special - ALU

Transcription

special - ALU
Alcoa image - used with permission
Giesel Verlag GmbH · Postfach 120158 · D-30907 Isernhagen – PVST H 13410 – Dt. Post AG – Entgelt bezahlt
Special 2007
The international
smelting industry
Positive mood in the
German aluminium
industry
Strapping technology
with PET high performance strip
Volume 83 · January / February 2007
International Journal for Industry, Research and Application
1/2
Billets ready for shipment.
Continuous Homogenizing Plant.
Continuous
Homogenizing Plant
Continuous Homogenizing Plant.
Leading technology in the aluminium casthouse.
There are many benefits in one-stop shopping –
even for industrial goods. Reliable, co-operative
planning, specifications, which meet exactly your
demands and individual service-packages to operate
on first-class level throughout the whole lifetime of
the plant – this can be realized by one of the most
experienced suppliers: Hertwich Engineering.
Major benefits
Hertwich Engineering is dedicated to leading technology in the aluminium casthouse. We add value
by designing integrated turn-key solutions. From
melting and remelting to testing and packing. The
results are convincing: highest quality of products
at lowest cost-of-ownership. This has been proven
by numerous plants all over the world.
Continuous Homogenizing Plant
Reliable, maximum homogenizing quality,
uniform for all billets
Lowest labour costs, full automation
Best log straightness, no deep surface marks
Extremly reliable operation, little down-time,
low repair costs
Lowest energy consumption, low power ratings
Flexibility of plant layout
More than 80 plants in operation
MEETING your EXPECTATIONS
HERTWICH ENGINEERING GMBH
Weinbergerstrasse 6
5280 Braunau, Austria
Phone: +43 (0) 7722 806-0
Fax:
+43 (0) 7722 806-122
E-mail: info@hertwich.com
Internet: www.hertwich.com
EDITORIAL
Volker Karow
Chefredakteur
Editor in Chief
pro domo:
Kontinuität im
Wandel
pro domo:
Change with
continuity
ALUMINIUM · 1-2/2007
Die erste Ausgabe der ALUMINIUM
unter neuer redaktioneller Leitung
und dann gleich in einem neuen
„Look“: Das könnte schnell auch als
inhaltlicher Bruch mit der bisherigen
Tradition der Zeitschrift interpretiert
werden, doch wäre dies ein Missverständnis.
Der langjährige Chefredakteur
Dr.-Ing. Peter Johne hat die ALUMINIUM in den vergangenen mehr als
zehn Jahren zu einer international
renommierten Fachzeitschrift entwickelt, die sich durch fundierte und gut
recherchierte Berichte aus Industrie,
Forschung und Praxis auszeichnet.
Diese Prägung, das ist der Anspruch,
soll natürlich fortgesetzt werden. Dabei liegt es in der Natur der Sache,
dass ein gelernter Volkswirt einen
etwas anderen Blickwinkel als ein
Ingenieur hat. Das mag hier und da
mit einer leichten inhaltlichen Akzentverschiebung einhergehen, doch
bleiben technische und wissenschaftliche Beiträge auch künftig zentrale
Bausteine der ALUMINIUM. Die neue
Chefredaktion weiß sich dabei glücklich, auf die Expertise des geschätzten
Kollegen zurückgreifen zu können.
Dr. Johne wird dieser Zeitschrift weiterhin zur Verfügung stehen: als Autor
und auch als Herausgeber.
Was nun die Überarbeitung des
Layouts betrifft: Der Leser wird beim
Durchblättern der neuen Ausgabe
feststellen, dass der Anteil der farbigen Seiten erweitert wurde. Bei genauerem Hinsehen wird erkennbar,
dass Struktur und Gliederung der
ALUMINIUM mit Blick auf Übersichtlichkeit und Leserführung überarbeitet wurden. Auch hinsichtlich der
Zweisprachigkeit von Artikeln waren
Herausgeber und Redaktion bestrebt,
aus Lesersicht Optimierungen vorzunehmen. Zu guter Letzt ging es auch
darum, die Zeitschrift layouttechnisch abwechslungsreicher zu gestalten. Wir hoffen, dies ist uns gelungen
und der geneigte Leser sieht in der
Überarbeitung einen Gewinn.
Jenseits gestalterischer Neuerungen bleibt die ALUMINIUM auch
künftig eine die Branchenwelt abbildende Fachzeitschrift und den sich
daraus ergebenden Anforderungen
verpflichtet.
One of the first things that will be
noticed about this first issue of ALUMINIUM under its new editorial management, is a “new look”. That might at
first sight also lead to the expectation
of a break from the previous tradition
of the journal in terms of content, but
this would be a misunderstanding.
Dr.-Ing. Peter Johne, Editor in
Chief of ALUMINIUM for very many
years, developed it over much more
than a decade into an internationally renowned technical journal distinguished for its authoritative and
well-researched reports on industry,
research and practical applications.
Naturally, we aim to maintain that
reputation and image. It is only to be
expected, however, that a trained political economist will see matters from
a viewpoint somewhat different from
that of an engineer. Here and there this
may result in a slight shift of emphasis in the content, but technical and
scientific contributions will as always
remain cornerstones of ALUMINIUM
in the future as well. The new Chief
Editor is only too happy to make the
most of the expertise of his esteemed
colleague Dr. Johne, who will still lend
his services to this journal, both as an
author and as publisher.
As regards the redesigned layout:
readers leafing through the new issue will note that the proportion of
coloured pages has been increased.
Careful observation will show that the
structure and organisation of ALUMINIUM have been modified with
a view to greater clarity and reader
guidance. In relation to the bilingual
presentation of articles as well, the
publisher and editor have striven to
achieve optimisations from the reader’s standpoint. Last but not least, some
further changes have had to be made
in order to provide greater variety in
the technical layout of the journal.
We hope that we have managed this
successfully and that sympathetically
inclined readers will find the changes
beneficial. Notwithstanding its new
design features, ALUMINIUM will in
the future too remain a journal that
faithfully portrays the world of the
aluminium branch and does all that
is necessary to fulfil the responsibility
of doing so.
3
I N H A LT
EDITORIAL
pro domo: Kontinuität im Wandel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
A KT U E L L E S
Personen, Unternehmen, Märkte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
WIRTSCHAFT
16
Aluminiumpreise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Produktionsdaten der deutschen Aluminiumindustrie . . . . . . . . . . . . . . . . . . 14
Die deutschen Hüttenbetriebe: technisch effizient, umweltpolitisch
vorbildlich und ein wichtiges Glied in der Wertschöpfungskette . . . . . 16
European Coil Coating Kongress: Marktentwicklung, Technologietrends, Gesetzgebung ................................................................. 20
S P E C I A L 2 0 0 7: D I E I N T E R N AT I O N A L E
A L U M I N I U M - H Ü T T E N I N D U S T R I E . . . . . . . . . . . . . . . . . . . . . . . . . . 30
I N T E R N AT I O N A L E B R A N C H E N N E W S . . . . . . . . . . . . . 62
M A R KT U N D T E CH N I K
30
Signode: Umreifungstechnik mit PET-Hochleistungsband . . . . . . . . . . . . . .
Alcutec Engineering rüstet russische Umschmelzhütte aus . . . . . . . . . . . .
Deutsche Aluminiumkonjunktur läuft derzeit rund . . . . . . . . . . . . . . . . . . . . . .
Audi für innovatives Karosseriekonzept ausgezeichnet . . . . . . . . . . . . . . . .
Kolbenschmidt Pierburg setzt auf AGR-Kühler aus Aluminium. . . . . . . .
70
75
78
84
86
M A R K T B E R I C H T: A L U M I N I U M I M B A U W E S E N
Energieeffizientes Bauen im Fokus von Politik und Wirtschaft . . . . . . . . 88
Übergeordnete Trends im Fenster- und Fassadenbau . . . . . . . . . . . . . . . . . . 89
Europäischer Architektur-Wettbewerb von Corus Bausysteme ......... 90
Fenstermarkt im Plus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Größtes deutsches Büroprojekt mit Wicona-Fassaden .................... 91
RECYCLINGINDUSTRIE
0
Vorbericht: 9. Internationaler Aluminium Recycling Kongress der OEA 92
Hydro vollendet Metallkreislauf in Neuss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
FORSCHUNG
Rührreibschweißen von artungleichen Aluminiumknetund -druckgusslegierungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
V E R A N S TA LT U N G E N
22 nd ASK Metal Forming, Termine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Fortbildung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
BDI-Umweltpreiswettbewerb 2007/08 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Neue Redaktionsanschrift
New editorial office
Volker Karow
Franz-Meyers-Straße 16
D-53340 Meckenheim
Tel: +49(0)2225/8359643
Fax: +49(0)2225/18458
E-Mail: vkarow@online.de
4
D O K U M E N TAT I O N
Neue Bücher .......................................................................... 105
Firmenschriften . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Literaturhinweise .................................................................... 107
Patente ................................................................................... 109
Impressum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Vorschau ................................................................................ 130
B E Z U G S Q U E L L E N V E R Z E I C H N I S . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
ALUMINIUM · 1-2/2007
CONTENTS
EDITORIAL
pro domo: Change with continuity ........... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
NEWS IN BRIEF
People, companies, markets ................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
ECONOMICS
European Coil Coating Congress: market development,
technology trends, legislation ................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Russians are coming: example Rusal .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Hydro maintains speed in aluminium repositioning . . . . . . . . . . . . . . . . . . . . .
Global roll-out of breakthrough Novelis Fusion technology . . . . . . . . . .
Alcoa joint venture with Sapa group ......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
20
24
26
27
28
S P E C I A L 2 0 0 7: T H E I N T E R N AT I O N A L
A L U M I N I U M S M E LT I N G I N D U S T R Y
Almeq electric preheater for cathode blocks ................................. 30
Alprg: a software tool for aluminium smelting .............................. 32
Vittorio de Nora honoured by ECS ............................................... 36
Aumund cooling conveyor for hot bath material ............................ 38
Advances in gas suspension calcination technology ........................ 40
Anode rod repair and manufacture .............................................. 42
Integrated continuous billet processing ......................................... 44
De Nora inert metallic anode: further developments ...................... 48
Boron nitride plus binder – a synonym for higher productivity ....... 53
Thyristor rectifiers for aluminium plants with advanced
free-wheeling control ........................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Moeller direct pot feeding technology ....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
88
C O M PA N Y N E W S W O R L D W I D E
Aluminium smelting industry .................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Bauxite and alumina activities ................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Secondary aluminium smelting and recycling activities . . . . . . . . . . . . . . . .
Aluminium semis, Suppliers .................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
On the move...................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
62
64
66
67
68
M A R K E TS A N D T E CH N O LO GY
Signode: strapping technology with PET high-performance strip . . . .
Alcutec: German know-how for Russian recycling complex . . . . . . . . . . .
Positive mood in the German aluminium industry . . . . . . . . . . . . . . . . . . . . . .
GDA participation at UN conference on sustainability . . . . . . . . . . . . . . . . . .
EAA launches new sustainability development indicator results . . . . . .
Russia’s packaging market: aluminium processing technology at
the forefront ...................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Audi takes award for innovative TT body concept . . . . . . . . . . . . . . . . . . . . . .
Kolbenschmidt Pierburg successfully marketing its EGR system . . . . . .
Recent advances in coil coating technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
70
74
78
80
81
82
84
86
94
RECYCLING INDUSTRY
Preview of the 9 th International Aluminium Recycling
Congress of the OEA ............................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
EVENTS
Dates, 22 nd ASK Metal Forming: “Forming the Future” . . . . . . . . . . . . . . . 102
D O C U M E N TAT I O N
New books ............................................................................. 105
company brochures .................................................................. 106
Literature service ................................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Imprint ..... ........................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Preview .... ........................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Inserenten
dieser Ausgabe
List of advertisers
ABB AG, Schweiz
51
Alcutec Engineering GmbH
93
Böhler Edelstahl GmbH, Österreich
23
Buss ChemTech AG, Schweiz
65
BWG Bergwerk- und WalzwerkMaschinenbau GmbH
13
Coiltec Maschinenvertriebs GmbH
27
Drache Umwelttechnik GmbH
81
Dovebid, USA
63
Edimet SpA, Italien
11
Glama Maschinenbau GmbH
15
Hartmann Förderanlagen GmbH
57
Hertwich Engineering GmbH, Österreich
02
High Performance Industrie-Technik GmbH,
Österreich
17
Innovatherm Prof. Dr. Leisenberg
GmbH + Co. KG
37
Inotherm Industrieofen- und
Wärmetechnik GmbH
22, 78
Moeller Materials Handling GmbH
61
Moltech Sytems Ltd., Schweiz
132
Padelttherm GmbH
55
Precimeter Control AB, Schweden
19
Bruno Presezzi Officine Meccaniche, Italien 59
SMS Demag AG
131
S O U R C E O F S U P P LY L I S T I N G .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
ALUMINIUM · 1-2/2007
5
AKTUELLES
Aluminiumbranche vor großen Herausforderungen
GDA
GDA-Präsident Gerhard Buddenbaum (Foto) auf der Jahrespressekonferenz des Gesamtverbandes der
Aluminiumindustrie im November
2006: „Die Aluminiumindustrie ist
heute, mehr noch als viele andere
Branchen, ein internationales, globales Geschäft. Rohstoffe, Hüttenstandorte, Verarbeitungsstandorte und
Verbrauch sind breit gestreut und zunehmend eng miteinander vernetzt.
Unsere Branche steht vor hohen
Herausforderungen. Dass man auch
in Deutschland produzieren kann,
beweist die Aluminiumindustrie seit
Jahren, allerdings insbesondere bei
Produkten mit hoher Wertschöpfung.
Dem Wettbewerbsdruck der Niedriglohnländer setzen unsere Unternehmen ein hohes Qualitätsniveau,
absolute Zuverlässigkeit und große
Flexibilität entgegen. Die europäische
Aluminiumindustrie wird sich nur
durch ihre eigene Innovationskraft
langfristig an den Märkten behaupten. Nur wenn sich die Branche auf
die Herstellung von Produkten konzentriert, die Marktnähe brauchen,
eine hohe Wertschöpfung aufweisen
und viel Know-how und gut ausgebildetes Personal verbunden mit hohen Serviceleistungen benötigen, hat
Europa als Produktionsstandort eine
Zukunft.“ (s. S. 78f)
Bundeswirtschaftsminister Michael Glos
trifft Vertreter der NE-Metallbranche
WVM
Bundeswirtschaftsminister Michael
Glos hat gegenüber Vertretern der
deutschen und europäischen NEMetallindustrie auf die Bedeutung
der Leicht- und Buntmetalle für den
technologischen Fortschritt und den
Exporterfolg der deutschen Wirtschaft hingewiesen. Deutschland und
die EU brauchen nach Ansicht des
Ministers auch in Zukunft „eine geschlossene Wertschöpfungskette“ bei
der Erzeugung und Verarbeitung von
Aluminium, Kupfer, Zink und den anderen NE-Metallen. Besonders für die
Autoindustrie und die Luftfahrt seien
sie von steigender Bedeutung.
Energiepolitik ist nach Aussage
des Ministers ein wichtiger Bau-
stein, um Deutschland international
wettbewerbsfähig zu halten. Er unterstrich die Bedeutung international wettbewerbsfähiger Strompreise
und funktionierender nationaler und
europäischer Märkte für die energieintensive Industrie. Über die angespannte Lage auf den internationalen
Rohstoffmärkten müsse man im Rahmen der Rohstoff- und Handelspolitik
intensiv sprechen, so Glos. Es gehe
darum, Handelshemmnisse zu beseitigen und alle politischen Instrumente
zu nutzen, um zu einem zu gleichen
Bedingungen funktionierenden Rohstoffmarkt zu kommen.
WVM-Präsident Ulrich Grillo
verdeutlichte zusammen mit nationalen und internationalen
Vertretern der NE-Metallindustrie die zentralen
Herausforderungen
der
im globalen Wettbewerb
stehenden Branchenunternehmen. Neben der Energie- und Rohstoffpolitik
gehöre hierzu ein Umweltund Klimaschutz, der das
industrielle Engagement
v.l.n.r.: Guy Thiran, Geschäftsführer Eurometaux; Martin
und die internationale
Kneer, Hauptgeschäftsführer WVM; Bundesminister für
Wettbewerbsfähigkeit beWirtschaft und Technologie, Michael Glos; Ulrich Grillo,
Vorstandsvorsitzender Grillo-Werke AG; Javier Targhetta, rücksichtige. Die Industrie
Geschäftsführer Atlantic Copper S.A.
stehe zu den Verpflich-
6
tungen der Nachhaltigkeit, erwarte
aber zugleich bei allem politischen
Handeln die Gleichrangigkeit von
Ökonomie, Ökologie und Sozialem.
Trimet
M. Rosenbaum neuer
Automotive-Vorstand
Matthias Rosenbaum ist neuer Vorstand des Geschäftsbereichs Automotive bei der Trimet Aluminium AG.
Er übernimmt die Verantwortung der
Werke in Harzgerode (Sachsen-Anhalt) und Sömmerda (Thüringen) und
folgt damit auf Uwe Pränger, der den
Geschäftsbereich sechs Jahre geleitet
hat.
Rosenbaum, geboren in Recklinghausen, studierte an der RWTH Aachen Elektrotechnik. Bevor er im
Herbst 2006 zur Trimet wechselte,
war er unter anderem für die Motorola AIEG (Automotive and Industrial
Electronics Group), als Sprecher der
Geschäftsführung der KS Kolbenschmidt GmbH und als European
Sales Manager bei General Motors
Delco Remy tätig. Matthias Rosenbaum ist 52 Jahre alt.
ALUMINIUM · 1-2/2007
NEWS IN BRIEF
Alcoa appoints President
of Flexible Packaging
V. de Nora
honoured by ECS
Norsk Hydro top focus
on aluminium
Alcoa has named Jeff Kellar President
of its Alcoa Flexible Packaging business, succeeding Bimal Kalvani. Kellar joins Richmond, Virginia-based
Alcoa Flexible Packaging from Tetra
Pak of Chicago, where he was Vice
President of strategic development
and marketing.
Vittorio de Nora has been honoured as
the recipient of The Electrochemical
Society (ECS) 2006 Edward Goodrich
Acheson Award. The award was established in 1928 to recognise distinguished contributions which advance
objects, purposes or activities of ECS.
De Nora has dedicated his career to
scientific research in the field of electrochemistry, including in particular the fields of
chlorine-alkali
and aluminium
production. His
research achievements centre on
his efforts to find
a feasible inert anode. More about
de Nora’s career
on page 36 of this
issue.
Hydro will focus on aluminium following the US$ 30 billion takeover of
its oil and gas assets by Statoil. Following the completion of the recommended merger, Hydro will be the
world’s third-largest listed aluminium company and is expected to be
the fourth-largest company listed on
the Oslo Stock Exchange in terms of
market capitalisation. The company
will continue to focus on its high performing primary production system
and well-developed casthouse and
remelter system in Europe and the
United States. It will also pursue new
alumina and metal growth opportunities in attractive areas.
Aston Martin
The Aston Martin V8 Vantage Roadster was revealed at the 2006 Los Angeles Auto
Show end of November. The Roadster shares the unique-to-Aston Martin bonded
aluminium VH (Vertical Horizontal) architecture – the backbone to all modern Aston
Martins. Adding to this structure sophisticated materials such as lightweight alloys,
magnesium and advanced composites are used for the body, further contributing to
the car‘s low weight and high rigidity. Body specification: Aluminium alloy, steel, composite, and magnesium alloy body. Extruded aluminium side impact bars and integral
rollover bars. Suspension: Independent double aluminium wishbones, coil over aluminium monotube dampers and anti-roll bar.
Novelis with new CEO
Novelis has named Edward A. Blechschmidt, a member of its Board of
Directors, to become Acting Chief
Executive Officer, effective January
2, 2007. Mr. Blechschmidt succeeds
Board Chairman William T. Monahan, who has been Interim CEO since
August 2006. Mr. Monahan remains
Chairman of the Novelis Board. Novelis will continue its search for a permanent CEO.
Shell Lubricants have opened a
state-of-the-art rolling oils production facility in Dortmund, Germany
to develop and produce rolling oils,
thus incorporating proven Controlled Particle Size (CPS) technology to
meet the increasing demands of the
metals industry. This new facility will
enable Shell lubricants companies
to provide a one-stop-shop for the
metals industry, offering high quality
factory plant maintenance lubricants,
speciality greases and rolling oils, on
a global basis.
Following the acquisition of Croda
Chemicals International’s (CCI) rolling fluid and production engineering business in January 2006, Shell
Lubricants have now successfully
integrated CCI’s range of rolling oils
into their metals product portfolio. As
ALUMINIUM · 1-2/2007
well as producing Croda specification
rolling oils, the new facility will house
a product development team that will
continue to upgrade and extend the
rolling oils portfolio.
The production of rolling oils at the
new facility is proof of Shell’s commitment to the metals industry. In the
last 12 months, Shell Lubricants have
introduced a number of products
aimed at helping metals operators
to increase productivity and reduce
downtime. “In addition to the onestop-shop range of lubricants, metals
operators will in future be able to benefit from having access to Shell lubricants experts at a local level to assist
in reducing downtime and increasing
productivity, said Roger Moulding,
Vice President Specialities for Shell
Lubricants .”
Shell Lubricants
Shell Lubricants with new rolling oils production facility
Roger Moulding (left) and Peter Rommerskirchen from Shell Lubricants inaugurating
production of rolling oils in Dortmund,
Germany
7
AKTUELLES
Mikrochip-Forschung
Max-Planck-Institut
Aluminium lässt Nanodrähte wachsen
Eingefärbte Aufnahme von
Silizium-Nanodrähten (Ø 40 nm).
Silizium-Nanodrähte können helfen,
Mikrochips weiter zu verkleinern.
Wissenschaftler des Max-Planck-Instituts für Mikrostrukturphysik in
Halle haben nun erstmals einkristalline Silizium-Nanodrähte gezüchtet,
die wichtige Voraussetzungen dafür
erfüllen: Sie haben Aluminium als
Katalysator verwendet, um die Nanodrähte wachsen zu lassen. Bislang
setzten Wissenschaftler zu diesem
Zweck vor allem Gold ein. Doch
schon Spuren des Edelmetalls beeinträchtigen die Funktion von Halbleiterbauteilen drastisch.
Aluminium dagegen beeinträchtigt
die Chipeigenschaften nicht und lässt
im Gegensatz zu anderen Metallen
schon bei relativ niedriger Temperatur von rund 450 °C Silizium-Nanodrähte von besonders hoher Qualität sprießen - eine Voraussetzung, um
die Kosten des Prozesses zu begrenzen. „Das neue Verfahren erfüllt die
wichtigsten Bedingungen, um Silizium-Nanodrähte industriell einsetzen
zu können“, erläuterte Stephan Senz,
einer der beteiligten Wissenschaftler.
Um Aluminium in so kleine Partikel zu zerlegen, dass sich an ihm
die feinen Drähte bilden, erhitzen die
Forscher eine dünne Schicht davon
auf einer Silizium-Unterlage. Die Folie
zerreißt dann in lauter winzige Teilchen. Anschließend gehen die Wissenschaftler wie in schon bekannten
Verfahren vor: Sie dampfen Silan, ein
siliziumhaltiges Gas, auf die Oberfläche, das sich am Katalysatorpartikel
in elementares Silizium umwandelt.
Das Silizium löst sich daraufhin in
8
dem Aluminium-Teilchen. Wenn
dieses kein weiteres Silizium aufnehmen kann, kristallisiert es an der Unterseite des Partikels wieder aus. So
wächst ein einkristalliner SiliziumNanodraht von etwa 40 Nanometern
Durchmesser heran, der an der Spitze
ein Katalysatorteilchen trägt.
Die viel versprechende Forschung
an Halbleiter-Nanodrähten bewegt
sich an der Schnittstelle von Grundlagenforschung und technischer Anwendung. „Neben ihrem denkbaren
Einsatz in der Halbleiterindustrie
sind die Nanodrähte sehr interessant
für die physikalische Grundlagenforschung, da über ihre Eigenschaften
und ihr Wachstum noch nicht viel
bekannt ist“, so Senz.
Leserreise zur
„Expo Aluminio
Eine Leserreise der Extraklasse: Der
Giesel Verlag, Isernhagen, organisiert in
Zusammenarbeit mit Reed Exhibition in
der Zeit vom 20. bis 25. Mai 2007 einen
Besuch der „Expo Aluminio“ in Sao Paulo
(22. bis 24. Mai). Auf dem „Business“Programm stehen der Messebesuch sowie Besuche bei brasilianischen Aluminiumunternehmen. Eine gute Gelegenheit,
Kontakte zu wichtigen Firmen und Behörden zu knüpfen. Ein Flug nach Rio de
Janeiro mit Stadtrundfahrt und Besuch
von Zuckerhut oder Christusstatue auf
dem Corcovado runden das Programm
ab. Neugierig geworden? Detailfragen
beantwortet Jutta Illhardt, Tel: 0511 /
7304-126, Fax: 0511 / 7304-157, E-Mail:
Illhardt@giesel.de.
Neuer Airbus A350 mit CFK-Außenhaut
Um die Kerosin- und Wartungskosten zu reduzieren, wird der Flugzeugrumpf des neuen Airbus A350
XWB erstmals mit kohlefaserverstärkten Kunststoffen anstelle von Aluminium ausgestattet. Die Flugzeugzelle
wird zu über 60 Prozent aus neu
entwickelten Werkstoffen bestehen.
Die Aufnahme des Flugbetriebs des
neuen A350 XWB ist für das Jahr 2013
vorgesehen.
Bundesumweltministerium fördert innovative Recyclinganlage
Bundesumweltminister Sigmar Gabriel
unterstützt die Errichtung eines innovativen
Schmelzofens zur Herstellung von Kupfer in
Osnabrück. Die KM Europa Metal AG plant,
einen bisher nur in der Aluminiumindustrie
eingesetzten kippbaren Drehtrommelofen
zu modifizieren und zum energieeffizienten Schmelzen und Raffinieren von Kupfer
einzusetzen. Das Vorhaben wird vom
Bundesumweltministerium mit rund 1,3
Millionen Euro aus dem Umweltinnovationsprogramm gefördert.
„Fortschritte bei der Energieeffizienz
in energieintensiven Industrien tragen
in besonderem Maße zum Erreichen der
Emissionsminderungsziele bei den Treibhausgasen bei“, so Gabriel. Die Durchführung des Vorhabens sei jedoch nicht nur
gut für die Umwelt, sondern aufgrund der
Energieeinsparung auch aus wirtschaftlicher
Sicht attraktiv.
Im Rahmen des Vorhabens soll erstmals
ein kippbarer Drehtrommelofen aus der
Aluminiumindustrie zum Schmelzen und
Raffinieren von Sekundärkupfer eingesetzt
werden. Der neue Ofen verfügt im Gegensatz zu den bisher in der Kupferindustrie
eingesetzten Drehtrommelöfen über nur
eine Öffnung. Dadurch können Abgase optimal erfasst und diffuse Emissionen auf ein
Minimum reduziert werden. Zudem wird
eine verbesserte Energieausnutzung gegenüber beidseitig offenen Drehtrommelöfen
erreicht. Im Vergleich zu den bisherigen
Verfahren werden 10 bis 20 Prozent Energie eingespart.
ALUMINIUM · 1-2/2007
NEWS IN BRIEF
Raw material prices remain high
According to the branch report of IKB
Deutsche Industriebank, the development of international raw material
prices has now exceeded its all-time
high. Decisive for further price development will be above all the future
trade environment. Owing to the relatively stable boundary conditions of
the world economy it is unlikely that
in the medium term there will be any
appreciable downturn in the demand
for raw materials.
The increasing access of developing countries, above all China, to raw
material reserves will further boost
worldwide needs and therefore also
maintain prices at a relatively high
level. This applies to steel and NF
metals such as aluminium as much as
to oil and natural gas. All in all, it can
be assumed that for metallic and also
energy raw materials the low prices
of the mid-1990s and the beginning
of the present decade will for the time
being not recur. As regards the price
level of aluminium, IKB’s Research Department expects a medium-term development within the range between
2,000 and 2,500 US$/t. In the medium
term the worldwide enlargement of
electrolysis capacities will relieve the
situation. IKB also assumes that speculative demand for aluminium by hedging funds will not increase further.
Assuming a slight slowdown of
the world economy, IKB in any event
expects a sideways movement of aluminium demand. There is unlikely to
be an appreciable fall in consumption
in the future. The worldwide trend towards lightweight construction in the
transport sector (automotive, aviation),
the growing need for packaging and the
recovery of the building economy in
Europe will be major driving forces.
In the automotive industry aluminium and plastics are seen as the most
important materials for reducing energy consumption and for meeting the
objectives of the Kyoto protocol.
New Airbus A350
With CFRP panelled
fuselage skin
To set new standards in fuel-efficiency and maintainability the new Airbus
A350 XWB will feature the latest innovations in terms of advanced technologies. Amongst those is the use of
all-new, easy to maintain and much
lighter Carbon Fibre Reinforced Plastic panelled fuselage skins instead of
aluminium.
This innovation in manufacturing
permits easier maintainability and
reparability of individual airframe
parts, while also allowing the structure of the panels to be much better
optimized in terms of design to the
stress and load requirements of each
individual airframe part. Over 60 per
cent of the airframe will be made of
new materials.
Entry into service of the first A350
XWB is planned for 2013.
Giesel Verlag übernimmt „APT International“
und „APT News“
Der Giesel Verlag aus Isernhagen bei
Hannover, Verlagsheimat dieser Zeitschrift, hat zum 1. Januar 2007 die
beiden Publikationen „APT International“ und „APT News“ übernommen.
„Durch die Akquisition wird die vorhandene umfassende Zeitschriftenreihe im Werkstoffbereich erweitert“,
so Dietrich Taubert, Geschäftsführer
des Giesel Verlags. Gleichzeitig entsteht durch die Bündelung der Kräfte
ein Verlag mit sehr großem Potenzial
im Aluminiumbereich. Taubert: „Mit
unserem Angebot an hochwertigen
Publikationen können wir die Marktbedürfnisse der Aluminiumbranche
auf den internationalen Märkten bedienen.“
Der Giesel Verlag gibt mit den bestehenden Zeitschriften „ALUMINIUM International Journal“, „Aluminium Praxis“, „METALL International
Journal“ sowie „Composite Materials“
und „Automotive Materials“ europaweit führende Werkstoff-Fachpublikationen heraus. „Durch die Integration
ALUMINIUM · 1-2/2007
der beiden APT-Zeitschriften sind
wir weltweit optimal aufgestellt und
können global agierenden Kunden die
passende redaktionelle und WerbePlattform bieten“, sagte Taubert.
John Travis wird weiterhin als
Chefredakteur
der APT-Medien
tätig sein. Der
Giesel
Verlag
verantwortet Vertrieb, Anzeigenakquisition und
Produktion. „Die
Fokussierung auf
die redaktionelle
Tätigkeit und die
Integration in die
Strukturen eines
führenden Fachverlags sind wichtige Schritte bei
der konsequenten Weiterentwicklung dieser
Zeitschriften“,
erläuterte Travis. Über eine Vernetzung mit den bisherigen Titeln des
Giesel Verlags ergeben sich für Leser
und Anzeigenkunden spürbare Symbiosen hinsichtlich Inhalt und Marketingmöglichkeiten.
John Travis (l.) und Dietrich Taubert
9
AKTUELLES
82m cans recycled
Seit dem Jahr 2000 haben sich die Industriestrompreise mehr als verdoppelt
Deckelung der Energiekosten beschlossen
Stromintensive Unternehmen wie Aluminiumhütten werden 2007 erneut
bei ihren Energiekosten entlastet. Begünstigt sind laut Bundesumweltministerium rund 330 Firmen des produzierenden Gewerbes, die um rund
345 Mio. Euro entlastet werden. Im
Auftrag des Bundesumweltministeriums hat das Bundesamt für Wirtschaft
und Ausfuhrkontrolle (BAFA) Ende
Dezember 2006 über die Anträge
nach der besonderen Ausgleichsregelung des Erneuerbaren-EnergienGesetzes (EEG) entschieden und zum
Jahreswechsel die entsprechenden
Bescheide versandt. Durch eine zum
1. Dezember 2006 in Kraft getretene
Änderung des EEG fällt die Entlastung
deutlich höher als bisher aus. So beträgt die so genannte EEG-Umlage der
besonders stromintensiven Unternehmen künftig nur noch 0,05 ct/kWh.
Die rückwirkende Anwendung der
Neuregelung ab dem 1. Januar 2006
hat für die begünstigten Unternehmen zusätzlich einen Wert von etwa
80 Mio. Euro. Im Antragsverfahren für
2007 hat BAFA eine zu privilegierende Strommenge von insgesamt 72.040
GWh ermittelt, die nicht mit vollem,
sondern begrenztem EEG-Anteil abzunehmen ist. Hiervon entfallen etwa
94 % (67.826 GWh) auf Unternehmen
des produzierenden Gewerbes.
Stromvertrag für Hamburger
Aluminiumhütte perfekt
Die Trimet Aluminium AG und der Stromversorger RWE haben sich auf einen neuen
Stromliefervertrag für die Aluminiumhütte
in Hamburg (ehemals HAW) geeinigt.
Der Vertrag hat ein Volumen von 2 TWh
pro Jahr und gilt von 2008 bis mindestens 2010. Trimet plant die schrittweise
Wiederinbetriebnahme ab April 2007. Die
Produktion soll 2008 wieder in vollem
Umfang laufen. Der Anfahrbetrieb im Jahr
2007 wird über flexible, kurzfristige Stromkontrakte sichergestellt. Der Liefervertrag
nutzt alle Möglichkeiten der liberalisierten
Großhandelsmärkte und kombiniert
10
verschiedene innovative Stromprodukte.
So kommt das aus der Finanzwirtschaft
bekannte Optionsprodukt „Multi Period
Extendible“ auch in der Energiewirtschaft
zur Anwendung. Es gewährt dem Kunden
deutliche Preisvorteile in den frühen Lieferphasen, während der Energieversorger
gegen Preisverfall in den späten Lieferphasen abgesichert ist. Außerdem ist der
von Trimet zu zahlende Strompreis an den
Aluminiumpreis gekoppelt. Des Weiteren
besteht die Möglichkeit, kurzfristig Lastabschaltungen vorzunehmen, die dem Stromversorger zusätzliche Flexibilität bieten.
The U.S. Conference of Mayors, Keep
America Beautiful, Inc. and Novelis
Inc. announced the winners in the
2006 Cans for Cash: City Recycling
Challenge on America Recycles Day.
For the third year, the program challenged like-sized cities to compete
against each other in aluminum can
collection for monetary awards and
to encourage recycling. During two
weeks in September 2006, more than
30 cities collected over 2.4 million
pounds of aluminum cans which
equates to over 82 million used beverage cans. The aluminum can is the
country‘s most recycled beverage
container and has been for more than
20 years. In 2005, more than 100 billion aluminum beverage cans were
produced in the United States and
52% of them were recycled (a 1.0% increase over the previous year). Nearly
the same amount - close to 50 billion
cans or roughly US$ 1.5 billion worth
of aluminum - was lost to landfill.
Coperion übernimmt
Hartmann Förderanlagen
Mit Wirkung zum 1. Januar 2007 hat
die Coperion Waeschle Beteiligungs
GmbH die Geschäftsaktivitäten der
Hartmann Förderanlagen GmbH,
Offenbach, übernommen. Das Unternehmen, ein führender Anbieter
im Schüttguthandling von Tonerde,
wird innerhalb der Coperion-Gruppe in den Geschäftsbereich Materials
Handling eingegliedert und künftig
als Coperion Hartmann firmieren.
Der Sitz der Gesellschaft und die Arbeitsplätze der Mitarbeiter bleiben
erhalten. Eigentümer der Coperion
Gruppe ist die britische Private Equity
Gesellschaft Lyceum Capital. Coperion Waeschle liefert für die Kunststoffherstellung die gesamte Prozesskette
vom Reaktor bis zur Logistik. Erklärtes
strategisches Ziel von Coperion ist es,
auch in der Aluminiumherstellung
die komplette Prozesskette – von der
Rohmaterialannahme über das Lagern und Transportieren bis zur Beschickung der Elektrolysezellen – mit
Systemlösungen abzudecken.
ALUMINIUM · 1-2/2007
---
(
0% +*
(%(
)"(. (&
0'.
("
)(( ! ,
* &('
%
((/
(.
/ ( .
-
$.#((
$
#
".(
(
WIRTSCHAFT
Quelle:
Trimet AG, Düsseldorf
Trimet Aluminium AG
12
ALUMINIUM · 1-2/2007
-75;
0
&1
)85
!
# 5,154*54#
&5&54*5
*83:< *5
,*5
52/5542)15*5
*854'454*53*54515
&577%54*5
# *83:< /5*854/14;2675
# 52/5517254%152675
# .&
" +1 !
'7574;
, """"
(:
""""
5 94$9452
WIRTSCHAFT
Produktionsdaten der deutschen Aluminiumindustrie
Primäraluminium
Sekundäraluminium
Walzprodukte > 0,2 mm
Produktion
(in 1.000 t)
Produktion
(in 1.000 t)
Produktion
(in 1.000 t)
+/in % *
+/in % *
Okt 05
53,4
-6,0
61,2
5,9
Nov
51,1
-7,1
65,3
6,7
Press- & Ziehprodukte**
+/in % *
Produktion
(in 1.000 t)
+/in % *
153,1
9,4
43,2
0,9
150,7
-0,9
47,3
9,2
Dez
47,6
-16,5
54,6
6,6
122,6
2,6
31,4
13,4
Jan 06
42,9
-24,8
65,4
16,2
136,2
-4,2
45,4
10,7
Feb
38,7
-25,5
65,1
9,6
145,5
5,8
46,0
8,6
Mrz
43,1
-24,8
78,9
27,1
160,1
6,1
51,9
22,0
Apr
42,4
-23,8
62,5
2,8
133,3
-12,9
42,8
-3,8
Mai
43,4
-24,0
68,0
22,1
154,4
5,2
49,7
21,8
Jun
43,2
-20,7
65,7
3,3
146,4
-2,4
47,8
0,1
Jul
45,1
-17,9
64,0
4,6
148,8
-5,2
48,5
9,3
Aug
45,2
-16,7
59,6
7,2
149,8
-6,0
48,1
9,1
Sep
42,8
-19,4
66,9
6,9
144,2
-8,8
51,1
9,2
Okt
44,1
-17,4
65,0
6,1
153,2
0,0
52,2
21,1
* gegenüber dem Vorjahresmonat, ** Stangen, Profile, Rohre; Mitteilung des Gesamtverbandes der Aluminiumindustrie GDA, Düsseldorf
Primäraluminium
Walzprodukte > 0,2 mm
14
Sekundäraluminium
Press- und Ziehprodukte
ALUMINIUM · 1-2/2007
WIRTSCHAFT
Die deutschen Aluminiumhütten
Technisch hoch effizient, umweltpolitisch vorbildlich
und ein wichtiges Glied in der Wertschöpfungskette
Christian Wellner, Jörg H. Schäfer, Düsseldorf
Noch Anfang 2006 sah es so aus, als
hätte das Hüttensterben in Deutschland beschleunigte Fahrt aufgenommen. Die Schließung des Hamburger
Aluminium-Werks HAW Ende 2005
und das angekündigte Aus fürs Elbewerk in Stade zum Jahresende
2006 warfen die Frage auf, wann es
schließlich die verbleibenden Hüttenbetriebe treffen würde. Dass HAW
nun von der Trimet Aluminium AG in
Essen erworben wurde und die Elektrolyseöfen in den nächsten Monaten
wieder hochgefahren werden, könnte
als Indiz gewertet werden, dass sich
die standortpolitischen Rahmenbedingungen in Deutschland zum Besseren gewendet haben und es nun
wieder aufwärts geht mit dem Wirtschaftsstandort Deutschland.
16
Bei aller Euphorie kann jedoch nicht
übersehen werden, dass die Zukunft
für energieintensive Unternehmen in
Deutschland nebelverhangen bleibt.
Generell gilt dagegen: Die Energieund insbesondere die Strompreise
sind im internationalen Maßstab nach
wie vor sehr hoch. Auch die politisch
bedingten Energiekosten belasten
trotz regierungsseitig beschlossener
Erleichterungen weiterhin.
GDA
Die Konjunktur in Deutschland
entwickelte sich 2006 mit einer
Dynamik, wie sie lange nicht
mehr gesehen war. Selbst aus dem
Arbeitsmarkt kamen positive Meldungen. Kurzfristig stellt sich die
Frage, inwieweit die jüngste Erhöhung der Mehrwertsteuer zu einem
konjunkturellen Dämpfer führen
wird. Langfristig kann selbst die
gute Konjunktur des vergangenen
Jahres nicht darüber hinwegtäuschen, dass seit Anfang der 1990er
Jahre zwei Millionen industrielle
Arbeitsplätze in Deutschland verloren gegangen sind. Nach wie vor
wandern zahlreiche Unternehmen
mit Teilen ihrer Produktion ins
Ausland, weil die wirtschaftlichen
Rahmenbedingungen in unserem
Land erhebliche Wettbewerbsnachteile generieren. Doch ohne eine
breite industrielle Basis, auch von
energieintensiven Branchen, wird
das strukturelle Beschäftigungsproblem hierzulande nicht zu lösen
sein. Umso wichtiger ist es, den
Exodus von Industrien zu stoppen.
Das schließt die Aluminiumindustrie ein.
GDA-Geschäftsführer Christian Wellner:
„Alle Bestrebungen zur Optimierung des
Elektrolysebetriebes zielen auf ...
Planungssicherheit über Zeiträume,
die sich in Jahrzehnten statt Jahren
bemessen, gibt es somit nach wie vor
nicht. Das belastet die Hüttenbetreiber mit erheblichen Risiken, wenn sie
nötige Investitionen in ihre Anlagen
planen – oder sie wagen es gar nicht,
was ein allmähliches Ende des Betriebs zur Konsequenz hat.
Und all dies vor dem Hintergrund,
dass die deutschen Aluminiumhütten
heute technologisch und mit Blick auf
die Umweltstandards international auf
Augenhöhe produzieren, ja vorbildlich sind. All dies auch vor dem Hintergrund, dass wir es in der Branche
keineswegs mit einem Verdrängungswettbewerb in einem schrumpfenden
Markt zu tun haben. Im Gegenteil: Die
Produktion von Primäraluminium
stieg zwischen 2000 und 2005 welt-
weit um rund 38 Prozent auf knapp
34 Mio. jato und die Nachfrage nach
Aluminium wird in den kommenden
Jahren weiter steigen.
Die Entwicklung des
Hüttenstandorts Deutschland
Es ist eine Ironie der Geschichte, dass
die Standortprobleme in einem Land
auftreten, das zu den ältesten Hüttenstandorten für Aluminium zählt. Der
erste Elektrolysebetrieb in Deutschland wurde schon 1898 in Rheinfelden an der Grenze zur Schweiz
errichtet, wo dank der Rheinfälle der
erforderliche Strom zur Aluminiumproduktion kostengünstig bereitgestellt werden konnte.
Niedrige Strompreise sind für die
Primärhütten seit jeher unabdingbar.
Deshalb entstanden ab 1917 große
Aluminiumwerke am Niederrhein
(Erftwerk) und in der Lausitz (Lautawerk), beide bezogen ihren Strom auf
Basis günstiger Braunkohle. Mitte der
1920er Jahre wurde das Innwerk in
Töging und in den 1930er Jahren das
Lippewerk in Lünen gebaut. Anfang
der 1960er Jahre wurde das Rheinwerk bei Neuss errichtet. Weitere
Kapazitäten wurden schließlich in
Essen, Ludwigshafen, Voerde, Stade
und Hamburg geschaffen.
Die größte Anlagenkapazität in
Deutschland gab es 1985/86 mit
790.000 jato, als insgesamt neun Aluminiumhütten produzierten. Heute wird nur noch an wenigen der
genannten Standorte Primärmetall
erzeugt. Das Erftwerk schloss seine
Elektrolyse bereits 1978, die Aluminiumhütte in Ludwigshafen 1987, das
Lippewerk 1989, die Aluminiumhütte
in Rheinfelden 1991 und das Innwerk
1996. Das Elbewerk in Stade hat seine Tore vor wenigen Wochen (70.000
jato) geschlossen.
War es früher eher eine zu geringe
Betriebsgröße bzw. ineffiziente Produktion, die zum Aus für eine Hütte
ALUMINIUM · 1-2/2007
WIRTSCHAFT
Corus Aluminium Voerde, Fotograf Thea Weires
führte, haben sich seit der Jahrtausendwende vor allem die erheblich gestiegenen Energiekosten zum Existenz
bedrohenden Kriterium verschlimmert. Dies wirft die Frage auf, wie
lange die heute in Deutschland noch
produzierenden Elektrolysen betrieben werden können. Stromverträge
zwischen den Energieversorgern und
den Hütten werden nur noch kurzfristig für einige Jahre abgeschlossen,
so dass das Damoklesschwert einer
Betriebsschließung permanent über
den Unternehmen und ihren Beschäftigten hängt – obwohl, wie erwähnt,
die deutschen Anlagen hoch effizient
produzieren und technisch international wettbewerbsfähig sind.
... eine hohe Stromausbeute, einen niedrigen spezifischen Energieverbrauch der Zellen ...
Elektrolyseprozess deutlich
effizienter
Das Prinzip der Aluminiumgewinnung ist in den vergangenen 100
Jahren zwar weitgehend unverändert
geblieben, doch wurden in den vergangenen Jahrzehnten Modernisierungen durchgeführt, die die heutige
Produktion wesentlich effizienter
macht als früher. Alle Bestrebungen
zur Optimierung des Elektrolysebetriebes zielen auf eine hohe Stromausbeute, einen niedrigen spezifischen
Energieverbrauch der Zellen und einen geringen Anodenverbrauch. Auf
diese Weise konnten die Produktivität
enorm gesteigert und schädliche Umweltwirkungen minimiert werden.
Die im Laufe der vergangenen
Jahrzehnte getroffenen Maßnahmen
dazu sind vielfältig: Alle Öfen in
Deutschland sind seit Jahrzehnten
komplett gekapselt und bleiben auch
während der Oxidzufuhr geschlossen.
Die Entdeckung, dass der spezifische
Elektrolytwiderstand mit dem Oxidgehalt korreliert, war zwar schon
ALUMINIUM · 1-2/2007
länger bekannt. Dennoch hat es erst
die Entwicklung einer Technologie
zur präzisen Dosierung von Tonerde
durch Prozesskontrollrechner, die sogenannte Point-Feeder-Methode, ermöglicht, Anodeneffekte weitgehend
zu vermeiden.
Die Betriebsführung mit hohen
Stromstärken sowie durch computergestützte Steuerungssysteme und
Dosiereinrichtungen machen die
Schmelzflusselektrolyse hoch effizient und umweltverträglich. Der Reinheitsgehalt des Aluminiums liegt bei
99,7 Prozent. Die Stromausbeute beträgt bei den modernen HochstromElektrolysezellen rund 95 Prozent.
Der spezifische Strombedarf liegt in
deutschen Hütten um die 14 kWh/kg
Aluminium – ein erheblicher Fortschritt gegenüber 50 kWh/kg zu Beginn der industriellen Aluminiumerzeugung um 1900 und 20 kWh/kg
in den 1970er Jahren. Mit den Prozessoptimierungen der vergangenen
Jahre zeichnet sich zugleich ab, dass
das technische Potenzial zu weiteren
Verbrauchsabsenkungen weitgehend
ausgeschöpft ist.
Moderne Techniken der
Luftreinhaltung
Die Maßnahmen zur Prozessverbesserung umfassten stets auch die Techniken zur Luftreinhaltung. Als Emissionen der Elektrolyse, die gereinigt
werden müssen, treten vor allem die
Komponenten Staub und Fluorwasserstoff auf. Vor wenigen Jahrzehnten
war die beste Methode der Staubabscheidung noch die Abtrennung mit
Zyklonen, für die Fluoridabscheidung
war es die Abgaswäsche mit Kalkmilch
und anschließender Fällung und Abtrennung des gebildeten Calciumfluorids. Dieser Feststoff musste abfiltriert
und deponiert werden. Allein für die
Luftreinhaltung einer Elektrolyse von
rund 78.000 jato bedeutete dies einen
Wassereinsatz von circa 100.000 m3
pro Jahr und ein Abfallaufkommen
von rund 6.000 Tonnen Calciumflu©
oridschlamm.
17
WIRTSCHAFT
es infolge einer lokalen Verarmung
an Aluminiumoxid zu einer Zersetzung des Kryoliths und zur Bildung
von Tetrafluormethan (CF4) und Hexafluorethan (C2F6). Die Ursache für
das Entstehen eines Anodeneffektes
kann eine abnehmende Tonerdekonzentration im Schmelzbad oder das
Überschreiten der kritischen Stromdichte in der Elektrolysezelle sein:
zum Beispiel verstopfte Point-Feeder,
das Wechseln der Tonerdesorte und
damit verbundene Löslichkeitsprobleme, ein Anodenwechsel oder das
Absaugen von Metall.
CF4 und C2F6 sind nicht toxisch und
für Menschen und Tiere unschädlich,
gelten jedoch als Klimagase. Sie entstehen nur kurzfristig während des
Anodeneffektes und treten in relativ
geringen Mengen auf.
Die deutschen Primärhütten haben seit 1990 eine Menge getan, um
den Anodeneffekt und das Entste-
... und einen geringen Anodenverbrauch.“
wird Wasser eingespart und das Abfallaufkommen reduziert. Die damit
verbundenen Vorteile für die Umwelt gehen mit Kosteneinsparungen
einher – eine ideale Situation, in der
sich ökologische und ökonomische
Vorteile gleichermaßen ergeben.
Anodeneffekte minimiert
Weitere umweltorientierte Maßnahmen zielten darauf, den sogenannten Anodeneffekt zu minimieren. Er
ist durch einen raschen Anstieg der
Spannung in den Elektrolysezellen
gekennzeichnet, die kurzfristig auf das
6-fache ansteigen kann. Dabei kommt
18
soluten Spitzenfeld. Sie liegen mit
den erwähnten 0,07 kg/t auch um fast
zwei Drittel unter dem vom International Aluminium Institute (IAI) für das
Jahr 2000 ermittelten internationalen
Referenzwert von 0,22 kg/t CF4. Sogar
der IAI-Durchschnittswert speziell
für Point-Feeder-Anlagen von 0,11
kg/t wird von den deutschen Anlagen
klar unterschritten. Bei diesem statistischen Vergleich ist wichtig anzumerken, dass technisch rückständige
chinesischen und russischen Anlagen
in den IAI-Zahlen nicht einbezogen
sind. Inzwischen ist das Modernisierungspotenzial durch eine weiter verbesserte Ofensteuerung hierzulande
technisch weitgehend ausgereizt. Da
der Treibhauseffekt eine globale Herausforderung ist, kommt es künftig
verstärkt darauf an, dass die großen
Aluminiumproduzenten
Russland
und China ihre veraltete Anlagentechnik modernisieren. Mit Maßnahmen,
wie sie in den vergangenen Jahren in
Deutschland umgesetzt wurden, ließe
sich ein enormes Potenzial zur Emissionsminderung erschließen.
Energie- und standortpolitische
Sonderlasten
Corus Aluminium Voerde, Fotograf Thea Weires
Mitte der 1980er Jahre kam eine innovative Technik auf den Markt, die
mit der TA Luft 1986 schnell in die
Hütten integriert wurde. Diese neue
Technik nutzt aus, dass Tonerde in
der Lage ist, gasförmige Stoffe zu absorbieren, also an ihrer Oberfläche
anzulagern. Der Staub, der durch die
Zugabe von Tonerde zur Absorption
der Fluorwasserstoffe im Rohgas entsteht, lässt sich mit einem Gewebefilter unproblematisch abreinigen. Die
mit Fluoriden angereicherte Tonerde
wird in die Elektrolyse zurückgeführt,
was den erforderlichen Einsatz von
Aluminiumfluorid weiter reduziert.
Insgesamt können die Fluoride mit
einem Wirkungsgrad von über 99 Prozent aus dem Abgas entfernt werden.
Die Vorteile dieses Verfahrens
sind offensichtlich: Der hohe Abscheidegrad von Fluorid entlastet die
Umwelt, es werden wertvolle Einsatzstoffe zurückgewonnen, außerdem
hen dieser Gase zu unterbinden. So
wurden 2005 in den damals produzierenden fünf deutschen Hütten
insgesamt 270 Tonnen weniger CF4
emittiert als 1990. Die spezifischen
Emissionen lagen durchschnittlich
bei knapp 0,07 kg/t Aluminium. Die
gegenüber der Bundesregierung abgegebene Selbstverpflichtung der deutschen Primäraluminiumhütten, die
CF4/C2F6-Emissionen zwischen 1990
und 2005 absolut und auch spezifisch
um die Hälfte zu vermindern, wurde
damit deutlich übererfüllt.
Die deutschen Aluminiumhütten
bewegen sich im weltweiten Vergleich
bei den CF4-Emissionen in einem ab-
Die Errichtung neuer Hütten erfolgt
heute außerhalb Europas an Standorten, die über preiswerte Energie verfügen, wie dies zum Beispiel in Katar
der Fall ist. Dort wird bis 2009 eine
Aluminiumhütte mit einer Anfangskapazität von 570.000 Jahrestonnen
errichtet, die über ein eigenes Kraftwerk verfügen wird.
Dies ist keine Perspektive hierzulande, doch sind Politik und Gesellschaft gefordert, die industriellen
Rahmenbedingungen der deutschen
Volkswirtschaft so zu verbessern,
dass die schleichende Deindustrialisierung gestoppt wird und Wirtschaftswachstum und Beschäftigung
deutlich gestärkt werden. Daher
ist es unverzichtbar, jede Stufe der
Wertschöpfungskette durch eine
Wirtschaftspolitik zu halten, die den
Standort Deutschland stärkt und den
fairen Wettbewerb mit dem Ausland
ermöglicht.
Die deutsche Energiepolitik muss
dazu ebenfalls einen Beitrag leisten,
orientiert sich aber seit Jahren fast
ALUMINIUM · 1-2/2007
WIRTSCHAFT
ausschließlich an Klimazielen. Statt
sich auf die wahren Herausforderungen zu konzentrieren, die sich aus
der langfristigen Entwicklung auf den
internationalen Energiemärkten ergeben, leistet sich die deutsche Energiepolitik den Ausstieg aus der Kernenergie ohne klares Bekenntnis zur
Steinkohle als Ersatzenergie, gepaart
mit einer massiven Subventionierung
der erneuerbaren Energien durch immer höhere Ökoabgaben und ergänzt
um eine CO2-Zertifikatepolitik, die
den Stromkonzernen riesige Windfall
Profits einbringt, die von Haushaltsund Industriekunden gleichermaßen
finanziert werden.
Rechnet man die CF4-Reduktion
(2005: 270 t) um, die die Aluminiumhütten durch erhebliche Investitionen
an CO2-Menge eingespart haben, ergibt dies – gemessen an den aktuellen
Marktpreisen für Emissionszertifikate
– eine Sonderleistung im Wert von
mehreren Millionen Euro, mit denen
die deutschen Aluminiumhütten zum
deutschen Klimaschutz für die Welt
beigetragen haben.
Wertschöpfungsglieder eng
verzahnt
Die kostenlose Zuweisung von Emissionszertifikaten nach dem Nationalen Allokationsplan II wird die
Strompreise weiter in die Höhe treiben, obwohl der übergroße Teil des
produzierten Stroms vom Zertifikatepreis gar nicht beeinflusst wird. Für
eine Aluminiumhütte, in der über ein
Drittel der Produktionskosten vom
Strompreis diktiert wird, ist eine solche Entwicklung katastrophal. Doch
auch die weiterverarbeitenden Aluminiumbetriebe sind auf kostengünstige Energie angewiesen und müssen
fürchten, dass ihr Innovationsvorteil
gegenüber wachsender globaler Konkurrenz durch weiter steigende Mehrkosten aufgefressen wird, bis auch sie
nicht mehr im Wettbewerb bestehen
können.
Wer heute meint, die energieintensive Grundstoffindustrie sei verzichtbar, muss sich morgen nicht wundern,
wenn die verarbeitenden Betriebe in
dieser Wertschöpfungskette in den
Sog der Produktionsverlagerung geraten. Und übermorgen die Forschungs-
ALUMINIUM · 1-2/2007
und Entwicklungszentren der Unternehmen folgen, was am Ende negative
Rückwirkungen bis hin zum Dienstleistungssektor hätte.
Die Aluminiumindustrie ist durch
eine enge Verzahnung der einzelnen
Glieder in der Wertschöpfungskette
Metallerzeugung, Halbzeugfertigung,
Endprodukt geprägt. Dabei zeigt sich,
dass optimale Produktlösungen sich
gerade dann erzielen lassen, wenn
zwischen den einzelnen Wertschöpfungsgliedern eine enge Zusammenarbeit besteht, in der das gesamte
Know-how und die Erfahrung aller
Beteiligten zum Tragen kommen:
von der Werkstoff-, Fertigungs- und
Entwicklungskompetenz bis hin zur
Qualitätssicherung, Logistik und dem
Service.
In diesem Kompetenzverbund
könnte die räumliche Nähe zwischen
den einzelnen Fertigungsstufen, kurze Kommunikations- und Logistikwege zwischen Kunde und Lieferant
im internationalen Wettbewerb ein
Standortvorteil sein, wenn die wirtschaftlichen Rahmenbedingungen einen fairen Wettbewerb mit dem Ausland zuließen. Aluminium ist eben
längst kein 08/15-Produkt mehr. Viele
Walz- und Strangpresswerke, Formgießereien und weitere Verarbeiter
benötigen für ihre hochwertigen
Produkte
Aluminiumlegierungen
mit definierten Qualitäten. Eine
Lithoplatte für den Offsetdruck, ein
Fahrwerksteil für Pkw, ein Außenhautblech für Flugzeuge und zahlreiche andere Produkte stellen jeweils spezifische Anforderungen an
den Werkstoff – an seine Zugfestigkeit, an sein Umformvermögen, an
seine Gefügeeigenschaften –, die
oft in jahrzehntelang gewachsenen
Kunden-Lieferanten-Beziehungen
zwischen Aluminiumproduzent und
Verarbeiter gelöst worden sind. Diese
Technologiepartnerschaft zwischen
den Wertschöpfungsgliedern ist vielfach für die hohe Produktqualität und
den viel beschworenen Exporterfolg,
auch von Unternehmen der Aluminiumbranche, mitverantwortlich.
In einer solchen Technologiepartnerschaft kommt den Hütten als
Basis des Geschäfts eine wichtige
ökonomische Funktion zu. In einer
globalisierten Welt, in der sogar mittelständische Unternehmen Produktionsstandorte in Osteuropa, Asien
und Lateinamerika errichten, ist die
Gefahr eines Domino-Effektes – „Erst
gehen die Hütten, dann die Verarbeitung“ – konkreter denn je. Wenn
logistische Vorteile, etwa durch die
Versorgungsnähe zu den Hüttenproduzenten, wegfallen und sich die
Waage dadurch weiter zuungunsten
des Standorts Deutschland neigt, werden die Verarbeitungsbetriebe ihre
Kosten-Nutzen-Rechnung neu aufstellen.
Autoren
Christian Wellner ist Geschäftsführer des
Gesamtverbandes der Aluminiumindustrie (GDA), Düsseldorf.
Jörg H. Schäfer ist Referent für Nachhaltigkeit beim GDA und leitet dort den
Fachbereich Metallpulver.
World leader in
molten metal level control
PreciMeter Control AB, Sweden
phone +46 31 764 55 20 fax +46 31 764 55 29
sales@precimeter.se www.precimeter.com
19
WIRTSCHAFT
Herbstkongress der European Coil Coating Association
Autumn congress of the ECCA
Marktentwicklung, Technologietrends, Gesetzgebung
Market development,
technology trends,
legislation
Unter dem Motto „Reviewing the
advantages of coil coating against
competitive materials” bot die
ECCA auf ihrem Herbst-Kongress
in Brüssel Ende 2006 einen Überblick über die Marktentwicklung,
über neue Technologien bei der
Bandbeschichtung von Aluminium
und Stahl sowie über die Weiterverarbeitung und Anwendung vorlackierter Bänder.
Die Ablieferungen an beschichteten
Aluminium- und Stahlbändern durch
die ECCA-Mitglieder hatten 2004
mit einer Gesamtmenge von über 1,4
Mio. m2 den bisherigen Höchststand
erreicht.
Marktentwicklung
Nachdem das Jahr 2005 leicht rückläufig war, kann für das erste Halbjahr 2006 von einer Erholung auf
dem Niveau von 2004 ausgegangen
werden. Vergleichbare Zahlen aus der
European Coil Coating Association
Die ECCA existiert seit 1967 als Vereinigung der europäischen Coil Coating
Industrie. Die derzeit rund 200 Mitgliedsfirmen sind vor allem europäische, teils
aber auch außereuropäische Bandhersteller und -veredler sowie Lackhersteller,
Anlagenbauer, Zulieferer und Handelsunternehmen. Ziel der ECCA ist es, die Verwendung von vorlackierten Bändern und
Blechen aus Aluminium und Stahl als
umweltverträgliche, kosteneffiziente und
qualitativ wertvolle Methode zur Erzeugung von Fertigerzeugnissen zu fördern.
Dabei widmet sich der Verband neben
dem politischen Lobbying der Entwicklung von Qualitätsstandards (verbunden
mit der Entwicklung von Testmethoden).
Darüber hinaus führt er Trainingskurse
durch, um die Verwendung vorlackierter
Metalle bei Designern und Herstellern
bekannt zu machen.
20
nordamerikanischen und asiatischen
Region liegen noch nicht vor. In Nordamerika ist jedoch davon auszugehen,
dass der rückläufige Trend weiter anhält. Ganz anders die Entwicklung in
Asien, allen voran China und Indien.
Dort sind neue Coil-Coating-Linien in
Betrieb gegangen, die diesen Ländern
nicht nur eine partielle Unabhängigkeit von Importen ermöglichen. Beide
Länder haben zudem bewiesen, dass
sie, wenngleich noch mit geringen
Mengen, durchaus zu Exporten in
europäische Regionen wie Italien und
Spanien fähig sind.
Hauptanwender von Produkten
aus organisch beschichteten Aluminium- und Stahlblechen und -bändern
bleibt das Bauwesen mit zahlreichen
Anwendungen im Außen- und Innenbau. Bei beschichteten Aluminiumbändern waren das rund 70 Prozent,
bei Stahlbändern 67 Prozent der 2005
erzeugten 224 Mio. bzw. 1.141 Mio.
m2.
Die auf dem Kongress gezeigten
Beispiele ästhetisch gelungener Anwendungen bei öffentlichen und Bürogebäuden, aber auch zunehmend
im privaten Hausbau spiegelten die
unzähligen Variationsmöglichkeiten
aus Form und Farbe wider. Im Segment Fassadentechnik wird weiteres
Marktwachstum innerhalb bautechnischer Anwendungen erwartet. Dies
gilt sowohl für Neubauten als auch für
die Sanierung vorhandener Bausubstanz. Hierbei sollen Profilelemente
und Sandwichplatten zunehmend
konventionelle Werkstoffe wie Beton,
Backstein, Holz und Glas ersetzen.
Gepunktet wird dabei mit den langfristigen Kostenvorteilen dank Wartungsfreiheit und mit Kriterien wie
Umweltverträglichkeit, Brandschutz
und modernes Design bandbeschichteter Substrate. Ein weiterer Trend ist,
dass immer mehr Architekten neben
Form und Funktion die Wirkung der
Farbe entdecken.
Weitere wichtige Einsatzgebiete für
bandbeschichtetes Aluminium und
Under the heading “Reviewing the
advantages of coil coating against
competitive materials”, at its autumn congress in Brussels at the
end of 2006 the ECCA presented
a review of market developments,
new technologies for the coil coating of aluminium and steel, and
the further processing and uses of
pre-painted strip.
In 2004 deliveries of coated aluminium and steel strips by ECCA members
amounted to 1.4 million m2, more that
ever before.
Market development
Following a slight downturn in 2005,
it is expected that there was a recovery in the first half-year of 2006 to
the level of 2004. Comparable figures
from the North American and Asiatic
regions are not yet available, but it can
be assumed that in North America the
recessionary trend is still persisting.
The development in Asia is quite the
opposite, most of all in China and India where new coil-coating lines have
come into operation, which have made
those countries more than partially independent of imports. Both countries
have indicated that, although still in
small quantities, they are fully capable
of exporting to European countries
such as Italy and Spain.
The largest user of products made
from organically coated aluminium
and steel sheets and strips is still the
building industry, with numerous outdoor and indoor applications. In the
case of coated aluminium strips these
accounted for some 70 per cent, and
in the case of steel strips 67 per cent
of the respective total productions of
224 million and 1,141 million m2 in
2005.
The examples exhibited at the
congress, showing aesthetically successful applications in public and
office buildings but to an increasing
extent also in the building of private
ALUMINIUM · 1-2/2007
ECONOMICS
Technology trends
Technological development, both for
coating and for the further processing
of coated strips and sheets, is continually being taken further by both
manufacturers and users. The core
theme of a series of presentations
was the development of new coating
products. Improved property profiles
of products and processes are orientated towards economy, environment
protection, technology and aesthetics.
©
ALUMINIUM · 1-2/2007
Stahl, die mit Anteilen von unter zehn
Prozent folgen, sind der Fahrzeugbau
und die Hausgeräteindustrie. Während bei Hausgeräten fertig lackierte
Bänder seit Jahren als Stand der Technik verwendet werden, beschränken
sich die Automobilhersteller nach wie
vor auf den Einsatz funktionsbeschichteter Bleche. Hier spielen chemische
Behandlungen zur Verbesserung der
Haftvermittlung und Schmierstoffe
für die Umformung eine Rolle. Der
Einsatz von fertig lackiertem Stahl
oder Aluminium in der Karosserie
scheitert bislang noch an vielerlei
Problemen: zum Beispiel am Korrosionsschutz der Schnittkanten oder an
einer lackverträglichen, automobilgerechten Fügetechnik. Dies hat zur
Folge, dass Autos auch in Zukunft
ihre Endlackierung erst an der zusammengebauten Karosserie erhalten
werden.
Technologie-Trends
Die technologische Entwicklung sowohl bei der Beschichtung als auch
bei der Weiterverarbeitung beschichteter Bänder und Bleche wird von
Herstellern und Anwendern stetig
vorangetrieben. Kernthemen der Vortragsreihe galten der Entwicklung
neuer Produkte für die Beschichtung.
Verbesserte Eigenschaftsprofile von
Produkten und Prozessen sind auf
Wirtschaftlichkeit,
Umweltschutz,
Technologie und Ästhetik ausgerichtet. Seitens der Beschichter gehen die
Forderungen in Richtung Automatisierung, Einführung schnellerer Verfahren und verbesserte Prozessstabilität. Die Entwicklung neuer Lacke für
bautechnische Anwendungen, die zur
Abstrahlung der Sonnenenergie konzipiert sind, zielen darauf, den Energieverbrauch zur Gebäudekühlung
deutlich zu reduzieren. Für die Entwicklung solcher Lacke wird von den
Herstellern eine spezielle Software
eingesetzt, welche die Umgebungseinflüsse unterschiedlicher Orte simuliert. Nach wie vor bleiben chromfreie Vorbehandlungen und Lacke ein
Schwerpunkt der Entwicklung. Die
mittlerweile verfügbaren Produkte
entsprechen hinsichtlich Korrosionsbeständigkeit und Lackhaftung den
Fata Hunter
residences, reflected the countless
possible variations of shape and colour. In the sector of façade technology
further market growth in the field of
building applications is anticipated.
This applies both to new buildings
and in the refurbishment of existing structures. Section elements and
sandwich plates will increasingly replace conventional materials such
as concrete, brick, wood and glass.
This is encouraged by long-term cost
benefits thanks to low maintenance
requirements, and by criteria such as
environment-friendliness, fire protection and the modern designs that can
be produced from strip-coated substrates. A further trend is that more
and more architects are discovering
the effects of colour in addition to
shape and functionality.
Other important fields of use for
strip-coated aluminium and steel,
which come next although with respective shares of less than 10%, are
vehicle engineering and the household appliances industry. Whereas
finish-painted strips have been used
as standard for years in the appliances
industry, automobile engineers still
restrict themselves to the use of sheets
with functional coatings, including
chemical treatments to improve adhesion and lubricants for deformation
processes. The use of finish-painted
steel or aluminium for auto bodies is
still held back by many problems, for
example the cut edge corrosion protection or joining methods compatible
with the paint and which are suitable
for use in automobiles. As a result,
in the future too automobiles will be
given their final paint treatment only
after assembly of the body shell.
Fata Hunter: Eine von zwei nach China
gelieferten Bandbeschichtungslinien
Fata Hunter: One of two parallel coil
coating lines supplied to China
Eigenschaften bisher verwendeter
chrombasierter Erzeugnisse.
Weitere Entwicklungsziele gelten
dem Korrosionsschutz der Schnittkanten ohne Primereinsatz. Der Einsatz von Antikorrosionslacken auf
unbeschichtete Substrate wird noch
einige Jahre auf sich warten lassen.
Die Adphos AG berichtete über
ihre Weiterentwicklungen bei der
NIR-Aushärtung von organischen
Beschichtungen. NIR steht für „Near
Infra Red“ und beschreibt ein Verfahren, mit dem im nahen Infrarotbereich
mittels speziellen Hochleistungsstrahlern, die eine Energiedichte von bis zu
3.000 kW pro Quadratmeter besitzen,
eine sehr schnelle direkte Aufheizung
der organischen Beschichtung erreicht wird. Die Folge sind sehr kurze
Prozesszeiten in der Größenordnung
von ein bis drei Sekunden, verglichen
mit den 15 bis 25 Sekunden bei konventionellen Öfen. Dank der unmittelbaren Trocknung und Aushärtung
durch NIR wird ein sehr schneller
und nahezu schrottendenfreier Farb©
21
Siemens VAI
WIRTSCHAFT
Siemens VAI: Eingangsbereich einer Bandbeschichtungsanlage in Polen
Siemens VAI: Entry section of a coil coating line in Poland
wechsel bei Coil-Coating-Linien,
aber auch bei kombinierten Verzinkungs- und Beschichtungslinien erreicht. Die NIR-Technik ermöglicht
eine wirtschaftliche und flexible Verarbeitung auch kleinster Losgrößen
und kommt damit dem kundenorientierten Trend zu immer enger gestuften Farbnuancen entgegen. Bei der
Modernisierung vorhandener Anlagen gestattet die kurze Bauweise der
NIR-Trockner den Einbau weiterer
Coater für einen mehrschichtigen
Lackauftrag in einem Banddurchlauf.
Bauteile aus fertig lackierten Bändern und Blechen werden durch unterschiedliche mechanische Bearbeitungsvorgänge wie Stanzen, Biegen,
Tiefziehen oder Walzprofilieren in
ihre endgültige Form gebracht. Viele
dieser Bearbeitungen erfordern vom
Beschichter das Aufbringen von Folien zum Schutz der lackierten Oberflächen während der Bearbeitung.
Die holländische Firma Wemo stellte
Werkzeuge vor, mit denen auch ungeschützte Lackflächen ohne Beschädigung bearbeitet werden können. Die
so genannte „swivel bending technology“ verwendet gelenkig betätigte
Balken, die mit einer Relativbewegung und damit kratzerfrei mit ge-
22
ringen Radien abkanten. Neben dem
Umformen widmet sich das Unternehmen auch Methoden zum Fügen
bandbeschichteter Bleche: je nach
Blechdicke und Verwendungszweck
durch Widerstands-Buckelschweißen
oder punktuelles Durchsetzfügen.
Gesetzgebung
Mehr Forderungen als derzeit bekannte konkrete Umsetzungen enthielt
die Information über die europäische
REACH-Verordnung (Registration,
Evaluation, Authorization of Chemicals). Klar ist, dass auf die Hersteller,
Importeure und Anwender von chemischen Substanzen und damit auf
die gesamte mit dem Coil Coating befasste Industrie neue Verordnungen
zukommen. Derzeit am konkretesten
ist der Zeitplan für die stufenweise
Einführung: Auf erste Schritte zur
Einführung ab April 2007 folgt von
April 2008 bis April 2010 eine Erfassungsperiode. Weitere Meilensteine
im Hinblick auf die mengenmäßige
Relevanz sind der April 2010 und der
April 2013 bis zur vollen Wirksamwerdung ab April 2018.
Was bedeutet das für Produzenten
und Anwender? Neue Vorschriften
für den Umgang mit Gefahrenstoffen
werden zur Substitution von Stoffen
führen. Dies wird die unternehmerische Tätigkeit stark berühren. Die
Empfehlung an die Unternehmen
lautet, frühzeitig einen vorausschauenden Ansatz für organisatorische
Anpassungen zu verfolgen, um so den
Ersatz von Substanzen und mögliche
Änderungen der gesamten Prozesskette möglichst reibungslos zu bewirken – zumal die Umsetzungsphase
relativ kurz ist.
B. Rieth
#"%&"&"%&$*
+"" #"
(
!
"&$"&
"#"#&$!!
'''"#&$!!
ALUMINIUM · 1-2/2007
ECONOMICS
From the coater’s standpoint what is
needed is more automation, the introduction of more rapid processes,
and improved process stability. The
development of new paints for building applications, which are designed
to reflect back solar energy, aim to
reduce considerably the energy consumed for the cooling of buildings.
For the development of such paints
manufacturers use special software
which simulates the influence of the
surroundings at a variety of locations.
As before, chromium-free pretreatments and paints are at the focus of
development. The products that have
meanwhile become available match
the properties of the previously used,
chromium-based products in relation
to corrosion resistance and paint adhesion.
A further development objective is
cut edge corrosion protection without
the use of a primer. The use of anticorrosion paints on uncoated substrates is still a few years off. Adphos
AG reported its further developments
in the NIR hardening of organic coatings. NIR stands for “Near Infra Red”
and describes a process in which highpowered radiators operating with an
energy density of up to 3,000 kW/m2
in the near infra-red range are used
for the very rapid direct heating of the
organic coating. This results in very
short process times of the order of 1
to 3 seconds, instead of the 15 to 25
second in conventional ovens. Thanks
to the direct drying and hardening by
NIR very rapid colour modification almost without scrap offcuts is achieved
on coil-coating lines, but also on combined galvanising and coating lines.
The NIR technique enables economical and flexible processing even of
very small batch sizes, and is there-
ALUMINIUM · 1-2/2007
fore well suited to satisfy the increasing demand by customers for ever
more subtle colour nuances. When
existing plants are being modernised,
the compact structure of NIR driers
enables further coaters to be fitted in
for multi-layer paint application during a single pass of the strip.
Articles made of finish-painted
strips and sheets are given their final shape by a variety of mechanical
processes such as stamping, bending,
deep-drawing or roll-profiling. Many
of these methods require the coater to
apply foils in order to protect the pain
surface during processing. The Dutch
company Wemo described tools with
which even unprotected painted surfaces can be worked without damage. The so-termed “swivel bending
technology” uses articulated beams
that can bend through tight radii with
a relative movement and therefore
without scratching. Besides shaping
methods, the company also focuses
on methods for joining strip-coated
sheets: depending on the sheet thickness and the intended use, by resistance stud welding or point to point
penetration welding.
Legislation
The report concerning the European
REACH (Registration, Evaluation and
Authorisation of Chemicals) Directive gave notice of more requirements
than there are at present known and
concrete conversion provisions. What
is clear, is that there are new directives to come, which will affect the
manufacturers, importers and users of
chemical substances and therefore the
entire range of industry that has to do
with coil coating. The most concrete
aspect at present is the timetable for
European Coil Coating Association
The ECCA has existed since 1967 as the
Association for the European coil coating
industry. Its 200 members are mainly European companies but also include from
outside Europe a number of strip producers and finishers as well as paint manufacturers, plant engineering companies,
suppliers and trading companies. ECCA is
to promote the use of pre-painted strips
and sheets of aluminium and steel, as
environmentally safe, cost-effective and
qualitatively high-grade means for the
production of finished goods. For this,
the ECCA engages in political lobbying
and in the development of quality
standards (combined with the development of test methods). Furthermore, it
organises training courses to familiarise
designers and manufacturers with the
uses of pre-painted metals.
gradual implementation: after the first
introduction step from April 2007 onward, between April 2008 and April
2010 there will be a period of adaptation. Other milestones of quantitative
relevance are April 2010 and April
2013, until the Directive comes fully
into effect from April 2018.
What does this mean for producers and users? New prescriptions for
operating with hazardous substances
will lead to substance substitutions.
This will greatly affect company activities. The recommendation for
companies is to be prompt in planning anticipatory action for organisational adaptations, so as to implement
substance replacements and possible
modifications of the entire process
chain with as few problems as possible – especially since the conversion
B. Rieth
phase is relatively short.
23
ECONOMICS
The Russians are coming: example Rusal
R. P. Pawlek, Sierre
Russian companies have hit the
headlines recently, surprising the
established business world with
their sudden emergence as major
global players. From steelmaker
Severstal, to aluminium producer
Rusal and energy giants Lukoil
and Gazprom, these emerging
Russian multinationals are building on successful acquisition
sprees, at home and abroad, to
stake a claim for global market
leadership.
Western companies need to take a
fresh look at these rapidly changing,
emerging multinationals and recognise that they are primarily driven
by commercial logic and competitive advantage. Equally, the emerging
Russian giants need to focus on improving their image by systematically
institutionalising international best
practice standards in key areas such
as transparency, corporate governance, accounting and environmental
standards.
The emergence of new multinationals in Russia is part of a broader
global phenomenon. Indeed, Russia is
now the third biggest foreign investor among emerging markets. Emerging Russian multinationals span the
entire spectrum from state-owned
giant to privately owned conglomerates holding former state assets and
to newly established companies with
international shareholders.
Russian global corporate expansion is still largely limited to a handful
of companies in the oil and gas, metals
and mining, and telecommunications
sectors. Most Russian multinationals
still have a regional bias, but are now
looking to invest more heavily in the
mature markets of Europe, the US and
Australia. The expansion drive began
in the CIS and Eastern Europe, and is
now moving rapidly into Africa.
Russian investors have generally
been welcomed in the CIS and Africa,
while facing a strong degree of suspicion in most parts of Eastern Europe
and in the developed world. The rapid
24
pick-up in Russian investment abroad
is driven by a wide range of factors:
gaining critical mass to survive consolidation; getting access to new
markets, raw materials, technology
transfer and management know-how;
coping with excess liquidity and lack
of expansion opportunities at home.
Globalising Russian companies
enjoy a number of significant competitive advantages over established
global players. In particular they have
emerging markets know-how as well
as a powerful but flexible corporate
structure, together with liquidity and
enormous ambition. But many Russian companies also have a number
of substantial weaknesses, including
complicated ownership structures,
a lack of transparency in corporate
culture, shallow management capacities and a poor understanding of modern environmental, health and safety
standards.
Governance weaknesses, in particular, have sullied the international
image of Russian companies, adding
to an already murky reputational legacy from the 1990s and remnants of
post-Soviet cold war prejudice. Tackling these weaknesses must become
a priority task for Russia’s emerging
multinationals.
Russia’s largest aluminium producer Rusal has assets in 13 countries
in the CIS, Eastern Europe, Africa,
Latin America and Australia and has
raised US$ 2 billion in a syndicated
loan in 2006 to finance further investments. Following the current merger
with its Russian rival Sual and Swiss
commodities group Glencore, due to
be finalised by April 2007, the new
Rusal will be self-sufficient in raw materials. Its aim: to become the world’s
largest diversified energy and metals
corporation.
Russia is rapidly becoming one of
the leading foreign investors among
emerging countries although they
tend to keep a low profile about this.
First, most Russian companies are
privately owned and disclose little
information. Secondly, a high pro-
portion of investment is carried out
indirectly through offshore vehicles
and registered in host countries as
investment from Cyprus, the British
Virgin Islands and Luxembourg.
Until recently, the bulk of Russia’s
outward foreign investment went to
the CIS. As a result, Russian companies now by far dominate foreign
investment in these difficult markets.
Rusal, for example, resuscitated Armenia’s massive aluminium company,
now known as Armenal, which had
been forced to stop production following the collapse of the Soviet Union.
Rusal invested over US$ 100 million
to modernize the plant, guaranteeing
a supply of raw materials, and introducing new standards of labour.
If the CIS is the near-abroad for
Russian companies, Central and
South-Eastern Europe are also familiar territory, but one with a far more
ambivalent attitude towards Russian
investors. Russia’s leading metal companies, like Evraz, Rusal and Sevestal,
are far less politicised than Gazprom,
but they are products of the oligarch
era, when well-connected entrepreneurs were able to buy up state assets
cheaply and then consolidate them to
forge huge corporate empires. While
these owners still play a key role in
strategic direction, the businesses they
own are changing rapidly, absorbing
international business practices as
they expand and acquire listing on
international exchanges. If Russian
investors frequently face suspicion in
ALUMINIUM · 1-2/2007
ECONOMICS
Rusal
Europe, they are welcomed with open
arms in Africa. Aluminium producer
Rusal, for example, is constantly looking for opportunities to strengthen its
raw material base, aiming to become
self-sufficient by 2013. One of its first
moves was to move into Guinea, taking over the management of the Compagnie des Bauxites de Kindia (CBK)
for a 25-year period. Guinea holds
two-thirds of the world’s bauxite reserves and the company was already
a traditional supplier of bauxite to the
Nikolaev Alumina Refinery in Ukraine,
which Rusal bought in 2000.
With a long history of economic
ties between Russia and Guinea, Rusal
soon expanded its operations there,
taking over the management of the
Alumina Company of Guinea, one of
the largest employers in the country,
which it is buying as the company is
privatised. Rusal has a good reputation
for doing more than just extracting resources. Rusal is now implementing
a US$ 300 milion modernisation programme to double the alumina company’s refining capacity over the next
three years and to improve the transport, water and energy infrastructure
for both the refinery and the town.
With the Guinean authorities looking
for value-added processing to remain
in-country, Rusal is also considering
the construction of a new bauxite
and alumina complex, including an
aluminium smelter.
When Rusal bought into Australia’s Queensland Alumina from the
financially distressed Houston-based
Kaiser Group, its value to the Australian company was three-fold: Rusal
was a major customer for alumina,
Primary aluminium production at Rusal
ALUMINIUM · 1-2/2007
it brought new competition into the
alumina market and it wiped out Kaiser’s US$ 60 million debt, in addition
to paying US$ 401 million for a 20%
stake. With Australia holding up to
30% of global alumina production and
bauxite reserves, Rusal is now in talks
with the government to develop power-generating capacities and to build a
new aluminium smelter in the country. Rusal’s investment had to obtain
approval from the country’s Foreign
Investment Review Board as well as
from two existing shareholders, rival
aluminium giants Alcan and Comalco.
It took 18 months to finalise the deal
after Rusal’s bid won in 2004.
The rapid rise in Russia’s outward
investment is driven in part by global
consolidation pressures, which are especially strong in the natural resource
industries and the telecommunication sector. The globalisation process
can only be understood in the context
of Russia’s unique path of transition.
During the Soviet era, Russia’s huge
state-owned enterprises acted much
like vertically integrated multinationals, enjoying almost complete control
of the supply chain across the network of satellite states. This structure
was pulled apart by the disintegration
of the Comecon trade agreement and
the Soviet Union. As a result, one of
the major challenges facing Russian
companies ever since transition began has been how to restore the value
chain and how to find new markets to
utilise their vast excess capacity.
The energy companies quickly
moved abroad to restore their markets and improve their pricing power,
taking control of distribution channels
across the CIS and Eastern Europe.
The metals industry focused initially
more on consolidation at home, buying up assets to re-create a vertically
integrated supply chain, from raw
materials to processing and distribution. Global acquisitions are now part
of a complex strategy of securing raw
materials, expanding capacities and
opening access to new customers.
Russian companies are now looking
for long-term competitive advantage
and better margins. By buying established companies, they get not only
technological patents, but also market access for specialised high valueadded products.
Most of Russia’s leading companies have a strategy for joining the
world’s leading players in their sector. They are steadily putting the
pieces in place to make it possible
– expanding capacity, opening up
markets, distributing networks and
access to raw materials. They are
not seen as world-class competitors
yet. Nevertheless, Russian companies
possess three characteristics that give
them a significant advantage over established players. Emerging markets
know-how; liquidity; and strong, but
flexible structures.
As Russian multinationals shift
their global expansion plans up a
gear and start taking their international competitors head on, their biggest obstacle will be image. Russian
companies cannot yet take over large
foreign companies, because the competition for these assets is intense and
public companies still have a negative
image of Russian businesses.
In an Economist Intelligence Unit
survey more than 300 international
business executives around the world
were interviewed to explore these
perceptions. Three key findings came
out of the survey:
O Overall international business perceptions of Russia are negative – as a
market, an investment location and as
a source of investment.
O The level of international business
knowledge about Russia and Russian
companies is very low.
O International executives with experience in the Central and East European region and knowledge of Rus©
25
ECONOMICS
sian companies have more nuanced
views – but not always more positive
ones.
For Russian companies, the survey’s message is clear. The process
has already begun, prompted by the
need to secure international financing and work to with international
partners. Several Russian companies have now set up new corporate
governance structures. Rusal has developed an 18-month corporate governance programme with the help of
EBRD and IFC and has appointed an
independent board, among a series of
other measures. It has also started the
process of disclosing information on
its ownership structure as well as data
on consolidated accounts.
The progress from the pioneering days of the 1990s is substantial
and has continued over the past few
years as companies learn from business partners and list on international
exchanges. However, if Russian companies are to become global players,
it is not enough to talk of a rhetoric
change – companies will now have to
show that they run their business in
line with international norms.
As this happens, the international
business community will be forced to
take a much closer look at their Russian counterparts. Emerging multinationals are already competing hard
for customers, talent and resources,
taking the more complacent global
players by surprise. Those Russian
companies that are able to transform
themselves into world-class competitors will be able to determine the
shape of international business in
their sectors.
This is a summary of a paper edited by Rusal
in November 2006 entitled: “The Russians
are coming: understanding emerging multinationals”; in cooperation with The Economist Intelligence Unit, 2006
Hydro maintains speed in aluminium repositioning
“Hydro is stronger than ever. Our
technology, competence and financial strength, together with a broader
portfolio of development and exploration projects beyond 2010, give me
great confidence in our strategy for
future growth,” said Eivind Reiten,
Hydro‘s President and Chief Executive Officer. “We are manoeuvring
in an increasingly challenging global
landscape but our talented organisation, proven project execution skills
and our experience in cooperating
with partners are more valuable than
ever.”
Hydro‘s Capital Markets Day presentation as to the aluminium business
included the following highlights:
Primary aluminium production is
expected to be 1.7 million tonnes in
2007 and 2 million tonnes in 2010.
26
Divestment of Hydro‘s 49 per cent
share in Meridian Technologies for
73.7 million euros and divestment of
Automotive Castings for 454.3 million euros are key steps to reduce the
engagement in the downstream aluminium business. Investments and
exploration expenditures in 2007 are
expected to be 491.1 million euros in
Aluminium Metal.
Norsk Hydro, Dag Jenssen
Hydro is well-positioned for
long-term profitable growth in its
upstream aluminium operations,
the Norwegian-based company
said at its Capital Markets Day.
Following the recommended merger of Hydro’s oil and gas activities with Statoil Hydro will continue as one of the world’s leading,
integrated aluminium companies.
The ongoing restructuring of the
downstream aluminium portfolio
is expected to be completed in
2007.
Aluminium Metal on track
to reposition and grow
Demand for primary aluminium is
expected to increase by 15 million
tonnes, or about 4 per cent annually,
by 2020. Rising costs is an industry
challenge but the increase has been
more than offset by higher aluminium
prices. Restructuring of Aluminium
Metal is on track with approx. 110,000
tonnes of annual capacity to be closed
down by the end of 2006 and during
2007, thereby completing the closure
program of 180,000 tonnes of highcost primary production capacity.
The measures will significantly improve Hydro‘s smelter cost position.
The company is well positioned with
long-term power contracts extending
up to 2020 and alumina equity coverage increasing to 75 per cent in 2010.
Operational excellence remains a top
priority.
Hydro is pursuing a number of
Hydro is about to exit Automotive Components, but will continue to focus on the
sectors Rolled Products, Extrusion Europe,
Extrusion Overseas, Building Systems and
Precision Tubing
growth opportunities in alumina and
metal. The planned Qatalum smelter,
a 50/50 joint venture between Qatar
Petroleum and Hydro, is on track with
construction start scheduled for fall
2007 and start-up of production in
late 2009. The capital expenditure estimate has been increased from 2.3 to
3.4 billion euros, on a 100 per cent basis, as a result of general cost increases
for key materials and construction, a
weaker USD/EUR exchange rate as
well as design changes. Final cost estimate and build decision are scheduled for summer 2007.
©
ALUMINIUM · 1-2/2007
ECONOMICS
Novelis Korea invests in multi-alloy casting
Investment continues global roll-out of
breakthrough Novelis Fusion technology
Novelis Inc. announced that its
joint venture in Korea, Novelis Korea Ltd., will invest US$ 4.1 million to install Novelis Fusion casting
technology in its Ulsan, South
Korea, plant.
Novelis
The Korean investment continues the
global roll-out of the breakthrough
technology which first went into production in March 2006 at the Company‘s plant in Oswego, New York. In
September 2006, Novelis announced
that it will invest US$ 32 million in the
construction of a Novelis Fusion cast-
A crane lifts a Novelis Fusion multi-alloy
aluminum ingot from the casting pit at the
company’s Oswego, N.Y., facility
Executing Aluminium Products
portfolio restructuring
Cash generation in Aluminium Products has been solid during the first
nine months of 2006, but profitability
remains unsatisfactory. Operational
improvements have been achieved
in most areas, and the outlook for
Extrusion and Building Systems is
good. In addition to the agreements
to divest Automotive Castings and
Meridian Technologies, the process
for divesting Automotive Structures
has started.
ALUMINIUM · 1-2/2007
house at its Sierre, Switzerland, facility. The Novelis Fusion casting centre
at Ulsan is expected to be operational
by mid-2007 and will have an initial
annual capacity of more than 25,000
tonnes. “The existing configuration
of the Ulsan casting facilities allows
a rapid and cost-efficient conversion
to the Novelis Fusion process,” said
Martha Brooks, Chief Operating Officer for Novelis Inc. And added, “This
investment is further evidence of our
confidence in the Novelis Fusion technology and the positive response we
are receiving from the marketplace.”
In North America, Novelis has converted virtually all of its traditional
“clad” material to the new technology. “We are working with dozens of
customers around the globe on the
development of applications in markets such as automotive, architecture,
electronics and household appliances,” said Martha Brooks.
Traditional multi-alloy aluminium
ingots are produced using a manual
cladding process, and are limited to a
small range of alloys. Novelis Fusion
technology delivers both process and
product improvements, including the
ability to cast previously impossible
combinations of alloys.
“Commercially, this investment
will open the door to a new range of
high-end product offerings in Asia,”
said Jacquie Bartlett, Vice President,
Sales and Marketing, for Novelis Korea. “With the Novelis Fusion technology, we will start by offering a full
range of high-quality brazing sheet
and fin stock products to local customers that today must rely on imports.”
It was Novelis‘ second major investment in South Korea last year. In
March 2006, the company announced
that it will invest US$ 30 million over
a two-year period to increase production capacity at its Yeongju rolling
mill by 100,000 tonnes and expand
its capability in the beverage can end
market.
Hydro‘s magnesium plant in Canada
will be closed during first half of
2007, and the remaining magnesium
remelting plants will be divested.
Rolled Products delivers consistently
strong cash flow, but industrial challenges remain.
About Novelis Korea
Novelis Korea Limited is a joint venture company between Novelis Inc.
(68%), Taihan Electric Wire Co. Ltd.
(31%), and Hyundai Group (1%). Its
plants in Yeongju and Ulsan were
commissioned in 1993 to meet the
growing demand for rolled aluminium
products principally in Korea, China
and Southeast Asia. Including its corporate office in Seoul, Novelis Korea
has more than 1,200 employees who
supply a broad range of high quality
products and services to its customers in Asia.
N
N
27
ECONOMICS
Alcoa to reposition downstream operations
Soft alloy extrusion joint venture
with Sapa group announced
Alcoa is to relocate several of its
downstream operations in order
to further improve returns and
profitability through a targeted restructuring of operations and the
creation of a soft alloy extrusion
joint venture. The joint venture
will become a global leader in the
aluminium extrusion business,
with an estimated turnover of US$
4 billion in 2006.
Alcoa
Following an extensive review of its
downstream operations, Alcoa has
signed a letter of intent with Norwegian Orkla ASA’s Sapa group to create
a joint venture that would combine
its soft alloy extrusion business with
Sapa’s profiles extruded aluminium
business, with the intention of eventually offering an IPO of the combined
entity. The new venture will be majority owned by Orkla and operated by
Sapa. It is anticipated that the joint
venture will be formed by the end of
the first quarter 2007.
Alcoa’s soft alloy extrusion business encompasses 22 facilities in eight
countries and about 6,400 employees.
In 2005, total soft alloy extrusion shipments amounted to around 585,000
t, with revenues of approx. US$ 2.1
billion. Sapa’s extrusion business encompasses 18 facilities in 12 countries
and about 6,000 employees. In 2005
section shipments were 275,000 t and
revenues amounted to US$ 1.3 billion.
Alcoa will continue to operate its hard
alloy extrusion business which serves
the aerospace, automotive, and se-
Corporate centre of Alcoa, Pittsburgh
28
lected other markets. Separately, the
concern will begin the process to divest the three soft alloy facilities not
included in the joint venture located
in Warren, Ohio, in Tifton, Georgia,
and in Plant City, Florida.
Alcoa Chairman and CEO Alain
Belda said, “The combination of
these two operations provides many
opportunities to improve profitability
by leveraging the scale of a broader
global manufacturing system.” He
added, “Our overall downstream operations have continued to improve
their financial performance the past
few years. We have leading positions
in key flat-rolled product segments
where we have grown 14% annually
since 2002 and where we are also in
a strong position to capture further
growth in China and Russia.” Other
downstream operations such as Alcoa
Howmet and Alcoa Fastening Systems improved profitability by more
than 60% in 2005. “And our forgings,
global building and construction and
hard alloy extrusion businesses are
solid performers. This move and our
continued focus upon continually
maximising returns should serve our
downstream operations well for the
next several years,” said Belda.
Savings of US$ 125m
before taxes expected
As part of the review of its overall
downstream operations, Alcoa also
plans a targeted restructuring programme in order to further increase
efficiency as well
as profitability. The
restructuring will
encompass plant
closures and consolidations that will
affect some 6,700
positions across the
concern’s global businesses in 2007.
This programme is
expected to save
around US$ 125 million before taxes
on an annualised basis. Through the
first three quarters of 2006, Alcoa
generated more earnings than in any
full year of the company’s history. “In
order to continue to move forward,
we now need to take the difficult but
necessary restructuring steps that
will continue to maximise profitability across the company,” said Belda.
Included in the fourth quarter 2006
restructuring are the following major
components:
Flat rolled products (FRP): Restructuring of the company’s can stock operations resulting in the elimination
of approx. 320 jobs, including the closure of the Swansea can stock facility
in UK. Conversion of the idle rolling
mill in San Antonio, Texas, into a temporary flat rolled products technical
facility serving Alcoa’s global FRP
business.
Extruded and end products: Optimisation of the company‘s global
hard alloy extrusion production operations which serve the aerospace,
automotive and industrial products
markets. This will result in the elimination of around 370 jobs in the US
and Europe.
Engineered solutions: Restructuring and consolidation of the company’s automotive and light vehicle
wire harness and component operations, including closure of the manufacturing operations of the AFL Seixal
plant in Portugal and restructuring of
the AFL light vehicle and component
operations in the US and Mexico.
These measures will affect more than
4,800 jobs.
Packaging and consumer: Consolidation of selected operations within
the company‘s global packaging production to increase productivity, resulting in the elimination of around
470 jobs.
Primary metals and alumina: Cuts
within the company’s global primary
metals and alumina operations by approx. 330 jobs to further strengthen
the company’s position on the global
cost curve.
N
ALUMINIUM · 1-2/2007
A L U M I N I U M S M E LT I N G I N D U S T R Y
Fig. 1: Patented electric preheater for cathode blocks
Almeq electric preheater for cathode blocks
The electromagnetic stability of
the liquid aluminium pad depends
on the uniformity of the electric
current passing through it from
above and below. Therefore, just
as every anode needs good electrical connection to an anode rod, so
every cathode block needs good
electrical connection to a steel
cathode collector conductor bar.
Since it cannot be repaired in
service, the cathode connection
must reliably last the lifetime of
the pot, and its fabrication is a vital step in pot assembly.
The steel bar is sealed into the cathode blocks using a paste, glue or cast
iron. To improve the electrical connection, this cathode block must be
preheated to about 700 °C. Traditionally this has been done by flame heating the assembly from outside. This
is not very efficient or convenient: it
involves substantial fuel costs, noise,
and fumes. Also, it requires close supervision, as it tends to oxidise carbon
from the cathode blocks, there is a risk
of gas explosions. To overcome these
problems, Almeq invented an electric
30
All illustrations: Almeq
J. D. Hansen, Langhus
Fig. 2: Clamping system
preheater for cathode elements before the rodding. Its key elements are
illustrated as follows.
A patent covers the principle of
electric resistance heating of cathode
blocks. The carbon blocks with steel
conductor bars are placed in an insulated chamber, where the steel bars
are connected to an electric current of
between 4 kA and 7 kA. This uniformly
and heats the steel bar in programmed
stages to 700 °C; the cathode blocks
reach 400 °C and do not need more,
as they are already calcined. The fully
automated process has an accurate
clamping mechanism to introduce the
heating current. To avoid overheating
the copper clamps, these are water
cooled. If the cathode consists of a
split steel bar, the preheater station is
equipped with an electrical contact in
the middle to bridge the gap.
ALUMINIUM · 1-2/2007
SPECIAL
A L U M I N I U M S M E LT I N G I N D U S T R Y
Fig. 3: Process control
The process is controlled by thermocouples monitoring the temperature
in the steel bar and carbon cathode
block. The exact temperatures are set
according to the customer’s specification.
Different methods are available for
feeding the carbon and steel assemblies to the preheater. Alternatives
range from a single loading wagon
to complete arrangements including
shot blasting and casting station.
Results in service
Four machines are in service, totalling
17 years of experience:
Country
Iceland
Norway
UAE
Iceland
Place
Hafnafjordur
Husnes
Dubai
Grundartangi
Customer
Icelandic Aluminium Company
Sør-Norge Aluminium
Dubai Aluminium Company
Nordural
The first machine installed replaced
propane gas heating at Isal, Iceland, in
1997, and it gave the following results:
yearly saving in energy: 1.28 GWh,
elimination of CO2: 360,000 kg/year,
saving in manpower: 2 men.
Five years later, a duplicate machine was installed at SØRAL, Norway, which uses identical cathode
blocks to Isal. In 2003, Almeq delivered an improved system to Dubai
Aluminium (Dubal). To increase productivity, this system has two trolleys
to prepare the cathode blocks. Due to
changes in cathode design, the Dubal
preheater will be modified to handle
ALUMINIUM
· 1-2/2007
31
the new, bigger blocks. The latest installation was delivered to Nordural,
Iceland for the Phase III expansion
project. The system has been running for a year and has heated 6,000
cathode blocks. The results from the
system are as follows:
Previously, 400 kg of propane was
required to heat 6 cathode blocks. The
estimated cost of propane is 0.40 euros
per kg. With the electric preheater for
cathodes the required electrical consumption is 600 kWh with an estimated cost of electricity of 0.04 euros per
kWh (In Iceland, the cost of electricity
is less than 1/3 of this). The savings for
heating 6 cathode blocks:
Year
1997
2002
2003
2005
Propane €0.40 x 400 = €160.00
Electricity €0.04 x 600 = €24.00
Saving per heating €136.00.
Besides this direct cost comparison, experience in service confirms a
range of advantages for the automated
system:
• High power factor (cost )
• No supervision needed during
procedure
• No hazard to personnel nor
facilities
• Low energy consumption
(1:5 reduction)
• No noise
• Negligible carbon oxidation
• Uniform temperatures in the steel
bars and in the carbon blocks
• Identical conditions prior to
each casting
• Fully automated feeding
• No exhaust gases.
Summary and Conclusion
Before cathodes blocks are assembled
into electrolysis pots, the steel conductor bars must be sealed into them,
and then heated to ensure adequate
electrical conductivity.
Compared to the external gas or
oil burners traditionally used for this
preheating, electric resistance heating
from within is safe, clean, and reliable.
Experience in four smelters proves
that this automated system is amortised by the fuel, operator and other
costs it saves.
Author
Jan D. Hansen is General Manager of Almeq
Norway AS, based in Langhus, Norway.
Fig. 4: Feeding
ALUMINIUM · 1-2/2007
31
A L U M I N I U M S M E LT I N G I N D U S T R Y
AlPrg: a software tool for aluminium smelting
AlPrg is a collection of computer
programmes (modules) for PCs
using interactive graphics to display the results of calculations
concerning aluminium production by electrolysis. The user applies these modules among other
things to visualise how varying
the parameters will affect pot
operation. He can then choose
the best values to operate the
electrolytic cells of a potroom so
as to optimise the most important
technical and economic results.
This paper reports on the use of
one of these modules, namely the
Electrolyte Properties Module.
This module calculates the physical and chemical properties of the
cryolite electrolyte as a function
of its composition and temperature. The Electrolyte Properties
Diagram Pane shows plots of these
bath properties in function of the
electrolyte parameters. This plot
predicts the behaviour of the bath
after a parameter change, and so
identifies the optimal bath composition and bath temperature to
operate the electrolytic cells.
AlPrg was developed with the aim of
helping people occupied with aluminium production by electrolysis. AlPrg
contains several modules that the
user selects depending on the tasks
he wants to study. For instance, if he
wants to know how much aluminium
a potroom is producing in one month,
then he uses the aluminium production module. If he needs to find the set
value of the pot voltage, the alumina
feeder setting or how much aluminium fluoride to add, he will apply the
corresponding, obviously more complex, modules of AlPrg. Finally if the
user wants to improve the economic
performance of the aluminium smelting plant, the profitability analysis
modules will help him to determine
those operational parameters to run
the plant in a better way.
This paper deals with the electrolyte properties module of AlPrg.
32
All illustrations: Entner
P. M. Entner, Sierre
Fig. 1: Layout of the User Interface of AlPrg. The figure shows 3 tab groups with the calculation pages Technical Profitability Analysis, Aluminium Production and Pot Parameters
being selected. Two diagram panes namely the Pot Voltage Diagram Pane and the Electrolyte Composition/Properties Diagrams Pane are docked on the programme user interface.
This module shows the physical and
chemical properties of the cryolite
electrolyte, like the liquidus temperature or electrical conductivity. AlPrg
determines these values in relation
to the chemical composition and the
temperature of the electrolytic bath.
The electrolyte properties diagram
pane shows diagrams of these bath
properties in function of various plots.
These plots predict the behaviour of
the bath after a parameter change and
so help to determine the optimal bath
composition and bath temperature.
Programme layout
When the author of this paper worked
with Alusuisse and later with Alcan he
developed ElysePrg [1] a precursor of
AlPrg. AlPrg is, however, a completely
new concept for this application, especially regarding the program features
and program layout. AlPrg consists
of pages and diagram panes. In the
windows the user changes numerical
values in input fields, and then AlPrg
calculates the corresponding results.
The diagrams (plots) show graphical
representation of properties depend-
ing on various parameters. Formed as
graphical user interfaces (GUIs), the
plots allow the user to change values
on the plot by dragging their size representation with the mouse pointer.
AlPrg calculates the corresponding
new resulting values and updates the
relevant pages and plot panes.
The user selects pages or plot
panes by clicking on the corresponding menu or tab items. He can arrange
several pages on the programme user
interface and see them simultaneously so as to study the calculation
results. The diagram panes can float
on the computer screen or they can
be docked, i.e. added on the AlPrg
user interface. The next figure (Fig. 1)
depicts an example of the AlPrg user
interface containing three tab groups
and two diagram panes. From the tab
groups the user has selected the technical profitability analysis page, the
aluminium production page and the
pot parameter page. In addition he has
docked the pot voltage diagram pane
and the electrolyte composition/properties pane on the user interface.
The user finds more information
about AlPrg in the conventional ac-
ALUMINIUM · 1-2/2007
SPECIAL
A L U M I N I U M S M E LT I N G I N D U S T R Y
companying help system. He may also
consult the corresponding website [2]
that contains practically the same user’s guide and theoretical background
information.
cosities of the electrolytic bath and of
the aluminium metal.
The bath temperature can be expressed as the liquidus temperature
plus the superheat. The user selects
as input value either the superheat
(as shown in Fig. 2) or the electrolyte
The Electrolyte Composition/
temperature. Selecting a value as inProperties Page
put means that it is constant for the
Fig. 2 shows the electrolyte compofollowing calculations (the superheat
sition/properties page. In the upper
in Fig. 2) and the other depending
part of the page the user changes the
value (the bath temperature in Fig. 2)
concentration values of the electrolyte
is calculated correspondingly.
components of aluminium fluoride
To determine the liquidus tempera(AlF3), calcium fluoride (CaF2), aluture, the electrical conductivity or the
minium oxide (alumina Al2O3), lithidensities the user can choose between
several
relationships published by
different authors.
Fig. 2 shows a Drop
Down Combo Box
where the user has
selected the equations of Solheim [3].
He could alternatively also click on
the names of RøsFig. 2: Electrolyte Composition/Properties Page. In the upper part tum [4], Peterson
of the page the user may change the concentration values in the
[5], Bullard [6], Lee
input fields. The lower part contains the property values. The
user may select the authors of the corresponding equations that [7] or Dewing [8] to
AlPrg uses to calculate the properties.
choose the corresponding relations.
um fluoride (LiF), magnesium fluoride
The theoretical part of the AlPrg
(MgF2) and potassium fluoride (KF).
website [9] contains all the relations
The bath ratio is the weight ratio of
and equations that AlPrg uses for its
sodium fluoride over aluminium fluocalculations.
ride. Aluminium oxide at anode effect
is the alumina concentration when
The Electrolyte Composition/
the anode effect occurs. The user can
Properties Plot
suppress this parameter by inactivatFig. 4 shows the electrolyte compoing the check box.
sition/properties plot pane together
The lower part of the page contains
with the electrolyte composition/
the values of the electrolyte properproperties page.
ties, namely the liquidus temperature,
Fig. 4: The Electrolyte Composition/Properties Diagram Pane
docked on the AlPrg user interface. Small icon-like plots
represent the selected electrolyte property (the liquidus
temperature in this figure) in function of the electrolyte
components. The user has selected the liquidus temperature
vs. aluminium fluoride content to be shown in the larger
property plot. The circles represent the current values of
the electrolyte composition.
the liquidus temperature depends on
these variables, the other parameters
staying constant. The small circles
represent these constant concentration values shown on the electrolyte
composition/properties page.
Property plot
If the user wants to study an iconplot more profoundly he clicks on
the icon-plot with the mouse pointer
and the icon-plot expands to replace
the larger property plot. In Fig. 4 the
Icon plots
The idea of this plot pane
is to show a property of the
electrolytic bath in dependence of the bath composition and the bath temperaFig. 3: Drop Down Combo Box to select the authors of
ture. The plot pane of Fig.
the relations that AlPrg uses to calculate the liquidus tem4 consists of small icon-like
perature. The user has chosen the equation of Solheim
plots of the liquidus temper[3] by clicking on the name with the mouse pointer.
ature against the concentrations of aluminium fluoride, calcium
the electrical conductivity, the maxifluoride, aluminium oxide etc. From
mum alumina solubility, the total vathese plots the user can visualise how
pour pressure, the densities and vis-
ALUMINIUM
· 1-2/2007
33
Fig. 5: Liquidus temperature vs. Alumina Concentration
Property Plot. The user has clicked on the Al2O3 icon-plot
and the property plot shows the liquidus temperature vs.
the alumina concentration. The gray areas are the regions
where the alumina concentration is lower than anode effect
concentration (on the left side) or higher than the maximum alumina solubility (right side).
user has clicked on the aluminium
fluoride concentration icon-plot, and
consequently the property plot shows
the liquidus temperature in dependence of the aluminium fluoride con-
ALUMINIUM · 1-2/2007
33
©
A L U M I N I U M S M E LT I N G I N D U S T R Y
centration between 0 and 30 weight
%. The circle represents the liquidus
temperature of 953.7 °C at the aluminium fluoride concentration of 12
weight %.
Gray areas in the icon or property
plots are regions where values are not
available or not possible. Fig. 5 shows
the property plot of the liquidus temperature vs. the alumina content. The
grey regions show where the alumina
concentration is smaller than the anode effect concentration (on the left
side) or greater than the maximum
solubility of alumina in the electrolyte.
Electrolyte and aluminium
densities
As an example the following chapter
discusses the densities of the electrolyte and of the liquid aluminium
metal. In the electrolytic production
of aluminium the density values es-
Fig. 6: Aluminium and Electrolyte Densities Plot Pane. The
user has clicked on the aluminium fluoride icon-plot, so that
the property plot shows the aluminium and electrolyte density vs. the aluminium fluoride concentration.
pecially the density difference between aluminium and electrolyte affects the separation of the produced
aluminium metal from the bath. This
difference should be larger than 0.2
g/cm3 in order to prevent mixing and
to maintain good separation between
the metal pad and the electrolyte layer. In the electrolyte and aluminium
density plot pane AlPrg shows simultaneously the densities of the liquid
aluminium metal and the liquid electrolyte. In this way the user sees immediately the influence of parameter
changes on the density difference.
Dragging
If the mouse pointer is over the property plot and the user presses the right
mouse button a so-called value line
34
Fig. 7: Dragging of the Value Line. When the user holds down the right mouse button AlPrg
draws the so-called value line. When the user drags this line by moving the mouse, AlPrg
registers a new input value and plots new density values in the property and icon plots.
is drawn. When the user displaces
the mouse (dragging) the value line
follows this motion on the property
plot. AlPrg registers this new concentration input value (5% aluminium
fluoride in Fig. 7) and calculates the
corresponding new density values in
the icon and property plots (and electrolyte composition/properties page).
If the user wants to change another
parameter, the lithium fluoride concentration, the procedure is the same.
The user clicks on the lithium fluoride
icon plot. This icon plot is then selected, i.e. AlPrg shows this plot in the
main property plot. By again dragging
the value line with the mouse pointer, the user changes then the lithium
fluoride concentration,
and AlPrg calculates the
corresponding density
values.
plot (densities vs. superheat on Fig.
6, 7) and the electrolyte temperature
plot (bath temperature vs. aluminium
fluoride on Fig. 6, 7).
Clicking on the superheat iconplot ('T) AlPrg draws the corresponding property plot, namely aluminium
and electrolyte density vs. superheat.
By dragging the value circles, the user
can modify the input value of the superheat.
Since the last selected composition icon plot was the densities vs.
aluminium fluoride icon-plot, AlPrg
shows in the bath temperature icon
plot how the electrolyte temperature
depends on aluminium fluoride concentration.
Temperature plots
The superheat, i.e. the
temperature difference
between the electrolyte Fig. 9: Property Plot of Densities vs. Superheat. The user has
temperature and the selected the superheat icon-plot of Fig. 6 and so AlPrg draws
the corresponding property plot densities vs. superheat.
liquidus temperature, is
a very important value for everyday
If the electrolyte temperature is
pot operation. Sometimes some quite
selected as input value on the elecpuzzling events are observed, namely
trolyte composition/properties page
that the superheat might be nega(see Fig. 2, 3 and 4), then the electrotive (the electrolytic bath should be
lyte composition/properties diagram
solid) even for a rather long time pepane shows the densities vs. electroriod. This effect is called the liquidus
lyte temperature icon-plot (Fig. 11). By
enigma [10].
clicking on this icon plot, the user inIf the superheat ('T) is selected as
structs AlPrg to show the correspondinput value on the electrolyte compoing aluminium and electrolyte density
sition/properties page (see Fig. 2, 3
vs. bath temperature property plot, as
and 4), then the electrolyte composiwell as the electrolyte temperature
tion/properties diagram pane shows
plot (bath temperature vs. aluminium
two icon-plots, namely the superheat
fluoride on Fig. 6, 7).
ALUMINIUM · 1-2/2007
SPECIAL
A L U M I N I U M S M E LT I N G I N D U S T R Y
Fig. 10: Property Plot of Bath Temperature vs. Aluminium Fluoride Concentration. The user
has selected the bath temperature icon-plot of Fig. 6, and so AlPrg draws the corresponding property plot bath temperature vs. aluminium fluoride concentration.
however also incorporated into other
modules where it is needed, for instance into pot voltage or the profitability module. It works there in the
same interactive way as described in
this paper; this means the user can
change an input value either from the
key board on the electrolyte property
page, or else by dragging on the corresponding property plot. AlPrg then
recalculates other parameters and
updates the corresponding pages or
plot panes.
References
Conclusions
This paper describes the calculation
page and the diagram pane of the electrolyte properties module of AlPrg. In
the calculation page the user enters
or modifies in a rather conventional
way values in the corresponding input
fields, and AlPrg then determines the
corresponding electrolyte properties,
like liquidus temperature, electrical
conductivity etc. The diagram pane
shows graphical representations, i.e.
plot is a graphical user interface, i.e.
the user can change input values by
dragging the so called values line with
the mouse pointer to a new position
and value.
The user investigates in this way
the behaviour not only of those electrolyte properties already described in
this paper (liquidus temperature and
densities), but also the electrical conductivity (interesting for pot voltage
settings), maximal alumina solubility
(used for point feeder setting) , vapour
[1] P. M. Entner, “New Feature of ElyseSem/
ElysePrg”, Aluminium 75 (1999) 12, 10641072
[2] http://www.peter-entner.com.
[3] A. Solheim, S. Rolseth, E. Skybakmoen,
L. Støen, Å. Sterten, T. Støre, “Liquidus
Temperature and Alumina Solubility in
the System Na3AlF6-AlF3-LiF-CaF2-MgF2”,
Light Metals (1995), 451-460.
[4] A. Røstum, A. Solheim, A. Sterten, “Phase
Diagram Data in the System Na3AlF6-LiAlF6-AlF3-Al2O3. Part I: Liquidus Temper3
atures for Primary Cryolite Crystallisation”,
Light Metals (1990), 311-316.
[5] R. D. Peterson, A. T. Tabereaux, “Liquidus Curves for the Cryolite-AlF3-CaF2Al2O3 System in Aluminum Cell Electrolytes”, Light Metals (1987), 383-388.
[6] G. L. Bullard, D. D. Przybycien, “DTA Determination of Bath Liquidus Temperatures:
Effect of LiF”, Light Metals (1986), 437-443.
[7] S. S. Lee, K.-S. Lei, P. Xu, J. J. Brown
Jr., “Determination of Melting Temperatures and Al2O3 Solubilities for Hall Cell
Electrolyte Compositions”, Light Metals
(1984), 841-855.
[8] E. W. Dewing, “The Chemistry of the
Alumina Reduction Cell”, Can. Metallurgical Quarterly (1974), 13 (No.4), 607-618;
JOM 53 (2001) 5, pp. 29-34.
[9] http://www.peter-entner.com/e/theory/thcontents.htm.
[10] B. P. Moxnes, A. Solheim, T. Støre, B.
E. Aga, L. Støen, “The 'Liquidus Enigma'
revisited”, Light Metals (2006), 285-290.
Author
Fig. 11: Densities vs. Electrolyte Temperature Property Plot. The user has selected the electrolyte temperature as input value on the electrolyte composition/properties page. AlPrg
then shows the densities vs. electrolyte temperature icon- and property plot after appropriate selection by the user. The shaded area is the region where the bath temperature is
lower or higher than the liquidus temperature +/- the maximum superheat (±50 °C).
small icon-plots, of how a selected
property (the liquidus temperature,
for instance) depends on the electrolyte composition values and the
bath temperature. The user selects
an icon-plot to be drawn in the larger
and more precise property plot. This
ALUMINIUM
· 1-2/2007
35
pressure (necessary for environmental issues) and the viscosities of the
liquid aluminium pad and electrolyte
(used for hydrodynamic studies).
This paper describes the electrolyte properties module as a standalone programme. This module is
Peter M. Entner has studied chemistry at
the University of Vienna. He pursued his
studies at the University of Pennsyslvania
and University of Geneva (high temperature electrochemistry and crystallography).
He joined then Alusuisse that later became
Alcan to work on research and development projects about aluminium smelting.
Being retired, Peter’s passion for bytes and
pixels keeps him busy to work on software
that might be useful for the members of the
aluminium smelting community.
ALUMINIUM · 1-2/2007
35
A L U M I N I U M S M E LT I N G I N D U S T R Y
Honoured by The Electrochemical Society
Vittorio de Nora receives 2006 Acheson
Award for lifetime career achievements
Vittorio de Nora has been honoured as the recipient of The
Electrochemical Society (ECS)
2006 Edward Goodrich Acheson
Award. The Acheson Award was
established in 1928 to recognise
distinguished contributions which
advance objects, purposes or activities of ECS. Requirements for
receiving the award are distinguished services to the Society,
as well as distinguished scientific
discoveries or inventions in electrochemical or solid state science
and technology.
36
Vittorio de Nora was born in Altamura, Italy, on 11 November 1912.
He attended middle school, graduating in 1929, and was admitted to the
Royal Politecnico Institute of Milan in
October of the same year, where he
received a doctorate in Electrochemical Engineering with full honours in
1935. In 1936, he was chosen to be
Professor of Physical Chemistry and
Electrochemistry at the Royal Politecnico Institute but he decided to spend
two years to carry out research at
King’s College, University of London,
with the famous Professor Allmand.
Moltech
Vittorio de Nora has dedicated his
career to scientific research in the
field of electrochemistry, including
in particular the fields of chlorine-alkali and aluminium production. Dr. de
Nora’s research achievements centre
on his efforts to find a feasible inert
anode, that is an anode that operates
in a cell without becoming corroded
as part of the electrochemical process,
and which could be used to replace
carbon anodes in electrochemical
cells. He succeeded, first with the
Dimensionally Stable Anode (DSA)
that revolutionised chlorine-alkali
production and other electrochemical industries. By saving electrical
energy, improving cell operation and
eliminating or substantially reducing
pollution, the DSA has contributed to
a predominant position for electrochemistry worldwide.
Recently, Dr. de Nora and his
scientific team based in the modern
laboratories purpose-built in the
Swiss Valais, have developed the prototype of a de Nora inert anode for
aluminium production. Inert anodes
not only eliminate serious pollution
problems, including carbon dioxide,
carbon monoxide and perfluorocarbon emissions from carbon anodes,
but also improve energy efficiency of
inert anodes in electrowinning cells
and also significantly reduce operating costs.
Biographical Note
Vittorio de Nora
Later, at the Hochschule of Dresden,
he worked for one year with Professor Muller, who decided to delay his
retirement in order to accept the challenge of working with de Nora.
Leaving Dresden in 1937, Vittorio
de Nora went to the United States,
where he enrolled at Lehigh University in Pennsylvania. While at Lehigh,
he became one of the first members
of ECS, and today he has the distinction of being the Society member with
the longest membership record. He
chose Lehigh in order to work with
Professor Butts and the results of his
research earned him a Ph.D. in Physi-
cal Chemistry in just nine months.
Vittorio de Nora is a Volta Fellow, a
Weston Fellow and a Case Centennial
Scholar. He was elected an Honorary
Member of ECS in 1982, and he became a Fellow of the Society in 1992
in recognition of his contributions
to science and electrochemical engineering. Case Western University,
Lehigh University and the University
of Cincinnati have conferred on him
the honorary degree of Doctor of Science. He was one of the five founders of International Physicians for the
Prevention of Nuclear War (IPPNW),
to whose activities he contributes as
the only non-medical founder. IPPNW received the Nobel Peace Prize
in 1985.
Vittorio de Nora has inspired
noteworthy technical achievements
by encouraging research in electrochemistry through his endowment of
the annual Electrochemical Society
Vittorio de Nora Award for distinguished contributions in the field.
He is the author of hundreds of
worldwide patents related to industrial electrochemistry. His most important patents in the chlorine-alkali
field include not only the DSA itself,
but also the great advantage of a new
membrane cell design, which directly produced concentrated salt-free
caustic and also eliminated pollution,
particularly by eliminating mercury
cathodes and asbestos diaphragms.
De Nora companies have also developed the bi-polar chlorine cell,
built plants producing one-third of
the world‘s chlorine production,
including the largest chlorine cell
(450,000 A), still the largest electrochemical cell ever built, and have also
constructed the world‘s largest water
electrolysis plant having heavy water
as a by-product.
N
For subscribers
www.alu-archiv.de
Knowledge with
a lasting impact!
ALUMINIUM · 1-2/2007
A L U M I N I U M S M E LT I N G I N D U S T R Y
Aumund cooling conveyor for
hot bath material
In the course of more than 80
years the Aumund Group has
earned its reputation as a specialist in supplying equipment for raw
material handling in the cement
industry, in the iron and steel as
well as in the primary aluminium
industry. From its headquarters
in Rheinberg, Germany, the Aumund Group has integrated the
companies Schade Lagertechnik
GmbH at Herne in Germany, and
B&W Handling Ltd. at Ely, UK, in
the last years. With more than
10.000 machines installed in over
100 countries, the Group continuously faces market challenges and
tries new solutions. Especially the
handling of hot and abrasive bulk
materials in the steel and primary
aluminium industry puts severe
requirements on the conveying
technique. Aumund already secured an entry into the Guinness
world record book for supplying
of the longest bucket apron conveyor for the transport of 900 °C
hot direct reduced iron.
To solve a particular problem in conveying technique Aumund invented
a customer-specific solution in 1995
for the aluminium smelting plant
SØR Norge Aluminium in Norway.
It was developed with the manager
of the engineering department of the
smelting plant at that time and with
a Norwegian specialist for hot material crushers, and it became the first
economical and efficient solution for
the clean handling of 850 °C hot bath
material. Since then this concept has
meanwhile been successfully used for
five units in other European smelting
plants.
All illustrations: Aumund
M. Coopmann, Rheinberg
Fig. 1: Fluoride emissions
usually been collected in containers
and allowed to cool naturally. Due to
the thickness of the layer of hot bath
material in these containers, there is
no guarantee that the bath lumps will
have cooled below 100 °C even after
24 hours of cooling time. However,
before further processing, the material must cool down to below 70 to
80 °C. Special coolers have been tried
to cool down the bath material to the
required temperature – but without
success.
In order to give the new anode good
starting conditions, the solid bath surface has to be cleared from under it.
This allows high current efficiency
and stable pot operation. Previously,
point feeding prebake technology did
not employ side breaking operation,
so this bath material was stored in the
service area of the pot. The crust with
alumina and bath material was then
later broken into the liquid bath by
the tools of the crust breaker vehicle,
while fluoride gases escaped uncontrolled.
Problem
Solution and functional
description
When using the prebake technology,
anode butts are removed together with
a substantial quantity of hot bath material. This fluoride-rich material has
For defined cooling of bath material,
Aumund developed a solution designed to cool down hot bath material
from 850 °C to 80 °C within a period
38
of time not longer than 12 hours. Prior
to this cooling on an Aumund deepdrawn pan conveyor, a specially designed hot bath crusher from SMV A/S
receives up to 850 °C hot bath material and crushes it down to a lump size
of about 200 mm. Directly underneath
the hot bath crusher, the Aumund
cooling conveyor is connected and re-
Fig. 2: Covered conveyor connected to dry
scrubbing system
ceives the red-hot bath material. With
a variable speed between 0.15 m/min
and 0.5 m/min the conveyor works
like a moveable storage and is able to
adapt to the discontinuous operation
of a smelting plant. After a distance
of 95 m, approximately 3 tonnes per
hour bath material is finally cooled
down on a 1400 mm wide conveyor to
approximately 80 °C and is ready for
ALUMINIUM · 1-2/2007
SPECIAL
further processing in the bath treatment plant.
Research on the process of
conveying hot bath material
HF-emissions under control
HF-measurements at SØR Norge Aluminium in 2005 have shown that the
HF-gases evaporate into the environment at temperatures above approx.
400 °C material temperature and thus
risk damaging the health of employees in the potroom. At the tipping
point already, where the 850 °C hot
Fig. 3: Conveyor section with heat
protection box and data logger inside
bath material is fed into the crusher,
there is a suction point which leads
the emitting HF-gases into the existing
dry scrubbing system. As the cooling
process progresses, the emissions of
the HF-gases progressively decrease,
until they finally become negligible
small for a bath material temperature
below 400 °C (Fig. 1).
Moreover, the cooling conveyor is
covered by a hood and connected to
the existing dry scrubbing system via
several suction points (Fig. 2). Measurements show that the suction system absorbs approx. 60 g per tonne
of bath emissions on average during
a 3-shift operation.
A L U M I N I U M S M E LT I N G I N D U S T R Y
ers, and thus to higher investments in
infrastructure, civil work, etc.
Based on these requirements, Aumund started investigations at the primary aluminium smelter of Slovalco
in 2006. Since 2002 an Aumund cooling conveyor had already been operating at the Slovalco plant to handle
hot bath material. At our works in
Germany a new conveyor section
was equipped with a Data logger and
six thermocouples (Fig. 3) and then
installed in the conveyor operating at
Slovalco.
The measurements taken during
the normal daily operation of the primary aluminium smelter provided us
with valuable data for further investigations and led to a new Thermodynamical Calculation Software (TCS).
This new TC-Software (Fig. 4) has
now replaced the old conventional
way of designing cooling conveyors
and is based on the following parameters:
• material layer height
• air flow above the conveyor
• number of suction points
• conveyor width
• conveyor speed
• lump size of bath material.
As a theoretical reflection, we used
the new TC-Software to recalculate
our first installation at SØR Norge
Aluminium. Compared with our
original figures, the result would
have allowed a reduction in length
by 1/3 while doubling the conveyor
speed and reducing by half the layer
height of bath material. An additional
advantage of the new TC-Software is
the option to adapt and incorporate
restrictions in conveyor length or air
flow capabilities, according to our
customers’ references.
Benefits and advantages of the
Aumund cooling system
• Reduction of investment cost in
infrastructure, such as avoiding
the need for a building to store
bath skips while the bath is cooling prior to crushing;
• No need for skips to cool bath
• Reduction of operating cost
(no double handling of the skips
and associated vehicles and
operators)
• Increased rate of automation
• Clean bath handling
• Defined cooling of bath material
• Fluoride gases removed by
controlled suction;
• Significantly increased safety and
health conditions in the potrooms
• Improved environmental
conditions.
References
1995
2002
2002
2002
SØR Norge Aluminium, Norway
SØR Norge Aluminium, Norway
Slovalco Aluminium, Slovakia
Alcan Icelandic Aluminium,
Iceland
2006 Nordural Aluminium, Iceland
2006 Fjardaál Smelter, Iceland
2007 Trimet Aluminium, Germany
Author
Marco Coopmann is Sales Manager, Division Metallurgy of Aumund Fördertechnik
based in Rheinberg, Germany.
Investigations of the cooling
characteristics of hot bath
material
In contrast to capacity needs in 1995
to cool 2.5 t/h of bath material, Aumund nowadays receives inquiries
calling for up to 36 t/h bath material cooling and conveying capacity.
Calculating such applications in the
conventional way would lead to uneconomical solutions for our custom-
ALUMINIUM
· 1-2/2007
39
Fig. 4: Cooling curve of bath material
ALUMINIUM · 1-2/2007
39
A L U M I N I U M S M E LT I N G I N D U S T R Y
Advances in gas suspension calcination technology
B. E. Raahauge, Copenhagen
The principle of the gas suspension calciner (GSC) was developed by F. L. Smidth & Co. in the
early 1970s for pre-calcination
of cement raw meal (d50 = 10 to
20 μm), as feed to the rotary kiln
burning the final cement clinker.
Following the successful commissioning of the first 4,600 tpd rotary
kiln with pre-calciner in 1976, F.
L. Smidth decided to develop the
GSC technology for application
within the alumina industry. The
state of the art of the GSC technology in commercial operation
producing smelter grade alumina
(SGA) covers a capacity range
from 820 to 4,500 tpd of SGA.
The economics of bag house versus
electrostatic precipitators for meeting environmental requirements have
changed over the past 20 years. This
paper describes developments since
the first 850 tpd GSC unit for alumina
was started up in 1986.
GSC for smelter grade alumina
(SGA) production
All illustrations: F.L.Smidth
The GSC furnace comprises a cylindrical vessel with a conical bottom to
let in pressurized air or gas, as well
as a hot cyclone to separate of solids
Fig. 1: Gas suspension calciner furnace and
cyclone (HFO: heavy fuel oil; SGA: smelter
grade alumina)
40
Fig. 2: Principle flow sheet for gas suspension calciner unit bag house and booster fan
from the outlet gas. A series of cooling cyclones recover heat from the
calcined SGA to preheat air and fuel,
while a series of heating cyclones
recover heat from the combustion
gases to dry, preheat, and pre-calcine
the hydrate feed. The GSC furnace is
refractory lined and operates at a temperature in the 950 to 1150 °C range.
Preheated alumina enters the GSC
furnace at a temperature ranging from
320 to 370 °C in a direction parallel
to the conical bottom of the furnace.
Preheated air enters from the cooler
at a temperature of 700 to 800 °C and
is used to burn the fuel. The operating temperature chosen for the GSC
furnace and hot cyclone depends on
what degree of calcination the alumina
requires and on how long it stays hot
in the equipment downstream of the
hot separation cyclone. The operating
temperature can be lowered when
the GSC furnace and hot cyclone is
retrofitted behind a rotary kiln to act
as cooler (GSC retrofit), or if the hot
separation cyclone is equipped with
a fluidized holding vessel. The higher
operating temperature range is used
when alumina from the hot cyclone
discharges into a four (4) stage cyclone cooler. The GSC units are designed for an overall pressure drop of
8 to 11 kPa before the gas dedusting
equipment. The specific power con-
sumption of 20 to 24 kWh per tonne
alumina depends on the type of gas
de-dusting equipment, the type of
fuel used, and whether a forced draft
booster fan is installed on the clean air
side. The specific heat consumption is
about 3.2 to 3.4 GJ per tonne alumina,
depending on moisture content in the
hydrate feed and on the type of fuel
used.
Thermal energy options for
calcination
The GSC units in operation today use
either heavy fuel oil (HFO), natural
gas, or coal gas as fuel. Since all the
combustion air is preheated by cooling the alumina, the air flow through
a calciner, and thus the excess air
factor, has little impact on the energy
requirements. If more air enters the
cooling section, then more energy
will be recovered from the alumina,
but this is mostly offset by an increase
in the volume of hot gas lost to the
stack.
However, when using coal gas,
the losses to the stack will be higher
than for heavy fuel oil and for natural gas, because coal gas produces a
much greater volume of combustion
gases per unit of combustion heat.
This means that large volumes of coal
gas must be heated to calcining tem-
ALUMINIUM · 1-2/2007
SPECIAL
A L U M I N I U M S M E LT I N G I N D U S T R Y
perature, further reducing the energy
efficiency. The relatively low volume
of air for burning coal gas results in
a relatively higher loss of potentially
recoverable heat to the cooling water
(less recovery of heat from the alumina).
Compared to natural gas, heavy
fuel oil has the disadvantage of requiring a significant investment in storage
and oil heating equipment. This, along
with the potential restrictions regarding sulfur emissions, makes heavy fuel
oil less attractive than natural gas as
a fuel for alumina calciners, although
the latter’s higher heating value (HHV)
is 4 to 5% less per unit heat utilized by
combustion (LHV). Overall, coal gas
increases the specific heat consumption of GSC units with 6 to 7% when
compared to GSC units using heavy
fuel oil or natural gas.
requires any
particulate
filter technology to achieve
higher cleaning efficiency
and
on-line
availability, as
the allowed
emission level
is
lowered
year by year.
Most alumina calcin- Fig. 3: 3 x 4500 tpd GSC units at Queensland Alumina Ltd.
ers decured equipped with bag houses
environmental
compliance by using electrostatic precorrect start and stop procedures. The
cipitators (ESP), which until recently
table below compares process data, a
were the state-of-the-art equipment.
fabric filter and an ESP to achieve the
However, the bag house, or fabric filsame level of emissions for a specific
ter, is now considered an attractive
Gas flow [Nm3/min]
10,9
economic alternative. The electrostatTemperature [°C]
Fuel type
Heavy fuel oil
Natural gas
Coal gas
Typical lower
heating value
(LHV)
40.485 MJ/kg
37.345 MJ/Nm3
6.530 MJ/Nm3
Combustion air
theoretical volume (Nm3/ GJ)
264
253
208
Combustion gas
theoretical volume (Nm3/ GJ)
279
281
326
Tab. 1: Properties for alternative fuels used in calciner operation
However, at today’s high energy
cost ranging from 3.3 euros per GJ for
coal to 7.5 euros per GJ for oil, coal
gas may be a viable economic alternative to natural gas and HFO as fuel for
new GSC units wherever coal is readily available. This is the case in many
countries such as China, where most
of the GSC units installed use coal gas
as fuel. Preliminary economic analysis suggests that the pay-back time for
a coal gasification plant is about one
year.
Finally it should be noted that coal
gas produces 16 to 17 per cent more
combustion gas volume when compared to natural gas and heavy fuel
oil, which requires relatively larger
equipment for dedusting the calciner
exhaust gases to an acceptable emission level.
Trends in air pollution control:
bag house versus electrostatic
precipitator
The trend towards increasing environmental awareness worldwide
ALUMINIUM
· 1-2/2007
41
HHV/
LHV
1.061
1.107
1.058
Outlet emission [mg/Nm3, dry]
155-240
30
Tab. 2: Overall process data for a typical
gas suspension calciner filter plant
GSC unit. Both technologies have
been selected to meet the same environmental performance for the same
process conditions (i.e. flow, temperature and pressure) when applying the
same local conditions (i.e. wind load,
earthquake load).
The table below shows that the
fabric filter is lower in capex (initial
investment cost) compared with the
ESP. However the opex (operational
cost) for the fabric filter is higher than
the opex cost for the ESP. The opex for
the fabric filter depends on the type
of filter media used and obviously on
its lifetime. This data for capex and
opex has been entered into a NPV (net
ic precipitator loses competitiveness
at lower outlet emission levels. This is
because it needs more electrical fields
in the filter, which increases the associated total installed cost.
On the other hand, the total installed cost of a fabric filter will generally not change when the required
emission is lowered. This is because
the outlet emission do not depend
very much on the air to cloth ratio.
The major environmental advantage of the fabric filter is its ability
to maintain enviElectrostatic
Fabric
ronmental compli- Capex (capital expenditure) US$
1,334,000
1,320,000
ance even when Supply cost
1,407,000
656
Installation cost
the high voltage Total capex, US$ Flange/Flange
2,741,000
1,976,000
power supply fails. Opex (operational expenditure)
The electrostatic Bag life: assumed to be 3 years, cage life
filter has, however, is assumed to be 2 set of bags
25
150
a higher degree of Pressure drop, mm WG
50
302
Power consumption, fan, kW
robustness in case Power consumption, hopper heaters, kW
58
24
of deviations from Power consumption, T/R set, kW
184
NA
NA
25
normal process pa- Power consumption, compressor, kW
230,000
138,000
rameters, whereas Total opex, US$/year,
the fabric filter is based on 0.06 US$/kWh
sensitive to excess Tab. 3: Capex and opex for a fabric filter versus electrostatic
temperature and in- precipitator
©
ALUMINIUM · 1-2/2007
41
A L U M I N I U M S M E LT I N G I N D U S T R Y
present value) cost analysis made for
a 20 year period.
The result is a break-even point
after approximately nine years before
the ESP becomes the lower cost alternative.
Anyway, the major environmental
advantage of the fabric filter is its abil-
ity to maintain environmental compliance even in situations when the high
voltage power supply fails. And this
feature may overrule any economic
disadvantage over the long term, as
the local population will not allow any
temporary dust emissions, whatever
the cause.
Author
Benny E. Raahauge, MSc (Chem. Eng.) has
worked since 1976 with development,
marketing and sales of the gas suspension
calcination technology for alumina. His
current position is General Manager, Alumina & Pyro Technology, at FFE Minerals
Denmark A/S, based in Copenhagen.
Anode rod repair and manufacture
The anode rod was developed to
coincide with the introduction
of the prebaked anode and the
advent of prebake cell technology.
The early development phase generally consisted of a copper stem
joined to a steel pin or stub via
a bolted connection. The second
generation saw the introduction of
an aluminium stem joined to the
steel yoke. This connection was
achieved through the use of a bimetallic joint, commonly referred
to as a transition joint. The bolted
stub connection was replaced by a
welded connection and became an
integral part of a cast steel yoke.
The copper stem anode rod evolved
with the introduction of a welded
connection from the stem to the yoke.
This generation of anode rod also saw
the introduction of a multi pin yoke.
Generally this generation design has
survived through to today’s technology. The changes to the anode rod
have mainly been attributed to the increases in line amperage necessitating
the use of much larger anodes.
Upgrading existing anode rod
fleets
The industry has seen extremely large
increases in line amperage and current efficiencies. In order for existing
plants to stay competitive with new
smelters, they have increased their
amperage. We are seeing plants that
were designed for 100 to 150 kA now
running at 200 to 250 kA.
To achieve these increases, various modifications were carried out.
42
Holcan
D. Madden and B. Dalton, Gladstone
In some cases the original anode rod
was modified:
• Extra stubs added
• Stub size increased
• Transition joint type changed
• Offsets in anode rod.
These changes did not necessarily result in the optimum rod design, but
with a typical inventory of 10,000
plus rods in an older smelter producing 100,000 to 200,000 tonnes of
metal, modification is sometimes the
only viable option. As line amperages
further increase the anode rod may
require redesign; however, the decision to pursue this route will need
careful planning, as major, expensive
changes to other areas of the plant
may be required.
Current day anode rods
Typical materials used in modern-day
anode rods are transition joint (roll
bonded, aluminium to steel), yoke
(cast steel or fabricated mild steel),
stub (mild steel).
The design of the anode rod should
take into account:
• Current carrying capacity
• Mechanical strength
• Choice of material
• Ease of manufacture
• Life of anode rod
• Ease of repair
• Cost of repair
• Electrical resistance
• Initial cost
• Cell thermal requirements.
In recent years the industry has settled on aluminium rods as a standard
compared to copper rods. This seems
due to a combination of factors:
• Aluminium is slightly cheaper for
the same electrical performance
• The larger section area of the aluminium rod is mechanically more robust
• Aluminium rods last longer, typically more than 15 years compared to
often less than 7 years for copper
• Supports the aluminium industry.
The procedure to manufacture an anode rod is relatively straightforward.
ALUMINIUM · 1-2/2007
SPECIAL
The cost to manufacture the yoke is
generally driven by up-front costs,
with far less consideration given to
on-going repair costs once the plant
is in operation. A cast steel yoke complete with stub may cost 60 to 70%
more than a fabricated yoke.
On a plant with 14,000 new assemblies, this could represent savings of
US$ 3-4 million. Depending on the
fabricated yoke design, however, the
potential for extra repairs due to poor
design could easily cost the operating
plant the construction savings within
a few years of operation. These costs
could be incurred by:
• Failed stub welds from either poor
welds or operational stresses
• Full stub replacement versus partial stub replacement
• Twisting of assemblies once introduced into the cell, due to welding
stresses not being addressed during
manufacture; increasing repair needs
and increasing voltage losses during
operation due to poor fit of stubs in
the stub holes.
Economics of rod repair
Cost of repair: On a modern day potline of 280,000 tpy with a 180 mm
stub, the cost of repair can be in the
millions of dollars per year. Reducing repair costs is naturally a target
for many smelter operators. There are
means by which rod repair costs can
be reduced – as shown in the example below. There are also pitfalls in
attempting to reduce repair costs – as
discussed in the next section “Cost of
not repairing”.
Example: If a 280,000 tpy potline
repairing 12,000 stubs per year were
to convert from a full stub replacement to a partial stub replacement,
then savings in steel consumption,
based on a price of US$ 1,000 per
tonne, will be in the order of US$
290,000 per year.
This repair saving must be set
against a slight increase in voltage (4
mV) across the extra weld, amounting to US$ 90,000 extra power cost
(at US$ 0.025 per kWh).
This shows that the gains from
adopting a partial stub replacement
far out weigh the extra cost in power
due to extra weld resistance – a net
ALUMINIUM
· 1-2/2007
43
A L U M I N I U M S M E LT I N G I N D U S T R Y
saving of US$ 200,000 per year for the
smelter.
Cost of not repairing: For the smelter, the cost of rod repair is immediate
and tangible. There is, however, a hidden cost – the cost of reduced operating performance (increased voltage
losses and changed thermal performance) due to poorly maintained and
repaired assemblies. Typical defects
which lead to reduced anode assembly performance include:
• Reduced stub diameter in the stub
hole
• Reduced stub diameter above the
stub hole
• Stub not central in stub hole
• Stub not seated flat on the base of
stub hole
• Reduced yoke arm section.
For illustrative purposes: It is estimated for the 280,000 tpy potline that, if
all stubs were allowed to drop from
180 mm to an average diameter of 160
mm within the stub hole, then the additional voltage loss (40 mV) would
consume US$ 900,000 of power per
year (at US$ 0.025 per kWh). This
example highlights the importance of
maintaining the rod fleet.
The smelter operator must, however, be careful in setting rod rejection criteria – the temptation to under-repair anode rods, so as to reduce
the obvious costs of rod repair, could
ultimately be penalizing the smelter’s
total cost performance. But too strict
criteria will waste money in unnecessary repairs. Typically there is a trade
off between yearly repair costs and
the assembly performance as illustrated in the graph.
Repair methods for partial stub
replacement
To perform partial stub replacement
repair, three systems are compared:
Holcan stub welding system, friction
welding, robotic welding.
Holcan welding system: This lowcost system has been in use for 20
years and employs the MIG (GMAW)
welding method in a semi-automatic
mode. It is very forgiving for out-oftolerance dimensions of the anode
rods already subjected to the operational stresses, and suggests the use
of flame cutting over sawing.
Friction welding: Due to very high
capital start up costs, this process is
more suited to being an owner’s repair. A contractor would find it difficult to justify the cost of installing
this equipment. Close tolerances are
required to achieve a sound weld.
Generally it requires saw cutting of
the old stub, which is often problematic and expensive.
Robotic welding: This system can
perform poorly with out-of-tolerance
anode rods, and will require a skilled
workforce to programme the robot.
Additionally it generally requires saw
cutting, which is problematic as stated
previously.
Conclusion
Particular attention should be paid to
the design of the anode rod yoke, as
regards to future repair costs – a poor
design will lead to excessive repair
work which can easily consume initial capital savings. The repair methods chosen should take into account
all the costs and the methods that will
be adopted to complete these repairs.
Often reduced material usage, e.g
steel, can easily outweigh other costs.
Evaluate the hidden costs which
would arise if the stub, yoke and rod
condition deteriorate – pick rejection
criteria which gives the lowest overall
cost to the smelter.
Accuracy of information
Given the many assumptions and
types of calculations, it is recommended that these results be considered as order of magnitude estimates
only. It is recommended that actual
test data be gather under normal operating conditions.
Authors
Dan Madden is the Managing Director of
Holcan Constructions Pty. Ltd. and has
worked in the aluminium industry for 28
years. He advises the industry on the manufacture and fabrication of anode rods.
Bill Dalton has spent 10 years as a Senior
Research Engineer with Comalco and a further 5 years as consultant to the aluminium
and wider metals industries. He is also an
expert in due diligence and production
cost analysis for the aluminium industry.
ALUMINIUM · 1-2/2007
43
A L U M I N I U M S M E LT I N G I N D U S T R Y
Integrated continuous billet processing
F. Niedermair, Braunau
This extraordinary success stems
from a number of clear advantages:
• Perfectly uniform metallurgical
property of billet due to precise
and reproducible temperature
regime during heating, holding
and cooling
• Combination of various process
steps into one fully automated,
continuous process, hence
substantial labour savings
• All equipment components fully
compatible, because developed,
designed and built by HE
• Plants built to latest
state-of-the-art technology,
80 such plants in operation,
• HE-CIP, Continuous Improvement
Process.
HE extrusion billet plants are custom-designed to meet individual
requirements of clients, in terms of
throughput, floor area and technical
features.
Description of a modern plant
Description of a modern plant (60.000
to 120.000 tpy) with the emphasis on
technical features, novelties and specific options (Fig. 1):
The fully automated processing
sequence starts with laydown of cast
lengths of extrusion ingot on the entry table. From there logs are moved
over a storage conveyor to the inspection station, for visual inspection for
surface defects and for ultrasonic inspection (UT) for centre cracks and
inclusions. For extrusion billets the
linear UT station is adequate, while
billets destined for aircraft or auto-
44
All illustrations: Hertwich Engineering
Developed in the 1970s by Hertwich Engineering (HE), continuous billet processing plants have
become the accepted standard for
the processing of extrusion billets.
Today more than 60% of worldwide production of extrusion billet pass through such a HE plant,
which englobes inspection/QA,
HE.C-homogenisation, sawing, and
packaging.
Fig. 1: Typical plant layout
motive components are inspected
Heating
with the helical method, whereby
the entire cylindrical billet volume is
In the heating zone of the furnace,
inspected, incl. surface defects with
extrusion-quality logs are heated to
perpendicular and angular probes.
homogenizing temperature within 1,5
Logs are rotated while several probes
to 2,5 hours, holding times may range
move along the billet surface, each
between 2 to 4 hours (blue curve).
probe inspects only its section of the
However, certain plants have been
log. This arrangement is necessary to
built to meet different, special heatachieve the required throughput. Furing requirements (Fig. 4).
thermore the helical UT is designed to
For instance a plant in Scandinavia
meet the requirements of ASTM B 594
processes hard ZnMg alloys. This furClass A or B respectively.
nace is capable of slow heating in the
HE has achieved market leadercritical temperature range to avoid deship with such ultrasonic inspection
velopment of cracks due to inner tenstations. Fault sizes as small as 1,2
sions (red line vs. standard blue line).
mm FBH can be detected.
Data of UT-inspection-results for each individual
billet is recorded and remains “attached” to the
billet throughout the system (log-tracking). For
instance, a centre crack
detected in a certain log
causes the integrated billet
saw to automatically remove and scrap the faulty
Fig. 2: Linear testing
section of the log (Figs. 2
and 3).
A storage conveyor provides adequate log storage
between (UT) inspection
and continuous homogenising furnace. For reduced
noise, logs are lifted and
lowered during transfer,
Helical testing
no rolling is permitted.
ALUMINIUM · 1-2/2007
SPECIAL
Fig. 4: Heating curves
blue: standard, red: special slow heating
Cooling
requirements
of
mainstream extruders.
Line “d” portrays
“step-cooling”. Only
one of our plants is
equipped for this
type of cooling.
However, due to the
associated impact
on
extrudability
this cooling regime
is not applied in
practice.
Line “e” shows extremely slow cooling in the range 75 to 150 °C per hour,
which is required for certain special
alloys. Such slow cooling rates cannot be achieved simply, not even with
stagnant air, but require closed cooling chambers with several zones of
different air temperatures.
In accordance with this variety of
cooling regimes, actual cooling stations vary much in design and construction. We distinguish between
Temperature (°C)
Cooling after homogenising is an important aspect for extrudability and
mechanical properties of billets. Many
different cooling regimes are in use,
depending on metallurgical requirements and clients recipes, hence a
wealth of different coolers have been
built to date (Fig. 5).
A L U M I N I U M S M E LT I N G I N D U S T R Y
Time (min)
Fig. 5: Cooling curves
Line “a” shows cooling by water
quench. With AlMgSi alloys, Mg2Si
thereby remains completely dissolved.
Line “b” represents cooling in
very intense air flow, with cooling
rates 600 to 800 °C/hour.
Line “c” shows the log temperature
during cooling in a moderate airflow,
whereby cooling rates can be adjusted
350 to 550° K/hour.
The majority of plants built to
date are designed and equipped for
such cooling rates, as these meet the
ALUMINIUM
· 1-2/2007
45
open and closed type coolers, and
even coolers with built in heating devices.
For certain countries with cold
climate we have built cooling stations
with integrated waste-heat recovery.
Thereby cooling air is re-circulated
until it is suitable for heating of buildings.
Sawing, marking, packing,
weighing, strapping
After cooling logs are transported to
the saw plant, passing over a combi-
nation of storage conveyors, shuttle
cars, roller table lines etc. Once cut
at the saw, all billets are marked. The
introduction of a pin-stamping unit
in recent years is a small but essential innovative contribution to full
automation. Prior to that, changing
of hard stamp stencils was the only
remaining operator task. Today’s pin
stamping unit receives marking information directly from the control
system, eliminating time-consuming
manual changing of stencils and potential mistakes by inserting incorrect
numbers.
HE has developed its own pin
stamping unit, as other systems available on the market were too slow.
Head and butt ends and scrap pieces are gripped in sawing position by
a scrap manipulator and deposited in
scrap containers. The manipulator is
designed to also remove sample discs,
which are placed on a dedicated tray
or chute.
Swarf is extracted directly from the
saw and pneumatically transported to
the briquetting press. There swarf briquettes are formed immediately after
sawing, to a density 2.2 to 2.4 kg/dm3.
Such briquettes remelt in a similar
way to ingots, achieving extremely
low melt loss.
Cut billets now travel to the packing area on roller table lines. The
packing plant shown is designed for
creating long and short billet stacks
simultaneously. This type stacker is
particularly suited for bulk production of short billets, when long billet
requirement is limited to say 6.0 m,
whereby 8.0 or 9.0 m is the actual cast
length. This way both casting pit and
homogenising furnace are optimised
for maximum throughput.
Today’s standard strapping centre, also developed by HE, includes
automatic wooden runner magazine
and positioning device. The number
and position of wooden runners and
strapping bands are applied fully automatically according to customer
specification; no operator intervention or adjustments are required.
Actual strapping is with steel tape, or
more recently with PET-tape. Weighing of stacks is done prior to and after
strapping, to generate net- and gross
©
weight.
ALUMINIUM · 1-2/2007
45
A L U M I N I U M S M E LT I N G I N D U S T R Y
Ancillary equipment may comprise
• label printer and applicator
• stack manipulator. (Fig. 6)
The label applicator attaches the label
in a defined position on the bundle.
The manipulator stacks completed
bundles in dedicated positions for removal by fork truck, or stacks directly
onto trailers.
Fig. 6: Sawing and packing
Summary of improvements
Hertwich has achieved numerous
improvements in reliability, computerised control and data collection,
prevention of surface damage, and
furnace control and productivity.
• Increase of operational reliability
with extensive, ongoing development,
many improvements were achieved
in recent years. Plants are of sturdy
construction, and of the highest quality. Plant availability is 99%.
• Improved, innovative control
software for operator- and maintenance-friendly production
Fully integrated, automated production plants need an excellent control
and monitoring system to ensure safe
and reliable production and high
availability.
• Each individual movement of the
plant is monitored for correct execution.
• The refined fault diagnosis system efficiently guides operators and
maintenance personnel to the causes
of malfunctions, thereby supporting easy and quick corrective action.
Malfunctions are recorded and can be
queried in statistical and trend form,
providing a potent tool to permanently fix weak points.
• Automatic restart programs ef-
46
ficiently and reliably bring the plant
into a predefined condition, eliminating potential human error.
• Log/Billet tracking ensures relevant data on each log or billet is
tracked throughout the system.
• Operator-friendly graphic display
of billets within the system includes
all associated data like batch no, diameter, UT-inspection data.
• Host connection of the plant
Relevant production data, including
homogenizing parameters, sawing
and stacking dimensions, positioning
of wooden runners, strapping specifications etc. are downloaded from the
client’s production planning and order
procession host system, directly to the
plant control PC. Conversely the plant
PC transmits data to the client’s host
system including
• measured data of homogenizing (for
quality assurance)
• quality inspection results, i.e. centre
cracks, inclusions, surface defects
• produced quantities, weights, charge
No., log No., time stamp etc.
• Careful handling for improved
billet surface
A new generation of billet supports
with special inlays (patented) has
been developed for the furnace’s billet transport system. Thereby surface
damage to billets can be largely eliminated. Removal of billets from the
furnace is by a shuttle car, replacing
earlier roller table lines.
• Improved heat transfer
More intense hot gas convection and
modified air guide channels have
substantially increased heat transfer
rate to billets without increasing the
number of fans.
HE always prefers to rely on a limited number a high-quality powerful
ventilators rather than a “forest of
ventilators” on top of a furnace. This
concept directly results in an air over
temperature (heat head) in the heating zone of max. 5 to 10° K above the
set metal homogenizing temperature.
• Improved direct measurement of
billet temperature inside the furnace
and cooler
Increased production of the furnaces
creates a need for more measuring
points, ever more accurate temperature control, and for refined data
processing. Consequently direct temperature measurement is now done at
more positions and with higher accurancy. The intelligent analyses – software with trend analyses – provides
an appropriate tool for early recognition of possible changes to the heating
regime. Implementation provides the
means for even tighter quality control: Billet diameter and homogenizing temperature can be changed with
higher safety and great flexibility.
• Increased throughput of large
furnaces
The past 10 years has shown a trend
to ever greater throughput of furnaces and plants. To date the highest
throughput rate is achieved at Dubal
IV plant, where one billet leaves the
furnace every 82 sec. Throughput is
22 t/hour or 1.050 billets per day.
Conclusion
HE continuous production plants for
extrusion billet have been steadily improved and are therefore fully developed plants: HE draws from a wealth
of experience, with 80 such plants
built to date, so as to provide tailor
made solutions in terms of functionality and available space.
All HE plants are designed and
built exclusively upon proprietary
know-how by HE itself, including ancillary equipment like UT-inspection,
strapping, and swarf briquetting.
20 highly qualified engineers are
available to develop control software
and data management for client’s host
systems. Our customers can be sure
of busing a fully developed, top-quality plant, which ensures reliable production throughout an exceptionally
long service life. With HE building and
supplying all components of a plant,
comprehensive after sales and spare
part support is offered.
Author
Dipl.-Ing. Franz Niedermair (1952) is since
1989 with Hertwich Engineering (HE) in
R&D and marketing. Since 1994 he is Managing Director of HE.
ALUMINIUM · 1-2/2007
Please be our guest
and discover the benefits of the
Aluminium ePaper yourself in a
free three-month trial:
A L U M I N I U M S M E LT I N G I N D U S T R Y
De Nora inert metallic anode: further developments
V. de Nora, T. Nguyen, R. von Kaenel, J. Antille, and L. Klinger, Sierre
A stable inert metallic anode offers many advantages [1,2] and
allows great freedom in choice
of shape. However, an oxygen
evolving anode (OEA) may need
more electrical energy if used in
a conventional way. To minimise
the specific energy consumption,
semi-vertical electrodes were
studied and tested on a laboratory
scale. A semi-vertical configuration helps to maintain the cell’s
thermal equilibrium even if the interpolar distance is less than 3 cm.
This advantage compensates for
the thermodynamic penalty of the
oxygen evolving anode, and could
double the cell’s productivity. This
paper establishes the thermo-electric conditions of the cell having
a semi-vertical configuration of
the oxygen evolving anode, and
presents the experimental results
of the semi-vertical electrode configuration in a 100 A laboratory
cell.
For several years Moltech studied and
developed an OEA for the aluminium
reduction cell; some examples of laboratory cells of de Nora Inert Metallic
Anodes are shown in Fig. 1. The retrofitting of the de Nora inert metallic
anode in commercial cells has been
demonstrated in a pilot cell of 25 kA
[1] using larger anodes (Fig. 2). Despite the low oxygen over-potential of
the cobalt oxide based active coating,
the OEA still presents a penalty of 650
mV [2]. This penalty must be compensated by increasing the anode current
density (horizontal configuration) or
by increasing the anode surfaces with
a semi-vertical configuration.
Fig. 1: de Nora inert metallic anodes used to operate between
100 A to 300 A per anode in laboratory cells
Fig. 2: Pilot de Nora inert metallic
anodes used to operate between
3500 to 4500 A per anode.
Table 1: Characteristics of the de Nora inert metallic anode
De Nora inert metallic anode
The de Nora inert metallic anode
consists of a metallic substrate made
of cast Ni-Fe-Cu alloy; the external
surfaces of the anode are protected
by an active coating of CoxNiyO, with
0.65 < x < 0.85 and 0.15 < y < 0.35.
Table 1 summarises the anode char-
48
Metal substrate resistivity (:.m)
3.10-7
Oxide coating resistivity (:.m)
3.10-2
Oxygen activation over-potential (V)
0.10
Experimental oxidation rate of metal substrate (m/year) 1.8 10-3
Linear dimension change (m/year)
- 2.0 10-3
Expected life time (years)
1 - 1.5
ALUMINIUM · 1-2/2007
SPECIAL
Non-horizontal electrode
configuration
Test description
Several configurations of the nonhorizontal electrode assembly were
designed and tested in 100 A laboratory cells. The selected electrode materials were the following:
• cathode: semi-graphitised BN carbon substrate, totally covered by 1.2
mm of “Tinor 2000” coating. The coating was pre-aluminised by 3 layers of
aluminium slurry in basic colloid as
shown in Fig. 3.
• anode: Ni-Fe-Cu alloy substrate
made by sand casting, and totally
covered by 250 Pm of Co-Ni electrodeposition. The oxide active coating
was obtained by pre-oxidation in
air at 950 °C. The coated anode was
cooled down to room temperature before use.
The 100 A laboratory cell is externally heated by an electrical furnace.
A graphite crucible having an internal
square section of 180 x 180 mm and
300 mm height is used as the electrolysis cell. The graphite crucible is
protected by an Inconel 600 pot, with
a cast alumina sleeve on the top.
Depending on the operational
mode, the crucible can be used as the
cathode current feeder through the
electrical connection by the Inconel
pot. The vertical side walls of the
crucible are protected and insulated
electrically by four alumina sheets of
15 mm thickness. The cell set-up is
placed in an electrical furnace, which
controls and maintains constant the
operating temperature.
The electrolysis tests are performed in a bath of 11% AlF3 excess
– 4% CaF2 – 7% KF – 9% Al2O3 (saturation), at 930 +/- 5 °C. The cathode
and anode current densities are identical and maintained constant at 1
A/cm2.
• compact arrangement of the electrode assembly; the total active surfaces can be increased by a factor of 2
compared to the horizontal surface
• movable cathodes which can be
changed at the end of the coating lifetime
• no vertical polarisation interference
with the metal pool stored on the cell
bottom.
Experimental results
The cell operates at a very stable voltage of 4.0 ± 0.1 volts; the wettability
and the draining operation of the
cathode can be observed by the saw
tooth profile of the cell voltage, which
corresponds to the formation and detachment of the aluminium drop at
the cathode bottom.
After 500 hours (more than 20 days)
the test had to be shut down because
Vertical assembly with
hanging cathode
In the vertical configuration the inclination of the electrodes is 0°, the
assembly is composed of one central cathode and two parallel anodes
as illustrated in Fig. 4. The cathode
electrical connection is through an
external stem made of steel core inserted inside a copper tube of 2 mm
wall thickness. Two similar stems are
also used for the two anodes; the three
horizontal active runners of the anode
are inclined with a slope of 10° to the
vertical, so allowing the gas to escape
along the anode back. The anodecathode distance is fixed at 2 cm.
The advantages of the hanging
cathode assembly are:
All photos: Kannak
acteristics and performance tests in
horizontal configuration, described
previously [2].
The anode metallic structure is fabricated by a sand casting technique,
which can be adapted to every size
and form of the anode. This advantage is valuable for adapting to nonhorizontal configurations. In fact, the
shapes of the anode and active runner
need to respect the:
• current distribution
• gas escape direction
• hydrodynamic effects of the
gas-liquid energy transfer assuring
the bath circulation.
A L U M I N I U M S M E LT I N G I N D U S T R Y
Fig. 4: Vertical assembly with Tinor coated
hanging cathode
of deterioration of the alumina side
wall protection, and because of corrosion of the cathode stem by liquid
aluminium. The cathode and anodes
were removed for examination:
• The anodes were slightly corroded
at the back and at the lower runner.
This local corrosion is due to chemical interaction with carbon dust (from
the crucible) and with the metal pool
stored on the cell bottom.
The cathode remained intact, and
totally covered by a layer of aluminium of 2 to 3 mm.
Discussion
Fig. 3: Semi-vertical cathode before and after aluminisation
ALUMINIUM
· 1-2/2007
49
As expected, the fundamental behaviour of the de Nora inert metallic anode is not influenced by the vertical
position. However the observations
during the test make it possible to
point out the following aspects of the
ALUMINIUM · 1-2/2007
49
©
A L U M I N I U M S M E LT I N G I N D U S T R Y
vertical configuration:
• The initial current efficiency of
75% decreases rapidly, and stabilises
at about 40% after 24 hours.
• The oxygen separation, in escaping
along the anode back, is not optimal
in the vertical position, namely with
an ACD as low as 2 cm. The re-oxidation of the metal by oxygen seems to
be one of the factors decreasing the
current efficiency.
• The aluminium pool stored on the
cell bottom is subjected to the positive
electrical field of the anodes (potential of + 0.3 volt versus the cathode);
an electrochemical dissolution of the
metal can occur probably further decreases the current efficiency.
able, thus it cannot be changed during
operation.
Experimental results
The cell operates at a very stable voltage of 3.8 ± 0.1 volts; in comparison to
the previous case the saving of 0.2 volt
should be due to the lower ohmic drop
of the cathode body and connection.
ginal ohmic resistance. The concept
of an “immersed cathode” must be
developed so that the cathode can
be removed at the end of the Tinor
coating life-time. Fig. 6 shows an inclined metallic anode after 500 hours
of operation.
ACD in semi-vertical
configuration
A numerical study of the semi-vertical
configuration has been made in order
to investigate the current density distribution and the impact on the cur-
Semi-vertical electrode
configuration
To improve the gas separation, a
semi-vertical electrode assembly
was designed and tested. The active
surfaces of the cathode and the anode are inclined with a slope of 40°.
The cathode is one semi-graphitised
block having adequate active surface
geometry; the cathode is glued on the
graphite crucible bottom and totally
covered with 1.2 mm of Tinor 2000
coating; the coating is pre-aluminised
by aluminium slurry. The cathode
electrical connection is made via the
crucible and an aluminium pool of
about 4 to 6 cm on the bottom. An
inclined anode presents three horizontal runners with a flat active face
parallel to the cathode surface; to
minimise the vertical polarisation the
lower runner is kept at least 4 cm from
the metal pool on the crucible bottom.
The cathode-anode distance is fixed
at 2 cm (see Fig. 5).
The advantages of the semi-vertical configuration are:
• better gas separation minimises the
metal re-oxidation by oxygen
• no external stem needed for the
electrical connection of the cathode
• cathodic protection of the metal
pool stored on the crucible bottom
suppresses its electrochemical dissolution.
However, this assembly is less
compact than in the previous one;
the maximum surface increase factor
is about 1.5. The cathode is not mov-
50
Fig. 5: Semi-vertical cathode-anode assembly
The visual observations during operation show that the gas separation is
greatly improved by the inclination of
the anode; and because the metal pool
is protected by the cathodic polarisation, the current efficiency stabilises
at about 70 to 75%. At a minimum
distance of 4 cm between the lower
runner of the anode and the metal
pool level, the vertical polarisation is
less than 10%, estimated by measuring the variation of the cell voltage in
raising the anode position. After 500
hours of operation the anode is intact
(Fig. 6), and the cathode active surface
remains clean, without any sludge deposit or dimensional change.
Discussion
The gas separation is a major parameter in current efficiency; as the
better results with the semi-vertical
electrode assembly clearly demonstrate. The angle of inclination can be
optimised in taking into account the
gas hydrodynamic, the compactness
of the assembly, and the runner form
for the current distribution.
Thanks to the wettability of Tinor
coating, a good cathode electrical
feeding through the liquid metal
pool should induce only a very mar-
Fig. 6: Inclined anode after 500 hours of
operation
rent density of a slight mis-alignment
of the electrodes.
The first experimental setups
showed oscillations in the voltage.
Although the cause was eventually
shown to be related to an insufficient
bath level (causing too large a thermal
volatility), it was first thought that the
cause might be a difference in the
current carried by each of the three
horizontal runners. Indeed, when the
mean current density is above 1.3 A/
cm2, this leads to voltage oscillations.
The theoretical model, a plain electrostatic computation of the electrical
potential and current density, showed
that in the nominal configuration,
there is a difference in the amount of
current carried by each runner, but
the difference is too low to explain
the oscillations. There is, however, an
interesting point to be made by electrostatic modelling, as follows.
Fig. 7 is a typical result for the semi-vertical configuration. Along with
the anode (top) and cathode (bot-
ALUMINIUM · 1-2/2007
©
To power your operation while lowering
consumption we provide you with stable
highly efficient electrical energy supply,
distribution and conditioning. To increase employee productivity and engineering efficiency, we offer you powerful control
systems. To improve dynamic performance and reduce power losses, we provide high-tech
drive systems. To increase furnace productivity and save energy, utilize our most effective
electromagnetic stirrers. To ensure environmental compliance, reduce product
standard deviation and increase production, apply our expert and optimization
solutions. Maximize the return on project investment through our vast knowledge,
know-how and extensive experience. Using quality ABB products helps you achieve
industry leading productivity. Visit us at www.abb.com/aluminium
A L U M I N I U M S M E LT I N G I N D U S T R Y
tom), a surface of constant potential
is shown (middle). It explains why
more current is carried by the lower
runner. Because the current density
is proportional to the gradient of the
electrical potential, it follows that
regions where the isosurface of the
potential are curved, a large current
density results.
Two main conclusions can be
drawn from such electrostatic modelling:
• In order to obtain a more homogeneous distribution of the current
density, one should purposely set the
anode in a non-parallel position relative to the cathode, and specifically by
having a slightly lower ACD under the
top runner.
• In a future semi-vertical design
gathering many anodes, it will be
necessary to perform electrostatic
simulations of this kind to optimise
the arrangement and setting of the
electrodes, in order to smooth the
current density distribution as far as
possible.
Fig. 7: Semi-vertical electrodes setting, and
an isosurface of the electrical potential.
We recall that optimising the current
density distribution in the abovementioned sense is important for de
Nora inert metallic anodes, because,
on the one hand, they require higher
current densities (thermal equilibrium, see below), while, on the other
hand, a critical current density exists,
above which the anode may be damaged. Thus, a good inert anode design
ensures an even, high current density
distribution. In fact an even current
distribution is also very important in
52
horizontal conventional industrial
cells. If the anode current densities
are too different, large horizontal current take place in the liquid metal that
may lead to metal pad wave oscillations. If the cathode current density
is too uneven, large local electro-erosion may take place, leading to short
cell lifetime.
Energy considerations
As has been noted before [7], one of
the problems to address to bring the
oxygen-evolving anode to industrialisation is the thermal balance of the
cell. About 1 V of the total cell voltage
is used differently in each technology:
as heat for the classical Hall-Héroult
cell, and to produce aluminium in the
OEA cell. From the point of view of
energy efficiency, this is very positive
for cells implementing the de Nora
inert metallic anode, but the corresponding loss in heating is significant
and means that a balanced thermal
design is difficult to achieve.
Let us consider the problem inversely: assume that we want to operate an oxygen-evolving anode that
has
a. the same current efficiency
b. the same specific energy
c. and the same heat losses
as a conventional cell; how do these
conditions translate into operating parameters? The first condition
should be relatively easy to meet,
since Moltech could operate a 25
kA OEA cell with 90% CE [1], while
struggling against various operational
difficulties that are to be expected in
such novel tests. We thus assume that
the current efficiency is the same for
both technologies, K= 0.95.
The second condition, when the
first is met, consists in having the
same cell voltage in both technologies. To work out the third condition,
we recall that the heat generation loss
Q is given by ([8], respectively with
only D alumina and no Boudouard
reaction):
Qc = Ic (U – 1.65 K – 0.48)
Qm = Im (U – 3.11 K)
Where the c subscript designates
carbon or conventional technology,
m standing for metallic (anodes). I is
the current, U the cell voltage and K
the fractional current efficiency. The
third condition, Qc = Qm, is in fact a
condition on the current. For typical
designs, we get Im = 1.7 Ic. Is it possible
to meet both the voltage and current
conditions?
The electrode settings studied in
this paper address the conditions
above. Let us consider only the semivertical configuration, since it is more
efficient. The cell voltage condition
can be met by decreasing the ACD, to
overcome the voltage penalty of the
oxygen-evolving anode. When taking
both the reversible decomposition
voltage and the over-voltages of the
various electrodes into account, it is
commonly assumed to be about 0.6 V
[1,2]. For typical electrolyte conductivities used in our tests, it amounts to
a reduction in ACD of about 1 to 2 cm.
Thus, operating a semi-vertical configuration at 2 cm ACD makes it possible to meet the voltage condition.
Finally, to meet the condition on
the current, for a similar overall cell
size, the semi-vertical setting offers
a two-fold gain: by using a de Nora
inert metallic anode, one can work at
higher current densities (by a factor
of 1.4), while using slanted de Nora
anodes permits an increase in the
working area (thus the total current)
by a factor of at least 1.5. Thus, expecting a total current Im = 2.1 Ic appears
realistic. The 1.4 factor is explained by
the typical current density in conventional technology (0.9 A/cm2), compared to the maximal current density
for metallic anodes (1.3 A/cm2). The
second factor is geometrical. For the
setting presented above, the cathode
surface is 100 cm2, and only the flat
surface of the runners is about 55
cm2. However, while exact quantification is difficult, the active surface of
the anode is more than the flat area.
For conventional designs, a horizontal
cathode occupying the same overall
space has a surface of 50 cm2. Thus,
a 1.5 geometric factor appears reasonable, and implies a more compact cell
for the same productivity
Conclusions
The gains of energy and production of
the aluminium reduction cell in using
the semi-vertical electrode configura-
ALUMINIUM · 1-2/2007
SPECIAL
tion are demonstrated by our preliminary simulation calculations:
• The thermodynamic penalty of the
oxygen evolving anode is largely compensated by decreasing the ACD.
• The cell thermal balance can be
maintained by higher current thanks
to a significant increase of the operating surface area.
The preliminary tests in laboratory
100 A cells have demonstrated that:
• the de Nora inert metallic anode
and the Tinor coated carbon cathode
can be used as dimensionally stable
electrodes for the non-horizontal
electrode configuration. However,
the dimension stability of the carbon cathode was only proven for 500
hours. This dimensional stability is
still in question for longer duration.
A L U M I N I U M S M E LT I N G I N D U S T R Y
• the metallic inert anode and the
wettable Tinor coated cathode can
operate at an ACD as low as 2 cm.
• the gas separation is an important
factor influencing the current efficiency, which can be optimised by
appropriate anode design.
• the design freedom of metallic
anodes is unique, and constitutes an
important advantage for the non-horizontal electrode configuration.
[5]
[6]
[7]
[7]
[8]
References
[1] J. Antille et al.: Light Metals 2006,
pp. 391-396
[2] T. Nguyen and V. de. Nora.:
Light Metals 2006, pp. 385-390
[3] V. de Nora: Electrochemical Soc.
Interface - Winter 2002, pp 20-24.
[4] J.N. Bruggeman et al: “Wettable
ceramic based drained cathode
technology for aluminium reduction
cells” – US DOE DE-FC07-97 / ID /
13567 – Dec. 2002, pp 1-42
Huimin Lu et al.: Light Metals 2006,
pp. 687-690
H.A. Oye et al.: Light Metals 1997,
p. 279-286
V. de Nora: Proceedings 11th
Intern. Aluminium Symposium;
Trondheim – Bergen – Trondheim;
Sept. 2001, pp 155-160
H. Kvande: Light Metals 1999,
pp. 369-376
W. Haupin and H. Kvande:
Light Metals 2000, pp. 379-384
Authors
Vittorio de Nora, Thin Nguyen and Rene
von Kaenel are with Moltech Technology
Center, while Jacques Antille and Laurent
Klinger are with KANNAK S.A.
Aluminium casting
Boron nitride plus binder – a synonym for
higher productivity
Chr. Klöpfer, Th. Jüngling, G. Heuts
With its new generation of boron
nitride, ESK Ceramics GmbH &
Co. KG in Kempten, Germany is
providing the casting industry
with tailored materials for launders, ladles, dies and crucibles
that offer unrivalled protection
against aggressive molten aluminium. A critical factor in this
advance in casting technology is
a novel nanoscale binder that allows boron nitride coatings to be
produced that adhere strongly to
different materials.
Thanks to its low density, aluminium
has become established as a key material with an unparalleled breadth
of applications. This light metal has
applications extending from packaging, through automotive engineering,
to aerospace. Furthermore, when alloyed with various metals, such as
magnesium or silicon in extruded profiles, its strength can rival that of steel.
Obtained by an electrochemical process, the metal occurs in aluminium
ALUMINIUM
· 1-2/2007
53
foundries and smelting works as a liquid at a temperature of around 700°C.
Since this melt is very aggressive, the
contacting surfaces must be protected. That is first to counteract wear of
the tools and vessels and, second, to
prevent the aluminium from being
contaminated with dissolved foreign
matter. That means specifically the
launders in casthouse applications as
well as crucibles, ladles and dies used
in foundries. The surfaces that come
into contact with the molten aluminium must be coated to prevent corrosion. The quality of these surfaces
not only determines the lifetimes of
the equipment and tools used, but also
has a critical effect on the quality and
mechanical and physical properties of
the resulting castings.
A typical example is the transport
of molten aluminium in cast houses,
which is usually performed in launders with a refractory lining. Of course,
such launders have poor thermal conductivity, which prevents rapid cooling of the melt. However, a thin oxide
skin rapidly forms on the surface of
the hot aluminium. A release agent
must be added to prevent this skin
sticking to the surface. Traditionally,
bone ash is added, which does indeed
have the required release properties
but because of its poor adhesion must
be repeatedly replenished, since it is
“entrained” by the flowing molten
aluminium.
Boron nitride versus bone ash
Ceramic coatings offer an alternative
to bone ash. These foundry coatings,
which are applied as liquids and dry
to form a solid film, should have high
thermal and chemical stability and a
similar thermal expansion to the coated surface in order to prevent the coating flaking off. A material that ideally
meets all these requirements is boron
nitride (BN). The graphite-like chemical structure of BN makes it an ideal
release agent and lubricant. However,
unlike graphite, which oxidizes at
above 500°C in air, boron nitride is
ALUMINIUM · 1-2/2007
53
©
All photos: ESK
A L U M I N I U M S M E LT I N G I N D U S T R Y
Casting table for aluminum billet production coated with
EKamold Cast-C prior to use
of a melt droplet on the substrate is
measured by forming a tangent. Large
angles over 90° mean poor wetting,
while small angles less than 90° indicate good wetting. At a temperature
of 900°C, boron nitride has a wetting
angle of 160°, which corresponds to
poor wetting.
However, this welcome property
also has a downside, since the poor
wetting of the BN platelets also impairs their adhesion to the substrates
to be coated, such as ceramic launders, ladles, crucibles, dies or metal
moulds. To improve adhesion, therefore, a refractory binder must be used.
In the coatings, these binders bond
the BN particles together as well as
to the substrate. In the past, phyllosilicates, monoaluminium phosphate
and magnesium silicate have been the
chief refractory binders.
High adhesion thanks to nanoparticles
Casting table for aluminum billet production coated with
EKamold Cast-C after use
SEM picture of a cross section of EKamold Cast-C Coating
characterized by a high thermal stability that allows it to be processed
up to over 900°C. That makes boron
nitride completely thermally stable in
the temperature range used for lightmetal casting.
A property that is particularly attractive for casting is the poor wettability of its surface by liquid aluminium and other molten metals. They
do not stick to the smooth surface
but roll off like water droplets from a
lotus leaf. The wetting of ceramics by
melts is usually described by means of
the wetting angle. The contact angle
54
“The binders that have been commercially available so far are not ideal for
the casting industry,” says Christiane
Klöpfer of the technical marketing
department at ESK. A major disadvantage is that they are only suitable
for applying thin coatings, since otherwise the rapid temperature cycles
could cause them to flake off. “In
looking for improved high-temperature binders, we hit on sol-gel systems
reinforced with nanoscale particles,”
explains Klöpfer.
The patented binder system, as a
BN coating for the casting industry, is
called EKamold Cast-C, and is a real
innovation for high-temperature applications. The system develops its effect in situ when heat treated during
the first casting cycle, similar to twopack adhesives, and forms a film that
is resistant to both heat and abrasion.
Compared to conventional boron nitride-based coatings, this product innovation offers unrivalled durability
together with ease of application and
extremely low requirements on the
substrate.
ample, BN coatings can be applied
by spraying, brushing or dipping.
Although BN coatings develop their
protective effect at a few microns
thickness, the new BN foundry coatings from ESK can be applied in
thicknesses up to 1 mm. That means
the coating can be readily applied by
untrained staff. The new coating can
be used wherever liquid aluminium is
processed. The range of applications
extends from compact aluminium
ingots to aluminium car wheels and
engine blocks.
Furthermore, the new BN coatings
developed by ESK, for the first time
ever, allow damaged coatings and
cracks in the substrate to be repaired.
In the traditional process, if the coatings were damaged, they had to be
painstakingly removed and then reapplied. With the new systems, damaged
areas of the coating can be repaired
– e.g. with a brush. Moreover, the
coatings can seal cracks and chipping
in the substrate by infiltrating them.
No sedimentation thanks to
„thixotropy“
“Traditional” BN coatings generally
had the problem of sedimentation of
the BN solid particles, and had to be
very carefully stirred to prevent settling out, which would change the
properties. The new ESK coating
offers a further advantage, since, although it becomes gel-like after standing for a long time, it can be easily liquefied again by stirring or shaking – a
property known as “thixotropy.” “All
these completely new possibilities
offer major advantages to users,” enthuses Thomas Jüngling, Chief Technology Officer of the California-based
Ceradyne Inc. Cast houses and foundries are harsh environments, where
users must be able to depend on the
materials used operating flawlessly.
“The casting industry is very interested in the new boron nitride coatings,”
observes Jüngling. The new coatings
have already been subjected to practical tests in aluminium foundries.
Coatings can be repaired
Boron nitride coatings last longer …
There are also processing advantages
to using boron nitride (BN). For ex-
Guido Heuts of the Dutch company
Ceranex, a supplier of heat-resistant
ALUMINIUM · 1-2/2007
SPECIAL
A L U M I N I U M S M E LT I N G I N D U S T R Y
Why Boron nitride has similar properties to graphite
Boron nitride, a synthetic substance with the
chemical formula BN, is a sort of “inorganic
carbon”. That means BN’s chemical and
physical properties are very similar to those
of graphite, since both compounds crystallize with the same layer lattice and almost
identical dimensions. Two adjacent carbon
atoms of the graphite lattice can therefore
be substituted with a nitrogen and a boron
atom, since two carbon atoms together
have exactly the same number of electrons
as a boron-nitrogen pair. Accordingly, graphite and BN are isosteric, which, as with other
“isosteric pairs”, such as nitrogen and carbon
monoxide or nitrous oxide and carbon
dioxide, is manifested as a striking physical
and chemical similarity. For example, at temperatures of around 1600°C and pressures
of 50,000 bar, graphite-like α-BN can, in a
similar way to carbon, be transformed into 2
diamond-like cubic high-pressure allotropes
with similar hardness to diamond. However,
the striking difference between graphite and
BN is that the latter is white and does not
conduct electricity. That is because BN, unlike graphite, does not possess any mobile πelectrons, since, because the member atoms
of the lattice are dissimilar, the “excess” electrons remain fixed to the nitrogen as “lone”
electron pairs. However, more important for
the application in the aluminium industry is
the resistance against oxidation up to 900°C
and chemically resistant materials for
manufacturing industry, emphasizes
the high abrasion resistance of the
new BN coatings. Heuts is responsible for the aluminium industry division in his company and understands
the particular challenges faced by this
sector. “Traditional coatings were always entrained by the flowing molten
aluminium. But the new product adheres much better and does not have
to be reapplied as often,” he explains.
The coatings have much longer lifetimes if the liquid aluminium does not
have a chance to attack the substrate.
This could greatly reduce downtimes.
The bottom line for aluminium processors is significant boost in efficiency
as a result of time savings and higher
productivity. The improvement is
documented by the results of the quality control. “With the BN coatings we
tested, in contrast to traditional materials such as bone ash, the castings
did not contain any residues,” Heuts
assures.
ievable elasticity to the coatings. “The
coatings have a levelling effect since,
within certain limits, they adapt to
their environment and can expand
and shrink without suffering damage,”
explains Christiane Klöpfer.
The flexibility also applies to the
adhesion of the binder to the substrate
to be coated, which may be smooth or
porous. “We were even able to make
boron nitride adhere to graphite,”
Klöpfer says. This additional property is important for graphite parts that
are used in aluminium cast houses
and foundries. They include rotors
for melt degassing or boron nitridecoated graphite thermocouple tubes.
Other additives are under development. “Boron nitride has high thermal
conductivity. That is counterproduc-
… and they are flexible
Besides their high mechanical stability, the new BN coatings are also characterized by high flexibility. To reconcile apparently contradictory material properties, a third component
was incorporated into BN coatings
besides the binder. This innovation,
which has also been patented, is an
additive that imparts hitherto unach-
ALUMINIUM
· 1-2/2007
55
compared to graphite which will start to oxidize already at 500°C. In its most widespread
form, as a graphite-like hexagonal boron
nitride, the snow-white material possesses
exceptional thermal and chemical resistance.
At the same time, the highly thermally
conductive material but electrically insulating
boron nitride also has good lubricity. This
unique combination opens up a wide field
of applications in which the material often
provides the critical enhancement to highend products. Some would not be possible
at all without boron nitride. In this manner,
the range of applications extends from electrical insulation in high-temperature furnaces
to applications in the cosmetics industry.
tive for aluminium production,” continues Klöpfer. For example, liquid
aluminium cools by about 1°C per
second on average when conveyed
with ladles. This heat loss has to be
compensated by auxiliary heating.
ESK is currently working on BN coatings precisely tailored to the needs
of the aluminium-processing industry. The aim of this work is to find a
further additive that will allow us to
market a boron nitride with reduced
thermal conductivity.
Authors
Christiane Klöpfer, ESK Ceramics GmbH
& Co. KG, Germany.
Dr. Thomas Jüngling, Ceradyne, Inc., USA.
Guido Heuts, Ceranex B.V., Netherlands.
Platzhalter für die
redigitalisierte Anzeige Padelttherm
90x63 mm, sw, Motiv: Industrieofen
Original-Datei:
Padeltherm_Metall_11_03.EPS
ALUMINIUM · 1-2/2007
55
A L U M I N I U M S M E LT I N G I N D U S T R Y
Thyristor rectifiers for aluminium plants
with advanced free-wheeling control
S. Tambe, W. M. Lauwrens, M. Rechsteiner, Turgi
free-wheeling circuit. But with thyristor rectifiers, the last pair of conducting thyristors suffers overload. A special technique was necessary to avoid
overload damage.
This paper discusses the new technique implemented by ABB to avoid
overloading of any pair of conducting thyristors. The advantage of this
technique is that algorithms are implemented for each unit, and hence
the design of all rectifier units remains
identical in power and controls circuits. This paper also describes how
overloads relate to potline circuit
behaviour and process, and to other
sources of overload.
This paper covers the following areas: process characteristics, minimising the risk with advanced control,
results and conclusion.
Potline current demand for aluminium plants is constantly increasing. Many potlines with 350
kA are in operation, and the trend
is towards 500 kA in the near future. Such requirements call for
many rectifier units in parallel.
Due to physical limitations on the
size of a rectifier, as well as to redundancy requirements for safety,
using many units in parallel poses
a great problem of how to handle
current stoppage when all units
are tripped simultaneously. Due
to staggered switching-off times of
the rectifiers, it is likely that the
last unit will briefly carry the full
potline current. In a diode plant
this phenomenon can be handled
easily, as all diodes go into a natural free-wheeling mode. Thyristor
plants by contrast, require implementing a special technique to
prevent destructive overloading of
the last switched unit. ABB has developed an advanced technique to
handle such phenomena without
over-dimensioning any unit.
56
A typical equivalent circuit diagram
of an aluminium smelter application
can be represented as follows:
The rectifiers connected in parallel
All illustrations: ABB
Continuity and reliability of DC power supply are the basic requirements
for aluminium smelters, together
with safety. In the past, diode rectifiers were the natural choice due to
their simplicity. However, tap-changer maintenance was always an issue
for maintenance people, and control
speed is another drawback.
With the availability of reliable thyristors and digital firing circuits, users
also started selecting thyristor rectifiers for smelting aluminium. These
rectifiers need less maintenance and
have higher efficiency. Though normal operation with thyristor rectifiers
was simple to handle, potline trip was
a serious concern. This is due to the
fact that the last fired thyristor pair
will take the load of the full potline
current. This led to overloading of the
last switched rectifier. In case of diode
plants, the complete bridge acts like a
Process characteristics
section of 200…300,000 mm2, results
in a process time constant W (= L/R)
of about | 250 ms, where L is busbar
inductance and R busbar resistance.
This means the potline current will
require at least a second (4 x W = 1000
ms) to decrease from its rated value to
practically zero.
Rectifier behaviour under tripping
modes:
Normal mode: Unlike diode rectifier
units, thyristor rectifier units have a
faster response time and are fully controllable. But it is a fact that a thyristor rectifier cannot cutoff the current
once it has been triggered. In rectifier
operation thyristors are line commutated. This inherent characteristic of
each individual unit, together with
the phase shift between various other
parallel feeding units, corresponds to
the asynchronous behaviour of each
rectifier unit, functioning in turn.
During operation each unit can be
switched off manually or automatically tripped by abnormal operating
conditions, such as overtemperatures,
loss of cooling medium, etc.
As long as only one unit goes
out of service, this does not
pose a serious threat to continuous potline operation.
Potline trip mode: However,
there are certain conditions
under which it becomes
necessary to trip all units
simultaneously. This is
known as “potline trip”. On
initiation of a potline trip
command, the rectifiers cannot all switch their current
to zero at exactly the same
Fig. 1: Equivalent circuit diagram of an aluminium pot- time. Another reason why
line with parallel feeding thyristor rectifier plant
the potline current cannot
be interrupted instantly is
deliver the required total process curbecause of the large circuit reactance
rent. This current is called as potline
associated with the energy stored in
current (Idc-PL).
its large magnetic field. Assuming the
The considerable busbar length of
current remains constant during this
more than 1000 meters, and cross
brief switching period, the last unit to
ALUMINIUM · 1-2/2007
SPECIAL
switch off has to carry the total potline
current. In this undesirable situation,
this unit consists of only two legs, one
positive group and one negative group
of one rectifier.
To prevent these thyristors from
overload requires forcing conduction
in all thyristors from positive and negative groups of all the rectifier units.
This conduction mode, when the energy driving current flow is circuit inductance, is called free-wheeling.
Minimising the risk with
advanced control
A potline trip as described above will
lead to lead thyristor failures, if no
remedial measures are taken. Excessive current may cause major damage
to the rectifier as a whole. ABB has
developed special control and firing
techniques to handle such trips. Some
of the abnormal and high risk conditions for rectifiers are:
• Hardware trip of all units, such as
an emergency stop
ALUMINIUM
· 1-2/2007
57
A L U M I N I U M S M E LT I N G I N D U S T R Y
• Network under-voltages leading
to trips
• Loss of total network
• Process trip.
In order to prevent the damage to certain thyristors as mentioned above, it
is essential to share the free-wheeling
current among all units and all semiconductors. The duration of this, freewheeling mode could be of the order
of one second to evacuate reactance
energy. In a 50 Hz, six pulse system,
the firing angle is updated every 3.3
milliseconds. The advance control
Fig. 2: Mode 1
which controls the free-wheeling replaced this by a different mode.
Firing mode on a single unit (Fig. 2):
As soon as the control system senses
a fast hardware trip (trip due to under-voltage or loss of network) then,
on the next firing instant it fires all
thyristors coloured red in all units. At
the same time it initiates an off command to all the breakers. As soon as
the control system from a particular
unit receives back signalization that
its breaker is open, then it initiates the
next action as mode 2 shown in Fig. 3.
As soon as a control system receives
Fig. 3: Mode 2
ALUMINIUM · 1-2/2007
57
©
A L U M I N I U M S M E LT I N G I N D U S T R Y
Fig. 4: Mode 1
Fig. 5: Mode 2
a feedback signal that a main breaker and
filter breaker (if installed) are open, then it
fires all thyristors in that unit. All units behaviour: Mode 1 can be implemented in all
units. But as all units are not synchronised in
firing, they come to mode 1 independently of
each other. Fig. 4 shows when all units are
in mode 1.
This technique shares the current among all
units so that no single arm gets overloaded.
It thereby dissipates potline energy safely.
When all breakers are open, all units come to
mode 2 as shown in Fig. 5.
It should be noted that all units do not
shift from mode 1 to mode 2 simultaneously.
Switching occurs depending upon breaker
opening instant. This logic, which is implemented in each unit control software, needs
fast information about a trip. This is implemented as shown on Fig. 6. This technique brings all units and
all thyristors into free-wheeling mode with minimal time difference between the units.
Results and conclusion
Fig. 6: Fast links for hardware trips and controls
This advance technique was implemented on an aluminium
plant and was tested under different modes of tripping. Fig.
7 shows typical overloading current of the thyristors during
a trip condition. Fig. 8 shows that thanks to the free-wheeling
technique, overloading of the thyristors was prevented. The
advanced and proven technique developed by ABB for thyristor plants ensures safety of thyristor plants for electrolysis
applications under the most severe conditions.
Authors
Fig. 7
Shripad Tambe, Master of Technology, IIT Kanpur, started in 1977 with
HBB, India. In HBB India he was Senior Research and Development
Manager. Since 1986 he has been working with ABB Switzerland, and
up to 1999 worked in various technical departments including system engineering. He is the inventor of two patents registered in many
countries in the area of rectifiers for DC arc furnaces. From October
1999 to 2005 he has been worldwide responsible for retrofit, revamp
and upgrades of rectifier plants for electrolysis and arc furnaces. He is
DGM, Systems Group and head of sales and projects – ABB Switzerland
Ltd. Service Division and is presently DGM for large projects and is
responsible for rectifier systems for aluminium and DC arc furnaces.
Wynand M Lauwrens gained a Bachelor of Engineering in South Africa. He joined ABB South Africa in 1994 and was responsible for
engineering and commissioning drives and rectifiers control systems.
He joined ABB Switzerland in 2002 as control engineer in the HPR
Division, and is responsible for engineering and commissioning rectifier control systems.
Markus Rechsteiner gained a Bachelor of Engineering at ITR Rapperswil Switzerland. He joined ABB in 1997 as Project- and Commissioning engineer. From October 2001 to 2005 he acted as sales and
project manager in the HPR Service Division. Presently he is responsible for marketing and communication in the ABB High Power Rectifier
group.
Fig. 8
58
ALUMINIUM · 1-2/2007
SPECIAL
A L U M I N I U M S M E LT I N G I N D U S T R Y
Moeller direct pot feeding technology
T. Letz and C. Duwe, Pinneberg
The Moeller direct pot feeding for
Aluminij Mostar employs dense phase
conveying via pressure vessel and
Moeller turbuflow conveying pipe to
take the secondary alumina from the
storage silo to intermediate bins near
the pots and combines this with the
Moeller fluidflow air slide pipe within
the pots. A schematic presentation
of the system installed in Mostar is
shown in Fig. 1.
The (single-)pressure vessel system is a non-continuously working
ALUMINIUM
· 1-2/2007
59
All illustrations: Moeller
Since September 2001 the Moeller
direct pot feeding system for the
smelter plant Aluminij Mostar in
Bosnia-Herzegovina has been in
successful operation. VAW Aluminium Technology chose Moeller in
July 2000 to modify 256 aluminium smelting pots (4 potlines with
64 cells each).
Fig. 1: Direct pot feeding – side-by-side (Mostar, Bosnia-Herzegovina)
pneumatic conveying system for
feeding secondary alumina to one
section of pots. The pressure vessel
(2) for the dense phase conveying to
ALUMINIUM · 1-2/2007
59
©
A L U M I N I U M S M E LT I N G I N D U S T R Y
ate bins near the pots to the bunkers
of the pots without any kind of maintenance. The MDPF system is thus an
integrated component and is one of
the reasons for the success and the
high performance of this smelter at
Aluminij Mostar.
Moeller Fluidflow
Fig. 2: Direct pot feeding with Moeller Fluidflow
the intermediate bin (5) is equipped
with a Moeller filling valve, a Moeller conveying pipe shut-off valve and
the necessary pneumatic valves, ball
valves, non-return valves, etc. for the
optimal fluidising and conveying air
distribution of the alumina. The fluidising and conveying air is supplied by
a separate compressor (8) or the plant
net. The secondary alumina, generally
from the secondary alumina silo of the
fume treatment plant (FTP), is conveyed via the turbuflow conveying
pipe (3) to intermediate bins (5).
The intermediate bin (5) is the interface to the fluidflow air slide pipe
and is equipped with a filling valve,
air slides at the outlet and level indicators. The intermediate bins (5) start
to fill at a minimum level indication
or after a precisely defined period of
time. The fluidflow air slide pipe connects the intermediate bin (5) with the
ore bunkers of the pots (7) and provides a continuous supply of secondary alumina. Compressed air (8) for
the fluidising air of the fluidflow air
slide pipe comes either from the plant
net for or from a separate blower.
The supply of secondary alumina
to the ore bunkers of the pots (7) is
self-regulating. For safety reasons, the
fluidflow air slide pipe of each pot is
equipped with the 2 m long Moeller
insulation air slide pipe. This equipment does not directly influence the
conveying process, but is a key component.
reliability at the smelter plant Aluminij Mostar in Bosnia-Herzegovina since
September 2001. It has maintained
without any problem conveying a capacity of about 10 t/h over around 150
m for each of the 4 sections (64 cells
each). Furthermore, it has fulfilled all
environmental aspects, especially the
limits on dust emission has been fulfilled. The MDPF system works absolutely dust free. It has generated no
measurable fines (attrition) or segregation in the last five years.
The maintenance costs for the
MDPF system at Aluminij Mostar are
extremely low. The Moeller turbuflow
system minimises scaling effects and
maintenance for long distance transport from the secondary alumina storage silo to intermediate bins near the
pots. No turbuflow conveying pipe
or conveying pipe bend has been
changed in the last five years.
Since start-up in September 2001
the fluidflow air slide pipe has been
bringing alumina from the intermedi-
Especially for green field applications,
but also for retrofit projects, Moeller
Materials Handling can offer a direct
pot feeding system as Moeller fluidflow air slide pipe system (Fig. 2).
The alumina will be taken from the
secondary alumina silo by a Moeller
fluidflow air slide pipe. The fluidflow
feeds a so-called main intermediate
bin. This main intermediate bin will
be operated between “full” and “half
full”. From this main intermediate bin,
the alumina will be fed via fluidflow
air slide pipe along the pot room to
all pots.
The fluidflow air slide pipe along
the pot room is equipped with Tpieces, which are connected with the
fluidflow air slide pipe on top or integrated in the superstructure of each
pot. Normally, two pots will be feed
via one T-piece. The fluidising air is
supplied by a separate rotary piston
blower. The MDPF system is working
fully automatically and is more or less
100% filled with alumina all the time.
When the bunker of a pot is full, the
bulk material cone level reaches the
fill spout discharge opening of the fluidflow air slide pipe, and so automatically blocks the mass flow of alumina.
When secondary alumina is removed
Experiences at Aluminij Mostar
The Moeller direct pot feeding (MDPF)
system has been working with 100%
60
Fig. 3: Moeller fluidflow air slide pipe on top of the pot
ALUMINIUM · 1-2/2007
SPECIAL
A L U M I N I U M S M E LT I N G I N D U S T R Y
fine particles, no segregation, no scaling, lowest possible (over)pressure,
no pressure-tight sealing of the pot,
minimized energy consumption, minimized maintenance work.
Conclusion
Fig. 4: Self-closed feeding spout and filling process of ore bunkers
from the ore bunker of the pot, the
pneumatic transport starts again automatically and ensures a constant
and reliable mass feed rate to the
pots. The fluidising of the secondary
alumina inside the fluidflow air slide
pipe works permanently to ensure a
constant bulk density.
The self-closing filling spout due
to the material cone level in the ore
bunker of a pot is self-regulating and
ensures continuous refilling of the
ALUMINIUM
· 1-2/2007
61
ore bunkers during operation of the
smelting plant. The self-closed feeding spout and the filling process of
ore bunker are shown in Fig. 4. Furthermore, no pressure-tight sealing of
the pot is necessary, because of the
low over-pressure in the fluidflow air
slide pipe.
The main advantages of the MDPF
system are: self-regulating and continuous feeding of bunkers, absolutely
dust free operation, no generation of
The Moeller fluidflow direct pot feeding is designed to ensure most constant and reliable feeding possible of
secondary alumina to the ore bunkers
of the pot. Lowest possible conveying
velocities preserve the particle size
distribution and the flowability of the
secondary alumina and avoid scaling
effects. This most competitive system
demonstrated superiority by minimal wear and maintenance, as well
as minimal energy consumption, and
last but not least by its high operating
reliability.
Authors
Dipl.-Ing. Timo Letz and Dipl.-Ing. Carsten
Duwe are with Moeller Materials Handling
GmbH, Pinneberg, Germany.
ALUMINIUM · 1-2/2007
61
CO M PA N Y N E W S
Company news worldwide
Alcan entertaining potential
buyers for Vlissingen aluminium
plant
Canadian aluminium major Alcan is
entertaining bids from any potential
buyers of its 200,000 tpy aluminium
smelter in Vlissingen in The Netherlands. Ongoing negotiations involving
a consortium of energy-intensive
companies have so far failed to satisfy
the smelter’s requirements for a longterm competitive energy supply. There may be some potential buyer who
will have some special way of working
with it to make it more viable. But the
smelter’s casthouse is good and Alcan
plans to keep it, no matter what the
outcome of the smelter. In addition,
the smelter has a good carbon plant
that has been modernised.
Malaysia’s Jabat Yakin plans
300,000 tpy aluminium smelter
Malaysian construction firm Jabat
Yakin is seeking financial backers for
a proposed 2.3 billion ringgit (US$
631m) aluminium smelter in eastern
peninsular Malaysia. Jabat Yakin has
hired two Islamic finance institutions,
Kuwait Finance House and AmIslamic Bank, as well as accounting firm
PriceWaterhouseCoopers, to arrange
the financing for the project, which
will be located in the state of Pahang.
The Malaysian company is in talks
with potential joint venture partners
Chalco and Dubal. The project will
yield 300,000 tpy of aluminium in a
first stage of production.
nium plant, and has also delivered
technology to the hydrogen filling
station that supplies Icelandic buses
with emission-free fuel. Hydro is able
to build on its position as a technology leader in the aluminium industry
and intends to invest in a 600,000
tpy aluminium smelter in the 2010 to
2015 period, based on the availability
of power. Hydro’s new North Atlantic office in Reykjavik is headed by
Bjarne Reinholdt.
Qingtongxia – Glencore talks
on the rocks as smelter project
faces delay
Glencore’s plans to co-operate with
Qingtongxia Aluminium Group have
hit problems as the future of a 250,000
tpy smelter project planned by the
Chinese company looks increasingly
uncertain. Glencore signed a memorandum of understanding with Qingtongxia in August 2006, which was designed to facilitate investment in the
Chinese company’s planned 250,000
tpy aluminium smelting project. But
talks have gone badly. Besides problems with Glencore, Qingtongxia has
yet to receive government approval
for the project. The delay is probably
linked to Beijing’s plan to clamp down
on the aluminium industry and to its
stricter stance on new aluminium projects. New smelting projects in China are likely to find it more difficult
to win government approval as the
government is not encouraging new
projects.
Hydro opens office in Iceland
CVRD’s Mozambique coal
project moving forward
Hydro has opened a North Atlantic
office in Reykjavik to support its strategy of repositioning and growth in its
primary aluminium activities. Hydro
is presently involved in supplying
technology to the Nordural alumi-
CVRD’s plans to produce coal at
Moatize, Mozambique, could move
forward quickly once the rail link to
transport the coal from mine to port is
established. CVRD is still studying the
possibility of later producing primary
62
Norsk Hydro
Aluminium smelting industry
aluminium at the site. Local reports
are correct that output at Moatize
could reach a total of 12 million tpy
of coal, of which around 40 per cent
would be metallurgical (coking) coal
and 60 per cent steam (thermal) coal.
The metallurgical coal would be for
export. Studies are under way into
developing the thermoelectric plant.
Likewise, the company continues to
study the possibility of using the energy produced at the proposed thermoelectric plant to fuel aluminium
smelting facilities that could also be
set up at Moatize. In theory it should
be cheaper to produce primary aluminium in Mozambique than in Brazil
due to the current high cost of electrical energy in Brazil.
Ormet finalises power deal with
AEP
Ormet Corp. and American Electric
Power (AEP) have finalised their longterm agreement under which AEP will
provide power to Ormet’s Hannibal,
Ohio, operation. Two of Ormet’s six
potlines could now restart as early as
mid-December 2006 as 250 employees
were called back to work. Effective 1
January 2007, the pact places Ormet’s
Hannibal facilities back into AEP service territory, where the company will
provide power at US$ 43 per MWh
through the end of 2008. Following a
two-year period, Ormet will then be
able to obtain power at the same rate
as other large industrial users in the
Ohio service territory.
ALUMINIUM · 1-2/2007
A L U M I N I U M S M E LT I N G
Dubal completes US$ 280m
expansion to take capacity to
861,000 tpy
Alcan to pilot advanced AP50 technology
through US$ 550m facility in Quebec
Dubal has completed a US$ 280 million expansion which will raise capacity by 100,000 tpy to 861,000 tpy. The
two expanded potlines, 7B and 9B,
were officially inaugurated at a gala
ceremony attended by His Highness
Sheikh Hamdan. Expansion of the
two potlines began in November and
December 2005, adding 128 cells to
potline 7B and 36 cells to potline 9B.
Dubal is working on a further small incremental 60,000 tpy expansion that
will lift capacity to around 925,000
tpy from the start of 2007.
Alcan will invest US$ 550 million in a 60,000 tpy AP50 pilot plant at its
Complexe Jonquière site in Canada. The development plan is the first step
in a planned ten-year US$ 1.8 billion investment programme in Quebec’s
Saguenay-Lac-Saint-Jean region. The new AP50 pilot facility will be the
cornerstone of an industrial strategy developed by Alcan with the support
of the Government of Quebec. The AP50 pilot plant is the initial step in
creating up to 450,000 tpy of new generation AP smelting capacity, based
entirely on clean, renewable hydroelectricity. Construction is expected to
begin in 2008 with first metal coming on stream in late 2010. This initial
phase would be followed by up to an additional 390,000 tpy in the Saguenay-Lac-St.-Jean region by 2015. For this project the Government of
Quebec has provided financial support by means of R&D tax incentives and
loans, and has made available up to 225 MW of additional power to support
the investment programme. The agreement with the Government of Quebec also reinforces Alcan’s electrical power position in Quebec through the
long-term extension of hydraulic leases and new power contracts which
provide a secure supply of approx. 2,600 MW of low-cost power through
the year 2045.
Ashapura Minechem to set up
aluminium project in Orissa
Ashapura Minechem, one of India’s
larger bauxite miners, plans to set
up an alumina refinery, aluminium
smelter and power plant in the mineral-rich state of Orissa in eastern
India. The company has submitted
a proposal to the Orissa government
for an integrated aluminium project
in the bauxite-rich Koraput district
in southern Orissa. The state government is vetting the proposal before a
memorandum of understanding is signed. Ashapura has yet to decide on
the size of the project and on how it
will be developed. The alumina refinery may be set up in the first phase
and the smelter in the second phase.
The integrated aluminium project is
expected to cost come US$ 2 billion. A
formal announcement on Ashapura’s
aluminium project can be expected
early in 2007. The company has re-
ceived a formal invitation to begin
work on its alumina project in the
Kutch region of Gujarat by the state
government.
Indonesia places smelter’s
future under scrutiny
The Indonesian authorities are keeping up the pressure on their Japanese
joint venture partners to consider closing the 225,000 tpy Asahan Aluminium smelter in the country’s Sumatra
province. The smelter has made a profit in only 3 of its 23 years of operation,
and Indonesia is now suggesting it be
closed when the existing joint venture
agreement runs out in 2013, and the
freed power used to supply local com-
. ($'*!'* ('&.
'(+,! )$'#*('
( "+*! $'"(*$(' (
!,$!- ($'*!'*
&!)! ('**
* (
-& . (,!$ (
* (
%(&& (,!$ (
ALUMINIUM · 1-2/2007
munities and businesses. The Indonesian government wants to change the
Asahan project into an electricity
company, as the government has so
far not gained any financial advantage
from the project.
Columbia Falls hopes to restart
second potline in the first quarter 2007
Columbia Falls Aluminum Co hopes to restart the second of its five
potlines in the first quarter of 2007.
Columbia’s one operating potline produces approx. 35,000 tpy of aluminium. While alumina might be readily
available, securing power for aluminium smelters in the U. S. northwest
,!#!!' &+$'+ (!&. '&( ' &(
21
%% '4
,
2
/
2
) (1,
-
$0
1)0- #(
)5 %2
+ 1. $0-32 "-
,10 + 1.
%0
3 + 1. *+3 30 + 1. 13 303 + 1. *203 110 )1- + 1. 21023 + 1. $10 (
2 + 1. !
1 ,10
+ 1. !
1 %0
#13
3+2210 &
4
$02
-
63
©
CO M PA N Y N E W S
has been a hurdle for production. The
plant produces primary aluminium in
sheet and T-bar.
revenues of approx. US$ 114 million
in 2005, Carbone Savoie is a leading
and profitable producer of cathode
blocks, including a growing share of
graphitised cathode blocks, as well as
sidewall blocks and ramming pastes.
The business employs approx. 500
people at two sites, both in close proximity to Alcan’s R&D centre in Voreppe, France.
N
RusAl starts Khakass smelter
RusAl has begun the ramping up of
its Khakass aluminium smelter on 15
December 2006, the first aluminium
production facility in Russia built in
the past 20 years. The company will
initially operate the plant at 71,000
tpy and is aiming to complete in November 2007. Total investments into
the project exceeded US$ 750 million.
The 300,000 tpy smelter is located in
the Republic of Khakassia. It operates
RA-300 reduction cells. The overall investment into the regional infrastructure amounted to some US$ 21m. The
launch of the new production facility
created around 1,000 jobs.
SUAl plans US$ 1.5b smelter
for northern Kazakhstan
Russian aluminium producer SUAl
plans to build a US$ 1.5 billion aluminium smelter in northern Kazakhstan that could add 500,000 tpy to the
company’s output from 2011. SUAl
will begin the feasibility study in early 2007. If the feasibility study is successful, as well as the following agreements with the Kazakh government,
construction will start in 2008. SUAl
has already signed a memorandum of
understanding with Kazakh subsidiary of US energy company AES Corp to
supply power to the smelter from the
Ekibastuz GRES-1 power station for
20 to 30 years.
Alcan completes purchase of
cathode business in France
Alcan has completed the acquisition
of the remaining 70% stake of Carbone Savoie, and certain related technology and equipment, from GrafTech
International for US$ 135 million
less certain price adjustments. Today,
Alcan’s proprietary world-leading Pechiney AP Series Smelting Technology
already uses Carbone Savoie’s advanced graphitised cathode blocks. With
64
Bauxite and alumina activities
RusAl acquires 56.2% stake in
Eurallumina refinery
RusAl successfully completed the agreement with Rio Tinto to purchase a
56.2% stake in the Eurallumina alumina refinery in Italy. The remaining
43.8% share of Eurallumina is owned
by Glencore. Ownership of the asset
will be consolidated under United
Company RusAl, when the merger
RusAl, SUAl and Glencore’s alumina
assets is completed in 2007.
Alcan looks Madagascar for
bauxite and 1.5m tpy alumina
refinery
Alcan signed a memorandum of understanding with Access Madagascar
Sarl to jointly study the possibility
of developing a bauxite mine and a
1 to 1.5 million tpy alumina refinery in Madagascar’s south eastern
Manantenia District. Alcan and Access will undertake a concept study
to review the bauxite reserves and
logistics, estimate costs and look at
social and environmental conditions.
This concept study is expected to be
complete in the second quarter of
2007, and could then lead to feasibility studies. On the basis of these
studies, Alcan will explore options
that could make an alumina refinery
project viable.
Nanshan to expand alumina
capacity to 700,000 tpy
China’s Nanshan Group will expand
alumina refining capacity by 75 per
cent to 700,000 tonnes per year by
September 2007. Nanshan is due to
finish the first phase expansion of its
new alumina refinery by the end of
November, with capacity to produce
400,000 tonnes per year. The com-
Laos and Vietnam to host
new bauxite projects
Southeast Asia may soon join Australia,
Jamaica and the Republic of Guinea as
one of the world’s chief bauxite-producing
regions. The recent agreement between
Aluminium Corp of China (Chalco) and Vietnam National Coal and mineral Industries
Group (Vinacomin) to mine bauxite and
produce alumina in Vietnam joins them
to a joint venture between Australia’s Ord
River Resources Ltd. and China Nonferrous
Metals International Mining Co Ltd. (CNMIM). They plan to develop a potentially
huge bauxite project at the Bolaven Plateau in southern Laos. Ord has just moved
to establish a Laos-based joint-venture
company with CNMIM in order to consolidate the companies’ commercial position
in the country. The partners believe that
the Bolaven Plateau project could hold between 2 and 2.5 billion tonnes of bauxite.
Laos is said to be well-suited for the development of bauxite and alumina projects.
The country has ample hydroelectric power
resources and already exports power to
Vietnam and Thailand. Furthermore, Laos,
Vietnam and China have signed an agreement to develop the Trans-Asian Railway
(TAR) network, which will link China to
several Southeast Asian nations. Under an
agreement announced in January 2006
between Chalco and Vinacomin, the companies are to build a US$ 2 billion bauxite
mining and alumina project in Dak Nong.
The alumina refinery will have a capacity of
1.9 million tpy, rising to 4 million tpy in a
second phase of its development.
ALUMINIUM · 1-2/2007
BAUXITE AND ALUMINA
pany then plans to increase capacity
by another 300,000 tonnes per year.
Output from the new plant will be
used for its own aluminium smelters
owned by Nanshan Group and Shandong Nanshan Industrial Co. Nanshan
Group and Shandong Nanshan have
156,000 tpy and 36,000 tpy of electrolytic aluminium capacity respectively.
Chalco to commission third
phase of Pingguo refinery in
2008
Aluminium Corp. of China (Chalco)
plans to commission a 900,000 tpy
third phase expansion at its alumina refinery in Pingguo in China’s
southern Guangxi autonomous region
in late 2008. The expansion will take
alumina capacity at the Pingguo works
– also known as Chalco’s Guangxi
Branch – to 1.8 million tpy. Chalco
also plans to increase smelting capaci-
ty at Pingguo from 130,000 to 250,000
tpy, though no date has been set for a
second phase of construction.
Guangxi Huayin to commission
alumina refinery in 2007
Guangxi Huayin Aluminium Corp
plans to commission a 1.6 million
tpy alumina refinery project in October 2007, as part of a growing drive
by the government of the region to
strengthen its aluminium industry.
Construction of Guangxi Huayin’s
project started in June 2005.
Romania’s Alro plans
alumina capacity upgrade
Romanian aluminium producer Alro
plans to invest US$ 50 million over
the next two years in upgrading the
alumina refinery at its subsidiary
Alum. The investment will be used to
modernise the main production facilities at Alum, to cut the consumption
of materials and energy, upgrade the
thermal power plant and to align the
plant to European labour environment protection standards. The work
will involve a temporary complete
shutdown of the plant. The upgrade
will lift capacity at the refinery from
500,000 to 600,000 tpy. Beyond that,
Alro aims to increase capacity to 1
million tpy by 2010.
Iamgold to sell bauxite assets
to Bosai for US$ 46m
Toronto-based Iamgold Corp has
signed a deal with Chinese alumina
producer Bosai Minerals Group to
sell its bauxite assets for US$ 46 million. Under the agreement, Iamgold
will sell interests in Omai Bauxite
Mining Inc and Omai Services Inc
to Bosai for approx. US$ 28 million
in cash. Bosai will also assume US$
©
"
"&
)*&*!
&,
&,
!"#
$#% $!"#
$#%
' (#
*
-
,
%,
#
$ +&
CO M PA N Y N E W S
18 million in third-party debt. If the
deal is approved by regulatory authorities, the transaction took place on
31 December 2006. The sale is consistent with Iamgold’s aim to focus
on its core assets. Bosai – based in
southwest Chongqing province to the
east of Sichuan – plans to double its
200,000 tpy alumina refining capacity
to 400,000 tpy within the next two to
three years.
BHP in talks to take a third of
Global’s US$ 2.8b alumina refinery project
BHP Billiton has begun talks with
Global Alumina Corp to take a 33.3
per cent equity stake in its US$ 2.8
billion alumina refinery project in
Guinea. BHP would assume the role
of project manager and operator and
will lend as much as US$ 50 million
to Global Alumina to help fund a feasibility study. Under the agreement,
Global Alumina and BHP would each
own a third of the project, Dubal one
quarter, with Mubadala Development
Co taking one-twelfth. If the transition goes ahead, the potential partners
would receive shares in Global Alumina and reach separate shareholder,
project-management and off-take agreements. BHP, Dubal and Mubadala Development Co have agreed to
provide US$ 100 million of interim
financing for the project, which will
be guaranteed by Global Alumina and
Guinea Alumina. The refinery, to be
built at the inland town of Boké, is
scheduled to come on stream in the
first half of 2009.
N
Secondary aluminium smelting
and recycling activities
Hydro Deeside aims to boost
sales to offset energy costs
Hydro Aluminium Deeside plans to
lift production to 55,000 tpy to boost sales by the end of next year in a
bid to offset soaring electricity prices.
Over the past three years, the plant’s
spending on electricity has more than
doubled. Currently the plant pays 4.6
pence per night unit and 7 pence per
day unit. Deeside’s current electricity
contract is 64% higher than the previous 18 month contract which ran out
in October, while that contract was
60% higher than the one before. The
recycling and remelting plant located
in Wrexham in northeast Wales produces more than 40,000 tpy of extrusion ingots. Hydro Aluminium Deeside
produces extrusion ingot from 90%
remelted aluminium scrap.
Alcan invests US$ 7m in UBC
recycling at Neuf-Brisach
Alcan will invest US$ 7 million in
a special sheet Rhenalu facility in
France to recycle aluminium used
66
beverage cans (UBC). The new capacity will come on stream by the
start of 2008 and will turn the site at
Neuf-Brisach into Europe’s only fully integrated UBC processing, rolling
and finishing facility. The investment
will promote beverage can recycling
in Europe. In addition to the Neuf-Brisach plant, in Europe Alcan operates
recycling and rolling facilities in Singen, Germany.
RusAl aims for 500,000 tpy of
secondary aluminium by 2011
RusAl plans to produce some 500,000
tpy of secondary aluminium by 2011
through acquisitions and through
building its own production plants.
Such a strategy would see RusAl
surpass capacity of Aleris Recycling
works in Germany, Europe’s largest
secondary aluminium producer,
which produces 400,000 tpy, and
compete directly with Asia’s largest
producers, Shanghai Sigma Metals in
China and Daiki Aluminium in Japan.
RusAl has recently acquired one producer, Tsvetmet Services, based in the
Samara region. The company owns
Resal, also in Samara, which was set
up by RusAl in 2000. In 2005, the
Russian government has encouraged
RusAl to buy secondary aluminium
assets and already RusAl has bought
secondary aluminium assets in the
Rostow, Samara and Leningrad regions. The plan to produce 500,000 tpy
would give RusAl more than 60% of
the Russian market. It has been estimated that there are 440 businesses in
Russia that produce aluminium alloys
from scrap.
Spanish secondary aluminium
producer Idalsa in trouble
Spanish secondary aluminium producer Iberica de Aleaciones Ligeras
(Idalsa) is facing a financial crisis,
struggling under the weight of 26
million euros (US$ 33.4m) in debt,
and sources at European secondary
aluminium producers were reporting
that the company based in Zaragoza
in Aeragon had filed for bankruptcy
protection on 1 November 2006. The
news did not surprise the market as
Idalsa, which produces around 30,000
tpy of alloy, was a supplier to Manzoni-Bouchot, the French die-caster
that filed for bankruptcy protection
in October. Idalsa was owed some 13
million euros by Manzoni. Idalsa was
set up in 1984.
Scholz buys Hungarian secondary
aluminium producer Eural
German non-ferrous and ferrous scrap
merchant Scholz AG has acquired
Hungarian secondary aluminium producer Eural kft from Spanish group
Pansoinco SA for an undisclosed sum.
Eural, which has a capacity to produce 50,000 tpy of aluminium alloy, will
probably source scrap from Audi’s
manufacturing plant in Györ and
supply aluminium alloy to automotive casting plants next to Audi. Eural is
located in Tatabanya, just 60 km from
Györ. Eural is one of the main players
in the aluminium alloys and rod industry in Central and Eastern Europe. Scholz is one of Europe’s largest
scrap processors and merchants, with
ALUMINIUM · 1-2/2007
ALUMINIUM SEMIS
12 centres in south and east Germany,
the Czech Republic and Croatia, including eight shredders, 38 shearing
machines, nine railtrack crushers and
four cable shredders.
Century Aluminium seeks foreign
partner to increase capacity
Indian secondary aluminium producer Century Aluminium intends
to increase its output to 50,000 tpy
from 35,000 tpy by the end of 2007,
and would like to increase output to
100,000 tpy in the long term by securing a foreign partner. A time frame
was not given for that additional expansion. India represents one of the
most attractive aluminium recycling
opportunities in the world. Recycled
aluminium consumption in India, driven by the automotive sector, is set to
boom in the next four years. Demand
for recycled aluminium from automotive manufacturers is likely to increase
in India to some 350,000 tpy by 2010
from 93,700 tpy, and consumption
in the general engineering industry,
such as components for washing machines, is forecast to more than treble
to 87,500 tpy from 23,500 tpy. India’s
domestic production of 200,000 tpy is
well below those levels.
N
Aluminium semis
Poland
Polish aluminium manufacturer
allocates funds for German buy
Polish aluminium products manufacturer Grupa Kety will allocate up to
200 million zloty (around US$ 65.2m)
to buy German companies operating
in the extruded products and systems
segments. Grupa Kety is actively seeking out a medium-sized German
company which also manufactures
and distributes extruded products.
Germany has been chosen for the size
of the market for aluminium systems
used in the construction industry.
Croatia
Croatia tries again to sell aluminium products maker
Croatia’s Privatisation Fund is trying
to sell the government’s 80.2% stake in Tvornica Lakih Metala (TLM),
which is the Balkan country’s largest
producer of extruded and rolled aluminium products. The company has
high debts and a previous attempt to
sell the stake in September drew no
bids. The latest tender has set a minimum price of 10% of the company’s
nominal value in an attempt to draw
out more interest. As before, the latest tender notice stimulates that any
potential buyer must maintain the
company’s core business, commit to
ALUMINIUM · 1-2/2007
further investment and keep 1,400 of
the current 1,600 employees on the
payroll for two years after the signing
of a purchase contract.
Bahrain
New foil annealing furnace for
Garmco Foil Mill
Garmco Foil Mill Co., Bahrain, has
placed a second order for an indirect
electrically heated chamber furnace
with mass flow heating for the annealing of aluminium foils under air
or nitrogen. Garmco is expanding its
rolling facility and inquired for an
additional aluminium foil annealing
furnace from Otto Junker, Germany.
The ordered furnace is almost identical to the furnace supplied by Otto
Junker in 2004.
The existing foil annealing facility
consists of three annealing furnaces
with a common rail mounted charging
car, nitrogen gas supply system, coil
cooling/waiting/loading stands and
steel coil racks/pallets. The ordered
new foil annealing furnace is to be
located in a new extension to the existing bay with installation scheduled
to commence in April 2007.
Garmco is supplied with feedstock
from parent company Gulf Aluminium Rolling Mill Co. which produces
cold rolled coil and sheet in 1xxxx,
3xxx, 5xxx and 8xxx series alloys for
Suppliers
Dubal awards ABB contract
to upgrade smelter
Dubai Aluminium has awarded a US$
39m contract to ABB of Zurich to upgrade electrical and automation systems
at Dubal’s 861,000 tpy smelter complex
in Dubai. ABB will replace five high-voltage regulating rectifier transformers,
which convert alternating current (AC)
to direct current (DC), with larger units
rated at 86 MVA to increase capacity and
to allow Dubal to combine two potlines.
ABB will upgrade existing systems,
including high-voltage cables and lowvoltage and control cables, as well as
provide control and protection systems
and 250 kA field-oriented measuring
equipment. Commissioning of the new
system will begin in July 2007.
Aluminij dd Mostar chooses
Wagstaff equipment
Aluminij dd Mostar, aluminium producer
in Mostar, Bosnia-Herzegovina, has
placed an order with Wagstaff Inc, to
modernise their third casting station.
The new contract consists of a Wagstaff
ShurCast casting machine, an AutoCast
automated casting control system, and
LHC low head composite casting moulds
for use on all stations in the casthouse.
The equipment purchased in the new
contract is slated to be commissioned in
early 2007.
Stub milling machine for
NZAS
Stimir of Iceland has completed the design of a stub milling machine for New
Zealand Aluminium Smelters (NZAS). The
contract required Stimir to fully design a
stub milling machine able to automatically mill off excess stub length whilst
the anode rod is hanging in an overhead
conveyor. The automatic stub milling
machine will ensure that all stubs are of
equal length, so as to improve electrical
conductivity, rodded anode geometry,
and removal of cast iron thimbles. These
improved parameters increase electrical
efficiency and maximise both rod availability and rod service life.
©
67
CO M PA N Y N E W S
a wide range of applications with a
current annual capacity of 162,000
tonnes.
Taiwan
in eastern China, which is still undergoing test-runs.
China
China
China’s Yangkuang Ke-Au Aluminium Co is mulling downstream aluminium projects as Beijing tightens
controls on the primary aluminium
sector. Yangkuang, which operates
a 140,000 tpy aluminium smelter in
eastern Shandong province, is considering downstream projects, including aluminium alloy and recycling.
The company has not finalized plans
but once that is done, construction
is likely to start within the next two
years. Projects will be at least 50,000
tpy in capacity. Yangkuang exports
the majority of it aluminium ingots to
south and southeast Asia.
CS Aluminium delays cold
rolling expansions
Private aluminium fabricator in
China plans expansion to meet
rising demand
Taiwan’s CS Aluminium has delayed
plans to expand cold rolling capacity at its Kaoshiung works on rising
competition from aluminium rollers
in China. CS Aluminium had planned
to build a new 42,000 tpy cold rolling
line in southern Taiwan, which it hoped to complete by the end of 2009.
The plan has now been postponed
indefinitely. CS Aluminium plans
to make another look at its product
mix and focus more on Taiwanese
demand going forward. The company currently sells 70% of its production in Taiwan and exports the rest.
CS Aluminium has also a 35,000 tpy
aluminium cold rolling mill in Ningbo
Modern International Enterprise
(Nanhai) Holding is planning big expansions to its aluminium fabricating
and extruding capacity to meet rising
demand in China and in export markets. The privately owned Chinese
company intends to increase capacity
at a newly acquired 40,000 tpy aluminium extruder in Chiping, eastern
Shandong province, to 100,000 tpy by
the end of February 2007. The company intends to raise aluminium fabricating capacity in Foshan, southern
Guangdong province, to 120,000 tpy
over the next five years, from 20,000
tpy. The Foshan plant produces aluminium alloy and aluminium bars.
On the move
Alcoa has named Charles D. McLane as
its new Chief Financial Officer effective 1
January 2007. McLane will succeed Joseph
Muscari who will retire to become Chairman and CEO of Minerals Technologies Inc.
Alcoa has appointed Joseph R. Lucot Vice
President – Corporate Controller and elected
him officer of the company. Alcoa elected
new vice presidents: Kevin J. Anton, President, Alcoa Materials Management; Olivier
Jarrault, who leads the Alcoa Fastening
Systems business; Raymond B. Mitchell,
who serves as President Alcoa Investment
Cast and Forged Products; and Wayne G.
Osborn, Managing Director, Alcoa World
Alumina Australia.
Alcoa has made several executive changes:
Michael Parker, currently General Manager,
Alcoa Materials Management, will become
Vice President of that division; Timothy
Reyes, senior Vice President of Alcoa Materials Management, will become Vice President of marketing for Alcoa World Alumina
and Chemicals; William Rice, Vice President
of marketing for Alcoa World Alumina and
Chemicals, will become Vice President of
68
mining. Rice will serve on the Halco board
and represent Alcoa’s interest in the CBG
Guinea Bauxite mining operations; Russell
Williams, Vice President of mining, will become Vice President of mining projects in
Asia, focusing on Asian bauxite issues.
The Novelis Board of Directors has accepted
the resignation of director John D. Watson,
who informed the board of his need to step
down as a director for personal reasons.
Hydro Aluminium appointed Cecilie DitlevSimonsen Executive Vice President, to join
the company’s top management team with
overall responsibility for communication and
reputation management.
Rio Tinto has appointed Tom Albanese,
currently Director of Group Resources, as its
new CEO, to replace Leigh Clifford on 1
May 2007.
The President of Alcan’s Primary Metal Group
for the Asian Pacific area, Marco Palmieri,
has left the company to pursue other career
opportunities. His position no longer exists.
Bengt Lie Hansen has been appointed
head of Hydro’s Russia business unit. The
change will be effective as of January 2007.
Yangkuang Aluminium mulls
downstream projects
China
Kunshan to commission 25,000
tpy foil mill in 2007
Kunshan Aluminium Co (KAC), owned
by Hanjiang Group, will commission
a 25,000 tpy foil mill in Kunshan in
eastern Jiangsu province in June 2007.
KAC intend to export the majority of
its foil and Europe is likely to be an
export destination. The mill project is
a first by Hanjiang Group, which also
owns an aluminium smelter Hubei
Danjiang Aluminium Co. Danjiang
Aluminium is targeting production
of 101,000 tonnes of aluminium ingot
in 2006. Based in Danjiangkou city
in central Hubei province, Hanjiang
Group’s main business is hydropower.
U.S.A.
Indalex to sell drawn tube plant
to Spectube
Indalex Holding Corp., Illinois, agreed
to sell its assets of its drawn tube operation in Winton, North Carolina, to
Spectube Inc., Chicoutimi, Quebec.
Under terms of the definite agreement,
Spectube will acquire substantially
all of the assets of the Indalex drawn
tube business in Winton including a
dormant aluminium extrusion facility
on the site. Spectube will continue to
operate the Winton drawn tube plant,
ALUMINIUM · 1-2/2007
ALUMINIUM SEMIS
which employs about 95 people, and
Indalex will continue to supply the
plant with extruded aluminium under a supply contract with Spectube.
The Winton plant makes porthole and
seamless tube in alloys 6063, 6061,
3003, 1100 and 6463 and has nine
high-speed draw benches and four
roll straightening machines.
U.S.A.
Start-up of Kaiser Aluminum’s
heat-treat furnace at Trentwood
The first heat-treat furnace in Kaiser
Aluminum’s US$ 105 million Trentwood rolling mill expansion is now
at full production after going through
shakedown and start-up procedures
during the third quarter. The second
furnace is expected to be on line by
mid-2007 and the final furnace and
new stretcher by 2008. The expansion had been increased from an initial US$ 70 to 105 million and Kaiser
would consider further expansions if
customer demand materialised.
U.S.A.
Quanex denies Nichols unit to go
back on sales block
Quanex Corp., Houston, denies that
is will be shopping for a buyer for its
Nichols Aluminum Corp. aluminium
sheet business sometime during 2007.
The breakout of Nichols Aluminum
financial results in Quanex’s fourth
quarter earning statement could be
a signal that it is thinking about selling the business. Nichols Aluminum
is an earn-and-protect business and
Quanex broke out the numbers to provide better transparency. Previously,
the numbers had been rolled into
overall results for Quanex’s building
products segment.
China
Malaysian aluminium extruder
Press Metal buys upstream plant
in China
Malaysian aluminium extruder Press
Metal plans to buy a 90% stake in
China’s Hubei Huasheng Aluminium
ALUMINIUM · 1-2/2007
Order for SMS Demag
First 2-stand cold rolling mill for China
CSWA Cold Rolling Co., Ltd. (Southwest
Aluminium), China, which belongs to the
Chinalco Group, has placed an order with
SMS Demag, Germany, for the supply of a
two-stand cold rolling mill for aluminium
and aluminium alloys.
The two-stand cold rolling mill constitutes
the core of an investment package by
means of which CSWA intends to increase
its cold rolling capacity to more than half a
million tonnes per year. The new mill will
produce tin-can strip, panelling and litho
material for the printing industry. The cold
strip can be rolled up to a width of 1800
mm and a maximum final thickness of 0.15
mm.
SMS Demag is the technical and commercial leader of an international consortium.
The supply scope of the company covers a
two-stand tandem mill, three Multi-Plate
plate filters for best rolling oil purity as
and Electric Co Ltd for 360m yuan
(US$ 46m) in a bid to secure raw materials and electricity for its Press Metal International (PMI) downstream
aluminium manufacturing plant in
Guangzhou. Huasheng Aluminium
owns the Huasheng Aluminium Smelter, which produces aluminium ingot,
and the Huasheng Electricty Generation power plant. Huasheng Aluminium produces 38,000 tpy of aluminium
ingots. PMI is in the process of doubling its capacity to 43,000 tpy.
Japan
Kobe Steel and Alcoa to dissolve
auto sheet joint ventures
Kobe Steel and Alcoa have agreed to
dissolve two aluminium auto sheet
joint ventures. The two companies
set up the 50 : 50 joint ventures, one
based in the US and one in Japan, in
1992. The US-based company, Alcoa
Kobe Transportation Products Inc.,
focuses on research and development,
while Kobe Alcoa Transportation Products Ltd in Japan manufactures and
supplies aluminium sheet to Japanese car makers. Alcoa will acquire all
well as a large airwash exhaustair cleaning system. The new rolling mill is
equipped with state-of-the-art actuators
and technological control systems. Both
stands are designed with the CVC6 plus
technology. Such a multi-stand mill is particularly sophisticated in terms of technology because of the temperature sensitivity
of the rolling oil used for the cold rolling
of aluminium. The mill stands as well as all
core components are manufactured in SMS
Demag‘s workshop in Germany. Commissioning is scheduled for the spring of 2009.
The Southwest Aluminium Works is considered a technology centre within the
Chinalco Group. It is located in the Xipeng
District of Chongqing, the metropolis of 30
million at the upper course of the Yangtze
river. SMS Demag AG forms part of the
Metallurgical Plant and Rolling Mill Technology Business Area of the SMS group.
stock in the R&D venture in January
2007, while Kobe Steel will purchase
all shares in the production and sales
firm a month later. Kobe Steel will
also take over the marketing of products in the Japanese market. Sales at
the Japanese unit for the current year
are anticipated to be less than ¥ 20
billion (US$ 169.6m).
N
The Author
The author, Dipl.-Ing. R. P. Pawlek is
founder of TS+C, Technical Info Services
and Consulting, Sierre (Switzerland), a
new service for the primary aluminium
industry. He is also the publisher of the
standard works “Alumina Refineries and
Producers of the World” and “Primary
Aluminium Smelters and Producers of
the World”. These reference works are
continually updated, and contain useful technical and economic information
on all alumina refineries and primary
aluminium smelters of the world. They
are available as loose-leaf files and/or
CD-roms from the Aluminium-Verlag,
Marketing & Kommunikation GmbH in
Düsseldorf, Germany.
69
MARKT UND TECHNIK
Umreifungstechnik mit PET-Hochleistungsband
„Keine Konzessionen
an die Qualität“
Signode ist seit 1986 ein Unternehmen der ITW Illinois Tool Works Inc.
und beschäftigt weltweit über 7.000
Mitarbeiter in mehr als einhundert
Ländern. Rund 650 Mio. Euro Umsatz
werden allein in Europa mit Umreifungstechnik erwirtschaftet. Im Jahr
1913 zunächst als Seal and Fastener
Company gegründet, ist Signode damals wie heute ein Vorreiter in diesem Geschäft.
Das Unternehmen sieht sich als
Technologie- und Qualitätsführer im
Umreifungsgeschäft. Dafür sprechen
über 600 aktive Patente. Qualität
hat natürlich ihren Preis. Gerard W.
Laks, der als General Manager den
Ländervertrieb für Westeuropa leitet,
gibt unumwunden zu, dass die Umreifungsmaschinen des Unternehmens
nicht zu Discountpreisen erhältlich
sind. „Dafür machen wir keine Konzessionen an die Qualität unserer Produkte. Wenn jemand 20, 30 Prozent
unter unseren Preisen liegt, bietet er
im Grunde ein völlig anderes Produkt
als wir an“, sagt Laks.
Das Aushängeschild unter den Signode-PET-Produkten ist die AK200Technologie in Kombination mit dem
Hochleistungsband Tenax: einem
hochfesten und äußerst elastischen
PET-Band, das in seiner 19 bis 25
mm breiten Ausführung eine Bruchlast von fast 12000 Newton aufweist.
Noch wichtiger aber als die Bruchlast
(die von Stahl ist weit größer) ist die
hohe Schlagfestigkeit des Tenax-Bandes. Sie ist 25 Mal größer als die von
Standard-Stahlbändern. Dieser Vorteil kommt beim Handling und Transport zum Tragen – etwa wenn ein
Ladung vom Gabelstapler fällt oder
auf einem Lkw, per Bahn oder Schiff
durchgerüttelt wird. Das Tenaxband
lässt sich bis zu fünf Prozent dehnen
ohne plastisch zu verformen. Erst bei
einer Dehnung von 16 Prozent reißt
es. Im Gegensatz dazu reißt StandardStahlband bei 0,2 Prozent und Hoch-
Mit PET-Band umreifte Palette Bolzen ...
Strapped with PET strip: billets ...
All illustrations: Signode
Lange Zeit galten Stahlbänder als
das non plus ultra, um Masseln,
Walzbarren, Pressbolzen, Bleche
oder Profile für den Transport zu
umreifen und sicher an ihren Bestimmungsort zu bringen. Auch
die Signode Packaging Systems,
ein Pionier in Sachen Umreifungstechnik, ist mit Stahlbändern groß
geworden. Mittlerweile hat sich in
der Aluminiumindustrie in weiten
Bereichen Kunststoffband durchgesetzt. Vor allem das Hochleistungsband „Tenax“ aus PET bietet
in der Kombination von hoher
Bruchlast und Elastizität einen optimalen Transportschutz.
70
Strapping technology
with PET high-performance strip
“No concessions
on quality”
Steel strips have long been regarded as the non plus ultra for the
strapping of ingots, rolling slabs,
extrusion billets, sheets or sections for transport and safe delivery to their destination. Signode
Packaging Systems too, a pioneer
in the field of strapping technology, grew large on the strength of
steel strip. Meanwhile, in wide
areas of the aluminium industry
plastic strip has become accepted.
Above all the high-performance
strip “Tenax” made from PET, with
its combination of high breaking
strength and elasticity, offers optimum protection during transport.
Since 1986 Signode has been owned
by ITW Illinois Tool Works Inc. and
employs more than 7,000 people
worldwide in more than 100 countries. In Europe alone its strapping
technology generates a turnover of
around 650 million euros. Founded in
1913 first as Seal and Fastener Company, Signode was then, as it is now, a
front-runner in this business.
The company views itself as a
technology and quality leader in the
strapping business. Evidence of this
are over 600 active patents. Quality, of course, has its price. General
Manager Gerard W. Laks, Distributor
Sales Western Europe, states plainly that the company’s strapping machines are not to be had at discount
prices. “We make no concessions on
the quality of our products. If anyone’s
prices are 20 or 30% lower than ours,
it is basically because he is offering
a product completely different from
ours”, says Laks.
The flagship among Signode PET
products is AK200 technology combined with the high-performance
strip Tenax: a high-strength and exceptionally elastic PET strip which, in
its 19 to 25 mm wide version, has a
breaking strength of almost 12,000 N.
Even more important than the breaking strength, however (that of steel
is far higher), is the high impact re-
ALUMINIUM · 1-2/2007
MARKETS AND TECHNOLOGY
sistance of Tenax strip, which is 25
times greater than that of standard
steel strips. That advantage is important during handling and transport,
for example when a load falls off a
fork-lift or is juddered on a truck, rail
wagon or ship. Tenax strip can stretch
up to 5% without plastic deformation. It only snaps at an elongation of
16%. In contrast, standard steel strip
breaks at 0.2% and high-performance
steel strip at 6% elongation. Stretched
steel strip also essentially no longer
contracts again after extension.
A further advantage of PET strip is
that its tightness is maintained when
the strapped material cools down –
stripping is often carried out at 70 °C
or more – and shrinks slightly during
this. Or when ingots are stacked in a
1200 kg bundle and the packet sags
under its own weight. The PET plastic strip contracts correspondingly
so as to fit tightly again around the
packaged material. In contrast steel
strips have to be re-tightened, which
incurs additional handling costs. But
if the material has left the company’s
premises, its packaging can no longer
be re-tightened if the strapping becomes loose.
Tenax strip has a number of other advantages compared with steel
strips. It does not scratch or indent
the metal surface and produces no
corrosion spots. The risk of injury is
smaller, since it is not sharp-edged
like steel strip. It is 80% lighter than
steel, which reduces freight charges,
and it occupies up to 50% less storage space. And it does not have to be
removed when the ingot packs are
transferred to the melting furnace.
Tests have shown that a typical ingot
bundle of 980 kg (with about 50 g of
Tenax strip) produces a total of 0.03%
ash. This has no adverse effect at all
on the metal quality.
The centrepiece of Signode strapping machines is the AK strapping
head. This was developed as early as
the 1980s: as the AK100 first for steel
strips and then as the AK200 for plastic, and in the mid-1990s then for polyester. The AK200-HD head enables
a tightening tension of up to 6000 N.
“No other strapping head on the market can do that”, stresses Laks, who
has looked after business with the ©
ALUMINIUM · 1-2/2007
... und Stangen
... and bars
leistungs-Stahlband bei sechs Prozent
Dehnung. Gedehntes Stahlband zieht
sich zudem grundsätzlich nicht mehr
zusammen.
Der Vorteil des PET-Bandes besteht
auch darin, dass die Spannung erhalten bleibt, wenn das umreifte Material
abkühlt – oft wird bei 70 °C und mehr
umreift – und dabei leicht schrumpft.
Oder wenn Masseln zu einem Bündel
von 1.200 kg gestapelt werden und
sich das Paket unter seinem Eigengewicht staucht. Das PET-Kunststoffband zieht sich entsprechend zusammen, so dass es weiterhin eng um das
verpackte Material liegt. Stahlbänder
müssen dagegen nachgespannt werden, was zusätzliche Handlingkosten
verursacht. Hat das Material den Firmenhof verlassen, kann jedoch nichts
mehr an der Verpackung nachgezurrt
werden, falls die Umreifung sich lockert.
Tenaxband bietet eine Reihe weitere
Vorteile gegenüber Stahlband. Es
verkratzt nicht die Metalloberfläche,
kerbt sich nicht ein und verursacht
keine Korrosionsflecken. Die Verletzungsgefahr ist geringer, da es nicht
scharfkantig wie Stahlband ist. Es ist
80 Prozent leichter als Stahl, was die
Frachtkosten verringert, und beansprucht bis zu 50 Prozent weniger
Lagerraum. Und es muss nicht entfernt werden, wenn die Masselpakete
in den Schmelzofen kommen. Tests
haben gezeigt, dass ein typisches
Masselbündel von 980 kg (mit ca. 50
Gramm Tenaxband) insgesamt 0,03
Prozent Asche hinterlässt. Die Metallqualität wird dadurch in keinster
Weise beeinträchtigt.
Das Herzstück der Signode-Umreifungsanlagen ist der AK-Umreifungskopf. Entwickelt wurde er bereits in
den 1980er Jahren: als AK100 ©
71
MARKT UND TECHNIK
schlauer machen als nötig.
Ähnliches gilt für die
Fertigung des AK-200Kopfes, der ausschließlich
in Dinslaken produziert
wird. An diesem SignodeStandort erfolgte die Entwicklung des AK-Kopfs,
hier sind rund 300 Mitarbeiter beschäftigt, hier wird
das Fertigungs-Knowhow
gebündelt.
In der Aluminiumindustrie wurden die ersten zwei
Maschinen mit AK200Kopf 1996 bei Alcan Isal
in Island zum Umreifen
von Masseln und Barren
bis mittlerweile 30 Tonnen
Begutachtung eines Masselbündel nach einem Falltest
aufgestellt. Für sehr schweAssessment of an ingot pack after a fall test
re Güter wie Bolzen kommt
PET-Tenaxband in der Breizunächst für Stahlbänder, als AK200
te von 19 bis 25 mm zum Einsatz. Für
anschließend für Kunststoff, Mitte
Bolzen wird 25 mm breites Band verwendet, für das Verpacken von Masder 1990er Jahre dann für Polyester.
seln reicht dagegen 19 mm breites
Der AK200-HD-Kopf leistet eine ZugHochleistungsband. Bei weniger hospannung bis zu 6000 Newton. „Das
kann kein anderer Umreifungskopf
hen Ansprüchen (z. B. für Profilverim Markt“, betont Laks, der seit 1996
packungen) wird PET-Standardband
das Geschäft mit der Aluminiuminduin Breiten zwischen 12 und 16 mm
strie betreut. Ähnlich anspruchsvoll
verwendet.
Mehr als 2.600 AK-Köpfe sind mittsind auch die Leistungswerte für den
Verschluss. Das patentierte Z-Weld
lerweile weltweit und branchenüberVerschlussverfahren garantiert eine
greifend im Markt. „Und jede Woche
Verschlussstärke von 90 Prozent.
kommen weitere hinzu“, so Laks. 890
Dieser Vorteil ergibt sich daraus,
davon sind AK200-Köpfe für Polyesdass Signode nicht weg-, sondern lastterband. In der Aluminiumindustrie
abhängig umreift. Eine wegabhängige
sind etwa 155 AK200-Köpfe im EinUmreifung hat den Nachteil, dass
satz. Hydro Aluminium ist laut Laks
die Bespannung stoppt, sobald ein
komplett mit Signode-Maschinen
Gegendruck erfolgt. Demgegenüber
bzw. AK200-HD-Köpfen ausgerüswird das Band bei der lastabhängigen
tet, die in Umreifungsmaschinen für
Umreifung so lange gezogen, bis eine
Stahlband nachgerüstet wurden.
leichte Dehnung erfolgt. Erst dann
Auslieferungen der vergangenen
wird das Band unter hohem Druck
Monate betreffen unter anderem den
verschlossen.
Verkauf von AK200 19mm-Anlagen
Das Umreifungsband wird ebenso
für Masseln nach Albras in Brasilien.
wie die Maschinen von Signode selbst
Alba Bahrain hat neue AK200-HDAnlagen in Auftrag gegeben. CBA orproduziert, und zwar in England und
derte für seine brasilianische Hütte
Finnland. Für Tenaxband verwendet
man „jungfräuliches“ Material, daeine Kombimaschine mit AK100/200mit die Elastizität in vollem Umfang
Köpfen, die für 25 mm Stahl- und 19
gewährleistet ist. Recyclingmaterial
mm Polyesterband ausgelegt ist. Eine
kommt nur bei Standardband mit zum
Umstellung von PET auf Stahlband
Einsatz. Die Zutaten zur Bandherstelkann übrigens innerhalb von 15 Milung bleiben ein Geheimnis weniger
nuten erfolgen, denn die Bauart der
„Küchenchefs“, so wohlbehütet wie
AK100- und 200-Köpfe ist identisch.
die Rezeptur von Coca-Cola. Man will
An Assan Aluminium in der Türkei
den Wettbewerb ja nicht unbedingt
ging eine Stahlbandanlage für Coils,
72
aluminium industry since 1996. Similarly impressive are the performance
figures for the closure. The patented
Z-weld closure process guarantees a
closure strength of 90%.
This advantage stems from the fact
that Signode straps not in a path-dependent but in a load-dependent way.
Path-dependent strapping has the disadvantage that the tightening stops as
soon as there is a counter-pressure.
In contrast, during load-dependent
strapping the strip is tensioned until
a slight extension takes place. Only
then is the strap sealed under high
pressure.
Both the strapping strips and the
machines are produced by Signode
itself, in England and Finland. For
Tenax strip “virgin” material is used,
to guarantee the full extent of its elasticity. Recycled material is only ever
used for standard strip. The ingredients for strip production remain a secret between a few “master-chefs”, as
well-protected as the recipe for CocaCola. One does not want to make the
competition any more cunning than
necessary.
The same applies to the production
of the AK200 head, which is made exclusively in Dinslaken. The AK head
was developed at the Signode site in
Dinslaken, where 300 people are employed and all the production knowhow is concentrated.
In the aluminium industry the
first two machines with AK200 heads
were set up in 1996 at Alcan Isal in
Iceland for strapping ingots and bars
now up to 30 tonnes. For very heavy
goods such as billets PET Tenax strip
of width 19 to 25 mm is used. For billets 25 mm strip is used, while in contrast 19 mm high-performance strip is
enough for packing ingots. In less demanding cases (e.g. for section packing) PET standard strip from 12 to 16
mm wide is used.
Meanwhile, more than 2,600 AK
heads have been marketed worldwide and in many branches. “And the
number is increasing every week”, says
Laks. 890 of them are AK200 heads
for polyester strip. In the aluminium
industry about 155 AK200 heads are
in use. According to Laks Hydro Aluminium is completely equipped with
Signode machines and AK200 heads,
ALUMINIUM · 1-2/2007
MARKETS AND TECHNOLOGY
retrofitted in strapping machines for
steel strip.
Deliveries in the last few months
include for example the sale of AK200
19 mm units for ingots to Albras in
Brazil. Alba Bahrain has ordered new
AK200-HD units. For its Brazilian
smelter CBA ordered a combination
machine with AK100/200 heads, designed for 25 mm steel and 19 mm
polyester strips. Besides, conversion
from PET to steel strips can take place
within 15 minutes, since the structure
of the AK100 and AK200 heads is
identical. A steel strip unit for coils to
be heat treated has gone to Assan Aluminium in Turkey. Dubal is currently
converting from steel to plastic.
The remaining approximately 1,700 aggregates sold are AK100
heads for steel strips. Many have been
giving good service day after day for
over 20 years. Occasionally they are
cleaned and maintained, or a blade
or conveyor wheel has to be replaced.
There are, however, hardly any other
parts affected by wear. According to
Laks, at 2,000 to 2,500 euros per year
maintenance costs are the lowest on
the market. This is also because the
technical components are on the outside of the head and therefore easy
to reach.
It might be thought that such reliability is not very good for business,
since ultimately one wants to sell machines. But the company stays true
to its philosophy, which can be expressed as, “How can we improve our
work today for the sake of tomorrow”.
Improve, in order to make the customer’s work easier, save costs, and
ensure that the goods arrive at their
destination undamaged. That pays
in the long term. As Laks explains,
“Since the customers are happy with
the machine, we ensure long-term
sales of the associated strip”.
Besides, demand is increasing continually. Laks reports that business
with the AK heads is going well. So
far they are mainly used in the smelter industry. Almost two-thirds of all
smelters use AK200 heads, with an
upward trend since more and more
companies are converting from steel
to polyester strip. “Americans are
lagging rather behind in this development”, says Laks. They are even ©
ALUMINIUM · 1-2/2007
die wärmebehandelt werden. Dubal
rüstet derweil von
Stahl auf Kunststoff
um.
Die anderen rund
1.700 verkauften Aggregate sind AK100Köpfe für Stahlbänder. Manche leisten
seit über 20 Jahren
ihren Dienst, Tag für
Tag. Gelegentlich
werden sie gereinigt
und gewartet, muss
ein Messer ausgetauscht werden oder
ein Förderrad. Weitere Verschleißteile
gibt es jedoch kaum.
Die Kosten für die
Instandhaltung sind
mit 2.000 bis 2.500 Zusätzliche Sicherung mit dem neuen Signode „Flex Stretch Net“
Euro pro Jahr laut The new Signode „Flex Stretch Net“ for optimum transit security
Laks die niedrigsten
im Markt. Auch weil sich die Technik
also noch viel Spielraum für Wachsan der Außenseite des Kopfes befindet
tum, sowohl in Nord- wie in Südamerika. Erste AK200-HD-Maschinen für
und damit einfach zu erreichen ist.
Man könnte meinen, diese ZuverBolzen sind jedoch schon in den USA
lässigkeit sei ein Stück weit schädlich
und Kanada installiert.
fürs Geschäft, denn schließlich will
Langfristig dürften auch der chineman ja auch Maschinen verkaufen.
sische und russische Markt attraktiv
Doch man bleibt der Firmenphilosowerden. Dort dominiert noch das Umphie treu, die da lautet: „Wie können
reifen mit Stahlband oder sogar mit
wir unsere Arbeit von heute für morAluminiumdraht.
gen verbessern“. Verbessern, um dem
Der Marktbedarf in Europa ist
Kunden die Arbeit zu erleichtern, Kodagegen weitgehend gedeckt. Zuminsten zu ersparen und sicherzustellen,
dest in den Hüttenbetrieben. Wachsdass die Ware ohne Schäden beim
tumspotenziale bietet dagegen die ReAdressaten ankommt. Das zahlt sich
cyclingbranche und die Verarbeitung.
langfristig aus. „Denn sind die Kunden
Signode hat hier vor allem die Umreimit dem Werkzeug zufrieden, verdiefung von Aluminiumwalzprodukten
nen wir langfristig am Verkauf des
wie Bleche und Coils im Visier.
zugehörigen Bandes“, so Laks.
Zur Marktbearbeitung wurde daIm Übrigen wächst die Nachfrage
her erst kürzlich ein neues Global
kontinuierlich. Das Geschäft mit den
Specialist Team gebildet, das von
AK-Köpfen läuft laut Laks gut. Sie werLaks geführt wird. Es soll die Kontakte
den bislang vor allem in der Hütteninzu den Signode-Niederlassungen, die
dustrie eingesetzt. Fast zwei Drittel aldie OEMs weltweit betreuen, intensiler Hütten verwenden AK200-Köpfe.
vieren. Außerdem soll das Team die
Tendenz steigend, denn immer mehr
lokalen Key Account Manager von SiBetriebe rüsten von Stahlband auf Pognode dabei unterstützen, mit Alumilyester um. „Die Amerikaner hinken
niumhütten und -verarbeitern Kontakt aufzunehmen, um sie mit Testdieser Entwicklung noch etwas hinterher“, sagt Laks. Sie seien eben konversuchen von der Leistungsstärke
des Polyesterbandes zu überzeugen.
servativer als die Europäer. Außerdem sind spezielle Begutachtungen
Das sollte nicht allzu schwer fallen.
bei Einsatz von PET-Band für AlumiN
niumprodukte erforderlich. Da bleibt
73
MARKETS AND TECHNOLOGY
more conservative than Europeans.
Moreover, special expertise is needed when using PET strip for aluminium products. So there is still plenty
of room for growth, in both North and
South America. However, the first few
AK200-HD machines for billets have
already been installed in the USA and
Canada. In the long term the markets
in China and Russia should also become attractive. In both countries
strapping with steel strip or even alu-
minium wire is still dominant.
In contrast, market needs in Europe
have largely been covered, at least
in smelter operations. On the other
hand there is growth potential in the
recycling branch and in processing.
Here, Signode mainly has the strapping of rolled aluminium products
such as sheets and coils in its sights.
To prepare the market, therefore, a
new Global Specialist Team was recently formed, which is led by Laks.
It aims to intensify contacts with the
Signode establishments which look
after OEMs worldwide. In addition,
the Team will support Signode’s local Key Account Managers in making contact with aluminium smelters
and processors, in order to persuade
them of the effective performance of
polyester strip by means of tests. That
should not be difficult at all.
N
Alcutec Engineering
MVS (Mordovvtorsyrio) in the
capital of the Russian republic of
Mordovia, Saransk, has started
the construction of an aluminium
recycling complex with an annual
capacity of 60,000 tonnes of metal
for a wide range of alloys. The
plant concept is based on the most
advanced equipment available for
this kind of production. The technology is provided by the German
company Alcutec Engineering,
which also implemented all the
engineering services and supplied
the required equipment. The individual components were manufactured in Germany with some components supplied from the UK, the
Netherlands and France. The steel
structures were also built in Germany, “since quality control and
monitoring are very painstaking
and therefore costly”, as Christoph
Schmitz, Managing Director of Alcutec, stresses.
Key equipment for the melting section are two tilting rotary drum furnaces with a capacity of 25 tonnes
each, having a cycle time (tap to tap)
of 4 hours. To be able to process all
kinds of aluminium scrap of different
origin the complex is equipped with
Technological details of the tilting rotary drum
furnace were published in ALUMINIUM 2004,
issue 3, 172-177, and issue 4, 288-290.
74
Photos: Alcutec Engineering
German know-how for Russian aluminium
recycling complex
In der Bauphase: Einer von zwei kippbaren Drehtrommelöfen ...
In the building phase: one of two tilting rotary drum furnaces …
a high performance shredder system
with adjacent classifiers. Two reverberatory furnaces, each of 25 tonnes
bath capacity with a melting rate of
3 tonnes per hour, facilitate casting.
The melting capacity is required to
be able to melt no-go production and
clean scrap.
The arrangement of the furnaces
permits continuous casting. A dual
casting line with automatic stacker
produces remelt ingots. To obtain high
quality standards an in-line, degassing and filtration system is arranged
ahead of the casting line. The neces-
sary plant also includes a state-of-theart gas scrubbing system to complete
the plant set-up. This shows that the
Russian customer regards environmental protection as extremely important and makes no concessions in
that respect.
The MVS contract is worth approximately 10 million euros. The
contract was awarded in May 2006
and delivery was concluded a few
days ago once reconstruction of the
shed for the plant had been completed.
“The customer assigned to us highly
qualified staff, with whom outstand-
ALUMINIUM · 1-2/2007
MARKETS AND TECHNOLOGY
ing collaboration was possible”, says
Schmitz in appreciation of the good
co-operation during the performance
of the contract work.
For Alcutec the Russian market
is very important and is a mainstay
of the company’s business. After the
construction of plants at MOPM, Moscow and VTORMET, MVS is the third
complete aluminium recycling complex supplied to Russia by Alcutec.
A further advantage in this was that
Russian import duties are reduced in
the Province of Mordovia in order to
encourage the establishment of industrial companies there. A proportion of the casting alloys produced go
towards meeting domestic needs, but
MVS aims to export the remainder.
With the current investments MVS is
preparing itself for the fact that as the
Russian domestic automobile market
develops into one of the country’s
largest purchasers, castings of better
quality will be needed. “The plant
now supplied makes MVS not only
Russia’s largest secondary melting
operator, but also puts the company
in a position to compete fully with European suppliers”, says Schmitz.
Important as the Russian market
may be for Alcutec, the USA and
emerging Asian markets such as India are also interesting market regions
for Alcutec’s engineering business.
In contrast, it is very difficult to get
orders for complete new projects in
Germany, where as a rule existing
but largely superannuated recycling
plants are being modernised.
“Nobody builds as sturdily
as we do“
Alcutec Engineering provides professional engineering services for the secondary aluminium industry, starting
from feasibility studies, through basic
and detailed engineering, to project
management. This also includes the
supply of technology and process
know-how as well as the development
of new processes. As Schmitz points
out, “Our professional service ensures
a conclusive engineering and planning phase. We strive to avoid critical
interfaces between equipment and
plant selections.” A particular point of
differentiation from the competition is
ALUMINIUM · 1-2/2007
und kippbaren Herdöfen mit Schmelzleistung für MVS
… and tilting hearth furnaces with the melting power for MVS
expressed as, “Nobody builds as sturdily as we do”. For a recycling furnace
to operate for 20 years or even longer
without problems, for example without cracks in the external masonry or
the furnace housing, a warp-resistant
steel structure with correspondingly
large wall thickness is needed. “That
may be somewhat more expensive,
but it is an investment which pays in
the long term”, says Schmitz.
Alcutec supplies proprietary equipment consisting of tilting rotary drum
furnaces, hearth furnaces, charging
systems, chip drying systems as well
as other tailor-made equipment for
the secondary aluminium industry.
In co-operation with other firms the
company supplies all other equipment used in the industry, such as ingot casting lines with stacker, waste
gas scrubbing plants and auxiliary
equipment.
The business activities comprise
professional services for erection,
commissioning and plant maintenance, including the development of
maintenance systems. One activity is
operational assistance by providing
experts with a detailed service report
in their field. This service enables the
customer to update the methods of
an existing plant or to use the latest
technology efficiently.
The quality requirements of the
different aluminium alloys are stead-
Alcutec rüstet russische Umschmelzhütte aus
Für die russische MVS in der Republik
Mordowien hat Alcutec Engineering aus
Niederzier einen Komplettauftrag über
zwei kippbare Drehtrommelöfen, zwei
kippbare Herdöfen mit Schmelzleistung
inklusive Nebeneinrichtungen wie Abgasreinigung, Kühl-, Elektro- und Hydraulikeinrichtungen sowie Schredderanlage
abgewickelt.
Die Kapazität der Recyclingöfen beträgt
je 25 Tonnen. Die Herdöfen haben eine
Kapazität von ebenfalls je 25 Tonnen bei
einer Schmelzleistung von drei Tonnen pro
Stunde.
Der MVS-Recyclingkomplex ist auf eine
Jahresleistung von 60.000 Tonnen ausgelegt. „Mit der gelieferten Anlage entwickelt
sich MVS nicht nur zur größten Umschmelzhütte in Russland, das Unternehmen wird auch gegenüber europäischen
Anbietern absolut wettbewerbsfähig“,
sagt Alcutec-Geschäftsführer Christoph
Schmitz. Der Auftrag hat ein Volumen von
rund zehn Millionen Euro und wurde vor
wenigen Tagen ausgeliefert. Es ist der dritte russische Komplettauftrag für Alcutec.
„Weitere Projekte für den russischen Markt
sind in Vorbereitung“, so Schmitz.
75
©
MARKETS AND TECHNOLOGY
ily becoming stricter, particularly for
the most important customer of the
secondary aluminium plants – the
automotive industry. Quality means
minimum deviations from the target
alloy composition, no or negligible
mechanical inclusions and very little
gaseous contamination. On the other
hand, the plant must operate economically successfully. Considering
spiralling energy costs and the more
and more stringent environmental
regulations, this is becoming increasingly difficult.
However, the most critical factor
is the shortage of suitable aluminium
scrap. The quantity of this raw material is limited worldwide and numerous countries compete to get their
share, with the result that scrap prices
are high. The secondary aluminium
industry is therefore compelled to
process even scrap of low quality, in
other words scrap that is heavily con-
an economical evaluation since prices
of scrap and metal are readily available. However, sometimes confusing
information is published on recovery:
for instance, a value of 90% or even
higher, although the scrap processed
may have had a metal content of only
70%. So the figures given have to be
looked at carefully. They may be only
valid for a very specific case such as
a plant that remelts clean scrap under strictly controlled operating conditions.
Melting such material in a reverberatory furnace may result in a metal
loss as high as 70%, 80%, or even more,
unless a special metal pumping system
is used. The melting loss may than be
reduced to reasonable values of 2 to
5% of the metal contained in the feed
material. This technology, however,
entails operation with a metal heel
in the furnace, and there are difficulties in obtaining the requested metal
analysis if the
metal charged
is not very well
specified. In fact
this can only
be the case in a
closed-loop recycling process
in a downstream
plant.
As is generally known, the
secondary aluminium industry is divided
into refiners and
remelters. While
refiners produce
alloys from a
Kippdrehtrommelofen im Einsatz bei der Firma Oetinger.
wide variety of
Tilting rotary drum furnace in use at Oetinger in Germany
scrap, remelters
produce their
taminated by organic and inorganic
alloys from clean scrap of defined
contaminants and compound metals.
analysis. Consequently the key techClean scrap originating from producnology for the melting equipment
tion waste or no-go parts is generally
is different. Reverberatory furnaces
not available to refiners in the secondeither designed as hearth furnace or
ary aluminium industry.
twin-chamber furnaces additionally
One key question for a production
equipped with feeding systems for
manager is therefore, how much alusmall particles are used in remeltminium is produced from a certain
ing plants that process defined clean
quantity of scrap. This is expressed
scrap with only little organic contamiby the metal recovery factor, namely
nation.
the ratio between metal produced and
Refiners, in contrast, need difscrap consumed. This is easy to use in
ferent melting equipment. “The key
76
equipment for melting at a refining
plant is the rotary drum furnace, today typically designed as a tilting
rotary drum furnace” says Schmitz.
This technology permits processing
of almost all kinds of scrap and is
particularly suitable for scrap heavily
contaminated with organic and inorganic matter and for material with a
large specific surface area. Selecting
the proper equipment for the kind of
plant operation – remelting or refining – is the principle task of the plant
owner and his engineers.
Low metal loss and also favourable
energy consumption are not the only
criteria. Safe and reliable operation
is an important factor as well. The
equipment must be able to withstand
the sometimes harsh treatment by
the operators under severe operating condition and must work without
down-time due to equipment failures.
“So the traditional methods of equipment design may not be sufficient to
achieve this target and design methods used for heavy machinery must be
applied as well”, says Schmitz.
Another factor to be considered is
compliance with the environmental
standards of the plant location and
the industry. Summarising the above
facts, the plant owner may be hard
put to select the right equipment and
processes for his future plant or plant
expansion.
Further Russian projects in
course of preparation
Professional consulting services may
assist the plant owner in the decision-making process. Companies that
can provide the required consulting
service should also have proprietary
technologies and a broad product
range. This combination assures clients in the secondary aluminium industry of smooth commissioning and
trouble-free operation. Proper training and production assistance are further steps for obtaining a plant that is
economically successful. Schmitz is
convinced that Alcutec provides this
service as well as supplying proprietary equipment and technology. And
he confirms that, “Further projects for
the Russian market are in course of
preparation”.
N
ALUMINIUM · 1-2/2007
MARKT UND TECHNIK
Positive Stimmung in der Branche
Deutsche Aluminiumkonjunktur läuft derzeit rund
Die deutsche Aluminiumindustrie
bleibt auf Wachstumskurs. Die
ersten neun Monate des vergangenen Jahres verliefen für die
Branchenunternehmen durchweg
positiv, wie Gerhard Buddenbaum,
Präsident des Gesamtverbandes
der Aluminiumindustrie (GDA),
auf einer Pressekonferenz im
November 2006 resümierte. Die
Aluminiumunternehmen konnten 2006 deutlich mehr Aufträge
verbuchen. „In fast allen Produktions- und Verarbeitungsbereichen
weisen die Tendenzen nach oben,“
so Buddenbaum. Die deutlich gestiegenen Metallpreise an der London Metal Exchange übten dabei
allerdings Druck auf die Margen
der Verarbeiter aus.
Seit geraumer Zeit ist die Stimmung
der Aluminiumindustrie positiv. Und
auch für 2007 bleiben die Perspektiven laut GDA aussichtsreich, trotz der
zu Anfang dieses Jahres in Deutschland erhöhten Mehrwertssteuer um
drei Prozentpunkte und der weiterhin
hohen heimischen Energiepreise.
Anzeige
www.inotherm-gmbh.de
Die Bedeutung von Aluminium hat in
den vergangenen Jahren ständig zugenommen. Der Aluminiumbedarf ist im
Zehnjahresvergleich zwischen 1995
und 2005 um mehr als 50 Prozent auf
3,1 Mio. Tonnen gestiegen. Der Bedarf
wird laut GDA-Geschäftsführer Christian Wellner auch für das Gesamtjahr
2006 erneut leicht zunehmen.
Wichtigster Zielmarkt für die
deutsche Aluminiumindustrie bleibt
der Verkehrssektor mit 43 Prozent
Marktanteil am Gesamtabsatz. Weitere wichtige Märkte sind der Bausektor (15%), die Verpackungsindustrie (10%) und der Maschinenbau
(9%). Im Getränkedosenmarkt hat
78
sich die Aluminiumdose mit der neuen Pfandregelung seit Mai 2006 einen
Marktanteil von rund 50 Prozent erobert. Das ist gemessen an früheren
zehn bis 15 Prozent Marktanteil zwar
ein beachtlicher Erfolg gegenüber der
Weißblechdose, doch bewegt sich der
Dosenmarkt insgesamt gesehen noch
weit unter dem Niveau, auf dem er vor
drei bis vier Jahren war.
Produktion auf hohem Niveau
Bei der Produktion von Sekundäraluminium, Aluminiumhalbzeug und
Formguss konnten die deutschen
Aluminiumunternehmen 2006 leicht
zulegen, bei der Weiterverarbeitung
wurde das gute Vorjahresergebnis
bestätigt. Die deutschen Primäraluminiumhütten produzierten wie in den
Vorjahren an der Kapazitätsgrenze. In
den ersten neun Monaten 2006 lag die
Erzeugung von Primäraluminium mit
386.700 t jedoch 22 Prozent unter dem
Vergleichszeitraum des Vorjahrs. Zurückzuführen ist dieser Rückgang auf
die Abschaltung der Aluminiumhütte
in Hamburg. Die Produktion von Sekundäraluminium stieg von Januar bis
September 2006 um 11 Prozent auf
596.100 t. Sorgen bereitet der Branche
der anhaltende Rohstoffbedarf boomender Volkswirtschaften wie China
und Indien, die die Verfügbarkeit von
Aluminiumschrotten in Deutschland
und dem übrigen Europa bedrohen.
Die 35 deutschen Halbzeugwerke
produzierten 2006 auf weiterhin hohem Niveau. Bei den Press- und Zieh-
Positive mood
in the German aluminium industry
Prospects for 2007
are good
The aluminium industry in Germany is still growing. The first
nine months of last year turned
out positively for the branch, as
Gerhard Buddenbaum, President
of the German trade association
GDA summarised at a press conference in November 2006. Aluminium companies booked many
more orders in 2006. “In almost
every production and processing
sector the trend was upwards”,
said Buddenbaum. However, the
considerably higher metal prices
on the London Metal Exchange put
pressure on processors’ margins.
Generally speaking the aluminium industry’s mood is positive. And according to the GDA prospects for 2007 are
relatively good as well, despite the
value-added tax increase (by 3%) at
the beginning of this year in Germany
and the persistently high domestic energy prices.
Over the past several years the importance of aluminium has increased
continually. A ten-year comparison
between 1995 and 2005 shows that
demand for aluminium has increased
by more than 50%, up to 3.1 million
tonnes. According to GDA Managing
Director Christian Wellner, it is again
expected to have increased slightly in
the full year 2006.
The most important target market
for Germany’s aluminium industry is
still the transport sector, with a 43%
market share of total sales. Other major markets are the building sector
Quelle: GDA
Aluminiummärkte in Deutschland, 2005
Aluminium markets in Germany, 2005
ALUMINIUM · 1-2/2007
MARKETS AND TECHNOLOGY
produzieren kann, beweist die
Aluminiumindustrie seit Jahren,
besonders bei Produkten mit hoher Wertschöpfung. „Dem Wettbewerbsdruck der Niedriglohnländer
setzen unsere Unternehmen ein
hohes Qualitätsniveau, absolute
Zuverlässigkeit und große Flexibilität entgegen“, so Buddenbaum.
Die hohe Wettbewerbsfähigkeit
der Branche zeigt sich vor allem
in ihren Exporterfolgen, rund 41
Prozent der gesamten deutschen
Produktion gehen ins Ausland. Die
Wachstumsraten bei den Exporten
sind in der Tat eindrucksvoll. So
stiegen die Exporte von Aluminiumhalbzeug in die EU-Staaten von 2000
bis 2005 um rund 20 Prozent. Die
Exporte nach Nordamerika nahmen
im gleichen Zeitraum, von niedrigem
Niveau kommend, um 90 Prozent
zu; hier waren in besonderem Maße
Walzspezialitäten für die Luftfahrt
gefragt. Auch die Ausfuhren nach
Südamerika, Osteuropa oder Asien
entwickelten sich in den letzten sechs
Jahren überdurchschnittlich gut.
Economic data of the German aluminium industry
Production
2005 2005 / Jan. - Sep. Jan. - Sep. Jan. - Sep.
2004
2005
2006
2006 / 05
‘000 t
%
‘000 t
‘000 t
%
Primary aluminium
647.9
-3.0
495.9
386.7
-22.0
Secondary aluminium
718.3
+2.1
537.2
596.1
+11.0
Rolled products
1780.9 +3.5
1354.5
1318.6
-2.7
Extruded and drawn products
527.9
+0.8
403.3
441.3
+9.4
Shaped castings
727.2
+1.6
557.2
584.0
+4.8
Further processing of aluminium:
361.7
-0.3
275.9
287.7
+4.3
Foil, tubes, aerosol & beverage cans
Sources: GDA, GDM, VAR, Stat. Bundesamt
(15%), the packaging industry (10%)
and mechanical engineering (9%). In
the beverage can market, with the
new deposit regulation in force since
May 2006 aluminium cans have captured a market share of approximately
50%. Compared with the previous 10
to 15%, this is indeed a substantial
victory over tinplate cans, although
the can market viewed as a whole is
still far below its level three or four
years ago.
Production at a high level
As in previous years, primary aluminium smelters in Germany have
been producing at the limits of their
capacity. In the first nine months of
2006, however, primary aluminium
production, at 386,700 tonnes, was
22% down on the same period a year
earlier. This downturn can be attributed to the closing of the HAW
smelter in Hamburg. The production
by German aluminium companies
of secondary aluminium, semis and
castings increased slightly in 2006,
and in the fields of further processing
the good results of the previous year
were repeated.
Between January and September
2006 the production of secondary aluminium increased by 11% to 596,100
tonnes. There is concern in the branch
regarding the persistent raw materials
demands of booming economies such
as China and India, which threaten
the availability of aluminium scrap in
Germany and throughout Europe.
Production by the 35 semis plants
in Germany was again at a high level
in 2006. In the first nine months of
the year the production of extruded
and drawn products was up by 9.4%.
This was because of the once more ©
ALUMINIUM · 1-2/2007
produkten legte die Produktion bis
September 2006 um 9,4 Prozent zu.
Grund dafür war die erneut hervorragende Exportbilanz des Verarbeitenden Gewerbes in Deutschland.
Bei Walzprodukten stiegen die Auftragseingänge bis September um mehr
als zehn Prozent. Zum Jahresende
wird die Produktion Wellner zufolge
über der des Vorjahres liegen (2005:
1,8 Mio. t). Den Branchenumsatz für
2006 veranschlagt der GDA auf 15
Mrd. Euro (2005: 13,9 Mrd. €), wobei
ein Großteil des Zuwachses auf die
gestiegenen Aluminiumnotierungen
zurückzuführen ist.
Verkehr und Maschinenbau
starke Wachstumsträger
„Auch in den nächsten Jahren wird
der Aluminiumbedarf in Deutschland
kontinuierlich wachsen“, so Wellner
zu den mittelfristigen Perspektiven
der Branche. Stärkster Wachstumsträger werde weiterhin die Automobilindustrie sein, zumal hier die spezifischen Eigenschaften des Leichtmetalls voll zum Tragen kommen.
Weitere Absatzchancen bietet die
Luftfahrt, besonders für hochwertige
Platten und Bleche aus Aluminium.
Auch der Maschinenbau weist seit
einigen Jahren einen kontinuierlichen
Mehrbedarf an Aluminiumprodukten
aus. Neben hochwertigen Profillösungen, z. B. für Pneumatik- und Zylindersysteme, werden vermehrt Platten für
die Kunststoff-Formgebung geliefert.
Die Bauindustrie, die seit rund einem
Jahrzehnt rückläufig war, ist inzwischen ebenfalls auf dem Weg der
Besserung, wovon auch die Aluminiumbranche profitieren wird.
Dass man in Deutschland trotz
schwieriger
Rahmenbedingungen
Branche vor großen Herausforderungen
Doch bei aller positiven Grundstimmung: Die Branche steht vor großen
Herausforderungen und muss weiterhin mit Standortnachteilen zurechtkommen. Die hohen Energiepreise
sind ein Faktor, über den immer
wieder in dieser Zeitschrift berichtet
wird. Die strukturellen Nachteile des
Standorts Deutschland zeigen sich
darüber hinaus in vielen weiteren
wirtschaftspolitischen Facetten. Der
GDA-Präsident dazu: „Wir brauchen
weniger Bürokratie und eine Modernisierung des Steuer- und Genehmigungsrechts, um im internationalen
Vergleich weiter aufzuholen.“ Die europäische Aluminiumindustrie, fügte
er hinzu, werde sich nur durch ihre
eigene Innovationskraft langfristig an
den Märkten behaupten. Marktnahe
Produkte mit hoher Wertschöpfung,
viel Know-how und gut ausgebildetes
Personal und eine hohe Servicequalität seien die Erfolgsgaranten, unter
denen Europa als Produktionsstandort eine Zukunft habe.
N
79
MARKETS AND TECHNOLOGY
outstanding export balance of trade
achieved by processing businesses
in Germany. Order intakes for rolled
products were up by over 10%. For
the year taken as a whole, production
is expected to exceed that of last year
(2005: 1.8 million t).
The GDA estimates that branch
turnover in 2006 will amount to some
15 billion euros (2005: 13.9 billion €),
most of this increase being attributable to higher aluminium prices.
Transport and mechanical
engineering – a powerful impulse towards growth
“In the coming years too, demand for
aluminium in Germany will continue
growing”, commented Wellner concerning the medium-term perspectives of the branch. The strongest impulse for growth will still be the automotive industry, all the more so since
it is here that the specific properties
of the light metal come fully into their
own. The commercial vehicle sector
could also benefit from this, since
light metal superstructures are being
adopted more and more.
Further sales opportunities are
offered by aviation, in particular for
high-grade aluminium plates and
sheets. For some years mechanical
engineering has also been using ever
more aluminium products. Besides
high-grade section solutions, for example in pneumatic and cylinder
systems, in that market sector more
plates for moulding plastics are being
supplied. Even in the building industry, which was recessive for about a
decade, the aluminium branch can
look forward to gradual recovery.
That successful production is still
possible in Germany despite difficult
boundary conditions has been amply demonstrated by the aluminium
industry for years, especially with
reference to products with high value addition. “Our companies are responding to the competition pressure
from countries with low labour costs
with high quality standards, absolute
reliability and great flexibility”, said
Buddenbaum. The striking competitiveness of the branch is apparent in
particular from its export successes.
Around 41% of total German aluminium production goes abroad. Export
growth rates are in fact impressive:
for example, exports of aluminium
semis to the EU states increased by
around 20% between 2000 and 2005,
and during the same period exports to
North America grew from a low level
by 90%, with demand focused particularly on special rolled products
for the aviation industry. Exports to
South America, Eastern Europe and
Asia also developed at above-average
rates over the past six years.
A branch faced
by major challenges
Yet, despite the optimism of the prevailing mood, the branch faces great
challenges and still has to overcome
location disadvantages. High energy
prices are only one factor, which has
frequently been commented upon in
this journal. The structural disadvantages of Germany as a location also
emerge in many other aspects of economic policy. On this, Buddenbaum
said, “We need less bureaucracy and
an updating of tax and licensing laws
if we are to keep up with international
competition”.
The European aluminium industry,
he adds, will only hold its own in the
markets in the long term by virtue of
its ability to innovate. Market-orientated products with high added value,
a wealth of know-how, well-trained
personnel and high-quality services
provide the warranties of success
which Europe needs if it is to have a
future as a production location.
N
GDA participation at UN conference on sustainability
The German aluminium association
GDA participated as a co-operation partner at the UN international
conference “Creating solutions for
sustainable consumption and production” (SCP), which took place end
of last year in Wuppertal, Germany.
GDA was one of the few representatives of industry at the conference and
reported on the contribution made by
the branch towards economically successful, socially responsible and ecologically acceptable development.
The conference was organised by
the Centre for Sustainable Consumption and Production (CSCP). Michael
Kuhndt, Managing Director of CSCP,
which was established by the United
Nations Environment Programme
80
(UNEP) and the Wuppertal Institute
for Climate, Environment and Energy, said, “Aluminium is precious and
should therefore be used efficiently.
All the more satisfying therefore,
that the German aluminium industry in particular is playing a leading
role in the discussion on sustainable
production and consumption. As the
aluminium industry is also aware of
its responsibility and strengths during
the utilisation phase, in GDA we have
acquired a competent partner and
speaker for the conference.”
The newly founded CSCP is the
new “think tank” for socially acceptable and sustainable production and
consumption worldwide, so sustainable added value is one of its princi-
pal tasks. As GDA Managing Director
Stefan Glimm explained, “The international SCP conference was an excellent forum for us to continue our
dialogue with important stakeholder
groups on aluminium and its contribution to sustainable development
as part of our ‘Aluminium for Future
Generations’ initiative.” With its involvement of many years in the field of
sustainability, the German aluminium
industry has acted as a role model for
the aluminium industry in Europe and
the rest of the world. “We have developed standards for this which have
since become benchmarks for the way
the global aluminium industry does
business,” said Stefan Glimm.
N
ALUMINIUM · 1-2/2007
MARKETS AND TECHNOLOGY
EAA launches new sustainable development indicator results
In 2002 the European Aluminium
Association (EAA) and its member
companies embarked on a pioneering journey towards measuring
sustainability. Together with the
German Wuppertal Institute for
Climate, Environment & Energy
and the Versailles University the
European aluminium industry
developed 34 measurable sustainable development indicators (SDI)
to scrutinise the aluminium industry‘s performance during the
period 1997 to 2002.
The SDI cover areas as varied as energy consumption, emissions, resource
use, product life cycles, employee
development and relations, community relationships, health and safety,
management efforts, competitiveness,
production and revenues. The first report was issued in 2004 and showed
an industry which had significantly
improved since 1997. Now EAA has
released the 2006 report and the data
show further improvements in many
different areas such as emissions, natural resource use, recycling and worker safety among others. For example,
health and safety total recordable
incidents fell 63.9% between 1997
and 2005, while the industry’s fossil
fuel requirements for metal production fell 30% and direct climate gas
emissions reduced 43.5% for metal
production.
The primary aluminium sector has
reduced its CO2 emissions by 7.7% between 2002 and 2005. This reduction
is partly achieved through PFC emissions reduction and partly through
energy consumption reduction. During this time the semi-fabrication sector reduced its emissions by an average of 5.5% per year.
The use of aluminium in cars produced in Europe has been steadily
increasing. Between 1997 and 2002,
aluminium use per car increased, on
average, 6.6% per year to 117 kg per
vehicle. Between 2002 and 2005 the
average increase per year was 4.1%
to 132 kg per vehicle.
The building indicator provides the
total quantity of aluminium used for
building and construction purposes in
Europe. The increase has continued:
from 2.11 million tonnes in 2002 to
2.5 million tonnes in 2005.
The average market share of aluminium cans in Europe was 56%
in 2005 compared to 50% in 2002.
On average, an aluminium can only
needs sixty days to be recycled into a
new can and be back on the retailer’s
shelf.
The recycling rate for cans was
52% in 2005 according to industry
statistics collected on a regular basis
from European countries. In the automotive sector as well as in buildings
the aluminium recycling rate is now
95%.
N
C
D
C
D
m
u
i
m
n
u
i
i
n
mi
fo r A lum
c assttiinngg
Drache
umwelttechnik
ALUMINIUM · 1-2/2007
81
MARKETS AND TECHNOLOGY
The development of Russia‘s packaging market
Aluminium processing technology at the forefront
“United Company Rusal”, created by
the merger of Rusal, Sual and Glencore, will produce 4 million tonnes
of aluminium and 11 million tonnes
of alumina per year and will employ
110,000 people in 17 countries on five
continents. The group will account for
12.5% of global aluminium production
and 16% of global alumina production. These are impressive figures.
In contrast, the group’s processing
sector is still more modest, but for all
that should not be ignored. The more
so since over the past few years Rusal
and Sual have invested not only in
the modernisation of their smelters
but also in that of their processing
capacities. The technological gap between Russian and Western aluminium plants is gradually beginning to
close. The combination of demanding product qualities with locationrelated cost advantages will make the
forthcoming United Company Rusal
an effective supplier on the domestic
Russian market, which international
concerns are keeping an eye on, and
conversely a competitor in the European and international markets to be
taken seriously.
In total around 760,000 tonnes
of primary aluminium went to the
various sales sectors of the Russian
market in 2005. The largest purchasers of aluminium are the building
and packaging sectors. These two are
about equally important and between
82
them account for around 54% of aluminium consumption. Third place,
with 9%, is held by the transport sector, whereas in the western industrialised countries it is the largest sales
market for light metal structures and
components. Lightweight construction, however, is not yet a major issue
in Russian automotive engineering.
Russian cars contain a proportion of
aluminium slightly above 40 kg, while
over 100 kg of the metal are built into
European and American vehicles.
In contrast, consumer packaging has for years been a dynamically
growing sales market in Russia. This
applies particularly to the market for
beverage cans. It is dominated by the
packaging material aluminium and is
roughly equally divided between two
producers, Rusal Rostar and Rexam.
erage cans is growing apace. As late as
1999 the can market was still rather
insignificant, with an annual demand
for about 258 million cans. By the end
of 2006 the demand has increased
by a factor of 15, and in 2006 can
production is estimated at around 4
billion units per year. This headlong
growth will continue in the coming
years and drive can sales up to over 5
billion units. The need for aluminium
can stock will increase to over 90,000
tpy – mainly for cans to be filled with
beer, alcoholic mixed drinks and carbonated soft drinks.
In recent years the two major can
manufacturers Rusal and Rexam have
made efforts to encourage this market. A marketing campaign initiated in
2000 and pursued for five years aimed
to provide aluminium cans with a pre-
Achenbach
With the planned merger of the
two Russian aluminium concerns
Rusal and Sual and the Swiss raw
material concern Glencore International, the world’s largest concern in the branch – at any rate
with a view to the production of
aluminium and alumina – is being
created. The downstream activities
of this group have until now been
less at the focus of international
reporting. Yet here too, in the production of can stock and foils for
packaging, the group could in the
long term develop into an international competitor with a strong
market position.
Achenbach caster…
Imports of cans cover less than 5%
of demand. Rostar, a 100%-owned
subsidiary of Rusal, built its first can
factory with an annual capacity of 1.3
billion units in 1998, in Dmitrov near
Moscow. In 2004 a second can factory
with annual capacity 1.7 billion units
was built in St. Petersburg. There, in
St. Petersburg and Moscow, are also
where the most important can fillers
are located.
Demand for beverage cans
is growing apace
In Russia demand for aluminium bev-
mium image. And this succeeded: in
2003 12% of Russian beer was already
being sold in aluminium cans, compared with only 0.4% in 2000. The
success in the market for soft drinks
was similar, with the proportion of
beverage cans increasing by a factor
of 7 to 700 million units. Rusal itself
has a 30% market share of beer cans
(2005). In the first half of 2006 the
company produced 15,927 t of can
and lid stock, an increase of 23.5%
over the same period of the year before, attributable to the commissioning of a second production line at the
Rostar works in St. Petersburg.
ALUMINIUM · 1-2/2007
MARKETS AND TECHNOLOGY
Trend towards thinner foils
The market for aluminium foils has
also developed. Total Russian production in this sector amounted to around
56,600 t in 2005. The most important
sales markets are the foodstuff branch
(33%) and the tobacco industry (29%).
The trend is towards thinner foils of
6 to 9 μm. Global food concerns such
as Nestlé and Kraft Foods are increasingly turning to the Russian market
and making ever-stricter demands,
for example related to surface quality
and mechanical properties.
Rusal produces a wide range of
foils and foil composites, mainly for
confectionery and dairy products,
tobacco goods and pharmaceuticals,
…and modernised foil mill at Armenal
and technical applications. These are
made in its two factories Sayanal and
Armenal, which produced just short
by higher rolling speeds. According to
of 19,000 t of foils in the first half of
information from the company, sales
2006. This corresponds to a growth
extend throughout Russia and the CIS
of 2.3% compared with the same pestates, to Southern Asia, the American
riod in 2005, largely attributed to a
continent and Europe.
productivity boost at Sayanal. There,
The Armenal foil rolling plant in
precisely in the sector of strip and foil
Armenia was founded in 2000. In Ocproduction, is emerging a new intertober 2006 modernisation of the plant
national competitor Rusal
was completed after
that plans to produce
almost two years,
not only commodities
again with Achenbut also quality prodbach as the supplier.
ucts whose manufacThe investment proture is technically
gramme amounted to
sophisticated:
foil
over US$ 70 million
qualities which need
and covered the comnot fight shy of complete modernisation
parison with those
of six existing foil
provided by European
mills including accessuppliers.
sory and environment
Sayanal, in the Reprotection equipment.
public of Khakassia, Peter Finnimore, in charge of
The modernisation
started operating in sales and marketing at Rusal
programme included
1995 and is the largest producer of
the installation of “supercasters”,
foils and composite foils in Russia.
i.e. continuous casting and rolling
The plant produces strip material
units. Armenal will in future produce
6 to 10 mm thick in widths of 1300
25,000 tpy of foil. 18,000 t of this in
to 1650 mm and then rolls them to
the thickness range 6 to 9 μm. This
foil thicknesses down to 0.006 mm,
corresponds to an efficiency boost of
as used for composite packaging in
150%. The Armenal foil production
Western Europe as well. Some of
too need not fear international comthe material is delivered directly to
parison. Around 7,000 tpy of housepackaging manufacturers and some
hold foil are produced.
then goes for finishing. Already in
2006 work to modernise the rolling
In search of new sales markets
plant began with the collaboration of
Yet, barely has the current modernisaAchenbach Buschhütten in Germany.
tion programme been completed and
A main aim was to boost productivity
ALUMINIUM · 1-2/2007
a capacity increase to 40,000 tpy is already being considered. The declared
aim of Rusal is to build Armenal up
to become an international player in
the foil market, as Peter Finnimore, in
charge of the Sales & Marketing sections at Rusal, explained to this journal at the Aluminium Fair in October
2006. His main objective is the quest
for new sales markets – mainly with
the European and American markets
at the focus – and the establishment of
long-term customer relations in Russia and worldwide.
In the future, the foil activities of
Ural Foil (around 18,000 tpy) will
have to be taken into account along
with the above Rusal capacities. Ural
Foil belongs to Sual and is the second-largest aluminium foil producer
in Russia. The foil works was built
in 1984 in Mikhailovsk in the Sverdlovsk region and covers the full
technical range from melts, through
the casting of aluminium strip (0.21 to
0.40 mm) up to foil production (0.20
to 0.006 mm). The modernisation of
the plant by ABB in 2004 concerned
among other things the drive and
automation technology of the coldrolling mill, including technological
control systems for thickness and flatness, which has distinctly improved
the foil production both qualitatively
and quantitatively.
N
83
MARKETS AND TECHNOLOGY
Audi takes EuroCarBody Award 2006
Award for innovative TT body concept
Audi is the winner of the EuroCarBody Award from the Automotive
Circle International for the innovative body concept of the TT. model
The sports coupé beat off 13 competitors from around the world to
take the award. The body of the
new TT represents the first application of the Audi Space Frame
(ASF) technology with a hybrid
construction, featuring an elaborate composition of aluminium
and steel.
Audi TT Coupé body structure
This prize pays tribute to the work of
Audi developers who have again presented impressive proof, in the form
of the new TT body, of how Audi leads
the way in this field. In ASF technology, the body‘s supporting structure is
made of extruded aluminium sections
and die-castings, with the aluminium
sheet panels forming a positive connection and performing a load-bearing role within this structure. The
components of the ASF space frame
vary in shape and cross-section depending on their function – like the
bones of the human skeleton, they
are made to fulfil their task as well as
possible, while having the minimum
possible weight.
In the new TT, Audi has further developed ASF technology, and added
high-strength steel to the material
84
mix. Aluminium accounts for 69 per
cent of the total body weight. Steel
components are used at the rear of the
floor assembly. The doors and boot lid
are also made of steel. This provides
an optimum distribution of axle loads,
making for superior handling.
The TT body-in-white weighs 206
kg, of which 140 kg is aluminium and
66 kg is steel; as an all-steel construction it would be 48 per cent heavier.
The aluminium components of the
ASF comprise 63 kg of sheet, 45 kg
of castings and 32 kg of extruded sections.
The new form of ASF developed
for the Audi TT has qualities that are
perfect for a sports car. The static torsional stiffness of the Coupé is roughly
50 per cent higher than that of its predecessor; on the Roadster the increase
is an incredible 128 per cent.
Extremely resilient cast components have been used in areas subjected to high local forces and where
multifunctionality is required. A prime
example is the A-post node – this is
a high-tech component that connects
the longitudinal member, sill, A-post
and windscreen cross-member.
Audi is profiting from its superior
wealth of experience when it comes to
joining together aluminium and steel
components. Joining is performed in
a variety of ways – punch-riveting,
clinching and bonding. A fourth joining technology has now been added
to the list: self-tapping screws, inserted by robots, melt the surface of the
component as a result of the friction
they cause, thus penetrating fully into
the material, forming a positive connection with it. Another innovative
concept used on the new TT is the
aluminium zero joint that is produced
between the roof and the side section
during laser-welding.
This technique also enhances ride
comfort by reducing vibration. It took
only a few simulation cycles on the
computer to arrive at a structure that
suppresses incipient vibration and
avoids transmission paths.
In terms of crash safety, too, the
new TT is uncompromising. This is
the second time that Audi has received
the coveted award. In 2003 Europe‘s
most prestigious innovation prize for
body construction went to the Audi
A8. The A8 also has an ASF body.
Innovatives Karosseriekonzept ausgezeichnet
Der Audi TT ist für sein innovatives Karosseriekonzept mit den EuroCarBody
Award des Automotive Circle International
ausgezeichnet worden. In der Karosserie
des neuen TT findet der ASF erstmals in
hybrider Bauweise seine Anwendung. Aluminium und Stahl werden hier aufwändig
miteinander verbunden. Bei der Karosserie
macht Aluminium 69 Prozent des Gesamtgewichts aus. Stahlkomponenten finden
sich im Heckbereich der Bodengruppe.
Türen und Heckklappe sind ebenfalls aus
Stahl. Die Rohkarosserie des TT wiegt 206
kg, die sich auf 140 kg Aluminium und 66
kg Stahl verteilen; in reiner Stahlbauweise
wäre sie 48 Prozent schwerer. Der Aluminiumanteil des ASF setzt sich aus 63 kg
Blechen, 45 kg Gusskomponenten und 32
kg Strangpressprofilen zusammen. Extrem
belastbare Gusskomponenten kommen
dort zum Einsatz, wo lokal hohe Kräfte
eingeleitet werden und Multifunktionalität
gefragt ist. Ein Musterbeispiel ist der ASäulen-Knoten – er ist ein Hightech-Bauteil, das Längsträger, Schweller, A-Säule und
Scheibenquerträger miteinander verbindet.
ALUMINIUM · 1-2/2007
www.
alu-bookshop.de
EINSCHLÄGIGE FACHLITERATUR
AUSSCHLIESSLICH RUND UM
NE-METALLE
ALLES AUS EINER HAND
SUCHEN, FINDEN, BESTELLEN
Giesel Verlag GmbH
Postfach 120158
D-30907 Isernhagen
Tel. +49 511 7304-122
Fax +49 511 7304-157
www.giesel.de · vertrieb@giesel.de
MARKT UND TECHNIK
Kolbenschmidt Pierburg setzt auf AGR-Kühler aus Aluminium
Markterfolg mit Abgasrückführung
Die Kolbenschmidt Pierburg AG
hat für ihr neu entwickeltes Modul
zur gekühlten Abgasrückführung
erste Kundenaufträge verbuchen
können. Aktuell verfügt das weltweit tätige Zulieferunternehmen
über Aufträge von drei namhaften
europäischen Automobilherstellern, die ein Projektvolumen von
insgesamt rund 300 Mio. Euro
darstellen.
Sowohl Diesel- als auch aufgeladene
Otto-Motoren sind angesichts der stetig steigenden Anforderungen der Abgasgesetzgebung ohne AGR-Kühlung
künftig kaum mehr denkbar. Beim
Dieselmotor - ob im Pkw- oder NkwBereich - gilt das vor allem für die
weitere Reduzierung der Stickoxide
(NOx). Eine besondere Bedeutung
kommt hierbei der gekühlten Abgasrückführung zu, die eine deutliche
Reduzierung des NOx-Ausstoßes ermöglicht.
Das Gruppenunternehmen Pierburg GmbH setzt dabei mit seiner
Entwicklung auf ein AbgasrückführModul mit einem neu entwickelten
Kühler aus Aluminium-Druckguss,
der eine kostengünstige und gewichtssparende Alternative zu den heute üblichen Edelstahlkühlern darstellt und
sich zudem die bessere Wärmeleitung
von Aluminium zunutze macht.
Der Abgaskühler senkt die Abgastemperatur je nach Betriebspunkt
um über 600 °C und trägt daher nicht
nur wesentlich zur Reduzierung der
Verbrennungstemperatur und damit
der Stickoxidemissionen bei, sondern
senkt auch die Temperaturbelastung
der nachfolgenden Motorkomponenten.
Auf dem langjährigen Know-how
des Neusser Automobilzulieferers in
punkto Schadstoffreduzierung aufbauend hat das Entwicklungsteam
mit dem AGR-Kühler aus Aluminium
eine Produktinnovation für Dieselfahrzeuge konzipiert, die sich durch
eine hervorragende Langzeitkühlleistung auszeichnet. Dies wird durch
eine neuartige Abgasführung über
speziell geformte Lamellen-Rippen
86
erzielt. Das neuartige Kühlerkonzept
eignet sich sowohl für Nieder- als auch
für Hochdrucksysteme und kann bei
entsprechenden Motorkonzepten ins
Saugrohr integriert werden.
Bisher bestanden Kühler meist
aus zusammengeschweißten Edelstahlblechen, was relativ hohe Fertigungskosten zur Folge hat. Ein weiterer Vorteil von Aluminium liegt
darin, dass dieser Werkstoff eine wesentlich höhere Wärmeleitfähigkeit
als Stahl besitzt. So lässt sich bei relativ kleinem Bauraum eine sehr hohe
Kühlleistung erzielen.
Die spezielle, patentierte Bauform
mit unterbrochener Lamellen-Rippenstruktur ist optimal, weil die turbulente Durchmischung der Abgasströmung durch die Unterbrechungen gefördert wird. Sie wirkt einer direkten
Versottung entgegen, fördert den
konvektiven Wärmeaustausch und
ermöglicht den Stoff-, Druck- und
Wärmeaustausch quer zur Hauptströmungsrichtung, was zu einem Selbstreinigungseffekt führt.
Um den Motor möglichst schnell
auf Betriebstemperatur zu bringen,
verfügt der neue Abgaskühler über
eine wahlweise elektrisch oder pneumatisch geschaltete Bypassklappe.
Über diese werden die Abgase über
den so genannten Bypasskanal am
Kühler vorbei geleitet, bis die notwendige Betriebstemperatur des Motors
erreicht ist.
Beim betriebswarmen Motor wird
der Bypass geschlossen, so dass der
Kühler seine eigentliche Funktion
aufnehmen kann, nämlich die Temperaturabsenkung der zurückgeführten
Abgase. Durch die hiermit hervorgerufene, gezielte Absenkung der Verbrennungstemperatur in Kombination mit der entsprechenden Sauerstoffreduktion wird die maximale
Stickoxidreduzierung erreicht.
Ein weiterer Vorteil des neuen
AGR-Kühlers besteht darin, dass es
sich hier um ein integriertes Bauteil handelt, bei dem die einzelnen
Komponenten – also der kühlwasserdurchströmte AGR-Kühler, die Bypassklappe, die bedarfsgerecht zwi-
Kolbenschmidt Pierburg successfully marketing its EGR system
Kolbenschmidt Pierburg has
booked its first orders for the
newly developed cooled exhaust
gas recirculation (EGR) module.
Presently, this globally operating
auto industry supplier has orders
on hand from three renowned
European carmakers, representing
a total contract volume of around
300 million euros.
In future, both diesel and turbocharged gas engines will be hardly
conceivable without EGR cooling due
to the ever stricter exhaust gas regulations. For diesel engines, whether
in passenger or commercial vehicles,
this is especially true of the further
reduction of nitrogen oxides (NOx)
Of special significance in this context
is cooled exhaust gas recirculation
enabling a drastic reduction of such
emissions. This exhaust gas recirculation module from Pierburg comprises
a newly developed cooler made from
die-cast aluminium - a low-cost and
weight-saving alternative to today’s
commonly used stainless steel coolers, an option which, moreover, utilizes the better heat conductivity of
aluminium.
In lowering exhaust gas temperature by over 600 °C, depending on the
operating mode, the exhaust gas cooler therefore helps reduce combustion
temperatures and hence nitrogen oxide emissions while also taking some
of the heat off the downstream engine components. The long standing
know-how of this Neuss-based auto
industry vendor in terms of emission
reduction has enabled the development team, with its aluminium EGR
cooler, to design a product innovation
for diesel engine vehicles, one characteristic for its excellent long-term
cooling performance. This is achieved
through innovative exhaust gas recirculation using specially shaped fins.
The new cooler concept is suitable for
both low- and high-pressure systems
and can be integrated into the intake
manifold of engines with matching
design features.
To date, coolers have mainly con-
ALUMINIUM · 1-2/2007
sisted of welded stainless steel sheet
metal with its comparably high production costs. Another advantage of
aluminium is its much higher heat
conductivity versus steel. Aluminium’s excellent heat conductivity
makes it possible to achieve a very
high cooling effect even in a relatively
small space.
Moreover, the patented discontinuous fin construction is ideal, since the
turbulent mixing of the exhaust gas
flow is enhanced by these breaks. It
counteracts direct fouling, promotes
convective heat exchange and permits
an exchange of substances, pressure
and heat transverse to the mainstream
direction - this having a self-cleaning
effect.
So that the engine reaches its operating temperature as quickly as possible, the new exhaust gas cooler has a
bypass valve, actuated electrically or
pneumatically. The exhaust gases are
routed through this valve and the socalled bypass channel past the cooler,
until the required engine operating
temperature is reached.
With the engine at its operating
temperature, the bypass is closed, so
that the cooler can perform its actual
task and reduce the temperature of
the recirculated exhaust gases. The
effective lowering of the combustion temperature achieved through
this process combined with corresponding oxygen abatement reduces
nitrogen oxide emissions to a maximum degree. Another advantage of
the new EGR cooler is that it is an
integrated assembly in which the individual components - EGR cooler
with its coolant flow, bypass valve alternating on-demand between cooler
and bypass operation, and EGR valve
Fotos: Kolbenschmidt Pierburg
MARKETS AND TECHNOLOGY
EGR-cooler-module
AGR-Kühler-Modul
for controlling the EGR rate - merge
into one EGR module. Moreover, aluminium makes it possible to combine
the EGR module and intake manifold
into one individual component. The
result: an integrated intake manifold
module with exhaust gas recirculation and cooling system.
By fine-tuning a new welding technique developed for die-cast aluminium parts, it is now possible to weld
together all the internal interfaces of
the module rather than use the type of
temperature-resistant seals and supplementary fasteners employed until
now.
Additionally to meeting the already
mentioned strict criteria there is also
the weight advantage of the new aluminium cooler. And because of the
aluminium and its inherent corrosion
protection, all requirements in terms
of durability are likewise met.
schen Kühler- und Bypassbetrieb
umschaltet, und das AGR-Ventil zur
Steuerung der AGR-Rate – sinnvoll
zu einem AGR-Modul zusammengefasst werden konnten. Zudem erlaubt
der Werkstoff Aluminium, das AGRModul und das Saugrohr in einem
einzigen Bauteil zu verbauen. Das
Ergebnis: ein integriertes Saugrohrmodul mit Abgasrückführ- und Abgaskühlsystem.
Durch die gezielte Weiterentwicklung eines neuen Schweißverfahrens
für Aluminium-Druckgussteile können alle internen Schnittstellen des
Moduls geschweißt werden, für die
bisher temperaturbeständige Dichtungen und ergänzende Schrauben
eingesetzt werden mussten.
Zusätzlich zur Erfüllung der bereits
genannten hohen Anforderungen ergibt sich beim neuen AGR-Kühler
durch die Wahl von Aluminiumdruckguss ein Gewichtsvorteil. Zudem werden durch die Werkstoffwahl und den
konstruktiven Korrosionsschutz alle
Anforderungen in Bezug auf Dauerhaltbarkeit erfüllt.
N
N
Pierburg-Kühlereinsatz mit der speziellen
Lamellen-Rippenstruktur
Pierburg-cooling unit with the patented
discontinuous fin construction
ALUMINIUM · 1-2/2007
87
ALUMINIUM IM BAUWESEN
Energieeffizientes Bauen im Fokus von
Politik und Wirtschaft
Energiesparendes und ressourcenschonendes Bauen sind die zentralen Themen der Baubranche.
Kontinuierlich steigende Energieund Rohstoffpreise sowie neue
Verordnungen und Gesetze treiben
Architekten und Bauherren dazu
an, Gebäude zu bauen, die immer
weniger Energie benötigen. Wie
eine höhere Energieeffizienz auch
von Gebäuden erreicht werden
kann, war nicht nur Gegenstand
des Energiegipfels der Bundesregierung im Oktober letzten Jahres,
auch die EU-Kommission hat
strengere Energiesparvorgaben auf
ihrer politischen Agenda. So überrascht es nicht, dass die BAU 2007
im Januar in München energieeffizientes Bauen zu einem ihrer
Schwerpunktthemen machte.
Von zentraler Bedeutung bei der Planung und Realisierung von Gebäuden
ist die äußere Hülle. Sie beansprucht
zwar nur rund 15 Prozent der Baukosten, ist aber verantwortlich für den
größten Teil des Energieverbrauchs
bei Heizung, Kühlung, Lüftung und
Beleuchtung, und dies für Jahrzehnte.
Optimierte Fassaden erzielen dagegen
bereits heute einen bis zu 60 Prozent
geringeren Energieverbrauch. Dies
spiegelt sich auch im Wärmedurchgangskoeffizienten für Fenster- und
Fassadenelemente wider, die von 3,4
W/m2K in den 1980er Jahren auf inzwischen 1,4 W/m2K gesunken sind.
Und die unter energetischen Aspekten
entwickelte Fassade SMC 50.HI mit
einem hochwärmegedämmten Fenstersystem hilft Energie einzusparen.
Schüco: Energie sparen und
gewinnen
Corus Bausysteme zeigte auf der Messe, wie mit seinen Profiltafeln Kalzip
AluPlusSolar eine dachintegrierte,
regenerative Energiegewinnung mittels Photovoltaik möglich wird. Die
Solarmodule und die AluminiumProfiltafeln werden dabei zu einer
Einheit verschmolzen. Die Solarzellen sind ohne Aufständerung in die
Fläche integriert. Die robuste Solarfolie wird dauerhaft auf die Profiltafeln laminiert. Da die Folie flexibel ist,
können die Profiltafeln konvex oder
konkav verformt werden. Mit Kalzip
AluPlusSolar lassen sich Tonnen-,
Shed- oder Pultdächer ebenso einfach als Energiedach ausführen wie
individuell geschwungene Formen
bis zu einer maximalen Neigung von
60 Grad.
So stellte der europäische Marktführer bei Gebäudehüllen, Schüco
International KG, auf der BAU 2007
anwenderorientierte Programmerweiterungen vor, mit denen sich Energie
einsparen und gewinnen lässt: Mit
entsprechenden architektonischen
Konzepten lässt sich fast die gesamte
Gebäudehülle zur Energiegewinnung
durch Licht- und Sonneneinstrahlung
nutzen und hoch wärmegedämmte
Produkte aus Aluminium, Stahl und
Kunststoff tragen dazu bei Energie
einzusparen.
Ein Beispiel sind die Schüco Prosol-Module: Sie leiten die erzeugte
Energie über ein spezielles Profil für
eine verdeckte Führung elektrischer
Leitungen in Fassaden direkt zur gewünschten Verteilung im Gebäude.
Maßnahmen des Gesetzgebers
Neue Energie-Einsparverordnung
Mit der Neuregelung der Energie-Einsparverordnung (EnEV) zum 1. Januar 2008
durch die Bundesregierung müssen
Hausbesitzer einen Pass über den Energieverbrauch ihres Gebäudes vorlegen.
Auch in Brüssel sollen die Energievorgaben
der Gebäude-Richtlinie ab 2009 verschärft
werden.
CO2-Gebäudesanierungsprogramm
Rund drei Viertel des Energiebedarfs im
Privathaushalt wird für Raumheizung genutzt. Ein Gutteil der Raumwärme geht
durch Wände, Fenster, Dach, Türen oder
den Fußboden verloren. Es gibt damit ein
großes Potenzial, die Energieeffizienz zu
steigern: In den bestehenden Wohngebäuden wird im Durchschnitt fast dreimal so
viel Energie für Heizung und Warmwasserbereitung verbraucht, als gemäß den
Anforderungen der EnEV für Neubauten
vorgeschrieben ist.
Die Bundesregierung hat ihr Programm
zur CO2-Gebäudesanierung für den Zeitraum 2006 bis 2009 auf jährlich rund 1,4
Mrd. Euro aufgestockt. Gefördert werden
Maßnahmen zur CO2-Minderung und zur
Einsparung von Energie in Wohngebäuden. Hierunter fallen z. B. die effizientere
Gestaltung der Gebäudehülle durch
Wärmedämmung von Dach und Außenwänden oder die Erneuerung der Fenster.
Außerdem ist eine finanzielle Unterstützung möglich, wenn Energiesparhäuser
und Passivhäuser errichtet oder erstmalig
erworben werden.
Corus Bausysteme: Solararchitektur mit Profiltafeln
Alcoa setzt auf Verbundplatten
Fast mutet es als Positionierung gegen
den Trend an, wenn energieeffizientes
Bauen einmal nicht in das Zentrum
der Marktkommunikation gerückt
wird. Alcoa Architectural Products
präsentierte auf der Bau 2007 u. a.
seine Marke Reynobond und setzt
auf die wachsende Nachfrage nach
Aluminium-Verbundplatten. 1,6 mal
leichter als Vollaluminium sind die
Sandwichelemente aus Aluminiumblechen mit Polyethylenkern sehr
biegesteif und stoßfest. Außerdem
dehnen sich die Paneele bei Temperaturschwankungen zwischen -50 und
+ 80 °C kaum aus. Um die Nachfrage
nach breiteren Verbundplatten bis
2.000 mm künftig noch besser befriedigen zu können, hat das Unternehmen mit dem Bau einer neuen Bandbeschichtungsanlage begonnen, die
speziell Aluminium in dieser Breite
einbrennlackieren kann.
N
88
ALUMINIUM · 1-2/2007
ALUMINIUM IM BAUWESEN
Übergeordnete Trends im Fenster- und Fassadenbau
Veränderungen der Altersstruktur,
Globalisierung und Verknappung
von Materialien, Rohstoffen und
Energie prägen die Zukunft des
Fenster- und Fassadenbaus. So
der Tenor einer Veranstaltung des
Instituts für Fenstertechnik (ift) im
Herbst 2006, in der die Trends der
Branche beleuchtet wurden. Hier
eine Zusammenfassung:
Als zentraler Trend kristallisierte sich
die Notwendigkeit des schonenden
Umgangs mit Rohstoffen und Energien heraus. Wärmeschutz und Materialoptimierungen in der Entwicklung
von Konstruktionen seien deshalb die
bestimmenden Themen der Zukunft.
Deutschland nehme hier weltweit eine
Spitzenstellung ein. Auch die Fenster- und Fassadenbranche habe mit
der Photovoltaik und mit energetisch
optimierten Bauteilen beste Chancen,
diese Entwicklung erfolgreich zu nutzen. Dem ift zufolge bestimmen mehrere übergeordnete Trends die künftige Entwicklung der Branche.
Techniktrends
Die heutigen Konstruktionen werden
immer vielfältiger und spezialisierter. Dies erfordert deshalb auch neue
Konzepte für Entwicklung, Fertigung,
Qualitätssicherung und Wartung. Hier
bedarf es einer intensiven Information der Verarbeiter, Monteure und
Nutzer seitens der Hersteller. Alte
Themen wie Wartung und Instandhaltung bekommen dabei eine neue
Bedeutung.
Neue Konstruktionen werden
stärker als Verbundkonstruktionen
ausgeführt, die durch eine Spezialisierung der jeweiligen Baugruppen
Leistungseigenschaften wie Wärmeund Schallschutz oder Einbruchhemmung weiter verbessern.
Das ift ist ein eingetragener Verein, der
von der Branche der Fenster-, Fassaden-,
Tür- und Torhersteller sowie ihrer Zulieferer getragen wird.
ALUMINIUM · 1-2/2007
Der Bausatzgedanke, der Komponenten wie Rahmen, Beschläge, Glas,
Randverbund, Regenschutzschiene
beinhaltet, wird die alten Konstruktionsnormen ersetzen. Dies bietet
Chancen für eine schnelle und einfache Variation, Differenzierung und
Innovation der Produkte.
Bei der Wärmedämmung sind die
Technologien für die nächsten fünf
bis zehn Jahre bekannt. Gänzlich
neue Techniken für die Zeit danach
sind notwendig, um zu substanziellen
Verbesserungen zu kommen. Beim
Isolierglas sind beispielsweise die
physikalischen Grenzen der vorhandenen Entwicklungslinie erreicht.
Die ständige Verbesserung und
Neuentwicklung von Solarzellen in
Verbindung mit Förderprogrammen
und einer Preisreduzierung ebnet
den Weg in die Fenster- und Fassadenbranche. Farbstoffsolarzellen eröffnen neue gestalterische Möglichkeiten.
Gesellschaftstrends
Die Notwendigkeit weiterer Energiesparmaßnahmen etabliert sich weltweit mit jeder neuen Erhöhung der
Energiepreise als Megatrend. Deshalb
sind Bauteile und Verfahren zur Energieeinsparung gefragt.
Die Solarindustrie hat hervorragende Imagewerte in Bezug auf Innovation, Design und Akzeptanz und
kann die Positionierung des modernen Fensters als Hightechprodukt mit
höherem Preisniveau einleiten.
Für Maßnahmen zur Energie- und
Ressourceneinsparung gibt es national und weltweit Fördermöglichkeiten, die Investitionen anstoßen und
erleichtern.
Die Forschungs- und Innovationsstruktur muss sich in Deutschland
auf allen Ebenen verbessern. Unternehmen, Hochschulen und Institute
müssen in Kooperationen und Netzwerken leistungsfähige Produkte
und Dienstleistungen entwickeln,
validieren und global vermarkten.
Dabei müssen neue moderne Formen
der Arbeitsteilung, der Finanzierung
Schüco International KG
Umwelt- und Energiefragen geben den Ton an
Structural-Glazing-Vorhangfassade
sowie der Kommunikation genutzt
werden.
Produktnorm und CE-Kennzeichnung
Die europäischen Normen der Fenster-, Fassaden, Tür- und Torbranche
sind weitestgehend eingeführt und in
großen Teilen schon bindend. Die ersten Überarbeitungen, beispielsweise
der Fassadennorm DIN EN 13830
werden bereits in Angriff genommen.
Alte Regeln bleiben dabei erhalten
und werden präzisiert.
Die Anbieter von Aluminium- und
Kunststofffenstern sowie die RALGütegemeinschaften haben für ihre
Verarbeiter konsistente und regelgerechte Verfahren für die CE-Kennzeichnung und die werkseigene Produktionskontrolle erstellt. Lösungen
für handwerklich strukturierte Hersteller befinden sich in der Entwicklung.
In Deutschland kann für Nachweise von Fenstern und Außentüren
im Rahmen der CE-Kennzeichnung
das Cascading System (Systeminhaber stellt Herstellern die Ergebnisse
89
ALUMINIUM IM BAUWESEN
der Erstprüfung (ITT) zur Verfügung)
oder das Share System (mehrere Hersteller nutzen dieselben Ergebnisse
der Erstprüfung (ITT)) genutzt werden. Beide Systeme sind in der DIN
EN 14351-1 verankert.
Weitere Normen und Fachregeln
Die EG Richtlinie 2002/91/EG zur Ermittlung der Gesamtenergieeffizienz
wird in Deutschland durch die Novellierung der Energieeinsparverordnung umgesetzt. In diesem Zuge wird
auch ein Energieausweis eingeführt,
Neubau, Verkauf und Neuvermietung obligatorisch zu erstellen ist.
Dieser kann wahlweise über eine Bedarfsrechnung oder eine Verbrauchsmessung erstellt werden. Für Wohngebäude ändert sich gegenüber der
Methodik der EnEV 2004 nichts. Bei
Nichtwohngebäuden müssen die Energieaufwendungen für künstliches
Licht und Klimatisierung gemäß der
DIN V 18599 ermittelt werden, die
auch für die Planung von Wohngebäuden verwendbar ist.
Brandschutznachweise können zur
Zeit nach nationaler Norm DIN 4102
und europäischer Norm EN 13501-1
geführt werden. Diese sind die Grundlage für die Klassifizierung. Baustoffe
mit bekannter Zusammensetzung und
bekanntem Brandverhalten werden
national in DIN 4102-4 und europäisch in „CWFT-Listen“ beschrieben.
Schüco International KG
Markttrends
Fensterprofil mit Einsatzelement
der den Energieverbrauch eines Gebäudes transparent macht und bei
Deutschland nimmt weltweit die
Führungsrolle in der Bau- und Wohnungstechnologie ein. Dies bietet beste Chancen auch für die Fenster- und
Fassadenbranche, aktiv zu werden.
Eine klare Unterscheidung der Produkte in einfache Konstruktionen, die
Mindestanforderungen erfüllen, und
Gebäudehüllen in Metall – Ideen und Konzepte für die Zukunft
European Kalzip Student Award 2007
Die Corus Bausysteme GmbH produziert
unter der Marke Kalzip Dach- und Fassadensysteme aus Aluminium. International tätige
Architekten nutzen Kalzip-Profiltafeln für
ihre architektonischen Highlights. So gehört
der neue Barajas Airport in Madrid ebenso
zu den herausragenden Referenzobjekten
wie das BMW-Zentralgebäude in Leipzig
oder das Imperial War Museum North
Manchester von Daniel Libeskind. Unter
dem Motto „Wrap a building!“ schreibt die
Kalzip Business Unit erstmals den European
Kalzip Student Award 2007 aus, der sich
an Universitäten, Fachhochschulen und
Design-Schulen aus ganz Europa richtet.
Der Wettbewerb bietet dem akademischen
Nachwuchs die Möglichkeit, ihre Design-
90
vorstellungen und innovativen Ideen für
zukünftige Gebäudehüllen im Kontext moderner architektonischer Anforderungen zu
entwickeln. Studenten der Fachrichtungen
Architektur und Design können ihre Vorschläge zu folgenden Themen einreichen:
•Fassade
•Dach
•Hybridmaterialien
•Optimierung bestehender Systeme.
Die Aufgabe steht im Spannungsfeld ganz
unterschiedlicher Aspekte wie Ökologie,
(Licht)Durchlässigkeit, Geometrien, Oberflächenstruktur, Anpassung an die (natürliche)
Umgebung, Vielseitigkeit oder Standardi-
moderne Hightechfenster macht das
Angebot verständlicher. Hightechfenster mit Zusatznutzen sowie höchster
Qualität und Gebrauchstauglichkeit
eröffnen Chancen für ein Hochpreissegment.
Prestigeprojekte und Events wie
die Fußballweltmeisterschaft in
Deutschland oder die Olympiade in
Peking oder London wirken wie Katalysatoren für innovatives Bauen.
Leistungsfähige Unternehmen können hier direkt Aufträge generieren.
Kleinere Unternehmen können diese
durch einen Imagetransfer für den eigenen Markt nutzen.
Deutschland und Europa sind in
vielen ökologischen Marktsegmenten
Weltmarktführer. Innovativen Herstellern von Fenster- und Fassadentechnologien bieten sich so Chancen
in interessanten lokalen Wachstumsmärkten wie London, Kalifornien
oder Peking, in denen ökologische
Standards immer stärker gefordert
werden.
Zukunftsstudien bieten wichtige
Hinweise und Instrumente zur Bestimmung möglicher Entwicklungslinien und bei der Planung von Innovationen. Dies gilt es seitens der
Branche zu nutzen.
N
sierung in der industriellen Massenproduktion. Bewertet werden alle Einsendungen
nach den Kriterien Kreativität, Vision, Funktionalität, Technologie, zukunftsweisende
Entwicklungen und Marktreife.
Eine europäisch besetzte Architekten-Jury
ermittelt die Sieger. Die ersten beiden Gewinner bekommen neben einem Geldbetrag
auch die Gelegenheit, ein mehrmonatiges
Praktikum im Wiener Büro von Coop
Himmelb(l)au zu absolvieren. Die offizielle
Preisvergabe findet am 27. April 2007 im
Deutschen Architektur Zentrum (DAZ) in
Berlin statt. An dem Wochenende werden
die prämierten Arbeiten zudem im DAZ
Berlin ausgestellt.
Unter www.kalzip-studentaward.com können interessierte Studenten ihre Arbeiten
bis zum 15. März 2007 anmelden und bis
zum 13. April 2007 einreichen.
ALUMINIUM · 1-2/2007
ALUMINIUM IM BAUWESEN
Fenstermarkt im Plus
Die Hersteller von Fenstern und
Fassaden gehen für 2006 erstmals
seit langem wieder von einer positiven Entwicklung für ihre Branche aus, nachdem die seit über
zehn Jahren anhaltende Talfahrt
der deutschen Bauwirtschaft gestoppt ist. Schon im Oktober 2006
auf der Glasstec verkündete Bernhard Helbing, der Präsident des
Verbandes der Fenster- und Fassadenhersteller (VFF) in Frankfurt:
„Wir rechnen mit einem Zuwachs
von über fünf Prozent.“
Ende 2006 zeichnete sich für den Fenstermarkt schließlich ein Zuwachs von
11,6 auf 12,5 Mio. Fenstereinheiten
ab. Ein Katalysator dieser Entwicklung: die drastisch gestiegenen Energiepreise, die den Einbau moderner,
wärmegedämmter Fenster begünstigen. Für den Wohnbau rechnet die
Branche mit einem Zuwachs von 9,7
Prozent, für den Nichtwohnbau mit
einem Plus von 4,6 Prozent. Der Renovierungsmarkt legte um fast zehn
Prozent, der Neubau um 5,4 Prozent
zu. Für all diese Marktsegmente waren die Vorjahrszahlen noch negativ.
2007 wird der Wirtschaftsbau neben
der Renovierung die treibende Rolle
für die weiterhin positive Branchenentwicklung sein.
Bei den Rahmenmaterialien für
Fenster lassen sich für 2006 und
2007 lediglich Absatztrends erkennen. So nahm Kunststoff 2006 überdurchschnittlich zu, Holz lag im
Gesamttrend, während Aluminium
zurückblieb. Dies dürfte sich schon
im laufenden Jahr wieder ändern,
wenn sich das stärkere Wachstum des
Nichtwohnbaus mit seinen höheren
Anteilen von Metallfenstern und -fassaden auswirkt. 2007 wird deshalb
der Aluminiumanteil voraussichtlich
überdurchschnittlich steigen. Im Fen-
ster- und Fassadenbau steht weiterhin die Verbesserung der Wärmedämmung im Zentrum der Aufmerksamkeit. Denn mit der Novellierung der
Energie-Einsparverordnung im Jahr
2008 werden die Ansprüche an die
Wärmedämmung der Gebäudehülle
noch einmal erhöht. Und nachdem
seit Ende 2005 alle vorgehängten
Fassaden das CE-Zeichen führen
müssen, steht ab Herbst 2007 auch
dessen Einführung für Fenster und
Außentüren bevor.
Quelle: VFF
Größtes deutsches Büroprojekt mit Wicona-Fassaden
Neben dem unregelmäßigen Rechteck der Fassade von rund 200 x 300
Metern bleiben der Messeturm, ein
Wahrzeichen der Stadtsilhouette, und
das alte Portalbauwerk Atrium am
Messeplatz bestehen. In die expressionistische Fassade von 1924 wird ein
komplett neues riesiges Bürogebäude integriert. Als einer der künftigen
Mieter steht bereits der Fernsehsender RTL fest, der ab 2008 aus diesen
historischen Hallen senden und hier
die Deutschland-Zentrale einrichten
wird. Die Bürofläche beträgt insgesamt rund 160.000 qm, RTL wird
davon rund die Hälfte beanspruchen.
Eine Nutzung des Turms ist derzeit
ALUMINIUM · 1-2/2007
noch offen, da er als Hochhaus gilt
und so besonderen Anforderungen
entsprechen muss.
Die Hallen spalten sich auf in 14
Innenhöfe mit Attika, Hallen- und
Außenfassade. Das Hauptvolumen
der Aluminiumfassaden, die allein
ein Gewicht von 400 bis 450 Tonnen
ergeben, liegt in den Innenhöfen. Diese Fassade wird bis zur Eröffnung im
Jahre 2008 durch die Metallbaufirma
Rupert App aus Leutkirch ausgeführt,
die bereits mehrere Projekte dieser
Größenordnung, u. a. die NordLB in
Hannover, umgesetzt hat. Die technischen Voraussetzungen wurden
durch die Kölner Architekten HPP in
Zusammenarbeit mit dem Fassadenplaner AMP aus Bargteheide gesetzt.
Seit Oktober 2005 hat Hydro Building Systems aktiv zur technischen
Umsetzung im Bereich Fassaden bei
den Planern beigetragen. Die jetzige
Ausführung wird in der Wicona-Elementfassadenkonstruktion Wictec EL
umgesetzt. Bereits im Dezember 2006
wurden die ersten Fassadenelemente
auf der Baustelle erwartet. Dabei handelt es sich um rund 4.300 Elementteile mit je 100 Kilogramm Gewicht.
Norsk Hydro
Vom damaligen Kölner Oberbürgermeister Konrad Adenauer 1924
eingeweiht, galten die Rheinhallen
lange Zeit als eine der modernsten
Messeanlagen Deutschlands. Inzwischen ist der Abbruch der Hallen innerhalb der stehen gebliebenen historischen Außenmauer
weitgehend abgeschlossen.
Kölner Messeturm und historische Außenfassade
91
RECYCLING
Vorbericht
9. Internationaler Aluminium Recycling Kongress der OEA
Am 26. und 27. Februar 2007 steht
in Köln das Recyceln von Aluminium auf dem Veranstaltungskalender. An diesen Tagen lädt die Organisation of European Aluminium
Refiners and Remelters (OEA) zum
mittlerweile 9. Internationalen Aluminium Recycling Kongress ins
Hotel Maritim ein.
Unternehmer und Mitarbeiter der
Aluminiumrecycling-Industrie, Metallhändler, Journalisten, Behördenvertreter, Angehörige von Hochschulen, also alle, die mit dem Recycling
von Aluminium befasst sind, werden
sich an dem Ort treffen, wo die erfolgreiche Kongress-Serie vor 17 Jahren
begonnen wurde. Der Zeitpunkt der
Veranstaltung ist günstig gewählt. Die
Konjunktur, das begrenzte Angebot
an natürlichen Rohstoffen und der
ökologische Nutzen des Aluminiumrecyclings haben Aluminiumschrott
zu einem weltweit begehrten Rohstoff werden lassen. Hierdurch sieht
sich die europäische Aluminiumrecycling-Industrie vor neue Heraus-
forderungen gestellt, die mit einem
weitreichenden Strukturwandel der
mit dem Recycling befassten Industrie verbunden ist.
Den Einführungsvortrag wird Sean
M. Stack halten, der Europachef von
Aleris Europe, einem Unternehmen,
dass sich erst seit kurzem in Europa
auf dem Gebiets des Aluminiumrecyclings engagiert. Roland ScharfBergmann, Präsident der OEA, wird
in seinem Vortrag eine Positionsbestimmung der europäischen Aluminiumrecycling-Industrie vornehmen,
die bestehenden Herausforderungen
darstellen und Wege zu ihrer Bewältigung aufzeigen. Günter Kirchner, Generalsekretär der OEA und Vorsitzender des Global Aluminium Recycling
Committees (GARC), stellt vor allem
auf die globale Bedeutung des recycelten Aluminiums als Rohstoffquelle
ab. In den letzten Jahren hat vor allem
der zunehmende Abfluss von Aluminiumschrott nach China für Unruhe
gesorgt. Ob zu Recht oder zu Unrecht
wird der Vortrag eines Repräsentanten der chinesischen Aluminium-
Preview of the 9th International Aluminium Recycling Congress of the OEA
On 26 and 27 February 2007 in Cologne, the
recycling of aluminium is on the calendar of
events. On those dates the Organisation of
European Aluminium Refiners and Remelters
(OEA) is inviting interested parties to what
will then be the 9th International Aluminium Recycling Congress. Companies and employees in the aluminium recycling industry,
metal traders, journalists, representatives of
government authorities, in short all who are
involved with the recycling of aluminium
will meet at the place where this series of
successful congresses began 17 years ago.
The timing of the event is well chosen.
The trade position, the limited supply of
natural raw materials and the ecological
uses of aluminium recycling have promoted
aluminium scrap to become a raw material
in demand all over the world. This presents
92
Europe’s aluminium recycling industry with
new challenges that entail far-reaching
structural transformations in all aspects of
recycling-related industry. The introductory
lecture will be given by Sean M. Stack, Head
of European operations at Aleris Europe, a
company that has become engaged in the
field of aluminium recycling only relatively
recently. Roland Scharf-Bergmann, President of the OEA, will describe the position
adopted by the European recycling industry,
set out the existing challenges and indicate
ways to overcome them. Günter Kirchner,
Secretary General of the OEA and Chair of
the Global Aluminium Recycling Committees
(GARC), will deal mainly with the global importance of recycled aluminium as a source
of raw material. In recent years, above all
the increased flow of aluminium scrap to
recycling-Industrie zeigen. Die bedeutende Rolle des europäischen
Metallhandels für die Versorgung mit
sekundären Rohstoffen wird ebenso
diskutiert wie das durch verstärkte
Schrottexporte entstandene Spannungsfeld.
Allein fünf Vorträge werden sich
mit technischen Neuerungen auf
dem Gebiet der Erfassung, der Aufbereitung und dem Einschmelzen von
Schrotten und der Verwertung der
beim Recyclingprozess anfallenden
Salzschlacke beschäftigen. Der Erfolg
der Recyclingbemühungen in Europa
hängt wesentlich von den rechtlichen
Rahmenbedingungen ab. Aktuell stehen weitreichende Reformen der EUAbfallrahmenrichtlinie an, über die
berichtet wird. Vorträge über bestehende und künftige Preisbildungsmechanismen und Herausforderungen
an das Recyceln von Verpackungen
runden das Bild der interessanten
Veranstaltung ab.
Näheres zum Kongress direkt bei
der OEA: Tel: +49 (0)211 451 933 oder
unter www.oea-alurecycling.org. N
China has been a cause for concern. Whether or not this is justified will be examined
in a lecture by a representative of China’s
aluminium recycling industry. The important
part played by the metal trade in relation
to supplies of secondary raw materials will
be discussed as well, as also will the stresses
created by rising scrap exports.
No less than 5 lectures will deal with
technical innovations in the fields of the collection, preparation and melting of scrap and
the recovery and use of salt slags produced
during the recycling process. The success
of recycling efforts in Europe depends substantially on the legal boundary conditions
imposed. At present far-reaching reform of
the EU’s guidelines on waste are due, and
these will be reported. Lectures on existing
and future pricing mechanisms and challenges related to the recycling of packaging
materials will round off the picture of this
interesting event. More information on the
congress at www.oea-alurecycling.org.
ALUMINIUM · 1-2/2007
RECYCLING
Recycling von Folienschrotten
Hydro vollendet Metallkreislauf in Neuss
Eine Idee, eine Pumpe, ein paar
unnachgiebige Ingenieure - so
vollendet Hydro im AluminiumCluster Neuss den Metallkreislauf
und stärkt den engen Verbund mit
den Nachbar-Walzwerken in
Neuss und Grevenbroich.
Die Gießerei im Rheinwerk Neuss von
Hydro schmilzt nun jährlich 22.000
Tonnen Folienschrotte aus dem Werk
Grevenbroich um. „Das macht ökologisch Sinn, und es hilft im Kostenkampf angesichts der hohen Strompreise, unsere Wettbewerbsfähigkeit
zu stärken“, sagt Werkleiter Bernhard
Eich.
Hydro erzeugt in Deutschlands
größter deutscher Aluminiumhütte
in Neuss jährlich 224.000 Tonnen
Flüssigmetall. Dagegen liefert die Gießerei des Werkes mittlerweile bereits
320.000 Tonnen Walzbarren an Alunorf nebenan, das dann Aluminumband an das Folienwalzwerk von Hydro in Grevenbroich liefert. Die Gießerei muss das Restmaterial zumeist
als Metallmasseln teuer zukaufen. Um
hier zu sparen, suchte ein Team von
Ingenieuren um Projektleiter Michael Jordan, zuletzt Tag und Nacht, eine
Lösung für den kostengünstigen, aber
hochwertigen Folienschrott aus dem
Hydro-Walzwerk in Grevenbroich.
Von der bis zu 6 Mikrometer
hauchdünnen Folie, die Hydro aus
Grevenbroich für Getränkeverbundkartons in viele Länder liefert, ließen
sich Prozessüberbleibsel bisher kaum
einschmelzen. Denn auf der großen
Oberfläche der Folie wirkt eine dünne
Oxidschicht wie eine Isolierung. Außerdem hat zusammengepresste Folie
eine Dichte, die wesentlich unter der
von flüssigem Aluminium liegt. So
schwamm Folienabfall im Schmelzbad zuoberst auf dem flüssigen Metall, es entstand viel Krätze – und
die dünne Folie verbrannte statt zu
schmelzen. Die Ingenieure in Neuss
kamen auf die Idee, eine elektromagnetische Pumpe zu verwenden, die
flüssiges Metall mit hoher Geschwindigkeit zirkulieren lässt. Das rotieren-
de Metall erzeugt einen Wirbelstrom
im Inneren der Pumpe, die daher
„Vortex“ (Wirbel) heißt. Kommen die
40 x 40 Zentimeter großen, aus Folie
zusammengepressten Blöcke in den
Schmelzofen, presst die Schwerkraft
den Folienabfall in den Wirbelstrom
und unter die Oberfläche des Metalls,
wo Turbulenzströmungen entstehen.
Im rotierenden Metallstrom zersetzt
sich der Folienblock und schmilzt
perfekt.
Ein gutes Geschäft für beide Standorte: „Früher konnten wir nur dicke
walzblanke Schrotte umschmelzen,
und unsere Kunden mussten ihren
Folienschrott bei unseren Konkurrenten einschmelzen lassen, die
zudem altmodische Technologie
verwendeten“, erklärt Gießereileiter
Ulrich Bollmann. „Jetzt benutzen wir
vorhandene Anlagen auf neue Weise,
können so die dünne Folie effektiv
umschmelzen – und das lohnt sich
für uns und für unsere Kollegen in
Grevenbroich.“
N
+( ,,#('%,+/#-(',.+('.#/
'!#'+#'! +(& ,##%#-2'!#'+#'!-(
)%'-,#!''(',-+.-#('
(&)%--#%(+&)%'-, (+-"
,('+2%.&#'#.&#'.,-+2,('
,--( -"+-(&)(''-,,.",-#%-%
+(-+2+.& .+',,-#'! .+',
,-#'!&"#',"#)+2+,0#-"-"
+%-.1#%#+2*.#)&'-
+( ,,#('%+($-'!&'- (+
+-#('(&&#,,#('#'!')%'-
&#'-'',0%%,-+#'#'!( ()+-#('
)+,(''%')%'-&'!&'-
(+,-0!4 #+3#++&'2 (' 1
#%#' (%.-!&" 000%.-!&"
ALUMINIUM · 1-2/2007
93
TECHNOLOGY
Recent advances in coil coating technology
N. C. Davies, Banbury
The application of coatings to
continuous coils has been in existence as an industrial process for
more than 50 years. The developments made over that period have
led to an increase in both scale
and speed. Coil coating has thus
become the most efficient method
of coating materials, allowing end
users to displace this important
practice from their plants as a
fixed cost and into suppliers as a
variable cost.
The future competitiveness of coil
coating within Europe has the following drivers: product quality and differentiation, cost and line versatility,
environmental compliance. Achieving these technical, economic and
legislative challenges is paramount
for an industry seeking to maintain
and expand in a world where globalisation pressures exist.
Internationally, the coil coating
process is the application of thousands of tons of chemicals, paints
and lacquers to millions of square
metres of surface. The fact that most
of these coating materials have been
solvent based immediately highlights
the environmental compliance challenges facing the industry. Current
and emerging legislation, such as the
Solvent Emission Directive (SED)
[1999/13/EC] in Europe, mean that
coil coaters are continuously seeking
“cleaner” technologies.
Additionally, the End of Life Vehicle (ELV) Directive demands that the
coatings used in automotive applications are free of heavy metals, which
then impacts on the metal pretreatment (the chemical layer between
substrate and paint/lacquer) chemicals that must be chromium free.
Although the primary concerns with
chromium focus on its hexavalent
form, many packaging end-users are
also demanding the withdrawal of its
trivalent form which has historically
been used as a pretreatment in canning and other sheet packaging.
In addition to these challenges coil
94
coaters are always looking to increase
their volume through the line. The
overall line speed is in general limited
by the time spent in the paint/lacquer
curing ovens. Time at temperature is
required to cure the organic film and
also extreme care must be taken in
balancing the coating line’s fume exhaust system with the coating’s solvent emission volume. Advances have
been made in waterborne systems and
higher solid coatings and these will be
discussed further, as will alternative
cure technology processes. It should
also be stressed that probably in excess of 95% of all coated products will
be post-formed, so all alloys and coatings that are specified must be tolerant to controlled deformation.
In coil coating for can end stock
relatively thin lacquers are applied
to aluminium: utilising advances in
line design and lacquer formulations,
some lines are now reported to be
operating at speeds above 250m/min.
This is close to the limit of speed that
can be achieved by conventional roll
coat application technology. Any potential speed increases beyond this
limit will require alternative application technologies or processes.
Cleaning
focussing on filiform corrosion. These
surface active layers arise from the
high level of surface shear induced
during rolling that transforms the
near surface microstructure (Fig. 1).
Deformed surfaces are characterised by an ultra-fine grain size that
can be stabilised by magnesium oxide pinning in magnesium-containing
alloys [3]. However, it is not the fine
grain size that is responsible for the
enhanced corrosion susceptibility of
the surface layer. This susceptibility is
promoted by the preferential precipitation of manganese-rich dispersoids
during annealing treatments, which is
related to the manganese solid solution level and the temperature and
time of annealing.
These deformed surface layers on
aluminium alloys are produced most
readily by hot rolling and, generally,
the layer thickness of sheet and plate
after hot rolling is of the order of a micron. The deformed layer thickness is
progressively reduced by cold rolling
so alloys that have been extensively
cold rolled have thinner deformed
layers that can more readily be removed by conventional etch cleaning
operations. This means that resistance
to corrosion can be improved by increasing the transfer gauge thickness
so that after cold rolling the amount of
surface to be removed at final gauge is
0.2μm or less.
The primary processes for cleaning
aluminium are by spray or immersion
in either acid or alkali solutions, although acid electrolytic processes are
also used [4]. A line configuration may
The bare aluminium strip surface
presented to the first process step of
cleaning has residual rolling oil from
the cold rolling process, oxide films
generated during the high temperature rolling passes (most evident on
magnesium-containing alloys where
MgO segregates to the
surface) and deformed or
surface active layers.
For painted products,
corrosion susceptibility, in
most instances, has been
found to be controlled by
surface active layers. This
has only been studied
in detail during the past
decade [1, 2], initially
through an industry-wide
Brite-Euram programme Fig. 1: 100 nm surface active layer on AA3105 cold rolled sheet
ALUMINIUM · 1-2/2007
TECHNOLOGY
also include a mild pre-clean step to
reduce the lubricant residues or any
surface detritus.
Cleaning in alkaline solutions often produces a non-uniform surface
in that aluminium and its oxide are
soluble and magnesium oxide is relatively insoluble, hence a roughened
surface can result. However, alkali
cleaners are very effective in the removal of organics. On the other hand
an acid cleaner will consistently attack both types of oxide, providing a
more uniform surface.
For historical reasons alkali cleaning was initially the preferred cleaning option but gradually there has
been a move to acid cleaners where
proprietary cleaners are based on
sulphuric acid and incorporate hydrofluoric acid and surfactants. The
cleaners work by the sulphuric acid
removing organics and oxides and the
HF attacking both the oxides and the
aluminium substrate: the degree of attack can be controlled by the amount
of free fluoride in solution.
Pretreatment
The key functions of pretreatments
or conversion treatments after cleaning is both to provide good adhesion
and to provide corrosion protection.
Pretreatment application is either by
a dip/spray process followed by rinsing (rinse pretreatment) or by roll
coating (no-rinse pretreatment). The
volume of chemicals used in both
processes differs considerably, with
the dip/spray process giving rise to
a large volume of contaminated rinse
water requiring treatment before disposal. On the other hand, roll coating
requires a precise amount of solution
to be applied uniformly across the
strip which is then dried in place; the
reaction with aluminium consumes
all of the chemicals and no products
requiring subsequent removal are
formed, thus avoiding any potential
environmental issues.
Historically chromium based pretreatments have been used based
on chromate (Cr VI) and chromephosphate (Cr III) chemistries. Being highly acidic these pretreatments
have often compensated for any inadequacies in the cleaning process. For
ALUMINIUM · 1-2/2007
architectural products both types of
chromium pretreatments have been
used but, with the major carcinogenic
concerns surrounding the use of Cr
VI compounds, Cr VI is not used for
packaging products.
For rinse applications with Cr VI
pretreatments the coating is formed
by the reaction of solutions containing
sodium dichromate and hydrofluoric
acid. The HF attacks the residual surface oxides and aluminium, producing electrons which facilitate a redox
reaction [5,6] resulting in the reduction of the hexavalent dichromate
ion (Cr2O7) to a trivalent chromium
oxide (Cr2O3). Importantly excess
Cr VI is retained in such films and,
in downstream product applications
where these films could be damaged,
the excess hexavalent chromium reacts with water and the aluminium
to produce a new conversion coating
i.e. the pre-treatment system is selfrepairing. The no-rinse roll-coatable
analogue of this system typically contains CrO3, HF and amorphous SiO2
as a carrier.
For rinse applications of Cr III
pretreatments, the reacting solutions
contain CrO3, phosphoric acid and
hydrofluoric acid. Similar oxidation/
reduction reactions take place to the
above, resulting in the deposition of
a trivalent chromium phosphate film.
The no-rinse roll-coatable analogue of
this system contains chromium phosphate, HF and a polymer, typically
polyacrylic acid, which can act both
as an adhesion promoter and corrosion inhibitor.
As the market moves away from
chromium pretreatments, the technical challenges are greater, not only because of the inherent corrosion resistance demanded from pretreatments
but also because of the less reactive
nature of the Cr-free systems with
the aluminium strip, thereby placing
a greater emphasis on the efficiency
and quality of the precursor cleaning
step. Thus there is a greater demand
on non-Cr pretreatments to act as adhesion promoters with good uniform
barrier properties.
These adhesion and barrier aspects can be achieved by using a
treatment to enhance the natural oxide layer, such as anodising or hydro-
thermal treatment in water or steam.
Anodising pretreatments have been
used very effectively for many years
although they are not in widespread
use as coil line treatments. Coil line
treatments are based on fast anodising
in either sulphuric acid or phosphoric
acid and these types of pretreatment
have the advantages of speed, control
and uniformity compared to most
chemical conversion treatments (Fig.
2); they rely on a balance between
anodic film formation and chemical
dissolution of the anodic film and are
much under-utilised as chrome-free
pretreatments.
Fluorotitanic and fluorozirconic
acid based pretreatments [7] are in
fairly widespread use as chrome-free
alternatives. Such pretreatments can
certainly be effective but are more
difficult to monitor in production
compared to traditional chromebased systems. This is particularly an
issue where polymeric additions are
made to the formulation to improve
performance. For such systems good
adhesion is achieved through good
surface coverage of a uniform film
of either zirconium and/or titanium
oxide. However, adhesion is severely
compromised if the film is too thick
and this can lead to in-service coating failures that are unrelated to corrosion sensitivity.
Pretreatment systems based on
the use of adhesion promoters such
as silanes [8], phosphonates and polyacrylic acids have been extensively
researched. These pretreatments can
certainly be very effective especially
when applied as monolayers rather
than thick films. They are probably
most useful when used in combination with a thin anodising treatment
(as a post-anodising step) or similar
treatment to increase the barrier film
thickness and to develop a micro-surface roughness to enhance adhesion.
Paints and lacquers
Architectural: The choice of a paint
system depends on a number of
key factors including aesthetic appearance (shade, gloss, roughness),
mechanical properties (abrasion resistance, scratch resistance, impact
resistance, formability), durability
95
TECHNOLOGY
Fig. 2: Schematic of electrolytic cleaning and continuous anodising film formation
(colour and gloss retention, weathering resistance, corrosion resistance),
environmental impact and cost.
Most aluminium sheet will be rollcoated (Fig. 3) with a thin backing
coat and a two-coat topcoat, although
products with up to 4 layers of topcoat
are available for specific applications.
The initial coat is the primer, its dry
thickness usually in the range of 5 to
15 microns, to provide adhesion to the
pretreated metal and it may contain
anti-corrosive pigments. The second
coat, or topcoat, is usually in the range
of 10 to 25 microns and it provides
the colour and appearance to the final coated system along with the other
key properties required to meet the
product’s performance specification.
An alternative approach is to produce
a product with a basecoat (colour)
with a clear topcoat (gloss).
There are two types of resins
used in developing liquid paints for
coil coating, thermosetting and thermoplastic. The thermosets include
acrylics, polyurethanes, polyesters
and silicon polyesters. The polyesters
are also used in powder spray applications. The thermoplastics include
PVC-plastisols, PVDFs (polyvinyldifluoride) and polyamide-nylons. Each
resin type can provide a different balance of properties:
O Polyesters provide good all round
properties including very good colour
matching capability and colour retention combined with good flexibility,
hardness, resistance to weathering
and chemicals.
O Vinyls provide the best resistance
to acid, alkalis and many solvents.
The most common building block is
polyvinyl chloride (PVC). Fluorinated
versions (PVDF) offer the best protection against weathering including UV
resistance and for this reason they are
mostly used in critical applications
96
and prestige buildings.
O Acrylics provide high gloss plus
yellowing and mar resistance.
O Urethanes combine hardness and
abrasion resistance coupled to good
weathering performance.
Packaging: Coil coating for packaging
is dominated by the market for easyopen ends for beverage cans. Can
end lacquers are normally applied
at around 1-2.5g/m2 on the external
surface and 7-10g/m2 on the internal.
The internal coating, in particular,
must withstand the high speed forming process of the end (above all the
tab rivet) whilst protecting the beverage from the container (and vice
versa). Historically this application
was dominated by the highly ductile vinyl organosols (vinyl chloridevinyl acetate copolymers dispersed
in solvent) but recently a combination of environmental pressures and
consumer health concerns has led to
replacement of solvent based vinyls
with variants including:
O Water based
O Vinyl (chlorine) free
O Low BADGE (BADGE-free)
O Bisphenol A-free.
These developments are based on
epoxy-ester or polyesters with enhanced flexibility.
Alternative technologies
In the challenges that face the coil
coater, he/she is consistently examining alternative technologies. As part
of continuous improvement exercises,
coil coaters have worked closely with
paint suppliers in the development of
both high-solids coatings and waterborne coatings. High solids coatings
as their name implies, have a higher
content of solid components than
conventional solvent-borne systems.
Typically coating systems with a sol-
ids content of >85% fall into this
category and, since they contain
less solvent, they offer a significant reduction in VOC emissions
compared to conventional systems. As well as reducing emissions, high-solids coatings can
impart thicker application layers
than conventional systems, leading to timesaving. The reduction
in solvent however, means that
such coatings are more sensitive to
inadequate surface preparation of the
substrate.
Water-borne coatings are systems
that predominantly utilise water as
the solvent to dissolve the binder.
Typically up to 80% of the total solvent is water with the remainder
being organic co-solvents such as
glycol ethers. Such systems benefit
from large reductions in VOC emissions and an associated reduction in
both fire risk and worker exposure
to organic vapours. However, due to
the corrosive nature of the water in
the formulation, special equipment
can often be required for application.
Control of humidity is also critical to
achieving the desired film formation.
Most resins have now been incorporated into water-borne coating formulations and they are finding widespread applications for packaging
products. For architectural products
the use of water-borne coatings has
focused more on primers rather than
the diverse range of paints used for
topcoat functionality.
Powder coating is another alternative, utilising 100% resin in a dry,
powdered form and working on the
principle of attraction by oppositely
charged species. The powder is delivered through a spray gun where it
gains a low amperage, high-voltage
positive charge.
The surface to be coated is electrically grounded so that the positively
charged powder particles are attracted to it. The coated surface is then
reacted in an oven where the powder
melts and fuses into a smooth coating. This has been widely used in the
post-painting of individual parts but
has had less impact, to date, in coil
coating. Within Europe Otefal S.p.a. is
the market leader for coil coating with
line speeds typically operating at up
ALUMINIUM · 1-2/2007
TECHNOLOGY
(e.g. scratch resistance) coatings above
the topcoat.
References
Fig. 3: Schematic of roll
coat application of paint
to the strip
to 20m/min. The speed has been limited by the array of electrostatic guns
that must be synchronised to achieve
uniform film coverage. However,
powder coating has the attraction of
being solvent-free and can be cured
using infra-red or induction heating
technologies.
Other application technologies for
powder include the powder cloud
technique developed by MSC of Illinois and the electro magnetic brush
(EMB) application technique developed by DSM resins in Europe. The
powder cloud technology applies
powder to the coil strip as it passes
through a charged cloud of powder coating. The identically charged
powder particles repel each other and
deposit on to the earthed coil strip.
The EMB approach is based on technology that it is used for laser copiers
and photocopiers.
New developments in the formulation of powder coatings generally
relate to their application in packaging products such as cans, where FDA
approval is still pending. Significant
advances have also been made in the
development of powder coatings for
architectural products that require
superior long-term durability and
also powders that can form thinner
applied films.
Interesting developments in oven
technology have come out of Adphos
AG [9] who have developed nir, near
infra-red ovens to be used as boosters to conventional ovens or as stand
alone systems. These are small footprint modules that utilise high intensity heat emissions from the near infra-red wavelength spectrum and can
cure 20 micron coatings in less than
3 seconds as compared to say 20 seconds. Using lamp systems for curing
also means that they are only switched
on when needed as compared to the
ALUMINIUM · 1-2/2007
continuous power requirement of
convection ovens. However, as the
solvents will be rapidly driven off, the
extraction system has to be extremely
efficient such that the LEL (lower explosion limit) is not exceeded.
Other forms of radiation curing using ultraviolet (UV) or electron beam
(EB) have been practised since the
late 1960s. Although the growth rates
of these technologies have been relatively slow, they have been continuous. Conceptually radiation curing
could solve many of the coil coaters
problems; they are liquid coatings
applied to the substrate surface via
roll coating and cured at room temperature in seconds without volatile
materials being lost from the surface.
However barriers to their use exist,
including the capital equipment costs
involved and the limited availability
of formulations for particular applications.
Electron beam and ultraviolet
curing have developed in parallel
since the 1960’s due to their similarities. Companies which produce UV
curable formulations will generally
also produce EB curables, the main
difference being that UV requires
a photoinitiator in the formulation
whilst EB does not. The absence of a
photoinitiator is EB’s main advantage
over UV since photoinitiator residues
remain in cured coatings and prompt
worries over health, odour etc. Hence,
UV coatings have not been used in
coil coating for packaging applications. There are, however, currently
initiatives to obtain FDA approval for
the use of radcure coatings in direct
food contact.
For steel coil lines a UV curing
system is often incorporated at the
end of galvanising lines whereas, for
aluminium architectural lines, opportunities may exist for thin functional
[1] H. Leth-Olsen, Filiform Corrosion of
Painted Aluminium Coil Materials, PhD
thesis, NTNU 1996.
[2] K. Nisancioglu, J. H. Nordlien, A. Afseth
and G. M. Scamans, Significance of Thermomechanical Processing in Determining
Corrosion Behaviour and Surface Quality
of Aluminium Alloys, 7th International
Conference on Aluminium Alloys their
Physical and Mechanical Properties, 111125, 2000.
[3] G. M. Scamans, A. Afseth, G. E. Thompson and X. Zhou, Ultra-fine Grain Sized
Mechanically Alloyed Surface Layers on
Aluminium Alloys, 8th International Conference on Aluminium Alloys, Aluminium
Alloys their Physical and Mechanical
Properties, 1461-1466, 2002.
[4] J. Ball, P. K. F. Limbach, J. D. B. Sharman, A New Electrolytic Cleaning Cell. 1st
International Symposium on Aluminium
Surface Science and Technology (ASST
1997), Antwerp, Belgium, May 1997,
pp31-37 (ATB Metallurgie, Brussels, Ed.
H. Terryn).
[5] J. A. Treverton, N. C. Davies, An XPS
study of Chromate Pretreatment of Aluminium, Metals Technology ,4, 480-489,
1977.
[6] J. S. Crompton, P. R. Andrews and E.
McAlpine, Characteristics of a Conversion Coating on Aluminium, Surface and
Interface Analysis, vol.13, no.2-3, 160-166,
November 1988.
[7] A. Ruiz Garzon, G. E. Thompson, P.
Skeldon, T. Hashimoto, J. Sander, A. de
Zeeuw and P. Mitchell, Development of
Zirconium-Based Conversion Coatings on
AA3005 Aluminium Alloy, Proceedings
of 4th International Symposium on Aluminium Surface Science and Technology
(ASST 2006), Beaune, France, May 2006.
[8] T. Schmidt-Hansberg, P. Schubach,
A Comparative Study of Innovative Aluminium Pretreatments, 3rd International
Symposium on Aluminium Surface Science and Technology, (ASST 2003), Bonn,
Germany, May 2003, pp9-14 (ATB Metallurgie, Brussels, Ed. H. Terryn).
[9] K. Bär, NIR – Booster Solutions – PayBack Within 12 Months! ECCA 38th Autumn Congress – Brussels, 21-23 November 2004.
Author
Dr. Nigel Davies is currently Managing
Director of Innoval Technology Ltd, an
independent light metals technology consultancy based in Banbury, UK. Prior to
this, he had worked for Alcan in a range
of functions including having technical
responsibility for Alcan’s (now Novelis’)
European painted sheet division.
97
FORSCHUNG
Rührreibschweißen von artungleichen
Aluminiumknet- und -druckgusslegierungen
Sh. Sheikhi, J. F. dos Santos, Geesthacht
Das Rührreibschweißen (Friction
Stir Welding – FSW) ist ein innovativer Fertigungsprozess zum Fügen
von Leichtmetallen, besonders
von Aluminiumlegierungen. Die
Herstellung von Aluminiumverbindungen mit konventionellen
Schmelzschweißverfahren erfüllt
nicht immer und nicht bei jeder
Legierung die von der Industrie
gestellten Qualitätsanforderungen.
Das Rührreibschweißen stellt
eine Alternative zu den Schmelzschweißverfahren dar. Dies ist
besonders auf die guten mechanischen Eigenschaften der Schweißnähte, die Reproduzierbarkeit und
die Robustheit des Verfahrens
zurückzuführen. Im Rahmen dieser Arbeit werden artungleiche
Stumpfstoße gleicher Blechdicke
mit den Legierungen AlMg3,
AlMgSi0,5 und GD ALSi10Mg hergestellt. Die Blechdicke der eingesetzten Fügepartner beträgt 2 mm.
Es werden die Gefügeausbildung
als Folge der eingebrachten
Streckenenergie beschrieben und
die mechanischen Eigenschaften
der Schweißnähte diskutiert.
Beim FSW-Verfahren handelt es sich
um ein speziell zum Schweißen von
Aluminium und Aluminiumlegierungen geeignetes Fügeverfahren.
Friction Stir Welding (FSW) wurde von TWI (The Welding Institute,
Cambridge) entwickelt und 1991 patentiert [1].
Das Reibrührschweißen erfolgt
bei Temperaturen unterhalb des
Schmelzpunktes der Fügepartner. Die
Werkstoffe schmelzen nicht, sondern
werden lediglich plastifiziert und im
Nahtbereich regelrecht ineinander
verrührt. Da kein Schmelzbad entsteht, ist das Verfahren lageunabhängig. Das Reibrührschweißen zeichnet
sich insbesondere durch reproduzierbare und gute Schweißnahteigenschaften aus. Die Vorteile gegenüber
herkömmlichen Schweißverfahren resultieren zum einen aus dem geringen
Wärmeeintrag sowie der einfachen
Prozesskontrolle und -steuerung. Vorteile gegenüber den herkömmlichen
Schmelzschweißverfahren sind weiterhin: ein geringer Verzug, keine
Poren- und Rissbildung und keine
Entmischung der Legierungsbestandteile. Eine spezielle Behandlung der
Fügekanten vor dem Schweißen ist
nicht notwendig. Es sind weder Zusatzwerkstoffe noch Schutzgase erforderlich, auch muss kein speziell geschultes Personal eingesetzt werden,
was zu sehr geringen Betriebskosten
führt. Beim Reibrührschweißen wird
ein zylinderförmiges Werkzeug (Abb.
1-a) eingesetzt. Das Werkzeug besteht
aus einem Stift (Pin), der in der Werkzeugschulter befestigt wird und nahezu verschleißfrei funktioniert. Die
modulare Ausführung des Werkzeugs
erlaubt die Anpassung.
Zum Schweißen wird gemäß Abb.
1-b das rotierende Werkzeug langsam in den Fügebereich eingebracht.
Infolge der Rotationsbewegung des
Werkzeugs sowie des aufgebrachten
Druckes wird zwischen Schulter und
Blechen Reibungswärme erzeugt,
die zum Plastifizieren des Materials
unter der Schulter führt. Nach ausreichender Plastifizierung wird das
rotierende Werkzeug unter einer bestimmten Vorschubgeschwindigkeit
(Schweißgeschwindigkeit)
entlang
des zu schweißenden Bereiches geführt.
Die Rotationsrichtung und die
Translationsbewegung des Werkzeuges überlagern sich. Auf der einen
Seite der Fügelinie sind die Bewegungsvektoren gleichgerichtet und
auf der anderen Seite wirken sie entgegengesetzt zueinander. Die Seite
mit gleicher Richtung der Rotationsund der Translationsbewegung wird
mit Advancing-Seite bezeichnet. Die
Retreating-Seite beschreibt die Seite
mit entgegengesetzter Richtung der
Rotations- und der Translationsbewegung. Das charakteristische Bild einer
mit FSW produzierten Naht ist in Abb.
2 dargestellt.
In der Mitte der Naht liegt der
Nugget oder die Rührzone mit einer
zwiebelartigen Struktur. Dieser Bereich entsteht durch den hohen Verformungsgrad im Bereich des Stiftes
sowie der Reibungstemperatur. Die
Form des Nuggets ist abhängig von
den Schweißparametern. Das Gefüge
in diesem Bereich ist feinkörnig ca. ‡
2-5 μm [2]. Die zwiebelförmige Struktur entsteht dabei durch die Rotation
a
b
Abb. 1a) Werkzeug für das Reibrührschweißen; 1b) Prozessablauf beim Schweißen
98
ALUMINIUM · 1-2/2007
FORSCHUNG
Rp0,2, Zugfestigkeit Rm, Bruchdehnung
A der verwendeten Grundwerkstoffe
variiert gemäß Tabelle 2 sehr. Alle
Schweißnähte wurden mit einem
Werkzeug bestehend aus einem ‡
13 mm konkaven Schulter- und einem
‡ 5 mm Stiftbereich hergestellt.
Ergebnisse
Die Entwicklung einer FSW-Verbindung mit abnehmender Streckenenergie bei einer Drehzahl von 2000 min-1,
ist am Beispiel AlMg3 - DGAlSi10Mg
in Abb. 3 dargestellt. Bei dieser Werkstoffkombination wurde ein spröder
Aluminiumdruckguss mit einer nicht
aushärtbaren, gewalzten Aluminiumlegierungen gefügt. Bei kleinen
Vorschüben und dementsprechend
großer Wärmeeinbringung zeigt sich
deutlich die Struktur des Nugget. Mit
abnehmender Streckenenergie verschlechtert sich optisch die Durchmischung des Kernbereiches und
führt zu Fehlern in der Schweißnaht.
Typischer Weise sind diese Fehler
auf der Advancing-Seite der Rührzone zu finden. Die Streckenenergie qs
[J/mm] wird als Quotient des theoretischen Energiestroms q [W] und der
Schweißgeschwindigkeit vsch [mm/s]
ermittelt [4].
qs = (4/3 x S x Px Fz x N x rsch) / vsch
[J/mm] (Gleichung 1)
Der Energiestrom q [W] ergibt
sich aus dem Reibungskoeffizienten
P = 0,2, der Schweißkraft Fz [N], der
Drehzahl N [s-1] und dem Schulterradius rsch [m]. Der Reibungskoeffizient
verändert sich mit dem Plastifizierungsgrad bzw. mit der Erhöhung der
Temperatur [5]. Die Erhöhung der
Schweißparameter (Kraft und Drehzahl) führt zu einer Erhöhung des Energiestroms. Langsamere Schweißgeschwindigkeiten führen zu einer Erhöhung der Streckenenergie und umgekehrt. Es muss betont werden, dass
die Gleichung 1 die Streckenenergie
Abb. 2: Gefüge der FSW-Naht
und den Vorschub des Werkzeuges.
Der thermomechanisch beeinflusste
Bereich schließt sich am Rand des
Nuggets an. Das Material ist in diesem
Bereich aufgrund des Rühreffektes
und des Temperaturfeldes thermisch
beeinflusst und plastisch verformt
[2]. Die Wärmeeinflusszone schließt
an diesem Bereich an. Dieser Bereich
ist nicht deformiert, erfährt jedoch
aufgrund der Temperatureinwirkung
eine Veränderung des Gefüges infolge von Ausscheidungen. Infolge der
unterschiedlichen Bereiche in der
Schweißnaht variieren die mechanischen Kennwerte quer zur Naht.
So ist die Festigkeit im Bereich des
Nuggets innerhalb der Schweißnaht
am höchsten, in Einzelfällen (5xxxLegierungen, die nicht kalt verfestigt
sind) kann eine höhere Festigkeit als
im Grundwerkstoff erreicht werden.
FSW zeichnet sich durch reproduzierbare und gute Schweißnahteigenschaften aus. Die Vorteile gegenüber
herkömmlichen Schweißverfahren
resultieren zum einen aus dem gerin-
Mechanische
Eigenschaften
gen Wärmeeintrag und zum anderen
daraus, dass jegliche Aluminiumlegierungen mit diesem Verfahren geschweißt werden können.
Mit dem Rührreibschweißen sind
sämtliche artgleiche und artungleiche Aluminiumlegierungen schweißbar. Diese können in verschiedenen
Nahtkonfigurationen (wie Stumpfstoß, Stumpfstoß/Parallelstoß, Überlappstoß, Parallelstoß, T-Stöße und
Kehlnaht) hergestellt werden [3].
Material
Im folgenden sind Beispiele für artungleiche Rührreibschweißnähte dargestellt. Die Schweißversuche wurden
mit den folgenden Werkstoffen gemäß
Tabelle 1 durchgeführt. Dabei wurden artungleiche Stumpfstöße gleicher Blechdicke mit den Legierungen
AlMg3, AlMgSi0,5/6060-T4 und GD
ALSi10Mg hergestellt. Die Blechdicke der eingesetzten Fügepartner
beträgt 2 mm. Die mechanischen
Eigenschaften wie z. B. Dehngrenze
Legierung
AlMg/5754-O
AlMgSi0.5/6060-T4
GD AlSi10Mg
Rp0,2 [MPa]
120
90
150
Rm [MPa]
220
185
288
A [%]
26
27
6
Vikershärte HV0,2
59
62
88
Biegewinkel [°]
160
160
30
Tabelle 2: Mechanische Eigenschaften der verwendeten Werkstoffe
Zusammensetzung in Gewichts-%
Si
Fe
Cu
Mn
Mg
Cr
Ni
Zn
Ti
Al
0,189
0,301
0,053
0,251
2,66
0,056
---
0,033
0,033
Rest
AlMgSi0.5/6060-T4
0,3-0,6
0,1-0,3
0,1
0,1
0,35-0,6
0,05
---
0,15
0,1
Rest
GD AlSi10Mg
9,0-11,0
1,0
1,0
0,001-0,4
0,00-0,5
---
0,1
0,15
---
Rest
Legierung
AlMg3/5754-O
Tab. 1: Chemische Zusammensetzung der verwendeten Werkstoffe
ALUMINIUM · 1-2/2007
99
FORSCHUNG
seren Mischung
der Fügepartner
in der Rührzone
führt.
Der Verlauf
des SpannungsDehnungs-Diagrammes der
AlMg3/GDAlSi10Mg-Verbindung ist, stellvertretend für
die
weiteren
Verbindungen,
in Abb. 7 dargelegt. Die VerAbb. 3: Entstehung von Bindefehler in Abhängigkeit von der Streckenenergie
bindungen erreichen somit
nicht richtig beschreiben kann, da die
eine Zugfestigkeit von Rm = 225 MPa,
Wärmeentwicklung durch die Verforwelche dem Wert des Grundwerkmung des Gefüges nicht berücksichstoffes AlMg3 in etwa entspricht.
tigt wird.
Die verbleibenden Proben erreichen
Mit optimierten Schweißparamebeide eine Bruchdehnung von A = 12
tern können fehlerfreie Schweißnäh%. Mit ihren Materialeigenschaften,
te produziert werden. Der Querschliff
in Abb. 4 stellt eine Stumpfstoßverbindung der Legierungen AlMg3 und
AlMgSi0,5 (von links nach rechts) dar.
Durch die unterschiedliche Ätzung
der Werkstoffe ist der Materialverbund in der Rührzone zu erkennen.
Die Schweißnaht einer rührreibgeschweißten
Druckgusslegierung
GD AlSi10Mg mit der Legierung
AlMgSi0,5 ist in Abb. 5 und mit der
Legierung AlMg3 in Abb. 6 dargestellt.
Es ist deutlich zu sehen, dass die Materialpaarung in Abb. 6 zu einer bes-
bewegen sie sich zwischen dem spröden Druckguss und dem duktilen
Walzblech.
Im Zugversuch versagten die Proben parallel zur Schweißnaht im Bereich des Fügepartners mit der geringeren Festigkeit. Die Lage des Bruches
ist in Abb. 8 abgebildet.
Die Bruchdehnung A bezieht sich
auf die Anfangslänge L0 der Proben.
Bei einer FSW-Verbindung setzt sich
nun diese Länge nicht aus einem homogen Stück, sondern aus verschiedenen Zonen mit unterschiedlichen
Legierungen und Eigenschaften zusammen. Daher konzentriert sich die
Dehnung hauptsächlich auf einem
Bereich innerhalb der Probe und führt
zu einer relativ niedrigen Bruchdehnung. Die in Tabelle 3 angegebenen
Werte für RP0,2, Rm, der Bruchdehnung
A und des Biegewinkels stellen den
Durchschnitt aus mindestens drei artgleichen Proben dar.
Abb. 7: Spannungs-Dehnungskurven
Abb. 4: Makroschliff FSW-Schweißverbindung
AlMg3/AlMgSi0,5
a
Abb. 5: Makroschliff FSW-Schweißverbindung
GD AlSi10Mg/AlMgSi0,5
Abb. 6: Makroschliff FSW-Schweißverbindung
GD AlSi10Mg/AlMg3
100
b
c
Abb. 8: Bruchlage von geschweißten Zugproben
ALUMINIUM · 1-2/2007
FORSCHUNG
Die Zugfestigkeit der geschweißten
Proben erreicht im Verhältnis zum
jeweils schwächeren Fügepartner
gemäß Tabelle 3 97 % für die erste
Verbindung, 94 % für die zweite Verbindung und 100% für die dritte Verbindung. Die Duktilität der Schweißnähte kann durch den Biegewinkel
ausgedruckt werden. Bei der Werkstoffkombination 1 wird der gleiche
Biegewinkel erreicht wie bei den
eingesetzten Grundwerkstoffen. Die
Werkstoffkombinationen 2 und 3 zeigen einen deutlichen höheren Biegewinkel im Vergleich zum Druckguss.
Dies ist zum einen auf die gute Vermischung der Grundwerkstoffe und
zum anderen auf die Reduzierung der
Korngröße in der Rührzone zurückzuführen. Die Erhöhung der Duktilität
durch ein feinkörniges Gefüge infolge
des Rührreibschweißens wird in der
Literatur [6, 7] mit unterschiedlichen
Versuchen bewertet.
Aufgrund des Schweißvorganges
entsteht eine sehr feinkörnige Struktur im Bereich der Rührzone der Nähte, dies kann am besten aus dem Vergleich der Mikrostruktur des Druckgusses im Grundwerkstoff und im
Nugget verdeutlicht werden (Abb. 9).
Die Korngröße im unbeeinflussten
Grundwerkstoff beträgt 20 bis 30 μm.
Aufgrund des Schweißverfahrens entsteht ein rekristallisiertes Gefüge mit
einer Korngröße von etwa 5 μm. Dies
führt zu einer Verbesserung der Duktilität der Druckgusslegierung. Darüber
hinaus können Fehler im Druckguss
wie z. B. Poren oder Risse im Bereich
der Rührzone behoben werden [6].
Somit bietet das Rührreibschweißen
die Möglichkeiten, das Gefüge des
Werkstoffes lokal, der Belastung entsprechend, zu verändern.
Zusammenfassung
Das Schweißen von Aluminiumlegierungen kann fehlerfrei realisiert werden. Eine Einschränkung hinsichtlich
der Werkstoffkombination aus unterWerkstoffkombinationen
schiedlichen Aluminiumlegierungen
besteht nicht. Im Rahmen dieser Arbeit wurde der Einsatz des Verfahrens am Beispiel von artungleichen
Mischverbindungen
demonstriert
und bewertet.
Es konnte gezeigt werden, dass der
Materialfluss in der Rührzone sich
abhängig von der Streckenenergie
verhält. Die Abnahme der Streckenenergie resultierte aus der Bildung
von Fehlstellen im Materialverbund
der Rührzone – ein Hinweis auf die
falsche Parameterkombination.
Mit der richtigen Parameterkombination wurden fehlerfreie artungleiche Stumpfstöße mit den Legierungen
AlMg3, AlMgSi0,5 / 6060-T4 und GD
ALSi10Mg hergestellt. Die Zugproben
versagten im jeweils schwächeren
Grundwerkstoff weit entfernt von
der Naht. Aufgrund der feinen Mikrostruktur in den Schweißnähten
konnte eine Verbesserung der Duktilität gegenüber der des Druckgusses
festgestellt werden.
Die Betrachtung des Gefüges
verdeutlicht, dass eine Kornfeinung
insbesondere des Gusswerkstoffes
stattgefunden hat. Somit besteht die
Möglichkeit, den Rührreibprozess
zur gezielten lokalen Änderung des
Gefüges und als Reparaturverfahren
für typische Unregelmäßigkeiten in
Gussbauteilen (wie oberflächennahe
Risse etc.) einzusetzen.
Danksagung
Die Autoren bedanken sich bei C.
Schilling und M. Nüchtern für die
Durchführung der Versuche ganz
herzlich.
Literatur
1. W. M. Thomas, D. E. Nicholas, C. J.
Needham: Improvements relating to friction welding; Patent No. EP 0 615 480 B1;
1994.
2. I. Ballerstein: Feasibility study of friction stir welding of ship components; Diploma thesis; Technical University Ham-
RP0,2 [MPa]
Rm [MPa]
A [%]
Biegewinkel [°]
AlMg3 / AlMgSi0.5
100
180
12
160
AlMgSi0.5 / GD AlSi10Mg
90
175
10
75
AlMg3 / GD AlSi10Mg
110
225
12
75
Tab. 3: Mechanische Eigenschaften der FSW-Proben
ALUMINIUM · 1-2/2007
a
b
Abb. 9: Gefüge der Druckgusslegierung im
Grundwerkstoff (a) und in der Rührzone (b)
burg-Harburg; 2000.
3. P. L. Threadgill: Friction stir welding
– the state of the art –; TWI Research Report; 1999.
4. O. T. Midling, G. Rorvik: Effect of tool
shoulder material on heat input during
friction stir welding; 1st International
Symposium on Friction Stir Welding 1416 June 1999; California, USA; 1999.
5. C. M. Chen, R. Kovacevic: Finite element modeling of friction stir welding
- thermal and thermmechanical analysis;
International Journal of Machine Tools
& Manufacture; 2003; Vol. 43, p. 13191326.
6. W. M. Thomas, D. G. Staines, I. M. Norris, and E. R. Watts: Friction Stir Welding
– Process Developments; 12th International Conference on the Joining of Materials (JOM-12); Helsingor, Denmark; 20-23
March 2005.
7. S. Sheikhi, J. F. dos Santos: Eigenschaften
von rührreibgeschweißten AluminiumMischverbindungen; Schlüsseltechnologie Leichtmetallguss im Automobilbau,
17./18. November 2005 - Bad Nauheim.
Autoren
Dr. Jorge F. dos Santos leitet die Gruppe
Fügetechnologie am Institut für Werkstoffforschung des GKSS Forschungszentrums
Geesthacht GmbH.
Dr.-Ing. Sharam Sheikhi ist Projektingenieur am Institut für Werkstoffforschung
des GKSS.
101
V E R A N S TA LT U N G E N
22nd ASK Metal Forming: „Forming the Future”
New materials, forming procedures,
machines and comprehensive simulation and optimisation methods are
the basis for rapid improvements in
the development of the forming technology. In many cases this leads to increasingly powerful, customised endproducts and cost-effective process
chains. The 22nd ASK Metal Forming
will include contributions from the
scientific and industrial communities, encompassing a broad spectrum
of topics from the seemingly classic to
state-of-the-art future technologies.
Forging and rolling can open up
new markets and ensure market
shares by material development,
process simulations and process
monitoring. Moreover, it is possible to overcome the past limitations
of forming technology by applying
modern developments. For example,
new flexible forming procedures like
strip profile rolling, incremental sheet
forming or flexible ring profile rolling
enable the cost-effective production
of small lot sizes and bad optimised
lightweight products. Miniaturisation
opens up new markets for micro-parts
made of metal. Modern simulation
techniques and material models support the process planning by predictions of grain structure, part quality
and process capability.
Simultaneously to the lectures,
there will be an exhibition, where interested companies will present prod-
ucts and services. In the afternoon of
the second day, the participants will
get the facility to attend demonstrations at the constructions of the IBF of
the RWTH Aachen. There is also the
opportunity to visit the IEHK and the
Centre of Metal Construction.
The Colloquium is addressed to all
responsible persons in the steel- and
non-ferrous metal industry dealing
with the production, design, plant
construction, manufacturing, inspection and applications of innovative
products. All presentations will be
translated simultaneously into English.
Further information:
Dipl.-lng. Marcus Urban
Tel: +49 (0)241 8095927
ask@ ibf.rwth-aachen.de
www. ibf. rwth-aachen .de
The Coatings Summit
Bauen und Energie
5 to 6 February 2007, Vienna, Austria
15. bis 18. Februar 2007, Wien
Top-level speakers from Asia, America and Europe, from global groups
and medium-sized power players, will
share their insight into vital and emerging issues of the coatings industry.
They will identify trends and discuss
key drivers, be it the changing nature
of sourcing and manufacturing, market entry strategies or new regions to
source creativity and innovation.
Further information:
European Coatings Conference
Tel: +49 (0)511 9910-270
esther.schwencke@coatings.de
www.coatings.de
Die internationale Messe für alle, die
beim Bauen, Renovieren, Modernisieren, und Energie sparen auf Kosteneffizienz und Qualität achten.
Weitere Infos:
Reed Exhibitions Messe Wien
Tel: +43 (0)1 727 20-0
info@messe.at
www.messe.at
gical processing. SME will celebrate its
50 year anniversary.
Further information:
Society for Mining, Metallurgy and Exploration
Tel: +1(303) 973-9550
meetings@smenet.org
www.smenet.org
Presenter: Institute of Metal Forming (IBF) and Institute of Ferrous
Metallurgy (IEHK), RWTH Aachen
University, 8 and 9 March 2007.
R+T 2007
10. bis 14. Februar 2007, Stuttgart
Themenschwerpunkte der internationalen Fachmesse in Stuttgart sind der
Rolladen-, Jalousie- und Markisenbau
sowie der Sonnenschutz, Tor- und
Fensterbau. Das Fachpublikum erstreckt sich auch auf Architekten und
Fachplaner.
Weitere Infos:
Messe Stuttgart
Tel: +49 (0)711 2589-0
info@messe-stuttgart.de
www.messe-stuttgart.de
102
3. Landshuter Leichtbau-Colloquium
22. und 23. Februar 2007, Landshut
Das Colloquium zum Thema „Leichtbau - von der Idee zum Produkt“ bietet
ein Forum, um ausgesuchte Leichtbaulösungen zu präsentieren. Der Leichtbau soll dabei über den gesamten Produktlebenszyklus von der Idee bis zum
fertigen Produkt und dessen Wiederverwertung diskutiert werden.
Weitere Infos:
Fachhochschule Landshut
Tel: +49 (0)871 506 134
info@leichtbau-cluster.de
www.leichtbau-cluster.de
TMS 2007 Annual Meeting Exhibition
25 Feb. to 1 March 2007, Orlando, U.S.
More than 140 exhibitors from some
20 countries will present solutions to
technical challenges in a vast array of
areas: e.g. cast shop technology, emerging materials, environmental management, industrial process control and
automation, primary production equiment and services, technology resources, surface processes.
Further information:
The Minerals, Metals & Materials
Society
Tel: +1(724) 776 9000
mtgserv@tms.org
www.tms.org
2007 SME Annual Meeting Exhibit
7. KBU-Kolloquium: Bergbauliche Abfälle und Emissionshandel
25 to 28 February 2007, Denver, U.S.
1. und 2. März 2007, Aachen
The meeting covers a broad range of
topics regarding mineral and metallur-
Eine gemeinsame Tagung des Lehrund Forschungsgebietes Berg- und
ALUMINIUM · 1-2/2007
EVENTS
Umweltrecht der RWTH Aachen und
der GDMB Gesellschaft für Bergbau,
Metallurgie, Rohstoff- und Umwelttechnik. Die Themen sind unter anderem: Die Anforderungen an die
Verwertung mineralischer Abfälle,
die Verordnung mineralische Abfälle,
Einsatzmöglichkeiten bergbaulicher
Abfälle für Baustoffe, Emissionshandelsrecht, NAP II.
Weitere Infos:
GDMB
Tel: +49 (0)5323 937 90
gdmb@dgmb.de
www.gdmb.de
EFB-Kolloquium „Blechverarbeitung“
06. und 07. März 2007, Fellbach
Das Kolloquium steht unter dem Leitthema „Neue Wege zum wirtschaftlichen Leichtbau – Innovative Lösungen zur Blechumformung und mechanischen Fügetechnik“. In den einzelnen
Sektionen werden die aktuellen Fragestellungen zu höchstfesten Stählen und
anderen Werkstoffen sowie zu Verfahren in der Fügetechnik und Simulation
im Leichtbau aufgegriffen.
Weitere Infos:
Europäische Forschungsgesellschaft
für Blechverarbeitung
Tel: +49 (0)511 97175-0
info@efb.de
www.efb.de
metall München
07 to 10 March 2007, Munich, Germany
European specialist trade fair for metalworking in industry and trade. The fair
will present solutions for areas such as
tool machines, precision tools, components, component modules and accessories, manufacturing and process
automation, measuring technology and
quality assurance.
Further information:
Gesellschaft für Handwerksmessen
Tel: +49 (0)89 949 55-0
messe@ghm.de
www.ghm.de
Metal Build 2007
12 to 15 March 2007, Moscow, Russia
Metal Build 2007 is the fifth anniversary exhibition of metal in construction and architecture, covering all
questions from materials for metal
constructions to their processings up
to finished products.
ALUMINIUM · 1-2/2007
Fortbildung
Einführung in die Technologie des Aluminiums, 12.-14.02.2007, Aachen
DGM Deutsche Gesellschaft für Materialkunde, Tel.: 069 75306 757,
E-Mail: np@dgm.de, www.dgm.de
Die neue Gefahrstoffverordnung in der Praxis, 13.-14.02.2007, Stuttgart
VDI Wissensforum, Tel.: 0211 6214 201,
E-Mail: wissensforum@vdi.de, www.vdi-wissensforum.de
Neue Werkstoffnormung und neue Werkstoffbezeichnungen für
metallische Werkstoffe in Europa, 15.02.2007, Essen
Haus der Technik, Tel.: 0201 1803 344,
E-Mail: information@hdt-essen.de, www.hdt-essen.de
Betriebswirtschaftliche Grundlagen für technische Führungskräfte
22.-23.02.2007, Mainz
Ostbayer. Technologie-Transfer-Institut (Otti), Tel.: 0941 29688 21,
E-Mail: margit.zierl@otti.de, www.otti.de
Der Sicherheitsbeauftragte, 26.-27. Februar 2007, Hannover
TÜV Nord Akademie, Tel: 0511 986 1910,
E-Mail: bcramer@tuev-nord.de, www.tuevnordakademie.de
Systematische Beurteilung technischer Schadensfälle
11.-16.03.2007, Ermatingen, CH
DGM Deutsche Gesellschaft für Materialkunde, Tel.: 069 75306 757,
E-Mail: np@dgm.de, www.dgm.de
Einführung in die Metallkunde für Ingenieure und Techniker,
13.-16.03.2007, Darmstadt
DGM Deutsche Gesellschaft für Materialkunde, Tel.: 069 75306 757,
E-Mail: np@dgm.de, www.dgm.de
Trends in der Nutzfahrzeugindustrie, 20.-21.03.2007, München
Euroforum, Tel.: 0211 9686 3611,
E-Mail: theresia.strehler@euroforum.com, www.euroforum.de
Further information:
Tel: +7 (495) 956-48-22
metalbuild@m-expo.ru
www.metal-build.ru
service@dfo-online.de
www.dfo-online.de
Russia Aluminium Casting Conference
27 to 29 March 2007, Moscow, Russia
DFO-Leichtmetall-Tagung
20. und 21. März 2007, Neuss
Thema der Tagung: Die Oberflächenbehandlung von Leichtmetallen. Im
Vordergrund stehen die Vorbehandlung, anodische Oxidation und PVD/Plasmabeschichtung von Aluminium.
Es werden moderne Korrosions- und
Verschleißschutzsysteme vorgestellt.
Weitere Tagungsthemen betreffen den
Werkstoff Magnesium.
Weitere Infos:
Deutsche Forschungsgesellschaft für
Oberflächenbehandlung e. V. (DFO)
Tel: +49 (0)2131 40 811 10
The conference is organised by AlusilMVT under the assistance of Russian
Association of Foundrymen and Aluminium Extruders Association. Subjects are: markets, applications and
research, melt preparation, ingot and
continuous casting, manufacture of
castings, environment and safety. The
conference will be supplemented by
the exhibition of state-of-the-art casting equipment and technologies.
Further information:
Tel: +7 (495) 785-2005
main@alusil.ru
www.alusil.net
103
U M W E LT P R E I S
BDI-Umweltpreiswettbewerb 2007/08
Umweltfreundlichkeit siegt
Der Bundesverband der deutschen
Industrie (BDI) hat den Umweltpreiswettbewerb für die Industrie
2007/08 erneut ausgeschrieben.
Der Wettbewerb ist Teil des europäischen Umweltpreises der EUKommission. Die Sieger der nationalen Wettbewerbe nehmen damit
auch auf europäischer Ebene teil.
Insgesamt benennt der BDI-Umweltwettbewerb fünf Preiskategorien.
Preiskategorien
• Umweltfreundliche Technologien
• Umweltfreundliche Produkte
• Umweltorientierte Unternehmensführung
• Umweltschutz-Technologietransfer in Entwicklungs- und Schwellenländer und Staaten Osteuropas
• Kreislaufwirtschaft, Recycling und
Abfallmanagement.
Über die nationalen Preisträger und
die Benennungen zum europäischen
Wettbewerb entscheidet eine Jury
aus namhaften Persönlichkeiten aus
Wirtschaft, Wissenschaft, Politik und
Umweltorganisationen. Vorgeschaltet ist eine fachliche Prüfung durch
das Fraunhofer-Institut für Systemund Innovationsforschung (ISI) in
Karlsruhe. Der Beurteilung der eingehenden Bewerbungen liegen – neben
den allgemeinen Kriterien Umweltentlastung, Ressourcenschonung, wirtschaftlicher sowie gesellschaftlicher
Nutzen (Nachhaltigkeit) und Innovationsleistung – folgende spezifische
Anforderungen in den einzelnen Preiskategorien zugrunde:
Umweltfreundliche Technologien
• Entwicklung innovativer Verfahren zur Verringerung von Umwelt
belastungen an der Quelle ihres
Entstehens sowie zur Schonung
von Ressourcen.
• Erfüllung von Umweltstandards
und Umweltentlastungen über
gesetzliche Vorgaben hinaus.
• Vorrang integrierter Prozesse vor
104
end-of-pipe-Lösungen sowie von
Verfahren und Technologien mit
größerer Anwendungsbreite.
Umweltverträgliche Produkte
• Umweltentlastung durch innovative, ökoeffiziente Produkte
und Dienstleistungen.
• Einbeziehung von Ressourcenschonung, Energieeffizienz, Recycling- und Entsorgungsfreundlichkeit bei der Produktentwicklung
und -gestaltung.
• Besondere Berücksichtigung neuer Produkte, die bereits am Markt
vorhandene Güter verbessern
bzw. ersetzen und zumindest als
Prototyp vorliegen.
Umweltorientierte
Unternehmensführung
• Entwicklung einer integrierten
umweltorientierten Unternehmenspolitik, z. B. in Form ganzheitlicher
Umweltschutzkonzepte oder Umweltleitlinien.
• Art und Grad der Einbeziehung der
Belegschaft in das Unternehmenskonzept, beispielsweise durch Ausund Weiterbildung in Umweltfragen.
• Kommunikation mit externen
Zielgruppen.
• Übernahme von Produktverantwortung, z. B. durch Rücknahmeund Recyclinggarantien.
Umweltschutz-Technologietransfer
Diese Kategorie bezieht Technologien
und Produkte wie auch das Umweltschutzmanagement ein. Dabei sind
folgende Kriterien wichtig:
• Beispielhafte Zusammenarbeit mit
einem privaten Partner oder einer
öffentlichen Einrichtung im Sinne
einer langfristig tragfähigen Entwicklung.
• Lösung eines spezifischen regionalen Umweltproblems unter Berücksichtigung der speziellen An-
forderungen sowie der vorhandenen Ressourcen und Fähigkeiten in diesen Ländern.
• Eignung zur weiteren Verbreitung
und künftigen Weiterentwicklung.
Kreislaufwirtschaft, Recycling
und Abfallmanagement
• Entwicklung von hochwertigenRecyclingmaßnahmen (produktionsintegrierte Verfahren werden
unter der Kategorie „Umweltfreundliche Technologien“ erfasst).
• Innovative und effiziente Systeme
zur Sammlung, Verwertung und
zum Wiedereinsatz von Material,
Komponenten und Produkten.
• Vermarktung und Wiederverwendung der rezyklierten Materialien
und Produkte.
• Ressourcenschonendes und kosteneffizientes Abfallmanagement.
Teilnahmebedingungen
Am BDI-Wettbewerb können Unternehmen und Organisationen aus der
Industrie teilnehmen. Institutionen,
die nicht dem industriellen Bereich
angehören, sind teilnahmeberechtigt,
wenn ihr Projekt in Zusammenarbeit
mit der Industrie entwickelt wurde
und bereits industrielle Anwendung
gefunden hat. Ferner sollten die Projekte die Ausrichtung auf eine nachhaltige Entwicklung erkennen lassen,
über gesetzliche Vorschriften und
Auflagen hinausgehen und sich entweder in operationaler Phase oder
praktizierter Anwendung befinden.
Die Bewerbungsunterlagen zur Teilnahme am BDI-Umweltpreiswettbewerb für die deutsche Industrie
2005/06 sind bis spätestens 15. Juni
2007 einzureichen. Die Bekanntgabe
der nationalen Preisträger und die
Verleihung der ideellen Auszeichnungen erfolgen im Rahmen der BDIJahrestagung voraussichtlich im Juni
2008 in Berlin mit einer begleitenden
Ausstellung für die Preisträger. Die
detaillierten Bewerbungsformalitäten
sind auf der Homepage des BDI abrufbar.
N
ALUMINIUM · 1-2/2007
NEW BOOKS
Virtual Fabrication of Aluminium Products
This book contains the results of a major project of the European aluminium
industries and their academic partners on “virtual fabrication”. Its three
chapters give an overview over:
1. The production, processing and
quality details of semi-finished products (sheet and extrusions) of some
typical conventional wrought aluminium alloys and products.
2. The fundamental physical processes and recent modelling approaches
of casting, deformation and annealing
processes and microstructures.
3. Their integration and application
in “through process simulations” of
plant production.
“Virtual fabrication“ defines a new
tool to simulate industrial processes
with integrated models that can predict related properties and applied to
many purposes, such as:
• Improvement of industrial production processes and product quality
• Improvement of research and de-
velopment quality for process and
product optimization
• Design of microstructural states
and resulting specific material properties
• Design most effective and efficient
fabrication and processing routes
• Reduce significantly the number
of expensive test runs in productive
plants
• Reduce cost and time to market of
new products and processes
• Standardize aluminium alloys for
application and to enhance recyclability.
The targeted audience groups are:
• industrial production engineers
working on fabrication and processing sites
• engineers dealing with product
development and aluminium applications
• scientists and students working
in academic and industrial research
laboratories.
Virtual Fabrication of Aluminium
Products, Jürgen Hirsch (Editor)
Hardcover, 406 pages,
October 2006
£85.00 / €127.50
ISBN: 3-527-31363-X
Umschlüsselung DIN zu EN
Europäische Aluminiumwerkstoffe
Der europäische Binnenmarkt benötigt gemeinsame Normen, die die
Einschränkungen für den freien Warenverkehr abbauen helfen. Diese
europäische Normung hat auch mit
Blick auf den Werkstoff Aluminium
zu großen Veränderungen geführt. In
relativ kurzer Zeit mussten die nationalen Normen durch europäische
Normen ersetzt werden, in denen Bezeichnungssysteme und Zustandsbezeichnungen für Werkstoff geändert
wurden.
Um dem Anwender die Umschlüsselung alt/neu für Aluminium und
seine Legierungen zu erleichtern,
sollte ein einfach zu handhabendes
Hilfsmittel erarbeitet werden. Damit
war der Startschuss für das Beuth-Pocket gefallen.
Die lange Zeit der Erstellung verdeutlicht, wie viel Arbeit in dem
handlichen, kleinformatigen Nachschlagewerk steckt. Es durchdringt
ALUMINIUM · 1-2/2007
das Dickicht und ermöglicht einen
schnellen Zugriff auf oft mühsam zusammengesuchte Fakten: Das Nachschlagewerk bringt Transparenz in
die Fülle der Norm-Dokumente. Es
klärt die Bedeutung von Kürzeln und
Kennzeichen, vermittelt wichtige Informationen für den betrieblichen
Alltag und verweist nicht zuletzt auf
die gängigen Normen.
Herausgekommen ist das Beuth
Pocket “Europäische Aluminiumwerkstoffe“, das in 1. Auflage 2006
zweisprachig deutsch/englisch erschienen ist.
Beuth Pocket
H.-W. Wenglorz, Europäische Aluminiumwerkstoffe / European Aluminium Materials
1. Aufl. 2006. 294 S. 21 x 10,5 cm.
Brosch. 29,80 Euro.
ISBN 978-3-410-16287-2
Beuth Verlag GmbH
Bei zerstörungsfreien Prüfungen (ZfP)
wird verstärkt auf die Kombination verschiedener Verfahren gesetzt, um die
Sicherheit unserer technischen Umgebung
zu erhöhen. Sowohl für kombinierte
Methoden wie auch für Einzelprüfungen
stellen zwei DIN-Taschenbücher (TB) das
normentechnische Knowhow zur Verfügung. DIN-TB 56 „Materialprüfnormen
für metallische Werkstoffe 2“ enthält die
Normen und Norm-Entwürfe für die Volumenverfahren der ZfP. Ergänzend dazu
ist DIN-TB 370 „Materialprüfnormen für
metallische Werkstoffe 4“ erschienen, das
die Normen zu Oberflächenverfahren und
zu anderen ZfP-Verfahren umfasst.
DIN-TB 56, Materialprüfnormen für metallische Werkstoffe 2. 7. Aufl. 2006. 640
S. A5. Brosch. 125,30 Euro. ISBN 978-3410-16300-8. Beuth-Verlag GmbH
DIN-TB 370, Materialprüfnormen für
metallische Werkstoffe 4. 2006. 560 S.
A5. Brosch. 106,90 Euro. ISBN 978-3-41016313-8., Beuth Verlag GmbH
105
FIRMENSCHRIFTEN
SECO/Warwick
Aluminium Annealing Furnaces
SECO/Warwick provides customengineered aluminium coil and foil
annealing furnaces with capacities
ranging from single coil modular furnaces to multi-zone furnaces with
tight zone control. The company
continues to develop technologies to
improve equipment performance and
efficiency. Two significant improvements for coil and foil processing
include:
O Mass flow design to protect load
surfaces that are vulnerable to damage during high atmosphere flow.
O Vortex flow jet heating that reduces cycle time by taking advantage
of the high heat transfer produced
through convection heating.
The updated brochure is available
online at www.secowarwick.com or
via e-mail (info@secowarwick.com)
for a print copy.
Messerfabrik Neuenkamp
Neuer Schneidtechnik-Katalog
Die Messerfabrik Neuenkamp GmbH,
ein Mitglied der internationalen
Dienes-Gruppe, bietet eine breite Palette von Serviceleistungen rund um
die Schneidtechnik. Zielgruppe ist die
verarbeitende Industrie von Stahl und
NE-Metallen.
Ein neuer Produktkatalog gibt einen Überblick über das Produkt- und
Serviceprogramm, angefangen bei
Rollscherenmessern über Distanzund Druckverteilungsringe, Sepa-
rierwerkzeuge, komplette Schneideeinheiten bis hin zu Messerträgersystemen und zur Poliermaschine.
Die abgebildeten Modelle stehen
beispielhaft für eine Vielzahl individueller Konfigurationen, die auf spezielle Kundenanforderungen entwickelt werden.
Der Katalog ist in deutscher und
englischer Sprache erhältlich und
kann unter info@neuenkamp.de angefordert werden.
Schüco International
Nachhaltigkeitsbericht „SustainIng“
Effiziente Lösungen und nachhaltige
Produkte, die höchste Ansprüche hinsichtlich Komfort und Design erfüllen,
müssen kein Widerspruch sein. In der
Natur gibt es zahlreiche Beispiele für
den perfekten Umgang mit Energie
und Material. Vor diesem Hintergrund
beschäftigt sich der aktuelle SchücoNachhaltigkeitsbericht „SustainIng“
mit natürlichen Ansätzen für die zukunftsorientierte Gebäudehülle. Die
68-seitige Broschüre richtet sich vor
allem an Investoren und Architekten.
Sie informiert über den nachhaltigen
Umgang mit der Umwelt sowie darü-
106
ber, wie sich Gebäudehüllen an die
weltweit unterschiedlichen Klimaverhältnisse anpassen lassen. Außerdem präsentiert der Bericht überraschende Analogien aus der Welt der
Bionik. „SustainIng“ beschreibt nicht
allein mögliche Zukunftsszenarien,
sondern zeigt auch vorhandene Lösungsmöglichkeiten auf. Prominente
Wissenschaftler wie Ernst Ullrich von
Weizsäcker kommen zu Wort.
Die Broschüre liegt in deutscher
und englischer Sprache vor und kann
unter www.schueco.de/architekten
angefordert werden.
ALUMINIUM · 1-2/2007
LITERATURE SERVICE
Schuitema, H.
„Heavy duty“ Magnesium. Entwicklung und Druckguss-Produktion eines 6-Zylinder Magnesium Bedplate
Druckgusspraxis 6/2006, S. 243-246
Nach den neuen EU-Vorschriften, die ab 2008 die Grenzwerte
für Schadstoffe weiter reduzieren, dürfen Pkw nicht mehr als
140 g/km CO2 ausstoßen. Dies erfordert weitere Anstrengungen
zur Gewichtsminderung: durch verbesserte Effizienz der Verbrennung („innermotorische Maßnahmen“), Reduzierung der
Antriebsverluste im Antriebsstrang, aerodynamische Feinarbeit und Gewichtsoptimierung durch die Verwendung leichter
Werkstoffe. Ein süddeutscher OEM hat sich für die Verwendung
von mehr Magnesium entschieden, um das Gewicht des Motors
zu reduzieren. Ein weiterer Aspekt ist die Verbesserung der
Gewichtsverteilung (geringere Belastung der Vorderachse), was
zum dynamischeren Fahrverhalten beiträgt. Die Verwendung
von Magnesium in einer Größenordnung von 20 kg gilt bis jetzt
als einzigartig im modernen Motorenbau. In der Vergangenheit
gab es keine geeigneten Legierungen, die die geforderten Werte
für mechanische Festigkeit und Kriechverhalten bei hoher thermischer und dynamischer Belastung aufweisen. 3 Bild.
ALUMINIUM 1/2 (2007)
Werkstoffeigenschaften
transformed more than most by global forces: by the rise of
market economies in China and the former Soviet republics,
and by rising energy costs. In the next twenty years, even with
practically inexhaustible ores, primary aluminium capacity will
be overtaken by recycled aluminium due to energy costs. 6 images, 2 Tab.
ALUMINIUM 1/2 (2007)
B. Rieth
Coil Coating – weltweit ein Wachstumsmarkt
ALUMINIUM 82 (2006) 12, p. 1170 pp.
„Finish first – fabricate later” – unter diesem Slogan wird das
Coil Coating zunehmend als eine kostengünstige Alternative
zur konventionellen Stücklackierung eingesetzt. Organische
Beschichtungslinien vereinen chemische, thermische und
mechanische Prozesse und bieten den Anwendern ein breites
Spektrum an Funktions-, Farb- und Dekorvarianten. Nachfolgend soll – losgelöst von den technischen Details – ein Überblick über Märkte, Anlagentechnik und die Akteure gegeben
werden. 11 Bild.
ALUMINIUM 1/2 (2007)
Sequeria, W., Kind, R., Andersen, S., Greeless, G.
Voraussage und Validierung von Verformungen und Eigenspannungen in einem Aluminiumdruckgussteil mit Betrachtung der für den Druckgießprozeß relevanten Parameter
Druckgusspraxis 6/2006, S. 235-242
Das Druckgießverfahren bietet eine exzellente Dimensionsgenauigkeit bei der Herstellung dünnwandiger NE-Gussteile.
Trotzdem treten während der Produktion an manchen Gussteilen Maßhaltigkeitsprobleme auf. Die Tatsache, dass der Formhohlraum innerhalb der notwendigen Toleranzen liegt, und das
unregelmäßige Auftreten der Fehler machen die Suche nach
der Ursache des Problems schwierig. Es ist nicht sinnvoll, die
Belastungsanalyse eines Teils durchzuführen, wenn die sich
während des Gießprozesses entwickelnden Eigenspannungen
unbekannt sind. Schwankende Temperaturverteilungen im
Gussteil sind beim Druckgießen hauptsächlich durch Wandstärkenübergänge sowie durch die Anordnung von Kühlelementen und durch die Formsprüheinrichtung begründet. Nach
der Entnahme aus der Form erfährt das Teil eine thermische
Behandlung, die von der Abkühlung auf Raumtemperatur an
ruhender Luft bis zur Abschreckung in einem Kühlmedium reichen kann. Die Abkühlung führt zu Verformungen und Eigenspannungen im Gussteil – eine der Hauptursachen für Dimensionsabweichungen im Druckgussteil. Der Artikel diskutiert
die Verformung eines Sicherheitsbauteiles aus Aluminium, die
mittels computergestützter Verifizierung ermittelt wurde. Die
Ergebnisse werden mit den Resultaten verglichen, die aus der
Anwendung eines Prozessoptimierungstools für die Abkühlung
von Druckgussteilen von der Formentnahme auf Raumtemperatur erhalten wurden. Die Ausbildung von Eigenspannungen und
ihre praktische Bedeutung werden diskutiert. 13 Bild., 9 Que.
ALUMINIUM 1/2 (2007)
Formguss
Although still using basically century-old technology, the primary aluminium industry has again doubled in capacity during the last twenty years. This is a dramatic increase, even if
the 1984 figures for several of then communist economies are
uncertain. On a macro-economic scale, this industry has been
ALUMINIUM · 1-2/2007
Oberflächenbehandlung
Anon.
Die deutsche Gießereiindustrie – eine Branche mit Perspektiven
ALUMINIUM 82 (2006) 12, p. 1163 pp.
Deutschland zählt heute weltweit zu den führenden Gießereinationen. Hinter den bevölkerungsreichen Ländern China, USA,
Russland und Japan steht Deutschland an fünfter Stelle in der
Welt. In Europa ist die deutsche Gießereibranche seit Jahren mit
Abstand führend. Wie lässt sich dieser Erfolg angesichts der allgemein beklagten Standortnachteile in Deutschland erklären?
Dieser Frage geht der Bericht nach. Für 2006 ist die Gießereibranche optimistisch, das hohe Rekordniveau aus dem Vorjahr
zumindest halten zu können. Diese Zuversicht wird durch den
Verlauf des ersten Halbjahres 2006 bestätigt. 4 Bild.
ALUMINIUM 1/2 (2007)
Formguss
Kraynik, A. M.
The Structure of Random Foam
Advanced Engineering Materials 2006, 8, No. 9, S. 900-906
Surface Evolver models of soap foam with a wide range of
cell-size distributions are used to investigate random cellular
morphology. Geometric properties of foams and foam cells are
analyzed. A simple accurate theory relates the total surface area
of foam to the cell-size distribution. The total surface area is
approximately equal to the total edge length when both quantities are scaled by average cell volume. Voronoi structures are
significantly different from foams, which raises questions over
their use for predicting structure-property relationships. 22 images, 13 sources.
ALUMINIUM 1/2 (2007)
R. P. Pawlek
Dramatic changes in primary aluminium smelting between
1984 and 2005
ALUMINIUM 82 (2006) 12, p. 1206 pp.
Aluminium-Industrie
Werkstoffe, Metallkunde
McElwain, D.L.S., Roberts, A.P., Wilkins, A. H.
Yield Functions for Porous Materials with Cubic Symmetry
Using Different Definitions of Yield
Advanced Engineering Materials, 2006, 8, No. 9, S. 870-876
Plastic yield criteria for porous ductile materials are explored
numerically using the finite-element technique. The cases of
107
©
LITERATURSERVICE
spherical voids arranged in simple cubic, body-centred cubic
and face-centred cubic arrays are investigated with void volume
fractions ranging from 2 % through to the percolation limit (over
90%). Arbitrary triaxial macroscopic stress states and two definitions of yield are explored. The numerical data demonstrates
that the yield criteria depend linearly on the determinant of
the macroscopic stress tensor for the case of simple-cubic and
body-centred cubic arrays – in contrast to the famous GursonTvergaard-Needleman (GTN) formula – while there is no such
dependence for face-centred cubic arrays within the accuracy
of the finite-element discretisation. The data are well fit by a
simple extension of the GTN formula which is valid for all void
volume fractions, with yield-function convexity constraining
the form of the extension in terms of parameters in the original
formula. Simple cubic structures are more resistant to shear,
while body-centred and face-centred structures are more resistant to hydrostatic pressure. The two yield surfaces corresponding to the two definitions of yield are not related by a simple
scaling.10 images, 21 sources.
Nogowizin, B.
Geometrische Gestaltung der Gießläufe für Druckgussstücke
Druckgusspraxis 6/2006, S. 247-253
ALUMINIUM 1/2 (2007)
Pidvysotskyy, V., Matuszyk, P.J., Bloching, H.
Analysis of the Influence of the Specimen Shape on the
Zone of Homogeneous Stress in Tensile Test / Untersuchung
des Einflusses der Probenform im Bereich homogener Spannungen beim Zugversuch (Beitrag in engl. Sprache)
MP Materialprüfung 2006, 10, S. 498-503
Werkstoffe, Metallkunde
Shashikala, A.R., Rani, R.U., Sharma, A.. K., Mayanna, S.M.,
Untersuchungen zur selektiven Schwarzverchromung auf
Aluminiumlegierungen für Solaranwendungen / Studies on
solar selective black chrome plating on aluminium alloys
Galvanotechnik 10/2006, S. 2387-2400
Selektive Solarbeschichtungen absorbieren die Sonneneinstrahlung und wandeln sie in Wärmeenergie für den Hausgebrauch
und industrielle Anwendungen um. Die Schwarzverchromung
wird häufig aufgrund ihrer haltbaren, nicht reflektierenden
Oberfläche und ihrer beständigen optischen Eigenschaften
für Automobile, Phototechnik, Solarkollektoren und optische
Geräte verwendet. Schwarzchromschichten werden auf verschiedene Werkstoffe wie Kupfer oder Stahl abgeschieden.
Trotz neuer Entwicklungen werden zur Herstellung dünner
Schichten Chrom(VI)elektrolyte eingesetzt. In der vorliegenden
Studie wird die Auswirkung verschiedener Unterschichten
(cyanidisches/nicht cyanidisches Kupfer, galvanisches und
stromloses Nickel) auf die Stabilität und solare Selektivität von
Schwarzchromschichten auf Aluminiumlegierungen untersucht. 8 Bild., 23 Que. Beitrag in dt. u. engl. Sprache).
ALUMINIUM 1/2 (2007)
Oberflächenbehandlung
Die Ausschnitttechnik erstreckt sich nicht nur auf den Anschnitt,
sondern auch auf die Gestaltung und die Anordnung der Gießläufe, der Überläufe und der Entlüftung. Der Artikel thematisiert
die Darstellung der geometrischen Gestaltung der Elemente und
ihre Berechnungen für die Gießlauf-Anschnittsysteme, die zur
Entwicklung der erforderlichen computergestützten Entwurfsprogramme angewandt werden können. Es ist nicht das Ziel,
wie ein Gießlaufanschnittsystem für ein bestimmtes Gussstück
zu konstruieren sei, vielmehr wird die Aufmerksamkeit auf die
verschiedenen Einflussgrößen bei der Gestaltung von Gießläufen gelenkt. 7 Bild., 5 Que.
ALUMINIUM 1/2 (2007)
Formguss
Im vorliegenden Beitrag werden die Ergebnisse aus Untersuchungen zum Einfluss der Probengeometrie und der Einspannlänge auf die homogene Dehnung in der Originalprüflänge
vorgestellt. Alle Versuche wurden mit einem austenitischen
Stahl 316 L und bei verschiedenen Querschnitten der Flachproben durchgeführt. Die Berechnungen des Verformungsprozesses wurden mittels der Finite-Elemente-Methode unter Nutzung des Programms Abaqus/Explicit ausgeführt. Es werden die
Korrelation zwischen der Dehnungsverteilung in den Proben
und verschiedenen Parametern, wie zum Beispiel dem Übergangsradius und der Einspannlänge, beleuchtet. 9 Bild., 9 Que.
ALUMINIUM 1/2 (2007)
Werkstoffeigenschaften
Haberkorn, G., Blümcke, E.W., Thoma, K.
Durchgängige Betrachtung einer Stanznietverbindung mit
Fokus auf dynamische Belastungen
MP Materialprüfung 2006, 10, S. 486-492
Im Jahr 2004 wurden in der deutschen Stahlindustrie rund 76.000
t Aluminium verbraucht. Dieses sog. „Desoxidationsaluminium“
wird in der Stahlmetallurgie als Granalien und Einteilern eingesetzt, die aus Aluminiumschrotten umgeschmolzen werden.
Eine mögliche Alternative zu thermisch hergestelltem Desoxidationsaluminium ist die Verwendung von sauberem granulierten
Al-Schrott. Der Beitrag untersucht die Eignung von mechanisch
hergestelltem Desoxidationsaluminium aus Schrotten für den
Einsatz in der Stahlmetallurgie. 10 Bild, 5 Que.
Im Zuge des Leichtbaus von Fahrzeugkarosserien kommen
neben einer Vielzahl von Materialien auch zahlreiche unterschiedliche Fügetechniken zur Anwendung. Um diese in der numerischen Berechnung zu berücksichtigen, sind umfangreiche
Kenntnisse der Phänomenologie der Verbindung einschließlich
des Versagens notwendig. Es wird eine Möglichkeit der Untersuchung von mechanischen Verbindungen am Beispiel der
Stanznietverbindung aufgezeigt. Dies umfasst die Kombination
von Versuchen und der numerischen Simulation, welche bei
der Prozesssimulation beginnt und über ein Detailmodell hin
zum abstrahierten Simulationsmodell für die Gesamtfahrzeugberechnung führt. Erste Ergebnisse werden vorgestellt und auf
ihre Relevanz im Kontext einer Gesamtfahrzeug-Crashsimulation hin bewertet. 11 Bild., 8 Que.
ALUMINIUM 1/2 (2007)
ALUMINIUM 1/2 (2007)
Stratemeier, S., Senk, D., Grosse, A., Kurth, B.
Eigenschaften von mechanisch hergestelltem Desoxidationsaluminium
stahl und eisen 126 (2006) Nr. 11, S. 45-55
Gewinnung
Verbinden
Für Schrifttum zum Thema „Aluminium“ ist der Gesamtverband der Aluminiumindustrie e.V. (GDA)
der kompetente Ansprechpartner. Die hier referierten Beiträge repräsentieren lediglich einen Ausschnitt aus dem umfassenden aktuellen Bestand der GDA-Bibliothek.
Die von der Aluminium-Zentrale seit den dreißiger Jahren kontinuierlich aufgebaute Fach-Bibliothek
wird duch den GDA weitergeführt, ausgebaut und auf die neuen Medien umgestellt. Sie steht allen
Interessenten offen.
Ansprechpartner ist Dr. Karsten Hein, E-Mail: karsten.hein@aluinfo.de
108
ALUMINIUM · 1-2/2007
PAT E N T E
Patentblatt November 2006
Al-Legierung für lithographisches Blech.
Alcan International Ltd., Montreal, Quebec, CA. (C22C 21/00, OS 102 42 018,
AT 11.09.2002)
Al-Cu-Mg-Ag-Mn-Legierung für Bauanwendungen, die hohe Festigkeit und
hohe Duktilität erfordern. Alcan Rolled
Products Ravenswood LLC, Ravenswood, W.Va., US; Alcan Rhenalu, Paris,
FR. (C22C 21/12, EPA 1 641 952, EP-AT
26.05.2004)
Verfahren zur Herstellung von Al-MgSi-Legierung mit hervorragender BakeHardenability und Falzbarkeit. Nippon
Light Metal Co. Ltd., Tokio/Tokyo, JP.
(C22F 1/05, EPA 1 702 995, EP-AT
13.12.2004)
Tube aus Metall, insbesondere Aluminium. Karl Höll GmbH & Co KG, 40764
Langenfeld, DE. (B65D 35/16, GM 203 16
148, AT 18.10.2003)
Vorrichtung zur Sicherung von als Paket
gelagerten Aluminium-Stranggussprodukten, so genannten Masseln, zu Transportzwecken. Signode System GmbH,
46535 Dinslaken, DE. (B65D 85/20, GM
20 2006 012 782, AT 21.08.2006)
Verfahren zur Herstellung von Sinterkörpern aus Yttrium-Aluminium-Granat
und ein Formkörper. NGK Insulators,
Ltd., Nagoya, Aichi, JP. (C04B 35/44, EP
1 433 764, EP-AT 22.12.2003)
Behandeln von Abstandhaltern in gestapelten Aluminium-Blöcken. Alcoa Inc.,
Pittsburgh, Pa., US. (C21D 1/70, EP 1 215
289, EP-AT 11.12.2001)
Zn-Al-Eutektoid-Feuerverzinkung von
nicht rostendem Stahl. University of Cincinnati, Cincinatti, Ohio, US. (C23C 2/06,
1 709 21, EP-AT 21.01.2005)
Reinigung von Aluminium-Gusslegierungen mittels Zugabe von Bor. Bayerische Motoren Werke AG, 80809 München, DE. (C22B 21/06, EP 1 264 903,
EP-AT 03.05.2003)
Kupfer enthaltender, mehrfädiger
NbÌ3ÌAl-Supraleitungsdraht und Verfahren zu dessen Herstellung. Japan,
vertreten durch den Generaldirektor des
Nationalen Metallforschungsinstitutes,
Tsukuba, Ibaraki, JP. (H01B 12/10, PS
100 55 628, AT 09.11.2000)
Verstellbare Aluminium-Dachhaken mit
Einrastfunktion zur Befestigung von
Solarmodulen und Solarthermieanlagen
auf Dächern und Schrägdächern. Citak,
Fatma, 33689 Bielefeld, DE. (E04D 13/18,
OS 10 2005 058 065, AT 06.12.2005)
Herstellungsverfahren für einen ultrafeinen Multifilament-Supraleiterdraht aus
Nb3(Al, Ge) oder Nb3(Al, Si). JAPAN as
represented by NATIONAL RESEARCH
INSTITUTE FOR METALS, Tsukuba,
JP. (H01L 39/24, EP 1 058 321, EP-AT
05.06.2000)
Zeolithkatalysator, Träger auf Basis von
Silizium-Aluminium-Matrix und Zeolith
und Verfahren zum Hydrocracken von
Kohlenwasserstoffchargen. Institut Français du Pétrole, Rueil-Malmaison, Hautsde-Seine, FR. (B01J 29/08, EPA 1 711 260,
EP-AT 16.12.2004)
Kontinuierlich graviertes, laminiertes
Aluminium und dessen Benutzung in
Paneelen. Lloveras Calvo, Juan, San Feliu
de Codinas, ES. (B21B 15/00, EPA 1 710
026, EP-AT 06.04.2005)
Verfahren zur Herstellung von Aluminium-Kokillenguss mit dem Zweck eine Gefügeverbesserung bei den gegossenen
Teilen zu erreichen. Fuchs, Hermann,
57520 Steinebach, DE. (B22D 21/04, OS
10 2005 001 243, AT 11.01.2005)
Verfahren zur Herstellung eines Bauteils
durch Fügen mit Aluminium. Rolls-Royce Deutschland Ltd & Co KG, 15827 Dahlewitz, DE. (B23K 1/19, OS 102 38 551,
AT 22.08.2002)
ALUMINIUM · 1-2/2007
Mehrschichtiges Gleitteil aus einer auf
Aluminium basierenden Legierung.
Daido Metal Co. Ltd., Nagoya, Aichi, JP.
(F16C 33/12, PS 10 2004 025 557, AT
25.05.2004)
Isolierverbund für Aluminium-Profile.
Henkenjohann, Johann, 33415 Verl,
DE. (F16S 3/02, GM 298 21 183, AT
26.11.1998)
Works, Ltd., Kariya, Aichi, JP. (C22C
21/02, OS 102 32 159, AT 16.07.2002)
Verfahren zum Herstellen einer hochschadenstoleranten
Aluminiumlegierung. Corus Aluminium Walzprodukte
GmbH, 56070 Koblenz, DE. (C22F 1/04,
WO 2005 049878, WO-AT 29.10.2004)
Einrichtung zur Herstellung gegossener
Halbfabrikate aus Leichtmetall. Stolfig,
Peter, 85290 Geisenfeld, DE. (B22D 21/04,
OS 10 2005 024 025, AT 21.05.2005)
Verfahren zum Leichtmetall-LegierungsSintern. Schwäbische Hüttenwerke
GmbH, 73433 Aalen, DE. (C22C 1/04,
EPA 1 709 209, EP-AT 26.11.2004)
Sinterkörper auf Eisenbasis mit hervorragenden Eigenschaften zum Einbetten
durch Eingießen in Leichtmetall-Legierung und Verfahren zu seiner Herstellung. NIPPON PISTON RING CO., LTD.,
Saitama, JP; Fuji Jukogyo K.K., Tokio/Tokyo, JP. (C22C 33/02, PS 103 60 824, AT
23.12.2003)
Maschinenteil aus einer LeichtmetallGusslegierung, insbesondere Pleuel
für Hubkolbenmaschinen. Bayerische
Motoren Werke AG, 80809 München,
DE. (F16C 7/02, PS 43 32 444, AT
23.09.1993)
Sammelbehälter für Magnesium o. dgl.
Thielemann, Frank, 63776 Mömbris, DE.
(F16L 3/14, GM 20 2005 008 220, AT
25.05.2005)
Druckgussbauteil, aus Magnesium, vornehmlich zur Verwendung in Kraftfahrzeugen. Volkswagen AG, 38440 Wolfsburg, DE. (F16S 5/00, OS 100 02 262, AT
19.01.2000)
Verfahren zu Herstellung elektrisch
Aluminium Strahlungsplatte für eine
Unterdecke. Riello, Franco, Milano, IT;
Riello, Andrea, Milano, IT; Donati, Giuseppe, Cenate Sopra, Bergamo, IT; Donati, Francesco, Cenate Sopra, Bergamo,
IT. (F24D 3/16, EPA 1 703 215, EP-AT
22.02.2005)
Detektorbänder enthaltend Aluminium,
Silizium, Titan und Zirkonium. Oeste,
Franz Dietrich, 35274 Kirchhain, DE.
(G01N 27/26, OS 10 2005 021 625, AT
05.05.2005)
Aluminiumlegierung zur Herstellung
von Gussformteilen. Alcoa Inc., Pittsburgh, Pa., US. (C22C 21/00, EPA 1 709
210, EP-AT 31.01.2005)
Verschleißfester gestreckter Körper aus
Aluminiumlegierung, Herstellungsverfahren dafür und Kolben für Auto-Klimaanlage. Sumitomo Electric Industries,
Ltd., Osaka, JP; Toyoda Automatic Loom
ALUMINIUM veröffentlicht unter
dieser Rubrik regelmäßig einen Überblick über wichtige, den Werkstoff
Aluminium betreffende Patente. Die
ausführlichen Patentblätter und auch
weiterführende Informationen dazu
stehen der Redaktion nicht zur Verfügung. Interessenten können diese
beziehen oder einsehen bei der
Mitteldeutschen Informations-, Patent-, Online-Service GmbH (mipo),
Julius-Ebeling-Str. 6,
D-06112 Halle an der Saale,
Tel. 0345/29398-0
Fax 0345/29398-40,
www.mipo.de
Die Gesellschaft bietet darüber hinaus weitere „Patent“-Dienstleistungen
an.
109
©
PAT E N T E
leitfähiger und optimal haftfähiger
Oberflächenbereiche auf chemisch und/
oder galvanisch beschichteten und/oder
lackierten Spritzgussteilen aus Magnesiumlegierungen. Fa. Alfred R. Franz,
82538 Geretsried, DE. (C25D 5/00, PS
198 51 278, AT 06.11.1998)
Schutzschicht für eine aluminiumhaltige
Legierung für den Einsatz bei hohen
Temperaturen, sowie Verfahren zur
Herstellung einer solchen Schutzschicht.
Forschungszentrum Jülich GmbH, 52428
Jülich, DE.(C23C 8/02, EPA 1 706 518,
EP-AT 20.11.2004)
Verfahren zum Umformen eines Ausgangsprofils od. dgl. Werkstückes sowie Profil dafür. Alcan Technology &
Management AG, Neuhausen am Rheinfall, CH. (B21D 26/02, PS 199 55 506, AT
18.11.1999)
Verfahren zur Herstellung eines Verpackungsmaterials. Alcan Technology &
Management Ltd., Neuhausen am Rheinfall, CH. (B32B 37/12, EPA 1 621 333, EPAT 01.07.2004)
Verbundplatte mit zwei Deckschichten
und einem Kern sowie deren Verwendung und Herstellung. Alcan Technology & Management AG, Neuhausen am
Rheinfall, CH. (B32B 5/16, PS 43 17 315,
AT 25.05.1993)
Stossfängersystem. Alcan Technology &
Management AG, Neuhausen am Rheinfall, CH. (B60R 19/26, GM 20 2005 016
564, AT 20.10.2005)
Stoßstange mit Halterungen. Alcan
Technology & Management AG, Neuhausen am Rheinfall, CH. (B60R 19/34, OS 10
2006 019 653, AT 25.04.2006)
Flexibler Träger mit elektrisch leitfähiger
Struktur. Alcan Technology & Management Ltd., Neuhausen am Rheinfall,
CH. (H01B 7/08, EPA 1 704 572, EP-AT
17.12.2004)
Verfahren zum Verschließen eines Behälters sowie Schraubverschluss hierfür.
Alcoa Deutschland GmbH Verpackungswerke, 67547 Worms, DE. (B67C 7/00,
OS 199 42 507, AT 07.09.1999)
Halterungselemente für Bauplatten. Corus Bausysteme GmbH, 56070 Koblenz,
DE. (E04D 3/36, EP 1 147 270, EP-AT
04.01.2000)
Verkleidungsblech. Corus Bausysteme
GmbH, 56070 Koblenz, DE. (E04F 13/12,
GM 200 16 964, AT 27.09.2000)
Bandkanten-Planheitssteuerung. Hydro
Aluminium Deutschland GmbH, 53117
Bonn, DE. (B21B 37/32, PS 102 06 758,
AT 19.02.2002)
110
Gießform zum Gießen von Metallschmelze. Hydro Aluminium Alucast GmbH,
66763 Dillingen, DE. (B22C 1/20, OS 10
2005 023 051, AT 13.05.2005)
Dauergießform und Gießformeinsatz.
Hydro Aluminium Mandl&Berger GmbH,
Linz, AT. (B22C 9/06, PS 10 2005 054
616, AT 16.11.2005)
Verfahren und Vorrichtungen zum Fügen von mindestens zwei Bauteilen aus
artverschiedenen Werkstoffen. Hydro
Aluminium Deutschland GmbH, 51149
Köln, DE. (B23K 20/12, OS 10 2005 019
758, AT 28.04.2005)
Fassade oder Glasdach in Brandschutzausführung mit einer aus vertikalen
und horizontalen Profilen bestehenden
Tragkonstruktion. Norsk Hydro ASA,
Oslo, NO. (E04B 1/94, EP 1 120 504, EPAT 20.01.2001)
Verbinder für Rahmen von Fenstern,
Türen, Fassaden und dergleichen Konstruktionen. Norsk Hydro ASA, Oslo,
NO. (E04B 2/96, EP 1 249 550, EP-AT
10.04.2002)
Deckleiste für Fenster. Norsk Hydro
ASA, Oslo, NO. (E06B 3/30, EPA 1 712
719, EP-AT 04.04.2006)
Einbausystem für den Einbau eines Paneelrandes in einen Pfosten. Norsk Hydro ASA, Oslo, NO. (E06B 3/54, EPA 1
710 386, EP-AT 04.04.2006)
schine und Verfahren zur Herstellung
eines Zylinderblocks. KS AluminiumTechnologie AG, 74172 Neckarsulm,
DE. (F02F 1/00, PS 10 2004 005 458, AT
04.02.2004)
Profilanordnung und Einfassprofil für
eine Profilanordnung. MayTec Aluminium Systemtechnik GmbH, 85221 Dachau, DE. (F16B 5/06, GM 203 21 258, AT
24.04.2003)
Beschichtung für einen Solarabsorber. ALANOD Aluminium-Veredlung
GmbH & Co. KG, 58256 Ennepetal, DE.
(F24J 2/48, PS 10 2004 060 982, AT
17.12.2004)
Zarge für ein Fenster oder eine Tür in
wärmegedämmter Ausführung. Hermann Gutmann Werke GmbH, 91781
Weißenburg, DE. (E06B 1/32, PS 100 40
497, AT 18.08.2000)
Halteprofil sowie Fenster- oder Türkonstruktion. Hermann Gutmann Werke
AG, 91781 Weißenburg, DE. (E06B 3/58,
OS 10 2005 023 257, AT 20.05.2005)
Patentblatt Dezember 2006
Verfahren zur Herstellung einer auf
Al-Mg-Si basierenden Aluminiumlegierungsplatte mit hervorragender BakeHardenability. Nippon Light Metal Co.
Ltd., Tokio/Tokyo, JP. (C22C 1/05, EPA
1 715 067, EP-AT 22.12.2004)
Tür, Fenster oder ähnliches mit einer
drehenden Abdichtung zwischen Flügel
und Rahmen. Norsk Hydro ASA, Oslo,
NO. (E06B 7/22, EPA 1 712 723, EP-AT
04.04.2006)
Cr-Al-Stahl für Hochtemperaturanwendungen. Sandvik Intellectual Property
AB, Sandviken, SE. (C22C 38/06, EPA 1
721 023, EP-AT 21.12.2005)
Lagervorrichtung für einen Sandbehälter, der in einer Formvorrichtung für
verlorenen Guss vibriert wird. Fata Aluminium S.p.A., Rivoli, IT. (B22C 15/10,
EP 1 153 679, EP-AT 09.05.2000)
Aluminium-Zirkonium-Antiperspirantien mit verbesserter Wirksamkeit.
Reheis, Inc., Berkeley Heights, N.J., US.
(A61K 8/00, EPA 1 715 831, EP-AT
19.01.2005)
Metallschmelzentransportbehälter. Nippon Crucible Co., Ltd., Tokio/Tokyo, JP;
Daiki Aluminium Industry Co., Ltd., Yaoshi, Osaka, JP. (B22D 35/00, EPA 1 702
700, EP-AT 23.07.2004
Aluminium-Fahrzeugfelge und Verfahren zum Herstellen einer solchen. bdbreyton-design GmbH, 78333 Stockach,
DE. (B22D 17/14, OS 10 2005 026 829,
AT 09.06.2005)
Geländeanpassbarer Zaun. ALTEC Aluminium Technik Hans-J. Gebauer GmbH,
56727 Mayen, DE. (E04H 17/14, GM 298
10 603, AT 12.06.1998)
Fortsetzung der Dezember-Auswertung in
der nächsten Ausgabe der ALUMINIUM.
Verfahren zur Herstellung eines Fensterbankabschlusses. RBB Aluminium Profiltechnik AG, 54531 Wallscheid, DE. (E06B
1/70, PS 102 50748, AT 31.10.2002)
Fenster- oder Türpfosten. Reynaers Aluminium, N.V., Duffel, BE. (E06B 3/263,
EPA 1 705 334, EP-AT 13.02.2006)
Für
Abonnenten
www.alu-archiv.de
Wissen auf Abruf
Zylinderblock für eine Brennkraftma-
ALUMINIUM · 1-2/2007
Lieferverzeichnis
International Journal for Industry, Research and Application
How do your products and services come to appear every month in the
list of supply sources, on the internet – www.Alu-web.de – and in the
annual list of supply sources published by ALUMINIUM ?
Please mark the main group relevant to you
R
Extrusion
R
Rolling technology
R
Foundry
R
Smelting technology
Indicate the sub-group and/or key word
(if necessary, ask us for the list of key words)
_______________________
_______________________
_______________________
_______________________
_______________________
_______________________
Enter your text, not forgetting your on-line address:
Line 1: ............................................................................................................................................
Line 2: ............................................................................................................................................
Line 3: ............................................................................................................................................
Line 4: ............................................................................................................................................
Line 5: ............................................................................................................................................
Line 6: ............................................................................................................................................
(Maximum 35 characters per line, including spaces.
Price per line for each issue EUR 5,00 + VAT – minimum order 10 issues = 1 year.
Logos are calculated according to the lines they occupy: 1 line = 2 mm).
_______________________________________________________________
Place/Date
Company stamp / Signature
… and send this form to us by fax or post:
Fax number
+49-511/7304-157
For information
Tel.: -142
Giesel Verlag GmbH, ALUMINIUM
Rehkamp 3, D-30916 Isernhagen
We will gladly send you a quotation!
ALUMINIUM · 1-2/2007
111
Lieferverzeichnis
1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
Smelting technology
Hüttentechnik
Raw materials
Storage facilities for smelting
Anode production
Anode rodding
Casthouse (foundry)
Casting machines
Current supply
Electrolysis cell (pot)
Potroom
Laboratory
Emptying the cathode shell
Cathode repair shop
Second-hand plant
Aluminium alloys
1.2 Storage facilities
for smelting
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
Rohstoffe
Lagermöglichkeiten in der Hütte
Anodenherstellung
Anodenschlägerei
Gießerei
Gießmaschinen
Stromversorgung
Elektrolyseofen
Elektrolysehalle
Labor
Ofenwannenentleeren
Kathodenreparaturwerkstatt
Gebrauchtanlagen
Aluminiumlegierungen
„ Auto firing systems
Automatische Feuerungssysteme
Lagermöglichkeiten
in der Hütte
Möller Materials Handling GmbH
Haderslebener Straße 7
D-25421 Pinneberg
Telefon: 04101 788-0
Telefax: 04101 788-115
E-Mail: info@moeller-mh.com
Internet: www.moeller-mh.com
Kontakt: Herr Dipl.-Ing. Timo Letz
1.4 Anode rodding
Anodenanschlägerei
OUTOKUMPU Technology GmbH
Tel.: +49 (0) 2203 / 9921-0
www.outokumputechnology.com
RIEDHAMMER GmbH
D-90332 Nürnberg
E-Mail: goede.frank@riedhammer.de
Internet: www.riedhammer.de
„ Exhaust gas treatment
„ Removal of bath residues from
the surface of spent anodes
Entfernen der Badreste von der Oberfläche der verbrauchten Anoden
Abgasbehandlung
OUTOKUMPU Technology GmbH
Tel.: +49 (0) 2203 / 9921-0
www.outokumputechnology.com
„ Conveying systems
bulk materials
Förderanlagen für Schüttgüter
(Hüttenaluminiumherstellung)
Möller Materials Handling GmbH
Internet: www.moeller-mh.com
see Storage facilities for smelting 1.2
„ Unloading/Loading equipment
Entlade-/Beladeeinrichtungen
Möller Materials Handling GmbH
Internet: www.moeller-mh.com
see Storage facilities for smelting 1.2
ALSTOM Norway AS
Tel. +47 22 12 70 00
Internet: www.environment.power.alstom.com
„ Hydraulic presses for
prebaked anodes
GLAMA Maschinenbau GmbH
Hornstraße 19
D-45964 Gladbeck
Telefon 02043 / 9738-0
Telefax 02043 / 9738-50
Hydraulische Pressen zur
Herstellung von Anoden
„ Transport of finished anode
elements to the pot room
Transport der fertigen Anodenelemente in Elektrolysehalle
LAEIS GmbH
Am Scheerleck 7, L-6868 Wecker, Luxembourg
Phone:+352 27612 0
Fax: +352 27612 109
E-Mail: info@laeis-gmbh.com
Internet: www.laeis-gmbh.com
Contact: Dr. Alfred Kaiser
„ Open top and closed
type baking furnaces
Vollert GmbH + Co. KG
Anlagenbau
Stadtseestraße 12
D-74189 Weinsberg
Tel.
+49 (0) 7134 / 52-228
Fax
+49 (0) 7134 / 52-203
E-Mail vertrieb@vollert.de
Internet www.vollert.de
Offene und geschlossene Ringöfen
1.3 Anode production
Anodenherstellung
OUTOKUMPU Technology GmbH
Tel.: +49 (0) 2203 / 9921-0
www.outokumputechnology.com
112
RIEDHAMMER GmbH
D-90332 Nürnberg
E-Mail: goede.frank@riedhammer.de
Internet: www.riedhammer.de
Hovestr. 10 . D-48431 Rheine
Telefon + 49 (0) 59 71 58-0
Fax
+ 49 (0) 59 71 58-209
E-Mail info@windhoff.de
Internet www.windhoff.de
ALUMINIUM · 1-2/2007
Lieferverzeichnis
1.5 Casthouse (foundry)
Gießerei
INOTHERM INDUSTRIEOFENUND WÄRMETECHNIK GMBH
Konstantinstraße 1a
D 41238 Mönchengladbach
Telefon +49 (02166) 987990
Telefax +49 (02166) 987996
E-Mail: info@inotherm-gmbh.de
Internet: www.inotherm-gmbh.de
„ Measurement & Testing
Temperaturmessung
Gießereiprodukte – Foundry Products
Balthasar Floriszstraat 34-36/oh
NL-1071 VD AMSTERDAM
Tel.: +31 20 693-5209, Fax -5762
Internet: www.srsamsterdam.com
„ Bone ash
Knochenasche
IMPERIAL-OEL-IMPORT
Bergstraße 11, D 20095 Hamburg
Tel. 040/338533-0, Fax: 040/338533-85
E-Mail: info@imperial-oel-import.de
„ Furnace charging with
molten metal
Ofenbeschickung mit Flüssigmetall
„ Metal treatment in the
holding furnace
Metallbehandlung in Halteöfen
GLAMA Maschinenbau GmbH
see Anode rodding 1.4
THERMCON OVENS BV
see Extrusion 2
SIGNODE® SYSTEM GMBH
Packaging Equipment
Non-Ferrous Specialist Team DSWE
Magnusstr. 18, 46535 Dinslaken/Germany
Telefon: +49 (0) 2064 / 69-210
Telefax: +49 (0) 2064 / 69-489
E-Mail: g.laks@signode-europe.com
Internet: www.signode.com
Contact: Mr. Gerard Laks
Stopinc AG
Bösch 83 a
CH-6331 Hünenberg
Tel. +41/41-785 75 00
Fax +41/41-785 75 01
E-Mail: interstop@stopinc.ch
Internet: www.stopinc.ch
„ Transport of liquid metal
to the casthouse
Transport von Flüssigmetall
in Gießereien
GLAMA Maschinenbau GmbH
see Anode rodding 1.4
MARX GmbH & Co. KG
www.marx-gmbh.de
see Melt operations 4.13
Vollert GmbH + Co. KG
Anlagenbau
see Transport of finished anode elements
to the pot room 1.4
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
Gießmaschinen
„ Transfer to the
casting furnace
Überführung in Gießofen
GLAMA Maschinenbau GmbH
see Anode rodding 1.4
THERMCON OVENS BV
Drache Umwelttechnik
GmbH
Werner-v.-Siemens-Straße 9/24-26
D 65582 Diez/Lahn
Telefon 06432/607-0
Telefax 06432/607-52
Internet: www.drache-gmbh.de
„ Pig casting machines
(sow casters)
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
Windhoff Bahn- und
Anlagentechnik GmbH
see Anode rodding 1.4
„ Treatment of casthouse
off gases
Behandlung der Gießereiabgase
„ Dross skimming of
liquid metal
„ Degassing, filtration and
grain refinement
„ Melting/holding/casting
furnaces
Schmelz-/Halte- und Giessöfen
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
ALUMINIUM · 1-2/2007
Masselgießmaschine (Sowcaster)
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
see Transport of finished anode elements
to the pot room 1.4
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
GLAMA Maschinenbau GmbH
see Anode rodding 1.4
see Extrusion 2
Vollert GmbH + Co. KG
Anlagenbau
Windhoff Bahn- und
Anlagentechnik GmbH
see Anode rodding 1.4
Abkrätzen des Flüssigmetalls
1.6 Casting machines
Entgasung, Filtern, Kornfeinung
Drache Umwelttechnik
GmbH
Werner-v.-Siemens-Straße 9/24-26
D 65582 Diez/Lahn
Telefon 06432/607-0
Telefax 06432/607-52
Internet: www.drache-gmbh.de
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
HERTWICH ENGINEERING GmbH
Maschinen und Industrieanlagen
Weinbergerstraße 6, A-5280 Braunau am Inn
Phone +437722/806-0
Fax +437722/806-122
E-Mail: info@hertwich.com
Internet: www.hertwich.com
see Equipment and accessories 2.11
„ Rolling and extrusion ingot
and T-bars
Formatgießerei (Walzbarren oder
Pressbolzen oder T-Barren)
Cast-Tec GmbH & Co. KG
Fertigungstechnik & Service
D-44536 Lünen, Brunnenstraße 138
Telefon: 02306/20310-0
Telefax: 02306/20310-11
E-Mail: Info@cast-tec.de
Internet: www.cast-tec.de
113
Lieferverzeichnis
„ Sawing
„ Pot feeding systems
Sägen
HERTWICH ENGINEERING GmbH
Maschinen und Industrieanlagen
Weinbergerstraße 6, A-5280 Braunau am Inn
Phone +437722/806-0
Fax +437722/806-122
E-Mail: info@hertwich.com
Internet: www.hertwich.com
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
„ Vertical semi-continuous
DC casting
Vertikales Stranggießen
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
Beschickungseinrichtungen
für Elektrolysezellen
Möller Materials Handling GmbH
Internet: www.moeller-mh.com
see Storage facilities for smelting 1.2
HERTWICH ENGINEERING GmbH
Maschinen und Industrieanlagen
Weinbergerstraße 6, A-5280 Braunau am Inn
Phone +437722/806-0
Fax +437722/806-122
E-Mail: info@hertwich.com
Internet: www.hertwich.com
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
„ Heat treatment of extrusion
ingot (homogenisation)
Formatebehandlung
(homogenisieren)
see Equipment and accessories 2.11
„ Horizontal continuous casting
Horizontales Stranggießen
HERTWICH ENGINEERING GmbH
Maschinen und Industrieanlagen
Weinbergerstraße 6, A-5280 Braunau am Inn
Phone +437722/806-0
Fax +437722/806-122
E-Mail: info@hertwich.com
Internet: www.hertwich.com
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
„ Scales
Waagen
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
„ Casthouse machines
Gießereimaschinen
Cast-Tec GmbH & Co. KG
Fertigungstechnik & Service
see Casting machines 1.6
1.7 Current supply
Stromversorgung
„ Busbars
see Casting machines 1.6
114
1.9 Potroom
Elektrolysehalle
T.T. Tomorrow Technology S.p.A.
Via dell’Artigianato 18
Due Carrare, Padova 35020, Italy
Telefon +39 049 912 8800
Telefax +39 049 912 8888
E-Mail: gmagarotto@tomorrowtechnology.it
Contact: Giovanni Magarotto
Anodenwechselmaschine
HERTWICH ENGINEERING GmbH
Maschinen und Industrieanlagen
Weinbergerstraße 6, A-5280 Braunau am Inn
Phone +437722/806-0
Fax +437722/806-122
E-Mail: info@hertwich.com
Internet: www.hertwich.com
Cast-Tec GmbH & Co. KG
Fertigungstechnik & Service
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
Schlichten und Trennmittel
ESK Ceramics GmbH & Co. KG
Max-Schaidhauf-Straße 25
87437 Kempten, Germany
Tel.: +49 831 5618-0, Fax: -345
Internet: www.esk.com
„ Anode changing machine
Stromschienen
HERTWICH ENGINEERING GmbH
Maschinen und Industrieanlagen
Weinbergerstraße 6, A-5280 Braunau am Inn
Phone +437722/806-0
Fax +437722/806-122
E-Mail: info@hertwich.com
Internet: www.hertwich.com
„ Slurries and parting agents
1.8 Electrolysis cell
(pot)
Elektrolyseofen
„ Insulating bricks
GLAMA Maschinenbau GmbH
see Anode rodding 1.4
„ Tapping vehicles
Schöpffahrzeuge
GLAMA Maschinenbau GmbH
see Anode rodding 1.4
„ Crustbreakers
Krustenbrecher
GLAMA Maschinenbau GmbH
see Anode rodding 1.4
„ Dry absorption units for
electrolysis exhaust gases
Trockenabsorptionsanlage für
Elektrolyseofenabgase
ALSTOM Norway AS
Tel. +47 22 12 70 00
Internet: www.environment.power.alstom.com
„ Anode transport equipment
Anoden Transporteinrichtungen
GLAMA Maschinenbau GmbH
see Anode rodding 1.4
„ HF Measurementtechnology
HF Messtechnik
Isoliersteine
Promat GmbH – Techn. Wärmedämmung
Scheifenkamp 16, D-40878 Ratingen
Tel. +49 (0) 2102 / 493-0, Fax -493 115
verkauf3@promat.de, www.promat.de
OPSIS AB
Box 244, S-24402 Furulund, Schweden
Tel. +46 (0) 46-72 25 00, Fax -72 25 01
E-Mail: info@opsis.se
Internet: www.opsis.se
ALUMINIUM · 1-2/2007
Lieferverzeichnis
2
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
Extrusion
Strangpressen
Extrusion billet preparation
Extrusion equipment
Section handling
Heat treatment
Measurement and control equipment
Die preparation and care
Second-hand extrusion plant
Consultancy, expert opinion
Surface finishing of sections
Machining of sections
Equipment and accessories
Services
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
Pressbolzenbereitstellung
Strangpresseinrichtungen
Profilhandling
Wärmebehandlung
Mess- und Regeleinrichtungen
Werkzeugbereitstellung und -pflege
Gebrauchte Strangpressanlagen
Beratung, Gutachten
Oberflächenveredlung von Profilen
Profilbearbeitung
Ausrüstungen und Hilfsmittel
Dienstleistungen
2.1 Extrusion billet
preparation
„ Billet heating units
Anlagen zur Bolzenerwärmung
Pressbolzenbereitstellung
www.otto-junker-group.com
SIGNODE® SYSTEM GMBH
Jägerhausstr. 22
D – 52152 Simmerath
Telefon: +49 2473 601 0
Telefax: +49 2473 601 600
E-Mail: info@otto-junker.de
Kontakt: Herr Teichert
Packaging Equipment
Non-Ferrous Specialist Team DSWE
Magnusstr. 18, 46535 Dinslaken/Germany
Telefon: +49 (0) 2064 / 69-210
Telefax: +49 (0) 2064 / 69-489
E-Mail: g.laks@signode-europe.com
Internet: www.signode.com
Contact: Mr. Gerard Laks
„ Billet transport and
storage equipment
„ Billet heating furnaces
Öfen zur Bolzenerwärmung
Rudolf-Diesel-Str. 1-3
D – 78239 Rielasingen-Worblingen
Telefon +49 7731 5998-0
Telefax +49 7731 5998-90
E-Mail info@elhaus.de
Kontakt: Herr Dr. Menzler
OTTO JUNKER GmbH
ELHAUS INDUSTRIEANLAGEN GmbH
OTTO JUNKER (UK) LTD.
see Extrusion 2
Am großen Teich 16+27
D-58640 Iserlohn
Tel. +49 (0) 2371 / 4346-0
Fax +49 (0) 2371 / 4346-43
E-Mail: verkauf@ias-gmbh.de
Internet: www.ias-gmbh.de
Bolzen-Transport- und
Lagereinrichtungen
OTTO JUNKER GmbH
ELHAUS INDUSTRIEANLAGEN GmbH
see Extrusion 2
„ Hot shears
Warmscheren
De Chamotte 4
NL – 4191 GT GELDERMALSEN
Telefon: +31 345 574141
Telefax: +31 345 576322
E-Mail:
info@thermcon.com
Kontakt: Herr Schmidt
MARX GmbH & Co. KG
www.marx-gmbh.de
see Melt operations 4.13
OTTO JUNKER GmbH
ELHAUS INDUSTRIEANLAGEN GmbH
THERMCON OVENS BV
see Extrusion 2
2.2 Extrusion equipment
Strangpresseinrichtungen
Kingsbury Road
Curdworth
UK - SUTTON COLDFIELD B76 9EE
Telefon: +44 1675 470551
Telefax: +44 1675 470645
E-Mail:
info@otto-junker.co.uk
Kontakt: Mr. Beard
ALUMINIUM · 1-2/2007
Sistem Teknik Ltd. Sti.
DES San. Sit. 102 SOK No: 6/8
Y.Dudullu, TR-34775 Istanbul/Turkey
Tel.: +90 216 420 86 24
Fax: +90 216 420 23 22
Oilgear Towler GmbH
Im Gotthelf 8
D 65795 Hattersheim
Tel. +49 (0) 6145 3770
Fax +49 (0) 6145 30770
E-Mail: info@oilgear.de
Internet: www.oilgear.de
115
Lieferverzeichnis
„ Press control systems
Pressensteuersysteme
Verpackungseinrichtungen
Oilgear Towler GmbH
see Extrusion Equipment 2.2
SMS Eumuco GmbH
Josefstraße 10
D-51377 Leverkusen
Tel. 0214 / 734-01
Fax 0214 / 734-1000
E-Mail: info@sms-eumuco.de
Internet: www.sms-eumuco.com
SMS Eumuco GmbH
see Extrusion equipment 2.2
„ Containers
Rezipienten
„ Packaging equipment
H+H HERRMANN + HIEBER GMBH
Fördersysteme für Paletten
und schwere Lasten
Rechbergstraße 46
D-73770 Denkendorf/Stuttgart
Tel. +49 (0) 711 / 9 34 67-0
Fax +49 (0) 711 / 3 46 0911
E-Mail: info@herrmannhieber.de
Internet: www.herrmannhieber.de
Vollert GmbH + Co. KG
Anlagenbau
see Transport of finished anode elements
to the pot room 1.4
„ Temperature measurement
Temperaturmessung
KIND & CO., EDELSTAHLWERK, KG
Bielsteiner Straße 128-130
D-51674 Wiehl
Telefon: +49 (0) 2262 / 84 0
Telefax: +49 (0) 2262 / 84 175
E-Mail: info@kind-co.de
Internet: www.kind-co.de
SMS Eumuco GmbH
see Extrusion equipment 2.2
„ Heating and control
equipment for intelligent
billet containers
Hinterbergstrasse 26
CH-6330 Cham, Switzerland
Tel.: +41 41 741 5741
Fax: +41 41 741 5760
E-mail: bold.ch@fromm-pack.com
Internet: www.fromm-pack.com
Sales Contact: Benno Arnet
„ Puller equipment
Ausziehvorrichtungen/Puller
Heizungs- und Kontrollausrüstung
für intelligente Blockaufnehmer
S+C MÄRKER GmbH
Steel Technologies
D-51779 Lindlar-Kaiserau
Postfach 11 40
Tel.: +49 (0) 2266 / 92 211
Fax: +49 (0) 2266 / 92 509
E-Mail: extrusion@schmidt-clemens.de
Internet: www.sc-maerker.de
OTTO JUNKER GmbH
ELHAUS INDUSTRIEANLAGEN GmbH
THERMCON OVENS BV
see Extrusion 2
MARX GmbH & Co. KG
www.marx-gmbh.de
see Melt operations 4.13
2.3 Section handling
SMS Eumuco GmbH
see Extrusion equipment 2.2
Profilhandling
SIGNODE® SYSTEM GMBH
SMS Eumuco GmbH
see Extrusion equipment 2.2
Packaging Equipment
Non-Ferrous Specialist Team DSWE
Magnusstr. 18, 46535 Dinslaken/Germany
Telefon: +49 (0) 2064 / 69-210
Telefax: +49 (0) 2064 / 69-489
E-Mail: g.laks@signode-europe.com
Internet: www.signode.com
Contact: Mr. Gerard Laks
„ Extrusion
Strangpressen
„ Section cooling
Profilkühlung
OTTO JUNKER GmbH
ELHAUS INDUSTRIEANLAGEN GmbH
see Extrusion 2
„ Homogenising furnaces
Homogenisieröfen
OTTO JUNKER GmbH
ELHAUS INDUSTRIEANLAGEN GmbH
OTTO JUNKER (UK) LTD.
see Extrusion 2
116
OTTO JUNKER GmbH
see Extrusion 2
SMS Eumuco GmbH
see Extrusion equipment 2.2
ALUMINIUM · 1-2/2007
Lieferverzeichnis
„ Section saws
Profilsägen
„ Stackers / Destackers
Stapler / Entstapler
Vollert GmbH + Co. KG
Anlagenbau
see Transport of finished anode elements
to the pot room 1.4
OTTO JUNKER GmbH
ELHAUS INDUSTRIEANLAGEN GmbH
see Extrusion 2
OTTO JUNKER GmbH
ELHAUS INDUSTRIEANLAGEN GmbH
see Extrusion 2
2.4 Heat treatment
Wärmebehandlung
„ Extrusion
Strangpressen
SMS Eumuco GmbH
see Extrusion equipment 2.2
SMS Eumuco GmbH
see Extrusion equipment 2.2
„ Stretching equipment
„ Section store equipment
Reckeinrichtungen
OTTO JUNKER GmbH
ELHAUS INDUSTRIEANLAGEN GmbH
OTTO JUNKER (UK) LTD.
see Extrusion 2
Profil-Lagereinrichtungen
H+H HERRMANN + HIEBER GMBH
Fördersysteme für Paletten
und schwere Lasten
Rechbergstraße 46
D-73770 Denkendorf/Stuttgart
Tel. +49 (0) 711 / 9 34 67-0
Fax +49 (0) 711 / 3 46 0911
E-Mail: info@herrmannhieber.de
Internet: www.herrmannhieber.de
KASTO Maschinenbau GmbH & Co. KG
Industriestr. 14, D-77855 Achern
Tel.: +49 (0) 7841 61-0 / Fax: +49 (0) 7841 61 300
kasto@kasto.de / www.kasto.de
Hersteller von Band- und Kreissägemaschinen
sowie Langgut- und Blechlagersystemen
Vollert GmbH + Co. KG
Anlagenbau
see Transport of finished anode elements
to the pot room 1.4
„ Section transport equipment
Profiltransporteinrichtungen
OTTO JUNKER GmbH
ELHAUS INDUSTRIEANLAGEN GmbH
see Extrusion 2
SMS Eumuco GmbH
see Extrusion equipment 2.2
ALUMINIUM · 1-2/2007
„ Heat treatment furnaces
OTTO JUNKER GmbH
ELHAUS INDUSTRIEANLAGEN GmbH
see Extrusion 2
Wärmebehandlungsöfen
INOTHERM INDUSTRIEOFENUND WÄRMETECHNIK GMBH
see Casthouse (foundry) 1.5
Sistem Teknik Ltd. Sti.
see Billet Heating Furnaces 2.1
SMS Eumuco GmbH
see Extrusion equipment 2.2
„ Transport equipment for
extruded sections
Transporteinrichtungen
für Profilabschnitte
H+H HERRMANN + HIEBER GMBH
Fördersysteme für Paletten
und schwere Lasten
Rechbergstraße 46
D-73770 Denkendorf/Stuttgart
Tel. +49 (0) 711 / 9 34 67-0
Fax +49 (0) 711 / 3 46 0911
E-Mail: info@herrmannhieber.de
Internet: www.herrmannhieber.de
ELHAUS INDUSTRIEANLAGEN GmbH
see Extrusion 2
SMS Eumuco GmbH
see Extrusion equipment 2.2
IUT Industriell Ugnsteknik AB
Industrivägen 2, 43892 Härryda, Sweden
Tel. +46 (0) 301 31510
Fax +46 (0) 301 30479
E-Mail: office@iut.se
Internet: www.iut.se
„ Custom designed heat
processing equipment
Kundenspezifische
Wärmebehandlungsanlagen
Sistem Teknik Ltd. Sti.
see Billet Heating Furnaces 2.1
Do you need
more
information?
E-Mail:
Schwichtenberg@giesel.de
117
Lieferverzeichnis
„ Homogenising furnaces
Homogenisieröfen
2.6 Die preparation and care
Werkzeugbereitstellung
und -pflege
2.10 Machining of sections
Profilbearbeitung
„ Processing of Profiles
HERTWICH ENGINEERING GmbH
Maschinen und Industrieanlagen
Weinbergerstraße 6, A-5280 Braunau am Inn
Phone +437722/806-0
Fax +437722/806-122
E-Mail: info@hertwich.com
Internet: www.hertwich.com
IUT Industriell Ugnsteknik AB
see Heat treatment 2.4
Castool Tooling Solutions
(North America)
21 State Crown Bvld
Scarborough Ontario Canada MIV 4B1
Tel.: +1 416 297 1521
Fax: +1 416 297 1915
E-Mail: sales@castool.com
Internet: www.castool.com
Sales Contact: Danny Dann
SMS Eumuco GmbH
see Extrusion equipment 2.2
„ Die heating furnaces
Profilbearbeitung
Tensai (International) AG
Extal Division
Steinengraben 40
CH-4051 Basel
Telefon +41 (0) 61 284 98 10
Telefax +41 (0) 61 284 98 20
E-Mail: tensai@tensai.com
2.11 Equipment and
accessories
Ausrüstungen und
Hilfsmittel
Werkzeuganwärmöfen
„ Inductiv heating equipment
IUT Industriell Ugnsteknik AB
see Heat treatment 2.4
Sistem Teknik Ltd. Sti.
see Billet Heating Furnaces 2.1
2.5 Measurement and
control equipment
Mess- und Regeleinrichtungen
Induktiv beheizte
Erwärmungseinrichtungen
MARX GmbH & Co. KG
www.marx-gmbh.de
see Melt operations 4.13
Sistem Teknik Ltd. Sti.
see Billet Heating Furnaces 2.1
„ Extrusion dies
Strangpresswerkzeuge
„ Extrusion plant control systems
Am großen Teich 16+27
D-58640 Iserlohn
Tel. +49 (0) 2371 / 4346-0
Fax +49 (0) 2371 / 4346-43
E-Mail: verkauf@ias-gmbh.de
Internet: www.ias-gmbh.de
Presswerkssteuerungen
„ Ageing furnace for extrusions
SMS Eumuco GmbH
see Extrusion equipment 2.2
„ Hardness measuring
instuments, portable
Haarmann Holding GmbH
Ludwigsallee 57
D-52052 Aachen
Telefon: 02 41 / 9 18 - 500
Telefax: 02 41 / 9 18 - 5010
E-Mail: info.holding@haarmann-gruppe.de
Internet: www.haarmann-gruppe.de
„ Hardening technology
Härtetechnik
Härtemessgerät, tragbar
Form+Test Seidner & Co. GmbH
D-88491 Riedlingen
Telefax 07371/9302-98
E-Mail: linke@formtest.de
„ Temperatur measurement
Temperaturmessung
Haarmann Holding GmbH
see Die preparation and care 2.6
118
LOI Thermprocess GmbH
Am Lichtbogen 29
D-45141 Essen
Germany
Telefon +49 (0) 201 / 18 91-3 10
Telefax +49 (0) 201 / 18 91-53 10
E-Mail: info@loi.de
Internet: www.loi.de
Sistem Teknik Ltd. Sti.
see Billet Heating Furnaces 2.1
2.7 Second-hand
extrusion plant
Gebr. Strangpressanlagen
ELHAUS INDUSTRIEANLAGEN GmbH
THERMCON OVENS BV
see Extrusion 2
Auslagerungsöfen für
Strangpressprofile
Qualiteam International/ExtruPreX
Champs Elyséesweg 17, NL-6213 AA Maastricht
Tel. +31-43-3 25 67 77
Internet: www.extruprex.com
2.12 Services
Dienstleistungen
Haarmann Holding GmbH
see Die preparation and care 2.6
ALUMINIUM · 1-2/2007
Lieferverzeichnis
3
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
Rolling mill technology
Walzwerktechnik
Casting equipment
Rolling bar machining
Rolling bar furnaces
Hot rolling equipment
Strip casting units and accessories
Cold rolling equipment
Thin strip / foil rolling plant
Auxiliary equipment
Adjustment devices
Process technology / Automation technology
Coolant / lubricant preparation
Air extraction systems
Fire extinguishing units
Storage and dispatch
Second-hand rolling equipment
Coil storage systems
Strip Processing Lines
3.1 Casting equipment
Gießanlagen
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
Gießanlagen
Walzbarrenbearbeitung
Walzbarrenvorbereitung
Warmwalzanlagen
Bandgießanlagen und Zubehör
Kaltwalzanlagen
Feinband-/Folienwalzwerke
Nebeneinrichtungen
Adjustageeinrichtungen
Prozesstechnik / Automatisierungstechnik
Kühl-/Schmiermittel-Aufbereitung
Abluftsysteme
Feuerlöschanlagen
Lagerung und Versand
Gebrauchtanlagen
Coil storage systems
Bandprozesslinien
„ Filling level indicators
and controls
Füllstandsanzeiger und -regler
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
OTTO JUNKER GmbH
THERMCON OVENS BV
see Extrusion 2
„ Melt purification units
Schmelzereinigungsanlagen
„ Melting and holding furnaces
Schmelz- und Warmhalteöfen
HERTWICH ENGINEERING GmbH
Maschinen und Industrieanlagen
Weinbergerstraße 6, A-5280 Braunau am Inn
Phone +437722/806-0
Fax +437722/806-122
E-Mail: info@hertwich.com
Internet: www.hertwich.com
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
HERTWICH ENGINEERING GmbH
Maschinen und Industrieanlagen
Weinbergerstraße 6, A-5280 Braunau am Inn
Phone +437722/806-0
Fax +437722/806-122
E-Mail: info@hertwich.com
Internet: www.hertwich.com
SMS Demag Aktiengesellschaft
Eduard-Schloemann-Straße 4
D-40237 Düsseldorf
Telefon: (0211) 8 81-0
Telefax: (0211) 8 81-49 02
Internet: www.sms-demag.com
E-Mail: communications@sms-demag.com
Geschäftsbereiche:
Warmflach- und Kaltwalzwerke
Wiesenstraße 30
D-57271 Hilchenbach-Dahlbruch
Telefon: (02733) 29-0
Telefax: (02733) 29-28 52
Bandanlagen
Walderstraße 51/53
D-40724 Hilden
Telefon: (0211) 8 81-5100
Telefax: (0211) 8 81-5200
„ Bar scalping
Barrenfräsen
3.2 Rolling bar machining
see Equipment and accessories 2.11
maerz-gautschi
Industrieofenanlagen GmbH
Geschäftsbereich Aluminium
Konstanzer Straße 37
Postfach 170
CH 8274 Tägerwilen
Telefon +41/71/6666666
Telefax +41/71/6666688
E-Mail: aluminium@maerz-gautschi.ch
Kontakt: Stefan Blum, Tel. +41/71/6666621
„ Metal filters
Metallfilter
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
ALUMINIUM · 1-2/2007
Walzbarrenbearbeitung
„ Band saws / Bandsägen
SMS Demag Aktiengesellschaft
see Rolling bar machining 3.2
„ Slab milling machines
Barrenfräsmaschinen
SMS Meer GmbH
Ohlerkirchweg 66
D-41069 Mönchengladbach
Tel. +49 (0) 2161 / 35 00
Fax +49 (0) 2161 / 35 06 67
E-Mail: info@sms-meer.com
Internet: www.sms-meer.com
SMS Meer GmbH
see Rolling bar machining 3.2
119
Lieferverzeichnis
3.3 Rolling bar furnaces
Walzbarrenvorbereitung
„ Bar heating furnaces
Barrenanwärmanlagen
„ Hot rolling units /
complete plants
Warmwalzanlagen/Komplettanlagen
„ Homogenising furnaces
Homogenisieröfen
EBNER Industrieofenbau Ges.m.b.H.
see Annealing furnaces 3.3
IUT Industriell Ugnsteknik AB
see Heat treatment 2.4
HERTWICH ENGINEERING GmbH
Maschinen und Industrieanlagen
Weinbergerstraße 6, A-5280 Braunau am Inn
Phone +437722/806-0
Fax +437722/806-122
E-Mail: info@hertwich.com
Internet: www.hertwich.com
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
OTTO JUNKER GmbH
THERMCON OVENS BV
see Extrusion 2
„ Roller tracks
Rollengänge
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
OTTO JUNKER GmbH
see Extrusion 2
3.4 Hot rolling equipment
Warmwalzanlagen
SMS Demag Aktiengesellschaft
Eduard-Schloemann-Straße 4
D-40237 Düsseldorf
Telefon: (0211) 8 81-0
Telefax: (0211) 8 81-49 02
Internet: http://www.sms-demag.com
E-Mail: communications@sms-demag.com
Geschäftsbereiche:
Warmflach- und Kaltwalzwerke
Wiesenstraße 30
D-57271 Hilchenbach-Dahlbruch
Telefon: (02733) 29-0
Telefax: (02733) 29-28 52
Bandanlagen
Walderstraße 51/53
D-40724 Hilden
Telefon: (0211) 8 81-5100
Telefax: (0211) 8 81-5200
„ Rolling mill modernisation
Walzwerksmodernisierung
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, info@achenbach.de
Internet: www.achenbach.de
„ Annealing furnaces
Glühöfen
EBNER Industrieofenbau Ges.m.b.H.
Ruflinger Str. 111, A-4060 Leonding
Tel. +43 / 732 / 68 68
Fax +43 / 732 / 68 68-1000
Internet: www.ebner.cc
E-Mail: sales@ebner.cc
IUT Industriell Ugnsteknik AB
see Heat treatment 2.4
SIEMAG GmbH
Obere Industriestraße 8
D-57250 Netphen
Tel.: +49 (0) 2738 / 21-0
Fax: +49 (0) 2738 / 21-503
E-Mail: metals@siemag.com
Internet: www.siemag.com
„ Coil transport systems
Bundtransportsysteme
Vollert GmbH + Co. KG
Anlagenbau
Windhoff Bahn- und
Anlagentechnik GmbH
see Anode rodding 1.4
see Extrusion 2
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
schwartz GmbH
see Heat treatment 2.4
120
„ Spools / Haspel
SMS Demag Aktiengesellschaft
see Hot rolling equipment 3.4
„ Toolings / Werkzeuge
see Transport of finished anode elements
to the pot room 1.4
„ Drive systems / Antriebe
OTTO JUNKER GmbH
SMS Demag Aktiengesellschaft
see Hot rolling equipment 3.4
SMS Demag Aktiengesellschaft
see Hot rolling equipment 3.4
see Extrusion equipment 2.2
Do you need
more
information?
E-Mail:
Schwichtenberg@giesel.de
ALUMINIUM · 1-2/2007
Lieferverzeichnis
3.5 Strip casting units
and accessories
Bandgießanlagen und
Zubehör
„ Cores & shells for continuous
casting lines
Cores & shells for continuous
casting lines
SIGNODE® SYSTEM GMBH
Packaging Equipment
Non-Ferrous Specialist Team DSWE
Magnusstr. 18, 46535 Dinslaken/Germany
Telefon: +49 (0) 2064 / 69-210
Telefax: +49 (0) 2064 / 69-489
E-Mail: g.laks@signode-europe.com
Internet: www.signode.com
Contact: Mr. Gerard Laks
„ Coil transport systems
Bruno Presezzi, Officine Meccaniche
Via per Ornago 8
I-20040 Burago Molgora (Mi) – Italy
Tel. +39 039 63502 229
Fax +39 039 6081373
E-Mail: aluminium.dept@brunopresezzi.com
Internet: www.presezzicaster.com
Contact: Franco Gramaglia
Vollert GmbH + Co. KG
Anlagenbau
„ Revamps, equipments & spare parts
for continuous casting lines
Windhoff Bahn- und
Anlagentechnik GmbH
see Anode rodding 1.4
Bundtransportsysteme
see Transport of finished anode elements
to the pot room 1.4
Revamps, equipments & spare parts
for continuous casting lines
„ Drive systems
„ Coil annealing furnaces
Bruno Presezzi, Officine Meccaniche
Via per Ornago 8
I-20040 Burago Molgora (Mi) – Italy
Tel. +39 039 63502 229
Fax +39 039 6081373
E-Mail: aluminium.dept@brunopresezzi.com
Internet: www.presezzicaster.com
Contact: Franco Gramaglia
Antriebe
Bundglühöfen
IUT Industriell Ugnsteknik AB
see Heat treatment 2.4
SMS Demag Aktiengesellschaft
see Hot rolling equipment 3.4
OTTO JUNKER GmbH
see Extrusion 2
„ Twin-roll continuous casting
lines (complete lines)
„ Heating furnaces
Anwärmöfen
Twin-roll continuous casting lines
(complete lines)
Bruno Presezzi, Officine Meccaniche
Via per Ornago 8
I-20040 Burago Molgora (Mi) – Italy
Tel. +39 039 63502 229
Fax +39 039 6081373
E-Mail: aluminium.dept@brunopresezzi.com
Internet: www.presezzicaster.com
Contact: Franco Gramaglia
SMS Demag Aktiengesellschaft
Eduard-Schloemann-Straße 4
D-40237 Düsseldorf
Telefon: (0211) 8 81-0
Telefax: (0211) 8 81-49 02
Internet: http://www.sms-demag.com
E-Mail: communications@sms-demag.com
Geschäftsbereiche:
Warmflach- und Kaltwalzwerke
Wiesenstraße 30
D-57271 Hilchenbach-Dahlbruch
Telefon: (02733) 29-0
Telefax: (02733) 29-28 52
Bandanlagen
Walderstraße 51/53
D-40724 Hilden
Telefon: (0211) 8 81-5100
Telefax: (0211) 8 81-5200
see Equipment and accessories 2.11
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
OTTO JUNKER GmbH
see Extrusion 2
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
schwartz GmbH
see Cold colling equipment 3.6
3.6 Cold rolling equipment
Kaltwalzanlagen
www.vits.com
see Cold rolling equipment 3.6
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, info@achenbach.de
Internet: www.achenbach.de
„ Cold rolling units /
complete plants
SIEMAG GmbH
Obere Industriestraße 8
D-57250 Netphen
Tel.: +49 (0) 2738 / 21-0
Fax: +49 (0) 2738 / 21-503
E-Mail: metals@siemag.com
Internet: www.siemag.com
Danieli Fröhling
Finkenstrasse 19
D-57462 Olpe
Germany
Tel.: +49 (0) 27 61 / 894-0
Fax: +49 (0) 27 61 / 894-200
E-Mail: d.neumann@danieli-froehling.de
Internet: www.danieli-froehling.de
Sales Contact: Detlef Neumann
ALUMINIUM · 1-2/2007
Kaltwalzanlagen/Komplettanlagen
Vits Systems GmbH
Winkelsweg 172
D-40764 Langenfeld
Tel.: +49 (0) 2173 / 798-0
Fax: +49 (0) 2173 / 798-244
E-Mail: mt@vits.de, Internet: www.vits.com
„ Process optimisation systems
Prozessoptimierungssysteme
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
121
Lieferverzeichnis
„ Process simulation
Prozesssimulation
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
„ Strip shears
Bandscheren
Danieli Fröhling
Finkenstrasse 19
D-57462 Olpe
Germany
Tel.: +49 (0) 27 61 / 894-0
Fax: +49 (0) 27 61 / 894-200
E-Mail: d.neumann@danieli-froehling.de
Internet: www.danieli-froehling.de
Sales Contact: Detlef Neumann
Revamps, equipments & spare parts
Walzenwechseleinrichtungen
OTTO JUNKER GmbH
see Extrusion 2
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
„ Revamps, equipments & spare parts
„ Roll exchange equipment
Bundglühöfen
see Equipment and accessories 2.11
SMS Demag Aktiengesellschaft
see Cold colling equipment 3.6
Bruno Presezzi, Officine Meccaniche
Via per Ornago 8
I-20040 Burago Molgora (Mi) – Italy
Tel. +39 039 63502 229
Fax +39 039 6081373
E-Mail: aluminium.dept@brunopresezzi.com
Internet: www.presezzicaster.com
Contact: Franco Gramaglia
„ Coil annealing furnaces
SMS Demag Aktiengesellschaft
see Hot rolling equipment 3.4
„ Trimming equipment
schwartz GmbH
see Cold colling equipment 3.6
www.vits.com
see Thin strip / foil rolling plant 3.7
Besäumeinrichtungen
Danieli Fröhling
Finkenstrasse 19
D-57462 Olpe
Germany
Tel.: +49 (0) 27 61 / 894-0
Fax: +49 (0) 27 61 / 894-200
E-Mail: d.neumann@danieli-froehling.de
Internet: www.danieli-froehling.de
Sales Contact: Detlef Neumann
„ Heating furnaces
Anwärmöfen
INOTHERM INDUSTRIEOFENUND WÄRMETECHNIK GMBH
see Casthouse (foundry) 1.5
OTTO JUNKER GmbH
SMS Demag Aktiengesellschaft
see Hot rolling equipment 3.4
see Extrusion 2
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
Vollert GmbH + Co. KG
Anlagenbau
see Transport of finished anode elements
to the pot room 1.4
Windhoff Bahn- und
Anlagentechnik GmbH
see Anode rodding 1.4
„ Rolling mill modernization
Walzwerkmodernisierung
SMS Demag Aktiengesellschaft
see Hot rolling equipment 3.4
3.7 Thin strip /
foil rolling plant
Feinband-/Folienwalzwerke
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, info@achenbach.de
Internet: www.achenbach.de
„ Strip rolling mills
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, info@achenbach.de
Internet: www.achenbach.de
„ Revamps, equipments & spare parts
Bandwalzwerke
Danieli Fröhling
Finkenstrasse 19
D-57462 Olpe
Germany
Tel.: +49 (0) 27 61 / 894-0
Fax: +49 (0) 27 61 / 894-200
E-Mail: d.neumann@danieli-froehling.de
Internet: www.danieli-froehling.de
Sales Contact: Detlef Neumann
122
Vits Systems GmbH
Winkelsweg 172
D-40764 Langenfeld
Tel.: +49 (0) 2173 / 798-0
Fax: +49 (0) 2173 / 798-244
E-Mail: mt@vits.de, Internet: www.vits.com
SIGNODE® SYSTEM GMBH
Packaging Equipment
Non-Ferrous Specialist Team DSWE
Magnusstr. 18, 46535 Dinslaken/Germany
Telefon: +49 (0) 2064 / 69-210
Telefax: +49 (0) 2064 / 69-489
E-Mail: g.laks@signode-europe.com
Internet: www.signode.com
Contact: Mr. Gerard Laks
Revamps, equipments & spare parts
Bruno Presezzi, Officine Meccaniche
Via per Ornago 8
I-20040 Burago Molgora (Mi) – Italy
Tel. +39 039 63502 229
Fax +39 039 6081373
E-Mail: aluminium.dept@brunopresezzi.com
Internet: www.presezzicaster.com
Contact: Franco Gramaglia
ALUMINIUM · 1-2/2007
Lieferverzeichnis
„ Rolling mill modernization
„ Sheet and plate stretchers
Walzwerkmodernisierung
Blech- und Plattenstrecker
„ Strip thickness measurement
and control equipment
Banddickenmess- und
-regeleinrichtungen
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, info@achenbach.de
Internet: www.achenbach.de
SMS Meer GmbH
see Rolling bar machining 3.2
„ Thin strip / foil rolling mills /
complete plant
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, info@achenbach.de
Internet: www.achenbach.de
„ Cable sheathing presses
Kabelummantelungspressen
Feinband- / Folienwalzwerke /
Komplettanlagen
SMS Meer
GmbH
see Rolling bar machining 3.2
SMS Demag Aktiengesellschaft
Eduard-Schloemann-Straße 4
D-40237 Düsseldorf
Telefon: (0211) 8 81-0
Telefax: (0211) 8 81-49 02
Internet: http://www.sms-demag.com
E-Mail: communications@sms-demag.com
Geschäftsbereiche:
Warmflach- und Kaltwalzwerke
Wiesenstraße 30
D-57271 Hilchenbach-Dahlbruch
Telefon: (02733) 29-0
Telefax: (02733) 29-28 52
Bandanlagen
Walderstraße 51/53
D-40724 Hilden
Telefon: (0211) 8 81-5100
Telefax: (0211) 8 81-5200
3.9 Adjustment devices /
Adjustageeinrichtungen
ABB Automation Technologies AB
Force Measurement
S-72159 Västeras, Sweden
Phone: +46 21 342000
Fax: +46 21 340005
E-Mail: pressductor@se.abb.com
Internet: www.abb.com/pressductor
„ Cable undulating machines
Kabelwellmaschinen
SMS Meer
GmbH
see Rolling bar machining 3.2
3.10 Process technology /
Automation technology
SMS Demag Aktiengesellschaft
see Process technology/
Automation technology 3.10
„ Strip flatness measurement
and control equipment
Bandplanheitsmess- und
-regeleinrichtungen
Prozesstechnik /
Automatisierungstechnik
4Production AG
Produktionsoptimierende Lösungen
Adenauerstraße 20, D-52146 Würselen
Tel.: +49 (0) 2405 / 4135-0
info@4production.de, www.4production.de
„ Transverse cutting units
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, info@achenbach.de
Internet: www.achenbach.de
Querteilanlagen
Danieli Fröhling
Finkenstrasse 19
D-57462 Olpe
Germany
Tel.: +49 (0) 27 61 / 894-0
Fax: +49 (0) 27 61 / 894-200
E-Mail: d.neumann@danieli-froehling.de
Internet: www.danieli-froehling.de
Sales Contact: Detlef Neumann
SIEMAG GmbH
Obere Industriestraße 8
D-57250 Netphen
Tel.: +49 (0) 2738 / 21-0
Fax: +49 (0) 2738 / 21-503
E-Mail: metals@siemag.com
Internet: www.siemag.com
„ Process control technology
Prozessleittechnik
„ Longitudinal splitting units
Längsteilanlagen
Danieli Fröhling
Finkenstrasse 19
D-57462 Olpe
Germany
Tel.: +49 (0) 27 61 / 894-0
Fax: +49 (0) 27 61 / 894-200
E-Mail: d.neumann@danieli-froehling.de
Internet: www.danieli-froehling.de
Sales Contact: Detlef Neumann
ALUMINIUM · 1-2/2007
SMS Demag Aktiengesellschaft
see Process technology/
Automation technology 3.10
Unitechnik Cieplik & Poppek AG
D-51674 Wiehl, www.unitechnik.com
SMS Demag Aktiengesellschaft
Eduard-Schloemann-Straße 4
D-40237 Düsseldorf
Telefon: (0211) 8 81-0
Telefax: (0211) 8 81-49 02
Internet: http://www.sms-demag.com
E-Mail: communications@sms-demag.com
Geschäftsbereiche:
Warmflach- und Kaltwalzwerke
Wiesenstraße 30
D-57271 Hilchenbach-Dahlbruch
Telefon: (02733) 29-0
Telefax: (02733) 29-28 52
Bandanlagen
Walderstraße 51/53
D-40724 Hilden
Telefon: (0211) 8 81-5100
Telefax: (0211) 8 81-5200
123
Lieferverzeichnis
3.16 Coil storage systems
Bundlagersysteme
ABB Automation Technologies AB
Force Measurement
S-72159 Västeras, Sweden
Phone: +46 21 342000
Fax: +46 21 340005
E-Mail: pressductor@se.abb.com
Internet: www.abb.com/pressductor
3.11 Coolant / lubricant
preparation
SMS Demag Aktiengesellschaft
see Coolant / lubricant preparation 3.11
3.12 Air extraction systems
Abluft-Systeme
„ Exhaust air purification
systems (active)
Abluft-Reinigungssysteme (aktiv)
Kühl-/SchmiermittelAufbereitung
„ Rolling oil recovery and
treatment units
Walzöl-Wiederaufbereitungsanlagen
SIEMAG GmbH
Obere Industriestraße 8
D-57250 Netphen
Tel.: +49 (0) 2738 / 21-0
Fax: +49 (0) 2738 / 21-503
E-Mail: metals@siemag.com
Internet: www.siemag.com
Vollert GmbH + Co. KG
Anlagenbau
see Transport of finished anode elements
to the pot room 1.4
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, info@achenbach.de
Internet: www.achenbach.de
3.17 Strip Processing Lines
Bandprozesslinien
„ Strip Processing Lines
Bandprozesslinen
SMS Demag Aktiengesellschaft
Eduard-Schloemann-Straße 4
D-40237 Düsseldorf
Telefon: (0211) 8 81-0
Telefax: (0211) 8 81-49 02
Internet: http://www.sms-demag.com
E-Mail: communications@sms-demag.com
Geschäftsbereiche:
Warmflach- und Kaltwalzwerke
Wiesenstraße 30
D-57271 Hilchenbach-Dahlbruch
Telefon: (02733) 29-0
Telefax: (02733) 29-28 52
Bandanlagen
Walderstraße 51/53
D-40724 Hilden
Telefon: (0211) 8 81-5100
Telefax: (0211) 8 81-5200
SMS Demag Aktiengesellschaft
Eduard-Schloemann-Straße 4
D-40237 Düsseldorf
Telefon: (0211) 8 81-0
Telefax: (0211) 8 81-49 02
Internet: http://www.sms-demag.com
E-Mail: communications@sms-demag.com
Geschäftsbereiche:
Warmflach- und Kaltwalzwerke
Wiesenstraße 30
D-57271 Hilchenbach-Dahlbruch
Telefon: (02733) 29-0
Telefax: (02733) 29-28 52
Bandanlagen
Walderstraße 51/53
D-40724 Hilden
Telefon: (0211) 8 81-5100
Telefax: (0211) 8 81-5200
„ Filtering plants and systems
Filteranlagen und Systeme
„ Filter for rolling oils and
emulsions
Bergwerk- und WalzwerkMaschinenbau GmbH
Mercatorstraße 74 – 78
D-47051 Duisburg
Tel.: +49 (0) 203-9929-0
Fax: +49 (0) 203-9929-400
E-Mail: bwg@bwg-online.de
Internet: www.bwg-online.com
„ Colour Coating Lines
Bandlackierlinien
www.bwg-online.com
see Strip Processing Lines 3.17
„ Strip Annealing Lines
Bandglühlinien
Filter für Walzöle und Emulsionen
www.bwg-online.com
see Strip Processing Lines 3.17
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, info@achenbach.de
Internet: www.achenbach.de
Dantherm Filtration GmbH
Industriestr. 9, D-77948 Friesenheim
Tel.: +49 (0) 7821 / 966-0, Fax: - 966-245
E-Mail: info.de@danthermfiltration.com
Internet: www.danthermfiltration.com
3.14 Storage and dispatch
„ Rolling oil rectification units
Lagerung und Versand
„ Stretch Levelling Lines
Streckrichtanlagen
www.bwg-online.com
see Strip Processing Lines 3.17
Walzölrektifikationsanlagen
„ Lithographic Sheet Lines
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, info@achenbach.de
Internet: www.achenbach.de
124
SIEMAG GmbH
Obere Industriestraße 8
D-57250 Netphen
Tel.: +49 (0) 2738 / 21-0
Fax: +49 (0) 2738 / 21-503
E-Mail: metals@siemag.com
Internet: www.siemag.com
Lithografielinien
www.bwg-online.com
see Strip Processing Lines 3.17
ALUMINIUM · 1-2/2007
Lieferverzeichnis
4
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
Foundry
Gießerei
Work protection and ergonomics
Heat-resistant technology
Conveyor and storage technology
Mould and core production
Mould accessories and accessory materials
Foundry equipment
Casting machines and equipment
Handling technology
Construction and design
Measurement technology and materials testing
Metallic charge materials
Finshing of raw castings
Melt operations
Melt preparation
Melt treatment devices
Control and regulation technology
Environment protection and disposal
Dross recovery
4.2 Heat-resistent technology
Feuerfesttechnik
„ Refractories
Feuerfeststoffe
Silca Service- und Vertriebsgesellschaft
für Dämmstoffe mbH
Auf dem Hüls 6, D-40822 Mettmann
Tel. 02104/97270, Fax 02104/76902
E-Mail: info@silca-online.de
Internet: www.silca-online.de
Arbeitsschutz und Ergonomie
Feuerfesttechnik
Förder- und Lagertechnik
Form- und Kernherstellung
Formzubehör, Hilfsmittel
Gießereianlagen
Gießmaschinen und Gießeinrichtungen
Handhabungstechnik
Konstruktion und Design
Messtechnik und Materialprüfung
Metallische Einsatzstoffe
Rohgussnachbehandlung
Schmelzbetrieb
Schmelzvorbereitung
Schmelzebehandlungseinrichtungen
Steuerungs- und Regelungstechnik
Umweltschutz und Entsorgung
Schlackenrückgewinnung
4.6 Foundry equipment
Gießereianlagen
Cast-Tec GmbH & Co. KG
Fertigungstechnik & Service
D-44536 Lünen, Brunnenstraße 138
Telefon: 02306/20310-0
Telefax: 02306/20310-11
E-Mail: Info@cast-tec.de
Internet: www.cast-tec.de
Promat GmbH – Techn. Wärmedämmung
Scheifenkamp 16, D-40878 Ratingen
Tel. +49 (0) 2102 / 493-0, Fax -493 115
verkauf3@promat.de, www.promat.de
THERMCON OVENS BV
„ Casting launder linings
„ Planning
Gießrinnenauskleidungen
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
Förder- und Lagertechnik
Vollert GmbH + Co. KG
Anlagenbau
see Transport of finished anode elements
to the pot room 1.4
Gießerei-Werkzeuge
Albert Turk GmbH & Co. KG
D-58540 Meinerzhagen,
Tel. 02358/2727-0, Fax 02358/2727-27
„ Casting machines
Gießmaschinen
see Extrusion 2
Projektierung
Silca Service- und Vertriebsgesellschaft
für Dämmstoffe mbH
Auf dem Hüls 6, D-40822 Mettmann
Tel. 02104/97270, Fax 02104/76902
E-Mail: info@silca-online.de
Internet: www.silca-online.de
4.3 Conveyor and storage
technology
„ Tolls for the foundry
HERTWICH ENGINEERING GmbH
Maschinen und Industrieanlagen
Weinbergerstraße 6, A-5280 Braunau am Inn
Phone +437722/806-0
Fax +437722/806-122
E-Mail: info@hertwich.com
Internet: www.hertwich.com
HERTWICH ENGINEERING GmbH
Maschinen und Industrieanlagen
Weinbergerstraße 6, A-5280 Braunau am Inn
Phone +437722/806-0
Fax +437722/806-122
E-Mail: info@hertwich.com
Internet: www.hertwich.com
see Equipment and accessories 2.11
„ Solution annealing furnaces/plant
Lösungsglühöfen/anlagen
„ Construction
Bau
4.5 Mold accessories and
accessory materials
ERNST REINHARDT GMBH
Postfach 1880, D-78008 VS-Villingen
Tel. 07721/8441-0, Fax 8441-44
E-Mail: info@ernstreinhardt.de
Internet: www.Ernst-Reinhardt.com
Formzubehör, Hilfmittel
„ Fluxes
Flussmittel
Solvay Fluor GmbH
Hans-Böckler-Allee 20
D-30173 Hannover
Telefon +49 (0) 511 / 857-0
Telefax +49 (0) 511 / 857-2146
Internet: www.solvay-fluor.de
ALUMINIUM · 1-2/2007
HERTWICH ENGINEERING GmbH
Maschinen und Industrieanlagen
Weinbergerstraße 6, A-5280 Braunau am Inn
Phone +437722/806-0
Fax +437722/806-122
E-Mail: info@hertwich.com
Internet: www.hertwich.com
„ Heat treatment furnaces
Wärmebehandlungsöfen
see Foundry equipment 4.6
125
Lieferverzeichnis
4.7 Casting machines
and equipment
Gießereimaschinen
und Gießeinrichtungen
4.11 Metallic charge
materials
4.13 Melt operations
Schmelzbetrieb
Metallische Einsatzstoffe
OTTO JUNKER GmbH
THERMCON OVENS BV
see Extrusion 2
OTTO JUNKER GmbH
THERMCON OVENS BV
see Extrusion 2
Molten Metall Level Control
Ostra Hamnen 7
SE-430 91 Hono / Schweden
Tel.: +46 31 764 5520
Fax: +46 31 764 5529
E-mail: sales@precimeter.se
Internet: www.precimeter.se
Sales Contact: Rolf Backberg
Scholz AG
Am Bahnhof
D-73457 Essingen
Tel. +49 (0) 7365-84-0
Fax +49 (0) 7365-1481
E-Mail: infoscholz@scholz-ag.de
Internet: www.scholz-ag.de
„ Aluminium alloys
Aluminiumlegierungen
„ Melting furnaces
Schmelzöfen
Büttgenbachstraße 14
D-40549 Düsseldorf/Germany
Tel.: +49 (0) 211 / 5 00 91-43
Fax: +49 (0) 211 / 50 13 97
E-Mail: info@bloomeng.de
Internet: www.bloomeng.com
Sales Contact: Klaus Rixen
„ Mould parting agents
Kokillentrennmittel
Schröder KG
Schmierstofftechnik
Postfach 1170
D-57251
Freudenberg
Tel. 02734/7071
Fax 02734/20784
www.schroeder-schmierstoffe.de
4.8 Handling technology
METALLHÜTTENWERKE BRUCH GMBH
Postfach 10 06 29
D-44006 Dortmund
Telefon +49 (0) 231 / 8 59 81-121
Telefax +49 (0) 231 / 8 59 81-124
E-Mail: al-vertrieb@bruch.de
Internet: www.bruch.de
HERTWICH ENGINEERING GmbH
Maschinen und Industrieanlagen
Weinbergerstraße 6, A-5280 Braunau am Inn
Phone +437722/806-0
Fax +437722/806-122
E-Mail: info@hertwich.com
Internet: www.hertwich.com
Handhabungstechnik
THERMCON OVENS BV
see Extrusion 2
METALLHANDELSGESELLSCHAFT
SCHOOF & HASLACHER MBH & CO. KG
Postfach 600714, D 81207 München
Telefon 089/829133-0
Telefax 089/8201154
E-Mail: info@metallhandelsgesellschaft.de
Internet: www.metallhandelsgesellschaft.de
see Equipment and accessories 2.11
Vollert GmbH + Co. KG
Anlagenbau
see Transport of finished anode elements
to the pot room 1.4
4.9 Construction and
Design
Konstruktion und Design
THERMCON OVENS BV
ALERIS Recycling (German Works) GmbH
Aluminiumstraße 3
D-41515 Grevenbroich
Telefon +49 (0) 2181/16 45 0
Telefax +49 (0) 2181/16 45 100
E-Mail: recycling@aleris.com
Internet: www.aleris-recycling.com
MARX GmbH & Co. KG
Lilienthalstr. 6-18
D-58638 Iserhohn
Tel.: +49 (0) 2371 / 2105-0, Fax: -11
E-Mail: info@marx-gmbh.de
Internet: www.marx-gmbh.de
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
„ Holding furnaces
see Extrusion 2
Warmhalteöfen
4.10 Measurement
technology and
materials testing
Messtechnik und
Materialprüfung
SRS Amsterdam BV
www.srsamsterdam.com
see Casthouse (foundry) 1.5
126
„ Pre alloys
Vorlegierungen
METALLHANDELSGESELLSCHAFT
SCHOOF & HASLACHER MBH & CO. KG
Postfach 600714, D 81207 München
Telefon 089/829133-0
Telefax 089/8201154
E-Mail: info@metallhandelsgesellschaft.de
Internet: www.metallhandelsgesellschaft.de
Büttgenbachstraße 14
D-40549 Düsseldorf/Germany
Tel.: +49 (0) 211 / 5 00 91-43
Fax: +49 (0) 211 / 50 13 97
E-Mail: info@bloomeng.de
Internet: www.bloomeng.com
Sales Contact: Klaus Rixen
ALUMINIUM · 1-2/2007
Lieferverzeichnis
4.14 Melt preparation
Schmelzvorbereitung
Steuerungs- und
Regelungstechnik
see Equipment and accessories 2.11
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
4.16 Control and
regulation technology
„ HCL measurements
OTTO JUNKER GmbH
THERMCON OVENS BV
HCL Messungen
see Extrusion 2
„ Heat treatment furnaces
Wärmebehandlungsanlagen
„ Degassing, filtration
Entgasung, Filtration
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
HERTWICH ENGINEERING GmbH
Maschinen und Industrieanlagen
Weinbergerstraße 6, A-5280 Braunau am Inn
Phone +437722/806-0
Fax +437722/806-122
E-Mail: info@hertwich.com
Internet: www.hertwich.com
Drache Umwelttechnik
GmbH
Werner-v.-Siemens-Straße 9/24-26
D 65582 Diez/Lahn
Telefon 06432/607-0
Telefax 06432/607-52
Internet: http://www.drache-gmbh.de
OPSIS AB
Box 244, S-24402 Furulund, Schweden
Tel. +46 (0) 46-72 25 00, Fax -72 25 01
E-Mail: info@opsis.se
Internet: www.opsis.se
4.17 Environment protec
tion and disposal
Umweltschutz und
Entsorgung
„ Dust removal / Entstaubung
NEOTECHNIK GmbH
Entstaubungsanlagen
Postfach 110261, D-33662 Bielefeld
Tel. 05205/7503-0, Fax 05205/7503-77
info@neotechnik.com, www.neotechnik.com
IUT Industriell Ugnsteknik AB
Industrivägen 2, 43892 Härryda, Sweden
Tel. +46 (0) 301 31510
Fax +46 (0) 301 30479
E-Mail: office@iut.se
Internet: www.iut.se
see Equipment and accessories 2.11
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
HERTWICH ENGINEERING GmbH
Maschinen und Industrieanlagen
Weinbergerstraße 6, A-5280 Braunau am Inn
Phone +437722/806-0
Fax +437722/806-122
E-Mail: info@hertwich.com
Internet: www.hertwich.com
„ Flue gas cleaning
„ Melt treatment agents
Dantherm Filtration GmbH
Industriestr. 9, D-77948 Friesenheim
Tel.: +49 (0) 7821 / 966-0, Fax: - 966-245
E-Mail: info.de@danthermfiltration.com
Internet: www.danthermfiltration.com
Schmelzebehandlungsmittel
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
Rauchgasreinigung
4.18 Dross recovery
Schlackenrückgewinnung
4.15 Melt treatment devices
„ Heat treatment technologies
Wärmebehandlungsverfahren
Wärmebehandlungstechnologien
Schmelzbehandlungseinrichtungen
OTTO JUNKER GmbH
THERMCON OVENS BV
see Extrusion 2
OTTO JUNKER GmbH
THERMCON OVENS BV
see Extrusion 2
ALUTEC-BELTE AG, ALUMINIUMTECHNOLOGIE
Lindenweg 5
D-33129 Delbrück
Tel.:
+49 (0 ) 52 50 / 98 79-0
Fax:
+49 (0 ) 52 50 / 98 79-149
E-Mail: info@alutec-belte.com
Web: www.alutec-belte.com
ALUMINIUM · 1-2/2007
Metaullics Systems Europe B.V.
P.O.Box 748
NL-2920 CA Krimpen a/d Yssel
Tel. +31-180/590890
Fax +31-180/551040
E-Mail: info@metaullics.nl
Internet: www.metaullics.com
Do you need
more information?
E-Mail:
Schwichtenberg@giesel.de
127
Lieferverzeichnis
5
Materials and Recycling
„ Thermal coating
Werkstoffe und Recycling
Berolina Metallspritztechnik
Wesnigk GmbH
Pappelhain 30
D-15378 Hennickendorf
Tel.: +49 (0) 33434 / 46060
Fax: +49 (0) 33434 / 46701
E-Mail: info@metallspritztechnik.de
Internet: www.metallspritztechnik.de
„ Aluminium foam
Aluminiumschaum
„ Granulated aluminium
Aluminiumgranulate
Thermische Beschichtung
6.2 Semi products
Alulight International GmbH
Lach 22
A-5282 Ranshofen
Telefon ++43 / 7722 / 62216-26
Telefax ++43 / 7722 / 62216-11
E-Mail: office@alulight.com
Internet: www.alulight.com
6
ECKA Granulate Austria GmbH
Bürmooser Landesstraße 19
A-5113 St. Georgen/Salzburg
Telefon +43 7722 62216-41
Telefax +43 7722 62216-44
Kontakt: Walter Rajner
E-Mail: w.rajner@ecka-granules.com
Machining and Application
Bearbeitung und Anwendung
„ Machining of aluminium
Aluminiumbearbeitung
Haarmann Holding GmbH
see Die preparation and care 2.6
Prozesse für die
Oberflächenbehandlung
„ Wires / Drähte
DRAHTWERK ELISENTAL
W. Erdmann GmbH & Co.
Werdohler Str. 40, D-58809 Neuenrade
Postfach 12 60, D-58804 Neuenrade
Tel. +49(0)2392/697-0, Fax 49(0)2392/62044
E-Mail: info@elisental.de
Internet: www.elisental.de
6.3 Equipment for forging
and impact extrusion
Ausrüstung für Schmiedeund Fließpresstechnik
„ Paint stripping / Entlackung
Henkel KGaA
„ Hydraulic Presses
Hydraulische Pressen
see Prozesse für die Oberflächentechnik 6.1
„ Pretreatment before coating
Vorbehandlung vor der Beschichtung
6.1 Surface treatment
processes
Halbzeuge
Henkel KGaA
see Prozesse für die Oberflächentechnik 6.1
„ Joining of light metals
LASCO Umformtechnik GmbH
Hahnweg 139, D-96450 Coburg
Tel. +49 (0) 9561 642-0
Fax +49 (0) 9561 642-333
E-Mail: lasco@lasco.de
Internet: www.lasco.com
Fügen von Leichtmetallen
8
Henkel KGaA
D-40191 Düsseldorf
Tel. +49 (0) 211 / 797-30 00
Fax +49 (0) 211 / 798-36 36
Internet: www.henkel-technologies.com
Fachliteratur
„ Adhesive bonding / Verkleben
Henkel KGaA
„ Pretreatment before
adhesive bonding
„ Anodising / Anodisation
Henkel KGaA
see Prozesse für die Oberflächentechnik 6.1
„ Cleaning / Reinigung
Henkel KGaA
Literatur
„ Technikcal literature
Henkel KGaA
Standort Heidelberg
Hans-Bunte-Straße 4
D-69123 Heidelberg
Tel. +49 (0) 6221 / 704-204
Fax +49 (0) 6221 / 704-515
see Prozesse für die Oberflächentechnik 6.1
Literature
Vorbehandlung vor dem Verkleben
Taschenbuch des Metallhandels
Fundamentals of Extrusion Technology
Giesel Verlag GmbH
Verlag für Fachmedien
Ein Unternehmen der Klett-Gruppe
Rehkamp 3 · 30916 Isernhagen
Tel. 0511 / 73 04-122 · Fax 0511 / 73 04-157
„ Technical journals
Fachzeitschriften
Henkel KGaA
see Prozesse für die Oberflächentechnik 6.1
International Journal for Industry, Research and Application
„ Spectrocolor Interferencecolouring
Spectrocolor Interferenzfärben
Henkel KGaA
see Prozesse für die Oberflächentechnik 6.1
see Prozesse für die Oberflächentechnik 6.1
„ Joining / Fügen
Henkel KGaA
see Prozesse für die Oberflächentechnik 6.1
128
„ Waste water treatment
Abwasseraufbereitung
Henkel KGaA
see Prozesse für die Oberflächentechnik 6.1
Giesel Verlag GmbH
Ein Unternehmen der Klett-Gruppe
Rehkamp 3 · 30916 Isernhagen
Tel. 0511 / 73 04-122 · Fax 0511 / 73 04-157
ALUMINIUM · 1-2/2007
IMPRESSUM / IMPRINT
International
ALUMINIUM
Journal
83. Jahrgang 1.1.2007
Herausgeber / Publisher
Dr.-Ing. Peter Johne
Redaktion / Editorial office
Dipl.-Vw. Volker Karow
Chefredakteur, Editor in Chief
Franz-Meyers-Str. 16, 53340 Meckenheim
Tel: 02225/83 59 643, Fax: 02225/18 4 58
E-Mail: vkarow@online.de
Dipl.-Ing. Rudolf P. Pawlek
Fax: ++41-274 555 926
Hüttenindustrie und Recycling
Dipl.-Ing. Bernhard Rieth
Walzwerkstechnik und Bandverarbeitung
Verlag / Publishing house
Giesel Verlag GmbH, Verlag für Fachmedien, Unternehmen der Klett-Gruppe, Postfach 120158, 30907 Isernhagen; Rehkamp
3, 30916 Isernhagen, Tel: 0511/7304-0, Fax:
0511/7304-157. E-mail: Giesel@giesel.de
Internet: www.alu-web.de.
Postbank/postal cheque account Hannover, BLZ/routing code: 25010030; Kto.Nr./ account no. 90898-306, Bankkonto/
bank account Commerzbank AG, BLZ/
routing code: 25040066, Kto.-Nr./account
no. 1500222
Geschäftsleitung / General Manager
Dietrich Taubert,
Tel: 05 11/73 04-147,
Taubert@giesel.de
Objektleitung / Publication Manager
Stefan Schwichtenberg
Tel: 05 11/ 73 04-142,
Schwichtenberg@giesel.de
Anzeigendisposition / Advertising
layout
Beate Schaefer
Tel: 05 11/ 73 04-148,
BSchaefer@giesel.de
Vertriebsleitung / Distribution Manager
Jutta Illhardt
Tel: 05 11/ 73 04-126,
Illhardt@giesel.de
Abonnenten-Service / Reader service
Kirsten Voß
Tel: 05 11/ 73 04-122,
Vertrieb@giesel.de
Herstellung & Druck / Printing house
BWH GmbH, Beckstr. 10, D-30457 Hannover
Jahresbezugspreis
EUR 285,– (Inland inkl. 7% Mehrwertsteuer und Versandkosten). Europa EUR
289,- inkl. Versandkosten. Übersee US$
375,– inkl. Normalpost; Luftpost zuzügl.
US$ 82,–.
Preise für Studenten auf Anfrage. ALUMINIUM erscheint zehnmal pro Jahr. Kündigungen jeweils sechs Wochen zum Ende
der Bezugszeit.
Subscription rates
EUR 285,— p.a. (domestic incl. V.A.T.) plus
postage. Europe EUR 289,- incl. surface
mail. Outside Europe US$ 375,– incl. sur-
ALUMINIUM · 1-2/2007
face mail, air mail plus US$ 82,–.
Aluminium is published monthly (10 issues a year). Cancellations six weeks prior
to the end of a year.
Anzeigenpreise
Preisliste Nr. 47 vom 1.1.2007.
Advertisement rates
price list No. 47 from 1.1.2007.
Die Zeitschrift und alle in ihr enthaltenen
Beiträge und Abbildungen sind urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des
Verlages unzulässig und strafbar. Das gilt
insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Bearbeitung in elektronischen Systemen. Der Verlag übernimmt
keine Gewähr für die Richtigkeit der in
diesem Heft mitgeteilten Informationen
und haftet nicht für abgeleitete Folgen.
Haftung bei Leistungsminderung durch
höhere Gewalt oder andere vom Verlag
nicht verschuldete Umstände (z. B. Streik)
ist ausgeschlossen.
This journal and all contributions contained therein are protected by copyright.
Any utilization outside the strict limits of
copyright legislation without the express
consent of the publisher ist prohibited
and actionable at law. This applies in
particular to reproduction, translations,
microfilming and storage or processing in
electronic systems. The publisher offers
no guarantee that the information in this
volume is accurate and accepts no liability
for consequences deriving therefrom. No
liability whatsoever is accepted for perfomance lag caused by vorce majeure or by
circumstances beyond the publisher’s control (e.g. industrial action).
ISSN: 0002-6689
© Giesel Verlag GmbH
Verlagsrepräsentanz / Representatives
Nielsen-Gebiet 1 (Schleswig-Holstein,
Hamburg, Bremen, Niedersachsen ohne
Osnabrück):
Giesel Verlag GmbH
Tel: 05 11/73 04-145,
Fax: 05 11/73 04-157
E-mail: giesel@giesel.de
www.giesel-verlag.de
Nielsen-Gebiet 2 (Nordrhein-Westfalen,
Raum Osnabrück):
Medienbüro Jürgen Wickenhöfer
Minkelsches Feld 39, 46499 Hamminkeln
Tel: 0 28 52 / 9 4180, Fax: 0 28 52 / 9 4181
E-mail: info@jwmedien.de
www.jwmedien.de
Nielsen-Gebiet 3a (Hessen, Saarland,
Rheinland-Pfalz):
multilexa GmbH, publisher services
Unterm Hungerrain 23, 63853 Mömlingen
Tel: 0 60 22/35 14, Fax: 0 60 22/3 80 80
E-mail: thomas.werner@multilexa.de
www.multilexa.de
Nielsen-Gebiet 3 b (Baden-Württemberg):
G. Fahr, Verlags- und Pressebüro
Marktplatz 10, 72654 Neckartenzlingen
Tel: 0 71 72/30 84, Fax: 07172/2 14 78
E-mail: info@verlagsbuero-fahr.de
Nielsen-Gebiet 4 (Bayern):
G. Fahr, Verlags- und Pressebüro
Marktplatz 10, 72654 Neckartenzlingen
Tel: 0 71 72/30 84, Fax: 07172/2 14 78
E-mail: info@verlagsbuero-fahr.de
Nielsen-Gebiet 5, 6 + 7 (Berlin, Mecklenburg-Vorpommern, Brandenburg,
Sachsen-Anhalt Sachsen, Thüringen):
multilexa GmbH, publisher services
Unterm Hungerrain 23, 63853 Mömlingen
Tel: 0 60 22/35 14, Fax: 0 60 22/3 80 80
E-mail: thomas.werner@multilexa.de
www.multilexa.de
Netherlands, Belgium, Luxembourg
BSW International Marketing
Bent S. Wissing
Oestbanegade 11 – DK-2100 Kopenhagen
Tel: +4535/385255
Fax: +45 35/385220
bsw@worldonline.dk
Switzerland
JORDI PUBLIPRESS
Postfach 154 · CH-3427 Utzenstorf
Tel. +41 (0)32 / 666 30 90,
Fax +41 (0)32 / 666 30 99
E-Mail: info@jordipublipress.ch
www.jordipublipress.ch
Austria
Verlagsbüro Forstner
Buchbergstraße 15/1, A-1140 Wien
Tel: +43(0)1 / 9 79 71 89
Fax: +43(0)1 / 9 79 1329
E-Mail: forstner.wolfgang@aon.at
Italy
MEDIAPOINT & COMMUNICATIONS
SRL
Corte Lambruschini – Corso Buenos
Aires, 8
Vo piano – Interno 7, I-16129 Genova
Tel: +39(0)10 / 5 70 49 48,
Fax: +39(0)10 / 5 53 00 88
E-mail: info@mediapointsrl.it
www.mediapointsrl.it
USA, Canada, Africa, U.A.E. etc.
John Travis
Rayleigh House
2, Richmond Hill
Richmond, Surrey TW10 6QX
Großbritannien
Tel: +44 (0)7799001442
Fax:+44 (0)1344291072
E-Mail: apt@aluminiumindustry.com
United Kingdom
John Travis
Rayleigh House
2, Richmond Hill
Richmond, Surrey TW10 6QX
Großbritannien
Tel: +44 (0)7799001442
Fax:+44 (0)1344291072
E-Mail: apt@aluminiumindustry.com
Scandinavia and Denmark
BSW International Marketing
Bent S. Wissing
Oestbanegade 11 – DK-2100 Kopenhagen
Tel: 0045/35/385255
Fax: 0045 /35/385220
bsw@worldonline.dk
France
DEF & Communication
Axelle Chrismann
48 boulevard Jean Jaurès, F-92110 Clichy
Tel: +33 (0)1 47 30 71 80,
Fax: +33 (0)1 47 30 01 89
E-Mail: achrismann@wanadoo.fr
129
VORSCHAU / PREVIEW
Im nächsten Heft
Special: Aluminium-Recycling
Überblick über die Sekundäraluminiumindustrie
weltweit
Schmelz- und Gießtechnik: Innovative Anlagen
von Ausrüstern, konstruktive Anforderungen an
die Anlagenmodernisierung, Schmelzebehandlung
Unterschiedliche Recyclingansätze in Umweltanalysen und ihre Konsequenzen
Aluminium im Automobil
Gießtechnik im Motorenbau
Marktentwicklung der Automobilindustrie und des
Leichtmetalls Aluminium
Economics
Forschung:
Entwicklung neuer Duktilitätskriterien von Leichtbauwerkstoffen in der Fahrzeugentwicklung
Weitere Themen
Aktuelles aus der Branche - Hüttentechnik - Anwendungen
Wertanalyse im Downstreamgeschäft der Aluminiumindustrie
Erscheinungstermin: 5. März 2007
Anzeigenschluss: 16. Februar 2007
Redaktionsschluss: 2. Februar 2007
In the next issue
Research
Special: Aluminium recycling
Potentials of new ductility criterions in car development with lightweight materials
Overview of the global secondary aluminium
industry
Other topics
Melting and casting technology: innovative plants
from suppliers, design requirements for plant modernisation, melt treatment
Smelting technology
Latest news from the industry
Applications
Different recycling approaches in environment
analyses and their consequences
Automotive
Casting technology for engines
Market development in the car industry and of the
lightweight metal
Economics
The value engineering in downstream sectors of
modern aluminium industry
130
Day of publication: 5 March 2007
Advertisement deadline: 16 February 2007
Editorial deadline: 12 February 2007
ALUMINIUM · 1-2/2007
Simply closer to
your products.
Visit us at
METEC 2007
Hall 6, Booth E20
June 12 to 16 in Düsseldorf,
Germany
Your technology partner in the aluminum industry.
How do we meet the growing demands of our customers in the aluminum industry worldwide? By supplying all-inclusive mechatronic solutions. Whatever
you want to manufacture from this material, or what
product quality you aim to achieve – at SMS Demag
we know what it takes. That’s because we listen!
And because we draw on our holistic process know-
how and experience. Our plants – whether new facilities, conversions or revamps – always ensure that our
solutions encompass the latest developments in aluminum production and processing.
Always closer to you – SMS Demag.
MEETING your EXPECTATIONS
SMS DEMAG AG
Eduard-Schloemann-Strasse 4
40237 Düsseldorf, Germany
Phone: +49 (0) 211 881-0
Fax:
+49 (0) 211 881-4902
E-mail: communications@sms-demag.com
Internet: www.sms-demag.com
.0-5&$)"EWBODFE5FDIOPMPHZJODMVEFT
5*/035."MVNJOVNXFUUBCMFDBUIPEFDPBUJOH
.0-5&$)7JUUPSJPEF/PSB*OFSU.FUBMMJD"OPEFT
.0-5&$)5FDIOPMPHZ$FOUFS
.0-5&$)5FDIOPMPHZ$FOUFS
3PVUFEFMn"ODJFO4JFSSF
$)4JFSSF
4XJU[FSMBOE
.0-5&$)0GGJDFT
2VBJEV.POU#MBOD
$)(FOFWB
4XJU[FSMBOE
XXXNPMUFDIDI
Improve your smelter performance ...
a
Consulting and project realization
:FBST
Analyzing smelter full potential
Performing measurement campaigns
Modeling Thermal - MagnetoHydroDynamic
Analyzing Process Control and Signals
Improving Cell Design
Measurement devices MHD, Thermal
,"//",4"
3PVUFEFMn"ODJFO4JFSSF
$)4JFSSF
4XJU[FSMBOE
XXXLBOOBLDI