife, does reforestation
projects and launches development
work for residents. The Orissa Mining
Corp., Vedanta’s joint-venture partner, will supply 150m tpy of bauxite
to Vedanta’s plant from various locations, including Niyamgiri, which has
a 79m-tonne deposit.
Venezuela’s CVG Bauxilum announces USD110m recovery plan
Venezuelan bauxite and alumina producer CVG Bauxilum has announced
an immediate recovery plan worth
236.5 million bolivares (USD110m)
ALUMINIUM · 9/2009
to enable it to produce 3,200 tpd of
alumina throughout the second half.
CVG Bauxilum expects a total output
of 1.4m tonnes for 2009 once the recovery plan has been completed. The
boost in output for the second half
would allow the company to feed
the domestic market and attend sale
commitments in the international
market. Around 183.85m bolivares
(USD85.5m) will be used to revamp
works and to purchase raw materials
in Venezuela and other countries. The
remaining money will be used to pay
the company’s workforce labour benefits. CVG Bauxilum did not say when
it intends to finalise the 236.5m bolivares (USD110m) investment, but it is
likely that the capital will be spent by
December. The company is aiming to
produce 1.65m tonnes of alumina in
2010 and, afterwards, intends to reach
its installed capability of 2m tpy, with
further investment of 610.6m bolivares (USD284m).
Chinese firm buys 2.5m t
of alumina from Trafigura
China’s CPI Mengdong Energy Group,
the parent of smelter HMHJ Aluminium, has agreed to import 2.5m tonnes
of alumina from international trading
house Trafigura Group. The alumina
will be shipped in equal amounts
to the Chinese buyer over ten years
from 2010. The alumina will be priced
at less than 14% of the price of the
three-month aluminium contract of
the LME. The contract also set the
maximum and minimum prices for
alumina. That term price was about
10% lower than prices for current
spot alumina to China. Trafigura’s
contract will cover 18% of HMHJ’s
alumina needs in 2010, which are
about 1.4 m tonnes. HMHJ’s facilities in Inner Mongolia can turn out
700,000 tonnes of primary aluminium
in 2010 and that output will consume
around 1.4m tonnes of alumina. China
produced more than 90% of its alumina needs in the first half of this year
at 10.62m tonnes.
Alumar refinery completes
2m tpy alumina expansion
The Alumar alumina refinery in Brazil
has increased production as a result
of a 2m tpy expansion project. With
the project 98% complete, the refinery will ramp up to full production
throughout the second half of the
year. Total production capacity will
increase to 3.5m tpy from 1.5m tpy.
Alcoa is the majority stakeholder with
54%, while BHP holds a 36% stake
and Rio Tinto Alcan holds the remaining 10% share.
Nalco expects to get Andhra
Pradesh bauxite mines soon
India’s Nalco expects to receive mining leases for its proposed 4.2m tpy of
bauxite and 1.4m tpy alumina projects
in September 2009. Now that the Andhra Pradesh government has recommended that the central government
should grant bauxite mining leases to
Nalco in East Godavari and Visakapatnam districts of the state, Nalco has
crossed the first hurdle to the Rs70bn
(USD1.4bn) bauxite mining and alumina refinery project. The leases
cover 85m tonnes of bauxite reserves
of the same quality as Nalco’s other
mines, 20 km away in Orissa state.
However, due to a lack of land, ore
from the Andhra Pradesh mines will
have to be transported 20 to 30 km
to the refinery, unlike Nalco’s current
operations, where mine and refinery
are nearby. Nalco is one of the world’s
lowest cost alumina producers ➝
47
Co m pa n y n e w s w o r l d w i d e
at around USD120 per tonne. Nalco
will apply for forest and environment
clearance after it receives the mining
leases, and it may take five to seven
years before alumina production
starts at the export-oriented refinery.
Pisolite Hills bauxite
resource upgraded by 30%
Cape Alumina has raised the bauxite resource on its proposed 7m tpy
Pisolite Hills project in Queensland,
Australia, by 30% to 130m tonnes.
This upgraded estimate will form a
‘pivotal component’ of the bankable
feasibility study due to commence in
September 2009. There is potential
for an initial 12 to 15 year operation
at Pisolite Hills at a target production
rate of 7m tpy. The bauxite is suitable
as a blending feed for the new breed of
low-temperature Bayer-process refineries in China. Cape Alumina expects
to start construction on the Pisolite
Hills project in early 2011.
Steele/Alabama, and Morgantown/
Kentucky. At the ingot casting section of the sheet mill in Lewisport/
Kentucky recalls for 25 people have
occurred, partly due to increased activity and partly to replace retirees.
Aleris is reorganising under Chapter
11 court protection.
■
Commercial Alloys Corp.’s aluminium smelters in Minerva/Ohio, and
Scottsboro/Alabama, which have
been part of a Chapter 11 bankruptcy
case since November 2008, were sold
to an investment group headed by
David Kozin of Chicago-based Imperial Zinc Corp.
Imperial Coldwater Group LLC,
which shares Imperial Zinc’s address,
paid USD1.3m for the two facilities,
plus a value not yet established for the
inventory. The draft of the ‘final asset
purchase agreement’ was filed in U.S.
Bankruptcy Court for the Northern
District of Ohio. Three scrap veterans
at Imperial’s branch in Angola/Indiana – David Riddell, Aaron Stankewicz and Corbin Grimes – will handle metal purchase and some other
responsibilities. At one time, all three
worked for Imco Recycling, a company which had been eventually merged
into Aleris International Inc.
The Scottsboro plant is idle, while
Trimet
Recycling and secondary smelting
Aleris recalls
workers on auto restarts
Aleris International Inc. said more
than 100 aluminium workers have
been recalled during July at its specification alloy and recycling plants in
Coldwater and Saginaw/Michigan,
Investment group buying
two Commercial Alloys smelters
Novelis may stop buying scrap from AB InBev
Novelis Inc. has come close to saying it will
drop its long-time arrangement for buying
much of its can scrap through AnheuserBusch Inbev (AB InBev), a major customer
for the resulting aluminium canstock.
Novelis North America announced it will
change its used beverage can (UBC) procurement strategy at the end of its current
contractual commitments. Come January,
the most likely outcome will be an expanded purchasing unit at Novelis buying
directly from recyclers and municipalities,
although there has been no rumour about
the company recruiting scrap traders.
Long-shot possibilities are outsourcing to a nationwide scrapyard chain or
48
to Coca-Cola Recycling LLC, which so far
plays only a minor role as a direct scrap
supplier to Novelis, but which has greatly
expanded its staff and capabilities over
the past 18 months. It is part of Coca-Cola
Enterprises Inc. A stumbling block would
be that Coca-Cola would probably want
a fee-based tolling arrangement, with
a fixed conversion charge, while Novelis
likely would favour a buy-sell structure
for flexibility and confidentiality.
AB InBev has the twin roles of supplying Novelis with UBCs and of buying
the canstock made from it. The two sides
of the arrangement involve different segments of AB InBev. The sort of relation-
ship Anheuser-Busch and Novelis have
had can be very stressful, as the rolling
mill’s customer obtains intimate knowledge over time of margins between
material cost and product price, partly
from data fed into the detailed pricing
formulas written into the contracts.
If Novelis does begin purchasing
directly from a long roster of suppliers, it
will need to make concessions to recycler
paranoia about credit risk from debtladen scrap consumers. If the industry’s
relationships get shaken up, AB InBev
might be tempted to strengthen ties to
the smallest of the major canstock producers, Wise Metals Group.
ALUMINIUM · 9/2009
Co m pa n y n e w s w o r l d w i d e
the Minerva plant was producing
1,800 to 2,270 tpm. Once the Minerva plant is up and running close to
capacity, the Scottsboro smelter will
be fired up. The Minerva smelter is
expected to produce 3,600 to 4,100
tpm by the end of 2009. Commercial
Alloys, based in Twinsburg/Ohio,
also operated scrapyards there and in
Jacksonville/Florida, which had been
purchased by Reserve Management
Group, Solon/Ohio.
UK diecaster Thomas Brothers
plans to close in October
Leeds-based aluminium diecaster
Thomas Brothers plans to close in
October as a result of falling demand
for its products and a loss of customers. The gravity diecasting company
specialises in the manufacture of
high quality aluminium castings for
general and automotive industries,
and has over 35 years experience in
the industry. The company employs
about 27 people.
India’s Hindalco
to close down wheel plant
to USD65m from about USD280m
through debt-for-equity swaps with
first- and second-lien term loan lenders in an effort to provide a stable financial foundation for its operations.
The company and its domestic
affiliates will complete a pre-negotiated restructuring under its Chapter
11 filing in the U.S. Bankruptcy Court
for the District of Delaware. None of
the company’s foreign operations are
included. J.L. French has a USD15m
debtor-in-possession (DIP) facility to
fund working capital needs that might
arise during the reorganisation, and
expects to emerge from Chapter 11
within 90 days.
J.L. French manufactures engineered aluminium die-cast automotive parts, including oil pans, engine
front covers, engine blocks and transmission cases.
Southwire to pay USD335,000
EPA fine at Hawesville plant
Southwire Co. has agreed to pay
USD335,000 in civil penalties to the
state of Kentucky for a 2006 violation
of the federal Clean Air Act. The fine
related to testing, operational, monitoring and record-keeping requirements
at the Carrollton/Georgia-based company’s secondary aluminium production facility in Hawesville/Kentucky.
The fine represents the largest civil
settlement obtained for violations of
the Secondary Aluminium Maximum Achievable Control Technology
(MACT) regulations at a single facility
in the Southeastern United States.
The Kentucky Energy and Environ­
mental Cabinet Department of Air
Quality has since confirmed that the
air pollutant levels from the Hawes­­ville facility now meet industry standards established by the MACT rule,
which regulates the emission of metallic hazardous air pollutants, dioxins/furans, and hydrogen chloride and
fluoride and chlorine associated with
secondary aluminium production. Because the facility has come into compliance with the MACT standards, the
settlement requires no further action
to address compliance with the Clean
Air Act at the facility.
■
Aluminium semis
Auto supplier
J.L. French files for Chapter 11
J.L. French Automotive Castings Inc.
filed for Chapter 11 protection on 13
July in response to U.S. automotive
production declines and industrywide credit restrictions. The Sheboygan/Wisconsin-based aluminium automotive components manufacturer
also plans to reduce its secured debt
ALUMINIUM · 9/2009
Vimetco
Hindalco Industries intends to shut
down an aluminium alloy wheels plant
at Silvassa in western India, and will
take steps to sell the plant’s assets. The
company did not give any reason for
shutting the plant, which has the capacity to make 300,000 wheels a year,
but said it would not have any impact
on the operations and financials of the
company. The plant’s wheels were approved for supply to most major automakers including Maruti Suzuki, Tata
Motors, Ford and Hyundai.
NORTH AMERICA
Work starts on rebuilding
Alcoa press in Cleveland
Work has begun on the initial stages
of rebuilding Alcoa’s giant aerospace
forging press in Cleveland, but without any word on the vast majority of
funds needed to bring back the disabled equipment. Engineering work
had begun and some parts had been
ordered as part of a preliminary USD22m allocated by the parent company for repairing the 50,000 tonne
press, built originally by Mesta Machine Co. Among the parts needed
would be castings for the base, ➝
49
Co m pa n y n e w s w o r l d w i d e
which also would require the dismantling of the press.
The Cleveland facility, and the big
press in particular, plays a critical role
in supplying large aluminium forgings
for the new F-35 Joint Strike Fighter
for Lockheed Martin Co. Alcoa has
been able to produce the forgings
on other equipment at Cleveland,
although it is assumed in the aerospace industry that the 50,000 t press
would be required for the aircraft’s
full production stage. Alcoa continues
to forge parts for the F-35.
The total cost to bring back the
press – believed to be one of only
three of its approximate size in the
United States – is estimated at more
than USD110m, including USD60m
million to USD70m for rebuilding the
press itself, with the remainder for
such associated projects as new manipulator arms.
On the move
Alain Belda, Alcoa’s Executive Chairman, retired as an executive officer on
1 August. But Belda will continue to
serve as Chairman of the Board until
his term as a director expires at the
next annual meeting of shareholders
on 23 April 2010. Belda was Alcoa’s
CEO from 2001 until May 2008.
Alcoa expects Klaus Kleinfeld,
Alcoa President and CEO, to succeed
Belda as chairman of the board. Additionally, Alcoa appointed Tim D.
Myers President, Alcoa Wheel and
Transportation Products, with responsibility for forged wheels and aluminium
structures.
Alcoa appointed Nicholas DeRoma
as Executive Vice President, Chief Legal
& Compliance Officer. In addition to
leading Alcoa’s legal and compliance
operations worldwide, Mr DeRoma
will also serve on the Alcoa Executive
Council. He succeeds Michael Schell,
who continues as Executive Vice President, Business Development, and a
member of the Executive Council.
Aluminium Bahrain (Alba)’s Board
of Directors announced the appointment of Mohammed Mahmoud as
Alba’s new Chief Operating Officer, a
newly created position.
50
In September 2008, Alcoa declared
force majeure on the press after cracks
were discovered in its lower base.
Aluminium extruder to be sold
Patrick Industries Inc. has agreed to
sell its aluminium extrusion operation in Mishawaka/Indiana to Patrick
Aluminum Inc. for USD7.4m. Although classified as a discontinued
operation in the fourth quarter of
2008, the plant is capable of producing and painting semi-fabricated and
fabricated aluminium extrusions for
structural and non-structural uses.
Patrick Aluminum is a unit of UMC
Acquisition Corp., Lynwood/California. The extrusion operation will
continue to operate under the name
Patrick Metals.
ASIA
Hindalco plans to relocate
Novelis plants to India
Hindalco Industries is making meticulous plans to relocate plants owned
by its subsidiary Novelis to India from
Europe. The sheet mill at Rogerstone
in the UK employing 440 workers is
already closed, and one more plant in
the UK is also likely to be closed. Novelis plants in Europe bought their metal from Hindalco and other sources
for sheet making, and these shipping
costs can be avoided with the relocation. Hindalco is reportedly talking
to five leading can makers to supply
aluminium sheet, including Poland’s
Rexam, which is building a plant near
Mumbai in Taloja, and Britain’s Can
Pac, which is setting up a plant to
make one billion cans a year in India.
India’s safeguard duty on rolled products and foils protects it from cheap
imports for the next five years.
EUROPE
Armenal reports
increase in production
In June, Armenal produced nearly
2,500 tonnes of foil, a 12% improve-
ment on its nominal design capacity,
taking the rolling mill’s half-year production to over 10,000 tonnes. The
company reported a 77% production
increase from January to June 2009
compared to the first half of 2008 and
expects to see its output double by the
end of this year.
Armenal, in parallel with the
expansion of output, was making
improvements in practically every
technical and economic indicator,
including a 60% reduction in production costs and fewer rejects due to
production defects. The company has
enough orders on hand to keep the
foil mill running until the end of this
year. Its products are mainly exported
to the United States with the Middle
East becoming a rapidly growing market for them.
Sapa’s agreement
with Indalex complete
At the end of July, Sapa completed its
purchase of the US aluminium extrusion company Indalex. Sapa acquired
Indalex’s eleven active plants, six in
the US and five in Canada, with two
casthouses and 29 presses, and a
total capacity of about 315,000 tpy.
Indalex’s sales in 2008 were about
200,000 tonnes, representing USD900m. The company employs 1,400
The Author
The author, Dipl.-Ing. R. P. Pawlek,
is founder of TS+C, Technical Info
Services and Consulting, Sierre
(Switzerland), a new service for the
primary aluminium industry. He is also
the publisher of the standard works
Alumina Refineries and Producers of
the World and Primary Aluminium
Smelters and Producers of the World.
These reference works are continually
updated and contain useful technical and economic information on all
alumina refineries and primary aluminium smelters of the world. They
are available as loose-leaf files and/or
CD-ROMs from the Aluminium-Verlag,
Marketing & Kommunikation GmbH
in Düsseldorf, Germany.
ALUMINIUM · 9/2009
Co m pa n y n e w s w o r l d w i d e
people. Through this acquisition Sapa
strengthens its geographical coverage
and logistical efficiencies to better
serve North America, including an expansion into Canada. The acquisition
represents an underlying enterprise
value of approx, USD95m.
AFRICA
Anglo sells 28% of
South African Hulamin
Mining group Anglo American Plc.
sold 28% of South Africa’s Hulamin
Ltd for 732m rand (USD93m) to focus
on its core mining operations. Anglo,
which is fighting off an unwelcome
merger approach from rival Xstrata,
retained a 17% stake in Hulamin,
which makes semi-fabricated aluminium. The disposal was in line with Anglo American’s strategic commitment
to focus on its core mining operations.
Anglo sold 61m shares to Coronation
Asset Management at 12 rand per
share, compared to Hulamin’s price
in Johannesburg of 10.55 rand.
Hulamin posted a sharp drop in
interim profit and said that, although
order intake was recovering, annual
earnings would fall by at least 20%. At
the end of July Anglo sold its remaining stake in Hulamin, bringing the
transaction to a total of 1.16bn rand
(USD149.4m). Anglo sold its residual
35.8m shares in the aluminium products company to South African institutions at the same price of 12 rand
per share as for the first stake.
Suppliers
BWG GmbH acquires metal
treatment technology from VITS
BWG Bergwerk- und WalzwerkMaschinenbau GmbH has announced
the acquisition from VITS of technology for the thermal treatment of metal strip. BWG has formed a Thermal
Strip Treatment product division to
add to its established range of highquality cost-effective equipment and
services. This technology transfer
allows BGW to better meet the ever
growing challenges and needs of the
steel and aluminium industries.
By adding these products to its existing portfolio, BWG has broadened
its core competence in the field of
metallurgical strip processing. The
supply of thermal strip treatment
equipment is a logical addition to the
supply of coil coating lines and aluminium annealing lines, thus enabling
the company to offer integrated technical solutions. The new division is
fully integrated into BWG at its headquarters in Duisburg, Germany.
BWG is an internationally active
family-owned company. It delivers
strip treatment lines and coil and
slab handling equipment as well as
carrying out modernisation of existing
process lines and supplying specialist
equipment such as Levelflex tension
levellers, temper mills, side trimmers
and slab deburrers.
■
Alro – new annealing furnace put into operation
ALUMINIUM · 9/2009
Management Council, in accordance with
SAE Aerospace Standard AS 70003, following the testing of aluminium alloys
produced at Slatina for heat treatment,
conductivity measurement, tensile testing,
hardness and metallographic analysis.
Over the last seven years, Alro has invested in total more than 255 million US-dollars. This year, the company will complete
all investments started in 2008, which are
budgeted to reach approximately six million US-dollars.
Vimetco
Alro SA, the largest aluminium producer
in Central and Eastern Europe, has commissioned its annealing furnace with controlled atmosphere, following an investment of three million US-dollars. The new
technology improves the surface quality
of Alro’s aluminium products and the reliability of its mechanical properties. The
project, which began in 2007, will also
result in lower consumption of energy.
The start-up of the furnace is part of
an investment programme focused on increasing production of high added value
products, in line with Alro’s long-term
strategic goals. The investment has also
improved quality and allowed the best
response in meeting customer needs regarding product range and specifications.
The modernisation programme has
enabled Alro to receive the NADCAP (National Aerospace and Defence Contractor
Accreditation Programme) performance
certification for conformity with aerospace industry requirements, in 2008. The
certificate was awarded by the NADCAP
51
research
On the dissolution of alumina in a
low-melting electrolyte for aluminium production
S. Rolseth, J. Thonstad, H. Gudbrandsen, K.S. Osen, and J. Kvello, Trondheim
In studies of inert anodes for
aluminium production, so-called
low-melting electrolytes have been
tested, operating at temperatures
as low as 750°C. Dissolution of
alumina may then become critical, because of lower solubility
and lower rate of dissolution. The
rate of alumina dissolution was
tested in a particular electrolyte
operating at 750°C, using a very
fine-grained alumina as well as industrial grade alumina. The rate of
dissolution was markedly slower
in the low-melting electrolyte, and
the fine-grained material dissolved
more slowly than commercial
grade alumina, because it showed
greater tendency to agglomeration and because it was calcined
at high temperature. However,
crushed samples of commercial
alumina also dissolved more slowly than the normal grade.
Introduction
In the conventional Hall-Héroult process for aluminium electrolysis, the
cryolite-based (Na3AlF6) electrolyte
normally contains 10-13 wt% excess
AlF3, 3-6 wt% CaF2 and 2-4 wt% Al2O3,
operating at about 960°C. In modern
cells the alumina feeding is performed
by so-called point feeders, whereby
alumina is fed frequently in small
batches. This ensures rapid and usually trouble-free supply of alumina to the
molten electrolyte (often called bath).
When trying to replace the carbon
anode by oxygen-evolving, so-called
inert anodes, it is desirable to lower
the electrolyte temperature in order
to reduce the corrosion rate of the
anode material. This is achieved by
increasing the content of excess AlF3,
in some cases as far as ~37 wt% AlF3
(55 mol% NaF, 45 mol% AlF3, molar
ratio NaF/AlF3, CR=1.22), allowing
an operating temperature of about
750°C. At the same time the solubility of alumina decreases from about
52
10 wt% to about 3 wt% [1]. Thereby
the rate of dissolution of alumina may
become critical.
When a batch of alumina is being fed to aluminium cells, rapid and
complete dissolution is desirable in
order to control the concentration
of alumina in the bath and to avoid
so-called anode effects and to avoid
accumulation of undissolved alumina
(sludge). Dissolution tests performed
in cryolite melts at around 1,000°C
have shown that when the alumina
gets effectively dispersed in the bath,
the dissolution is very rapid, i. e. it is
completed in less than 10 s [2], but
the dissolution process is normally
slowed down because the alumina
has a tendency to form clumps/aggregates. When cold alumina is added as
a batch to the molten bath, it is difficult to achieve complete dispersion
of the alumina particles. When hitting
the bath, the alumina spreads out,
and bath freezes on to the alumina.
This results in the formation of flakeshaped agglomerates. The formation
of such agglomerates strongly reduces
the contact area between alumina and
bath compared to what would be the
case if all the alumina grains were effectively dispersed in the bath.
A large contact area between alumina and bath is obviously important
in order to ensure rapid heating and
dissolution of the alumina, since the
dissolution process, which is strongly
endothermic, has been found to be
mass transfer controlled [3]. The importance of this becomes even more
evident if the alumina is added to a
low-melting bath rich in aluminium
fluoride, where the alumina solubility is lower [1].
One remedy would be to establish
a large contact area between alumina
and bath. Beck and Brooks [4] have
patented a process where very finegrained alumina is used in low-melting baths, keeping the particles in
suspension in a bath agitated by gasinduced convection.
The purpose of the present work was
to study the dissolution rate of finegrained alumina when added batchwise to a low-melting bath with the
composition given above. The results
are compared with the well-documented behaviour of regular alumina in conventional baths at around
960°C.
Experimental
As mentioned above the process of
alumina dissolution in cryolite-based
melts involves the formation and
break-up of agglomerates. In a laboratory cell for studies of alumina dissolution, the convection pattern in the
melt should be as close as possible to
that existing in industrial cells. That
is difficult to achieve on a laboratory
scale. In industrial cells the anode gas
escaping up along the anode side sets
up strong convection, making the bath
move upwards close to the anode side
and down in the middle of the channel
between two anodes. At the same time
the bubbles, when reaching the bath
surface, create an undulating surface with bath splashing over newly
formed alumina agglomerates.
Effect of convection in the bath
The objective with the laboratory
set-up was to combine the effects of
convection and an undulating bath
surface. Convection in the bath was
ensured by mechanical stirring of the
melt with an impeller. Bubbling of argon gas through the bath was intended
to simulate the surface effect created
by escaping gas bubbles. A description of the gas stirrer arrangement is
given elsewhere [5].
The inner diameter of the crucible
was 20 cm. The amount of bath was
6500 g, and the composition of the
industrial type electrolyte that was
tested initially was 10 wt% AlF3, 5
wt% CaF2, and the initial Al2O3 concentration was 2 wt%, the balance be-
ALUMINIUM · 9/2009
research
Fig. 1: Sketch of the cell used for the dissolution experiments. Dimension:
Graphite crucible i. d. = 200 mm
ing cryolite. In Figure 1 a sketch of the
experimental arrangement is shown.
The in situ alumina probe measured the so-called critical current
density by a linear sweep voltammetric method [6, 7]. The critical current
density is correlated to the alumina
concentration. A few bath samples
were taken and analysed for alumina,
to serve as a control and calibration in
each experiment. The advantage of the
alumina probe was that it gave quick
and instantaneous results, yielding up
to one measurement per second.
To test out the method industrial
grade alumina was used initially. The
alumina was added in one batch since
the intention was to simulate the operation of point feeders. The batch
size was 0.45 g/cm2 bath surface corresponding to an increase in alumina
concentration in the bath by 2.2 wt%.
Dissolution curves for one experiment with mechanical stirring only
and one experiment with gas bubbling
together with mechanical stirring are
shown in Figures 2 and 3 respectively.
Data from the sweep measurements
show how much of the alumina is
dissolved as a function of time. The
bath temperature recorded during
the dissolution run is also given on
the graphs (right hand axis), showing
a marked drop in temperature upon
addition.
As can be seen from the dissolution curves, gas bubbling enhanced
the dissolution rate. This appears
to be due both to an increase in the
quantity which was dissolved initially
and an increase in the dissolution rate
of the remainder of the batch. The increase in the initial dissolution rate is
reflected in a faster and higher temperature drop in the case when gas
bubbling was applied (Fig. 3).
Experiments
in low-melting baths
As indicated above the composition
of the low-melting bath was 55 mol%
Fig. 2: Dissolution curve from an experiment with no gas stirring.
Bath convection maintained by mechanical stirring only
ALUMINIUM · 9/2009
NaF and 45 mol% AlF3, which corresponds to a NaF/AlF3 molar ratio (CR)
of 1.22. The alumina sensor was not
applied in these initial experiments.
Frequent bath samples were taken
for 20 minutes, and sampling was
continued at less frequent intervals
up until 2 hours after the addition. In
some experiments a second batch was
added at this time (2 hours after the
first batch), and sampling was continued for another 2 hours. Tests were
performed with fine-grained ‘superground’ Alcoa A152 Alumina (grain
size ~ 1 µm). For comparison experiments with industrial grade primary
alumina (grain size 30-150 µm) were
also performed.
Visual observations were made
when a batch of alumina was added. It
was observed that the part of the batch
that was dispersed quickly on the surface was rapidly soaked by bath, and
it was no longer visible after about 10
seconds. However, some lumps could
form and remain as floating ‘rafts’ on
the surface for up to 1 to 3 minutes
before they were soaked by bath and
started to sink as one piece.
Figures 4 and 5 shows the results
from sample analysis and recorded
temperatures for two samples of finegrained (~1 µm) alumina. In addition
dissolution rates were calculated
for the initial rapid phase. After the
first jump in alumina concentration
a slower dissolution took place, and
the dissolution rate was estimated for
the next 30 minutes as well. After 2
hours only 60% of the added alumina
had been dissolved, indicating very
slow dissolution of the remaining agglomerates.
Table 1 summarises results from
five experiments for the initial ➝
Fig. 3: Dissolution curve from an experiment with both gas bubbling
and mechanical stirring
53
research
Experiment 2
Experiment 1
CR = 1.22
CR = 1.22
Adding 2 wt% Al2O3 at time 0
Fig. 4: Dissolution curves, only one addition made of 2 wt% finegrained alumina. Squares: alumina concentration. Line: electrolyte
temperature
rapid stage of alumina dissolution,
where 1 to 4 represent fine-grained
alumina and 5 represents regular
industrial metallurgical grade (MG)
alumina. This rapid dissolution occurred within a time frame of 30 to
85 seconds.
The data show a marked difference
between experiments no 1 to 4 and
experiment no 5 (primary industrial
alumina). With the exception of experiment 1 (2 wt% addition), experiment
5 shows the highest initial dissolution
rate and by far the highest percentage of initially dissolved material. An
explanation for this difference can be
the tendency of the fine-grained material to form clumps/agglomerates of
sintered alumina on the surface of the
bath, which then dissolved slowly in
the bath. The relatively coarse-grained
regular alumina (experiment no 5)
showed a different behaviour on the
surface of the bath. It was free-flowExperiment Wt% added
1
2
3
4
5
Adding 1 wt% Al2O3 at time 0 and time 120
Fig. 5: Dissolution curves, two subsequent additions made of 1 wt%
fine-grained alumina. Squares: alumina concentration. Line: electrolyte temperature
normal baths at around 975°C show
typically that more than 50% of the
sample was dissolved initially, and
the sample was completely dissolved
after about 12 minutes. If we compare with experiment 5 in the present
work, it seems that the portion that
dissolves initially was about the same,
but the remaining part dissolved more
slowly. The time for total dissolution
of the samples in the low-melting bath
under study was more than one hour,
which means that the time for total
dissolution was increased by a factor
of five or more compared to conventional baths.
ing and it spread across the surface of
the melt, so it did not stick together
forming clumps, as experienced for
the fine-grained material.
The proportion of the batches
which had dissolved after 2 hours is
shown in Table 2.
The results show that the 2 wt%
additions in experiments 1 and 3 were
less efficient than the 1 wt% additions.
In the case of the 2 wt% batch sizes
the alumina took longer to get wetted and sink into the bath, so it may
have formed more strongly sintered
agglomerates.
For the second batch added in experiments 2, 4 and 5 there was also a
marked difference in the dissolution,
in the sense that the fine-grained
alumina dissolved more slowly. The
regular alumina was completely dissolved after 30-60 minutes.
Previous studies [5] of the dissolution of regular primary aluminas in
Addition of large batches of 6
wt-% industrial grade alumina to
low-melting baths (CR=1.22) and
to industrial type bath (CR=2.3)
In these experiments the concentration of dissolved alumina was moni-
Batch 1
Batch 2
Dissolution rate [g/min] Percent of batch dissolved Dissolution rate [g/min]
2
1
2
1
1
53
32
17
25
44
21.5
25
19
25
72
Percent of batch dissolved
22
26
53
17
22
63
Table 1: Dissolution in first rapid phase of the dissolution process
Batch 1
Batch 2
Experiment
Dissolution rate
[g/min]
Percent of batch
dissolved after 2 hours
Dissolution rate
[g/min]
Percent of batch
dissolved after 2 hours
1
2
3
4
5
0.71
0.81
0.55
0.50
0.46
60
94
44.5
75
100
0.49
0.34
0.65
48
55
82
Table 2: Dissolution rates in the period from 2 to 30 minutes after alumina addition and the total percentage that was dissolved after 2 hours
54
ALUMINIUM · 9/2009
research
Fig. 6: Dissolution curve, industrial electrolyte and industrial grade
alumina. Small points: alumina concentration measured by the
alumina probe. Squares: bath samples analysed for alumina concentration (Leco). Line: bath temperature
tored by the alumina probe in addition to control analysis of bath samples taken at regular intervals during
the runs. Figures 6 and 7 show the
dissolution behaviour in ‘standard’
bath and in low-melting bath respectively.
The results in Figure 6 show that
the sandy, industrial grade primary
alumina was completely dissolved
after approximately 30 minutes. This
is about 2.5 times longer than in the
comparable experiment in Figure
3, where only 2 wt-% alumina was
added.
When comparing the results shown
in Figures 6 and 7 there is a striking
difference in the initial dissolution.
The fine-grained alumina showed a
delayed response, and as expected it
did not dissolve completely, but levelled off after 50 minutes at about 3
wt-%, which is close to saturation [1].
The undissolved alumina remained
partly as a sludge at the bottom of the
crucible and partly in suspension in
the bath.
The conclusion of these experiments is the same as for the previous
tests, i. e. the dissolution rate in the
low-melting electrolyte was considerably slower than the dissolution of
regular alumina in normal Hall-Heroult bath. This is not surprising in
view of the following facts,
• Less driving force (lower concentration gradient)
• Expected lower mass transfer coefficient (due to lower temperature)
• Greater tendency to clumping.
The tendency to clumping is probably
related to the ‘fineness’ of the pow-
ALUMINIUM · 9/2009
Fig. 7: Dissolution curve for the first 60 minutes after addition of
industrial grade alumina to low-melting electrolyte. Small points:
alumina concentration measured by the alumina probe. Squares:
bath samples analysed for alumina concentration (Leco). Line: bath
temperature
der. This also makes it more difficult
to handle (low fluidity, dusting, etc). If
it is desired to maintain a permanent
suspension of alumina in the electrolyte, it would be preferable if it could
be achieved with a coarser-grained
alumina.
Visual observations
of alumina dissolution in
well-stirred, low melting baths
mental set-up is sketched in Figure 8.
The melt was agitated by a propellershaped platinum stirrer placed in the
centre of the crucible, operating at 254
rpm. A Pt/Pt10Rh (Type S) thermocouple was also immersed in the melt,
as shown in Figure 8. The amount of
bath was 140 g, and the temperature
was 740 ± 3°C prior to each addition.
The experiments were carried out as
visual observation of the time needed
for a batch of 0.5 wt-% alumina to dissolve. The melt became opaque immediately after the addition. The time
counted from the moment of addition
till the bottom of the crucible became
visible again, was taken as a measure
of the time of dissolution.
Table 3 lists the various types of
alumina that were tested in these experiments. An interesting parameter
gleaned from these curves is the ‘cut
size’ (d0.5), meaning that 50% of ➝
The background for these experiments
was the unexpected slow dissolution
observed for fine-grained alumina in
low-melting baths. One hypothesis
was that the alumina calcination temperature could be an important factor,
since the fine-grained material had
been calcined at 1,600°C. The objective of these experiments was to test
this hypothesis to see if the special
quality alumina was suited as a feed
material for
aluminium
electrolysis.
The experiments were
carried out in
an open furnace, where
the low-melting bath was
kept in a platinum crucible. The bath
composition
was as before 45 mol%
AlF3 and 55
mol% NaF,
i. e. CR = 1.22. Fig. 8. Experimental set-up for visual study of alumina dissolution in
The experi- low-melting bath
55
research
the mass has particle diameter less
than d0.5).
The results showed that there was
a marked difference in dissolution
time of the various aluminas; in fact
more than one order of magnitude.
The best dissolution behaviour was
observed for the ‘normal’ metal grade
alumina, as shown in Figure 9. In this
case relatively short dissolution times
were observed, similar to those previously observed for commercial aluminas in cryolite. The longest dissolution times were observed for crushed
MG alumina, calcined at 1,600°C,
where the dissolution time was of
the order of 5 to 20 minutes in the
alumina concentration range of 1 to 2
wt-% (see. Fig. 9). Even crushed MG
alumina pre-dried to 300°C, showed
dissolution times 4 to 10 times higher
than the ‘normal’ grade alumina in
this concentration range.
In view of the observations made
in these experiments it appears that
the fineness of the alumina is a determining factor for the dissolution
process. A high content of the alpha
phase seem to have an additional
detrimental effect, i. e. it increases the
time of dissolution. It has previously
been found that high alpha alumina
dissolves somewhat more slowly than
the gamma phase alumina in cryolitic
melts at 1,030°C [2] and it is possible
that this difference is enhanced in lowmelting baths, where the solubility of
alumina is lower. However, no simple
relationship could be found between
Type, description
Metal grade, commercial alumina
A-152, fine, 1 µm, highly calcined alumina, from Alcoa
Crushed MG* alumina, calcined at 1600°C
Crushed MG alumina, pre-dried at 300°C
*
Term
d0.5 /µm
MG
A152
CMG 1600
CMG 300
82.95
1.86
4.51
5.45
MG – Metal Grade
Table 3: Materials tested and cut sizes (see text)
these parameters and the time of dissolution. For example, the slowest dissolving alumina in these experiments
was the CMG 1600 material. Table 3
shows that 50% of the mass of this material has particles with diameter 4.5
µm or less (d0.5=4.507 µm), compared
to 1.86 µm for the A152 material.
These materials have both been calcined at 1,600°C and have thus been
converted to 100% α-alumina, but the
finer A152 (d0.5=1.86) dissolves more
rapidly than the coarser CMG 1600
(d0.5=4.5 µm).
Conclusion
It can be concluded from this investigation that if the only selection
criterion is the rate of dissolution in
low-melting baths, the normal industrial grade alumina is the best choice.
The main concern will probably be
the ability to operate the bath at near
saturation concentration with respect
to alumina. Hence, the problem of
maintaining slurry and avoiding forming sludge, i. e. alumina deposits, must
be given high priority, and operating
with fine-grained alumina might be
the only option. In that case finely
ground low-calcined alumina appears
to be the best choice.
Acknowledgement
Permission to publish given by Golden
Northwest Alumunum Holding Company, is gratefully acknowledged.
References
[1] E.J. Frazer and J. Thonstad, “Alumina
solubility and diffusion coefficient in lowtemperature fluoride electrolytes”, to be
published.
[2] J. Thonstad, F. Nordmo, J. B. Paulsen,
“Dissolution of Alumina in Molten Cryolite”. Met Trans. 1972, pp. 403-408.
[3] J. Thonstad, A. Solheim, S. Rolseth,
O. Skaar, “The Dissolution of Alumina in
Cryolite Melts”, Light Metals 1988, pp.
655-661.
[4] T. Beck and R. J. Brooks. “Non-Consumable Anode and Lining for Aluminum
Electrolytic Reduction Cell”, United States
Patent No. 5,284,562, 1994.
[5] S. Rolseth, R. Hovland, O. Kobbeltvedt,
”Alumina Agglomeration and Dissolution
in Cryolitic melts”, Light Metals 1994,
pp.351-357.
[6] O. Kobbeltvedt, S. Rolseth and
J. Thonstad, “On the Mechanism of Alumina Dissolution with Relevance to Point
Feeding Aluminium Cells”, Light Metals
1996, pp. 421-427.
[7] R. G. Haverkamp, B. J. Welch and
J. B. Metson, ”An Electrochemical Method
for Measuring the Dissolution Rate of
Alumina in Molten Cryolite”, Bulletin
of Electrochemistry, Vol.8, pp.334-340,
1992.
Authors
S. Rolseth, H. Gudbrandsen, K.S. Osen and
J. Kvello are from SINTEF Materials and
Chemistry, Trondheim, Norway.
Fig. 9: Results from three parallel runs with ‘normal’ MG alumina in low-melting bath.
Time observed to obtain transparent melt after addition of batches of 0.5 wt-% alumina.
Time plotted as a function of the concentration of alumina dissolved in the bath, determined from bath samples taken before the addition
56
J. Thonstad is from Department of Materials Technology and Electrochemistry,
Norwegian University of Science and
Technology, Trondheim, Norway.
ALUMINIUM · 9/2009
E v en t s
ALUMINIUM CHINA 2009 exceedingly successful
ALUMINIUM CHINA 2009 brought
together 265 exhibitors from 30 countries and regions, and 8,786 trade visitors, including 480 VIPs and 30 delegations from 32 provinces in China
and 61 countries around the world.
The number of visitor was up by 30%
compared with the 2008 event and
also a record compared to 2007 when
the industry was at its peak. 47% of
the visitors were from aluminium applications industries such as building and construction, transportation,
electronics and machinery manufacturing, while nearly 66% of visitors
had purchasing recommendation and
decision-making authority.
Leading the exhibitors this year
were some of the industry’s top companies such as the Aluminium Corporation of China, Nanshan Aluminium, Dubal, Novelis, SMS Metallurgy,
Siemens VAI, Wagstaff, Pyrotek, Jieru
Heavy Industry Equipment, Fata
Hunter, Achenbach, Toshiba Mitsubishi-Electric Industrial Systems
and others, who presented the latest products and leading technologies and, taken together, inspired the
Asian and the global community with
confidence in an imminent recovery.
The performance of the show in
Shanghai generated superb feedback
from participants, and three-quarters
of the international hall space had
already been booked for the 2010
trade fair by the end of the event. The
ALUMINIUM · 9/2009
on-site exhibitor survey showed that
more than 92% of the exhibitors were
satisfied or completely satisfied with
their participation, 86% were satisfied
with the number of visitors, while 87%
are satisfied with the visitor quality.
The marketing manager from Emmegi
China commented: “We received a
huge number of professional visitors
this year, who were genuinely interested in our products. We rebooked
our stand for 2010 as soon as we could
and expect to expand our market activities even more next year.”
this year: to meet old friends, find
out about the latest technologies, and
reach agreements with a number of
suppliers at the show.”
The associated 2009 China Aluminium Fabrication Forum, organised by the China Non Ferrous Metal
Industry Association along with
China’s aluminium information and
consultancy provider Antaike, was
moderated by experts and senior executives from IAI, AA, JAA, London
Metal Exchange and provided important information on the latest trends in
Reed Exhibitions
Those who attended ALUMINIUM
CHINA 2009 some weeks ago, the
fifth time that the event has taken
place in China, could be forgiven
for thinking that the industrial
downturn and economic crisis
have never spread as far as China.
Shanghai is still buzzing with
exhilarating business activities,
entertainment and the spending
spree mentality, and the world’s
most important aluminium industry gathering of the year, ALUMINIUM CHINA, was attended by
8,786 qualified trade visitors and
over 4,000 exhibiting staff from 61
countries and regions, a recordbreaking result despite the difficult economic situation.
More than 8,700 business people visited the Aluminium China 2009 fair
The on-site visitor survey showed the
same encouraging results, with 97%
of those attending being content with
their visit this year. The deputy plant
manager for the casting unit of the
Chinalco Luoyang branch declared:
“I was able to achieve all my goals
the global aluminium market. In light
of the positive feedback from exhibitors, organiser Reed Exhibitions has
confirmed that ALUMINIUM CHINA
2010 will again be held at the Shanghai New International Expo Centre,
from 9 to 11 June.
■
Schweißen & Schneiden 2009
Die ganze Welt der Schweißtechnik
steht im Mittelpunkt der Fachmesse
„Schweißen & Schneiden. Vom 14. bis
19. September 2009 präsentiert die in­
ternational wichtigste und umfassendste
Messe der Branche in Essen einen lücken­
losen Überblick zu aktuellen Entwick­
lungen und Innovationen rund um das
Fügen, Trennen und Beschichten. Alle
namhaften Hersteller sowie die Anbieter
von Dienstleistungen werden ihre Inno­
vationen vorstellen. Zur mittlerweile 17.
Auflage dieser Messe werden rund 1.000
Aussteller aus über 30 Nationen erwar­
tet. Aus circa 90 Ländern werden die
Fachbesucher nach Essen reisen, um sich
über das Weltmarktangebot zu infor­
mieren und Investitionen zu realisieren.
Kontakt:
Messe Essen GmbH
www.messe-essen.de
57
p a t en t e
Patentblatt Juni 2009
Fortsetzung aus 7/8 2009
Verfahren zur Herstellung eines Leichtmetall-Verbundgussteils sowie Leichtmetall-Verbundgussteil. BMW AG,
80809 München, DE. (B22D 19/00, EP 1
433 552, EP-AT: 04.11.2003)
Verfahren zur Herstellung von Gussteilen aus Leichtmetalllegierungen
mit Kühlung vor dem Pressen. Process
Conception Ingenierie S.A., Meudon, FR.
(C22F 1/04, PS 601 34 207, EP 1213367,
EP-AT: 16.11.2001)
Verfahren zum Herstellen von Zylinderblöcken aus Leichtmetall mit eingeschweißten Leichtmetall-Zylinderbüchsen und Einrichtung zur Durchführung
des Verfahrens. Volkswagen AG, 38440
Wolfsburg, DE. (B23P 13/00, PS 100 19
783, AT: 20.04.2000)
Legierung umfassend Mg und Sr und
hieraus gefertigte galvanische Opferanode. Magontec GmbH, 46240 Bottrop,
DE. (C23F 13714, OS 10 2007 061 561,
AT: 18.12.2007
Metallpulverherstellung durch Reduk­
tion der Oxide mit gasförmigem
Magnesium. H.C. Starck GmbH, 38642
Goslar, DE; H.C. Starck Inc., Newton Massachusetts 02161-1951, US. (B22F 1/00,
EPA 2055412, EP-AT: 05.05.1999)
Verfahren zum Löten von einem Werkstück aus einer Magnesiumlegierung
unter Verwendung einer stromfreien
Plattierung von Nickel-Phosphor, eines
Flüssigmittels und einem bleifreien
Zinnlegierungs-Lotmaterial. Magtech
Technology Co., Ltd, Taipei Hsi 236,
TW. (B23K 1/00, EPA 2055419, EP-AT:
20.05.2008)
Bauteil aus einer Magnesiumlegierung
und Verfahren zu dessen Herstellung.
Hon Hai Precision Industry Co. Ltd., Tucheng City, Taipei Hsien, TW. (F16S 5/00,
OS 10 2008 060 794, AT: 05.12.2008
Hochresistente Aluminiumbasis-Legierungen und daraus hergestellte Artikel.
Federalnoe Gosudarstvennoe Unitarnoe
Predpryatie „Vserossiysky“ Nauchno-Issledovatelsky Institut Neorganicheskikh
Materialov, Moskau/Moscow, RU; JointStock Co. „Samara Metallurgical Plant“,
Samara, RU. (C22C 21/10, PS 600 19 803,
EP 1241275, EP-AT: 28.09.2000)
Längliches Halteelement. Corus Bausysteme GmbH, 56070 Koblenz, DE. (E04D
3/362, PS 603 20 126, EP 1552081, EPAT: 29.08.2003)
Wärmetauscherprofil. Erbslöh Aluminium GmbH, 42553 Velbert, DE. (F28F 1/02,
GM 20 2006 005 013, AT: 29.03.2006)
58
Verfahren zur Herstellung geprägter
Deckelelemente für Behälter und
Deckelelemente für Behälter. Alcan
Technology & Management Ltd., Neuhausen am Rheinfall, CH. (B41F 19/02,
EP 1 892 096, EP-AT: 28.09.2006)
Verfahren zum Auftragen einer
Schutzbeschichtung auf Kohlenstoff
enthaltenden Bestandteilen von Elektrolysezellen. Alcan International Ltd.,
Montreal, Quebec, CA. (C25C 3/08, EP 1
693 486, EP-AT: 09.02.2001)
Konstruktionselement für die Luftfahrt
mit Variation der anwendungstechnischen Eigenschaften. Alcan Rhenalu, Courbevoie, FR. (C22F 1/053, PS
60 2005 006 764, EP 1727921, EP-AT:
21.03.2005)
Verbundprofil für Fenster, Türen oder
dergleichen mit einem Aufsatzprofil.
Alcoa Aluminium Deutschland, Inc.,
58642 Iserlohn, DE.(E06B 3/30, EPA
2055884, EP-AT: 14.11.2007)
Verkleidungsprofil. Corus Bausysteme
GmbH, 56070 Koblenz, DE. (E04F 19/02,
GM 201 01 392, AT: 26.01.2001)
Aus Leichtmetall bestehendes Profilrohr. RK Rose & Krieger GmbH Verbindungs- und Positioniersysteme, 32423
Minden, DE. (F16S 3/02, GM 299 10 111,
AT: 10.06.1999)
Verfahren zur Reinigung eines schmelzflüssigen Metalls. Aleris Switzerland
GmbH, Schaffhausen, CH. (C22B 21/06,
PS 60 2005 006 254, EP 1727917, EP-AT:
17.02.2005)
Verfahren zur Herstellung einer Bau­
strebe durch Crimpen, und so erhaltene Baustrebe. Norsk Hydro ASA, 0240
Oslo, NO. (E06B 3/273, EPA 2055883,
EP-AT: 23.10.2008)
Verbindungsstück und Verbindung
von Profilen mit diesem Stück. Norsk
Hydro ASA, 0240 Oslo, NO. (E06B 3/96,
EPA 2055885, EP-AT: 31.10.2008)
Vorrichtung zur Betätigung einer Tür
oder einem ähnlichem Element, das
aus Profilen erstellt ist. Norsk Hydro
ASA, 0240 Oslo, NO. (E05B 1/00, EPA
2050899, EP-AT: 17.10.2008)
Verfahren zur Herstellung eines Absorberblechs für Sonnenkollektoren.
Hydro Aluminium Deutschland GmbH,
51149 Köln, DE. (F24J 2/48, EPA 2054676,
EP-AT: 24.08.2007)
Verfahren und Vorrichtung zum Erzeugen einer Konversionsschicht. Hydro
Aluminium Deutschland GmbH, 51149
Köln, DE. (C25D 11/04, EPA 2055809,
EP-AT: 03.11.2008)
Beheizbare Bade- oder Duschwanne.
Hydro Aluminium Deutschland GmbH,
51149 Köln, DE. (F24 H 1/00, OS 10 2007
062 526, AT: 20.12.2007)
Druckplattenträger und Verfahren zur
Herstellung eines Druckplattenträgers
oder einer Offsetdruckplatte. Hydro
Aluminium Deutschland GmbH, 51149
Köln, DE. (B41N 1/08, PS 199 02 527,
AT: 22.01.1999)
Vorrichtung zum Rotationsgießen. Hydro Aluminium Mandl & Berger GmbH,
Linz, AT. (B22D 23/00, GM 201 22 596,
AT: 06.03.2001)
Lamellenanordnung für Fassaden. Hydro Building Systems GmbH, 89077 Ulm,
DE. (E04F 13/21, GM 20 2006 003 166,
AT: 01.03.2006)
Verfahren und Einrichtung zum kontinuierlichen oder halbkontinuierlichen
Stranggießen von Metall. Norsk Hydro
ASA, Oslo, NO. (B22D 11/06, EP 1 648
635, EP-AT: 25.06.2004)
Fresnel-Spiegel und Verfahren zu dessen Herstellung. Erbslöh Aluminium
GmbH, 42553 Velbert, DE. (F21V 7/04,
OS 10 2007 061 153, AT: 17.12.2007)
Zweiteiliger Kolben für einen Verbrennungsmotor. Mahle International
GmbH, 70376 Stuttgart, DE. (F02F 3/00,
OS 10 2007 060 472, AT: 14.12.2007)
Kühlkörper für Halbleiterbauelemente
oder dgl. Geräte sowie Verfahren zu
seiner Herstellung. Alcan Technology
& Management AG, 8212 Neuhausen
am Rheinfall, CH. (H01L 23/367, EPA
2054930, EP-AT: 09.08.2007)
Rahmen mit Fenster- oder Türflügel.
Norsk Hydro ASA, 0240 Oslo, NO. (E06B
3/46, EPA 2053189, EP-AT: 23.10.2008)
ALUMINIUM veröffentlicht unter
dieser Rubrik regelmäßig einen Überblick über wichtige, den Werkstoff
Aluminium betreffende Patente. Die
ausführlichen Patentblätter und auch
weiterführende Informationen dazu
stehen der Redaktion nicht zur Verfügung. Interessenten können diese
beziehen oder einsehen bei der
Mitteldeutschen Informations-, Patent-, Online-Service GmbH (mipo),
Julius-Ebeling-Str. 6,
D-06112 Halle an der Saale,
Tel. 0345/29398-0
Fax 0345/29398-40,
www.mipo.de
Die Gesellschaft bietet darüber hin­aus
weitere Patent-Dienstleistungen an.
ALUMINIUM · 9/2009
p a t en t e
Kolben für einen Verbrennungsmotor
sowie Verfahren zu seiner Herstellung.
Mahle International GmbH, 70376 Stuttgart, DE. (F02F 3/00, OS 10 2007 061 601,
AT: 20.12.2007)
Mehrteiliger Kolben für einen Verbrennungsmotor. Mahle GmbH, 70376
Stuttgart, DE. (F02F 3/00, EP 1 660 769,
EP-AT: 19.08.2004)
Vorrichtung zum kontinuierlichen Gießen von Metallblöcken. Novelis Inc., Toronto, Ontario M5J 1S9, CA. (B22D 11/14,
EPA 2058064, EP-AT: 09.12.2004)
Plattiertes Blechprodukt und Herstellungsverfahren dafür. Novelis Inc., Toronto, Ontario M5J 1S9, CA. (B32B 15/01,
EPA 2055473, EP-AT: 05.11.2007)
Bauelement mit Al-Papier-Schicht. Novelis Deutschland GmbH, 37075 Göttingen, DE. (E04 2/02, OS 10 2007 060
239, AT: 14.12.2007)
Wärmegedämmtes Verbundprofil, insbesondere für Fenster, Türen, Fassaden und dergleichen. Norsk Hydro A/S,
Oslo, NO. (E06B 3/263, PS 501 14 114, EP
1170454, EP-AT: 23.05.2001)
Verfahren und System zur automatischen Analyse von Partikeln. Norsk
Hydro ASA, Oslo, NO. (G01N 15/02,
PS 601 34 013, EP 1287330, EP-AT:
23.04.2001)
Gießpulver für das Stranggießen und
Verfahren zur Verwendung des Pulvers. Sumitomo Metal Industries, Ltd.,
Osaka, JP. (B22D 11/10, PS 698 09 659,
EP 0899041, EP-AT: 26.08.1998)
Patentblatt Juli 2009
Al-Mg-Legierungsextrusionsmaterial
mit hervorragenden Kaltverfestigungseigenschaften für Kaltverformungsverfahren. Denso Corp., Kariya-shi, Aichiken, JP; Kabushiki Kaisha Kobe Seiko
Sho, Kobe, Hyogo, JP. (C22C 21/06, OS
10 2008 054 436, AT: 09.12.2008)
Verfahren zur Herstellung von Flugzeugstrukturelementen aus Al-Si-MgLegierung. Alcan Rhenalu, Courbevoie,
FR. (C22F 1/05, PS 601 34 357, EP
1143027, EP-AT: 03.04.2001)
Dach eines Kraftfahrzeuges aus einem
an einem Stahlrahmen befestigten
Blech aus einer Al-Si-Mg-Legierung.
Alcan Rhenalu, Paris, FR. (C22C 21/08,
EP 1 633 900, EP-AT: 17.06.2004)
Leichtmetallrad. Sumitomo Rubber
Industries Ltd., Kobe, Hyogo, JP. (B60B
3/10, PS 602 27 440, EP 1241023, EP-AT:
14.03.2002)
ALUMINIUM · 9/2009
Al-Ni-Seltenerdmetall Sputtertarget.
Kabushiki Kaisha Kobe Seiko Sho, Kobe,
Hyogo, JP; Kobelco Research Institute,
Inc., Kobe, Hyogo, JP. (C23C 14/34, PS
60 2006 001 532, EP 1700928, EP-AT:
30.01.2006)
Anorganisches
Alpha-AluminiumMembransubstrat und Herstellungsverfahren dafür. Corning Inc., Corning NY 14831, US. (C04B 38/06, EPA
2061734, EP-AT: 11.12.2007)
Sammeln von Aluminium in Elektrolyse­
zellen. Moltech Invent S.A., 2134 Luxembourg, LU. (C25C 3/08, EPA 2064370,
EP-AT: 20.06.2007)
Rüttelmaschine zur Abformung von
ungebrannten Anodenblöcken, insbesondere für die Aluminium-Schmelzflusselektrolyse. Outokumpu Oyj, Espoo, FI. (C25C 3/12, PS 100 44 677, AT:
09.09.2000)
Verfahren zur Ausbildung und Feinverteilung feiner Wasserstoffbläschen
in Wasserstoff enthaltenden Aluminium-Gusslegierungsschmelzen. Schäfer
Chemische Fabrik GmbH, 53773 Hennef,
DE. (C22C 1/08, PS 10 2004 006 034, AT:
06.02.2004)
Werkstoff auf der Basis einer Aluminiumlegierung, Verfahren zu seiner
Herstellung sowie Verwendung hierfür. Mahle GmbH, 70376 Stuttgart, DE;
PEAK Werkstoff GmbH, 42553 Velbert,
DE. (C22C 21/02, OS 10 2004 007 704,
AT: 16.02.2004)
Druckgussbauteile aus Aluminium- und
Magnesiumlegierungen mit mechani­
schen Verbindungen und Verfahren
zum Verbinden. Daimler AG, 70327
Stuttgart, DE. (F16B 4/00, OS 10 2004
039 748, AT: 17.08.2004)
Rapid-Prototyping durch Al/Mg-3DDruck. General Motors Corp., Detroit,
Mich., US. (B22F 7/00, OS 11 2005 002
040, WO-AT: 16.05.2005)
Tür- und Fensterprofile, außen Holz
und innen liegend Aluminium. Noka
Holzverarbeitungs-GmbH, 26683 Saterland, DE. (E06B 3/08, GM 201 04 502,
AT: 14.03.2001)
Schweißloses
Verbindungselement,
Stütze für Sanitär und Möbel aus Aluminium, Edelstahl. Schikoff, Robert,
90471 Nürnberg, DE. (F16B 19/02, GM
20 2009 001 743, AT: 11.02.2009)
Verbessertes Verfahren zur Herstellung von Filterhilfsmitteln in Aluminiumraffinerien. BHP Billiton Worsley
Alumina Pty. Ltd., Collie, Western Australia, AU. (B01D 37/02, EP 1 301 260,
EP-AT: 20.07.2001)
Kolben mit einem Aluminiumeinsatzstück und Verfahren zur seiner Herstellung. Renault S.A.S., Boulogne Billancourt, FR. (F02F 3/00, PS 60 2004 014
825, EP 1439301, EP-AT: 14.01.2004)
Verfahren zur Behandlung von Aluminium in einem Ofen. L’Air Liquide, Société Anonyme pour l‘Etude et
l‘Exploitation des Procédés Georges
Claude, Paris, FR. (C22B 21/00, EP 1 625
241, EP-AT: 30.03.2004)
Verfahren zur Verarbeitung von Aluminium in einem Rotations- oder Flammofen. L’Air Liquide, Société Anonyme
pour l‘Etude et l‘Exploitation des Procédés Georges Claude, Paris, FR. (F27B
7/20, PS 60 2005 007 710, EP 1721111,
EP-AT: 07.02.2005)
Stranggepresstes Produkt aus Aluminiumlegierung, Verfahren zu seiner
Herstellung,
Mehrfachleitungsrohr
für Wärmetauscher und Verfahren
zur Herstellung vom Wärmetauscher
mit dem Mehrfachleitungsrohr. Denso
Corp., Kariya, Aichi, JP; Sumitomo Light
Metal Industries, Ltd., Tokio/Tokyo, JP.
(C22C 21/00, PS 60 2006 001 552, EP
1746174, EP-AT: 21.07.2006)
Verfahren zum Diffusionsfügen von
Mg/Al-Bauteilen. General Motors Corp.,
Detroit, Mich., US. (B23K 35/28, PS 602
16 369, EP 1273385, EP-AT: 08.05.2002)
Beschichtetes, Aluminium enthaltendes Material und Verfahren zur dessen
Herstellung. Denso Corp., Kariya, Aichi,
JP; Nihon Parkerizing Co., Ltd., Tokio/
Tokyo, JP. (B05D 7/16, PS 695 28 854,
EP 0676250, EP-AT: 07.04.1995)
Verfahren zur Oberflächenbehandlung
von Aluminium enthaltenden Metallen.
Denso Corp., Kariya, Aichi, JP; Nihon Parkerizing Co., Ltd., Tokio/Tokyo, JP. (C23C
22/83, PS 698 11 818, EP 0911427, EPAT: 22.10.1998)
Verfahren zum Vollformgießen von
Aluminium mit beschichtetem Modell.
General Motors Corp., Detroit, Mich., US.
(B22C 3/00, PS 698 18 379, EP 0899038,
EP-AT: 31.07.1998)
Hubkolbenmaschine mit Aluminiumblock und Aluminiumkolben. General
Motors Corp., Detroit, Mich., US. (F02F
3/10, PS 699 08 837, EP 0937889, EP-AT:
21.01.1999)
Verfahren zur simultanen elektrolyti­
schen Abscheidung von Zink und Magnesium auf einem Substrat aus Blech
und Verfahren zur Herstellung eines
korrosionsgeschützten, lackierten Form­
teils aus Blech. ThyssenKrupp Steel AG,
47166 Duisburg, DE. (C25D 3/56, PS 10
2004 037 673, AT: 04.08.2004)
➝
59
p a t en t e
Aluminiumlegierung vom Typ Al-Zn-Mg
und Verfahren zu deren Herstellung.
Aluminium Lend GmbH & Co.Kg., 5651
Lend, AT. (C22C 21/10, EPA 2061912,
EP-AT: 03.09.2007)
Hochfeste, nicht brennbare Magnesiumlegierung. National Institute of Advanced Industrial Science and Technology, Tokio/Tokyo, JP. (C22C 23/00, WO
2008 026333, WO-AT: 28.02.2007)
Hochfestes Aluminiumlegierungshartlötblech. Aleris Aluminum Koblenz
GmbH, 56070 Koblenz, DE. (B32B 15/01,
PS 60 2004 013 327, EP 1648694, EP-AT:
09.07.2004)
Aluminiumlegierung für Motorbauteile. GM Global Technology Operations,
Inc., Detroit, Mich., US. (C22C 21/12, OS
10 2007 042 099, AT: 05.09.2007)
Druckgussteile aus einer kriechbeständigen Magnesiumlegierung. General
Motors Corp. (n.d.Ges.d. Staates Delaware), Detroit, Mich., US. (C22C 23/02,
PS 600 09 783, EP 1048743, EP-AT:
31.01.2000)
Aus einem profilgewalzten Metallprodukt hergestelltes Rohr und Herstellungsverfahren dafür. Aleris Aluminum Koblenz GmbH, 56070 Koblenz,
DE. (F28D 1/03, EP 1 802 932, EP-AT:
04.10.2005)
Zusammensetzung und Verfahren zur
Behandlung von Magnesiumlegierungen. Université Pierre et Marie Curie,
Paris, FR. (C23C 22/57, PS 602 27 065, EP
1390565, EP-AT: 31.05.2002)
Aluminiumband für lithografische
Druckplattenträger und dessen Herstellung. Hydro Aluminium Deutschland
GmbH, 51149 Köln, DE. (C22F 1/04, EPA
2067871, EP-AT: 30.11.2007)
Aluminiumlegierung für Motorblöcke.
General Motors Corp., Detroit, Mich., US.
(C22C 21/02, OS 11 2004 001 160, WOAT: 26.03.2004)
Folienverpackung. Alcan Technology
& Management Ltd., 8212 Neuhausen
am Rheinfall, CH. (B65D 75/28, EPA
2065316, EP-AT: 27.11.2007)
Elektrolysezelle und Verfahren zu ihrem Betrieb. Norsk Hydro ASA, 0240
Oslo, NO. (C25C 3/16, EPA 2066831,
EP-AT: 12.09.2007)
Verfahren zur Streckformung von ausgehärteten Blechen aus Aluminiumlegierung. General Motors Corp., Detroit,
Mich., US. (B21D 22/22, PS 699 23 742,
EP 0992300, EP-AT: 02.09.1999)
Gegenstand aus einer mit Kunststoff
hinterspritzten Aluminiumfolie. Alcan Technology & Management Ltd.,
8212 Neuhausen am Rheinfall, CH.
(C25D 11/08, EPA 2063001, EP-AT:
20.11.2007)
Lamelle, insbesondere Sonnenschutzlamelle. Hydro Building Systems GmbH,
89077 Ulm, DE. (E06B 9/386, PS 10 2006
005 240, AT: 06.02.2006)
Verfahren zum Herstellen eines Gegenstandes aus Metall, insb. aus einer
hochfesten Aluminiumlegierung sowie
Verfahren zum Richten eines solchen
Gegenstandes. Otto Fuchs KG, 58540
Meinerzhagen, DE. (B23P 13/00, OS 10
2008 003 882, AT: 10.01.2008)
Verfahren zum Herstellen von Gussteilen aus Leichtmetall mit Einsätzen.
Georg Fischer GmbH, 58791 Werdohl,
DE. (B22D 19/00, EPA 2070612, EP-AT:
11.12.2007)
Verfahren zum Leichtmetall-Legierungs-Sintern. Schwäbische Hüttenwer­
ke Automotive GmbH & Co. KG, 73433
Aalen, DE. (C22C 1/04, PS 50 2004 007
370, EP 1709209, EP-AT: 26.11.2004)
Preform für Verbundwerkstoffe mit einer Metallmatrix aus Magnesium. Her
Majesty in Right of Canada AS represented by the Minister of Natural Resources,
Ottawa, Ontario, CA. (C22C 47/06, PS
100 34 631, AT: 17.07.2000)
Druckgussbauteile aus Al- und Mg-Legierungen mit mechanischen Verbindungen und Verfahren zum Verbinden. Daimler AG, 70327 Stuttgart, DE.
(F16B 4/00, OS 10 2004 039 748, AT:
17.08.2004)
Verfahren zum Diffusionsfügen von
Mg/Al-Bauteilen. General Motors Corp.,
Detroit, Mich., US. (B23K 35/28, PS 602
16 369, EP 1273385, EP-AT: 08.05.2002)
Verfahren zur elektrolytischen Herstellung von Magnesium und dessen
Legierungen. General Motors Corp., Detroit, Mich., US. (C25C 3/04, PS 696 03
668, EP 0747509, EP-AT: 13.05.1996)
Verkleidungselement. Hermann Gutmann Werke AG, 91781 Weißenburg,
DE. (E04F 13/08, EPA 1854938, EP-AT:
27.04.2007)
60
Flächige Beleuchtungseinrichtung. Alcan Technology & Management Ltd.,
Neuhausen am Rheinfall, CH. (F21K
7/00, EP 1 861 651, EP-AT: 08.03.2006)
Geschweißtes Strukturelement mit
mindestens zwei Aluminiumlegierungsteilen, die verschiedene metallurgische
Zustände haben, und Verfahren zur
Herstellung eines solchen Elements.
Alcan Rhenalu, Paris, FR. (B23K 20/12,
EP 1 799 391, EP-AT: 12.09.2005)
Reibrührschweißteile sowie Systeme
und Verfahren zu ihrer Herstellung.
Alcoa Inc., Pittsburgh, PA 15212-5858,
US. (B23K 20/12, EPA 2067563, EP-AT:
12.11.2008)
Vorrichtung und Verfahren zur kontinuierlichen Metallschmelzezuführung
unter Druck. Alcoa Inc., Alcoa Center,
Pa., US. (B22D 17/20, PS 602 27 580, EP
1714718, EP-AT: 18.04.2002)
Aluminiumlegierungsprodukt
mit
ver­besserten Eigenschaftskombinati­
onen. Alcoa Inc., Pittsburgh, Pa., US.
(C22C 21/10, EP 1 565 586, EP-AT:
17.11.2003)
Unterstruktur für ein Dach oder eine
Fassade. Corus Bausysteme GmbH,
56070 Koblenz, DE. (E04D 3/36, OS 102
97 074, WO-AT: 09.08.2002)
Dachkonstruktion und Befestigungsvorrichtung dafür. Corus Bausysteme
GmbH, 56070 Koblenz, DE. (E04D 3/362,
GM 203 05 954, AT: 11.04.2003)
Fahrzeugkarosserie mit einem Karosserieelement. BMW AG, 80809 München, DE; Norsk Hydro ASA, Oslo, NO.
(B62D 65/02, OS 10 2007 058 783, AT:
06.12.2007)
Schiebetür oder Schiebefenster mit
thermisch isolierter Führungsschiene.
Norsk Hydro ASA, Oslo, NO. (E06B 3/46,
PS 60 2006 001 448, EP 1772582, EP-AT:
03.10.2006)
Glashalteleiste, Rahmenkonstruktion
sowie Verfahren zur Montage einer Glashalteleiste. Hermann Gutmann Werke AG, 91781 Weissenburg,
DE. (E06B 3/58, EPA 2060728, EP-AT:
10.11.2008)
Verfahren zur Herstellung einer Leichtmetalllaufbuchse mit einer äußeren
rauen Oberfläche. Mahle GmbH, 70376
Stuttgart, DE. (B22C 9/02, OS 102 18 714,
AT: 26.04.2002)
Kolben für einen Verbrennungsmotor
und Verfahren zur Beschichtung seiner
Nabenbohrungen. Mahle International
GmbH, 70376 Stuttgart, DE. (F02F 3/10,
EP 1 877 659, EP-AT: 09.12.2005)
Einteiliger Kühlkanalkolben für einen
Verbrennungsmotor. Mahle GmbH,
70376 Stuttgart, DE. (F02F 3/22, EP 1 546
536, EP-AT: 19.09.2003)
Legierungen auf Magnesiumbasis mit
hoher Festigkeit / Duktilität für kons­
truktive Anwendungen. GM Global
Technology Operations, Inc., Detroit,
Mich., US. (C22C 23/02, OS 11 2007 001
169, WO-AT: 16.05.2007)
ALUMINIUM · 9/2009
li t e r a t u r se r v ice
Bauelement mit Al-Papier-Schicht. Novelis Deutschland GmbH, 37075 Göttingen, DE. (E04C 2/02, EPA 2071094, EPAT: 20.12.2007)
Magnesiumlegierungselement
und
Herstellungsverfahren dafür. Sumitomo Electric Industries, Ltd., Osaka-shi,
Osaka 541-0041, JP. (C22C 23/02, EPA
2060642, EP-AT: 10.07.2007)
Hartlötblech mit sehr langer Haltbarkeit und großer Formbarkeit. Alcoa
Inc., Pittsburgh, PA 15212-5858, US.
(B32B 15/20, EPA 2065180, EP-AT:
17.04.2003
L. H. Kallien, Chr. Böhnlein
Druckgießen
Giesserei 96, 07/2009, S. 18-26
Großabnehmer von Gussteilen haben vermehrt begonnen, ihre
erlangte Marktstärke gegenüber den Metallgießern zu nutzen,
um Einkaufsbedingungen und Zahlungsmodalitäten zu ihren
Gunsten durchzusetzen. Aufkommende Lieferkonzepte wie
„Just in time“ verlangten vom Druckgießer ein deutlich hohes
Maß an Flexibilität. Die Einhaltung stetig steigender Qualitätsanforderungen stellte die gesamte Branche auf eine harte
Probe – etwa die geforderte Null-Fehler-Produktion mit 99,994
Prozent korrekten Teilen Ende der achtziger Jahre. Aus heutiger
Sicht lässt sich diesbezüglich jedoch eine klare Aussage treffen.
Aufgrund dieser geänderten Rahmenbedingungen sahen sich
viele Betriebe einer Marktsituation gegenüber, die nur durch
konsequente Steigerung von Produktivität, Flexibilität, Prozesssicherheit und Qualität zu bewältigen war. Auch der Blick über
die Grenzen nach Japan Ende der achtziger Jahre bestätigte die
geringe Kapazitätsauslastung der heimischen Druckgießereien
und führte Anfang der neunziger Jahre zu einem verstärkten
Interesse an Lean Production. Behandelt werden im Einzelnen:
Druckgießverfahren, Werkstoffverbünde, Druckgießprozess,
Druckgießmaschine, Druckgießwerkzeug, Trenn- und Schmierstoffe, Schmelze, Qualität, Simulation, Gusswerkstoffe. 11 Abb.,
125 Qu.
ALUMINIUM 9 (2009)
Aluminium-Industrie, Druckguss
W. Lori
Störfaktor Reibung. Die Bedeutung
der Reibung in Schraubenverbindungen
Konstruktionspraxis 7/2009, S. 50-51
Der Ingenieur hat ständig mit Reibung zu tun – bewusst und
unbewusst. In der Praxis zeigt sich immer wieder, dass die Bedeutung der Reibung falsch eingeschätzt wird. Beim drehmomentgesteuerten Anziehen kann dies fatale Folgen haben. Der
Zusammenhang zwischen Anziehmoment und der Zielgröße
Montagevorspannkraft ist wesentlich von der Reibung abhängig. In der Schraubenverbindung ist eine Reibung unvermeidbar
und kann zum Fluch oder Segen werden. Schließlich entstehen
durch Reibung und Verschleiß jährlich Verluste in Höhe von
etwa fünf Prozent des Bruttosozialproduktes. Doch was ist Reibung und wie wirkt sie sich aus? 3 Abb., 3 Tab.
ALUMINIUM 9 (2009)
Verbinden
H. Zak, B. Tonn, S. Kores
Warmfeste Aluminiumgusslegierungen
für Zylinderköpfe in direktem Wettbewerb
Giesserei-Praxis 6/2009, S. 199-202
In dieser Arbeit wurden die warmfesten Zylinderkopflegierungen AlSi6Cu4, AlSil2CuNiMg, AlCu5NiSbZr und AlMg3SilScZr unter einheitlichen Bedingungen getestet, um eindeutige
Aussagen über die tatsächlichen Eigenschaftsprofile dieser
Werkstoffe zu treffen. Die beste Kombination aus gießtech-
ALUMINIUM · 9/2009
Alpha-Aluminiumoxid-Pulver. Sumitomo Chemical Co., Ltd., Tokyo 104-8260,
JP. (C01F 7/44, EPA 2070873, EP-AT:
18.09.2007)
Strukturelement. Norsk Hydro ASA,
0240 Olso, NO. (B62D 25/08, EPA
2070807, EP-AT: 02.12.2008)
nischen und mechanischen Eigenschaften sowie ein attraktives
Preisleistungsverhältnis verleiht der Legierung AlSil2CuNiMg
die größte Chance, sich im Einsatz bei hoch belasteten Aluminiumzylinderköpfen in naher Zukunft durchzusetzen. Die
kontinuierliche Zunahme der Motorleistung in Verbindung mit
höheren Leistungsdichten stellt permanent wachsende technische Anforderungen an die Zylinderkopflegierungen. Der
anhaltende Zwang zur Gewichts- und Kostenreduzierung sowie die Gewährleistung einer prozesssicheren Herstellbarkeit
der Zylinderköpfe verschärft das Spannungsfeld für die Weiterentwicklung von diesen Motorenkomponenten noch weiter.
Das am Zylinderkopf auftretende Lastkollektiv wird in statische
und dynamische Beanspruchungen unterteilt. 7 Abb., 6 Tab.,
16 Qu.
ALUMINIUM 9 (2009)
Legierungen
J. Zähr, M. Schnick, U. Fussel,
M. Sende, S. Rose, M. Speiseder, A. Lang, G. Wilhelm
Untersuchungen zur Oberflächenreinigung
beim Lichtbogenschweißen von Aluminiumlegierungen
mit nicht abschmelzender Elektrode
Schweißen und Schneiden 61 (2009), Heft 6, S. 302-311
Vorgestellt werden Untersuchungen zum Einfluss der Schweißparameter sowie der Zusammensetzung von Prozessgas und
Grundwerkstoff auf die Breite und Regelmäßigkeit der Reinigungszone beim WIG-Schweißen von Aluminium mit Gleichstrom und plusgepolter Elektrode. Die Untersuchungen belegen
einen großen Einfluss der Schutzgasabdeckung, der verwendeten Prozessgase sowie der Zusammensetzung des Grundwerkstoffs. Außerdem werden durch Hochgeschwindigkeitskinematographie sowie Rasterelektronenmikroskopaufnahmen zwei
unterschiedliche Lichtbogenansätze am katodisch gepolten
Aluminium identifiziert. Es werden die Ursachen der unterschiedlichen Ansatzmodi erläutert und Möglichkeiten dargestellt, wie der Lichtbogenansatz und die Reinigungswirkung
gezielt beeinflusst werden können. 16 Abb., 3 Tab., 21 Qu.
ALUMINIUM 9 (2009)
Schweißen
A. Pithan, H. Fuchs, S. Röpke
Potenziale von Aluminiumlegierungen
für hoch belastete Zylinderköpfe
Giesserei-Praxis 6/2009, S. 203-207
Steigende spezifische Leistungen von Verbrennungsmotoren
– insbesondere von modernen Dieselmotoren – stellen an
den Zylinderkopf immer höhere Anforderungen Ein typisches
Beispiel ist der aktuelle 2,0l-4V-TDI-Motor mit Common-RailEinspritzung von Volkswagen. Die Belastungen äußern sich
vor allem in hohen Zünddrücken und Temperaturen. Moderne
Dieselmotoren arbeiten heute mit Zünddrücken bis zu 180 bar,
aber auch solche von 200 bar und mehr sind bereits in der
Automobilindustrie im Gespräch. Die Betriebstemperaturen
bei den Zylinderköpfen betragen dabei im Brennraum 220 bis
250 °C. Aufgabe ist es, Bauteile zu entwickeln, die diesen Belastungen zuverlässig standhalten. Dabei ist die optimale ➝
61
L i t e r a t u r e se r v ice
Kombination von Konstruktion, Gießverfahren und Werkstoff
gefordert. Untersuchungen zum Einsatz geeigneter Zylinderkopflegierungen haben gezeigt, dass die Legierung allein die
Forderungen nicht erfüllen kann. Ein funktionierendes Bauteil
erhält man nur durch geeignete Konstruktion und ein werkstoffgerechtes Herstellungsverfahren. Dies beinhaltet neben dem
Gießen vor allem auch die Wärmebehandlung. Bei den Bauteilfestigkeiten ist zu beobachten, dass die nominellen statischen
Werte durch Eigenspannungen – z.B. aus der Warmbehandlung
– überlagert werden können. Dies kann dazu führen, dass das
nominelle Potenzial des Werkstoffs nicht immer genutzt wird.
13 Abb., 3 Tab.
Anwendung
ALUMINIUM 9 (2009)
R. A. P. Fielding
Homogenization of Aluminium Alloy Extrusion Billet
Part III: The Application of the Continuous
Homogenization Process to AA6xxx Series Alloys
Light Metal Age, April 2009, S. 8-17
The majority of AA6xxx extrusion alloy billets are homogenized
in one of the 90 continuous furnaces manufactured by Hertwich Engineering since their first prototype was supplied to
Amag in Austria in 1980. The advantages of this technology
and issues specific to the design, operation and control of these
furnaces are discussed. The productivity and, to a large degree,
the recovery from the extrusion of an aluminium alloy billet
is dependent on its thermal history from alloying and casting
through homogenization until its entry to the extrusion die. As
was pointed out by Reiso, an optimum billet structure for one
extruder may not be the optimum for another. Whether a prime
or a secondary producer supplies the extrusion billet, variations in the chemical composition, the preparation of the melt,
or the casting and homogenization processes, can be detected
at the extrusion press. Additionally, in the extrusion plant, the
specific pressure of the presses and the design of the extrusion
dies affect the choice of die, billet and container temperatures.
The rate of heating the billet before entering the extrusion press
varies between induction and gas-fired furnaces. All of these
factors have an influence on the optimum billet structure. As a
consequence, the production of extrusions, from molten metal
to the age ovens, must be looked upon as a whole. What happens
at one stage of the production process is not independent of the
other stages. 5 figures, 27 sources
Strangpressen
ALUMINIUM 9 (2009)
J. C. LaBelle, T. Dolby
Hex Washer-Head Fastener
Pull-Over in Moderately Thin Aluminium
Light Metal Age, April 2009, S. 40-43
Pull-over, also termed pull-through, is a mode of failure for a
tension-loaded fastener in which the sheet, plate or extrusion
locally tears and/or deforms sufficiently to allow the head to
pass completely through. Screws are used to resist tensile design
loads in a variety of aluminium structures including skylights,
curtain walls, and window framing. The Aluminium Design
Manual (ADM) includes equation 5.4.2.2-1 for pull-over of tapping screws installed in aluminium. This formula, however, was
based on testing of relatively thin aluminium, 1.02 mm (0.040“)
maximum, using hex-head fasteners with loose washers that
were a metal/rubber combination. Subsequently, limited testing
indicated that this equation was likely conservative for greater
thicknesses. Thus, a testing programme was initiated in order to
study behaviour and provide design guidance for the pull-over
mode for hex-head screws with integral or loose metal-washers,
and pan-head screws, installed in moderately thin aluminium.
Thicknesses ranged from about 1.02 mm (0.040“) to 6.35 mm
(0.25“). Testing covered a range of fastener-plate combinations
(sets) including four screw diameters, five plate thicknesses, and
several alloy-tempers. In total, 162 specimens were tested (Fig.
1), usually with eight tests for each combination (set) of screw
size, plate thickness, and alloy-temper. Pull-over occurred in all
of the tests except for those with nominal 6.35 mm (1/4“) thick
plates. In these tests, screw failure occurred.
Data analysis included comparisons between test results and
predicted (nominal) values based on the ADM. In all cases, the
ADM pull-over prediction was substantially less than the test
average for the new data. A simple design equation was developed to more accurately, yet conservatively, model pull-over
behaviour for screws installed in aluminium with a minimum
thickness of 1.02 mm (0.040“) and prescribed hole sizes. 4 figures, 5 tables, 7 sources.
ALUMINIUM 9 (2009)
Verarbeitung, erste Stufe
Sh. Akhtar, G. Timelli, F. Bonollo, L. Arnberg, M. Di Sabatino
A comparative study of defects and mechanical properties in
high pressure die cast and gravity die cast aluminium alloys
International Foundry Research/Giessereiforschung 61 (2009)
No. 2, S. 36-48
Defects such as pores, hot tears, entrained oxides or macrosegregation may occur in aluminium die castings, impairing their
mechanical properties. The nature, extent and distribution of
such defects will, however, differ between die casting processes.
To investigate these differences, a comparative study between
gravity castings of an A356 alloy and high pressure die castings
of an A380 alloy was carried out. The defect distributions of
the castings were investigated by metallography, radiography
and fractography, and the tensile properties were measured.
The gravity die castings were produced in a step mould with
and without filter and at different controlled hydrogen concentrations in the melt. The U-shaped pressure die castings were
produced with systematic variations of process parameters
such as plunger speed, commutation point between first and
second phase and pouring temperature. It has been found that
both castings contain defects, primarily pores and oxides, and
that the presence and distribution of these defects are highly
sensitive to the process conditions. Significant variations of the
defect distribution have, however, also been found in castings
produced under the same conditions, particularly in the pressure die castings indicating the stochastic nature of defects in
die castings. The dominating defect type in the gravity die casting is hydrogen porosity mainly at high hydrogen melt concentrations, whereas in the high pressure die castings, oxides and
entrapped air porosity dominate. The tensile properties in both
types of castings are affected by the amount and distribution of
defects. This effect is particularly prominent for the pressure
die castings where the defect area fraction has been found to
determine the tensile strength. In the gravity castings, hydrogen
porosity decreases the tensile strength, but this effect becomes
significant only at quite high hydrogen melt concentrations. The
tensile properties as well as the porosity also depended on the
cross section of the castings. 26 figures, 4 tables, 27 sources
ALUMINIUM 9 (2009)
Formguss, Gusslegierungen
Für Schrifttum zum Thema „Aluminium“ ist der Gesamtverband der Aluminiumindustrie e.V. (GDA)
der kompetente Ansprechpartner. Die hier referierten Beiträge repräsentieren lediglich einen Ausschnitt aus dem umfassenden aktuellen Bestand der GDA-Bibliothek.
Die von der Aluminium-Zentrale seit den dreißiger Jahren kontinuierlich aufgebaute Fach-Biblio­thek
wird duch den GDA weitergeführt, ausgebaut und auf die neuen Medien umgestellt. Sie steht allen
Interessenten offen.
Ansprechpartner ist Dr. Karsten Hein, E-Mail: karsten.hein@aluinfo.de
62
ALUMINIUM · 9/2009
International Journal for Industry, Research and Application
How do your products and services come to appear every month in the
list of supply sources, on the internet – www.Alu-web.de – and in the
annual list of supply sources published by ALUMINIUM ?

Please mark the main group relevant to you
q
Smelting technology q
Rolling technology
q
Extrusion
q
Foundry

Indicate the sub-group and/or key word
(if necessary, ask us for the list of key words)
_______________________
_______________________
_______________________
_______________________
_______________________
_______________________

Enter your text, not forgetting your on-line address:
Line 1: ............................................................................................................................................
Line 2: ............................................................................................................................................
Line 3: ............................................................................................................................................
Line 4: ............................................................................................................................................
Line 5: ............................................................................................................................................
Line 6: ............................................................................................................................................
(Maximum 35 characters per line, including spaces.
Price per line for each issue EUR 5,50 + VAT – minimum order 10 issues = 1 year.
Logos are calculated according to the lines they occupy: 1 line = 2 mm).
_______________________________________________________________
Company stamp / Signature
Place/Date

… and send this form to us by fax or post:
Fax number
+49-511/7304-157
For information Giesel Verlag GmbH, ALUMINIUM
Tel.: -142
Rehkamp 3, D-30916 Isernhagen
We will gladly send you a quotation!
Lieferverzeichnis
1 Smelting technology
Hüttentechnik
1.1 Raw materials
1.2 Storage facilities for smelting
1.3 Anode production
1.4 Anode rodding
1.4.1Anode baking
1.4.2Anode clearing
1.4.3Fixing of new anodes to the anodes bars
1.5 Casthouse (foundry)
1.6 Casting machines
1.7 Current supply
1.8 Electrolysis cell (pot)
1.9 Potroom
1.10 Laboratory
1.11 Emptying the cathode shell
1.12 Cathode repair shop
1.13 Second-hand plant
1.14 Aluminium alloys
1.15 Storage and transport
1.16 Smelting manufactures
1.1 Raw Materials/Rohstoffe
 Raw Materials / Rohstoffe
Trimet Aluminium AG
Aluminiumallee 1
D-45356 Essen
Tel.: +49 (0) 201 / 3660
Fax: +49 (0) 201 / 366506
E-Mail: info@trimet.de
Internet: www.trimet.de
1.2Storage facilities for
smelting
Lagermöglichkeiten i.d. Hütte
FLSmidth Möller GmbH
Haderslebener Straße 7
D-25421 Pinneberg
Telefon: 04101 788-0
Telefax: 04101 788-115
E-Mail: moeller@flsmidth.com
Internet: www.flsmidthmoeller.com
Kontakt: Herr Dipl.-Ing. Timo Letz
Outotec GmbH
Albin-Köbis-Str. 8, D-51147 Köln
Phone: +49 (0) 2203 / 9921-0
E-mail: aluminium@outotec.com
www.outotec.com
 Conveying systems bulk materials
Förderanlagen für Schüttgüter
(Hüttenaluminiumherstellung)
FLSmidth Möller GmbH
Internet: www.flsmidthmoeller.com
see Storage facilities for smelting 1.2
64
1.1 Rohstoffe
1.2 Lagermöglichkeiten in der Hütte
1.3 Anodenherstellung
1.4 Anodenschlägerei
1.4.1Anodenbrennen
1.4.2Anodenschlägerei
1.4.3Befestigen von neuen Anoden an der -stange
1.5 Gießerei
1.6 Gießmaschinen
1.7 Stromversorgung
1.8 Elektrolyseofen
1.9 Elektrolysehalle
1.10 Labor
1.11 Ofenwannenentleeren
1.12 Kathodenreparaturwerkstatt
1.13 Gebrauchtanlagen
1.14 Aluminiumlegierungen
1.15 Lager und Transport
1.16 Hüttenerzeugnisse
 Unloading/Loading equipment
Entlade-/Beladeeinrichtungen
FLSmidth Möller GmbH
www.flsmidthmoeller.com
see Storage facilities for smelting 1.2
Alumina and pet coke shipunloaders
Contact: Andreas Haeuser, ha@neuero.de
 Hydraulic presses for prebaked
anodes / Hydraulische Pressen zur
Herstellung von Anoden
LAEIS GmbH
Am Scheerleck 7, L-6868 Wecker, Luxembourg
Phone:+352 27612 0
Fax: +352 27612 109
E-Mail: info@laeis-gmbh.com
Internet: www.laeis-gmbh.com
Contact: Dr. Alfred Kaiser
1.3 Anode production
Anodenherstellung
 Mixing Technology for
Anode pastes
Mischtechnologie für Anodenmassen
see Storage facilities for smelting 1.2
 Auto firing systems
Automatische Feuerungssysteme
Riedhammer GmbH
D-90411 Nürnberg
Phone: +49 (0) 911 5218 0, Fax: -5218 231
E-Mail: frank.goede@riedhammer.de
Internet: www.riedhammer.de
 Exhaust gas treatment
Abgasbehandlung
Alstom Norway AS
Tel. +47 22 12 70 00
Internet: www.environment.power.alstom.com
Buss AG
CH-4133 Pratteln
Phone: +41 61 825 66 00
E-Mail: info@busscorp.com
Internet: www.busscorp.com
 Open top and closed
type baking furnaces
Offene und geschlossene Ringöfen
Riedhammer GmbH
D-90411 Nürnberg
Phone: +49 (0) 911 5218 0, Fax: -5218 231
E-Mail: frank.goede@riedhammer.de
Internet: www.riedhammer.de
ALUMINIUM · 9/2009
Lieferverzeichnis
1.4 Anode rodding
Anodenanschlägerei
1.4.3Fixing of new anodes to the anodes bars
 Clay / Tonerde
 Fixing the nipples to the
anodes by casting in
Trimet Aluminium AG
Aluminiumallee 1
D-45356 Essen
Tel.: +49 (0) 201 / 3660
Fax: +49 (0) 201 / 366506
E-Mail: info@trimet.de
Internet: www.trimet.de
see Storage facilities for smelting 1.2
 Removal of bath residues from
the surface of spent anodes
Entfernen der Badreste von der Ober­­fläche der verbrauchten Anoden
Befestigen von neuen Anoden a. d. Anodenstange
Befestigen der Nippel mit der
Anode durch Eingießen
SERMAS INDUSTRIE
E-Mail: sermas@sermas.com
see Casting Machines 1.6
 Degassing, filtration and
grain refinement
Glama Maschinenbau GmbH
Hornstraße 19
D-45964 Gladbeck
Telefon 02043 / 9738-0
Telefax 02043 / 9738-50
 Transport of finished anode
elements to the pot room
Transport der fertigen Anodenelemente in Elektrolysehalle
Hovestr. 10 . D-48431 Rheine
Telefon + 49 (0) 59 71 58-0
Fax
+ 49 (0) 59 71 58-209
E-Mail info@windhoff.de
Internetwww.windhoff.de
1.4.1Anode baking
1.5 Casthouse (foundry)
Gießerei
HERTWICH ENGINEERING GmbH
Maschinen und Industrieanlagen
Weinbergerstraße 6, A-5280 Braunau am Inn
Phone +437722/806-0
Fax +437722/806-122
E-Mail: info@hertwich.com
Internet: www.hertwich.com
INOTHERM INDUSTRIEOFENUND WÄRMETECHNIK GMBH
Konstantinstraße 1a
D 41238 Mönchengladbach
Telefon +49 (02166) 987990
Telefax +49 (02166) 987996
E-Mail: info@inotherm-gmbh.de
Internet: www.inotherm-gmbh.de
Anodenbrennen
 Anode charging
Anodenchargieren
SERMAS INDUSTRIE
E-Mail: sermas@sermas.com
see Casting Machines 1.6
 Anode storage
Anodenlager
SERMAS INDUSTRIE
E-Mail: sermas@sermas.com
see Casting Machines 1.6
1.4.2Anode clearing
Entgasung, Filtern, Kornfeinung
Drache Umwelttechnik
GmbH
Werner-v.-Siemens-Straße 9/24-26
D 65582 Diez/Lahn
Telefon 06432/607-0
Telefax 06432/607-52
Internet: www.drache-gmbh.de
Gautschi
Engineering GmbH
see Casting equipment 3.1
 Dross skimming of liquid metal
Abkrätzen des Flüssigmetalls
Glama Maschinenbau GmbH
see Anode rodding 1.4
 Dross skimming of the melt
Abkrätzen der Schmelze
E-Mail: sermas@sermas.com
see Casting machines 1.6
 Furnace charging with
molten metal
see Equipment and accessories 3.1
Signode® System Gmbh
Packaging Equipment
Non-Ferrous Specialist Team DSWE
Magnusstr. 18, 46535 Dinslaken/Germany
Telefon: +49 (0) 2064 / 69-210
Telefax: +49 (0) 2064 / 69-489
E-Mail: g.laks@signode-europe.com
Internet: www.signode.com
Contact: Mr. Gerard Laks
Ofenbeschickung mit Flüssigmetall
Glama Maschinenbau GmbH
see Anode rodding 1.4
 Melting/holding/casting furnaces
Schmelz-/Halte- und Gießöfen
Gautschi
Engineering GmbH
see Casting equipment 3.1
Anodenschlägerei
 Separation of spent anodes from the anode bars
Trennen von den Anodenstangen
SERMAS INDUSTRIE
E-Mail: sermas@sermas.com
see Casting Machines 1.6
ALUMINIUM · 9/2009
Stopinc AG
Bösch 83 a
CH-6331 Hünenberg
Tel. +41/41-785 75 00
Fax +41/41-785 75 01
E-Mail: interstop@stopinc.ch
Internet: www.stopinc.ch
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
65
Lieferverzeichnis
1.6 Casting machines
Gießmaschinen
 Pig casting machines (sow casters)
Sistem Teknik Ltd. Sti.
Des San. Sit. 102 SOK No: 6/8
Y.Dudullu, TR-34775 Istanbul/Turkey
Tel.: +90 216 420 86 24
Fax:+90 216 420 23 22
E-Mail: info@sistemteknik.com
Internet: www.sistemteknik.com
Masselgießmaschine (Sowcaster)
Gautschi
Engineering GmbH
see Casting equipment 3.1
see Storage facilities for smelting 1.2
 Metal treatment in the
holding furnace
Metallbehandlung in Halteöfen
Gautschi
Engineering GmbH
see Casting equipment 3.1
 Transfer to the casting furnace
 Rolling and extrusion ingot
and T-bars
Formatgießerei (Walzbarren oder
Pressbolzen oder T-Barren)
Gautschi
Engineering GmbH
see Casting equipment 3.1
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
343 Chemin du Stade
38210 Saint Quentin sur Isère
Tel. +33 (0) 476 074 242
Fax +33 (0) 476 936 776
E-Mail: sermas@sermas.com
Internet: www.sermas.com
 Heat treatment of extrusion
ingot (homogenisation)
Formatebehandlung (homogenisieren)
Gautschi
Engineering GmbH
see Casting equipment 3.1
Überführung in Gießofen
Glama Maschinenbau GmbH
see Anode rodding 1.4
Drache Umwelttechnik
GmbH
Werner-v.-Siemens-Straße 9/24-26
D 65582 Diez/Lahn
Telefon 06432/607-0
Telefax 06432/607-52
Internet: www.drache-gmbh.de
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
 Horizontal continuous casting
Gautschi
Engineering GmbH
see Casting equipment 3.1
Horizontales Stranggießen
Gautschi
Engineering GmbH
see Casting equipment 3.1
see Billet Heating Furnaces 1.5
Windhoff Bahn- und
Anlagentechnik GmbH
see Anode rodding 1.4
 Transport of liquid metal
to the casthouse
 Vertical semi-continuous DC
casting / Vertikales Stranggießen
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
Gautschi
Engineering GmbH
see Casting equipment 3.1
Transport v. Flüssigmetall in Gießereien
Glama Maschinenbau GmbH
see Anode rodding 1.4
Marx GmbH & Co. KG
www.marx-gmbh.de
see Melt operations 4.13
 Scales / Waagen
Gautschi
Engineering GmbH
see Casting equipment 3.1
Windhoff Bahn- und
Anlagentechnik GmbH
see Anode rodding 1.4
 Treatment of casthouse
off gases
Behandlung der Gießereiabgase
Gautschi
Engineering GmbH
see Casting equipment 3.1
66
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
Wagstaff, Inc.
3910 N. Flora Rd.
Spokane, WA 99216 USA
+1 509 922 1404 phone
+1 509 924 0241 fax
E-Mail: info@wagstaff.com
Internet: www.wagstaff.com
1.8 Electrolysis cell (pot)
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
 Sawing / Sägen
Gautschi
Engineering GmbH
see Casting equipment 3.1
Elektrolyseofen
 Calcium silicate boards
Calciumsilikatplatten
Promat GmbH – Techn. Wärmedämmung
Scheifenkamp 16, D-40878 Ratingen
Tel. +49 (0) 2102 / 493-0, Fax -493 115
verkauf3@promat.de, www.promat.de
ALUMINIUM · 9/2009
Lieferverzeichnis
 Pot feeding systems
Beschickungseinrichtungen
für Elektrolysezellen
FLSmidth Möller GmbH
www.flsmidthmoeller.com
see Storage facilities for smelting 1.2
1.9 Potroom
Elektrolysehalle
T.T. Tomorrow Technology S.p.A.
Via dell’Artigianato 18
Due Carrare, Padova 35020, Italy
Telefon+39 049 912 8800
Telefax +39 049 912 8888
E-Mail: gmagarotto@tomorrowtechnology.it
Contact: Giovanni Magarotto
 Anode changing machine
Anodenwechselmaschine
Glama Maschinenbau GmbH
see Anode rodding 1.4
 Anode transport equipment
Anoden Transporteinrichtungen
Glama Maschinenbau GmbH
see Anode rodding 1.4
 Dry absorption units for
electrolysis exhaust gases
Trockenabsorptionsanlage für
Elektrolyseofenabgase
Alstom Norway AS
Tel. +47 22 12 70 00
Internet: www.environment.power.alstom.com
 HF Measurementtechnology
HF Messtechnik
Opsis ab
Box 244, S-24402 Furulund, Schweden
Tel. +46 (0) 46-72 25 00, Fax -72 25 01
E-Mail: info@opsis.se
Internet: www.opsis.se
 Tapping vehicles
Schöpffahrzeuge
Glama Maschinenbau GmbH
see Anode rodding 1.4
2
1.16 Smelting manufactories
Hüttenerzeugnisse
 Rolling ingots
Walzbarren
1.11Emptying the
cathode shell
Ofenwannenentleeren
 Cathode bar casting units
Kathodenbarreneingießanlage
E-Mail: sermas@sermas.com
see Casting machines 1.6
Alcan Aluminium Valais SA
CH-3960 Sierre
Telefon: 0041 27 / 4575111
Telefax: 0041 27 / 4576425
Extrusion
Strangpressen
2.1 Extrusion billet preparation
2.1.1Extrusion billet production
2.2 Extrusion equipment
2.3 Section handling
2.4 Heat treatment
2.5 Measurement and control equipment
2.6 Die preparation and care
2.7 Second-hand extrusion plant
2.8 Consultancy, expert opinion
2.9 Surface finishing of sections
2.10 Machining of sections
2.11 Equipment and accessories
2.12 Services
2.1 Extrusion billet
preparation
SMS Siemag Aktiengesellschaft
Logistiksysteme
see Rolling mill technology 3.0
 Crustbreakers / Krustenbrecher
Glama Maschinenbau GmbH
see Anode rodding 1.4
1.15 Storage and transport
Lager und Transport
2.1 Pressbolzenbereitstellung
2.1.1Pressbolzenherstellung
2.2 Strangpresseinrichtungen
2.3 Profilhandling
2.4 Wärmebehandlung
2.5 Mess- und Regeleinrichtungen
2.6 Werkzeugbereitstellung und -pflege
2.7 Gebrauchte Strangpressanlagen
2.8 Beratung, Gutachten
2.9 Oberflächenveredlung von Profilen
2.10 Profilbearbeitung
2.11 Ausrüstungen und Hilfsmittel
2.12 Dienstleistungen
 Billet heating furnaces
Öfen zur Bolzenerwärmung
Pressbolzenbereitstellung
Signode® System Gmbh
Packaging Equipment
Non-Ferrous Specialist Team DSWE
Magnusstr. 18, 46535 Dinslaken/Germany
Telefon: +49 (0) 2064 / 69-210
Telefax: +49 (0) 2064 / 69-489
E-Mail: g.laks@signode-europe.com
Internet: www.signode.com
Contact: Mr. Gerard Laks
ALUMINIUM · 9/2009
Am großen Teich 16+27
D-58640 Iserlohn
Tel. +49 (0) 2371 / 4346-0
Fax +49 (0) 2371 / 4346-43
E-Mail: verkauf@ias-gmbh.de
Internet: www.ias-gmbh.de
Marx GmbH & Co. KG
www.marx-gmbh.de
see Melt operations 4.13
67
Lieferverzeichnis
 Press control systems
Pressensteuersysteme
Oilgear Towler GmbH
see Extrusion Equipment 2.2
Sistem Teknik Ltd. Sti.
Des San. Sit. 102 SOK No: 6/8
Y.Dudullu, TR-34775 Istanbul/Turkey
Tel.: +90 216 420 86 24
Fax:+90 216 420 23 22
E-Mail: info@sistemteknik.com
Internet: www.sistemteknik.com
SMS Meer GmbH
see Extrusion equipment 2.2
2.1.1Extrusion billet
production
Pressbolzenherstellung
 Billet transport and storage equipment
Bolzen-Transport- u. Lagereinricht.
 Temperature measurement
 Packaging equipment
H+H Herrmann + Hieber GmbH
Fördersysteme für Paletten
und schwere Lasten
Rechbergstraße 46
D-73770 Denkendorf/Stuttgart
Tel. +49 (0) 711 / 9 34 67-0
Fax +49 (0) 711 / 3 46 0911
E-Mail: info@herrmannhieber.de
Internet: www.herrmannhieber.de
Vollert Anlagenbau
GmbH + Co. KG
Stadtseestraße 12
D-74189 Weinsberg
Tel. +49 (0) 7134 / 52-220
Fax +49 (0) 7134 / 52-222
E-Mail intralogistik@vollert.de
Internet www.vollert.de
Temperaturmessung
SERMAS INDUSTRIE
E-Mail: sermas@sermas.com
See Casting Machines 1.6
 Puller equipment
2.2 Extrusion equipment
Strangpresseinrichtungen
Oilgear Towler GmbH
Im Gotthelf 8
D 65795 Hattersheim
Tel. +49 (0) 6145 3770
Fax +49 (0) 6145 30770
E-Mail: info@oilgear.de
Internet: www.oilgear.de
Verpackungseinrichtungen
Ausziehvorrichtungen/Puller
SMS Meer GmbH
see Extrusion equipment 2.2
 Heating and control
equipment for intelligent
billet containers
SMS Meer GmbH
see Extrusion equipment 2.2
Heizungs- und Kontrollausrüstung
für intelligente Blockaufnehmer
 Section cooling
Profilkühlung
SMS Meer GmbH
Schloemann Extrusion
Ohlerkirchweg 66
D-41069 Mönchengladbach
Tel. +49 (0) 2161 / 3500
Fax +49 (0) 2161 / 3501667
E-Mail: info@sms-meer.com
Internet: www.sms-meer.com
Marx GmbH & Co. KG
www.marx-gmbh.de
see Melt operations 4.13
2.3 Section handling
 Containers / Rezipienten
Profilhandling
SMS Meer GmbH
see Extrusion equipment 2.2
 Section saws
Profilsägen
Signode® System Gmbh
SMS Meer GmbH
see Extrusion equipment 2.2
68
Packaging Equipment
Non-Ferrous Specialist Team DSWE
Magnusstr. 18, 46535 Dinslaken/Germany
Telefon: +49 (0) 2064 / 69-210
Telefax: +49 (0) 2064 / 69-489
E-Mail: g.laks@signode-europe.com
Internet: www.signode.com
Contact: Mr. Gerard Laks
SMS Meer GmbH
see Extrusion equipment 2.2
ALUMINIUM · 9/2009
Lieferverzeichnis
 Section store equipment
Profil-Lagereinrichtungen
H+H Herrmann + Hieber GmbH
Fördersysteme für Paletten
und schwere Lasten
Rechbergstraße 46
D-73770 Denkendorf/Stuttgart
Tel. +49 (0) 711 / 9 34 67-0
Fax +49 (0) 711 / 3 46 0911
E-Mail: info@herrmannhieber.de
Internet: www.herrmannhieber.de
Kasto Maschinenbau GmbH & Co. KG
Industriestr. 14, D-77855 Achern
Tel.: +49 (0) 7841 61-0 / Fax: +49 (0) 7841 61 300
kasto@kasto.de / www.kasto.de
Hersteller von Band- und Kreissägemaschinen
sowie Langgut- und Blechlagersystemen
Vollert Anlagenbau
GmbH + Co. KG
see Packaging equipment 2.3
 Stretching equipment
Reckeinrichtungen
 Annealing furnaces
Glühöfen
see Equipment and accessories 3.1
SMS Meer GmbH
see Extrusion equipment 2.2
 Heat treatment furnaces
Wärmebehandlungsöfen
INOTHERM INDUSTRIEOFENUND WÄRMETECHNIK GMBH
see Casthouse (foundry) 1.5
 Transport equipment for
extruded sections
Transporteinrichtungen
für Profilabschnitte
H+H Herrmann + Hieber GmbH
Fördersysteme für Paletten
und schwere Lasten
Rechbergstraße 46
D-73770 Denkendorf/Stuttgart
Tel. +49 (0) 711 / 9 34 67-0
Fax +49 (0) 711 / 3 46 0911
E-Mail: info@herrmannhieber.de
Internet: www.herrmannhieber.de
see Billet Heating Furnaces 2.1
 Custom designed heat
processing equipment
Kundenspezifische
Wärmebehandlungsanlagen
Sistem Teknik Ltd. Sti.
see Billet Heating Furnaces 2.1
 Section transport equipment
Profiltransporteinrichtungen
SMS Meer GmbH
see Extrusion equipment 2.2
Nijverheidsweg 3
NL-7071 CH Ulft Netherlands
Tel.: +31 315 641352
Fax: +31 315 641852
E-Mail: info@unifour.nl
Internet: www.unifour.nl
Sales Contact: Paul Overmans
Vollert Anlagenbau
GmbH + Co. KG
see Packaging equipment 2.3
Wärmebehandlung
ALUMINIUM · 9/2009
Homogenisieröfen
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
BSN Thermprozesstechnik GmbH
Kammerbruchstraße 64
D-52152 Simmerath
Tel. 02473-9277-0 · Fax: 02473-9277-111
info@bsn-therm.de · www.bsn-therm.de
Ofenanlagen zum Wärmebehandeln von Alu­
miniumlegierungen, Buntmetallen und Stählen
Seco/warwick s.a.
see Heat treatment 2.4
Stapler / Entstapler
SMS Meer GmbH
see Extrusion equipment 2.2
2.4 Heat treatment
 Stackers / Destackers
 Homogenising furnaces
Seco/warwick s.a.
Sobieskiego 8, 66-200 Swiebodzin PL
tel./fax +48 68 4111 600 (655)
Fax +49 (0) 711 / 3 46 0911
info@secowarwick.com.pl
www.secowarwick.com.pl
see Billet Heating Furnaces 2.1
69
Lieferverzeichnis
 Extrusion dies
2.5 Measurement and
control equipment
Strangpresswerkzeuge
Mess- und Regeleinrichtungen
Ausrüstungen und
Hilfsmittel
 Extrusion plant control systems
Presswerkssteuerungen
Haarmann Holding GmbH
Karmeliterstraße 6
D-52064 Aachen
Telefon: 02 41 / 9 18 - 500
Telefax: 02 41 / 9 18 - 5010
E-Mail: info@haarmann-gruppe.de
Internet: www.haarmann-gruppe.de
SMS Meer GmbH
see Extrusion equipment 2.2
 Hardening technology
2.6 Die preparation and care
Werkzeugbereitstellung
und -pflege
Härtetechnik
 Inductiv heating equipment
Induktiv beheizte
Erwärmungseinrichtungen
Am großen Teich 16+27
D-58640 Iserlohn
Tel. +49 (0) 2371 / 4346-0
Fax +49 (0) 2371 / 4346-43
E-Mail: verkauf@ias-gmbh.de
Internet: www.ias-gmbh.de
Haarmann Holding GmbH
see Die preparation and care 2.6
 Ageing furnace for extrusions
 Die heating furnaces
2.11Equipment and
accessories
Werkzeuganwärmöfen
Marx GmbH & Co. KG
www.marx-gmbh.de
see Melt operations 4.13
Auslagerungsöfen für
Strangpressprofile
2.7 Second-hand
extrusion plant
Gebr. Strangpressanlagen
Qualiteam International/ExtruPreX
Champs Elyséesweg 17, NL-6213 AA Maastricht
Tel. +31-43-3 25 67 77
Internet: www.extruprex.com
2.10 Machining of sections
Sistem Teknik Ltd. Sti.
see Billet Heating Furnaces 2.1
 Processing of Profiles
Nijverheidsweg 3
NL-7071 CH Ulft Netherlands
Tel.: +31 315 641352
Fax: +31 315 641852
E-Mail: info@unifour.nl
Internet: www.unifour.nl
Sales Contact: Paul Overmans
Profilbearbeitung
Profilbearbeitung
Tensai (International) AG
Extal Division
Steinengraben 40
CH-4051 Basel
Telefon+41 (0) 61 284 98 10
Telefax +41 (0) 61 284 98 20
E-Mail: tensai@tensai.com
see Billet Heating Furnaces 2.1
Nijverheidsweg 3
NL-7071 CH Ulft Netherlands
Tel.: +31 315 641352
Fax: +31 315 641852
E-Mail: info@unifour.nl
Internet: www.unifour.nl
Sales Contact: Paul Overmans
2.12 Services
Dienstleistungen
Haarmann Holding GmbH
see Die preparation and care 2.6
Could not find your „keywords“?
Please ask for our complete
„Supply sources for the aluminium industry“.
E-Mail: P.Kapsali@giesel.de
70
ALUMINIUM · 9/2009
Lieferverzeichnis
3 Rolling mill technology
Walzwerktechnik
3.1 Casting equipment
3.2 Rolling bar machining
3.3 Rolling bar furnaces
3.4 Hot rolling equipment
3.5 Strip casting units and accessories
3.6 Cold rolling equipment
3.7 Thin strip / foil rolling plant
3.8 Auxiliary equipment
3.9 Adjustment devices
3.10 Process technology / Automation technology
3.11 Coolant / lubricant preparation
3.12 Air extraction systems
3.13 Fire extinguishing units
3.14 Storage and dispatch
3.15 Second-hand rolling equipment
3.16 Coil storage systems
3.17 Strip Processing Lines
3.18 Productions Management Systems
3.0 Rolling mill technology
Walzwerktechnik
3.1 Gießanlagen
3.2 Walzbarrenbearbeitung
3.3 Walzbarrenvorbereitung
3.4 Warmwalzanlagen
3.5 Bandgießanlagen und Zubehör
3.6 Kaltwalzanlagen
3.7 Feinband-/Folienwalzwerke
3.8 Nebeneinrichtungen
3.9 Adjustageeinrichtungen
3.10 Prozesstechnik / Automatisierungstechnik
3.11 Kühl-/Schmiermittel-Aufbereitung
3.12 Abluftsysteme
3.13 Feuerlöschanlagen
3.14 Lagerung und Versand
3.15 Gebrauchtanlagen
3.16 Coil storage systems
3.17 Bandprozesslinien
3.18 Produktions Management Systeme
3.1 Casting equipment
 Melt purification units
 Filling level indicators and controls
Gautschi
Engineering GmbH
see Casting equipment 3.1
Gießanlagen
Füllstandsanzeiger und -regler
Gautschi
Engineering GmbH
see Casting equipment 3.1
SMS Siemag Aktiengesellschaft
Eduard-Schloemann-Straße 4
D-40237 Düsseldorf
Telefon: +49 (0) 211 881-0
Telefax: +49 (0) 211 881-49 02
E-Mail: communications@sms-siemag.com
Internet: www.sms-siemag.com
Geschäftsbereiche:
Warmflach- und Kaltwalzwerke
Wiesenstraße 30
D-57271 Hilchenbach-Dahlbruch
Telefon: +49 (0) 2733 29-0
Telefax: +49 (0) 2733 29-2852
Bandanlagen
Walderstraße 51/53
D-40724 Hilden
Telefon: +49 (0) 211 881-5100
Telefax: +49 (0) 211 881-5200
Elektrik + Automation
Ivo-Beucker-Straße 43
D-40237 Düsseldorf
Telefon: +49 (0) 211 881-5895
Telefax: +49 (0) 211 881-775895
Logistiksysteme
Obere Industriestraße 8
D-57250 Netphen
Telefon: +49 (0) 2738 21-0
Telefax: +49 (0) 2738 21-1299
E-Mail: info@siemag.com
Internet: www.siemag.com
www.alu-web.de
ALUMINIUM · 9/2009
Wagstaff, Inc.
Schmelzereinigungsanlagen
 Metal filters / Metallfilter
Gautschi
Engineering GmbH
see Casting equipment 3.1
see Casting machines 1.6
 Melting and holding furnaces
Schmelz- und Warmhalteöfen
Gautschi
Engineering GmbH
Geschäftsbereich Aluminium
Konstanzer Straße 37
Postfach 170
CH 8274 Tägerwilen
Telefon +41/71/6666666
Telefax +41/71/6666688
E-Mail: aluminium@gautschi-engineering.com
Kontakt: Stefan Blum, Tel. +41/71/6666621
LOI Thermprocess GmbH
Am Lichtbogen 29
D-45141 Essen
Germany
Telefon +49 (0) 201 / 18 91-1
Telefax +49 (0) 201 / 18 91-321
E-Mail: info@loi-italimpianti.de
Internet: www.loi-italimpianti.com
Seco/warwick s.a.
see Heat treatment 2.4
3.2 Rolling bar machining
Walzbarrenbearbeitung
 Band saws / Bandsägen
SMS Meer GmbH
Ohlerkirchweg 66
D-41069 Mönchengladbach
Tel. +49 (0) 2161 / 3500
Fax +49 (0) 2161 / 3501667
E-Mail: info@sms-meer.com
Internet: www.sms-meer.com
 Slab milling machines
Barrenfräsmaschinen
SMS Meer GmbH
see Rolling bar machining 3.2
71
Lieferverzeichnis
3.3 Rolling bar furnaces
 Roller tracks
Rollengänge
BSN Thermprozesstechnik GmbH
see Heat Treatment 2.4
Gautschi
Engineering GmbH
see Casting equipment 3.1
Walzbarrenvorbereitung
 Homogenising furnaces
SMS Siemag Aktiengesellschaft
see Rolling mill technology 3.0
Homogenisieröfen
Gautschi
Engineering GmbH
see Casting equipment 3.1
 Spools / Haspel
3.4 Hot rolling equipment
Warmwalzanlagen
 Hot rolling units /
complete plants
Warmwalzanlagen/Komplettanlagen
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, info@achenbach.de
Internet: www.achenbach.de
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
SMS Siemag Aktiengesellschaft
see Rolling mill technology 3.0
see Cold rolling units / complete plants 3.6
3.5 Strip casting units
and accessories
 Coil transport systems
 Annealing furnaces
Glühöfen
Ebner Industrieofenbau Ges.m.b.H.
Ruflinger Str. 111, A-4060 Leonding
Tel.+43 / 732 / 68 68
Fax+43 / 732 / 68 68-1000
Internet: www.ebner.cc
E-Mail: sales@ebner.cc
Gautschi
Engineering GmbH
see Casting equipment 3.1
see Equipment and accessories 3.1
schwartz GmbH
Windhoff Bahn- und
Anlagentechnik GmbH
see Anode rodding 1.4
 Drive systems / Antriebe
SMS Siemag Aktiengesellschaft
see Rolling mill technology 3.0
Cores & shells for continuous
casting lines
Bruno Presezzi SpA
Via per Ornago 8
I-20040 Burago Molgora (Mi) – Italy
Tel. +39 039 63502 229
Fax +39 039 6081373
E-Mail: aluminium.dept@brunopresezzi.com
Internet: www.brunopresezzi.com
Contact: Franco Gramaglia
 Revamps, equipments & spare parts
for continuous casting lines
Revamps, equipments & spare parts
for continuous casting lines
Bruno Presezzi SpA
Via per Ornago 8
I-20040 Burago Molgora (Mi) – Italy
Tel. +39 039 63502 229
Fax +39 039 6081373
E-Mail: aluminium.dept@brunopresezzi.com
Internet: www.brunopresezzi.com
Contact: Franco Gramaglia
Barrenanwärmanlagen
 Rolling mill modernisation
 Twin-roll continuous casting
lines (complete lines)
SMS Siemag Aktiengesellschaft
see Rolling mill technology 3.0
Bruno Presezzi SpA
Via per Ornago 8
I-20040 Burago Molgora (Mi) – Italy
Tel. +39 039 63502 229
Fax +39 039 6081373
E-Mail: aluminium.dept@brunopresezzi.com
Internet: www.brunopresezzi.com
Contact: Franco Gramaglia
Walzwerksmodernisierung
Ebner Industrieofenbau Ges.m.b.H.
see Annealing furnaces 3.3
Gautschi
Engineering GmbH
see Casting equipment 3.1
72
 Cores & shells for continuous
casting lines
Vollert Anlagenbau
GmbH + Co. KG
see Packaging equipment 2.3
Bandgießanlagen und
Zubehör
see Heat treatment 2.4
 Bar heating furnaces
Bundtransportsysteme
Twin-roll continuous casting lines
(complete lines)
ALUMINIUM · 9/2009
Lieferverzeichnis
3.6 Cold rolling equipment
Kaltwalzanlagen
 Cold rolling units /
complete plants
Kaltwalzanlagen/Komplettanlagen
 Process optimisation systems
Prozessoptimierungssysteme
Gautschi
Engineering GmbH
see Casting equipment 3.1
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, info@achenbach.de
Internet: www.achenbach.de
 Process simulation
BSN Thermprozesstechnik GmbH
see Heat Treatment 2.4
Signode® System Gmbh
Packaging Equipment
Non-Ferrous Specialist Team DSWE
Magnusstr. 18, 46535 Dinslaken/Germany
Telefon: +49 (0) 2064 / 69-210
Telefax: +49 (0) 2064 / 69-489
E-Mail: g.laks@signode-europe.com
Internet: www.signode.com
Contact: Mr. Gerard Laks
SMS Siemag Aktiengesellschaft
see Rolling mill technology 3.0
Prozesssimulation
Gautschi
Engineering GmbH
see Casting equipment 3.1
 Drive systems / Antriebe
SMS Siemag Aktiengesellschaft
see Rolling mill technology 3.0
 Coil annealing furnaces
Bundglühöfen
Gautschi
Engineering GmbH
see Casting equipment 3.1
SMS Siemag Aktiengesellschaft
see Rolling mill technology 3.0
 Revamps, equipments & spare parts
 Heating furnaces / Anwärmöfen
see Equipment and accessories 3.1
Gautschi
Engineering GmbH
see Casting equipment 3.1
Revamps, equipments & spare parts
Bruno Presezzi SpA
Via per Ornago 8
I-20040 Burago Molgora (Mi) – Italy
Tel. +39 039 63502 229
Fax +39 039 6081373
E-Mail: aluminium.dept@brunopresezzi.com
Internet: www.brunopresezzi.com
Contact: Franco Gramaglia
 Roll exchange equipment
Seco/warwick s.a.
see Heat treatment 2.4
 Coil transport systems
Bundtransportsysteme
Vollert Anlagenbau
GmbH + Co. KG
see Packaging equipment 2.3
Windhoff Bahn- und
Anlagentechnik GmbH
see Anode rodding 1.4
ALUMINIUM · 9/2009
Walzenwechseleinrichtungen
Hier könnte Ihr
BezugsquellenEintrag
stehen.
Rufen Sie an:
Tel. 0511 / 73 04-148
Beate Schaefer
SMS Siemag Aktiengesellschaft
see Rolling mill technology 3.0
Vollert Anlagenbau
GmbH + Co. KG
see Packaging equipment 2.3
Windhoff Bahn- und
Anlagentechnik GmbH
see Anode rodding 1.4
73
Lieferverzeichnis
 Rolling mill modernization
Walzwerkmodernisierung
3.7 Thin strip /
foil rolling plant
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, info@achenbach.de
Internet: www.achenbach.de
Feinband-/Folienwalzwerke
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, info@achenbach.de
Internet: www.achenbach.de
 Thin strip / foil rolling mills /
complete plant
Feinband- / Folienwalzwerke /
Komplettanlagen
SMS Siemag Aktiengesellschaft
see Rolling mill technology 3.0
see Cold rolling units / complete plants 3.6
see Cold rolling units / complete plants 3.6
 Slitting lines-CTL
Längs- und Querteilanlagen
see Cold rolling units / complete plants 3.6
 Strip shears
Bandscheren
see Cold rolling units / complete plants 3.6
Signode® System Gmbh
Packaging Equipment
Non-Ferrous Specialist Team DSWE
Magnusstr. 18, 46535 Dinslaken/Germany
Telefon: +49 (0) 2064 / 69-210
Telefax: +49 (0) 2064 / 69-489
E-Mail: g.laks@signode-europe.com
Internet: www.signode.com
Contact: Mr. Gerard Laks
 Coil annealing furnaces
Bundglühöfen
Bruno Presezzi SpA
Via per Ornago 8
I-20040 Burago Molgora (Mi) – Italy
Tel. +39 039 63502 229
Fax +39 039 6081373
E-Mail: aluminium.dept@brunopresezzi.com
Internet: www.brunopresezzi.com
Contact: Franco Gramaglia
 Rolling mill modernization
Walzwerkmodernisierung
Gautschi
Engineering GmbH
see Casting equipment 3.1
see Equipment and accessories 3.1
SMS Siemag Aktiengesellschaft
see Rolling mill technology 3.0
 Revamps, equipments
& spare parts
Revamps, equipments & spare parts
schwartz GmbH
see Cold colling equipment 3.6
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, info@achenbach.de
Internet: www.achenbach.de
3.9 Adjustment devices
Adjustageeinrichtungen
 Sheet and plate stretchers
 Trimming equipment
Besäumeinrichtungen
see Cold rolling units / complete plants 3.6
Seco/warwick s.a.
see Heat treatment 2.4
www.alu-web.de
74
Blech- und Plattenstrecker
 Heating furnaces
SMS Siemag Aktiengesellschaft
see Rolling mill technology 3.0
Anwärmöfen
Gautschi
Engineering GmbH
see Casting equipment 3.1
SMS Meer GmbH
see Rolling bar machining 3.2
INOTHERM INDUSTRIEOFENUND WÄRMETECHNIK GMBH
see Casthouse (foundry) 1.5
 Cable sheathing presses
Kabelummantelungspressen
SMS Meer GmbH
see Rolling bar machining 3.2
ALUMINIUM · 9/2009
Lieferverzeichnis
 Cable undulating machines
Kabelwellmaschinen
 Strip thickness measurement
and control equipment
Banddickenmess- und
-regeleinrichtungen
SMS Siemag Aktiengesellschaft
see Rolling mill technology 3.0
SMS Meer GmbH
see Rolling bar machining 3.2
 Transverse cutting units
Querteilanlagen
Abb Automation Technologies AB
Force Measurement
S-72159 Västeras, Sweden
Phone:+46 21 325 000
Fax: +46 21 340 005
E-Mail: pressductor@se.abb.com
Internet: www.abb.com/pressductor
SERMAS INDUSTRIE
E-Mail: sermas@sermas.com
See Casting Machines 1.6
3.10 Process technology /
Automation technology
Prozesstechnik /
Automatisierungstechnik
3.11 Coolant / lubricant
preparation
Kühl-/SchmiermittelAufbereitung
 Rolling oil recovery and
treatment units
Walzöl-Wiederaufbereitungsanlagen
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, info@achenbach.de
Internet: www.achenbach.de
SMS Siemag Aktiengesellschaft
see Rolling mill technology 3.0
 Process control technology
Prozessleittechnik
SMS Siemag Aktiengesellschaft
see Rolling mill technology 3.0
 Filter for rolling oils and
emulsions
Filter für Walzöle und Emulsionen
SMS Siemag Aktiengesellschaft
see Rolling mill technology 3.0
Wagstaff, Inc.
see Casting machines 1.6
 Strip flatness measurement
and control equipment
Bandplanheitsmess- und
-regeleinrichtungen
 Rolling oil rectification units
Hier könnte Ihr
BezugsquellenEintrag
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, info@achenbach.de
Internet: www.achenbach.de
Walzölrektifikationsanlagen
Abb Automation Technologies AB
Force Measurement
S-72159 Västeras, Sweden
Phone:+46 21 325 000
Fax: +46 21 340 005
E-Mail: pressductor@se.abb.com
Internet: www.abb.com/pressductor
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, info@achenbach.de
Internet: www.achenbach.de
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, info@achenbach.de
Internet: www.achenbach.de
SMS Siemag Aktiengesellschaft
see Rolling mill technology 3.0
stehen.
Rufen Sie an:
Tel. 0511 / 73 04-148
Beate Schaefer
ALUMINIUM · 9/2009
75
Lieferverzeichnis
 Strip Annealing Lines
Bandglühlinien
3.12 Air extraction systems
Abluft-Systeme
 Exhaust air purification
systems (active)
Abluft-Reinigungssysteme (aktiv)
Vollert Anlagenbau
GmbH + Co. KG
see Packaging equipment 2.3
3.17 Strip Processing Lines
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, info@achenbach.de
Internet: www.achenbach.de
Bandprozesslinien
 Colour Coating Lines
Bandlackierlinien
www.bwg-online.com
see Strip Processing Lines 3.17
SMS Siemag Aktiengesellschaft
see Rolling mill technology 3.0
 Filtering plants and systems
Filteranlagen und Systeme
 Lithographic Sheet Lines
Lithografielinien
www.bwg-online.com
see Strip Processing Lines 3.17
www.bwg-online.com
see Strip Processing Lines 3.17
 Strip Processing Lines
Bandprozesslinien
BWG Bergwerk- und WalzwerkMaschinenbau GmbH
Mercatorstraße 74 – 78
D-47051 Duisburg
Tel.:+49 (0) 203-9929-0
Fax:+49 (0) 203-9929-400
E-Mail: bwg@bwg-online.de
Internet: www.bwg-online.com
3.18Production
Management systems
Produktions Management
Systeme
see Cold rolling units / complete plants 3.6
Dantherm Filtration GmbH
Industriestr. 9, D-77948 Friesenheim
Tel.: +49 (0) 7821 / 966-0, Fax: - 966-245
E-Mail: info.de@danthermfiltration.com
Internet: www.danthermfiltration.com
 Stretch Levelling Lines
Streckrichtanlagen
www.bwg-online.com
see Strip Processing Lines 3.17
4Production AG
Production Optimising Solutions
Carlo-Schmid-Str. 12, D-52146 Würselen
Tel.:+49 (0) 2405 4135-0
info@4production.de, www.4production.com
A PSI Group Company
3.14 Storage and dispatch
Lagerung und Versand
Could not find your „keywords“?
SMS Siemag Aktiengesellschaft
Logistiksysteme
see Rolling mill technology 3.0
3.16 Coil storage systems
Please ask for our complete
„Supply sources for the
aluminium industry“.
Bundlagersysteme
E-Mail:
SMS Siemag Aktiengesellschaft
Logistiksysteme
see Rolling mill technology 3.0
76
P.Kapsali@giesel.de
ALUMINIUM · 9/2009
Lieferverzeichnis
4 Foundry
Gießerei
4.1 Work protection and ergonomics
4.2 Heat-resistant technology
4.3 Conveyor and storage technology
4.4 Mould and core production
4.5 Mould accessories and accessory materials
4.6 Foundry equipment
4.7 Casting machines and equipment
4.8 Handling technology
4.9 Construction and design
4.10 Measurement technology and materials testing
4.11 Metallic charge materials
4.12 Finshing of raw castings
4.13 Melt operations
4.14 Melt preparation
4.15 Melt treatment devices
4.16 Control and regulation technology
4.17 Environment protection and disposal
4.18 Dross recovery
4.19 Gussteile
4.1 Arbeitsschutz und Ergonomie
4.2 Feuerfesttechnik
4.3 Förder- und Lagertechnik
4.4 Form- und Kernherstellung
4.5 Formzubehör, Hilfsmittel
4.6 Gießereianlagen
4.7 Gießmaschinen und Gießeinrichtungen
4.8 Handhabungstechnik
4.9 Konstruktion und Design
4.10 Messtechnik und Materialprüfung
4.11 Metallische Einsatzstoffe
4.12 Rohgussnachbehandlung
4.13 Schmelzbetrieb
4.14 Schmelzvorbereitung
4.15 Schmelzebehandlungseinrichtungen
4.16 Steuerungs- und Regelungstechnik
4.17 Umweltschutz und Entsorgung
4.18 Schlackenrückgewinnung
4.19 Cast parts
4.2 Heat-resistent technology
4.6 Foundry equipment
 Refractories
 Casting machines
Feuerfesttechnik
Feuerfeststoffe
Promat GmbH – Techn. Wärmedämmung
Scheifenkamp 16, D-40878 Ratingen
Tel. +49 (0) 2102 / 493-0, Fax -493 115
verkauf3@promat.de, www.promat.de
Gießereianlagen
Gießmaschinen
see Equipment and accessories 3.1
Gießereimaschinen
und Gießeinrichtungen
Förder- und Lagertechnik
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
Vollert Anlagenbau
GmbH + Co. KG
see Packaging equipment 2.3
 Heat treatment furnaces
4.5 Mold accessories and
accessory materials
4.7 Casting machines
and equipment
4.3 Conveyor and storage
technology
Seco/warwick s.a.
see Heat treatment 2.4
Wärmebehandlungsöfen
Molten Metall Level Control
Ostra Hamnen 7
SE-430 91 Hono / Schweden
Tel.: +46 31 764 5520, Fax: +46 31 764 5529
E-Mail: info@precimeter.com
Internet: www.precimeter.com
Sales contact: Jan Strömbeck
see Foundry equipment 4.6
Formzubehör, Hilfmittel
Wagstaff, Inc.
see Casting machines 1.6
 Fluxes
Flussmittel
Solvay Fluor GmbH
Hans-Böckler-Allee 20
D-30173 Hannover
Telefon +49 (0) 511 / 857-0
Telefax +49 (0) 511 / 857-2146
Internet: www.solvay-fluor.de
www.alu-web.de
ALUMINIUM · 9/2009
see Billet Heating Furnaces 2.1
 Solution annealing furnaces/plant
Lösungsglühöfen/anlagen
ERNST REINHARDT GMBH
Postfach 1880, D-78008 VS-Villingen
Tel. 07721/8441-0, Fax 8441-44
E-Mail: info@ernstreinhardt.de
Internet: www.Ernst-Reinhardt.com
 Mould parting agents
Kokillentrennmittel
Schröder KG
Schmierstofftechnik
Postfach 1170
D-57251
Freudenberg
Tel. 02734/7071
Fax 02734/20784
www.schroeder-schmierstoffe.de
77
Lieferverzeichnis
4.8 Handling technology
Vollert Anlagenbau
GmbH + Co. KG
see Packaging equipment 2.3
 Manipulators
 Recycling / Recycling
Handhabungstechnik
Manipulatoren
Trimet Aluminium AG
Niederlassung Gelsenkirchen
Am Stadthafen 51-65
D-45681 Gelsenkirchen
Tel.: +49 (0) 209 / 94089-0
Fax: +49 (0) 209 / 94089-60
Internet: www.trimet.de
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
see Equipment and accessories 3.1
SERMAS INDUSTRIE
E-Mail: sermas@sermas.com
See Casting Machines 1.6
4.9 Construction and
Design
Konstruktion und Design
Thermcon Ovens BV
see Extrusion 2
4.11 Metallic charge
materials
Metallische Einsatzstoffe
 Aluminium alloys
Trimet Aluminium AG
Niederlassung Harzgerode
Aluminiumallee 1
06493 Harzgerode
Tel.: 039484 / 50-0
Fax: 039484 / 50-100
Internet: www.trimet.de
Aluminiumlegierungen
Marx GmbH & Co. KG
Lilienthalstr. 6-18
D-58638 Iserhohn
Tel.: +49 (0) 2371 / 2105-0, Fax: -11
E-Mail: info@marx-gmbh.de
Internet: www.marx-gmbh.de
4.13 Melt operations
Schmelzbetrieb
 Heat treatment furnaces
Seco/warwick s.a.
see Heat treatment 2.4
Wärmebehandlungsanlagen
 Holding furnaces
Aleris Recycling (German Works) GmbH
Aluminiumstraße 3
D-41515 Grevenbroich
Telefon+49 (0) 2181/16 45 0
Telefax +49 (0) 2181/16 45 100
E-Mail: recycling@aleris.com
Internet: www.aleris-recycling.com
Metallhandelsgesellschaft
Schoof & Haslacher mbH & Co. KG
Postfach 600714, D 81207 München
Telefon 089/829133-0
Telefax 089/8201154
E-Mail: info@metallhandelsgesellschaft.de
Internet: www.metallhandelsgesellschaft.de
 Pre alloys / Vorlegierungen
Metallhandelsgesellschaft
Schoof & Haslacher mbH & Co. KG
Postfach 600714, D 81207 München
Telefon 089/829133-0
Telefax 089/8201154
E-Mail: info@metallhandelsgesellschaft.de
Internet: www.metallhandelsgesellschaft.de
78
see Billet Heating Furnaces 2.1
 Melting furnaces
Schmelzöfen
Büttgenbachstraße 14
D-40549 Düsseldorf/Germany
Tel.: +49 (0) 211 / 5 00 91-43
Fax: +49 (0) 211 / 50 13 97
E-Mail: info@bloomeng.de
Internet: www.bloomeng.com
Sales Contact: Klaus Rixen
Gautschi
Engineering GmbH
see Casting equipment 3.1
Warmhalteöfen
Büttgenbachstraße 14
D-40549 Düsseldorf/Germany
Tel.: +49 (0) 211 / 5 00 91-43
Fax: +49 (0) 211 / 50 13 97
E-Mail: info@bloomeng.de
Internet: www.bloomeng.com
Sales Contact: Klaus Rixen
Gautschi
Engineering GmbH
see Casting equipment 3.1
see Equipment and accessories 3.1
Seco/warwick s.a.
see Heat treatment 2.4
ALUMINIUM · 9/2009
Lieferverzeichnis
 Heat treatment furnaces
Wärmebehandlungsanlagen
Gautschi
Engineering GmbH
see Casting equipment 3.1
4.15 Melt treatment devices
Schmelzbehandlungseinrichtungen
Metaullics Systems Europe B.V.
Ebweg 14
NL-2991 LT Barendrecht
Tel. +31-180/590890
Fax +31-180/551040
E-Mail: info@metaullics.nl
Internet: www.metaullics.com
4.17 Environment protection
and disposal
Umweltschutz und
Entsorgung
 Dust removal / Entstaubung
NEOTECHNIK GmbH
Entstaubungsanlagen
Postfach 110261, D-33662 Bielefeld
Tel. 05205/7503-0, Fax 05205/7503-77
info@neotechnik.com, www.neotechnik.com
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
4.16 Control and
regulation technology
see Equipment and accessories 3.1
Steuerungs- und
Regelungstechnik
 Flue gas cleaning
Rauchgasreinigung
 HCL measurements
Seco/warwick s.a.
see Heat treatment 2.4
4.14 Melt preparation
Schmelzvorbereitung
Ceraflux India Pvt. Ltd.
F - 59 & 60, MIDC, Gokul Shirgaon,
Kolhapur - 416 234. Maharastra (India)
E-Mail: cerafluxindia@dataone.in
cerafluxindia@gmail.com
Web: www.ceraflux.com
HCL Messungen
Opsis ab
Box 244, S-24402 Furulund, Schweden
Tel. +46 (0) 46-72 25 00, Fax -72 25 01
E-Mail: info@opsis.se
Internet: www.opsis.se
Do you need
more
information?
E-Mail:
P.Kapsali@giesel.de
 Degassing, filtration
4.19 Cast parts / Gussteile
Trimet Aluminium AG
Niederlassung Harzgerode
Aluminiumallee 1
06493 Harzgerode
Tel.: 039484 / 50-0
Fax: 039484 / 50-100
Internet: www.trimet.de
Entgasung, Filtration
Drache Umwelttechnik
GmbH
Werner-v.-Siemens-Straße 9/24-26
D 65582 Diez/Lahn
Telefon 06432/607-0
Telefax 06432/607-52
Internet: http://www.drache-gmbh.de
Gautschi
Engineering GmbH
see Casting equipment 3.1
 Melt treatment agents
Dantherm Filtration GmbH
Industriestr. 9, D-77948 Friesenheim
Tel.: +49 (0) 7821 / 966-0, Fax: - 966-245
E-Mail: info.de@danthermfiltration.com
Internet: www.danthermfiltration.com
Schmelzebehandlungsmittel
Gautschi
Engineering GmbH
see Casting equipment 3.1
ALUMINIUM · 9/2009
5
Materials and Recycling
Werkstoffe und Recycling
Alu-web.de
der AluminiumBranchentreff.
Haben Sie schon Ihren
Basiseintrag bestellt?
Nein, dann sofort anrufen:
0511/73 04-142
Panagiota Kapsali
 Granulated aluminium
Aluminiumgranulate
ECKA Granulate Austria GmbH
Bürmooser Landesstraße 19
A-5113 St. Georgen/Salzburg
Telefon+43 6272 2919-12
Telefax +43 6272 8439
Kontakt: Ditmar Klein
E-Mail: d.klein@ecka-granules.com
79
Lieferverzeichnis
6
Machining and Application
Bearbeitung und Anwendung
 Machining of aluminium
 Cleaning / Reinigung
Aluminiumbearbeitung
AG & Co. KGaA
Haarmann Holding GmbH Henkel
siehe Prozesse für die Oberflächentechnik 6.1
see Die preparation and care 2.6
6.1 Surface treatment
processes
Prozesse für die
Oberflächenbehandlung
 Joining / Fügen
Henkel AG & Co. KGaA
siehe Prozesse für die Oberflächentechnik 6.1
 Pretreatment before coating
Henkel AG & Co. KGaA
D-40191 Düsseldorf
Tel. +49 (0) 211 / 797-30 00
Fax +49 (0) 211 / 798-23 23
Internet: www.henkel-technologies.com
 Adhesive bonding / Verkleben
Henkel AG & Co. KGaA
siehe Prozesse für die Oberflächentechnik 6.1
 Anodising / Anodisation
Henkel AG & Co. KGaA
siehe Prozesse für die Oberflächentechnik 6.1
Vorbehandlung vor der Beschichtung
Henkel AG & Co. KGaA
siehe Prozesse für die Oberflächentechnik 6.1
Ausrüstung für Schmiedeund Fließpresstechnik
 Hydraulic Presses
Hydraulische Pressen
Lasco Umformtechnik GmbH
Hahnweg 139, D-96450 Coburg
Tel. +49 (0) 9561 642-0
Fax +49 (0) 9561 642-333
E-Mail: lasco@lasco.de
Internet: www.lasco.com
8
Literature
Literatur
 Technikcal literature
Fachliteratur
Taschenbuch des Metallhandels
Fundamentals of Extrusion Technology
6.2 Semi products
Halbzeuge
Giesel Verlag GmbH
Verlag für Fachmedien
Ein Unternehmen der Klett-Gruppe
Rehkamp 3 · 30916 Isernhagen
Tel. 0511 / 73 04-122 · Fax 0511 / 73 04-157
Internet: www.alu-bookshop.de.
 Wires / Drähte
Drahtwerk Elisental
W. Erdmann GmbH & Co.
Werdohler Str. 40, D-58809 Neuenrade
Postfach 12 60, D-58804 Neuenrade
Tel. +49(0)2392/697-0, Fax 49(0)2392/62044
E-Mail: info@elisental.de
Internet: www.elisental.de
Could not find your „keywords“?
Please ask for our complete
„Supply sources for the
aluminium industry“.
Telefon:
0411/7304-142
Panagiota Kapsali
80
6.3 Equipment for forging
and impact extrusion
 Technical journals
Fachzeitschriften
Giesel Verlag GmbH
Ein Unternehmen der Klett-Gruppe
Rehkamp 3 · 30916 Isernhagen
Tel. 0511 / 73 04-122 · Fax 0511 / 73 04-157
ALUMINIUM · 9/2009
IMPRESSUM / IMPRINT
International
ALUMINIUM
Journal
85. Jahrgang 1.1.2009
Redaktion / Editorial office
Dipl.-Vw. Volker Karow
Chefredakteur, Editor in Chief
Franz-Meyers-Str. 16, 53340 Meckenheim
Tel: +49(0)2225 8359 643
Fax: +49(0)2225 18458
E-Mail: vkarow@online.de
Dipl.-Ing. Rudolf P. Pawlek
Fax: +41 274 555 926
Hüttenindustrie und Recycling
Dipl.-Ing. Bernhard Rieth
Walzwerkstechnik und
Bandverarbeitung
Verlag / Publishing house
Giesel Verlag GmbH, Verlag für Fachmedien, Unternehmen der Klett-Gruppe, Postfach 120158, 30907 Isernhagen; Rehkamp
3, 30916 Isernhagen, Tel: 0511/7304-0, Fax:
0511/7304-157. E-mail: giesel@giesel.de
Internet: www.alu-web.de.
Postbank/postal cheque account Hannover, BLZ/routing code: 25010030; Kto.Nr./ account no. 90898-306, Bankkonto/
bank account Commerzbank AG, BLZ/
routing code: 25040066, Kto.-Nr./account
no. 1500222
Geschäftsleitung / Managing Director
Georg Dörner
Tel: 05 11/73 04-166
E-Mail: G.Doerner@giesel.de
Anzeigenverkauf / Manager
Advertising Sales
Panagiota Kapsali
Tel: 05 11/ 73 04-142
E-Mail: P.Kapsali@giesel.de
Anzeigendisposition / Advertising
layout
Beate Schaefer
Tel: 05 11/ 73 04-148
E-Mail: B.Schaefer@giesel.de
Vertriebsleitung / General Manager
Distribution
Jutta Illhardt
Tel: 05 11/ 73 04-126
E-Mail: J.Illhardt@giesel.de
Abonnenten-Service / Reader service
Kirsten Voß
Tel: 05 11/ 73 04-122
E-Mail: Vertrieb@giesel.de
Herstellung & Druck / Printing house
BWH GmbH, Beckstr. 10
D-30457 Hannover
Jahresbezugspreis
EUR 285,- (Inland inkl. 7% Mehrwertsteuer und Versandkosten). Europa EUR
289,- inkl. Versandkosten. Übersee US$
375,- inkl. Normalpost; Luftpost zuzügl.
US$ 82,-.
Preise für Studenten auf Anfrage. ALUMINIUM erscheint zehnmal pro Jahr. Kündigungen jeweils sechs Wochen zum Ende
der Bezugszeit.
Subscription rates
EUR 285.00 p.a. (domestic incl. V.A.T.) plus
postage. Europe EUR 289.00 incl. surface
mail. Outside Europe US$ 375.00 incl. surface mail, air mail plus US$ 82.00.
ALUMINIUM · 9/2009
ALUMINIUM is published monthly (10
issues a year). Cancellations six weeks
prior to the end of a year.
Anzeigenpreise / Advertisement rates
Preisliste Nr. 49 vom 1.1.2009.
Price list No. 49 from 1.1.2009.
Die Zeitschrift und alle in ihr enthaltenen
Beiträge und Abbildungen sind urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des
Verlages unzulässig und strafbar. Das gilt
insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Bearbeitung in elektronischen Systemen. Der Verlag übernimmt
keine Gewähr für die Richtigkeit der in
diesem Heft mitgeteilten Informationen
und haftet nicht für abgeleitete Folgen.
Haftung bei Leistungsminderung durch
höhere Gewalt oder andere vom Verlag
nicht verschuldete Umstände (z. B. Streik)
ist ausgeschlossen.
This journal and all contributions contained therein are protected by copyright.
Any utilization outside the strict limits of
copyright legislation without the express
consent of the publisher ist prohibited
and actionable at law. This applies in
particular to reproduction, translations,
microfilming and storage or processing in
electronic systems. The publisher offers
no guarantee that the information in this
volume is accurate and accepts no liability
for consequences deriving therefrom. No
liability whatsoever is accepted for perfomance lag caused by force majeure or by
circumstances beyond the publisher’s control (e.g. industrial action).
ISSN: 0002-6689
© Giesel Verlag GmbH
Verlagsrepräsentanz / Representatives
Nielsen-Gebiet 1 (Schleswig-Holstein,
Hamburg, Bremen, Niedersachsen außer
Raum Osnabrück):
Giesel Verlag GmbH, Panagiota Kapsali
Rehkamp 3, 30916 Isernhagen
Tel: 05 11/73 04-142,
Fax: 05 11/73 04-222
E-Mail: P.Kapsali@giesel.de
www.giesel-verlag.de
Nielsen-Gebiet 2 (Nordrhein-Westfalen,
Raum Osnabrück):
Medienbüro Jürgen Wickenhöfer
Minkelsches Feld 39, 46499 Hamminkeln
Tel: 0 28 52 / 9 4180
Fax: 0 28 52 / 9 4181
E-Mail: info@jwmedien.de
www.jwmedien.de
Nielsen-Gebiet 3a (Hessen, Saarland,
Rheinland-Pfalz):
multilexa GmbH, publisher services
Linsenhofer Straße 51, 98529 Suhl
Tel: 03681/4550478
Fax: 03681/4553042
E-Mail: thomas.werner@multilexa.com
www.multilexa.com
Nielsen-Gebiet 3 b (Baden-Württemberg):
G. Fahr, Verlags- und Pressebüro e. K.
Marktplatz 10, 72654 Neckartenzlingen
Tel: 0 71 27/30 84
Fax: 07127/2 14 78
E-Mail: info@verlagsbuero-fahr.de
Nielsen-Gebiet 4 (Bayern):
G. Fahr, Verlags- und Pressebüro e.K.
Marktplatz 10, 72654 Neckartenzlingen
Tel: 0 8362/5054990
Fax: 08362/5054992
E-Mail: info@verlagsbuero-fahr.de
Nielsen-Gebiet 5, 6 + 7 (Berlin, Mecklenburg-Vorpommern, Brandenburg,
Sachsen-Anhalt Sachsen, Thüringen):
multilexa GmbH, publisher services
Linsenhofer Straße 51, 98529 Suhl
Tel: 03681/4550478
Fax: 03681/4553042
E-Mail: thomas.werner@multilexa.com
www.multilexa.com
Scandinavia, Denmark,
Netherlands, Belgium, Luxembourg
multilexa GmbH, publisher services
Linsenhofer Straße 51, 98529 Suhl,
Germany
Tel: +49 (0)3681/4550478
Fax: +49 (0)3681/4553042
E-Mail: thomas.werner@multilexa.com
www.multilexa.com
Switzerland
JORDI PUBLIPRESS
Postfach 154 · CH-3427 Utzenstorf
Tel. +41 (0)32 666 30 90,
Fax +41 (0)32 666 30 99
E-Mail: info@jordipublipress.ch
www.jordipublipress.ch
Austria
Verlagsbüro Katrin Forstner
Wiengasse 6/7/3, A-1140 Wien
Tel: +43(0)1 9235352
Fax: +43(0)1 9 797189
E-Mail: katrin.forstner@chello.at
Italy
MEDIAPOINT & COMMUNICATIONS
SRL
Corte Lambruschini – Corso Buenos
Aires, 8
Vo piano – Interno 7, I-16129 Genova
Tel: +39(0)10 5 70 49 48,
Fax: +39(0)10 5 53 00 88
E-Mail: info@mediapointsrl.it
www.mediapointsrl.it
USA, Canada, Africa,
GCC countries etc.
Marketing Xpertise Rieth
Dipl.-Ing. Bernhard Rieth
Strümper Berg 10, D-40670 Meerbusch
Tel: +49 (0)2159 962 643
Fax: +49 (0)2159 962 644
E-Mail: marketing.xpertise@t-online.de
United Kingdom
Marketing Xpertise Rieth
Dipl.-Ing. Bernhard Rieth
Strümper Berg 10, D-40670 Meerbusch
Tel: +49 (0)2159 962 643
Fax: +49 (0)2159 962 644
E-Mail: marketing.xpertise@t-online.de
France
DEF & Communication
Axelle Chrismann
48 boulevard Jean Jaurès
F-92110 Clichy
Tel: +33 (0)1 47 30 71 80,
Fax: +33 (0)1 47 30 01 89
E-Mail: achrismann@wanadoo.fr
Der ALUMINIUM-Branchentreff des
Giesel Verlages: www.alu-web.de
81
VORSCHAU / PREVIEW
IM NÄCHSTEN HEFT
IN THE NEXT ISSUE
Special: Aluminiumbearbeitung
Special: Machining of aluminium
Neue Entwicklungen und Trends. Verfahren, Werkzeuge und Maschinen. Geplante Beiträge:
• Portalfräsmaschine für die Bearbeitung von
Aluminiumblöcken und -blechen
• Kombinierte Bohr-/Fräsanlage zur Endbearbeitung
von Karosserien
• Halb- und vollautomatische Gehrungssägen in
größeren Abmessungen
New developments and trends. Process technology,
tools and machinery. Subjects covered include:
Technologie
• Energieeffizienz bei der Erzeugung und dem
Verbrauch von Druckluft, am Beispiel Alunorf
• Portal milling machine for aluminium slabs
and sheet
• Combined milling and drilling facility for the
final machining of car body
• Semi and fully automatic vertical miter bandsaws
for precise mitre cuts
Technology
• CVD coated aluminium extrusion dies
Other topics
Weitere Themen
• Latest international news from the industry
• Aktuelles aus der Branche; Kurzberichte
Date of publication:
Advertisement deadline:
Editorial deadline:
Erscheinungstermin:
5. Oktober 2009
Anzeigenschluss:
18. September 2009
Redaktionsschluss:
14. September 2009
5 October 2009
18 September 2009
14 September 2009
Abonnement-Bestellung
Subscription-Order
❒ Ja, wir möchten die Zeitschrift ALUMINIUM ab sofort
zum Jahresbezugspreis von EUR 285,- inkl. Mehrwertsteuer (Ausland EUR 289,-) und Versandkosten abonnieren.
Das Magazin erscheint zehn Mal pro Jahr.
Das Abonnement kann mit einer sechswöchigen Frist
zum Bezugsjahresende gekündigt werden.
❒ Yes, we want to subscribe to ALUMINIUM. The rate is
EUR 289.00 per year incl. postage. Outside Europe
US$ 375.00 incl. surface mail, air mail plus US$ 82.00
The magazine is published ten times a year.
Cancellations six weeks prior to the end of a
subscription year.
Name / name
Firma / company
Anschrift / address
Umsatzsteuer-Ident.-Nr. / VAT Reg.-No.
Datum / date
Unterschrift/Signature
Fax: +49 (0) 511 73 04 157
82
ALUMINIUM · 9/2009
www.
alu-web.de
special
thank-you gift
Company
First name, last name
Department
Address
Postcode, city
Country
Telephone
Fax
E-mail (for the notification)
VAT ID number
Giesel Verlag GmbH
Postfach 120 158
30907 Isernhagen · Germany
Tel. +49 511 7304-122
Fax +49 511 7304-157
www.giesel-verlag.de · vertrieb@giesel.de
.
Anz.Fast BWH
Lower power plant investment and operation costs?
Certainly.
To power your operation while lowering consumption we provide you with stable highly
efficient electrical energy supply,distribution and conditioning. To increase employee
productivity and engineering efficiency, we offer you powerful control systems. To
improve dynamic performance and reduce power losses, we provide drive systems
based on Direct Torque Control technology. To ensure environmental compliance,
reduce product standard deviation and increase production, apply our expert and
optimization solutions. Maximize the return on project investment through our vast,
knowledge, know-how and extensive experience. Using ABB quality products helps
you achieve industry leading productivity. www.abb.com/aluminium
ABB Switzerland Ltd
5405 Baden 5 Dättwil
Phone: +41 58 586 84 44
Fax: +41 58 686 73 33
E-mail: process.industries@ch.abb.com