special - ALU
Transcription
special - ALU
Alcoa image - used with permission Giesel Verlag GmbH · Postfach 120158 · D-30907 Isernhagen – PVST H 13410 – Dt. Post AG – Entgelt bezahlt Special 2007 The international smelting industry Positive mood in the German aluminium industry Strapping technology with PET high performance strip Volume 83 · January / February 2007 International Journal for Industry, Research and Application 1/2 Billets ready for shipment. Continuous Homogenizing Plant. Continuous Homogenizing Plant Continuous Homogenizing Plant. Leading technology in the aluminium casthouse. There are many benefits in one-stop shopping – even for industrial goods. Reliable, co-operative planning, specifications, which meet exactly your demands and individual service-packages to operate on first-class level throughout the whole lifetime of the plant – this can be realized by one of the most experienced suppliers: Hertwich Engineering. Major benefits Hertwich Engineering is dedicated to leading technology in the aluminium casthouse. We add value by designing integrated turn-key solutions. From melting and remelting to testing and packing. The results are convincing: highest quality of products at lowest cost-of-ownership. This has been proven by numerous plants all over the world. Continuous Homogenizing Plant Reliable, maximum homogenizing quality, uniform for all billets Lowest labour costs, full automation Best log straightness, no deep surface marks Extremly reliable operation, little down-time, low repair costs Lowest energy consumption, low power ratings Flexibility of plant layout More than 80 plants in operation MEETING your EXPECTATIONS HERTWICH ENGINEERING GMBH Weinbergerstrasse 6 5280 Braunau, Austria Phone: +43 (0) 7722 806-0 Fax: +43 (0) 7722 806-122 E-mail: info@hertwich.com Internet: www.hertwich.com EDITORIAL Volker Karow Chefredakteur Editor in Chief pro domo: Kontinuität im Wandel pro domo: Change with continuity ALUMINIUM · 1-2/2007 Die erste Ausgabe der ALUMINIUM unter neuer redaktioneller Leitung und dann gleich in einem neuen „Look“: Das könnte schnell auch als inhaltlicher Bruch mit der bisherigen Tradition der Zeitschrift interpretiert werden, doch wäre dies ein Missverständnis. Der langjährige Chefredakteur Dr.-Ing. Peter Johne hat die ALUMINIUM in den vergangenen mehr als zehn Jahren zu einer international renommierten Fachzeitschrift entwickelt, die sich durch fundierte und gut recherchierte Berichte aus Industrie, Forschung und Praxis auszeichnet. Diese Prägung, das ist der Anspruch, soll natürlich fortgesetzt werden. Dabei liegt es in der Natur der Sache, dass ein gelernter Volkswirt einen etwas anderen Blickwinkel als ein Ingenieur hat. Das mag hier und da mit einer leichten inhaltlichen Akzentverschiebung einhergehen, doch bleiben technische und wissenschaftliche Beiträge auch künftig zentrale Bausteine der ALUMINIUM. Die neue Chefredaktion weiß sich dabei glücklich, auf die Expertise des geschätzten Kollegen zurückgreifen zu können. Dr. Johne wird dieser Zeitschrift weiterhin zur Verfügung stehen: als Autor und auch als Herausgeber. Was nun die Überarbeitung des Layouts betrifft: Der Leser wird beim Durchblättern der neuen Ausgabe feststellen, dass der Anteil der farbigen Seiten erweitert wurde. Bei genauerem Hinsehen wird erkennbar, dass Struktur und Gliederung der ALUMINIUM mit Blick auf Übersichtlichkeit und Leserführung überarbeitet wurden. Auch hinsichtlich der Zweisprachigkeit von Artikeln waren Herausgeber und Redaktion bestrebt, aus Lesersicht Optimierungen vorzunehmen. Zu guter Letzt ging es auch darum, die Zeitschrift layouttechnisch abwechslungsreicher zu gestalten. Wir hoffen, dies ist uns gelungen und der geneigte Leser sieht in der Überarbeitung einen Gewinn. Jenseits gestalterischer Neuerungen bleibt die ALUMINIUM auch künftig eine die Branchenwelt abbildende Fachzeitschrift und den sich daraus ergebenden Anforderungen verpflichtet. One of the first things that will be noticed about this first issue of ALUMINIUM under its new editorial management, is a “new look”. That might at first sight also lead to the expectation of a break from the previous tradition of the journal in terms of content, but this would be a misunderstanding. Dr.-Ing. Peter Johne, Editor in Chief of ALUMINIUM for very many years, developed it over much more than a decade into an internationally renowned technical journal distinguished for its authoritative and well-researched reports on industry, research and practical applications. Naturally, we aim to maintain that reputation and image. It is only to be expected, however, that a trained political economist will see matters from a viewpoint somewhat different from that of an engineer. Here and there this may result in a slight shift of emphasis in the content, but technical and scientific contributions will as always remain cornerstones of ALUMINIUM in the future as well. The new Chief Editor is only too happy to make the most of the expertise of his esteemed colleague Dr. Johne, who will still lend his services to this journal, both as an author and as publisher. As regards the redesigned layout: readers leafing through the new issue will note that the proportion of coloured pages has been increased. Careful observation will show that the structure and organisation of ALUMINIUM have been modified with a view to greater clarity and reader guidance. In relation to the bilingual presentation of articles as well, the publisher and editor have striven to achieve optimisations from the reader’s standpoint. Last but not least, some further changes have had to be made in order to provide greater variety in the technical layout of the journal. We hope that we have managed this successfully and that sympathetically inclined readers will find the changes beneficial. Notwithstanding its new design features, ALUMINIUM will in the future too remain a journal that faithfully portrays the world of the aluminium branch and does all that is necessary to fulfil the responsibility of doing so. 3 I N H A LT EDITORIAL pro domo: Kontinuität im Wandel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 A KT U E L L E S Personen, Unternehmen, Märkte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 WIRTSCHAFT 16 Aluminiumpreise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Produktionsdaten der deutschen Aluminiumindustrie . . . . . . . . . . . . . . . . . . 14 Die deutschen Hüttenbetriebe: technisch effizient, umweltpolitisch vorbildlich und ein wichtiges Glied in der Wertschöpfungskette . . . . . 16 European Coil Coating Kongress: Marktentwicklung, Technologietrends, Gesetzgebung ................................................................. 20 S P E C I A L 2 0 0 7: D I E I N T E R N AT I O N A L E A L U M I N I U M - H Ü T T E N I N D U S T R I E . . . . . . . . . . . . . . . . . . . . . . . . . . 30 I N T E R N AT I O N A L E B R A N C H E N N E W S . . . . . . . . . . . . . 62 M A R KT U N D T E CH N I K 30 Signode: Umreifungstechnik mit PET-Hochleistungsband . . . . . . . . . . . . . . Alcutec Engineering rüstet russische Umschmelzhütte aus . . . . . . . . . . . . Deutsche Aluminiumkonjunktur läuft derzeit rund . . . . . . . . . . . . . . . . . . . . . . Audi für innovatives Karosseriekonzept ausgezeichnet . . . . . . . . . . . . . . . . Kolbenschmidt Pierburg setzt auf AGR-Kühler aus Aluminium. . . . . . . . 70 75 78 84 86 M A R K T B E R I C H T: A L U M I N I U M I M B A U W E S E N Energieeffizientes Bauen im Fokus von Politik und Wirtschaft . . . . . . . . 88 Übergeordnete Trends im Fenster- und Fassadenbau . . . . . . . . . . . . . . . . . . 89 Europäischer Architektur-Wettbewerb von Corus Bausysteme ......... 90 Fenstermarkt im Plus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Größtes deutsches Büroprojekt mit Wicona-Fassaden .................... 91 RECYCLINGINDUSTRIE 0 Vorbericht: 9. Internationaler Aluminium Recycling Kongress der OEA 92 Hydro vollendet Metallkreislauf in Neuss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 FORSCHUNG Rührreibschweißen von artungleichen Aluminiumknetund -druckgusslegierungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 V E R A N S TA LT U N G E N 22 nd ASK Metal Forming, Termine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Fortbildung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 BDI-Umweltpreiswettbewerb 2007/08 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Neue Redaktionsanschrift New editorial office Volker Karow Franz-Meyers-Straße 16 D-53340 Meckenheim Tel: +49(0)2225/8359643 Fax: +49(0)2225/18458 E-Mail: vkarow@online.de 4 D O K U M E N TAT I O N Neue Bücher .......................................................................... 105 Firmenschriften . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Literaturhinweise .................................................................... 107 Patente ................................................................................... 109 Impressum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Vorschau ................................................................................ 130 B E Z U G S Q U E L L E N V E R Z E I C H N I S . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 ALUMINIUM · 1-2/2007 CONTENTS EDITORIAL pro domo: Change with continuity ........... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 NEWS IN BRIEF People, companies, markets ................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 ECONOMICS European Coil Coating Congress: market development, technology trends, legislation ................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Russians are coming: example Rusal .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hydro maintains speed in aluminium repositioning . . . . . . . . . . . . . . . . . . . . . Global roll-out of breakthrough Novelis Fusion technology . . . . . . . . . . Alcoa joint venture with Sapa group ......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 24 26 27 28 S P E C I A L 2 0 0 7: T H E I N T E R N AT I O N A L A L U M I N I U M S M E LT I N G I N D U S T R Y Almeq electric preheater for cathode blocks ................................. 30 Alprg: a software tool for aluminium smelting .............................. 32 Vittorio de Nora honoured by ECS ............................................... 36 Aumund cooling conveyor for hot bath material ............................ 38 Advances in gas suspension calcination technology ........................ 40 Anode rod repair and manufacture .............................................. 42 Integrated continuous billet processing ......................................... 44 De Nora inert metallic anode: further developments ...................... 48 Boron nitride plus binder – a synonym for higher productivity ....... 53 Thyristor rectifiers for aluminium plants with advanced free-wheeling control ........................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Moeller direct pot feeding technology ....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 88 C O M PA N Y N E W S W O R L D W I D E Aluminium smelting industry .................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bauxite and alumina activities ................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Secondary aluminium smelting and recycling activities . . . . . . . . . . . . . . . . Aluminium semis, Suppliers .................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . On the move...................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 64 66 67 68 M A R K E TS A N D T E CH N O LO GY Signode: strapping technology with PET high-performance strip . . . . Alcutec: German know-how for Russian recycling complex . . . . . . . . . . . Positive mood in the German aluminium industry . . . . . . . . . . . . . . . . . . . . . . GDA participation at UN conference on sustainability . . . . . . . . . . . . . . . . . . EAA launches new sustainability development indicator results . . . . . . Russia’s packaging market: aluminium processing technology at the forefront ...................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Audi takes award for innovative TT body concept . . . . . . . . . . . . . . . . . . . . . . Kolbenschmidt Pierburg successfully marketing its EGR system . . . . . . Recent advances in coil coating technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 74 78 80 81 82 84 86 94 RECYCLING INDUSTRY Preview of the 9 th International Aluminium Recycling Congress of the OEA ............................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 EVENTS Dates, 22 nd ASK Metal Forming: “Forming the Future” . . . . . . . . . . . . . . . 102 D O C U M E N TAT I O N New books ............................................................................. 105 company brochures .................................................................. 106 Literature service ................................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Imprint ..... ........................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Preview .... ........................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Inserenten dieser Ausgabe List of advertisers ABB AG, Schweiz 51 Alcutec Engineering GmbH 93 Böhler Edelstahl GmbH, Österreich 23 Buss ChemTech AG, Schweiz 65 BWG Bergwerk- und WalzwerkMaschinenbau GmbH 13 Coiltec Maschinenvertriebs GmbH 27 Drache Umwelttechnik GmbH 81 Dovebid, USA 63 Edimet SpA, Italien 11 Glama Maschinenbau GmbH 15 Hartmann Förderanlagen GmbH 57 Hertwich Engineering GmbH, Österreich 02 High Performance Industrie-Technik GmbH, Österreich 17 Innovatherm Prof. Dr. Leisenberg GmbH + Co. KG 37 Inotherm Industrieofen- und Wärmetechnik GmbH 22, 78 Moeller Materials Handling GmbH 61 Moltech Sytems Ltd., Schweiz 132 Padelttherm GmbH 55 Precimeter Control AB, Schweden 19 Bruno Presezzi Officine Meccaniche, Italien 59 SMS Demag AG 131 S O U R C E O F S U P P LY L I S T I N G .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 ALUMINIUM · 1-2/2007 5 AKTUELLES Aluminiumbranche vor großen Herausforderungen GDA GDA-Präsident Gerhard Buddenbaum (Foto) auf der Jahrespressekonferenz des Gesamtverbandes der Aluminiumindustrie im November 2006: „Die Aluminiumindustrie ist heute, mehr noch als viele andere Branchen, ein internationales, globales Geschäft. Rohstoffe, Hüttenstandorte, Verarbeitungsstandorte und Verbrauch sind breit gestreut und zunehmend eng miteinander vernetzt. Unsere Branche steht vor hohen Herausforderungen. Dass man auch in Deutschland produzieren kann, beweist die Aluminiumindustrie seit Jahren, allerdings insbesondere bei Produkten mit hoher Wertschöpfung. Dem Wettbewerbsdruck der Niedriglohnländer setzen unsere Unternehmen ein hohes Qualitätsniveau, absolute Zuverlässigkeit und große Flexibilität entgegen. Die europäische Aluminiumindustrie wird sich nur durch ihre eigene Innovationskraft langfristig an den Märkten behaupten. Nur wenn sich die Branche auf die Herstellung von Produkten konzentriert, die Marktnähe brauchen, eine hohe Wertschöpfung aufweisen und viel Know-how und gut ausgebildetes Personal verbunden mit hohen Serviceleistungen benötigen, hat Europa als Produktionsstandort eine Zukunft.“ (s. S. 78f) Bundeswirtschaftsminister Michael Glos trifft Vertreter der NE-Metallbranche WVM Bundeswirtschaftsminister Michael Glos hat gegenüber Vertretern der deutschen und europäischen NEMetallindustrie auf die Bedeutung der Leicht- und Buntmetalle für den technologischen Fortschritt und den Exporterfolg der deutschen Wirtschaft hingewiesen. Deutschland und die EU brauchen nach Ansicht des Ministers auch in Zukunft „eine geschlossene Wertschöpfungskette“ bei der Erzeugung und Verarbeitung von Aluminium, Kupfer, Zink und den anderen NE-Metallen. Besonders für die Autoindustrie und die Luftfahrt seien sie von steigender Bedeutung. Energiepolitik ist nach Aussage des Ministers ein wichtiger Bau- stein, um Deutschland international wettbewerbsfähig zu halten. Er unterstrich die Bedeutung international wettbewerbsfähiger Strompreise und funktionierender nationaler und europäischer Märkte für die energieintensive Industrie. Über die angespannte Lage auf den internationalen Rohstoffmärkten müsse man im Rahmen der Rohstoff- und Handelspolitik intensiv sprechen, so Glos. Es gehe darum, Handelshemmnisse zu beseitigen und alle politischen Instrumente zu nutzen, um zu einem zu gleichen Bedingungen funktionierenden Rohstoffmarkt zu kommen. WVM-Präsident Ulrich Grillo verdeutlichte zusammen mit nationalen und internationalen Vertretern der NE-Metallindustrie die zentralen Herausforderungen der im globalen Wettbewerb stehenden Branchenunternehmen. Neben der Energie- und Rohstoffpolitik gehöre hierzu ein Umweltund Klimaschutz, der das industrielle Engagement v.l.n.r.: Guy Thiran, Geschäftsführer Eurometaux; Martin und die internationale Kneer, Hauptgeschäftsführer WVM; Bundesminister für Wettbewerbsfähigkeit beWirtschaft und Technologie, Michael Glos; Ulrich Grillo, Vorstandsvorsitzender Grillo-Werke AG; Javier Targhetta, rücksichtige. Die Industrie Geschäftsführer Atlantic Copper S.A. stehe zu den Verpflich- 6 tungen der Nachhaltigkeit, erwarte aber zugleich bei allem politischen Handeln die Gleichrangigkeit von Ökonomie, Ökologie und Sozialem. Trimet M. Rosenbaum neuer Automotive-Vorstand Matthias Rosenbaum ist neuer Vorstand des Geschäftsbereichs Automotive bei der Trimet Aluminium AG. Er übernimmt die Verantwortung der Werke in Harzgerode (Sachsen-Anhalt) und Sömmerda (Thüringen) und folgt damit auf Uwe Pränger, der den Geschäftsbereich sechs Jahre geleitet hat. Rosenbaum, geboren in Recklinghausen, studierte an der RWTH Aachen Elektrotechnik. Bevor er im Herbst 2006 zur Trimet wechselte, war er unter anderem für die Motorola AIEG (Automotive and Industrial Electronics Group), als Sprecher der Geschäftsführung der KS Kolbenschmidt GmbH und als European Sales Manager bei General Motors Delco Remy tätig. Matthias Rosenbaum ist 52 Jahre alt. ALUMINIUM · 1-2/2007 NEWS IN BRIEF Alcoa appoints President of Flexible Packaging V. de Nora honoured by ECS Norsk Hydro top focus on aluminium Alcoa has named Jeff Kellar President of its Alcoa Flexible Packaging business, succeeding Bimal Kalvani. Kellar joins Richmond, Virginia-based Alcoa Flexible Packaging from Tetra Pak of Chicago, where he was Vice President of strategic development and marketing. Vittorio de Nora has been honoured as the recipient of The Electrochemical Society (ECS) 2006 Edward Goodrich Acheson Award. The award was established in 1928 to recognise distinguished contributions which advance objects, purposes or activities of ECS. De Nora has dedicated his career to scientific research in the field of electrochemistry, including in particular the fields of chlorine-alkali and aluminium production. His research achievements centre on his efforts to find a feasible inert anode. More about de Nora’s career on page 36 of this issue. Hydro will focus on aluminium following the US$ 30 billion takeover of its oil and gas assets by Statoil. Following the completion of the recommended merger, Hydro will be the world’s third-largest listed aluminium company and is expected to be the fourth-largest company listed on the Oslo Stock Exchange in terms of market capitalisation. The company will continue to focus on its high performing primary production system and well-developed casthouse and remelter system in Europe and the United States. It will also pursue new alumina and metal growth opportunities in attractive areas. Aston Martin The Aston Martin V8 Vantage Roadster was revealed at the 2006 Los Angeles Auto Show end of November. The Roadster shares the unique-to-Aston Martin bonded aluminium VH (Vertical Horizontal) architecture – the backbone to all modern Aston Martins. Adding to this structure sophisticated materials such as lightweight alloys, magnesium and advanced composites are used for the body, further contributing to the car‘s low weight and high rigidity. Body specification: Aluminium alloy, steel, composite, and magnesium alloy body. Extruded aluminium side impact bars and integral rollover bars. Suspension: Independent double aluminium wishbones, coil over aluminium monotube dampers and anti-roll bar. Novelis with new CEO Novelis has named Edward A. Blechschmidt, a member of its Board of Directors, to become Acting Chief Executive Officer, effective January 2, 2007. Mr. Blechschmidt succeeds Board Chairman William T. Monahan, who has been Interim CEO since August 2006. Mr. Monahan remains Chairman of the Novelis Board. Novelis will continue its search for a permanent CEO. Shell Lubricants have opened a state-of-the-art rolling oils production facility in Dortmund, Germany to develop and produce rolling oils, thus incorporating proven Controlled Particle Size (CPS) technology to meet the increasing demands of the metals industry. This new facility will enable Shell lubricants companies to provide a one-stop-shop for the metals industry, offering high quality factory plant maintenance lubricants, speciality greases and rolling oils, on a global basis. Following the acquisition of Croda Chemicals International’s (CCI) rolling fluid and production engineering business in January 2006, Shell Lubricants have now successfully integrated CCI’s range of rolling oils into their metals product portfolio. As ALUMINIUM · 1-2/2007 well as producing Croda specification rolling oils, the new facility will house a product development team that will continue to upgrade and extend the rolling oils portfolio. The production of rolling oils at the new facility is proof of Shell’s commitment to the metals industry. In the last 12 months, Shell Lubricants have introduced a number of products aimed at helping metals operators to increase productivity and reduce downtime. “In addition to the onestop-shop range of lubricants, metals operators will in future be able to benefit from having access to Shell lubricants experts at a local level to assist in reducing downtime and increasing productivity, said Roger Moulding, Vice President Specialities for Shell Lubricants .” Shell Lubricants Shell Lubricants with new rolling oils production facility Roger Moulding (left) and Peter Rommerskirchen from Shell Lubricants inaugurating production of rolling oils in Dortmund, Germany 7 AKTUELLES Mikrochip-Forschung Max-Planck-Institut Aluminium lässt Nanodrähte wachsen Eingefärbte Aufnahme von Silizium-Nanodrähten (Ø 40 nm). Silizium-Nanodrähte können helfen, Mikrochips weiter zu verkleinern. Wissenschaftler des Max-Planck-Instituts für Mikrostrukturphysik in Halle haben nun erstmals einkristalline Silizium-Nanodrähte gezüchtet, die wichtige Voraussetzungen dafür erfüllen: Sie haben Aluminium als Katalysator verwendet, um die Nanodrähte wachsen zu lassen. Bislang setzten Wissenschaftler zu diesem Zweck vor allem Gold ein. Doch schon Spuren des Edelmetalls beeinträchtigen die Funktion von Halbleiterbauteilen drastisch. Aluminium dagegen beeinträchtigt die Chipeigenschaften nicht und lässt im Gegensatz zu anderen Metallen schon bei relativ niedriger Temperatur von rund 450 °C Silizium-Nanodrähte von besonders hoher Qualität sprießen - eine Voraussetzung, um die Kosten des Prozesses zu begrenzen. „Das neue Verfahren erfüllt die wichtigsten Bedingungen, um Silizium-Nanodrähte industriell einsetzen zu können“, erläuterte Stephan Senz, einer der beteiligten Wissenschaftler. Um Aluminium in so kleine Partikel zu zerlegen, dass sich an ihm die feinen Drähte bilden, erhitzen die Forscher eine dünne Schicht davon auf einer Silizium-Unterlage. Die Folie zerreißt dann in lauter winzige Teilchen. Anschließend gehen die Wissenschaftler wie in schon bekannten Verfahren vor: Sie dampfen Silan, ein siliziumhaltiges Gas, auf die Oberfläche, das sich am Katalysatorpartikel in elementares Silizium umwandelt. Das Silizium löst sich daraufhin in 8 dem Aluminium-Teilchen. Wenn dieses kein weiteres Silizium aufnehmen kann, kristallisiert es an der Unterseite des Partikels wieder aus. So wächst ein einkristalliner SiliziumNanodraht von etwa 40 Nanometern Durchmesser heran, der an der Spitze ein Katalysatorteilchen trägt. Die viel versprechende Forschung an Halbleiter-Nanodrähten bewegt sich an der Schnittstelle von Grundlagenforschung und technischer Anwendung. „Neben ihrem denkbaren Einsatz in der Halbleiterindustrie sind die Nanodrähte sehr interessant für die physikalische Grundlagenforschung, da über ihre Eigenschaften und ihr Wachstum noch nicht viel bekannt ist“, so Senz. Leserreise zur „Expo Aluminio Eine Leserreise der Extraklasse: Der Giesel Verlag, Isernhagen, organisiert in Zusammenarbeit mit Reed Exhibition in der Zeit vom 20. bis 25. Mai 2007 einen Besuch der „Expo Aluminio“ in Sao Paulo (22. bis 24. Mai). Auf dem „Business“Programm stehen der Messebesuch sowie Besuche bei brasilianischen Aluminiumunternehmen. Eine gute Gelegenheit, Kontakte zu wichtigen Firmen und Behörden zu knüpfen. Ein Flug nach Rio de Janeiro mit Stadtrundfahrt und Besuch von Zuckerhut oder Christusstatue auf dem Corcovado runden das Programm ab. Neugierig geworden? Detailfragen beantwortet Jutta Illhardt, Tel: 0511 / 7304-126, Fax: 0511 / 7304-157, E-Mail: Illhardt@giesel.de. Neuer Airbus A350 mit CFK-Außenhaut Um die Kerosin- und Wartungskosten zu reduzieren, wird der Flugzeugrumpf des neuen Airbus A350 XWB erstmals mit kohlefaserverstärkten Kunststoffen anstelle von Aluminium ausgestattet. Die Flugzeugzelle wird zu über 60 Prozent aus neu entwickelten Werkstoffen bestehen. Die Aufnahme des Flugbetriebs des neuen A350 XWB ist für das Jahr 2013 vorgesehen. Bundesumweltministerium fördert innovative Recyclinganlage Bundesumweltminister Sigmar Gabriel unterstützt die Errichtung eines innovativen Schmelzofens zur Herstellung von Kupfer in Osnabrück. Die KM Europa Metal AG plant, einen bisher nur in der Aluminiumindustrie eingesetzten kippbaren Drehtrommelofen zu modifizieren und zum energieeffizienten Schmelzen und Raffinieren von Kupfer einzusetzen. Das Vorhaben wird vom Bundesumweltministerium mit rund 1,3 Millionen Euro aus dem Umweltinnovationsprogramm gefördert. „Fortschritte bei der Energieeffizienz in energieintensiven Industrien tragen in besonderem Maße zum Erreichen der Emissionsminderungsziele bei den Treibhausgasen bei“, so Gabriel. Die Durchführung des Vorhabens sei jedoch nicht nur gut für die Umwelt, sondern aufgrund der Energieeinsparung auch aus wirtschaftlicher Sicht attraktiv. Im Rahmen des Vorhabens soll erstmals ein kippbarer Drehtrommelofen aus der Aluminiumindustrie zum Schmelzen und Raffinieren von Sekundärkupfer eingesetzt werden. Der neue Ofen verfügt im Gegensatz zu den bisher in der Kupferindustrie eingesetzten Drehtrommelöfen über nur eine Öffnung. Dadurch können Abgase optimal erfasst und diffuse Emissionen auf ein Minimum reduziert werden. Zudem wird eine verbesserte Energieausnutzung gegenüber beidseitig offenen Drehtrommelöfen erreicht. Im Vergleich zu den bisherigen Verfahren werden 10 bis 20 Prozent Energie eingespart. ALUMINIUM · 1-2/2007 NEWS IN BRIEF Raw material prices remain high According to the branch report of IKB Deutsche Industriebank, the development of international raw material prices has now exceeded its all-time high. Decisive for further price development will be above all the future trade environment. Owing to the relatively stable boundary conditions of the world economy it is unlikely that in the medium term there will be any appreciable downturn in the demand for raw materials. The increasing access of developing countries, above all China, to raw material reserves will further boost worldwide needs and therefore also maintain prices at a relatively high level. This applies to steel and NF metals such as aluminium as much as to oil and natural gas. All in all, it can be assumed that for metallic and also energy raw materials the low prices of the mid-1990s and the beginning of the present decade will for the time being not recur. As regards the price level of aluminium, IKB’s Research Department expects a medium-term development within the range between 2,000 and 2,500 US$/t. In the medium term the worldwide enlargement of electrolysis capacities will relieve the situation. IKB also assumes that speculative demand for aluminium by hedging funds will not increase further. Assuming a slight slowdown of the world economy, IKB in any event expects a sideways movement of aluminium demand. There is unlikely to be an appreciable fall in consumption in the future. The worldwide trend towards lightweight construction in the transport sector (automotive, aviation), the growing need for packaging and the recovery of the building economy in Europe will be major driving forces. In the automotive industry aluminium and plastics are seen as the most important materials for reducing energy consumption and for meeting the objectives of the Kyoto protocol. New Airbus A350 With CFRP panelled fuselage skin To set new standards in fuel-efficiency and maintainability the new Airbus A350 XWB will feature the latest innovations in terms of advanced technologies. Amongst those is the use of all-new, easy to maintain and much lighter Carbon Fibre Reinforced Plastic panelled fuselage skins instead of aluminium. This innovation in manufacturing permits easier maintainability and reparability of individual airframe parts, while also allowing the structure of the panels to be much better optimized in terms of design to the stress and load requirements of each individual airframe part. Over 60 per cent of the airframe will be made of new materials. Entry into service of the first A350 XWB is planned for 2013. Giesel Verlag übernimmt „APT International“ und „APT News“ Der Giesel Verlag aus Isernhagen bei Hannover, Verlagsheimat dieser Zeitschrift, hat zum 1. Januar 2007 die beiden Publikationen „APT International“ und „APT News“ übernommen. „Durch die Akquisition wird die vorhandene umfassende Zeitschriftenreihe im Werkstoffbereich erweitert“, so Dietrich Taubert, Geschäftsführer des Giesel Verlags. Gleichzeitig entsteht durch die Bündelung der Kräfte ein Verlag mit sehr großem Potenzial im Aluminiumbereich. Taubert: „Mit unserem Angebot an hochwertigen Publikationen können wir die Marktbedürfnisse der Aluminiumbranche auf den internationalen Märkten bedienen.“ Der Giesel Verlag gibt mit den bestehenden Zeitschriften „ALUMINIUM International Journal“, „Aluminium Praxis“, „METALL International Journal“ sowie „Composite Materials“ und „Automotive Materials“ europaweit führende Werkstoff-Fachpublikationen heraus. „Durch die Integration ALUMINIUM · 1-2/2007 der beiden APT-Zeitschriften sind wir weltweit optimal aufgestellt und können global agierenden Kunden die passende redaktionelle und WerbePlattform bieten“, sagte Taubert. John Travis wird weiterhin als Chefredakteur der APT-Medien tätig sein. Der Giesel Verlag verantwortet Vertrieb, Anzeigenakquisition und Produktion. „Die Fokussierung auf die redaktionelle Tätigkeit und die Integration in die Strukturen eines führenden Fachverlags sind wichtige Schritte bei der konsequenten Weiterentwicklung dieser Zeitschriften“, erläuterte Travis. Über eine Vernetzung mit den bisherigen Titeln des Giesel Verlags ergeben sich für Leser und Anzeigenkunden spürbare Symbiosen hinsichtlich Inhalt und Marketingmöglichkeiten. John Travis (l.) und Dietrich Taubert 9 AKTUELLES 82m cans recycled Seit dem Jahr 2000 haben sich die Industriestrompreise mehr als verdoppelt Deckelung der Energiekosten beschlossen Stromintensive Unternehmen wie Aluminiumhütten werden 2007 erneut bei ihren Energiekosten entlastet. Begünstigt sind laut Bundesumweltministerium rund 330 Firmen des produzierenden Gewerbes, die um rund 345 Mio. Euro entlastet werden. Im Auftrag des Bundesumweltministeriums hat das Bundesamt für Wirtschaft und Ausfuhrkontrolle (BAFA) Ende Dezember 2006 über die Anträge nach der besonderen Ausgleichsregelung des Erneuerbaren-EnergienGesetzes (EEG) entschieden und zum Jahreswechsel die entsprechenden Bescheide versandt. Durch eine zum 1. Dezember 2006 in Kraft getretene Änderung des EEG fällt die Entlastung deutlich höher als bisher aus. So beträgt die so genannte EEG-Umlage der besonders stromintensiven Unternehmen künftig nur noch 0,05 ct/kWh. Die rückwirkende Anwendung der Neuregelung ab dem 1. Januar 2006 hat für die begünstigten Unternehmen zusätzlich einen Wert von etwa 80 Mio. Euro. Im Antragsverfahren für 2007 hat BAFA eine zu privilegierende Strommenge von insgesamt 72.040 GWh ermittelt, die nicht mit vollem, sondern begrenztem EEG-Anteil abzunehmen ist. Hiervon entfallen etwa 94 % (67.826 GWh) auf Unternehmen des produzierenden Gewerbes. Stromvertrag für Hamburger Aluminiumhütte perfekt Die Trimet Aluminium AG und der Stromversorger RWE haben sich auf einen neuen Stromliefervertrag für die Aluminiumhütte in Hamburg (ehemals HAW) geeinigt. Der Vertrag hat ein Volumen von 2 TWh pro Jahr und gilt von 2008 bis mindestens 2010. Trimet plant die schrittweise Wiederinbetriebnahme ab April 2007. Die Produktion soll 2008 wieder in vollem Umfang laufen. Der Anfahrbetrieb im Jahr 2007 wird über flexible, kurzfristige Stromkontrakte sichergestellt. Der Liefervertrag nutzt alle Möglichkeiten der liberalisierten Großhandelsmärkte und kombiniert 10 verschiedene innovative Stromprodukte. So kommt das aus der Finanzwirtschaft bekannte Optionsprodukt „Multi Period Extendible“ auch in der Energiewirtschaft zur Anwendung. Es gewährt dem Kunden deutliche Preisvorteile in den frühen Lieferphasen, während der Energieversorger gegen Preisverfall in den späten Lieferphasen abgesichert ist. Außerdem ist der von Trimet zu zahlende Strompreis an den Aluminiumpreis gekoppelt. Des Weiteren besteht die Möglichkeit, kurzfristig Lastabschaltungen vorzunehmen, die dem Stromversorger zusätzliche Flexibilität bieten. The U.S. Conference of Mayors, Keep America Beautiful, Inc. and Novelis Inc. announced the winners in the 2006 Cans for Cash: City Recycling Challenge on America Recycles Day. For the third year, the program challenged like-sized cities to compete against each other in aluminum can collection for monetary awards and to encourage recycling. During two weeks in September 2006, more than 30 cities collected over 2.4 million pounds of aluminum cans which equates to over 82 million used beverage cans. The aluminum can is the country‘s most recycled beverage container and has been for more than 20 years. In 2005, more than 100 billion aluminum beverage cans were produced in the United States and 52% of them were recycled (a 1.0% increase over the previous year). Nearly the same amount - close to 50 billion cans or roughly US$ 1.5 billion worth of aluminum - was lost to landfill. Coperion übernimmt Hartmann Förderanlagen Mit Wirkung zum 1. Januar 2007 hat die Coperion Waeschle Beteiligungs GmbH die Geschäftsaktivitäten der Hartmann Förderanlagen GmbH, Offenbach, übernommen. Das Unternehmen, ein führender Anbieter im Schüttguthandling von Tonerde, wird innerhalb der Coperion-Gruppe in den Geschäftsbereich Materials Handling eingegliedert und künftig als Coperion Hartmann firmieren. Der Sitz der Gesellschaft und die Arbeitsplätze der Mitarbeiter bleiben erhalten. Eigentümer der Coperion Gruppe ist die britische Private Equity Gesellschaft Lyceum Capital. Coperion Waeschle liefert für die Kunststoffherstellung die gesamte Prozesskette vom Reaktor bis zur Logistik. Erklärtes strategisches Ziel von Coperion ist es, auch in der Aluminiumherstellung die komplette Prozesskette – von der Rohmaterialannahme über das Lagern und Transportieren bis zur Beschickung der Elektrolysezellen – mit Systemlösungen abzudecken. ALUMINIUM · 1-2/2007 --- ( 0% +* (%( )"(. (& 0'. (" )(( ! , * &(' % ((/ (. / ( . - $.#(( $ # ".( ( WIRTSCHAFT Quelle: Trimet AG, Düsseldorf Trimet Aluminium AG 12 ALUMINIUM · 1-2/2007 -75; 0 &1 )85 ! # 5,154*54# &5&54*5 *83:< *5 ,*5 52/5542)15*5 *854'454*53*54515 &577%54*5 # *83:< /5*854/14;2675 # 52/5517254%152675 # .& " +1 ! '7574; , """" (: """" 5 94$9452 WIRTSCHAFT Produktionsdaten der deutschen Aluminiumindustrie Primäraluminium Sekundäraluminium Walzprodukte > 0,2 mm Produktion (in 1.000 t) Produktion (in 1.000 t) Produktion (in 1.000 t) +/in % * +/in % * Okt 05 53,4 -6,0 61,2 5,9 Nov 51,1 -7,1 65,3 6,7 Press- & Ziehprodukte** +/in % * Produktion (in 1.000 t) +/in % * 153,1 9,4 43,2 0,9 150,7 -0,9 47,3 9,2 Dez 47,6 -16,5 54,6 6,6 122,6 2,6 31,4 13,4 Jan 06 42,9 -24,8 65,4 16,2 136,2 -4,2 45,4 10,7 Feb 38,7 -25,5 65,1 9,6 145,5 5,8 46,0 8,6 Mrz 43,1 -24,8 78,9 27,1 160,1 6,1 51,9 22,0 Apr 42,4 -23,8 62,5 2,8 133,3 -12,9 42,8 -3,8 Mai 43,4 -24,0 68,0 22,1 154,4 5,2 49,7 21,8 Jun 43,2 -20,7 65,7 3,3 146,4 -2,4 47,8 0,1 Jul 45,1 -17,9 64,0 4,6 148,8 -5,2 48,5 9,3 Aug 45,2 -16,7 59,6 7,2 149,8 -6,0 48,1 9,1 Sep 42,8 -19,4 66,9 6,9 144,2 -8,8 51,1 9,2 Okt 44,1 -17,4 65,0 6,1 153,2 0,0 52,2 21,1 * gegenüber dem Vorjahresmonat, ** Stangen, Profile, Rohre; Mitteilung des Gesamtverbandes der Aluminiumindustrie GDA, Düsseldorf Primäraluminium Walzprodukte > 0,2 mm 14 Sekundäraluminium Press- und Ziehprodukte ALUMINIUM · 1-2/2007 WIRTSCHAFT Die deutschen Aluminiumhütten Technisch hoch effizient, umweltpolitisch vorbildlich und ein wichtiges Glied in der Wertschöpfungskette Christian Wellner, Jörg H. Schäfer, Düsseldorf Noch Anfang 2006 sah es so aus, als hätte das Hüttensterben in Deutschland beschleunigte Fahrt aufgenommen. Die Schließung des Hamburger Aluminium-Werks HAW Ende 2005 und das angekündigte Aus fürs Elbewerk in Stade zum Jahresende 2006 warfen die Frage auf, wann es schließlich die verbleibenden Hüttenbetriebe treffen würde. Dass HAW nun von der Trimet Aluminium AG in Essen erworben wurde und die Elektrolyseöfen in den nächsten Monaten wieder hochgefahren werden, könnte als Indiz gewertet werden, dass sich die standortpolitischen Rahmenbedingungen in Deutschland zum Besseren gewendet haben und es nun wieder aufwärts geht mit dem Wirtschaftsstandort Deutschland. 16 Bei aller Euphorie kann jedoch nicht übersehen werden, dass die Zukunft für energieintensive Unternehmen in Deutschland nebelverhangen bleibt. Generell gilt dagegen: Die Energieund insbesondere die Strompreise sind im internationalen Maßstab nach wie vor sehr hoch. Auch die politisch bedingten Energiekosten belasten trotz regierungsseitig beschlossener Erleichterungen weiterhin. GDA Die Konjunktur in Deutschland entwickelte sich 2006 mit einer Dynamik, wie sie lange nicht mehr gesehen war. Selbst aus dem Arbeitsmarkt kamen positive Meldungen. Kurzfristig stellt sich die Frage, inwieweit die jüngste Erhöhung der Mehrwertsteuer zu einem konjunkturellen Dämpfer führen wird. Langfristig kann selbst die gute Konjunktur des vergangenen Jahres nicht darüber hinwegtäuschen, dass seit Anfang der 1990er Jahre zwei Millionen industrielle Arbeitsplätze in Deutschland verloren gegangen sind. Nach wie vor wandern zahlreiche Unternehmen mit Teilen ihrer Produktion ins Ausland, weil die wirtschaftlichen Rahmenbedingungen in unserem Land erhebliche Wettbewerbsnachteile generieren. Doch ohne eine breite industrielle Basis, auch von energieintensiven Branchen, wird das strukturelle Beschäftigungsproblem hierzulande nicht zu lösen sein. Umso wichtiger ist es, den Exodus von Industrien zu stoppen. Das schließt die Aluminiumindustrie ein. GDA-Geschäftsführer Christian Wellner: „Alle Bestrebungen zur Optimierung des Elektrolysebetriebes zielen auf ... Planungssicherheit über Zeiträume, die sich in Jahrzehnten statt Jahren bemessen, gibt es somit nach wie vor nicht. Das belastet die Hüttenbetreiber mit erheblichen Risiken, wenn sie nötige Investitionen in ihre Anlagen planen – oder sie wagen es gar nicht, was ein allmähliches Ende des Betriebs zur Konsequenz hat. Und all dies vor dem Hintergrund, dass die deutschen Aluminiumhütten heute technologisch und mit Blick auf die Umweltstandards international auf Augenhöhe produzieren, ja vorbildlich sind. All dies auch vor dem Hintergrund, dass wir es in der Branche keineswegs mit einem Verdrängungswettbewerb in einem schrumpfenden Markt zu tun haben. Im Gegenteil: Die Produktion von Primäraluminium stieg zwischen 2000 und 2005 welt- weit um rund 38 Prozent auf knapp 34 Mio. jato und die Nachfrage nach Aluminium wird in den kommenden Jahren weiter steigen. Die Entwicklung des Hüttenstandorts Deutschland Es ist eine Ironie der Geschichte, dass die Standortprobleme in einem Land auftreten, das zu den ältesten Hüttenstandorten für Aluminium zählt. Der erste Elektrolysebetrieb in Deutschland wurde schon 1898 in Rheinfelden an der Grenze zur Schweiz errichtet, wo dank der Rheinfälle der erforderliche Strom zur Aluminiumproduktion kostengünstig bereitgestellt werden konnte. Niedrige Strompreise sind für die Primärhütten seit jeher unabdingbar. Deshalb entstanden ab 1917 große Aluminiumwerke am Niederrhein (Erftwerk) und in der Lausitz (Lautawerk), beide bezogen ihren Strom auf Basis günstiger Braunkohle. Mitte der 1920er Jahre wurde das Innwerk in Töging und in den 1930er Jahren das Lippewerk in Lünen gebaut. Anfang der 1960er Jahre wurde das Rheinwerk bei Neuss errichtet. Weitere Kapazitäten wurden schließlich in Essen, Ludwigshafen, Voerde, Stade und Hamburg geschaffen. Die größte Anlagenkapazität in Deutschland gab es 1985/86 mit 790.000 jato, als insgesamt neun Aluminiumhütten produzierten. Heute wird nur noch an wenigen der genannten Standorte Primärmetall erzeugt. Das Erftwerk schloss seine Elektrolyse bereits 1978, die Aluminiumhütte in Ludwigshafen 1987, das Lippewerk 1989, die Aluminiumhütte in Rheinfelden 1991 und das Innwerk 1996. Das Elbewerk in Stade hat seine Tore vor wenigen Wochen (70.000 jato) geschlossen. War es früher eher eine zu geringe Betriebsgröße bzw. ineffiziente Produktion, die zum Aus für eine Hütte ALUMINIUM · 1-2/2007 WIRTSCHAFT Corus Aluminium Voerde, Fotograf Thea Weires führte, haben sich seit der Jahrtausendwende vor allem die erheblich gestiegenen Energiekosten zum Existenz bedrohenden Kriterium verschlimmert. Dies wirft die Frage auf, wie lange die heute in Deutschland noch produzierenden Elektrolysen betrieben werden können. Stromverträge zwischen den Energieversorgern und den Hütten werden nur noch kurzfristig für einige Jahre abgeschlossen, so dass das Damoklesschwert einer Betriebsschließung permanent über den Unternehmen und ihren Beschäftigten hängt – obwohl, wie erwähnt, die deutschen Anlagen hoch effizient produzieren und technisch international wettbewerbsfähig sind. ... eine hohe Stromausbeute, einen niedrigen spezifischen Energieverbrauch der Zellen ... Elektrolyseprozess deutlich effizienter Das Prinzip der Aluminiumgewinnung ist in den vergangenen 100 Jahren zwar weitgehend unverändert geblieben, doch wurden in den vergangenen Jahrzehnten Modernisierungen durchgeführt, die die heutige Produktion wesentlich effizienter macht als früher. Alle Bestrebungen zur Optimierung des Elektrolysebetriebes zielen auf eine hohe Stromausbeute, einen niedrigen spezifischen Energieverbrauch der Zellen und einen geringen Anodenverbrauch. Auf diese Weise konnten die Produktivität enorm gesteigert und schädliche Umweltwirkungen minimiert werden. Die im Laufe der vergangenen Jahrzehnte getroffenen Maßnahmen dazu sind vielfältig: Alle Öfen in Deutschland sind seit Jahrzehnten komplett gekapselt und bleiben auch während der Oxidzufuhr geschlossen. Die Entdeckung, dass der spezifische Elektrolytwiderstand mit dem Oxidgehalt korreliert, war zwar schon ALUMINIUM · 1-2/2007 länger bekannt. Dennoch hat es erst die Entwicklung einer Technologie zur präzisen Dosierung von Tonerde durch Prozesskontrollrechner, die sogenannte Point-Feeder-Methode, ermöglicht, Anodeneffekte weitgehend zu vermeiden. Die Betriebsführung mit hohen Stromstärken sowie durch computergestützte Steuerungssysteme und Dosiereinrichtungen machen die Schmelzflusselektrolyse hoch effizient und umweltverträglich. Der Reinheitsgehalt des Aluminiums liegt bei 99,7 Prozent. Die Stromausbeute beträgt bei den modernen HochstromElektrolysezellen rund 95 Prozent. Der spezifische Strombedarf liegt in deutschen Hütten um die 14 kWh/kg Aluminium – ein erheblicher Fortschritt gegenüber 50 kWh/kg zu Beginn der industriellen Aluminiumerzeugung um 1900 und 20 kWh/kg in den 1970er Jahren. Mit den Prozessoptimierungen der vergangenen Jahre zeichnet sich zugleich ab, dass das technische Potenzial zu weiteren Verbrauchsabsenkungen weitgehend ausgeschöpft ist. Moderne Techniken der Luftreinhaltung Die Maßnahmen zur Prozessverbesserung umfassten stets auch die Techniken zur Luftreinhaltung. Als Emissionen der Elektrolyse, die gereinigt werden müssen, treten vor allem die Komponenten Staub und Fluorwasserstoff auf. Vor wenigen Jahrzehnten war die beste Methode der Staubabscheidung noch die Abtrennung mit Zyklonen, für die Fluoridabscheidung war es die Abgaswäsche mit Kalkmilch und anschließender Fällung und Abtrennung des gebildeten Calciumfluorids. Dieser Feststoff musste abfiltriert und deponiert werden. Allein für die Luftreinhaltung einer Elektrolyse von rund 78.000 jato bedeutete dies einen Wassereinsatz von circa 100.000 m3 pro Jahr und ein Abfallaufkommen von rund 6.000 Tonnen Calciumflu© oridschlamm. 17 WIRTSCHAFT es infolge einer lokalen Verarmung an Aluminiumoxid zu einer Zersetzung des Kryoliths und zur Bildung von Tetrafluormethan (CF4) und Hexafluorethan (C2F6). Die Ursache für das Entstehen eines Anodeneffektes kann eine abnehmende Tonerdekonzentration im Schmelzbad oder das Überschreiten der kritischen Stromdichte in der Elektrolysezelle sein: zum Beispiel verstopfte Point-Feeder, das Wechseln der Tonerdesorte und damit verbundene Löslichkeitsprobleme, ein Anodenwechsel oder das Absaugen von Metall. CF4 und C2F6 sind nicht toxisch und für Menschen und Tiere unschädlich, gelten jedoch als Klimagase. Sie entstehen nur kurzfristig während des Anodeneffektes und treten in relativ geringen Mengen auf. Die deutschen Primärhütten haben seit 1990 eine Menge getan, um den Anodeneffekt und das Entste- ... und einen geringen Anodenverbrauch.“ wird Wasser eingespart und das Abfallaufkommen reduziert. Die damit verbundenen Vorteile für die Umwelt gehen mit Kosteneinsparungen einher – eine ideale Situation, in der sich ökologische und ökonomische Vorteile gleichermaßen ergeben. Anodeneffekte minimiert Weitere umweltorientierte Maßnahmen zielten darauf, den sogenannten Anodeneffekt zu minimieren. Er ist durch einen raschen Anstieg der Spannung in den Elektrolysezellen gekennzeichnet, die kurzfristig auf das 6-fache ansteigen kann. Dabei kommt 18 soluten Spitzenfeld. Sie liegen mit den erwähnten 0,07 kg/t auch um fast zwei Drittel unter dem vom International Aluminium Institute (IAI) für das Jahr 2000 ermittelten internationalen Referenzwert von 0,22 kg/t CF4. Sogar der IAI-Durchschnittswert speziell für Point-Feeder-Anlagen von 0,11 kg/t wird von den deutschen Anlagen klar unterschritten. Bei diesem statistischen Vergleich ist wichtig anzumerken, dass technisch rückständige chinesischen und russischen Anlagen in den IAI-Zahlen nicht einbezogen sind. Inzwischen ist das Modernisierungspotenzial durch eine weiter verbesserte Ofensteuerung hierzulande technisch weitgehend ausgereizt. Da der Treibhauseffekt eine globale Herausforderung ist, kommt es künftig verstärkt darauf an, dass die großen Aluminiumproduzenten Russland und China ihre veraltete Anlagentechnik modernisieren. Mit Maßnahmen, wie sie in den vergangenen Jahren in Deutschland umgesetzt wurden, ließe sich ein enormes Potenzial zur Emissionsminderung erschließen. Energie- und standortpolitische Sonderlasten Corus Aluminium Voerde, Fotograf Thea Weires Mitte der 1980er Jahre kam eine innovative Technik auf den Markt, die mit der TA Luft 1986 schnell in die Hütten integriert wurde. Diese neue Technik nutzt aus, dass Tonerde in der Lage ist, gasförmige Stoffe zu absorbieren, also an ihrer Oberfläche anzulagern. Der Staub, der durch die Zugabe von Tonerde zur Absorption der Fluorwasserstoffe im Rohgas entsteht, lässt sich mit einem Gewebefilter unproblematisch abreinigen. Die mit Fluoriden angereicherte Tonerde wird in die Elektrolyse zurückgeführt, was den erforderlichen Einsatz von Aluminiumfluorid weiter reduziert. Insgesamt können die Fluoride mit einem Wirkungsgrad von über 99 Prozent aus dem Abgas entfernt werden. Die Vorteile dieses Verfahrens sind offensichtlich: Der hohe Abscheidegrad von Fluorid entlastet die Umwelt, es werden wertvolle Einsatzstoffe zurückgewonnen, außerdem hen dieser Gase zu unterbinden. So wurden 2005 in den damals produzierenden fünf deutschen Hütten insgesamt 270 Tonnen weniger CF4 emittiert als 1990. Die spezifischen Emissionen lagen durchschnittlich bei knapp 0,07 kg/t Aluminium. Die gegenüber der Bundesregierung abgegebene Selbstverpflichtung der deutschen Primäraluminiumhütten, die CF4/C2F6-Emissionen zwischen 1990 und 2005 absolut und auch spezifisch um die Hälfte zu vermindern, wurde damit deutlich übererfüllt. Die deutschen Aluminiumhütten bewegen sich im weltweiten Vergleich bei den CF4-Emissionen in einem ab- Die Errichtung neuer Hütten erfolgt heute außerhalb Europas an Standorten, die über preiswerte Energie verfügen, wie dies zum Beispiel in Katar der Fall ist. Dort wird bis 2009 eine Aluminiumhütte mit einer Anfangskapazität von 570.000 Jahrestonnen errichtet, die über ein eigenes Kraftwerk verfügen wird. Dies ist keine Perspektive hierzulande, doch sind Politik und Gesellschaft gefordert, die industriellen Rahmenbedingungen der deutschen Volkswirtschaft so zu verbessern, dass die schleichende Deindustrialisierung gestoppt wird und Wirtschaftswachstum und Beschäftigung deutlich gestärkt werden. Daher ist es unverzichtbar, jede Stufe der Wertschöpfungskette durch eine Wirtschaftspolitik zu halten, die den Standort Deutschland stärkt und den fairen Wettbewerb mit dem Ausland ermöglicht. Die deutsche Energiepolitik muss dazu ebenfalls einen Beitrag leisten, orientiert sich aber seit Jahren fast ALUMINIUM · 1-2/2007 WIRTSCHAFT ausschließlich an Klimazielen. Statt sich auf die wahren Herausforderungen zu konzentrieren, die sich aus der langfristigen Entwicklung auf den internationalen Energiemärkten ergeben, leistet sich die deutsche Energiepolitik den Ausstieg aus der Kernenergie ohne klares Bekenntnis zur Steinkohle als Ersatzenergie, gepaart mit einer massiven Subventionierung der erneuerbaren Energien durch immer höhere Ökoabgaben und ergänzt um eine CO2-Zertifikatepolitik, die den Stromkonzernen riesige Windfall Profits einbringt, die von Haushaltsund Industriekunden gleichermaßen finanziert werden. Rechnet man die CF4-Reduktion (2005: 270 t) um, die die Aluminiumhütten durch erhebliche Investitionen an CO2-Menge eingespart haben, ergibt dies – gemessen an den aktuellen Marktpreisen für Emissionszertifikate – eine Sonderleistung im Wert von mehreren Millionen Euro, mit denen die deutschen Aluminiumhütten zum deutschen Klimaschutz für die Welt beigetragen haben. Wertschöpfungsglieder eng verzahnt Die kostenlose Zuweisung von Emissionszertifikaten nach dem Nationalen Allokationsplan II wird die Strompreise weiter in die Höhe treiben, obwohl der übergroße Teil des produzierten Stroms vom Zertifikatepreis gar nicht beeinflusst wird. Für eine Aluminiumhütte, in der über ein Drittel der Produktionskosten vom Strompreis diktiert wird, ist eine solche Entwicklung katastrophal. Doch auch die weiterverarbeitenden Aluminiumbetriebe sind auf kostengünstige Energie angewiesen und müssen fürchten, dass ihr Innovationsvorteil gegenüber wachsender globaler Konkurrenz durch weiter steigende Mehrkosten aufgefressen wird, bis auch sie nicht mehr im Wettbewerb bestehen können. Wer heute meint, die energieintensive Grundstoffindustrie sei verzichtbar, muss sich morgen nicht wundern, wenn die verarbeitenden Betriebe in dieser Wertschöpfungskette in den Sog der Produktionsverlagerung geraten. Und übermorgen die Forschungs- ALUMINIUM · 1-2/2007 und Entwicklungszentren der Unternehmen folgen, was am Ende negative Rückwirkungen bis hin zum Dienstleistungssektor hätte. Die Aluminiumindustrie ist durch eine enge Verzahnung der einzelnen Glieder in der Wertschöpfungskette Metallerzeugung, Halbzeugfertigung, Endprodukt geprägt. Dabei zeigt sich, dass optimale Produktlösungen sich gerade dann erzielen lassen, wenn zwischen den einzelnen Wertschöpfungsgliedern eine enge Zusammenarbeit besteht, in der das gesamte Know-how und die Erfahrung aller Beteiligten zum Tragen kommen: von der Werkstoff-, Fertigungs- und Entwicklungskompetenz bis hin zur Qualitätssicherung, Logistik und dem Service. In diesem Kompetenzverbund könnte die räumliche Nähe zwischen den einzelnen Fertigungsstufen, kurze Kommunikations- und Logistikwege zwischen Kunde und Lieferant im internationalen Wettbewerb ein Standortvorteil sein, wenn die wirtschaftlichen Rahmenbedingungen einen fairen Wettbewerb mit dem Ausland zuließen. Aluminium ist eben längst kein 08/15-Produkt mehr. Viele Walz- und Strangpresswerke, Formgießereien und weitere Verarbeiter benötigen für ihre hochwertigen Produkte Aluminiumlegierungen mit definierten Qualitäten. Eine Lithoplatte für den Offsetdruck, ein Fahrwerksteil für Pkw, ein Außenhautblech für Flugzeuge und zahlreiche andere Produkte stellen jeweils spezifische Anforderungen an den Werkstoff – an seine Zugfestigkeit, an sein Umformvermögen, an seine Gefügeeigenschaften –, die oft in jahrzehntelang gewachsenen Kunden-Lieferanten-Beziehungen zwischen Aluminiumproduzent und Verarbeiter gelöst worden sind. Diese Technologiepartnerschaft zwischen den Wertschöpfungsgliedern ist vielfach für die hohe Produktqualität und den viel beschworenen Exporterfolg, auch von Unternehmen der Aluminiumbranche, mitverantwortlich. In einer solchen Technologiepartnerschaft kommt den Hütten als Basis des Geschäfts eine wichtige ökonomische Funktion zu. In einer globalisierten Welt, in der sogar mittelständische Unternehmen Produktionsstandorte in Osteuropa, Asien und Lateinamerika errichten, ist die Gefahr eines Domino-Effektes – „Erst gehen die Hütten, dann die Verarbeitung“ – konkreter denn je. Wenn logistische Vorteile, etwa durch die Versorgungsnähe zu den Hüttenproduzenten, wegfallen und sich die Waage dadurch weiter zuungunsten des Standorts Deutschland neigt, werden die Verarbeitungsbetriebe ihre Kosten-Nutzen-Rechnung neu aufstellen. Autoren Christian Wellner ist Geschäftsführer des Gesamtverbandes der Aluminiumindustrie (GDA), Düsseldorf. Jörg H. Schäfer ist Referent für Nachhaltigkeit beim GDA und leitet dort den Fachbereich Metallpulver. World leader in molten metal level control PreciMeter Control AB, Sweden phone +46 31 764 55 20 fax +46 31 764 55 29 sales@precimeter.se www.precimeter.com 19 WIRTSCHAFT Herbstkongress der European Coil Coating Association Autumn congress of the ECCA Marktentwicklung, Technologietrends, Gesetzgebung Market development, technology trends, legislation Unter dem Motto „Reviewing the advantages of coil coating against competitive materials” bot die ECCA auf ihrem Herbst-Kongress in Brüssel Ende 2006 einen Überblick über die Marktentwicklung, über neue Technologien bei der Bandbeschichtung von Aluminium und Stahl sowie über die Weiterverarbeitung und Anwendung vorlackierter Bänder. Die Ablieferungen an beschichteten Aluminium- und Stahlbändern durch die ECCA-Mitglieder hatten 2004 mit einer Gesamtmenge von über 1,4 Mio. m2 den bisherigen Höchststand erreicht. Marktentwicklung Nachdem das Jahr 2005 leicht rückläufig war, kann für das erste Halbjahr 2006 von einer Erholung auf dem Niveau von 2004 ausgegangen werden. Vergleichbare Zahlen aus der European Coil Coating Association Die ECCA existiert seit 1967 als Vereinigung der europäischen Coil Coating Industrie. Die derzeit rund 200 Mitgliedsfirmen sind vor allem europäische, teils aber auch außereuropäische Bandhersteller und -veredler sowie Lackhersteller, Anlagenbauer, Zulieferer und Handelsunternehmen. Ziel der ECCA ist es, die Verwendung von vorlackierten Bändern und Blechen aus Aluminium und Stahl als umweltverträgliche, kosteneffiziente und qualitativ wertvolle Methode zur Erzeugung von Fertigerzeugnissen zu fördern. Dabei widmet sich der Verband neben dem politischen Lobbying der Entwicklung von Qualitätsstandards (verbunden mit der Entwicklung von Testmethoden). Darüber hinaus führt er Trainingskurse durch, um die Verwendung vorlackierter Metalle bei Designern und Herstellern bekannt zu machen. 20 nordamerikanischen und asiatischen Region liegen noch nicht vor. In Nordamerika ist jedoch davon auszugehen, dass der rückläufige Trend weiter anhält. Ganz anders die Entwicklung in Asien, allen voran China und Indien. Dort sind neue Coil-Coating-Linien in Betrieb gegangen, die diesen Ländern nicht nur eine partielle Unabhängigkeit von Importen ermöglichen. Beide Länder haben zudem bewiesen, dass sie, wenngleich noch mit geringen Mengen, durchaus zu Exporten in europäische Regionen wie Italien und Spanien fähig sind. Hauptanwender von Produkten aus organisch beschichteten Aluminium- und Stahlblechen und -bändern bleibt das Bauwesen mit zahlreichen Anwendungen im Außen- und Innenbau. Bei beschichteten Aluminiumbändern waren das rund 70 Prozent, bei Stahlbändern 67 Prozent der 2005 erzeugten 224 Mio. bzw. 1.141 Mio. m2. Die auf dem Kongress gezeigten Beispiele ästhetisch gelungener Anwendungen bei öffentlichen und Bürogebäuden, aber auch zunehmend im privaten Hausbau spiegelten die unzähligen Variationsmöglichkeiten aus Form und Farbe wider. Im Segment Fassadentechnik wird weiteres Marktwachstum innerhalb bautechnischer Anwendungen erwartet. Dies gilt sowohl für Neubauten als auch für die Sanierung vorhandener Bausubstanz. Hierbei sollen Profilelemente und Sandwichplatten zunehmend konventionelle Werkstoffe wie Beton, Backstein, Holz und Glas ersetzen. Gepunktet wird dabei mit den langfristigen Kostenvorteilen dank Wartungsfreiheit und mit Kriterien wie Umweltverträglichkeit, Brandschutz und modernes Design bandbeschichteter Substrate. Ein weiterer Trend ist, dass immer mehr Architekten neben Form und Funktion die Wirkung der Farbe entdecken. Weitere wichtige Einsatzgebiete für bandbeschichtetes Aluminium und Under the heading “Reviewing the advantages of coil coating against competitive materials”, at its autumn congress in Brussels at the end of 2006 the ECCA presented a review of market developments, new technologies for the coil coating of aluminium and steel, and the further processing and uses of pre-painted strip. In 2004 deliveries of coated aluminium and steel strips by ECCA members amounted to 1.4 million m2, more that ever before. Market development Following a slight downturn in 2005, it is expected that there was a recovery in the first half-year of 2006 to the level of 2004. Comparable figures from the North American and Asiatic regions are not yet available, but it can be assumed that in North America the recessionary trend is still persisting. The development in Asia is quite the opposite, most of all in China and India where new coil-coating lines have come into operation, which have made those countries more than partially independent of imports. Both countries have indicated that, although still in small quantities, they are fully capable of exporting to European countries such as Italy and Spain. The largest user of products made from organically coated aluminium and steel sheets and strips is still the building industry, with numerous outdoor and indoor applications. In the case of coated aluminium strips these accounted for some 70 per cent, and in the case of steel strips 67 per cent of the respective total productions of 224 million and 1,141 million m2 in 2005. The examples exhibited at the congress, showing aesthetically successful applications in public and office buildings but to an increasing extent also in the building of private ALUMINIUM · 1-2/2007 ECONOMICS Technology trends Technological development, both for coating and for the further processing of coated strips and sheets, is continually being taken further by both manufacturers and users. The core theme of a series of presentations was the development of new coating products. Improved property profiles of products and processes are orientated towards economy, environment protection, technology and aesthetics. © ALUMINIUM · 1-2/2007 Stahl, die mit Anteilen von unter zehn Prozent folgen, sind der Fahrzeugbau und die Hausgeräteindustrie. Während bei Hausgeräten fertig lackierte Bänder seit Jahren als Stand der Technik verwendet werden, beschränken sich die Automobilhersteller nach wie vor auf den Einsatz funktionsbeschichteter Bleche. Hier spielen chemische Behandlungen zur Verbesserung der Haftvermittlung und Schmierstoffe für die Umformung eine Rolle. Der Einsatz von fertig lackiertem Stahl oder Aluminium in der Karosserie scheitert bislang noch an vielerlei Problemen: zum Beispiel am Korrosionsschutz der Schnittkanten oder an einer lackverträglichen, automobilgerechten Fügetechnik. Dies hat zur Folge, dass Autos auch in Zukunft ihre Endlackierung erst an der zusammengebauten Karosserie erhalten werden. Technologie-Trends Die technologische Entwicklung sowohl bei der Beschichtung als auch bei der Weiterverarbeitung beschichteter Bänder und Bleche wird von Herstellern und Anwendern stetig vorangetrieben. Kernthemen der Vortragsreihe galten der Entwicklung neuer Produkte für die Beschichtung. Verbesserte Eigenschaftsprofile von Produkten und Prozessen sind auf Wirtschaftlichkeit, Umweltschutz, Technologie und Ästhetik ausgerichtet. Seitens der Beschichter gehen die Forderungen in Richtung Automatisierung, Einführung schnellerer Verfahren und verbesserte Prozessstabilität. Die Entwicklung neuer Lacke für bautechnische Anwendungen, die zur Abstrahlung der Sonnenenergie konzipiert sind, zielen darauf, den Energieverbrauch zur Gebäudekühlung deutlich zu reduzieren. Für die Entwicklung solcher Lacke wird von den Herstellern eine spezielle Software eingesetzt, welche die Umgebungseinflüsse unterschiedlicher Orte simuliert. Nach wie vor bleiben chromfreie Vorbehandlungen und Lacke ein Schwerpunkt der Entwicklung. Die mittlerweile verfügbaren Produkte entsprechen hinsichtlich Korrosionsbeständigkeit und Lackhaftung den Fata Hunter residences, reflected the countless possible variations of shape and colour. In the sector of façade technology further market growth in the field of building applications is anticipated. This applies both to new buildings and in the refurbishment of existing structures. Section elements and sandwich plates will increasingly replace conventional materials such as concrete, brick, wood and glass. This is encouraged by long-term cost benefits thanks to low maintenance requirements, and by criteria such as environment-friendliness, fire protection and the modern designs that can be produced from strip-coated substrates. A further trend is that more and more architects are discovering the effects of colour in addition to shape and functionality. Other important fields of use for strip-coated aluminium and steel, which come next although with respective shares of less than 10%, are vehicle engineering and the household appliances industry. Whereas finish-painted strips have been used as standard for years in the appliances industry, automobile engineers still restrict themselves to the use of sheets with functional coatings, including chemical treatments to improve adhesion and lubricants for deformation processes. The use of finish-painted steel or aluminium for auto bodies is still held back by many problems, for example the cut edge corrosion protection or joining methods compatible with the paint and which are suitable for use in automobiles. As a result, in the future too automobiles will be given their final paint treatment only after assembly of the body shell. Fata Hunter: Eine von zwei nach China gelieferten Bandbeschichtungslinien Fata Hunter: One of two parallel coil coating lines supplied to China Eigenschaften bisher verwendeter chrombasierter Erzeugnisse. Weitere Entwicklungsziele gelten dem Korrosionsschutz der Schnittkanten ohne Primereinsatz. Der Einsatz von Antikorrosionslacken auf unbeschichtete Substrate wird noch einige Jahre auf sich warten lassen. Die Adphos AG berichtete über ihre Weiterentwicklungen bei der NIR-Aushärtung von organischen Beschichtungen. NIR steht für „Near Infra Red“ und beschreibt ein Verfahren, mit dem im nahen Infrarotbereich mittels speziellen Hochleistungsstrahlern, die eine Energiedichte von bis zu 3.000 kW pro Quadratmeter besitzen, eine sehr schnelle direkte Aufheizung der organischen Beschichtung erreicht wird. Die Folge sind sehr kurze Prozesszeiten in der Größenordnung von ein bis drei Sekunden, verglichen mit den 15 bis 25 Sekunden bei konventionellen Öfen. Dank der unmittelbaren Trocknung und Aushärtung durch NIR wird ein sehr schneller und nahezu schrottendenfreier Farb© 21 Siemens VAI WIRTSCHAFT Siemens VAI: Eingangsbereich einer Bandbeschichtungsanlage in Polen Siemens VAI: Entry section of a coil coating line in Poland wechsel bei Coil-Coating-Linien, aber auch bei kombinierten Verzinkungs- und Beschichtungslinien erreicht. Die NIR-Technik ermöglicht eine wirtschaftliche und flexible Verarbeitung auch kleinster Losgrößen und kommt damit dem kundenorientierten Trend zu immer enger gestuften Farbnuancen entgegen. Bei der Modernisierung vorhandener Anlagen gestattet die kurze Bauweise der NIR-Trockner den Einbau weiterer Coater für einen mehrschichtigen Lackauftrag in einem Banddurchlauf. Bauteile aus fertig lackierten Bändern und Blechen werden durch unterschiedliche mechanische Bearbeitungsvorgänge wie Stanzen, Biegen, Tiefziehen oder Walzprofilieren in ihre endgültige Form gebracht. Viele dieser Bearbeitungen erfordern vom Beschichter das Aufbringen von Folien zum Schutz der lackierten Oberflächen während der Bearbeitung. Die holländische Firma Wemo stellte Werkzeuge vor, mit denen auch ungeschützte Lackflächen ohne Beschädigung bearbeitet werden können. Die so genannte „swivel bending technology“ verwendet gelenkig betätigte Balken, die mit einer Relativbewegung und damit kratzerfrei mit ge- 22 ringen Radien abkanten. Neben dem Umformen widmet sich das Unternehmen auch Methoden zum Fügen bandbeschichteter Bleche: je nach Blechdicke und Verwendungszweck durch Widerstands-Buckelschweißen oder punktuelles Durchsetzfügen. Gesetzgebung Mehr Forderungen als derzeit bekannte konkrete Umsetzungen enthielt die Information über die europäische REACH-Verordnung (Registration, Evaluation, Authorization of Chemicals). Klar ist, dass auf die Hersteller, Importeure und Anwender von chemischen Substanzen und damit auf die gesamte mit dem Coil Coating befasste Industrie neue Verordnungen zukommen. Derzeit am konkretesten ist der Zeitplan für die stufenweise Einführung: Auf erste Schritte zur Einführung ab April 2007 folgt von April 2008 bis April 2010 eine Erfassungsperiode. Weitere Meilensteine im Hinblick auf die mengenmäßige Relevanz sind der April 2010 und der April 2013 bis zur vollen Wirksamwerdung ab April 2018. Was bedeutet das für Produzenten und Anwender? Neue Vorschriften für den Umgang mit Gefahrenstoffen werden zur Substitution von Stoffen führen. Dies wird die unternehmerische Tätigkeit stark berühren. Die Empfehlung an die Unternehmen lautet, frühzeitig einen vorausschauenden Ansatz für organisatorische Anpassungen zu verfolgen, um so den Ersatz von Substanzen und mögliche Änderungen der gesamten Prozesskette möglichst reibungslos zu bewirken – zumal die Umsetzungsphase relativ kurz ist. B. Rieth #"%&"&"%&$* +"" #" ( ! "&$"& "#"#&$!! '''"#&$!! ALUMINIUM · 1-2/2007 ECONOMICS From the coater’s standpoint what is needed is more automation, the introduction of more rapid processes, and improved process stability. The development of new paints for building applications, which are designed to reflect back solar energy, aim to reduce considerably the energy consumed for the cooling of buildings. For the development of such paints manufacturers use special software which simulates the influence of the surroundings at a variety of locations. As before, chromium-free pretreatments and paints are at the focus of development. The products that have meanwhile become available match the properties of the previously used, chromium-based products in relation to corrosion resistance and paint adhesion. A further development objective is cut edge corrosion protection without the use of a primer. The use of anticorrosion paints on uncoated substrates is still a few years off. Adphos AG reported its further developments in the NIR hardening of organic coatings. NIR stands for “Near Infra Red” and describes a process in which highpowered radiators operating with an energy density of up to 3,000 kW/m2 in the near infra-red range are used for the very rapid direct heating of the organic coating. This results in very short process times of the order of 1 to 3 seconds, instead of the 15 to 25 second in conventional ovens. Thanks to the direct drying and hardening by NIR very rapid colour modification almost without scrap offcuts is achieved on coil-coating lines, but also on combined galvanising and coating lines. The NIR technique enables economical and flexible processing even of very small batch sizes, and is there- ALUMINIUM · 1-2/2007 fore well suited to satisfy the increasing demand by customers for ever more subtle colour nuances. When existing plants are being modernised, the compact structure of NIR driers enables further coaters to be fitted in for multi-layer paint application during a single pass of the strip. Articles made of finish-painted strips and sheets are given their final shape by a variety of mechanical processes such as stamping, bending, deep-drawing or roll-profiling. Many of these methods require the coater to apply foils in order to protect the pain surface during processing. The Dutch company Wemo described tools with which even unprotected painted surfaces can be worked without damage. The so-termed “swivel bending technology” uses articulated beams that can bend through tight radii with a relative movement and therefore without scratching. Besides shaping methods, the company also focuses on methods for joining strip-coated sheets: depending on the sheet thickness and the intended use, by resistance stud welding or point to point penetration welding. Legislation The report concerning the European REACH (Registration, Evaluation and Authorisation of Chemicals) Directive gave notice of more requirements than there are at present known and concrete conversion provisions. What is clear, is that there are new directives to come, which will affect the manufacturers, importers and users of chemical substances and therefore the entire range of industry that has to do with coil coating. The most concrete aspect at present is the timetable for European Coil Coating Association The ECCA has existed since 1967 as the Association for the European coil coating industry. Its 200 members are mainly European companies but also include from outside Europe a number of strip producers and finishers as well as paint manufacturers, plant engineering companies, suppliers and trading companies. ECCA is to promote the use of pre-painted strips and sheets of aluminium and steel, as environmentally safe, cost-effective and qualitatively high-grade means for the production of finished goods. For this, the ECCA engages in political lobbying and in the development of quality standards (combined with the development of test methods). Furthermore, it organises training courses to familiarise designers and manufacturers with the uses of pre-painted metals. gradual implementation: after the first introduction step from April 2007 onward, between April 2008 and April 2010 there will be a period of adaptation. Other milestones of quantitative relevance are April 2010 and April 2013, until the Directive comes fully into effect from April 2018. What does this mean for producers and users? New prescriptions for operating with hazardous substances will lead to substance substitutions. This will greatly affect company activities. The recommendation for companies is to be prompt in planning anticipatory action for organisational adaptations, so as to implement substance replacements and possible modifications of the entire process chain with as few problems as possible – especially since the conversion B. Rieth phase is relatively short. 23 ECONOMICS The Russians are coming: example Rusal R. P. Pawlek, Sierre Russian companies have hit the headlines recently, surprising the established business world with their sudden emergence as major global players. From steelmaker Severstal, to aluminium producer Rusal and energy giants Lukoil and Gazprom, these emerging Russian multinationals are building on successful acquisition sprees, at home and abroad, to stake a claim for global market leadership. Western companies need to take a fresh look at these rapidly changing, emerging multinationals and recognise that they are primarily driven by commercial logic and competitive advantage. Equally, the emerging Russian giants need to focus on improving their image by systematically institutionalising international best practice standards in key areas such as transparency, corporate governance, accounting and environmental standards. The emergence of new multinationals in Russia is part of a broader global phenomenon. Indeed, Russia is now the third biggest foreign investor among emerging markets. Emerging Russian multinationals span the entire spectrum from state-owned giant to privately owned conglomerates holding former state assets and to newly established companies with international shareholders. Russian global corporate expansion is still largely limited to a handful of companies in the oil and gas, metals and mining, and telecommunications sectors. Most Russian multinationals still have a regional bias, but are now looking to invest more heavily in the mature markets of Europe, the US and Australia. The expansion drive began in the CIS and Eastern Europe, and is now moving rapidly into Africa. Russian investors have generally been welcomed in the CIS and Africa, while facing a strong degree of suspicion in most parts of Eastern Europe and in the developed world. The rapid 24 pick-up in Russian investment abroad is driven by a wide range of factors: gaining critical mass to survive consolidation; getting access to new markets, raw materials, technology transfer and management know-how; coping with excess liquidity and lack of expansion opportunities at home. Globalising Russian companies enjoy a number of significant competitive advantages over established global players. In particular they have emerging markets know-how as well as a powerful but flexible corporate structure, together with liquidity and enormous ambition. But many Russian companies also have a number of substantial weaknesses, including complicated ownership structures, a lack of transparency in corporate culture, shallow management capacities and a poor understanding of modern environmental, health and safety standards. Governance weaknesses, in particular, have sullied the international image of Russian companies, adding to an already murky reputational legacy from the 1990s and remnants of post-Soviet cold war prejudice. Tackling these weaknesses must become a priority task for Russia’s emerging multinationals. Russia’s largest aluminium producer Rusal has assets in 13 countries in the CIS, Eastern Europe, Africa, Latin America and Australia and has raised US$ 2 billion in a syndicated loan in 2006 to finance further investments. Following the current merger with its Russian rival Sual and Swiss commodities group Glencore, due to be finalised by April 2007, the new Rusal will be self-sufficient in raw materials. Its aim: to become the world’s largest diversified energy and metals corporation. Russia is rapidly becoming one of the leading foreign investors among emerging countries although they tend to keep a low profile about this. First, most Russian companies are privately owned and disclose little information. Secondly, a high pro- portion of investment is carried out indirectly through offshore vehicles and registered in host countries as investment from Cyprus, the British Virgin Islands and Luxembourg. Until recently, the bulk of Russia’s outward foreign investment went to the CIS. As a result, Russian companies now by far dominate foreign investment in these difficult markets. Rusal, for example, resuscitated Armenia’s massive aluminium company, now known as Armenal, which had been forced to stop production following the collapse of the Soviet Union. Rusal invested over US$ 100 million to modernize the plant, guaranteeing a supply of raw materials, and introducing new standards of labour. If the CIS is the near-abroad for Russian companies, Central and South-Eastern Europe are also familiar territory, but one with a far more ambivalent attitude towards Russian investors. Russia’s leading metal companies, like Evraz, Rusal and Sevestal, are far less politicised than Gazprom, but they are products of the oligarch era, when well-connected entrepreneurs were able to buy up state assets cheaply and then consolidate them to forge huge corporate empires. While these owners still play a key role in strategic direction, the businesses they own are changing rapidly, absorbing international business practices as they expand and acquire listing on international exchanges. If Russian investors frequently face suspicion in ALUMINIUM · 1-2/2007 ECONOMICS Rusal Europe, they are welcomed with open arms in Africa. Aluminium producer Rusal, for example, is constantly looking for opportunities to strengthen its raw material base, aiming to become self-sufficient by 2013. One of its first moves was to move into Guinea, taking over the management of the Compagnie des Bauxites de Kindia (CBK) for a 25-year period. Guinea holds two-thirds of the world’s bauxite reserves and the company was already a traditional supplier of bauxite to the Nikolaev Alumina Refinery in Ukraine, which Rusal bought in 2000. With a long history of economic ties between Russia and Guinea, Rusal soon expanded its operations there, taking over the management of the Alumina Company of Guinea, one of the largest employers in the country, which it is buying as the company is privatised. Rusal has a good reputation for doing more than just extracting resources. Rusal is now implementing a US$ 300 milion modernisation programme to double the alumina company’s refining capacity over the next three years and to improve the transport, water and energy infrastructure for both the refinery and the town. With the Guinean authorities looking for value-added processing to remain in-country, Rusal is also considering the construction of a new bauxite and alumina complex, including an aluminium smelter. When Rusal bought into Australia’s Queensland Alumina from the financially distressed Houston-based Kaiser Group, its value to the Australian company was three-fold: Rusal was a major customer for alumina, Primary aluminium production at Rusal ALUMINIUM · 1-2/2007 it brought new competition into the alumina market and it wiped out Kaiser’s US$ 60 million debt, in addition to paying US$ 401 million for a 20% stake. With Australia holding up to 30% of global alumina production and bauxite reserves, Rusal is now in talks with the government to develop power-generating capacities and to build a new aluminium smelter in the country. Rusal’s investment had to obtain approval from the country’s Foreign Investment Review Board as well as from two existing shareholders, rival aluminium giants Alcan and Comalco. It took 18 months to finalise the deal after Rusal’s bid won in 2004. The rapid rise in Russia’s outward investment is driven in part by global consolidation pressures, which are especially strong in the natural resource industries and the telecommunication sector. The globalisation process can only be understood in the context of Russia’s unique path of transition. During the Soviet era, Russia’s huge state-owned enterprises acted much like vertically integrated multinationals, enjoying almost complete control of the supply chain across the network of satellite states. This structure was pulled apart by the disintegration of the Comecon trade agreement and the Soviet Union. As a result, one of the major challenges facing Russian companies ever since transition began has been how to restore the value chain and how to find new markets to utilise their vast excess capacity. The energy companies quickly moved abroad to restore their markets and improve their pricing power, taking control of distribution channels across the CIS and Eastern Europe. The metals industry focused initially more on consolidation at home, buying up assets to re-create a vertically integrated supply chain, from raw materials to processing and distribution. Global acquisitions are now part of a complex strategy of securing raw materials, expanding capacities and opening access to new customers. Russian companies are now looking for long-term competitive advantage and better margins. By buying established companies, they get not only technological patents, but also market access for specialised high valueadded products. Most of Russia’s leading companies have a strategy for joining the world’s leading players in their sector. They are steadily putting the pieces in place to make it possible – expanding capacity, opening up markets, distributing networks and access to raw materials. They are not seen as world-class competitors yet. Nevertheless, Russian companies possess three characteristics that give them a significant advantage over established players. Emerging markets know-how; liquidity; and strong, but flexible structures. As Russian multinationals shift their global expansion plans up a gear and start taking their international competitors head on, their biggest obstacle will be image. Russian companies cannot yet take over large foreign companies, because the competition for these assets is intense and public companies still have a negative image of Russian businesses. In an Economist Intelligence Unit survey more than 300 international business executives around the world were interviewed to explore these perceptions. Three key findings came out of the survey: O Overall international business perceptions of Russia are negative – as a market, an investment location and as a source of investment. O The level of international business knowledge about Russia and Russian companies is very low. O International executives with experience in the Central and East European region and knowledge of Rus© 25 ECONOMICS sian companies have more nuanced views – but not always more positive ones. For Russian companies, the survey’s message is clear. The process has already begun, prompted by the need to secure international financing and work to with international partners. Several Russian companies have now set up new corporate governance structures. Rusal has developed an 18-month corporate governance programme with the help of EBRD and IFC and has appointed an independent board, among a series of other measures. It has also started the process of disclosing information on its ownership structure as well as data on consolidated accounts. The progress from the pioneering days of the 1990s is substantial and has continued over the past few years as companies learn from business partners and list on international exchanges. However, if Russian companies are to become global players, it is not enough to talk of a rhetoric change – companies will now have to show that they run their business in line with international norms. As this happens, the international business community will be forced to take a much closer look at their Russian counterparts. Emerging multinationals are already competing hard for customers, talent and resources, taking the more complacent global players by surprise. Those Russian companies that are able to transform themselves into world-class competitors will be able to determine the shape of international business in their sectors. This is a summary of a paper edited by Rusal in November 2006 entitled: “The Russians are coming: understanding emerging multinationals”; in cooperation with The Economist Intelligence Unit, 2006 Hydro maintains speed in aluminium repositioning “Hydro is stronger than ever. Our technology, competence and financial strength, together with a broader portfolio of development and exploration projects beyond 2010, give me great confidence in our strategy for future growth,” said Eivind Reiten, Hydro‘s President and Chief Executive Officer. “We are manoeuvring in an increasingly challenging global landscape but our talented organisation, proven project execution skills and our experience in cooperating with partners are more valuable than ever.” Hydro‘s Capital Markets Day presentation as to the aluminium business included the following highlights: Primary aluminium production is expected to be 1.7 million tonnes in 2007 and 2 million tonnes in 2010. 26 Divestment of Hydro‘s 49 per cent share in Meridian Technologies for 73.7 million euros and divestment of Automotive Castings for 454.3 million euros are key steps to reduce the engagement in the downstream aluminium business. Investments and exploration expenditures in 2007 are expected to be 491.1 million euros in Aluminium Metal. Norsk Hydro, Dag Jenssen Hydro is well-positioned for long-term profitable growth in its upstream aluminium operations, the Norwegian-based company said at its Capital Markets Day. Following the recommended merger of Hydro’s oil and gas activities with Statoil Hydro will continue as one of the world’s leading, integrated aluminium companies. The ongoing restructuring of the downstream aluminium portfolio is expected to be completed in 2007. Aluminium Metal on track to reposition and grow Demand for primary aluminium is expected to increase by 15 million tonnes, or about 4 per cent annually, by 2020. Rising costs is an industry challenge but the increase has been more than offset by higher aluminium prices. Restructuring of Aluminium Metal is on track with approx. 110,000 tonnes of annual capacity to be closed down by the end of 2006 and during 2007, thereby completing the closure program of 180,000 tonnes of highcost primary production capacity. The measures will significantly improve Hydro‘s smelter cost position. The company is well positioned with long-term power contracts extending up to 2020 and alumina equity coverage increasing to 75 per cent in 2010. Operational excellence remains a top priority. Hydro is pursuing a number of Hydro is about to exit Automotive Components, but will continue to focus on the sectors Rolled Products, Extrusion Europe, Extrusion Overseas, Building Systems and Precision Tubing growth opportunities in alumina and metal. The planned Qatalum smelter, a 50/50 joint venture between Qatar Petroleum and Hydro, is on track with construction start scheduled for fall 2007 and start-up of production in late 2009. The capital expenditure estimate has been increased from 2.3 to 3.4 billion euros, on a 100 per cent basis, as a result of general cost increases for key materials and construction, a weaker USD/EUR exchange rate as well as design changes. Final cost estimate and build decision are scheduled for summer 2007. © ALUMINIUM · 1-2/2007 ECONOMICS Novelis Korea invests in multi-alloy casting Investment continues global roll-out of breakthrough Novelis Fusion technology Novelis Inc. announced that its joint venture in Korea, Novelis Korea Ltd., will invest US$ 4.1 million to install Novelis Fusion casting technology in its Ulsan, South Korea, plant. Novelis The Korean investment continues the global roll-out of the breakthrough technology which first went into production in March 2006 at the Company‘s plant in Oswego, New York. In September 2006, Novelis announced that it will invest US$ 32 million in the construction of a Novelis Fusion cast- A crane lifts a Novelis Fusion multi-alloy aluminum ingot from the casting pit at the company’s Oswego, N.Y., facility Executing Aluminium Products portfolio restructuring Cash generation in Aluminium Products has been solid during the first nine months of 2006, but profitability remains unsatisfactory. Operational improvements have been achieved in most areas, and the outlook for Extrusion and Building Systems is good. In addition to the agreements to divest Automotive Castings and Meridian Technologies, the process for divesting Automotive Structures has started. ALUMINIUM · 1-2/2007 house at its Sierre, Switzerland, facility. The Novelis Fusion casting centre at Ulsan is expected to be operational by mid-2007 and will have an initial annual capacity of more than 25,000 tonnes. “The existing configuration of the Ulsan casting facilities allows a rapid and cost-efficient conversion to the Novelis Fusion process,” said Martha Brooks, Chief Operating Officer for Novelis Inc. And added, “This investment is further evidence of our confidence in the Novelis Fusion technology and the positive response we are receiving from the marketplace.” In North America, Novelis has converted virtually all of its traditional “clad” material to the new technology. “We are working with dozens of customers around the globe on the development of applications in markets such as automotive, architecture, electronics and household appliances,” said Martha Brooks. Traditional multi-alloy aluminium ingots are produced using a manual cladding process, and are limited to a small range of alloys. Novelis Fusion technology delivers both process and product improvements, including the ability to cast previously impossible combinations of alloys. “Commercially, this investment will open the door to a new range of high-end product offerings in Asia,” said Jacquie Bartlett, Vice President, Sales and Marketing, for Novelis Korea. “With the Novelis Fusion technology, we will start by offering a full range of high-quality brazing sheet and fin stock products to local customers that today must rely on imports.” It was Novelis‘ second major investment in South Korea last year. In March 2006, the company announced that it will invest US$ 30 million over a two-year period to increase production capacity at its Yeongju rolling mill by 100,000 tonnes and expand its capability in the beverage can end market. Hydro‘s magnesium plant in Canada will be closed during first half of 2007, and the remaining magnesium remelting plants will be divested. Rolled Products delivers consistently strong cash flow, but industrial challenges remain. About Novelis Korea Novelis Korea Limited is a joint venture company between Novelis Inc. (68%), Taihan Electric Wire Co. Ltd. (31%), and Hyundai Group (1%). Its plants in Yeongju and Ulsan were commissioned in 1993 to meet the growing demand for rolled aluminium products principally in Korea, China and Southeast Asia. Including its corporate office in Seoul, Novelis Korea has more than 1,200 employees who supply a broad range of high quality products and services to its customers in Asia. N N 27 ECONOMICS Alcoa to reposition downstream operations Soft alloy extrusion joint venture with Sapa group announced Alcoa is to relocate several of its downstream operations in order to further improve returns and profitability through a targeted restructuring of operations and the creation of a soft alloy extrusion joint venture. The joint venture will become a global leader in the aluminium extrusion business, with an estimated turnover of US$ 4 billion in 2006. Alcoa Following an extensive review of its downstream operations, Alcoa has signed a letter of intent with Norwegian Orkla ASA’s Sapa group to create a joint venture that would combine its soft alloy extrusion business with Sapa’s profiles extruded aluminium business, with the intention of eventually offering an IPO of the combined entity. The new venture will be majority owned by Orkla and operated by Sapa. It is anticipated that the joint venture will be formed by the end of the first quarter 2007. Alcoa’s soft alloy extrusion business encompasses 22 facilities in eight countries and about 6,400 employees. In 2005, total soft alloy extrusion shipments amounted to around 585,000 t, with revenues of approx. US$ 2.1 billion. Sapa’s extrusion business encompasses 18 facilities in 12 countries and about 6,000 employees. In 2005 section shipments were 275,000 t and revenues amounted to US$ 1.3 billion. Alcoa will continue to operate its hard alloy extrusion business which serves the aerospace, automotive, and se- Corporate centre of Alcoa, Pittsburgh 28 lected other markets. Separately, the concern will begin the process to divest the three soft alloy facilities not included in the joint venture located in Warren, Ohio, in Tifton, Georgia, and in Plant City, Florida. Alcoa Chairman and CEO Alain Belda said, “The combination of these two operations provides many opportunities to improve profitability by leveraging the scale of a broader global manufacturing system.” He added, “Our overall downstream operations have continued to improve their financial performance the past few years. We have leading positions in key flat-rolled product segments where we have grown 14% annually since 2002 and where we are also in a strong position to capture further growth in China and Russia.” Other downstream operations such as Alcoa Howmet and Alcoa Fastening Systems improved profitability by more than 60% in 2005. “And our forgings, global building and construction and hard alloy extrusion businesses are solid performers. This move and our continued focus upon continually maximising returns should serve our downstream operations well for the next several years,” said Belda. Savings of US$ 125m before taxes expected As part of the review of its overall downstream operations, Alcoa also plans a targeted restructuring programme in order to further increase efficiency as well as profitability. The restructuring will encompass plant closures and consolidations that will affect some 6,700 positions across the concern’s global businesses in 2007. This programme is expected to save around US$ 125 million before taxes on an annualised basis. Through the first three quarters of 2006, Alcoa generated more earnings than in any full year of the company’s history. “In order to continue to move forward, we now need to take the difficult but necessary restructuring steps that will continue to maximise profitability across the company,” said Belda. Included in the fourth quarter 2006 restructuring are the following major components: Flat rolled products (FRP): Restructuring of the company’s can stock operations resulting in the elimination of approx. 320 jobs, including the closure of the Swansea can stock facility in UK. Conversion of the idle rolling mill in San Antonio, Texas, into a temporary flat rolled products technical facility serving Alcoa’s global FRP business. Extruded and end products: Optimisation of the company‘s global hard alloy extrusion production operations which serve the aerospace, automotive and industrial products markets. This will result in the elimination of around 370 jobs in the US and Europe. Engineered solutions: Restructuring and consolidation of the company’s automotive and light vehicle wire harness and component operations, including closure of the manufacturing operations of the AFL Seixal plant in Portugal and restructuring of the AFL light vehicle and component operations in the US and Mexico. These measures will affect more than 4,800 jobs. Packaging and consumer: Consolidation of selected operations within the company‘s global packaging production to increase productivity, resulting in the elimination of around 470 jobs. Primary metals and alumina: Cuts within the company’s global primary metals and alumina operations by approx. 330 jobs to further strengthen the company’s position on the global cost curve. N ALUMINIUM · 1-2/2007 A L U M I N I U M S M E LT I N G I N D U S T R Y Fig. 1: Patented electric preheater for cathode blocks Almeq electric preheater for cathode blocks The electromagnetic stability of the liquid aluminium pad depends on the uniformity of the electric current passing through it from above and below. Therefore, just as every anode needs good electrical connection to an anode rod, so every cathode block needs good electrical connection to a steel cathode collector conductor bar. Since it cannot be repaired in service, the cathode connection must reliably last the lifetime of the pot, and its fabrication is a vital step in pot assembly. The steel bar is sealed into the cathode blocks using a paste, glue or cast iron. To improve the electrical connection, this cathode block must be preheated to about 700 °C. Traditionally this has been done by flame heating the assembly from outside. This is not very efficient or convenient: it involves substantial fuel costs, noise, and fumes. Also, it requires close supervision, as it tends to oxidise carbon from the cathode blocks, there is a risk of gas explosions. To overcome these problems, Almeq invented an electric 30 All illustrations: Almeq J. D. Hansen, Langhus Fig. 2: Clamping system preheater for cathode elements before the rodding. Its key elements are illustrated as follows. A patent covers the principle of electric resistance heating of cathode blocks. The carbon blocks with steel conductor bars are placed in an insulated chamber, where the steel bars are connected to an electric current of between 4 kA and 7 kA. This uniformly and heats the steel bar in programmed stages to 700 °C; the cathode blocks reach 400 °C and do not need more, as they are already calcined. The fully automated process has an accurate clamping mechanism to introduce the heating current. To avoid overheating the copper clamps, these are water cooled. If the cathode consists of a split steel bar, the preheater station is equipped with an electrical contact in the middle to bridge the gap. ALUMINIUM · 1-2/2007 SPECIAL A L U M I N I U M S M E LT I N G I N D U S T R Y Fig. 3: Process control The process is controlled by thermocouples monitoring the temperature in the steel bar and carbon cathode block. The exact temperatures are set according to the customer’s specification. Different methods are available for feeding the carbon and steel assemblies to the preheater. Alternatives range from a single loading wagon to complete arrangements including shot blasting and casting station. Results in service Four machines are in service, totalling 17 years of experience: Country Iceland Norway UAE Iceland Place Hafnafjordur Husnes Dubai Grundartangi Customer Icelandic Aluminium Company Sør-Norge Aluminium Dubai Aluminium Company Nordural The first machine installed replaced propane gas heating at Isal, Iceland, in 1997, and it gave the following results: yearly saving in energy: 1.28 GWh, elimination of CO2: 360,000 kg/year, saving in manpower: 2 men. Five years later, a duplicate machine was installed at SØRAL, Norway, which uses identical cathode blocks to Isal. In 2003, Almeq delivered an improved system to Dubai Aluminium (Dubal). To increase productivity, this system has two trolleys to prepare the cathode blocks. Due to changes in cathode design, the Dubal preheater will be modified to handle ALUMINIUM · 1-2/2007 31 the new, bigger blocks. The latest installation was delivered to Nordural, Iceland for the Phase III expansion project. The system has been running for a year and has heated 6,000 cathode blocks. The results from the system are as follows: Previously, 400 kg of propane was required to heat 6 cathode blocks. The estimated cost of propane is 0.40 euros per kg. With the electric preheater for cathodes the required electrical consumption is 600 kWh with an estimated cost of electricity of 0.04 euros per kWh (In Iceland, the cost of electricity is less than 1/3 of this). The savings for heating 6 cathode blocks: Year 1997 2002 2003 2005 Propane €0.40 x 400 = €160.00 Electricity €0.04 x 600 = €24.00 Saving per heating €136.00. Besides this direct cost comparison, experience in service confirms a range of advantages for the automated system: • High power factor (cost ) • No supervision needed during procedure • No hazard to personnel nor facilities • Low energy consumption (1:5 reduction) • No noise • Negligible carbon oxidation • Uniform temperatures in the steel bars and in the carbon blocks • Identical conditions prior to each casting • Fully automated feeding • No exhaust gases. Summary and Conclusion Before cathodes blocks are assembled into electrolysis pots, the steel conductor bars must be sealed into them, and then heated to ensure adequate electrical conductivity. Compared to the external gas or oil burners traditionally used for this preheating, electric resistance heating from within is safe, clean, and reliable. Experience in four smelters proves that this automated system is amortised by the fuel, operator and other costs it saves. Author Jan D. Hansen is General Manager of Almeq Norway AS, based in Langhus, Norway. Fig. 4: Feeding ALUMINIUM · 1-2/2007 31 A L U M I N I U M S M E LT I N G I N D U S T R Y AlPrg: a software tool for aluminium smelting AlPrg is a collection of computer programmes (modules) for PCs using interactive graphics to display the results of calculations concerning aluminium production by electrolysis. The user applies these modules among other things to visualise how varying the parameters will affect pot operation. He can then choose the best values to operate the electrolytic cells of a potroom so as to optimise the most important technical and economic results. This paper reports on the use of one of these modules, namely the Electrolyte Properties Module. This module calculates the physical and chemical properties of the cryolite electrolyte as a function of its composition and temperature. The Electrolyte Properties Diagram Pane shows plots of these bath properties in function of the electrolyte parameters. This plot predicts the behaviour of the bath after a parameter change, and so identifies the optimal bath composition and bath temperature to operate the electrolytic cells. AlPrg was developed with the aim of helping people occupied with aluminium production by electrolysis. AlPrg contains several modules that the user selects depending on the tasks he wants to study. For instance, if he wants to know how much aluminium a potroom is producing in one month, then he uses the aluminium production module. If he needs to find the set value of the pot voltage, the alumina feeder setting or how much aluminium fluoride to add, he will apply the corresponding, obviously more complex, modules of AlPrg. Finally if the user wants to improve the economic performance of the aluminium smelting plant, the profitability analysis modules will help him to determine those operational parameters to run the plant in a better way. This paper deals with the electrolyte properties module of AlPrg. 32 All illustrations: Entner P. M. Entner, Sierre Fig. 1: Layout of the User Interface of AlPrg. The figure shows 3 tab groups with the calculation pages Technical Profitability Analysis, Aluminium Production and Pot Parameters being selected. Two diagram panes namely the Pot Voltage Diagram Pane and the Electrolyte Composition/Properties Diagrams Pane are docked on the programme user interface. This module shows the physical and chemical properties of the cryolite electrolyte, like the liquidus temperature or electrical conductivity. AlPrg determines these values in relation to the chemical composition and the temperature of the electrolytic bath. The electrolyte properties diagram pane shows diagrams of these bath properties in function of various plots. These plots predict the behaviour of the bath after a parameter change and so help to determine the optimal bath composition and bath temperature. Programme layout When the author of this paper worked with Alusuisse and later with Alcan he developed ElysePrg [1] a precursor of AlPrg. AlPrg is, however, a completely new concept for this application, especially regarding the program features and program layout. AlPrg consists of pages and diagram panes. In the windows the user changes numerical values in input fields, and then AlPrg calculates the corresponding results. The diagrams (plots) show graphical representation of properties depend- ing on various parameters. Formed as graphical user interfaces (GUIs), the plots allow the user to change values on the plot by dragging their size representation with the mouse pointer. AlPrg calculates the corresponding new resulting values and updates the relevant pages and plot panes. The user selects pages or plot panes by clicking on the corresponding menu or tab items. He can arrange several pages on the programme user interface and see them simultaneously so as to study the calculation results. The diagram panes can float on the computer screen or they can be docked, i.e. added on the AlPrg user interface. The next figure (Fig. 1) depicts an example of the AlPrg user interface containing three tab groups and two diagram panes. From the tab groups the user has selected the technical profitability analysis page, the aluminium production page and the pot parameter page. In addition he has docked the pot voltage diagram pane and the electrolyte composition/properties pane on the user interface. The user finds more information about AlPrg in the conventional ac- ALUMINIUM · 1-2/2007 SPECIAL A L U M I N I U M S M E LT I N G I N D U S T R Y companying help system. He may also consult the corresponding website [2] that contains practically the same user’s guide and theoretical background information. cosities of the electrolytic bath and of the aluminium metal. The bath temperature can be expressed as the liquidus temperature plus the superheat. The user selects as input value either the superheat (as shown in Fig. 2) or the electrolyte The Electrolyte Composition/ temperature. Selecting a value as inProperties Page put means that it is constant for the Fig. 2 shows the electrolyte compofollowing calculations (the superheat sition/properties page. In the upper in Fig. 2) and the other depending part of the page the user changes the value (the bath temperature in Fig. 2) concentration values of the electrolyte is calculated correspondingly. components of aluminium fluoride To determine the liquidus tempera(AlF3), calcium fluoride (CaF2), aluture, the electrical conductivity or the minium oxide (alumina Al2O3), lithidensities the user can choose between several relationships published by different authors. Fig. 2 shows a Drop Down Combo Box where the user has selected the equations of Solheim [3]. He could alternatively also click on the names of RøsFig. 2: Electrolyte Composition/Properties Page. In the upper part tum [4], Peterson of the page the user may change the concentration values in the [5], Bullard [6], Lee input fields. The lower part contains the property values. The user may select the authors of the corresponding equations that [7] or Dewing [8] to AlPrg uses to calculate the properties. choose the corresponding relations. um fluoride (LiF), magnesium fluoride The theoretical part of the AlPrg (MgF2) and potassium fluoride (KF). website [9] contains all the relations The bath ratio is the weight ratio of and equations that AlPrg uses for its sodium fluoride over aluminium fluocalculations. ride. Aluminium oxide at anode effect is the alumina concentration when The Electrolyte Composition/ the anode effect occurs. The user can Properties Plot suppress this parameter by inactivatFig. 4 shows the electrolyte compoing the check box. sition/properties plot pane together The lower part of the page contains with the electrolyte composition/ the values of the electrolyte properproperties page. ties, namely the liquidus temperature, Fig. 4: The Electrolyte Composition/Properties Diagram Pane docked on the AlPrg user interface. Small icon-like plots represent the selected electrolyte property (the liquidus temperature in this figure) in function of the electrolyte components. The user has selected the liquidus temperature vs. aluminium fluoride content to be shown in the larger property plot. The circles represent the current values of the electrolyte composition. the liquidus temperature depends on these variables, the other parameters staying constant. The small circles represent these constant concentration values shown on the electrolyte composition/properties page. Property plot If the user wants to study an iconplot more profoundly he clicks on the icon-plot with the mouse pointer and the icon-plot expands to replace the larger property plot. In Fig. 4 the Icon plots The idea of this plot pane is to show a property of the electrolytic bath in dependence of the bath composition and the bath temperaFig. 3: Drop Down Combo Box to select the authors of ture. The plot pane of Fig. the relations that AlPrg uses to calculate the liquidus tem4 consists of small icon-like perature. The user has chosen the equation of Solheim plots of the liquidus temper[3] by clicking on the name with the mouse pointer. ature against the concentrations of aluminium fluoride, calcium the electrical conductivity, the maxifluoride, aluminium oxide etc. From mum alumina solubility, the total vathese plots the user can visualise how pour pressure, the densities and vis- ALUMINIUM · 1-2/2007 33 Fig. 5: Liquidus temperature vs. Alumina Concentration Property Plot. The user has clicked on the Al2O3 icon-plot and the property plot shows the liquidus temperature vs. the alumina concentration. The gray areas are the regions where the alumina concentration is lower than anode effect concentration (on the left side) or higher than the maximum alumina solubility (right side). user has clicked on the aluminium fluoride concentration icon-plot, and consequently the property plot shows the liquidus temperature in dependence of the aluminium fluoride con- ALUMINIUM · 1-2/2007 33 © A L U M I N I U M S M E LT I N G I N D U S T R Y centration between 0 and 30 weight %. The circle represents the liquidus temperature of 953.7 °C at the aluminium fluoride concentration of 12 weight %. Gray areas in the icon or property plots are regions where values are not available or not possible. Fig. 5 shows the property plot of the liquidus temperature vs. the alumina content. The grey regions show where the alumina concentration is smaller than the anode effect concentration (on the left side) or greater than the maximum solubility of alumina in the electrolyte. Electrolyte and aluminium densities As an example the following chapter discusses the densities of the electrolyte and of the liquid aluminium metal. In the electrolytic production of aluminium the density values es- Fig. 6: Aluminium and Electrolyte Densities Plot Pane. The user has clicked on the aluminium fluoride icon-plot, so that the property plot shows the aluminium and electrolyte density vs. the aluminium fluoride concentration. pecially the density difference between aluminium and electrolyte affects the separation of the produced aluminium metal from the bath. This difference should be larger than 0.2 g/cm3 in order to prevent mixing and to maintain good separation between the metal pad and the electrolyte layer. In the electrolyte and aluminium density plot pane AlPrg shows simultaneously the densities of the liquid aluminium metal and the liquid electrolyte. In this way the user sees immediately the influence of parameter changes on the density difference. Dragging If the mouse pointer is over the property plot and the user presses the right mouse button a so-called value line 34 Fig. 7: Dragging of the Value Line. When the user holds down the right mouse button AlPrg draws the so-called value line. When the user drags this line by moving the mouse, AlPrg registers a new input value and plots new density values in the property and icon plots. is drawn. When the user displaces the mouse (dragging) the value line follows this motion on the property plot. AlPrg registers this new concentration input value (5% aluminium fluoride in Fig. 7) and calculates the corresponding new density values in the icon and property plots (and electrolyte composition/properties page). If the user wants to change another parameter, the lithium fluoride concentration, the procedure is the same. The user clicks on the lithium fluoride icon plot. This icon plot is then selected, i.e. AlPrg shows this plot in the main property plot. By again dragging the value line with the mouse pointer, the user changes then the lithium fluoride concentration, and AlPrg calculates the corresponding density values. plot (densities vs. superheat on Fig. 6, 7) and the electrolyte temperature plot (bath temperature vs. aluminium fluoride on Fig. 6, 7). Clicking on the superheat iconplot ('T) AlPrg draws the corresponding property plot, namely aluminium and electrolyte density vs. superheat. By dragging the value circles, the user can modify the input value of the superheat. Since the last selected composition icon plot was the densities vs. aluminium fluoride icon-plot, AlPrg shows in the bath temperature icon plot how the electrolyte temperature depends on aluminium fluoride concentration. Temperature plots The superheat, i.e. the temperature difference between the electrolyte Fig. 9: Property Plot of Densities vs. Superheat. The user has temperature and the selected the superheat icon-plot of Fig. 6 and so AlPrg draws the corresponding property plot densities vs. superheat. liquidus temperature, is a very important value for everyday If the electrolyte temperature is pot operation. Sometimes some quite selected as input value on the elecpuzzling events are observed, namely trolyte composition/properties page that the superheat might be nega(see Fig. 2, 3 and 4), then the electrotive (the electrolytic bath should be lyte composition/properties diagram solid) even for a rather long time pepane shows the densities vs. electroriod. This effect is called the liquidus lyte temperature icon-plot (Fig. 11). By enigma [10]. clicking on this icon plot, the user inIf the superheat ('T) is selected as structs AlPrg to show the correspondinput value on the electrolyte compoing aluminium and electrolyte density sition/properties page (see Fig. 2, 3 vs. bath temperature property plot, as and 4), then the electrolyte composiwell as the electrolyte temperature tion/properties diagram pane shows plot (bath temperature vs. aluminium two icon-plots, namely the superheat fluoride on Fig. 6, 7). ALUMINIUM · 1-2/2007 SPECIAL A L U M I N I U M S M E LT I N G I N D U S T R Y Fig. 10: Property Plot of Bath Temperature vs. Aluminium Fluoride Concentration. The user has selected the bath temperature icon-plot of Fig. 6, and so AlPrg draws the corresponding property plot bath temperature vs. aluminium fluoride concentration. however also incorporated into other modules where it is needed, for instance into pot voltage or the profitability module. It works there in the same interactive way as described in this paper; this means the user can change an input value either from the key board on the electrolyte property page, or else by dragging on the corresponding property plot. AlPrg then recalculates other parameters and updates the corresponding pages or plot panes. References Conclusions This paper describes the calculation page and the diagram pane of the electrolyte properties module of AlPrg. In the calculation page the user enters or modifies in a rather conventional way values in the corresponding input fields, and AlPrg then determines the corresponding electrolyte properties, like liquidus temperature, electrical conductivity etc. The diagram pane shows graphical representations, i.e. plot is a graphical user interface, i.e. the user can change input values by dragging the so called values line with the mouse pointer to a new position and value. The user investigates in this way the behaviour not only of those electrolyte properties already described in this paper (liquidus temperature and densities), but also the electrical conductivity (interesting for pot voltage settings), maximal alumina solubility (used for point feeder setting) , vapour [1] P. M. Entner, “New Feature of ElyseSem/ ElysePrg”, Aluminium 75 (1999) 12, 10641072 [2] http://www.peter-entner.com. [3] A. Solheim, S. Rolseth, E. Skybakmoen, L. Støen, Å. Sterten, T. Støre, “Liquidus Temperature and Alumina Solubility in the System Na3AlF6-AlF3-LiF-CaF2-MgF2”, Light Metals (1995), 451-460. [4] A. Røstum, A. Solheim, A. Sterten, “Phase Diagram Data in the System Na3AlF6-LiAlF6-AlF3-Al2O3. Part I: Liquidus Temper3 atures for Primary Cryolite Crystallisation”, Light Metals (1990), 311-316. [5] R. D. Peterson, A. T. Tabereaux, “Liquidus Curves for the Cryolite-AlF3-CaF2Al2O3 System in Aluminum Cell Electrolytes”, Light Metals (1987), 383-388. [6] G. L. Bullard, D. D. Przybycien, “DTA Determination of Bath Liquidus Temperatures: Effect of LiF”, Light Metals (1986), 437-443. [7] S. S. Lee, K.-S. Lei, P. Xu, J. J. Brown Jr., “Determination of Melting Temperatures and Al2O3 Solubilities for Hall Cell Electrolyte Compositions”, Light Metals (1984), 841-855. [8] E. W. Dewing, “The Chemistry of the Alumina Reduction Cell”, Can. Metallurgical Quarterly (1974), 13 (No.4), 607-618; JOM 53 (2001) 5, pp. 29-34. [9] http://www.peter-entner.com/e/theory/thcontents.htm. [10] B. P. Moxnes, A. Solheim, T. Støre, B. E. Aga, L. Støen, “The 'Liquidus Enigma' revisited”, Light Metals (2006), 285-290. Author Fig. 11: Densities vs. Electrolyte Temperature Property Plot. The user has selected the electrolyte temperature as input value on the electrolyte composition/properties page. AlPrg then shows the densities vs. electrolyte temperature icon- and property plot after appropriate selection by the user. The shaded area is the region where the bath temperature is lower or higher than the liquidus temperature +/- the maximum superheat (±50 °C). small icon-plots, of how a selected property (the liquidus temperature, for instance) depends on the electrolyte composition values and the bath temperature. The user selects an icon-plot to be drawn in the larger and more precise property plot. This ALUMINIUM · 1-2/2007 35 pressure (necessary for environmental issues) and the viscosities of the liquid aluminium pad and electrolyte (used for hydrodynamic studies). This paper describes the electrolyte properties module as a standalone programme. This module is Peter M. Entner has studied chemistry at the University of Vienna. He pursued his studies at the University of Pennsyslvania and University of Geneva (high temperature electrochemistry and crystallography). He joined then Alusuisse that later became Alcan to work on research and development projects about aluminium smelting. Being retired, Peter’s passion for bytes and pixels keeps him busy to work on software that might be useful for the members of the aluminium smelting community. ALUMINIUM · 1-2/2007 35 A L U M I N I U M S M E LT I N G I N D U S T R Y Honoured by The Electrochemical Society Vittorio de Nora receives 2006 Acheson Award for lifetime career achievements Vittorio de Nora has been honoured as the recipient of The Electrochemical Society (ECS) 2006 Edward Goodrich Acheson Award. The Acheson Award was established in 1928 to recognise distinguished contributions which advance objects, purposes or activities of ECS. Requirements for receiving the award are distinguished services to the Society, as well as distinguished scientific discoveries or inventions in electrochemical or solid state science and technology. 36 Vittorio de Nora was born in Altamura, Italy, on 11 November 1912. He attended middle school, graduating in 1929, and was admitted to the Royal Politecnico Institute of Milan in October of the same year, where he received a doctorate in Electrochemical Engineering with full honours in 1935. In 1936, he was chosen to be Professor of Physical Chemistry and Electrochemistry at the Royal Politecnico Institute but he decided to spend two years to carry out research at King’s College, University of London, with the famous Professor Allmand. Moltech Vittorio de Nora has dedicated his career to scientific research in the field of electrochemistry, including in particular the fields of chlorine-alkali and aluminium production. Dr. de Nora’s research achievements centre on his efforts to find a feasible inert anode, that is an anode that operates in a cell without becoming corroded as part of the electrochemical process, and which could be used to replace carbon anodes in electrochemical cells. He succeeded, first with the Dimensionally Stable Anode (DSA) that revolutionised chlorine-alkali production and other electrochemical industries. By saving electrical energy, improving cell operation and eliminating or substantially reducing pollution, the DSA has contributed to a predominant position for electrochemistry worldwide. Recently, Dr. de Nora and his scientific team based in the modern laboratories purpose-built in the Swiss Valais, have developed the prototype of a de Nora inert anode for aluminium production. Inert anodes not only eliminate serious pollution problems, including carbon dioxide, carbon monoxide and perfluorocarbon emissions from carbon anodes, but also improve energy efficiency of inert anodes in electrowinning cells and also significantly reduce operating costs. Biographical Note Vittorio de Nora Later, at the Hochschule of Dresden, he worked for one year with Professor Muller, who decided to delay his retirement in order to accept the challenge of working with de Nora. Leaving Dresden in 1937, Vittorio de Nora went to the United States, where he enrolled at Lehigh University in Pennsylvania. While at Lehigh, he became one of the first members of ECS, and today he has the distinction of being the Society member with the longest membership record. He chose Lehigh in order to work with Professor Butts and the results of his research earned him a Ph.D. in Physi- cal Chemistry in just nine months. Vittorio de Nora is a Volta Fellow, a Weston Fellow and a Case Centennial Scholar. He was elected an Honorary Member of ECS in 1982, and he became a Fellow of the Society in 1992 in recognition of his contributions to science and electrochemical engineering. Case Western University, Lehigh University and the University of Cincinnati have conferred on him the honorary degree of Doctor of Science. He was one of the five founders of International Physicians for the Prevention of Nuclear War (IPPNW), to whose activities he contributes as the only non-medical founder. IPPNW received the Nobel Peace Prize in 1985. Vittorio de Nora has inspired noteworthy technical achievements by encouraging research in electrochemistry through his endowment of the annual Electrochemical Society Vittorio de Nora Award for distinguished contributions in the field. He is the author of hundreds of worldwide patents related to industrial electrochemistry. His most important patents in the chlorine-alkali field include not only the DSA itself, but also the great advantage of a new membrane cell design, which directly produced concentrated salt-free caustic and also eliminated pollution, particularly by eliminating mercury cathodes and asbestos diaphragms. De Nora companies have also developed the bi-polar chlorine cell, built plants producing one-third of the world‘s chlorine production, including the largest chlorine cell (450,000 A), still the largest electrochemical cell ever built, and have also constructed the world‘s largest water electrolysis plant having heavy water as a by-product. N For subscribers www.alu-archiv.de Knowledge with a lasting impact! ALUMINIUM · 1-2/2007 A L U M I N I U M S M E LT I N G I N D U S T R Y Aumund cooling conveyor for hot bath material In the course of more than 80 years the Aumund Group has earned its reputation as a specialist in supplying equipment for raw material handling in the cement industry, in the iron and steel as well as in the primary aluminium industry. From its headquarters in Rheinberg, Germany, the Aumund Group has integrated the companies Schade Lagertechnik GmbH at Herne in Germany, and B&W Handling Ltd. at Ely, UK, in the last years. With more than 10.000 machines installed in over 100 countries, the Group continuously faces market challenges and tries new solutions. Especially the handling of hot and abrasive bulk materials in the steel and primary aluminium industry puts severe requirements on the conveying technique. Aumund already secured an entry into the Guinness world record book for supplying of the longest bucket apron conveyor for the transport of 900 °C hot direct reduced iron. To solve a particular problem in conveying technique Aumund invented a customer-specific solution in 1995 for the aluminium smelting plant SØR Norge Aluminium in Norway. It was developed with the manager of the engineering department of the smelting plant at that time and with a Norwegian specialist for hot material crushers, and it became the first economical and efficient solution for the clean handling of 850 °C hot bath material. Since then this concept has meanwhile been successfully used for five units in other European smelting plants. All illustrations: Aumund M. Coopmann, Rheinberg Fig. 1: Fluoride emissions usually been collected in containers and allowed to cool naturally. Due to the thickness of the layer of hot bath material in these containers, there is no guarantee that the bath lumps will have cooled below 100 °C even after 24 hours of cooling time. However, before further processing, the material must cool down to below 70 to 80 °C. Special coolers have been tried to cool down the bath material to the required temperature – but without success. In order to give the new anode good starting conditions, the solid bath surface has to be cleared from under it. This allows high current efficiency and stable pot operation. Previously, point feeding prebake technology did not employ side breaking operation, so this bath material was stored in the service area of the pot. The crust with alumina and bath material was then later broken into the liquid bath by the tools of the crust breaker vehicle, while fluoride gases escaped uncontrolled. Problem Solution and functional description When using the prebake technology, anode butts are removed together with a substantial quantity of hot bath material. This fluoride-rich material has For defined cooling of bath material, Aumund developed a solution designed to cool down hot bath material from 850 °C to 80 °C within a period 38 of time not longer than 12 hours. Prior to this cooling on an Aumund deepdrawn pan conveyor, a specially designed hot bath crusher from SMV A/S receives up to 850 °C hot bath material and crushes it down to a lump size of about 200 mm. Directly underneath the hot bath crusher, the Aumund cooling conveyor is connected and re- Fig. 2: Covered conveyor connected to dry scrubbing system ceives the red-hot bath material. With a variable speed between 0.15 m/min and 0.5 m/min the conveyor works like a moveable storage and is able to adapt to the discontinuous operation of a smelting plant. After a distance of 95 m, approximately 3 tonnes per hour bath material is finally cooled down on a 1400 mm wide conveyor to approximately 80 °C and is ready for ALUMINIUM · 1-2/2007 SPECIAL further processing in the bath treatment plant. Research on the process of conveying hot bath material HF-emissions under control HF-measurements at SØR Norge Aluminium in 2005 have shown that the HF-gases evaporate into the environment at temperatures above approx. 400 °C material temperature and thus risk damaging the health of employees in the potroom. At the tipping point already, where the 850 °C hot Fig. 3: Conveyor section with heat protection box and data logger inside bath material is fed into the crusher, there is a suction point which leads the emitting HF-gases into the existing dry scrubbing system. As the cooling process progresses, the emissions of the HF-gases progressively decrease, until they finally become negligible small for a bath material temperature below 400 °C (Fig. 1). Moreover, the cooling conveyor is covered by a hood and connected to the existing dry scrubbing system via several suction points (Fig. 2). Measurements show that the suction system absorbs approx. 60 g per tonne of bath emissions on average during a 3-shift operation. A L U M I N I U M S M E LT I N G I N D U S T R Y ers, and thus to higher investments in infrastructure, civil work, etc. Based on these requirements, Aumund started investigations at the primary aluminium smelter of Slovalco in 2006. Since 2002 an Aumund cooling conveyor had already been operating at the Slovalco plant to handle hot bath material. At our works in Germany a new conveyor section was equipped with a Data logger and six thermocouples (Fig. 3) and then installed in the conveyor operating at Slovalco. The measurements taken during the normal daily operation of the primary aluminium smelter provided us with valuable data for further investigations and led to a new Thermodynamical Calculation Software (TCS). This new TC-Software (Fig. 4) has now replaced the old conventional way of designing cooling conveyors and is based on the following parameters: • material layer height • air flow above the conveyor • number of suction points • conveyor width • conveyor speed • lump size of bath material. As a theoretical reflection, we used the new TC-Software to recalculate our first installation at SØR Norge Aluminium. Compared with our original figures, the result would have allowed a reduction in length by 1/3 while doubling the conveyor speed and reducing by half the layer height of bath material. An additional advantage of the new TC-Software is the option to adapt and incorporate restrictions in conveyor length or air flow capabilities, according to our customers’ references. Benefits and advantages of the Aumund cooling system • Reduction of investment cost in infrastructure, such as avoiding the need for a building to store bath skips while the bath is cooling prior to crushing; • No need for skips to cool bath • Reduction of operating cost (no double handling of the skips and associated vehicles and operators) • Increased rate of automation • Clean bath handling • Defined cooling of bath material • Fluoride gases removed by controlled suction; • Significantly increased safety and health conditions in the potrooms • Improved environmental conditions. References 1995 2002 2002 2002 SØR Norge Aluminium, Norway SØR Norge Aluminium, Norway Slovalco Aluminium, Slovakia Alcan Icelandic Aluminium, Iceland 2006 Nordural Aluminium, Iceland 2006 Fjardaál Smelter, Iceland 2007 Trimet Aluminium, Germany Author Marco Coopmann is Sales Manager, Division Metallurgy of Aumund Fördertechnik based in Rheinberg, Germany. Investigations of the cooling characteristics of hot bath material In contrast to capacity needs in 1995 to cool 2.5 t/h of bath material, Aumund nowadays receives inquiries calling for up to 36 t/h bath material cooling and conveying capacity. Calculating such applications in the conventional way would lead to uneconomical solutions for our custom- ALUMINIUM · 1-2/2007 39 Fig. 4: Cooling curve of bath material ALUMINIUM · 1-2/2007 39 A L U M I N I U M S M E LT I N G I N D U S T R Y Advances in gas suspension calcination technology B. E. Raahauge, Copenhagen The principle of the gas suspension calciner (GSC) was developed by F. L. Smidth & Co. in the early 1970s for pre-calcination of cement raw meal (d50 = 10 to 20 μm), as feed to the rotary kiln burning the final cement clinker. Following the successful commissioning of the first 4,600 tpd rotary kiln with pre-calciner in 1976, F. L. Smidth decided to develop the GSC technology for application within the alumina industry. The state of the art of the GSC technology in commercial operation producing smelter grade alumina (SGA) covers a capacity range from 820 to 4,500 tpd of SGA. The economics of bag house versus electrostatic precipitators for meeting environmental requirements have changed over the past 20 years. This paper describes developments since the first 850 tpd GSC unit for alumina was started up in 1986. GSC for smelter grade alumina (SGA) production All illustrations: F.L.Smidth The GSC furnace comprises a cylindrical vessel with a conical bottom to let in pressurized air or gas, as well as a hot cyclone to separate of solids Fig. 1: Gas suspension calciner furnace and cyclone (HFO: heavy fuel oil; SGA: smelter grade alumina) 40 Fig. 2: Principle flow sheet for gas suspension calciner unit bag house and booster fan from the outlet gas. A series of cooling cyclones recover heat from the calcined SGA to preheat air and fuel, while a series of heating cyclones recover heat from the combustion gases to dry, preheat, and pre-calcine the hydrate feed. The GSC furnace is refractory lined and operates at a temperature in the 950 to 1150 °C range. Preheated alumina enters the GSC furnace at a temperature ranging from 320 to 370 °C in a direction parallel to the conical bottom of the furnace. Preheated air enters from the cooler at a temperature of 700 to 800 °C and is used to burn the fuel. The operating temperature chosen for the GSC furnace and hot cyclone depends on what degree of calcination the alumina requires and on how long it stays hot in the equipment downstream of the hot separation cyclone. The operating temperature can be lowered when the GSC furnace and hot cyclone is retrofitted behind a rotary kiln to act as cooler (GSC retrofit), or if the hot separation cyclone is equipped with a fluidized holding vessel. The higher operating temperature range is used when alumina from the hot cyclone discharges into a four (4) stage cyclone cooler. The GSC units are designed for an overall pressure drop of 8 to 11 kPa before the gas dedusting equipment. The specific power con- sumption of 20 to 24 kWh per tonne alumina depends on the type of gas de-dusting equipment, the type of fuel used, and whether a forced draft booster fan is installed on the clean air side. The specific heat consumption is about 3.2 to 3.4 GJ per tonne alumina, depending on moisture content in the hydrate feed and on the type of fuel used. Thermal energy options for calcination The GSC units in operation today use either heavy fuel oil (HFO), natural gas, or coal gas as fuel. Since all the combustion air is preheated by cooling the alumina, the air flow through a calciner, and thus the excess air factor, has little impact on the energy requirements. If more air enters the cooling section, then more energy will be recovered from the alumina, but this is mostly offset by an increase in the volume of hot gas lost to the stack. However, when using coal gas, the losses to the stack will be higher than for heavy fuel oil and for natural gas, because coal gas produces a much greater volume of combustion gases per unit of combustion heat. This means that large volumes of coal gas must be heated to calcining tem- ALUMINIUM · 1-2/2007 SPECIAL A L U M I N I U M S M E LT I N G I N D U S T R Y perature, further reducing the energy efficiency. The relatively low volume of air for burning coal gas results in a relatively higher loss of potentially recoverable heat to the cooling water (less recovery of heat from the alumina). Compared to natural gas, heavy fuel oil has the disadvantage of requiring a significant investment in storage and oil heating equipment. This, along with the potential restrictions regarding sulfur emissions, makes heavy fuel oil less attractive than natural gas as a fuel for alumina calciners, although the latter’s higher heating value (HHV) is 4 to 5% less per unit heat utilized by combustion (LHV). Overall, coal gas increases the specific heat consumption of GSC units with 6 to 7% when compared to GSC units using heavy fuel oil or natural gas. requires any particulate filter technology to achieve higher cleaning efficiency and on-line availability, as the allowed emission level is lowered year by year. Most alumina calcin- Fig. 3: 3 x 4500 tpd GSC units at Queensland Alumina Ltd. ers decured equipped with bag houses environmental compliance by using electrostatic precorrect start and stop procedures. The cipitators (ESP), which until recently table below compares process data, a were the state-of-the-art equipment. fabric filter and an ESP to achieve the However, the bag house, or fabric filsame level of emissions for a specific ter, is now considered an attractive Gas flow [Nm3/min] 10,9 economic alternative. The electrostatTemperature [°C] Fuel type Heavy fuel oil Natural gas Coal gas Typical lower heating value (LHV) 40.485 MJ/kg 37.345 MJ/Nm3 6.530 MJ/Nm3 Combustion air theoretical volume (Nm3/ GJ) 264 253 208 Combustion gas theoretical volume (Nm3/ GJ) 279 281 326 Tab. 1: Properties for alternative fuels used in calciner operation However, at today’s high energy cost ranging from 3.3 euros per GJ for coal to 7.5 euros per GJ for oil, coal gas may be a viable economic alternative to natural gas and HFO as fuel for new GSC units wherever coal is readily available. This is the case in many countries such as China, where most of the GSC units installed use coal gas as fuel. Preliminary economic analysis suggests that the pay-back time for a coal gasification plant is about one year. Finally it should be noted that coal gas produces 16 to 17 per cent more combustion gas volume when compared to natural gas and heavy fuel oil, which requires relatively larger equipment for dedusting the calciner exhaust gases to an acceptable emission level. Trends in air pollution control: bag house versus electrostatic precipitator The trend towards increasing environmental awareness worldwide ALUMINIUM · 1-2/2007 41 HHV/ LHV 1.061 1.107 1.058 Outlet emission [mg/Nm3, dry] 155-240 30 Tab. 2: Overall process data for a typical gas suspension calciner filter plant GSC unit. Both technologies have been selected to meet the same environmental performance for the same process conditions (i.e. flow, temperature and pressure) when applying the same local conditions (i.e. wind load, earthquake load). The table below shows that the fabric filter is lower in capex (initial investment cost) compared with the ESP. However the opex (operational cost) for the fabric filter is higher than the opex cost for the ESP. The opex for the fabric filter depends on the type of filter media used and obviously on its lifetime. This data for capex and opex has been entered into a NPV (net ic precipitator loses competitiveness at lower outlet emission levels. This is because it needs more electrical fields in the filter, which increases the associated total installed cost. On the other hand, the total installed cost of a fabric filter will generally not change when the required emission is lowered. This is because the outlet emission do not depend very much on the air to cloth ratio. The major environmental advantage of the fabric filter is its ability to maintain enviElectrostatic Fabric ronmental compli- Capex (capital expenditure) US$ 1,334,000 1,320,000 ance even when Supply cost 1,407,000 656 Installation cost the high voltage Total capex, US$ Flange/Flange 2,741,000 1,976,000 power supply fails. Opex (operational expenditure) The electrostatic Bag life: assumed to be 3 years, cage life filter has, however, is assumed to be 2 set of bags 25 150 a higher degree of Pressure drop, mm WG 50 302 Power consumption, fan, kW robustness in case Power consumption, hopper heaters, kW 58 24 of deviations from Power consumption, T/R set, kW 184 NA NA 25 normal process pa- Power consumption, compressor, kW 230,000 138,000 rameters, whereas Total opex, US$/year, the fabric filter is based on 0.06 US$/kWh sensitive to excess Tab. 3: Capex and opex for a fabric filter versus electrostatic temperature and in- precipitator © ALUMINIUM · 1-2/2007 41 A L U M I N I U M S M E LT I N G I N D U S T R Y present value) cost analysis made for a 20 year period. The result is a break-even point after approximately nine years before the ESP becomes the lower cost alternative. Anyway, the major environmental advantage of the fabric filter is its abil- ity to maintain environmental compliance even in situations when the high voltage power supply fails. And this feature may overrule any economic disadvantage over the long term, as the local population will not allow any temporary dust emissions, whatever the cause. Author Benny E. Raahauge, MSc (Chem. Eng.) has worked since 1976 with development, marketing and sales of the gas suspension calcination technology for alumina. His current position is General Manager, Alumina & Pyro Technology, at FFE Minerals Denmark A/S, based in Copenhagen. Anode rod repair and manufacture The anode rod was developed to coincide with the introduction of the prebaked anode and the advent of prebake cell technology. The early development phase generally consisted of a copper stem joined to a steel pin or stub via a bolted connection. The second generation saw the introduction of an aluminium stem joined to the steel yoke. This connection was achieved through the use of a bimetallic joint, commonly referred to as a transition joint. The bolted stub connection was replaced by a welded connection and became an integral part of a cast steel yoke. The copper stem anode rod evolved with the introduction of a welded connection from the stem to the yoke. This generation of anode rod also saw the introduction of a multi pin yoke. Generally this generation design has survived through to today’s technology. The changes to the anode rod have mainly been attributed to the increases in line amperage necessitating the use of much larger anodes. Upgrading existing anode rod fleets The industry has seen extremely large increases in line amperage and current efficiencies. In order for existing plants to stay competitive with new smelters, they have increased their amperage. We are seeing plants that were designed for 100 to 150 kA now running at 200 to 250 kA. To achieve these increases, various modifications were carried out. 42 Holcan D. Madden and B. Dalton, Gladstone In some cases the original anode rod was modified: • Extra stubs added • Stub size increased • Transition joint type changed • Offsets in anode rod. These changes did not necessarily result in the optimum rod design, but with a typical inventory of 10,000 plus rods in an older smelter producing 100,000 to 200,000 tonnes of metal, modification is sometimes the only viable option. As line amperages further increase the anode rod may require redesign; however, the decision to pursue this route will need careful planning, as major, expensive changes to other areas of the plant may be required. Current day anode rods Typical materials used in modern-day anode rods are transition joint (roll bonded, aluminium to steel), yoke (cast steel or fabricated mild steel), stub (mild steel). The design of the anode rod should take into account: • Current carrying capacity • Mechanical strength • Choice of material • Ease of manufacture • Life of anode rod • Ease of repair • Cost of repair • Electrical resistance • Initial cost • Cell thermal requirements. In recent years the industry has settled on aluminium rods as a standard compared to copper rods. This seems due to a combination of factors: • Aluminium is slightly cheaper for the same electrical performance • The larger section area of the aluminium rod is mechanically more robust • Aluminium rods last longer, typically more than 15 years compared to often less than 7 years for copper • Supports the aluminium industry. The procedure to manufacture an anode rod is relatively straightforward. ALUMINIUM · 1-2/2007 SPECIAL The cost to manufacture the yoke is generally driven by up-front costs, with far less consideration given to on-going repair costs once the plant is in operation. A cast steel yoke complete with stub may cost 60 to 70% more than a fabricated yoke. On a plant with 14,000 new assemblies, this could represent savings of US$ 3-4 million. Depending on the fabricated yoke design, however, the potential for extra repairs due to poor design could easily cost the operating plant the construction savings within a few years of operation. These costs could be incurred by: • Failed stub welds from either poor welds or operational stresses • Full stub replacement versus partial stub replacement • Twisting of assemblies once introduced into the cell, due to welding stresses not being addressed during manufacture; increasing repair needs and increasing voltage losses during operation due to poor fit of stubs in the stub holes. Economics of rod repair Cost of repair: On a modern day potline of 280,000 tpy with a 180 mm stub, the cost of repair can be in the millions of dollars per year. Reducing repair costs is naturally a target for many smelter operators. There are means by which rod repair costs can be reduced – as shown in the example below. There are also pitfalls in attempting to reduce repair costs – as discussed in the next section “Cost of not repairing”. Example: If a 280,000 tpy potline repairing 12,000 stubs per year were to convert from a full stub replacement to a partial stub replacement, then savings in steel consumption, based on a price of US$ 1,000 per tonne, will be in the order of US$ 290,000 per year. This repair saving must be set against a slight increase in voltage (4 mV) across the extra weld, amounting to US$ 90,000 extra power cost (at US$ 0.025 per kWh). This shows that the gains from adopting a partial stub replacement far out weigh the extra cost in power due to extra weld resistance – a net ALUMINIUM · 1-2/2007 43 A L U M I N I U M S M E LT I N G I N D U S T R Y saving of US$ 200,000 per year for the smelter. Cost of not repairing: For the smelter, the cost of rod repair is immediate and tangible. There is, however, a hidden cost – the cost of reduced operating performance (increased voltage losses and changed thermal performance) due to poorly maintained and repaired assemblies. Typical defects which lead to reduced anode assembly performance include: • Reduced stub diameter in the stub hole • Reduced stub diameter above the stub hole • Stub not central in stub hole • Stub not seated flat on the base of stub hole • Reduced yoke arm section. For illustrative purposes: It is estimated for the 280,000 tpy potline that, if all stubs were allowed to drop from 180 mm to an average diameter of 160 mm within the stub hole, then the additional voltage loss (40 mV) would consume US$ 900,000 of power per year (at US$ 0.025 per kWh). This example highlights the importance of maintaining the rod fleet. The smelter operator must, however, be careful in setting rod rejection criteria – the temptation to under-repair anode rods, so as to reduce the obvious costs of rod repair, could ultimately be penalizing the smelter’s total cost performance. But too strict criteria will waste money in unnecessary repairs. Typically there is a trade off between yearly repair costs and the assembly performance as illustrated in the graph. Repair methods for partial stub replacement To perform partial stub replacement repair, three systems are compared: Holcan stub welding system, friction welding, robotic welding. Holcan welding system: This lowcost system has been in use for 20 years and employs the MIG (GMAW) welding method in a semi-automatic mode. It is very forgiving for out-oftolerance dimensions of the anode rods already subjected to the operational stresses, and suggests the use of flame cutting over sawing. Friction welding: Due to very high capital start up costs, this process is more suited to being an owner’s repair. A contractor would find it difficult to justify the cost of installing this equipment. Close tolerances are required to achieve a sound weld. Generally it requires saw cutting of the old stub, which is often problematic and expensive. Robotic welding: This system can perform poorly with out-of-tolerance anode rods, and will require a skilled workforce to programme the robot. Additionally it generally requires saw cutting, which is problematic as stated previously. Conclusion Particular attention should be paid to the design of the anode rod yoke, as regards to future repair costs – a poor design will lead to excessive repair work which can easily consume initial capital savings. The repair methods chosen should take into account all the costs and the methods that will be adopted to complete these repairs. Often reduced material usage, e.g steel, can easily outweigh other costs. Evaluate the hidden costs which would arise if the stub, yoke and rod condition deteriorate – pick rejection criteria which gives the lowest overall cost to the smelter. Accuracy of information Given the many assumptions and types of calculations, it is recommended that these results be considered as order of magnitude estimates only. It is recommended that actual test data be gather under normal operating conditions. Authors Dan Madden is the Managing Director of Holcan Constructions Pty. Ltd. and has worked in the aluminium industry for 28 years. He advises the industry on the manufacture and fabrication of anode rods. Bill Dalton has spent 10 years as a Senior Research Engineer with Comalco and a further 5 years as consultant to the aluminium and wider metals industries. He is also an expert in due diligence and production cost analysis for the aluminium industry. ALUMINIUM · 1-2/2007 43 A L U M I N I U M S M E LT I N G I N D U S T R Y Integrated continuous billet processing F. Niedermair, Braunau This extraordinary success stems from a number of clear advantages: • Perfectly uniform metallurgical property of billet due to precise and reproducible temperature regime during heating, holding and cooling • Combination of various process steps into one fully automated, continuous process, hence substantial labour savings • All equipment components fully compatible, because developed, designed and built by HE • Plants built to latest state-of-the-art technology, 80 such plants in operation, • HE-CIP, Continuous Improvement Process. HE extrusion billet plants are custom-designed to meet individual requirements of clients, in terms of throughput, floor area and technical features. Description of a modern plant Description of a modern plant (60.000 to 120.000 tpy) with the emphasis on technical features, novelties and specific options (Fig. 1): The fully automated processing sequence starts with laydown of cast lengths of extrusion ingot on the entry table. From there logs are moved over a storage conveyor to the inspection station, for visual inspection for surface defects and for ultrasonic inspection (UT) for centre cracks and inclusions. For extrusion billets the linear UT station is adequate, while billets destined for aircraft or auto- 44 All illustrations: Hertwich Engineering Developed in the 1970s by Hertwich Engineering (HE), continuous billet processing plants have become the accepted standard for the processing of extrusion billets. Today more than 60% of worldwide production of extrusion billet pass through such a HE plant, which englobes inspection/QA, HE.C-homogenisation, sawing, and packaging. Fig. 1: Typical plant layout motive components are inspected Heating with the helical method, whereby the entire cylindrical billet volume is In the heating zone of the furnace, inspected, incl. surface defects with extrusion-quality logs are heated to perpendicular and angular probes. homogenizing temperature within 1,5 Logs are rotated while several probes to 2,5 hours, holding times may range move along the billet surface, each between 2 to 4 hours (blue curve). probe inspects only its section of the However, certain plants have been log. This arrangement is necessary to built to meet different, special heatachieve the required throughput. Furing requirements (Fig. 4). thermore the helical UT is designed to For instance a plant in Scandinavia meet the requirements of ASTM B 594 processes hard ZnMg alloys. This furClass A or B respectively. nace is capable of slow heating in the HE has achieved market leadercritical temperature range to avoid deship with such ultrasonic inspection velopment of cracks due to inner tenstations. Fault sizes as small as 1,2 sions (red line vs. standard blue line). mm FBH can be detected. Data of UT-inspection-results for each individual billet is recorded and remains “attached” to the billet throughout the system (log-tracking). For instance, a centre crack detected in a certain log causes the integrated billet saw to automatically remove and scrap the faulty Fig. 2: Linear testing section of the log (Figs. 2 and 3). A storage conveyor provides adequate log storage between (UT) inspection and continuous homogenising furnace. For reduced noise, logs are lifted and lowered during transfer, Helical testing no rolling is permitted. ALUMINIUM · 1-2/2007 SPECIAL Fig. 4: Heating curves blue: standard, red: special slow heating Cooling requirements of mainstream extruders. Line “d” portrays “step-cooling”. Only one of our plants is equipped for this type of cooling. However, due to the associated impact on extrudability this cooling regime is not applied in practice. Line “e” shows extremely slow cooling in the range 75 to 150 °C per hour, which is required for certain special alloys. Such slow cooling rates cannot be achieved simply, not even with stagnant air, but require closed cooling chambers with several zones of different air temperatures. In accordance with this variety of cooling regimes, actual cooling stations vary much in design and construction. We distinguish between Temperature (°C) Cooling after homogenising is an important aspect for extrudability and mechanical properties of billets. Many different cooling regimes are in use, depending on metallurgical requirements and clients recipes, hence a wealth of different coolers have been built to date (Fig. 5). A L U M I N I U M S M E LT I N G I N D U S T R Y Time (min) Fig. 5: Cooling curves Line “a” shows cooling by water quench. With AlMgSi alloys, Mg2Si thereby remains completely dissolved. Line “b” represents cooling in very intense air flow, with cooling rates 600 to 800 °C/hour. Line “c” shows the log temperature during cooling in a moderate airflow, whereby cooling rates can be adjusted 350 to 550° K/hour. The majority of plants built to date are designed and equipped for such cooling rates, as these meet the ALUMINIUM · 1-2/2007 45 open and closed type coolers, and even coolers with built in heating devices. For certain countries with cold climate we have built cooling stations with integrated waste-heat recovery. Thereby cooling air is re-circulated until it is suitable for heating of buildings. Sawing, marking, packing, weighing, strapping After cooling logs are transported to the saw plant, passing over a combi- nation of storage conveyors, shuttle cars, roller table lines etc. Once cut at the saw, all billets are marked. The introduction of a pin-stamping unit in recent years is a small but essential innovative contribution to full automation. Prior to that, changing of hard stamp stencils was the only remaining operator task. Today’s pin stamping unit receives marking information directly from the control system, eliminating time-consuming manual changing of stencils and potential mistakes by inserting incorrect numbers. HE has developed its own pin stamping unit, as other systems available on the market were too slow. Head and butt ends and scrap pieces are gripped in sawing position by a scrap manipulator and deposited in scrap containers. The manipulator is designed to also remove sample discs, which are placed on a dedicated tray or chute. Swarf is extracted directly from the saw and pneumatically transported to the briquetting press. There swarf briquettes are formed immediately after sawing, to a density 2.2 to 2.4 kg/dm3. Such briquettes remelt in a similar way to ingots, achieving extremely low melt loss. Cut billets now travel to the packing area on roller table lines. The packing plant shown is designed for creating long and short billet stacks simultaneously. This type stacker is particularly suited for bulk production of short billets, when long billet requirement is limited to say 6.0 m, whereby 8.0 or 9.0 m is the actual cast length. This way both casting pit and homogenising furnace are optimised for maximum throughput. Today’s standard strapping centre, also developed by HE, includes automatic wooden runner magazine and positioning device. The number and position of wooden runners and strapping bands are applied fully automatically according to customer specification; no operator intervention or adjustments are required. Actual strapping is with steel tape, or more recently with PET-tape. Weighing of stacks is done prior to and after strapping, to generate net- and gross © weight. ALUMINIUM · 1-2/2007 45 A L U M I N I U M S M E LT I N G I N D U S T R Y Ancillary equipment may comprise • label printer and applicator • stack manipulator. (Fig. 6) The label applicator attaches the label in a defined position on the bundle. The manipulator stacks completed bundles in dedicated positions for removal by fork truck, or stacks directly onto trailers. Fig. 6: Sawing and packing Summary of improvements Hertwich has achieved numerous improvements in reliability, computerised control and data collection, prevention of surface damage, and furnace control and productivity. • Increase of operational reliability with extensive, ongoing development, many improvements were achieved in recent years. Plants are of sturdy construction, and of the highest quality. Plant availability is 99%. • Improved, innovative control software for operator- and maintenance-friendly production Fully integrated, automated production plants need an excellent control and monitoring system to ensure safe and reliable production and high availability. • Each individual movement of the plant is monitored for correct execution. • The refined fault diagnosis system efficiently guides operators and maintenance personnel to the causes of malfunctions, thereby supporting easy and quick corrective action. Malfunctions are recorded and can be queried in statistical and trend form, providing a potent tool to permanently fix weak points. • Automatic restart programs ef- 46 ficiently and reliably bring the plant into a predefined condition, eliminating potential human error. • Log/Billet tracking ensures relevant data on each log or billet is tracked throughout the system. • Operator-friendly graphic display of billets within the system includes all associated data like batch no, diameter, UT-inspection data. • Host connection of the plant Relevant production data, including homogenizing parameters, sawing and stacking dimensions, positioning of wooden runners, strapping specifications etc. are downloaded from the client’s production planning and order procession host system, directly to the plant control PC. Conversely the plant PC transmits data to the client’s host system including • measured data of homogenizing (for quality assurance) • quality inspection results, i.e. centre cracks, inclusions, surface defects • produced quantities, weights, charge No., log No., time stamp etc. • Careful handling for improved billet surface A new generation of billet supports with special inlays (patented) has been developed for the furnace’s billet transport system. Thereby surface damage to billets can be largely eliminated. Removal of billets from the furnace is by a shuttle car, replacing earlier roller table lines. • Improved heat transfer More intense hot gas convection and modified air guide channels have substantially increased heat transfer rate to billets without increasing the number of fans. HE always prefers to rely on a limited number a high-quality powerful ventilators rather than a “forest of ventilators” on top of a furnace. This concept directly results in an air over temperature (heat head) in the heating zone of max. 5 to 10° K above the set metal homogenizing temperature. • Improved direct measurement of billet temperature inside the furnace and cooler Increased production of the furnaces creates a need for more measuring points, ever more accurate temperature control, and for refined data processing. Consequently direct temperature measurement is now done at more positions and with higher accurancy. The intelligent analyses – software with trend analyses – provides an appropriate tool for early recognition of possible changes to the heating regime. Implementation provides the means for even tighter quality control: Billet diameter and homogenizing temperature can be changed with higher safety and great flexibility. • Increased throughput of large furnaces The past 10 years has shown a trend to ever greater throughput of furnaces and plants. To date the highest throughput rate is achieved at Dubal IV plant, where one billet leaves the furnace every 82 sec. Throughput is 22 t/hour or 1.050 billets per day. Conclusion HE continuous production plants for extrusion billet have been steadily improved and are therefore fully developed plants: HE draws from a wealth of experience, with 80 such plants built to date, so as to provide tailor made solutions in terms of functionality and available space. All HE plants are designed and built exclusively upon proprietary know-how by HE itself, including ancillary equipment like UT-inspection, strapping, and swarf briquetting. 20 highly qualified engineers are available to develop control software and data management for client’s host systems. Our customers can be sure of busing a fully developed, top-quality plant, which ensures reliable production throughout an exceptionally long service life. With HE building and supplying all components of a plant, comprehensive after sales and spare part support is offered. Author Dipl.-Ing. Franz Niedermair (1952) is since 1989 with Hertwich Engineering (HE) in R&D and marketing. Since 1994 he is Managing Director of HE. ALUMINIUM · 1-2/2007 Please be our guest and discover the benefits of the Aluminium ePaper yourself in a free three-month trial: A L U M I N I U M S M E LT I N G I N D U S T R Y De Nora inert metallic anode: further developments V. de Nora, T. Nguyen, R. von Kaenel, J. Antille, and L. Klinger, Sierre A stable inert metallic anode offers many advantages [1,2] and allows great freedom in choice of shape. However, an oxygen evolving anode (OEA) may need more electrical energy if used in a conventional way. To minimise the specific energy consumption, semi-vertical electrodes were studied and tested on a laboratory scale. A semi-vertical configuration helps to maintain the cell’s thermal equilibrium even if the interpolar distance is less than 3 cm. This advantage compensates for the thermodynamic penalty of the oxygen evolving anode, and could double the cell’s productivity. This paper establishes the thermo-electric conditions of the cell having a semi-vertical configuration of the oxygen evolving anode, and presents the experimental results of the semi-vertical electrode configuration in a 100 A laboratory cell. For several years Moltech studied and developed an OEA for the aluminium reduction cell; some examples of laboratory cells of de Nora Inert Metallic Anodes are shown in Fig. 1. The retrofitting of the de Nora inert metallic anode in commercial cells has been demonstrated in a pilot cell of 25 kA [1] using larger anodes (Fig. 2). Despite the low oxygen over-potential of the cobalt oxide based active coating, the OEA still presents a penalty of 650 mV [2]. This penalty must be compensated by increasing the anode current density (horizontal configuration) or by increasing the anode surfaces with a semi-vertical configuration. Fig. 1: de Nora inert metallic anodes used to operate between 100 A to 300 A per anode in laboratory cells Fig. 2: Pilot de Nora inert metallic anodes used to operate between 3500 to 4500 A per anode. Table 1: Characteristics of the de Nora inert metallic anode De Nora inert metallic anode The de Nora inert metallic anode consists of a metallic substrate made of cast Ni-Fe-Cu alloy; the external surfaces of the anode are protected by an active coating of CoxNiyO, with 0.65 < x < 0.85 and 0.15 < y < 0.35. Table 1 summarises the anode char- 48 Metal substrate resistivity (:.m) 3.10-7 Oxide coating resistivity (:.m) 3.10-2 Oxygen activation over-potential (V) 0.10 Experimental oxidation rate of metal substrate (m/year) 1.8 10-3 Linear dimension change (m/year) - 2.0 10-3 Expected life time (years) 1 - 1.5 ALUMINIUM · 1-2/2007 SPECIAL Non-horizontal electrode configuration Test description Several configurations of the nonhorizontal electrode assembly were designed and tested in 100 A laboratory cells. The selected electrode materials were the following: • cathode: semi-graphitised BN carbon substrate, totally covered by 1.2 mm of “Tinor 2000” coating. The coating was pre-aluminised by 3 layers of aluminium slurry in basic colloid as shown in Fig. 3. • anode: Ni-Fe-Cu alloy substrate made by sand casting, and totally covered by 250 Pm of Co-Ni electrodeposition. The oxide active coating was obtained by pre-oxidation in air at 950 °C. The coated anode was cooled down to room temperature before use. The 100 A laboratory cell is externally heated by an electrical furnace. A graphite crucible having an internal square section of 180 x 180 mm and 300 mm height is used as the electrolysis cell. The graphite crucible is protected by an Inconel 600 pot, with a cast alumina sleeve on the top. Depending on the operational mode, the crucible can be used as the cathode current feeder through the electrical connection by the Inconel pot. The vertical side walls of the crucible are protected and insulated electrically by four alumina sheets of 15 mm thickness. The cell set-up is placed in an electrical furnace, which controls and maintains constant the operating temperature. The electrolysis tests are performed in a bath of 11% AlF3 excess – 4% CaF2 – 7% KF – 9% Al2O3 (saturation), at 930 +/- 5 °C. The cathode and anode current densities are identical and maintained constant at 1 A/cm2. • compact arrangement of the electrode assembly; the total active surfaces can be increased by a factor of 2 compared to the horizontal surface • movable cathodes which can be changed at the end of the coating lifetime • no vertical polarisation interference with the metal pool stored on the cell bottom. Experimental results The cell operates at a very stable voltage of 4.0 ± 0.1 volts; the wettability and the draining operation of the cathode can be observed by the saw tooth profile of the cell voltage, which corresponds to the formation and detachment of the aluminium drop at the cathode bottom. After 500 hours (more than 20 days) the test had to be shut down because Vertical assembly with hanging cathode In the vertical configuration the inclination of the electrodes is 0°, the assembly is composed of one central cathode and two parallel anodes as illustrated in Fig. 4. The cathode electrical connection is through an external stem made of steel core inserted inside a copper tube of 2 mm wall thickness. Two similar stems are also used for the two anodes; the three horizontal active runners of the anode are inclined with a slope of 10° to the vertical, so allowing the gas to escape along the anode back. The anodecathode distance is fixed at 2 cm. The advantages of the hanging cathode assembly are: All photos: Kannak acteristics and performance tests in horizontal configuration, described previously [2]. The anode metallic structure is fabricated by a sand casting technique, which can be adapted to every size and form of the anode. This advantage is valuable for adapting to nonhorizontal configurations. In fact, the shapes of the anode and active runner need to respect the: • current distribution • gas escape direction • hydrodynamic effects of the gas-liquid energy transfer assuring the bath circulation. A L U M I N I U M S M E LT I N G I N D U S T R Y Fig. 4: Vertical assembly with Tinor coated hanging cathode of deterioration of the alumina side wall protection, and because of corrosion of the cathode stem by liquid aluminium. The cathode and anodes were removed for examination: • The anodes were slightly corroded at the back and at the lower runner. This local corrosion is due to chemical interaction with carbon dust (from the crucible) and with the metal pool stored on the cell bottom. The cathode remained intact, and totally covered by a layer of aluminium of 2 to 3 mm. Discussion Fig. 3: Semi-vertical cathode before and after aluminisation ALUMINIUM · 1-2/2007 49 As expected, the fundamental behaviour of the de Nora inert metallic anode is not influenced by the vertical position. However the observations during the test make it possible to point out the following aspects of the ALUMINIUM · 1-2/2007 49 © A L U M I N I U M S M E LT I N G I N D U S T R Y vertical configuration: • The initial current efficiency of 75% decreases rapidly, and stabilises at about 40% after 24 hours. • The oxygen separation, in escaping along the anode back, is not optimal in the vertical position, namely with an ACD as low as 2 cm. The re-oxidation of the metal by oxygen seems to be one of the factors decreasing the current efficiency. • The aluminium pool stored on the cell bottom is subjected to the positive electrical field of the anodes (potential of + 0.3 volt versus the cathode); an electrochemical dissolution of the metal can occur probably further decreases the current efficiency. able, thus it cannot be changed during operation. Experimental results The cell operates at a very stable voltage of 3.8 ± 0.1 volts; in comparison to the previous case the saving of 0.2 volt should be due to the lower ohmic drop of the cathode body and connection. ginal ohmic resistance. The concept of an “immersed cathode” must be developed so that the cathode can be removed at the end of the Tinor coating life-time. Fig. 6 shows an inclined metallic anode after 500 hours of operation. ACD in semi-vertical configuration A numerical study of the semi-vertical configuration has been made in order to investigate the current density distribution and the impact on the cur- Semi-vertical electrode configuration To improve the gas separation, a semi-vertical electrode assembly was designed and tested. The active surfaces of the cathode and the anode are inclined with a slope of 40°. The cathode is one semi-graphitised block having adequate active surface geometry; the cathode is glued on the graphite crucible bottom and totally covered with 1.2 mm of Tinor 2000 coating; the coating is pre-aluminised by aluminium slurry. The cathode electrical connection is made via the crucible and an aluminium pool of about 4 to 6 cm on the bottom. An inclined anode presents three horizontal runners with a flat active face parallel to the cathode surface; to minimise the vertical polarisation the lower runner is kept at least 4 cm from the metal pool on the crucible bottom. The cathode-anode distance is fixed at 2 cm (see Fig. 5). The advantages of the semi-vertical configuration are: • better gas separation minimises the metal re-oxidation by oxygen • no external stem needed for the electrical connection of the cathode • cathodic protection of the metal pool stored on the crucible bottom suppresses its electrochemical dissolution. However, this assembly is less compact than in the previous one; the maximum surface increase factor is about 1.5. The cathode is not mov- 50 Fig. 5: Semi-vertical cathode-anode assembly The visual observations during operation show that the gas separation is greatly improved by the inclination of the anode; and because the metal pool is protected by the cathodic polarisation, the current efficiency stabilises at about 70 to 75%. At a minimum distance of 4 cm between the lower runner of the anode and the metal pool level, the vertical polarisation is less than 10%, estimated by measuring the variation of the cell voltage in raising the anode position. After 500 hours of operation the anode is intact (Fig. 6), and the cathode active surface remains clean, without any sludge deposit or dimensional change. Discussion The gas separation is a major parameter in current efficiency; as the better results with the semi-vertical electrode assembly clearly demonstrate. The angle of inclination can be optimised in taking into account the gas hydrodynamic, the compactness of the assembly, and the runner form for the current distribution. Thanks to the wettability of Tinor coating, a good cathode electrical feeding through the liquid metal pool should induce only a very mar- Fig. 6: Inclined anode after 500 hours of operation rent density of a slight mis-alignment of the electrodes. The first experimental setups showed oscillations in the voltage. Although the cause was eventually shown to be related to an insufficient bath level (causing too large a thermal volatility), it was first thought that the cause might be a difference in the current carried by each of the three horizontal runners. Indeed, when the mean current density is above 1.3 A/ cm2, this leads to voltage oscillations. The theoretical model, a plain electrostatic computation of the electrical potential and current density, showed that in the nominal configuration, there is a difference in the amount of current carried by each runner, but the difference is too low to explain the oscillations. There is, however, an interesting point to be made by electrostatic modelling, as follows. Fig. 7 is a typical result for the semi-vertical configuration. Along with the anode (top) and cathode (bot- ALUMINIUM · 1-2/2007 © To power your operation while lowering consumption we provide you with stable highly efficient electrical energy supply, distribution and conditioning. To increase employee productivity and engineering efficiency, we offer you powerful control systems. To improve dynamic performance and reduce power losses, we provide high-tech drive systems. To increase furnace productivity and save energy, utilize our most effective electromagnetic stirrers. To ensure environmental compliance, reduce product standard deviation and increase production, apply our expert and optimization solutions. Maximize the return on project investment through our vast knowledge, know-how and extensive experience. Using quality ABB products helps you achieve industry leading productivity. Visit us at www.abb.com/aluminium A L U M I N I U M S M E LT I N G I N D U S T R Y tom), a surface of constant potential is shown (middle). It explains why more current is carried by the lower runner. Because the current density is proportional to the gradient of the electrical potential, it follows that regions where the isosurface of the potential are curved, a large current density results. Two main conclusions can be drawn from such electrostatic modelling: • In order to obtain a more homogeneous distribution of the current density, one should purposely set the anode in a non-parallel position relative to the cathode, and specifically by having a slightly lower ACD under the top runner. • In a future semi-vertical design gathering many anodes, it will be necessary to perform electrostatic simulations of this kind to optimise the arrangement and setting of the electrodes, in order to smooth the current density distribution as far as possible. Fig. 7: Semi-vertical electrodes setting, and an isosurface of the electrical potential. We recall that optimising the current density distribution in the abovementioned sense is important for de Nora inert metallic anodes, because, on the one hand, they require higher current densities (thermal equilibrium, see below), while, on the other hand, a critical current density exists, above which the anode may be damaged. Thus, a good inert anode design ensures an even, high current density distribution. In fact an even current distribution is also very important in 52 horizontal conventional industrial cells. If the anode current densities are too different, large horizontal current take place in the liquid metal that may lead to metal pad wave oscillations. If the cathode current density is too uneven, large local electro-erosion may take place, leading to short cell lifetime. Energy considerations As has been noted before [7], one of the problems to address to bring the oxygen-evolving anode to industrialisation is the thermal balance of the cell. About 1 V of the total cell voltage is used differently in each technology: as heat for the classical Hall-Héroult cell, and to produce aluminium in the OEA cell. From the point of view of energy efficiency, this is very positive for cells implementing the de Nora inert metallic anode, but the corresponding loss in heating is significant and means that a balanced thermal design is difficult to achieve. Let us consider the problem inversely: assume that we want to operate an oxygen-evolving anode that has a. the same current efficiency b. the same specific energy c. and the same heat losses as a conventional cell; how do these conditions translate into operating parameters? The first condition should be relatively easy to meet, since Moltech could operate a 25 kA OEA cell with 90% CE [1], while struggling against various operational difficulties that are to be expected in such novel tests. We thus assume that the current efficiency is the same for both technologies, K= 0.95. The second condition, when the first is met, consists in having the same cell voltage in both technologies. To work out the third condition, we recall that the heat generation loss Q is given by ([8], respectively with only D alumina and no Boudouard reaction): Qc = Ic (U – 1.65 K – 0.48) Qm = Im (U – 3.11 K) Where the c subscript designates carbon or conventional technology, m standing for metallic (anodes). I is the current, U the cell voltage and K the fractional current efficiency. The third condition, Qc = Qm, is in fact a condition on the current. For typical designs, we get Im = 1.7 Ic. Is it possible to meet both the voltage and current conditions? The electrode settings studied in this paper address the conditions above. Let us consider only the semivertical configuration, since it is more efficient. The cell voltage condition can be met by decreasing the ACD, to overcome the voltage penalty of the oxygen-evolving anode. When taking both the reversible decomposition voltage and the over-voltages of the various electrodes into account, it is commonly assumed to be about 0.6 V [1,2]. For typical electrolyte conductivities used in our tests, it amounts to a reduction in ACD of about 1 to 2 cm. Thus, operating a semi-vertical configuration at 2 cm ACD makes it possible to meet the voltage condition. Finally, to meet the condition on the current, for a similar overall cell size, the semi-vertical setting offers a two-fold gain: by using a de Nora inert metallic anode, one can work at higher current densities (by a factor of 1.4), while using slanted de Nora anodes permits an increase in the working area (thus the total current) by a factor of at least 1.5. Thus, expecting a total current Im = 2.1 Ic appears realistic. The 1.4 factor is explained by the typical current density in conventional technology (0.9 A/cm2), compared to the maximal current density for metallic anodes (1.3 A/cm2). The second factor is geometrical. For the setting presented above, the cathode surface is 100 cm2, and only the flat surface of the runners is about 55 cm2. However, while exact quantification is difficult, the active surface of the anode is more than the flat area. For conventional designs, a horizontal cathode occupying the same overall space has a surface of 50 cm2. Thus, a 1.5 geometric factor appears reasonable, and implies a more compact cell for the same productivity Conclusions The gains of energy and production of the aluminium reduction cell in using the semi-vertical electrode configura- ALUMINIUM · 1-2/2007 SPECIAL tion are demonstrated by our preliminary simulation calculations: • The thermodynamic penalty of the oxygen evolving anode is largely compensated by decreasing the ACD. • The cell thermal balance can be maintained by higher current thanks to a significant increase of the operating surface area. The preliminary tests in laboratory 100 A cells have demonstrated that: • the de Nora inert metallic anode and the Tinor coated carbon cathode can be used as dimensionally stable electrodes for the non-horizontal electrode configuration. However, the dimension stability of the carbon cathode was only proven for 500 hours. This dimensional stability is still in question for longer duration. A L U M I N I U M S M E LT I N G I N D U S T R Y • the metallic inert anode and the wettable Tinor coated cathode can operate at an ACD as low as 2 cm. • the gas separation is an important factor influencing the current efficiency, which can be optimised by appropriate anode design. • the design freedom of metallic anodes is unique, and constitutes an important advantage for the non-horizontal electrode configuration. [5] [6] [7] [7] [8] References [1] J. Antille et al.: Light Metals 2006, pp. 391-396 [2] T. Nguyen and V. de. Nora.: Light Metals 2006, pp. 385-390 [3] V. de Nora: Electrochemical Soc. Interface - Winter 2002, pp 20-24. [4] J.N. Bruggeman et al: “Wettable ceramic based drained cathode technology for aluminium reduction cells” – US DOE DE-FC07-97 / ID / 13567 – Dec. 2002, pp 1-42 Huimin Lu et al.: Light Metals 2006, pp. 687-690 H.A. Oye et al.: Light Metals 1997, p. 279-286 V. de Nora: Proceedings 11th Intern. Aluminium Symposium; Trondheim – Bergen – Trondheim; Sept. 2001, pp 155-160 H. Kvande: Light Metals 1999, pp. 369-376 W. Haupin and H. Kvande: Light Metals 2000, pp. 379-384 Authors Vittorio de Nora, Thin Nguyen and Rene von Kaenel are with Moltech Technology Center, while Jacques Antille and Laurent Klinger are with KANNAK S.A. Aluminium casting Boron nitride plus binder – a synonym for higher productivity Chr. Klöpfer, Th. Jüngling, G. Heuts With its new generation of boron nitride, ESK Ceramics GmbH & Co. KG in Kempten, Germany is providing the casting industry with tailored materials for launders, ladles, dies and crucibles that offer unrivalled protection against aggressive molten aluminium. A critical factor in this advance in casting technology is a novel nanoscale binder that allows boron nitride coatings to be produced that adhere strongly to different materials. Thanks to its low density, aluminium has become established as a key material with an unparalleled breadth of applications. This light metal has applications extending from packaging, through automotive engineering, to aerospace. Furthermore, when alloyed with various metals, such as magnesium or silicon in extruded profiles, its strength can rival that of steel. Obtained by an electrochemical process, the metal occurs in aluminium ALUMINIUM · 1-2/2007 53 foundries and smelting works as a liquid at a temperature of around 700°C. Since this melt is very aggressive, the contacting surfaces must be protected. That is first to counteract wear of the tools and vessels and, second, to prevent the aluminium from being contaminated with dissolved foreign matter. That means specifically the launders in casthouse applications as well as crucibles, ladles and dies used in foundries. The surfaces that come into contact with the molten aluminium must be coated to prevent corrosion. The quality of these surfaces not only determines the lifetimes of the equipment and tools used, but also has a critical effect on the quality and mechanical and physical properties of the resulting castings. A typical example is the transport of molten aluminium in cast houses, which is usually performed in launders with a refractory lining. Of course, such launders have poor thermal conductivity, which prevents rapid cooling of the melt. However, a thin oxide skin rapidly forms on the surface of the hot aluminium. A release agent must be added to prevent this skin sticking to the surface. Traditionally, bone ash is added, which does indeed have the required release properties but because of its poor adhesion must be repeatedly replenished, since it is “entrained” by the flowing molten aluminium. Boron nitride versus bone ash Ceramic coatings offer an alternative to bone ash. These foundry coatings, which are applied as liquids and dry to form a solid film, should have high thermal and chemical stability and a similar thermal expansion to the coated surface in order to prevent the coating flaking off. A material that ideally meets all these requirements is boron nitride (BN). The graphite-like chemical structure of BN makes it an ideal release agent and lubricant. However, unlike graphite, which oxidizes at above 500°C in air, boron nitride is ALUMINIUM · 1-2/2007 53 © All photos: ESK A L U M I N I U M S M E LT I N G I N D U S T R Y Casting table for aluminum billet production coated with EKamold Cast-C prior to use of a melt droplet on the substrate is measured by forming a tangent. Large angles over 90° mean poor wetting, while small angles less than 90° indicate good wetting. At a temperature of 900°C, boron nitride has a wetting angle of 160°, which corresponds to poor wetting. However, this welcome property also has a downside, since the poor wetting of the BN platelets also impairs their adhesion to the substrates to be coated, such as ceramic launders, ladles, crucibles, dies or metal moulds. To improve adhesion, therefore, a refractory binder must be used. In the coatings, these binders bond the BN particles together as well as to the substrate. In the past, phyllosilicates, monoaluminium phosphate and magnesium silicate have been the chief refractory binders. High adhesion thanks to nanoparticles Casting table for aluminum billet production coated with EKamold Cast-C after use SEM picture of a cross section of EKamold Cast-C Coating characterized by a high thermal stability that allows it to be processed up to over 900°C. That makes boron nitride completely thermally stable in the temperature range used for lightmetal casting. A property that is particularly attractive for casting is the poor wettability of its surface by liquid aluminium and other molten metals. They do not stick to the smooth surface but roll off like water droplets from a lotus leaf. The wetting of ceramics by melts is usually described by means of the wetting angle. The contact angle 54 “The binders that have been commercially available so far are not ideal for the casting industry,” says Christiane Klöpfer of the technical marketing department at ESK. A major disadvantage is that they are only suitable for applying thin coatings, since otherwise the rapid temperature cycles could cause them to flake off. “In looking for improved high-temperature binders, we hit on sol-gel systems reinforced with nanoscale particles,” explains Klöpfer. The patented binder system, as a BN coating for the casting industry, is called EKamold Cast-C, and is a real innovation for high-temperature applications. The system develops its effect in situ when heat treated during the first casting cycle, similar to twopack adhesives, and forms a film that is resistant to both heat and abrasion. Compared to conventional boron nitride-based coatings, this product innovation offers unrivalled durability together with ease of application and extremely low requirements on the substrate. ample, BN coatings can be applied by spraying, brushing or dipping. Although BN coatings develop their protective effect at a few microns thickness, the new BN foundry coatings from ESK can be applied in thicknesses up to 1 mm. That means the coating can be readily applied by untrained staff. The new coating can be used wherever liquid aluminium is processed. The range of applications extends from compact aluminium ingots to aluminium car wheels and engine blocks. Furthermore, the new BN coatings developed by ESK, for the first time ever, allow damaged coatings and cracks in the substrate to be repaired. In the traditional process, if the coatings were damaged, they had to be painstakingly removed and then reapplied. With the new systems, damaged areas of the coating can be repaired – e.g. with a brush. Moreover, the coatings can seal cracks and chipping in the substrate by infiltrating them. No sedimentation thanks to „thixotropy“ “Traditional” BN coatings generally had the problem of sedimentation of the BN solid particles, and had to be very carefully stirred to prevent settling out, which would change the properties. The new ESK coating offers a further advantage, since, although it becomes gel-like after standing for a long time, it can be easily liquefied again by stirring or shaking – a property known as “thixotropy.” “All these completely new possibilities offer major advantages to users,” enthuses Thomas Jüngling, Chief Technology Officer of the California-based Ceradyne Inc. Cast houses and foundries are harsh environments, where users must be able to depend on the materials used operating flawlessly. “The casting industry is very interested in the new boron nitride coatings,” observes Jüngling. The new coatings have already been subjected to practical tests in aluminium foundries. Coatings can be repaired Boron nitride coatings last longer … There are also processing advantages to using boron nitride (BN). For ex- Guido Heuts of the Dutch company Ceranex, a supplier of heat-resistant ALUMINIUM · 1-2/2007 SPECIAL A L U M I N I U M S M E LT I N G I N D U S T R Y Why Boron nitride has similar properties to graphite Boron nitride, a synthetic substance with the chemical formula BN, is a sort of “inorganic carbon”. That means BN’s chemical and physical properties are very similar to those of graphite, since both compounds crystallize with the same layer lattice and almost identical dimensions. Two adjacent carbon atoms of the graphite lattice can therefore be substituted with a nitrogen and a boron atom, since two carbon atoms together have exactly the same number of electrons as a boron-nitrogen pair. Accordingly, graphite and BN are isosteric, which, as with other “isosteric pairs”, such as nitrogen and carbon monoxide or nitrous oxide and carbon dioxide, is manifested as a striking physical and chemical similarity. For example, at temperatures of around 1600°C and pressures of 50,000 bar, graphite-like α-BN can, in a similar way to carbon, be transformed into 2 diamond-like cubic high-pressure allotropes with similar hardness to diamond. However, the striking difference between graphite and BN is that the latter is white and does not conduct electricity. That is because BN, unlike graphite, does not possess any mobile πelectrons, since, because the member atoms of the lattice are dissimilar, the “excess” electrons remain fixed to the nitrogen as “lone” electron pairs. However, more important for the application in the aluminium industry is the resistance against oxidation up to 900°C and chemically resistant materials for manufacturing industry, emphasizes the high abrasion resistance of the new BN coatings. Heuts is responsible for the aluminium industry division in his company and understands the particular challenges faced by this sector. “Traditional coatings were always entrained by the flowing molten aluminium. But the new product adheres much better and does not have to be reapplied as often,” he explains. The coatings have much longer lifetimes if the liquid aluminium does not have a chance to attack the substrate. This could greatly reduce downtimes. The bottom line for aluminium processors is significant boost in efficiency as a result of time savings and higher productivity. The improvement is documented by the results of the quality control. “With the BN coatings we tested, in contrast to traditional materials such as bone ash, the castings did not contain any residues,” Heuts assures. ievable elasticity to the coatings. “The coatings have a levelling effect since, within certain limits, they adapt to their environment and can expand and shrink without suffering damage,” explains Christiane Klöpfer. The flexibility also applies to the adhesion of the binder to the substrate to be coated, which may be smooth or porous. “We were even able to make boron nitride adhere to graphite,” Klöpfer says. This additional property is important for graphite parts that are used in aluminium cast houses and foundries. They include rotors for melt degassing or boron nitridecoated graphite thermocouple tubes. Other additives are under development. “Boron nitride has high thermal conductivity. That is counterproduc- … and they are flexible Besides their high mechanical stability, the new BN coatings are also characterized by high flexibility. To reconcile apparently contradictory material properties, a third component was incorporated into BN coatings besides the binder. This innovation, which has also been patented, is an additive that imparts hitherto unach- ALUMINIUM · 1-2/2007 55 compared to graphite which will start to oxidize already at 500°C. In its most widespread form, as a graphite-like hexagonal boron nitride, the snow-white material possesses exceptional thermal and chemical resistance. At the same time, the highly thermally conductive material but electrically insulating boron nitride also has good lubricity. This unique combination opens up a wide field of applications in which the material often provides the critical enhancement to highend products. Some would not be possible at all without boron nitride. In this manner, the range of applications extends from electrical insulation in high-temperature furnaces to applications in the cosmetics industry. tive for aluminium production,” continues Klöpfer. For example, liquid aluminium cools by about 1°C per second on average when conveyed with ladles. This heat loss has to be compensated by auxiliary heating. ESK is currently working on BN coatings precisely tailored to the needs of the aluminium-processing industry. The aim of this work is to find a further additive that will allow us to market a boron nitride with reduced thermal conductivity. Authors Christiane Klöpfer, ESK Ceramics GmbH & Co. KG, Germany. Dr. Thomas Jüngling, Ceradyne, Inc., USA. Guido Heuts, Ceranex B.V., Netherlands. Platzhalter für die redigitalisierte Anzeige Padelttherm 90x63 mm, sw, Motiv: Industrieofen Original-Datei: Padeltherm_Metall_11_03.EPS ALUMINIUM · 1-2/2007 55 A L U M I N I U M S M E LT I N G I N D U S T R Y Thyristor rectifiers for aluminium plants with advanced free-wheeling control S. Tambe, W. M. Lauwrens, M. Rechsteiner, Turgi free-wheeling circuit. But with thyristor rectifiers, the last pair of conducting thyristors suffers overload. A special technique was necessary to avoid overload damage. This paper discusses the new technique implemented by ABB to avoid overloading of any pair of conducting thyristors. The advantage of this technique is that algorithms are implemented for each unit, and hence the design of all rectifier units remains identical in power and controls circuits. This paper also describes how overloads relate to potline circuit behaviour and process, and to other sources of overload. This paper covers the following areas: process characteristics, minimising the risk with advanced control, results and conclusion. Potline current demand for aluminium plants is constantly increasing. Many potlines with 350 kA are in operation, and the trend is towards 500 kA in the near future. Such requirements call for many rectifier units in parallel. Due to physical limitations on the size of a rectifier, as well as to redundancy requirements for safety, using many units in parallel poses a great problem of how to handle current stoppage when all units are tripped simultaneously. Due to staggered switching-off times of the rectifiers, it is likely that the last unit will briefly carry the full potline current. In a diode plant this phenomenon can be handled easily, as all diodes go into a natural free-wheeling mode. Thyristor plants by contrast, require implementing a special technique to prevent destructive overloading of the last switched unit. ABB has developed an advanced technique to handle such phenomena without over-dimensioning any unit. 56 A typical equivalent circuit diagram of an aluminium smelter application can be represented as follows: The rectifiers connected in parallel All illustrations: ABB Continuity and reliability of DC power supply are the basic requirements for aluminium smelters, together with safety. In the past, diode rectifiers were the natural choice due to their simplicity. However, tap-changer maintenance was always an issue for maintenance people, and control speed is another drawback. With the availability of reliable thyristors and digital firing circuits, users also started selecting thyristor rectifiers for smelting aluminium. These rectifiers need less maintenance and have higher efficiency. Though normal operation with thyristor rectifiers was simple to handle, potline trip was a serious concern. This is due to the fact that the last fired thyristor pair will take the load of the full potline current. This led to overloading of the last switched rectifier. In case of diode plants, the complete bridge acts like a Process characteristics section of 200…300,000 mm2, results in a process time constant W (= L/R) of about | 250 ms, where L is busbar inductance and R busbar resistance. This means the potline current will require at least a second (4 x W = 1000 ms) to decrease from its rated value to practically zero. Rectifier behaviour under tripping modes: Normal mode: Unlike diode rectifier units, thyristor rectifier units have a faster response time and are fully controllable. But it is a fact that a thyristor rectifier cannot cutoff the current once it has been triggered. In rectifier operation thyristors are line commutated. This inherent characteristic of each individual unit, together with the phase shift between various other parallel feeding units, corresponds to the asynchronous behaviour of each rectifier unit, functioning in turn. During operation each unit can be switched off manually or automatically tripped by abnormal operating conditions, such as overtemperatures, loss of cooling medium, etc. As long as only one unit goes out of service, this does not pose a serious threat to continuous potline operation. Potline trip mode: However, there are certain conditions under which it becomes necessary to trip all units simultaneously. This is known as “potline trip”. On initiation of a potline trip command, the rectifiers cannot all switch their current to zero at exactly the same Fig. 1: Equivalent circuit diagram of an aluminium pot- time. Another reason why line with parallel feeding thyristor rectifier plant the potline current cannot be interrupted instantly is deliver the required total process curbecause of the large circuit reactance rent. This current is called as potline associated with the energy stored in current (Idc-PL). its large magnetic field. Assuming the The considerable busbar length of current remains constant during this more than 1000 meters, and cross brief switching period, the last unit to ALUMINIUM · 1-2/2007 SPECIAL switch off has to carry the total potline current. In this undesirable situation, this unit consists of only two legs, one positive group and one negative group of one rectifier. To prevent these thyristors from overload requires forcing conduction in all thyristors from positive and negative groups of all the rectifier units. This conduction mode, when the energy driving current flow is circuit inductance, is called free-wheeling. Minimising the risk with advanced control A potline trip as described above will lead to lead thyristor failures, if no remedial measures are taken. Excessive current may cause major damage to the rectifier as a whole. ABB has developed special control and firing techniques to handle such trips. Some of the abnormal and high risk conditions for rectifiers are: • Hardware trip of all units, such as an emergency stop ALUMINIUM · 1-2/2007 57 A L U M I N I U M S M E LT I N G I N D U S T R Y • Network under-voltages leading to trips • Loss of total network • Process trip. In order to prevent the damage to certain thyristors as mentioned above, it is essential to share the free-wheeling current among all units and all semiconductors. The duration of this, freewheeling mode could be of the order of one second to evacuate reactance energy. In a 50 Hz, six pulse system, the firing angle is updated every 3.3 milliseconds. The advance control Fig. 2: Mode 1 which controls the free-wheeling replaced this by a different mode. Firing mode on a single unit (Fig. 2): As soon as the control system senses a fast hardware trip (trip due to under-voltage or loss of network) then, on the next firing instant it fires all thyristors coloured red in all units. At the same time it initiates an off command to all the breakers. As soon as the control system from a particular unit receives back signalization that its breaker is open, then it initiates the next action as mode 2 shown in Fig. 3. As soon as a control system receives Fig. 3: Mode 2 ALUMINIUM · 1-2/2007 57 © A L U M I N I U M S M E LT I N G I N D U S T R Y Fig. 4: Mode 1 Fig. 5: Mode 2 a feedback signal that a main breaker and filter breaker (if installed) are open, then it fires all thyristors in that unit. All units behaviour: Mode 1 can be implemented in all units. But as all units are not synchronised in firing, they come to mode 1 independently of each other. Fig. 4 shows when all units are in mode 1. This technique shares the current among all units so that no single arm gets overloaded. It thereby dissipates potline energy safely. When all breakers are open, all units come to mode 2 as shown in Fig. 5. It should be noted that all units do not shift from mode 1 to mode 2 simultaneously. Switching occurs depending upon breaker opening instant. This logic, which is implemented in each unit control software, needs fast information about a trip. This is implemented as shown on Fig. 6. This technique brings all units and all thyristors into free-wheeling mode with minimal time difference between the units. Results and conclusion Fig. 6: Fast links for hardware trips and controls This advance technique was implemented on an aluminium plant and was tested under different modes of tripping. Fig. 7 shows typical overloading current of the thyristors during a trip condition. Fig. 8 shows that thanks to the free-wheeling technique, overloading of the thyristors was prevented. The advanced and proven technique developed by ABB for thyristor plants ensures safety of thyristor plants for electrolysis applications under the most severe conditions. Authors Fig. 7 Shripad Tambe, Master of Technology, IIT Kanpur, started in 1977 with HBB, India. In HBB India he was Senior Research and Development Manager. Since 1986 he has been working with ABB Switzerland, and up to 1999 worked in various technical departments including system engineering. He is the inventor of two patents registered in many countries in the area of rectifiers for DC arc furnaces. From October 1999 to 2005 he has been worldwide responsible for retrofit, revamp and upgrades of rectifier plants for electrolysis and arc furnaces. He is DGM, Systems Group and head of sales and projects – ABB Switzerland Ltd. Service Division and is presently DGM for large projects and is responsible for rectifier systems for aluminium and DC arc furnaces. Wynand M Lauwrens gained a Bachelor of Engineering in South Africa. He joined ABB South Africa in 1994 and was responsible for engineering and commissioning drives and rectifiers control systems. He joined ABB Switzerland in 2002 as control engineer in the HPR Division, and is responsible for engineering and commissioning rectifier control systems. Markus Rechsteiner gained a Bachelor of Engineering at ITR Rapperswil Switzerland. He joined ABB in 1997 as Project- and Commissioning engineer. From October 2001 to 2005 he acted as sales and project manager in the HPR Service Division. Presently he is responsible for marketing and communication in the ABB High Power Rectifier group. Fig. 8 58 ALUMINIUM · 1-2/2007 SPECIAL A L U M I N I U M S M E LT I N G I N D U S T R Y Moeller direct pot feeding technology T. Letz and C. Duwe, Pinneberg The Moeller direct pot feeding for Aluminij Mostar employs dense phase conveying via pressure vessel and Moeller turbuflow conveying pipe to take the secondary alumina from the storage silo to intermediate bins near the pots and combines this with the Moeller fluidflow air slide pipe within the pots. A schematic presentation of the system installed in Mostar is shown in Fig. 1. The (single-)pressure vessel system is a non-continuously working ALUMINIUM · 1-2/2007 59 All illustrations: Moeller Since September 2001 the Moeller direct pot feeding system for the smelter plant Aluminij Mostar in Bosnia-Herzegovina has been in successful operation. VAW Aluminium Technology chose Moeller in July 2000 to modify 256 aluminium smelting pots (4 potlines with 64 cells each). Fig. 1: Direct pot feeding – side-by-side (Mostar, Bosnia-Herzegovina) pneumatic conveying system for feeding secondary alumina to one section of pots. The pressure vessel (2) for the dense phase conveying to ALUMINIUM · 1-2/2007 59 © A L U M I N I U M S M E LT I N G I N D U S T R Y ate bins near the pots to the bunkers of the pots without any kind of maintenance. The MDPF system is thus an integrated component and is one of the reasons for the success and the high performance of this smelter at Aluminij Mostar. Moeller Fluidflow Fig. 2: Direct pot feeding with Moeller Fluidflow the intermediate bin (5) is equipped with a Moeller filling valve, a Moeller conveying pipe shut-off valve and the necessary pneumatic valves, ball valves, non-return valves, etc. for the optimal fluidising and conveying air distribution of the alumina. The fluidising and conveying air is supplied by a separate compressor (8) or the plant net. The secondary alumina, generally from the secondary alumina silo of the fume treatment plant (FTP), is conveyed via the turbuflow conveying pipe (3) to intermediate bins (5). The intermediate bin (5) is the interface to the fluidflow air slide pipe and is equipped with a filling valve, air slides at the outlet and level indicators. The intermediate bins (5) start to fill at a minimum level indication or after a precisely defined period of time. The fluidflow air slide pipe connects the intermediate bin (5) with the ore bunkers of the pots (7) and provides a continuous supply of secondary alumina. Compressed air (8) for the fluidising air of the fluidflow air slide pipe comes either from the plant net for or from a separate blower. The supply of secondary alumina to the ore bunkers of the pots (7) is self-regulating. For safety reasons, the fluidflow air slide pipe of each pot is equipped with the 2 m long Moeller insulation air slide pipe. This equipment does not directly influence the conveying process, but is a key component. reliability at the smelter plant Aluminij Mostar in Bosnia-Herzegovina since September 2001. It has maintained without any problem conveying a capacity of about 10 t/h over around 150 m for each of the 4 sections (64 cells each). Furthermore, it has fulfilled all environmental aspects, especially the limits on dust emission has been fulfilled. The MDPF system works absolutely dust free. It has generated no measurable fines (attrition) or segregation in the last five years. The maintenance costs for the MDPF system at Aluminij Mostar are extremely low. The Moeller turbuflow system minimises scaling effects and maintenance for long distance transport from the secondary alumina storage silo to intermediate bins near the pots. No turbuflow conveying pipe or conveying pipe bend has been changed in the last five years. Since start-up in September 2001 the fluidflow air slide pipe has been bringing alumina from the intermedi- Especially for green field applications, but also for retrofit projects, Moeller Materials Handling can offer a direct pot feeding system as Moeller fluidflow air slide pipe system (Fig. 2). The alumina will be taken from the secondary alumina silo by a Moeller fluidflow air slide pipe. The fluidflow feeds a so-called main intermediate bin. This main intermediate bin will be operated between “full” and “half full”. From this main intermediate bin, the alumina will be fed via fluidflow air slide pipe along the pot room to all pots. The fluidflow air slide pipe along the pot room is equipped with Tpieces, which are connected with the fluidflow air slide pipe on top or integrated in the superstructure of each pot. Normally, two pots will be feed via one T-piece. The fluidising air is supplied by a separate rotary piston blower. The MDPF system is working fully automatically and is more or less 100% filled with alumina all the time. When the bunker of a pot is full, the bulk material cone level reaches the fill spout discharge opening of the fluidflow air slide pipe, and so automatically blocks the mass flow of alumina. When secondary alumina is removed Experiences at Aluminij Mostar The Moeller direct pot feeding (MDPF) system has been working with 100% 60 Fig. 3: Moeller fluidflow air slide pipe on top of the pot ALUMINIUM · 1-2/2007 SPECIAL A L U M I N I U M S M E LT I N G I N D U S T R Y fine particles, no segregation, no scaling, lowest possible (over)pressure, no pressure-tight sealing of the pot, minimized energy consumption, minimized maintenance work. Conclusion Fig. 4: Self-closed feeding spout and filling process of ore bunkers from the ore bunker of the pot, the pneumatic transport starts again automatically and ensures a constant and reliable mass feed rate to the pots. The fluidising of the secondary alumina inside the fluidflow air slide pipe works permanently to ensure a constant bulk density. The self-closing filling spout due to the material cone level in the ore bunker of a pot is self-regulating and ensures continuous refilling of the ALUMINIUM · 1-2/2007 61 ore bunkers during operation of the smelting plant. The self-closed feeding spout and the filling process of ore bunker are shown in Fig. 4. Furthermore, no pressure-tight sealing of the pot is necessary, because of the low over-pressure in the fluidflow air slide pipe. The main advantages of the MDPF system are: self-regulating and continuous feeding of bunkers, absolutely dust free operation, no generation of The Moeller fluidflow direct pot feeding is designed to ensure most constant and reliable feeding possible of secondary alumina to the ore bunkers of the pot. Lowest possible conveying velocities preserve the particle size distribution and the flowability of the secondary alumina and avoid scaling effects. This most competitive system demonstrated superiority by minimal wear and maintenance, as well as minimal energy consumption, and last but not least by its high operating reliability. Authors Dipl.-Ing. Timo Letz and Dipl.-Ing. Carsten Duwe are with Moeller Materials Handling GmbH, Pinneberg, Germany. ALUMINIUM · 1-2/2007 61 CO M PA N Y N E W S Company news worldwide Alcan entertaining potential buyers for Vlissingen aluminium plant Canadian aluminium major Alcan is entertaining bids from any potential buyers of its 200,000 tpy aluminium smelter in Vlissingen in The Netherlands. Ongoing negotiations involving a consortium of energy-intensive companies have so far failed to satisfy the smelter’s requirements for a longterm competitive energy supply. There may be some potential buyer who will have some special way of working with it to make it more viable. But the smelter’s casthouse is good and Alcan plans to keep it, no matter what the outcome of the smelter. In addition, the smelter has a good carbon plant that has been modernised. Malaysia’s Jabat Yakin plans 300,000 tpy aluminium smelter Malaysian construction firm Jabat Yakin is seeking financial backers for a proposed 2.3 billion ringgit (US$ 631m) aluminium smelter in eastern peninsular Malaysia. Jabat Yakin has hired two Islamic finance institutions, Kuwait Finance House and AmIslamic Bank, as well as accounting firm PriceWaterhouseCoopers, to arrange the financing for the project, which will be located in the state of Pahang. The Malaysian company is in talks with potential joint venture partners Chalco and Dubal. The project will yield 300,000 tpy of aluminium in a first stage of production. nium plant, and has also delivered technology to the hydrogen filling station that supplies Icelandic buses with emission-free fuel. Hydro is able to build on its position as a technology leader in the aluminium industry and intends to invest in a 600,000 tpy aluminium smelter in the 2010 to 2015 period, based on the availability of power. Hydro’s new North Atlantic office in Reykjavik is headed by Bjarne Reinholdt. Qingtongxia – Glencore talks on the rocks as smelter project faces delay Glencore’s plans to co-operate with Qingtongxia Aluminium Group have hit problems as the future of a 250,000 tpy smelter project planned by the Chinese company looks increasingly uncertain. Glencore signed a memorandum of understanding with Qingtongxia in August 2006, which was designed to facilitate investment in the Chinese company’s planned 250,000 tpy aluminium smelting project. But talks have gone badly. Besides problems with Glencore, Qingtongxia has yet to receive government approval for the project. The delay is probably linked to Beijing’s plan to clamp down on the aluminium industry and to its stricter stance on new aluminium projects. New smelting projects in China are likely to find it more difficult to win government approval as the government is not encouraging new projects. Hydro opens office in Iceland CVRD’s Mozambique coal project moving forward Hydro has opened a North Atlantic office in Reykjavik to support its strategy of repositioning and growth in its primary aluminium activities. Hydro is presently involved in supplying technology to the Nordural alumi- CVRD’s plans to produce coal at Moatize, Mozambique, could move forward quickly once the rail link to transport the coal from mine to port is established. CVRD is still studying the possibility of later producing primary 62 Norsk Hydro Aluminium smelting industry aluminium at the site. Local reports are correct that output at Moatize could reach a total of 12 million tpy of coal, of which around 40 per cent would be metallurgical (coking) coal and 60 per cent steam (thermal) coal. The metallurgical coal would be for export. Studies are under way into developing the thermoelectric plant. Likewise, the company continues to study the possibility of using the energy produced at the proposed thermoelectric plant to fuel aluminium smelting facilities that could also be set up at Moatize. In theory it should be cheaper to produce primary aluminium in Mozambique than in Brazil due to the current high cost of electrical energy in Brazil. Ormet finalises power deal with AEP Ormet Corp. and American Electric Power (AEP) have finalised their longterm agreement under which AEP will provide power to Ormet’s Hannibal, Ohio, operation. Two of Ormet’s six potlines could now restart as early as mid-December 2006 as 250 employees were called back to work. Effective 1 January 2007, the pact places Ormet’s Hannibal facilities back into AEP service territory, where the company will provide power at US$ 43 per MWh through the end of 2008. Following a two-year period, Ormet will then be able to obtain power at the same rate as other large industrial users in the Ohio service territory. ALUMINIUM · 1-2/2007 A L U M I N I U M S M E LT I N G Dubal completes US$ 280m expansion to take capacity to 861,000 tpy Alcan to pilot advanced AP50 technology through US$ 550m facility in Quebec Dubal has completed a US$ 280 million expansion which will raise capacity by 100,000 tpy to 861,000 tpy. The two expanded potlines, 7B and 9B, were officially inaugurated at a gala ceremony attended by His Highness Sheikh Hamdan. Expansion of the two potlines began in November and December 2005, adding 128 cells to potline 7B and 36 cells to potline 9B. Dubal is working on a further small incremental 60,000 tpy expansion that will lift capacity to around 925,000 tpy from the start of 2007. Alcan will invest US$ 550 million in a 60,000 tpy AP50 pilot plant at its Complexe Jonquière site in Canada. The development plan is the first step in a planned ten-year US$ 1.8 billion investment programme in Quebec’s Saguenay-Lac-Saint-Jean region. The new AP50 pilot facility will be the cornerstone of an industrial strategy developed by Alcan with the support of the Government of Quebec. The AP50 pilot plant is the initial step in creating up to 450,000 tpy of new generation AP smelting capacity, based entirely on clean, renewable hydroelectricity. Construction is expected to begin in 2008 with first metal coming on stream in late 2010. This initial phase would be followed by up to an additional 390,000 tpy in the Saguenay-Lac-St.-Jean region by 2015. For this project the Government of Quebec has provided financial support by means of R&D tax incentives and loans, and has made available up to 225 MW of additional power to support the investment programme. The agreement with the Government of Quebec also reinforces Alcan’s electrical power position in Quebec through the long-term extension of hydraulic leases and new power contracts which provide a secure supply of approx. 2,600 MW of low-cost power through the year 2045. Ashapura Minechem to set up aluminium project in Orissa Ashapura Minechem, one of India’s larger bauxite miners, plans to set up an alumina refinery, aluminium smelter and power plant in the mineral-rich state of Orissa in eastern India. The company has submitted a proposal to the Orissa government for an integrated aluminium project in the bauxite-rich Koraput district in southern Orissa. The state government is vetting the proposal before a memorandum of understanding is signed. Ashapura has yet to decide on the size of the project and on how it will be developed. The alumina refinery may be set up in the first phase and the smelter in the second phase. The integrated aluminium project is expected to cost come US$ 2 billion. A formal announcement on Ashapura’s aluminium project can be expected early in 2007. The company has re- ceived a formal invitation to begin work on its alumina project in the Kutch region of Gujarat by the state government. Indonesia places smelter’s future under scrutiny The Indonesian authorities are keeping up the pressure on their Japanese joint venture partners to consider closing the 225,000 tpy Asahan Aluminium smelter in the country’s Sumatra province. The smelter has made a profit in only 3 of its 23 years of operation, and Indonesia is now suggesting it be closed when the existing joint venture agreement runs out in 2013, and the freed power used to supply local com- . ($'*!'* ('&. '(+,! )$'#*(' ( "+*! $'"(*$(' ( !,$!- ($'*!'* &!)! ('** * ( -& . (,!$ ( * ( %(&& (,!$ ( ALUMINIUM · 1-2/2007 munities and businesses. The Indonesian government wants to change the Asahan project into an electricity company, as the government has so far not gained any financial advantage from the project. Columbia Falls hopes to restart second potline in the first quarter 2007 Columbia Falls Aluminum Co hopes to restart the second of its five potlines in the first quarter of 2007. Columbia’s one operating potline produces approx. 35,000 tpy of aluminium. While alumina might be readily available, securing power for aluminium smelters in the U. S. northwest ,!#!!' &+$'+ (!&. '&( ' &( 21 %% '4 , 2 / 2 ) (1, - $0 1)0- #( )5 %2 + 1. $0-32 "- ,10 + 1. %0 3 + 1. *+3 30 + 1. 13 303 + 1. *203 110 )1- + 1. 21023 + 1. $10 ( 2 + 1. ! 1 ,10 + 1. ! 1 %0 #13 3+2210 & 4 $02 - 63 © CO M PA N Y N E W S has been a hurdle for production. The plant produces primary aluminium in sheet and T-bar. revenues of approx. US$ 114 million in 2005, Carbone Savoie is a leading and profitable producer of cathode blocks, including a growing share of graphitised cathode blocks, as well as sidewall blocks and ramming pastes. The business employs approx. 500 people at two sites, both in close proximity to Alcan’s R&D centre in Voreppe, France. N RusAl starts Khakass smelter RusAl has begun the ramping up of its Khakass aluminium smelter on 15 December 2006, the first aluminium production facility in Russia built in the past 20 years. The company will initially operate the plant at 71,000 tpy and is aiming to complete in November 2007. Total investments into the project exceeded US$ 750 million. The 300,000 tpy smelter is located in the Republic of Khakassia. It operates RA-300 reduction cells. The overall investment into the regional infrastructure amounted to some US$ 21m. The launch of the new production facility created around 1,000 jobs. SUAl plans US$ 1.5b smelter for northern Kazakhstan Russian aluminium producer SUAl plans to build a US$ 1.5 billion aluminium smelter in northern Kazakhstan that could add 500,000 tpy to the company’s output from 2011. SUAl will begin the feasibility study in early 2007. If the feasibility study is successful, as well as the following agreements with the Kazakh government, construction will start in 2008. SUAl has already signed a memorandum of understanding with Kazakh subsidiary of US energy company AES Corp to supply power to the smelter from the Ekibastuz GRES-1 power station for 20 to 30 years. Alcan completes purchase of cathode business in France Alcan has completed the acquisition of the remaining 70% stake of Carbone Savoie, and certain related technology and equipment, from GrafTech International for US$ 135 million less certain price adjustments. Today, Alcan’s proprietary world-leading Pechiney AP Series Smelting Technology already uses Carbone Savoie’s advanced graphitised cathode blocks. With 64 Bauxite and alumina activities RusAl acquires 56.2% stake in Eurallumina refinery RusAl successfully completed the agreement with Rio Tinto to purchase a 56.2% stake in the Eurallumina alumina refinery in Italy. The remaining 43.8% share of Eurallumina is owned by Glencore. Ownership of the asset will be consolidated under United Company RusAl, when the merger RusAl, SUAl and Glencore’s alumina assets is completed in 2007. Alcan looks Madagascar for bauxite and 1.5m tpy alumina refinery Alcan signed a memorandum of understanding with Access Madagascar Sarl to jointly study the possibility of developing a bauxite mine and a 1 to 1.5 million tpy alumina refinery in Madagascar’s south eastern Manantenia District. Alcan and Access will undertake a concept study to review the bauxite reserves and logistics, estimate costs and look at social and environmental conditions. This concept study is expected to be complete in the second quarter of 2007, and could then lead to feasibility studies. On the basis of these studies, Alcan will explore options that could make an alumina refinery project viable. Nanshan to expand alumina capacity to 700,000 tpy China’s Nanshan Group will expand alumina refining capacity by 75 per cent to 700,000 tonnes per year by September 2007. Nanshan is due to finish the first phase expansion of its new alumina refinery by the end of November, with capacity to produce 400,000 tonnes per year. The com- Laos and Vietnam to host new bauxite projects Southeast Asia may soon join Australia, Jamaica and the Republic of Guinea as one of the world’s chief bauxite-producing regions. The recent agreement between Aluminium Corp of China (Chalco) and Vietnam National Coal and mineral Industries Group (Vinacomin) to mine bauxite and produce alumina in Vietnam joins them to a joint venture between Australia’s Ord River Resources Ltd. and China Nonferrous Metals International Mining Co Ltd. (CNMIM). They plan to develop a potentially huge bauxite project at the Bolaven Plateau in southern Laos. Ord has just moved to establish a Laos-based joint-venture company with CNMIM in order to consolidate the companies’ commercial position in the country. The partners believe that the Bolaven Plateau project could hold between 2 and 2.5 billion tonnes of bauxite. Laos is said to be well-suited for the development of bauxite and alumina projects. The country has ample hydroelectric power resources and already exports power to Vietnam and Thailand. Furthermore, Laos, Vietnam and China have signed an agreement to develop the Trans-Asian Railway (TAR) network, which will link China to several Southeast Asian nations. Under an agreement announced in January 2006 between Chalco and Vinacomin, the companies are to build a US$ 2 billion bauxite mining and alumina project in Dak Nong. The alumina refinery will have a capacity of 1.9 million tpy, rising to 4 million tpy in a second phase of its development. ALUMINIUM · 1-2/2007 BAUXITE AND ALUMINA pany then plans to increase capacity by another 300,000 tonnes per year. Output from the new plant will be used for its own aluminium smelters owned by Nanshan Group and Shandong Nanshan Industrial Co. Nanshan Group and Shandong Nanshan have 156,000 tpy and 36,000 tpy of electrolytic aluminium capacity respectively. Chalco to commission third phase of Pingguo refinery in 2008 Aluminium Corp. of China (Chalco) plans to commission a 900,000 tpy third phase expansion at its alumina refinery in Pingguo in China’s southern Guangxi autonomous region in late 2008. The expansion will take alumina capacity at the Pingguo works – also known as Chalco’s Guangxi Branch – to 1.8 million tpy. Chalco also plans to increase smelting capaci- ty at Pingguo from 130,000 to 250,000 tpy, though no date has been set for a second phase of construction. Guangxi Huayin to commission alumina refinery in 2007 Guangxi Huayin Aluminium Corp plans to commission a 1.6 million tpy alumina refinery project in October 2007, as part of a growing drive by the government of the region to strengthen its aluminium industry. Construction of Guangxi Huayin’s project started in June 2005. Romania’s Alro plans alumina capacity upgrade Romanian aluminium producer Alro plans to invest US$ 50 million over the next two years in upgrading the alumina refinery at its subsidiary Alum. The investment will be used to modernise the main production facilities at Alum, to cut the consumption of materials and energy, upgrade the thermal power plant and to align the plant to European labour environment protection standards. The work will involve a temporary complete shutdown of the plant. The upgrade will lift capacity at the refinery from 500,000 to 600,000 tpy. Beyond that, Alro aims to increase capacity to 1 million tpy by 2010. Iamgold to sell bauxite assets to Bosai for US$ 46m Toronto-based Iamgold Corp has signed a deal with Chinese alumina producer Bosai Minerals Group to sell its bauxite assets for US$ 46 million. Under the agreement, Iamgold will sell interests in Omai Bauxite Mining Inc and Omai Services Inc to Bosai for approx. US$ 28 million in cash. Bosai will also assume US$ © " "& )*&*! &, &, !"# $#% $!"# $#% ' (# * - , %, # $ +& CO M PA N Y N E W S 18 million in third-party debt. If the deal is approved by regulatory authorities, the transaction took place on 31 December 2006. The sale is consistent with Iamgold’s aim to focus on its core assets. Bosai – based in southwest Chongqing province to the east of Sichuan – plans to double its 200,000 tpy alumina refining capacity to 400,000 tpy within the next two to three years. BHP in talks to take a third of Global’s US$ 2.8b alumina refinery project BHP Billiton has begun talks with Global Alumina Corp to take a 33.3 per cent equity stake in its US$ 2.8 billion alumina refinery project in Guinea. BHP would assume the role of project manager and operator and will lend as much as US$ 50 million to Global Alumina to help fund a feasibility study. Under the agreement, Global Alumina and BHP would each own a third of the project, Dubal one quarter, with Mubadala Development Co taking one-twelfth. If the transition goes ahead, the potential partners would receive shares in Global Alumina and reach separate shareholder, project-management and off-take agreements. BHP, Dubal and Mubadala Development Co have agreed to provide US$ 100 million of interim financing for the project, which will be guaranteed by Global Alumina and Guinea Alumina. The refinery, to be built at the inland town of Boké, is scheduled to come on stream in the first half of 2009. N Secondary aluminium smelting and recycling activities Hydro Deeside aims to boost sales to offset energy costs Hydro Aluminium Deeside plans to lift production to 55,000 tpy to boost sales by the end of next year in a bid to offset soaring electricity prices. Over the past three years, the plant’s spending on electricity has more than doubled. Currently the plant pays 4.6 pence per night unit and 7 pence per day unit. Deeside’s current electricity contract is 64% higher than the previous 18 month contract which ran out in October, while that contract was 60% higher than the one before. The recycling and remelting plant located in Wrexham in northeast Wales produces more than 40,000 tpy of extrusion ingots. Hydro Aluminium Deeside produces extrusion ingot from 90% remelted aluminium scrap. Alcan invests US$ 7m in UBC recycling at Neuf-Brisach Alcan will invest US$ 7 million in a special sheet Rhenalu facility in France to recycle aluminium used 66 beverage cans (UBC). The new capacity will come on stream by the start of 2008 and will turn the site at Neuf-Brisach into Europe’s only fully integrated UBC processing, rolling and finishing facility. The investment will promote beverage can recycling in Europe. In addition to the Neuf-Brisach plant, in Europe Alcan operates recycling and rolling facilities in Singen, Germany. RusAl aims for 500,000 tpy of secondary aluminium by 2011 RusAl plans to produce some 500,000 tpy of secondary aluminium by 2011 through acquisitions and through building its own production plants. Such a strategy would see RusAl surpass capacity of Aleris Recycling works in Germany, Europe’s largest secondary aluminium producer, which produces 400,000 tpy, and compete directly with Asia’s largest producers, Shanghai Sigma Metals in China and Daiki Aluminium in Japan. RusAl has recently acquired one producer, Tsvetmet Services, based in the Samara region. The company owns Resal, also in Samara, which was set up by RusAl in 2000. In 2005, the Russian government has encouraged RusAl to buy secondary aluminium assets and already RusAl has bought secondary aluminium assets in the Rostow, Samara and Leningrad regions. The plan to produce 500,000 tpy would give RusAl more than 60% of the Russian market. It has been estimated that there are 440 businesses in Russia that produce aluminium alloys from scrap. Spanish secondary aluminium producer Idalsa in trouble Spanish secondary aluminium producer Iberica de Aleaciones Ligeras (Idalsa) is facing a financial crisis, struggling under the weight of 26 million euros (US$ 33.4m) in debt, and sources at European secondary aluminium producers were reporting that the company based in Zaragoza in Aeragon had filed for bankruptcy protection on 1 November 2006. The news did not surprise the market as Idalsa, which produces around 30,000 tpy of alloy, was a supplier to Manzoni-Bouchot, the French die-caster that filed for bankruptcy protection in October. Idalsa was owed some 13 million euros by Manzoni. Idalsa was set up in 1984. Scholz buys Hungarian secondary aluminium producer Eural German non-ferrous and ferrous scrap merchant Scholz AG has acquired Hungarian secondary aluminium producer Eural kft from Spanish group Pansoinco SA for an undisclosed sum. Eural, which has a capacity to produce 50,000 tpy of aluminium alloy, will probably source scrap from Audi’s manufacturing plant in Györ and supply aluminium alloy to automotive casting plants next to Audi. Eural is located in Tatabanya, just 60 km from Györ. Eural is one of the main players in the aluminium alloys and rod industry in Central and Eastern Europe. Scholz is one of Europe’s largest scrap processors and merchants, with ALUMINIUM · 1-2/2007 ALUMINIUM SEMIS 12 centres in south and east Germany, the Czech Republic and Croatia, including eight shredders, 38 shearing machines, nine railtrack crushers and four cable shredders. Century Aluminium seeks foreign partner to increase capacity Indian secondary aluminium producer Century Aluminium intends to increase its output to 50,000 tpy from 35,000 tpy by the end of 2007, and would like to increase output to 100,000 tpy in the long term by securing a foreign partner. A time frame was not given for that additional expansion. India represents one of the most attractive aluminium recycling opportunities in the world. Recycled aluminium consumption in India, driven by the automotive sector, is set to boom in the next four years. Demand for recycled aluminium from automotive manufacturers is likely to increase in India to some 350,000 tpy by 2010 from 93,700 tpy, and consumption in the general engineering industry, such as components for washing machines, is forecast to more than treble to 87,500 tpy from 23,500 tpy. India’s domestic production of 200,000 tpy is well below those levels. N Aluminium semis Poland Polish aluminium manufacturer allocates funds for German buy Polish aluminium products manufacturer Grupa Kety will allocate up to 200 million zloty (around US$ 65.2m) to buy German companies operating in the extruded products and systems segments. Grupa Kety is actively seeking out a medium-sized German company which also manufactures and distributes extruded products. Germany has been chosen for the size of the market for aluminium systems used in the construction industry. Croatia Croatia tries again to sell aluminium products maker Croatia’s Privatisation Fund is trying to sell the government’s 80.2% stake in Tvornica Lakih Metala (TLM), which is the Balkan country’s largest producer of extruded and rolled aluminium products. The company has high debts and a previous attempt to sell the stake in September drew no bids. The latest tender has set a minimum price of 10% of the company’s nominal value in an attempt to draw out more interest. As before, the latest tender notice stimulates that any potential buyer must maintain the company’s core business, commit to ALUMINIUM · 1-2/2007 further investment and keep 1,400 of the current 1,600 employees on the payroll for two years after the signing of a purchase contract. Bahrain New foil annealing furnace for Garmco Foil Mill Garmco Foil Mill Co., Bahrain, has placed a second order for an indirect electrically heated chamber furnace with mass flow heating for the annealing of aluminium foils under air or nitrogen. Garmco is expanding its rolling facility and inquired for an additional aluminium foil annealing furnace from Otto Junker, Germany. The ordered furnace is almost identical to the furnace supplied by Otto Junker in 2004. The existing foil annealing facility consists of three annealing furnaces with a common rail mounted charging car, nitrogen gas supply system, coil cooling/waiting/loading stands and steel coil racks/pallets. The ordered new foil annealing furnace is to be located in a new extension to the existing bay with installation scheduled to commence in April 2007. Garmco is supplied with feedstock from parent company Gulf Aluminium Rolling Mill Co. which produces cold rolled coil and sheet in 1xxxx, 3xxx, 5xxx and 8xxx series alloys for Suppliers Dubal awards ABB contract to upgrade smelter Dubai Aluminium has awarded a US$ 39m contract to ABB of Zurich to upgrade electrical and automation systems at Dubal’s 861,000 tpy smelter complex in Dubai. ABB will replace five high-voltage regulating rectifier transformers, which convert alternating current (AC) to direct current (DC), with larger units rated at 86 MVA to increase capacity and to allow Dubal to combine two potlines. ABB will upgrade existing systems, including high-voltage cables and lowvoltage and control cables, as well as provide control and protection systems and 250 kA field-oriented measuring equipment. Commissioning of the new system will begin in July 2007. Aluminij dd Mostar chooses Wagstaff equipment Aluminij dd Mostar, aluminium producer in Mostar, Bosnia-Herzegovina, has placed an order with Wagstaff Inc, to modernise their third casting station. The new contract consists of a Wagstaff ShurCast casting machine, an AutoCast automated casting control system, and LHC low head composite casting moulds for use on all stations in the casthouse. The equipment purchased in the new contract is slated to be commissioned in early 2007. Stub milling machine for NZAS Stimir of Iceland has completed the design of a stub milling machine for New Zealand Aluminium Smelters (NZAS). The contract required Stimir to fully design a stub milling machine able to automatically mill off excess stub length whilst the anode rod is hanging in an overhead conveyor. The automatic stub milling machine will ensure that all stubs are of equal length, so as to improve electrical conductivity, rodded anode geometry, and removal of cast iron thimbles. These improved parameters increase electrical efficiency and maximise both rod availability and rod service life. © 67 CO M PA N Y N E W S a wide range of applications with a current annual capacity of 162,000 tonnes. Taiwan in eastern China, which is still undergoing test-runs. China China China’s Yangkuang Ke-Au Aluminium Co is mulling downstream aluminium projects as Beijing tightens controls on the primary aluminium sector. Yangkuang, which operates a 140,000 tpy aluminium smelter in eastern Shandong province, is considering downstream projects, including aluminium alloy and recycling. The company has not finalized plans but once that is done, construction is likely to start within the next two years. Projects will be at least 50,000 tpy in capacity. Yangkuang exports the majority of it aluminium ingots to south and southeast Asia. CS Aluminium delays cold rolling expansions Private aluminium fabricator in China plans expansion to meet rising demand Taiwan’s CS Aluminium has delayed plans to expand cold rolling capacity at its Kaoshiung works on rising competition from aluminium rollers in China. CS Aluminium had planned to build a new 42,000 tpy cold rolling line in southern Taiwan, which it hoped to complete by the end of 2009. The plan has now been postponed indefinitely. CS Aluminium plans to make another look at its product mix and focus more on Taiwanese demand going forward. The company currently sells 70% of its production in Taiwan and exports the rest. CS Aluminium has also a 35,000 tpy aluminium cold rolling mill in Ningbo Modern International Enterprise (Nanhai) Holding is planning big expansions to its aluminium fabricating and extruding capacity to meet rising demand in China and in export markets. The privately owned Chinese company intends to increase capacity at a newly acquired 40,000 tpy aluminium extruder in Chiping, eastern Shandong province, to 100,000 tpy by the end of February 2007. The company intends to raise aluminium fabricating capacity in Foshan, southern Guangdong province, to 120,000 tpy over the next five years, from 20,000 tpy. The Foshan plant produces aluminium alloy and aluminium bars. On the move Alcoa has named Charles D. McLane as its new Chief Financial Officer effective 1 January 2007. McLane will succeed Joseph Muscari who will retire to become Chairman and CEO of Minerals Technologies Inc. Alcoa has appointed Joseph R. Lucot Vice President – Corporate Controller and elected him officer of the company. Alcoa elected new vice presidents: Kevin J. Anton, President, Alcoa Materials Management; Olivier Jarrault, who leads the Alcoa Fastening Systems business; Raymond B. Mitchell, who serves as President Alcoa Investment Cast and Forged Products; and Wayne G. Osborn, Managing Director, Alcoa World Alumina Australia. Alcoa has made several executive changes: Michael Parker, currently General Manager, Alcoa Materials Management, will become Vice President of that division; Timothy Reyes, senior Vice President of Alcoa Materials Management, will become Vice President of marketing for Alcoa World Alumina and Chemicals; William Rice, Vice President of marketing for Alcoa World Alumina and Chemicals, will become Vice President of 68 mining. Rice will serve on the Halco board and represent Alcoa’s interest in the CBG Guinea Bauxite mining operations; Russell Williams, Vice President of mining, will become Vice President of mining projects in Asia, focusing on Asian bauxite issues. The Novelis Board of Directors has accepted the resignation of director John D. Watson, who informed the board of his need to step down as a director for personal reasons. Hydro Aluminium appointed Cecilie DitlevSimonsen Executive Vice President, to join the company’s top management team with overall responsibility for communication and reputation management. Rio Tinto has appointed Tom Albanese, currently Director of Group Resources, as its new CEO, to replace Leigh Clifford on 1 May 2007. The President of Alcan’s Primary Metal Group for the Asian Pacific area, Marco Palmieri, has left the company to pursue other career opportunities. His position no longer exists. Bengt Lie Hansen has been appointed head of Hydro’s Russia business unit. The change will be effective as of January 2007. Yangkuang Aluminium mulls downstream projects China Kunshan to commission 25,000 tpy foil mill in 2007 Kunshan Aluminium Co (KAC), owned by Hanjiang Group, will commission a 25,000 tpy foil mill in Kunshan in eastern Jiangsu province in June 2007. KAC intend to export the majority of its foil and Europe is likely to be an export destination. The mill project is a first by Hanjiang Group, which also owns an aluminium smelter Hubei Danjiang Aluminium Co. Danjiang Aluminium is targeting production of 101,000 tonnes of aluminium ingot in 2006. Based in Danjiangkou city in central Hubei province, Hanjiang Group’s main business is hydropower. U.S.A. Indalex to sell drawn tube plant to Spectube Indalex Holding Corp., Illinois, agreed to sell its assets of its drawn tube operation in Winton, North Carolina, to Spectube Inc., Chicoutimi, Quebec. Under terms of the definite agreement, Spectube will acquire substantially all of the assets of the Indalex drawn tube business in Winton including a dormant aluminium extrusion facility on the site. Spectube will continue to operate the Winton drawn tube plant, ALUMINIUM · 1-2/2007 ALUMINIUM SEMIS which employs about 95 people, and Indalex will continue to supply the plant with extruded aluminium under a supply contract with Spectube. The Winton plant makes porthole and seamless tube in alloys 6063, 6061, 3003, 1100 and 6463 and has nine high-speed draw benches and four roll straightening machines. U.S.A. Start-up of Kaiser Aluminum’s heat-treat furnace at Trentwood The first heat-treat furnace in Kaiser Aluminum’s US$ 105 million Trentwood rolling mill expansion is now at full production after going through shakedown and start-up procedures during the third quarter. The second furnace is expected to be on line by mid-2007 and the final furnace and new stretcher by 2008. The expansion had been increased from an initial US$ 70 to 105 million and Kaiser would consider further expansions if customer demand materialised. U.S.A. Quanex denies Nichols unit to go back on sales block Quanex Corp., Houston, denies that is will be shopping for a buyer for its Nichols Aluminum Corp. aluminium sheet business sometime during 2007. The breakout of Nichols Aluminum financial results in Quanex’s fourth quarter earning statement could be a signal that it is thinking about selling the business. Nichols Aluminum is an earn-and-protect business and Quanex broke out the numbers to provide better transparency. Previously, the numbers had been rolled into overall results for Quanex’s building products segment. China Malaysian aluminium extruder Press Metal buys upstream plant in China Malaysian aluminium extruder Press Metal plans to buy a 90% stake in China’s Hubei Huasheng Aluminium ALUMINIUM · 1-2/2007 Order for SMS Demag First 2-stand cold rolling mill for China CSWA Cold Rolling Co., Ltd. (Southwest Aluminium), China, which belongs to the Chinalco Group, has placed an order with SMS Demag, Germany, for the supply of a two-stand cold rolling mill for aluminium and aluminium alloys. The two-stand cold rolling mill constitutes the core of an investment package by means of which CSWA intends to increase its cold rolling capacity to more than half a million tonnes per year. The new mill will produce tin-can strip, panelling and litho material for the printing industry. The cold strip can be rolled up to a width of 1800 mm and a maximum final thickness of 0.15 mm. SMS Demag is the technical and commercial leader of an international consortium. The supply scope of the company covers a two-stand tandem mill, three Multi-Plate plate filters for best rolling oil purity as and Electric Co Ltd for 360m yuan (US$ 46m) in a bid to secure raw materials and electricity for its Press Metal International (PMI) downstream aluminium manufacturing plant in Guangzhou. Huasheng Aluminium owns the Huasheng Aluminium Smelter, which produces aluminium ingot, and the Huasheng Electricty Generation power plant. Huasheng Aluminium produces 38,000 tpy of aluminium ingots. PMI is in the process of doubling its capacity to 43,000 tpy. Japan Kobe Steel and Alcoa to dissolve auto sheet joint ventures Kobe Steel and Alcoa have agreed to dissolve two aluminium auto sheet joint ventures. The two companies set up the 50 : 50 joint ventures, one based in the US and one in Japan, in 1992. The US-based company, Alcoa Kobe Transportation Products Inc., focuses on research and development, while Kobe Alcoa Transportation Products Ltd in Japan manufactures and supplies aluminium sheet to Japanese car makers. Alcoa will acquire all well as a large airwash exhaustair cleaning system. The new rolling mill is equipped with state-of-the-art actuators and technological control systems. Both stands are designed with the CVC6 plus technology. Such a multi-stand mill is particularly sophisticated in terms of technology because of the temperature sensitivity of the rolling oil used for the cold rolling of aluminium. The mill stands as well as all core components are manufactured in SMS Demag‘s workshop in Germany. Commissioning is scheduled for the spring of 2009. The Southwest Aluminium Works is considered a technology centre within the Chinalco Group. It is located in the Xipeng District of Chongqing, the metropolis of 30 million at the upper course of the Yangtze river. SMS Demag AG forms part of the Metallurgical Plant and Rolling Mill Technology Business Area of the SMS group. stock in the R&D venture in January 2007, while Kobe Steel will purchase all shares in the production and sales firm a month later. Kobe Steel will also take over the marketing of products in the Japanese market. Sales at the Japanese unit for the current year are anticipated to be less than ¥ 20 billion (US$ 169.6m). N The Author The author, Dipl.-Ing. R. P. Pawlek is founder of TS+C, Technical Info Services and Consulting, Sierre (Switzerland), a new service for the primary aluminium industry. He is also the publisher of the standard works “Alumina Refineries and Producers of the World” and “Primary Aluminium Smelters and Producers of the World”. These reference works are continually updated, and contain useful technical and economic information on all alumina refineries and primary aluminium smelters of the world. They are available as loose-leaf files and/or CD-roms from the Aluminium-Verlag, Marketing & Kommunikation GmbH in Düsseldorf, Germany. 69 MARKT UND TECHNIK Umreifungstechnik mit PET-Hochleistungsband „Keine Konzessionen an die Qualität“ Signode ist seit 1986 ein Unternehmen der ITW Illinois Tool Works Inc. und beschäftigt weltweit über 7.000 Mitarbeiter in mehr als einhundert Ländern. Rund 650 Mio. Euro Umsatz werden allein in Europa mit Umreifungstechnik erwirtschaftet. Im Jahr 1913 zunächst als Seal and Fastener Company gegründet, ist Signode damals wie heute ein Vorreiter in diesem Geschäft. Das Unternehmen sieht sich als Technologie- und Qualitätsführer im Umreifungsgeschäft. Dafür sprechen über 600 aktive Patente. Qualität hat natürlich ihren Preis. Gerard W. Laks, der als General Manager den Ländervertrieb für Westeuropa leitet, gibt unumwunden zu, dass die Umreifungsmaschinen des Unternehmens nicht zu Discountpreisen erhältlich sind. „Dafür machen wir keine Konzessionen an die Qualität unserer Produkte. Wenn jemand 20, 30 Prozent unter unseren Preisen liegt, bietet er im Grunde ein völlig anderes Produkt als wir an“, sagt Laks. Das Aushängeschild unter den Signode-PET-Produkten ist die AK200Technologie in Kombination mit dem Hochleistungsband Tenax: einem hochfesten und äußerst elastischen PET-Band, das in seiner 19 bis 25 mm breiten Ausführung eine Bruchlast von fast 12000 Newton aufweist. Noch wichtiger aber als die Bruchlast (die von Stahl ist weit größer) ist die hohe Schlagfestigkeit des Tenax-Bandes. Sie ist 25 Mal größer als die von Standard-Stahlbändern. Dieser Vorteil kommt beim Handling und Transport zum Tragen – etwa wenn ein Ladung vom Gabelstapler fällt oder auf einem Lkw, per Bahn oder Schiff durchgerüttelt wird. Das Tenaxband lässt sich bis zu fünf Prozent dehnen ohne plastisch zu verformen. Erst bei einer Dehnung von 16 Prozent reißt es. Im Gegensatz dazu reißt StandardStahlband bei 0,2 Prozent und Hoch- Mit PET-Band umreifte Palette Bolzen ... Strapped with PET strip: billets ... All illustrations: Signode Lange Zeit galten Stahlbänder als das non plus ultra, um Masseln, Walzbarren, Pressbolzen, Bleche oder Profile für den Transport zu umreifen und sicher an ihren Bestimmungsort zu bringen. Auch die Signode Packaging Systems, ein Pionier in Sachen Umreifungstechnik, ist mit Stahlbändern groß geworden. Mittlerweile hat sich in der Aluminiumindustrie in weiten Bereichen Kunststoffband durchgesetzt. Vor allem das Hochleistungsband „Tenax“ aus PET bietet in der Kombination von hoher Bruchlast und Elastizität einen optimalen Transportschutz. 70 Strapping technology with PET high-performance strip “No concessions on quality” Steel strips have long been regarded as the non plus ultra for the strapping of ingots, rolling slabs, extrusion billets, sheets or sections for transport and safe delivery to their destination. Signode Packaging Systems too, a pioneer in the field of strapping technology, grew large on the strength of steel strip. Meanwhile, in wide areas of the aluminium industry plastic strip has become accepted. Above all the high-performance strip “Tenax” made from PET, with its combination of high breaking strength and elasticity, offers optimum protection during transport. Since 1986 Signode has been owned by ITW Illinois Tool Works Inc. and employs more than 7,000 people worldwide in more than 100 countries. In Europe alone its strapping technology generates a turnover of around 650 million euros. Founded in 1913 first as Seal and Fastener Company, Signode was then, as it is now, a front-runner in this business. The company views itself as a technology and quality leader in the strapping business. Evidence of this are over 600 active patents. Quality, of course, has its price. General Manager Gerard W. Laks, Distributor Sales Western Europe, states plainly that the company’s strapping machines are not to be had at discount prices. “We make no concessions on the quality of our products. If anyone’s prices are 20 or 30% lower than ours, it is basically because he is offering a product completely different from ours”, says Laks. The flagship among Signode PET products is AK200 technology combined with the high-performance strip Tenax: a high-strength and exceptionally elastic PET strip which, in its 19 to 25 mm wide version, has a breaking strength of almost 12,000 N. Even more important than the breaking strength, however (that of steel is far higher), is the high impact re- ALUMINIUM · 1-2/2007 MARKETS AND TECHNOLOGY sistance of Tenax strip, which is 25 times greater than that of standard steel strips. That advantage is important during handling and transport, for example when a load falls off a fork-lift or is juddered on a truck, rail wagon or ship. Tenax strip can stretch up to 5% without plastic deformation. It only snaps at an elongation of 16%. In contrast, standard steel strip breaks at 0.2% and high-performance steel strip at 6% elongation. Stretched steel strip also essentially no longer contracts again after extension. A further advantage of PET strip is that its tightness is maintained when the strapped material cools down – stripping is often carried out at 70 °C or more – and shrinks slightly during this. Or when ingots are stacked in a 1200 kg bundle and the packet sags under its own weight. The PET plastic strip contracts correspondingly so as to fit tightly again around the packaged material. In contrast steel strips have to be re-tightened, which incurs additional handling costs. But if the material has left the company’s premises, its packaging can no longer be re-tightened if the strapping becomes loose. Tenax strip has a number of other advantages compared with steel strips. It does not scratch or indent the metal surface and produces no corrosion spots. The risk of injury is smaller, since it is not sharp-edged like steel strip. It is 80% lighter than steel, which reduces freight charges, and it occupies up to 50% less storage space. And it does not have to be removed when the ingot packs are transferred to the melting furnace. Tests have shown that a typical ingot bundle of 980 kg (with about 50 g of Tenax strip) produces a total of 0.03% ash. This has no adverse effect at all on the metal quality. The centrepiece of Signode strapping machines is the AK strapping head. This was developed as early as the 1980s: as the AK100 first for steel strips and then as the AK200 for plastic, and in the mid-1990s then for polyester. The AK200-HD head enables a tightening tension of up to 6000 N. “No other strapping head on the market can do that”, stresses Laks, who has looked after business with the © ALUMINIUM · 1-2/2007 ... und Stangen ... and bars leistungs-Stahlband bei sechs Prozent Dehnung. Gedehntes Stahlband zieht sich zudem grundsätzlich nicht mehr zusammen. Der Vorteil des PET-Bandes besteht auch darin, dass die Spannung erhalten bleibt, wenn das umreifte Material abkühlt – oft wird bei 70 °C und mehr umreift – und dabei leicht schrumpft. Oder wenn Masseln zu einem Bündel von 1.200 kg gestapelt werden und sich das Paket unter seinem Eigengewicht staucht. Das PET-Kunststoffband zieht sich entsprechend zusammen, so dass es weiterhin eng um das verpackte Material liegt. Stahlbänder müssen dagegen nachgespannt werden, was zusätzliche Handlingkosten verursacht. Hat das Material den Firmenhof verlassen, kann jedoch nichts mehr an der Verpackung nachgezurrt werden, falls die Umreifung sich lockert. Tenaxband bietet eine Reihe weitere Vorteile gegenüber Stahlband. Es verkratzt nicht die Metalloberfläche, kerbt sich nicht ein und verursacht keine Korrosionsflecken. Die Verletzungsgefahr ist geringer, da es nicht scharfkantig wie Stahlband ist. Es ist 80 Prozent leichter als Stahl, was die Frachtkosten verringert, und beansprucht bis zu 50 Prozent weniger Lagerraum. Und es muss nicht entfernt werden, wenn die Masselpakete in den Schmelzofen kommen. Tests haben gezeigt, dass ein typisches Masselbündel von 980 kg (mit ca. 50 Gramm Tenaxband) insgesamt 0,03 Prozent Asche hinterlässt. Die Metallqualität wird dadurch in keinster Weise beeinträchtigt. Das Herzstück der Signode-Umreifungsanlagen ist der AK-Umreifungskopf. Entwickelt wurde er bereits in den 1980er Jahren: als AK100 © 71 MARKT UND TECHNIK schlauer machen als nötig. Ähnliches gilt für die Fertigung des AK-200Kopfes, der ausschließlich in Dinslaken produziert wird. An diesem SignodeStandort erfolgte die Entwicklung des AK-Kopfs, hier sind rund 300 Mitarbeiter beschäftigt, hier wird das Fertigungs-Knowhow gebündelt. In der Aluminiumindustrie wurden die ersten zwei Maschinen mit AK200Kopf 1996 bei Alcan Isal in Island zum Umreifen von Masseln und Barren bis mittlerweile 30 Tonnen Begutachtung eines Masselbündel nach einem Falltest aufgestellt. Für sehr schweAssessment of an ingot pack after a fall test re Güter wie Bolzen kommt PET-Tenaxband in der Breizunächst für Stahlbänder, als AK200 te von 19 bis 25 mm zum Einsatz. Für anschließend für Kunststoff, Mitte Bolzen wird 25 mm breites Band verwendet, für das Verpacken von Masder 1990er Jahre dann für Polyester. seln reicht dagegen 19 mm breites Der AK200-HD-Kopf leistet eine ZugHochleistungsband. Bei weniger hospannung bis zu 6000 Newton. „Das kann kein anderer Umreifungskopf hen Ansprüchen (z. B. für Profilverim Markt“, betont Laks, der seit 1996 packungen) wird PET-Standardband das Geschäft mit der Aluminiuminduin Breiten zwischen 12 und 16 mm strie betreut. Ähnlich anspruchsvoll verwendet. Mehr als 2.600 AK-Köpfe sind mittsind auch die Leistungswerte für den Verschluss. Das patentierte Z-Weld lerweile weltweit und branchenüberVerschlussverfahren garantiert eine greifend im Markt. „Und jede Woche Verschlussstärke von 90 Prozent. kommen weitere hinzu“, so Laks. 890 Dieser Vorteil ergibt sich daraus, davon sind AK200-Köpfe für Polyesdass Signode nicht weg-, sondern lastterband. In der Aluminiumindustrie abhängig umreift. Eine wegabhängige sind etwa 155 AK200-Köpfe im EinUmreifung hat den Nachteil, dass satz. Hydro Aluminium ist laut Laks die Bespannung stoppt, sobald ein komplett mit Signode-Maschinen Gegendruck erfolgt. Demgegenüber bzw. AK200-HD-Köpfen ausgerüswird das Band bei der lastabhängigen tet, die in Umreifungsmaschinen für Umreifung so lange gezogen, bis eine Stahlband nachgerüstet wurden. leichte Dehnung erfolgt. Erst dann Auslieferungen der vergangenen wird das Band unter hohem Druck Monate betreffen unter anderem den verschlossen. Verkauf von AK200 19mm-Anlagen Das Umreifungsband wird ebenso für Masseln nach Albras in Brasilien. wie die Maschinen von Signode selbst Alba Bahrain hat neue AK200-HDAnlagen in Auftrag gegeben. CBA orproduziert, und zwar in England und derte für seine brasilianische Hütte Finnland. Für Tenaxband verwendet man „jungfräuliches“ Material, daeine Kombimaschine mit AK100/200mit die Elastizität in vollem Umfang Köpfen, die für 25 mm Stahl- und 19 gewährleistet ist. Recyclingmaterial mm Polyesterband ausgelegt ist. Eine kommt nur bei Standardband mit zum Umstellung von PET auf Stahlband Einsatz. Die Zutaten zur Bandherstelkann übrigens innerhalb von 15 Milung bleiben ein Geheimnis weniger nuten erfolgen, denn die Bauart der „Küchenchefs“, so wohlbehütet wie AK100- und 200-Köpfe ist identisch. die Rezeptur von Coca-Cola. Man will An Assan Aluminium in der Türkei den Wettbewerb ja nicht unbedingt ging eine Stahlbandanlage für Coils, 72 aluminium industry since 1996. Similarly impressive are the performance figures for the closure. The patented Z-weld closure process guarantees a closure strength of 90%. This advantage stems from the fact that Signode straps not in a path-dependent but in a load-dependent way. Path-dependent strapping has the disadvantage that the tightening stops as soon as there is a counter-pressure. In contrast, during load-dependent strapping the strip is tensioned until a slight extension takes place. Only then is the strap sealed under high pressure. Both the strapping strips and the machines are produced by Signode itself, in England and Finland. For Tenax strip “virgin” material is used, to guarantee the full extent of its elasticity. Recycled material is only ever used for standard strip. The ingredients for strip production remain a secret between a few “master-chefs”, as well-protected as the recipe for CocaCola. One does not want to make the competition any more cunning than necessary. The same applies to the production of the AK200 head, which is made exclusively in Dinslaken. The AK head was developed at the Signode site in Dinslaken, where 300 people are employed and all the production knowhow is concentrated. In the aluminium industry the first two machines with AK200 heads were set up in 1996 at Alcan Isal in Iceland for strapping ingots and bars now up to 30 tonnes. For very heavy goods such as billets PET Tenax strip of width 19 to 25 mm is used. For billets 25 mm strip is used, while in contrast 19 mm high-performance strip is enough for packing ingots. In less demanding cases (e.g. for section packing) PET standard strip from 12 to 16 mm wide is used. Meanwhile, more than 2,600 AK heads have been marketed worldwide and in many branches. “And the number is increasing every week”, says Laks. 890 of them are AK200 heads for polyester strip. In the aluminium industry about 155 AK200 heads are in use. According to Laks Hydro Aluminium is completely equipped with Signode machines and AK200 heads, ALUMINIUM · 1-2/2007 MARKETS AND TECHNOLOGY retrofitted in strapping machines for steel strip. Deliveries in the last few months include for example the sale of AK200 19 mm units for ingots to Albras in Brazil. Alba Bahrain has ordered new AK200-HD units. For its Brazilian smelter CBA ordered a combination machine with AK100/200 heads, designed for 25 mm steel and 19 mm polyester strips. Besides, conversion from PET to steel strips can take place within 15 minutes, since the structure of the AK100 and AK200 heads is identical. A steel strip unit for coils to be heat treated has gone to Assan Aluminium in Turkey. Dubal is currently converting from steel to plastic. The remaining approximately 1,700 aggregates sold are AK100 heads for steel strips. Many have been giving good service day after day for over 20 years. Occasionally they are cleaned and maintained, or a blade or conveyor wheel has to be replaced. There are, however, hardly any other parts affected by wear. According to Laks, at 2,000 to 2,500 euros per year maintenance costs are the lowest on the market. This is also because the technical components are on the outside of the head and therefore easy to reach. It might be thought that such reliability is not very good for business, since ultimately one wants to sell machines. But the company stays true to its philosophy, which can be expressed as, “How can we improve our work today for the sake of tomorrow”. Improve, in order to make the customer’s work easier, save costs, and ensure that the goods arrive at their destination undamaged. That pays in the long term. As Laks explains, “Since the customers are happy with the machine, we ensure long-term sales of the associated strip”. Besides, demand is increasing continually. Laks reports that business with the AK heads is going well. So far they are mainly used in the smelter industry. Almost two-thirds of all smelters use AK200 heads, with an upward trend since more and more companies are converting from steel to polyester strip. “Americans are lagging rather behind in this development”, says Laks. They are even © ALUMINIUM · 1-2/2007 die wärmebehandelt werden. Dubal rüstet derweil von Stahl auf Kunststoff um. Die anderen rund 1.700 verkauften Aggregate sind AK100Köpfe für Stahlbänder. Manche leisten seit über 20 Jahren ihren Dienst, Tag für Tag. Gelegentlich werden sie gereinigt und gewartet, muss ein Messer ausgetauscht werden oder ein Förderrad. Weitere Verschleißteile gibt es jedoch kaum. Die Kosten für die Instandhaltung sind mit 2.000 bis 2.500 Zusätzliche Sicherung mit dem neuen Signode „Flex Stretch Net“ Euro pro Jahr laut The new Signode „Flex Stretch Net“ for optimum transit security Laks die niedrigsten im Markt. Auch weil sich die Technik also noch viel Spielraum für Wachsan der Außenseite des Kopfes befindet tum, sowohl in Nord- wie in Südamerika. Erste AK200-HD-Maschinen für und damit einfach zu erreichen ist. Man könnte meinen, diese ZuverBolzen sind jedoch schon in den USA lässigkeit sei ein Stück weit schädlich und Kanada installiert. fürs Geschäft, denn schließlich will Langfristig dürften auch der chineman ja auch Maschinen verkaufen. sische und russische Markt attraktiv Doch man bleibt der Firmenphilosowerden. Dort dominiert noch das Umphie treu, die da lautet: „Wie können reifen mit Stahlband oder sogar mit wir unsere Arbeit von heute für morAluminiumdraht. gen verbessern“. Verbessern, um dem Der Marktbedarf in Europa ist Kunden die Arbeit zu erleichtern, Kodagegen weitgehend gedeckt. Zuminsten zu ersparen und sicherzustellen, dest in den Hüttenbetrieben. Wachsdass die Ware ohne Schäden beim tumspotenziale bietet dagegen die ReAdressaten ankommt. Das zahlt sich cyclingbranche und die Verarbeitung. langfristig aus. „Denn sind die Kunden Signode hat hier vor allem die Umreimit dem Werkzeug zufrieden, verdiefung von Aluminiumwalzprodukten nen wir langfristig am Verkauf des wie Bleche und Coils im Visier. zugehörigen Bandes“, so Laks. Zur Marktbearbeitung wurde daIm Übrigen wächst die Nachfrage her erst kürzlich ein neues Global kontinuierlich. Das Geschäft mit den Specialist Team gebildet, das von AK-Köpfen läuft laut Laks gut. Sie werLaks geführt wird. Es soll die Kontakte den bislang vor allem in der Hütteninzu den Signode-Niederlassungen, die dustrie eingesetzt. Fast zwei Drittel aldie OEMs weltweit betreuen, intensiler Hütten verwenden AK200-Köpfe. vieren. Außerdem soll das Team die Tendenz steigend, denn immer mehr lokalen Key Account Manager von SiBetriebe rüsten von Stahlband auf Pognode dabei unterstützen, mit Alumilyester um. „Die Amerikaner hinken niumhütten und -verarbeitern Kontakt aufzunehmen, um sie mit Testdieser Entwicklung noch etwas hinterher“, sagt Laks. Sie seien eben konversuchen von der Leistungsstärke des Polyesterbandes zu überzeugen. servativer als die Europäer. Außerdem sind spezielle Begutachtungen Das sollte nicht allzu schwer fallen. bei Einsatz von PET-Band für AlumiN niumprodukte erforderlich. Da bleibt 73 MARKETS AND TECHNOLOGY more conservative than Europeans. Moreover, special expertise is needed when using PET strip for aluminium products. So there is still plenty of room for growth, in both North and South America. However, the first few AK200-HD machines for billets have already been installed in the USA and Canada. In the long term the markets in China and Russia should also become attractive. In both countries strapping with steel strip or even alu- minium wire is still dominant. In contrast, market needs in Europe have largely been covered, at least in smelter operations. On the other hand there is growth potential in the recycling branch and in processing. Here, Signode mainly has the strapping of rolled aluminium products such as sheets and coils in its sights. To prepare the market, therefore, a new Global Specialist Team was recently formed, which is led by Laks. It aims to intensify contacts with the Signode establishments which look after OEMs worldwide. In addition, the Team will support Signode’s local Key Account Managers in making contact with aluminium smelters and processors, in order to persuade them of the effective performance of polyester strip by means of tests. That should not be difficult at all. N Alcutec Engineering MVS (Mordovvtorsyrio) in the capital of the Russian republic of Mordovia, Saransk, has started the construction of an aluminium recycling complex with an annual capacity of 60,000 tonnes of metal for a wide range of alloys. The plant concept is based on the most advanced equipment available for this kind of production. The technology is provided by the German company Alcutec Engineering, which also implemented all the engineering services and supplied the required equipment. The individual components were manufactured in Germany with some components supplied from the UK, the Netherlands and France. The steel structures were also built in Germany, “since quality control and monitoring are very painstaking and therefore costly”, as Christoph Schmitz, Managing Director of Alcutec, stresses. Key equipment for the melting section are two tilting rotary drum furnaces with a capacity of 25 tonnes each, having a cycle time (tap to tap) of 4 hours. To be able to process all kinds of aluminium scrap of different origin the complex is equipped with Technological details of the tilting rotary drum furnace were published in ALUMINIUM 2004, issue 3, 172-177, and issue 4, 288-290. 74 Photos: Alcutec Engineering German know-how for Russian aluminium recycling complex In der Bauphase: Einer von zwei kippbaren Drehtrommelöfen ... In the building phase: one of two tilting rotary drum furnaces … a high performance shredder system with adjacent classifiers. Two reverberatory furnaces, each of 25 tonnes bath capacity with a melting rate of 3 tonnes per hour, facilitate casting. The melting capacity is required to be able to melt no-go production and clean scrap. The arrangement of the furnaces permits continuous casting. A dual casting line with automatic stacker produces remelt ingots. To obtain high quality standards an in-line, degassing and filtration system is arranged ahead of the casting line. The neces- sary plant also includes a state-of-theart gas scrubbing system to complete the plant set-up. This shows that the Russian customer regards environmental protection as extremely important and makes no concessions in that respect. The MVS contract is worth approximately 10 million euros. The contract was awarded in May 2006 and delivery was concluded a few days ago once reconstruction of the shed for the plant had been completed. “The customer assigned to us highly qualified staff, with whom outstand- ALUMINIUM · 1-2/2007 MARKETS AND TECHNOLOGY ing collaboration was possible”, says Schmitz in appreciation of the good co-operation during the performance of the contract work. For Alcutec the Russian market is very important and is a mainstay of the company’s business. After the construction of plants at MOPM, Moscow and VTORMET, MVS is the third complete aluminium recycling complex supplied to Russia by Alcutec. A further advantage in this was that Russian import duties are reduced in the Province of Mordovia in order to encourage the establishment of industrial companies there. A proportion of the casting alloys produced go towards meeting domestic needs, but MVS aims to export the remainder. With the current investments MVS is preparing itself for the fact that as the Russian domestic automobile market develops into one of the country’s largest purchasers, castings of better quality will be needed. “The plant now supplied makes MVS not only Russia’s largest secondary melting operator, but also puts the company in a position to compete fully with European suppliers”, says Schmitz. Important as the Russian market may be for Alcutec, the USA and emerging Asian markets such as India are also interesting market regions for Alcutec’s engineering business. In contrast, it is very difficult to get orders for complete new projects in Germany, where as a rule existing but largely superannuated recycling plants are being modernised. “Nobody builds as sturdily as we do“ Alcutec Engineering provides professional engineering services for the secondary aluminium industry, starting from feasibility studies, through basic and detailed engineering, to project management. This also includes the supply of technology and process know-how as well as the development of new processes. As Schmitz points out, “Our professional service ensures a conclusive engineering and planning phase. We strive to avoid critical interfaces between equipment and plant selections.” A particular point of differentiation from the competition is ALUMINIUM · 1-2/2007 und kippbaren Herdöfen mit Schmelzleistung für MVS … and tilting hearth furnaces with the melting power for MVS expressed as, “Nobody builds as sturdily as we do”. For a recycling furnace to operate for 20 years or even longer without problems, for example without cracks in the external masonry or the furnace housing, a warp-resistant steel structure with correspondingly large wall thickness is needed. “That may be somewhat more expensive, but it is an investment which pays in the long term”, says Schmitz. Alcutec supplies proprietary equipment consisting of tilting rotary drum furnaces, hearth furnaces, charging systems, chip drying systems as well as other tailor-made equipment for the secondary aluminium industry. In co-operation with other firms the company supplies all other equipment used in the industry, such as ingot casting lines with stacker, waste gas scrubbing plants and auxiliary equipment. The business activities comprise professional services for erection, commissioning and plant maintenance, including the development of maintenance systems. One activity is operational assistance by providing experts with a detailed service report in their field. This service enables the customer to update the methods of an existing plant or to use the latest technology efficiently. The quality requirements of the different aluminium alloys are stead- Alcutec rüstet russische Umschmelzhütte aus Für die russische MVS in der Republik Mordowien hat Alcutec Engineering aus Niederzier einen Komplettauftrag über zwei kippbare Drehtrommelöfen, zwei kippbare Herdöfen mit Schmelzleistung inklusive Nebeneinrichtungen wie Abgasreinigung, Kühl-, Elektro- und Hydraulikeinrichtungen sowie Schredderanlage abgewickelt. Die Kapazität der Recyclingöfen beträgt je 25 Tonnen. Die Herdöfen haben eine Kapazität von ebenfalls je 25 Tonnen bei einer Schmelzleistung von drei Tonnen pro Stunde. Der MVS-Recyclingkomplex ist auf eine Jahresleistung von 60.000 Tonnen ausgelegt. „Mit der gelieferten Anlage entwickelt sich MVS nicht nur zur größten Umschmelzhütte in Russland, das Unternehmen wird auch gegenüber europäischen Anbietern absolut wettbewerbsfähig“, sagt Alcutec-Geschäftsführer Christoph Schmitz. Der Auftrag hat ein Volumen von rund zehn Millionen Euro und wurde vor wenigen Tagen ausgeliefert. Es ist der dritte russische Komplettauftrag für Alcutec. „Weitere Projekte für den russischen Markt sind in Vorbereitung“, so Schmitz. 75 © MARKETS AND TECHNOLOGY ily becoming stricter, particularly for the most important customer of the secondary aluminium plants – the automotive industry. Quality means minimum deviations from the target alloy composition, no or negligible mechanical inclusions and very little gaseous contamination. On the other hand, the plant must operate economically successfully. Considering spiralling energy costs and the more and more stringent environmental regulations, this is becoming increasingly difficult. However, the most critical factor is the shortage of suitable aluminium scrap. The quantity of this raw material is limited worldwide and numerous countries compete to get their share, with the result that scrap prices are high. The secondary aluminium industry is therefore compelled to process even scrap of low quality, in other words scrap that is heavily con- an economical evaluation since prices of scrap and metal are readily available. However, sometimes confusing information is published on recovery: for instance, a value of 90% or even higher, although the scrap processed may have had a metal content of only 70%. So the figures given have to be looked at carefully. They may be only valid for a very specific case such as a plant that remelts clean scrap under strictly controlled operating conditions. Melting such material in a reverberatory furnace may result in a metal loss as high as 70%, 80%, or even more, unless a special metal pumping system is used. The melting loss may than be reduced to reasonable values of 2 to 5% of the metal contained in the feed material. This technology, however, entails operation with a metal heel in the furnace, and there are difficulties in obtaining the requested metal analysis if the metal charged is not very well specified. In fact this can only be the case in a closed-loop recycling process in a downstream plant. As is generally known, the secondary aluminium industry is divided into refiners and remelters. While refiners produce alloys from a Kippdrehtrommelofen im Einsatz bei der Firma Oetinger. wide variety of Tilting rotary drum furnace in use at Oetinger in Germany scrap, remelters produce their taminated by organic and inorganic alloys from clean scrap of defined contaminants and compound metals. analysis. Consequently the key techClean scrap originating from producnology for the melting equipment tion waste or no-go parts is generally is different. Reverberatory furnaces not available to refiners in the secondeither designed as hearth furnace or ary aluminium industry. twin-chamber furnaces additionally One key question for a production equipped with feeding systems for manager is therefore, how much alusmall particles are used in remeltminium is produced from a certain ing plants that process defined clean quantity of scrap. This is expressed scrap with only little organic contamiby the metal recovery factor, namely nation. the ratio between metal produced and Refiners, in contrast, need difscrap consumed. This is easy to use in ferent melting equipment. “The key 76 equipment for melting at a refining plant is the rotary drum furnace, today typically designed as a tilting rotary drum furnace” says Schmitz. This technology permits processing of almost all kinds of scrap and is particularly suitable for scrap heavily contaminated with organic and inorganic matter and for material with a large specific surface area. Selecting the proper equipment for the kind of plant operation – remelting or refining – is the principle task of the plant owner and his engineers. Low metal loss and also favourable energy consumption are not the only criteria. Safe and reliable operation is an important factor as well. The equipment must be able to withstand the sometimes harsh treatment by the operators under severe operating condition and must work without down-time due to equipment failures. “So the traditional methods of equipment design may not be sufficient to achieve this target and design methods used for heavy machinery must be applied as well”, says Schmitz. Another factor to be considered is compliance with the environmental standards of the plant location and the industry. Summarising the above facts, the plant owner may be hard put to select the right equipment and processes for his future plant or plant expansion. Further Russian projects in course of preparation Professional consulting services may assist the plant owner in the decision-making process. Companies that can provide the required consulting service should also have proprietary technologies and a broad product range. This combination assures clients in the secondary aluminium industry of smooth commissioning and trouble-free operation. Proper training and production assistance are further steps for obtaining a plant that is economically successful. Schmitz is convinced that Alcutec provides this service as well as supplying proprietary equipment and technology. And he confirms that, “Further projects for the Russian market are in course of preparation”. N ALUMINIUM · 1-2/2007 MARKT UND TECHNIK Positive Stimmung in der Branche Deutsche Aluminiumkonjunktur läuft derzeit rund Die deutsche Aluminiumindustrie bleibt auf Wachstumskurs. Die ersten neun Monate des vergangenen Jahres verliefen für die Branchenunternehmen durchweg positiv, wie Gerhard Buddenbaum, Präsident des Gesamtverbandes der Aluminiumindustrie (GDA), auf einer Pressekonferenz im November 2006 resümierte. Die Aluminiumunternehmen konnten 2006 deutlich mehr Aufträge verbuchen. „In fast allen Produktions- und Verarbeitungsbereichen weisen die Tendenzen nach oben,“ so Buddenbaum. Die deutlich gestiegenen Metallpreise an der London Metal Exchange übten dabei allerdings Druck auf die Margen der Verarbeiter aus. Seit geraumer Zeit ist die Stimmung der Aluminiumindustrie positiv. Und auch für 2007 bleiben die Perspektiven laut GDA aussichtsreich, trotz der zu Anfang dieses Jahres in Deutschland erhöhten Mehrwertssteuer um drei Prozentpunkte und der weiterhin hohen heimischen Energiepreise. Anzeige www.inotherm-gmbh.de Die Bedeutung von Aluminium hat in den vergangenen Jahren ständig zugenommen. Der Aluminiumbedarf ist im Zehnjahresvergleich zwischen 1995 und 2005 um mehr als 50 Prozent auf 3,1 Mio. Tonnen gestiegen. Der Bedarf wird laut GDA-Geschäftsführer Christian Wellner auch für das Gesamtjahr 2006 erneut leicht zunehmen. Wichtigster Zielmarkt für die deutsche Aluminiumindustrie bleibt der Verkehrssektor mit 43 Prozent Marktanteil am Gesamtabsatz. Weitere wichtige Märkte sind der Bausektor (15%), die Verpackungsindustrie (10%) und der Maschinenbau (9%). Im Getränkedosenmarkt hat 78 sich die Aluminiumdose mit der neuen Pfandregelung seit Mai 2006 einen Marktanteil von rund 50 Prozent erobert. Das ist gemessen an früheren zehn bis 15 Prozent Marktanteil zwar ein beachtlicher Erfolg gegenüber der Weißblechdose, doch bewegt sich der Dosenmarkt insgesamt gesehen noch weit unter dem Niveau, auf dem er vor drei bis vier Jahren war. Produktion auf hohem Niveau Bei der Produktion von Sekundäraluminium, Aluminiumhalbzeug und Formguss konnten die deutschen Aluminiumunternehmen 2006 leicht zulegen, bei der Weiterverarbeitung wurde das gute Vorjahresergebnis bestätigt. Die deutschen Primäraluminiumhütten produzierten wie in den Vorjahren an der Kapazitätsgrenze. In den ersten neun Monaten 2006 lag die Erzeugung von Primäraluminium mit 386.700 t jedoch 22 Prozent unter dem Vergleichszeitraum des Vorjahrs. Zurückzuführen ist dieser Rückgang auf die Abschaltung der Aluminiumhütte in Hamburg. Die Produktion von Sekundäraluminium stieg von Januar bis September 2006 um 11 Prozent auf 596.100 t. Sorgen bereitet der Branche der anhaltende Rohstoffbedarf boomender Volkswirtschaften wie China und Indien, die die Verfügbarkeit von Aluminiumschrotten in Deutschland und dem übrigen Europa bedrohen. Die 35 deutschen Halbzeugwerke produzierten 2006 auf weiterhin hohem Niveau. Bei den Press- und Zieh- Positive mood in the German aluminium industry Prospects for 2007 are good The aluminium industry in Germany is still growing. The first nine months of last year turned out positively for the branch, as Gerhard Buddenbaum, President of the German trade association GDA summarised at a press conference in November 2006. Aluminium companies booked many more orders in 2006. “In almost every production and processing sector the trend was upwards”, said Buddenbaum. However, the considerably higher metal prices on the London Metal Exchange put pressure on processors’ margins. Generally speaking the aluminium industry’s mood is positive. And according to the GDA prospects for 2007 are relatively good as well, despite the value-added tax increase (by 3%) at the beginning of this year in Germany and the persistently high domestic energy prices. Over the past several years the importance of aluminium has increased continually. A ten-year comparison between 1995 and 2005 shows that demand for aluminium has increased by more than 50%, up to 3.1 million tonnes. According to GDA Managing Director Christian Wellner, it is again expected to have increased slightly in the full year 2006. The most important target market for Germany’s aluminium industry is still the transport sector, with a 43% market share of total sales. Other major markets are the building sector Quelle: GDA Aluminiummärkte in Deutschland, 2005 Aluminium markets in Germany, 2005 ALUMINIUM · 1-2/2007 MARKETS AND TECHNOLOGY produzieren kann, beweist die Aluminiumindustrie seit Jahren, besonders bei Produkten mit hoher Wertschöpfung. „Dem Wettbewerbsdruck der Niedriglohnländer setzen unsere Unternehmen ein hohes Qualitätsniveau, absolute Zuverlässigkeit und große Flexibilität entgegen“, so Buddenbaum. Die hohe Wettbewerbsfähigkeit der Branche zeigt sich vor allem in ihren Exporterfolgen, rund 41 Prozent der gesamten deutschen Produktion gehen ins Ausland. Die Wachstumsraten bei den Exporten sind in der Tat eindrucksvoll. So stiegen die Exporte von Aluminiumhalbzeug in die EU-Staaten von 2000 bis 2005 um rund 20 Prozent. Die Exporte nach Nordamerika nahmen im gleichen Zeitraum, von niedrigem Niveau kommend, um 90 Prozent zu; hier waren in besonderem Maße Walzspezialitäten für die Luftfahrt gefragt. Auch die Ausfuhren nach Südamerika, Osteuropa oder Asien entwickelten sich in den letzten sechs Jahren überdurchschnittlich gut. Economic data of the German aluminium industry Production 2005 2005 / Jan. - Sep. Jan. - Sep. Jan. - Sep. 2004 2005 2006 2006 / 05 ‘000 t % ‘000 t ‘000 t % Primary aluminium 647.9 -3.0 495.9 386.7 -22.0 Secondary aluminium 718.3 +2.1 537.2 596.1 +11.0 Rolled products 1780.9 +3.5 1354.5 1318.6 -2.7 Extruded and drawn products 527.9 +0.8 403.3 441.3 +9.4 Shaped castings 727.2 +1.6 557.2 584.0 +4.8 Further processing of aluminium: 361.7 -0.3 275.9 287.7 +4.3 Foil, tubes, aerosol & beverage cans Sources: GDA, GDM, VAR, Stat. Bundesamt (15%), the packaging industry (10%) and mechanical engineering (9%). In the beverage can market, with the new deposit regulation in force since May 2006 aluminium cans have captured a market share of approximately 50%. Compared with the previous 10 to 15%, this is indeed a substantial victory over tinplate cans, although the can market viewed as a whole is still far below its level three or four years ago. Production at a high level As in previous years, primary aluminium smelters in Germany have been producing at the limits of their capacity. In the first nine months of 2006, however, primary aluminium production, at 386,700 tonnes, was 22% down on the same period a year earlier. This downturn can be attributed to the closing of the HAW smelter in Hamburg. The production by German aluminium companies of secondary aluminium, semis and castings increased slightly in 2006, and in the fields of further processing the good results of the previous year were repeated. Between January and September 2006 the production of secondary aluminium increased by 11% to 596,100 tonnes. There is concern in the branch regarding the persistent raw materials demands of booming economies such as China and India, which threaten the availability of aluminium scrap in Germany and throughout Europe. Production by the 35 semis plants in Germany was again at a high level in 2006. In the first nine months of the year the production of extruded and drawn products was up by 9.4%. This was because of the once more © ALUMINIUM · 1-2/2007 produkten legte die Produktion bis September 2006 um 9,4 Prozent zu. Grund dafür war die erneut hervorragende Exportbilanz des Verarbeitenden Gewerbes in Deutschland. Bei Walzprodukten stiegen die Auftragseingänge bis September um mehr als zehn Prozent. Zum Jahresende wird die Produktion Wellner zufolge über der des Vorjahres liegen (2005: 1,8 Mio. t). Den Branchenumsatz für 2006 veranschlagt der GDA auf 15 Mrd. Euro (2005: 13,9 Mrd. €), wobei ein Großteil des Zuwachses auf die gestiegenen Aluminiumnotierungen zurückzuführen ist. Verkehr und Maschinenbau starke Wachstumsträger „Auch in den nächsten Jahren wird der Aluminiumbedarf in Deutschland kontinuierlich wachsen“, so Wellner zu den mittelfristigen Perspektiven der Branche. Stärkster Wachstumsträger werde weiterhin die Automobilindustrie sein, zumal hier die spezifischen Eigenschaften des Leichtmetalls voll zum Tragen kommen. Weitere Absatzchancen bietet die Luftfahrt, besonders für hochwertige Platten und Bleche aus Aluminium. Auch der Maschinenbau weist seit einigen Jahren einen kontinuierlichen Mehrbedarf an Aluminiumprodukten aus. Neben hochwertigen Profillösungen, z. B. für Pneumatik- und Zylindersysteme, werden vermehrt Platten für die Kunststoff-Formgebung geliefert. Die Bauindustrie, die seit rund einem Jahrzehnt rückläufig war, ist inzwischen ebenfalls auf dem Weg der Besserung, wovon auch die Aluminiumbranche profitieren wird. Dass man in Deutschland trotz schwieriger Rahmenbedingungen Branche vor großen Herausforderungen Doch bei aller positiven Grundstimmung: Die Branche steht vor großen Herausforderungen und muss weiterhin mit Standortnachteilen zurechtkommen. Die hohen Energiepreise sind ein Faktor, über den immer wieder in dieser Zeitschrift berichtet wird. Die strukturellen Nachteile des Standorts Deutschland zeigen sich darüber hinaus in vielen weiteren wirtschaftspolitischen Facetten. Der GDA-Präsident dazu: „Wir brauchen weniger Bürokratie und eine Modernisierung des Steuer- und Genehmigungsrechts, um im internationalen Vergleich weiter aufzuholen.“ Die europäische Aluminiumindustrie, fügte er hinzu, werde sich nur durch ihre eigene Innovationskraft langfristig an den Märkten behaupten. Marktnahe Produkte mit hoher Wertschöpfung, viel Know-how und gut ausgebildetes Personal und eine hohe Servicequalität seien die Erfolgsgaranten, unter denen Europa als Produktionsstandort eine Zukunft habe. N 79 MARKETS AND TECHNOLOGY outstanding export balance of trade achieved by processing businesses in Germany. Order intakes for rolled products were up by over 10%. For the year taken as a whole, production is expected to exceed that of last year (2005: 1.8 million t). The GDA estimates that branch turnover in 2006 will amount to some 15 billion euros (2005: 13.9 billion €), most of this increase being attributable to higher aluminium prices. Transport and mechanical engineering – a powerful impulse towards growth “In the coming years too, demand for aluminium in Germany will continue growing”, commented Wellner concerning the medium-term perspectives of the branch. The strongest impulse for growth will still be the automotive industry, all the more so since it is here that the specific properties of the light metal come fully into their own. The commercial vehicle sector could also benefit from this, since light metal superstructures are being adopted more and more. Further sales opportunities are offered by aviation, in particular for high-grade aluminium plates and sheets. For some years mechanical engineering has also been using ever more aluminium products. Besides high-grade section solutions, for example in pneumatic and cylinder systems, in that market sector more plates for moulding plastics are being supplied. Even in the building industry, which was recessive for about a decade, the aluminium branch can look forward to gradual recovery. That successful production is still possible in Germany despite difficult boundary conditions has been amply demonstrated by the aluminium industry for years, especially with reference to products with high value addition. “Our companies are responding to the competition pressure from countries with low labour costs with high quality standards, absolute reliability and great flexibility”, said Buddenbaum. The striking competitiveness of the branch is apparent in particular from its export successes. Around 41% of total German aluminium production goes abroad. Export growth rates are in fact impressive: for example, exports of aluminium semis to the EU states increased by around 20% between 2000 and 2005, and during the same period exports to North America grew from a low level by 90%, with demand focused particularly on special rolled products for the aviation industry. Exports to South America, Eastern Europe and Asia also developed at above-average rates over the past six years. A branch faced by major challenges Yet, despite the optimism of the prevailing mood, the branch faces great challenges and still has to overcome location disadvantages. High energy prices are only one factor, which has frequently been commented upon in this journal. The structural disadvantages of Germany as a location also emerge in many other aspects of economic policy. On this, Buddenbaum said, “We need less bureaucracy and an updating of tax and licensing laws if we are to keep up with international competition”. The European aluminium industry, he adds, will only hold its own in the markets in the long term by virtue of its ability to innovate. Market-orientated products with high added value, a wealth of know-how, well-trained personnel and high-quality services provide the warranties of success which Europe needs if it is to have a future as a production location. N GDA participation at UN conference on sustainability The German aluminium association GDA participated as a co-operation partner at the UN international conference “Creating solutions for sustainable consumption and production” (SCP), which took place end of last year in Wuppertal, Germany. GDA was one of the few representatives of industry at the conference and reported on the contribution made by the branch towards economically successful, socially responsible and ecologically acceptable development. The conference was organised by the Centre for Sustainable Consumption and Production (CSCP). Michael Kuhndt, Managing Director of CSCP, which was established by the United Nations Environment Programme 80 (UNEP) and the Wuppertal Institute for Climate, Environment and Energy, said, “Aluminium is precious and should therefore be used efficiently. All the more satisfying therefore, that the German aluminium industry in particular is playing a leading role in the discussion on sustainable production and consumption. As the aluminium industry is also aware of its responsibility and strengths during the utilisation phase, in GDA we have acquired a competent partner and speaker for the conference.” The newly founded CSCP is the new “think tank” for socially acceptable and sustainable production and consumption worldwide, so sustainable added value is one of its princi- pal tasks. As GDA Managing Director Stefan Glimm explained, “The international SCP conference was an excellent forum for us to continue our dialogue with important stakeholder groups on aluminium and its contribution to sustainable development as part of our ‘Aluminium for Future Generations’ initiative.” With its involvement of many years in the field of sustainability, the German aluminium industry has acted as a role model for the aluminium industry in Europe and the rest of the world. “We have developed standards for this which have since become benchmarks for the way the global aluminium industry does business,” said Stefan Glimm. N ALUMINIUM · 1-2/2007 MARKETS AND TECHNOLOGY EAA launches new sustainable development indicator results In 2002 the European Aluminium Association (EAA) and its member companies embarked on a pioneering journey towards measuring sustainability. Together with the German Wuppertal Institute for Climate, Environment & Energy and the Versailles University the European aluminium industry developed 34 measurable sustainable development indicators (SDI) to scrutinise the aluminium industry‘s performance during the period 1997 to 2002. The SDI cover areas as varied as energy consumption, emissions, resource use, product life cycles, employee development and relations, community relationships, health and safety, management efforts, competitiveness, production and revenues. The first report was issued in 2004 and showed an industry which had significantly improved since 1997. Now EAA has released the 2006 report and the data show further improvements in many different areas such as emissions, natural resource use, recycling and worker safety among others. For example, health and safety total recordable incidents fell 63.9% between 1997 and 2005, while the industry’s fossil fuel requirements for metal production fell 30% and direct climate gas emissions reduced 43.5% for metal production. The primary aluminium sector has reduced its CO2 emissions by 7.7% between 2002 and 2005. This reduction is partly achieved through PFC emissions reduction and partly through energy consumption reduction. During this time the semi-fabrication sector reduced its emissions by an average of 5.5% per year. The use of aluminium in cars produced in Europe has been steadily increasing. Between 1997 and 2002, aluminium use per car increased, on average, 6.6% per year to 117 kg per vehicle. Between 2002 and 2005 the average increase per year was 4.1% to 132 kg per vehicle. The building indicator provides the total quantity of aluminium used for building and construction purposes in Europe. The increase has continued: from 2.11 million tonnes in 2002 to 2.5 million tonnes in 2005. The average market share of aluminium cans in Europe was 56% in 2005 compared to 50% in 2002. On average, an aluminium can only needs sixty days to be recycled into a new can and be back on the retailer’s shelf. The recycling rate for cans was 52% in 2005 according to industry statistics collected on a regular basis from European countries. In the automotive sector as well as in buildings the aluminium recycling rate is now 95%. N C D C D m u i m n u i i n mi fo r A lum c assttiinngg Drache umwelttechnik ALUMINIUM · 1-2/2007 81 MARKETS AND TECHNOLOGY The development of Russia‘s packaging market Aluminium processing technology at the forefront “United Company Rusal”, created by the merger of Rusal, Sual and Glencore, will produce 4 million tonnes of aluminium and 11 million tonnes of alumina per year and will employ 110,000 people in 17 countries on five continents. The group will account for 12.5% of global aluminium production and 16% of global alumina production. These are impressive figures. In contrast, the group’s processing sector is still more modest, but for all that should not be ignored. The more so since over the past few years Rusal and Sual have invested not only in the modernisation of their smelters but also in that of their processing capacities. The technological gap between Russian and Western aluminium plants is gradually beginning to close. The combination of demanding product qualities with locationrelated cost advantages will make the forthcoming United Company Rusal an effective supplier on the domestic Russian market, which international concerns are keeping an eye on, and conversely a competitor in the European and international markets to be taken seriously. In total around 760,000 tonnes of primary aluminium went to the various sales sectors of the Russian market in 2005. The largest purchasers of aluminium are the building and packaging sectors. These two are about equally important and between 82 them account for around 54% of aluminium consumption. Third place, with 9%, is held by the transport sector, whereas in the western industrialised countries it is the largest sales market for light metal structures and components. Lightweight construction, however, is not yet a major issue in Russian automotive engineering. Russian cars contain a proportion of aluminium slightly above 40 kg, while over 100 kg of the metal are built into European and American vehicles. In contrast, consumer packaging has for years been a dynamically growing sales market in Russia. This applies particularly to the market for beverage cans. It is dominated by the packaging material aluminium and is roughly equally divided between two producers, Rusal Rostar and Rexam. erage cans is growing apace. As late as 1999 the can market was still rather insignificant, with an annual demand for about 258 million cans. By the end of 2006 the demand has increased by a factor of 15, and in 2006 can production is estimated at around 4 billion units per year. This headlong growth will continue in the coming years and drive can sales up to over 5 billion units. The need for aluminium can stock will increase to over 90,000 tpy – mainly for cans to be filled with beer, alcoholic mixed drinks and carbonated soft drinks. In recent years the two major can manufacturers Rusal and Rexam have made efforts to encourage this market. A marketing campaign initiated in 2000 and pursued for five years aimed to provide aluminium cans with a pre- Achenbach With the planned merger of the two Russian aluminium concerns Rusal and Sual and the Swiss raw material concern Glencore International, the world’s largest concern in the branch – at any rate with a view to the production of aluminium and alumina – is being created. The downstream activities of this group have until now been less at the focus of international reporting. Yet here too, in the production of can stock and foils for packaging, the group could in the long term develop into an international competitor with a strong market position. Achenbach caster… Imports of cans cover less than 5% of demand. Rostar, a 100%-owned subsidiary of Rusal, built its first can factory with an annual capacity of 1.3 billion units in 1998, in Dmitrov near Moscow. In 2004 a second can factory with annual capacity 1.7 billion units was built in St. Petersburg. There, in St. Petersburg and Moscow, are also where the most important can fillers are located. Demand for beverage cans is growing apace In Russia demand for aluminium bev- mium image. And this succeeded: in 2003 12% of Russian beer was already being sold in aluminium cans, compared with only 0.4% in 2000. The success in the market for soft drinks was similar, with the proportion of beverage cans increasing by a factor of 7 to 700 million units. Rusal itself has a 30% market share of beer cans (2005). In the first half of 2006 the company produced 15,927 t of can and lid stock, an increase of 23.5% over the same period of the year before, attributable to the commissioning of a second production line at the Rostar works in St. Petersburg. ALUMINIUM · 1-2/2007 MARKETS AND TECHNOLOGY Trend towards thinner foils The market for aluminium foils has also developed. Total Russian production in this sector amounted to around 56,600 t in 2005. The most important sales markets are the foodstuff branch (33%) and the tobacco industry (29%). The trend is towards thinner foils of 6 to 9 μm. Global food concerns such as Nestlé and Kraft Foods are increasingly turning to the Russian market and making ever-stricter demands, for example related to surface quality and mechanical properties. Rusal produces a wide range of foils and foil composites, mainly for confectionery and dairy products, tobacco goods and pharmaceuticals, …and modernised foil mill at Armenal and technical applications. These are made in its two factories Sayanal and Armenal, which produced just short by higher rolling speeds. According to of 19,000 t of foils in the first half of information from the company, sales 2006. This corresponds to a growth extend throughout Russia and the CIS of 2.3% compared with the same pestates, to Southern Asia, the American riod in 2005, largely attributed to a continent and Europe. productivity boost at Sayanal. There, The Armenal foil rolling plant in precisely in the sector of strip and foil Armenia was founded in 2000. In Ocproduction, is emerging a new intertober 2006 modernisation of the plant national competitor Rusal was completed after that plans to produce almost two years, not only commodities again with Achenbut also quality prodbach as the supplier. ucts whose manufacThe investment proture is technically gramme amounted to sophisticated: foil over US$ 70 million qualities which need and covered the comnot fight shy of complete modernisation parison with those of six existing foil provided by European mills including accessuppliers. sory and environment Sayanal, in the Reprotection equipment. public of Khakassia, Peter Finnimore, in charge of The modernisation started operating in sales and marketing at Rusal programme included 1995 and is the largest producer of the installation of “supercasters”, foils and composite foils in Russia. i.e. continuous casting and rolling The plant produces strip material units. Armenal will in future produce 6 to 10 mm thick in widths of 1300 25,000 tpy of foil. 18,000 t of this in to 1650 mm and then rolls them to the thickness range 6 to 9 μm. This foil thicknesses down to 0.006 mm, corresponds to an efficiency boost of as used for composite packaging in 150%. The Armenal foil production Western Europe as well. Some of too need not fear international comthe material is delivered directly to parison. Around 7,000 tpy of housepackaging manufacturers and some hold foil are produced. then goes for finishing. Already in 2006 work to modernise the rolling In search of new sales markets plant began with the collaboration of Yet, barely has the current modernisaAchenbach Buschhütten in Germany. tion programme been completed and A main aim was to boost productivity ALUMINIUM · 1-2/2007 a capacity increase to 40,000 tpy is already being considered. The declared aim of Rusal is to build Armenal up to become an international player in the foil market, as Peter Finnimore, in charge of the Sales & Marketing sections at Rusal, explained to this journal at the Aluminium Fair in October 2006. His main objective is the quest for new sales markets – mainly with the European and American markets at the focus – and the establishment of long-term customer relations in Russia and worldwide. In the future, the foil activities of Ural Foil (around 18,000 tpy) will have to be taken into account along with the above Rusal capacities. Ural Foil belongs to Sual and is the second-largest aluminium foil producer in Russia. The foil works was built in 1984 in Mikhailovsk in the Sverdlovsk region and covers the full technical range from melts, through the casting of aluminium strip (0.21 to 0.40 mm) up to foil production (0.20 to 0.006 mm). The modernisation of the plant by ABB in 2004 concerned among other things the drive and automation technology of the coldrolling mill, including technological control systems for thickness and flatness, which has distinctly improved the foil production both qualitatively and quantitatively. N 83 MARKETS AND TECHNOLOGY Audi takes EuroCarBody Award 2006 Award for innovative TT body concept Audi is the winner of the EuroCarBody Award from the Automotive Circle International for the innovative body concept of the TT. model The sports coupé beat off 13 competitors from around the world to take the award. The body of the new TT represents the first application of the Audi Space Frame (ASF) technology with a hybrid construction, featuring an elaborate composition of aluminium and steel. Audi TT Coupé body structure This prize pays tribute to the work of Audi developers who have again presented impressive proof, in the form of the new TT body, of how Audi leads the way in this field. In ASF technology, the body‘s supporting structure is made of extruded aluminium sections and die-castings, with the aluminium sheet panels forming a positive connection and performing a load-bearing role within this structure. The components of the ASF space frame vary in shape and cross-section depending on their function – like the bones of the human skeleton, they are made to fulfil their task as well as possible, while having the minimum possible weight. In the new TT, Audi has further developed ASF technology, and added high-strength steel to the material 84 mix. Aluminium accounts for 69 per cent of the total body weight. Steel components are used at the rear of the floor assembly. The doors and boot lid are also made of steel. This provides an optimum distribution of axle loads, making for superior handling. The TT body-in-white weighs 206 kg, of which 140 kg is aluminium and 66 kg is steel; as an all-steel construction it would be 48 per cent heavier. The aluminium components of the ASF comprise 63 kg of sheet, 45 kg of castings and 32 kg of extruded sections. The new form of ASF developed for the Audi TT has qualities that are perfect for a sports car. The static torsional stiffness of the Coupé is roughly 50 per cent higher than that of its predecessor; on the Roadster the increase is an incredible 128 per cent. Extremely resilient cast components have been used in areas subjected to high local forces and where multifunctionality is required. A prime example is the A-post node – this is a high-tech component that connects the longitudinal member, sill, A-post and windscreen cross-member. Audi is profiting from its superior wealth of experience when it comes to joining together aluminium and steel components. Joining is performed in a variety of ways – punch-riveting, clinching and bonding. A fourth joining technology has now been added to the list: self-tapping screws, inserted by robots, melt the surface of the component as a result of the friction they cause, thus penetrating fully into the material, forming a positive connection with it. Another innovative concept used on the new TT is the aluminium zero joint that is produced between the roof and the side section during laser-welding. This technique also enhances ride comfort by reducing vibration. It took only a few simulation cycles on the computer to arrive at a structure that suppresses incipient vibration and avoids transmission paths. In terms of crash safety, too, the new TT is uncompromising. This is the second time that Audi has received the coveted award. In 2003 Europe‘s most prestigious innovation prize for body construction went to the Audi A8. The A8 also has an ASF body. Innovatives Karosseriekonzept ausgezeichnet Der Audi TT ist für sein innovatives Karosseriekonzept mit den EuroCarBody Award des Automotive Circle International ausgezeichnet worden. In der Karosserie des neuen TT findet der ASF erstmals in hybrider Bauweise seine Anwendung. Aluminium und Stahl werden hier aufwändig miteinander verbunden. Bei der Karosserie macht Aluminium 69 Prozent des Gesamtgewichts aus. Stahlkomponenten finden sich im Heckbereich der Bodengruppe. Türen und Heckklappe sind ebenfalls aus Stahl. Die Rohkarosserie des TT wiegt 206 kg, die sich auf 140 kg Aluminium und 66 kg Stahl verteilen; in reiner Stahlbauweise wäre sie 48 Prozent schwerer. Der Aluminiumanteil des ASF setzt sich aus 63 kg Blechen, 45 kg Gusskomponenten und 32 kg Strangpressprofilen zusammen. Extrem belastbare Gusskomponenten kommen dort zum Einsatz, wo lokal hohe Kräfte eingeleitet werden und Multifunktionalität gefragt ist. Ein Musterbeispiel ist der ASäulen-Knoten – er ist ein Hightech-Bauteil, das Längsträger, Schweller, A-Säule und Scheibenquerträger miteinander verbindet. ALUMINIUM · 1-2/2007 www. alu-bookshop.de EINSCHLÄGIGE FACHLITERATUR AUSSCHLIESSLICH RUND UM NE-METALLE ALLES AUS EINER HAND SUCHEN, FINDEN, BESTELLEN Giesel Verlag GmbH Postfach 120158 D-30907 Isernhagen Tel. +49 511 7304-122 Fax +49 511 7304-157 www.giesel.de · vertrieb@giesel.de MARKT UND TECHNIK Kolbenschmidt Pierburg setzt auf AGR-Kühler aus Aluminium Markterfolg mit Abgasrückführung Die Kolbenschmidt Pierburg AG hat für ihr neu entwickeltes Modul zur gekühlten Abgasrückführung erste Kundenaufträge verbuchen können. Aktuell verfügt das weltweit tätige Zulieferunternehmen über Aufträge von drei namhaften europäischen Automobilherstellern, die ein Projektvolumen von insgesamt rund 300 Mio. Euro darstellen. Sowohl Diesel- als auch aufgeladene Otto-Motoren sind angesichts der stetig steigenden Anforderungen der Abgasgesetzgebung ohne AGR-Kühlung künftig kaum mehr denkbar. Beim Dieselmotor - ob im Pkw- oder NkwBereich - gilt das vor allem für die weitere Reduzierung der Stickoxide (NOx). Eine besondere Bedeutung kommt hierbei der gekühlten Abgasrückführung zu, die eine deutliche Reduzierung des NOx-Ausstoßes ermöglicht. Das Gruppenunternehmen Pierburg GmbH setzt dabei mit seiner Entwicklung auf ein AbgasrückführModul mit einem neu entwickelten Kühler aus Aluminium-Druckguss, der eine kostengünstige und gewichtssparende Alternative zu den heute üblichen Edelstahlkühlern darstellt und sich zudem die bessere Wärmeleitung von Aluminium zunutze macht. Der Abgaskühler senkt die Abgastemperatur je nach Betriebspunkt um über 600 °C und trägt daher nicht nur wesentlich zur Reduzierung der Verbrennungstemperatur und damit der Stickoxidemissionen bei, sondern senkt auch die Temperaturbelastung der nachfolgenden Motorkomponenten. Auf dem langjährigen Know-how des Neusser Automobilzulieferers in punkto Schadstoffreduzierung aufbauend hat das Entwicklungsteam mit dem AGR-Kühler aus Aluminium eine Produktinnovation für Dieselfahrzeuge konzipiert, die sich durch eine hervorragende Langzeitkühlleistung auszeichnet. Dies wird durch eine neuartige Abgasführung über speziell geformte Lamellen-Rippen 86 erzielt. Das neuartige Kühlerkonzept eignet sich sowohl für Nieder- als auch für Hochdrucksysteme und kann bei entsprechenden Motorkonzepten ins Saugrohr integriert werden. Bisher bestanden Kühler meist aus zusammengeschweißten Edelstahlblechen, was relativ hohe Fertigungskosten zur Folge hat. Ein weiterer Vorteil von Aluminium liegt darin, dass dieser Werkstoff eine wesentlich höhere Wärmeleitfähigkeit als Stahl besitzt. So lässt sich bei relativ kleinem Bauraum eine sehr hohe Kühlleistung erzielen. Die spezielle, patentierte Bauform mit unterbrochener Lamellen-Rippenstruktur ist optimal, weil die turbulente Durchmischung der Abgasströmung durch die Unterbrechungen gefördert wird. Sie wirkt einer direkten Versottung entgegen, fördert den konvektiven Wärmeaustausch und ermöglicht den Stoff-, Druck- und Wärmeaustausch quer zur Hauptströmungsrichtung, was zu einem Selbstreinigungseffekt führt. Um den Motor möglichst schnell auf Betriebstemperatur zu bringen, verfügt der neue Abgaskühler über eine wahlweise elektrisch oder pneumatisch geschaltete Bypassklappe. Über diese werden die Abgase über den so genannten Bypasskanal am Kühler vorbei geleitet, bis die notwendige Betriebstemperatur des Motors erreicht ist. Beim betriebswarmen Motor wird der Bypass geschlossen, so dass der Kühler seine eigentliche Funktion aufnehmen kann, nämlich die Temperaturabsenkung der zurückgeführten Abgase. Durch die hiermit hervorgerufene, gezielte Absenkung der Verbrennungstemperatur in Kombination mit der entsprechenden Sauerstoffreduktion wird die maximale Stickoxidreduzierung erreicht. Ein weiterer Vorteil des neuen AGR-Kühlers besteht darin, dass es sich hier um ein integriertes Bauteil handelt, bei dem die einzelnen Komponenten – also der kühlwasserdurchströmte AGR-Kühler, die Bypassklappe, die bedarfsgerecht zwi- Kolbenschmidt Pierburg successfully marketing its EGR system Kolbenschmidt Pierburg has booked its first orders for the newly developed cooled exhaust gas recirculation (EGR) module. Presently, this globally operating auto industry supplier has orders on hand from three renowned European carmakers, representing a total contract volume of around 300 million euros. In future, both diesel and turbocharged gas engines will be hardly conceivable without EGR cooling due to the ever stricter exhaust gas regulations. For diesel engines, whether in passenger or commercial vehicles, this is especially true of the further reduction of nitrogen oxides (NOx) Of special significance in this context is cooled exhaust gas recirculation enabling a drastic reduction of such emissions. This exhaust gas recirculation module from Pierburg comprises a newly developed cooler made from die-cast aluminium - a low-cost and weight-saving alternative to today’s commonly used stainless steel coolers, an option which, moreover, utilizes the better heat conductivity of aluminium. In lowering exhaust gas temperature by over 600 °C, depending on the operating mode, the exhaust gas cooler therefore helps reduce combustion temperatures and hence nitrogen oxide emissions while also taking some of the heat off the downstream engine components. The long standing know-how of this Neuss-based auto industry vendor in terms of emission reduction has enabled the development team, with its aluminium EGR cooler, to design a product innovation for diesel engine vehicles, one characteristic for its excellent long-term cooling performance. This is achieved through innovative exhaust gas recirculation using specially shaped fins. The new cooler concept is suitable for both low- and high-pressure systems and can be integrated into the intake manifold of engines with matching design features. To date, coolers have mainly con- ALUMINIUM · 1-2/2007 sisted of welded stainless steel sheet metal with its comparably high production costs. Another advantage of aluminium is its much higher heat conductivity versus steel. Aluminium’s excellent heat conductivity makes it possible to achieve a very high cooling effect even in a relatively small space. Moreover, the patented discontinuous fin construction is ideal, since the turbulent mixing of the exhaust gas flow is enhanced by these breaks. It counteracts direct fouling, promotes convective heat exchange and permits an exchange of substances, pressure and heat transverse to the mainstream direction - this having a self-cleaning effect. So that the engine reaches its operating temperature as quickly as possible, the new exhaust gas cooler has a bypass valve, actuated electrically or pneumatically. The exhaust gases are routed through this valve and the socalled bypass channel past the cooler, until the required engine operating temperature is reached. With the engine at its operating temperature, the bypass is closed, so that the cooler can perform its actual task and reduce the temperature of the recirculated exhaust gases. The effective lowering of the combustion temperature achieved through this process combined with corresponding oxygen abatement reduces nitrogen oxide emissions to a maximum degree. Another advantage of the new EGR cooler is that it is an integrated assembly in which the individual components - EGR cooler with its coolant flow, bypass valve alternating on-demand between cooler and bypass operation, and EGR valve Fotos: Kolbenschmidt Pierburg MARKETS AND TECHNOLOGY EGR-cooler-module AGR-Kühler-Modul for controlling the EGR rate - merge into one EGR module. Moreover, aluminium makes it possible to combine the EGR module and intake manifold into one individual component. The result: an integrated intake manifold module with exhaust gas recirculation and cooling system. By fine-tuning a new welding technique developed for die-cast aluminium parts, it is now possible to weld together all the internal interfaces of the module rather than use the type of temperature-resistant seals and supplementary fasteners employed until now. Additionally to meeting the already mentioned strict criteria there is also the weight advantage of the new aluminium cooler. And because of the aluminium and its inherent corrosion protection, all requirements in terms of durability are likewise met. schen Kühler- und Bypassbetrieb umschaltet, und das AGR-Ventil zur Steuerung der AGR-Rate – sinnvoll zu einem AGR-Modul zusammengefasst werden konnten. Zudem erlaubt der Werkstoff Aluminium, das AGRModul und das Saugrohr in einem einzigen Bauteil zu verbauen. Das Ergebnis: ein integriertes Saugrohrmodul mit Abgasrückführ- und Abgaskühlsystem. Durch die gezielte Weiterentwicklung eines neuen Schweißverfahrens für Aluminium-Druckgussteile können alle internen Schnittstellen des Moduls geschweißt werden, für die bisher temperaturbeständige Dichtungen und ergänzende Schrauben eingesetzt werden mussten. Zusätzlich zur Erfüllung der bereits genannten hohen Anforderungen ergibt sich beim neuen AGR-Kühler durch die Wahl von Aluminiumdruckguss ein Gewichtsvorteil. Zudem werden durch die Werkstoffwahl und den konstruktiven Korrosionsschutz alle Anforderungen in Bezug auf Dauerhaltbarkeit erfüllt. N N Pierburg-Kühlereinsatz mit der speziellen Lamellen-Rippenstruktur Pierburg-cooling unit with the patented discontinuous fin construction ALUMINIUM · 1-2/2007 87 ALUMINIUM IM BAUWESEN Energieeffizientes Bauen im Fokus von Politik und Wirtschaft Energiesparendes und ressourcenschonendes Bauen sind die zentralen Themen der Baubranche. Kontinuierlich steigende Energieund Rohstoffpreise sowie neue Verordnungen und Gesetze treiben Architekten und Bauherren dazu an, Gebäude zu bauen, die immer weniger Energie benötigen. Wie eine höhere Energieeffizienz auch von Gebäuden erreicht werden kann, war nicht nur Gegenstand des Energiegipfels der Bundesregierung im Oktober letzten Jahres, auch die EU-Kommission hat strengere Energiesparvorgaben auf ihrer politischen Agenda. So überrascht es nicht, dass die BAU 2007 im Januar in München energieeffizientes Bauen zu einem ihrer Schwerpunktthemen machte. Von zentraler Bedeutung bei der Planung und Realisierung von Gebäuden ist die äußere Hülle. Sie beansprucht zwar nur rund 15 Prozent der Baukosten, ist aber verantwortlich für den größten Teil des Energieverbrauchs bei Heizung, Kühlung, Lüftung und Beleuchtung, und dies für Jahrzehnte. Optimierte Fassaden erzielen dagegen bereits heute einen bis zu 60 Prozent geringeren Energieverbrauch. Dies spiegelt sich auch im Wärmedurchgangskoeffizienten für Fenster- und Fassadenelemente wider, die von 3,4 W/m2K in den 1980er Jahren auf inzwischen 1,4 W/m2K gesunken sind. Und die unter energetischen Aspekten entwickelte Fassade SMC 50.HI mit einem hochwärmegedämmten Fenstersystem hilft Energie einzusparen. Schüco: Energie sparen und gewinnen Corus Bausysteme zeigte auf der Messe, wie mit seinen Profiltafeln Kalzip AluPlusSolar eine dachintegrierte, regenerative Energiegewinnung mittels Photovoltaik möglich wird. Die Solarmodule und die AluminiumProfiltafeln werden dabei zu einer Einheit verschmolzen. Die Solarzellen sind ohne Aufständerung in die Fläche integriert. Die robuste Solarfolie wird dauerhaft auf die Profiltafeln laminiert. Da die Folie flexibel ist, können die Profiltafeln konvex oder konkav verformt werden. Mit Kalzip AluPlusSolar lassen sich Tonnen-, Shed- oder Pultdächer ebenso einfach als Energiedach ausführen wie individuell geschwungene Formen bis zu einer maximalen Neigung von 60 Grad. So stellte der europäische Marktführer bei Gebäudehüllen, Schüco International KG, auf der BAU 2007 anwenderorientierte Programmerweiterungen vor, mit denen sich Energie einsparen und gewinnen lässt: Mit entsprechenden architektonischen Konzepten lässt sich fast die gesamte Gebäudehülle zur Energiegewinnung durch Licht- und Sonneneinstrahlung nutzen und hoch wärmegedämmte Produkte aus Aluminium, Stahl und Kunststoff tragen dazu bei Energie einzusparen. Ein Beispiel sind die Schüco Prosol-Module: Sie leiten die erzeugte Energie über ein spezielles Profil für eine verdeckte Führung elektrischer Leitungen in Fassaden direkt zur gewünschten Verteilung im Gebäude. Maßnahmen des Gesetzgebers Neue Energie-Einsparverordnung Mit der Neuregelung der Energie-Einsparverordnung (EnEV) zum 1. Januar 2008 durch die Bundesregierung müssen Hausbesitzer einen Pass über den Energieverbrauch ihres Gebäudes vorlegen. Auch in Brüssel sollen die Energievorgaben der Gebäude-Richtlinie ab 2009 verschärft werden. CO2-Gebäudesanierungsprogramm Rund drei Viertel des Energiebedarfs im Privathaushalt wird für Raumheizung genutzt. Ein Gutteil der Raumwärme geht durch Wände, Fenster, Dach, Türen oder den Fußboden verloren. Es gibt damit ein großes Potenzial, die Energieeffizienz zu steigern: In den bestehenden Wohngebäuden wird im Durchschnitt fast dreimal so viel Energie für Heizung und Warmwasserbereitung verbraucht, als gemäß den Anforderungen der EnEV für Neubauten vorgeschrieben ist. Die Bundesregierung hat ihr Programm zur CO2-Gebäudesanierung für den Zeitraum 2006 bis 2009 auf jährlich rund 1,4 Mrd. Euro aufgestockt. Gefördert werden Maßnahmen zur CO2-Minderung und zur Einsparung von Energie in Wohngebäuden. Hierunter fallen z. B. die effizientere Gestaltung der Gebäudehülle durch Wärmedämmung von Dach und Außenwänden oder die Erneuerung der Fenster. Außerdem ist eine finanzielle Unterstützung möglich, wenn Energiesparhäuser und Passivhäuser errichtet oder erstmalig erworben werden. Corus Bausysteme: Solararchitektur mit Profiltafeln Alcoa setzt auf Verbundplatten Fast mutet es als Positionierung gegen den Trend an, wenn energieeffizientes Bauen einmal nicht in das Zentrum der Marktkommunikation gerückt wird. Alcoa Architectural Products präsentierte auf der Bau 2007 u. a. seine Marke Reynobond und setzt auf die wachsende Nachfrage nach Aluminium-Verbundplatten. 1,6 mal leichter als Vollaluminium sind die Sandwichelemente aus Aluminiumblechen mit Polyethylenkern sehr biegesteif und stoßfest. Außerdem dehnen sich die Paneele bei Temperaturschwankungen zwischen -50 und + 80 °C kaum aus. Um die Nachfrage nach breiteren Verbundplatten bis 2.000 mm künftig noch besser befriedigen zu können, hat das Unternehmen mit dem Bau einer neuen Bandbeschichtungsanlage begonnen, die speziell Aluminium in dieser Breite einbrennlackieren kann. N 88 ALUMINIUM · 1-2/2007 ALUMINIUM IM BAUWESEN Übergeordnete Trends im Fenster- und Fassadenbau Veränderungen der Altersstruktur, Globalisierung und Verknappung von Materialien, Rohstoffen und Energie prägen die Zukunft des Fenster- und Fassadenbaus. So der Tenor einer Veranstaltung des Instituts für Fenstertechnik (ift) im Herbst 2006, in der die Trends der Branche beleuchtet wurden. Hier eine Zusammenfassung: Als zentraler Trend kristallisierte sich die Notwendigkeit des schonenden Umgangs mit Rohstoffen und Energien heraus. Wärmeschutz und Materialoptimierungen in der Entwicklung von Konstruktionen seien deshalb die bestimmenden Themen der Zukunft. Deutschland nehme hier weltweit eine Spitzenstellung ein. Auch die Fenster- und Fassadenbranche habe mit der Photovoltaik und mit energetisch optimierten Bauteilen beste Chancen, diese Entwicklung erfolgreich zu nutzen. Dem ift zufolge bestimmen mehrere übergeordnete Trends die künftige Entwicklung der Branche. Techniktrends Die heutigen Konstruktionen werden immer vielfältiger und spezialisierter. Dies erfordert deshalb auch neue Konzepte für Entwicklung, Fertigung, Qualitätssicherung und Wartung. Hier bedarf es einer intensiven Information der Verarbeiter, Monteure und Nutzer seitens der Hersteller. Alte Themen wie Wartung und Instandhaltung bekommen dabei eine neue Bedeutung. Neue Konstruktionen werden stärker als Verbundkonstruktionen ausgeführt, die durch eine Spezialisierung der jeweiligen Baugruppen Leistungseigenschaften wie Wärmeund Schallschutz oder Einbruchhemmung weiter verbessern. Das ift ist ein eingetragener Verein, der von der Branche der Fenster-, Fassaden-, Tür- und Torhersteller sowie ihrer Zulieferer getragen wird. ALUMINIUM · 1-2/2007 Der Bausatzgedanke, der Komponenten wie Rahmen, Beschläge, Glas, Randverbund, Regenschutzschiene beinhaltet, wird die alten Konstruktionsnormen ersetzen. Dies bietet Chancen für eine schnelle und einfache Variation, Differenzierung und Innovation der Produkte. Bei der Wärmedämmung sind die Technologien für die nächsten fünf bis zehn Jahre bekannt. Gänzlich neue Techniken für die Zeit danach sind notwendig, um zu substanziellen Verbesserungen zu kommen. Beim Isolierglas sind beispielsweise die physikalischen Grenzen der vorhandenen Entwicklungslinie erreicht. Die ständige Verbesserung und Neuentwicklung von Solarzellen in Verbindung mit Förderprogrammen und einer Preisreduzierung ebnet den Weg in die Fenster- und Fassadenbranche. Farbstoffsolarzellen eröffnen neue gestalterische Möglichkeiten. Gesellschaftstrends Die Notwendigkeit weiterer Energiesparmaßnahmen etabliert sich weltweit mit jeder neuen Erhöhung der Energiepreise als Megatrend. Deshalb sind Bauteile und Verfahren zur Energieeinsparung gefragt. Die Solarindustrie hat hervorragende Imagewerte in Bezug auf Innovation, Design und Akzeptanz und kann die Positionierung des modernen Fensters als Hightechprodukt mit höherem Preisniveau einleiten. Für Maßnahmen zur Energie- und Ressourceneinsparung gibt es national und weltweit Fördermöglichkeiten, die Investitionen anstoßen und erleichtern. Die Forschungs- und Innovationsstruktur muss sich in Deutschland auf allen Ebenen verbessern. Unternehmen, Hochschulen und Institute müssen in Kooperationen und Netzwerken leistungsfähige Produkte und Dienstleistungen entwickeln, validieren und global vermarkten. Dabei müssen neue moderne Formen der Arbeitsteilung, der Finanzierung Schüco International KG Umwelt- und Energiefragen geben den Ton an Structural-Glazing-Vorhangfassade sowie der Kommunikation genutzt werden. Produktnorm und CE-Kennzeichnung Die europäischen Normen der Fenster-, Fassaden, Tür- und Torbranche sind weitestgehend eingeführt und in großen Teilen schon bindend. Die ersten Überarbeitungen, beispielsweise der Fassadennorm DIN EN 13830 werden bereits in Angriff genommen. Alte Regeln bleiben dabei erhalten und werden präzisiert. Die Anbieter von Aluminium- und Kunststofffenstern sowie die RALGütegemeinschaften haben für ihre Verarbeiter konsistente und regelgerechte Verfahren für die CE-Kennzeichnung und die werkseigene Produktionskontrolle erstellt. Lösungen für handwerklich strukturierte Hersteller befinden sich in der Entwicklung. In Deutschland kann für Nachweise von Fenstern und Außentüren im Rahmen der CE-Kennzeichnung das Cascading System (Systeminhaber stellt Herstellern die Ergebnisse 89 ALUMINIUM IM BAUWESEN der Erstprüfung (ITT) zur Verfügung) oder das Share System (mehrere Hersteller nutzen dieselben Ergebnisse der Erstprüfung (ITT)) genutzt werden. Beide Systeme sind in der DIN EN 14351-1 verankert. Weitere Normen und Fachregeln Die EG Richtlinie 2002/91/EG zur Ermittlung der Gesamtenergieeffizienz wird in Deutschland durch die Novellierung der Energieeinsparverordnung umgesetzt. In diesem Zuge wird auch ein Energieausweis eingeführt, Neubau, Verkauf und Neuvermietung obligatorisch zu erstellen ist. Dieser kann wahlweise über eine Bedarfsrechnung oder eine Verbrauchsmessung erstellt werden. Für Wohngebäude ändert sich gegenüber der Methodik der EnEV 2004 nichts. Bei Nichtwohngebäuden müssen die Energieaufwendungen für künstliches Licht und Klimatisierung gemäß der DIN V 18599 ermittelt werden, die auch für die Planung von Wohngebäuden verwendbar ist. Brandschutznachweise können zur Zeit nach nationaler Norm DIN 4102 und europäischer Norm EN 13501-1 geführt werden. Diese sind die Grundlage für die Klassifizierung. Baustoffe mit bekannter Zusammensetzung und bekanntem Brandverhalten werden national in DIN 4102-4 und europäisch in „CWFT-Listen“ beschrieben. Schüco International KG Markttrends Fensterprofil mit Einsatzelement der den Energieverbrauch eines Gebäudes transparent macht und bei Deutschland nimmt weltweit die Führungsrolle in der Bau- und Wohnungstechnologie ein. Dies bietet beste Chancen auch für die Fenster- und Fassadenbranche, aktiv zu werden. Eine klare Unterscheidung der Produkte in einfache Konstruktionen, die Mindestanforderungen erfüllen, und Gebäudehüllen in Metall – Ideen und Konzepte für die Zukunft European Kalzip Student Award 2007 Die Corus Bausysteme GmbH produziert unter der Marke Kalzip Dach- und Fassadensysteme aus Aluminium. International tätige Architekten nutzen Kalzip-Profiltafeln für ihre architektonischen Highlights. So gehört der neue Barajas Airport in Madrid ebenso zu den herausragenden Referenzobjekten wie das BMW-Zentralgebäude in Leipzig oder das Imperial War Museum North Manchester von Daniel Libeskind. Unter dem Motto „Wrap a building!“ schreibt die Kalzip Business Unit erstmals den European Kalzip Student Award 2007 aus, der sich an Universitäten, Fachhochschulen und Design-Schulen aus ganz Europa richtet. Der Wettbewerb bietet dem akademischen Nachwuchs die Möglichkeit, ihre Design- 90 vorstellungen und innovativen Ideen für zukünftige Gebäudehüllen im Kontext moderner architektonischer Anforderungen zu entwickeln. Studenten der Fachrichtungen Architektur und Design können ihre Vorschläge zu folgenden Themen einreichen: •Fassade •Dach •Hybridmaterialien •Optimierung bestehender Systeme. Die Aufgabe steht im Spannungsfeld ganz unterschiedlicher Aspekte wie Ökologie, (Licht)Durchlässigkeit, Geometrien, Oberflächenstruktur, Anpassung an die (natürliche) Umgebung, Vielseitigkeit oder Standardi- moderne Hightechfenster macht das Angebot verständlicher. Hightechfenster mit Zusatznutzen sowie höchster Qualität und Gebrauchstauglichkeit eröffnen Chancen für ein Hochpreissegment. Prestigeprojekte und Events wie die Fußballweltmeisterschaft in Deutschland oder die Olympiade in Peking oder London wirken wie Katalysatoren für innovatives Bauen. Leistungsfähige Unternehmen können hier direkt Aufträge generieren. Kleinere Unternehmen können diese durch einen Imagetransfer für den eigenen Markt nutzen. Deutschland und Europa sind in vielen ökologischen Marktsegmenten Weltmarktführer. Innovativen Herstellern von Fenster- und Fassadentechnologien bieten sich so Chancen in interessanten lokalen Wachstumsmärkten wie London, Kalifornien oder Peking, in denen ökologische Standards immer stärker gefordert werden. Zukunftsstudien bieten wichtige Hinweise und Instrumente zur Bestimmung möglicher Entwicklungslinien und bei der Planung von Innovationen. Dies gilt es seitens der Branche zu nutzen. N sierung in der industriellen Massenproduktion. Bewertet werden alle Einsendungen nach den Kriterien Kreativität, Vision, Funktionalität, Technologie, zukunftsweisende Entwicklungen und Marktreife. Eine europäisch besetzte Architekten-Jury ermittelt die Sieger. Die ersten beiden Gewinner bekommen neben einem Geldbetrag auch die Gelegenheit, ein mehrmonatiges Praktikum im Wiener Büro von Coop Himmelb(l)au zu absolvieren. Die offizielle Preisvergabe findet am 27. April 2007 im Deutschen Architektur Zentrum (DAZ) in Berlin statt. An dem Wochenende werden die prämierten Arbeiten zudem im DAZ Berlin ausgestellt. Unter www.kalzip-studentaward.com können interessierte Studenten ihre Arbeiten bis zum 15. März 2007 anmelden und bis zum 13. April 2007 einreichen. ALUMINIUM · 1-2/2007 ALUMINIUM IM BAUWESEN Fenstermarkt im Plus Die Hersteller von Fenstern und Fassaden gehen für 2006 erstmals seit langem wieder von einer positiven Entwicklung für ihre Branche aus, nachdem die seit über zehn Jahren anhaltende Talfahrt der deutschen Bauwirtschaft gestoppt ist. Schon im Oktober 2006 auf der Glasstec verkündete Bernhard Helbing, der Präsident des Verbandes der Fenster- und Fassadenhersteller (VFF) in Frankfurt: „Wir rechnen mit einem Zuwachs von über fünf Prozent.“ Ende 2006 zeichnete sich für den Fenstermarkt schließlich ein Zuwachs von 11,6 auf 12,5 Mio. Fenstereinheiten ab. Ein Katalysator dieser Entwicklung: die drastisch gestiegenen Energiepreise, die den Einbau moderner, wärmegedämmter Fenster begünstigen. Für den Wohnbau rechnet die Branche mit einem Zuwachs von 9,7 Prozent, für den Nichtwohnbau mit einem Plus von 4,6 Prozent. Der Renovierungsmarkt legte um fast zehn Prozent, der Neubau um 5,4 Prozent zu. Für all diese Marktsegmente waren die Vorjahrszahlen noch negativ. 2007 wird der Wirtschaftsbau neben der Renovierung die treibende Rolle für die weiterhin positive Branchenentwicklung sein. Bei den Rahmenmaterialien für Fenster lassen sich für 2006 und 2007 lediglich Absatztrends erkennen. So nahm Kunststoff 2006 überdurchschnittlich zu, Holz lag im Gesamttrend, während Aluminium zurückblieb. Dies dürfte sich schon im laufenden Jahr wieder ändern, wenn sich das stärkere Wachstum des Nichtwohnbaus mit seinen höheren Anteilen von Metallfenstern und -fassaden auswirkt. 2007 wird deshalb der Aluminiumanteil voraussichtlich überdurchschnittlich steigen. Im Fen- ster- und Fassadenbau steht weiterhin die Verbesserung der Wärmedämmung im Zentrum der Aufmerksamkeit. Denn mit der Novellierung der Energie-Einsparverordnung im Jahr 2008 werden die Ansprüche an die Wärmedämmung der Gebäudehülle noch einmal erhöht. Und nachdem seit Ende 2005 alle vorgehängten Fassaden das CE-Zeichen führen müssen, steht ab Herbst 2007 auch dessen Einführung für Fenster und Außentüren bevor. Quelle: VFF Größtes deutsches Büroprojekt mit Wicona-Fassaden Neben dem unregelmäßigen Rechteck der Fassade von rund 200 x 300 Metern bleiben der Messeturm, ein Wahrzeichen der Stadtsilhouette, und das alte Portalbauwerk Atrium am Messeplatz bestehen. In die expressionistische Fassade von 1924 wird ein komplett neues riesiges Bürogebäude integriert. Als einer der künftigen Mieter steht bereits der Fernsehsender RTL fest, der ab 2008 aus diesen historischen Hallen senden und hier die Deutschland-Zentrale einrichten wird. Die Bürofläche beträgt insgesamt rund 160.000 qm, RTL wird davon rund die Hälfte beanspruchen. Eine Nutzung des Turms ist derzeit ALUMINIUM · 1-2/2007 noch offen, da er als Hochhaus gilt und so besonderen Anforderungen entsprechen muss. Die Hallen spalten sich auf in 14 Innenhöfe mit Attika, Hallen- und Außenfassade. Das Hauptvolumen der Aluminiumfassaden, die allein ein Gewicht von 400 bis 450 Tonnen ergeben, liegt in den Innenhöfen. Diese Fassade wird bis zur Eröffnung im Jahre 2008 durch die Metallbaufirma Rupert App aus Leutkirch ausgeführt, die bereits mehrere Projekte dieser Größenordnung, u. a. die NordLB in Hannover, umgesetzt hat. Die technischen Voraussetzungen wurden durch die Kölner Architekten HPP in Zusammenarbeit mit dem Fassadenplaner AMP aus Bargteheide gesetzt. Seit Oktober 2005 hat Hydro Building Systems aktiv zur technischen Umsetzung im Bereich Fassaden bei den Planern beigetragen. Die jetzige Ausführung wird in der Wicona-Elementfassadenkonstruktion Wictec EL umgesetzt. Bereits im Dezember 2006 wurden die ersten Fassadenelemente auf der Baustelle erwartet. Dabei handelt es sich um rund 4.300 Elementteile mit je 100 Kilogramm Gewicht. Norsk Hydro Vom damaligen Kölner Oberbürgermeister Konrad Adenauer 1924 eingeweiht, galten die Rheinhallen lange Zeit als eine der modernsten Messeanlagen Deutschlands. Inzwischen ist der Abbruch der Hallen innerhalb der stehen gebliebenen historischen Außenmauer weitgehend abgeschlossen. Kölner Messeturm und historische Außenfassade 91 RECYCLING Vorbericht 9. Internationaler Aluminium Recycling Kongress der OEA Am 26. und 27. Februar 2007 steht in Köln das Recyceln von Aluminium auf dem Veranstaltungskalender. An diesen Tagen lädt die Organisation of European Aluminium Refiners and Remelters (OEA) zum mittlerweile 9. Internationalen Aluminium Recycling Kongress ins Hotel Maritim ein. Unternehmer und Mitarbeiter der Aluminiumrecycling-Industrie, Metallhändler, Journalisten, Behördenvertreter, Angehörige von Hochschulen, also alle, die mit dem Recycling von Aluminium befasst sind, werden sich an dem Ort treffen, wo die erfolgreiche Kongress-Serie vor 17 Jahren begonnen wurde. Der Zeitpunkt der Veranstaltung ist günstig gewählt. Die Konjunktur, das begrenzte Angebot an natürlichen Rohstoffen und der ökologische Nutzen des Aluminiumrecyclings haben Aluminiumschrott zu einem weltweit begehrten Rohstoff werden lassen. Hierdurch sieht sich die europäische Aluminiumrecycling-Industrie vor neue Heraus- forderungen gestellt, die mit einem weitreichenden Strukturwandel der mit dem Recycling befassten Industrie verbunden ist. Den Einführungsvortrag wird Sean M. Stack halten, der Europachef von Aleris Europe, einem Unternehmen, dass sich erst seit kurzem in Europa auf dem Gebiets des Aluminiumrecyclings engagiert. Roland ScharfBergmann, Präsident der OEA, wird in seinem Vortrag eine Positionsbestimmung der europäischen Aluminiumrecycling-Industrie vornehmen, die bestehenden Herausforderungen darstellen und Wege zu ihrer Bewältigung aufzeigen. Günter Kirchner, Generalsekretär der OEA und Vorsitzender des Global Aluminium Recycling Committees (GARC), stellt vor allem auf die globale Bedeutung des recycelten Aluminiums als Rohstoffquelle ab. In den letzten Jahren hat vor allem der zunehmende Abfluss von Aluminiumschrott nach China für Unruhe gesorgt. Ob zu Recht oder zu Unrecht wird der Vortrag eines Repräsentanten der chinesischen Aluminium- Preview of the 9th International Aluminium Recycling Congress of the OEA On 26 and 27 February 2007 in Cologne, the recycling of aluminium is on the calendar of events. On those dates the Organisation of European Aluminium Refiners and Remelters (OEA) is inviting interested parties to what will then be the 9th International Aluminium Recycling Congress. Companies and employees in the aluminium recycling industry, metal traders, journalists, representatives of government authorities, in short all who are involved with the recycling of aluminium will meet at the place where this series of successful congresses began 17 years ago. The timing of the event is well chosen. The trade position, the limited supply of natural raw materials and the ecological uses of aluminium recycling have promoted aluminium scrap to become a raw material in demand all over the world. This presents 92 Europe’s aluminium recycling industry with new challenges that entail far-reaching structural transformations in all aspects of recycling-related industry. The introductory lecture will be given by Sean M. Stack, Head of European operations at Aleris Europe, a company that has become engaged in the field of aluminium recycling only relatively recently. Roland Scharf-Bergmann, President of the OEA, will describe the position adopted by the European recycling industry, set out the existing challenges and indicate ways to overcome them. Günter Kirchner, Secretary General of the OEA and Chair of the Global Aluminium Recycling Committees (GARC), will deal mainly with the global importance of recycled aluminium as a source of raw material. In recent years, above all the increased flow of aluminium scrap to recycling-Industrie zeigen. Die bedeutende Rolle des europäischen Metallhandels für die Versorgung mit sekundären Rohstoffen wird ebenso diskutiert wie das durch verstärkte Schrottexporte entstandene Spannungsfeld. Allein fünf Vorträge werden sich mit technischen Neuerungen auf dem Gebiet der Erfassung, der Aufbereitung und dem Einschmelzen von Schrotten und der Verwertung der beim Recyclingprozess anfallenden Salzschlacke beschäftigen. Der Erfolg der Recyclingbemühungen in Europa hängt wesentlich von den rechtlichen Rahmenbedingungen ab. Aktuell stehen weitreichende Reformen der EUAbfallrahmenrichtlinie an, über die berichtet wird. Vorträge über bestehende und künftige Preisbildungsmechanismen und Herausforderungen an das Recyceln von Verpackungen runden das Bild der interessanten Veranstaltung ab. Näheres zum Kongress direkt bei der OEA: Tel: +49 (0)211 451 933 oder unter www.oea-alurecycling.org. N China has been a cause for concern. Whether or not this is justified will be examined in a lecture by a representative of China’s aluminium recycling industry. The important part played by the metal trade in relation to supplies of secondary raw materials will be discussed as well, as also will the stresses created by rising scrap exports. No less than 5 lectures will deal with technical innovations in the fields of the collection, preparation and melting of scrap and the recovery and use of salt slags produced during the recycling process. The success of recycling efforts in Europe depends substantially on the legal boundary conditions imposed. At present far-reaching reform of the EU’s guidelines on waste are due, and these will be reported. Lectures on existing and future pricing mechanisms and challenges related to the recycling of packaging materials will round off the picture of this interesting event. More information on the congress at www.oea-alurecycling.org. ALUMINIUM · 1-2/2007 RECYCLING Recycling von Folienschrotten Hydro vollendet Metallkreislauf in Neuss Eine Idee, eine Pumpe, ein paar unnachgiebige Ingenieure - so vollendet Hydro im AluminiumCluster Neuss den Metallkreislauf und stärkt den engen Verbund mit den Nachbar-Walzwerken in Neuss und Grevenbroich. Die Gießerei im Rheinwerk Neuss von Hydro schmilzt nun jährlich 22.000 Tonnen Folienschrotte aus dem Werk Grevenbroich um. „Das macht ökologisch Sinn, und es hilft im Kostenkampf angesichts der hohen Strompreise, unsere Wettbewerbsfähigkeit zu stärken“, sagt Werkleiter Bernhard Eich. Hydro erzeugt in Deutschlands größter deutscher Aluminiumhütte in Neuss jährlich 224.000 Tonnen Flüssigmetall. Dagegen liefert die Gießerei des Werkes mittlerweile bereits 320.000 Tonnen Walzbarren an Alunorf nebenan, das dann Aluminumband an das Folienwalzwerk von Hydro in Grevenbroich liefert. Die Gießerei muss das Restmaterial zumeist als Metallmasseln teuer zukaufen. Um hier zu sparen, suchte ein Team von Ingenieuren um Projektleiter Michael Jordan, zuletzt Tag und Nacht, eine Lösung für den kostengünstigen, aber hochwertigen Folienschrott aus dem Hydro-Walzwerk in Grevenbroich. Von der bis zu 6 Mikrometer hauchdünnen Folie, die Hydro aus Grevenbroich für Getränkeverbundkartons in viele Länder liefert, ließen sich Prozessüberbleibsel bisher kaum einschmelzen. Denn auf der großen Oberfläche der Folie wirkt eine dünne Oxidschicht wie eine Isolierung. Außerdem hat zusammengepresste Folie eine Dichte, die wesentlich unter der von flüssigem Aluminium liegt. So schwamm Folienabfall im Schmelzbad zuoberst auf dem flüssigen Metall, es entstand viel Krätze – und die dünne Folie verbrannte statt zu schmelzen. Die Ingenieure in Neuss kamen auf die Idee, eine elektromagnetische Pumpe zu verwenden, die flüssiges Metall mit hoher Geschwindigkeit zirkulieren lässt. Das rotieren- de Metall erzeugt einen Wirbelstrom im Inneren der Pumpe, die daher „Vortex“ (Wirbel) heißt. Kommen die 40 x 40 Zentimeter großen, aus Folie zusammengepressten Blöcke in den Schmelzofen, presst die Schwerkraft den Folienabfall in den Wirbelstrom und unter die Oberfläche des Metalls, wo Turbulenzströmungen entstehen. Im rotierenden Metallstrom zersetzt sich der Folienblock und schmilzt perfekt. Ein gutes Geschäft für beide Standorte: „Früher konnten wir nur dicke walzblanke Schrotte umschmelzen, und unsere Kunden mussten ihren Folienschrott bei unseren Konkurrenten einschmelzen lassen, die zudem altmodische Technologie verwendeten“, erklärt Gießereileiter Ulrich Bollmann. „Jetzt benutzen wir vorhandene Anlagen auf neue Weise, können so die dünne Folie effektiv umschmelzen – und das lohnt sich für uns und für unsere Kollegen in Grevenbroich.“ N +( ,,#('%,+/#-(',.+('.#/ '!#'+#'! +(& ,##%#-2'!#'+#'!-( )%'-,#!''(',-+.-#(' (&)%--#%(+&)%'-, (+-" ,('+2%.&#'#.&#'.,-+2,(' ,--( -"+-(&)(''-,,.",-#%-% +(-+2+.& .+',,-#'! .+', ,-#'!&"#',"#)+2+,0#-"-" +%-.1#%#+2*.#)&'- +( ,,#('%+($-'!&'- (+ +-#('(&&#,,#('#'!')%'- &#'-'',0%%,-+#'#'!( ()+-#(' )+,(''%')%'-&'!&'- (+,-0!4 #+3#++&'2 (' 1 #%#' (%.-!&" 000%.-!&" ALUMINIUM · 1-2/2007 93 TECHNOLOGY Recent advances in coil coating technology N. C. Davies, Banbury The application of coatings to continuous coils has been in existence as an industrial process for more than 50 years. The developments made over that period have led to an increase in both scale and speed. Coil coating has thus become the most efficient method of coating materials, allowing end users to displace this important practice from their plants as a fixed cost and into suppliers as a variable cost. The future competitiveness of coil coating within Europe has the following drivers: product quality and differentiation, cost and line versatility, environmental compliance. Achieving these technical, economic and legislative challenges is paramount for an industry seeking to maintain and expand in a world where globalisation pressures exist. Internationally, the coil coating process is the application of thousands of tons of chemicals, paints and lacquers to millions of square metres of surface. The fact that most of these coating materials have been solvent based immediately highlights the environmental compliance challenges facing the industry. Current and emerging legislation, such as the Solvent Emission Directive (SED) [1999/13/EC] in Europe, mean that coil coaters are continuously seeking “cleaner” technologies. Additionally, the End of Life Vehicle (ELV) Directive demands that the coatings used in automotive applications are free of heavy metals, which then impacts on the metal pretreatment (the chemical layer between substrate and paint/lacquer) chemicals that must be chromium free. Although the primary concerns with chromium focus on its hexavalent form, many packaging end-users are also demanding the withdrawal of its trivalent form which has historically been used as a pretreatment in canning and other sheet packaging. In addition to these challenges coil 94 coaters are always looking to increase their volume through the line. The overall line speed is in general limited by the time spent in the paint/lacquer curing ovens. Time at temperature is required to cure the organic film and also extreme care must be taken in balancing the coating line’s fume exhaust system with the coating’s solvent emission volume. Advances have been made in waterborne systems and higher solid coatings and these will be discussed further, as will alternative cure technology processes. It should also be stressed that probably in excess of 95% of all coated products will be post-formed, so all alloys and coatings that are specified must be tolerant to controlled deformation. In coil coating for can end stock relatively thin lacquers are applied to aluminium: utilising advances in line design and lacquer formulations, some lines are now reported to be operating at speeds above 250m/min. This is close to the limit of speed that can be achieved by conventional roll coat application technology. Any potential speed increases beyond this limit will require alternative application technologies or processes. Cleaning focussing on filiform corrosion. These surface active layers arise from the high level of surface shear induced during rolling that transforms the near surface microstructure (Fig. 1). Deformed surfaces are characterised by an ultra-fine grain size that can be stabilised by magnesium oxide pinning in magnesium-containing alloys [3]. However, it is not the fine grain size that is responsible for the enhanced corrosion susceptibility of the surface layer. This susceptibility is promoted by the preferential precipitation of manganese-rich dispersoids during annealing treatments, which is related to the manganese solid solution level and the temperature and time of annealing. These deformed surface layers on aluminium alloys are produced most readily by hot rolling and, generally, the layer thickness of sheet and plate after hot rolling is of the order of a micron. The deformed layer thickness is progressively reduced by cold rolling so alloys that have been extensively cold rolled have thinner deformed layers that can more readily be removed by conventional etch cleaning operations. This means that resistance to corrosion can be improved by increasing the transfer gauge thickness so that after cold rolling the amount of surface to be removed at final gauge is 0.2μm or less. The primary processes for cleaning aluminium are by spray or immersion in either acid or alkali solutions, although acid electrolytic processes are also used [4]. A line configuration may The bare aluminium strip surface presented to the first process step of cleaning has residual rolling oil from the cold rolling process, oxide films generated during the high temperature rolling passes (most evident on magnesium-containing alloys where MgO segregates to the surface) and deformed or surface active layers. For painted products, corrosion susceptibility, in most instances, has been found to be controlled by surface active layers. This has only been studied in detail during the past decade [1, 2], initially through an industry-wide Brite-Euram programme Fig. 1: 100 nm surface active layer on AA3105 cold rolled sheet ALUMINIUM · 1-2/2007 TECHNOLOGY also include a mild pre-clean step to reduce the lubricant residues or any surface detritus. Cleaning in alkaline solutions often produces a non-uniform surface in that aluminium and its oxide are soluble and magnesium oxide is relatively insoluble, hence a roughened surface can result. However, alkali cleaners are very effective in the removal of organics. On the other hand an acid cleaner will consistently attack both types of oxide, providing a more uniform surface. For historical reasons alkali cleaning was initially the preferred cleaning option but gradually there has been a move to acid cleaners where proprietary cleaners are based on sulphuric acid and incorporate hydrofluoric acid and surfactants. The cleaners work by the sulphuric acid removing organics and oxides and the HF attacking both the oxides and the aluminium substrate: the degree of attack can be controlled by the amount of free fluoride in solution. Pretreatment The key functions of pretreatments or conversion treatments after cleaning is both to provide good adhesion and to provide corrosion protection. Pretreatment application is either by a dip/spray process followed by rinsing (rinse pretreatment) or by roll coating (no-rinse pretreatment). The volume of chemicals used in both processes differs considerably, with the dip/spray process giving rise to a large volume of contaminated rinse water requiring treatment before disposal. On the other hand, roll coating requires a precise amount of solution to be applied uniformly across the strip which is then dried in place; the reaction with aluminium consumes all of the chemicals and no products requiring subsequent removal are formed, thus avoiding any potential environmental issues. Historically chromium based pretreatments have been used based on chromate (Cr VI) and chromephosphate (Cr III) chemistries. Being highly acidic these pretreatments have often compensated for any inadequacies in the cleaning process. For ALUMINIUM · 1-2/2007 architectural products both types of chromium pretreatments have been used but, with the major carcinogenic concerns surrounding the use of Cr VI compounds, Cr VI is not used for packaging products. For rinse applications with Cr VI pretreatments the coating is formed by the reaction of solutions containing sodium dichromate and hydrofluoric acid. The HF attacks the residual surface oxides and aluminium, producing electrons which facilitate a redox reaction [5,6] resulting in the reduction of the hexavalent dichromate ion (Cr2O7) to a trivalent chromium oxide (Cr2O3). Importantly excess Cr VI is retained in such films and, in downstream product applications where these films could be damaged, the excess hexavalent chromium reacts with water and the aluminium to produce a new conversion coating i.e. the pre-treatment system is selfrepairing. The no-rinse roll-coatable analogue of this system typically contains CrO3, HF and amorphous SiO2 as a carrier. For rinse applications of Cr III pretreatments, the reacting solutions contain CrO3, phosphoric acid and hydrofluoric acid. Similar oxidation/ reduction reactions take place to the above, resulting in the deposition of a trivalent chromium phosphate film. The no-rinse roll-coatable analogue of this system contains chromium phosphate, HF and a polymer, typically polyacrylic acid, which can act both as an adhesion promoter and corrosion inhibitor. As the market moves away from chromium pretreatments, the technical challenges are greater, not only because of the inherent corrosion resistance demanded from pretreatments but also because of the less reactive nature of the Cr-free systems with the aluminium strip, thereby placing a greater emphasis on the efficiency and quality of the precursor cleaning step. Thus there is a greater demand on non-Cr pretreatments to act as adhesion promoters with good uniform barrier properties. These adhesion and barrier aspects can be achieved by using a treatment to enhance the natural oxide layer, such as anodising or hydro- thermal treatment in water or steam. Anodising pretreatments have been used very effectively for many years although they are not in widespread use as coil line treatments. Coil line treatments are based on fast anodising in either sulphuric acid or phosphoric acid and these types of pretreatment have the advantages of speed, control and uniformity compared to most chemical conversion treatments (Fig. 2); they rely on a balance between anodic film formation and chemical dissolution of the anodic film and are much under-utilised as chrome-free pretreatments. Fluorotitanic and fluorozirconic acid based pretreatments [7] are in fairly widespread use as chrome-free alternatives. Such pretreatments can certainly be effective but are more difficult to monitor in production compared to traditional chromebased systems. This is particularly an issue where polymeric additions are made to the formulation to improve performance. For such systems good adhesion is achieved through good surface coverage of a uniform film of either zirconium and/or titanium oxide. However, adhesion is severely compromised if the film is too thick and this can lead to in-service coating failures that are unrelated to corrosion sensitivity. Pretreatment systems based on the use of adhesion promoters such as silanes [8], phosphonates and polyacrylic acids have been extensively researched. These pretreatments can certainly be very effective especially when applied as monolayers rather than thick films. They are probably most useful when used in combination with a thin anodising treatment (as a post-anodising step) or similar treatment to increase the barrier film thickness and to develop a micro-surface roughness to enhance adhesion. Paints and lacquers Architectural: The choice of a paint system depends on a number of key factors including aesthetic appearance (shade, gloss, roughness), mechanical properties (abrasion resistance, scratch resistance, impact resistance, formability), durability 95 TECHNOLOGY Fig. 2: Schematic of electrolytic cleaning and continuous anodising film formation (colour and gloss retention, weathering resistance, corrosion resistance), environmental impact and cost. Most aluminium sheet will be rollcoated (Fig. 3) with a thin backing coat and a two-coat topcoat, although products with up to 4 layers of topcoat are available for specific applications. The initial coat is the primer, its dry thickness usually in the range of 5 to 15 microns, to provide adhesion to the pretreated metal and it may contain anti-corrosive pigments. The second coat, or topcoat, is usually in the range of 10 to 25 microns and it provides the colour and appearance to the final coated system along with the other key properties required to meet the product’s performance specification. An alternative approach is to produce a product with a basecoat (colour) with a clear topcoat (gloss). There are two types of resins used in developing liquid paints for coil coating, thermosetting and thermoplastic. The thermosets include acrylics, polyurethanes, polyesters and silicon polyesters. The polyesters are also used in powder spray applications. The thermoplastics include PVC-plastisols, PVDFs (polyvinyldifluoride) and polyamide-nylons. Each resin type can provide a different balance of properties: O Polyesters provide good all round properties including very good colour matching capability and colour retention combined with good flexibility, hardness, resistance to weathering and chemicals. O Vinyls provide the best resistance to acid, alkalis and many solvents. The most common building block is polyvinyl chloride (PVC). Fluorinated versions (PVDF) offer the best protection against weathering including UV resistance and for this reason they are mostly used in critical applications 96 and prestige buildings. O Acrylics provide high gloss plus yellowing and mar resistance. O Urethanes combine hardness and abrasion resistance coupled to good weathering performance. Packaging: Coil coating for packaging is dominated by the market for easyopen ends for beverage cans. Can end lacquers are normally applied at around 1-2.5g/m2 on the external surface and 7-10g/m2 on the internal. The internal coating, in particular, must withstand the high speed forming process of the end (above all the tab rivet) whilst protecting the beverage from the container (and vice versa). Historically this application was dominated by the highly ductile vinyl organosols (vinyl chloridevinyl acetate copolymers dispersed in solvent) but recently a combination of environmental pressures and consumer health concerns has led to replacement of solvent based vinyls with variants including: O Water based O Vinyl (chlorine) free O Low BADGE (BADGE-free) O Bisphenol A-free. These developments are based on epoxy-ester or polyesters with enhanced flexibility. Alternative technologies In the challenges that face the coil coater, he/she is consistently examining alternative technologies. As part of continuous improvement exercises, coil coaters have worked closely with paint suppliers in the development of both high-solids coatings and waterborne coatings. High solids coatings as their name implies, have a higher content of solid components than conventional solvent-borne systems. Typically coating systems with a sol- ids content of >85% fall into this category and, since they contain less solvent, they offer a significant reduction in VOC emissions compared to conventional systems. As well as reducing emissions, high-solids coatings can impart thicker application layers than conventional systems, leading to timesaving. The reduction in solvent however, means that such coatings are more sensitive to inadequate surface preparation of the substrate. Water-borne coatings are systems that predominantly utilise water as the solvent to dissolve the binder. Typically up to 80% of the total solvent is water with the remainder being organic co-solvents such as glycol ethers. Such systems benefit from large reductions in VOC emissions and an associated reduction in both fire risk and worker exposure to organic vapours. However, due to the corrosive nature of the water in the formulation, special equipment can often be required for application. Control of humidity is also critical to achieving the desired film formation. Most resins have now been incorporated into water-borne coating formulations and they are finding widespread applications for packaging products. For architectural products the use of water-borne coatings has focused more on primers rather than the diverse range of paints used for topcoat functionality. Powder coating is another alternative, utilising 100% resin in a dry, powdered form and working on the principle of attraction by oppositely charged species. The powder is delivered through a spray gun where it gains a low amperage, high-voltage positive charge. The surface to be coated is electrically grounded so that the positively charged powder particles are attracted to it. The coated surface is then reacted in an oven where the powder melts and fuses into a smooth coating. This has been widely used in the post-painting of individual parts but has had less impact, to date, in coil coating. Within Europe Otefal S.p.a. is the market leader for coil coating with line speeds typically operating at up ALUMINIUM · 1-2/2007 TECHNOLOGY (e.g. scratch resistance) coatings above the topcoat. References Fig. 3: Schematic of roll coat application of paint to the strip to 20m/min. The speed has been limited by the array of electrostatic guns that must be synchronised to achieve uniform film coverage. However, powder coating has the attraction of being solvent-free and can be cured using infra-red or induction heating technologies. Other application technologies for powder include the powder cloud technique developed by MSC of Illinois and the electro magnetic brush (EMB) application technique developed by DSM resins in Europe. The powder cloud technology applies powder to the coil strip as it passes through a charged cloud of powder coating. The identically charged powder particles repel each other and deposit on to the earthed coil strip. The EMB approach is based on technology that it is used for laser copiers and photocopiers. New developments in the formulation of powder coatings generally relate to their application in packaging products such as cans, where FDA approval is still pending. Significant advances have also been made in the development of powder coatings for architectural products that require superior long-term durability and also powders that can form thinner applied films. Interesting developments in oven technology have come out of Adphos AG [9] who have developed nir, near infra-red ovens to be used as boosters to conventional ovens or as stand alone systems. These are small footprint modules that utilise high intensity heat emissions from the near infra-red wavelength spectrum and can cure 20 micron coatings in less than 3 seconds as compared to say 20 seconds. Using lamp systems for curing also means that they are only switched on when needed as compared to the ALUMINIUM · 1-2/2007 continuous power requirement of convection ovens. However, as the solvents will be rapidly driven off, the extraction system has to be extremely efficient such that the LEL (lower explosion limit) is not exceeded. Other forms of radiation curing using ultraviolet (UV) or electron beam (EB) have been practised since the late 1960s. Although the growth rates of these technologies have been relatively slow, they have been continuous. Conceptually radiation curing could solve many of the coil coaters problems; they are liquid coatings applied to the substrate surface via roll coating and cured at room temperature in seconds without volatile materials being lost from the surface. However barriers to their use exist, including the capital equipment costs involved and the limited availability of formulations for particular applications. Electron beam and ultraviolet curing have developed in parallel since the 1960’s due to their similarities. Companies which produce UV curable formulations will generally also produce EB curables, the main difference being that UV requires a photoinitiator in the formulation whilst EB does not. The absence of a photoinitiator is EB’s main advantage over UV since photoinitiator residues remain in cured coatings and prompt worries over health, odour etc. Hence, UV coatings have not been used in coil coating for packaging applications. There are, however, currently initiatives to obtain FDA approval for the use of radcure coatings in direct food contact. For steel coil lines a UV curing system is often incorporated at the end of galvanising lines whereas, for aluminium architectural lines, opportunities may exist for thin functional [1] H. Leth-Olsen, Filiform Corrosion of Painted Aluminium Coil Materials, PhD thesis, NTNU 1996. [2] K. Nisancioglu, J. H. Nordlien, A. Afseth and G. M. Scamans, Significance of Thermomechanical Processing in Determining Corrosion Behaviour and Surface Quality of Aluminium Alloys, 7th International Conference on Aluminium Alloys their Physical and Mechanical Properties, 111125, 2000. [3] G. M. Scamans, A. Afseth, G. E. Thompson and X. Zhou, Ultra-fine Grain Sized Mechanically Alloyed Surface Layers on Aluminium Alloys, 8th International Conference on Aluminium Alloys, Aluminium Alloys their Physical and Mechanical Properties, 1461-1466, 2002. [4] J. Ball, P. K. F. Limbach, J. D. B. Sharman, A New Electrolytic Cleaning Cell. 1st International Symposium on Aluminium Surface Science and Technology (ASST 1997), Antwerp, Belgium, May 1997, pp31-37 (ATB Metallurgie, Brussels, Ed. H. Terryn). [5] J. A. Treverton, N. C. Davies, An XPS study of Chromate Pretreatment of Aluminium, Metals Technology ,4, 480-489, 1977. [6] J. S. Crompton, P. R. Andrews and E. McAlpine, Characteristics of a Conversion Coating on Aluminium, Surface and Interface Analysis, vol.13, no.2-3, 160-166, November 1988. [7] A. Ruiz Garzon, G. E. Thompson, P. Skeldon, T. Hashimoto, J. Sander, A. de Zeeuw and P. Mitchell, Development of Zirconium-Based Conversion Coatings on AA3005 Aluminium Alloy, Proceedings of 4th International Symposium on Aluminium Surface Science and Technology (ASST 2006), Beaune, France, May 2006. [8] T. Schmidt-Hansberg, P. Schubach, A Comparative Study of Innovative Aluminium Pretreatments, 3rd International Symposium on Aluminium Surface Science and Technology, (ASST 2003), Bonn, Germany, May 2003, pp9-14 (ATB Metallurgie, Brussels, Ed. H. Terryn). [9] K. Bär, NIR – Booster Solutions – PayBack Within 12 Months! ECCA 38th Autumn Congress – Brussels, 21-23 November 2004. Author Dr. Nigel Davies is currently Managing Director of Innoval Technology Ltd, an independent light metals technology consultancy based in Banbury, UK. Prior to this, he had worked for Alcan in a range of functions including having technical responsibility for Alcan’s (now Novelis’) European painted sheet division. 97 FORSCHUNG Rührreibschweißen von artungleichen Aluminiumknet- und -druckgusslegierungen Sh. Sheikhi, J. F. dos Santos, Geesthacht Das Rührreibschweißen (Friction Stir Welding – FSW) ist ein innovativer Fertigungsprozess zum Fügen von Leichtmetallen, besonders von Aluminiumlegierungen. Die Herstellung von Aluminiumverbindungen mit konventionellen Schmelzschweißverfahren erfüllt nicht immer und nicht bei jeder Legierung die von der Industrie gestellten Qualitätsanforderungen. Das Rührreibschweißen stellt eine Alternative zu den Schmelzschweißverfahren dar. Dies ist besonders auf die guten mechanischen Eigenschaften der Schweißnähte, die Reproduzierbarkeit und die Robustheit des Verfahrens zurückzuführen. Im Rahmen dieser Arbeit werden artungleiche Stumpfstoße gleicher Blechdicke mit den Legierungen AlMg3, AlMgSi0,5 und GD ALSi10Mg hergestellt. Die Blechdicke der eingesetzten Fügepartner beträgt 2 mm. Es werden die Gefügeausbildung als Folge der eingebrachten Streckenenergie beschrieben und die mechanischen Eigenschaften der Schweißnähte diskutiert. Beim FSW-Verfahren handelt es sich um ein speziell zum Schweißen von Aluminium und Aluminiumlegierungen geeignetes Fügeverfahren. Friction Stir Welding (FSW) wurde von TWI (The Welding Institute, Cambridge) entwickelt und 1991 patentiert [1]. Das Reibrührschweißen erfolgt bei Temperaturen unterhalb des Schmelzpunktes der Fügepartner. Die Werkstoffe schmelzen nicht, sondern werden lediglich plastifiziert und im Nahtbereich regelrecht ineinander verrührt. Da kein Schmelzbad entsteht, ist das Verfahren lageunabhängig. Das Reibrührschweißen zeichnet sich insbesondere durch reproduzierbare und gute Schweißnahteigenschaften aus. Die Vorteile gegenüber herkömmlichen Schweißverfahren resultieren zum einen aus dem geringen Wärmeeintrag sowie der einfachen Prozesskontrolle und -steuerung. Vorteile gegenüber den herkömmlichen Schmelzschweißverfahren sind weiterhin: ein geringer Verzug, keine Poren- und Rissbildung und keine Entmischung der Legierungsbestandteile. Eine spezielle Behandlung der Fügekanten vor dem Schweißen ist nicht notwendig. Es sind weder Zusatzwerkstoffe noch Schutzgase erforderlich, auch muss kein speziell geschultes Personal eingesetzt werden, was zu sehr geringen Betriebskosten führt. Beim Reibrührschweißen wird ein zylinderförmiges Werkzeug (Abb. 1-a) eingesetzt. Das Werkzeug besteht aus einem Stift (Pin), der in der Werkzeugschulter befestigt wird und nahezu verschleißfrei funktioniert. Die modulare Ausführung des Werkzeugs erlaubt die Anpassung. Zum Schweißen wird gemäß Abb. 1-b das rotierende Werkzeug langsam in den Fügebereich eingebracht. Infolge der Rotationsbewegung des Werkzeugs sowie des aufgebrachten Druckes wird zwischen Schulter und Blechen Reibungswärme erzeugt, die zum Plastifizieren des Materials unter der Schulter führt. Nach ausreichender Plastifizierung wird das rotierende Werkzeug unter einer bestimmten Vorschubgeschwindigkeit (Schweißgeschwindigkeit) entlang des zu schweißenden Bereiches geführt. Die Rotationsrichtung und die Translationsbewegung des Werkzeuges überlagern sich. Auf der einen Seite der Fügelinie sind die Bewegungsvektoren gleichgerichtet und auf der anderen Seite wirken sie entgegengesetzt zueinander. Die Seite mit gleicher Richtung der Rotationsund der Translationsbewegung wird mit Advancing-Seite bezeichnet. Die Retreating-Seite beschreibt die Seite mit entgegengesetzter Richtung der Rotations- und der Translationsbewegung. Das charakteristische Bild einer mit FSW produzierten Naht ist in Abb. 2 dargestellt. In der Mitte der Naht liegt der Nugget oder die Rührzone mit einer zwiebelartigen Struktur. Dieser Bereich entsteht durch den hohen Verformungsgrad im Bereich des Stiftes sowie der Reibungstemperatur. Die Form des Nuggets ist abhängig von den Schweißparametern. Das Gefüge in diesem Bereich ist feinkörnig ca. 2-5 μm [2]. Die zwiebelförmige Struktur entsteht dabei durch die Rotation a b Abb. 1a) Werkzeug für das Reibrührschweißen; 1b) Prozessablauf beim Schweißen 98 ALUMINIUM · 1-2/2007 FORSCHUNG Rp0,2, Zugfestigkeit Rm, Bruchdehnung A der verwendeten Grundwerkstoffe variiert gemäß Tabelle 2 sehr. Alle Schweißnähte wurden mit einem Werkzeug bestehend aus einem 13 mm konkaven Schulter- und einem 5 mm Stiftbereich hergestellt. Ergebnisse Die Entwicklung einer FSW-Verbindung mit abnehmender Streckenenergie bei einer Drehzahl von 2000 min-1, ist am Beispiel AlMg3 - DGAlSi10Mg in Abb. 3 dargestellt. Bei dieser Werkstoffkombination wurde ein spröder Aluminiumdruckguss mit einer nicht aushärtbaren, gewalzten Aluminiumlegierungen gefügt. Bei kleinen Vorschüben und dementsprechend großer Wärmeeinbringung zeigt sich deutlich die Struktur des Nugget. Mit abnehmender Streckenenergie verschlechtert sich optisch die Durchmischung des Kernbereiches und führt zu Fehlern in der Schweißnaht. Typischer Weise sind diese Fehler auf der Advancing-Seite der Rührzone zu finden. Die Streckenenergie qs [J/mm] wird als Quotient des theoretischen Energiestroms q [W] und der Schweißgeschwindigkeit vsch [mm/s] ermittelt [4]. qs = (4/3 x S x Px Fz x N x rsch) / vsch [J/mm] (Gleichung 1) Der Energiestrom q [W] ergibt sich aus dem Reibungskoeffizienten P = 0,2, der Schweißkraft Fz [N], der Drehzahl N [s-1] und dem Schulterradius rsch [m]. Der Reibungskoeffizient verändert sich mit dem Plastifizierungsgrad bzw. mit der Erhöhung der Temperatur [5]. Die Erhöhung der Schweißparameter (Kraft und Drehzahl) führt zu einer Erhöhung des Energiestroms. Langsamere Schweißgeschwindigkeiten führen zu einer Erhöhung der Streckenenergie und umgekehrt. Es muss betont werden, dass die Gleichung 1 die Streckenenergie Abb. 2: Gefüge der FSW-Naht und den Vorschub des Werkzeuges. Der thermomechanisch beeinflusste Bereich schließt sich am Rand des Nuggets an. Das Material ist in diesem Bereich aufgrund des Rühreffektes und des Temperaturfeldes thermisch beeinflusst und plastisch verformt [2]. Die Wärmeeinflusszone schließt an diesem Bereich an. Dieser Bereich ist nicht deformiert, erfährt jedoch aufgrund der Temperatureinwirkung eine Veränderung des Gefüges infolge von Ausscheidungen. Infolge der unterschiedlichen Bereiche in der Schweißnaht variieren die mechanischen Kennwerte quer zur Naht. So ist die Festigkeit im Bereich des Nuggets innerhalb der Schweißnaht am höchsten, in Einzelfällen (5xxxLegierungen, die nicht kalt verfestigt sind) kann eine höhere Festigkeit als im Grundwerkstoff erreicht werden. FSW zeichnet sich durch reproduzierbare und gute Schweißnahteigenschaften aus. Die Vorteile gegenüber herkömmlichen Schweißverfahren resultieren zum einen aus dem gerin- Mechanische Eigenschaften gen Wärmeeintrag und zum anderen daraus, dass jegliche Aluminiumlegierungen mit diesem Verfahren geschweißt werden können. Mit dem Rührreibschweißen sind sämtliche artgleiche und artungleiche Aluminiumlegierungen schweißbar. Diese können in verschiedenen Nahtkonfigurationen (wie Stumpfstoß, Stumpfstoß/Parallelstoß, Überlappstoß, Parallelstoß, T-Stöße und Kehlnaht) hergestellt werden [3]. Material Im folgenden sind Beispiele für artungleiche Rührreibschweißnähte dargestellt. Die Schweißversuche wurden mit den folgenden Werkstoffen gemäß Tabelle 1 durchgeführt. Dabei wurden artungleiche Stumpfstöße gleicher Blechdicke mit den Legierungen AlMg3, AlMgSi0,5/6060-T4 und GD ALSi10Mg hergestellt. Die Blechdicke der eingesetzten Fügepartner beträgt 2 mm. Die mechanischen Eigenschaften wie z. B. Dehngrenze Legierung AlMg/5754-O AlMgSi0.5/6060-T4 GD AlSi10Mg Rp0,2 [MPa] 120 90 150 Rm [MPa] 220 185 288 A [%] 26 27 6 Vikershärte HV0,2 59 62 88 Biegewinkel [°] 160 160 30 Tabelle 2: Mechanische Eigenschaften der verwendeten Werkstoffe Zusammensetzung in Gewichts-% Si Fe Cu Mn Mg Cr Ni Zn Ti Al 0,189 0,301 0,053 0,251 2,66 0,056 --- 0,033 0,033 Rest AlMgSi0.5/6060-T4 0,3-0,6 0,1-0,3 0,1 0,1 0,35-0,6 0,05 --- 0,15 0,1 Rest GD AlSi10Mg 9,0-11,0 1,0 1,0 0,001-0,4 0,00-0,5 --- 0,1 0,15 --- Rest Legierung AlMg3/5754-O Tab. 1: Chemische Zusammensetzung der verwendeten Werkstoffe ALUMINIUM · 1-2/2007 99 FORSCHUNG seren Mischung der Fügepartner in der Rührzone führt. Der Verlauf des SpannungsDehnungs-Diagrammes der AlMg3/GDAlSi10Mg-Verbindung ist, stellvertretend für die weiteren Verbindungen, in Abb. 7 dargelegt. Die VerAbb. 3: Entstehung von Bindefehler in Abhängigkeit von der Streckenenergie bindungen erreichen somit nicht richtig beschreiben kann, da die eine Zugfestigkeit von Rm = 225 MPa, Wärmeentwicklung durch die Verforwelche dem Wert des Grundwerkmung des Gefüges nicht berücksichstoffes AlMg3 in etwa entspricht. tigt wird. Die verbleibenden Proben erreichen Mit optimierten Schweißparamebeide eine Bruchdehnung von A = 12 tern können fehlerfreie Schweißnäh%. Mit ihren Materialeigenschaften, te produziert werden. Der Querschliff in Abb. 4 stellt eine Stumpfstoßverbindung der Legierungen AlMg3 und AlMgSi0,5 (von links nach rechts) dar. Durch die unterschiedliche Ätzung der Werkstoffe ist der Materialverbund in der Rührzone zu erkennen. Die Schweißnaht einer rührreibgeschweißten Druckgusslegierung GD AlSi10Mg mit der Legierung AlMgSi0,5 ist in Abb. 5 und mit der Legierung AlMg3 in Abb. 6 dargestellt. Es ist deutlich zu sehen, dass die Materialpaarung in Abb. 6 zu einer bes- bewegen sie sich zwischen dem spröden Druckguss und dem duktilen Walzblech. Im Zugversuch versagten die Proben parallel zur Schweißnaht im Bereich des Fügepartners mit der geringeren Festigkeit. Die Lage des Bruches ist in Abb. 8 abgebildet. Die Bruchdehnung A bezieht sich auf die Anfangslänge L0 der Proben. Bei einer FSW-Verbindung setzt sich nun diese Länge nicht aus einem homogen Stück, sondern aus verschiedenen Zonen mit unterschiedlichen Legierungen und Eigenschaften zusammen. Daher konzentriert sich die Dehnung hauptsächlich auf einem Bereich innerhalb der Probe und führt zu einer relativ niedrigen Bruchdehnung. Die in Tabelle 3 angegebenen Werte für RP0,2, Rm, der Bruchdehnung A und des Biegewinkels stellen den Durchschnitt aus mindestens drei artgleichen Proben dar. Abb. 7: Spannungs-Dehnungskurven Abb. 4: Makroschliff FSW-Schweißverbindung AlMg3/AlMgSi0,5 a Abb. 5: Makroschliff FSW-Schweißverbindung GD AlSi10Mg/AlMgSi0,5 Abb. 6: Makroschliff FSW-Schweißverbindung GD AlSi10Mg/AlMg3 100 b c Abb. 8: Bruchlage von geschweißten Zugproben ALUMINIUM · 1-2/2007 FORSCHUNG Die Zugfestigkeit der geschweißten Proben erreicht im Verhältnis zum jeweils schwächeren Fügepartner gemäß Tabelle 3 97 % für die erste Verbindung, 94 % für die zweite Verbindung und 100% für die dritte Verbindung. Die Duktilität der Schweißnähte kann durch den Biegewinkel ausgedruckt werden. Bei der Werkstoffkombination 1 wird der gleiche Biegewinkel erreicht wie bei den eingesetzten Grundwerkstoffen. Die Werkstoffkombinationen 2 und 3 zeigen einen deutlichen höheren Biegewinkel im Vergleich zum Druckguss. Dies ist zum einen auf die gute Vermischung der Grundwerkstoffe und zum anderen auf die Reduzierung der Korngröße in der Rührzone zurückzuführen. Die Erhöhung der Duktilität durch ein feinkörniges Gefüge infolge des Rührreibschweißens wird in der Literatur [6, 7] mit unterschiedlichen Versuchen bewertet. Aufgrund des Schweißvorganges entsteht eine sehr feinkörnige Struktur im Bereich der Rührzone der Nähte, dies kann am besten aus dem Vergleich der Mikrostruktur des Druckgusses im Grundwerkstoff und im Nugget verdeutlicht werden (Abb. 9). Die Korngröße im unbeeinflussten Grundwerkstoff beträgt 20 bis 30 μm. Aufgrund des Schweißverfahrens entsteht ein rekristallisiertes Gefüge mit einer Korngröße von etwa 5 μm. Dies führt zu einer Verbesserung der Duktilität der Druckgusslegierung. Darüber hinaus können Fehler im Druckguss wie z. B. Poren oder Risse im Bereich der Rührzone behoben werden [6]. Somit bietet das Rührreibschweißen die Möglichkeiten, das Gefüge des Werkstoffes lokal, der Belastung entsprechend, zu verändern. Zusammenfassung Das Schweißen von Aluminiumlegierungen kann fehlerfrei realisiert werden. Eine Einschränkung hinsichtlich der Werkstoffkombination aus unterWerkstoffkombinationen schiedlichen Aluminiumlegierungen besteht nicht. Im Rahmen dieser Arbeit wurde der Einsatz des Verfahrens am Beispiel von artungleichen Mischverbindungen demonstriert und bewertet. Es konnte gezeigt werden, dass der Materialfluss in der Rührzone sich abhängig von der Streckenenergie verhält. Die Abnahme der Streckenenergie resultierte aus der Bildung von Fehlstellen im Materialverbund der Rührzone – ein Hinweis auf die falsche Parameterkombination. Mit der richtigen Parameterkombination wurden fehlerfreie artungleiche Stumpfstöße mit den Legierungen AlMg3, AlMgSi0,5 / 6060-T4 und GD ALSi10Mg hergestellt. Die Zugproben versagten im jeweils schwächeren Grundwerkstoff weit entfernt von der Naht. Aufgrund der feinen Mikrostruktur in den Schweißnähten konnte eine Verbesserung der Duktilität gegenüber der des Druckgusses festgestellt werden. Die Betrachtung des Gefüges verdeutlicht, dass eine Kornfeinung insbesondere des Gusswerkstoffes stattgefunden hat. Somit besteht die Möglichkeit, den Rührreibprozess zur gezielten lokalen Änderung des Gefüges und als Reparaturverfahren für typische Unregelmäßigkeiten in Gussbauteilen (wie oberflächennahe Risse etc.) einzusetzen. Danksagung Die Autoren bedanken sich bei C. Schilling und M. Nüchtern für die Durchführung der Versuche ganz herzlich. Literatur 1. W. M. Thomas, D. E. Nicholas, C. J. Needham: Improvements relating to friction welding; Patent No. EP 0 615 480 B1; 1994. 2. I. Ballerstein: Feasibility study of friction stir welding of ship components; Diploma thesis; Technical University Ham- RP0,2 [MPa] Rm [MPa] A [%] Biegewinkel [°] AlMg3 / AlMgSi0.5 100 180 12 160 AlMgSi0.5 / GD AlSi10Mg 90 175 10 75 AlMg3 / GD AlSi10Mg 110 225 12 75 Tab. 3: Mechanische Eigenschaften der FSW-Proben ALUMINIUM · 1-2/2007 a b Abb. 9: Gefüge der Druckgusslegierung im Grundwerkstoff (a) und in der Rührzone (b) burg-Harburg; 2000. 3. P. L. Threadgill: Friction stir welding – the state of the art –; TWI Research Report; 1999. 4. O. T. Midling, G. Rorvik: Effect of tool shoulder material on heat input during friction stir welding; 1st International Symposium on Friction Stir Welding 1416 June 1999; California, USA; 1999. 5. C. M. Chen, R. Kovacevic: Finite element modeling of friction stir welding - thermal and thermmechanical analysis; International Journal of Machine Tools & Manufacture; 2003; Vol. 43, p. 13191326. 6. W. M. Thomas, D. G. Staines, I. M. Norris, and E. R. Watts: Friction Stir Welding – Process Developments; 12th International Conference on the Joining of Materials (JOM-12); Helsingor, Denmark; 20-23 March 2005. 7. S. Sheikhi, J. F. dos Santos: Eigenschaften von rührreibgeschweißten AluminiumMischverbindungen; Schlüsseltechnologie Leichtmetallguss im Automobilbau, 17./18. November 2005 - Bad Nauheim. Autoren Dr. Jorge F. dos Santos leitet die Gruppe Fügetechnologie am Institut für Werkstoffforschung des GKSS Forschungszentrums Geesthacht GmbH. Dr.-Ing. Sharam Sheikhi ist Projektingenieur am Institut für Werkstoffforschung des GKSS. 101 V E R A N S TA LT U N G E N 22nd ASK Metal Forming: „Forming the Future” New materials, forming procedures, machines and comprehensive simulation and optimisation methods are the basis for rapid improvements in the development of the forming technology. In many cases this leads to increasingly powerful, customised endproducts and cost-effective process chains. The 22nd ASK Metal Forming will include contributions from the scientific and industrial communities, encompassing a broad spectrum of topics from the seemingly classic to state-of-the-art future technologies. Forging and rolling can open up new markets and ensure market shares by material development, process simulations and process monitoring. Moreover, it is possible to overcome the past limitations of forming technology by applying modern developments. For example, new flexible forming procedures like strip profile rolling, incremental sheet forming or flexible ring profile rolling enable the cost-effective production of small lot sizes and bad optimised lightweight products. Miniaturisation opens up new markets for micro-parts made of metal. Modern simulation techniques and material models support the process planning by predictions of grain structure, part quality and process capability. Simultaneously to the lectures, there will be an exhibition, where interested companies will present prod- ucts and services. In the afternoon of the second day, the participants will get the facility to attend demonstrations at the constructions of the IBF of the RWTH Aachen. There is also the opportunity to visit the IEHK and the Centre of Metal Construction. The Colloquium is addressed to all responsible persons in the steel- and non-ferrous metal industry dealing with the production, design, plant construction, manufacturing, inspection and applications of innovative products. All presentations will be translated simultaneously into English. Further information: Dipl.-lng. Marcus Urban Tel: +49 (0)241 8095927 ask@ ibf.rwth-aachen.de www. ibf. rwth-aachen .de The Coatings Summit Bauen und Energie 5 to 6 February 2007, Vienna, Austria 15. bis 18. Februar 2007, Wien Top-level speakers from Asia, America and Europe, from global groups and medium-sized power players, will share their insight into vital and emerging issues of the coatings industry. They will identify trends and discuss key drivers, be it the changing nature of sourcing and manufacturing, market entry strategies or new regions to source creativity and innovation. Further information: European Coatings Conference Tel: +49 (0)511 9910-270 esther.schwencke@coatings.de www.coatings.de Die internationale Messe für alle, die beim Bauen, Renovieren, Modernisieren, und Energie sparen auf Kosteneffizienz und Qualität achten. Weitere Infos: Reed Exhibitions Messe Wien Tel: +43 (0)1 727 20-0 info@messe.at www.messe.at gical processing. SME will celebrate its 50 year anniversary. Further information: Society for Mining, Metallurgy and Exploration Tel: +1(303) 973-9550 meetings@smenet.org www.smenet.org Presenter: Institute of Metal Forming (IBF) and Institute of Ferrous Metallurgy (IEHK), RWTH Aachen University, 8 and 9 March 2007. R+T 2007 10. bis 14. Februar 2007, Stuttgart Themenschwerpunkte der internationalen Fachmesse in Stuttgart sind der Rolladen-, Jalousie- und Markisenbau sowie der Sonnenschutz, Tor- und Fensterbau. Das Fachpublikum erstreckt sich auch auf Architekten und Fachplaner. Weitere Infos: Messe Stuttgart Tel: +49 (0)711 2589-0 info@messe-stuttgart.de www.messe-stuttgart.de 102 3. Landshuter Leichtbau-Colloquium 22. und 23. Februar 2007, Landshut Das Colloquium zum Thema „Leichtbau - von der Idee zum Produkt“ bietet ein Forum, um ausgesuchte Leichtbaulösungen zu präsentieren. Der Leichtbau soll dabei über den gesamten Produktlebenszyklus von der Idee bis zum fertigen Produkt und dessen Wiederverwertung diskutiert werden. Weitere Infos: Fachhochschule Landshut Tel: +49 (0)871 506 134 info@leichtbau-cluster.de www.leichtbau-cluster.de TMS 2007 Annual Meeting Exhibition 25 Feb. to 1 March 2007, Orlando, U.S. More than 140 exhibitors from some 20 countries will present solutions to technical challenges in a vast array of areas: e.g. cast shop technology, emerging materials, environmental management, industrial process control and automation, primary production equiment and services, technology resources, surface processes. Further information: The Minerals, Metals & Materials Society Tel: +1(724) 776 9000 mtgserv@tms.org www.tms.org 2007 SME Annual Meeting Exhibit 7. KBU-Kolloquium: Bergbauliche Abfälle und Emissionshandel 25 to 28 February 2007, Denver, U.S. 1. und 2. März 2007, Aachen The meeting covers a broad range of topics regarding mineral and metallur- Eine gemeinsame Tagung des Lehrund Forschungsgebietes Berg- und ALUMINIUM · 1-2/2007 EVENTS Umweltrecht der RWTH Aachen und der GDMB Gesellschaft für Bergbau, Metallurgie, Rohstoff- und Umwelttechnik. Die Themen sind unter anderem: Die Anforderungen an die Verwertung mineralischer Abfälle, die Verordnung mineralische Abfälle, Einsatzmöglichkeiten bergbaulicher Abfälle für Baustoffe, Emissionshandelsrecht, NAP II. Weitere Infos: GDMB Tel: +49 (0)5323 937 90 gdmb@dgmb.de www.gdmb.de EFB-Kolloquium „Blechverarbeitung“ 06. und 07. März 2007, Fellbach Das Kolloquium steht unter dem Leitthema „Neue Wege zum wirtschaftlichen Leichtbau – Innovative Lösungen zur Blechumformung und mechanischen Fügetechnik“. In den einzelnen Sektionen werden die aktuellen Fragestellungen zu höchstfesten Stählen und anderen Werkstoffen sowie zu Verfahren in der Fügetechnik und Simulation im Leichtbau aufgegriffen. Weitere Infos: Europäische Forschungsgesellschaft für Blechverarbeitung Tel: +49 (0)511 97175-0 info@efb.de www.efb.de metall München 07 to 10 March 2007, Munich, Germany European specialist trade fair for metalworking in industry and trade. The fair will present solutions for areas such as tool machines, precision tools, components, component modules and accessories, manufacturing and process automation, measuring technology and quality assurance. Further information: Gesellschaft für Handwerksmessen Tel: +49 (0)89 949 55-0 messe@ghm.de www.ghm.de Metal Build 2007 12 to 15 March 2007, Moscow, Russia Metal Build 2007 is the fifth anniversary exhibition of metal in construction and architecture, covering all questions from materials for metal constructions to their processings up to finished products. ALUMINIUM · 1-2/2007 Fortbildung Einführung in die Technologie des Aluminiums, 12.-14.02.2007, Aachen DGM Deutsche Gesellschaft für Materialkunde, Tel.: 069 75306 757, E-Mail: np@dgm.de, www.dgm.de Die neue Gefahrstoffverordnung in der Praxis, 13.-14.02.2007, Stuttgart VDI Wissensforum, Tel.: 0211 6214 201, E-Mail: wissensforum@vdi.de, www.vdi-wissensforum.de Neue Werkstoffnormung und neue Werkstoffbezeichnungen für metallische Werkstoffe in Europa, 15.02.2007, Essen Haus der Technik, Tel.: 0201 1803 344, E-Mail: information@hdt-essen.de, www.hdt-essen.de Betriebswirtschaftliche Grundlagen für technische Führungskräfte 22.-23.02.2007, Mainz Ostbayer. Technologie-Transfer-Institut (Otti), Tel.: 0941 29688 21, E-Mail: margit.zierl@otti.de, www.otti.de Der Sicherheitsbeauftragte, 26.-27. Februar 2007, Hannover TÜV Nord Akademie, Tel: 0511 986 1910, E-Mail: bcramer@tuev-nord.de, www.tuevnordakademie.de Systematische Beurteilung technischer Schadensfälle 11.-16.03.2007, Ermatingen, CH DGM Deutsche Gesellschaft für Materialkunde, Tel.: 069 75306 757, E-Mail: np@dgm.de, www.dgm.de Einführung in die Metallkunde für Ingenieure und Techniker, 13.-16.03.2007, Darmstadt DGM Deutsche Gesellschaft für Materialkunde, Tel.: 069 75306 757, E-Mail: np@dgm.de, www.dgm.de Trends in der Nutzfahrzeugindustrie, 20.-21.03.2007, München Euroforum, Tel.: 0211 9686 3611, E-Mail: theresia.strehler@euroforum.com, www.euroforum.de Further information: Tel: +7 (495) 956-48-22 metalbuild@m-expo.ru www.metal-build.ru service@dfo-online.de www.dfo-online.de Russia Aluminium Casting Conference 27 to 29 March 2007, Moscow, Russia DFO-Leichtmetall-Tagung 20. und 21. März 2007, Neuss Thema der Tagung: Die Oberflächenbehandlung von Leichtmetallen. Im Vordergrund stehen die Vorbehandlung, anodische Oxidation und PVD/Plasmabeschichtung von Aluminium. Es werden moderne Korrosions- und Verschleißschutzsysteme vorgestellt. Weitere Tagungsthemen betreffen den Werkstoff Magnesium. Weitere Infos: Deutsche Forschungsgesellschaft für Oberflächenbehandlung e. V. (DFO) Tel: +49 (0)2131 40 811 10 The conference is organised by AlusilMVT under the assistance of Russian Association of Foundrymen and Aluminium Extruders Association. Subjects are: markets, applications and research, melt preparation, ingot and continuous casting, manufacture of castings, environment and safety. The conference will be supplemented by the exhibition of state-of-the-art casting equipment and technologies. Further information: Tel: +7 (495) 785-2005 main@alusil.ru www.alusil.net 103 U M W E LT P R E I S BDI-Umweltpreiswettbewerb 2007/08 Umweltfreundlichkeit siegt Der Bundesverband der deutschen Industrie (BDI) hat den Umweltpreiswettbewerb für die Industrie 2007/08 erneut ausgeschrieben. Der Wettbewerb ist Teil des europäischen Umweltpreises der EUKommission. Die Sieger der nationalen Wettbewerbe nehmen damit auch auf europäischer Ebene teil. Insgesamt benennt der BDI-Umweltwettbewerb fünf Preiskategorien. Preiskategorien • Umweltfreundliche Technologien • Umweltfreundliche Produkte • Umweltorientierte Unternehmensführung • Umweltschutz-Technologietransfer in Entwicklungs- und Schwellenländer und Staaten Osteuropas • Kreislaufwirtschaft, Recycling und Abfallmanagement. Über die nationalen Preisträger und die Benennungen zum europäischen Wettbewerb entscheidet eine Jury aus namhaften Persönlichkeiten aus Wirtschaft, Wissenschaft, Politik und Umweltorganisationen. Vorgeschaltet ist eine fachliche Prüfung durch das Fraunhofer-Institut für Systemund Innovationsforschung (ISI) in Karlsruhe. Der Beurteilung der eingehenden Bewerbungen liegen – neben den allgemeinen Kriterien Umweltentlastung, Ressourcenschonung, wirtschaftlicher sowie gesellschaftlicher Nutzen (Nachhaltigkeit) und Innovationsleistung – folgende spezifische Anforderungen in den einzelnen Preiskategorien zugrunde: Umweltfreundliche Technologien • Entwicklung innovativer Verfahren zur Verringerung von Umwelt belastungen an der Quelle ihres Entstehens sowie zur Schonung von Ressourcen. • Erfüllung von Umweltstandards und Umweltentlastungen über gesetzliche Vorgaben hinaus. • Vorrang integrierter Prozesse vor 104 end-of-pipe-Lösungen sowie von Verfahren und Technologien mit größerer Anwendungsbreite. Umweltverträgliche Produkte • Umweltentlastung durch innovative, ökoeffiziente Produkte und Dienstleistungen. • Einbeziehung von Ressourcenschonung, Energieeffizienz, Recycling- und Entsorgungsfreundlichkeit bei der Produktentwicklung und -gestaltung. • Besondere Berücksichtigung neuer Produkte, die bereits am Markt vorhandene Güter verbessern bzw. ersetzen und zumindest als Prototyp vorliegen. Umweltorientierte Unternehmensführung • Entwicklung einer integrierten umweltorientierten Unternehmenspolitik, z. B. in Form ganzheitlicher Umweltschutzkonzepte oder Umweltleitlinien. • Art und Grad der Einbeziehung der Belegschaft in das Unternehmenskonzept, beispielsweise durch Ausund Weiterbildung in Umweltfragen. • Kommunikation mit externen Zielgruppen. • Übernahme von Produktverantwortung, z. B. durch Rücknahmeund Recyclinggarantien. Umweltschutz-Technologietransfer Diese Kategorie bezieht Technologien und Produkte wie auch das Umweltschutzmanagement ein. Dabei sind folgende Kriterien wichtig: • Beispielhafte Zusammenarbeit mit einem privaten Partner oder einer öffentlichen Einrichtung im Sinne einer langfristig tragfähigen Entwicklung. • Lösung eines spezifischen regionalen Umweltproblems unter Berücksichtigung der speziellen An- forderungen sowie der vorhandenen Ressourcen und Fähigkeiten in diesen Ländern. • Eignung zur weiteren Verbreitung und künftigen Weiterentwicklung. Kreislaufwirtschaft, Recycling und Abfallmanagement • Entwicklung von hochwertigenRecyclingmaßnahmen (produktionsintegrierte Verfahren werden unter der Kategorie „Umweltfreundliche Technologien“ erfasst). • Innovative und effiziente Systeme zur Sammlung, Verwertung und zum Wiedereinsatz von Material, Komponenten und Produkten. • Vermarktung und Wiederverwendung der rezyklierten Materialien und Produkte. • Ressourcenschonendes und kosteneffizientes Abfallmanagement. Teilnahmebedingungen Am BDI-Wettbewerb können Unternehmen und Organisationen aus der Industrie teilnehmen. Institutionen, die nicht dem industriellen Bereich angehören, sind teilnahmeberechtigt, wenn ihr Projekt in Zusammenarbeit mit der Industrie entwickelt wurde und bereits industrielle Anwendung gefunden hat. Ferner sollten die Projekte die Ausrichtung auf eine nachhaltige Entwicklung erkennen lassen, über gesetzliche Vorschriften und Auflagen hinausgehen und sich entweder in operationaler Phase oder praktizierter Anwendung befinden. Die Bewerbungsunterlagen zur Teilnahme am BDI-Umweltpreiswettbewerb für die deutsche Industrie 2005/06 sind bis spätestens 15. Juni 2007 einzureichen. Die Bekanntgabe der nationalen Preisträger und die Verleihung der ideellen Auszeichnungen erfolgen im Rahmen der BDIJahrestagung voraussichtlich im Juni 2008 in Berlin mit einer begleitenden Ausstellung für die Preisträger. Die detaillierten Bewerbungsformalitäten sind auf der Homepage des BDI abrufbar. N ALUMINIUM · 1-2/2007 NEW BOOKS Virtual Fabrication of Aluminium Products This book contains the results of a major project of the European aluminium industries and their academic partners on “virtual fabrication”. Its three chapters give an overview over: 1. The production, processing and quality details of semi-finished products (sheet and extrusions) of some typical conventional wrought aluminium alloys and products. 2. The fundamental physical processes and recent modelling approaches of casting, deformation and annealing processes and microstructures. 3. Their integration and application in “through process simulations” of plant production. “Virtual fabrication“ defines a new tool to simulate industrial processes with integrated models that can predict related properties and applied to many purposes, such as: • Improvement of industrial production processes and product quality • Improvement of research and de- velopment quality for process and product optimization • Design of microstructural states and resulting specific material properties • Design most effective and efficient fabrication and processing routes • Reduce significantly the number of expensive test runs in productive plants • Reduce cost and time to market of new products and processes • Standardize aluminium alloys for application and to enhance recyclability. The targeted audience groups are: • industrial production engineers working on fabrication and processing sites • engineers dealing with product development and aluminium applications • scientists and students working in academic and industrial research laboratories. Virtual Fabrication of Aluminium Products, Jürgen Hirsch (Editor) Hardcover, 406 pages, October 2006 £85.00 / €127.50 ISBN: 3-527-31363-X Umschlüsselung DIN zu EN Europäische Aluminiumwerkstoffe Der europäische Binnenmarkt benötigt gemeinsame Normen, die die Einschränkungen für den freien Warenverkehr abbauen helfen. Diese europäische Normung hat auch mit Blick auf den Werkstoff Aluminium zu großen Veränderungen geführt. In relativ kurzer Zeit mussten die nationalen Normen durch europäische Normen ersetzt werden, in denen Bezeichnungssysteme und Zustandsbezeichnungen für Werkstoff geändert wurden. Um dem Anwender die Umschlüsselung alt/neu für Aluminium und seine Legierungen zu erleichtern, sollte ein einfach zu handhabendes Hilfsmittel erarbeitet werden. Damit war der Startschuss für das Beuth-Pocket gefallen. Die lange Zeit der Erstellung verdeutlicht, wie viel Arbeit in dem handlichen, kleinformatigen Nachschlagewerk steckt. Es durchdringt ALUMINIUM · 1-2/2007 das Dickicht und ermöglicht einen schnellen Zugriff auf oft mühsam zusammengesuchte Fakten: Das Nachschlagewerk bringt Transparenz in die Fülle der Norm-Dokumente. Es klärt die Bedeutung von Kürzeln und Kennzeichen, vermittelt wichtige Informationen für den betrieblichen Alltag und verweist nicht zuletzt auf die gängigen Normen. Herausgekommen ist das Beuth Pocket “Europäische Aluminiumwerkstoffe“, das in 1. Auflage 2006 zweisprachig deutsch/englisch erschienen ist. Beuth Pocket H.-W. Wenglorz, Europäische Aluminiumwerkstoffe / European Aluminium Materials 1. Aufl. 2006. 294 S. 21 x 10,5 cm. Brosch. 29,80 Euro. ISBN 978-3-410-16287-2 Beuth Verlag GmbH Bei zerstörungsfreien Prüfungen (ZfP) wird verstärkt auf die Kombination verschiedener Verfahren gesetzt, um die Sicherheit unserer technischen Umgebung zu erhöhen. Sowohl für kombinierte Methoden wie auch für Einzelprüfungen stellen zwei DIN-Taschenbücher (TB) das normentechnische Knowhow zur Verfügung. DIN-TB 56 „Materialprüfnormen für metallische Werkstoffe 2“ enthält die Normen und Norm-Entwürfe für die Volumenverfahren der ZfP. Ergänzend dazu ist DIN-TB 370 „Materialprüfnormen für metallische Werkstoffe 4“ erschienen, das die Normen zu Oberflächenverfahren und zu anderen ZfP-Verfahren umfasst. DIN-TB 56, Materialprüfnormen für metallische Werkstoffe 2. 7. Aufl. 2006. 640 S. A5. Brosch. 125,30 Euro. ISBN 978-3410-16300-8. Beuth-Verlag GmbH DIN-TB 370, Materialprüfnormen für metallische Werkstoffe 4. 2006. 560 S. A5. Brosch. 106,90 Euro. ISBN 978-3-41016313-8., Beuth Verlag GmbH 105 FIRMENSCHRIFTEN SECO/Warwick Aluminium Annealing Furnaces SECO/Warwick provides customengineered aluminium coil and foil annealing furnaces with capacities ranging from single coil modular furnaces to multi-zone furnaces with tight zone control. The company continues to develop technologies to improve equipment performance and efficiency. Two significant improvements for coil and foil processing include: O Mass flow design to protect load surfaces that are vulnerable to damage during high atmosphere flow. O Vortex flow jet heating that reduces cycle time by taking advantage of the high heat transfer produced through convection heating. The updated brochure is available online at www.secowarwick.com or via e-mail (info@secowarwick.com) for a print copy. Messerfabrik Neuenkamp Neuer Schneidtechnik-Katalog Die Messerfabrik Neuenkamp GmbH, ein Mitglied der internationalen Dienes-Gruppe, bietet eine breite Palette von Serviceleistungen rund um die Schneidtechnik. Zielgruppe ist die verarbeitende Industrie von Stahl und NE-Metallen. Ein neuer Produktkatalog gibt einen Überblick über das Produkt- und Serviceprogramm, angefangen bei Rollscherenmessern über Distanzund Druckverteilungsringe, Sepa- rierwerkzeuge, komplette Schneideeinheiten bis hin zu Messerträgersystemen und zur Poliermaschine. Die abgebildeten Modelle stehen beispielhaft für eine Vielzahl individueller Konfigurationen, die auf spezielle Kundenanforderungen entwickelt werden. Der Katalog ist in deutscher und englischer Sprache erhältlich und kann unter info@neuenkamp.de angefordert werden. Schüco International Nachhaltigkeitsbericht „SustainIng“ Effiziente Lösungen und nachhaltige Produkte, die höchste Ansprüche hinsichtlich Komfort und Design erfüllen, müssen kein Widerspruch sein. In der Natur gibt es zahlreiche Beispiele für den perfekten Umgang mit Energie und Material. Vor diesem Hintergrund beschäftigt sich der aktuelle SchücoNachhaltigkeitsbericht „SustainIng“ mit natürlichen Ansätzen für die zukunftsorientierte Gebäudehülle. Die 68-seitige Broschüre richtet sich vor allem an Investoren und Architekten. Sie informiert über den nachhaltigen Umgang mit der Umwelt sowie darü- 106 ber, wie sich Gebäudehüllen an die weltweit unterschiedlichen Klimaverhältnisse anpassen lassen. Außerdem präsentiert der Bericht überraschende Analogien aus der Welt der Bionik. „SustainIng“ beschreibt nicht allein mögliche Zukunftsszenarien, sondern zeigt auch vorhandene Lösungsmöglichkeiten auf. Prominente Wissenschaftler wie Ernst Ullrich von Weizsäcker kommen zu Wort. Die Broschüre liegt in deutscher und englischer Sprache vor und kann unter www.schueco.de/architekten angefordert werden. ALUMINIUM · 1-2/2007 LITERATURE SERVICE Schuitema, H. „Heavy duty“ Magnesium. Entwicklung und Druckguss-Produktion eines 6-Zylinder Magnesium Bedplate Druckgusspraxis 6/2006, S. 243-246 Nach den neuen EU-Vorschriften, die ab 2008 die Grenzwerte für Schadstoffe weiter reduzieren, dürfen Pkw nicht mehr als 140 g/km CO2 ausstoßen. Dies erfordert weitere Anstrengungen zur Gewichtsminderung: durch verbesserte Effizienz der Verbrennung („innermotorische Maßnahmen“), Reduzierung der Antriebsverluste im Antriebsstrang, aerodynamische Feinarbeit und Gewichtsoptimierung durch die Verwendung leichter Werkstoffe. Ein süddeutscher OEM hat sich für die Verwendung von mehr Magnesium entschieden, um das Gewicht des Motors zu reduzieren. Ein weiterer Aspekt ist die Verbesserung der Gewichtsverteilung (geringere Belastung der Vorderachse), was zum dynamischeren Fahrverhalten beiträgt. Die Verwendung von Magnesium in einer Größenordnung von 20 kg gilt bis jetzt als einzigartig im modernen Motorenbau. In der Vergangenheit gab es keine geeigneten Legierungen, die die geforderten Werte für mechanische Festigkeit und Kriechverhalten bei hoher thermischer und dynamischer Belastung aufweisen. 3 Bild. ALUMINIUM 1/2 (2007) Werkstoffeigenschaften transformed more than most by global forces: by the rise of market economies in China and the former Soviet republics, and by rising energy costs. In the next twenty years, even with practically inexhaustible ores, primary aluminium capacity will be overtaken by recycled aluminium due to energy costs. 6 images, 2 Tab. ALUMINIUM 1/2 (2007) B. Rieth Coil Coating – weltweit ein Wachstumsmarkt ALUMINIUM 82 (2006) 12, p. 1170 pp. „Finish first – fabricate later” – unter diesem Slogan wird das Coil Coating zunehmend als eine kostengünstige Alternative zur konventionellen Stücklackierung eingesetzt. Organische Beschichtungslinien vereinen chemische, thermische und mechanische Prozesse und bieten den Anwendern ein breites Spektrum an Funktions-, Farb- und Dekorvarianten. Nachfolgend soll – losgelöst von den technischen Details – ein Überblick über Märkte, Anlagentechnik und die Akteure gegeben werden. 11 Bild. ALUMINIUM 1/2 (2007) Sequeria, W., Kind, R., Andersen, S., Greeless, G. Voraussage und Validierung von Verformungen und Eigenspannungen in einem Aluminiumdruckgussteil mit Betrachtung der für den Druckgießprozeß relevanten Parameter Druckgusspraxis 6/2006, S. 235-242 Das Druckgießverfahren bietet eine exzellente Dimensionsgenauigkeit bei der Herstellung dünnwandiger NE-Gussteile. Trotzdem treten während der Produktion an manchen Gussteilen Maßhaltigkeitsprobleme auf. Die Tatsache, dass der Formhohlraum innerhalb der notwendigen Toleranzen liegt, und das unregelmäßige Auftreten der Fehler machen die Suche nach der Ursache des Problems schwierig. Es ist nicht sinnvoll, die Belastungsanalyse eines Teils durchzuführen, wenn die sich während des Gießprozesses entwickelnden Eigenspannungen unbekannt sind. Schwankende Temperaturverteilungen im Gussteil sind beim Druckgießen hauptsächlich durch Wandstärkenübergänge sowie durch die Anordnung von Kühlelementen und durch die Formsprüheinrichtung begründet. Nach der Entnahme aus der Form erfährt das Teil eine thermische Behandlung, die von der Abkühlung auf Raumtemperatur an ruhender Luft bis zur Abschreckung in einem Kühlmedium reichen kann. Die Abkühlung führt zu Verformungen und Eigenspannungen im Gussteil – eine der Hauptursachen für Dimensionsabweichungen im Druckgussteil. Der Artikel diskutiert die Verformung eines Sicherheitsbauteiles aus Aluminium, die mittels computergestützter Verifizierung ermittelt wurde. Die Ergebnisse werden mit den Resultaten verglichen, die aus der Anwendung eines Prozessoptimierungstools für die Abkühlung von Druckgussteilen von der Formentnahme auf Raumtemperatur erhalten wurden. Die Ausbildung von Eigenspannungen und ihre praktische Bedeutung werden diskutiert. 13 Bild., 9 Que. ALUMINIUM 1/2 (2007) Formguss Although still using basically century-old technology, the primary aluminium industry has again doubled in capacity during the last twenty years. This is a dramatic increase, even if the 1984 figures for several of then communist economies are uncertain. On a macro-economic scale, this industry has been ALUMINIUM · 1-2/2007 Oberflächenbehandlung Anon. Die deutsche Gießereiindustrie – eine Branche mit Perspektiven ALUMINIUM 82 (2006) 12, p. 1163 pp. Deutschland zählt heute weltweit zu den führenden Gießereinationen. Hinter den bevölkerungsreichen Ländern China, USA, Russland und Japan steht Deutschland an fünfter Stelle in der Welt. In Europa ist die deutsche Gießereibranche seit Jahren mit Abstand führend. Wie lässt sich dieser Erfolg angesichts der allgemein beklagten Standortnachteile in Deutschland erklären? Dieser Frage geht der Bericht nach. Für 2006 ist die Gießereibranche optimistisch, das hohe Rekordniveau aus dem Vorjahr zumindest halten zu können. Diese Zuversicht wird durch den Verlauf des ersten Halbjahres 2006 bestätigt. 4 Bild. ALUMINIUM 1/2 (2007) Formguss Kraynik, A. M. The Structure of Random Foam Advanced Engineering Materials 2006, 8, No. 9, S. 900-906 Surface Evolver models of soap foam with a wide range of cell-size distributions are used to investigate random cellular morphology. Geometric properties of foams and foam cells are analyzed. A simple accurate theory relates the total surface area of foam to the cell-size distribution. The total surface area is approximately equal to the total edge length when both quantities are scaled by average cell volume. Voronoi structures are significantly different from foams, which raises questions over their use for predicting structure-property relationships. 22 images, 13 sources. ALUMINIUM 1/2 (2007) R. P. Pawlek Dramatic changes in primary aluminium smelting between 1984 and 2005 ALUMINIUM 82 (2006) 12, p. 1206 pp. Aluminium-Industrie Werkstoffe, Metallkunde McElwain, D.L.S., Roberts, A.P., Wilkins, A. H. Yield Functions for Porous Materials with Cubic Symmetry Using Different Definitions of Yield Advanced Engineering Materials, 2006, 8, No. 9, S. 870-876 Plastic yield criteria for porous ductile materials are explored numerically using the finite-element technique. The cases of 107 © LITERATURSERVICE spherical voids arranged in simple cubic, body-centred cubic and face-centred cubic arrays are investigated with void volume fractions ranging from 2 % through to the percolation limit (over 90%). Arbitrary triaxial macroscopic stress states and two definitions of yield are explored. The numerical data demonstrates that the yield criteria depend linearly on the determinant of the macroscopic stress tensor for the case of simple-cubic and body-centred cubic arrays – in contrast to the famous GursonTvergaard-Needleman (GTN) formula – while there is no such dependence for face-centred cubic arrays within the accuracy of the finite-element discretisation. The data are well fit by a simple extension of the GTN formula which is valid for all void volume fractions, with yield-function convexity constraining the form of the extension in terms of parameters in the original formula. Simple cubic structures are more resistant to shear, while body-centred and face-centred structures are more resistant to hydrostatic pressure. The two yield surfaces corresponding to the two definitions of yield are not related by a simple scaling.10 images, 21 sources. Nogowizin, B. Geometrische Gestaltung der Gießläufe für Druckgussstücke Druckgusspraxis 6/2006, S. 247-253 ALUMINIUM 1/2 (2007) Pidvysotskyy, V., Matuszyk, P.J., Bloching, H. Analysis of the Influence of the Specimen Shape on the Zone of Homogeneous Stress in Tensile Test / Untersuchung des Einflusses der Probenform im Bereich homogener Spannungen beim Zugversuch (Beitrag in engl. Sprache) MP Materialprüfung 2006, 10, S. 498-503 Werkstoffe, Metallkunde Shashikala, A.R., Rani, R.U., Sharma, A.. K., Mayanna, S.M., Untersuchungen zur selektiven Schwarzverchromung auf Aluminiumlegierungen für Solaranwendungen / Studies on solar selective black chrome plating on aluminium alloys Galvanotechnik 10/2006, S. 2387-2400 Selektive Solarbeschichtungen absorbieren die Sonneneinstrahlung und wandeln sie in Wärmeenergie für den Hausgebrauch und industrielle Anwendungen um. Die Schwarzverchromung wird häufig aufgrund ihrer haltbaren, nicht reflektierenden Oberfläche und ihrer beständigen optischen Eigenschaften für Automobile, Phototechnik, Solarkollektoren und optische Geräte verwendet. Schwarzchromschichten werden auf verschiedene Werkstoffe wie Kupfer oder Stahl abgeschieden. Trotz neuer Entwicklungen werden zur Herstellung dünner Schichten Chrom(VI)elektrolyte eingesetzt. In der vorliegenden Studie wird die Auswirkung verschiedener Unterschichten (cyanidisches/nicht cyanidisches Kupfer, galvanisches und stromloses Nickel) auf die Stabilität und solare Selektivität von Schwarzchromschichten auf Aluminiumlegierungen untersucht. 8 Bild., 23 Que. Beitrag in dt. u. engl. Sprache). ALUMINIUM 1/2 (2007) Oberflächenbehandlung Die Ausschnitttechnik erstreckt sich nicht nur auf den Anschnitt, sondern auch auf die Gestaltung und die Anordnung der Gießläufe, der Überläufe und der Entlüftung. Der Artikel thematisiert die Darstellung der geometrischen Gestaltung der Elemente und ihre Berechnungen für die Gießlauf-Anschnittsysteme, die zur Entwicklung der erforderlichen computergestützten Entwurfsprogramme angewandt werden können. Es ist nicht das Ziel, wie ein Gießlaufanschnittsystem für ein bestimmtes Gussstück zu konstruieren sei, vielmehr wird die Aufmerksamkeit auf die verschiedenen Einflussgrößen bei der Gestaltung von Gießläufen gelenkt. 7 Bild., 5 Que. ALUMINIUM 1/2 (2007) Formguss Im vorliegenden Beitrag werden die Ergebnisse aus Untersuchungen zum Einfluss der Probengeometrie und der Einspannlänge auf die homogene Dehnung in der Originalprüflänge vorgestellt. Alle Versuche wurden mit einem austenitischen Stahl 316 L und bei verschiedenen Querschnitten der Flachproben durchgeführt. Die Berechnungen des Verformungsprozesses wurden mittels der Finite-Elemente-Methode unter Nutzung des Programms Abaqus/Explicit ausgeführt. Es werden die Korrelation zwischen der Dehnungsverteilung in den Proben und verschiedenen Parametern, wie zum Beispiel dem Übergangsradius und der Einspannlänge, beleuchtet. 9 Bild., 9 Que. ALUMINIUM 1/2 (2007) Werkstoffeigenschaften Haberkorn, G., Blümcke, E.W., Thoma, K. Durchgängige Betrachtung einer Stanznietverbindung mit Fokus auf dynamische Belastungen MP Materialprüfung 2006, 10, S. 486-492 Im Jahr 2004 wurden in der deutschen Stahlindustrie rund 76.000 t Aluminium verbraucht. Dieses sog. „Desoxidationsaluminium“ wird in der Stahlmetallurgie als Granalien und Einteilern eingesetzt, die aus Aluminiumschrotten umgeschmolzen werden. Eine mögliche Alternative zu thermisch hergestelltem Desoxidationsaluminium ist die Verwendung von sauberem granulierten Al-Schrott. Der Beitrag untersucht die Eignung von mechanisch hergestelltem Desoxidationsaluminium aus Schrotten für den Einsatz in der Stahlmetallurgie. 10 Bild, 5 Que. Im Zuge des Leichtbaus von Fahrzeugkarosserien kommen neben einer Vielzahl von Materialien auch zahlreiche unterschiedliche Fügetechniken zur Anwendung. Um diese in der numerischen Berechnung zu berücksichtigen, sind umfangreiche Kenntnisse der Phänomenologie der Verbindung einschließlich des Versagens notwendig. Es wird eine Möglichkeit der Untersuchung von mechanischen Verbindungen am Beispiel der Stanznietverbindung aufgezeigt. Dies umfasst die Kombination von Versuchen und der numerischen Simulation, welche bei der Prozesssimulation beginnt und über ein Detailmodell hin zum abstrahierten Simulationsmodell für die Gesamtfahrzeugberechnung führt. Erste Ergebnisse werden vorgestellt und auf ihre Relevanz im Kontext einer Gesamtfahrzeug-Crashsimulation hin bewertet. 11 Bild., 8 Que. ALUMINIUM 1/2 (2007) ALUMINIUM 1/2 (2007) Stratemeier, S., Senk, D., Grosse, A., Kurth, B. Eigenschaften von mechanisch hergestelltem Desoxidationsaluminium stahl und eisen 126 (2006) Nr. 11, S. 45-55 Gewinnung Verbinden Für Schrifttum zum Thema „Aluminium“ ist der Gesamtverband der Aluminiumindustrie e.V. (GDA) der kompetente Ansprechpartner. Die hier referierten Beiträge repräsentieren lediglich einen Ausschnitt aus dem umfassenden aktuellen Bestand der GDA-Bibliothek. Die von der Aluminium-Zentrale seit den dreißiger Jahren kontinuierlich aufgebaute Fach-Bibliothek wird duch den GDA weitergeführt, ausgebaut und auf die neuen Medien umgestellt. Sie steht allen Interessenten offen. Ansprechpartner ist Dr. Karsten Hein, E-Mail: karsten.hein@aluinfo.de 108 ALUMINIUM · 1-2/2007 PAT E N T E Patentblatt November 2006 Al-Legierung für lithographisches Blech. Alcan International Ltd., Montreal, Quebec, CA. (C22C 21/00, OS 102 42 018, AT 11.09.2002) Al-Cu-Mg-Ag-Mn-Legierung für Bauanwendungen, die hohe Festigkeit und hohe Duktilität erfordern. Alcan Rolled Products Ravenswood LLC, Ravenswood, W.Va., US; Alcan Rhenalu, Paris, FR. (C22C 21/12, EPA 1 641 952, EP-AT 26.05.2004) Verfahren zur Herstellung von Al-MgSi-Legierung mit hervorragender BakeHardenability und Falzbarkeit. Nippon Light Metal Co. Ltd., Tokio/Tokyo, JP. (C22F 1/05, EPA 1 702 995, EP-AT 13.12.2004) Tube aus Metall, insbesondere Aluminium. Karl Höll GmbH & Co KG, 40764 Langenfeld, DE. (B65D 35/16, GM 203 16 148, AT 18.10.2003) Vorrichtung zur Sicherung von als Paket gelagerten Aluminium-Stranggussprodukten, so genannten Masseln, zu Transportzwecken. Signode System GmbH, 46535 Dinslaken, DE. (B65D 85/20, GM 20 2006 012 782, AT 21.08.2006) Verfahren zur Herstellung von Sinterkörpern aus Yttrium-Aluminium-Granat und ein Formkörper. NGK Insulators, Ltd., Nagoya, Aichi, JP. (C04B 35/44, EP 1 433 764, EP-AT 22.12.2003) Behandeln von Abstandhaltern in gestapelten Aluminium-Blöcken. Alcoa Inc., Pittsburgh, Pa., US. (C21D 1/70, EP 1 215 289, EP-AT 11.12.2001) Zn-Al-Eutektoid-Feuerverzinkung von nicht rostendem Stahl. University of Cincinnati, Cincinatti, Ohio, US. (C23C 2/06, 1 709 21, EP-AT 21.01.2005) Reinigung von Aluminium-Gusslegierungen mittels Zugabe von Bor. Bayerische Motoren Werke AG, 80809 München, DE. (C22B 21/06, EP 1 264 903, EP-AT 03.05.2003) Kupfer enthaltender, mehrfädiger NbÌ3ÌAl-Supraleitungsdraht und Verfahren zu dessen Herstellung. Japan, vertreten durch den Generaldirektor des Nationalen Metallforschungsinstitutes, Tsukuba, Ibaraki, JP. (H01B 12/10, PS 100 55 628, AT 09.11.2000) Verstellbare Aluminium-Dachhaken mit Einrastfunktion zur Befestigung von Solarmodulen und Solarthermieanlagen auf Dächern und Schrägdächern. Citak, Fatma, 33689 Bielefeld, DE. (E04D 13/18, OS 10 2005 058 065, AT 06.12.2005) Herstellungsverfahren für einen ultrafeinen Multifilament-Supraleiterdraht aus Nb3(Al, Ge) oder Nb3(Al, Si). JAPAN as represented by NATIONAL RESEARCH INSTITUTE FOR METALS, Tsukuba, JP. (H01L 39/24, EP 1 058 321, EP-AT 05.06.2000) Zeolithkatalysator, Träger auf Basis von Silizium-Aluminium-Matrix und Zeolith und Verfahren zum Hydrocracken von Kohlenwasserstoffchargen. Institut Français du Pétrole, Rueil-Malmaison, Hautsde-Seine, FR. (B01J 29/08, EPA 1 711 260, EP-AT 16.12.2004) Kontinuierlich graviertes, laminiertes Aluminium und dessen Benutzung in Paneelen. Lloveras Calvo, Juan, San Feliu de Codinas, ES. (B21B 15/00, EPA 1 710 026, EP-AT 06.04.2005) Verfahren zur Herstellung von Aluminium-Kokillenguss mit dem Zweck eine Gefügeverbesserung bei den gegossenen Teilen zu erreichen. Fuchs, Hermann, 57520 Steinebach, DE. (B22D 21/04, OS 10 2005 001 243, AT 11.01.2005) Verfahren zur Herstellung eines Bauteils durch Fügen mit Aluminium. Rolls-Royce Deutschland Ltd & Co KG, 15827 Dahlewitz, DE. (B23K 1/19, OS 102 38 551, AT 22.08.2002) ALUMINIUM · 1-2/2007 Mehrschichtiges Gleitteil aus einer auf Aluminium basierenden Legierung. Daido Metal Co. Ltd., Nagoya, Aichi, JP. (F16C 33/12, PS 10 2004 025 557, AT 25.05.2004) Isolierverbund für Aluminium-Profile. Henkenjohann, Johann, 33415 Verl, DE. (F16S 3/02, GM 298 21 183, AT 26.11.1998) Works, Ltd., Kariya, Aichi, JP. (C22C 21/02, OS 102 32 159, AT 16.07.2002) Verfahren zum Herstellen einer hochschadenstoleranten Aluminiumlegierung. Corus Aluminium Walzprodukte GmbH, 56070 Koblenz, DE. (C22F 1/04, WO 2005 049878, WO-AT 29.10.2004) Einrichtung zur Herstellung gegossener Halbfabrikate aus Leichtmetall. Stolfig, Peter, 85290 Geisenfeld, DE. (B22D 21/04, OS 10 2005 024 025, AT 21.05.2005) Verfahren zum Leichtmetall-LegierungsSintern. Schwäbische Hüttenwerke GmbH, 73433 Aalen, DE. (C22C 1/04, EPA 1 709 209, EP-AT 26.11.2004) Sinterkörper auf Eisenbasis mit hervorragenden Eigenschaften zum Einbetten durch Eingießen in Leichtmetall-Legierung und Verfahren zu seiner Herstellung. NIPPON PISTON RING CO., LTD., Saitama, JP; Fuji Jukogyo K.K., Tokio/Tokyo, JP. (C22C 33/02, PS 103 60 824, AT 23.12.2003) Maschinenteil aus einer LeichtmetallGusslegierung, insbesondere Pleuel für Hubkolbenmaschinen. Bayerische Motoren Werke AG, 80809 München, DE. (F16C 7/02, PS 43 32 444, AT 23.09.1993) Sammelbehälter für Magnesium o. dgl. Thielemann, Frank, 63776 Mömbris, DE. (F16L 3/14, GM 20 2005 008 220, AT 25.05.2005) Druckgussbauteil, aus Magnesium, vornehmlich zur Verwendung in Kraftfahrzeugen. Volkswagen AG, 38440 Wolfsburg, DE. (F16S 5/00, OS 100 02 262, AT 19.01.2000) Verfahren zu Herstellung elektrisch Aluminium Strahlungsplatte für eine Unterdecke. Riello, Franco, Milano, IT; Riello, Andrea, Milano, IT; Donati, Giuseppe, Cenate Sopra, Bergamo, IT; Donati, Francesco, Cenate Sopra, Bergamo, IT. (F24D 3/16, EPA 1 703 215, EP-AT 22.02.2005) Detektorbänder enthaltend Aluminium, Silizium, Titan und Zirkonium. Oeste, Franz Dietrich, 35274 Kirchhain, DE. (G01N 27/26, OS 10 2005 021 625, AT 05.05.2005) Aluminiumlegierung zur Herstellung von Gussformteilen. Alcoa Inc., Pittsburgh, Pa., US. (C22C 21/00, EPA 1 709 210, EP-AT 31.01.2005) Verschleißfester gestreckter Körper aus Aluminiumlegierung, Herstellungsverfahren dafür und Kolben für Auto-Klimaanlage. Sumitomo Electric Industries, Ltd., Osaka, JP; Toyoda Automatic Loom ALUMINIUM veröffentlicht unter dieser Rubrik regelmäßig einen Überblick über wichtige, den Werkstoff Aluminium betreffende Patente. Die ausführlichen Patentblätter und auch weiterführende Informationen dazu stehen der Redaktion nicht zur Verfügung. Interessenten können diese beziehen oder einsehen bei der Mitteldeutschen Informations-, Patent-, Online-Service GmbH (mipo), Julius-Ebeling-Str. 6, D-06112 Halle an der Saale, Tel. 0345/29398-0 Fax 0345/29398-40, www.mipo.de Die Gesellschaft bietet darüber hinaus weitere „Patent“-Dienstleistungen an. 109 © PAT E N T E leitfähiger und optimal haftfähiger Oberflächenbereiche auf chemisch und/ oder galvanisch beschichteten und/oder lackierten Spritzgussteilen aus Magnesiumlegierungen. Fa. Alfred R. Franz, 82538 Geretsried, DE. (C25D 5/00, PS 198 51 278, AT 06.11.1998) Schutzschicht für eine aluminiumhaltige Legierung für den Einsatz bei hohen Temperaturen, sowie Verfahren zur Herstellung einer solchen Schutzschicht. Forschungszentrum Jülich GmbH, 52428 Jülich, DE.(C23C 8/02, EPA 1 706 518, EP-AT 20.11.2004) Verfahren zum Umformen eines Ausgangsprofils od. dgl. Werkstückes sowie Profil dafür. Alcan Technology & Management AG, Neuhausen am Rheinfall, CH. (B21D 26/02, PS 199 55 506, AT 18.11.1999) Verfahren zur Herstellung eines Verpackungsmaterials. Alcan Technology & Management Ltd., Neuhausen am Rheinfall, CH. (B32B 37/12, EPA 1 621 333, EPAT 01.07.2004) Verbundplatte mit zwei Deckschichten und einem Kern sowie deren Verwendung und Herstellung. Alcan Technology & Management AG, Neuhausen am Rheinfall, CH. (B32B 5/16, PS 43 17 315, AT 25.05.1993) Stossfängersystem. Alcan Technology & Management AG, Neuhausen am Rheinfall, CH. (B60R 19/26, GM 20 2005 016 564, AT 20.10.2005) Stoßstange mit Halterungen. Alcan Technology & Management AG, Neuhausen am Rheinfall, CH. (B60R 19/34, OS 10 2006 019 653, AT 25.04.2006) Flexibler Träger mit elektrisch leitfähiger Struktur. Alcan Technology & Management Ltd., Neuhausen am Rheinfall, CH. (H01B 7/08, EPA 1 704 572, EP-AT 17.12.2004) Verfahren zum Verschließen eines Behälters sowie Schraubverschluss hierfür. Alcoa Deutschland GmbH Verpackungswerke, 67547 Worms, DE. (B67C 7/00, OS 199 42 507, AT 07.09.1999) Halterungselemente für Bauplatten. Corus Bausysteme GmbH, 56070 Koblenz, DE. (E04D 3/36, EP 1 147 270, EP-AT 04.01.2000) Verkleidungsblech. Corus Bausysteme GmbH, 56070 Koblenz, DE. (E04F 13/12, GM 200 16 964, AT 27.09.2000) Bandkanten-Planheitssteuerung. Hydro Aluminium Deutschland GmbH, 53117 Bonn, DE. (B21B 37/32, PS 102 06 758, AT 19.02.2002) 110 Gießform zum Gießen von Metallschmelze. Hydro Aluminium Alucast GmbH, 66763 Dillingen, DE. (B22C 1/20, OS 10 2005 023 051, AT 13.05.2005) Dauergießform und Gießformeinsatz. Hydro Aluminium Mandl&Berger GmbH, Linz, AT. (B22C 9/06, PS 10 2005 054 616, AT 16.11.2005) Verfahren und Vorrichtungen zum Fügen von mindestens zwei Bauteilen aus artverschiedenen Werkstoffen. Hydro Aluminium Deutschland GmbH, 51149 Köln, DE. (B23K 20/12, OS 10 2005 019 758, AT 28.04.2005) Fassade oder Glasdach in Brandschutzausführung mit einer aus vertikalen und horizontalen Profilen bestehenden Tragkonstruktion. Norsk Hydro ASA, Oslo, NO. (E04B 1/94, EP 1 120 504, EPAT 20.01.2001) Verbinder für Rahmen von Fenstern, Türen, Fassaden und dergleichen Konstruktionen. Norsk Hydro ASA, Oslo, NO. (E04B 2/96, EP 1 249 550, EP-AT 10.04.2002) Deckleiste für Fenster. Norsk Hydro ASA, Oslo, NO. (E06B 3/30, EPA 1 712 719, EP-AT 04.04.2006) Einbausystem für den Einbau eines Paneelrandes in einen Pfosten. Norsk Hydro ASA, Oslo, NO. (E06B 3/54, EPA 1 710 386, EP-AT 04.04.2006) schine und Verfahren zur Herstellung eines Zylinderblocks. KS AluminiumTechnologie AG, 74172 Neckarsulm, DE. (F02F 1/00, PS 10 2004 005 458, AT 04.02.2004) Profilanordnung und Einfassprofil für eine Profilanordnung. MayTec Aluminium Systemtechnik GmbH, 85221 Dachau, DE. (F16B 5/06, GM 203 21 258, AT 24.04.2003) Beschichtung für einen Solarabsorber. ALANOD Aluminium-Veredlung GmbH & Co. KG, 58256 Ennepetal, DE. (F24J 2/48, PS 10 2004 060 982, AT 17.12.2004) Zarge für ein Fenster oder eine Tür in wärmegedämmter Ausführung. Hermann Gutmann Werke GmbH, 91781 Weißenburg, DE. (E06B 1/32, PS 100 40 497, AT 18.08.2000) Halteprofil sowie Fenster- oder Türkonstruktion. Hermann Gutmann Werke AG, 91781 Weißenburg, DE. (E06B 3/58, OS 10 2005 023 257, AT 20.05.2005) Patentblatt Dezember 2006 Verfahren zur Herstellung einer auf Al-Mg-Si basierenden Aluminiumlegierungsplatte mit hervorragender BakeHardenability. Nippon Light Metal Co. Ltd., Tokio/Tokyo, JP. (C22C 1/05, EPA 1 715 067, EP-AT 22.12.2004) Tür, Fenster oder ähnliches mit einer drehenden Abdichtung zwischen Flügel und Rahmen. Norsk Hydro ASA, Oslo, NO. (E06B 7/22, EPA 1 712 723, EP-AT 04.04.2006) Cr-Al-Stahl für Hochtemperaturanwendungen. Sandvik Intellectual Property AB, Sandviken, SE. (C22C 38/06, EPA 1 721 023, EP-AT 21.12.2005) Lagervorrichtung für einen Sandbehälter, der in einer Formvorrichtung für verlorenen Guss vibriert wird. Fata Aluminium S.p.A., Rivoli, IT. (B22C 15/10, EP 1 153 679, EP-AT 09.05.2000) Aluminium-Zirkonium-Antiperspirantien mit verbesserter Wirksamkeit. Reheis, Inc., Berkeley Heights, N.J., US. (A61K 8/00, EPA 1 715 831, EP-AT 19.01.2005) Metallschmelzentransportbehälter. Nippon Crucible Co., Ltd., Tokio/Tokyo, JP; Daiki Aluminium Industry Co., Ltd., Yaoshi, Osaka, JP. (B22D 35/00, EPA 1 702 700, EP-AT 23.07.2004 Aluminium-Fahrzeugfelge und Verfahren zum Herstellen einer solchen. bdbreyton-design GmbH, 78333 Stockach, DE. (B22D 17/14, OS 10 2005 026 829, AT 09.06.2005) Geländeanpassbarer Zaun. ALTEC Aluminium Technik Hans-J. Gebauer GmbH, 56727 Mayen, DE. (E04H 17/14, GM 298 10 603, AT 12.06.1998) Fortsetzung der Dezember-Auswertung in der nächsten Ausgabe der ALUMINIUM. Verfahren zur Herstellung eines Fensterbankabschlusses. RBB Aluminium Profiltechnik AG, 54531 Wallscheid, DE. (E06B 1/70, PS 102 50748, AT 31.10.2002) Fenster- oder Türpfosten. Reynaers Aluminium, N.V., Duffel, BE. (E06B 3/263, EPA 1 705 334, EP-AT 13.02.2006) Für Abonnenten www.alu-archiv.de Wissen auf Abruf Zylinderblock für eine Brennkraftma- ALUMINIUM · 1-2/2007 Lieferverzeichnis International Journal for Industry, Research and Application How do your products and services come to appear every month in the list of supply sources, on the internet – www.Alu-web.de – and in the annual list of supply sources published by ALUMINIUM ? Please mark the main group relevant to you R Extrusion R Rolling technology R Foundry R Smelting technology Indicate the sub-group and/or key word (if necessary, ask us for the list of key words) _______________________ _______________________ _______________________ _______________________ _______________________ _______________________ Enter your text, not forgetting your on-line address: Line 1: ............................................................................................................................................ Line 2: ............................................................................................................................................ Line 3: ............................................................................................................................................ Line 4: ............................................................................................................................................ Line 5: ............................................................................................................................................ Line 6: ............................................................................................................................................ (Maximum 35 characters per line, including spaces. Price per line for each issue EUR 5,00 + VAT – minimum order 10 issues = 1 year. Logos are calculated according to the lines they occupy: 1 line = 2 mm). _______________________________________________________________ Place/Date Company stamp / Signature … and send this form to us by fax or post: Fax number +49-511/7304-157 For information Tel.: -142 Giesel Verlag GmbH, ALUMINIUM Rehkamp 3, D-30916 Isernhagen We will gladly send you a quotation! ALUMINIUM · 1-2/2007 111 Lieferverzeichnis 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11 1.12 1.13 1.14 Smelting technology Hüttentechnik Raw materials Storage facilities for smelting Anode production Anode rodding Casthouse (foundry) Casting machines Current supply Electrolysis cell (pot) Potroom Laboratory Emptying the cathode shell Cathode repair shop Second-hand plant Aluminium alloys 1.2 Storage facilities for smelting 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11 1.12 1.13 1.14 Rohstoffe Lagermöglichkeiten in der Hütte Anodenherstellung Anodenschlägerei Gießerei Gießmaschinen Stromversorgung Elektrolyseofen Elektrolysehalle Labor Ofenwannenentleeren Kathodenreparaturwerkstatt Gebrauchtanlagen Aluminiumlegierungen Auto firing systems Automatische Feuerungssysteme Lagermöglichkeiten in der Hütte Möller Materials Handling GmbH Haderslebener Straße 7 D-25421 Pinneberg Telefon: 04101 788-0 Telefax: 04101 788-115 E-Mail: info@moeller-mh.com Internet: www.moeller-mh.com Kontakt: Herr Dipl.-Ing. Timo Letz 1.4 Anode rodding Anodenanschlägerei OUTOKUMPU Technology GmbH Tel.: +49 (0) 2203 / 9921-0 www.outokumputechnology.com RIEDHAMMER GmbH D-90332 Nürnberg E-Mail: goede.frank@riedhammer.de Internet: www.riedhammer.de Exhaust gas treatment Removal of bath residues from the surface of spent anodes Entfernen der Badreste von der Oberfläche der verbrauchten Anoden Abgasbehandlung OUTOKUMPU Technology GmbH Tel.: +49 (0) 2203 / 9921-0 www.outokumputechnology.com Conveying systems bulk materials Förderanlagen für Schüttgüter (Hüttenaluminiumherstellung) Möller Materials Handling GmbH Internet: www.moeller-mh.com see Storage facilities for smelting 1.2 Unloading/Loading equipment Entlade-/Beladeeinrichtungen Möller Materials Handling GmbH Internet: www.moeller-mh.com see Storage facilities for smelting 1.2 ALSTOM Norway AS Tel. +47 22 12 70 00 Internet: www.environment.power.alstom.com Hydraulic presses for prebaked anodes GLAMA Maschinenbau GmbH Hornstraße 19 D-45964 Gladbeck Telefon 02043 / 9738-0 Telefax 02043 / 9738-50 Hydraulische Pressen zur Herstellung von Anoden Transport of finished anode elements to the pot room Transport der fertigen Anodenelemente in Elektrolysehalle LAEIS GmbH Am Scheerleck 7, L-6868 Wecker, Luxembourg Phone:+352 27612 0 Fax: +352 27612 109 E-Mail: info@laeis-gmbh.com Internet: www.laeis-gmbh.com Contact: Dr. Alfred Kaiser Open top and closed type baking furnaces Vollert GmbH + Co. KG Anlagenbau Stadtseestraße 12 D-74189 Weinsberg Tel. +49 (0) 7134 / 52-228 Fax +49 (0) 7134 / 52-203 E-Mail vertrieb@vollert.de Internet www.vollert.de Offene und geschlossene Ringöfen 1.3 Anode production Anodenherstellung OUTOKUMPU Technology GmbH Tel.: +49 (0) 2203 / 9921-0 www.outokumputechnology.com 112 RIEDHAMMER GmbH D-90332 Nürnberg E-Mail: goede.frank@riedhammer.de Internet: www.riedhammer.de Hovestr. 10 . D-48431 Rheine Telefon + 49 (0) 59 71 58-0 Fax + 49 (0) 59 71 58-209 E-Mail info@windhoff.de Internet www.windhoff.de ALUMINIUM · 1-2/2007 Lieferverzeichnis 1.5 Casthouse (foundry) Gießerei INOTHERM INDUSTRIEOFENUND WÄRMETECHNIK GMBH Konstantinstraße 1a D 41238 Mönchengladbach Telefon +49 (02166) 987990 Telefax +49 (02166) 987996 E-Mail: info@inotherm-gmbh.de Internet: www.inotherm-gmbh.de Measurement & Testing Temperaturmessung Gießereiprodukte – Foundry Products Balthasar Floriszstraat 34-36/oh NL-1071 VD AMSTERDAM Tel.: +31 20 693-5209, Fax -5762 Internet: www.srsamsterdam.com Bone ash Knochenasche IMPERIAL-OEL-IMPORT Bergstraße 11, D 20095 Hamburg Tel. 040/338533-0, Fax: 040/338533-85 E-Mail: info@imperial-oel-import.de Furnace charging with molten metal Ofenbeschickung mit Flüssigmetall Metal treatment in the holding furnace Metallbehandlung in Halteöfen GLAMA Maschinenbau GmbH see Anode rodding 1.4 THERMCON OVENS BV see Extrusion 2 SIGNODE® SYSTEM GMBH Packaging Equipment Non-Ferrous Specialist Team DSWE Magnusstr. 18, 46535 Dinslaken/Germany Telefon: +49 (0) 2064 / 69-210 Telefax: +49 (0) 2064 / 69-489 E-Mail: g.laks@signode-europe.com Internet: www.signode.com Contact: Mr. Gerard Laks Stopinc AG Bösch 83 a CH-6331 Hünenberg Tel. +41/41-785 75 00 Fax +41/41-785 75 01 E-Mail: interstop@stopinc.ch Internet: www.stopinc.ch Transport of liquid metal to the casthouse Transport von Flüssigmetall in Gießereien GLAMA Maschinenbau GmbH see Anode rodding 1.4 MARX GmbH & Co. KG www.marx-gmbh.de see Melt operations 4.13 Vollert GmbH + Co. KG Anlagenbau see Transport of finished anode elements to the pot room 1.4 maerz-gautschi Industrieofenanlagen GmbH see Casting Equipment 3.1 Gießmaschinen Transfer to the casting furnace Überführung in Gießofen GLAMA Maschinenbau GmbH see Anode rodding 1.4 THERMCON OVENS BV Drache Umwelttechnik GmbH Werner-v.-Siemens-Straße 9/24-26 D 65582 Diez/Lahn Telefon 06432/607-0 Telefax 06432/607-52 Internet: www.drache-gmbh.de Pig casting machines (sow casters) maerz-gautschi Industrieofenanlagen GmbH see Casting Equipment 3.1 Windhoff Bahn- und Anlagentechnik GmbH see Anode rodding 1.4 Treatment of casthouse off gases Behandlung der Gießereiabgase Dross skimming of liquid metal Degassing, filtration and grain refinement Melting/holding/casting furnaces Schmelz-/Halte- und Giessöfen maerz-gautschi Industrieofenanlagen GmbH see Casting Equipment 3.1 ALUMINIUM · 1-2/2007 Masselgießmaschine (Sowcaster) maerz-gautschi Industrieofenanlagen GmbH see Casting Equipment 3.1 see Transport of finished anode elements to the pot room 1.4 maerz-gautschi Industrieofenanlagen GmbH see Casting Equipment 3.1 GLAMA Maschinenbau GmbH see Anode rodding 1.4 see Extrusion 2 Vollert GmbH + Co. KG Anlagenbau Windhoff Bahn- und Anlagentechnik GmbH see Anode rodding 1.4 Abkrätzen des Flüssigmetalls 1.6 Casting machines Entgasung, Filtern, Kornfeinung Drache Umwelttechnik GmbH Werner-v.-Siemens-Straße 9/24-26 D 65582 Diez/Lahn Telefon 06432/607-0 Telefax 06432/607-52 Internet: www.drache-gmbh.de maerz-gautschi Industrieofenanlagen GmbH see Casting Equipment 3.1 HERTWICH ENGINEERING GmbH Maschinen und Industrieanlagen Weinbergerstraße 6, A-5280 Braunau am Inn Phone +437722/806-0 Fax +437722/806-122 E-Mail: info@hertwich.com Internet: www.hertwich.com see Equipment and accessories 2.11 Rolling and extrusion ingot and T-bars Formatgießerei (Walzbarren oder Pressbolzen oder T-Barren) Cast-Tec GmbH & Co. KG Fertigungstechnik & Service D-44536 Lünen, Brunnenstraße 138 Telefon: 02306/20310-0 Telefax: 02306/20310-11 E-Mail: Info@cast-tec.de Internet: www.cast-tec.de 113 Lieferverzeichnis Sawing Pot feeding systems Sägen HERTWICH ENGINEERING GmbH Maschinen und Industrieanlagen Weinbergerstraße 6, A-5280 Braunau am Inn Phone +437722/806-0 Fax +437722/806-122 E-Mail: info@hertwich.com Internet: www.hertwich.com maerz-gautschi Industrieofenanlagen GmbH see Casting Equipment 3.1 Vertical semi-continuous DC casting Vertikales Stranggießen maerz-gautschi Industrieofenanlagen GmbH see Casting Equipment 3.1 Beschickungseinrichtungen für Elektrolysezellen Möller Materials Handling GmbH Internet: www.moeller-mh.com see Storage facilities for smelting 1.2 HERTWICH ENGINEERING GmbH Maschinen und Industrieanlagen Weinbergerstraße 6, A-5280 Braunau am Inn Phone +437722/806-0 Fax +437722/806-122 E-Mail: info@hertwich.com Internet: www.hertwich.com maerz-gautschi Industrieofenanlagen GmbH see Casting Equipment 3.1 Heat treatment of extrusion ingot (homogenisation) Formatebehandlung (homogenisieren) see Equipment and accessories 2.11 Horizontal continuous casting Horizontales Stranggießen HERTWICH ENGINEERING GmbH Maschinen und Industrieanlagen Weinbergerstraße 6, A-5280 Braunau am Inn Phone +437722/806-0 Fax +437722/806-122 E-Mail: info@hertwich.com Internet: www.hertwich.com maerz-gautschi Industrieofenanlagen GmbH see Casting Equipment 3.1 Scales Waagen maerz-gautschi Industrieofenanlagen GmbH see Casting Equipment 3.1 Casthouse machines Gießereimaschinen Cast-Tec GmbH & Co. KG Fertigungstechnik & Service see Casting machines 1.6 1.7 Current supply Stromversorgung Busbars see Casting machines 1.6 114 1.9 Potroom Elektrolysehalle T.T. Tomorrow Technology S.p.A. Via dell’Artigianato 18 Due Carrare, Padova 35020, Italy Telefon +39 049 912 8800 Telefax +39 049 912 8888 E-Mail: gmagarotto@tomorrowtechnology.it Contact: Giovanni Magarotto Anodenwechselmaschine HERTWICH ENGINEERING GmbH Maschinen und Industrieanlagen Weinbergerstraße 6, A-5280 Braunau am Inn Phone +437722/806-0 Fax +437722/806-122 E-Mail: info@hertwich.com Internet: www.hertwich.com Cast-Tec GmbH & Co. KG Fertigungstechnik & Service maerz-gautschi Industrieofenanlagen GmbH see Casting Equipment 3.1 Schlichten und Trennmittel ESK Ceramics GmbH & Co. KG Max-Schaidhauf-Straße 25 87437 Kempten, Germany Tel.: +49 831 5618-0, Fax: -345 Internet: www.esk.com Anode changing machine Stromschienen HERTWICH ENGINEERING GmbH Maschinen und Industrieanlagen Weinbergerstraße 6, A-5280 Braunau am Inn Phone +437722/806-0 Fax +437722/806-122 E-Mail: info@hertwich.com Internet: www.hertwich.com Slurries and parting agents 1.8 Electrolysis cell (pot) Elektrolyseofen Insulating bricks GLAMA Maschinenbau GmbH see Anode rodding 1.4 Tapping vehicles Schöpffahrzeuge GLAMA Maschinenbau GmbH see Anode rodding 1.4 Crustbreakers Krustenbrecher GLAMA Maschinenbau GmbH see Anode rodding 1.4 Dry absorption units for electrolysis exhaust gases Trockenabsorptionsanlage für Elektrolyseofenabgase ALSTOM Norway AS Tel. +47 22 12 70 00 Internet: www.environment.power.alstom.com Anode transport equipment Anoden Transporteinrichtungen GLAMA Maschinenbau GmbH see Anode rodding 1.4 HF Measurementtechnology HF Messtechnik Isoliersteine Promat GmbH – Techn. Wärmedämmung Scheifenkamp 16, D-40878 Ratingen Tel. +49 (0) 2102 / 493-0, Fax -493 115 verkauf3@promat.de, www.promat.de OPSIS AB Box 244, S-24402 Furulund, Schweden Tel. +46 (0) 46-72 25 00, Fax -72 25 01 E-Mail: info@opsis.se Internet: www.opsis.se ALUMINIUM · 1-2/2007 Lieferverzeichnis 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 Extrusion Strangpressen Extrusion billet preparation Extrusion equipment Section handling Heat treatment Measurement and control equipment Die preparation and care Second-hand extrusion plant Consultancy, expert opinion Surface finishing of sections Machining of sections Equipment and accessories Services 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 Pressbolzenbereitstellung Strangpresseinrichtungen Profilhandling Wärmebehandlung Mess- und Regeleinrichtungen Werkzeugbereitstellung und -pflege Gebrauchte Strangpressanlagen Beratung, Gutachten Oberflächenveredlung von Profilen Profilbearbeitung Ausrüstungen und Hilfsmittel Dienstleistungen 2.1 Extrusion billet preparation Billet heating units Anlagen zur Bolzenerwärmung Pressbolzenbereitstellung www.otto-junker-group.com SIGNODE® SYSTEM GMBH Jägerhausstr. 22 D – 52152 Simmerath Telefon: +49 2473 601 0 Telefax: +49 2473 601 600 E-Mail: info@otto-junker.de Kontakt: Herr Teichert Packaging Equipment Non-Ferrous Specialist Team DSWE Magnusstr. 18, 46535 Dinslaken/Germany Telefon: +49 (0) 2064 / 69-210 Telefax: +49 (0) 2064 / 69-489 E-Mail: g.laks@signode-europe.com Internet: www.signode.com Contact: Mr. Gerard Laks Billet transport and storage equipment Billet heating furnaces Öfen zur Bolzenerwärmung Rudolf-Diesel-Str. 1-3 D – 78239 Rielasingen-Worblingen Telefon +49 7731 5998-0 Telefax +49 7731 5998-90 E-Mail info@elhaus.de Kontakt: Herr Dr. Menzler OTTO JUNKER GmbH ELHAUS INDUSTRIEANLAGEN GmbH OTTO JUNKER (UK) LTD. see Extrusion 2 Am großen Teich 16+27 D-58640 Iserlohn Tel. +49 (0) 2371 / 4346-0 Fax +49 (0) 2371 / 4346-43 E-Mail: verkauf@ias-gmbh.de Internet: www.ias-gmbh.de Bolzen-Transport- und Lagereinrichtungen OTTO JUNKER GmbH ELHAUS INDUSTRIEANLAGEN GmbH see Extrusion 2 Hot shears Warmscheren De Chamotte 4 NL – 4191 GT GELDERMALSEN Telefon: +31 345 574141 Telefax: +31 345 576322 E-Mail: info@thermcon.com Kontakt: Herr Schmidt MARX GmbH & Co. KG www.marx-gmbh.de see Melt operations 4.13 OTTO JUNKER GmbH ELHAUS INDUSTRIEANLAGEN GmbH THERMCON OVENS BV see Extrusion 2 2.2 Extrusion equipment Strangpresseinrichtungen Kingsbury Road Curdworth UK - SUTTON COLDFIELD B76 9EE Telefon: +44 1675 470551 Telefax: +44 1675 470645 E-Mail: info@otto-junker.co.uk Kontakt: Mr. Beard ALUMINIUM · 1-2/2007 Sistem Teknik Ltd. Sti. DES San. Sit. 102 SOK No: 6/8 Y.Dudullu, TR-34775 Istanbul/Turkey Tel.: +90 216 420 86 24 Fax: +90 216 420 23 22 Oilgear Towler GmbH Im Gotthelf 8 D 65795 Hattersheim Tel. +49 (0) 6145 3770 Fax +49 (0) 6145 30770 E-Mail: info@oilgear.de Internet: www.oilgear.de 115 Lieferverzeichnis Press control systems Pressensteuersysteme Verpackungseinrichtungen Oilgear Towler GmbH see Extrusion Equipment 2.2 SMS Eumuco GmbH Josefstraße 10 D-51377 Leverkusen Tel. 0214 / 734-01 Fax 0214 / 734-1000 E-Mail: info@sms-eumuco.de Internet: www.sms-eumuco.com SMS Eumuco GmbH see Extrusion equipment 2.2 Containers Rezipienten Packaging equipment H+H HERRMANN + HIEBER GMBH Fördersysteme für Paletten und schwere Lasten Rechbergstraße 46 D-73770 Denkendorf/Stuttgart Tel. +49 (0) 711 / 9 34 67-0 Fax +49 (0) 711 / 3 46 0911 E-Mail: info@herrmannhieber.de Internet: www.herrmannhieber.de Vollert GmbH + Co. KG Anlagenbau see Transport of finished anode elements to the pot room 1.4 Temperature measurement Temperaturmessung KIND & CO., EDELSTAHLWERK, KG Bielsteiner Straße 128-130 D-51674 Wiehl Telefon: +49 (0) 2262 / 84 0 Telefax: +49 (0) 2262 / 84 175 E-Mail: info@kind-co.de Internet: www.kind-co.de SMS Eumuco GmbH see Extrusion equipment 2.2 Heating and control equipment for intelligent billet containers Hinterbergstrasse 26 CH-6330 Cham, Switzerland Tel.: +41 41 741 5741 Fax: +41 41 741 5760 E-mail: bold.ch@fromm-pack.com Internet: www.fromm-pack.com Sales Contact: Benno Arnet Puller equipment Ausziehvorrichtungen/Puller Heizungs- und Kontrollausrüstung für intelligente Blockaufnehmer S+C MÄRKER GmbH Steel Technologies D-51779 Lindlar-Kaiserau Postfach 11 40 Tel.: +49 (0) 2266 / 92 211 Fax: +49 (0) 2266 / 92 509 E-Mail: extrusion@schmidt-clemens.de Internet: www.sc-maerker.de OTTO JUNKER GmbH ELHAUS INDUSTRIEANLAGEN GmbH THERMCON OVENS BV see Extrusion 2 MARX GmbH & Co. KG www.marx-gmbh.de see Melt operations 4.13 2.3 Section handling SMS Eumuco GmbH see Extrusion equipment 2.2 Profilhandling SIGNODE® SYSTEM GMBH SMS Eumuco GmbH see Extrusion equipment 2.2 Packaging Equipment Non-Ferrous Specialist Team DSWE Magnusstr. 18, 46535 Dinslaken/Germany Telefon: +49 (0) 2064 / 69-210 Telefax: +49 (0) 2064 / 69-489 E-Mail: g.laks@signode-europe.com Internet: www.signode.com Contact: Mr. Gerard Laks Extrusion Strangpressen Section cooling Profilkühlung OTTO JUNKER GmbH ELHAUS INDUSTRIEANLAGEN GmbH see Extrusion 2 Homogenising furnaces Homogenisieröfen OTTO JUNKER GmbH ELHAUS INDUSTRIEANLAGEN GmbH OTTO JUNKER (UK) LTD. see Extrusion 2 116 OTTO JUNKER GmbH see Extrusion 2 SMS Eumuco GmbH see Extrusion equipment 2.2 ALUMINIUM · 1-2/2007 Lieferverzeichnis Section saws Profilsägen Stackers / Destackers Stapler / Entstapler Vollert GmbH + Co. KG Anlagenbau see Transport of finished anode elements to the pot room 1.4 OTTO JUNKER GmbH ELHAUS INDUSTRIEANLAGEN GmbH see Extrusion 2 OTTO JUNKER GmbH ELHAUS INDUSTRIEANLAGEN GmbH see Extrusion 2 2.4 Heat treatment Wärmebehandlung Extrusion Strangpressen SMS Eumuco GmbH see Extrusion equipment 2.2 SMS Eumuco GmbH see Extrusion equipment 2.2 Stretching equipment Section store equipment Reckeinrichtungen OTTO JUNKER GmbH ELHAUS INDUSTRIEANLAGEN GmbH OTTO JUNKER (UK) LTD. see Extrusion 2 Profil-Lagereinrichtungen H+H HERRMANN + HIEBER GMBH Fördersysteme für Paletten und schwere Lasten Rechbergstraße 46 D-73770 Denkendorf/Stuttgart Tel. +49 (0) 711 / 9 34 67-0 Fax +49 (0) 711 / 3 46 0911 E-Mail: info@herrmannhieber.de Internet: www.herrmannhieber.de KASTO Maschinenbau GmbH & Co. KG Industriestr. 14, D-77855 Achern Tel.: +49 (0) 7841 61-0 / Fax: +49 (0) 7841 61 300 kasto@kasto.de / www.kasto.de Hersteller von Band- und Kreissägemaschinen sowie Langgut- und Blechlagersystemen Vollert GmbH + Co. KG Anlagenbau see Transport of finished anode elements to the pot room 1.4 Section transport equipment Profiltransporteinrichtungen OTTO JUNKER GmbH ELHAUS INDUSTRIEANLAGEN GmbH see Extrusion 2 SMS Eumuco GmbH see Extrusion equipment 2.2 ALUMINIUM · 1-2/2007 Heat treatment furnaces OTTO JUNKER GmbH ELHAUS INDUSTRIEANLAGEN GmbH see Extrusion 2 Wärmebehandlungsöfen INOTHERM INDUSTRIEOFENUND WÄRMETECHNIK GMBH see Casthouse (foundry) 1.5 Sistem Teknik Ltd. Sti. see Billet Heating Furnaces 2.1 SMS Eumuco GmbH see Extrusion equipment 2.2 Transport equipment for extruded sections Transporteinrichtungen für Profilabschnitte H+H HERRMANN + HIEBER GMBH Fördersysteme für Paletten und schwere Lasten Rechbergstraße 46 D-73770 Denkendorf/Stuttgart Tel. +49 (0) 711 / 9 34 67-0 Fax +49 (0) 711 / 3 46 0911 E-Mail: info@herrmannhieber.de Internet: www.herrmannhieber.de ELHAUS INDUSTRIEANLAGEN GmbH see Extrusion 2 SMS Eumuco GmbH see Extrusion equipment 2.2 IUT Industriell Ugnsteknik AB Industrivägen 2, 43892 Härryda, Sweden Tel. +46 (0) 301 31510 Fax +46 (0) 301 30479 E-Mail: office@iut.se Internet: www.iut.se Custom designed heat processing equipment Kundenspezifische Wärmebehandlungsanlagen Sistem Teknik Ltd. Sti. see Billet Heating Furnaces 2.1 Do you need more information? E-Mail: Schwichtenberg@giesel.de 117 Lieferverzeichnis Homogenising furnaces Homogenisieröfen 2.6 Die preparation and care Werkzeugbereitstellung und -pflege 2.10 Machining of sections Profilbearbeitung Processing of Profiles HERTWICH ENGINEERING GmbH Maschinen und Industrieanlagen Weinbergerstraße 6, A-5280 Braunau am Inn Phone +437722/806-0 Fax +437722/806-122 E-Mail: info@hertwich.com Internet: www.hertwich.com IUT Industriell Ugnsteknik AB see Heat treatment 2.4 Castool Tooling Solutions (North America) 21 State Crown Bvld Scarborough Ontario Canada MIV 4B1 Tel.: +1 416 297 1521 Fax: +1 416 297 1915 E-Mail: sales@castool.com Internet: www.castool.com Sales Contact: Danny Dann SMS Eumuco GmbH see Extrusion equipment 2.2 Die heating furnaces Profilbearbeitung Tensai (International) AG Extal Division Steinengraben 40 CH-4051 Basel Telefon +41 (0) 61 284 98 10 Telefax +41 (0) 61 284 98 20 E-Mail: tensai@tensai.com 2.11 Equipment and accessories Ausrüstungen und Hilfsmittel Werkzeuganwärmöfen Inductiv heating equipment IUT Industriell Ugnsteknik AB see Heat treatment 2.4 Sistem Teknik Ltd. Sti. see Billet Heating Furnaces 2.1 2.5 Measurement and control equipment Mess- und Regeleinrichtungen Induktiv beheizte Erwärmungseinrichtungen MARX GmbH & Co. KG www.marx-gmbh.de see Melt operations 4.13 Sistem Teknik Ltd. Sti. see Billet Heating Furnaces 2.1 Extrusion dies Strangpresswerkzeuge Extrusion plant control systems Am großen Teich 16+27 D-58640 Iserlohn Tel. +49 (0) 2371 / 4346-0 Fax +49 (0) 2371 / 4346-43 E-Mail: verkauf@ias-gmbh.de Internet: www.ias-gmbh.de Presswerkssteuerungen Ageing furnace for extrusions SMS Eumuco GmbH see Extrusion equipment 2.2 Hardness measuring instuments, portable Haarmann Holding GmbH Ludwigsallee 57 D-52052 Aachen Telefon: 02 41 / 9 18 - 500 Telefax: 02 41 / 9 18 - 5010 E-Mail: info.holding@haarmann-gruppe.de Internet: www.haarmann-gruppe.de Hardening technology Härtetechnik Härtemessgerät, tragbar Form+Test Seidner & Co. GmbH D-88491 Riedlingen Telefax 07371/9302-98 E-Mail: linke@formtest.de Temperatur measurement Temperaturmessung Haarmann Holding GmbH see Die preparation and care 2.6 118 LOI Thermprocess GmbH Am Lichtbogen 29 D-45141 Essen Germany Telefon +49 (0) 201 / 18 91-3 10 Telefax +49 (0) 201 / 18 91-53 10 E-Mail: info@loi.de Internet: www.loi.de Sistem Teknik Ltd. Sti. see Billet Heating Furnaces 2.1 2.7 Second-hand extrusion plant Gebr. Strangpressanlagen ELHAUS INDUSTRIEANLAGEN GmbH THERMCON OVENS BV see Extrusion 2 Auslagerungsöfen für Strangpressprofile Qualiteam International/ExtruPreX Champs Elyséesweg 17, NL-6213 AA Maastricht Tel. +31-43-3 25 67 77 Internet: www.extruprex.com 2.12 Services Dienstleistungen Haarmann Holding GmbH see Die preparation and care 2.6 ALUMINIUM · 1-2/2007 Lieferverzeichnis 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 Rolling mill technology Walzwerktechnik Casting equipment Rolling bar machining Rolling bar furnaces Hot rolling equipment Strip casting units and accessories Cold rolling equipment Thin strip / foil rolling plant Auxiliary equipment Adjustment devices Process technology / Automation technology Coolant / lubricant preparation Air extraction systems Fire extinguishing units Storage and dispatch Second-hand rolling equipment Coil storage systems Strip Processing Lines 3.1 Casting equipment Gießanlagen 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 Gießanlagen Walzbarrenbearbeitung Walzbarrenvorbereitung Warmwalzanlagen Bandgießanlagen und Zubehör Kaltwalzanlagen Feinband-/Folienwalzwerke Nebeneinrichtungen Adjustageeinrichtungen Prozesstechnik / Automatisierungstechnik Kühl-/Schmiermittel-Aufbereitung Abluftsysteme Feuerlöschanlagen Lagerung und Versand Gebrauchtanlagen Coil storage systems Bandprozesslinien Filling level indicators and controls Füllstandsanzeiger und -regler maerz-gautschi Industrieofenanlagen GmbH see Casting equipment 3.1 OTTO JUNKER GmbH THERMCON OVENS BV see Extrusion 2 Melt purification units Schmelzereinigungsanlagen Melting and holding furnaces Schmelz- und Warmhalteöfen HERTWICH ENGINEERING GmbH Maschinen und Industrieanlagen Weinbergerstraße 6, A-5280 Braunau am Inn Phone +437722/806-0 Fax +437722/806-122 E-Mail: info@hertwich.com Internet: www.hertwich.com maerz-gautschi Industrieofenanlagen GmbH see Casting equipment 3.1 HERTWICH ENGINEERING GmbH Maschinen und Industrieanlagen Weinbergerstraße 6, A-5280 Braunau am Inn Phone +437722/806-0 Fax +437722/806-122 E-Mail: info@hertwich.com Internet: www.hertwich.com SMS Demag Aktiengesellschaft Eduard-Schloemann-Straße 4 D-40237 Düsseldorf Telefon: (0211) 8 81-0 Telefax: (0211) 8 81-49 02 Internet: www.sms-demag.com E-Mail: communications@sms-demag.com Geschäftsbereiche: Warmflach- und Kaltwalzwerke Wiesenstraße 30 D-57271 Hilchenbach-Dahlbruch Telefon: (02733) 29-0 Telefax: (02733) 29-28 52 Bandanlagen Walderstraße 51/53 D-40724 Hilden Telefon: (0211) 8 81-5100 Telefax: (0211) 8 81-5200 Bar scalping Barrenfräsen 3.2 Rolling bar machining see Equipment and accessories 2.11 maerz-gautschi Industrieofenanlagen GmbH Geschäftsbereich Aluminium Konstanzer Straße 37 Postfach 170 CH 8274 Tägerwilen Telefon +41/71/6666666 Telefax +41/71/6666688 E-Mail: aluminium@maerz-gautschi.ch Kontakt: Stefan Blum, Tel. +41/71/6666621 Metal filters Metallfilter maerz-gautschi Industrieofenanlagen GmbH see Casting equipment 3.1 ALUMINIUM · 1-2/2007 Walzbarrenbearbeitung Band saws / Bandsägen SMS Demag Aktiengesellschaft see Rolling bar machining 3.2 Slab milling machines Barrenfräsmaschinen SMS Meer GmbH Ohlerkirchweg 66 D-41069 Mönchengladbach Tel. +49 (0) 2161 / 35 00 Fax +49 (0) 2161 / 35 06 67 E-Mail: info@sms-meer.com Internet: www.sms-meer.com SMS Meer GmbH see Rolling bar machining 3.2 119 Lieferverzeichnis 3.3 Rolling bar furnaces Walzbarrenvorbereitung Bar heating furnaces Barrenanwärmanlagen Hot rolling units / complete plants Warmwalzanlagen/Komplettanlagen Homogenising furnaces Homogenisieröfen EBNER Industrieofenbau Ges.m.b.H. see Annealing furnaces 3.3 IUT Industriell Ugnsteknik AB see Heat treatment 2.4 HERTWICH ENGINEERING GmbH Maschinen und Industrieanlagen Weinbergerstraße 6, A-5280 Braunau am Inn Phone +437722/806-0 Fax +437722/806-122 E-Mail: info@hertwich.com Internet: www.hertwich.com maerz-gautschi Industrieofenanlagen GmbH see Casting equipment 3.1 OTTO JUNKER GmbH THERMCON OVENS BV see Extrusion 2 Roller tracks Rollengänge maerz-gautschi Industrieofenanlagen GmbH see Casting equipment 3.1 OTTO JUNKER GmbH see Extrusion 2 3.4 Hot rolling equipment Warmwalzanlagen SMS Demag Aktiengesellschaft Eduard-Schloemann-Straße 4 D-40237 Düsseldorf Telefon: (0211) 8 81-0 Telefax: (0211) 8 81-49 02 Internet: http://www.sms-demag.com E-Mail: communications@sms-demag.com Geschäftsbereiche: Warmflach- und Kaltwalzwerke Wiesenstraße 30 D-57271 Hilchenbach-Dahlbruch Telefon: (02733) 29-0 Telefax: (02733) 29-28 52 Bandanlagen Walderstraße 51/53 D-40724 Hilden Telefon: (0211) 8 81-5100 Telefax: (0211) 8 81-5200 Rolling mill modernisation Walzwerksmodernisierung maerz-gautschi Industrieofenanlagen GmbH see Casting equipment 3.1 Achenbach Buschhütten GmbH Siegener Str. 152, D-57223 Kreuztal Tel. +49 (0) 2732/7990, info@achenbach.de Internet: www.achenbach.de Annealing furnaces Glühöfen EBNER Industrieofenbau Ges.m.b.H. Ruflinger Str. 111, A-4060 Leonding Tel. +43 / 732 / 68 68 Fax +43 / 732 / 68 68-1000 Internet: www.ebner.cc E-Mail: sales@ebner.cc IUT Industriell Ugnsteknik AB see Heat treatment 2.4 SIEMAG GmbH Obere Industriestraße 8 D-57250 Netphen Tel.: +49 (0) 2738 / 21-0 Fax: +49 (0) 2738 / 21-503 E-Mail: metals@siemag.com Internet: www.siemag.com Coil transport systems Bundtransportsysteme Vollert GmbH + Co. KG Anlagenbau Windhoff Bahn- und Anlagentechnik GmbH see Anode rodding 1.4 see Extrusion 2 maerz-gautschi Industrieofenanlagen GmbH see Casting equipment 3.1 schwartz GmbH see Heat treatment 2.4 120 Spools / Haspel SMS Demag Aktiengesellschaft see Hot rolling equipment 3.4 Toolings / Werkzeuge see Transport of finished anode elements to the pot room 1.4 Drive systems / Antriebe OTTO JUNKER GmbH SMS Demag Aktiengesellschaft see Hot rolling equipment 3.4 SMS Demag Aktiengesellschaft see Hot rolling equipment 3.4 see Extrusion equipment 2.2 Do you need more information? E-Mail: Schwichtenberg@giesel.de ALUMINIUM · 1-2/2007 Lieferverzeichnis 3.5 Strip casting units and accessories Bandgießanlagen und Zubehör Cores & shells for continuous casting lines Cores & shells for continuous casting lines SIGNODE® SYSTEM GMBH Packaging Equipment Non-Ferrous Specialist Team DSWE Magnusstr. 18, 46535 Dinslaken/Germany Telefon: +49 (0) 2064 / 69-210 Telefax: +49 (0) 2064 / 69-489 E-Mail: g.laks@signode-europe.com Internet: www.signode.com Contact: Mr. Gerard Laks Coil transport systems Bruno Presezzi, Officine Meccaniche Via per Ornago 8 I-20040 Burago Molgora (Mi) – Italy Tel. +39 039 63502 229 Fax +39 039 6081373 E-Mail: aluminium.dept@brunopresezzi.com Internet: www.presezzicaster.com Contact: Franco Gramaglia Vollert GmbH + Co. KG Anlagenbau Revamps, equipments & spare parts for continuous casting lines Windhoff Bahn- und Anlagentechnik GmbH see Anode rodding 1.4 Bundtransportsysteme see Transport of finished anode elements to the pot room 1.4 Revamps, equipments & spare parts for continuous casting lines Drive systems Coil annealing furnaces Bruno Presezzi, Officine Meccaniche Via per Ornago 8 I-20040 Burago Molgora (Mi) – Italy Tel. +39 039 63502 229 Fax +39 039 6081373 E-Mail: aluminium.dept@brunopresezzi.com Internet: www.presezzicaster.com Contact: Franco Gramaglia Antriebe Bundglühöfen IUT Industriell Ugnsteknik AB see Heat treatment 2.4 SMS Demag Aktiengesellschaft see Hot rolling equipment 3.4 OTTO JUNKER GmbH see Extrusion 2 Twin-roll continuous casting lines (complete lines) Heating furnaces Anwärmöfen Twin-roll continuous casting lines (complete lines) Bruno Presezzi, Officine Meccaniche Via per Ornago 8 I-20040 Burago Molgora (Mi) – Italy Tel. +39 039 63502 229 Fax +39 039 6081373 E-Mail: aluminium.dept@brunopresezzi.com Internet: www.presezzicaster.com Contact: Franco Gramaglia SMS Demag Aktiengesellschaft Eduard-Schloemann-Straße 4 D-40237 Düsseldorf Telefon: (0211) 8 81-0 Telefax: (0211) 8 81-49 02 Internet: http://www.sms-demag.com E-Mail: communications@sms-demag.com Geschäftsbereiche: Warmflach- und Kaltwalzwerke Wiesenstraße 30 D-57271 Hilchenbach-Dahlbruch Telefon: (02733) 29-0 Telefax: (02733) 29-28 52 Bandanlagen Walderstraße 51/53 D-40724 Hilden Telefon: (0211) 8 81-5100 Telefax: (0211) 8 81-5200 see Equipment and accessories 2.11 maerz-gautschi Industrieofenanlagen GmbH see Casting equipment 3.1 OTTO JUNKER GmbH see Extrusion 2 maerz-gautschi Industrieofenanlagen GmbH see Casting equipment 3.1 schwartz GmbH see Cold colling equipment 3.6 3.6 Cold rolling equipment Kaltwalzanlagen www.vits.com see Cold rolling equipment 3.6 Achenbach Buschhütten GmbH Siegener Str. 152, D-57223 Kreuztal Tel. +49 (0) 2732/7990, info@achenbach.de Internet: www.achenbach.de Cold rolling units / complete plants SIEMAG GmbH Obere Industriestraße 8 D-57250 Netphen Tel.: +49 (0) 2738 / 21-0 Fax: +49 (0) 2738 / 21-503 E-Mail: metals@siemag.com Internet: www.siemag.com Danieli Fröhling Finkenstrasse 19 D-57462 Olpe Germany Tel.: +49 (0) 27 61 / 894-0 Fax: +49 (0) 27 61 / 894-200 E-Mail: d.neumann@danieli-froehling.de Internet: www.danieli-froehling.de Sales Contact: Detlef Neumann ALUMINIUM · 1-2/2007 Kaltwalzanlagen/Komplettanlagen Vits Systems GmbH Winkelsweg 172 D-40764 Langenfeld Tel.: +49 (0) 2173 / 798-0 Fax: +49 (0) 2173 / 798-244 E-Mail: mt@vits.de, Internet: www.vits.com Process optimisation systems Prozessoptimierungssysteme maerz-gautschi Industrieofenanlagen GmbH see Casting equipment 3.1 121 Lieferverzeichnis Process simulation Prozesssimulation maerz-gautschi Industrieofenanlagen GmbH see Casting equipment 3.1 Strip shears Bandscheren Danieli Fröhling Finkenstrasse 19 D-57462 Olpe Germany Tel.: +49 (0) 27 61 / 894-0 Fax: +49 (0) 27 61 / 894-200 E-Mail: d.neumann@danieli-froehling.de Internet: www.danieli-froehling.de Sales Contact: Detlef Neumann Revamps, equipments & spare parts Walzenwechseleinrichtungen OTTO JUNKER GmbH see Extrusion 2 maerz-gautschi Industrieofenanlagen GmbH see Casting equipment 3.1 Revamps, equipments & spare parts Roll exchange equipment Bundglühöfen see Equipment and accessories 2.11 SMS Demag Aktiengesellschaft see Cold colling equipment 3.6 Bruno Presezzi, Officine Meccaniche Via per Ornago 8 I-20040 Burago Molgora (Mi) – Italy Tel. +39 039 63502 229 Fax +39 039 6081373 E-Mail: aluminium.dept@brunopresezzi.com Internet: www.presezzicaster.com Contact: Franco Gramaglia Coil annealing furnaces SMS Demag Aktiengesellschaft see Hot rolling equipment 3.4 Trimming equipment schwartz GmbH see Cold colling equipment 3.6 www.vits.com see Thin strip / foil rolling plant 3.7 Besäumeinrichtungen Danieli Fröhling Finkenstrasse 19 D-57462 Olpe Germany Tel.: +49 (0) 27 61 / 894-0 Fax: +49 (0) 27 61 / 894-200 E-Mail: d.neumann@danieli-froehling.de Internet: www.danieli-froehling.de Sales Contact: Detlef Neumann Heating furnaces Anwärmöfen INOTHERM INDUSTRIEOFENUND WÄRMETECHNIK GMBH see Casthouse (foundry) 1.5 OTTO JUNKER GmbH SMS Demag Aktiengesellschaft see Hot rolling equipment 3.4 see Extrusion 2 maerz-gautschi Industrieofenanlagen GmbH see Casting equipment 3.1 Vollert GmbH + Co. KG Anlagenbau see Transport of finished anode elements to the pot room 1.4 Windhoff Bahn- und Anlagentechnik GmbH see Anode rodding 1.4 Rolling mill modernization Walzwerkmodernisierung SMS Demag Aktiengesellschaft see Hot rolling equipment 3.4 3.7 Thin strip / foil rolling plant Feinband-/Folienwalzwerke Achenbach Buschhütten GmbH Siegener Str. 152, D-57223 Kreuztal Tel. +49 (0) 2732/7990, info@achenbach.de Internet: www.achenbach.de Strip rolling mills Achenbach Buschhütten GmbH Siegener Str. 152, D-57223 Kreuztal Tel. +49 (0) 2732/7990, info@achenbach.de Internet: www.achenbach.de Revamps, equipments & spare parts Bandwalzwerke Danieli Fröhling Finkenstrasse 19 D-57462 Olpe Germany Tel.: +49 (0) 27 61 / 894-0 Fax: +49 (0) 27 61 / 894-200 E-Mail: d.neumann@danieli-froehling.de Internet: www.danieli-froehling.de Sales Contact: Detlef Neumann 122 Vits Systems GmbH Winkelsweg 172 D-40764 Langenfeld Tel.: +49 (0) 2173 / 798-0 Fax: +49 (0) 2173 / 798-244 E-Mail: mt@vits.de, Internet: www.vits.com SIGNODE® SYSTEM GMBH Packaging Equipment Non-Ferrous Specialist Team DSWE Magnusstr. 18, 46535 Dinslaken/Germany Telefon: +49 (0) 2064 / 69-210 Telefax: +49 (0) 2064 / 69-489 E-Mail: g.laks@signode-europe.com Internet: www.signode.com Contact: Mr. Gerard Laks Revamps, equipments & spare parts Bruno Presezzi, Officine Meccaniche Via per Ornago 8 I-20040 Burago Molgora (Mi) – Italy Tel. +39 039 63502 229 Fax +39 039 6081373 E-Mail: aluminium.dept@brunopresezzi.com Internet: www.presezzicaster.com Contact: Franco Gramaglia ALUMINIUM · 1-2/2007 Lieferverzeichnis Rolling mill modernization Sheet and plate stretchers Walzwerkmodernisierung Blech- und Plattenstrecker Strip thickness measurement and control equipment Banddickenmess- und -regeleinrichtungen Achenbach Buschhütten GmbH Siegener Str. 152, D-57223 Kreuztal Tel. +49 (0) 2732/7990, info@achenbach.de Internet: www.achenbach.de SMS Meer GmbH see Rolling bar machining 3.2 Thin strip / foil rolling mills / complete plant Achenbach Buschhütten GmbH Siegener Str. 152, D-57223 Kreuztal Tel. +49 (0) 2732/7990, info@achenbach.de Internet: www.achenbach.de Cable sheathing presses Kabelummantelungspressen Feinband- / Folienwalzwerke / Komplettanlagen SMS Meer GmbH see Rolling bar machining 3.2 SMS Demag Aktiengesellschaft Eduard-Schloemann-Straße 4 D-40237 Düsseldorf Telefon: (0211) 8 81-0 Telefax: (0211) 8 81-49 02 Internet: http://www.sms-demag.com E-Mail: communications@sms-demag.com Geschäftsbereiche: Warmflach- und Kaltwalzwerke Wiesenstraße 30 D-57271 Hilchenbach-Dahlbruch Telefon: (02733) 29-0 Telefax: (02733) 29-28 52 Bandanlagen Walderstraße 51/53 D-40724 Hilden Telefon: (0211) 8 81-5100 Telefax: (0211) 8 81-5200 3.9 Adjustment devices / Adjustageeinrichtungen ABB Automation Technologies AB Force Measurement S-72159 Västeras, Sweden Phone: +46 21 342000 Fax: +46 21 340005 E-Mail: pressductor@se.abb.com Internet: www.abb.com/pressductor Cable undulating machines Kabelwellmaschinen SMS Meer GmbH see Rolling bar machining 3.2 3.10 Process technology / Automation technology SMS Demag Aktiengesellschaft see Process technology/ Automation technology 3.10 Strip flatness measurement and control equipment Bandplanheitsmess- und -regeleinrichtungen Prozesstechnik / Automatisierungstechnik 4Production AG Produktionsoptimierende Lösungen Adenauerstraße 20, D-52146 Würselen Tel.: +49 (0) 2405 / 4135-0 info@4production.de, www.4production.de Transverse cutting units Achenbach Buschhütten GmbH Siegener Str. 152, D-57223 Kreuztal Tel. +49 (0) 2732/7990, info@achenbach.de Internet: www.achenbach.de Querteilanlagen Danieli Fröhling Finkenstrasse 19 D-57462 Olpe Germany Tel.: +49 (0) 27 61 / 894-0 Fax: +49 (0) 27 61 / 894-200 E-Mail: d.neumann@danieli-froehling.de Internet: www.danieli-froehling.de Sales Contact: Detlef Neumann SIEMAG GmbH Obere Industriestraße 8 D-57250 Netphen Tel.: +49 (0) 2738 / 21-0 Fax: +49 (0) 2738 / 21-503 E-Mail: metals@siemag.com Internet: www.siemag.com Process control technology Prozessleittechnik Longitudinal splitting units Längsteilanlagen Danieli Fröhling Finkenstrasse 19 D-57462 Olpe Germany Tel.: +49 (0) 27 61 / 894-0 Fax: +49 (0) 27 61 / 894-200 E-Mail: d.neumann@danieli-froehling.de Internet: www.danieli-froehling.de Sales Contact: Detlef Neumann ALUMINIUM · 1-2/2007 SMS Demag Aktiengesellschaft see Process technology/ Automation technology 3.10 Unitechnik Cieplik & Poppek AG D-51674 Wiehl, www.unitechnik.com SMS Demag Aktiengesellschaft Eduard-Schloemann-Straße 4 D-40237 Düsseldorf Telefon: (0211) 8 81-0 Telefax: (0211) 8 81-49 02 Internet: http://www.sms-demag.com E-Mail: communications@sms-demag.com Geschäftsbereiche: Warmflach- und Kaltwalzwerke Wiesenstraße 30 D-57271 Hilchenbach-Dahlbruch Telefon: (02733) 29-0 Telefax: (02733) 29-28 52 Bandanlagen Walderstraße 51/53 D-40724 Hilden Telefon: (0211) 8 81-5100 Telefax: (0211) 8 81-5200 123 Lieferverzeichnis 3.16 Coil storage systems Bundlagersysteme ABB Automation Technologies AB Force Measurement S-72159 Västeras, Sweden Phone: +46 21 342000 Fax: +46 21 340005 E-Mail: pressductor@se.abb.com Internet: www.abb.com/pressductor 3.11 Coolant / lubricant preparation SMS Demag Aktiengesellschaft see Coolant / lubricant preparation 3.11 3.12 Air extraction systems Abluft-Systeme Exhaust air purification systems (active) Abluft-Reinigungssysteme (aktiv) Kühl-/SchmiermittelAufbereitung Rolling oil recovery and treatment units Walzöl-Wiederaufbereitungsanlagen SIEMAG GmbH Obere Industriestraße 8 D-57250 Netphen Tel.: +49 (0) 2738 / 21-0 Fax: +49 (0) 2738 / 21-503 E-Mail: metals@siemag.com Internet: www.siemag.com Vollert GmbH + Co. KG Anlagenbau see Transport of finished anode elements to the pot room 1.4 Achenbach Buschhütten GmbH Siegener Str. 152, D-57223 Kreuztal Tel. +49 (0) 2732/7990, info@achenbach.de Internet: www.achenbach.de 3.17 Strip Processing Lines Bandprozesslinien Strip Processing Lines Bandprozesslinen SMS Demag Aktiengesellschaft Eduard-Schloemann-Straße 4 D-40237 Düsseldorf Telefon: (0211) 8 81-0 Telefax: (0211) 8 81-49 02 Internet: http://www.sms-demag.com E-Mail: communications@sms-demag.com Geschäftsbereiche: Warmflach- und Kaltwalzwerke Wiesenstraße 30 D-57271 Hilchenbach-Dahlbruch Telefon: (02733) 29-0 Telefax: (02733) 29-28 52 Bandanlagen Walderstraße 51/53 D-40724 Hilden Telefon: (0211) 8 81-5100 Telefax: (0211) 8 81-5200 SMS Demag Aktiengesellschaft Eduard-Schloemann-Straße 4 D-40237 Düsseldorf Telefon: (0211) 8 81-0 Telefax: (0211) 8 81-49 02 Internet: http://www.sms-demag.com E-Mail: communications@sms-demag.com Geschäftsbereiche: Warmflach- und Kaltwalzwerke Wiesenstraße 30 D-57271 Hilchenbach-Dahlbruch Telefon: (02733) 29-0 Telefax: (02733) 29-28 52 Bandanlagen Walderstraße 51/53 D-40724 Hilden Telefon: (0211) 8 81-5100 Telefax: (0211) 8 81-5200 Filtering plants and systems Filteranlagen und Systeme Filter for rolling oils and emulsions Bergwerk- und WalzwerkMaschinenbau GmbH Mercatorstraße 74 – 78 D-47051 Duisburg Tel.: +49 (0) 203-9929-0 Fax: +49 (0) 203-9929-400 E-Mail: bwg@bwg-online.de Internet: www.bwg-online.com Colour Coating Lines Bandlackierlinien www.bwg-online.com see Strip Processing Lines 3.17 Strip Annealing Lines Bandglühlinien Filter für Walzöle und Emulsionen www.bwg-online.com see Strip Processing Lines 3.17 Achenbach Buschhütten GmbH Siegener Str. 152, D-57223 Kreuztal Tel. +49 (0) 2732/7990, info@achenbach.de Internet: www.achenbach.de Dantherm Filtration GmbH Industriestr. 9, D-77948 Friesenheim Tel.: +49 (0) 7821 / 966-0, Fax: - 966-245 E-Mail: info.de@danthermfiltration.com Internet: www.danthermfiltration.com 3.14 Storage and dispatch Rolling oil rectification units Lagerung und Versand Stretch Levelling Lines Streckrichtanlagen www.bwg-online.com see Strip Processing Lines 3.17 Walzölrektifikationsanlagen Lithographic Sheet Lines Achenbach Buschhütten GmbH Siegener Str. 152, D-57223 Kreuztal Tel. +49 (0) 2732/7990, info@achenbach.de Internet: www.achenbach.de 124 SIEMAG GmbH Obere Industriestraße 8 D-57250 Netphen Tel.: +49 (0) 2738 / 21-0 Fax: +49 (0) 2738 / 21-503 E-Mail: metals@siemag.com Internet: www.siemag.com Lithografielinien www.bwg-online.com see Strip Processing Lines 3.17 ALUMINIUM · 1-2/2007 Lieferverzeichnis 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 Foundry Gießerei Work protection and ergonomics Heat-resistant technology Conveyor and storage technology Mould and core production Mould accessories and accessory materials Foundry equipment Casting machines and equipment Handling technology Construction and design Measurement technology and materials testing Metallic charge materials Finshing of raw castings Melt operations Melt preparation Melt treatment devices Control and regulation technology Environment protection and disposal Dross recovery 4.2 Heat-resistent technology Feuerfesttechnik Refractories Feuerfeststoffe Silca Service- und Vertriebsgesellschaft für Dämmstoffe mbH Auf dem Hüls 6, D-40822 Mettmann Tel. 02104/97270, Fax 02104/76902 E-Mail: info@silca-online.de Internet: www.silca-online.de Arbeitsschutz und Ergonomie Feuerfesttechnik Förder- und Lagertechnik Form- und Kernherstellung Formzubehör, Hilfsmittel Gießereianlagen Gießmaschinen und Gießeinrichtungen Handhabungstechnik Konstruktion und Design Messtechnik und Materialprüfung Metallische Einsatzstoffe Rohgussnachbehandlung Schmelzbetrieb Schmelzvorbereitung Schmelzebehandlungseinrichtungen Steuerungs- und Regelungstechnik Umweltschutz und Entsorgung Schlackenrückgewinnung 4.6 Foundry equipment Gießereianlagen Cast-Tec GmbH & Co. KG Fertigungstechnik & Service D-44536 Lünen, Brunnenstraße 138 Telefon: 02306/20310-0 Telefax: 02306/20310-11 E-Mail: Info@cast-tec.de Internet: www.cast-tec.de Promat GmbH – Techn. Wärmedämmung Scheifenkamp 16, D-40878 Ratingen Tel. +49 (0) 2102 / 493-0, Fax -493 115 verkauf3@promat.de, www.promat.de THERMCON OVENS BV Casting launder linings Planning Gießrinnenauskleidungen 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 Förder- und Lagertechnik Vollert GmbH + Co. KG Anlagenbau see Transport of finished anode elements to the pot room 1.4 Gießerei-Werkzeuge Albert Turk GmbH & Co. KG D-58540 Meinerzhagen, Tel. 02358/2727-0, Fax 02358/2727-27 Casting machines Gießmaschinen see Extrusion 2 Projektierung Silca Service- und Vertriebsgesellschaft für Dämmstoffe mbH Auf dem Hüls 6, D-40822 Mettmann Tel. 02104/97270, Fax 02104/76902 E-Mail: info@silca-online.de Internet: www.silca-online.de 4.3 Conveyor and storage technology Tolls for the foundry HERTWICH ENGINEERING GmbH Maschinen und Industrieanlagen Weinbergerstraße 6, A-5280 Braunau am Inn Phone +437722/806-0 Fax +437722/806-122 E-Mail: info@hertwich.com Internet: www.hertwich.com HERTWICH ENGINEERING GmbH Maschinen und Industrieanlagen Weinbergerstraße 6, A-5280 Braunau am Inn Phone +437722/806-0 Fax +437722/806-122 E-Mail: info@hertwich.com Internet: www.hertwich.com see Equipment and accessories 2.11 Solution annealing furnaces/plant Lösungsglühöfen/anlagen Construction Bau 4.5 Mold accessories and accessory materials ERNST REINHARDT GMBH Postfach 1880, D-78008 VS-Villingen Tel. 07721/8441-0, Fax 8441-44 E-Mail: info@ernstreinhardt.de Internet: www.Ernst-Reinhardt.com Formzubehör, Hilfmittel Fluxes Flussmittel Solvay Fluor GmbH Hans-Böckler-Allee 20 D-30173 Hannover Telefon +49 (0) 511 / 857-0 Telefax +49 (0) 511 / 857-2146 Internet: www.solvay-fluor.de ALUMINIUM · 1-2/2007 HERTWICH ENGINEERING GmbH Maschinen und Industrieanlagen Weinbergerstraße 6, A-5280 Braunau am Inn Phone +437722/806-0 Fax +437722/806-122 E-Mail: info@hertwich.com Internet: www.hertwich.com Heat treatment furnaces Wärmebehandlungsöfen see Foundry equipment 4.6 125 Lieferverzeichnis 4.7 Casting machines and equipment Gießereimaschinen und Gießeinrichtungen 4.11 Metallic charge materials 4.13 Melt operations Schmelzbetrieb Metallische Einsatzstoffe OTTO JUNKER GmbH THERMCON OVENS BV see Extrusion 2 OTTO JUNKER GmbH THERMCON OVENS BV see Extrusion 2 Molten Metall Level Control Ostra Hamnen 7 SE-430 91 Hono / Schweden Tel.: +46 31 764 5520 Fax: +46 31 764 5529 E-mail: sales@precimeter.se Internet: www.precimeter.se Sales Contact: Rolf Backberg Scholz AG Am Bahnhof D-73457 Essingen Tel. +49 (0) 7365-84-0 Fax +49 (0) 7365-1481 E-Mail: infoscholz@scholz-ag.de Internet: www.scholz-ag.de Aluminium alloys Aluminiumlegierungen Melting furnaces Schmelzöfen Büttgenbachstraße 14 D-40549 Düsseldorf/Germany Tel.: +49 (0) 211 / 5 00 91-43 Fax: +49 (0) 211 / 50 13 97 E-Mail: info@bloomeng.de Internet: www.bloomeng.com Sales Contact: Klaus Rixen Mould parting agents Kokillentrennmittel Schröder KG Schmierstofftechnik Postfach 1170 D-57251 Freudenberg Tel. 02734/7071 Fax 02734/20784 www.schroeder-schmierstoffe.de 4.8 Handling technology METALLHÜTTENWERKE BRUCH GMBH Postfach 10 06 29 D-44006 Dortmund Telefon +49 (0) 231 / 8 59 81-121 Telefax +49 (0) 231 / 8 59 81-124 E-Mail: al-vertrieb@bruch.de Internet: www.bruch.de HERTWICH ENGINEERING GmbH Maschinen und Industrieanlagen Weinbergerstraße 6, A-5280 Braunau am Inn Phone +437722/806-0 Fax +437722/806-122 E-Mail: info@hertwich.com Internet: www.hertwich.com Handhabungstechnik THERMCON OVENS BV see Extrusion 2 METALLHANDELSGESELLSCHAFT SCHOOF & HASLACHER MBH & CO. KG Postfach 600714, D 81207 München Telefon 089/829133-0 Telefax 089/8201154 E-Mail: info@metallhandelsgesellschaft.de Internet: www.metallhandelsgesellschaft.de see Equipment and accessories 2.11 Vollert GmbH + Co. KG Anlagenbau see Transport of finished anode elements to the pot room 1.4 4.9 Construction and Design Konstruktion und Design THERMCON OVENS BV ALERIS Recycling (German Works) GmbH Aluminiumstraße 3 D-41515 Grevenbroich Telefon +49 (0) 2181/16 45 0 Telefax +49 (0) 2181/16 45 100 E-Mail: recycling@aleris.com Internet: www.aleris-recycling.com MARX GmbH & Co. KG Lilienthalstr. 6-18 D-58638 Iserhohn Tel.: +49 (0) 2371 / 2105-0, Fax: -11 E-Mail: info@marx-gmbh.de Internet: www.marx-gmbh.de maerz-gautschi Industrieofenanlagen GmbH see Casting Equipment 3.1 Holding furnaces see Extrusion 2 Warmhalteöfen 4.10 Measurement technology and materials testing Messtechnik und Materialprüfung SRS Amsterdam BV www.srsamsterdam.com see Casthouse (foundry) 1.5 126 Pre alloys Vorlegierungen METALLHANDELSGESELLSCHAFT SCHOOF & HASLACHER MBH & CO. KG Postfach 600714, D 81207 München Telefon 089/829133-0 Telefax 089/8201154 E-Mail: info@metallhandelsgesellschaft.de Internet: www.metallhandelsgesellschaft.de Büttgenbachstraße 14 D-40549 Düsseldorf/Germany Tel.: +49 (0) 211 / 5 00 91-43 Fax: +49 (0) 211 / 50 13 97 E-Mail: info@bloomeng.de Internet: www.bloomeng.com Sales Contact: Klaus Rixen ALUMINIUM · 1-2/2007 Lieferverzeichnis 4.14 Melt preparation Schmelzvorbereitung Steuerungs- und Regelungstechnik see Equipment and accessories 2.11 maerz-gautschi Industrieofenanlagen GmbH see Casting Equipment 3.1 4.16 Control and regulation technology HCL measurements OTTO JUNKER GmbH THERMCON OVENS BV HCL Messungen see Extrusion 2 Heat treatment furnaces Wärmebehandlungsanlagen Degassing, filtration Entgasung, Filtration maerz-gautschi Industrieofenanlagen GmbH see Casting Equipment 3.1 HERTWICH ENGINEERING GmbH Maschinen und Industrieanlagen Weinbergerstraße 6, A-5280 Braunau am Inn Phone +437722/806-0 Fax +437722/806-122 E-Mail: info@hertwich.com Internet: www.hertwich.com Drache Umwelttechnik GmbH Werner-v.-Siemens-Straße 9/24-26 D 65582 Diez/Lahn Telefon 06432/607-0 Telefax 06432/607-52 Internet: http://www.drache-gmbh.de OPSIS AB Box 244, S-24402 Furulund, Schweden Tel. +46 (0) 46-72 25 00, Fax -72 25 01 E-Mail: info@opsis.se Internet: www.opsis.se 4.17 Environment protec tion and disposal Umweltschutz und Entsorgung Dust removal / Entstaubung NEOTECHNIK GmbH Entstaubungsanlagen Postfach 110261, D-33662 Bielefeld Tel. 05205/7503-0, Fax 05205/7503-77 info@neotechnik.com, www.neotechnik.com IUT Industriell Ugnsteknik AB Industrivägen 2, 43892 Härryda, Sweden Tel. +46 (0) 301 31510 Fax +46 (0) 301 30479 E-Mail: office@iut.se Internet: www.iut.se see Equipment and accessories 2.11 maerz-gautschi Industrieofenanlagen GmbH see Casting Equipment 3.1 HERTWICH ENGINEERING GmbH Maschinen und Industrieanlagen Weinbergerstraße 6, A-5280 Braunau am Inn Phone +437722/806-0 Fax +437722/806-122 E-Mail: info@hertwich.com Internet: www.hertwich.com Flue gas cleaning Melt treatment agents Dantherm Filtration GmbH Industriestr. 9, D-77948 Friesenheim Tel.: +49 (0) 7821 / 966-0, Fax: - 966-245 E-Mail: info.de@danthermfiltration.com Internet: www.danthermfiltration.com Schmelzebehandlungsmittel maerz-gautschi Industrieofenanlagen GmbH see Casting Equipment 3.1 Rauchgasreinigung 4.18 Dross recovery Schlackenrückgewinnung 4.15 Melt treatment devices Heat treatment technologies Wärmebehandlungsverfahren Wärmebehandlungstechnologien Schmelzbehandlungseinrichtungen OTTO JUNKER GmbH THERMCON OVENS BV see Extrusion 2 OTTO JUNKER GmbH THERMCON OVENS BV see Extrusion 2 ALUTEC-BELTE AG, ALUMINIUMTECHNOLOGIE Lindenweg 5 D-33129 Delbrück Tel.: +49 (0 ) 52 50 / 98 79-0 Fax: +49 (0 ) 52 50 / 98 79-149 E-Mail: info@alutec-belte.com Web: www.alutec-belte.com ALUMINIUM · 1-2/2007 Metaullics Systems Europe B.V. P.O.Box 748 NL-2920 CA Krimpen a/d Yssel Tel. +31-180/590890 Fax +31-180/551040 E-Mail: info@metaullics.nl Internet: www.metaullics.com Do you need more information? E-Mail: Schwichtenberg@giesel.de 127 Lieferverzeichnis 5 Materials and Recycling Thermal coating Werkstoffe und Recycling Berolina Metallspritztechnik Wesnigk GmbH Pappelhain 30 D-15378 Hennickendorf Tel.: +49 (0) 33434 / 46060 Fax: +49 (0) 33434 / 46701 E-Mail: info@metallspritztechnik.de Internet: www.metallspritztechnik.de Aluminium foam Aluminiumschaum Granulated aluminium Aluminiumgranulate Thermische Beschichtung 6.2 Semi products Alulight International GmbH Lach 22 A-5282 Ranshofen Telefon ++43 / 7722 / 62216-26 Telefax ++43 / 7722 / 62216-11 E-Mail: office@alulight.com Internet: www.alulight.com 6 ECKA Granulate Austria GmbH Bürmooser Landesstraße 19 A-5113 St. Georgen/Salzburg Telefon +43 7722 62216-41 Telefax +43 7722 62216-44 Kontakt: Walter Rajner E-Mail: w.rajner@ecka-granules.com Machining and Application Bearbeitung und Anwendung Machining of aluminium Aluminiumbearbeitung Haarmann Holding GmbH see Die preparation and care 2.6 Prozesse für die Oberflächenbehandlung Wires / Drähte DRAHTWERK ELISENTAL W. Erdmann GmbH & Co. Werdohler Str. 40, D-58809 Neuenrade Postfach 12 60, D-58804 Neuenrade Tel. +49(0)2392/697-0, Fax 49(0)2392/62044 E-Mail: info@elisental.de Internet: www.elisental.de 6.3 Equipment for forging and impact extrusion Ausrüstung für Schmiedeund Fließpresstechnik Paint stripping / Entlackung Henkel KGaA Hydraulic Presses Hydraulische Pressen see Prozesse für die Oberflächentechnik 6.1 Pretreatment before coating Vorbehandlung vor der Beschichtung 6.1 Surface treatment processes Halbzeuge Henkel KGaA see Prozesse für die Oberflächentechnik 6.1 Joining of light metals LASCO Umformtechnik GmbH Hahnweg 139, D-96450 Coburg Tel. +49 (0) 9561 642-0 Fax +49 (0) 9561 642-333 E-Mail: lasco@lasco.de Internet: www.lasco.com Fügen von Leichtmetallen 8 Henkel KGaA D-40191 Düsseldorf Tel. +49 (0) 211 / 797-30 00 Fax +49 (0) 211 / 798-36 36 Internet: www.henkel-technologies.com Fachliteratur Adhesive bonding / Verkleben Henkel KGaA Pretreatment before adhesive bonding Anodising / Anodisation Henkel KGaA see Prozesse für die Oberflächentechnik 6.1 Cleaning / Reinigung Henkel KGaA Literatur Technikcal literature Henkel KGaA Standort Heidelberg Hans-Bunte-Straße 4 D-69123 Heidelberg Tel. +49 (0) 6221 / 704-204 Fax +49 (0) 6221 / 704-515 see Prozesse für die Oberflächentechnik 6.1 Literature Vorbehandlung vor dem Verkleben Taschenbuch des Metallhandels Fundamentals of Extrusion Technology Giesel Verlag GmbH Verlag für Fachmedien Ein Unternehmen der Klett-Gruppe Rehkamp 3 · 30916 Isernhagen Tel. 0511 / 73 04-122 · Fax 0511 / 73 04-157 Technical journals Fachzeitschriften Henkel KGaA see Prozesse für die Oberflächentechnik 6.1 International Journal for Industry, Research and Application Spectrocolor Interferencecolouring Spectrocolor Interferenzfärben Henkel KGaA see Prozesse für die Oberflächentechnik 6.1 see Prozesse für die Oberflächentechnik 6.1 Joining / Fügen Henkel KGaA see Prozesse für die Oberflächentechnik 6.1 128 Waste water treatment Abwasseraufbereitung Henkel KGaA see Prozesse für die Oberflächentechnik 6.1 Giesel Verlag GmbH Ein Unternehmen der Klett-Gruppe Rehkamp 3 · 30916 Isernhagen Tel. 0511 / 73 04-122 · Fax 0511 / 73 04-157 ALUMINIUM · 1-2/2007 IMPRESSUM / IMPRINT International ALUMINIUM Journal 83. Jahrgang 1.1.2007 Herausgeber / Publisher Dr.-Ing. Peter Johne Redaktion / Editorial office Dipl.-Vw. Volker Karow Chefredakteur, Editor in Chief Franz-Meyers-Str. 16, 53340 Meckenheim Tel: 02225/83 59 643, Fax: 02225/18 4 58 E-Mail: vkarow@online.de Dipl.-Ing. Rudolf P. Pawlek Fax: ++41-274 555 926 Hüttenindustrie und Recycling Dipl.-Ing. Bernhard Rieth Walzwerkstechnik und Bandverarbeitung Verlag / Publishing house Giesel Verlag GmbH, Verlag für Fachmedien, Unternehmen der Klett-Gruppe, Postfach 120158, 30907 Isernhagen; Rehkamp 3, 30916 Isernhagen, Tel: 0511/7304-0, Fax: 0511/7304-157. E-mail: Giesel@giesel.de Internet: www.alu-web.de. Postbank/postal cheque account Hannover, BLZ/routing code: 25010030; Kto.Nr./ account no. 90898-306, Bankkonto/ bank account Commerzbank AG, BLZ/ routing code: 25040066, Kto.-Nr./account no. 1500222 Geschäftsleitung / General Manager Dietrich Taubert, Tel: 05 11/73 04-147, Taubert@giesel.de Objektleitung / Publication Manager Stefan Schwichtenberg Tel: 05 11/ 73 04-142, Schwichtenberg@giesel.de Anzeigendisposition / Advertising layout Beate Schaefer Tel: 05 11/ 73 04-148, BSchaefer@giesel.de Vertriebsleitung / Distribution Manager Jutta Illhardt Tel: 05 11/ 73 04-126, Illhardt@giesel.de Abonnenten-Service / Reader service Kirsten Voß Tel: 05 11/ 73 04-122, Vertrieb@giesel.de Herstellung & Druck / Printing house BWH GmbH, Beckstr. 10, D-30457 Hannover Jahresbezugspreis EUR 285,– (Inland inkl. 7% Mehrwertsteuer und Versandkosten). Europa EUR 289,- inkl. Versandkosten. Übersee US$ 375,– inkl. Normalpost; Luftpost zuzügl. US$ 82,–. Preise für Studenten auf Anfrage. ALUMINIUM erscheint zehnmal pro Jahr. Kündigungen jeweils sechs Wochen zum Ende der Bezugszeit. Subscription rates EUR 285,— p.a. (domestic incl. V.A.T.) plus postage. Europe EUR 289,- incl. surface mail. Outside Europe US$ 375,– incl. sur- ALUMINIUM · 1-2/2007 face mail, air mail plus US$ 82,–. Aluminium is published monthly (10 issues a year). Cancellations six weeks prior to the end of a year. Anzeigenpreise Preisliste Nr. 47 vom 1.1.2007. Advertisement rates price list No. 47 from 1.1.2007. Die Zeitschrift und alle in ihr enthaltenen Beiträge und Abbildungen sind urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verlages unzulässig und strafbar. Das gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Bearbeitung in elektronischen Systemen. Der Verlag übernimmt keine Gewähr für die Richtigkeit der in diesem Heft mitgeteilten Informationen und haftet nicht für abgeleitete Folgen. Haftung bei Leistungsminderung durch höhere Gewalt oder andere vom Verlag nicht verschuldete Umstände (z. B. Streik) ist ausgeschlossen. This journal and all contributions contained therein are protected by copyright. Any utilization outside the strict limits of copyright legislation without the express consent of the publisher ist prohibited and actionable at law. This applies in particular to reproduction, translations, microfilming and storage or processing in electronic systems. The publisher offers no guarantee that the information in this volume is accurate and accepts no liability for consequences deriving therefrom. No liability whatsoever is accepted for perfomance lag caused by vorce majeure or by circumstances beyond the publisher’s control (e.g. industrial action). ISSN: 0002-6689 © Giesel Verlag GmbH Verlagsrepräsentanz / Representatives Nielsen-Gebiet 1 (Schleswig-Holstein, Hamburg, Bremen, Niedersachsen ohne Osnabrück): Giesel Verlag GmbH Tel: 05 11/73 04-145, Fax: 05 11/73 04-157 E-mail: giesel@giesel.de www.giesel-verlag.de Nielsen-Gebiet 2 (Nordrhein-Westfalen, Raum Osnabrück): Medienbüro Jürgen Wickenhöfer Minkelsches Feld 39, 46499 Hamminkeln Tel: 0 28 52 / 9 4180, Fax: 0 28 52 / 9 4181 E-mail: info@jwmedien.de www.jwmedien.de Nielsen-Gebiet 3a (Hessen, Saarland, Rheinland-Pfalz): multilexa GmbH, publisher services Unterm Hungerrain 23, 63853 Mömlingen Tel: 0 60 22/35 14, Fax: 0 60 22/3 80 80 E-mail: thomas.werner@multilexa.de www.multilexa.de Nielsen-Gebiet 3 b (Baden-Württemberg): G. Fahr, Verlags- und Pressebüro Marktplatz 10, 72654 Neckartenzlingen Tel: 0 71 72/30 84, Fax: 07172/2 14 78 E-mail: info@verlagsbuero-fahr.de Nielsen-Gebiet 4 (Bayern): G. Fahr, Verlags- und Pressebüro Marktplatz 10, 72654 Neckartenzlingen Tel: 0 71 72/30 84, Fax: 07172/2 14 78 E-mail: info@verlagsbuero-fahr.de Nielsen-Gebiet 5, 6 + 7 (Berlin, Mecklenburg-Vorpommern, Brandenburg, Sachsen-Anhalt Sachsen, Thüringen): multilexa GmbH, publisher services Unterm Hungerrain 23, 63853 Mömlingen Tel: 0 60 22/35 14, Fax: 0 60 22/3 80 80 E-mail: thomas.werner@multilexa.de www.multilexa.de Netherlands, Belgium, Luxembourg BSW International Marketing Bent S. Wissing Oestbanegade 11 – DK-2100 Kopenhagen Tel: +4535/385255 Fax: +45 35/385220 bsw@worldonline.dk Switzerland JORDI PUBLIPRESS Postfach 154 · CH-3427 Utzenstorf Tel. +41 (0)32 / 666 30 90, Fax +41 (0)32 / 666 30 99 E-Mail: info@jordipublipress.ch www.jordipublipress.ch Austria Verlagsbüro Forstner Buchbergstraße 15/1, A-1140 Wien Tel: +43(0)1 / 9 79 71 89 Fax: +43(0)1 / 9 79 1329 E-Mail: forstner.wolfgang@aon.at Italy MEDIAPOINT & COMMUNICATIONS SRL Corte Lambruschini – Corso Buenos Aires, 8 Vo piano – Interno 7, I-16129 Genova Tel: +39(0)10 / 5 70 49 48, Fax: +39(0)10 / 5 53 00 88 E-mail: info@mediapointsrl.it www.mediapointsrl.it USA, Canada, Africa, U.A.E. etc. John Travis Rayleigh House 2, Richmond Hill Richmond, Surrey TW10 6QX Großbritannien Tel: +44 (0)7799001442 Fax:+44 (0)1344291072 E-Mail: apt@aluminiumindustry.com United Kingdom John Travis Rayleigh House 2, Richmond Hill Richmond, Surrey TW10 6QX Großbritannien Tel: +44 (0)7799001442 Fax:+44 (0)1344291072 E-Mail: apt@aluminiumindustry.com Scandinavia and Denmark BSW International Marketing Bent S. Wissing Oestbanegade 11 – DK-2100 Kopenhagen Tel: 0045/35/385255 Fax: 0045 /35/385220 bsw@worldonline.dk France DEF & Communication Axelle Chrismann 48 boulevard Jean Jaurès, F-92110 Clichy Tel: +33 (0)1 47 30 71 80, Fax: +33 (0)1 47 30 01 89 E-Mail: achrismann@wanadoo.fr 129 VORSCHAU / PREVIEW Im nächsten Heft Special: Aluminium-Recycling Überblick über die Sekundäraluminiumindustrie weltweit Schmelz- und Gießtechnik: Innovative Anlagen von Ausrüstern, konstruktive Anforderungen an die Anlagenmodernisierung, Schmelzebehandlung Unterschiedliche Recyclingansätze in Umweltanalysen und ihre Konsequenzen Aluminium im Automobil Gießtechnik im Motorenbau Marktentwicklung der Automobilindustrie und des Leichtmetalls Aluminium Economics Forschung: Entwicklung neuer Duktilitätskriterien von Leichtbauwerkstoffen in der Fahrzeugentwicklung Weitere Themen Aktuelles aus der Branche - Hüttentechnik - Anwendungen Wertanalyse im Downstreamgeschäft der Aluminiumindustrie Erscheinungstermin: 5. März 2007 Anzeigenschluss: 16. Februar 2007 Redaktionsschluss: 2. Februar 2007 In the next issue Research Special: Aluminium recycling Potentials of new ductility criterions in car development with lightweight materials Overview of the global secondary aluminium industry Other topics Melting and casting technology: innovative plants from suppliers, design requirements for plant modernisation, melt treatment Smelting technology Latest news from the industry Applications Different recycling approaches in environment analyses and their consequences Automotive Casting technology for engines Market development in the car industry and of the lightweight metal Economics The value engineering in downstream sectors of modern aluminium industry 130 Day of publication: 5 March 2007 Advertisement deadline: 16 February 2007 Editorial deadline: 12 February 2007 ALUMINIUM · 1-2/2007 Simply closer to your products. Visit us at METEC 2007 Hall 6, Booth E20 June 12 to 16 in Düsseldorf, Germany Your technology partner in the aluminum industry. How do we meet the growing demands of our customers in the aluminum industry worldwide? By supplying all-inclusive mechatronic solutions. Whatever you want to manufacture from this material, or what product quality you aim to achieve – at SMS Demag we know what it takes. That’s because we listen! And because we draw on our holistic process know- how and experience. Our plants – whether new facilities, conversions or revamps – always ensure that our solutions encompass the latest developments in aluminum production and processing. Always closer to you – SMS Demag. MEETING your EXPECTATIONS SMS DEMAG AG Eduard-Schloemann-Strasse 4 40237 Düsseldorf, Germany Phone: +49 (0) 211 881-0 Fax: +49 (0) 211 881-4902 E-mail: communications@sms-demag.com Internet: www.sms-demag.com .0-5&$)"EWBODFE5FDIOPMPHZJODMVEFT 5*/035."MVNJOVNXFUUBCMFDBUIPEFDPBUJOH .0-5&$)7JUUPSJPEF/PSB*OFSU.FUBMMJD"OPEFT .0-5&$)5FDIOPMPHZ$FOUFS .0-5&$)5FDIOPMPHZ$FOUFS 3PVUFEFMn"ODJFO4JFSSF $)4JFSSF 4XJU[FSMBOE .0-5&$)0GGJDFT 2VBJEV.POU#MBOD $)(FOFWB 4XJU[FSMBOE XXXNPMUFDIDI Improve your smelter performance ... a Consulting and project realization :FBST Analyzing smelter full potential Performing measurement campaigns Modeling Thermal - MagnetoHydroDynamic Analyzing Process Control and Signals Improving Cell Design Measurement devices MHD, Thermal ,"//",4" 3PVUFEFMn"ODJFO4JFSSF $)4JFSSF 4XJU[FSMBOE XXXLBOOBLDI