Composición corporal y condición física en niños
Transcription
Composición corporal y condición física en niños
Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos Body composition and physical fitness in children and adolescents with Down syndrome; effects of a conditioning program combined with plyometric jumps ALEJANDRO GONZÁLEZ DE AGÜERO LAFUENTE Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. -2- Tesis Doctoral Europea [European PhD Thesis] 2011 COMPOSICIÓN CORPORAL Y CONDICIÓN FÍSICA EN NIÑOS Y ADOLESCENTES CON SÍNDROME DE DOWN; EFECTOS DE UN PROGRAMA DE ACONDICIONAMIENTO FÍSICO COMBINADO CON SALTOS PLIOMÉTRICOS. BODY COMPOSITION AND PHYSICAL FITNESS IN CHILDREN AND ADOLESCENTS WITH DOWN SYNDROME; EFFECTS OF A CONDITIONING PROGRAM COMBINED WITH PLYOMETRIC JUMPS. ALEJANDRO GONZÁLEZ DE AGÜERO LAFUENTE Departamento de Fisiatría y Enfermería Facultad de Ciencias de la Salud y del Deporte Universidad de Zaragoza Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. -4- A mis padres, a Sara -5- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. -6- “Las ideas no duran mucho. Hay que hacer algo con ellas.” Santiago Ramón y Cajal, Premio Nobel de Medicina y “aragonés” “Cuando llegué a casa, papá y mamá no sabían qué hacer conmigo. Ahora no sabrían qué hacer sin mí.” Pablo, un niño con síndrome de Down -7- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. -8- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Body composition and physical fitness in children and adolescents with Down syndrome; effects of a conditioning program combined with plyometric jumps. DIRECTORES DE TESIS: Dr. José A. Casajús Mallén Dr. Germán Vicente Rodríguez Dr. Ignacio Ara Royo Facultad de Ciencias de la Salud y Facultad de Ciencias de la Salud Facultad de Ciencias del Deporte, del Deporte y del Deporte Toledo Universidad de Zaragoza Universidad de Zaragoza Universidad de Castilla-La Mancha MD, PhD PhD PhD MIEMBROS DEL TRIBUNAL: Presidente Secretario Ricardo Mora Rodríguez Gerardo Rodríguez Martínez Departamento de Actividad Física y Departamento de Pediatría y Ciencias del Deporte Radiología Universidad de Castilla-La Mancha Universidad de Zaragoza PhD MD, PhD Vocal 1º Vocal 2º Vocal 3º Fernando D. Pereira Manuel J. Castillo Garzón Antonio F. Laclériga Giménez Faculdade de Motricidade Humana Departamento de Fisiología Médica Facultad de Ciencias de la Salud Universidad de Oporto Universidad de Granada Universidad San Jorge PhD MD, PhD MD, PhD -9- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. -10- Prof. Dr. José Antonio CASAJÚS MALLÉN Prof. Titular de Universidad ----------Departamento de Fisiatría y Enfermería Facultad de Ciencias de la Salud y del Deporte Universidad de Zaragoza JOSÉ ANTONIO CASAJÚS MALLÉN, PROFESOR TITULAR DE LA UNIVERSIDAD DE ZARAGOZA, CERTIFICA: Que la Tesis Doctoral titulada “Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos.” que presenta D. ALEJANDRO GONZÁLEZ DE AGÜERO LAFUENTE al superior juicio del Tribunal que designe la Universidad de Zaragoza, ha sido realizada bajo mi dirección durante los años 2008-2011, siendo expresión de la capacidad técnica e interpretativa de su autor en condiciones tan aventajadas que le hacen merecedor del Título de Doctor, siempre y cuando así lo considere el citado Tribunal. Fdo. José A. Casajús Mallén En Zaragoza a 8 de agosto de 2011 -11- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. -12- Prof. Dr. Germán VICENTE RODRÍGUEZ Prof. Titular de Universidad ----------Departamento de Fisiatría y Enfermería Facultad de Ciencias de la Salud y del Deporte Universidad de Zaragoza GERMÁN VICENTE RODRÍGUEZ, PROFESOR TITULAR DE LA UNIVERSIDAD DE ZARAGOZA, CERTIFICA: Que la Tesis Doctoral titulada “Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos.” que presenta D. ALEJANDRO GONZÁLEZ DE AGÜERO LAFUENTE al superior juicio del Tribunal que designe la Universidad de Zaragoza, ha sido realizada bajo mi dirección durante los años 20082011, siendo expresión de la capacidad técnica e interpretativa de su autor en condiciones tan aventajadas que le hacen merecedor del Título de Doctor, siempre y cuando así lo considere el citado Tribunal. Fdo. Germán Vicente Rodríguez En Zaragoza a 8 de agosto de 2011 -13- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. -14- Prof. Dr. Ignacio ARA ROYO Prof. Titular de Universidad ----------Departamento de Actividad Física y Ciencias del Deporte Facultad de Ciencias del Deporte, Toledo Universidad de Castilla-La Mancha IGNACIO ARA ROYO, PROFESOR TITULAR DE LA UNIVERSIDAD DE CASTILLA-LA MANCHA, CERTIFICA: Que la Tesis Doctoral titulada “Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos.” que presenta D. ALEJANDRO GONZÁLEZ DE AGÜERO LAFUENTE al superior juicio del Tribunal que designe la Universidad de Zaragoza, ha sido realizada bajo mi dirección durante los años 2008-2011, siendo expresión de la capacidad técnica e interpretativa de su autor en condiciones tan aventajadas que le hacen merecedor del Título de Doctor, siempre y cuando así lo considere el citado Tribunal. Fdo. Ignacio Ara Royo En Zaragoza a 8 de agosto de 2011 -15- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. -16- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Lista de publicaciones [List of publications] La presente Tesis Doctoral es un compendio de trabajos científicos previamente publicados, aceptados para publicación o sometidos a revisión. Las referencias de cada uno de los artículos que componen este documento se detallan a continuación: I. González-Agüero A, Vicente-Rodriguez G, Moreno LA, Guerra-Balic M, Ara I, Casajus JA. Health-related physical fitness in children and adolescents with Down syndrome and response to training. Scand J Med Sci Sports. 2010 Oct;20(5):71624. II. González-Agüero A, Vicente-Rodriguez G, Moreno LA, Casajus JA. Bone mass in male and female children and adolescents with Down syndrome. Osteoporos Int. 2011 Jul;22(7):2151-7. III. González-Agüero A, Ara I, Moreno LA, Vicente-Rodriguez G, Casajús JA. Fat and lean masses in youths with Down syndrome: gender differences. Res Dev Disabil. 2011 Sep-Oct;32(5):1685-93. IV. González-Agüero A, Vicente-Rodriguez G, Moreno LA, Casajús JA. Dimorfismo sexual en grasa corporal en adolescentes con síndrome de Down. Rev Esp Obesidad. 2010 Jan-Feb;8(1):28-33. V. González-Agüero A, Villarroya MA, Vicente-Rodriguez G, Casajús JA. Masa muscular, fuerza isométrica y dinámica en las extremidades inferiores de niños y adolescentes con síndrome de Down. Biomecánica. 2009;17(2):46-51. VI. González-Agüero A, Vicente-Rodriguez G, Ara I, Moreno LA, Casajús JA. Accuracy of prediction equations to assess percentage of body fat in children and adolescents with Down syndrome compared to air displacement plethysmography. Res Dev Disabil. 2011 Sep-Oct;32(5):1764-9. VII. González-Agüero A, Vicente-Rodriguez G, Gómez-Cabello A, Ara I, Moreno LA, Casajús JA. A combined training intervention programme increases lean mass in youths with Down syndrome. Res Dev Disabil. 2011 Nov;32(6):2383-8. VIII. González-Agüero A, Vicente-Rodriguez G, Ara I, Moreno LA, Casajús JA. Conditioning including plyometric jumps training improves cardiovascular fitness in youths with Down syndrome. Adapt Phys Activ Q. submitted. IX. González-Agüero A, Vicente-Rodriguez G, Gómez-Cabello A, Ara I, Moreno LA, Casajús JA. A 21-week bone deposition promoting exercise programme increases bone mass in youths with Down syndrome. Dev Med Child Neurol. submitted. -17- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. -18- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Tabladecontenidos Proyecto de investigación .................................................................................... 23 Listado de abreviaturas ........................................................................................ 25 Resumen general .................................................................................................... 27 1. Introducción ........................................................................................................ 31 1.1 1.2 El síndrome de Down ................................................................................... 31 Condición física en niños y adolescentes con síndrome de Down ................. 34 1.2.1 Composición Corporal ............................................................................................................. 34 1.2.2 Condición Aeróbica ................................................................................................................. 36 1.2.3 Fuerza Muscular ...................................................................................................................... 38 1.3 Efectos del entrenamiento físico en niños y adolescentes con síndrome de Down 41 1.3.1 Entrenamiento cardiovascular .............................................................................................. 41 1.3.2 Entrenamiento de fuerza ........................................................................................................ 42 1.3.3 Entrenamiento combinado cardiovascular y de fuerza ..................................................... 42 2. Hipótesis .............................................................................................................. 47 3. Objetivos .............................................................................................................. 49 4. Material y métodos ........................................................................................... 53 4.1 Comité de ética ................................................................................................. 53 4.2 Muestra y diseño del estudio ............................................................................ 53 4.3 Pruebas de composición corporal ...................................................................... 55 4.4 Pruebas de condición física ............................................................................... 56 4.5 Otros datos ....................................................................................................... 59 4.6 Programa de entrenamiento ............................................................................. 59 4.7 Análisis estadísticos ........................................................................................... 61 5. Referencias .......................................................................................................... 63 6. Resultados y discusión ...................................................................................... 71 7. Aportaciones principales de la Tesis Doctoral ........................................... 175 8. Conclusiones ..................................................................................................... 179 Apéndice ................................................................................................................ 183 Agradecimientos .................................................................................................. 185 -19- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. -20- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Table of contents Research Project ..................................................................................................... 23 List of abbreviations [part in Spanish] ............................................................... 25 General abstract ..................................................................................................... 29 1. Introduction [part in Spanish] ......................................................................... 31 1.1 1.2 The Down syndrome .................................................................................... 31 Physical fitness in children and adolescents with Down syndrome .............. 34 1.2.1 Body Composition ................................................................................................................... 34 1.2.2 Cardiovascular Fitness ............................................................................................................ 36 1.2.3 Muscular Strength ................................................................................................................... 38 1.3 Effects of training in children and adolescents with Down syndrome .......... 41 1.3.1 Cardiovascular training .......................................................................................................... 41 1.3.2 Strength training ..................................................................................................................... 42 1.3.3 combined cardiovascular and strength training ................................................................. 42 2. Hypothesis ........................................................................................................... 47 3. Objectives ............................................................................................................ 51 4. Material and methods [part in Spanish] ....................................................... 53 4.1 Etics comitee ..................................................................................................... 53 4.2 Sample and study design ................................................................................... 53 4.3 Body composition test ....................................................................................... 55 4.4 Physical fitness test ........................................................................................... 56 4.5 Other data ......................................................................................................... 59 4.6 Training program ............................................................................................... 59 4.7 Statistical analyses ............................................................................................ 61 5. References ........................................................................................................... 63 6. Results and discussion ...................................................................................... 71 7. Contributions of the Doctoral Thesis ........................................................... 177 8. Conclusions ....................................................................................................... 181 Appendix ................................................................................................................ 183 Acknowledgments ................................................................................................ 185 -21- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. -22- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Proyectodeinvestigación La Tesis Doctoral que se presenta a continuación, así como los artículos que la conforman, se enmarcan dentro del siguiente proyecto de investigación: “Determinantes fisiológicos y genéticos de la composición corporal en adolescentes con síndrome de Down. Respuestas y adaptaciones al ejercicio de fuerza.” Proyecto autonómico de 3 años de duración financiado por el Gobierno de Aragón (Proyecto PM 17/2007) y desarrollado en colaboración con agrupaciones relacionadas con el ámbito: Fundación Down Zaragoza y Special Olympics Aragón. Investigador principal: José A. Casajús Mallén. Researchproject The present Doctoral Thesis, as well as the manuscripts that are part of it, are within the frame of the following research project: “Physiological and genetic determinants of the body composition in children and adolescents with Down syndrome. Response and adaptations to the strength training.” Autonomic Project of 3 years of length granted by the Aragon’s Government (Proyecto PM 17/2007) and developed in collaboration with associations with long experience in the field: Fundación Down Zaragoza y Special Olympics Aragón. Principal investigator: José A. Casajús Mallén. -23- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. -24- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Listadodeabreviaturas[Listofabbreviations*] SD Síndrome de Down DI Discapacidad intelectual CMO Contenido mineral óseo DMO Densidad mineral ósea AF Actividad física IMC Índice de masa corporal V̇ O2max Consumo máximo de oxígeno FCmax Frecuencia cardíaca máxima CRmax Cociente respiratorio máximo VEmax Ventilación respiratoria máxima DXA Absorciometría dual de rayos-X 1RM Una repetición máxima * Abbreviations in English language are shown in each manuscript included in this document. -25- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. -26- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Resumengeneral Las personas con síndrome de Down tienen una composición corporal y una condición física poco saludables comparados con sus homólogos sin discapacidad. Debido al incremento en su esperanza de vida, ciertas enfermedades asociadas con la edad adulta que anteriormente no habían sido detectadas en personas con síndrome de Down comienzan a aparecer, y a edades incluso más tempranas. El entrenamiento físico mejora composición corporal y condición física en adolescentes sin discapacidad. Sin embargo, no existen muchas referencias a este respecto en jóvenes con síndrome de Down. Por tanto, el principal objetivo de esta Tesis Doctoral fue ampliar el conocimiento científico respecto a composición corporal y condición física en jóvenes con síndrome de Down y, por otro lado, determinar los efectos de un programa de 21 semanas de acondicionamiento físico combinado con saltos pliométricos sobre dichas variables. Un grupo de 32 jóvenes con síndrome de Down y otro grupo de 35 jóvenes sin discapacidad participaron en el estudio. Se evaluó su composición corporal usando absorciometría dual de rayos X, pletismografía por desplazamiento de aire y antropometría; y su condición física con pruebas de esfuerzo y test de fuerza isométricos y dinámicos. 16 participantes con síndrome de Down realizaron un entrenamiento de acondicionamiento físico combinado con saltos pliométricos durante 21 semanas, el resto actuaron como grupo control (con y sin síndrome de Down). Al término del programa de entrenamiento, el grupo de intervención mostró mejoras significativas en resistencia cardiorrespiratoria, masa muscular y masa ósea, indicando que este tipo de ejercicio puede ser beneficioso para niños y adolescentes con síndrome de Down. -27- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. -28- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Generalabstract Children and adolescents with Down syndrome have a worse body composition and physical fitness than their counterparts without disabilities. Due to the increment in their lifespan, diseases more common to happen in the adulthood, which previously have not been detected in persons with Down syndrome, are now starting to appear and even at an earlier age. It is well known that physical training improves physical fitness and body composition in children and adolescents without disabilities. However, not much is known about body composition, physical fitness or the effect of training in these variables in youths with Down syndrome. Therefore, the main objective of this Doctoral Thesis was to increase the scientific knowledge in body composition and physical fitness of youths with Down syndrome, and to observe the effects of 21 weeks of conditioning combined with plyometric jumps over those variables. A group of 32 youths with Down syndrome and another group of 35 youths without disabilities took part in the study. Body composition was evaluated using dual energy Xray absorptiometry, air displacement plethysmography and anthropometry; and physical fitness towards effort test in a treadmill, and also towards isometric and dynamic strength tests. A group of 16 participants with Down syndrome performed a training of conditioning combined with plyometric jumps during 21 weeks; the remaining youths were the control group (with and without Down syndrome). At the end of the training program, the intervention group showed improvements in cardiovascular fitness, lean mass and bone mass, indicating that this kind of training could be beneficial for children and adolescents with Down syndrome. -29- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. -30- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. 1.Introducción[Introduction] 1.1 ElsíndromedeDown El síndrome de Down (SD) fue descrito pormenorizadamente por primera vez por John Langdon H. Down en 1866, mientras trabajaba en el Asilo para Retrasados Mentales de Earlswood (Inglaterra). En su informe detalló las características de un grupo de pacientes que presentaban muchas similitudes tanto físicas como cognitivas y emocionales.(1) Décadas después, el SD ha sido ya profundamente estudiado y se sabe con exactitud que se trata de una condición genética caracterizada por discapacidad intelectual (DI) de diferentes grados, y que está causado por anomalías en el cromosoma 21.(2) Dentro de esas anomalías la más común es la triplicación del cromosoma, pero también están descritas la no disyunción y la translocación.(3) La estimación del SD es alrededor de 1/700 a 1/1000 nacidos vivos en la actualidad.(2, 4) Se han descrito más de 80 características clínicas en individuos con SD, incluidos problemas cardiacos congénitos, presentes aproximadamente en el 40% de los individuos con SD.(3) El problema cardíaco congénito más común es el prolapso de la válvula mitral, aproximadamente presente en el 80% de las ecocardiografías anómalas efectuadas a estos sujetos.(5) La leucemia es otra enfermedad que aparece con mayor frecuencia en niños con SD que en niños sin SD; sin embargo las personas con SD tienen menor riesgo de desarrollar otro tipo de tumores sólidos en todos los grupos de edad.(6) La esperanza de vida de las personas con SD se está viendo aumentada gracias principalmente a los avances de la ciencia, y en especial de la medicina. Durante las últimas décadas, las personas con SD, han pasado de una esperanza de vida media de 9 años en 1929,(7) a más de 55 años hoy en día.(4 ,8) Debido a este aumento en su esperanza de vida, ciertas enfermedades con tendencia a aparecer con la edad adulta y la vejez como -31- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. la osteoporosis, la osteopenia o el síndrome metabólico, que anteriormente no habían sido detectadas en esta población, comienzan a aparecer, y a edades más tempranas que en población sin SD, agravando así sobremanera los problemas propios de esta población. Por tanto, no se trata únicamente de vivir más años, sino de vivirlos de una manera lo más autónoma posible y sobre todo, con salud para poder disfrutar, mejorando así su calidad y expectativas de vida. Estudios científicos indican que algunas de las características físicas del SD están relacionadas con el ejercicio: hipotonía, hipermovilidad de las articulaciones, hiperlaxitud de los ligamentos, ligera a moderada obesidad, sistema respiratorio y cardiovascular poco desarrollado, estatura más baja y extremidades cortas en relación al torso.(3, 9) Además también se ha descrito un equilibrio muy pobre y dificultades en la percepción espacial.(10) Asociadas a la hipotonía y a la hipermovilidad encontramos lordosis, caderas dislocadas, pies planos, cabeza adelantada e inestabilidad atlantoaxial.(10 ,11) Es de hecho, esta inestabilidad atlantoaxial uno de los problemas más importantes que se relacionan con la poca participación en actividades deportivas, ya que las actividades de contacto brusco (p. ej., Judo, rugby, etc.) están contraindicadas en casos de personas con SD e inestabilidad atlantoaxial.(11) En parte debido a estas características clínicas, las personas con SD tienen niveles más bajos de condición física y una composición corporal menos saludable que otras personas de su misma edad sin SD, con o sin DI.(12-14) Como consecuencia de lo anteriormente mencionado, los jóvenes con SD tienden hacia comportamientos más sedentarios y pasan más tiempo dentro de casa, que sus homólogos sin SD.(15) Otra causa de este comportamiento sedentario podría ser la sobreprotección que estos niños a menudo tienen por parte de sus familias.(16) Los bajos niveles de condición física previamente comentados, unidos a la inactividad física, darán lugar a un -32- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. deterioro funcional reflejado en incrementos en la prevalencia del sobrepeso y la obesidad y en una reducción del desarrollo de la masa ósea y muscular lo cual puede, finalmente, resultar en un agravamiento de los problemas clínicos de esta población (Figura 1). Figura 1. Asociación de complicaciones en personas con síndrome de Down. Traducido de González-Agüero et al. 2010, Scand J Med Sci Sports© Está ampliamente demostrado que la actividad física (AF) y la práctica deportiva producen gran cantidad de beneficios relacionados con la salud a todas las edades, y aún más si cabe en niños y adolescentes. La AF mejora la capacidad cardiovascular,(17) contribuye a un estilo de vida más saludable y puede mejorar el sistema de defensa antioxidante,(18) el cual retrasa el envejecimiento celular. En niños y adolescentes, la AF regular y los niveles de condición física están íntimamente relacionados con una adquisición de masa ósea superior,(19) con una reducción de masa grasa(20 ,21) y con un -33- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. desarrollo adiposo saludable.(22) Las intervenciones de AF también se han mostrado beneficiosas en niños y niñas con leucemia.(23) El beneficio que se obtiene de la práctica de AF no es únicamente físico, existen también otros factores sociales asociados a la participación deportiva.(24) Por tanto, la AF podría ser un factor que potencialmente ayudaría a jóvenes con SD a mejorar su calidad de vida, desde un punto de vista tanto físico como social. De acuerdo con el Colegio Americano de Medicina del Deporte (ACSM), las variables de la condición física relacionadas con la salud son: composición corporal, condición aeróbica, fuerza muscular y flexibilidad.(25) Estudiar la flexibilidad no es, sin embargo una prioridad en personas con SD ya que, una gran flexibilidad es, precisamente, una de sus características clínicas.(9) Con el propósito de obtener una base sólida de conocimiento, a continuación se hará un resumen con los datos encontrados en la literatura científica publicada, previa a esta Tesis Doctoral, en lo referente a condición física, composición corporal y también los efectos que el entrenamiento físico tiene en niños y adolescentes con SD. 1.2 CondiciónfísicaenniñosyadolescentesconsíndromedeDown Todos los estudios relacionados con la condición física y la salud en niños y adolescentes con SD incluidos en este documento se encuentran resumidos en la Tabla 1. 1.2.1ComposiciónCorporal El Índice de Masa Corporal (IMC) y los diferentes compartimentos corporales como masa grasa, masa magra y masa ósea han sido estudiados en niños y adolescentes con SD. Pese a que en un estudio describieron a los niños con SD como menos activos y más tendentes a pasar más tiempo dentro de sus casas, no encontraron diferencias en el IMC, -34- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. comparados con sus hermanos sin DI.(15) No obstante, los trabajos científicos revisados habitualmente encuentran valores más altos de IMC y porcentaje de grasa corporal en personas con SD comparadas con personas sin SD prácticamente a cualquier edad.(26-28) En estudios llevados a cabo solo con adultos, también se encontró un IMC y porcentaje graso más alto en sujetos con SD comparados con sujetos con DI sin SD,(32 ,33) pero no se hallaron diferencias en el IMC entre sujetos adultos activos o sedentarios con SD.(34) Luke y col.(29) no encontraron diferencias en la masa libre de grasa (medida mediante dilución de deuterio y otros métodos) entre niños con y sin SD. Sin embargo, mediante absorciometría dual de rayos-X (DXA), Guijarro y col.(30) y Baptista y col.(28), estimaron la masa muscular total siguiendo el protocolo establecido por Heymsfield y col.(31) y encontraron niveles más bajos tanto en hombres como en mujeres adultos jóvenes con SD, comparados con sus homólogos sin SD. Niños, adolescentes y adultos con SD presentan de manera general, niveles bajos de contenido mineral óseo (CMO) y densidad mineral ósea (DMO) comparados con personas sin SD de su misma edad. Estos niveles bajos han sido detectados tanto a nivel de cuerpo completo, como en la espina vertebral lumbar,(26 ,28 ,35 ,36) extremidades superiores e inferiores,(28) y en la cadera.(30) También la DMO volumétrica ha sido estudiada, encontrando niveles más bajos en extremidades(28) y espina lumbar(30) en personas con SD que en personas sin SD. De manera similar, un estudio con ultrasonografía detectó una amplitud dependiente de la velocidad del sonido, la cual depende de la DMO, más baja en niños con SD que en niños sin SD, con o sin DI. Sin embargo, estas diferencias permanecían estables con el tiempo,(37) lo que sugirió baja masa ósea pero desarrollo normal. A pesar de que existe información sobre composición corporal en personas con SD, se necesitan más estudios para describir con más detalle, no solo la composición corporal de niños y adolescentes con SD sino también el efecto del ejercicio sobre la masa magra, la -35- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. masa grasa y la masa ósea en esta población. Así mismo, tampoco hasta la fecha ninguna ecuación de predicción ha sido validada, o demostrada como más fiable para evaluar el porcentaje de grasa corporal en este grupo de población concreto. 1.2.2CondiciónAeróbica La capacidad aeróbica de niños y adolescentes con SD comparados con sujetos sin SD, con o sin DI, ha sido descrita como muy baja en diversas ocasiones.(12 ,13 ,38 ,39) Eberhard y col.(38) en 1988 encontraron un consumo máximo de oxígeno (V̇ O2max) más bajo y menores tiempo y carga de trabajo en niños con SD comparados con sus homólogos sin SD. En las últimas décadas, se han hecho considerables progresos en cuanto a la evaluación de los niños y adolescentes con DI, y especialmente con SD. Fernhall y col.(40) desarrollaron un test en tapiz rodante y lo validaron para adolescentes y adultos con DI (incluidos algunos con SD). Los resultados de este estudio mostraron un coeficiente de fiabilidad de 0.94 entre dos pruebas repetidas. En otro estudio, Fernhall y col.(41) desarrollaron una ecuación de regresión para predecir el consumo de oxígeno pico (V̇ O2pico) en niños y adolescentes con DI (incluidos algunos con SD) mediante pruebas de campo (600-yard walk-run, 20m shuttle run, y un modificado 16m shuttle run), y en el año 2000 validaron la ecuación de nuevo con el 20 m shuttle run.(42) Sin embargo, Guerra y col.(43) encontraron que la fórmula de regresión para averiguar el V̇ O2pico en niños con DI no era válida para la muestra de adolescentes con SD de su estudio, y atribuyó esto al bajo número de participantes con SD en el estudio previo de Fernhall. Estaba claro que las personas con SD, en términos de capacidad de ejercicio máxima, no se comportaban como las personas con DI en general, se trataba pues de un grupo específico a estudiar. Más tarde, Fernhall y col.(13) desarrollaron una ecuación para predecir la frecuencia cardíaca máxima (FCmax) en individuos con DI (incluidos algunos niños y adolescentes -36- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. con SD). Fernhall y col.(40) encontraron también niveles más bajos de V̇ O2pico, volumen ventilatorio máximo (VEmax), FCmax y cociente respiratorio máximo (CRmax) en niños y adolescentes con SD comparados con otros sin SD, con o sin DI. Baynard y col.,(39) en un estudio multicéntrico más reciente, dividieron a toda la muestra en grupos de edad y encontraron niveles más bajos de V̇ O2pico (expresado en valores absolutos y relativos) en todos los grupos de edad comparados con otros grupos sin SD, con y sin DI. Además, alarmantemente observaron que el V̇ O2pico, en el grupo con SD, no cambiaba a partir de los 16 años. Pitetti y Fernhall(44) demostraron además que la economía de carrera era peor en individuos con SD comparados con otros sin SD, con o sin DI. En estudios desarrollados sólo con adultos con SD también se han encontrado valores más bajos de V̇ O2peak, VEpeak, HRpeak y RERpeak comparados con otros sin SD, con o sin DI.(12 ,45) Climstein y col.(46) demostraron que la ecuación de predicción para calcular el V̇ O2pico de adultos jóvenes con DI desarrollada por el ACSM tiende a sobreestimar dicho valor cuando se aplica a población con SD, y por tanto, la prescripción de ejercicio derivada debe basarse en medidas más reales. Un nivel bajo de capacidad aeróbica se considera un factor de riesgo para problemas cardiovasculares futuros, y puede tener como resultado una disminución de la esperanza de vida también en personas con SD. Sin embargo, debido a la falta de estudios que en relación a este tema, incluyan únicamente población pediátrica con SD, así como la escasez de estudios longitudinales, no permite corroborar esta hipótesis, y por tanto, es necesaria más investigación al respecto. -37- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. 1.2.3FuerzaMuscular Niveles adecuados de fuerza muscular se relacionan con la salud y ayudan a las personas a ser más autónomas e independientes;(25) sin embargo, es difícil mantener esos niveles especialmente durante la vejez.(47 ,48) Como la esperanza de vida de las personas con SD está incrementándose, es importante estudiar la evolución de los niveles de fuerza en esta población y, si fuera necesario, desarrollar programas para su mejora. Únicamente se encontró un estudio en el que valoraran la fuerza muscular en niños con SD. Mercer y Lewis(27) encontraron niveles más bajos de fuerza en los músculos involucrados en la abducción de la cadera y la extensión de la rodilla en niños con SD comparados con otros sin DI, siendo además el peso corporal, la talla, el sexo y el IMC buenos predictores para el pico de fuerza en población con SD. En población adulta con SD, varios estudios han mostrado niveles más bajos de fuerza en los músculos implicados en las articulaciones del codo(49) y de la rodilla,(45) así como musculatura del cuádriceps y muslo,(50) espalda baja(34) y piernas(32) comparándolos con otros sin SD, con o sin DI. Los estudios desarrollados hasta el momento parecen indicar que las personas con SD tienen niveles bajos de fuerza, lo cual podría estar asociado con algunos de los problemas clínicos descritos previamente. Se necesita más investigación sobre el tema para clarificar si hay unos niveles bajos de fuerza generalizados en niños y adolescentes con SD y si estos pueden mejorar con el entrenamiento. -38- Participantes 19 7M, 12V 133 39 7 67 33M, 34V 13 6M, 7V 119 57M, 62V 89, 47 obesos Estudio Guerra y col. (2009) Baynard y col. (2008) Guijarro y col. (2008) Halaba y col. (2006) Baptista y col. (2005) Baynard y col. (2004) Pitetti y Fernhall (2004) Fernhall y col. (2003) 14.5 14.8±2.6 18.5±2.3 22.8 ± 5.9 23.3 ± 6.2 9.6 ± 1.8 26 ± 7 9 a 45 Edad 14.8 ± 3 Test individualizado en tapiz hasta agotamiento DXA Ultrasonido en las falanges de la mano. DXA. Recolección de datos de los últimos 20 años, usando el test validado de tapiz rodante. 84 con DI sin SD, 22 obesos Test de tapiz rodante Continúa… - FCmax mas baja en grupo SD, sin diferencias entre obesosno obesos - Controlando por FCmax, sin diferencias en capacidad aeróbica entre obesos y no obesos con SD - Sujetos con SD mostraron economía de carrera peor que los sujetos in SD. - La determinación del umbral ventilatorio es muy complicado, niveles bajos de VO2pico, VEmax, FCmax y CRmax - Menos masa muscular en el grupo de mujeres, porcentaje graso e IMC más alto. - CMO, DMO y DMO volumétrica más bajos en extremidades superiores e inferiores y en espina en todo el grupo. - Velocidad del sonido dependiente de la amplitud más baja en todas las edades y permanece estable con el tiempo. - Masa magra total más baja en el grupo SD. - DMO y área menores en cuerpo complete, espina lumbar y cadera. - DMO volumétrica más baja en la espina lumbar. - V̇ O2pico absoluto y relativo más bajo en todos los grupos de edad. - V̇ O2pico no cambió a partir de los 16 años. Metodología Resultadosa Test anaeróbico de Wingate - La fiabilidad del test fue cuestionable - Los adolescentes con SD mostraron valores bajos de WAnT comparado con valores publicados. 396 con DI sin SD Test de 20 m shuttle run 607 sin DI 17 con DI sin SD 67 sin DI 24 sin DI 78 sin DI 180 con DI sin SD; 322 sin DI Controles No Tabla 1. Estudios relativos a condición física y salud en niños y adolescentes con síndrome de Down. Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. -39- -40- 10 3M, 7V 10 3M, 7V Kao y col. (1992) Eberhard y col. (1989) 14.8 10 a 16 8 sin DI Valores de referencia sin DI 30 sin DI 10 sin DI 17 sin SD 179 con DI sin SD; 196 sin DI Controles No Test de cicloergómetro. DPX Medidas antropométricas, acelerómetros, cuestionarios. Medidas antropométricas, impedancia bioeléctrica, dilución de deuterio. Medidas antropométricas. Dinamómetro. Estudio multicéntrico con tapiz rodante. Metodología Test de 20 m shuttle run y test de tapiz rodante - VO2max más bajo - Rendimiento más bajo y menos carga máxima de trabajo. - La presión sanguínea no cambia regularmente. - DMO menor en la espina lumbar. - Retraso en la distribución de la curva de DMO a través de las edades. - Sin diferencias en IMC. - Menos activos, más tiempo dentro de casa. - Sin diferencias en la masa libre de grasa. - IMC y %GC más altos. - Valores más bajos para picos de fuerza de abducción de cadera y extensión de rodilla. - Test-retest fiabilidad alta (.89 a .95) - Peso, talla, sexo, IMC y nivel de actividad buenos predictores para pico de fuerza en poblaciones con SD - V̇ O2pico, VEmax, FCmax, and CRmax más bajos. Resultados - La formula de regresión para adolescentes con DI no es válida para sus adolescentes con SD Tabla1.(continúa) : Todas las comparaciones son: grupo con SD frente a grupo sin SD (con o sin DI) si existe. M = Mujer; V = Varón; SD = síndrome de Down; DI = discapacidad intelectual; DXA = absorciometría dual de rayos-X; DPX = densitometría dual de fotones; IMC = índice de masa corporal; CMO = contenido mineral óseo; DMO = densidad mineral ósea; VO2 = consumo de oxigeno; VE = ventilación; FC = frecuencia cardíaca; CR = cociente respiratorio. a 30 Sharav y Bowman (1992) 2 a 14 8.8 ± 2.5 10 6M, 4V Luke y col. (1996) 21.8 ± 8.4 11.2 ± 2.4 97 Fernhall y col. (2001) Edad 15.3±2.7 Mercer y Lewis (2001) 17 11M, 6V Participantes 26 11M, 15V Estudio Guerra y col. (2003) a Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. 1.3 Efectosdelentrenamientofísicoenniñosyadolescentescon síndromedeDown Como hemos podido comprobar, los niños y adolescentes con SD muestran niveles inferiores de fuerza muscular, condición aeróbica, masa muscular y masa ósea, unidos a niveles superiores de masa grasa, comparados con sus homólogos con o sin DI. Dado que la AF es un predictor significativo de la fuerza muscular, comprobar si intervenciones de ejercicio supervisado pueden ayudar a incrementar la fuerza muscular y/o la condición aeróbica o a mejorar la composición corporal, dando lugar a mejoras en salud, es un tema importante que considerar. Todos los estudios relacionados con los efectos del entrenamiento físico en niños y adolescentes con SD incluidos en esta revisión están resumidos en la Tabla 2. 1.3.1Entrenamientocardiovascular Únicamente se han podido encontrar 3 estudios que examinen los efectos del entrenamiento aeróbico estandarizado en niños y adolescentes con SD. Varela y col.(51) desarrollaron un programa de 16 semanas de entrenamiento utilizando un ergómetro de remo, en 16 adolescentes y adultos jóvenes con SD. A pesar de que el grupo que entrenó alcanzó niveles más altos de carga de trabajo no encontraron cambios en el peso ni en el porcentaje graso. De igual manera, no reportaron cambios a nivel cardiovascular ni de respuesta fisiológica en el test de tapiz rodante ni en el de remo. Andriolo y col.,(24) en una revisión sistemática, analizaron las mejoras en salud física y psicosocial en adultos con SD obtenidas mediante programas de entrenamiento aeróbico, y concluyeron que no hay suficientes evidencias para asegurar mejoras. Millar y col.(52) diseñaron un programa de ejercicio de 10 semanas de caminata y trote, para 14 niños y adolescentes con SD; al término de la intervención no encontraron cambios en la -41- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. capacidad aeróbica en ninguno de los dos grupos, posiblemente debido a la baja intensidad del ejercicio, sin embargo el grupo de entrenamiento mostró una mejora en la carga de trabajo y tiempo hasta el agotamiento. Ordóñez y col.(53) entrenaron con orientación aeróbica a 22 adolescentes con SD durante 12 semanas, consiguiendo al final del periodo de entrenamiento que el porcentaje de masa grasa (evaluado mediante antropometría) disminuyera significativamente, aunque no informaron sobre los efectos cardiovasculares del ejercicio. A pesar de que las investigaciones son limitadas, los resultados parecen apuntar a que el entrenamiento aeróbico de relativa corta duración puede tener efectos positivos sobre la composición corporal, sin embargo, las adaptaciones cardiovasculares parecen requerir periodos de entrenamiento más largos y/o intensidades de entrenamiento más altas. Nuevos estudios diseñados específicamente podrían contribuir a validar estas hipótesis en niños y adolescentes con SD, visto que es posible mejorar la capacidad aeróbica en adultos con SD.(54) 1.3.2Entrenamientodefuerza Sólo un estudio realizado con jóvenes con SD se centró únicamente en el entrenamiento de fuerza. Weber y French(55) estudiaron un grupo de 14 adolescentes con SD y diseñaron 2 programas de entrenamiento: uno de levantamiento de cargas y otro de ejercicios isométricos. Concluyeron que los jóvenes que entrenaron con levantamiento de cargas incrementaron más su fuerza muscular que el grupo de ejercicios isométricos. 1.3.3Entrenamientocombinadocardiovascularydefuerza En el estudio de caso llevado a cabo por Lewis y col.,(56) una niña con SD ejecutó un programa de entrenamiento combinado (cardiovascular y fuerza) durante 6 semanas. -42- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Después del entrenamiento los resultados mostraron mejoras en la capacidad aeróbica y la potencia anaeróbica. Estos estudios sobre programas de entrenamiento abren una puerta a futuras investigaciones que pretendan mejorar los niveles de fuerza o resistencia cardiovascular en niños y adolescentes con SD, lo que puede tener efectos muy positivos en la salud y calidad de vida desde diferentes enfoques. Por ejemplo, el entrenamiento de fuerza podría producir incrementos en la fuerza e hipertrofia muscular, lo que podría también reducir la hipotonía, equilibrar las disfunciones e incrementar el V̇ O2max y parámetros relacionados con la masa ósea. En resumen, niños y adolescentes con SD son una población especial en cuanto a variables de condición física relacionadas con la salud. La composición corporal, en esta población específica, parece ser menos saludable que la observada en sus homólogos sin SD, como queda confirmado por mayores cantidades de masa grasa, niveles más bajos de masa magra y unos parámetros relacionados con la masa ósea reducidos. Además de esto, niños y adolescentes con SD muestran niveles más bajos de su condición aeróbica y fuerza muscular, lo que puede trascender en una peor calidad de vida. A pesar de que no existe toda la información deseable sobre condición física y salud en jóvenes con SD, es evidente que esta población podría beneficiarse considerablemente de la práctica de AF y la prescripción de ejercicio físico. Los datos de los relativamente pocos estudios disponibles hasta la fecha indican una mejora en la composición corporal (p.ej., reducción de la masa grasa) de los individuos pero no en su capacidad aeróbica cuando realizan entrenamiento aeróbico medio. Una posible explicación a esta falta de mejora cardiovascular podría ser la baja intensidad y/o la duración del programa de ejercicio prescrito. -43- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Futuras investigaciones sobre este tema podrán dirigirse hacia temas pendientes como la duración e intensidad del entrenamiento aeróbico para mejorar la capacidad aeróbica, o si de hecho, más intensidad y/o duración en un entrenamiento de fuerza podría ser más beneficioso para niños y adolescentes con SD. Por tanto, sí como indican las investigaciones previas, el ejercicio físico puede mejorar la salud de este grupo de población, esta línea de intervención debería ser prioritaria para incrementar sus posibilidades de desarrollo personal, esperanza y calidad de vida. -44- No No 10 sujetos 8 sujetos No Control Antropometría, test submáximo de tapiz, modificación del MargariaKalamen, 10RM para brazos y piernas. 10 ejercicios para evaluar fuerza muscular Test caminando de tapiz rodante. Mediciones antropométricas, test gradual de tapiz rodante o de remo. Mediciones antropométricas Metodología - Sin cambios en la capacidad aeróbica. - El grupo ejercicio mejoró el tiempo hasta el agotamiento y el grado - Sin diferencias en repuesta cardiovascular o psicológica. - el grupo de ejercicio alcanzó niveles más altos de carga de trabajo. - Significativa reducción en el porcentaje de masa grasa. Resultadosa 6 sem. Aeróbico 60-80% FCmax, 10 a 60 min por sesión; 2 a 3 sesiones por sem. Intensidad fuerza incrementaba el número de repeticiones y el peso; 10 a 45 minutos por sesión, 2 a 3 sesiones por semana. - IMC sin cambios. - Descenso de la FC y el CR en todas las fases del test de tapiz rodante. - Mejoras en la potencia anaeróbica y la fuerza del tronco, y extremidades (superiores e inferiores). Dos grupos: A) levantamiento de - El grupo de levantamiento de cargas 80%, B) isométricos 15 minutos cargas consiguió mejoras más por sesión amplias en todas las pruebas de fuerza muscular 10 semanas andando y trotando; 6575% FCmax, 30 minutos por sesión, 3 sesiones por semana. 16 semanas ergómetro de remo: intensidades de 55 a 70 % V̇ O2pico; 15 a 25 minutos por sesión, 3 sesiones por semana. 12 semanas, intensidad basada en la FC, de 30 a 60 minutos por sesión, 3 sesiones por semana. Programa de entrenamiento : en los resultados, todas las comparaciones son: grupo con SD frente a grupo sin SD (con o sin discapacidad intelectual) si existe. M = Mujer; V = Varón; SD = síndrome de Down; DE = desviación estándar; IMC = índice de masa corporal; VO2 = consumo de oxigeno; HR = frecuencia cardíaca; RER = cociente respiratorio; RM = repetición máxima. a Entrenamiento combinado aeróbico y de fuerza 1M 10.5 Lewis and FragalaPinkham (2005) 13 a 18 17.7 ± 2.9 14; 3M, 11V Millar y col. (1993) Entrenamiento de fuerza 14 Weber and French 3M, 11V (1988) 21.4 ± 3 16V 16.2 ± 1 Edad Varela y col. (2001) Estudio Participantes Entrenamiento Aeróbico Ordoñez y col. (2006) 22V Tabla 2. Estudios con respecto a entrenamiento físico en niños y adolescentes con síndrome de Down. Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. -45- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Los artículos que forman parte de esta Tesis Doctoral están dentro una misma unidad temática como puede verse en el título de la misma: “Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos” -46- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. 2.Hipótesis Niños y adolescentes con síndrome de Down tienen una composición corporal y una condición física peor respecto a sus homólogos sin discapacidad. Un programa de entrenamiento individualizado de acondicionamiento físico combinado con saltos pliométricos es beneficioso para estos jóvenes; ayudándoles a alcanzar una composición corporal y unos niveles de condición física más saludables y cercanos a los jóvenes de su misma edad sin discapacidad. 2.Hypotheses Children and adolescents with Down syndrome have a worse body composition than their counterparts without disabilities. An individualized training program of conditioning combined with plyometric jumps is positive for these youths; helping them to achieve a body composition and physical fitness healthier, and closer to the youths without disabilities. -47- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. -48- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. 3.Objetivos El objetivo general de la presente Tesis Doctoral es ampliar el conocimiento científico en cuanto a condición física y composición corporal relacionado con la salud, en jóvenes con síndrome de Down; y por otro lado observar el efecto de 21 semanas de entrenamiento individualizado de acondicionamiento físico combinado con saltos pliométricos sobre dichas variables. En detalle, los objetivos específicos de cada uno de los 9 artículos que componen la Tesis Doctoral son: Artículo I. Revisar la literatura científica, previa a esta Tesis Doctoral, en relación con la condición física, la composición corporal y también con los efectos que el entrenamiento físico tiene en niños y adolescentes con SD. Artículo II. Describir los niveles de masa ósea total y regional (zona lumbar, cadera y cuello femoral) de niños y adolescentes con SD, comparándolos con un grupo de homólogos sin SD. Artículo III. Comparar la distribución total y regional de masa grasa y magra en niños y adolescentes con y sin SD; investigar si el perímetro de cintura es un buen indicador de adiposidad y evaluar la presencia de dimorfismo sexual en niños y adolescentes con SD. Artículo IV. Obtener datos antropométricos de adolescentes con SD y valorar si su dimorfismo sexual en masa grasa es similar al descrito previamente para adolescentes sin SD. Artículo V. Describir los niveles de masa muscular y fuerza isométrica y dinámica en adolescentes con SD y estudiar la posible relación entre masa muscular y fuerza en esta población. -49- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Artículo VI. Averiguar cuál de las ecuaciones de predicción de porcentaje de grasa mediante mediciones antropometricas es la más adecuada para ser aplicada en niños y adolescentes con SD, comparándolo con pletismografía por desplazamiento de aire. Artículo VII. Establecer cuál es el efecto de 21 semanas de entrenamiento de acondicionamiento físico combinado con saltos pliométricos sobre los tejidos blandos de la composición corporal (masa grasa y masa magra) de niños y adolescentes con SD. Artículo VIII. Determinar si niños y adolescentes con SD pueden mejorar su condición cardio-respiratoria, adquiriendo niveles cercanos a los de jóvenes sin discapacidad, mediante un entrenamiento de 21 semanas de acondicionamiento físico combinado con saltos pliométricos. Artículo IX. Comprobar si niños y adolescentes con SD pueden incrementar su masa ósea siguiendo un entrenamiento de acondicionamiento físico combinado con saltos pliométricos, durante 21 semanas. -50- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. 3.Objectives The general aim of the present Doctoral Thesis is to enlarge the scientific knowledge in terms of health-related physical fitness and body composition, in youths with Down syndrome; and on the other hand, to observe the effect of 21 weeks of an individualized conditioning training program combined with plyometric jumps over these variables. In detail, the specific objectives of each of the 9 manuscripts which constitute this Doctoral Thesis are: Manuscript I. To review the scientific literature, previous to this Doctoral Thesis, in relation with physical fitness, body composition and also the effects that physical training has in children and adolescents with Down syndrome. Manuscript II. To describe levels of total and regional (lumbar spine, hip and femoral neck) bone mass of children and adolescents with Down syndrome comparing with their counterparts without disabilities. Manuscript III. To compare total and regional fat and lean masses distribution between children and adolescent with and without Down syndrome; to investigate whether waist circumference is a good indicator of adiposity and to evaluate the presence of sexual dimorphism in children and adolescents with Down syndrome. Manuscript IV. To obtain anthropometric data of adolescents with Down syndrome, and to evaluate if their fat mass-sexual dimorphism is similar than the described for adolescents without Down syndrome. -51- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Manuscript V. To describe lean mass and isometric and dynamic strength in adolescents with and without Down syndrome, and to study the possible relationship between lean mass and strength in this population. Manuscript VI. To find out which of the published prediction equations with anthropometry is the most accurate to asses percentage of body fat in children and adolescents with Down syndrome, comparing those with air displacement plethysmography. Manuscript VII. To establish what is the effect of 21 weeks of conditioning training combined with plyometric jumps in the soft tissues of body composition (fat and lean masses) in children and adolescents with Down syndrome. Manuscript VIII. To determine whether children and adolescents with Down syndrome are able to improve their cardiovascular fitness, reaching levels close to the youths without disabilities, towards a 21-weeks conditioning combined with plyometric jumps training. Manuscript IX. To check if children and adolescents with Down syndrome can increase their bone mass following a conditioning combined with plyometric jumps training, during 21 weeks. -52- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. 4.Materialymétodos[Materialandmethods] A continuación se describe la metodología general del proyecto, si bien dentro de cada artículo publicado aparece una descripción detallada acerca de la metodología concreta utilizada en él. 4.1Comitédeética El estudio se llevó a cabo siguiendo las Normas Deontológicas reconocidas por la Declaración de Helsinki de 1975 (revisado en la 52ª Asamblea General en Edimburgo, Escocia, Octubre 2000), las Normas de Buena Práctica Clínica y cumpliendo la legislación y la normativa legal española que regula la investigación clínica en humanos (Real Decreto 561/1993, sobre ensayos clínicos). El proyecto fue aprobado por el Comité de Ética de Investigación Clínica de Aragón (CEICA). Además, previo a la participación en el proyecto se organizaron reuniones donde se explicaron los objetivos y procedimientos a llevar a cabo en el mismo. Finalmente, todos los padres tuvieron que firmar un consentimiento informado para que sus hijos pudieran participar en el estudio. 4.2Muestraydiseñodelestudio La muestra total del estudió fue de 67 niños y adolescentes (30 chicas y 37 chicos), 32 con SD y 35 sin SD. Los criterios de inclusión dentro del grupo con SD fueron los siguientes: (a) tener una edad comprendida entre 10 y 18 años, (b) estar diagnosticado de SD y (c) no tener contraindicaciones para la práctica de ejercicio físico. Los criterios de inclusión para el grupo sin SD fueron: (a) tener una edad comprendida entre 10 y 18 años, (b) no tener ninguna enfermedad conocida, y (c) no estar tomando medicación en el momento de comenzar el proyecto ni durante los 3 meses previos. -53- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. El artículo I, al tratarse de una revisión tiene una metodología propia y diferente a los estudios experimentales, explicada en detalle en dicho artículo. Los artículos II al IX cuentan con la muestra descrita, si bien existen variaciones en el número de participantes debidas a valores perdidos en alguna de las variables de análisis y/o debido a los criterios de inclusión establecidos para cada estudio (p.ej. rango de edad, únicamente participantes con SD, etc.) La Figura 2 muestra, de manera esquemática, el diseño experimental del proyecto. Durante las 3 evaluaciones de las que constó, se llevaron a cabo pruebas de análisis de la composición corporal y de la condición física. Al tratarse de un proyecto mucho más amplio que lo meramente reflejado en esta Tesis Doctoral, parte de la metodología aquí explicada no forma parte de ninguno de los artículos que la componen. Sin embargo, se explicarán brevemente todas las pruebas realizadas, haciendo especial mención en las que forman parte de los artículos publicados. Figura 2. Línea de trabajo general del proyecto. -54- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. 4.3Pruebasdecomposicióncorporal Todas las pruebas de composición corporal se realizaron en la misma tarde entre las 16 y las 19 horas por el mismo personal cualificado: 1. Absorciometría dual de rayos-X (DXA): Se utilizó un DXA QDR-Explorer (Hologic Corp. Software versión pediátrica 12.4, Bedford, MA, USA). El equipamiento fue calibrado con un fantoma de espina lumbar y con un fantoma de densidades siguiendo las recomendaciones del fabricante. Los sujetos se colocaban en decúbito supino, y los escáneres se realizaban en alta resolución. Con esta prueba se obtuvieron valores de masa grasa (g), masa magra (kg) y masa ósea [contenido (CMO; gr) y densidad mineral ósea (DMO; gr/cm2)], tanto de cuerpo completo como en análisis regionales. En concreto, se obtuvieron valores de tejidos blandos de extremidades superiores e inferiores y de la región del tronco; y valores de masa ósea de extremidades, cadera (con las subregiones siguientes: trocanter, región intertrocantérica y cuello femoral) y zona lumbar (calculada como la media de las vertebras lumbares L1 a L4). 2. Antropometría: se realizaron mediciones antropométricas a todos los participantes siguiendo el protocolo de ISAK.(57) Todos los sujetos fueron pesados en ropa interior en una báscula con una precisión 0.1 kg (SECA 861, SECA, Hamburg, Germany) y tallados en un tallímetro con una precisión 0.1 cm (SECA 225, SECA, Hamburg, Germany). Las medidas de pliegues, perímetros y diámetros se tomaron por triplicado, en el lado derecho, con un calibre de pliegues (Holtain Ltd. Crymmych, UK), cinta antropométrica y paquímetro (ambos Rosscraft S.R.L., Canadá). Se tomo como válida la mediana de las tres medidas. Todas las medidas fueron efectuadas por un antropometrista nivel 2 de ISAK. -55- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. 3. Pletismografía por desplazamiento de aire: Conocido comercialmente como BOD-POD® (Body Composition System, Life Measurement Instruments, Concord, USA), se realizó dicha prueba a todos los sujetos en ropa interior. Obteniéndose valores de densidad corporal total, la cual aplicada a las diferentes fórmulas de predicción permite obtener valores del porcentaje graso corporal de los participantes. 4. Impedancia bioeléctrica: Se utilizó para ello un equipo de impedancia cuatripolar (Tanita BC-418MA, Tanita Corp. Tokyo Japan). Con esta prueba se estimaron los valores de grasa corporal y masa libre de grasa. 5. Ultrasonografía cuantitativa: Se realizó esta prueba con un equipo de ultrasonido Aquilles InSight (GE Healthcare, Waukesha, Wisconsin, USA). Se obtuvieron valores de fortaleza y densidad ósea, realizando el examen a nivel del calcáneo. 4.4Pruebasdecondiciónfísica Previo a la realización de cada prueba de esfuerzo, se realizó una exploración física a cada participante, se completó una historia medico-deportiva, y se les practicó un examen ecocardiográfico (solo a los participantes con SD) para incrementar de esta manera la seguridad de la prueba. También se evaluó la maduración sexual de todos los participantes, por observación directa de un médico experimentado, siguiendo los 5 estadios propuestos por Tanner y Whitehouse.(59) Todas las pruebas de condición física fueron realizadas por cada participante en la misma tarde por el mismo personal cualificado y dentro de la misma semana que se habían practicado las pruebas de composición corporal: -56- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. 1. Prueba de esfuerzo en tapiz rodante: los participantes se familiarizaron con el laboratorio y probaron los aparatos antes de empezar a recoger ningún dato. La toma de datos comenzaba cuando los niños eran capaces de andar cómodamente en el tapiz rodante (Quasar Med 4.0, h/p/cosmos, Nussdorf-Traunstein, Germany) con la máscara ajustada. Modificando ligeramente el protocolo propuesto por Fernhall y col. para adultos en 1987(58) (Tabla 3), los participantes comenzaban a caminar en la cinta a 3.2 km/h (2.8 km/h los sujetos más jóvenes) y cada dos minutos la velocidad se incrementaba 0.8 km/h hasta que los participantes no eran capaces de andar sin correr (4.8 ó 5.6 km/h). Una vez llegaban a ese punto, se incrementaba la pendiente del tapiz cada minuto un 4% hasta que el participante no podía continuar (máximo 24%). El protocolo de Fernhall ha demostrado validez y fiabilidad;(40) la adaptación propuesta se debe a que comúnmente, los niños necesitan menos tiempo para alcanzar un estadio estable en cada fase de la prueba y además así se conseguía reducir el tiempo total de la prueba, evitando aburrimiento por parte de los participantes. El intercambio gaseoso fue medido con un analizador de gases ‘breath-by-breath’ de circuito abierto (Oxycon Pro, Jaeger/Viasys Healthcare, Hoechberg, Germany). Los valores máximos de consumo de oxígeno, volumen ventilatorio y cociente respiratorio fueron registrados como los valores medios más altos, obtenidos de cualquier periodo continuo de 30 segundos. El espirómetro se calibró cada día con un volumen y gas conocido, como recomienda el fabricante. Se utilizó un electrocardiograma para registrar la frecuencia cardíaca, usando un sistema de 12 derivaciones durante toda la prueba. Además de valores durante toda la prueba, también se obtuvieron valores en reposo, y durante los 3 primeros minutos de la recuperación. -57- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Tabla 3. Protocolo de tapiz rodante de Fernhall Velocidad (km/h) Inclinación Tiempo (min) 0.0 0º 3 2.4 0º 2 3.2 0º 2 4.0 0º 2 4.8 0º 2 5.6 0º 2 5.6 4º 1 5.6 8º 1 5.6 12º 1 5.6 16º 1 5.6 20º 1 5.6 24º 1 0.0 0º 3 2. Test de salto: Los tests de Counter Movement Jump (salto con contramovimiento; CMJ) y Abalakov (salto con ayuda de brazos, ABA) se utilizaron para valorar la fuerza dinámica de las extremidades inferiores. Cada niño efectuó tres saltos de cada tipo y se tomó como válido el valor más alto de los tres. 3. Test isométricos: Para medir la fuerza isométrica máxima de los músculos extensores de la extremidad inferior se uso una célula de carga (Servicio de Apoyo a la Investigación, Universidad de Zaragoza) anclada en la pared. Los niños realizaban extensión máxima de extremidad inferior desde una posición de sentados con las rodillas a 90º y las manos sobre los muslos. Para valorar la fuerza isométrica de los músculos flexores del antebrazo y de la mano, los niños efectuaron una dinamometría manual con un dinamómetro (Takei-Grip 5401). Cada niño efectuó tres intentos de cada prueba y se tomó como válido el valor más alto de los tres. 4. Test de equilibrio y marcha: incluyen reconocimiento morfoestático y dinámico de todos los participantes. Realizados con plataformas de presiones y cámaras de grabación. -58- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. 4.5Otrosdatos Además de los elementos que aparecen en la Figura 2, se obtuvieron otros datos de interés, que aunque la mayoría no hayan sido incluidos en los artículos que componen esta Tesis Doctoral, serán explicados sucintamente a continuación. Se entregaron cuestionarios de baterías psico-sociales, a los padres de todos los participantes, para futuros análisis psico-sociológicos. Se recogió también muestra de mucosa bucal para análisis genético posterior a todos los participantes. Durante el periodo de entrenamiento, los participantes, con y sin SD, llevaron colocados, durante una semana, acelerómetros uniaxiales (Actigraph GT1M, Manufacturing Technology Inc. Pensacola, FL, USA) para medir, de manera objetiva, sus niveles de actividad física. Se completaron 2 recuentos de alimentos de 24 horas no consecutivos, usando el software HELENA - DIAT(60) (HELENA – dietary assessment tool), para obtener valores de ingesta de nutrientes de todos los participantes. 4.6Programadeentrenamiento Después de una evaluación inicial (segunda evaluación en la Figura 2) una submuestra aleatoria con SD (n=13; 7 chicas y 6 chicos) llevó a cabo el programa de ejercicio físico durante 21 semanas y con una frecuencia de dos sesiones por semana, permaneciendo otra submuestra con SD (n=19; 8 chicas y 11 chicos) y el grupo sin DI como grupo control. Cada entrenamiento se llevó a cabo con un máximo de 10 niños. Un investigador, y de 1 a 3 ayudantes supervisaron cada entrenamiento para que el ratio monitor:niño fuera 1:3 como mínimo. Cada sesión consistió en un trabajo de acondicionamiento físico -59- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. combinado con saltos pliométricos. La primera semana se usó para familiarización con el material y los ejercicios. Cada entrenamiento constaba de 5 minutos de actividades de calentamiento, 10-15 minutos de sesión y 5 minutos de vuelta a la calma. El entrenamiento consistía en 1 ó 2 rotaciones en un circuito de 4 estaciones. Los ejercicios realizados en cada estación fueron: 1. Saltos: salto vertical en el sitio, saltos con carrera, saltos en caída (altura del salto entre 40 y 50 cm), salto en caída + salto adelante (altura del salto entre 40 y 50 cm). Desde la tercera semana, los niños cargaban con balones medicinales mientras hacían los saltos. 2. Flexiones en la pared: los participantes colocaban las manos en un muro y hacían flexiones con los pies separados de la pared entre 30 y 50 cm. 3. Bandas elásticas de fitness: deltoides lateral, ejercicio de bíceps, deltoides y pectoral frontal. 4. Balones medicinales adaptados: lanzamientos y recepciones en el sitio, con una distancia entre participantes entre 3 y 4 metros. Los participantes fueron divididos en 4 grupos de trabajo (según cuartiles dependiendo de su peso corporal) y trabajaron grupalmente. Cuando un participante mostraba excesiva facilidad para hacer los ejercicios se le transfería al siguiente grupo de intensidad. Hubo 4 colores diferentes de bandas elásticas de resistencia gradual y 4 balones medicinales (1, 2, 3 y 4kg), cada uno era asignado a un grupo de trabajo dependiendo de la fuerza demandada para hacer los ejercicios. Cada grupo siguió el mismo esquema de ejercicios pero con las diferentes bandas y balones: -60- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Semana 1: Familiarización, práctica con todos los materiales y ejercicios. Semanas 2 a 6: 1 serie de 10 repeticiones. Semanas 7 a 11: 2 series de 10 repeticiones. Semanas 12 a 16: 2 series de 15 repeticiones. Semanas 17 a 21: 2 series de 20 repeticiones. Al tratarse de ejercicios no excesivamente intensos, la recuperación entre estación y estación se hacía durante el paso de una a otra. La asistencia mínima obligatoria para incluir a un participante en el grupo de ejercicio fue del 70% de todas las sesiones. Los datos de los participantes que al final del periodo de entrenamiento no alcanzaron la asistencia mínima, fueron excluidos de los análisis posteriores. 4.7Análisisestadísticos Brevemente se describen a continuación las pruebas estadísticas generales que se efectuaron para obtener los resultados de esta Tesis Doctoral, si bien en cada artículo publicado aparece una descripción detallada acerca de todas las pruebas utilizadas. El análisis estadístico se realizó con el paquete informático Statistical Package for the Social Sciences (SPSS versiones 14.0 y 15.0 para Windows). Los datos se presentan, en general como media ± desviación estándar, a menos que se indiquen otros estadísticos. Se estudió la normalidad en la distribución de las variables continuas mediante el test de Kolmogorov-Smirnov. A priori, si la distribución de una variable era normal, las diferencias entre grupos se establecían mediante el test de análisis de las varianzas (ANOVA) o con el test para muestras independientes (test t de Student). En el caso de algunas pruebas estadísticas, se utilizaron covariables para ajustar variables que pueden estar influenciadas por otras, en esos casos se efectuó el test de análisis de las covarianzas (ANCOVA) junto con el test de Bonferroni. Las variables nominales (estadio -61- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. de maduración sexual de Tanner) se analizaron con el test de Chi-cuadrado. Las asociaciones entre variables se estudiaron mediante correlaciones bivariadas de Pearson y regresiónes lineales. Para observar el posible efecto del ejercicio, se estudiaron las interacciones tiempo x ejercicio con el test de medidas repetidas de ANOVA usando como factor el momento de evaluación (pre- y post-entrenamiento). El nivel de significación estadístico fue tomado, como norma general como p<0.05. -62- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. 5.Referencias[References] 1. Down JLH. Observations on an ethnic classification of idiots. London Hospital. Clinical Lectures and Reports 1866;3:259-262. 2. Roizen NJ, Patterson D. Down's syndrome. Lancet 2003;361(9365):1281-9. 3. Pueschel SM. Clinical aspects of Down syndrome from infancy to adulthood. Am J Med Genet Suppl 1990;7:52-6. 4. Smith DS. Health care management of adults with Down syndrome. Am Fam Physician 2001;64(6):1031-8. 5. Pueschel SM, Werner JC. Mitral valve prolapse in persons with Down syndrome. Res Dev Disabil 1994;15(2):91-7. 6. Hasle H, Clemmensen IH, Mikkelsen M. Risks of leukaemia and solid tumours in individuals with Down's syndrome. Lancet 2000;355(9199):165-9. 7. Bittles AH, Glasson EJ. Clinical, social, and ethical implications of changing life expectancy in Down syndrome. Dev Med Child Neurol 2004;46(4):282-6. 8. Glasson EJ, Sullivan SG, Hussain R, Petterson BA, Montgomery PD, Bittles AH. The changing survival profile of people with Down's syndrome: implications for genetic counselling. Clin Genet 2002;62(5):390-3. 9. Pitetti KH, Rimmer JH, Fernhall B. Physical fitness and adults with mental retardation. An overview of current research and future directions. Sports Med 1993;16(1):2356. -63- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. 10. Winnick J. Adapted Physical Education and Sport. Champaign, Illinois: Human Kinetics, 1995. 11. Pueschel SM. Should children with Down syndrome be screened for atlantoaxial instability? Arch Pediatr Adolesc Med 1998;152(2):123-5. 12. Fernhall B, Pitetti KH, Rimmer JH, McCubbin JA, Rintala P, Millar AL, Kittredge J, Burkett LN. Cardiorespiratory capacity of individuals with mental retardation including Down syndrome. Med Sci Sports Exerc 1996;28(3):366-71. 13. Fernhall BM, JA. Pitteti, KH. Rintala, P. Prediction of maximal heart rate in individuals with mental retardation. Med Sci Sports Exerc 2001;33(10):1655-60. 14. Guerra M, Llorens N, Fernhall B. Chronotropic incompetence in persons with down syndrome. Arch Phys Med Rehabil 2003;84(11):1604-8. 15. Sharav T, Bowman T. Dietary practices, physical activity, and body-mass index in a selected population of Down syndrome children and their siblings. Clin Pediatr (Phila) 1992;31(6):341-4. 16. Frey GC, Stanish HI, Temple VA. Physical Activity of Youth With Intellectual Disability: Review and Research Agenda Adapt Phys Activ Q 2008;25(2):95-117. 17. Vicente-Rodriguez G, Ara I, Perez-Gomez J, Dorado C, Calbet JA. Muscular development and physical activity as major determinants of femoral bone mass acquisition during growth. Br J Sports Med 2005;39(9):611-6. 18. Franzoni F, Ghiadoni L, Galetta F, Plantinga Y, Lubrano V, Huang Y, Salvetti G, Regoli F, Taddei S, Santoro G, Salvetti A. Physical activity, plasma antioxidant -64- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. capacity, and endothelium-dependent vasodilation in young and older men. Am J Hypertens 2005;18(4 Pt 1):510-6. 19. Vicente-Rodriguez G. How does exercise affect bone development during growth? Sports Med 2006;36(7):561-9. 20. Ara I, Moreno LA, Leiva MT, Gutin B, Casajus JA. Adiposity, physical activity, and physical fitness among children from Aragon, Spain. Obesity (Silver Spring) 2007;15(8):1918-24. 21. Ara I, Vicente-Rodriguez G, Jimenez-Ramirez J, Dorado C, Serrano-Sanchez JA, Calbet JA. Regular participation in sports is associated with enhanced physical fitness and lower fat mass in prepubertal boys. Int J Obes Relat Metab Disord 2004;28(12):1585-93. 22. Ara I, Vicente-Rodriguez G, Perez-Gomez J, Jimenez-Ramirez J, Serrano-Sanchez JA, Dorado C, Calbet JA. Influence of extracurricular sport activities on body composition and physical fitness in boys: a 3-year longitudinal study. Int J Obes (Lond) 2006;30(7):1062-71. 23. San Juan AF, Fleck SJ, Chamorro-Vina C, Mate-Munoz JL, Moral S, Perez M, Cardona C, Del Valle MF, Hernandez M, Ramirez M, Madero L, Lucia A. Effects of an intrahospital exercise program intervention for children with leukemia. Med Sci Sports Exerc 2007;39(1):13-21. 24. Andriolo RB, El Dib RP, Ramos LR. Aerobic exercise training programmes for improving physical and psychosocial health in adults with Down syndrome. Cochrane Database Syst Rev 2005(3):CD005176. -65- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. 25. Heyward VH. Advanced fitness assessment & Exercise prescription. fifth ed. Champaign, Illinois: Human Kinetics, 2006. 26. Angelopoulou N, Souftas V, Sakadamis A, Mandroukas K. Bone mineral density in adults with Down's syndrome. Eur Radiol 1999;9(4):648-51. 27. Mercer VS, Lewis CL. Hip Abductor and Knee Extensor Muscle Strength of Children with and without Down Syndrome. Pediatr Phys Ther 2001;13(1):18-26. 28. Baptista F, Varela A, Sardinha LB. Bone mineral mass in males and females with and without Down syndrome. Osteoporos Int 2005;16(4):380-8. 29. Luke A, Sutton M, Schoeller DA, Roizen NJ. Nutrient intake and obesity in prepubescent children with Down syndrome. J Am Diet Assoc 1996;96(12):12627. 30. Guijarro M, Valero C, Paule B, Gonzalez-Macias J, Riancho JA. Bone mass in young adults with Down syndrome. J Intellect Disabil Res 2008;52(Pt 3):182-9. 31. Heymsfield SB, Smith R, Aulet M, Bensen B, Lichtman S, Wang J, Pierson RN, Jr. Appendicular skeletal muscle mass: measurement by dual-photon absorptiometry. Am J Clin Nutr 1990;52(2):214-8. 32. Pitetti KH, Boneh S. Cardiovascular fitness as related to leg strength in adults with mental retardation. Med Sci Sports Exerc 1995;27(3):423-8. 33. Fernhall B, Figueroa A, Collier S, Goulopoulou S, Giannopoulou I, Baynard T. Resting metabolic rate is not reduced in obese adults with Down syndrome. Ment Retard 2005;43(6):391-400. -66- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. 34. Guerra-Balic M, Cuadrado-Mateos E, Geronimo-Blasco C, Fernhall B. Physical Fitness Levels of Physically Active and Sedentary Adults With Down Syndrome. Adapt Phys Activ Q 2000;17(3):310-321. 35. Kao CH, Chen CC, Wang SJ, Yeh SH. Bone mineral density in children with Down's syndrome detected by dual photon absorptiometry. Nucl Med Commun 1992;13(10):773-5. 36. Angelopoulou N, Matziari C, Tsimaras V, Sakadamis A, Souftas V, Mandroukas K. Bone mineral density and muscle strength in young men with mental retardation (with and without Down syndrome). Calcif Tissue Int 2000;66(3):176-80. 37. Halaba Z, Pyrkosz A, Adamczyk P, Drozdzowska B, Pluskiewicz W. Longitudinal changes in ultrasound measurements: a parallel study in subjects with genetic disorders and healthy controls. Ultrasound Med Biol 2006;32(3):409-13. 38. Eberhard Y, Eterradossi J, Rapacchi B. Physical aptitudes to exertion in children with Down's syndrome. J Ment Defic Res 1989;33 ( Pt 2):167-74. 39. Baynard T, Pitetti KH, Guerra M, Unnithan VB, Fernhall B. Age-Related Changes in Aerobic Capacity in Individuals with Mental Retardation: A 20-yr Review. Med Sci Sports Exerc 2008;40(11):1984-9. 40. Fernhall B, Millar AL, Tymeson GT, Burkett LN. Maximal exercise testing of mentally retarded adolescents and adults: reliability study. Arch Phys Med Rehabil 1990;71(13):1065-8. -67- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. 41. Fernhall B, Pitetti K, Vukovich MD, Stubbs N, Hensen T, Winnick J, Short F. Validation of cardiovascular fitness field test in children with mental retardation. American Journal on Mental Retardation 1998;102(6):602-612. 42. Fernhall B, Millar AL, Pitetti K, Hensen T, Vukovich MD. Cross validation of the 20m shuttle run test for children and adolescents with mental retardation. Adapt Phys Activ Q 2000;17(4):402-412. 43. Guerra M, Pitetti K, Fernhall B. Cross validation of the 20-meter shuttle run test for adolescents with Down syndrome. Adapt Phys Activ Q 2003;20(1):70-79. 44. Pitetti K, Fernhall B. Comparing run performance of adolescents with mental retardation, with and without Down syndrome. Adapt Phys Activ Q 2004;21(3):219-228. 45. Pitetti KH, Climstein M, Mays MJ, Barrett PJ. Isokinetic arm and leg strength of adults with Down syndrome: a comparative study. Arch Phys Med Rehabil 1992;73(9):847-50. 46. Climstein M, Pitetti KH, Barrett PJ, Campbell KD. The accuracy of predicting treadmill VO2max for adults with mental retardation, with and without Down's syndrome, using ACSM gender- and activity-specific regression equations. J Intellect Disabil Res 1993;37 ( Pt 6):521-31. 47. Frontera WR, Hughes VA, Lutz KJ, Evans WJ. A cross-sectional study of muscle strength and mass in 45- to 78-yr-old men and women. J Appl Physiol 1991;71(2):644-50. -68- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. 48. Brooks SV, Faulkner JA. Skeletal muscle weakness in old age: underlying mechanisms. Med Sci Sports Exerc 1994;26(4):432-9. 49. Horvat M, Pitetti KH, Croce R. Isokinetic torque, average power, and flexion/extension ratios in nondisabled adults and adults with mental retardation. J Orthop Sports Phys Ther 1997;25(6):395-9. 50. Croce RV, Pitetti KH, Horvat M, Miller J. Peak torque, average power, and hamstrings/quadriceps ratios in nondisabled adults and adults with mental retardation. Arch Phys Med Rehabil 1996;77(4):369-72. 51. Varela AM, Sardinha LB, Pitetti KH. Effects of an aerobic rowing training regimen in young adults with Down syndrome. Am J Ment Retard 2001;106(2):135-44. 52. Millar AL, Fernhall B, Burkett LN. Effects of aerobic training in adolescents with Down syndrome. Med Sci Sports Exerc 1993;25(2):270-4. 53. Ordonez F, Rosety M, Rosety-Rodriguez M. Influence of 12-week exercise training on fat mass percentage in adolescents with Down syndrome. Med Sci Monit 2006;12(10):CR416-9. 54. Tsimaras V, Giagazoglou P, Fotiadou E, Christoulas K, Angelopoulou N. Jog-walk training in cardiorespiratory fitness of adults with Down syndrome. Percept Mot Skills 2003;96(3 Pt 2):1239-51. 55. Weber R, French R. Down's syndrome adolescents and strength training. Clinical Kinesiology 1988;42(1):13-21. -69- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. 56. Lewis CL, Fragala-Pinkham MA. Effects of aerobic conditioning and strength training on a child with Down syndrome: a case study. Pediatr Phys Ther 2005;17(1):30-6. 57. Norton K, Whittingham N, Carter L, Kerr D, Gore C, Marfell-Jones M. Measurement techniques in anthropometry. In: Norton K, Olds T, editors. Antropométrica. Sydney: UNSW, 1996:22-75. 58. Fernhall B, Tymeson G. Graded exercise testing of mentally retarded adults: a study of feasibility. Arch Phys Med Rehabil 1987;68(6):363-5. 59. Tanner JM, Whitehouse RH. Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch Dis Child 1976;51(3):170-9. 60. Vereecken CA, Covents M, Sichert-Hellert W, Alvira JM, Le Donne C, De Henauw S, De Vriendt T, Phillipp MK, Beghin L, Manios Y, Hallstrom L, Poortvliet E, Matthys C, Plada M, Nagy E, Moreno LA. Development and evaluation of a selfadministered computerized 24-h dietary recall method for adolescents in Europe. Int J Obes (Lond) 2008;32 Suppl 5:S26-34. -70- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. 6.Resultadosydiscusión Los resultados y la discusión de la presente Tesis Doctoral se muestran como artículos científicos, siguiendo el formato en que han sido publicados o sometidos. 6.Resultsanddiscussion Results and discussion of this Doctoral Thesis are shown as research manuscripts, following the format in which were published or submitted. -71- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. -72- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Scand J Med Sci Sports 2010: 20: 716–724 doi: 10.1111/j.1600-0838.2010.01120.x & 2010 John Wiley & Sons A/S Review Health-related physical fitness in children and adolescents with Down syndrome and response to training A. González-Agüero1,2, G. Vicente-Rodrı́guez1,2, L. A. Moreno1,3, M. Guerra-Balic5, I. Ara1,4, J. A. Casajús1,2 1 GENUD (Growth, Exercise, NUtrition and Development) Research Group, University of Zaragoza, Zaragoza, Spain, 2Faculty of Health and Sport Sciences, Huesca, University of Zaragoza, Zaragoza, Spain, 3School of Health Science, University of Zaragoza, Zaragoza, Spain, 4University of Castilla La Mancha, Toledo, Spain, 5Fundacio Blanquerna, University Ramon Lull, Barcelona, Spain Corresponding author: Jose´ Antonio Casajús, GENUD Group; Ed. Cervantes. Corona de Aragón St. 42, 2nd floor, 50009 Zaragoza, Spain. E-mail: joseant@unizar.es Accepted for publication 1 February 2010 Physical fitness is related to health at all ages. Information about physical fitness in the Down syndrome (DS) population, however, is scarce, especially when we consider children and adolescents. A review of the current data available on this topic would be both timely and important as it would serve as a starting point to stimulate new research perspectives. The data we reviewed from the literature showed a general trend toward lower values of physical fitness parameters and worse body composition variables in children and adolescents with DS compared with the population without intellectual disability (ID) or even with the population with ID without DS. Notably, children and adolescents with DS have been described as less active or overprotected; however, these factors may not be the cause of their poor physical fitness. Many of the training programs carried out in children and adolescents with DS did not yield the desired responses, and the reasons are still unknown. The purpose of this review is to summarize the current available literature on health-related physical fitness in children and adolescents with DS, and the effect of training on these variables. From the literature available, it is clear that more data on this population are necessary. Down syndrome (DS) is a condition that is accompanied with intellectual disability (ID) and associated with abnormalities in chromosome 21. Although the triplication of the chromosome is the most common defect, translocation and nondisjunction are also described (Pueschel, 1990). Estimation of DS is about one out of 700 –1000 live births (Smith, 2001; Roizen & Patterson, 2003), and its life expectancy is increasing, from an average of 9 years of age in 1929 (Bittles & Glasson, 2004) to 55 years and older in the present day (Smith, 2001; Glasson et al., 2002). More than 80 clinical characteristics have been described in individuals with DS, including congenital heart diseases, which is present in approximately 40% of individuals with DS (Pueschel, 1990). Pueschel and Werner (1994) found the mitral valve prolapse to be the cause of around 80% of abnormal echocardiographies in their sample of 36 homereared young individuals with DS. However, the most common congenital heart disease is the atrioventricular septal defect, with a prevalence of 45%, followed by a ventricular septal defect in 35% and an isolated atrial septal defect in 8% of the cases (Frid et al., 1999; Freeman et al., 2008; Vis et al., 2009). Leukemia is another serious disease that occurs with a higher frequency in children with DS than in their peers without DS, although individuals with DS have a decreased risk of developing solid tumors in all age groups (Hasle et al., 2000). Evidence suggests that some of the clinical characteristics of DS (Pitetti et al., 1993) such as muscle hypotonicity, hypermobility of the joints or ligamentous laxity, light to moderate obesity, an underdeveloped respiratory and cardiovascular system and short stature (short legs and arms in relation to torso) are related to exercise. In addition, poor balance and perceptual difficulties have been also described (Winnick, 1995). Moreover, characteristics associated with hypotonia and hypermobility, for example lordosis, ptosis, dislocated hips, kyphosis, flat pronated feet, forwarded head and atlantoaxial instability have been observed in this population (Winnick, 1995; Pueschel, 1998). One of the most important concerns regarding sport participation is atlantoaxial instability, as participation in contact sport activities are contraindicated in those cases (Pueschel, 1998). Owing to their clinical characteristics, both youths and adults with DS have lower levels of cardiovascular fitness compared with matched controls without DS (Fernhall et al., 1996, 2001; Guerra et al., 716 -73- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Physical fitness in youth with Down syndrome 2003a, b). Studies on DS children indicate a more sedentary lifestyle and more time spent indoors compared with their siblings without DS (Sharav & Bowman, 1992); however, Frey et al. (2008) attributed this to paternal overprotection. Low levels of physical fitness may induce functional deterioration due to an increase in the prevalence of overweight or obesity, as well as a reduction in bone mass development, which may ultimately result in the aggravation of their clinical manifestations (Fig. 1). Physical activity (PA) and sport participation produce many health-related benefits in children and adolescents: PA improves cardiovascular fitness (Vicente-Rodriguez et al., 2005), it contributes to a healthier lifestyle (Stewart et al., 2003), and it may enhance the antioxidant defense system (Franzoni et al., 2005) which delays cell aging. In children, regular PA and sport, as well as physical fitness levels, are associated with increased and higher accumulation of bone mass (Vicente-Rodriguez, 2006), fat mass reduction (Ara et al., 2004, 2007) and a physiological and healthy adiposity development (Ara et al., 2006). PA interventions have also been shown to benefit children with leukemia (San Juan et al., 2007). Interestingly, the payback is not purely a physical one, as benefits in social factors associated with sport participation are also described (Andriolo et al., 2005). Therefore, taking into account all these separate studies, it is suggested that PA could be a potential factor in helping children with DS improve their quality of life. According to the American College of Sports Medicine (ACSM), health-related physical fitness includes body composition, aerobic capacity, muscular strength and flexibility (Heyward, 2006), although flexibility is not a priority for the DS population due to fact that augmented flexibility is predominant in this group (Pitetti et al., 1993). In order to stimulate more research in this field, this paper aims to review the current literature on physical fitness, body composition and also the effects that training has on children and adolescents with DS. Method Inclusion criteria The inclusion criteria for this review were as follows: (a) physical fitness or body composition had to be the main topic of each study but not necessarily PA; (b) the studies had to include participants with DS and not only with ID; (c) participants aged between 10 and 18 had to be at least 10% of the population studied; (d) only papers written entirely in English were considered. Data sources Journal articles were sourced from MEDLINE (1965–present) and SPORT Discus (1975–present). The keywords used to identify the articles were ‘‘Down syndrome,’’ to restrict the population on this review; these terms were combined with ‘‘exercise,’’ ‘‘body composition,’’ ‘‘physical fitness’’ and ‘‘training’’ to identify the articles on the topic of this review. This produced a total of 101 citations from both databases. Exclusion The inclusion criteria were applied to the 101 citations by two authors independently; in case of a disagreement, all authors reviewed until a consensus was achieved. Of the 101 citations, 22 journal articles fulfilled the inclusion criteria. The remaining 81 citations were excluded for the following reasons: 11 were duplicated, 57 did not include physical fitness or body composition as their main topic, five were not journal articles and six had participants outside our established population range. Data extraction All the studies were evaluated independently by the authors of this review. General information about the title of the study, author(s), journal and publication details were extracted. Characteristics of the participants (age, sex), control group (if available), data source and results were also extracted. Studies including a training program were explained in detail. Health-related physical fitness in children and adolescents with DS All the studies concerning health-related physical fitness in children and adolescents with DS included in this review are summarized in Table 1. Body composition Fig. 1. Relationship between Down syndrome physical fitness and clinical manifestation. Body mass index (BMI) and different body compartments, such as body fat, lean mass and bone mass [bone mineral content (BMC) and bone mineral density (BMD)] have been studied in children and adolescents with DS. Children with DS were 717 -74- Participants (age) 19; 7 F, 12 M (14.8 3) 133 (9–45) 7 (9.6 1.8) 67; 33 F, 34 M (14–40) 13; 6 F, 7 M (18.5 2.3) 119; 57 F, 62 M (14.8 2.6) 89 (14.5); 47 obese 26, 11 F, 15 M (15.3 2.7) 97 (9–46) Authors Guerra et al. (2009) Baynard et al. (2008) Halaba et al. (2006) Baptista et al. (2005) Baynard et al. (2004) Pitetti and Fernhall (2004) Fernhall et al. (2003) Guerra et al. (2003a, b) Fernhall et al. (2001) 179 subjects with MR without DS 196 subjects without MR No 84 MR without DS; 22 obese 395 subjects with MR without DS; 607 subjects without MR 17 subjects with MR without DS 67 subjects without MR 24 subjects without MR 180 subjects with MR without DS; 322 subjects without MR No Control group Table 1. Studies concerning health-related physical fitness including children and adolescents with Down syndrome Multicenter study with the treadmill test 20 m shuttle run test and treadmill test Treadmill test 20 m shuttle run test Individualized treadmill test to exhaustion DXA Ultrasound at hand phalanges Data collection of the last 20 years using the validated treadmill test Wingate anaerobic test Data source Reliability between tests was questionable DS adolescents showed low levels of WAnT performance compared with published data . Lower relative and absolute ðVO2peak Þ across all age groups . ðVO2peak Þ did not change after 16 years Lower amplitude-dependent speed of sound over ages and remained stable with time Female group had lower muscle mass, higher percentage of body fat and BMI Lower BMC, BMD and volumetric BMD in the upper and lower limbs and the lumbar spine in the whole group with DS Determination of VT is difficult in this population . . Lower ðVO2peak Þ, ðVEpeak Þ, HRpeak and RERpeak Subjects with DS showed lower running performance than subjects without DS, with or without MR Lower maximal HR in the DS group, no differences between obese and nonobese Controlled for maximal HR, no changes in aerobic capacity between obese and nonobese DS Regression formula for children and adolescents with MR is not valid in their sample of adolescents with DS Prediction . formula. for HRmax Lower ðVO2peak Þ, ðVEpeak Þ, HRpeak and RERpeak Results* Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. González-Agüero et al. 718 -75- -76- 17; 11 F, 6 M (11.2 2.4) 17; 8 F, 9 M, all with MR (13.7) 34; eight with DS (14.3 2.3) 10; 6 F, 4 M (8.8 2.5) 30; 16 F, 14 M (F5.1 2.8, M4.1 2.5) 10; 3 F, 7 M (10–16) 14; 3 F, 11 M (17.7) 10; 3 F, 7 M (14.8 2.2) Mercer and Lewis (2001) Fernhall et al. (2000) Fernhall et al. (1998) Luke et al. (1996) Sharav and Bowman (1992) Fernhall et al. (1990) Eberhard et al. (1989) Eight subjects without MR No Reference without MR Siblings without DS 10 subjects without MR No No 17 subjects without MR Control group Bicycle ergometry test Treadmill tests Anthropometric measurements, bioelectrical impedance and deuterium dilution Anthropometric measurements, accelerometers and questionnaires DPX Treadmill test and the 20 m shuttle run test Treadmill test and field tests (600yard run-walk, 20 m shuttle run and 16 m shuttle run) Anthropometric measurements Hand-held dynamometer to evaluate muscle forces Data source No differences in BMI Less active, more time indoors Lower BMD at the lumbar spine Delay in the distribution curve of BMD against ages Treadmill test validation High reliability between the two tests (r 5 0.94) Lower VO2max Shorter performance time and lower maximal workload Blood pressure did not increase regularly Higher BMI and percentage of body fat Lower mean peak torque values for hip abduction and knee extension Reliability high between test (0.89–0.95) Weight, height, gender, BMI and activity levels were significant predictors for peak torque production in DS Validation of the formula to predict . ðVO2peak Þ with the 20. m shuttle run test Formula to predict ðVO2peak Þ Validation against 600-yard run-walk, 20 m shuttle run and a modified 16 m shuttle run tests No differences in fat-free mass Results* F, female; M, male; DS, Down syndrome; MR, mental retardation; SD, standard deviation; DXA, dual energy x-ray absorptiometry; DPX, dual photon x-ray absorptiometry; BMI, body mass index; BMC, bone mineral content; BMD, bone mineral density; VO2, oxygen consumption; VE, ventilation; HR, heart rate; RER, respiratory exchange ratio. *In the results, all the comparisons are as follows: the group with DS compared with the group without DS (with or without MR) when existing. Kao et al. (1992) Participants (age) Authors Table 1. (continued) Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Physical fitness in youth with Down syndrome 719 Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. González-Agüero et al. described as less active and more prone to spending more time indoors, but no differences were found in the BMI values between children with DS and their siblings without ID (Sharav & Bowman, 1992). However, several other investigations, some of them including adults in the sample, have shown a tendency toward a higher BMI and percentage of body fat in groups with DS compared with those without ID (Mercer & Lewis, 2001; Baptista et al., 2005). It is notable that Luke et al. (1996) found no difference in the fat-free mass (measured with deuterium dilution and other methods) between children with and without DS. On the other hand, Baptista et al. (2005), estimating the total muscle mass as suggested by Heymsfield et al. (1990) using data from Dual energy x-ray absorptiometry, found lower values in both males and females with DS compared with males and females without ID. Common to both children and adolescents with DS is a lower BMC and BMD at the lumbar spine (Kao et al., 1992; Baptista et al., 2005) and the upper and lower limbs (Baptista et al., 2005). Furthermore, lower volumetric BMD has been found in other areas such as the upper and lower limbs (Baptista et al., 2005). Similarly, a study with ultrasonography found lower amplitude-dependent speed of sound, which depends on BMD, in 24 children with genetic disorders (including seven children with DS) compared with age-matched children without ID; however, the difference remained stable with time (Halaba et al., 2006), indicating low bone mass but normal development. In conclusion, although there have been several important reports on body composition in children and adolescents with DS, more studies are required to describe not only the body composition of children and adolescents with DS, but also the effect of exercise on the lean, fat and bone compartments in this population. treadmill test method for adolescents and adults with ID (including DS). The findings of the study showed a high reliability coefficient of 0.94 between two repeated tests. In further studies, Fernhall et al. (1998) developed a regression . equation to predict a peak oxygen consumption ðVO2peak Þ in children and adolescents with ID (including DS) with field tests (600-yard run-walk, 20 m shuttle run and a modified 16 m shuttle run), and in 2000, they validated the equation again with the 20 m shuttle run test (Fernhall et al., 2000). However, Guerra et al. (2003a, b) found that the regression equation to predict . ðVO2peak Þ in children with ID was not valid for their sample of adolescents with DS, and attributed this to the low number of children with DS in the sample of Fernhall. Also, Fernhall et al. (2001) developed an equation to predict the maximum heart rate (HRmax) in individuals with ID (including children and adolescents with DS). Baynard .et al. (2004) and Fernhall et. al. (2001) found lower ðVO2peak Þ, peak ventilation ðVEpeak Þ, HRpeak and peak respiratory exchange ratio (RERpeak) in children and adolescents with DS compared with peers without DS, with or without ID. In more recent studies, Baynard et al. (2008) divided their sample of a multicenter study into age groups, and found lower relative and absolute . ðVO2peak Þ across all age groups in the individuals with DS compared with both groups (the group with ID without DS and the group . without ID). Crucially, for the DS group, their ðVO2peak Þ did not change after 16 years of age. Pitetti and Fernhall (2004) found lower running performance in their subjects with DS compared with the ones without DS, with or without ID. Low cardiovascular fitness is considered to be a risk factor for cardiovascular diseases, and can result in a shortened lifespan for children and adolescents with DS. However, due to the lack of studies that include only the pediatric population in this regard, more studies are required to corroborate this assumption. Cardiovascular fitness Lower levels of cardiovascular fitness have been reported several times in children and adolescents with DS compared with their peers without DS, with or without ID (Eberhard et al., 1989; Fernhall et al., 1996, 2001; Guerra et al., 2003a, b; Pitetti & Fernhall, 2004; Baynard et al., 2008). Eberhard et al. (1989) . found a lower maximal oxygen consumption ðVO2 max Þ, a shorter time and a lower maximal workload in children with DS compared with the control, age-matched children. In the last two decades, considerable progress has been made in the assessment of cardiovascular fitness in children and adolescents with ID but specifically with DS. Fernhall et al. (1990) developed a validated Strength Correct levels of muscular strength are related to health (Heyward, 2006) and help people to be more autonomous and independent; however, especially in old age, it is difficult to maintain those levels (Frontera et al., 1991; Brooks & Faulkner, 1994). As the lifespan of the DS population is increasing, it is important to study the actual level of strength in this population and, if necessary, promote programs to improve it. Only one study related to muscular strength fulfilled all the inclusion criteria for this review. Mercer and Lewis (2001) found a lower mean peak torque for hip abduction and knee extension for children 720 -77- -78- 16 M (21.4 3) 14; 3 F, 11 M (17.7 2.9) Varela et al. (2001) Millar et al. (1993) No No Four subjects with DS, no exercise Eight subjects with DS, no exercise No Control Anthropometric measurements, submaximal treadmill stress test, modification of Margaria–Kalamen test, 10 RM to upper and lower limbs Ten exercises to evaluate muscular strength: Dorsi pull down, leg press, upright row, leg extension, shoulder press, calf raise, arm curl, leg curl, chest press and dead lift Walking treadmill test Anthropometric measurements, treadmill or rowing ergometer peak-graded exercise test Anthropometric measurements Data source 6-week combined aerobic and strength training Aerobic intensity 60–80% HRmax, 10–60 min per session; two to three sessions per week Strength intensity increased by the number of repetitions and weight; 10–45 min per session, two to three sessions per week Two groups: group A performed a 6-week (three times per week) weight training treatment at 80% 1 RM; group B performed a 6-week (three times per week) strength treatment 15 min per session 12-week physical activity program; intensity level on the basis of HR; 30–60 min per session, three sessions per week 16-week rowing ergometer; . intensities 55–70% ðVO2peak Þ; 15– 25 min per session; three sessions per week 10-week walking jogging exercise program; 65–75% HRmax; 30 min per session; three sessions per week Training BMI did not change Decreased HR and RER in all the stages of the treadmill test Higher anaerobic power and strength in the trunk, the upper and lower limbs Weight training had greater effects in all muscular strength tests than the strength treatment No differences in cardiovascular or physiological responses Exercise group achieved higher levels of work performance No changes in cardiovascular capacities Exercise group improved the time to exhaustion and grade Significant reduction in the fat mass percentage Results* F, female; M, male; DS, Down syndrome; MR, mental retardation; SD, standard deviation; BMI, body mass index; VO2, oxygen consumption; HR, heart rate; RER, respiratory exchange ratio; RM, maximum repetition. *In the results, all the comparisons are as follows: the group with DS compared with the control group when existing. Combined aerobic and strength training Lewis and Fragala1 F (10.5) Pinkham (2005) 14; 3 F, 11 M (13–18) 22 M (16.2 1) Aerobic training Ordoñez et al. (2006) Strength training Weber and French (1988) Participants Study Table 2. Studies concerning physical training including children and adolescents with Down syndrome Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Physical fitness in youth with Down syndrome 721 Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. González-Agüero et al. and adolescents with DS compared with their peers without ID, where weight, height, gender, PA level and BMI serve as significant predictors for peak torque production in children and adolescents with DS. Effects of training in children and adolescents with DS From the wealth of articles in the literature, it can be concluded that children and adolescents with DS have lower levels of strength and cardiovascular fitness, coupled with higher levels of body fat when compared with their peers without DS, both with and without ID. As the PA level is a significant predictor of strength in the population with DS (Mercer & Lewis, 2001), testing whether supervised exercise interventions could improve muscular strength, cardiovascular fitness and body composition, which could also result in a concomitant health enhancement, is an important issue that needs to be addressed. All the studies related to the effect of physical training programs in children and adolescents with DS included in this review are summarized in Table 2. are nonconclusive due to the contradictory outcomes of each independent investigation. The studies have not shown improvements in cardiovascular fitness in the children and adolescents with DS, leading investigators to postulate that perhaps adaptations may require longer training periods and/or higher training intensities. New, specifically designed studies could contribute toward the validation of the hypothesis that cardiovascular capacity in children and adolescents with DS can be improved, as this has already been shown in adults with DS (Tsimaras et al., 2003). Strength training Only one study was found which exercised youth with DS with a training program focused exclusively on strength. Weber and French (1988) studied a group of 14 adolescents with DS and designed two strength training programs: a weight training treatment and a strength exercise treatment. The participants performed 10 tests to evaluate their muscular strength before and after the treatment program. The results of this study were very clear and found that the group that performed the weight training program achieved significant improvement in muscular strength. Cardiovascular training Combined cardiovascular and strength training To the best of our knowledge, three studies have examined the effects of standardized aerobic training in children and/or adolescents with DS. Varela et al. (2001) conducted a 16-week rowing ergometer training study, which was carried out on 16 adolescents and young adults with DS. Even though the exercise group achieved higher levels of work performance, no evidence of physical changes was found either in the body weight or in the percentage of body fat. Additionally, no changes in cardiovascular or physiological responses were found either in the treadmill test or in the rowing test. Similarly, Millar et al. (1993) designed a 10-week walking–jogging exercise program for 14 children and adolescents with DS, and yet again no changes were found in the cardiovascular capacities in any of the two groups, possibly due to the low exercise intensity; however, the exercise group showed an improvement in the time to exhaustion. Ordoñez et al. (2006) focused on the aerobic training of 22 male adolescents with DS for 12 weeks, concluding at the end of the training period that they found a significant decrease in the percentage of fat mass (assessed by anthropometry) but reported no cardiovascular effects. There have been several investigations only regarding the effects of training on body composition over a relatively short duration and the results of the studies In a case study by Lewis and Fragala-Pinkham (2005), a child with DS performed a 6-week home exercise program combining aerobic and strength training. After the training period, the results showed improvements in aerobic capacity and anaerobic power. These studies related to training programs may pave the way toward to new research looking into increased strength levels that could have positive effects on health from several different approaches. For example, strength training could produce both neural and muscular-related strength increase and muscular hypertrophy, which in turn could reduce hypotonicity and balance dysfunctions and increase VO2max and bone mass-related parameters. Because there are a number of significant benefits to be attained, efforts to elucidate the real effects of strength or cardiovascular-strength combined training should be promoted. Conclusions Children and adolescents with DS are a unique population in relation to their health-related physical fitness variables. Body composition in this specific population is, in general, less healthy than that observed in their peers without DS, as proven by 722 -79- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Physical fitness in youth with Down syndrome higher BMI, lower levels of lean mass and reduced bone mass-related parameters. Furthermore, children and adolescents with DS show lower levels of cardiovascular and strength capacities, which can result in a worse quality of life. Although there is a significant lack of information on youths with DS, it is evident that this population could benefit considerably from PA and exercise prescription. Data from the few studies available till now are contradictory in relation to improvements in body fat composition of the individuals. Adaptations have not been achieved in cardiovascular fitness when mild aerobic training is performed. One possible explanation for the lack of cardiovascular improvement may be a result of the low intensity and/or duration characteristics of the program described. Further research in this topic would help to address pending issues such as the duration and intensity of aerobic training on improvement in cardiovascular fitness, or whether type, intensity and duration of strength training could be the most beneficial to children and adolescents with DS. Importantly, the life expectancy of the population with DS is increasing with time; hence, cases of diseases some illnesses and diseases related to age (until now relatively unreported for the DS population) such as osteoporosis or cellular aging begin to appear earlier than in the population without DS. Consequently, the main characteristics associated with DS can become more pronounced. The ultimate objective of future research in this field should be to test whether exercise (aerobic, strength and/or a combination of both) could benefit children and adolescents with DS, and help them have a healthier body composition and physical fitness, all of which result in a healthier and a better quality of life in this population. Key words: exercise, body composition, cardiovascular fitness, aerobic, strength, training. Acknowledgements Special thanks are due to Scott G. Mitchell from the University of Glasgow for his work of reviewing the English style and grammar. This review was supported by Gobierno de Aragon (Proyecto PM 17/2007) and Ministerio de Ciencia e Innovación de España (Red de investigación en ejercicio fı́sico y salud para poblaciones especiales-EXERNET-DEP200500046/ACTI). There are no potential conflicts of interest that may affect the contents of this review. References Andriolo RB, El Dib RP, Ramos LR. Aerobic exercise training programmes for improving physical and psychosocial health in adults with Down syndrome. Cochrane Database Syst Rev 2005; CD005176. Ara I, Moreno LA, Leiva MT, Gutin B, Casajus JA. Adiposity, physical activity, and physical fitness among children from Aragon, Spain. Obesity (Silver Spring) 2007: 15: 1918–1924. Ara I, Vicente-Rodriguez G, JimenezRamirez J, Dorado C, SerranoSanchez JA, Calbet JA. Regular participation in sports is associated with enhanced physical fitness and lower fat mass in prepubertal boys. Int J Obes Relat Metab Disord 2004: 28: 1585–1593. Ara I, Vicente-Rodriguez G, PerezGomez J, Jimenez-Ramirez J, SerranoSanchez JA, Dorado C, Calbet JA. Influence of extracurricular sport activities on body composition and physical fitness in boys: a 3-year longitudinal study. Int J Obes (London) 2006: 30: 1062–1071. Baptista F, Varela A, Sardinha LB. Bone mineral mass in males and females with and without Down syndrome. Osteoporos Int 2005: 16: 380–388. Baynard T, Pitetti KH, Guerra M, Fernhall B. Heart rate variability at rest and during exercise in persons with Down syndrome. Arch Phys Med Rehabil 2004: 85: 1285–1290. Baynard T, Pitetti KH, Guerra M, Unnithan VB, Fernhall B. Age-related changes in aerobic capacity in individuals with mental retardation: a 20-yr review. Med Sci Sports Exerc 2008: 40: 1984–1989. Bittles AH, Glasson EJ. Clinical, social, and ethical implications of changing life expectancy in Down syndrome. Dev Med Child Neurol 2004: 46: 282– 286. Brooks SV, Faulkner JA. Skeletal muscle weakness in old age: underlying mechanisms. Med Sci Sports Exerc 1994: 26: 432–439. Eberhard Y, Eterradossi J, Rapacchi B. Physical aptitudes to exertion in children with Down’s syndrome. J Ment Defic Res 1989: 33(Part 2): 167– 174. Fernhall B, Millar AL, Pitetti K, Hensen T, Vukovich MD. Cross validation of the 20-m shuttle run test for children and adolescents with mental retardation. Adapted Phys Act Q 2000: 17: 402–412. Fernhall B, Millar AL, Tymeson GT, Burkett LN. Maximal exercise testing of mentally retarded adolescents and adults: reliability study. Arch Phys Med Rehabil 1990: 71: 1065–1068. Fernhall B, Pitetti K, Vukovich MD, Stubbs N, Hensen T, Winnick J, Short F. Validation of cardiovascular fitness field test in children with mental retardation. Am J Mental Retard 1998: 102: 602–612. Fernhall B, Pitetti KH, Guerra M. Impact of obesity and down syndrome on maximal heart rate and work capacity in youth with mental retardation. Revista portuguesa de Ciencias do Desporto 2003: 3: 73–118. Fernhall B, Pitetti KH, Rimmer JH, McCubbin JA, Rintala P, Millar AL, Kittredge J, Burkett LN. Cardiorespiratory capacity of individuals with mental retardation including Down syndrome. Med Sci Sports Exerc 1996: 28: 366–371. Fernhall B, McCubbin JA, Pitteti KH, Rintala P. Prediction of maximal heart rate in individuals with mental retardation. Med Sci Sports Exerc 2001: 33: 1655–1660. Franzoni F, Ghiadoni L, Galetta F, Plantinga Y, Lubrano V, Huang Y, 723 -80- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. González-Agüero et al. Salvetti G, Regoli F, Taddei S, Santoro G, Salvetti A. Physical activity, plasma antioxidant capacity, and endotheliumdependent vasodilation in young and older men. Am J Hypertens 2005: 18: 510–516. Freeman SB, Bean LH, Allen EG, Tinker SW, Locke AE, Druschel C, Hobbs CA, Romitti PA, Royle MH, Torfs CP, Dooley KJ, Sherman SL. Ethnicity, sex, and the incidence of congenital heart defects: a report from the National Down Syndrome Project. Genet Med 2008: 10: 173–180. Frey GC, Stanish HI, Temple VA. Physical activity of youth with intellectual disability: review and research agenda adapted physical activity quarterly. Adapt Phys Activ Q 2008: 25: 95–117. Frid C, Drott P, Lundell B, Rasmussen F, Anneren G. Mortality in Down’s syndrome in relation to congenital malformations. J Intellect Disabil Res 1999: 43(Part 3): 234–241. Frontera WR, Hughes VA, Lutz KJ, Evans WJ. A cross-sectional study of muscle strength and mass in 45- to 78yr-old men and women. J Appl Physiol 1991: 71: 644–650. Glasson EJ, Sullivan SG, Hussain R, Petterson BA, Montgomery PD, Bittles AH. The changing survival profile of people with Down’s syndrome: implications for genetic counselling. Clin Genet 2002: 62: 390–393. Guerra M, Gine-Garriga M, Fernhall B. Reliability of Wingate testing in adolescents with Down syndrome. Pediatr Exerc Sci 2009: 21: 47–54. Guerra M, Llorens N, Fernhall B. Chronotropic incompetence in persons with down syndrome. Arch Phys Med Rehabil 2003a: 84: 1604– 1608. Guerra M, Pitetti K, Fernhall B. Cross validation of the 20-meter shuttle run test for adolescents with Down syndrome. Adapted Phys Activity Quart 2003b: 20: 70–79. Halaba Z, Pyrkosz A, Adamczyk P, Drozdzowska B, Pluskiewicz W. Longitudinal changes in ultrasound measurements: a parallel study in subjects with genetic disorders and healthy controls. Ultrasound Med Biol 2006: 32: 409–413. Hasle H, Clemmensen IH, Mikkelsen M. Risks of leukaemia and solid tumours in individuals with Down’s syndrome. Lancet 2000: 355: 165–169. Heymsfield SB, Smith R, Aulet M, Bensen B, Lichtman S, Wang J, Pierson RN Jr. Appendicular skeletal muscle mass: measurement by dual-photon absorptiometry. Am J Clin Nutr 1990: 52: 214–218. Heyward VH. Advanced Fitness Assessment & Exercise Prescription, 5th ed. Champaign, Illinois: Human Kinetics, 2006, p. 278. Kao CH, Chen CC, Wang SJ, Yeh SH. Bone mineral density in children with Down’s syndrome detected by dual photon absorptiometry. Nucl Med Commun 1992: 13: 773–775. Lewis CL, Fragala-Pinkham MA. Effects of aerobic conditioning and strength training on a child with Down syndrome: a case study. Pediatr Phys Ther 2005: 17: 30–36. Luke A, Sutton M, Schoeller DA, Roizen NJ. Nutrient intake and obesity in prepubescent children with Down syndrome. J Am Diet Assoc 1996: 96: 1262–1267. Mercer VS, Lewis CL. Hip abductor and knee extensor muscle strength of children with and without Down syndrome. Pediatr Phys Ther 2001: 13: 18–26. Millar AL, Fernhall B, Burkett LN. Effects of aerobic training in adolescents with Down syndrome. Med Sci Sports Exerc 1993: 25: 270–274. Ordoñez F, Rosety M, Rosety-Rodriguez M. Influence of 12-week exercise training on fat mass percentage in adolescents with Down syndrome. Med Sci Monit 2006: 12: CR416–CR419. Pitetti K, Fernhall B. Comparing run performance of adolescents with mental retardation, with and without Down syndrome. Adapted Phys Act Quart 2004: 21: 219–228. Pitetti KH, Rimmer JH, Fernhall B. Physical fitness and adults with mental retardation. An overview of current research and future directions. Sports Med 1993: 16: 23–56. Pueschel SM. Clinical aspects of Down syndrome from infancy to adulthood. Am J Med Genet 1990: 7(Suppl.): 52–56. Pueschel SM. Should children with Down syndrome be screened for atlantoaxial instability? Arch Pediatr Adolesc Med 1998: 152: 123–125. Pueschel SM, Werner JC. Mitral valve prolapse in persons with Down syndrome. Res Dev Disabil 1994: 15: 91–97. Roizen NJ, Patterson D. Down’s syndrome. Lancet 2003: 361: 1281–1289. San Juan AF, Fleck SJ, Chamorro-Vina C, Mate-Munoz JL, Moral S, Perez M, Cardona C, Del Valle MF, Hernandez M, Ramirez M, Madero L, Lucia A. Effects of an intrahospital exercise program intervention for children with leukemia. Med Sci Sports Exerc 2007: 39: 13–21. Sharav T, Bowman T. Dietary practices, physical activity, and body-mass index in a selected population of Down syndrome children and their siblings. Clin Pediatr (Philadelphia) 1992: 31: 341–344. Smith DS. Health care management of adults with Down syndrome. Am Fam Physician 2001: 64: 1031–1038. Stewart KJ, Turner KL, Bacher AC, DeRegis JR, Sung J, Tayback M, Ouyang P. Are fitness, activity, and fatness associated with health-related quality of life and mood in older persons? J Cardiopulm Rehabil 2003: 23: 115–121. Tsimaras V, Giagazoglou P, Fotiadou E, Christoulas K, Angelopoulou N. Jogwalk training in cardiorespiratory fitness of adults with Down syndrome. Percept Mot Skills 2003: 96: 1239– 1251. Varela AM, Sardinha LB, Pitetti KH. Effects of an aerobic rowing training regimen in young adults with Down syndrome. Am J Ment Retard 2001: 106: 135–144. Vicente-Rodriguez G. How does exercise affect bone development during growth? Sports Med 2006: 36: 561–569. Vicente-Rodriguez G, Ara I, PerezGomez J, Dorado C, Calbet JA. Muscular development and physical activity as major determinants of femoral bone mass acquisition during growth. Br J Sports Med 2005: 39: 611– 616. Vis JC, Duffels MG, Winter MM, Weijerman ME, Cobben JM, Huisman SA, Mulder BJ. Down syndrome: a cardiovascular perspective. J Intellect Disabil Res 2009: 53: 419–425. Weber R, French R. Down’s syndrome adolescents and strength training. Clin Kinesiol 1988: 42: 13–21. Winnick J. Adapted physical education and sport. Champaign, Illinois: Human Kinetics, 1995. 724 -81- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. -82- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Osteoporos Int (2011) 22:2151–2157 DOI 10.1007/s00198-010-1443-7 ORIGINAL ARTICLE Bone mass in male and female children and adolescents with Down syndrome A. González-Agüero & G. Vicente-Rodríguez & L. A. Moreno & J. A. Casajús Received: 13 July 2010 / Accepted: 13 September 2010 / Published online: 22 October 2010 # International Osteoporosis Foundation and National Osteoporosis Foundation 2010 Abstract Summary Children and adolescents with Down syndrome (DS) have lower levels of bone mass compared with youths without DS. Their sexual dimorphism in bone mass also differs from that observed in children and adolescents without Down syndrome. Introduction This study aimed to compare bone mass and sexual dimorphism in bone mass between male and female youths with DS and age- and sex-matched controls without DS. Methods Bone mineral density (BMD), volumetric BMD, bone mineral apparent density (BMAD), BMD/height (BMDH), and total lean mass were measured or calculated from DXA. Thirty-two youths (15 females) with DS and 32 youths (13 females) without DS participated in the study. A. González-Agüero : G. Vicente-Rodríguez : L. A. Moreno : J. A. Casajús (*) GENUD (Growth, Exercise, Nutrition and Development) research group, University of Zaragoza, Ed. Cervantes. Corona de Aragón St. 42, 2nd floor, 50009 Zaragoza, Spain e-mail: joseant@unizar.es A. González-Agüero e-mail: alexgonz@unizar.es G. Vicente-Rodríguez e-mail: gervicen@unizar.es L. A. Moreno e-mail: lmoreno@unizar.es A. González-Agüero : G. Vicente-Rodríguez : J. A. Casajús Faculty of Health and Sport Sciences, Huesca, University of Zaragoza, Zaragoza, Spain L. A. Moreno School of Health Sciences, University of Zaragoza, Zaragoza, Spain Results ANOVA tests showed lower BMAD and BMDH in females with DS compared with females without DS. ANCOVA tests revealed lower BMD in the whole body of males and females as well as BMD in the hip region of the females with DS compared with their counterparts without DS. Within the group with DS, females had greater lumbar spine BMD than the males. Conclusions The low values of BMD and related parameters, together with the differences in the sexual dimorphism, indicate a non-standard bone development in this specific population of children and adolescents with DS. Keywords Body composition . DXA . Hip . Lumbar spine . Sexual dimorphism . Trisomy 21 Introduction Life expectancy in Down syndrome (DS) population has increased over the last 70 years, rising from 9 years of age to as much as 55 years and older, and this trend is expected to continue [1–3]. As the life expectancy of populations with DS increases, a reasonable prediction would show an increased incidence in osteoporosis, bone fragility and related problems (which appear mainly with age) over the coming years. High bone mass acquisition during childhood and adolescence is a key determinant for adult skeletal health [4, 5], and populations with DS have shown decreased bone mass compared with subjects without intellectual disabilities (ID) [6–11] as well as others with ID but without DS [12, 13]. However, only a few of these studies have included children and adolescents with DS [7, 8], or specifically examined a pediatric population [10, 13], that commonly display lower values of bone mineral content (BMC) and bone mineral density (BMD) compared with peers without -83- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. 2152 DS. Despite these studies, information concerning bone mass in pediatric population with DS is scarce [14] and should therefore be given greater attention, since low bone mass (osteopenia or osteoporosis) in adulthood may be a direct result of low acquisition during growth. Previous studies showed sexual dimorphism in bone mass during growth in healthy populations [15]. In adults with DS, lower lumbar spine BMC, BMD, and volumetric BMD (vBMD) in males compared with females [6, 8, 12] have been observed; however, there is a lack of information in children or adolescents with DS. Since adult population with DS generally possess low bone mass, it would be of significant benefit to elucidate whether the acquisition of bone mass could be identified earlier, for example, in childhood and adolescence. Furthermore, one crucial aspect of such a study would investigate and detect sensitive growth periods that could correspond to a reduced level of bone mass acquisition. The law of Wolff postulates that bones adapt to mechanical loads [16], and bone development seems to be site-specific [17, 18]. Consequently, it is very important to describe bone mass for the different regions of the body, which have not been previously studied in children and adolescents with DS. A study of this latter population could help to detect critical zones with low BMD in populations with DS in order to establish targeted interventions to improve bone mass. The aim of this study is to describe the total and regional (lumbar spine, hip, and femoral neck) bone mass in male and female children and adolescents with DS compared with age-matched subjects without DS. Materials and methods Subjects A total sample of 32 children (15 females, 17 males) and adolescents with DS living at home, between 10 and 19 years were recruited from different special schools and institutions within the same region of Aragón in Spain. Another individually age-matched sample of 32 subjects (13 females, 19 males) without DS was also recruited from regular schools in this region. All the children without DS were healthy and without known illness, and all subjects had been medication-free for at least 3 months before the tests. A full clinical history, including illnesses or surgical interventions and stays in a hospital, was collected for each individual. Eight participants with DS had been diagnosed of hypothyroidism in the past; however, during the study, they were taking medication (levothyroxine sodium: four of them taking Levothroid and the other four, Eutirox). Both parents and children were informed about the aims and procedures of the study, as well as the possible risks and -84- Osteoporos Int (2011) 22:2151–2157 benefits, and then, a letter of written informed consent was obtained from all the included subjects and their parents or guardians. The study was performed in accordance with the Helsinki Declaration 1961 (revised in Edinburgh, 2000) and was approved by the Research Ethics Committee of the Government of Aragón (CEICA, Spain). Anthropometric All subjects were measured with a stadiometer without shoes and the minimum clothes to the nearest 0.1 cm (SECA 225, SECA, Hamburg, Germany), and weighted to the nearest 0.1 kg (SECA 861, SECA, Hamburg, Germany). WC was measured to the nearest 0.1 cm with an anthropometric tape (Rosscraft, Canada). Body mass index (BMI) was calculated as weight (in kilograms) divided by height (square meters). Pubertal status assessment Pubertal development was determined by direct observation according to the five stages proposed by Tanner and Whitehouse [19]. Bone and lean masses The bone and lean masses of the subjects were measured with dual-energy X-ray absorptiometry (DXA) using a pediatric version of the software QDR-Explorer (Hologic Corp. Software version 12.4, Waltham, MA). DXA equipment was calibrated with a lumbar spine phantom and step densities phantom following the Hologic guidelines. Subjects were scanned in supine position, and the scans were performed in high resolution. Osseous area (square centimeters), BMC (in grams), and lean mass (in kilograms) were calculated from total and regional analysis of the whole body scan. BMD (grams per square centimeter) was calculated using the formula BMD=BMCarea−1. Two additional examinations were conducted to estimate bone mass at the lumbar spine (L1–L4) and proximal region of the femur (hip and femoral neck). Volumetric BMD (vBMD) was estimated for the lumbar spine and femoral neck using simple geometric cylindrical models [20], previously used with this population [8]. Bone mineral apparent density (BMAD) was calculated as previously described [21], using the formula whole body BMAD=BMC/(area2/body height). The expression BMD/height (BMDH) was calculated to adjust bone mass for whole body bone size [22]. Statistical analysis Mean and standard deviation are given as descriptive statistics, otherwise stated. Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Osteoporos Int (2011) 22:2151–2157 2153 The variables showed normal distributions. ANOVA was used to test hypothesis regarding the equality of the means between groups for the following characteristics: age, weight, height, BMI, total lean mass, vBMD of the lumbar spine and femoral neck, BMAD, and BMDH. Analyses of covariance were performed to evaluate differences in BMD, entering Tanner stage, height, and whole body lean mass as covariates. The use of these covariates is based on evidence identifying pubertal status, height, and total lean mass as influential factors on muscle mass and bone mass in the growing skeleton [23–25]. Effect size statistics using Cohen's d (standardized mean difference) were calculated [26]. Taking into account the cutoff established by Cohen, the effect size can be small (~0.2), medium (~0.5), or large (~0.8). The SPSS 15.0 software for Windows (SPSS Inc. Chicago, IL) was used for the analyses and the significance level was 5%. Results All the analyses were conducted from the whole sample, and, in addition, excluding the eight subjects that reported past disease of hypothyroidism (data not shown); as results did not substantially change, the data presented herein correspond to the whole sample to keep sample size. Additionally, no differences were observed in any of the studied variables between DS subjects with and without past disease of hypothyroidism within our sample (data not shown). Physical characteristics The characteristics of the groups with and without DS are summarized in Table 1. In general, subjects, both male and female with DS were lighter, smaller, and had lower lean mass compared with non-DS peers (all p<0.05, Table 1). Bone mass Appendix 1 summarizes the raw values of BMD of the subjects. After adjusting the raw values by Tanner stage, height, and total lean mass, females and males with DS showed lower BMD in whole body than their counterparts without DS; females with DS also presented lower BMD in the hip (all p<0.05; Fig. 1). Females with DS showed lower BMAD and BMDH than the females without DS (all p< 0.05; Table 2). However, no differences were found in vBMD of lumbar spine or femoral neck between females or males with and without DS (Table 2). Differences between sexes within the same group Figure 2 shows the differences in BMD between females and males within the groups with and without DS after adjusting by Tanner stage, height, and total lean mass. Lumbar spine BMD was higher in females than in males in the group with DS (both p<0.05; Fig. 2a). All the previous comparisons exhibited large effect sizes (Cohen's d ranged from 0.9 to 1.5). Discussion The principal finding of the present study is that children and adolescents with DS showed lower values of BMD and related parameters compared with age-matched subjects without DS. In doing so, it also shows that males with DS have lower BMD in lumbar spine than females with DS. Differences between with and without DS To date, several studies have described lower bone mass in populations with DS compared with others without DS, with or without ID [6–13]. Osteoporotic problems in Table 1 Subject age, anthropometrics, total lean, and maturation status results (mean±standard deviation) Down syndrome All (n=32) Age (years) Sexual maturation: Tanner (%) stages I/II/III/IV/V Weight (kg) Height (cm) Body mass index (kg/m2) Total lean mass (kg) 15.3±2.9 16/6/22/9/47 46.0*±11.8 145.2*±11.8 21.5±3.4 32.6*±8.3 Without Down syndrome Female (n=15) Male (n=17) 14.9±3.2 42.8±12.5 138.5*†±10.1 21.8±4.0 27.7*†±7 15.6±2.7 48.7*±10.9 150.7*±10.3 21.2±2.8 36.6*±7.2 All (n=32) 14.7±2.3 13/6/13/19/50 55.6±13.1 163.3±12.3 20.6±3.6 39.4±9.8 Female (n=13) Male (n=19) 14.6±2.4 14.8±2.2 53.2±13.8 156.7†±9.6 21.4±4.5 34.2†±6.7 57.3±12.7 167.8±12.1 20.1±2.7 42.9±10.2 *p<0.05 between groups; †p<0.05 between genders within the same group -85- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. 2154 Osteoporos Int (2011) 22:2151–2157 Fig. 1 a Females bone mass. Tanner stage-, total lean mass-, and height-adjusted BMD from the whole body, lumbar, and femoral scans in females with and without DS. *p<0.05. b Males bone mass. Tanner stage-, total lean mass-, and height-adjusted BMD from the whole body, lumbar, and femoral scans in males with and without DS. *p<0.05 populations with DS are well documented in adults [6, 9, 11, 12]; however, very few studies have included children or adolescents [7, 8], and even fewer have studied them specifically [10, 13]. The current investigation analyzes the biggest sample of children and adolescents with DS to date and considering bone regions in the analysis. Our results showed lower BMD in male and female children and adolescents with DS compared with children and adolescents without DS. The results also suggest that differences in height—therefore in bone size—between children and adolescents with and without DS are largely responsible for the differences in BMD. The studies from Sepulveda et al. [9] and Guijarro et al. [11] described lower BMD in the pelvic region and whole body, respectively, in individuals with DS compared with those without DS. Our results corroborate these findings as we also found lower values of BMD in the whole body of males and females with DS compared with those without DS. Previous studies in individuals with DS [6–11] clearly observed lower BMD in the lumbar spine of adults and young adult females with DS compared with females without DS. From all of them, only Kao et al. [10] studied an exclusive sample of only ten children with DS. Baptista et al. [8] divided their sample in age groups older and younger than 20 years and did not find differences in lumbar spine BMD in the younger group. In agreement with Baptista et al. [8], we found no observable differences in the lumbar spine of children and adolescents with DS compared with children and adolescents without DS. Most of the previous studies in adults with DS observed lower BMD in lumbar spine compared with adults without DS, which may therefore suggest that this decreased BMD could appear after puberty, since this period may be a key moment to enhance bone mass. Regions such as the hip, especially the femoral neck, are very important areas to be studied because they are considered as ‘risk regions’ for osteoporosis and bone fracture. Guijarro et al. [11] found lower values of BMD in the femoral neck and total hip in the group with DS compared with the group without DS. Our results reinforce these, as we also described lower values of Table 2 Calculated variables of bone mass (mean±standard deviation) Down syndrome Lumbar spine vBMD (g/cm3) Femoral neck vBMD (g/cm3) Bone mineral apparent density (g/cm3) BMDH (g/cm3) Without Down syndrome All (n=32) Female (n=15) Male (n=17) All (n=32) 0.26±0.05 0.32±0.04 0.088*±0.008 0.61±0.05 0.24±0.05 0.33±0.03 0.085*±0.008 0.61*±0.04 0.27±0.05 0.32±0.04 0.090±0.008 0.61±0.06 0.27±0.05 0.32±0.05 0.092±0.006 0.63±0.05 vBMD volumetric bone mineral density, BMDH bone mineral density/height *p<0.05 between groups -86- Female (n=13) Male (n=19) 0.27±0.06 0.33±0.06 0.092±0.004 0.64±0.04 0.27±0.04 0.31±0.03 0.092±0.006 0.62±0.06 Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Osteoporos Int (2011) 22:2151–2157 2155 BMDH. This tends to suggest that young females with DS have a poorer bone development than young males with DS when each sex is separately compared with their counterparts without DS. Therefore, low BMD is already detected in females and partially in males with DS, although this disadvantage clinical situation may aggravate with growth. Several authors described childhood and adolescence as the most important periods to accumulate BMD in the skeleton [24] and, specifically, peak BMD is reached between 20 and 25 years. As children and adolescents with DS already have lower values of BMD, efforts to develop physical activity programs, which may enhance bone mass, should be considered. Strength or plyometric exercise may be beneficial for this population, although more detailed research on this topic is required. Sexual dimorphism in children and adolescents with DS Fig. 2 a Down syndrome bone mass. Tanner stage-, total lean mass-, and height-adjusted BMD from the whole body, lumbar, and femoral scans in males and females with DS. *p<0.05. b Controls bone mass. Tanner stage-, total lean mass-, and height-adjusted BMD from the whole body, lumbar, and femoral scans in males and females without DS. *p<0.05 BMD in the hip of females with DS compared with their peers without DS. Although BMD has been shown to be a useful predictor of future fracture risk, vBMD provides a better approach to the real bone due to the limitations of the projected bone when very different populations (differences in height) are evaluated [27]. Guijarro et al. [11] and Baptista et al. [8] found lower vBMD at lumbar spine and femoral neck of adults with DS; as we did not find this, it is plausible to think that the lower vBMD in the population with DS appears with age and is not present during childhood and adolescence possibly due to impaired mineralization. To the best of our knowledge, the bone parameters BMAD and BMDH had not been used previously in populations with DS; these better reflect bone apparent density and take into account the height of the subjects [21, 22]. In the present study, females with DS showed lower levels of BMAD and Previous comparisons between bone mass of males and females, mainly in adults, with DS have been conducted [6, 8]. Angelopuolou et al. [6] and Baptista et al. [8] observed higher values of BMD in lumbar spine in adult females with DS compared with males with DS. Our study shows that those findings are already detectable in children and adolescents, showing higher values of BMD in the females with DS at the lumbar spine compared with males with DS. Additionally, the differences between males and females in the group without DS were not the same of that observed between males and females with DS. These results indicate that bone mass acquisition during puberty seems to be different in children and adolescents with DS than in those without, also in terms of sexual dimorphism. Therefore, an independent study of this population is required in order to understand specific bone development and growth within the group. Some limitations should be recognized. Despite that the number of participants is bigger than the majority of the previous published studies in children and adolescents with DS, the specificity of the condition and the age range become complicated, increasing the sample size. Therefore, the group may not be large enough to generalize the results of gender comparison. As strength of our study, the large effect size observed in the differences (between groups and between sexes) indicates a substantial biological magnitude of the results, which, in turn, may point out the direction of future research. The cross-sectional design is another limitation of this study; therefore, bone development cannot be studied. A longitudinal research of children with DS could help to corroborate the hypothesis that the low bone mass observed is due to a lower acquisition in the population with DS during the most important years of accumulation. However, this is the first investigation assessing BMD, -87- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. 2156 Osteoporos Int (2011) 22:2151–2157 estimated vBMD, and apparent density in whole body and key subregions in a relatively large sample of male and female children and adolescents with DS and could serve as a starting point for further, even more detailed research. Conclusions The current study provides evidence that children and adolescents with DS have a clear tendency towards lower BMD and vBMD in several regions of their bodies compared with age- and sex-matched subjects without DS. The lower values in BMAD and BMDH suggest that young females with DS are poorer at acquiring bone mass than young males with DS, when compared with their ageand sex-matched controls. Importantly, this is the first time that differences in bone mass between male and female children and adolescents with DS have been studied and compared. These results show that sexual dimorphism in bone mass is evident, and it is different than that observed in the children and adolescents without DS. The low levels of BMD, together with the differences in the sexual dimorphism, indicate a different bone development in this specific population of children and adolescents with DS. Longitudinal studies aiming to identify critical periods of bone development specifically in population with DS may corroborate the hypothesis presented in this study. Further studies assessing other factors related to bone mass development during puberty, such as physical activity, physical fitness, or diet, could be beneficial in helping us understand the importance of lifestyle on the lower bone mass observed in populations with DS. Acknowledgment The authors want to thank all the children and their parents who participated in the study, for their understanding and dedication to the project. Special thanks are given to Fundación Down Zaragoza and Special Olympics Aragon for their support. We also thank Scott G. Mitchell from the University of Glasgow for his work of reviewing the English style and grammar, and Paula Velasco from the University of Zaragoza for her great technical assistance. This work was supported by Gobierno de Aragón (Proyecto PM 17/2007) and Ministerio de Ciencia e Innovación de España (Red de investigación en ejercicio físico y salud para poblaciones especialesEXERNET-DEP2005-00046/ACTI). There are no potential conflicts of interest that may affect the contents of this work. Conflicts of interest None. Appendix 1 Table 3 Mean and standard deviation in raw values of bone mineral density of children and adolescents with and without Down syndrome Female DS (n=15) mean±SD Male Non-DS (n=13) mean±SD DS (n=17) mean±SD Non-DS (n=19) mean±SD 1.014±0.109 0.873±0.154 0.847±0.198 0.786±0.153 0.928±0.127 0.788±0.146 0.834±0.115 0.741±0.113 1.049±0.128 0.857±0.151 0.888±0.177 0.858±0.112 Bone mineral density (g/cm2) Whole body Lumbar spine Hip zone Femoral neck 0.845±0.086 0.762±0.118 0.697±0.086 0.680±0.070 DS Down syndrome, non-DS without Down syndrome, SD standard deviation References 1. Bittles AH, Glasson EJ (2004) Clinical, social, and ethical implications of changing life expectancy in Down syndrome. Dev Med Child Neurol 46:282–286 2. Glasson EJ, Sullivan SG, Hussain R, Petterson BA, Montgomery PD, Bittles AH (2002) The changing survival profile of people with Down's syndrome: implications for genetic counselling. Clin Genet 62:390–393 3. Smith DS (2001) Health care management of adults with Down syndrome. Am Fam Physician 64:1031–1038 -88- 4. Rizzoli R, Bonjour JP (1999) Determinants of peak bone mass and mechanisms of bone loss. Osteoporos Int 9(Suppl 2):S17– S23 5. Rizzoli R, Bianchi ML, Garabedian M, McKay HA, Moreno LA (2010) Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone 46:294–305 6. Angelopoulou N, Souftas V, Sakadamis A, Mandroukas K (1999) Bone mineral density in adults with Down's syndrome. Eur Radiol 9:648–651 7. Sakadamis A, Angelopoulou N, Matziari C, Papameletiou V, Souftas V (2002) Bone mass, gonadal function and biochemical Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Osteoporos Int (2011) 22:2151–2157 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. assessment in young men with trisomy 21. Eur J Obstet Gynecol Reprod Biol 100:208–212 Baptista F, Varela A, Sardinha LB (2005) Bone mineral mass in males and females with and without Down syndrome. Osteoporos Int 16:380–388 Sepulveda D, Allison DB, Gomez JE, Kreibich K, Brown RA, Pierson RN Jr, Heymsfield SB (1995) Low spinal and pelvic bone mineral density among individuals with Down syndrome. Am J Ment Retard 100:109–114 Kao CH, Chen CC, Wang SJ, Yeh SH (1992) Bone mineral density in children with Down's syndrome detected by dual photon absorptiometry. Nucl Med Commun 13:773–775 Guijarro M, Valero C, Paule B, Gonzalez-Macias J, Riancho JA (2008) Bone mass in young adults with Down syndrome. J Intellect Disabil Res 52:182–189 Angelopoulou N, Matziari C, Tsimaras V, Sakadamis A, Souftas V, Mandroukas K (2000) Bone mineral density and muscle strength in young men with mental retardation (with and without Down syndrome). Calcif Tissue Int 66:176–180 Halaba Z, Pyrkosz A, Adamczyk P, Drozdzowska B, Pluskiewicz W (2006) Longitudinal changes in ultrasound measurements: a parallel study in subjects with genetic disorders and healthy controls. Ultrasound Med Biol 32:409–413 González-Agüero A, Vicente-Rodriguez G, Moreno LA, Guerra-Balic M, Ara I, Casajus JA (2010) Health-related physical fitness in children and adolescents with Down syndrome and response to training. Scand J Med Sci Sports 20:716–724 Nguyen TV, Maynard LM, Towne B, Roche AF, Wisemandle W, Li J, Guo SS, Chumlea WC, Siervogel RM (2001) Sex differences in bone mass acquisition during growth: the Fels Longitudinal Study. J Clin Densitom 4:147–157 Wolff J (1892) The law of bone formation. Hirschwald, Berlin Vicente-Rodriguez G, Jimenez-Ramirez J, Ara I, SerranoSanchez JA, Dorado C, Calbet JA (2003) Enhanced bone mass 2157 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. and physical fitness in prepubescent footballers. Bone 33:853– 859 Vicente-Rodriguez G, Ara I, Perez-Gomez J, Serrano-Sanchez JA, Dorado C, Calbet JA (2004) High femoral bone mineral density accretion in prepubertal soccer players. Med Sci Sports Exerc 36:1789–1795 Tanner JM, Whitehouse RH (1976) Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch Dis Child 51:170–179 Gravholt CH, Lauridsen AL, Brixen K, Mosekilde L, Heickendorff L, Christiansen JS (2002) Marked disproportionality in bone size and mineral, and distinct abnormalities in bone markers and calcitropic hormones in adult turner syndrome: a cross-sectional study. J Clin Endocrinol Metab 87:2798–2808 Katzman DK, Bachrach LK, Carter DR, Marcus R (1991) Clinical and anthropometric correlates of bone mineral acquisition in healthy adolescent girls. J Clin Endocrinol Metab 73:1332–1339 Bachrach LK, Hastie T, Wang MC, Narasimhan B, Marcus R (1999) Bone mineral acquisition in healthy Asian, Hispanic, Black, and Caucasian youth: a longitudinal study. J Clin Endocrinol Metab 84:4702–4712 Faulkner RA, Bailey DA, Drinkwater DT, McKay HA, Arnold C, Wilkinson AA (1996) Bone densitometry in Canadian children 8– 17 years of age. Calcif Tissue Int 59:344–351 Vicente-Rodriguez G (2006) How does exercise affect bone development during growth? Sports Med 36:561–569 Slemenda CW, Miller JZ, Hui SL, Reister TK, Johnston CC Jr (1991) Role of physical activity in the development of skeletal mass in children. J Bone Miner Res 6:1227–1233 Nakagawa S, Cuthill IC (2007) Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol Rev Camb Philos Soc 82:591–605 Carter DR, Bouxsein ML, Marcus R (1992) New approaches for interpreting projected bone densitometry data. J Bone Miner Res 7:137–145 -89- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. -90- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Author's personal copy Research in Developmental Disabilities 32 (2011) 1685–1693 Contents lists available at ScienceDirect Research in Developmental Disabilities Fat and lean masses in youths with Down syndrome: Gender differences Alejandro González-Agüero a,b,*, Ignacio Ara a,c, Luis A. Moreno a,d, Germán Vicente-Rodrı́guez a,b, José A. Casajús a,b a GENUD (Growth, Exercise, NUtrition and Development) Research Group, University of Zaragoza, Spain Faculty of Health and Sport Sciences, Huesca, University of Zaragoza, Spain c GENUD Toledo Research Group, University of Castilla La Mancha, Spain d School of Health Sciences, University of Zaragoza, Spain b A R T I C L E I N F O A B S T R A C T Article history: Received 18 February 2011 Received in revised form 22 February 2011 Accepted 22 February 2011 Available online 24 March 2011 The present study aimed at comparing fat and lean masses between children and adolescents with and without Down syndrome (DS) and evaluating the presence of sexual dimorphism. Total and regional fat and lean masses were assessed by dual energy X-ray absorptiometry (DXA) and the percentage of body fat (%BF) by air-displacement plethysmography (ADP) in 31 participants with DS and 32 controls. Waist circumference (WC) was also measured. Analysis of covariance and the Student’s t-test were used to compare variables between groups and between sexes within the same group. There were no significant differences in %BF, WC or body mass index (BMI) between groups. Females with DS showed higher fat and lean masses in the trunk, and lower fat and lean masses in the lower limbs compared with females without DS (all p 0.05). Males with DS showed higher fat masses in the whole body and upper limbs, and lower lean masses in the whole body and lower limbs compared with males without DS (all p 0.05). Females in both groups showed higher levels of fat, and lower levels of lean than did their respective males (all p 0.05). Youths with DS showed higher fat and lower lean than their non-DS peers. The increased truncal fat in females with DS might indicate a higher risk of metabolic syndrome in this group. Sexual dimorphism in youths with and without DS was very similar. BMI, WC and %BF were not effective indicators of increased risk in youths with DS. ß 2011 Elsevier Ltd. All rights reserved. Keywords: Trisomy 21 DXA Obesity Body composition 1. Introduction Increased adiposity characterized by a higher percentage of body fat (%BF) during childhood and adolescence is related to a greater risk of premature illnesses, death from coronary heart disease, hypertension and type 2 diabetes mellitus later in life (Dietz, 1998; Ebbeling, Pawlak, & Ludwig, 2002; Maffeis & Tato, 2001). Low lean mass is associated with decreased skeletal muscle tissue (Calbet et al., 2008), which that in turn, reduces the functional capacity and the maximum oxygen consumption that is a marker of health in youth and is also associated with increased cardiovascular health later in life (Ortega et al., 2005; Ortega, Ruiz, Castillo, & Sjostrom, 2008). Although certain clinical studies indicate that a common characteristic of youths with Down syndrome (DS) is to have light to moderate obesity (Chumlea & Cronk, 1981; Cronk, Chumlea, & Roche, 1985; Hawn, Rice, Nichols, & McDermott, 2009; Rubin, Rimmer, Chicoine, Braddock, & McGuire, 1998), and that no difference in fat-free mass can be found when compared with youths without DS (Luke, Sutton, Schoeller, & * Corresponding author at: C/Corona de Aragón 42, Edificio Cervantes 2a planta, Grupo GENUD, 50006 Zaragoza, Spain. Tel.: +34 976400338x301; fax: +34 976400340. E-mail address: alexgonz@unizar.es (A. González-Agüero). 0891-4222/$ – see front matter ß 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.ridd.2011.02.023 -91- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Author's personal copy 1686 A. González-Agüero et al. / Research in Developmental Disabilities 32 (2011) 1685–1693 Roizen, 1996), soft-tissue body composition in children and adolescents with DS has not been sufficiently studied (GonzálezAgüero et al., 2010). Although cardiovascular disease is not one of the most common disorder related to mortality in this population (Coppus et al., 2008; Prasher, 1993; Thase, 1982) and despite the fact that persons with DS may have fewer atherosclerotic risk factors than others with intellectual disability without DS (Draheim, McCubbin, & Williams, 2002), the continuous increase in life expectancy in the DS population (from 9 to 55 years and older during the last 70 years) (Bittles & Glasson, 2004; Glasson et al., 2002; Smith, 2001) together with high levels of adipose tissue (especially in the trunk) (Dietz, 1998; Ebbeling et al., 2002; Maffeis & Tato, 2001; Ortega et al., 2005, 2008) might be a future health issue. In this regard, Bronks and Parker (1985) described that although the %BF assessed with anthropometry in participants with DS did not significantly change with age, it was consistently high at all ages, suggesting that fat mass accumulation occurs prior to adulthood. In adults, studies assessing the %BF by dual energy X-ray absorptiometry (DXA) showed higher levels of fat mass and lower levels of lean mass in participants with DS compared with age- and sex-matched controls without DS (Baptista, Varela, & Sardinha, 2005; Guijarro, Valero, Paule, Gonzalez-Macias, & Riancho, 2008). Air-displacement plethysmography (ADP) has been used to assess body composition in children and adolescents because of its accuracy and validity of estimation at the individual level (Fields & Goran, 2000; Parker, Reilly, Slater, Wells, & Pitsiladis, 2003). However, to our knowledge only one study assessed DS adults with ADP (Usera, Foley, & Yun, 2005). In addition, DXA offers the possibility of performing regional analyses (trunk, upper and lower limbs) of fat and lean masses. On the other hand, due to the high cost and large dimensions of those two methods, a limited number of studies have been performed on DS populations (Angelopoulou, Souftas, Sakadamis, & Mandroukas, 1999; Baptista et al., 2005; Guijarro et al., 2008). The difficult conditions of these two methods make them unsuitable for field and clinical use; therefore other methods such as anthropometry are also widely used. Waist circumference (WC) seems to be one of the best anthropometric indicator for increased risk of metabolic syndrome in healthy children (Moreno et al., 2002); however no data on populations with DS can be found on this regard. It is important to note that we used a combination of three methods (DXA, ADP and WC) in order to better evaluate the body composition of this population, and to assess the effectiveness of WC as a predictor of high adiposity levels in a population with DS. Lastly, due to the lack of information related to body composition in youths with DS, it is still unknown whether the common sexual dimorphism presents in youths without DS is also present in children and adolescents with DS. Thus the aims of the present study were: (1) to compare total and regional distributions of fat and lean masses between male and female children and adolescents with and without DS; (2) to investigate whether WC can accurately detect those individuals with an elevated level of adiposity; and (3) to evaluate the presence of sexual dimorphism in children and adolescents with DS. 2. Materials and methods 2.1. Participants A total sample of 31 children and adolescents with DS (14 females/17 males, aged 10–19 years) were recruited from different schools and institutions of Aragón (Spain). An age- and sex-matched control group composed of 32 participants (13 females/19 males) without DS was recruited from a public school also in Aragón. All participants without DS were healthy, without known illness and free of medication for at least 3 months before the beginning of the study. Full clinical histories, including illnesses, surgical interventions and stays in a hospital, were collected for all individuals. Both parents and children were informed about the aims and procedures, as well as the possible risks and benefits of the study. Written informed consent was obtained from all the participants and their parents or guardians. The study was performed in accordance with the Helsinki Declaration of 1961 (revised in Edinburgh, 2000) and was approved by the Research Ethics Committee of the Government of Aragon (CEICA, Spain). 2.2. Anthropometry All participants were measured with a stadiometer without shoes and minimum clothing to the nearest 0.1 cm (SECA 225, SECA, Hamburg, Germany), and weighted to the nearest 0.1 kg (SECA 861, SECA, Hamburg, Germany). WC was measured to the nearest 0.1 cm with an anthropometric tape (Rosscraft, Canada). The body mass index (BMI) was calculated as weight (kg) divided by height squared (m2). 2.3. Pubertal status assessment Pubertal development was determined by direct observation by a physician according to the 5 stages proposed by Tanner and Whitehouse (1976). -92- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Author's personal copy A. González-Agüero et al. / Research in Developmental Disabilities 32 (2011) 1685–1693 1687 2.4. Fat and lean masses Total fat (kg) and lean (kg) masses were determined from a whole-body scan by DXA, using a pediatric version of the QDRExplorer software (Hologic Corp. Software version 12.4, Waltham, MA). The validity of DXA was established by comparison with chemical analysis (Svendsen, Haarbo, Hassager, & Christiansen, 1993), and its reliability was demonstrated by an intraclass correlation of 0.998 for repeated measurements of the %BF in children (Gutin et al., 1996). DXA equipment was calibrated using a lumbar spine and step densities phantom and following Hologic guidelines. Participants were scanned in the supine position and scans performed with high resolution. Fat and lean masses were calculated also from regional analyses of the whole body scan: upper and lower limbs and trunk. The %BF was calculated as total body fat divided by body mass and multiplied by 100. 2.5. Air-displacement plethysmography ADP measurements were obtained immediately after the anthropometric and DXA assessments. A BODPOD1 Body Composition System (Life Measurement Instruments, Concord, CA) was used to assess total body density as previously described (Fields & Goran, 2000). Measurements with BODPOD1 were performed with the participant in minimum clothing (underwear or swimwear) and with a swim cap. All assessments were carried out with the same device and software and performed by the same technician who had been fully trained in the operation. The %BF was obtained by introducing the total body density into the equation of Siri (1961). 2.6. Statistical analysis Mean and standard deviation are given as descriptive statistics; otherwise they are stated. All variables included in the study showed a normal distribution, assessed by Kolmogorov–Smirnov tests. Differences between groups (with and without DS), separately by genders (females with DS vs. females without DS; males with DS vs. males without DS) and between gender within the same group for age, physical characteristics (height, weight, BMI and WC) and %BF (both DXA and ADP) were established using the Student’s unpaired t-tests. The degree of agreement in the %BF between methods (ADP and DXA) was graphically examined by plotting the difference between methods against the ‘‘gold standard’’ (ADP), according to the Bland–Altman method (Bland & Altman, 1986). Differences were plotted against the ‘‘gold standard’’ instead of the mean value because the ‘‘gold standard’’ was expected to be closer to the ‘‘true value’’ than the mean (Krouwer, 2008). Validity and lack of agreement with ADP were assessed by calculating the systematic error (i.e. that is the inter-methods difference) and the SD of the difference. The 95% limits of agreement (systematic error 1.96 SD) were also calculated. Additionally, the presence of systematic error was analyzed by one sample t-test against zero. Analyses of covariance (ANCOVA) were performed to evaluate differences in fat and lean masses, entering Tanner stage, height and weight as covariates. The reason for using these covariates is based on evidence in previous studies identifying them as influential factors on body composition (Slemenda, Miller, Hui, Reister, & Johnston, 1991). The analyses were conducted separately by gender (male and female) since sex-interactions were found between gender and DS status. Effectsize statistics using Cohen’s d (standardized mean difference) were calculated for all the comparisons in fat and lean masses (Nakagawa & Cuthill, 2007). Taking into account the cut-off established by Cohen, the effect size can be small (0.2), medium (0.5) or large (0.8). The SPSS 15.0 software for Windows (SPSS Inc. Chicago, IL) was used for the analyses and the significance level was 5%. 3. Results 3.1. Physical characteristics Age and physical characteristics of the participants are summarized in Table 1. In general, participants with DS were lighter and smaller than those without DS (all p 0.05). No differences in age, BMI and WC were observed between groups or between genders within the same group. Table 1 Participants’ age and physical characteristics (mean standard deviation). Down syndrome Age (year) Weight (kg) Height (cm) Waist circumference (cm) Body mass index (kg/m2) * # Non-Down syndrome All (n = 31) Female (n = 14) Male (n = 17) All (n = 32) Female (n = 13) Male (n = 19) 15.2 2.9 46.7* 12.2 145.2* 11.6 75.4 11.1 21.7 3.9 14.8 3.2 42.9 13.5 138.9*,# 9.9 78.1 14.1 22.4 4.8 15.5 2.7 48.7* 10.9 150.8* 10.3 72.9 7.1 21.0 2.9 14.7 2.3 55.6 13.1 163.2 12.4 74.6 8.3 20.7 3.5 14.6 2.4 53.2 13.8 156.3# 9.6 75.1 10.1 21.5 4.4 14.8 2.2 57.3 12.7 167.8 12.1 74.2 7.1 20.1 2.7 p 0.05 between groups. p 0.05 between sexes within the same group. -93- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Author's personal copy A. González-Agüero et al. / Research in Developmental Disabilities 32 (2011) 1685–1693 1688 Table 2 Percentage of body fat assessed by ADP and DXA (mean standard deviation). Down syndrome Body fat by DXA (%) Body fat by BODPOD (%) # Non-Down syndrome All (n = 31) Female (n = 14) Male (n = 17) All (n = 32) Female (n = 13) Male (n = 19) 24.7 7.8 25.8 10.1 30.4# 5.2 29.9# 11.5 19.9 6.3 22.1 7.0 24.4 7.4 24.3 9.8 30.2# 6.1 31.1# 8.3 20.4 5.4 19.4 7.8 p 0.05 between sexes within the same group. 3.2. Percentage of body fat The %BF assessed by ADP and DXA is presented in Table 2. Females in both groups (with and without DS) had a higher %BF than the males from their respective groups (all p 0.05). No differences between groups were observed in the %BF. The 95% limits of agreement between the %BF with ADP and that with DXA were 16.4 and the presence of a systematic error was not observable (p > 0.05; data not shown). [()TD$FIG] Fig. 1. Tanner stage-, height- and weight-adjusted fat and lean masses from the whole body, trunk, upper and lower limbs, in females with and without Down syndrome; *p 0.05. -94- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Author's personal copy A. González-Agüero et al. / Research in Developmental Disabilities 32 (2011) 1685–1693 1689 3.3. Fat and lean masses After adjusting by Tanner stage, height and weight, females with DS showed higher fat and lean masses in the trunk, accompanied by lower fat and lean masses in the lower limbs, compared with females without DS (all p 0.05; Fig. 1). Males with DS had higher fat masses in the whole body and in the upper limbs than males without DS (both p 0.05; Fig. 2) and showed a tendency towards higher fat mass in the lower limbs (p = 0.06; Fig. 2). Lower lean masses in the whole body and lower limbs of males with DS, compared with males without DS were found (both p 0.05; Fig. 2). 3.4. Gender differences within the same group Females in both groups (with and without DS), showed higher levels of fat and lower levels of lean in all the studied regions: whole body, trunk, upper and lower limbs (all p 0.05; Figs. 3 and 4). All the previous comparisons (between groups and between genders within the same group) exhibited large effect sizes (Cohen’s d ranged from 0.8 to 2.0). [()TD$FIG] Fig. 2. Tanner stage-, height- and weight-adjusted fat and lean masses from the whole body, trunk, upper and lower limbs, in males with and without Down syndrome; *p 0.05. -95- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Author's personal copy [()TD$FIG] A. González-Agüero et al. / Research in Developmental Disabilities 32 (2011) 1685–1693 1690 Fig. 3. Tanner stage-, height- and weight-adjusted fat and lean masses from the whole body, trunk, upper and lower limbs, in males and females with Down syndrome; #p 0.05 between sexes within the same group. 4. Discussion Although some previous studies have evaluated body composition in adults with DS using either DXA or ADP (Baptista et al., 2005; Usera et al., 2005), to our knowledge, this is the first study that includes body composition assessment in children and adolescents with DS using DXA, ADP and WC at the same time. The main finding of the present study is that, despite similar values of WC, BMI and %BF (both with DXA and ADP) between populations with and without DS, different distributions of fat and lean masses were present. Moreover, our results shown that the sexual dimorphism present in the population with DS was similar to that present in the population without DS. 4.1. Waist circumference, BMI, total and regional adiposity in DS children and adolescents Most epidemiological studies use anthropometric measurements (WC and BMI) to assess body composition, because it is the most feasible and economic method when large samples need to be assessed (Moreno et al., 2006; Vicente-Rodriguez et al., 2008). However, more sophisticated body composition methods such as ADP or DXA are required in order to minimize the error of measurement and increase the body composition-related data that can be obtained. Regional fat distribution may have even more relevant implications for health than the %BF or the total amount of body fat; in fact, visceral fat or the accumulation of intra-abdominal adipose tissue increases cardiovascular risk (Kissebah & Krakower, 1994) and is negatively associated with muscular and cardiorespiratory fitness (Moliner-Urdiales et al., 2011). Little is known concerning these -96- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Author's personal copy [()TD$FIG] A. González-Agüero et al. / Research in Developmental Disabilities 32 (2011) 1685–1693 1691 Fig. 4. Tanner stage-, height- and weight-adjusted fat and lean masses from the whole body, trunk, upper and lower limbs, in males and females without Down syndrome; #p 0.05 between sexes within the same group. factors in children and adolescents with DS. In the present study, WC, BMI and %BF were similar between groups with and without DS (also separately by gender); however, different fat and lean mass distributions were present. This latter observation indicates that in this population, especially for females, a more accurate assessment of body soft tissue is needed in order to detect those children with increased health risk. Previous studies in adult females with DS showed that higher levels of fat compared to females without DS were found (Baptista et al., 2005). Moreover, lower levels of lean mass were also present in both males and females with DS (Baptista et al., 2005; Guijarro et al., 2008). Accordingly, in our study the increase in truncal fat in females, but not in males, with DS might indicate a higher risk of metabolic syndrome and cardiovascular disease in this group (Despres & Lemieux, 2006). On the other hand, males with DS showed higher total and regional (both in lower and upper limbs) fat masses compared to their peers without DS. Furthermore, lower total and regional (lower limbs) lean masses were also present in males with DS which is also considered a cardiovascular risk factor (Ortega et al., 2005, 2008). Additionally, the lower lean mass observed might partly explain the lower strength that is commonly present in this population (Guerra-Balic, Cuadrado-Mateos, Geronimo-Blasco, & Fernhall, 2000; Mercer & Lewis, 2001; Morris, Vaughan, & Vaccaro, 1982; Pitetti, Climstein, Mays, & Barrett, 1992), although further research is needed in this regard. Our results in children and adolescents are in line with the studies mentioned for adults, as shown by the fact that an excess of adiposity, along with lower lean mass, especially in the lower limbs, was found in both males and females with DS -97- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Author's personal copy 1692 A. González-Agüero et al. / Research in Developmental Disabilities 32 (2011) 1685–1693 (Baptista et al., 2005; Guijarro et al., 2008). The excess of fat mass at the trunk level present in females with DS is an interesting finding that might have special clinical relevance, due to the associated increase in the risk of cardiovascular diseases. As previously described by Bronks and Parker (1985), excessive fat mass accumulation in populations with DS most likely starts prior to adulthood and, consequently, would be better treated earlier in life. 4.2. Sexual dimorphism in children and adolescents with DS In a previous study in adults Baptista et al. (2005) observed higher levels of fat mass and lower levels of lean mass in females compared with males with DS, as normally occurs in populations without DS. Our study shows that these differences are already detectable in children and adolescents. Although some data indicate that an unusual sexual dimorphism in children and adolescents with DS in relation to bone mass could be present in this population (González-Agüero, VicenteRodriguez, Moreno, & Casajús, in press), fat and lean masses seem to have a common sexual differentiation. We found higher levels of fat mass and lower levels of lean mass in females, compared with males in all the studied regions in the group with DS, similar to what occurred in the group without DS. The large effect size observed in the differences in fat and lean masses between children and adolescents with and without DS, and also between sexes within the same group indicate substantial biological magnitude of the results (Nakagawa & Cuthill, 2007). 4.3. Limitations and strengths of the study Due to the design of the study, the nature of the association between body composition and DS condition cannot be established. In future work, this study will benefit from longitudinal investigation in order to assess changes in body composition in this specific population. Although the number of participants and, as a consequence the power of the study, was limited, to our knowledge this is the largest sample of male and female children and adolescents with DS that has been included in a single study to date (González-Agüero et al., 2010). Moreover, the fact that two different reference body composition methods (DXA and ADP), and a good anthropometric predictor for metabolic syndrome (WC) were included adds value to the present study. Finally, the large effect size observed with Cohen’s d statistics demonstrates the consistency of our data. 5. Conclusions The current investigation provides evidence that children and adolescents with DS have higher levels of total and regional fat mass than their counterparts without DS. Furthermore, BMI, WC and %BF seem not to be accurate enough to detect an excess of adiposity in this population. As a consequence, more precise studies of the body composition in this specific population are required, with particular attention being paid in evaluating regional adiposity levels and the implications for future health. Similar sexual dimorphism in fat and lean compartments between youths with DS and (age- and sex-matched) youths without DS was found. Further studies assessing how other factors, such as physical activity, sedentary time, physical fitness or diet, can affect fat and lean mass development during puberty will be key in helping us to understand the importance of lifestyle for the accumulation of fat mass in populations with DS, since its occurrence in populations without DS has already been well documented (Ara, Moreno, Leiva, Gutin, & Casajus, 2007; Ara et al., 2004, 2006; Vicente-Rodriguez et al., 2008). Acknowledgments The authors want to thank all the children and their parents that participated in the study for their understanding and dedication to the project. Special thanks are given to Fundación Down Zaragoza and Special Olympics Aragon for their support. We also thank Scott G Mitchell from the University of Glasgow and Steven J James for his work of reviewing the English style and grammar, and Paula Velasco from the University of Zaragoza for her great technical assistance. This work was supported by Gobierno de Aragón (Proyecto PM 17/2007) and Ministerio de Ciencia e Innovación de España (Red de investigación en ejercicio fı́sico y salud para poblaciones especiales-EXERNET-DEP2005-00046/ACTI). These authors declare that they have no conflicts of interest that may affect the contents of this work. References Angelopoulou, N., Souftas, V., Sakadamis, A., & Mandroukas, K. (1999). Bone mineral density in adults with Down’s syndrome. European Radiology, 9, 648–651. Ara, I., Moreno, L. A., Leiva, M. T., Gutin, B., & Casajus, J. A. (2007). Adiposity, physical activity, and physical fitness among children from Aragon, Spain. Obesity (Silver Spring), 15, 1918–1924. Ara, I., Vicente-Rodriguez, G., Jimenez-Ramirez, J., Dorado, C., Serrano-Sanchez, J. A., & Calbet, J. A. (2004). Regular participation in sports is associated with enhanced physical fitness and lower fat mass in prepubertal boys. International Journal of Obesity and Related Metabolic Disorders: Journal of the International Association for the Study of the Obesity, 28, 1585–1593. Ara, I., Vicente-Rodriguez, G., Perez-Gomez, J., Jimenez-Ramirez, J., Serrano-Sanchez, J. A., Dorado, C., et al. (2006). Influence of extracurricular sport activities on body composition and physical fitness in boys: A 3-year longitudinal study. International Journal of Obesity (London), 30, 1062–1071. Baptista, F., Varela, A., & Sardinha, L. B. (2005). Bone mineral mass in males and females with and without Down syndrome. Osteoporosis International, 16, 380–388. -98- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Author's personal copy A. González-Agüero et al. / Research in Developmental Disabilities 32 (2011) 1685–1693 1693 Bittles, A. H., & Glasson, E. J. (2004). Clinical, social, and ethical implications of changing life expectancy in Down syndrome. Developmental Medicine & Child Neurology, 46, 282–286. Bland, J. M., & Altman, D. G. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. Lancet, 1, 307–310. Bronks, R., & Parker, A. W. (1985). Anthropometric observation of adults with Down syndrome. American Journal of Mental Deficiency, 90, 110–113. Calbet, J. A., Perez-Gomez, J., Vicente-Rodriguez, G., Ara, I., Olmedillas, H., Chavarren, J., et al. (2008). Look before you leap: On the issue of muscle mass assessment by dual-energy X-ray absorptiometry (reply to Jordan Robert Moon comments). European Journal of Applied Physiology, 104, 587–588. Chumlea, W. C., & Cronk, C. E. (1981). Overweight among children with trisomy. Journal of Mental Deficiency Research, 25(4), 275–280. Coppus, A. M., Evenhuis, H. M., Verberne, G. J., Visser, F. E., Oostra, B. A., Eikelenboom, P., et al. (2008). Survival in elderly persons with Down syndrome. Journal of the American Geriatric Society, 56, 2311–2316. Cronk, C. E., Chumlea, W. C., & Roche, A. F. (1985). Assessment of overweight children with trisomy 21. American Journal of Mental Deficiency, 89, 433–436. Despres, J. P., & Lemieux, I. (2006). Abdominal obesity and metabolic syndrome. Nature, 444, 881–887. Dietz, W. H. (1998). Health consequences of obesity in youth: Childhood predictors of adult disease. Pediatrics, 101, 518–525. Draheim, C. C., McCubbin, J. A., & Williams, D. P. (2002). Differences in cardiovascular disease risk between nondiabetic adults with mental retardation with and without Down syndrome. American Journal of Mental Retardation, 107, 201–211. Ebbeling, C. B., Pawlak, D. B., & Ludwig, D. S. (2002). Childhood obesity: Public-health crisis, common sense cure. Lancet, 360, 473–482. Fields, D. A., & Goran, M. I. (2000). Body composition techniques and the four-compartment model in children. Journal of Applied Physiology, 89, 613–620. Glasson, E. J., Sullivan, S. G., Hussain, R., Petterson, B. A., Montgomery, P. D., & Bittles, A. H. (2002). The changing survival profile of people with Down’s syndrome: Implications for genetic counselling. Clinical Genetics, 62, 390–393. González-Agüero, A., Vicente-Rodriguez, G., Moreno, L. A., & Casajús, J. A. Bone mass in male and female children and adolescents with Down syndrome. Osteoporosis International, in press, doi:10.1007/s00198-010-1443-7. González-Agüero, A., Vicente-Rodriguez, G., Moreno, L. A., Guerra-Balic, M., Ara, I., & Casajus, J. A. (2010). Health-related physical fitness in children and adolescents with Down syndrome and response to training. Scandinavian Journal of Medicine and Science in Sports, 20, 716–724. Guerra-Balic, M., Cuadrado-Mateos, E., Geronimo-Blasco, C., & Fernhall, B. (2000). Physical fitness levels of physically active and sedentary adults with Down syndrome. Adapted Physical Activity Quarterly, 17, 310–321. Guijarro, M., Valero, C., Paule, B., Gonzalez-Macias, J., & Riancho, J. A. (2008). Bone mass in young adults with Down syndrome. Journal of Intellectual Disability Research, 52, 182–189. Gutin, B., Litaker, M., Islam, S., Manos, T., Smith, C., & Treiber, F. (1996). Body-composition measurement in 9-11-y-old children by dual-energy X-ray absorptiometry, skinfold-thickness measurements, and bioimpedance analysis. American Journal of Clinical Nutrition, 63, 287–292. Hawn, J., Rice, C., Nichols, H., & McDermott, S. (2009). Overweight and obesity among children with Down syndrome: A descriptive study of children attending a Down syndrome clinic in South Carolina. Journal of the South Carolina Medical Association, 105, 64–68. Kissebah, A. H., & Krakower, G. R. (1994). Regional adiposity and morbidity. Physiological Reviews, 74, 761–811. Krouwer, J. S. (2008). Why Bland–Altman plots should use X, not (Y + X)/2 when X is a reference method. Statistics in Medicine, 27, 778–780. Luke, A., Sutton, M., Schoeller, D. A., & Roizen, N. J. (1996). Nutrient intake and obesity in prepubescent children with Down syndrome. Journal of the American Dietetic Association, 96, 1262–1267. Maffeis, C., & Tato, L. (2001). Long-term effects of childhood obesity on morbidity and mortality. Hormone Research, 55(Suppl. 1), 42–45. Mercer, V. S., & Lewis, C. L. (2001). Hip abductor and knee extensor muscle strength of children with and without Down syndrome. Pediatric Physical Therapy, 13, 18–26. Moliner-Urdiales, D., Ruiz, J. R., Vicente-Rodriguez, G., Ortega, F. B., Rey-Lopez, J. P., Espana-Romero, V., et al. (2011). Associations of muscular and cardiorespiratory fitness with total and central body fat in adolescents; The HELENA Study. British Journal of Sports Medicine, 45, 101–108. Moreno, L. A., Mesana, M. I., Gonzalez-Gross, M., Gil, C. M., Fleta, J., Warnberg, J., et al. (2006). Anthropometric body fat composition reference values in Spanish adolescents, The AVENA Study. European Journal of Clinical Nutrition, 60, 191–196. Moreno, L. A., Pineda, I., Rodriguez, G., Fleta, J., Sarria, A., & Bueno, M. (2002). Waist circumference for the screening of the metabolic syndrome in children. Acta Paediatrica, 91, 1307–1312. Morris, A. F., Vaughan, S. E., & Vaccaro, P. (1982). Measurements of neuromuscular tone and strength in Down’s syndrome children. Journal of Mental Deficiency Research, 26, 41–46. Nakagawa, S., & Cuthill, I. C. (2007). Effect size, confidence interval and statistical significance: A practical guide for biologists. Biological Reviews of the Cambridge Philosophical Society, 82, 591–605. Ortega, F. B., Ruiz, J. R., Castillo, M. J., Moreno, L. A., Gonzalez-Gross, M., Warnberg, J., et al. (2005). Low level of physical fitness in Spanish adolescents. Relevance for future cardiovascular health (AVENA study). Revista Española de Cardiologı´a, 58, 898–909. Ortega, F. B., Ruiz, J. R., Castillo, M. J., & Sjostrom, M. (2008). Physical fitness in childhood and adolescence: A powerful marker of health. International Journal of Obesity (London), 32, 1–11. Parker, L., Reilly, J. J., Slater, C., Wells, J. C., & Pitsiladis, Y. (2003). Validity of six field and laboratory methods for measurement of body composition in boys. Obesity Research, 11, 852–858. Pitetti, K. H., Climstein, M., Mays, M. J., & Barrett, P. J. (1992). Isokinetic arm and leg strength of adults with Down syndrome: A comparative study. Archives of Physical Medicine and Rehabilitation, 73, 847–850. Prasher, V. P. (1993). Down’s syndrome, longevity, and Alzheimer’s disease. British Journal of Psychiatry, 162, 711. Rubin, S. S., Rimmer, J. H., Chicoine, B., Braddock, D., & McGuire, D. E. (1998). Overweight prevalence in persons with Down syndrome. Mental Retardation, 36, 175– 181. Siri, W. E. (1961). Body composition from fluid spaces and density: Analysis of methods. In J. Brozek & A. Henzchel (Eds.), Techniques for measuring body composition (pp. 224–244). Washington: National Academy of Sciences. Slemenda, C. W., Miller, J. Z., Hui, S. L., Reister, T. K., & Johnston, C. C., Jr. (1991). Role of physical activity in the development of skeletal mass in children. Journal of Bone and Mineral Research, 6, 1227–1233. Smith, D. S. (2001). Health care management of adults with Down syndrome. American Family Physician, 64, 1031–1038. Svendsen, O. L., Haarbo, J., Hassager, C., & Christiansen, C. (1993). Accuracy of measurements of body composition by dual-energy X-ray absorptiometry in vivo. American Journal of Clinical Nutrition, 57, 605–608. Tanner, J. M., & Whitehouse, R. H. (1976). Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Archives of Disease in Childhood, 51, 170–179. Thase, M. E. (1982). Longevity and mortality in Down’s syndrome. Journal of Mental Deficiency Research, 26, 177–192. Usera, P. C., Foley, J. T., & Yun, J. (2005). Cross-validation of field based assessments of body composition for individuals with Down syndrome. Adapted Physical Activity Quarterly, 22, 198–206. Vicente-Rodriguez, G., Rey-Lopez, J. P., Martin-Matillas, M., Moreno, L. A., Warnberg, J., Redondo, C., et al. (2008). Television watching, videogames, and excess of body fat in Spanish adolescents: The AVENA study. Nutrition, 24, 654–662. -99- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. -100- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Artículo original Dimorfismo sexual en grasa corporal en adolescentes con síndrome de Down Alejandro González-Agüero1,2 , Germán Vicente-Rodríguez1,2 , Luis A. Moreno1,3, José A. Casajús1,2 1 Grupo GENUD. Universidad de Zaragoza 2 Facultad de Ciencias de la Salud y del Deporte. Universidad de Zaragoza. Huesca 3 Escuela Universitaria de Ciencias de la Salud. Universidad de Zaragoza Introducción: Las personas con síndrome de Down (SD) tienen un índice de masa corporal (IMC) y un porcentaje de grasa corporal (%GC) más altos que personas sin SD de su misma edad y sexo. La composición corporal de esta población durante la adolescencia es prácticamente desconocida. Objetivo: Valorar el dimorfismo sexual de masa grasa en adolescentes con SD. Material y métodos: 31 adolescentes (12-19 años; 13 chicas y 18 chicos) con SD tomaron parte en este estudio. Se midió peso, talla, pliegues cutáneos (bíceps, tríceps, subescapular, suprailíaco, muslo anterior, abdominal y pierna medial) y perímetros de cintura y cadera. Se calculó el IMC, %GC, índice cintura cadera (ICC), sumatorio de 6 pliegues (∑6P), la proporción de adolescentes con sobrepeso + obesidad y la puntuación Z-score de IMC para cada participante. Se analizaron estadísticamente los datos mediante pruebas t de Student. Resultados: Las chicas con SD obtuvieron valores más altos que los chicos con SD en IMC, %GC, ∑6P y en 5 de los 7 pliegues (todos p < 0,05). También observamos una mayor proporción de sobrepeso + obesidad en las chicas (50% vs. 21%). Discusión: El dimorfismo sexual observado en esta muestra de adolescentes con SD es similar al descrito previamente en población adolescente sin SD. Sin embargo, los valores de IMC, %GC y la proporción de adolescentes con sobrepeso + obesidad en las chicas con SD son superiores a los de las chicas sin SD de su misma edad. El 40% de los participantes tuvieron un Z-score de IMC por encima de 1 punto. Palabras clave: Composición corporal. Trisomía 21. Porcentaje graso. ISAK. Sexual body fat dimorphism in adolescents with Down syndrome Introduction: Persons with Down syndrome (DS) have higher body mass index (BMI) and body fat percentage (%BF) than age- and sexmatched persons without DS. Body composition of this population during adolescence is almost unknown. Aim: To study fat mass sexual dimorphism in DS adolescents. Material and methods: 31 adolescents (12-19 years; 13 girls and 18 boys) with DS INTRODUCCIÓN El síndrome de Down (SD) es una condición genética causada por anormalidades en el cromosoma 21 y caracterizada por una discapacidad intelectual de gradación variable (1). La incidencia 214 Correspondencia: Dr. José Antonio Casajús c/ Corona de Aragón, 42. Edificio Cervantes. 2.ª planta 50009 Zaragoza Correo electrónico: joseant@unizar.es participated in this study. Weight, height, skinfold thicknesses (biceps, triceps, subscapular, iliac crest, front thigh, abdominal and medial calf skinfold) and waist and hip circumferences were measured. BMI, %BF, waist/hip index (WHI), 6 skinfolds addition (∑6S), the proportion of adolescents with overweight + obesity and Z-score for BMI were calculated. The data were statistically analysed with Student’s t tests. Results: Girls with DS showed higher values than the boys with DS in BMI, %BF, ∑6S, in 5 of the 7 skinfolds (all p < 0,05). Also higher proportion of adolescents with overweight + obesity was observed in the girls compared to boys (50% vs. 21%). Discussion: The sexual dimorphism observed in this sample of DS adolescents is similar than the previously described in adolescent population without DS. However, the values for BMI, %BF and the proportion of overweight + obesity in the girls are higher compared with the agematched girls without DS. Forty per cent of the sample showed Z-score for BMI over 1 point. Key words: Body composition. Trisomy 21. Fat percentage. ISAK. del SD es de aproximadamente 1 de 700 a 1 de 1.000 nacidos vivos (2). Se han descrito más de 80 características clínicas en individuos con SD, incluidos problemas cardiacos congénitos, presentes aproximadamente en el 40% de los individuos(1). Su esperanza de vida ha aumentado considerablemente: desde los Revista Española de Obesidad • Vol. 8 • Núm. 1 • Marzo 2010 (xxx-xxx) -101- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. A. González-Agüero, G. Vicente-Rodríguez, L.A. Moreno, J.A. Casajús 9 años de media que tenían en 1929(3) hasta 55 años o más en la actualidad (4). Debido al aumento de su esperanza de vida, algunos problemas asociados a la población con SD, como el exceso de peso y de grasa corporal, los bajos niveles de densidad mineral ósea o el envejecimiento celular están empezando a ser estudiados en profundidad, ya que las enfermedades asociadas disminuyen la calidad de vida de estas personas. En numerosos estudios se ha observado que niños, adolescentes y adultos con SD tienen un índice de masa corporal (IMC) y un porcentaje de grasa corporal (%GC) más altos que la población sin SD (5,6). El exceso de grasa constituye un factor de riesgo asociado con problemas metabólicos en cualquier tipo de población (7,8). En personas con SD, el exceso de grasa puede influir de manera negativa en algunas de sus características propias, como defectos cardiacos congénitos, hipotonía muscular o bajos niveles de masa ósea (1,9,10). La temprana detección del sobrepeso u obesidad en estas personas podría mejorar las expectativas de tratamiento. Algunos estudios atribuyen este exceso de peso y/o masa grasa a una predisposición genética que provoca niveles más bajos de secreción de leptina (11), factores fisiológicos como la hipotonía muscular(12) o la disfunción del tiroides que acompañan al SD(13). Otros han descrito a los niños y adolescentes con SD como menos activos que sus homólogos sin SD (14,15); y se ha podido comprobar que el entrenamiento físico mejora la composición corporal en personas con SD (16-18). Esto nos está indicando que la falta de actividad física que caracteriza a esta población podría motivar también el excesivo almacenamiento de grasa. Aunque existen varias hipótesis, las causas del exceso de grasa en estas personas no han sido todavía descritas con certeza. En población general, existe un claro dimorfismo sexual relacionado con la composición corporal desde el momento del nacimiento, que tiene un drástico aumento durante la pubertad, y que continúa durante la edad adulta aunque se suaviza (19). El dimorfismo sexual en composición corporal de adolescentes con SD no se ha estudiado. Estudios previos realizados en nuestro laboratorio indican un dimorfismo sexual diferente al de los adolescentes de su misma edad sin SD en otros compartimentos de la composición corporal (por ejemplo, masa ósea; A. González-Agüero et al., datos no publicados), lo que sugiere que podría ocurrir lo mismo con la grasa corporal. En población sin SD, durante la adolescencia, las chicas tienden a acumular más grasa que los chicos(20), sin que esto afecte al IMC(21,22). Sería, por tanto, interesante comprobar si, como ocurre en masa ósea, los adolescentes con SD tienen patrones específicos de desarrollo de la masa grasa. Vol. 8 • Núm. 1 • Marzo 2010 -102- Por todo esto, los objetivos de este estudio son obtener datos antropométricos de adolescentes con SD y valorar si su dimorfismo sexual en masa grasa es similar al descrito previamente para adolescentes sin SD. MÉTODOS Muestra La muestra del estudio está compuesta por 31 adolescentes (1219 años; 13 chicas y 18 chicos) aragoneses con SD. Se recogió información sobre enfermedades y operaciones anteriores y estancias en hospitales. También se recogió información sobre actividad física actual, años de práctica y nivel. Ambos, padres y niños fueron informados sobre el objetivo y procedimientos del estudio, así como de los posibles riesgos y beneficios del mismo. Se obtuvo un consentimiento informado de todos los adolescentes y de sus padres o tutores. El estudio se realizó de acuerdo con la Declaración de Helsinki de 1961 (revisión de Edimburgo en 2000) y fue aprobado por el Comité de Ética en Investigación del Gobierno de Aragón. Medidas antropométricas Para la determinación de las medidas antropométricas se utilizaron las normas, recomendaciones y técnicas de medición de la Sociedad Internacional de Avances en Cineantropometría (ISAK, International Society for the Advancement of Kinanthropometry)(23). Todas las mediciones fueron realizadas por el mismo antropometrista (nivel 2 ISAK), cuyo error técnico de medición está dentro de los límites recomendados por ISAK. A continuación se detallan las medidas tomadas y material utilizado. Medidas básicas Se midieron paso y talla con precisión 0,1 cm y 0,1 kg respectivamente. Tallímetro KaWe (Asperg, Alemania); balanza SECA (Hamburgo, Alemania). Pliegues cutáneos Se midieron los pliegues bíceps, tríceps, subescapular, supraíliaco, abdominal, muslo anterior y pierna medial. Compás de pliegues, precisión 0,2 mm, Holtain Ltd. (Crosswell, Reino Unido). Perímetros Se midieron perímetro de cintura y de cadera. Cinta antropométrica, precisión 1 mm, Rosscraft. 215 Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Dimorfismo sexual en grasa corporal Tabla 1. EDAD Y CARACTERÍSTICAS ANTROPOMÉTRICAS EN LOS CHICOS Y CHICAS CON SD ESTUDIADOS Y DIFERENCIAS ENTRE SEXOS Variable Edad (años) Chicas (n=13) Chicos (n=18) Media ± DT Media ± DT 16,72 ± 2,54 16,43 ± 2,46 con el paquete estadístico SPSS (versión 15.0 para Windows). Se tomó como nivel de significación de p < 0,05. p 0,754 Peso (kg) 49,15 ± 9,54 50,56 ± 10,56 0,707 Talla (cm) 143,00* ± 7,18 153,05 ± 8,01 0,001 RESULTADOS En la Tabla 1 se muestran los datos de edad, antropométricos básicos y %GC 23,89* ± 3,47 21,39 ± 2,99 0,040 IMC (kg/m2) de los chicos y chicas adolescentes Normopeso/sobrepeso/obesidad (%) 50/50/0 79/21/0 con SD. Los chicos con SD resultaron Perímetro de cintura (cm) 78,8 ± 8,8 74,6 ± 9,4 0,218 10 cm más altos que las chicas con SD; y las chicas obtuvieron valores más elePerímetro de cadera (cm) 92,2 ± 9,3 85,9 ± 9,3 0,079 vados en %GC e IMC (todas p < 0,05). ICC 0,86 ± 0,06 0,87 ± 0,05 0,563 Un 50% de las chicas, frente a un 21% Porcentaje de grasa 26,95* ± 7,51 19,71 ± 6,43 0,010 de los chicos, fueron clasificadas con Z-score IMC 0,82 ± 0,84 0,17 ± 0,91 0,052 sobrepeso. No encontramos diferenEdad, medidas antropométricas básicas y porcentaje de grasa entre chicos y chicas adolescentes con SD. *p < 0,05; cias significativas en edad, peso, períDT = desviación típica; IMC = índice de masa corporal; ICC = índice cintura/cadera. metro de cintura, perímetro de cadera ni ICC. El 40% de los participantes (8 Cálculos posteriores chicas y 4 chicos) obtuvieron un Z-score mayor de 1 punto. El IMC se calculó como kilogramos de peso divididos por la La Figura 1 muestra el perfil de pliegues y el ∑6P. Se obsertalla (m) al cuadrado. Teniendo en cuenta el IMC, sexo y edad van valores de entre un 36% y un 83% más altos en los pliegues se dividió a los adolescentes en tres grupos: “normopeso”, “sobíceps, tríceps, subescapular, muslo anterior y pierna medial, y brepeso” y “obesidad” de acuerdo con los criterios publicados también en el ∑6P (29%) de las chicas con SD comparadas con por Cole et al.(24) para menores de 18 años. Se calculó el valor los chicos (todos p < 0,05). de Z-score de IMC para cada adolescente tomando como referencia los valores de la Organización Mundial de la Salud DISCUSIÓN de 2007 para cada edad y sexo (25,26). El índice cintura-cadera (ICC) se calculó dividendo el perímetro de la cintura (cm) por El hallazgo principal de este estudio es que en este grupo de el perímetro de la cadera (cm). Se obtuvo también el sumatorio adolescentes con SD las chicas tienen un %GC y un IMC más de 6 pliegues cutáneos (∑6P): tríceps, subescapular, supraialtos que los chicos. Sin embargo, no encontramos diferencias líaco, muslo anterior, pierna medial y abdominal. Para hallar en los perímetros de cadera, cintura ni en el ICC, por lo que pael porcentaje de grasa corporal seguimos las indicaciones de rece que estas variables no muestran un dimorfismo sexual en Rimmer et al. (27) para adultos con discapacidad intelectual; calculando la densidad mediante las fórmulas de Durnin y adolescentes con SD, al contrario que en la población sin SD. Womersley(28) para los chicos y de Jackson y Pollock(29) para Ningún trabajo hasta la fecha había estudiado el dimorfismo (30) las chicas, y aplicando después la fórmula de Siri et al. para sexual en la grasa corporal de adolescentes con SD. Sin embarhallar el %GC. go, en adolescentes sin SD está bien documentado que las chicas tienen un %GC y un ∑6P más alto que los chicos(20,31,32), y que el IMC es semejante en ambos sexos(21,22,31,33). A tenor de nuestros Análisis estadístico resultados, parece que los adolescentes con SD de nuestro estudio tienen un dimorfismo sexual en masa grasa similar al detecLos datos se muestran como media ± desviación típica. Todas tado en adolescentes sin SD, aunque los perímetros de cadera y las variables mostraron una distribución normal. Se realizaron cintura podrían ser menos sensibles en esta población. pruebas t de Student para estudiar las diferencias en edad, peso, Valores de referencia en niños y adolescentes españoles sin talla, IMC, ICC, pliegues cutáneos, ∑6P, %GC y puntuación ZSD muestran un IMC (kg/m 2) que varía entre 20,61 y 22,91 en chicos, y entre 21,33 y 21,72 en chicas; un %GC con un score de IMC entre chicos y chicas. Los análisis se realizaron 216 Vol. 8 • Núm. 1 • Marzo 2010 -103- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. A. González-Agüero, G. Vicente-Rodríguez, L.A. Moreno, J.A. Casajús Chicas 200 Chicos 180 Abdominal 160 * Pierna medial * * Muslo anterior 140 120 Suprailíaco 100 Subescapular 80 * Tríceps 60 * Bíceps 40 * 5 10 20 15 20 25 30 35 40 45 0 mm Figura 1. Pliegues cutáneos y sumatorio de pliegues en chicos y chicas adolescentes con síndrome de Down. *p < 0,05. rango de 18,28-20,79 en chicos y de 24,89-26,30 en chicas; un ∑6P (mm) con un rango de 67,8-80,29 en chicos y de 96,94102,31 en chicas y una proporción de adolescentes con sobrepeso + obesidad de un 25,69% en chicos y un 19,13% en chicas (22,32). Comparando estos datos con los de nuestro estudio observamos que el IMC de los chicos con SD está dentro del rango establecido en población sin SD, pero el de las chicas está muy por encima de ese rango. La proporción de adolescentes con sobrepeso + obesidad alcanza en los chicos con SD un porcentaje menor que en población sin SD y en las chicas sobrepasa considerablemente ese porcentaje. El ∑6P es mayor tanto en chicas como en chicos con SD comparado con el rango de referencia indicado para población sin SD, siendo el de las chicas mucho más elevado. El %GC de los chicos con SD entra dentro del margen establecido en población sin SD y el de las chicas está muy por encima de ese margen. El grupo de adolescentes con SD incluidos en el estudio son muy activos, y gran número de ellos toman parte desde hace años en un programa de actividad física semanal (34). A pesar de esto, el IMC, el %GC y la proporción de adolescentes con sobrepeso y obesidad en el grupo de chicas se encuentran muy por encima de los valores de referencia para su misma edad y sexo sin SD. Además, un 40% de la muestra tiene un Z-score de IMC mayor de 1 punto. Sería conveniente estudiar la posible relación entre composición corporal, condición física y niveles de actividad física en Vol. 8 • Núm. 1 • Marzo 2010 -104- adolescentes con SD y valorar si es de la misma magnitud que en la población sin SD(35). El %GC y la proporción de adolescentes con sobrepeso + obesidad en los chicos de nuestro estudio se encuentran dentro del rango de referencia para su misma edad y sexo sin SD y, sin embargo, el ∑6P se encuentra considerablemente por encima. Esto nos hace pensar que tal vez los puntos de corte de Cole et al.(24) no sean los más adecuados para este estudio, ya que no son específicos para población pediátrica con SD, pero se adecuan más a los sujetos de nuestro estudio al estar diseñados para niños y adolescentes de 2 a 18 años. Por otra parte, las ecuaciones utilizadas para hallar el %GC tampoco son específicas para esta población. Sin embargo, decidimos usarlas, por ser la población que más se ajusta a la de nuestro estudio. Sería interesante, por lo tanto, la realización de nuevos estudios con métodos de referencia de valoración de la masa grasa, para elaborar puntos de corte específicos para sobrepeso y obesidad, y también fórmulas para el cálculo del %GC con pliegues cutáneos en población pediátrica con SD. En conclusión, se puede considerar que esta muestra de adolescentes con SD tiene un dimorfismo sexual en masa grasa similar al observado en adolescentes sin SD. Sin embargo, pese a que los valores de IMC, %GC y proporción de sobrepeso + obesidad en los chicos son similares a los descritos en población sin SD, las chicas tienen unos valores muy superiores para estas variables, y el Z-score de IMC de ambos grupos es positivo, 217 Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Dimorfismo sexual en grasa corporal estando el 40% de la muestra por encima de 1 punto. Por todo esto, se hace evidente la necesidad de valores de referencia específicos para este grupo de población, tanto en %GC como en puntos de corte, para definir sobrepeso y obesidad. AGRADECIMIENTOS Los autores agradecen a todos los participantes y a sus padres el esfuerzo realizado. También nos gustaría agradecer a Paula Velasco Martínez, de la Universidad de Zaragoza, su inestimable ayuda en la realización de las antropometrías. Una parte sustancial de los participantes procedían de Fundación Down Zaragoza y Special Olympics Aragón; también nos gustaría agradecer a estas instituciones su participación en el estudio. Este estudio está financiado por el Gobierno de Aragón (proyecto PM 17/2007) y por el Ministerio de Ciencia e Innovación de España (Red de investigación en ejercicio físico y salud para poblaciones especiales –EXERNET– DEP2005-00046/ACTI). BIBLIOGRAFÍA 1. Pueschel SM. Clinical aspects of Down syndrome from infancy to adulthood. Am J Med Genet Suppl 1990; 7: 52-6. 2. Roizen NJ, Patterson D. Down’s syndrome. Lancet 2003; 361 (9365): 1281-9. 3. Bittles AH, Glasson EJ. Clinical, social, and ethical implications of changing life expectancy in Down syndrome. Dev Med Child Neurol 2004; 46 (4): 282-6. 4. Glasson EJ, Sullivan SG, Hussain R, Petterson BA, Montgomery PD, Bittles AH. The changing survival profile of people with Down’s syndrome: implications for genetic counselling. Clin Genet 2002; 62 (5): 390-3. 5. Bronks R, Parker AW. Anthropometric observation of adults with Down syndrome. Am J Ment Defic 1985; 90 (1): 110-3. 6. Chumlea WC, Cronk CE. Overweight among children with trisomy. J Ment Defic Res 1981; 25 (Pt 4): 275-80. 7. Dietz WH. Health consequences of obesity in youth: childhood predictors of adult disease. Pediatrics 1998; 101 (3 Pt 2): 518-25. 8. Ebbeling CB, Pawlak DB, Ludwig DS. Childhood obesity: public-health crisis, common sense cure. Lancet 2002; 360 (9331): 473-82. 9. Baptista F, Varela A, Sardinha LB. Bone mineral mass in males and females with and without Down syndrome. Osteoporos Int 2005; 16 (4): 380-8. 218 10. Morris AF, Vaughan SE, Vaccaro P. Measurements of neuromuscular tone and strength in Down’s syndrome children. J Ment Defic Res 1982; 26 (Pt 1): 41-6. 11. Proto C, Romualdi D, Cento RM, Romano C, Campagna G, Lanzone A. Free and total leptin serum levels and soluble leptin receptors levels in two models of genetic obesity: the Prader-Willi and the Down syndromes. Metabolism 2007; 56 (8): 1076-80. 12. Winnick J. Adapted Physical Education and Sport. Champaign, Illinois: Human Kinetics; 1995. 13. Thiel R, Fowkes SW. Down syndrome and thyroid dysfunction: should nutritional support be the first-line treatment? Med Hypotheses 2007; 69 (4): 809-15. 14. Shields N, Dodd KJ, Abblitt C. Do children with Down syndrome perform sufficient physical activity to maintain good health? A pilot study. Adapt Phys Activ Q 2009; 26 (4): 307-20. 15. Sharav T, Bowman T. Dietary practices, physical activity, and body-mass index in a selected population of Down syndrome children and their siblings. Clin Pediatr (Phila) 1992; 31 (6): 341-4. 16. Shields N, Taylor NF, Dodd KJ. Effects of a community-based progressive resistance training program on muscle performance and physical function in adults with Down syndrome: a randomized controlled trial. Arch Phys Med Rehabil 2008; 89 (7): 1215-20. 17. Ordóñez F, Rosety M, Rosety-Rodríguez M. Influence of 12-week exercise training on fat mass percentage in adolescents with Down syndrome. Med Sci Monit 2006; 12 (10): CR416-9. 18. Rimmer JH, Heller T, Wang E, Valerio I. Improvements in physical fitness in adults with Down syndrome. Am J Ment Retard 2004; 109 (2): 165-74. 19. Wells JC. Sexual dimorphism of body composition. Best Pract Res Clin Endocrinol Metab 2007; 21 (3): 415-30. 20. Loomba-Albrecht LA, Styne DM. Effect of puberty on body composition. Curr Opin Endocrinol Diabetes Obes 2009; 16 (1): 10-5. 21. Wells JC. The evolution of human fatness and susceptibility to obesity: an ethological approach. Biol Rev Camb Philos Soc 2006; 81 (2): 183-205. 22. Moreno LA, Mesana MI, González-Gross M, Gil CM, Ortega FB, Fleta J, et al. Body fat distribution reference standards in Spanish adolescents: the AVENA Study. Int J Obes (Lond) 2007; 31 (12): 1798-805. 23. Norton K, Whittingham N, Carter L, Kerr D, Gore C, MarfellJones M. Measurement techniques in anthropometry. En: Norton K, Olds T (eds.). Antropométrica. Sydney: UNSW; 1996. pp. 22-75. Vol. 8 • Núm. 1 • Marzo 2010 -105- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. A. González-Agüero, G. Vicente-Rodríguez, L.A. Moreno, J.A. Casajús 24. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 2000; 320 (7244): 1240-3. 25. BMI for age GIRLS; 5 to 19 years (z-scores). World Health Organization, 2007. (Accessed 30th January, 2010, at http:// www.who.int/growthref/bmifa_girls_5_19years_z.pdf.) 26. BMI for age BOYS; 5 to 19 years (z-scores). World Health Organization, 2007. (Accessed 30th January, 2010, at http:// www.who.int/growthref/bmifa_boys_5_19years_z.pdf.) 27. Rimmer JH, Kelly LE, Rosentswieg J. Accuracy of anthropometric equations for estimating body composition of mentally retarded adults. Am J Ment Defic 1987; 91 (6): 626-32. 28. Durnin JV, Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr 1974; 32 (1): 77-97. 29. Jackson AS, Pollock ML, Ward A. Generalized equations for predicting body density of women. Med Sci Sports Exerc 1980; 12 (3): 175-81. Vol. 8 • Núm. 1 • Marzo 2010 -106- 30. Siri WE. Body composition from fluid spaces and density: Analysis of methods. En: Brozek J, Henzchel A (eds.). Techniques for Measuring Body Composition. Washington: National Academy of Sciences; 1961. pp. 224-44. 31. Maynard LM, Wisemandle W, Roche AF, Chumlea WC, Guo SS, Siervogel RM. Childhood body composition in relation to body mass index. Pediatrics 2001; 107 (2): 344-50. 32. Moreno LA, Mesana MI, González-Gross M, Gil CM, Fleta J, Warnberg J, et al. Anthropometric body fat composition reference values in Spanish adolescents. The AVENA Study. Eur J Clin Nutr 2006; 60 (2): 191-6. 33. Shen W, Punyanitya M, Silva AM, Chen J, Gallagher D, Sardinha LB, et al. Sexual dimorphism of adipose tissue distribution across the lifespan: a cross-sectional whole-body magnetic resonance imaging study. Nutr Metab (Lond) 2009; 6: 17. 34. Casajús JA. Salud, ejercicio físico y síndrome de Down. Zaragoza: Edelvives; 2007. 35. Ara I, Moreno LA, Leiva MT, Gutin B, Casajus JA. Adiposity, physical activity, and physical fitness among children from Aragon, Spain. Obesity (Silver Spring) 2007; 15 (8): 1918-24. 219 Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Biomecánica, 17 (2), 2009, pp. 46-51 Masa muscular, fuerza isométrica y dinámica en las extremidades inferiores de niños y adolescentes con síndrome de Down A. GONZÁLEZ-AGÜERO1,2, M.A. VILLARROYA1,3, G. VICENTE-RODRÍGUEZ1,2, J.A. CASAJÚS1,2. 1 Grupo GENUD (Growth, Exercise, NUtrition and Development). 2 Facultad de Ciencias de la Salud y del Deporte de Huesca, Universidad de Zaragoza. 3 Escuela Universitaria de Ciencias de la Salud, Universidad de Zaragoza. Resumen En general se ha observado que las personas con síndrome de Down (SD) tienen valores inferiores de fuerza muscular comparados con personas sin SD. También existe un déficit de masa muscular en los adultos con SD comparados con otros sin SD. Sin embargo, ningún estudio hasta la fecha había evaluado esta masa muscular en población pediátrica. Nuestro estudio pretende poner de manifiesto si también a edades tempranas existe un déficit de masa muscular y además relacionar ambos valores. Los niños y adolescentes con y sin SD (15±3 y 14±3 años respectivamente) de nuestro estudio obtuvieron valores similares de masa muscular ajustada por talla y estadio puberal, pero el grupo con SD obtuvo valores inferiores de fuerza (p<0.05). Además de esto, el grupo con SD ejerció menos kilogramos de fuerza por cada kilogramo de masa muscular. Alguna causa fisiológica o de transmisión podría explicar esta falta de fuerza ya que, al menos en esta franja de edad no existe un déficit de masa muscular. Deberían incentivarse los programas de entrenamiento específicos para este tipo de población para comprobar si es posible un incremento en su fuerza muscular. Palabras clave: Composición corporal, condición física, trisomía 21, DXA. Abstract Generally it has been observed that population with Down syndrome (DS) has lower levels of muscular strength compared with others without DS. It is also known a deficit between muscular mass between adults with and without DS. However, there are no studies until the date which evaluated muscular mass in paediatric populations. Our study pretends to show whether also in earlier ages it does exist a deficit in the muscular mass and also to relate both values. Children and adolescents with and without DS (15±3 y 14±3 years respectively) from the study had similar values of muscular mass adjusted by height and puberal status, but DS group obtained lower values in all strength parameters. In addition, DS group also performed less kilograms of strength by kilogram of muscular mass. Some physiological or transmission impairment could explain this lack of strength as it known that there are not deficit in the muscular mass. Specific and adapted for this population training programs should be promoted to check whether an enhancement in their muscular strength is possible. Keywords: Body composition, physical fitness, trisomy 21, DXA. Correspondencia: Dr. José Antonio Casajús Ed. Cervantes, Calle Corona de Aragón 42, 2a planta 50009, Zaragoza, España Email: joseant@unizar.es 46 -107- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Introducción El síndrome de Down (SD) es una condición genética caracterizada por un retraso mental a diferentes niveles, y está asociada con anormalidades en el cromosoma 21. Se han descrito más de 80 características clínicas en individuos con SD, incluidos problemas cardiacos congénitos, presentes aproximadamente en el 40% de los individuos con SD.[1] Las evidencias científicas[2, 3] sugieren que algunas de las características del SD pueden afectar a la práctica de ejercicio, como pueden ser la hipotonía, hipermovilidad de las articulaciones, hiperlaxitud de los ligamentos, ligera a moderada obesidad, sistema respiratorio y cardiovascular poco desarrollado, estatura más baja (brazos y piernas cortas en relación al torso). Además también se ha descrito un equilibrio muy pobre y dificultades en la percepción.[3] Asociadas a la hipotonía y a la hipermovilidad encontramos lordosis, ptosis, caderas dislocadas, pies planos, cabeza adelantada e inestabilidad atlantoaxial.[3, 4] La inestabilidad atlantoaxial contraindica la participación de personas con SD en actividades deportivas de contacto.[4] Además de estas características clínicas, los niños, adolescentes y adultos con SD presentan niveles más bajos de condición física que los controles de su misma edad sin SD, con o sin retraso mental.[5-7] Existen muy pocos estudios sobre masa magra o muscular y/o fuerza muscular en niños y adolescentes con SD, pero se pueden inferir algunos resultados obtenidos en adultos con SD, aunque no hay certeza de que en población pediátrica se repliquen. Luke et al.[8] no encontraron diferencias en la masa libre de grasa entre niños prepúberes con y sin SD usando para ello una dilución de deuterio, impedancia bioeléctrica y pliegues cutáneos. Guijarro et al.[9] y Baptista et al.[10] estudiaron adultos con SD y encontraron niveles más bajos de masa magra y masa muscular medida con absorciometría fotónica dual de rayos X (DXA) en el grupo con SD, comparados con hombres y mujeres sin SD. Angelopoulou et al.[11] midieron la fuerza de las extremidades inferiores con un dinamómetro isocinético a diferentes velocidades angulares y encontraron niveles de fuerza más bajos en cuadriceps de jóvenes adultos con SD comparados con otros sin SD, con o sin retraso mental. También Mercer et al.[12] demostraron que los niños y niñas con SD tienen un pico de fuerza para la abducción de la cadera y la extensión de la rodilla más bajo que los niños y niñas sin SD. Estos estudios nos sugieren que, los niños y niñas con SD tienen menos fuerza muscular que sus homólogos sin SD; y que los adultos con SD tienen menos masa magra y muscular que los adultos sin SD. Los estudios que evalúan la masa magra en niños y adolescentes con SD son escasos y no proporcionan datos sobre la masa muscular en las extremidades[8], que además es uno de los factores determinantes de la fuerza. El DXA es un método relativamente extendido, que además se utiliza con niños y adolescentes por su baja radiación, tiempo de exposición y precisión en los resultados. Además proporciona análisis regionales de composición corporal y nos informa de la masa muscular de las extremidades[13]. Los estudios sobre fuerza también son escasos en esta población, sugiriendo niveles más bajos en personas con SD de cualquier edad[11, 12]. Tampoco se conoce la relación entre masa muscular y fuerza en niños y adolescentes con SD. El estudio de esta relación podría aportar información relevante sobre las causas de los niveles de fuerza reducidos observados en esta población. Objetivo Describir los niveles de masa muscular y fuerza isométrica y dinámica de las extremidades inferiores de niños y adolescentes con SD, y estudiar la relación entre masa muscular y fuerza en esta población. Material y Métodos Muestra La muestra está compuesta por 32 niños y adolescentes (15 chicas y 17 chicos) con SD, entre 9 y 19 años. El grupo control sin SD (no-SD) lo forman 35 sujetos (15 chicas y 20 chicos), emparejados por edad y sexo. En el grupo con SD los criterios de inclusión fueron, niños y adolescentes con SD, en el grupo no-SD todos los niños y adolescentes eran sanos, sin enfermedad conocida y ninguno de ellos estuvo tomando medicamentos los 3 meses anteriores a las pruebas. En ambos grupos se recogió toda la información sobre enfermedades u operaciones anteriores y estancias en hospitales. También se recogió la información sobre actividad física actual, años de práctica y nivel. Ambos, padres y niños fueron informados sobre el objetivo y procedimientos del estudio, así 47 -108- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. como de los posibles riesgos y beneficios del mismo. Se obtuvo un consentimiento informado de todos los sujetos y de sus padres o tutores. El estudio se realizó de acuerdo con la Declaración de Helsinki de 1961 (revisión de Edimburgo en 2000) y fue aprobado por el Comité de Ética en Investigación del Gobierno de Aragón. Medidas antropométricas y masa muscular Se midió el peso (0.1 kg) y talla (0.1 cm) de todos los sujetos descalzos y en ropa interior. El índice de masa corporal (IMC) se calculó como kilogramos de peso divididos por la talla al cuadrado (m). La masa muscular se evaluó mediante una DXA, usando una versión pediátrica del software QDR-Explorer (Hologic Corp. Software version 12.4, Waltham, MA). El equipamiento DXA fue calibrado con un fantoma de espina lumbar siguiendo las indicaciones del fabricante. Los sujetos fueron escaneados en posición supina y el escáner se realizó en máxima resolución. Se midió la masa muscular del cuerpo completo y después se realizó un análisis regional separando, cabeza, tronco, zonas lumbares y extremidades. Maduración sexual El estadio de maduración sexual se determinó por observación, de acuerdo con los 5 estadios propuestos por Tanner y Whitehouse[14]. Fuerza Para medir la fuerza isométrica máxima (FI) de los músculos extensores de la extremidad inferior se uso una célula de carga anclada en la pared. Los niños realizaban extensión máxima de extremidad inferior desde una posición de sentados con las rodillas a 90º y las manos sobre los muslos. Los tests de Counter Movement Jump (salto con contra-movimiento; CMJ) y Abalakov (ABA) se utilizaron para valorar la fuerza dinámica de las extremidades inferiores. Cada niño efectuó tres intentos con cada pierna y tres saltos de cada tipo, tomamos como válido el valor más alto de los tres. Se calculó un Índice de Fuerza Relativa (IFR) dividiendo los kilogramos de fuerza efectuados en el test de FI por los kilogramos de masa muscular que tenían en las extremidades inferiores, medida con DXA. Análisis estadístico Los datos se muestran como media ± desviación típica. Todas las variables mostraron una distribución normal. Se realizó la prueba t de Student para estudiar las diferencias en edad, peso, talla, IMC, FI, CMJ, ABA, IFR y masa muscular en extremidades inferiores entre los grupos SD y noSD. Las diferencias en la maduración sexual se establecieron mediante la prueba de Chi cuadrado. Para estudiar las diferencias en la masa muscular de extremidades inferiores entre ambos grupos se efectuó un análisis de covarianza (ANCOVA), usando como covariables la altura y el estado de maduración sexual. En todos los análisis se estudiaron a todos los sujetos como grupo y también divididos por género. Los análisis se realizaron con el paquete estadístico SPSS (versión 14.0 para Windows). Se tomo como nivel de significación de p<0.05. Resultados El grupo con SD pesó 8 kg menos y midió 15 cm menos que el grupo no-SD (p<0.05), sin embargo no se encontraron diferencias en el IMC ni tampoco en los estadios de maduración sexual de Tanner (Tabla 1). El grupo SD obtuvo valores inferiores en todas las variables (FI, CMJ, ABA e IFR) comparado con el grupo no-SD (p<0.05). Estas diferencias persistían al dividir la muestra por sexos (p<0,05); Tabla 2). En valores netos, el grupo SD obtuvo valores inferiores en masa muscular de las extremidades inferiores (p<0.05; Figura 1), sin embargo, al ajustar por talla y estadio Tanner estas diferencias desaparecían, tanto como grupo como separado por sexos (p<0.05; Figura 2). Discusión Diversos autores han descrito previamente niveles más bajos de fuerza en grupos de población con SD comparados con poblaciones sin SD con o sin RM[2, 11, 12, 15-19]. No obstante, no todos ellos estudiaron poblaciones en edad de crecimiento como es nuestro caso. Nuestros resultados se encuentran en la línea de los referidos por Morris et al.[19] y Mercer et al.[12], con niveles más bajos de fuerza muscular en niños con SD comparados con otros sin SD. Sus test valoraban otro tipo de fuerza muscular, pero siempre fuerza de las extremidades inferiores en niños y adolescentes. Angelopoulou et al.[11] trabajó con adultos jóvenes y también encontró valores significativamente bajos de fuerza en las extremidades inferiores de los sujetos con SD. Otros autores [2, 15-18] estudiaron adultos y obtuvieron las mismas conclusiones, la población con SD tiene un claro déficit de fuerza 48 -109- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Síndrome de Down Chicas Chicos Total Total No Síndrome de Down Chicas Chicos Edad (a) 15.18±2.93 14.77±3.24 15.54±2.68 14.25±2.64 13.89±2.94 Peso (kg) 46.00*±12.56 43.74*±13.72 48.10*±11.45 53.86±13.78 50.58±14.50 Talla (cm) 145.24*±11.62 138.94*±9.90 IMC Tanner (%) I/II/III/IV/V 21.66±3.94 22.37±4.80 13/6/13/19/50 20/7/20/13/40 14.52±2.44 56.33±13.03 150.79*±10.28 160.69±14.44 153.26±12.08 166.27±13.77 21.00±2.95 21.20±4.21 6/6/6/24/59 20.57±3.39 20/9/20/9/43 20.10±2.64 27/0/27/0/47 15/15/15/15/40 * p<0.05 Tabla 1. Descripción de la muestra, datos antropométricos y de maduración sexual Síndrome de Down Chicas Chicos Total Total No Síndrome de Down Chicas Chicos FI (kg) 38.18*±17.08 33.15*±11.98 42.32*±19.75 61.34±22.25 56.31±21.88 65.04±22.37 CMJ (cm) 14.53*±6.04 11.52*±4.92 16.66*±5.96 26.78±9.83 22.05±6.92 30.92±10.31 ABA (cm) 16.64*±6.93 11.98*±4.35 19.94*±6.57 31.46±9.18 26.62±7.03 35.69±8.89 7.02*±2.06 7.38*±1.92 6.75*±2.18 8.94±2.04 9.71±1.99 IFR 8.38±1.93 FI = fuerza isométrica, CMJ = salto con contramovimiento, ABA = salto con ayuda de brazos, IFR = índice de fuerza relativa * p<0.05 Tabla 2. Valores de fuerza, saltos e índice de fuerza relativa Figura 1. Valores netos de masa muscular de las extremidades inferiores 49 -110- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. muscular en todos los ejercicios en que se ha valorado, extremidades superiores, extremidades inferiores, zona abdominal, espalda baja, etc… Las diferencias que existen entre nuestra población con SD y el grupo control no-SD es posible que no sean únicamente de fuerza en términos absolutos, es decir, a músculos más grandes, más fuerza ejercida. Es muy probable que también exista un problema de eficiencia muscular. Para averiguar esto elaboramos el IFR, el cual nos indicó que los adolescentes con SD no fueron capaces de practicar tantos kilogramos de fuerza por cada kilogramo de masa muscular de sus extremidades inferiores, comparados con los adolescentes sin SD. Es posible que otras causas fisiológicas o de transmisión neuromuscular incidan en esta falta de eficiencia, siendo necesaria más investigación en esta línea. En población en crecimiento con SD, el estudio de Luke et al.[8] demostró que no existían diferencias en la masa libre de grasa entre niños y niñas prepúberes con y sin SD. En jóvenes adultos de 26 años de edad media, el estudio de Guijarro et al.[9] encontró niveles inferiores de masa libre de grasa entre sujetos con y sin SD. Por último, en una muestra muy heterogénea que incluía personas con SD desde 14 hasta 44 años de edad, describieron niveles más bajos de masa muscular en los sujetos con SD comparándolos con otros sin SD [10]. Como se ha observado, los niveles de fuerza muscular en población con SD comparados con población sin SD son más bajos en todos los grupos de edad; en la niñez, la adolescencia y también en la edad adulta. Sin embargo, las diferencias en masa magra o muscular que existen en grupos de adultos con SD no se observan en la franja de edad de nuestro estudio. Esto podría sugerir que el déficit de masa muscular que aparece en edad adulta no sea debido a un problema inherente de la población con SD, sino más bien debido al desuso de los músculos desde la niñez. Existen varias causas que podrían explicar estas diferencias entre niños y adolescentes con los adultos. Es posible que al contar con menos fuerza muscular, los niños y adolescentes con SD sean menos dados a usar sus músculos y no provocan la hipertrofia necesaria para alcanzar niveles óptimos de masa muscular en edad adulta. Quizá el mayor sedentarismo y menor participación n programas de ejercicio físico podría también explicarlo. Incluso podría ocurrir que necesitaran entrenamientos específicos y adaptados a su condición. En cualquier caso, se necesitan estudios que lo corroboren. De hecho, un estudio longitudinal sería mucho más efectivo para determinar si realmente ocurre esta pérdida de masa muscular al llegar a la edad adulta o si, los sujetos adultos de los otros estudios ya tenían déficit de masa muscular durante la niñez y la adolescencia. Figura 2. Valores ajustados por talla y estadio puberal de masa muscular de las extremidades inferiores 50 -111- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Conclusión Los niños y adolescentes con SD de nuestro estudio mostraron una masa muscular similar a los niños y adolescentes sin SD, una vez ajustada por talla y desarrollo puberal. Sin embargo mostraron valores significativamente inferiores en todas las variables relacionadas con la fuerza. Los niños y adolescentes con SD tampoco fueron capaces de ejercer los mismos kilogramos de fuerza por cada kilogramo de masa muscular que sus homólogos sin SD. Es importante incidir en estos aspectos ya que niveles bajos de fuerza en la niñez y adolescencia les pueden conducir, en edad adulta a niveles inferiores de masa muscular, impidiendo finalmente un adecuado desempeño de las tareas y labores, y por tanto dificultando su inclusión social y laboral. 7. 8. 9. 10. 11. 12. Agradecimientos Agradecemos a Paula Velasco el excelente trabajo técnico realizado en las densitometrías. Este estudio está financiado por el Gobierno de Aragón, (proyecto PM 17/2007) y por el Ministerio de Innovación y Ciencia de España (Red de investigación en ejercicio físico y salud para poblaciones especiales-EXERNET-DEP200500046/ACTI). 13. 14. Bibliografía 15. 1. 2. 3. 4. 5. 6. Pueschel SM. Clinical aspects of Down syndrome from infancy to adulthood. Am J Med Genet Suppl. 1990;7:52-6. Pitetti KH, Boneh S. Cardiovascular fitness as related to leg strength in adults with mental retardation. Med Sci Sports Exerc. 1995 Mar;27(3):423-8. Winnick J. Adapted Physical Education and Sport. Champaign, Illinois: Human Kinetics; 1995. Pueschel SM. Should children with Down syndrome be screened for atlantoaxial instability? Arch Pediatr Adolesc Med. 1998 Feb;152(2):1235. Fernhall B, Pitetti KH, Rimmer JH, McCubbin JA, Rintala P, Millar AL, et al. Cardiorespiratory capacity of individuals with mental retardation including Down syndrome. Med Sci Sports Exerc. 1996 Mar;28(3):366-71. Fernhall BM, JA. Pitteti, KH. Rintala, P. Prediction of maximal heart rate in individuals with mental retardation. Med Sci Sports Exerc. 2001 October;33(10):1655-60. 16. 17. 18. 19. Guerra M, Llorens N, Fernhall B. Chronotropic incompetence in persons with down syndrome. Arch Phys Med Rehabil. 2003 Nov;84(11):1604-8. Luke A, Sutton M, Schoeller DA, Roizen NJ. Nutrient intake and obesity in prepubescent children with Down syndrome. J Am Diet Assoc. 1996 Dec;96(12):1262-7. Guijarro M, Valero C, Paule B, Gonzalez-Macias J, Riancho JA. Bone mass in young adults with Down syndrome. J Intellect Disabil Res. 2008 Mar;52(Pt 3):182-9. Baptista F, Varela A, Sardinha LB. Bone mineral mass in males and females with and without Down syndrome. Osteoporos Int. 2005 Apr;16(4):380-8. Angelopoulou N, Matziari C, Tsimaras V, Sakadamis A, Souftas V, Mandroukas K. Bone mineral density and muscle strength in young men with mental retardation (with and without Down syndrome). Calcif Tissue Int. 2000 Mar;66(3):17680. Mercer VS, Lewis CL. Hip Abductor and Knee Extensor Muscle Strength of Children with and without Down Syndrome. Pediatr Phys Ther. 2001 Spring;13(1):18-26. Calbet JA, Perez-Gomez J, Vicente-Rodriguez G, Ara I, Olmedillas H, Chavarren J, et al. Look before you leap: on the issue of muscle mass assessment by dual-energy X-ray absorptiometry (reply to Jordan Robert Moon comments). Eur J Appl Physiol. 2008 Oct;104(3):587-8. Tanner JM, Whitehouse RH. Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch Dis Child. 1976 Mar;51(3):170-9. Rimmer JH, Heller T, Wang E, Valerio I. Improvements in physical fitness in adults with Down syndrome. Am J Ment Retard. 2004 Mar;109(2):165-74. Pitetti KH, Rimmer JH, Fernhall B. Physical fitness and adults with mental retardation. An overview of current research and future directions. Sports Med. 1993 Jul;16(1):23-56. Guerra-Balic M, Cuadrado-Mateos E, GeronimoBlasco C, Fernhall B. Physical Fitness Levels of Physically Active and Sedentary Adults With Down Syndrome. Adapted Physical Activity Quarterly. 2000;17(3):310-21. Horvat M, Pitetti KH, Croce R. Isokinetic torque, average power, and flexion/extension ratios in nondisabled adults and adults with mental retardation. J Orthop Sports Phys Ther. 1997 Jun;25(6):395-9. Morris AF, Vaughan SE, Vaccaro P. Measurements of neuromuscular tone and strength in Down’s syndrome children. J Ment Defic Res. 1982 Mar;26(Pt 1):41-6. 51 -112- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Author's personal copy Research in Developmental Disabilities 32 (2011) 1764–1769 Contents lists available at ScienceDirect Research in Developmental Disabilities Accuracy of prediction equations to assess percentage of body fat in children and adolescents with Down syndrome compared to air displacement plethysmography A. González-Agüero a,b,*, G. Vicente-Rodrı́guez a,b, I. Ara a,c, L.A. Moreno a,d, J.A. Casajús a,b a GENUD (Growth, Exercise, NUtrition and Development) Research Group, University of Zaragoza, Zaragoza, Spain Faculty of Health and Sport Sciences, Huesca, University of Zaragoza, Spain c GENUD Toledo Research Group, University of Castilla-La Mancha, Spain d School of Health Sciences, University of Zaragoza, Spain b A R T I C L E I N F O A B S T R A C T Article history: Received 3 March 2011 Accepted 3 March 2011 Available online 1 April 2011 To determine the accuracy of the published percentage body fat (%BF) prediction equations (Durnin et al., Johnston et al., Brook and Slaughter et al.) from skinfold thickness compared to air displacement plethysmography (ADP) in children and adolescents with Down syndrome (DS). Twenty-eight children and adolescents with DS (10–20 years old; 12 girls, 16 boys) participated in the study. Anthropometric measurements height, weight, and skinfolds biceps, triceps, subscapular and suprailiac were performed following ISAK recommendations. Total body density (TBD) was estimated using three equations and was also measured with ADP; while %BF was calculated from all densities using the Siri equation and from skinfolds using the Slaughter et al. equation. Finally, the agreement between methods was assessed by plotting the results in Bland–Altman graphs. The presence of heteroscedasticity was also examined. Despite the equation of Slaughter et al. had a large 95% limits of agreement, it was the only one without a significant inter-methods difference and without heteroscedasticity. The equation of Slaughter seems to be, from the studied, the most accurate for estimating %BF in children and adolescents with DS. ß 2011 Elsevier Ltd. All rights reserved. Keywords: Trisomy 21 Body composition ISAK Fat mass 1. Introduction It is well documented that children and adolescents with Down syndrome (DS) tend towards obesity and accumulate higher amounts of fat compared to the population without DS (Bronks & Parker, 1985; Chumlea & Cronk, 1981; Cronk, Chumlea, & Roche, 1985; González-Agüero, Ara, Moreno, Vicente-Rodriguez, & Casajús, in press; Ordonez, Rosety, & RosetyRodriguez, 2006). Both, childhood obesity and increased fat mass are factors associated with future diseases (Despres & Lemieux, 2006; Dietz, 1998; Ebbeling, Pawlak, & Ludwig, 2002; Maffeis & Tato, 2001). Therefore, as the life expectancy of this population has increased by more than 40 years within the last seven decades (nowadays, DS individuals frequently live to around 50 years and older) (Bittles & Glasson, 2004; Glasson et al., 2002; Smith, 2001), health-related body composition is a concerning issue which should be accurately studied and controlled in order to assist individuals with this genetic condition (González-Agüero, Vicente-Rodriguez, Moreno, Guerra-Balic, et al., 2010). * Corresponding author at: C/Corona de Aragón 42, Edificio Cervantes 2 planta, Grupo GENUD, ZIP: 50006, Zaragoza, Spain. Tel.: +34 976400338x301; fax: +34 976400340. E-mail address: joseant@unizar.es (J.A. Casajús). 0891-4222/$ – see front matter ß 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.ridd.2011.03.006 -113- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Author's personal copy A. González-Agüero et al. / Research in Developmental Disabilities 32 (2011) 1764–1769 1765 Several methods such as underwater weighing, air displacement plethysmography (ADP), labelled water techniques or dual energy X-ray absorptiometry (DXA) have been used to study body composition in children and adolescents because of their accuracy in assessing body compartments at the individual level (Ara et al., 2004, 2006; Fields & Goran, 2000; Fields, Hunter, & Goran, 2000; Parker, Reilly, Slater, Wells, & Pitsiladis, 2003). However, due to their high cost and practical issues, those methods are not always practical or suitable for field and clinical use. Anthropometry is widely used to assess the percentage body fat (%BF) in large populations and is particularly useful when the available economic resources are relatively low (Ara, Moreno, Leiva, Gutin, & Casajus, 2007; Wang, Thornton, Kolesnik, & Pierson, 2000). Prediction equations such as Durnin and Rahaman (Durnin & Rahaman, 1967), Brook (Brook, 1971), Durnin and Womersley (Durnin & Womersley, 1974), Johnston et al. (Johnston et al., 1988) or Slaughter et al. (Slaughter et al., 1988) are often used to predict total body density (TBD) or %BF from anthropometric measurements in children and adolescents. Prediction equations are selected based on specific characteristics of the measured participants (Roche, Heymsfield, & Lohman, 1996). Several studies have compared the abovementioned equations with reference methods such as DXA or ADP in order to determine which is the most accurate calculation for specific population groups (Bell, Cobner, & Evans, 2000; De Lorenzo et al., 1998; Espana Romero et al., 2009; Radley et al., 2003; Rodriguez et al., 2005; Usera, Foley, & Yun, 2005). Children and adolescents with DS are a unique population in terms of body composition (González-Agüero, Vicente-Rodriguez, Moreno, Guerra-Balic, et al., 2010) and their bodily proportions are different compared to the general population (Cronk et al., 1988; Myrelid, Gustafsson, Ollars, & Anneren, 2002). In fact, studies in our laboratory have shown that although children and adolescents with DS have a similar %BF and sexual dimorphism than their counterparts without DS (González-Agüero, Vicente-Rodriguez, Moreno, & Casajús, 2010), they display a different amount and distribution of body fat (González-Agüero et al., in press). Previous studies in persons with DS assessed their %BF by using general prediction equations by skinfold thickness, with unknown errors for this specific population (Bronks & Parker, 1985; Grammatikopoulou et al., 2008; Magge, O’Neill, Shults, Stallings, & Stettler, 2008; Ordonez et al., 2006). A prediction equation has been validated on adults with intellectual disability, but not for children or adolescents with DS (Rimmer, Kelly, & Rosentswieg, 1987). The aim of the present study was to investigate the accuracy of the published prediction equations to estimate %BF from skinfold thickness comparing with ADP in children and adolescents with DS. 2. Material and methods 2.1. Participants A total sample of 28 children and adolescents (12 females/16 males) with DS living at home and aged 10–20 years old were recruited from various schools and institutions in the region of Aragón (Spain). Both parents and children were informed about the aims and procedures, as well as the possible risks and benefits of the study. Written informed consent was obtained from all the included participants and their parents or guardians. The study was performed in accordance with the Helsinki Declaration of 1961 (revised in Edinburgh, 2000) and was approved by the Research Ethics Committee of the Government of Aragon (CEICA, Spain). 2.2. Anthropometry All participants were measured without shoes and the minimum clothes to the nearest 0.1 cm (SECA 225, SECA, Hamburg, Germany), and weighted to the nearest 0.1 kg (SECA 861, SECA, Hamburg, Germany). The body mass index (BMI) was calculated as weight (kg) divided by height squared (m2). Biceps, triceps, subescapular and suprailiac skinfold thicknesses were measured in triplicate on the right side of the body to the nearest 0.2 mm with a skinfold calliper (Holtain Ltd. Crymmych, UK) following the recommendations of the International Society for the Advance of Kinanthropometry (ISAK) (Norton et al., 1996). The median of the three measures was taken as the valid measure. The same trained person (certified level 2 ISAK) carried out all the measurements, and her technical error of measurement was within the recommended limits by ISAK. 2.3. Total body density and body fat percentage assessment by skinfold thickness The equations of Durnin and Rahaman (Durnin & Rahaman, 1967) and Durnin and Womersley (Durnin & Womersley, 1974) (depending on the age of the participant), Johnston et al. (Johnston et al., 1988) and Brook (Brook, 1971) were used to assess TBD from skinfold thickness. The equations of Slaughter et al. (Slaughter et al., 1988) were used to assess %BF by skinfold thickness. The TBD was converted into %BF via Siri’s equation (Siri, 1961). All the equations used in this study are summarized in Table 1. 2.4. Air displacement plethysmography measurements ADP measurements were obtained immediately after the anthropometric study to assess TBD with a BODPOD1 (Body Composition System, Life Measurement Instruments, Concord, CA) as previously described (Fields & Goran, 2000). All studies, which were completed with the same device and software, were performed by the same technician who had been -114- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Author's personal copy A. González-Agüero et al. / Research in Developmental Disabilities 32 (2011) 1764–1769 1766 Table 1 Published equations used to calculate total body density and percentage of body fat in children and adolescents from skinfold thickness. Authors Population Durnin and Rahaman (1967) Durnin and Womersley (1974) 13–15.9 y 16–19.9 y Johnston et 8–14 y al. (1988) Brook (1971) 1–11 y Slaughter et al. (1988) 10–17 y Siri (1961) Adults Equations F (13–15.9): D = 1.1369 0.598 log M (13–15.9): D = 1.1533 0.0643 log F (16–19.9): D = 1.1549 0.0678 log M (16–19.9): D = 1.162 0.063 log F: D = 1.144 0.06 log M: D = 1.166 0.07 log F: D = 1.2063 0.0999 log M: D = 1.169 0.0788 log All F: %BF = 1.33(tric + subsc) 0.013(tric + subsc)2 2.5 Prepubertal M: %BF = 1.21(tric + subsc) 0.008(tric + subsc)2 1.7 Pubertal M: %BF = 1.21(tric + subsc) 0.008(tric + subsc)2 3.4 Post-pubertal M: %BF = 1.21(tric + subsc) 0.008(tric + subsc)2 5.5 All F when (tric + subsc) > 35 mm: %BF = 0.546(tric + subsc)2 + 9.7 All M when (tric + subsc) > 35 mm: %BF = 0.783(tric + subsc)2 + 1.7 M and F: %BF = (4.95/D 4.5) 100 %BF: percentage of body fat; y: years; F: female; M: male; D: density; log: log10 (sum of biceps, triceps, subscapular and suprailiac skinfolds); tric: triceps skinfold; subsc: subscapular skinfold. Table 2 Physical characteristics of the participants (mean sd). Age (y) Weight (kg) Height (cm) BMI (kg/m2) All (n = 28) Males (n = 16) Females (n = 12) 16.3 2.6 50.1 10.5 148.7 9.9 22.5 3.3 16.1 2.8 51.0 11.2 152.7 9.7 21.6 2.9 16.5 2.5 48.8 9.9 143.3 7.4 23.6 3.5 BMI: body mass index. fully trained in the operation. Participants were measured with minimal clothes and with a swim cap. The pulmonary capacity was calculated by the software of the BODPOD1 based on the characteristics of the participant. The BODPOD1 calculated the %BF by introducing the TBD measured by ADP in the equation of Siri (Siri, 1961). 2.5. Statistical analysis All the statistical analyses were performed with the Statistical Package for the Social Sciences (SPSS) version 15.0 for Windows (SPSS Inc., Chicago, IL, USA). Results were presented as mean standard deviation (sd), otherwise stated. The distribution of the variables was tested with the Kolmogorov–Smirnov test, all exhibited normal distribution. Agreement between ADP and each prediction equation was determined according to Bland–Altman plots (Bland & Altman, 1986). Differences were plotted against the ‘gold standard’ (in this case %BF measured with the BODPOD1) instead of the mean value because the ‘gold standard’ was expected to be closer to the ‘‘true value’’ than the mean (Krouwer, 2008). Validity and lack of agreement between ADP and equations was assessed by calculating the inter-methods difference and the sd of the differences. The 95% limits of agreement (inter-methods difference 1.96 sd) of each equation were also calculated. Differences between methods (each equation vs. ADP) were analysed by paired t-test. Heteroscedasticity was examined by linear regression to determine whether the absolute inter-methods difference was associated with the magnitude of the measurement. Statistical significance was set at p < 0.05. 3. Results Physical characteristics of the participants are shown in Table 2. The equations were plotted according to the Bland– Altman approach (Bland & Altman, 1986) (Fig. 1(a)–(d)). Calculated TBD and %BF, inter-methods difference and 95% limits of agreement of each prediction equation against ADP are shown in Table 3. Only the Slaughter’s %BF equation did not show a significant difference against ADP (p = 0.583, Table 3); although higher 95% limits of agreement compared with the others (25.8 vs. 18, 19.3 and 22.6; Table 3). Heteroscedasticity (increase in the variance with increase in the magnitude) is present in Durnin et al., Johnston et al. and Brook equations (all p < 0.05), but not in Slaughter et al. (p = 0.596). 4. Discussion The aim of the present study was to assess which of the published anthropometric equations fits better the %BF in children and adolescents with DS; derived from our results, the equation of Slaughter et al. is the best compared with ADP measurements. -115- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Author's personal copy [()TD$FIG] A. González-Agüero et al. / Research in Developmental Disabilities 32 (2011) 1764–1769 1767 Fig. 1. Comparison of predicted %BF between skinfold-thickness equations [(a) Durnin et al., (b) Johnston et al., (c) Brook and (d) Slaughter et al.] and ADP by Bland–Altman plots. Central line represents the inter-methods difference. Upper and lower broken lines represent the 95% limits of agreement (intermethods difference 1.96 sd of the differences). The solid line in each plot represents the linear regression between %BF by ADP and differences between methods, its correlation (r) and significance (p). In (a)–(c), total body density was calculated by each equation and then converted into %BF via Siri’s equation. Note: ADP: air displacement plethysmography; %BF: percentage of body fat. Table 3 Percentage of body fat (%BF; mean sd), inter-methods difference and 95% limits of agreement for %BF predicted by using body density equations and ADP. Prediction equation TBD Percentage of body fat Durnin and Womersley, Durnin and Rahaman Johnston et al. Brook Slaughter et al. ADP 1.0420 1.0427 1.0317 – 1.0369 25.1 6.9 24.8 6.2 29.9 7.9 26.8 9.9 27.5 8.2 Inter-methods difference 2.34* 2.73* 2.45* 0.69 – p 95% Limits of agreement 0.012 0.007 0.031 0.583 – 18.0 19.6 22.3 25.8 – TBD: total body density; ADP: air displacement plethysmography. * p < 0.05. As mentioned previously, children and adolescents with DS are a unique population in terms of body composition (González-Agüero, Vicente-Rodriguez, Moreno, Guerra-Balic, et al., 2010) and, to our knowledge this is the first study designed to determine the most effective prediction equation to assess their %BF from skinfold thickness. The findings provide some useful and relevant information about the accuracy of the most commonly used equations for estimating %BF in children and adolescents with DS. Whether this can be applied to other populations with DS is an important issue that requires some further investigation. Comparing the results we observed that Slaughter’s equation is the most accurate for predicting %BF in this very specific population. Despite this equation shows an elevated 95% limits of agreement, this is the only one that did not present significant differences against the ‘gold standard’. This equation is also the only one without heteroscedasticity, so the magnitude of the variable does not affect the difference with the BODPOD1. Consequently, we propose using the equation of Slaughter et al. for assessing %BF in children and adolescents with DS, although further investigations with a higher sample size could help to develop a new equation specifically designed for this population. Some of the strengths of our study include the use of ADP as reference method for TBD assessment and the harmonization of anthropometric methodology in order to reduce the technical error of measurement. On balance, some limitations should be recognized. The hydration status of the participants was not taken into account; however, as measurements were taken within some minutes this should not affect the results. Despite the number of participants is bigger than the majority of the -116- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Author's personal copy 1768 A. González-Agüero et al. / Research in Developmental Disabilities 32 (2011) 1764–1769 previous published studies in children and adolescents with DS, (González-Agüero, Vicente-Rodriguez, Moreno, GuerraBalic, et al., 2010) the specificity of the condition and the age range make complicated to increase the sample size. 5. Conclusion The results of the present study suggest that a substantial amount of inter-methods difference and under or overestimation may be expected when using Johnston et al., Brook or Durnin et al. equations to estimate %BF in children and adolescents with DS. The equation of Slaughter et al. significantly increase the accuracy for estimating %BF in this specific population compared to the other published prediction equations. Further research on this topic could help to develop a new specifically designed equation even more accurate for children and adolescents with DS. Conflicts of interest There are no conflicts of interest or financial disclosures for any author of this manuscript. None of the authors have any financial interest. Acknowledgments The authors want to thank all the children and their parents that participated in the study for their understanding and dedication to the project. Special thanks are given to Fundación Down Zaragoza and Special Olympics Aragon for their support. We also thank Scott G Mitchell from the University of Glasgow for his work of reviewing the English style and grammar, and Paula Velasco from the University of Zaragoza for her great technical assistance. This work was supported by Gobierno de Aragón (Proyecto PM 17/2007) and Ministerio de Ciencia e Innovación de España (Red de investigación en ejercicio fı́sico y salud para poblaciones especiales-EXERNET-DEP2005-00046/ACTI). There are no potential conflicts of interest that may affect the contents of this work. References Ara, I., Moreno, L. A., Leiva, M. T., Gutin, B., & Casajus, J. A. (2007). Adiposity, physical activity, and physical fitness among children from Aragon, Spain. Obesity (Silver Spring), 15, 1918–1924. Ara, I., Vicente-Rodriguez, G., Jimenez-Ramirez, J., Dorado, C., Serrano-Sanchez, J. A., & Calbet, J. A. (2004). Regular participation in sports is associated with enhanced physical fitness and lower fat mass in prepubertal boys. International Journal of Obesity and Relate Metabolic Disorders, 28, 1585–1593. Ara, I., Vicente-Rodriguez, G., Perez-Gomez, J., Jimenez-Ramirez, J., Serrano-Sanchez, J. A., Dorado, C., et al. (2006). Influence of extracurricular sport activities on body composition and physical fitness in boys: a 3-year longitudinal study. International Journal of Obesity (London), 30, 1062–1071. Bell, W., Cobner, D. M., & Evans, W. D. (2000). Prediction and validation of fat-free mass in the lower limbs of young adult male Rugby Union players using dualenergy X-ray absorptiometry as the criterion measure. Ergonomics, 43, 1708–1717. Bittles, A. H., & Glasson, E. J. (2004). Clinical, social, and ethical implications of changing life expectancy in Down syndrome. Developmental Medicine & Child Neurology, 46, 282–286. Bland, J. M., & Altman, D. G. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. Lancet, 1, 307–310. Bronks, R., & Parker, A. W. (1985). Anthropometric observation of adults with Down syndrome. American Journal of Mental Deficiency, 90, 110–113. Brook, C. G. D. (1971). Determination of body composition of children from skinfold measurements. Archives of Disease in Childhood, 46, 182–184. Cronk, C., Crocker, A. C., Pueschel, S. M., Shea, A. M., Zackai, E., Pickens, G., et al. (1988). Growth charts for children with Down syndrome: 1 month to 18 years of age. Pediatrics, 81, 102–110. Cronk, C. E., Chumlea, W. C., & Roche, A. F. (1985). Assessment of overweight children with trisomy 21. American Journal of Mental Deficiency, 89, 433–436. Chumlea, W. C., & Cronk, C. E. (1981). Overweight among children with trisomy. Journal of Mental Deficiency Research, 25(Pt. 4), 275–280. De Lorenzo, A., Bertini, I., Candeloro, N., Iacopino, L., Andreoli, A., & Van Loan, M. D. (1998). Comparison of different techniques to measure body composition in moderately active adolescents. British Journal of Sports Medicine, 32, 215–219. Despres, J. P., & Lemieux, I. (2006). Abdominal obesity and metabolic syndrome. Nature, 444, 881–887. Dietz, W. H. (1998). Health consequences of obesity in youth: childhood predictors of adult disease. Pediatrics, 101, 518–525. Durnin, J. V., & Rahaman, M. M. (1967). The assessment of the amount of fat in the human body from measurements of skinfold thickness. British Journal of Nutrition, 21, 681–689. Durnin, J. V., & Womersley, J. (1974). Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. British Journal of Nutrition, 32, 77–97. Ebbeling, C. B., Pawlak, D. B., & Ludwig, D. S. (2002). Childhood obesity: public-health crisis, common sense cure. Lancet, 360, 473–482. Espana Romero, V., Ruiz, J. R., Ortega, F. B., Artero, E. G., Vicente-Rodriguez, G., Moreno, L. A., et al. (2009). Body fat measurement in elite sport climbers: comparison of skinfold thickness equations with dual energy X-ray absorptiometry. Journal of Sports Sciences, 27, 469–477. Fields, D. A., & Goran, M. I. (2000). Body composition techniques and the four-compartment model in children. Journal of Applied Physiology, 89, 613–620. Fields, D. A., Hunter, G. R., & Goran, M. I. (2000). Validation of the BOD POD with hydrostatic weighing: influence of body clothing. International Journal of Obesity and Related Metabolic Disorders, 24, 200–205. Glasson, E. J., Sullivan, S. G., Hussain, R., Petterson, B. A., Montgomery, P. D., & Bittles, A. H. (2002). The changing survival profile of people with Down’s syndrome: implications for genetic counselling. Clinical Genetics: An International Journal of Genetics and Molecular Medicine, 62, 390–393. González-Agüero, A., Ara, I., Moreno, L. A., Vicente-Rodriguez, G., & Casajús, J. A. (in press). Fat and lean masses in youths with Down syndrome: gender differences. Research in Developmental Disabilities, doi:10.1016/j.ridd.2011.02.023. González-Agüero, A., Vicente-Rodriguez, G., Moreno, L. A., & Casajús, J. A. (2010). Dimorfismo sexual en grasa corporal en adolescentes con sı́ndrome de Down. Revista Española de Obesidad, 8, 28–33. González-Agüero, A., Vicente-Rodriguez, G., Moreno, L. A., Guerra-Balic, M., Ara, I., & Casajus, J. A. (2010). Health-related physical fitness in children and adolescents with Down syndrome and response to training. Scandinavian Journal of Medicine and Science in Sports, 20, 716–724. Grammatikopoulou, M. G., Manai, A., Tsigga, M., Tsiligiroglou-Fachantidou, A., Galli-Tsinopoulou, A., & Zakas, A. (2008). Nutrient intake and anthropometry in children and adolescents with Down syndrome—a preliminary study. Developmental Neurorehabilitation, 11, 260–267. Johnston, J. L., Leong, M. S., Checkland, E. G., Zuberbuhler, P. C., Conger, P. R., & Quinney, H. A. (1988). Body fat assessed from body density and estimated from skinfold thickness in normal children and children with cystic fibrosis. American Journal of Clinical Nutrition, 48, 1362–1366. -117- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Author's personal copy A. González-Agüero et al. / Research in Developmental Disabilities 32 (2011) 1764–1769 1769 Krouwer, J. S. (2008). Why Bland–Altman plots should use X, not (Y + X)/2 when X is a reference method. Statistics in Medicine, 27, 778–780. Maffeis, C., & Tato, L. (2001). Long-term effects of childhood obesity on morbidity and mortality. Hormone Research, 55(Suppl. 1), 42–45. Magge, S. N., O’Neill, K. L., Shults, J., Stallings, V. A., & Stettler, N. (2008). Leptin levels among prepubertal children with Down syndrome compared with their siblings. Journal of Pediatrics, 152, 321–326. Myrelid, A., Gustafsson, J., Ollars, B., & Anneren, G. (2002). Growth charts for Down’s syndrome from birth to 18 years of age. Archives of Disease in Childhood, 87, 97–103. Norton, K., Whittingham, N., Carter, L., Kerr, D., Gore, C., & Marfell-Jones, M. (1996). Measurement techniques in anthropometry. In K. Norton & T. Olds (Eds.), Antropométrica (pp. 22–75). Sydney: UNSW. Ordonez, F., Rosety, M., & Rosety-Rodriguez, M. (2006). Influence of 12-week exercise training on fat mass percentage in adolescents with Down syndrome. Medical Science Monitor, 12, CR416–419. Parker, L., Reilly, J. J., Slater, C., Wells, J. C., & Pitsiladis, Y. (2003). Validity of six field and laboratory methods for measurement of body composition in boys. Obesity Research, 11, 852–858. Radley, D., Gately, P. J., Cooke, C. B., Carroll, S., Oldroyd, B., & Truscott, J. G. (2003). Estimates of percentage body fat in young adolescents: a comparison of dualenergy X-ray absorptiometry and air displacement plethysmography. European Journal of Clinical Nutrition, 57, 1402–1410. Rimmer, J. H., Kelly, L. E., & Rosentswieg, J. (1987). Accuracy of anthropometric equations for estimating body composition of mentally retarded adults. American Journal of Mental Deficiency, 91, 626–632. Roche, A. F., Heymsfield, S. B., & Lohman, T. G. (1996). Human body composition. Champaign, IL: Human Kinetics. Rodriguez, G., Moreno, L. A., Blay, M. G., Blay, V. A., Fleta, J., Sarria, A., et al. (2005). Body fat measurement in adolescents: comparison of skinfold thickness equations with dual-energy X-ray absorptiometry. European Journal of Clinical Nutrition, 59, 1158–1166. Siri, W. E. (1961). Body composition from fluid spaces and density: Analysis of methods. In J. Brozek & A. Henzchel (Eds.), Techniques for measuring body composition (pp. 224–244). Washington: National Academy of Sciences. Slaughter, M. H., Lohman, T. G., Boileau, R. A., Horswill, C. A., Stillman, R. J., Van Loan, M. D., et al. (1988). Skinfold equations for estimation of body fatness in children and youth. Human Biology, 60, 709–723. Smith, D. S. (2001). Health care management of adults with Down syndrome. American Family Physician, 64, 1031–1038. Usera, P. C., Foley, J. T., & Yun, J. (2005). Cross-validation of field based assessments of body composition for individuals with Down syndrome. Adapted Physical Activity Quarterly, 22, 198–206. Wang, J., Thornton, J. C., Kolesnik, S., & Pierson, R. N., Jr. (2000). Anthropometry in body composition. An overview. Annals of the New York Academy of Sciences, 904, 317–326. -118- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. G Model RIDD-1314; No. of Pages 6 Research in Developmental Disabilities xxx (2011) xxx–xxx Contents lists available at ScienceDirect Research in Developmental Disabilities A combined training intervention programme increases lean mass in youths with Down syndrome Alejandro González-Agüero a,b,*, Germán Vicente-Rodrı́guez a,b, Alba Gómez-Cabello a,b, Ignacio Ara a,c, Luis A. Moreno a,d, José A. Casajús a,b a GENUD (Growth, Exercise, NUtrition and Development) Research Group, University of Zaragoza, Zaragoza, Spain Faculty of Health and Sport Sciences, Huesca, University of Zaragoza, Spain GENUD Toledo Research Group, University of Castilla-La Mancha, Toledo, Spain d School of Health Sciences, University of Zaragoza, Spain b c A R T I C L E I N F O A B S T R A C T Article history: Received 17 July 2011 Accepted 18 July 2011 Aim: The present study aimed to determine whether youths with Down syndrome (DS) are able to increase lean mass and decrease fat mass, after 21 weeks of conditioning combined with a plyometric jumps training program. Methods: Twenty-six participants with DS (15 males) aged 10–19 years joined the study. Participants were divided into two comparable groups, exercise (EG; n = 13) and control (CG). Total and regional (trunk, upper and lower limbs) lean and fat masses were assessed by dual energy X-ray absorptiometry (DXA), at baseline and after the intervention. ANCOVA tests were used to evaluate differences between groups in pre- and post-training moments. Repeated measures of ANOVA adjusted by the increments in height and Tanner were applied to test the differences between pre and post-training moments. Adjusted percentages of change were calculated and differences between groups evaluated with Student’s t test. Results: After the training period, EG showed an increase in total and lower limbs lean mass, while no changes in adiposity depots were observed. CG did not change neither the lean mass nor the fat mass except for decreased upper limbs fat mass (all p < 0.05) during the same period of time. As a result, time by exercise interactions were found for whole body and lower limbs lean mass (both p < 0.05). No differences in the percentage of fat were observed between groups at baseline or post-training. Overall, 21 weeks of conditioning combined with plyometric jumps training was an effective method for increasing lean mass in youths with DS; however, no changes in fat mass were observed. ß 2011 Elsevier Ltd. All rights reserved. Keywords: Exercise DXA Trisomy 21 Down’s syndrome Training Muscle mass 1. Introduction Body composition is an important marker of health at all ages, especially during childhood and adolescence; larger amounts of fat during these periods are related to a greater risk of premature illness, death from coronary heart disease, hypertension and type 2 diabetes later in life (Dietz, 1998; Ebbeling, Pawlak, & Ludwig, 2002; Maffeis & Tato, 2001). In addition, low lean mass is associated with decreased skeletal muscle tissue (Calbet et al., 2008), which in turn is related with the functional capacity and the maximum oxygen consumption that is a marker of health in youths, and * Corresponding author at: C/Corona de Aragón 42, Edificio Cervantes 2 planta, Grupo GENUD, 50006 Zaragoza, Spain. Tel.: +34 976400338x301; fax: +34 976400340. E-mail address: alexgonz@unizar.es (A. González-Agüero). 0891-4222/$ – see front matter ß 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.ridd.2011.07.024 Please cite this article in press as: González-Agüero, A., et al. A combined training intervention programme increases lean mass in youths with Down syndrome. Research in Developmental Disabilities (2011), doi:10.1016/j.ridd.2011.07.024 -119- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. G Model RIDD-1314; No. of Pages 6 2 A. González-Agüero et al. / Research in Developmental Disabilities xxx (2011) xxx–xxx is associated with cardiovascular health during adulthood (Ortega et al., 2005; Ortega, Ruiz, Castillo, & Sjostrom, 2008). Less healthy body composition has been observed in children and adolescents with DS compared with their counterparts without DS, with or without intellectual disabilities (González-Agüero, Vicente-Rodriguez, Moreno, Guerra-Balic, et al., 2010), having lower levels of lean mass and higher levels of fat mass (Bronks & Parker, 1985; González-Agüero, Ara, Moreno, Vicente-Rodriguez, & Casajús, 2011; González-Agüero, Vicente-Rodriguez, Moreno, & Casajús, 2010; González-Agüero, Villarroya, Vicente-Rodriguez, & Casajús, 2009; Luke, Sutton, Schoeller, & Roizen, 1996). Due to the increment in the lifespan of persons with DS (Glasson et al., 2002), some diseases such as diabetes or metabolic syndrome, that did not usually occur in this population due to premature death, are likely to appear within the coming years. Therefore, strategies trying to prevent these diseases by reducing fat mass and increasing lean mass seem to be a key factor to be promoted from childhood and adolescence in persons with DS. It is well known that regular physical activity and training programs improve body composition in healthy children and adolescents (Ara, Moreno, Leiva, Gutin, & Casajus, 2007; Ara et al., 2010; Heyward, 2006; McArdle, Katch, & Katch, 2007); however researchers have not established whether this occurs in the same manner in children and adolescents with DS (González-Agüero, Vicente-Rodriguez, Moreno, Guerra-Balic, et al., 2010). Training programs have been applied in children and/or adolescents with DS (Lewis & Fragala-Pinkham, 2005; Millar, Fernhall, & Burkett, 1993; Ordonez, Rosety, & Rosety-Rodriguez, 2006; Varela, Sardinha, & Pitetti, 2001; Weber & French, 1988), however, only one has focused to improve their body composition (Ordonez et al., 2006) showing reductions in the percentage of body fat in adolescents with DS with aerobic exercise. Training use to take 45–90 min 3 times per week, which is a great effort for youths and families, taken into account the number of extra-lessons, especial programs and medical visits they have to deal with in their normal life. To find low-time consuming but effective training programs, being able to improve body composition in children and adolescents with DS may be of great interest and applicability. Thus, the aim of the present study was to determine the effect of 21 weeks of conditioning and plyometric jumps training in soft tissues body composition in youths with DS. 2. Materials and methods 2.1. Participants A total sample of 26 children and adolescents with DS (13 females) aged 10–19 years at baseline were recruited from different schools and institutions in Aragón (Spain). Thirteen participants (8 females and 5 males) were randomly assigned to the exercise group (EG) and performed the training program; the remaining 13 participants were the control group (CG). Both parents and children were informed about the aims and procedures, as well as the possible risks and benefits of the study. Written informed consent was obtained from all the participants and their parents or guardians. The study was performed in accordance with the Helsinki Declaration of 1961 (revised in Edinburgh, 2000) and was approved by the Research Ethics Committee of the Government of Aragon (CEICA, Spain). 2.2. Anthropometry All participants were measured with a stadiometer without shoes and minimum clothing to the nearest 0.1 cm (SECA 225, SECA, Hamburg, Germany), and weighted to the nearest 0.1 kg (SECA 861, SECA, Hamburg, Germany). The body mass index (BMI) was calculated as weight (kg) divided by height squared (m2). 2.3. Pubertal status assessment Pubertal development was determined by direct observation by a physician according to the 5 stages proposed by Tanner and Whitehouse (1976). 2.4. Fat and lean masses Total fat (kg) and lean (kg) masses were determined from a whole-body scan by dual energy X-ray absorptiometry (DXA), using a paediatric version of the QDR-Explorer software (Hologic Corp. Software version 12.4, Bedford, MA 01730). The validity of DXA was established by comparison with chemical analysis (Svendsen, Haarbo, Hassager, & Christiansen, 1993), and its reliability was demonstrated by an intra-class correlation of 0.998 for repeated measurements of the %BF in children (Gutin et al., 1996). DXA equipment was calibrated using a step densities phantom and following Hologic guidelines. Participants were scanned in the supine position and scans performed with high resolution. Fat and lean masses were also calculated from regional analyses of the whole body scan: trunk (only for fat mass), upper and lower limbs. Percentage of fat was calculated with the formula ‘‘Percentage of fat = [total fat mass (kg)/body weight (kg)] 100’’. Evaluations were performed in both groups at baseline and after the intervention. Please cite this article in press as: González-Agüero, A., et al. A combined training intervention programme increases lean mass in youths with Down syndrome. Research in Developmental Disabilities (2011), doi:10.1016/j.ridd.2011.07.024 -120- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. G Model RIDD-1314; No. of Pages 6 A. González-Agüero et al. / Research in Developmental Disabilities xxx (2011) xxx–xxx 3 2.5. Training program Those participants allocated in the EG exercised twice a week, and each session was conducted with a maximum of 10 participants. One researcher and one to three assistants supervised the exercise sessions. Each session consisted of combined conditioning and plyometric jumps training. The first week was used to familiarization how to use the material/equipment and how to perform the exercises. Each training session consisted of 5 min warm-up activities, 10–15 min session, and 5 min cool-down. The training consisted of 1 or 2 rotations in a circuit of 4 stages. The exercises performed in each stage were: 1. Jumps: standing vertical jump, jump with run-in, drop jump, drop jump + horizontal jump. From the third week, participants carried adapted-medicine balls while performing the jumps. 2. Press-ups on the wall: participants placed their hands on a wall and performed press-ups standing with their feet separate from the wall. 3. Elastic-fitness bands: lateral rows, bicep curls and frontal rows. 4. Adapted-medicine balls: standing throw and catch. The 13 participants were divided into four intensity-groups (quartiles) depending on their body weight, and they worked out individually. When participants showed excessive facility for performing exercises, they were transferred to the next intensity-group. There were 4 fitness bands colours (yellow, green, blue and purple) of increasing resistance and 4 medicine balls (1, 2, 3 and 4 kg), each one being assigned to a group depending on the strength demanded to perform the exercises. Every group followed the same schedule of exercises with a different band colour and ball: Weeks 1–5: 1 set of 10 repetitions; Weeks 6–10: 2 sets of 10 repetitions; Weeks 11–15: 2 sets of 15 repetitions; and Weeks 16–21: 2 sets of 20 repetitions. A minimum attendance of 70% was required to be included in the exercise group. If minimum assistance was not achieved, the participant was excluded from the statistical analyses. 2.6. Statistical analysis All statistical analyses were performed with the Statistical Package for the Social Sciences (SPSS) version 15.0 for Windows (SPSS Inc., Chicago, IL, USA). Mean and standard deviations are given as descriptive statistics; otherwise they are stated. Kolmogorov–Smirnov tests showed normal distribution of the studied variables. Chi square test was performed to evaluate differences in Tanner maturational status. Student’s t tests were used to evaluate the differences between groups for physical characteristics. Analysis of covariance (ANCOVA) were used to test the differences between groups for fat and lean masses in pre- and post-training moments, including height and Tanner as covariates. Analysis of variance (ANOVA) for repeated measures was performed to evaluate sex by training interactions and the time by exercise interactions for fat and lean masses; including as covariates the increments (percentage of change pre-post) in height and in Tanner status, which have been identified as influential factors on body composition. Every adjusted value of total and regional fat and lean was recorded in the database, and then an adjusted percentage of change was calculated, with these values, for each participant. Student’s t test was used to evaluate the differences between the adjusted percentage of change between EG and CG. Statistical significance was set at p < 0.05. 3. Results 3.1. Adherence to training and possible adverse effects Adherence to training averaged 81.8 9.2%, ranged from 70% to 97%. Only one participant (female) did not achieve the minimum 70% assistance to the intervention program (attended 45% of the trainings) and her data were excluded of the analyses. No withdrawals from the EG or CG occurred. Noticeably, no adverse effects and no health problem were noted in the participants of both groups over the 21-week period. 3.2. Physical characteristics Age, Tanner status and physical characteristics of the participants are summarized in Table 1. EG showed lower BMI than CG at baseline (p < 0.05; Table 1). Participants in both groups showed similar age, height, weight, percentage of fat and Tanner stage distribution at both, baseline and post-intervention points. 3.3. Effects of training on body composition As no sex by training interactions were found (data not shown) analyses were performed including males and females as a whole. Adjusted values of total and regional fat and lean masses are shown in Table 2. The EG group showed lower levels of fat and lean masses in pre- and post-training moments for all the variables except for the truncal fat in post-training Please cite this article in press as: González-Agüero, A., et al. A combined training intervention programme increases lean mass in youths with Down syndrome. Research in Developmental Disabilities (2011), doi:10.1016/j.ridd.2011.07.024 -121- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. G Model RIDD-1314; No. of Pages 6 A. González-Agüero et al. / Research in Developmental Disabilities xxx (2011) xxx–xxx 4 Table 1 Descriptive characteristics of the participants. Control group (n = 13) Age (years) Weight (kg) Height (cm) Tanner (I/II/III/IV/V) BMI (kg/m2) Percentage of fat (%) Exercise group (n = 12) Pre-training Post-training Pre-training Post-training 15.4 2.5 48.7 10.7 146.8 10.7 1/2/1/5/6 22.4 3.4* 25.2 8.1 16.0 2.5 49.5 10.6 148.3 10.2 0/3/1/3/8 22.3 3.2 24.3 8.0 13.7 2.6 40.1 9.6 141.9 12.5 3/0/3/2/5 19.6 2.7 24.3 6.0 14.3 2.6 41.8 9.8 142.8 12.4 3/0/2/3/5 20.2 2.6 24.4 5.6 BMI: body mass index. * p < 0.05 control group vs. exercise group. Table 2 Values of fat and lean masses measured by dual energy X-ray absorptiometry, adjusted by increments in height and in Tanner, before and after the training. DXA measurement Fat mass (kg) Whole body Trunk Lower limbsa Upper limbsa Lean mass (kg) Whole body Lower limbsa Upper limbsa Control group (n = 13) Pre-training Post-training Mean SD Mean SD 12.35 1.31* 4.53 0.58* 2.76 0.30* 0.78 0.08* 12.01 1.25* 4.41 0.53 2.69 0.29* 0.75 0.08*,y 35.45 2.03* 5.71 0.38* 1.72 0.14* 35.88 2.18* 5.75 0.41* 1.75 0.13* Exercise group (n = 12) Adjusted % change Pre-training Post-training Mean SD Mean SD 2.75* 2.65* 2.54* 4.52* 9.19 1.36 3.32 0.60 2.01 0.31 0.56 0.08 1.21* 0.70* 2.06 29.21 2.11 4.48 0.40 1.43 0.15 Interaction group by time Adjusted % change 9.65 1.30 3.58 0.56 2.09 0.30 0.57 0.08 5.01 7.83 3.98 2.09 p = 0.061 p = 0.113 p = 0.100 p = 0.060 30.75 2.28y 4.83 0.43y 1.46 0.14 5.27 7.81 2.18 p = 0.027 p = 0.021 p = 0.935 In bold significant interaction. a The values for upper and lower limbs are the mean of right and left limb. * p < 0.05 control group vs. exercise group. y p < 0.05 pre vs. post. compared to CG (all p < 0.05, Table 2). EG group significantly increased total and lower limbs lean mass after the training with no significant changes in fat mass, CG significantly decreased upper limbs fat mass (all p < 0.05, Table 2). Changes in fat and lean masses were significantly higher in the EG compared to CG (all p < 0.05, Table 2). Time by exercise interactions in whole body and lower limbs lean mass and in upper limbs fat mass were found (all p < 0.05, Table 2). 4. Discussion Children and adolescents with DS were able to increase their total, upper and lower limbs lean mass following 21 weeks of conditioning and plyometric jumps training, whereas no effect in fat mass were observed. Although a previous study evaluated changes in body composition in adolescents with DS (Ordonez et al., 2006), to the best of our knowledge, this is the first study reporting changes in soft tissues measured with DXA, in youths with DS as a consequence of a training program. As there were not withdrawals in the EG, it seems that the training program was attractive and easily adherent for this specific population. The increments in whole body and in lower limbs lean mass observed in the EG may be a direct effect of the muscular adaptation to the exercise, suggested by the significant group by time interactions. This point could indicate that the characteristic low lean mass of this population might be compensated thorough specific training programs. The association of lean mass with cardiovascular fitness and, as a consequence with health (Ortega et al., 2005, 2008), let us think that exercising is an effective method of improving health from childhood and adolescence in persons with DS. Due to the kind of training performed changes in fat mass were less likely to happen. In fact, no significant changes in fat mass occurred in the EG, and only a significant change in upper limbs fat mass was observed in the CG which may be due to some other factors, such as dietary intake, physical activity levels or sedentary time during the training period which are important variables to be controlled in future studies. Perhaps the training increased appetite in those that exercised with their fat intake being higher. Another alternating was that the EG were more tired, due to the trainings and so they spent more sedentary time the rest of the day. Contrarily to our results, Ordonez et al. (2006) showed a reduction on the percentage of fat of adolescents with DS, however some important differences between studies can be found; they measured percentage of fat using skinfolds thickness (instead of DXA) and the participants exercised 30–60 min three times per week (instead of Please cite this article in press as: González-Agüero, A., et al. A combined training intervention programme increases lean mass in youths with Down syndrome. Research in Developmental Disabilities (2011), doi:10.1016/j.ridd.2011.07.024 -122- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. G Model RIDD-1314; No. of Pages 6 A. González-Agüero et al. / Research in Developmental Disabilities xxx (2011) xxx–xxx 5 25 min twice per week) which result in at least almost double time of work out per week (90 vs. 50 min). In addition, the exercise mode (aerobic vs. combined) was also different. Finally, the fact that the participants from the Ordoñez et al. study had a higher percentage of fat compared to ours at baseline (31.8% vs. 24%) could also influence the adiposity changes observed. A limitation to this study may be that we did not perform traditional strength training based on percentages of 1maximum repetition; otherwise too difficult to deal with this population. However, our protocol was well established and defined, and therefore can be easily replicated. The strengths of this study were the inclusion of both genders in the design, the use of a control group of youths with DS, and the sample size, which although not a very large one, is larger than that of any other intervention study including training with children and adolescents with DS. 5. Conclusions Our findings suggest that a 21-week training program consisting of 2 sessions of 25 min of conditioning combined with jumps training is an effective method to increase lean mass in youths with DS. The association between lean mass with cardiovascular fitness makes these results promising for this population. Further research should be conducted to explore other training methods using less family time, being easier to perform by the participants and easier to control by the specialists. Conflict of interest There are no conflicts of interest or financial disclosures for any author of this manuscript. None of the authors have any financial interest. Acknowledgements The authors want to thank and dedication to the project. their support. This work was Innovación de España (Red de 00046/ACTI). all the children and their parents that participated in the study for their understanding Special thanks are given to Fundación Down Zaragoza and Special Olympics Aragon for supported by Gobierno de Aragón (Proyecto PM 17/2007) and Ministerio de Ciencia e investigación en ejercicio fı́sico y salud para poblaciones especiales-EXERNET-DEP2005- References Ara, I., Moreno, L. A., Leiva, M. T., Gutin, B., & Casajus, J. A. (2007). Adiposity, physical activity, and physical fitness among children from Aragon, Spain. Obesity (Silver Spring), 15, 1918–1924. Ara, I., Sanchez-Villegas, A., Vicente-Rodriguez, G., Moreno, L. A., Leiva, M. T., Martinez-Gonzalez, M. A., et al. (2010). Physical fitness and obesity are associated in a dose-dependent manner in children. Annals of Nutrition and Metabolism, 57, 251–259. Bronks, R., & Parker, A. W. (1985). Anthropometric observation of adults with Down syndrome. American Journal of Mental Deficiency, 90, 110–113. Calbet, J. A., Perez-Gomez, J., Vicente-Rodriguez, G., Ara, I., Olmedillas, H., Chavarren, J., et al. (2008). Look before you leap: On the issue of muscle mass assessment by dual-energy X-ray absorptiometry (reply to Jordan Robert Moon comments). European Journal of Applied Physiology, 104, 587–588. Dietz, W. H. (1998). Health consequences of obesity in youth: Childhood predictors of adult disease. Pediatrics, 101, 518–525. Ebbeling, C. B., Pawlak, D. B., & Ludwig, D. S. (2002). Childhood obesity: Public-health crisis, common sense cure. Lancet, 360, 473–482. Glasson, E. J., Sullivan, S. G., Hussain, R., Petterson, B. A., Montgomery, P. D., & Bittles, A. H. (2002). The changing survival profile of people with Down’s syndrome: Implications for genetic counselling. Clinical Genetics, 62, 390–393. González-Agüero, A., Ara, I., Moreno, L. A., Vicente-Rodriguez, G., & Casajús, J. A. (2011). Fat and lean masses in youths with Down syndrome: Gender differences. Research in Developmental Disabilities, 32, 1685–1693. González-Agüero, A., Vicente-Rodriguez, G., Moreno, L. A., & Casajús, J. A. (2010). Dimorfismo sexual en grasa corporal en adolescentes con sı́ndrome de Down. Revista Española de Obesidad, 8, 28–33. González-Agüero, A., Vicente-Rodriguez, G., Moreno, L. A., Guerra-Balic, M., Ara, I., & Casajus, J. A. (2010). Health-related physical fitness in children and adolescents with Down syndrome and response to training. Scandinavian Journal of Medicine and Science in Sports, 20, 716–724. González-Agüero, A., Villarroya, M. A., Vicente-Rodriguez, G., & Casajús, J. A. (2009). Masa muscular, fuerza isométrica y dinámica en las extremidades inferiores de niños y adolescentes con sı́ndrome de Down. Biomecánica, 17, 46–51. Gutin, B., Litaker, M., Islam, S., Manos, T., Smith, C., & Treiber, F. (1996). Body-composition measurement in 9-11-y-old children by dual-energy X-ray absorptiometry, skinfold-thickness measurements, and bioimpedance analysis. American Journal of Clinical Nutrition, 63, 287–292. Heyward, V. H. (2006). Advanced fitness assessment & exercise prescription (5th ed.). Champaign, IL: Human Kinetics. Lewis, C. L., & Fragala-Pinkham, M. A. (2005). Effects of aerobic conditioning and strength training on a child with Down syndrome: A case study. Pediatric Physical Therapy, 17, 30–36. Luke, A., Sutton, M., Schoeller, D. A., & Roizen, N. J. (1996). Nutrient intake and obesity in prepubescent children with Down syndrome. Journal of the American Dietetic Association, 96, 1262–1267. Maffeis, C., & Tato, L. (2001). Long-term effects of childhood obesity on morbidity and mortality. Hormone Research, 55(Suppl. 1), 42–45. McArdle, W., Katch, F., & Katch, V. (2007). Exercise physiology: Energy nutrition and human performance (6th ed.). Baltimore, MD: Lippincott Williams & Willkins. Millar, A. L., Fernhall, B., & Burkett, L. N. (1993). Effects of aerobic training in adolescents with Down syndrome. Medicine and Science in Sports and Exercise, 25, 270– 274. Ordonez, F., Rosety, M., & Rosety-Rodriguez, M. (2006). Influence of 12-week exercise training on fat mass percentage in adolescents with Down syndrome. Medical Science Monitor, 12, CR416–CR419. Ortega, F. B., Ruiz, J. R., Castillo, M. J., Moreno, L. A., Gonzalez-Gross, M., Warnberg, J., et al. (2005). Low level of physical fitness in Spanish adolescents. Relevance for future cardiovascular health (AVENA study). Revista Española de Cardiologı´a, 58, 898–909. Ortega, F. B., Ruiz, J. R., Castillo, M. J., & Sjostrom, M. (2008). Physical fitness in childhood and adolescence: A powerful marker of health. International Journal of Obesity (London), 32, 1–11. Please cite this article in press as: González-Agüero, A., et al. A combined training intervention programme increases lean mass in youths with Down syndrome. Research in Developmental Disabilities (2011), doi:10.1016/j.ridd.2011.07.024 -123- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. G Model RIDD-1314; No. of Pages 6 6 A. González-Agüero et al. / Research in Developmental Disabilities xxx (2011) xxx–xxx Svendsen, O. L., Haarbo, J., Hassager, C., & Christiansen, C. (1993). Accuracy of measurements of body composition by dual-energy X-ray absorptiometry in vivo. American Journal of Clinical Nutrition, 57, 605–608. Tanner, J. M., & Whitehouse, R. H. (1976). Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Archives of Disease in Childhood, 51, 170–179. Varela, A. M., Sardinha, L. B., & Pitetti, K. H. (2001). Effects of an aerobic rowing training regimen in young adults with Down syndrome. American Journal of Mental Retardation, 106, 135–144. Weber, R., & French, R. (1988). Down’s syndrome adolescents and strength training. Clinical Kinesiology, 42, 13–21. Please cite this article in press as: González-Agüero, A., et al. A combined training intervention programme increases lean mass in youths with Down syndrome. Research in Developmental Disabilities (2011), doi:10.1016/j.ridd.2011.07.024 -124- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Workflow 4 Conditioning including plyometric jumps training improves cardiovascular fitness in youths with Down syndrome. Journal: Manuscript ID: Adapted Physical Activity Quarterly APAQ-2011-0105 rP Fo Manuscript Type: Keywords: Article exercise training, functional performance, trisomy 21, maximal treadmill test, health r ee ew vi Re ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901 -125- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Page 1 of 27 Workflow 4 Abstract (143 words) 2 We aimed to determine whether youths with Down syndrome (DS) were able to 3 improve their cardiovascular fitness (CVF) after 21 weeks of physical conditioning 4 including plyometric training. Twenty-six participants with DS aged 10 to 19 years 5 participated in the study. Participants were divided into two groups: exercise (DS-E) 6 and non-exercise (DS-NE). Time of exercise, peak of oxygen consumption (VO2peak), 7 respiratory exchange ratio (RERpeak), heart rate (HRpeak) and minute ventilation (VEpeak) 8 of the participants were assessed thorough a maximal treadmill test, at baseline and after 9 the intervention. After intervention, DS-E group increased all their cardiovascular r Fo 1 parameters compared to baseline levels (all p<0.05). Additionally, and despite similar 11 baseline values, DS-E showed higher VO2peak, RERpeak and HRpeak than the DS-NE after 12 training (all p<0.05). Overall, 21 weeks of physical conditioning including plyometric 13 jumps seem to be an effective method to improve CVF in youths with DS. 15 Keywords: exercise, functional capacity, trisomy 21, maximal treadmill test, health ev 16 R er 14 Pe 10 There are no conflicts of interest or financial disclosures for any author of this 18 manuscript. None of the authors have any financial interest. w ie 17 ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901 -126- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Workflow 4 Page 2 of 27 1 Introduction 2 Down syndrome (DS) is a genetic condition accompanied with intellectual disability 3 and more than 80 clinical characteristics (Pueschel, 1990), some of them related to 4 exercise (Pitetti, Rimmer, & Fernhall, 1993). Several authors have described lower 5 levels of cardiovascular fitness (CVF) in individuals with DS as compared with their 6 counterparts without DS, with or without intellectual disability, at all ages (Baynard, 7 Pitetti, Guerra, Unnithan, & Fernhall, 2008; Baynard, Unnithan, Pitetti, & Fernhall, 8 2004; Fernhall et al., 1996; Guerra-Balic, Cuadrado-Mateos, Geronimo-Blasco, & 9 Fernhall, 2000; Pitetti, Climstein, Campbell, Barrett, & Jackson, 1992). This fact seems rP Fo 1 to be especially relevant, since CVF is considered a powerful marker of health during 11 childhood and adolescence, mainly due to its inverse relationship with total and 12 abdominal adiposity, and direct relation with reduced cardiovascular disease risk factors 13 and increased skeletal health (Ortega, Ruiz, Castillo, & Sjostrom, 2008). In addition, it 14 is also known that adequate CVF favors daily autonomy in persons with special 15 requirements (like persons with DS) later in life (Toulotte, Fabre, Dangremont, Lensel, 16 & Thevenon, 2003; Verschuren et al., 2007), and predicts functional tasks in persons 17 with DS (Cowley et al., 2010). Thus, due to the increase in the lifespan of persons with 18 DS (Glasson et al., 2002), and in order to sustain long-term employment, independence 19 and quality of life, CVF seems to be a key factor that should be promoted from 20 childhood and adolescence. 21 It is well established that training programs improve CVF in children and adolescents 22 with or without special requirements (such as type 1 diabetes or cerebral palsy patients) 23 (D'Hooge et al.; Heyward, 2006; McArdle, Katch, & Katch, 2007; Verschuren et al., 24 2007); however, it has not been entirely established whether this occurs also in children 25 and adolescents with DS (González-Agüero et al., 2010). A systematic review r ee 10 ew vi Re ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901 -127- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Page 3 of 27 Workflow 4 2 emphasized the effectiveness of training programs designed to improve CVF among 2 people with DS (Dodd & Shields, 2005), including some studies with adults in which 3 their ability to improve some functional characteristics was observed following exercise 4 training programs (Rimmer, Heller, Wang, & Valerio, 2004; Tsimaras, Giagazoglou, 5 Fotiadou, Christoulas, & Angelopoulou, 2003). 6 However, only a few studies carried out training programs exclusively with children 7 and/or adolescents with DS (Lewis & Fragala-Pinkham, 2005; Millar, Fernhall, & 8 Burkett, 1993; Ordonez, Rosety, & Rosety-Rodriguez, 2006; Varela, Sardinha, & 9 Pitetti, 2001; Weber & French, 1988), and their information regarding improvements in r Fo 1 CVF was inconclusive. The previously performed training programs take from 45 11 minutes to more than one hour per training session, most of them 3 times per week. 12 Since youths with DS have several extra-classes to attend (such as speech therapy and 13 phoniatrics), time used in training is an important factor to be taken into account in this 14 population. Other types of training could be interesting to study in youths with DS, 15 since aerobic training may result repetitive for those children and take more than a few 16 time. Plyometric training is a type of exercise that requires various jumps in place or 17 rebound jumping, and it has been demonstrated that enhances strength and power in 18 lower limbs, as well as running and jumping performance (Johnson, Salzberg, & 19 Stevenson; Markovic & Mikulic; Perez-Gomez et al., 2008). It has been also 20 demonstrated that plyometric depth jumping has similar energy system requirements 21 (termed “aerobic power” by Willmore and Costill) which should enhance maximal 22 oxygen consumption (VO2max) (Brown, Ray, Abbey, Shaw, & Shaw). 23 Therefore, the aim of the present study was to determine whether youths with DS are 24 able to improve their CVF, following a 21-week training program consisting of 2 w ie ev R er Pe 10 ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901 -128- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Workflow 4 Page 4 of 27 3 1 sessions per week of 25 minutes of physical conditioning including plyometric jumps 2 training. 3 Material and method 5 Participants 6 A total sample of 27 children and adolescents with DS (12 females and 15 males) aged 7 10 to 19 years at baseline were recruited from different schools and institutions in 8 Aragón (Spain). Fourteen participants (8 females and 6 males) were randomly assigned 9 to the exercise group (DS-E) and performed the training program (in addition to their 10 common weekly activities); the remaining 13 participants (DS-NE) continued with their 11 common weekly activities. A full clinical history, including illnesses or surgical 12 interventions, was collected for each individual. Seven participants had been diagnosed 13 of hypothyroidism in the past (3 in the DS-E group) and they were taking medication 14 during the study (levothyroxine sodium: 3 of them taking Levothroid, the other 4 15 Eutirox). In addition, eleven participants had congenital heart disease (7 in DS-E 16 group), nine of them needing surgery (6 in the DS-E group). 17 Both parents and children were informed about the aims and procedures, as well as the 18 possible risks and benefits of the study. Written informed consent was obtained from all 19 the participants and their parents or guardians. The study was performed in accordance 20 with the Helsinki Declaration of 1961 (revised in Edinburgh, 2000) and was approved 21 by the Research Ethics Committee of the Government of Aragon (CEICA, Spain). 22 Anthropometry 23 All participants were measured for height with a stadiometer without shoes and 24 minimum clothing to the nearest 0.1 cm (SECA 225, SECA, Hamburg, Germany), and r ee rP Fo 4 ew vi Re ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901 -129- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Page 5 of 27 Workflow 4 4 weighed to the nearest 0.1 kg (SECA 861, SECA, Hamburg, Germany). The body mass 2 index (BMI) was calculated as weight (kg) divided by height squared (m2). 3 Pubertal status assessment 4 Pubertal development was determined by direct observation by a physician according to 5 the 5 stages proposed by Tanner and Whitehouse (Tanner & Whitehouse, 1976). 6 Testing procedures before and after the 21-week period 7 Previous to maximal testing, an experienced cardiologist examined each participant, 8 giving permission to participate in the study. Participants were familiarized with the 9 laboratory and testing protocols prior to any data collection. Data collection started r Fo 1 when participants were able to easily walk on the treadmill (Quasar Med 4.0, 11 h/p/cosmos, Nussdorf-Traunstein, Germany) with the mask fitted. A walking-graded 12 protocol was employed to assess CVF (Table 1). Starting at a comfortable walking pace 13 for each participant (2.4 or 3.2 km/h), speed was increased by 0.8 km/h every 2 minutes 14 until participants were not able to walk without running (4.8 or 5.6 km/h). Then the 15 grade was increased 4% every minute until exhaustion (until a maximum of 24%). A 16 medicine doctor, specialist in sports medicine, supervised the whole test, and also 17 examined the participants prior exercising. 18 Respiratory gas-exchange data were measured ‘breath-by-breath’ using an open circuit 19 spirometry (Oxycon Pro, Jaeger/Viasys Healthcare, Hoechberg, Germany). Peak oxygen 20 uptake (VO2peak), peak respiratory exchange ratio (RERpeak) and peak minute ventilation 21 (VEpeak) were recorded as the highest average values obtained for any continuous 30- 22 second period. The metabolic cart was calibrated with a known gas and volume prior to 23 the first test each day as recommended by the company. Electrocardiogram (ECG) was 24 used to record heart rate, utilizing a 12-lead system before, and during the whole test. 25 Blood pressure was also measured for safety purposes prior any testing (M3, HEM- w ie ev R er Pe 10 ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901 -130- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Workflow 4 Page 6 of 27 5 7200-E, Omron Healthcare Europe, Hoofddorp, the Netherlands). These tests were 2 performed at baseline and after the intervention, and the increments in VO2peak, RERpeak, 3 HRpeak, VEpeak, and time of exercise between baseline and post-intervention points were 4 calculated for each group using the formula [(post-pre)/pre]x100. 5 Intervention: training program 6 Those participants allocated to the intervention group exercised 2 days per week, each 7 session was conducted with a maximum of 10 participants. The exercise sessions were 8 supervised by one researcher and one to three assistants. The training sessions took 9 place in three different places: 2 rooms in 2 different gyms of the city, and 1 adapted rP Fo 1 room in the institution were the children attended other classes; the same material was 11 carried out by the researcher at the different places. The first week (2 trainings) was 12 used as familiarization on how to use the material/equipment and how to perform the 13 exercises. Each training session consisted of 5 minutes warm-up activities, 10 to 15 14 minutes session, and 5 minutes cool-down. The training consisted of several sets in a 15 circuit of 4 stages according to the training plan (Figure 1). 16 The exercises performed in each stage were: r ee 10 ew vi Re 17 1. Jumps: standing vertical jump, jump with run-in, drop jump (height jumped 18 between 40 and 50 centimetres), drop jump+horizontal jump (height jumped 19 between 40 and 50 centimetres). From the third week, participants carried 20 adapted-medicine balls while performing the jumps. 21 2. Press-ups on the wall: participants placed their hands on a wall and performed 22 press-ups standing but with their feet separate 30 to 50 centimetres from the 23 wall. 24 3. Elastic-fitness bands: lateral rows, bicep curls and frontal rows. ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901 -131- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Page 7 of 27 Workflow 4 6 1 2 4. Adapted-medicine balls: standing throws and catches, with a distance between participants of 3 to 4 meters. The 13 participants were divided into four intensity-groups (quartiles) depending on 4 their body weight, and they worked out individually. When participants showed 5 excessive facility for performing exercises, they were transferred to the next intensity- 6 group. There were 4 fitness bands colours (yellow, green, blue and purple) of increasing 7 resistance and 4 medicine balls (1, 2, 3 and 4 kg), each one being assigned to a group 8 depending on the strength demanded to perform the exercises. Instructional and 9 motivational reinforcements were constant during the whole training period; with the r Fo 3 greatest efforts in the correct execution of the exercises and number of repetitions. 11 Every group followed the same schedule of exercises with a different band colour and 12 ball (Figure 1). 13 A minimum attendance of 70% was required to be included in the exercise group. If 14 minimum assistance was not achieved, the participant data were excluded of the 15 analyses. 16 Statistics 17 All statistical analyses were performed with the Statistical Package for the Social 18 Sciences (SPSS) version 15.0 for Windows (SPSS Inc., Chicago, IL, USA). Mean and 19 standard deviations are given as descriptive statistics; otherwise they are stated. 20 ANOVA tests were performed to evaluate whether sex-training interactions were 21 present within the participants. Chi square test was used to evaluate the differences in 22 Tanner maturational status. Due to the sample size (under 30 participants), non- 23 parametric statistical tests were applied. Mann-Whitney U tests were used to evaluate 24 differences between groups (DS-E vs. DS-NE), and Wilcoxon-Cox tests were used to 25 evaluate differences between baseline and post-intervention points within each group w ie ev R er Pe 10 ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901 -132- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Workflow 4 Page 8 of 27 7 1 for all the studied variables, and for the calculated increments. An additional ANCOVA 2 test, including percentage of change in HRpeak (pre- to post-training) as a covariate, to 3 prevent a possible poor effort during the pre-training effort test, was performed to test 4 differences between VO2peak. Statistical significance was set at p<0.05. 5 Results 7 Adherence to training and possible adverse effects 8 Adherence to training averaged 81.8±9.2%. Only one participant (female) did not 9 achieve the minimum 70% assistance to the intervention program (45%) and her data 10 were excluded of the analyses. No withdrawals from any group occurred. Noticeably, 11 no major adverse effects and no major health problem were noted in the participants of 12 both groups over the 21-week period. 13 Physical characteristics 14 Age and physical characteristics of the participants are summarized in Table 2. DS-E 15 and DS-NE groups showed similar values for height, weight, Tanner status and BMI at 16 both, baseline and post-intervention points. 17 Cardiovascular fitness 18 Table 3 lists peak cardiorespiratory data for DS-NE and DS-E groups at baseline and 19 post-intervention points. There were no differences at baseline between DS-E and DS- 20 NE groups in any of the studied variables. 21 Post-intervention, the DS-E group showed higher values for VO2peak, HRpeak and 22 RERpeak compared with the DS-NE group (all p<0.05; Table 3). Further adjustment for 23 percentage of change in HRpeak (pre- to post-training) did not substantially change the 24 results for VO2peak (data not shown). r ee rP Fo 6 ew vi Re ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901 -133- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Page 9 of 27 Workflow 4 8 1 In addition, the DS-E group increased the time of exercise, VO2peak, RERpeak, HRpeak and 2 VEpeak from baseline to post-intervention, while the DS-NE group improved the VEpeak 3 (all p<0.05; Table 3). 4 Percentages of change for each group are plotted in Figure 2. Overall, the DS-E group 5 showed greater (but not significant) improvements in all outcome measures for CVF 6 compared with the DS-NE, the largest gains occurred in VEpeak and VO2peak (28 and 16 7 per cent, respectively; Figure 2). 9 Discussion r Fo 8 In general, our results show that children and adolescents with DS are able to improve 11 their CVF after a 21-week physical conditioning including plyometric jumps training. 12 To the best of our knowledge, this is the first study to report significant improvements 13 in CVF in children and adolescents with DS as a consequence of a training program. As 14 there were no withdrawals, it seems that the training program was attractive and easily 15 adhered to this specific population. 16 Previous studies in adolescents and young adults with DS showed improvements in 17 work capacity after training (Millar, Fernhall, & Burkett, 1993; Varela, Sardinha, & 18 Pitetti, 2001); however, this is the first evidence of improvements in CVF in youths 19 with DS as a consequence of a training program. 20 Millar et al.(Millar, Fernhall, & Burkett, 1993) performed a study with 14 participants 21 (11 males) with DS (17.5 mean age) and they did not achieve improvements in 22 cardiovascular parameters following a 10-week aerobic training program, although an 23 improvement in walking capacity was found. Similar results were obtained by Varela et 24 al. (Varela, Sardinha, & Pitetti, 2001) after a 16-week rowing training regimen in 16 25 young males with DS (21.3 mean age). On the other hand, studies in adults with DS w ie ev R er Pe 10 ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901 -134- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Workflow 4 Page 10 of 27 9 showed rather consistent findings on VO2peak improvements: Tsimaras et al. (Tsimaras, 2 Giagazoglou, Fotiadou, Christoulas, & Angelopoulou, 2003) showed improvements in 3 VO2peak, VEpeak and time of exercise in 25 adult males after a 12-week jog-walk interval 4 training program (3 days/week). Along the same line, Rimmer et al. (Rimmer, Heller, 5 Wang, & Valerio, 2004) found improvements in VO2peak, HRpeak, time of exercise and 6 work capacity following a 12-week combined aerobic and strength training (4 7 days/week) in 52 adults (23 males) with DS (39.4 mean age). Mendonca et al. 8 (Mendonca & Pereira, 2009) observed improvements in VO2peak, VEpeak and time of 9 exercise after a 28-week aerobic training (2 days/week) in 12 adult males with DS (34.5 10 mean age) and, in another study (Mendonca, Pereira, & Fernhall), increased VO2peak and 11 walking economy in 13 adults (36.5 mean age) with DS after a 12-week combined 12 aerobic and resistance training (3 days/week). 13 It is important to notice that, even before the training period, the values of VO2peak 14 achieved by the participants with DS in our study were higher than the values observed 15 in previous studies carried out in youths with DS. Mean values for VO2peak (mL/kg/min) 16 ranged from 30.1 to 36.4 in our study, compared with 31.1 to 32.1 in Varela (Varela, 17 Sardinha, & Pitetti, 2001), 25.5 to 26.9 in Millar (Millar, Fernhall, & Burkett, 1993) and 18 29.6 to 35.7 in Tsiamras (Tsimaras, Giagazoglou, Fotiadou, Christoulas, & 19 Angelopoulou, 2003). Indeed, according to the percentiles for VO2peak designed by 20 Baynard et al. (Baynard, Pitetti, Guerra, Unnithan, & Fernhall, 2008), our participants 21 showed levels above the 70th percentile. This fact makes our findings even more 22 relevant, as improvements in cardiovascular parameters were achieved in a population 23 with a high CVF, higher than the average for its condition. 24 Although the participants in our study were able to improve their CVF, our training did 25 not include a classical cardiovascular training program, as the participants performed r ee rP Fo 1 ew vi Re ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901 -135- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Page 11 of 27 Workflow 4 10 physical conditioning including plyometric jumps training. Pitteti and Boneh found a 2 significant and strong positive relationship between VO2peak and leg strength in persons 3 with DS; they suggested that leg strength may be an important contributor to VO2peak in 4 persons with intellectual disabilities (Pitetti & Boneh, 1995). Plyometrics have been 5 showed as a type of training which enhances muscular strength (mainly in lower limbs) 6 and running performance (Markovic & Mikulic; Saez-Saez de Villarreal, Requena, & 7 Newton). Since the type of maximal test performed in this study requires great lower 8 limb strength, part of the increments in VO2peak could be due to increments in power 9 and/or muscular strength of the participants, and increments in the resistance to r Fo 1 peripheral fatigue. The studies of Rimmer (Rimmer, Heller, Wang, & Valerio, 2004) 11 and Mendonca (Mendonca, Pereira, & Fernhall) included strength conditioning in their 12 training programs with adults, and they obtained improvements in VO2peak and other 13 cardiovascular parameters. Furthermore, Rimmer proposed to explore the magnitude of 14 change in VO2peak that can be attained through an only-strength training program; the 15 magnitude of change (increment from baseline to post-intervention) in the VO2peak of 16 the present study (15.6%) is rather similar to that observed in the study of Rimmer et al. 17 (14.1%) (Rimmer, Heller, Wang, & Valerio, 2004) and is in the range of the results of 18 both studies by Mendonca et al. (6% and 27.8 %) (Mendonca & Pereira, 2009; 19 Mendonca, Pereira, & Fernhall). 20 Since persons with DS have a high oxygen cost of locomotion (Mendonca, Pereira, & 21 Fernhall, 2009; Mendonca, Pereira, Morato, & Fernhall), and physical fitness has been 22 demonstrated to predict the ability of adults with DS to perform functional tasks in daily 23 living (Cowley et al., 2010), these are important findings that will make possible 24 improve daily actions and independence, now and later in life, in this population. Given 25 that CVF is a component of physical fitness highly related with present and future w ie ev R er Pe 10 ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901 -136- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Workflow 4 Page 12 of 27 11 health in youths, and also with cardiovascular risk factors (Ortega, Ruiz, Castillo, & 2 Sjostrom, 2008), it is a very important factor to be enhanced in this specific population 3 at higher risk of cardiovascular and bone-related diseases (González-Agüero, Ara, 4 Moreno, Vicente-Rodriguez, & Casajús, 2011; González-Agüero, Vicente-Rodriguez, 5 Moreno, & Casajus, 2011). Even though persons with DS may have lower 6 atherosclerotic risk factors (Draheim, McCubbin, & Williams, 2002); the continuous 7 increase in life expectancy in the DS population (Bittles & Glasson, 2004), together 8 with high levels of adipose tissue found in this population (especially in the trunk) 9 (González-Agüero, Ara, Moreno, Vicente-Rodriguez, & Casajús, 2011) make the rP Fo 1 increments in CVF an important issue to be taken into account. 11 As stated above, our study showed similar results to those previous in adults with DS, 12 which achieved improvements in CVF (Mendonca & Pereira, 2009; Mendonca, Pereira, 13 & Fernhall; Rimmer, Heller, Wang, & Valerio, 2004; Tsimaras, Giagazoglou, Fotiadou, 14 Christoulas, & Angelopoulou, 2003). In contrast to ours, the absolute duration of those 15 was 12 weeks (3 or 4 times per week) or 28 weeks (2 times per week). Our results 16 indicate that improvements in CVF may be possible with a 21-week training program, 17 twice a week, in youths with DS. As free-time in families with DS children is reduced 18 due to the numerous extra activities they participate in, training programs that consume 19 the lowest possible time should be promoted. This is not against the promotion of 20 physical activity and other kind of studies, promoting adherence to physical activities 21 should be conducted within this population. 22 Study limitations and strengths 23 There were several limitations to this study that should be recognized. First, peak 24 treadmill exercise is effort-dependent; consequently, it was possible to hypothesize that 25 the participants with DS produced lower effort, or that struggled more in the post- r ee 10 ew vi Re ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901 -137- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Page 13 of 27 Workflow 4 12 training assessment. However, the fact that our participants have performed 4 of 5 2 maximal tests previously makes us believe that our data were not influenced by a lack 3 of effort in participants. Also the differences in VO2peak even when adjusting by HRpeak 4 is a good indicative of the effort performed. The protocol that we used has been not 5 previously validated in this population; however, it meets the criteria for VO2peak 6 testing: progressive increments in effort to a point which the participant simply refuses 7 to continue exercising. Also related to the type of protocol used, as stated before, great 8 lower limbs strength could help participants to reach higher levels of exercise in this 9 graded walking protocol. Therefore, the plyometric training could have increased the r Fo 1 resistance of the participants to peripheral fatigue, being this, partially, the cause of the 11 increments in CVF. Secondly, the proposed training was not a usual strength training 12 based on working at different percentages of 1-maximum repetition in diverse 13 equipment in a gym; simple exercises, without complex material was considerate to be a 14 better training to work with people with intellectual disabilities. And finally, our 15 experimental design did not include a control group of youths without disabilities which 16 performed the same training than the DS-E group did; therefore, the degree to which 17 these findings would occur in the same manner in controls without DS remains 18 unknown. Although the inclusion of participants with congenital heart diseases may 19 difficult comparisons with previous studies, it is important to notice that, this decision 20 was based on the fact that approximately 40% of the persons with DS have congenital 21 heart diseases (Pueschel, 1990). The exclusion of these youths would make impossible 22 to generalize the results of this study to all the youth-population with DS. The strengths 23 in this study were: the inclusion of both genders in the design, the use of a control group 24 of youths with DS; the use of a laboratory treadmill exercise test to evaluate 25 cardiovascular parameters; and, finally, the sample size, which although not a very large w ie ev R er Pe 10 ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901 -138- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Workflow 4 Page 14 of 27 13 1 sample, is larger than that of any other reported study including training with children 2 and adolescents with DS. 3 Conclusions 5 In summary, our findings suggest that a 21-week training program consisting of 2 6 sessions per week of 25 minutes of physical conditioning including plyometric jumps 7 training is an effective method to improve CVF in youths with DS, as shown by the 8 increased VO2peak at the end of the training program. Furthermore, time to exhaustion 9 has also been increased, establishing work capacity as a variable able to be improved by rP Fo 4 training. 11 The association between fitness levels with autonomy and functional daily tasks later in 12 life in persons with special requirements (Cowley et al., 2010; Toulotte, Fabre, 13 Dangremont, Lensel, & Thevenon, 2003; Verschuren et al., 2007), and the relationship 14 of CVF with present and future health (Ortega, Ruiz, Castillo, & Sjostrom, 2008), make 15 these results promising for this population. Further research should be conducted to 16 explore other training methods, using less family time, making it easier to perform by 17 the participants and easier to control by the specialists. ew vi Re 18 r ee 10 ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901 -139- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Page 15 of 27 Workflow 4 14 Acknowledgments 2 The authors want to thank all the children and their parents that participated in the 3 study, for their understanding and dedication to the project. Special thanks are given to 4 Fundación Down Zaragoza, Special Olympics Aragon and Colegio Jesús-María El 5 Salvador, for their support. We also thank Scott G Mitchell from the University of 6 Glasgow for his work of reviewing the English style and grammar. This work was 7 supported by Gobierno de Aragón (Proyecto PM 17/2007). There are no potential 8 conflicts of interest that may affect the contents of this work. 9 10 r Fo 1 w ie ev R er Pe ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901 -140- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Workflow 4 Page 16 of 27 15 1 References 2 Baynard, T., Pitetti, K. H., Guerra, M., Unnithan, V. B., & Fernhall, B. (2008). Age- 3 Related Changes in Aerobic Capacity in Individuals with Mental Retardation: A 4 20-yr Review. Medicine and Science in Sports Exercise, 40, 1984-1989. 5 Baynard, T., Unnithan, V. B., Pitetti, K., & Fernhall, B. (2004). Determination of 6 ventilatory threshold in adolescents with mental retardation, with and without 7 Down syndrome,. Pediatric Exercise Science, 16, 126-137. 9 10 11 Bittles, A. H., & Glasson, E. J. (2004). Clinical, social, and ethical implications of rP Fo 8 changing life expectancy in Down syndrome. Developmental Medicine and Child Neurology, 46, 282-286. Brown, G. A., Ray, M. W., Abbey, B. M., Shaw, B. S., & Shaw, I. (2010) Oxygen r ee 12 consumption, heart rate, and blood lactate responses to an acute bout of 13 plyometric depth jumps in college-aged men and women. Journal of Strength 14 and Conditioning Research, 24, 2475-2482. ew vi Re 15 Cowley, P. M., Ploutz-Snyder, L. L., Baynard, T., Heffernan, K., Jae, S. Y., Hsu, S., et 16 al. (2010). Physical fitness predicts functional tasks in individuals with Down 17 syndrome. Medicine and Science in Sports and Exercise, 42, 388-393. 18 D'Hooge, R., Hellinckx, T., Van Laethem, C., Stegen, S., De Schepper, J., Van Aken, 19 S., et al. (2011) Influence of combined aerobic and resistance training on 20 metabolic control, cardiovascular fitness and quality of life in adolescents with 21 type 1 diabetes: a randomized controlled trial. Clinical Rehabilitation, 25, 349- 22 359. 23 Dodd, K. J., & Shields, N. (2005). A systematic review of the outcomes of 24 cardiovascular exercise programs for people with Down syndrome. Archives of 25 Physical Medicine and Rehabilitation, 86, 2051-2058. ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901 -141- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Page 17 of 27 Workflow 4 16 1 Draheim, C. C., McCubbin, J. A., & Williams, D. P. (2002). Differences in 2 cardiovascular disease risk between nondiabetic adults with mental retardation 3 with and without Down syndrome. American Journal of Mental Retardation, 4 107, 201-211. 5 Fernhall, B., Pitetti, K. H., Rimmer, J. H., McCubbin, J. A., Rintala, P., Millar, A. L., et al. (1996). Cardiorespiratory capacity of individuals with mental retardation 7 including Down syndrome. Medicine and Science in Sports Exercise, 28, 366- 8 371. 9 r Fo 6 Glasson, E. J., Sullivan, S. G., Hussain, R., Petterson, B. A., Montgomery, P. D., & Bittles, A. H. (2002). The changing survival profile of people with Down's 11 syndrome: implications for genetic counselling. Clinical Genetics, 62, 390-393. 12 Pe 10 González-Agüero, A., Ara, I., Moreno, L. A., Vicente-Rodriguez, G., & Casajús, J. A. R er 13 (2011). Fat and lean masses in youths with Down syndrome: gender differences. 14 Research in Developmental Disabilities, 32, 1685-1693. González-Agüero, A., Vicente-Rodriguez, G., Moreno, L. A., & Casajus, J. A. (2011). 16 Bone mass in male and female children and adolescents with Down syndrome. 17 Osteoporosis International, 22, 2151-2157. w ie 18 ev 15 González-Agüero, A., Vicente-Rodriguez, G., Moreno, L. A., Guerra-Balic, M., Ara, I., 19 & Casajus, J. A. (2010). Health-related physical fitness in children and 20 adolescents with Down syndrome and response to training. Scandinavian 21 Journal of Medicine and Science in Sports, 20, 716-724. 22 Guerra-Balic, M., Cuadrado-Mateos, E., Geronimo-Blasco, C., & Fernhall, B. (2000). 23 Physical Fitness Levels of Physically Active and Sedentary Adults With Down 24 Syndrome. Adapted Physical Activity Quarterly, 17, 310-321. ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901 -142- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Workflow 4 Page 18 of 27 17 1 2 Heyward, V. H. (2006). Advanced fitness assessment & Exercise prescription (J. Padro, Trans. fifth ed.). Champaign, Illinois: Human Kinetics. 3 Johnson, B. A., Salzberg, C. L., & Stevenson, D. A. (2011) A systematic review: 4 plyometric training programs for young children. Journal of Strength and 5 Conditioning Research, 25, 2623-2633. 6 Lewis, C. L., & Fragala-Pinkham, M. A. (2005). Effects of aerobic conditioning and strength training on a child with Down syndrome: a case study. Pediatric 8 Physical Therapy, 17, 30-36. 9 rP Fo 7 Markovic, G., & Mikulic, P. (2010) Neuro-musculoskeletal and performance 10 adaptations to lower-extremity plyometric training. Sports Medicine, 40, 859- 11 895. r ee 12 McArdle, W., Katch, F., & Katch, V. (2007). Exercise physiology: energy, nutrition and 13 human performance. (Sixth ed.). Baltimore, Maryland: Lippincott Williams & 14 Willkins. ew vi Re 15 Mendonca, G. V., & Pereira, F. D. (2009). Influence of long-term exercise training on 16 submaximal and peak aerobic capacity and locomotor economy in adult males 17 with Down's syndrome. Medical Science Monitor, 15, CR33-39. 18 Mendonca, G. V., Pereira, F. D., & Fernhall, B. (2009). Walking economy in male 19 adults with Down syndrome. European Journal of Applied Physiology, 105, 20 153-157. 21 Mendonca, G. V., Pereira, F. D., & Fernhall, B. (2011). Effects of combined aerobic 22 and resistance exercise training in adults with and without Down syndrome. 23 Archives of Physical Medicine and Rehabilitation, 92, 37-45. ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901 -143- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Page 19 of 27 Workflow 4 18 1 Mendonca, G. V., Pereira, F. D., Morato, P. P., & Fernhall, B. (2010). Walking 2 economy of adults with Down syndrome. International Journal of Sports 3 Medicine, 31, 10-15. 4 Millar, A. L., Fernhall, B., & Burkett, L. N. (1993). Effects of aerobic training in 5 adolescents with Down syndrome. Medicine and Science in Sports Exercise, 25, 6 270-274. 7 Ordonez, F., Rosety, M., & Rosety-Rodriguez, M. (2006). Influence of 12-week exercise training on fat mass percentage in adolescents with Down syndrome. 9 Medical Science Monitor, 12, CR416-419. 10 r Fo 8 Ortega, F. B., Ruiz, J. R., Castillo, M. J., & Sjostrom, M. (2008). Physical fitness in Pe 11 childhood and adolescence: a powerful marker of health. International Journal 12 of Obesity (London), 32, 1-11. R er 13 Perez-Gomez, J., Olmedillas, H., Delgado-Guerra, S., Ara, I., Vicente-Rodriguez, G., Ortiz, R. A., et al. (2008). Effects of weight lifting training combined with 15 plyometric exercises on physical fitness, body composition, and knee extension 16 velocity during kicking in football. Applied Physiology, Nutrition and 17 Metabolism, 33, 501-510. w ie 18 ev 14 Pitetti, K. H., & Boneh, S. (1995). Cardiovascular fitness as related to leg strength in 19 adults with mental retardation. Medicine and Science in Sports and Exercise, 27, 20 423-428. 21 Pitetti, K. H., Climstein, M., Campbell, K. D., Barrett, P. J., & Jackson, J. A. (1992). 22 The cardiovascular capacities of adults with Down syndrome: a comparative 23 study. Medicine and Science in Sports and Exercise, 24, 13-19. ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901 -144- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Workflow 4 Page 20 of 27 19 1 Pitetti, K. H., Rimmer, J. H., & Fernhall, B. (1993). Physical fitness and adults with 2 mental retardation. An overview of current research and future directions. Sports 3 Medicine, 16, 23-56. 4 5 6 Pueschel, S. M. (1990). Clinical aspects of Down syndrome from infancy to adulthood. American Journal of Medical Genetics. Supplement, 7, 52-56. Rimmer, J. H., Heller, T., Wang, E., & Valerio, I. (2004). Improvements in physical fitness in adults with Down syndrome. Americal Journal of Mental Retardation, 8 109, 165-174. 9 rP Fo 7 Saez-Saez de Villarreal, E., Requena, B., & Newton, R. U. (2010) Does plyometric 10 training improve strength performance? A meta-analysis. Journal of Science and 11 Medicine in Sport, 13, 513-522. r ee 12 Tanner, J. M., & Whitehouse, R. H. (1976). Clinical longitudinal standards for height, 13 weight, height velocity, weight velocity, and stages of puberty. Archives of 14 Disease in Childhood, 51, 170-179. ew vi Re 15 Toulotte, C., Fabre, C., Dangremont, B., Lensel, G., & Thevenon, A. (2003). Effects of 16 physical training on the physical capacity of frail, demented patients with a 17 history of falling: a randomised controlled trial. Age Ageing, 32, 67-73. 18 Tsimaras, V., Giagazoglou, P., Fotiadou, E., Christoulas, K., & Angelopoulou, N. 19 (2003). Jog-walk training in cardiorespiratory fitness of adults with Down 20 syndrome. Perceptual & Motor Skills, 96, 1239-1251. 21 Varela, A. M., Sardinha, L. B., & Pitetti, K. H. (2001). Effects of an aerobic rowing 22 training regimen in young adults with Down syndrome. American Journal of 23 Mental Retardation, 106, 135-144. 24 25 Verschuren, O., Ketelaar, M., Gorter, J. W., Helders, P. J., Uiterwaal, C. S., & Takken, T. (2007). Exercise training program in children and adolescents with cerebral ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901 -145- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Page 21 of 27 Workflow 4 20 1 palsy: a randomized controlled trial. Archives of Pediatric and Adolescent 2 Medicine, 161, 1075-1081. 3 4 Weber, R., & French, R. (1988). Down's syndrome adolescents and strength training. Clinical Kinesiology, 42, 13-21. 5 6 r Fo w ie ev R er Pe ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901 -146- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Workflow 4 Page 22 of 27 21 Figures legends Figure 1.Trainig plan for the 21 weeks. Figure 2. Percentage of change from baseline to post-intervention in cardiovascular fitness variables (mean and standard error). VO2peak: peak of oxygen uptake, RERpeak: peak of respiratory exchange ratio; VEpeak: peak of minute ventilation; HRpeak: peak of heart rate. r ee rP Fo ew vi Re ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901 -147- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Page 23 of 27 Workflow 4 Table 1. Walking testing protocol. Speed (km/h) Grade Time (min) 0º 3 2.4 0º 2 3.2 0º 2 4.0 0º 2 4.8 0º 2 5.6 0º 2 5.6 4º 1 5.6 8º 1 5.6 12º 1 5.6 16º 1 r Fo 0.0 R er Pe 20º 1 5.6 24º 1 0.0 0º 3 w ie ev 5.6 ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901 -148- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Workflow 4 Page 24 of 27 Table 2. Descriptive characteristics of the participants. BASELINE POST-INTERVENTION Exercise Non-Exercise Exercise Non-Exercise N = 13 N = 13 N = 13 N = 13 Mean ± SD Mean ± SD Mean ± SD Mean ± SD Age (years) 13.7 ± 2.6 15.6 ± 2.5 14.3 ± 2.6 16.2 ± 2.5 Weight (kg) 40.1 ± 9.6* 48.0 ± 10.7 41.8 ± 9.8 48.6 ± 10.4 141.9 ± 12.5 146.7 ± 11.1 rP Fo Height (cm) Tanner (I/II/III/IV/V) BMI 142.8 ± 12.4 148.1 ± 10.6 3/0/3/2/5 1/2/1/4/5 2/1/2/2/6 19.3 ± 2.5 22.1 ± 3.3 20.2 ± 2.6 0/3/1/3/6 21.39 ± 3.0 r ee BMI: Body mass index; * p<0.05 DS-E vs. DS-NE. ew vi Re ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901 -149- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Page 25 of 27 Workflow 4 1 Table 3. Cardiovascular fitness at baseline and post-intervention. BASELINE EXERCISE POST-INTERVENTION NO EXERCISE EXERCISE Mean ± SD Time of Exercise (min) 14.4 ± 1.7 14.5 ± 1.7 15.5 ± 1.13† 14.6 ± 2.2 VO2peak (mL/kg/min) 33.1 ± 3.2 30.1 ± 7.2 36.4 ± 3.6† 33.1 ± 3.3* RERpeak (VCO2/VO2) 1.02 ± 0.09 1.01 ± 0.09 1.10 ± 0.08† 1.04 ± 0.09* VEpeak (L/min) 42.7 ± 14.8 44.6 ± 11.9 52.6 ± 15.1† 51.3 ± 13.8† r Fo Mean ± SD HRpeak (bpm) 167.4 ± 10.3 165.6 ± 8.9 Mean ± SD NO EXERCISE Mean ± SD 175.5 ± 10.1† 166.7 ± 12.6* VO2peak: peak of oxygen uptake, RERpeak: peak of respiratory exchange ratio; VEpeak: peak of Pe minute ventilation; HRpeak: peak of heart rate. † p<0.05 Baseline vs. Post-intervention; * p<0.05 DS-E vs. DS-NE w ie ev R er ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901 -150- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Workflow 4 Page 26 of 27 rP Fo Training plan for the 21 weeks. 307x122mm (150 x 150 DPI) r ee ew vi Re ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901 -151- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Page 27 of 27 Workflow 4 r Fo ev R er Pe w ie Percentage of change from baseline to post-intervention in cardiovascular fitness variables (mean and standard error). 130x115mm (300 x 300 DPI) ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901 -152- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Paper for DMCN A 21-week bone deposition promoting exercise programme increases bone mass in young people with Down syndrome Developmental Medicine & Child Neurology w ie ev rR Fo Journal: Manuscript ID: Manuscript Type: Date Submitted by the Author: Complete List of Authors: Keywords: DMCN-OA-11-06-0417.R1 Original Article n/a González-Agüero, Alejandro; GENUD research group, Faculty of Health and Sport Sciences, University of Zaragoza, Zaragoza, Spain Vicente-Rodríguez, Germán; GENUD research group, Faculty of Health and Sport Sciences, University of Zaragoza, Zaragoza, Spain Gómez-Cabello, Alba; GENUD research group, Faculty of Health and Sport Sciences, University of Zaragoza, Zaragoza, Spain Ara, Ignacio; GENUD Toledo, University of CAstilla-La Mancha, Toledo, Spain Moreno, Luis; GENUD research group, School of Health Sciences, University of Zaragoza, Zaragoza, Spain Casajús, José; GENUD research group, Faculty of Health and Sport Sciences, University of Zaragoza, Zaragoza, Spain exercise, DXA, Down's syndrome, training, osteogenic ly On Mac Keith Press -153- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Page 1 of 20 Title page Title A 21-week bone deposition promoting exercise programme increases bone mass in young people with Down syndrome. Authors Alejandro González-Agüero BSc1,2, Germán Vicente-Rodríguez PhD1,2, Alba GómezCabello BSc1,2, Ignacio Ara PhD1,3, Luis A. Moreno PhD1,4, José A. Casajús PhD1,2* Institutions rR 1 Fo GENUD (Growth, Exercise, NUtrition and Development) Research Group, University of Zaragoza, Zaragoza, Spain ie ev 2 Faculty of Health and Sport Sciences, Huesca, University of Zaragoza, Spain 3 GENUD Toledo Research Group, University of Castilla-La Mancha, Toledo, Spain 4 School of Health Sciences, University of Zaragoza, Spain *Corresponding author w José A. Casajús On Email: joseant@unizar.es Mailing address: C/ Corona de Aragón 42, Edificio Cervantes 2ªplanta, Grupo GENUD ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Paper for DMCN 50006, Zaragoza, Spain Phone: +34 976400338 (ext. 301) Fax: +34 976400340 There are no conflicts of interest or financial disclosures for any author of this manuscript. None of the authors have any financial interest. Word count: 2331 1 Mac Keith Press -154- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Paper for DMCN Abstract (199 words) Aim: To determine whether bone mass of young people with Down syndrome (DS) may increase, following a supervised training program of conditioning including plyometric jumps during 21 weeks. Methods: Twenty-eight participants with DS (15 males) aged 10 to 19 years participated. Participants were randomly divided into exercise (DS-E; n = 14) and nonexercise (DS-NE; n = 14) groups. Total and regional (hip and lumbar spine) bone mineral content (BMC) and total lean mass were assessed by DXA, at baseline and after w ie ev rR Fo the intervention. Repeated measures ANOVA were applied to test differences between pre and post-training values for BMC and total lean mass. Differences between increments were studied with Student’s t-test. Linear regressions were calculated to test independent relationships. Results: After the intervention, higher increments in total and hip BMC and total lean mass were observed in the DS-E group (all p<0.05). A time by exercise interaction was found for total lean mass (p<0.05). The increment in total lean mass, in height and in Tanner accounts almost for 60% in the increment in total BMC in the DS-NE group On (p<0.05). Interpretation: Twenty-one weeks of training have a positive effect on the acquisition ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 2 of 20 of bone mass in young people with DS. Running head: Bone acquisition in young people with Down syndrome Keywords: exercise, DXA, Down’s syndrome, training, osteogenic 2 Mac Keith Press -155- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Page 3 of 20 What this paper adds · Young people with Down syndrome may increase their bone mass following a physical exercise programme. · The increment in bone mass could be mediated by an increment in total lean mass which is also detectable. rR Fo w ie ev ly On 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Paper for DMCN 3 Mac Keith Press -156- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Paper for DMCN Down syndrome (DS) is a genetic condition accompanied by intellectual disability and more than 80 clinical manifestations some of them affecting body composition 1. Lower levels of bone mineral content (BMC) have been observed not only in adults 2-6 but in children and adolescents with DS 7, 8 compared with their non-DS counterparts. The acquisition of high bone mass during childhood and adolescence is an important factor in preventing osteoporosis later in life 9, 10. Since life expectancy of persons with DS has increased over the last decades over 55 years 11 the incidence of osteoporosis, bone fragility and related fractures is expected to increase in the coming years. w ie ev rR Fo It is well established that physical activity and, specifically, participation in sport during growth has an osteogenic effect on growing skeleton in children and adolescents without disabilities 12-14; however, studies have not yet been made of children and adolescents with DS 15, who also may benefit from osteogenic exercising. Plyometric training is a type of exercise that requires various jumps in place or rebound jumping, and it may increases peak bone mass during adolescence 16. This type of exercise has been shown to be an effective method for increasing lean mass in adolescents with DS 17 and as bone mass is closely associated with lean mass this is a positive finding. It has On also been suggested that in young people, that the mechanical impact resulting from the plyometric exercise is one of the most osteogenic activities 12, and could enhance the ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 4 of 20 levels of osteocalcin 18, which is an established and extensively used biochemical marker of bone formation 19. Thus, the aim of the present study was to determine whether young people with DS are able to increase their bone-related variables (total and regional BMC) following a 21week training program consisting of 2 sessions per week of 25 minutes of conditioning and plyometric jumps training. 4 Mac Keith Press -157- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Page 5 of 20 Material and methods Participants A total sample of 28 children and adolescents with DS (13 females and 15 males) aged 10 to 19 years at baseline were recruited from different schools and institutions in Aragon (Spain). Participants were randomly assigned to the control group (DS-NE; n=14: 5 females and 9 males) or to the exercise group (DS-E; n=14: 8 females and 6 males), who followed the training program. Seven participants were taking medication during the study (levothyroxine sodium), 4 in the DS-NE group and 3 in the DS-E Fo group. Both parents and children were informed about the aims and procedures, as well rR as the possible risks and benefits of the study. Written informed consent was obtained from all the participants and their parents or guardians. The study was performed in ie ev accordance with the Helsinki Declaration of 1961 (revised in Edinburgh, 2000) and was approved by the Research Ethics Committee of the Government of Aragon (CEICA, Spain). Anthropometry w All participants were measured with a stadiometer without shoes and minimum clothing On to the nearest 0.1 cm (SECA 225, SECA, Hamburg, Germany), and weighted to the nearest 0.1 kg (SECA 861, SECA, Hamburg, Germany). The body mass index (BMI) ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Paper for DMCN was calculated as weight (kg) divided by height squared (m2). Pubertal status assessment Pubertal development was determined by direct observation by a physician according to the 5 stages proposed by Tanner and Whitehouse 20. Bone and lean masses The bone and lean mass of the subjects were measured with dual-energy X-ray absorptiometry (DXA) using a paediatric version of the software QDR-Explorer 5 Mac Keith Press -158- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Paper for DMCN (Hologic Corp. Software version 12.4, Bedford, MA 01730). DXA equipment was calibrated with a lumbar spine phantom following the Hologic guidelines. Subjects were scanned in supine position and the scans were performed in high resolution. Three scans were carried out with each participant: whole body, left hip and lumbar spine. Total lean mass (TLM; kg) and BMC (g) were obtained from the whole body scan; BMC was obtained from lumbar spine (L1-L4) and left hip (proximal region of the femur) scans. Training program Those participants allocated in the DS-E group exercised twice a week, and each session w ie ev rR Fo was conducted with a maximum of 10 participants. One researcher (experienced exercise practitioner) and one to three assistants supervised the exercise sessions. Each session consisted of combined conditioning and plyometric jumps training. The first week was used as familiarization on how to use the material/equipment and how to perform the exercises. Each training session consisted of 5 minutes warm-up activities, 10 to 15 minutes for the main part of the session, and 5 minutes cool-down. In the final stage of training (the last 5 weeks), training was sometimes extended by 5 minutes. Training consisted of 1 or 2 rotations in a 4-stage circuit. Training protocol is summarized in Figure 1. ly The exercises performed in each stage were: On 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 6 of 20 1. Jumps: standing vertical jump, jump with run-in, drop jump (height jumped between 40 and 50 centimetres), drop jump+horizontal jump (height jumped between 40 and 50 centimetres). From the third week onwards, participants carried adapted-medicine balls while performing the jumps. 2. Press-ups on the wall: participants placed their hands on a wall and performed press-ups standing but with their feet separate 30 to 50 centimetres from the wall. 6 Mac Keith Press -159- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Page 7 of 20 3. Elastic-fitness bands: a. Lateral rows: step onto the band; grasp ends with a neutral grip. Arms should hang down to sides with elbows slightly bent. Rise band to side of body at shoulder height keeping elbows only slightly bent. Return to start position. b. Bicep curls: Stand with feet shoulder width apart, knees slightly bent, and at a staggered stance. Grasp ends with underhand grip with arms hanging down at sides. Elbows should be close to sides. Flex at the elbows and Fo curl band up to approximately shoulder level. Keep elbows close to sides rR throughout movement. Return to start position. c. Frontal rows: Stand upright, keep knees slightly flexed and grasp band ie ev with hands held close in front of chest. Keep arms straight. Row one arm back until elbow is behind shoulders. Flex shoulders and back. Return, keep arm slightly flexed. Continue with opposite side. w 4. Adapted-medicine balls: standing throw and catch, with a distance between participants of 3 to 4 meters. On The DS-E group was divided into four intensity-groups (quartiles) depending on the body weight of each participant, and they worked out individually within each group. ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Paper for DMCN When participants showed excessive facility for performing exercises, they were transferred to the next intensity-group. There were 4 fitness bands colours (yellow, green, blue and purple) of increasing resistance and 4 medicine balls (1, 2, 3 and 4 kg), each one being assigned to a group depending on the strength demanded to perform the exercises. Every group followed the same schedule of exercises with a different band colour and ball (Figure 1). 7 Mac Keith Press -160- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Paper for DMCN A minimum attendance of 70% was required in order to be included in the exercise group. If minimum assistance was not achieved, the participant was excluded from the statistical analyses. Statistical methods All statistical analyses were performed with the Statistical Package for the Social Sciences (SPSS) version 15.0 for Windows (SPSS Inc., Chicago, IL, USA). Mean and standard deviations are given as descriptive statistics unless otherwise stated. Normal distribution of the variables was established using the Kolmogorov-Smirnov test; also w ie ev rR Fo the assumption of homoscedasticity was confirmed. The Chi square test was used to evaluate the differences in Tanner maturational status. Student’s t tests were used to evaluate the differences between groups for physical characteristics. Repeated measures ANOVA were performed to evaluate whether sex by training interactions were present and to determine the time by exercise interactions for BMC and TLM; including as covariates the increments in TLM (only for BMC variables), in height, and in Tanner status. Every adjusted value of pre and post, BMC (total, hip and spine) and TLM were recorded in the database and the percentage of change (increment of each variable, ∆) On calculated; Student’s t test was used to evaluate the differences between groups. To test the independent relationship among the increments in BMC and the increments of ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 8 of 20 possible confounders, multiple linear regression models were applied including TLM (Model 1), TLM + height (Model 2), TLM + height + Tanner maturational status (Model 3) and TLM + height + Tanner + age at baseline (Model 4). Statistical significance was set at p<0.05. Results Adherence to training and possible adverse effects 8 Mac Keith Press -161- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Page 9 of 20 Adherence to training averaged 81.8 ± 9.2% and ranged from 70 to 97 per cent. Only one participant (female) did not achieve the minimum 70% attendance at the intervention program (attended 45% of the trainings) and her data were excluded from the analyses. At the end of the training programme, 5 participants progressed to a higher intensity-group. No withdrawals from the DS-E or DS-NE group occurred. Noticeably, no adverse effects and no health problems were noted in the subjects of both groups over the 21-week period. Physical characteristics Fo Age, Tanner status and physical characteristics of the participants are summarized in rR Table 1. Participants in the DS-E group showed lower BMI than the DS-NE group at baseline (p<0.05; Table 1). Participants in both groups showed similar age, height, ie ev weight and Tanner stage distribution at both, baseline and post-intervention points. Effects of training on body composition As no sex by training interactions were found (data not shown) analyses were w performed including males and females as a whole. Overall, the DS-E group showed greater increments in total BMC, TLM and in the hip On BMC (all p<0.05; Table 2). Repeated measures of ANOVA showed a time by exercise interaction for TLM (p<0.05; Table 2), but no interactions were found for BMC ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Paper for DMCN variables. Multiple linear regressions revealed that in the DS-NE group, the ∆TLM accounts for 54%, the ∆height accounts for 5% and the ∆Tanner maturational status accounts for 0.6% of the variation in the increment of total BMC (all p<0.05; Table 3). No associations were found for the total BMC in the DS-E group, nor for the hip or lumbar spine in any of the two groups. 9 Mac Keith Press -162- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Paper for DMCN Discussion The major finding of this study is that a 21-week training program may help to increase the BMC of young people with DS. As far as we know, this is the first study reporting the benefits in bone-related variables of an exercise training program in children and adolescents with DS. The association between low bone mass with risk of osteoporosis and related fractures, and the fact that childhood and adolescence are the most important periods to achieve the peak of bone mass 9, 10 give more relevance to our study especially in a population characterized by a reduced bone acquisition 7. The increments w ie ev rR Fo in total and hip region BMC in the DS-E group are 2 to 3 times higher than in the DSNE after the training period after adjustments by important confounders. The fact that we did not find any significant time by exercise interaction in bone-related variables could be due to the reduced number of subjects in the study. The present study is in line with previous studies that obtained benefits from using plyometric training with children and adolescents without disabilities 16, 21. However, the rate of improvement in total and hip BMC was higher in the present study (6.7% vs. 3.7% and 1.6% in total, and 14.6% vs. 4.5% in hip) and similar improvement was obtained in lumbar spine On region (6.4% vs. 6.6% and 3.1%). Lean mass is highly correlated with bone mass 12 and, as found in the present study, a ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 10 of 20 time by exercise interaction was found for TLM in the DS-E group compared with the DS-NE. The previous point could suggest that the higher increments observed in BMC may be due more to the indirect effect of muscle hypertrophy on bone than to the direct effect of exercise on bone. However, the fact that neither the increment in TLM, in height or in Tanner, nor the age of the subjects in the DS-E group significantly accounts for the increments in BMC, permits us to suppose that the training could have had an effect on the bone mass of the participants. Due to the osteogenic effect of exercise or to 10 Mac Keith Press -163- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Page 11 of 20 the higher increment in TLM, the results of the intervention were fairly satisfactory in terms of bone mass acquisition with an intervention that was quite modest in terms of time employed. In the future, the effect of longer and/or more intense trainings may show whether the tendency of young people with DS to have reduced bone mass could be compensated. Another important issue is the feasibility of the program. As there were no withdrawals, it seems that the training program was attractive and easily adhered to, and this is a matter of great importance in this specific population. Fo There were some limitations to this study that should be recognized: we did not perform rR a traditional strength training based on percentages of 1-maximum repetition; however, the protocol of our training program was well established and defined. Unfortunately, ie ev exposure to sunlight and diet were not controlled in this study. The strengths of this study were the inclusion of both genders in the design, the use of a control group of young people with DS, and the sample size, which although not a very large one, is w larger than that of any other intervention study including training with children and adolescents with DS. On To conclude, our findings suggest that physical conditioning including plyometric jumps may be a good strategy to increase BMC of young people with DS. ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Paper for DMCN 11 Mac Keith Press -164- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Paper for DMCN Acknowledgments The authors want to thank all the children and their parents that participated in the study for their understanding and dedication to the project. Special thanks are given to Fundación Down Zaragoza, Special Olympics Aragon and Colegio Jesús-María El Salvador, for their support. We also thank Paula Velasco Martínez from the University of Zaragoza for her great technical assistance. This work was supported by Gobierno de Aragón (Proyecto PM 17/2007) and Ministerio de Ciencia e Innovación de España (Red de investigación en ejercicio físico y salud para poblaciones especiales-EXERNET- w ie ev rR Fo DEP2005-00046/ACTI). There are no potential conflicts of interest that may affect the contents of this work. ly On 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 12 of 20 12 Mac Keith Press -165- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Page 13 of 20 References 1. Pueschel SM. Clinical aspects of Down syndrome from infancy to adulthood. Am J Med Genet Suppl. 1990;(7)52-6. 2. Baptista F, Varela A, Sardinha LB. Bone mineral mass in males and females with and without Down syndrome. Osteoporos Int. 2005 Apr;(16)380-8. 3. Sakadamis A, Angelopoulou N, Matziari C, Papameletiou V, Souftas V. Bone mass, gonadal function and biochemical assessment in young men with trisomy 21. Eur J Obstet Gynecol Reprod Biol. 2002 Jan 10;(100)208-12. 4. Fo Sepulveda D, Allison DB, Gomez JE, Kreibich K, Brown RA, Pierson RN, Jr., rR et al. Low spinal and pelvic bone mineral density among individuals with Down syndrome. Am J Ment Retard. 1995 Sep;(100)109-14. 5. ie ev Angelopoulou N, Souftas V, Sakadamis A, Mandroukas K. Bone mineral density in adults with Down's syndrome. Eur Radiol. 1999;(9)648-51. 6. Guijarro M, Valero C, Paule B, Gonzalez-Macias J, Riancho JA. Bone mass in w young adults with Down syndrome. J Intellect Disabil Res. 2008 Mar;(52)182-9. 7. González-Agüero A, Vicente-Rodriguez G, Moreno LA, Casajus JA. Bone mass On in male and female children and adolescents with Down syndrome. Osteoporos Int. 2011 Jul;(22)2151-7. 8. ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Paper for DMCN Halaba Z, Pyrkosz A, Adamczyk P, Drozdzowska B, Pluskiewicz W. Longitudinal changes in ultrasound measurements: a parallel study in subjects with genetic disorders and healthy controls. Ultrasound Med Biol. 2006 Mar;(32)409-13. 9. Rizzoli R, Bianchi ML, Garabedian M, McKay HA, Moreno LA. Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone. 2010 Feb;(46)294-305. 13 Mac Keith Press -166- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Paper for DMCN 10. Rizzoli R, Bonjour JP. Determinants of peak bone mass and mechanisms of bone loss. Osteoporos Int. 1999;(9 Suppl 2)S17-23. 11. Glasson EJ, Sullivan SG, Hussain R, Petterson BA, Montgomery PD, Bittles AH. The changing survival profile of people with Down's syndrome: implications for genetic counselling. Clin Genet. 2002 Nov;(62)390-3. 12. Vicente-Rodriguez G. How does exercise affect bone development during growth? Sports Med. 2006;(36)561-9. 13. Gutin B, Kasper MJ. Can vigorous exercise play a role in osteoporosis w ie ev rR Fo prevention? A review. Osteoporos Int. 1992 Mar;(2)55-69. 14. Nordstrom A, Karlsson C, Nyquist F, Olsson T, Nordstrom P, Karlsson M. Bone loss and fracture risk after reduced physical activity. J Bone Miner Res. 2005 Feb;(20)202-7. 15. González-Agüero A, Vicente-Rodriguez G, Moreno LA, Guerra-Balic M, Ara I, Casajus JA. Health-related physical fitness in children and adolescents with Down syndrome and response to training. Scand J Med Sci Sports. 2010 Oct;(20)716-24. 16. Witzke KA, Snow CM. Effects of plyometric jump training on bone mass in On adolescent girls. Med Sci Sports Exerc. 2000 Jun;(32)1051-7. 17. González-Agüero A, Vicente-Rodriguez G, Gómez-Cabello A, Ara I, Moreno ly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 14 of 20 LA, Casajús JA. A combined training intervention programme increases lean mass in youths with Down syndrome. Res Dev Disabil. 2011;(In press). 18. Lin CF, Huang TH, Tu KC, Lin LL, Tu YH, Yang RS. Acute effects of plyometric jumping and intermittent running on serum bone markers in young males. Eur J Appl Physiol. Aug 12. 19. Lehtonen-Veromaa M, Mottonen T, Irjala K, Nuotio I, Leino A, Viikari J. A 1- year prospective study on the relationship between physical activity, markers of bone 14 Mac Keith Press -167- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Page 15 of 20 metabolism, and bone acquisition in peripubertal girls. J Clin Endocrinol Metab. 2000 Oct;(85)3726-32. 20. Tanner JM, Whitehouse RH. Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch Dis Child. 1976 Mar;(51)170-9. 21. Fuchs RK, Bauer JJ, Snow CM. Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial. J Bone Miner Res. 2001 Jan;(16)148-56. rR Fo w ie ev ly On 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Paper for DMCN 15 Mac Keith Press -168- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Paper for DMCN Tables Table 1. Descriptive characteristics of the participants. Age (years) Down syndrome Non-Exercise (n=14) Pre-training Post-training p p mean (SD) mean (SD) 16.0 (2.5) 0.067 15.4 (2.5) 0.067 Down syndrome Exercise (n=13) Pre-training Post-training mean (SD) mean (SD) 13.7 (2.6) 14.3 (2.6) Weight (kg) 48.7 (10.7) 0.057 49.5 (10.6) 40.1 (9.6) Height (cm) 146.8 (10.7) 0.299 Tanner (I,II,III,IV,V) 2 BMI (kg/m ) 0.095 41.8 (9.8) 148.3 (10.2) 0.243 1/1/1/5/6 0.361 0/2/1/3/8 0.407 141.9 (12.5) 142.8 (12.4) 3/0/3/2/5 3/1/1/3/5 22.4 (3.4) 0.028 22.3 (3.2) 0.136 19.6* (2.7) 20.2 (2.6) w ie ev rR Fo BMI: Body mass index. * p<0.05 between DS-E and DS-NE. ly On 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 16 of 20 16 Mac Keith Press -169- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Page 17 of 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Paper for DMCN Table 2. Bone mass adjusted by increments in total lean mass, height and Tanner, and lean mass adjusted by increments in height and Tanner before and after the training, and adjusted percentage of change. DXA Measurement Total Down syndrome Non-Exercise (n=14) Adjusted % Pre-training Post-training of Change Down syndrome Exercise (n=13) PostAdjusted % Pre-training training of Change Interaction Group x Time BMC, g 1110.3 (76.3) 1139.2 (77.3) 2.4* 803.3 (79.9) 852.3 (81.0) 6.7 p = 0.197 TLM, kg 32.4 (1.9) 32.7 (2.1) 1.9* 26.4 (2.0) 27.9 (2.2) 5.8 p = 0.008 22.7 (1.7) 24.4 (1.9) 6.2* 16.9 (1.9) 19.3 (2.2) 14.6 p = 0.587 44.1 (3.4) 47.6 (3.5) 6.4 28.6 (3.5) 30.1 (3.7) 6.4 p = 0.107 Hip Lumbar spine BMC, g Fo BMC, g mass. rR Values are mean ± standard deviation. BMC, bone mineral content; TLM, total lean w ie ev *p<0.05 between percentage of change; in bold significant group by time interaction. ly On 17 Mac Keith Press -170- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Paper for DMCN Table 3. Relationships between the increments in bone-related variables and the increments in total lean mass, height and Tanner maturational status, and age at baseline. ∆Total BMC ∆Hip BMC ∆Lumbar spine BMC Change R2 P Change R2 P Change R2 p DS-E Model 1 0.309 0.061 0.076 0.440 0.003 0.879 Model 2 0.000 0.189 0.006 0.740 0.024 0.909 0.004 0.901 Model 3 0.009 0.357 0.406 0.410 0.045 0.923 Model 4 0.056 0.449 0.112 0.264 0.013 0.741 DS-NE Model 1 0.540 0.004 0.014 0.509 0.319 0.200 Model 2 0.046 0.012 0.001 0.732 0.100 0.241 Model 3 0.006 0.037 0.051 0.780 0.014 0.399 Model 4 0.000 0.093 BMC, bone mineral content; DS-E, Down syndrome exercise; DS-NE, Down syndrome non-exercise w ie ev rR Fo Model 1: ∆TLM Model 2: Model 1+∆Height Model 3: Model 2+∆Tanner Model 4: Model 3+age at baseline ly On 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 18 of 20 18 Mac Keith Press -171- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Page 19 of 20 Figure 1. Schedule of training protocol. rR Fo w ie ev ly On 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Paper for DMCN 19 Mac Keith Press -172- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Paper for DMCN w ie ev rR Fo 307x122mm (150 x 150 DPI) ly On 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Page 20 of 20 Mac Keith Press -173- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. -174- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. 7.AportacionesprincipalesdelaTesisDoctoral Artículo I. La condición física y composición corporal de jóvenes con síndrome de Down es menos saludable que la de sus homólogos con o sin discapacidad. El entrenamiento físico parece ser beneficioso para esta población. A pesar de que existen algunos datos al respecto, el conocimiento actual en esta materia es escaso y se necesitan nuevos estudios que clarifiquen algunos temas. Artículo II. Los bajos valores de masa ósea presentes en adultos con síndrome de Down, pueden ser detectados desde la niñez y adolescencia. El dimorfismo sexual en masa ósea en jóvenes con síndrome de Down es atípico. Artículo III. Los jóvenes con síndrome de Down tienen una distribución de tejidos blandos diferente a sus homólogos sin discapacidad, sin embargo su dimorfismo sexual es similar. Artículo IV. El dimorfismo sexual de niños y niñas con síndrome de Down medido con antropometría es muy parecido al de sus homólogos sin discapacidad, sin embargo los valores de IMC y porcentaje de grasa de las niñas son muy superiores. Artículo V. Los jóvenes con síndrome de Down tienen músculos menos eficaces que sus homólogos sin discapacidad, ejercen menos fuerza por cada kilogramo de masa muscular. Artículo VI. La fórmula de predicción de Slaughter y col. es la más correcta para evaluar porcentaje de grasa corporal mediante antropometría en niños y adolescentes con SD. Artículo VII. 21 semanas de entrenamiento de acondicionamiento físico combinado con saltos pliométricos, son suficientes para incrementar la masa muscular de jóvenes con síndrome de Down. -175- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Artículo VIII. 21 semanas de entrenamiento de acondicionamiento físico combinado con saltos pliométricos mejoran la condición aeróbica de jóvenes con síndrome de Down. Artículo IX. La masa ósea de jóvenes con síndrome de Down se incrementa después de 21 semanas de entrenamiento de acondicionamiento físico combinado con saltos pliométricos. -176- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. 7.MaincontributionsoftheDoctoralThesis Manuscript I. Physical fitness and body composition of youths with Down syndrome are less healthy than in their control counterparts. Physical training seems to be beneficial for this population. Some research has been done in this subject, however, the current knowledge is yet scarce and new studies are needed in order to clarify some pending issues on this topic. Manuscript II. The low levels of bone mass present in adults with Down syndrome are already detectable during the childhood and adolescence. The sexual dimorphism in youths with Down syndrome is atypical. Manuscript III. Children and adolescents with Down syndrome have a different soft tissue distribution than their counterparts without Down syndrome; however, their sexual dimorphism is quite similar. Manuscript IV. The sexual dimorphism measured with anthropometry of male and female children and adolescents with Down syndrome is quite similar than the observed in others without Down syndrome, however, the values of BMI and body fat percentage of girls are much higher. Manuscript V. Youths with Down syndrome have less efficient muscles than their counterparts without Down syndrome; they cannot achieve as much strength by kilogram of muscle mass. Manuscript VI. The prediction equation of Slaughter et al. is the most accurate to evaluate body fat percentage with anthropometry in children and adolescents with Down syndrome. -177- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Manuscript VII. A 21-week conditioning combined with plyometric jumps training is enough to increase lean mass of youths with Down syndrome. Manuscript VIII. Twenty-one weeks of conditioning combined with plyometric jumps training increase cardiovascular fitness levels of youths with Down syndrome. Manuscript IX. The bone mass of youths with Down syndrome is increased towards 21 weeks of conditioning combined with plyometric jumps training. -178- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. 8.Conclusiones Los niños y adolescentes con síndrome de Down tienen una condición física peor, y una composición corporal menos saludable que sus homólogos sin síndrome de Down; sin embargo, la literatura científica disponible al respecto es, cuando menos, escasa. La composición corporal de jóvenes con síndrome de Down no parece adecuada, dado que sus niveles de masa ósea y masa muscular son bajos, y su distribución de grasa puede ser la causa de problemas cardiovasculares futuros. No solo preocupa el bajo nivel de contenido mineral óseo de estos jóvenes, sino también el atípico dimorfismo sexual en relación a masa ósea que presentan. La poca eficiencia muscular de este grupo de jóvenes, agrava la presencia de niveles bajos de masa muscular. Para evaluar la grasa corporal en niños y adolescentes con síndrome de Down mediante antropometría, la ecuación de predicción que mejor se adapta a sus característica morfológicas y a sus proporciones corporal es la de Slaughter y col. Cinco meses de entrenamiento de acondicionamiento físico combinado con saltos pliométricos, pueden ayudar a niños y adolescentes con síndrome de Down a incrementar su condición aeróbica, y a desarrollar su masa muscular y masa ósea. -179- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. -180- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. 8.Conclusions Children and adolescents with Down syndrome have a worst physical fitness and a less healthy body composition than their counterparts without Down syndrome; however, the scientific literature available on the topic is, at least, sparse. Body composition of youths with Down syndrome seems not very adequate, since their levels of bone and lean masses are low, and their fat distribution could be the cause of future cardiovascular diseases. It is not only concerning the low level of bone mineral content, but the atypical sexual dimorphism in terms of bone mass that these youths present. The low muscular efficiency of this group of youths, is concerning together with the low levels of lean mass. To evaluate body fat in children and adolescents with Down syndrome with anthropometry, the prediction equation that better adapts to their morphology and bodily proportions is the one of Slaughter et al. Five months of conditioning combined with plyometric jumps training, may help children and adolescents with Down syndrome to increase their aerobic capacity, and to develop their bone and lean masses. -181- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. -182- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Apéndice[Appendix] Factor de impacto y ranking de cada revista en 2010 en “ISI Web of Knowledge – Journal Citation Reports” dentro de sus áreas correspondientes. [Impact factor and ranking of each journal in 2010 in “ISI Web of Knowledge – Journal Citation Reports” within their subject categories.] Artículos aceptados [Accepted manuscripts]: Artículo [Manuscript] Revista [Journal] I. Scandinavian Journal of Medicine and Science in Sports Factor de impacto [Impact factor] 2.779 Ranking in 2010 ISI – JCR: 8/79 (Sport Sciences) II. Osteoporosis International 4.859 Ranking in 2010 ISI – JCR: 23/116 (Endocrinology and Metabolism) III, VI y VII. Research in Developmental Disabilities 3.201 Ranking in 2010 ISI – JCR: 1/62 (Rehabilitation) IV. Revista Española de Obesidad No aplicable Indexada en EMBASE V. Biomecánica No aplicable Indexada en Latindex Artículos sometidos [Submitted manuscripts]: Artículo [Manuscript] Revista [Journal] VIII. Adapted Physical Activity Quarterly Factor de impacto [Impact factor] 1.189 Ranking in 2010 ISI – JCR: 42/79 (Sport Sciences) IX. Developmental Medicine and Child Neurology 3.264 Ranking in 2010 ISI – JCR: 6/107 (Pediatrics) -183- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. -184- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Agradecimientos[Acknowledgement] Cuando hace tiempo oía hablar de directores de tesis siempre pensaba en gente seria, con un trato impersonal hacia sus doctorandos, gente al fin y al cabo, a otro nivel. Pues bien, no estaba del todo equivocado, mis tres directores están totalmente a otro nivel, el nivel más alto y espectacular que he visto. Nunca llegaré a poder agradeceros todo lo que habéis hecho/hacéis por mi durante todo este tiempo, creo sinceramente que he recibido la mejor formación (en todos los sentidos) que un doctorando puede recibir. Por eso, sirvan estas líneas como gesto público de AGRADECIMIENTO y ADMIRACIÓN hacia vosotros tres. JAC, o mejor dicho (que esto es serio, que es una Tesis), Dr. José Antonio Casajús, he tenido la inmensa suerte de sufrir a tu lado kilómetros y kilómetros de carretera, y también muchas horas en Zaragoza y en el país del whisky. Aprendiendo en esos viajes (y bares) lo indecible, intentando arreglar el mundo a ratos, y sobre todo dándome cuenta, como tú dices, que “En este mundillo hay que tener paciencia, hijo, que al final, si las cosas se hacen bien, salen bien…”. Parece que al final tenías razón… Ger, no cabe aquí todo el reconocimiento que pueda deberte; espero, al menos en parte, poder devolverte todo el tiempo que has invertido conmigo estos últimos 4 años. Desde que llegué al Cervantes, cito literal, ‘hecho un pipiolo’ hasta el día de hoy, que finalmente leo mi Tesis, siempre has estado ahí para ayudarme con todo lo que se ponía por delante y dándome ánimos en cada ‘rejection’… muchas gracias. Y como no hay dos sin tres, el Dr. Ara merece también un reconocimiento; contigo Nacho, he aprendido (al mismo tiempo que todo lo científico) esa parte de la investigación que no aparece en los ‘papers’, eso que se nace y no se hace, ese saber hacer tan tuyo y que tan buenos ratos nos ha hecho pasar. “No hay que dar puntada sin hilo” me decías, y cuánta razón tenías Nacho… mil gracias a ti también. -185- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. Como principal responsable del grupo GENUD, muchas gracias Luis Moreno por tu acogida, y por como consigues, incluso en este tiempo de crisis, que este barco siga a flote. Muchas gracias a todos los compañeros que estáis o habéis formado parte del grupo: Juan, Iris, Pilar M, Paula, Maribel, Theodora, Pablo, David, Esther, Maria Luisa, Pilar de M, Alba S, Silvia, Diego, Fernanda, Alex León, Gerardo, Dorita, Teresa, Jesús… Gracias y, sobre todo muchos ánimos a los nuevos doctorandos de Ciencias del Deporte que estáis empezando, Alex Guillén, Alex Gómez, Silva y Ángel, que sois los tenéis que tirar del carro ahora, se espera mucho de vosotros! Un agradecimiento especial merecen mis compañeros de trabajo mas cercanos y compañeros de congresos; Luis, que al final parece que lo conseguimos… y mira que estaba difícil!, Hugo, gracias por todo en general, siempre es bueno tener un post-doc entre nosotros, aunque fuera por poco tiempo! Y muchas gracias Alba, mi compi más “veterana”, porque después de unos cuantos años, parece que el trabajo juntos, es trabajo, pero no cansa tanto, verdad? There is also a person that I would like to thank his help and support during my stay in the University of Glasgow, Yannis Pitsiladis. Thank you very much for your kind reception and supportive advice, I really enjoyed working with you and hope we’ll work together again in a close future. Many thanks also to the Glasgow team, which made my stay much more comfortable; Chris, Robert, John, Lukas, Cristina, Maria, Ramzy, Ruth, Hannah, Lena, Robert, Carlos, Michael, Thelma, Farah… Nada de esto hubiera sido posible, si los niños con y sin síndrome de Down, y principalmente sus familias no se hubieran prestado a realizar todas las pruebas, ir a entrenar todos los días, llamadas y más llamadas… Así que debo que agradecer, inmensamente, la colaboración de todos ellos. En este mismo sentido, agradezco también -186- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. la inestimable colaboración de las instituciones (y sus trabajadores) con las que trabajamos: Fundación Down, mil gracias Ruth por tu predisposición y eficacia, y también muchas gracias a Marta, Carlos e Iván por esas “manillas” que me echasteis con los entrenamientos. Special Olympics, gracias Asun por facilitarme los contactos. Y gracias también al colegio Jesús María - El Salvador, especialmente a Manolo Magdaleno por dejarnos interferir ahí y conseguir todos los niños control, por los espacios cedidos para reuniones… En el terreno más personal, me gustaría agradecer también, a mis padres principalmente aguantarme todos estos años desde Alcalá de Henares hasta mi vuelta a Zaragoza, pero también el haberme hecho tan fácil poder dedicarme a esto sin excesiva preocupación externa. También gracias a Lore y Scott (y a la pequeña Lucía); por el tiempo que estuve en Glasgow como si estuviera en casa y, por supuesto, “thanks for reviewing the English style and grammar…” Muchas gracias también al resto de mi familia González de Agüero – Lafuente, y a mi familia política Bueno – Fenero por vuestro apoyo todo este tiempo. A mis amigos más cercanos, Carlos, Enrique, Héctor, Jaime y Javi, gracias por entender, aunque fuera difícil, lo que suponía para mi esta Tesis y todo el tiempo que he tenido que dedicarle. Y cómo no agradecer, a la persona que sin duda más me sufre y me aporta, desde antes incluso de comenzar ésta andadura, mi queridísima Sara; muchísimas gracias, contigo TODO es mucho más sencillo… -187- Composición corporal y condición física en niños y adolescentes con síndrome de Down; efectos de un programa de acondicionamiento físico combinado con saltos pliométricos. -188- -189-