special - ALU

Transcription

special - ALU
The value engineering
in downstream
sectors of modern
aluminium industry
Norsk Hydro
Giesel Verlag GmbH · Postfach 120158 · D-30907 Isernhagen – PVST H 13410 – Dt. Post AG – Entgelt bezahlt
Special 2007
The aluminium
recycling industry
Volume 83 · March 2007
International Journal for Industry, Research and Application
Gießtechnik im
Motorenbau
3
Short profile scrap.
View of chamber 2.
Long profile scrap in bundles.
HE-ECOMELT-PP
State of the art
We will exhibit at
ALUMINIUM CASTING 2007
March 27 to 29
Moscow, Russia
Leading technology in the aluminum casthouse.
There are many benefits in one-stop shopping –
even for industrial goods. Reliable, co-operative
planning, specifications, which meet exactly your
demands and individual service-packages to operate
on first-class level throughout the whole life-time of
the plant – this can be realized by one of the most
experienced suppliers: Hertwich Engineering.
Major benefits
Hertwich Engineering is dedicated to leading technology in the aluminum casthouse. We add value
by designing integrated turn-key solutions. From
melting and remelting to testing and packing. The
results are convincing: highest quality of products
at lowest cost-of-ownership. This has been proven
by numerous plants all over the world.
He-Ecomelt-PP
High capacity system for remelting extrusion
scrap contaminated with paint and plastic
Production: 6 tons per hour
Content of paint and plastic up to 5 % of charge
weight
Hydrocarbons are pyrolyzed and burnt in an
environmentally sound way
Residue carbon is also gasified and burnt thus
avoiding formation of hard carbides in the melt
Low energy consumption, low fuel gas consumption (400 to 450 kWh/ton), low oxidation
losses (metal losses)
Bundles up to 7.2 m length can be charged
MEETING your EXPECTATIONS
HERTWICH ENGINEERING GMBH
Weinbergerstrasse 6
5280 Braunau, Austria
Phone: +43 (0) 7722 806-0
Fax:
+43 (0) 7722 806-122
E-mail: info@hertwich.com
Internet: www.hertwich.com
EDITORIAL
Volker Karow
Chefredakteur
Editor in Chief
Plädoyer für eine
europäische Rohstoffstrategie
Plea for a European raw materials
strategy
ALUMINIUM · 3/2007
Kaum ein Tag, an dem nicht über
die Gefahren der Abhängigkeit von
Öl- und Gasimporten und die damit
ver­bun­denen Versorgungsrisiken be­
rich­tet wird. Die beiden fossilen Ener­
gieträger gelten wirtschaftspoli­tisch
als „stra­tegische“ Energien von hoher,
ja essen­zieller volkswirtschaftlicher
Be­deu­tung, auch vor dem Hintergrund
des enormen Energiehungers Chinas,
Indiens und anderer Schwellenländer. Versorgungssicherheit wird
(wieder) zur energiepolitisch zentralen Kategorie im Kampf um knap­pe
Res­sourcen. Vor diesem Hintergrund
fällt immer öfter das Wort von der
„europäischen Energieaußenpolitik“,
um sich bei der Verteilung künftig
knapper werdender Energien zu positionieren.
Umso verwunderlicher, dass nicht
mit gleichem Nachdruck eine „europäische Rohstoffpolitik“ auf der politischen Agenda steht, die die kontinuierliche Versorgung der deutschen
und europäischen Volkswirtschaften
mit den Grundstoffen industrieller
Prozesse im Blick hat. Nicht nur der
Mangel an Energie, auch der Mangel
an Rohstoffen kann eine Volkswirtschaft, nun, wenn nicht lahm legen,
so doch ihr Wachstumspotenzial drastisch einschränken.
Da die einzige relevante Rohstoff­
quelle in Deutschland und Euro­pa Metall- und mithin Alu­miniumschrotte
sind, ist eine langfristig orientierte
EU-Rohstoffstrategie
angeraten,
die geeignet ist, einem drastischen
Abfluss von Schrotten nach Asien
zu begegnen, der die europäi­schen
Volkswirtschaften empfindlich stören
kann. Das Problem ist nicht zu unterschätzen: Wir sprechen hier, allein
mit Blick auf Aluminiumschrott, immerhin von einer Million Tonnen, die
in den letzten drei Jahren nach China
und Indien abgeflossen sind. Tendenz
langfristig steigend.
Eine Beschränkung des europäi­
schen Marktzugangs mag aus marktwirtschaftlicher Sicht der falsche
Ansatz sein. Tatenlosigkeit hilft aber
auch nicht weiter. Europa muss seine
wirtschaftlichen Interessen im Auge
behalten. Die anderen Akteure im
Welthandel haben die ihren ebenfalls
im Blick.
Hardly a day goes by when we do not
hear about the dangers of dependence
on oil and gas imports and the supply
risks associated with this. The two
fossil fuels count in economic policy
terms as “strategic” forms of energy of
high, indeed essential importance for
the economy, particularly against the
background of the voracious appetite
of China, India and other fast-developing countries for energy. Security
of supply is (again) a central focus of
energy policy in the fight for scarce
resources. Against that background
there is increasingly often talk about
the “European foreign policy for
energy”, to secure a position in the
sharing of energy resources that will
become more and more scarce in the
future.
It is all the more surprising that the
political agenda places no similar emphasis on a “European raw materials
policy”, with a view to securing continuity of supply for the German and
European economies as regards the
basic materials needed for industrial
processes. It is not only shortage of
energy, but also a lack of raw materials that can slow down an economy
and drastically restrict its potential
for growth.
Since the only relevant raw material sources in Germany and Europe
are scrap metals, including of course
aluminium, a forward-looking EU
raw materials strategy is called for to
resist the drastic outflow of scrap to
Asia, which could have severe negative effects on the European economies. The problem should not be underestimated: considering aluminium
scrap alone, we are talking here about
at least one million tonnes that have
gone to China and India in the past
three years, and this is a trend which
is increasing as time goes by.
From the market economy standpoint a restriction of access to the
European market may be the wrong
approach. But inactivity too does not
help. Europe must keep a close eye
on its economic interests. The other
players in the world trade are also
looking to theirs.
I N H A LT
EDITORIAL
Plädoyer für eine europäische Rohstoffstrategie .......................... A KT U E L L E S
Personen, Unternehmen, Märkte ..................................... ....... 6
WIRTSCHAFT
20
Aluminiumpreise .............................................................. 10
Produktionsdaten der deutschen Aluminiumindustrie .................. 12
Industriestrompreise: Wettbewerb im Strommarkt unzureichend .... 14
ThyssenKrupp Services wächst im Aerospace-Geschäft .................... 14
Otto Junker übernimmt Mehrheit an IUT ...................................... 18
S P E C I A L 2 0 0 7: D I E I N T E R N AT I O N A L E
A L U M I N I U M - R E C Y C L I N G I N D U S T R I E ............... ..... 0
Englischsprachige Artikel: s. nebenstehendes Inhaltsverzeichnis
Otto Junker UK: Neue Kippdrehtrommelöfen im Programm ............ 8
„Greenmelt“: umweltfreundlich und mit hoher Schmelzausbeute ..... 48
Generationenwechsel bei Thermcon Ovens ................................... 49
Internationale Metallindustrie zu Umweltanalyse von Metallen ........ 51
Agor erweitert Aluminium-Salzschlackeaufbereitung ...................... 54
Mobile Tauchsonde für die Schmelzanalyse ................................... 55
6
I N T E R N AT I O N A L E B R A N C H E N N E W S . . . . . . . . . . . . . 56
M A R KT U N D T E CH N I K
Solide Auftragslage bei Tuben und Aerosoldosen .......................
Thermcon Ovens liefert Walzbarren-Gießstraße nach China ...... .....
Neuartige Beschichtung beflügelt Aluminium-Zerspanung........ .....
Ein neues wässriges Reinigungssystem ....................................
62
6
71
71
ALUMINIUM IM AUTOMOBIL
46
4. VDI-Tagung „Gießtechnik im Motorenbau“ ............................ 64
Druckgießtechnik für China ........................................................ 67
Aluminiumanteil in Neufahrzeugen steigt .......................... ..... 68
Deutsche Autobauer 2006 mit neuen Rekorden ............................ 68
Sapa Technology: Autokühler im Blickpunkt ........................ ..... 69
Der neue BMW 1er: sportlich, innovativ, effizient ......................... 70
Ö KO LO G I E
USA überdenken Klimapolitik ................................................ 7
V E R A N S TA LT U N G E N
48
EAA: Aluminium Renovation Award 2007 ..................................... 74
Geesthachter Schweißtage 2006: Festphase Fügeverfahren ............. 82
Einführung in die Technologie des Aluminiums .............................. 8
Fügen von Aluminiumprofilen und -blechen ........................................85
Termine, Fortbildung ......................................................... 85
D O K U M E N TAT I O N
Neue Bücher ............................................................................ 87
Literaturhinweise ...................................................................... 89
Patente ..................................................................................... 91
Impressum .................................................................... 11
Vorschau .................................................................................114
B E Z U G S Q U E L L E N V E R Z E I C H N I S ....................... ..... 96
4
ALUMINIUM · 3/2007
CONTENTS
EDITORIAL
Plea for a European raw materials strategy ................................ 3
NEWS IN BRIEF
People, companies, markets . . . . . . . . . . . . . ..................................... 7
ECONOMICS
Alcoa: Highest income and revenue in its history .......................
Rusal with strong 2006 results . . . . . . . . . ....................................
Aluminium price is expected to fall in 2007 .............................
Otto Junker takes over majority interest in IUT .........................
Hydro’s Karmøy appeal sent to Environment Ministry .................
The value engineering in downstream sectors of modern
aluminium industry . . . . . . . . . . . . . . . . . . . . . . . . ...................................
China’s aluminium activities . . . . . . . . . . . . ....................................
16
16
17
18
18
69
20
25
S P E C I A L 2 0 0 7: T H E A L U M I N I U M R E C Y C L I N G
INDUSTRY
Secondary aluminium activities during 2006 .................................. 26
U.S. Department of Energy backs secondary smelting project .......... 32
Secondary and recycling news in brief .......................................... 32
Modern furnace installation - design criteria aspects ...................... 36
Compact type remelt plant for contaminated scrap using
latest melting technology ............................................................ 36
O. Junker UK: Launching new tilting rotary furnaces ..................... 38
EMP system and the Lotus vortex ................................................ 42
Strategy for automatic furnace skimming ...................................... 44
Advantages of the IRMA process for the in-furnace treatment
of aluminium ............................................................................. 46
“Greenmelt”: environmentally friendly and with a high melt yield .. 48
Declaration by the metals industry on recycling principles ............ 51
72
C O M PA N Y N E W S W O R L D W I D E
Aluminium smelting industry . . . . . . . . . . . . ................................... 56
Bauxite and alumina activities . . . . . . . . . . . ................................... 58
Aluminium semis, On the move ................................................... 59
M A R K E TS A N D T E CH N O LO GY
European tube industry successful in 2006 ............................... 62
Thermcon Ovens delivers casting line to China .......................... 63
A new water-based cleaning system . . .................................... 71
AUTOMOTIVE
Environmental benefits in Hydro brazing technology ................... 68
Sapa Technology: car radiator in focus ................................... 69
Rolls Royce Phantom Drophead Coupé ................................... 70
E CO LO GY
Inserenten
dieser Ausgabe
America on the way to a new climate policy ............................ 72
Developing powers seen critical to climate pact ........................ 73
List of advertisers
RESEARCH
In search of ways to increase Al-Li-Cu-Mg system
aluminum-lithium alloy processing ductility ................................... 76
Potentials of new ductility criterions in car development
with lightweight materials........................................................... 80
EVENTS
EAA Aluminium Renovation Award 2007 .................................
Metallurgy-Lithmash 2007, Moscow, Russia ..............................
ExpoAlumínio 2007, São Paulo, Brazil . . ...................................
Extrusion Workshop and 2 nd Extrusion Benchmark, Bologna, Italy ...
Dates . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....................................
74
83
84
84
85
D O C U M E N TAT I O N
New books, Literature service . . . . . . . . . . . ................................... 87
Imprint . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................................... 113
Preview . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................. 114
S O U R C E O F S U P P LY L I S T I N G ............................... 96
ALUMINIUM · 3/2007
AE Light Metal Casting GmbH und Co.KG
67
Alcutec Engineering GmbH
55
Böhler Edelstahl GmbH, Österreich
27
Coiltec Maschinenvertriebs GmbH
30
Drache Umwelttechnik GmbH
39
Hertwich Engineering GmbH, Österreich
02
High Performance Industrie-Technik GmbH,
Österreich
42
Inotherm Industrieofen- und
Wärmetechnik GmbH
11, 60
Interall s.r.l., Italien
13
LOI Thermprocess GmbH
45
Messe Düsseldorf GmbH
15
Messezentrum Salzburg GmbH, Österreich
25
Precimeter Control AB, Schweden
66
Bruno Presezzi SpA, Italien
19
Reed Exhibitions
116
Selema s.r.l., Italien
21
Signode System GmbH
29
5
AKTUELLES
Peak – ein „Ort
der Ideen“
Die Peak Werkstoff GmbH, Velbert,
ist bei der Initiative „Deutschland
– Land der Ideen“ als eines der
365 Un­ternehmen ausgewählt wor­
den, die für innovative Leistungen
und krea­tive Ideen stehen. Die
Initiative unter der Schirmherr­
schaft von Bundespräsident Horst
Köhler kooperiert mit Regierung,
Wirtschaft und gesellschaftlichen
Einrichtungen, die das Ziel teilen,
das Deutschlandbild als „Land der
Ideen“ zu fördern. In einem bundes­
weiten Wettbewerb wurden auch
für 2007 365 „Orte“ – private und
öffentliche Institutionen, kulturelle
und kirchliche Einrichtungen, so­
ziale Projekte, Unternehmen und
Forschungszentren – ausgewählt,
die sich, ihre Ideen und Innovatio­
nen an je einem Tag im Jahr der
Öffentlichkeit präsentieren. Am 31.
Oktober 2007 wird die Peak Werk­
stoff GmbH ein solcher Ort sein.
Das Unternehmen entwickelt und
produziert pulvermetallurgisch her­
gestelltes Hochleistungs­aluminium.
Es vermarktet mit neuen Alumini­
um-Werkstoffklassen Profile und
Bauteile für die Automobilindus­trie,
den Maschinenbau sowie die Luftund Raumfahrttechnik.
Zarges in neuen
Händen
Die Privat Equity Gesellschaft Taros
Ca­pital verkauft Zarges Tubesca,
den eu­ro­päischen Marktführer für
alumini­um­basierte Steigtechnik und
Logis­tik­produkte, an Granville Baird
Fonds. Die Transaktion ist 156 Mio.
Euro schwer und soll nach Geneh­
migung durch die Kartellbehörden
bis Ende März abgeschlossen sein.
Taros Capital hatte Zarges Tubesca
2001 erworben und das Geschäft
mit einer Akquisition in Frankreich
wachstumsorientiert weiterentwi­
ckelt. Der Jahresumsatz der Gruppe
beträgt rund 230 Mio. Euro. Erklär­
tes Ziel des Managements ist es,
wei­ter zu expandieren und neue
Märkte zu erschließen. Die dazu nö­
tigen Investitionsmittel sollen nun
von Granville Baird kommen.
Hans-Joachim Gottschol verstorben
Die deutsche Wirtschaft trauert um
eine ihrer profiliertesten Unternehmer­
persönlichkeiten. Am 2. Februar 2007
verstarb im Alter von 79 Jahren Dr.
Hans Joachim Gottschol.
1927 in Hagen geboren arbeitete
Gottschol nach einem Studium der
Metallhüttenkunde seit 1954 an der
Spitze seines Familien­
unternehmens, des Me­
tallwerks Krauthausen.
1994 gründete er die
Rackwitz Aluminium
GmbH. „Gesamtmetall
wird seinen Ehrenprä­
sidenten Hans-Joachim
Gottschol als weitsich­
tige und mutige Unter­
nehmerpersönlichkeit
in Erinnerung behal­
ten“, sagte Gesamtme­
tall-Präsident Martin
Kanne­giesser. Eines der
herausragenden Ergebnisse des ver­
bandspolitischen Engagements Gott­
schols sei der Tarifvertrag Beschäf­
tigungssicherung gewesen, der das
Prinzip der Arbeitszeitflexibilisierung
weiterentwickelte und abrundete.
Gottschol war von 1984 bis 1995 Vor­
sitzender des Verbandes der Alumini­
umrecycling-Industrie (VAR). In die­
ser Funktion hat er wesentlich dazu
beigetragen, die Bedeutung des Recy­
clings für den Werkstoff Aluminium
über den Kreis der Recyc­lingindustrie
hinaus einer breiten Öffentlichkeit be­
Gesamtmetall
wusst zu machen. Gott­
schol zählt auch zu den
Pionieren des Einsatzes
von Aluminiumschrot­
ten zur Herstellung von
Knetlegierungen.
„Mit Herrn Dr. Gott­
schol ist ein Unterneh­
mer von uns gegangen,
der der gesellschaft­
lichen Verantwortung
des Unternehmers gro­
ße Bedeutung beimaß
und dies auch prakti­
zierte. Hiervon zeugen
seine vielfältigen Aktivitäten in den
Verbänden“, würdigten Erich Oe­
tinger als Vorsitzender und Günter
Kirchner als Geschäftsführendes
Vor­standsmitglied des VAR die Ver­
dienste Gottschols.
EU-Importzoll auf Aluminium bleibt
Die vorgeschlagene Halbierung des
EU-Importzolls auf Rohaluminium
von sechs auf drei Prozent und sei­
ne komplette Abschaffung zum 1.
Januar 2009 ist vorerst abgelehnt.
Bei Gesprächen im EU-Ministerrat
Anfang Februar fand der Vorschlag
keine ausreichende Unterstützung.
Seitens einiger Mitgliedsländer mit
eigener Hüttenproduktion hatte sich
eine Sperrminorität abgezeichnet.
Vor allem Warschau hatte die Absen­
kung des Importzolls angestrebt. Die
heimischen Verarbeiter hatten früher
zollfreies Aluminium aus Russ­land
bezogen, müssen aber seit dem Bei­
tritt Polens zur Europäischen Union
den 6-prozentigen Importaufschlag
zahlen.
Der Anteil zollfreier Einfuhren hat
sich im Laufe der Jahre durch die Zu­
nahme der Produktionskapazitäten in
solchen Drittländern erhöht, die im
Rahmen eines Präferenzabkommens
von Einfuhrzöllen befreit waren.
Ge­genwärtig unterliegen rund vier
Fünftel des gesamten Gemeinschafts­
verbrauchs von Primäraluminium
kei­nem Einfuhrzoll. Hiervon stammt
eine Hälfte aus EU-Produktion und
die andere Hälfte aus zollfreien Ein­
fuhren (2,7 Mio. t) von Handelspart­
nern, für die ein Präferenzabkommen
besteht.
Der Marktanteil importierten Roh­
aluminiums, das einem Einfuhrzoll
unterliegt, beträgt lediglich 15 Pro­
zent des Gesamtverbrauchs an Primär­
aluminium. 2005 wurden 1,2 Millio­
nen Tonnen Rohaluminium zollfrei
und 1,1 Millionen Tonnen unter An­
wendung eines 6%-Zolls importiert.
Das entspricht einem Importanteil an
den Gesamteinfuhren von Rohalumi­
nium von 52,9 bzw. 47,1 Prozent.
ALUMINIUM · 3/2007
NEWS IN BRIEF
Novelis
Hindalco acquires Novelis for US$6.0bn
assets with Hin­
dalco‘s growing
primary alu­min­
ium operations
and its down­
stream fabricat­
ing assets in the
rapidly growing
Asian market is
an exciting pros­
pect.”
The transac­
tion has been
unanimous­ly ap­
Multi-alloy aluminum ingots using Novelis Fusion technology
proved by the
Hindalco Industries Ltd., India‘s larg­
Boards of Directors of both compa­
est non-ferrous metals company, and
nies. The closing of the transaction is
Novelis Inc, the world‘s leading pro­
not conditional on Hindalco obtain­
ducer of aluminium rolled products,
ing financing. The transaction will be
have entered into a definitive agree­
completed by way of a plan of arrange­
ment for Hindalco to acquire Novelis
ment under applicable Canadian Law.
in an all-cash transaction which val­
It will require the approval of 66,6% of
ues Novelis at approx. US$ 6.0 billion,
the votes cast by shareholders of Nov­
including approx. US$ 2.4 billion of
elis at a special meeting to be called to
debt. Following the transaction, Hin­
consider the arrangement followed by
dalco, with Novelis, will be the world‘s
court approval. The transaction is ex­
largest aluminium rolling company,
pected to be completed in the second
and one of the biggest producers of
quarter of 2007.
primary aluminium in Asia.
Kumar Mangalam Birla, Chairman
of the Aditya Birla Group and Hin­
dalco’s parent, said, “The acquisition
of Novelis is a landmark transaction
for Hindalco and our Group. It is in
Aluminium is shaping up to be the laggard
line with our long-term strategies of
in the bull market again in 2007. Metal
expanding our global presence across
Bulletin research (MBR) has revised its
pro­duction forecast up again in December
our various businesses and is consist­
ent with our vision of taking India to
2006, mainly due to Chinese smelters that
the world. The combination of Hin­
continue to ramp up production. This
dalco and Novelis will establish a glo­
trend will continue strongly in 2007. With
bal integrated aluminium producer
alumina prices forecast to remain relawith low-cost alumina and aluminium
tively depressed, but exchange prices for
production facilities combined with
aluminium set to stay relatively elevated,
high-end aluminium rolled product
smelters can expect high profits in 2007.
capabilities. The complementary ex­
The revised Chinese aluminium production
pertise of both these companies will
forecast for 2007 is 11.1 million tonnes from
create and provide a strong platform
previous estimates of 10.5 million tonnes
for sustainable growth and ongoing
for 2006. Aluminium demand growth looks
success.”
set to remain at a strong and healthy 7%.
Acting CEO of Novelis, Ed Blech­
Nevertheless, the headlong pace of supply
schmidt, said, “After careful consid­
growth will eventually swing the market
eration, the Board has unanimously
into surplus, which will then weigh on
agreed that this transaction with Hin­
prices.
dalco delivers outstanding value to
LME cash price forecast is US$ 2,325 per
Novelis shareholders. Hindalco is a
tonne. Although at the beginning of 2007
strong, dynamic company. The combi­
supply is still very tight across the board,
nation of Novelis‘ world-class rolling
Alcan’s Ch. Bories new
Chairman of the EAA
Christel Bories, Senior Vice President,
Alcan Inc. and President and CEO of
Alcan’s Engineered Products Group
has been elected Chairman of the
European Aluminium Association’s
(EAA) Executive Committee. Her new
mandate lasts for two years and began
on 1 January 2007. Ms Bories assumed
her current position at Alcan on 1
December 2006 succeeding Michel
Jacques who has taken over responsi­
bility for Alcan’s Primary Metal busi­
ness. She was previously in charge
of the company’s Packaging Group.
As head of the Engineered Products
Group, Ms Bories oversees 120 facili­
ties in 32 countries and regions.
Patrick de Schrynmakers, Secre­
tary General of the EAA, said, “We
are certain that Christel’s extensive
experience will help us to get the
right guidance in order to successful­
ly manage the issues facing Europe’s
aluminium industry. Under her lead­
ership, the EAA will further promote
the aluminium industry’s interests
throughout Europe and the world.”
2007 Aluminium Price Preview
ALUMINIUM · 3/2007
the slowdown in the US economy and
some uncertainty over China’s growth prospects have weakened demand for many
metals and undermined investor sentiment.
Annual average LME 3-month
cash price forecast for aluminium
Institutions and banks
Metal Bulletin Research
Man Financial
RBC
UBS
Calyon
Goldman Sachs
Sucden
Natexis
Mitsui
Bear Stearns
Barclays Capital (cash)
Macquarie Bank (cash)
LME
US$/t
2,350
2,825
2,866
2,646
2,500
2,425
2,580
2,300
2,325
2,205
2,738
2,315
2,325
AKTUELLES
Die deutsche Werkzeugmaschinen­
produktion bricht alle Rekorde:
10,8 Mrd. Euro Umsatz produzier­
ten die Hersteller 2006, das ist ein
Plus von vier Prozent gegenüber
dem Vorjahr. Für das laufende
Jahr erwartet Carl Martin Welcker,
Vorsitzender des VDW (Verein
Deutscher Werkzeugmaschinen­
fabriken) noch einmal wei­tere
sieben Prozent Zuwachs auf dann
11,5 Mrd. Euro.
Vor allem der Export hat die Branche
ein weiteres Mal zum Erfolg geführt.
China hat sich abermals als wich­
tigster Absatzmarkt vor den USA be­
hauptet. Daneben ragen die Exportzu­
wächse nach Korea und Indien positiv
heraus. Dies sei ein klares Zeichen für
die deutlich gewachsenen Ansprüche
der dortigen Industrie, so Welcker.
Die asiatischen Anbieter ihrerseits
drängen zunehmend mit höherrangi­
gen Technologien auf den deutschen
Markt. Insgesamt wuchs der Import in
den ersten drei Quartalen 2006 um 15
Prozent.
Auch die Nachfrage aus Deutsch­
land hat gehörig zugelegt. Allein 2006
sind die Bestellungen um mehr als ein
Viertel gewachsen. Das verschafft dem
nunmehr vier Jahre währenden Auf­
schwung des deutschen Werkzeug­
maschinenbaus ein stabiles zweites
Standbein.
Der optimistische Ausblick für 2007
basiert auf mehreren Indikatoren:
Der Auftragsüberhang trägt weit in
das laufende Jahr hinein und das
in­ter­nationale wirtschaftliche Um­
feld bietet Rückenwind. Die globale
Nachfrage nach Werkzeugmaschinen
läuft seit Mitte 2003 stetig aufwärts.
Zu der hohen Nachfragedynamik aus
den asiatischen Märkten heraus über­
nimmt auch die Nachfrage aus Europa
eine Lokomotivfunktion. Davon profi­
tiert das Schwergewicht Deutschland,
denn über die Hälfte seines Exports
geht nach Europa.
Das Geschäftsklima in der inlän­di­
schen Investitionsgüterindustrie zeigt
steil nach oben. Fast alle Abnehmer­
industrien wollen ihre Anlageinves­ti­
tionen weiter hochfahren. Besonders
aktiv bleiben der Maschinenbau, die
Elektrotechnik und der Fahrzeugbau.
Auch die Investitionen der Automobil­
industrie und ihrer Zulieferer haben
Fahrt aufgenommen. Einzige Ausnah­
me sei die Metallerzeugung und -be­
arbeitung, so Welcker, deren Anlage­
investitionen sich leicht eintrüben,
nach­dem die Budgets zuvor stark aus­
geweitet wurden.
„Die Zeichen stehen auf Wachstum.
Das sollte unseren Mitgliedern auch
ermöglichen, dem ausufernden An­
spruchsdenken einiger großer Abneh­
mer, z. B. aus der Automobilindustrie,
entgegenzutreten und faire Verträge
Starkes Wachstum der SMS-Gruppe
Der SMS-Konzern, Düsseldorf, hat im abgelaufenen Jahr seinen Auftragseingang auf
mehr als 3,2 Mrd. Euro ausweiten können.
Diese Steigerung ist vor allem auf die
starke Weltkonjunktur in der Stahlindustrie
zurückzuführen, wo kräftig investiert wurde. Doch auch die anderen Märk­te, die von
den SMS-Unternehmen bedient werden,
z. B. die Härte- und Schmiedeindustrie oder
die NE-Metallbranche, haben sich positiv
entwickelt. Dabei zeigt der Auftragseingang aus Deutschland von rund 13 Prozent
am Gesamtvolumen erstmals seit Jahren
eine leichte Erholung des Inlandsmarktes.
Die wichtigsten Marktregionen für SMS
bleiben China, Russ­land und Indien. Neben
der guten Geschäftslage im klassischen
Maschinenbau tragen vor allem die Wachstumsgebiete Elek­trik, Automation und
Service zum ge­stie­genen Auftragsvolumen
bei. Die seit geraumer Zeit verfolgte Politik,
den Kunden nicht nur Maschinen, sondern
komplette Produktionssyste­me anzubieten
und anschließend zu warten, trägt in immer stärkeren Maße zum Geschäftserfolg
bei.
VDW
Deutsche Werkzeugmaschinen­
hersteller auf Rekordkurs
Die Zeichen stehen auf Wachstum, so der
VDW-Vorsitzende Carl Martin Welcker
durchzusetzen“, hofft Welcker. Auch
erlaube es, die Preise zu erhöhen und
die gestiegenen Kosten für Material
und Personal zumindest teilweise an
die Kunden weiterzugeben.
NA baut eigenes
Kraftwerk
Die Norddeutsche Affinerie AG (NA)
wird ab 2009 gemeinsam mit der Ham­
burger Stadtreinigung GmbH ein Er­
satzbrennstoff-Kraftwerk zur Strom­
erzeugung betreiben. Damit will der
Hamburger Kupferkonzern seine Ab­
hängigkeit von den großen Stromver­
sorgern „spürbar verringern“, wie der
NA-Vorstandsvorsitzende
Werner
Mar­nette auf der Bilanzpressekonfe­
renz Ende Januar sagte. Die NA zählt
ähnlich wie die Aluminiumerzeuger
zu den energieintensiven Unterneh­
men in Deutschland.
EU genehmigt Fusion
Die Europäische Kommission hat die
geplante Dreierfusion zwischen Rusal,
Sual und Glencore ge­neh­migt. Durch
die Fusion werde der Wettbewerb im
europäischen Wirt­schaftsraum „nicht
erheblich be­einträchtigt“, so die Kom­
mis­sion. Im Geschäft mit Bauxit, Alu­
miniumoxid, Primär­aluminium und
Aluminiumfolie bewege sich die neue
Gesellschaft United Company Rusal
auf allen Märk­ten deutlich unterhalb
der Schwelle, ab der eine Beeinträch­
tigung des Wettbewerbs gegeben sei.
ALUMINIUM · 3/2007
NEWS IN BRIEF
Sapa with new
President and CEO
Ole Enger, Executive Vice President
of Orkla‘s Speciality Materials busi­
ness, took over as President and CEO
of Sapa on 15 February 2007. He will
also be CEO of the merged Sapa-Al­
coa company after it has been formally
established. Enger succeeds Lennart
Evrell, who will continue as Executive
Vice President of Sapa. Orkla Group
President and CEO Dag J. Opedal will
take over as Chairman of the Board
of Directors of Sapa and the merged
Sapa-Alcoa company. “The Sapa
Group is at the threshold of an excit­
ing development phase. By combining
the leadership of Ole Enger and Len­
nart Evrell, we create a strong man­
agement team,“ said Opedal.
Outokumpu and Riedhammer cooperate in
smelter technologies
Outokumpu Technology and German
technology company Riedhammer
GmbH have signed an agreement on
close technology cooperation in the
field of carbon plants of the primary
aluminium industry. Outokumpu has
over 50 years experience in supply­
ing green anode plants and equipment
for aluminium smelters with a track
record of over 40 plants and numer­
ous equipment installed worldwide.
The company is also an important
supplier of rod shop process equip­
ment and related technologies to the
primary aluminium smelters.
Riedhammer is experienced in the
supply of anode baking furnace tech­
nologies to the aluminium smelters.
The knowledge base coupled with the
recent acquisition of the Alesa bake
oven technology consolidates Ried­
hammer as one of the leading anode
baking furnace technology providers
in the world. The company has an
installed base of over 170 plants glo­
bally. With this cooperation the two
companies will reinforce their mar­
ket leadership and provide advanced
concepts for cost competitive modern
carbon plants for the aluminium in­
dustry.
ALUMINIUM · 3/2007
Global aluminum market to face
315,000 tonnes surplus in 2007
The global aluminium market will face
a 315,000 tonne surplus in 2007 as
supply increases faster than demand.
Primary aluminium demand will rise
6.1 per cent to 35.9 million tonnes.
China will continue to drive growth
– aluminium demand there is slated
to grow by 17 per cent. Demand from
former CIS and Eastern Europe will
rise 6.1 per cent while demand from
Asia excluding China and Japan will
rise 6 per cent. Demand will just grow
by 1.9 per cent in Western Europe.
Japanese consumption is expected to
remain almost flat, edging up just 0.1
per cent, while demand from the rest
of the world is projected to increase 5
per cent. The only region likely to see
a fall in demand is the USA, where
Sumitomo Corp is predicting a 1 per
cent decline.
Hydro with new
board members
Tom Røtjer and Jørgen C. Arentz
Rostrup have been appointed mem­
bers of Hydro‘s Corporate Manage­
ment Board, with re­sponsibilities for
Projects and Power, re­spectively. The
appointments reflect Hydro‘s ambi­
tions to grow as a focused aluminium
company and will take effect following
completion of the proposed merger of
Hydro’s oil and gas activities with Sta­
toil, expected in third quarter 2007.
Tom Røtjer (53) will be responsible
for Hydro’s projects in Norway and
abroad, including the planned Qata­
lum aluminium project in Qatar. He
has been involved in most of Hydro’s
development projects since he joined
the company in 1980 and headed Hy­
dro’s technology and project sector
for nearly six years.
Jørgen C. Arentz Rostrup (40) will
manage Hydro’s power production fa­
cilities, including solar energy activi­
ties. He comes from a position as head
of Oil & Energy Markets. Since joining
Hydro in 1991, he has held a number
of management positions in energy,
finance and international business
development in Norway and abroad.
Supply growth will outstrip demand,
rising 7.1 per cent year-on-year to
36.2 million tonnes. Output from
China will increase by 10 per cent
while output from the former CIS
and Eastern Europe will rise by 7.9 per
cent. Middle East and US production
are likely to increase 7.3 per cent and
7.2 per cent respectively. Although
the forecast 315,000 tonnes surplus
amounts to less than 1 per cent of
global output it is nevertheless likely
to send prices on the LME lower later
in the year.
Three-month aluminium is likely
to trade at US$ 2,400 to 2,900 per
tonne in the first half of the year,
before slipping to an average of US$
2,200 to 2,600 per tonne in the third
quarter and US$ 2,100 to 2,400 per
tonne in the fourth quarter. paw
China’s aluminium
activities
The move to downstream products is
more pronounced in the aluminium
market. After the Chinese government
launched a number of measures over the
last years to crack down on inefficient,
energy-intensive primary aluminium
production, smelters have rushed to the
fabrication market. The latest producer to
consider changing its focus is Yankuang
Ke-Au Aluminium, which operates a
140,000 tpy smelter in eastern Shandong
province. The company may make a
strategic move into aluminium alloys and
aluminium recycling. Aluminium exports
could be faced with even higher costs in
the future. If the industry faces pressure
from expansion at the same time as
exports grow rapidly, then the export tax
could be quickly increased to 30%. While
export taxes are one major concern for
aluminium producers, raw material costs
are another. Chinese alumina production
has surged in 2006, sending spot alumina
prices tumbling by more than 50%, and
relieving cost pressures for many aluminium producers. But alumina refineries
in turn could soon be facing challenges
from rising bauxite costs.
WIRTSCHAFT
Quelle:
Trimet AG, Düsseldorf
Trimet Aluminium AG
10
ALUMINIUM · 3/2007
WIRTSCHAFT
Produktionsdaten der deutschen Aluminiumindustrie
Primäraluminium
Sekundäraluminium
Walzprodukte > 0,2 mm
Press- & Ziehprodukte**
Produktion
(in 1.000 t)
+/in % *
Produktion
(in 1.000 t)
+/in % *
Produktion
(in 1.000 t)
+/in % *
Produktion
(in 1.000 t)
+/in % *
Dez 05
47,6
-16,5
54,6
6,6
122,6
2,6
31,4
13,4
Jan 06
42,9
-24,8
65,4
16,2
152,0
6,9
45,4
10,7
Feb
38,7
-25,5
65,1
9,6
158,6
15,4
46,0
8,6
Mrz
43,1
-24,8
78,9
27,1
178,6
18,0
51,9
22,0
Apr
42,4
-23,8
62,5
2,8
149,1
-2,6
42,8
-3,8
Mai
43,4
-24,0
68,0
22,1
170,8
16,4
49,7
21,8
Jun
43,2
-20,7
65,7
3,3
163,7
9,1
47,8
0,1
Jul
45,1
-17,9
64,0
4,6
164,7
5,0
48,5
9,3
Aug
45,2
-16,7
59,6
7,2
166,5
4,6
48,1
9,1
Sep
42,8
-19,4
66,9
6,9
160,4
1,5
51,1
9,2
Okt
44,1
-17,4
65,0
6,1
170,0
11,0
52,2
21,1
Nov
41,9
-17,9
73,0
11,8
163,9
8,7
52,1
10,2
Dez
42,8
-10,1
61,6
12,9
124,1
1,2
34,6
10,2
* gegenüber dem Vorjahresmonat, ** Stangen, Profile, Rohre; Mitteilung des Gesamtverbandes der Aluminiumindustrie (GDA), Düsseldorf
Primäraluminium
Walzprodukte > 0,2 mm
12
Sekundäraluminium
Press- und Ziehprodukte
ALUMINIUM · 3/2007


Courtesy Alcoa Brazil, 81000 Ampere.

­
AUTOMATIC DIE CLEANING
CAUSTIC SODA RECOVERY
DAM Grafica & Informatica - RE - Italy



 At your service since 1974
Via Marinuzzi, 38 - 41100 MODENA - ITALY - Tel. +39 059 280362 - Fax +39 059 280462 - E-Mail: info@italtecno.com - http://www.italtecno.com
WIRTSCHAFT
Gutachten bestätigt überhöhte Industriestrompreise
Wettbewerb im Strommarkt unzureichend
Die vom Verband der Industriellen
Energie- und Kraftwirtschaft (VIK) an
den Lehrstuhl für Energiewirtschaft
und Public Sector Management der
TU Dresden in Auftrag gegebene Stu­
die zur Preisbildung und Marktmacht
auf den deutschen Elektrizitätsmärk­
ten bestätigt, dass es mit dem Wettbe­
werb im Strommarkt nicht weit her
ist. Die Wissenschaftler zeigen auf,
dass die Strompreise zum Teil erheb­
lich über den Grenzkosten liegen, die
bei funktionierendem Wettbewerb
den Referenzpreis bilden. Bei der Ein­
preisung von CO2-Zertifikatspreisän­
derungen werden Preissteigerungen
deutlich stärker weitergegeben als
Preissenkungen. Der Markt für grenz­
überschreitende Netzkapazitäten ist
ineffizient strukturiert, was zu Beein­
trächtigungen des Wettbewerbs und
zu Wohlfahrtsverlusten führt.
Als Konsequenz fordern die Ver­
fasser der Studie „eine stärkere ord­
nungspolitische Ausrichtung der
E­ner­giepolitik sowie eine aktive Wett­
bewerbspolitik in diesem Bereich“.
Zu den möglichen Maßnahmen zäh­
len sie die Entflechtung bestehen­der
Kraft­werkskapazitäten von markt­
beherr­schenden Unternehmen, den
Verkauf von „virtuellen“ Kraftwerks­
kapazitäten, die Öffnung von Lang­
frist­verträgen alteingesessener Unter­
nehmen, die Steigerung der nutzbaren
Kuppelkapazitäten, vertikale Entflech­
tung sowie die aktive Förderung des
Markteintritts neuer Anbieter.
Im einzelnen weist das Gutach­
ten nach, dass die Strompreise an
der Leipziger Strombörse EEX im
Jahr 2004 – also noch vor Beginn des
Emissionshandels – im Mittel 18,5
Prozent über den Grenzkosten, bei
einem Viertel der betrachteten Stun­
den sogar mehr als 30 Prozent da­
rüber lagen. Die Strom-Marktpreise
lagen zwischen 35 und 45 Euro je
14
IAJ
Ein aktuelles Gutachten der TU
Dresden belegt, dass die Industrie
seit Jahren weit höhere Strom­
preise zahlen muss, als dies bei
funktionierendem Wettbewerb der
Fall wäre.
Überhöhte Strompreise durch Ausnutzung von Marktmacht wirken zweifach negativ: Sie
führen zu einer Umverteilung zugunsten der Stromproduzenten und aufgrund geringerer
Absatzmengen zu Wohlfahrsverlusten.
MWh, ihre Grenzkosten jedoch nur
zwischen 27 und 30 Euro je MWh.
Das untersuchte erste Halbjahr 2006
zeigt mit 24,5 Prozent die stärkste
Abweichung der EEX-Strompreise
von ihren Grenzkosten innerhalb des
Untersuchungszeitraums.
Das Gutachten kommt zu dem
Schluss, dass die EEX-Strompreise
deutlich oberhalb des zu erwartenden
Wettbewerbsniveaus liegen. Anders
ausgedrückt: 2004 hätten sich die­
se EEX-Preise nur einstellen dürfen,
wenn das Stromangebot in Deutsch­
land um 9 bis 19 GW niedriger gele­
gen hätte. Bei einer Gesamtnachfrage
von in der Spitze 80 GW (Spitzenlast)
ein mit rund 11 bis 25 Prozent erheb­
licher Anteil nicht angebotener Kapa­
zität. Ähnliche Zahlen zeigen sich für
die Jahre 2005 und 2006.
■
ThyssenKrupp Services wächst
im Aerospace-Geschäft
Die ThyssenKrupp Services AG,
Düsseldorf, verstärkt ihr Werk­
stoff-Dienstleistungsgeschäft für
die Luftfahrtindustrie. Das Unter­
nehmen hat von Alcoa den Ge­
schäftsbereich „Aerospace Service
Business“ erworben, der für den
Handel mit und die Lagerung von
Aluminium-Werkstoffen sowie für
hochwertige Anarbeitungsdienstlei­
stungen für den Flugzeugbau steht.
Insgesamt werden etwa 100 Mitar­
beiter und 75 Mio. Euro Umsatz über­
nommen. Die Transaktion wird durch
3 Tochtergesellschaften von Thyssen­
Krupp Services in den USA, Großbri­
tannien und Deutschland voll­zogen.
In den USA werden Vorratsbestände
an Aluminium sowie langjährige Kun­
denservice- und Lieferverträge mit
nam­haften Herstellern und Zuliefe­
rern aus der Branche übernommen.
Damit baut ThyssenKrupp Services
die eigenen Geschäftsaktivitäten
wei­ter aus: Das Segment ist in Nord­
amerika bereits als Systempartner
der Luftfahrtindus­trie etabliert: Erst
vor kurzem konnte in Kanada mit
Bombardier Aerospace ein 6-Jah­
resvertrag als Dienstleister rund um
Aluminium abgeschlossen werden. In
Großbritannien werden die Einheit
„Aluminum Supply Aerospace“ sowie
zwei Service-Center übernommen.
Auch in Kon­tinentaleuropa wird das
Aerospace Servicegeschäft von Alcoa
übernommen.
ALUMINIUM · 3/2007
Come to
Joachim Limberg, Vorstandsmitglied
von ThyssenKrupp Services, erklärte: „Der Ausbau des Aerospace-Geschäfts hat für uns große strategische
Bedeutung. Wir haben in der Luftfahrtbranche durch unsere SupplyChain-Management-Lösungen bereits
ein starkes Dienstleistungs-Standbein.
Durch den Neuerwerb sichern wir
uns den weltweiten Zugang zu allen
namhaften Flugzeugherstellern und
deren Schlüssellieferan­ten.“
Das Un­ter­neh­men bedient die
Luftfahrtbran­che über Töchter in
Brasilien, Frankreich, UK, Deutschland und Nordamerika. Ten­denz steigend. Parade­beispiel ist der ex­klusive
Ser­vice­vertrag mit Boeing. Auch mit
Rolls-Royce wurde für Supply-ChainDienst­leistungen ein 5-Jahresvertrag
abgeschlossen.
ThyssenKrupp besetzt weltweit
star­ke Technologie- und Marktposi­
tio­nen in den Bereichen Stahl, Industriegüter und Dienstleistun­gen.
Für Letzte­res steht vor allem das
zweitgrößte Konzernsegment Servi­
ces. Mit mehr als 180 kon­so­lidierten
Ge­sell­schaf­ten und 600 Standorten
in 60 Ländern ist das Segment einer
der weltweit führenden Dienstleister
für Industriekunden. Fast 60 Prozent
des Gesamtumsatzes von über 12
Mrd. Euro (2004/05) erwirtschaftet
ThyssenKrupp Servi­ces außerhalb
Deutschlands.
Das Unternehmen fokussiert sich
auf hochwertige Versorgungs- und
Prozessdienstleistungen für die pro­
duzierende und verarbeitende In­
dustrie. Außerdem zählt es zu den
weltweit größten Anbietern für Edelstahl, NE-Metalle und Kunststoffe.
Für zusätzliche Wertschöpfung sorgt
die Übernahme zahlreicher Anarbeitungsschritte wie Längs- und Querteilen, Schnei­den, Sägen, Brennen,
Fräsen, Bohren und Beschichten.
Das Leistungsspektrum wird durch
den Handel mit Walz­stahl, Rohren
und technischen Ausrüs­tun­gen,
Dienst­leistungen in der Gleis- und
Tiefbautechnik sowie die Distribution von metallurgischen Produkten,
Mineralien und Spezialkoks abgerundet. Hauptmärkte von ThyssenKrupp
Services sind Europa und die NAFTARegion, in Osteuropa wird die Marktposition derzeit stark ausgebaut. ■
ALUMINIUM · 3/2007
where the
11th International
Foundry Trade Fair
with WFO
Technical Forum
professionals
meet.
7th International
Metallurgical Trade Fair
with the Congresses
InSteelCon and
EMC 2007
www.gmtn.de
9th International Trade
Fair and Symposium
for Thermo Process
Technology
One date – four events – one location
Four top-class trade fairs with clear technical
and thematic contexts in one place and
with one admission ticket.
World-wide no.1 in the trade; multiple
synergies, connections and cross-linking –
all this with only one trade fair visit.
Welcome to Düsseldorf!
2nd International
Castings Trade Fair
with Newcast Forum
Düsseldorf
12 - 16
June
2007
Messe Düsseldorf GmbH
Postfach 10 10 06
40001 Düsseldorf
Germany
Tel. + 49(0)2 11/45 60-01
Fax + 49(0)2 11/45 60-6 68
www.messe-duesseldorf.de
15
ECONOMICS
Alcoa
Highest income and revenue in its history
Driven by higher metal prices and
strong demand for aluminium in the
aerospace, commercial transporta­
tion and building markets, revenues
for 2006 increased 10% to a record
of US$ 30.4 billion. Cash from opera­
tions highest in company history in­
creased 53% to more than US$ 2.5 bil­
lion. Return on capital stood at 13.2%,
up 490 basis points from the end of
2005. Debt-to-capital ratio was within
target range at 30.6%. There has been
continued progress in upstream and
downstream projects and managing
portfolio.
During 2006, Alcoa’s primary
products group completed a growth
expansion at its Pinjarra alumina re­
finery in Australia (660,000 t), and
will finish a smaller expansion at is
refinery in Jamaica (150,000 t) early
in 2007. The expansion of the smelter
in Sao Luis, Brazil was completed in
March 2006 (60,000 t). Another refin­
ery expansion at Sao Luis (more than
1.1 million t for Alcoa) along with de­
velopment of the new Juruti bauxite
mine will be completed by late 2008.
The Alcoa Fjardaal Aluminium smelt­
er in Iceland (344,000 t) is on target to
produce metal in the second quarter,
with full production expected by the
end of 2007.
The flat-rolled products business
is investing in expansion projects
Alcoa
Alcoa announced the best full
year results in the company’s
118-year history. Annual income
from continuing operations was
US$ 2.2 billion for 2006. After
excluding the impact of previously
announced restructuring and im­
pairment charges, income from
continuing operations was US$ 2.5
billion, a 75% increase from 2005.
Alcoa Corporate Centre, Pittsburgh
at Bohai and Kunshan in China; its
Belaya Kalitva and Samara plants in
Russia are expanding production; and
US and European plants are making
improvements to mix, quality and
productivity. The engineered solu­
tions business expanded its fastening
operations with two new facilities in
China, and made investments to ramp
up production in aerospace castings.
The packaging and consumer business
opened a new facility in Bulgaria serv­
ing the consumer products market.
In 2006 Alcoa produced 15.1 mil­
lion tonnes of alumina and 3.6 million
tonnes of primary aluminium.
Alcoa’s forecast of 2007 demand
growth of 14% for China and 3%
out­side China could be construed as
conservative, given that China expe­
rienced 2006 demand growth of 17%
while the United States saw 6% and
Europe just over 3% demand growth.
Capital expenditures in 2006 were
US$ 3.2 billion, the most ever, as the
company maintained a debt-to-capi­
tal ratio of 30.6%. Alcoa would main­
tain capital spending at between US$
3 and 3.2 billion for 2007, while also
keeping the company’s debt-to-capi­
tal ratio between 30 and 35%.
In view of 2007, Alcoa Chairman
and CEO Alain Belda said, “Market
fundamentals remain strong. We will
generate more than enough cash this
year to fund our capital investment
programmes. We will continue to de­
liver strong results, invest in our fu­
ture, and keep a strong balance sheet.
And, we continue to manage our in­
vestment decisions and portfolio ac­
tions on the basis of contribution to
profitable growth.”
paw
Rusal with strong 2006 results
At the end of January Rusal an­
nounced the key production and
financial results for 2006:
• revenues increased by 23% to
US$ 8.18 billion compared to
US$ 6.65 billion in 2005
• aluminium production rose by
2% to reach 2.77 million tonnes
• output of value-added casthouse
products increased by 14% to
972,978 tonnes
• alumina production remained at
the same level, amounting to
3.93 million tonnes
• bauxite production rose by 29%
and equalled 7.37 million
tonnes.
16
2006 was of particular importance
for Rusal. Rusal achieved significant
production and financial results by
expanding the geography and acquir­
ing strategic assets in key markets.
The average annual price for primary
aluminium rose to US$ 2,570 a tonne,
reaching an historic high. The growth
in demand for aluminium equalled
7.1%. At the same time, increasing
energy prices and the expiry of longterm power supply contracts resulted
in shutdowns of a number of alumin­
ium smelters in Europe.
In 2006, Rusal expanded its sales
geography, substantially increasing
the number of its clients. Europe re­
mained the largest sales market with
33.5%. At the same time Rusal signifi­
cantly increased sales to Asia, which
now accounts for 26% of group sales.
The 2% growth in aluminium out­
put resulted from Rusal’s ongoing
programmes to bolster production,
modernise equipment and improve
technical as well as economic param­
eters of the company’s smelter opera­
tions.
Revenue from international sales
rose in 2006 over 40% to US$ 6.6 bil­
lion; revenues from sales in Russia
reached US$ 1.6 billion, 14% more
than in 2005; the company’s net debt
reached US$ 4.43 billion. The in­
ALUMINIUM · 3/2007
ECONOMICS
Rusal
creased debt results from the prepa­
ration of the agreement to combine
Rusal, Sual and Glencore alumina
assets. The debt consists mainly of
long-term instruments; Rusal’s over­
all investments in its production as­
sets during 2006 amounted to US$
1.4 billion.
In 2006, Rusal invested US$ 603
million in order to expand, recon­
struct and modernise its production
The first starter complex of the Khakas
aluminium smelter was launched on 15
December 2006 in Sayanogorsk
capabilities. Rusal’s investments into
research and development expendi­
ture amounted to US$ 38 million. The
investments include the development
of engineering solutions to optimise
production and improve technologi­
cal processes at company’s aluminium
smelters, alumina refineries, service
facilities; research and development
and hydropower projects.
The overall investment into Kras­
noyarsk aluminium smelter mod­
ernisation in 2006 amounted to US$
89 million. At the Sayanogorsk alu­
minium smelter, Rusal completed the
modernisation of the second cast­
house and the installation of the new
homogenisation line for billet produc­
tion worth about US$ 46.5 million.
The Nikolayev alumina refinery was
modernised in order to increase alu­
mina output to 1.6 million tpy. For this
the company invested US$ 45.9 mil­
lion. Rusal also continued to expand
the capacity of the Achinsk alumina
refinery in order to bolster its output
to 1.1 million tpy of alumina. Total in­
vestment for this project amounted in
2006 to US$ 17 million.
Increasing energy prices, high
costs associated with launching new
production facilities, further shut­
downs of smelters in Europe and in
the United States and reduction of
Chinese exports will be the key fac­
tors influencing the global aluminium
market in 2007. These factors will be
accompanied by strong global eco­
nomic growth. The forecast for growth
in demand in aluminium, supported
by increasing demand from automo­
tive and construction industries in the
US, Europe and Asia is 7%.
Rusal’s most important strategic
priority in 2007 will be to consolidate
its assets to create United Company
of Rusal, supported by an integrated
management and production struc­
ture. In February the EU Commission
approved the planned merger of Rus­
al, Sual and Glencore. The transac­
tion “would not significantly impede
effective competition in the European
Economic Area or any substantial part
of it”, so the Commission.
paw
Aluminium price is expected to fall in 2007
If 2006 was marked by the im­
pact of strong demand on prices,
2007 should reflect the impact of
strong supply growth, said Rus­
sian aluminium major Rusal in an
aluminium market outlook.
Elsewhere in the world, Rusal ex­
pects production growth to increase
by around 5.2% in 2007. This com­
pares with 3% in 2006, as the Khakas
smelter in Siberia ramped up with a
300,000 tpy capacity, and Alcoa began
production at its new Fjardaal smelt­
er, with a 350,000 tpy capacity in Ice­
land. In addition, capacity restarts in
the US Pacific Northwest and Ormet’s
reactivation of the 270,000 tpy Han­
nibal, Ohio, smelter would contrib­
ute to the growth. Rusal expects the
net effect will be the emergence of a
modest global surplus by the year end
and a decline in the average annual
aluminium price from US$ 2,550/t in
2006 to US$ 2,350/t in 2007.
Overall, 2006 was a solid year for
ALUMINIUM · 3/2007
global aluminium demand and LME
prices rose rapidly from a low US$
2,300/t in January to a peak of US$
3,275/t in May. While the second half
saw a slight softening in the US, re­
surgent demand in Europe, combined
with steady Asian orders, saw overall
production fully sold for the year. On
the commodity market supply/de­
mand remained fairly well balanced.
Rusal forecast a 12% increase in
value-added sales when compared
to 2005. The billet, wire rod and high
purity markets were particularly tight.
This situation is forecast to be main­
tained through 2007, as recoveries
in the European extrusion market,
extensive investments in cables for
electricity supply, and a resurgent
aero­space industry are generating
solid demand. In terms of casthouse
activity, 2006 saw the commissioning
of the second stage of the billet facility,
with equipment supplied by Hydro, at
Sayanogorsk aluminium smelter, and
the commissioning of the Khakas alu­
minium smelter.
In 2007, Rusal expects commis­
sioning of: a new casting pit at Kras­
noyarsk aluminium smelter; a new pit
at the Bratsk aluminium smelter, both
capable of producing long slabs using
Wagstaff casting technology; a new
billet casting centre at Novokuznetsk
aluminium smelter equipped with
a Wagstaff casting table and with a
continuous homogenizing line from
Hertwich. A new centre for foundry
alloys will be commissioned at No­
vokuznetsk aluminium smelter; one
product there will be piston alloy. ■
For subscribers
www.alu-archiv.de
Knowledge with
a lasting impact!
17
WIRTSCHAFT
Otto Junker übernimmt Mehrheit an IUT
Zum 1. Januar 2007 hat die Otto
Junker GmbH die Mehrheitsbetei­
ligung an der IUT AB in Schweden
übernommen. Mit dieser Akquisi­
tion setzt die Otto Junker Gruppe
ihre Strategie fort, das Produkt­
portfolio entlang der gesamten Pro­
zessketten der Leichtmetall- und
Stahlindus­trie zu komplettieren.
IUT (Industriell Ugnsteknik) ist
marktführend bei Planung, Konstruk­
tion und Herstellung von Anlagen zur
Warmauslagerung von Aluminium­
profilen und kontinuierlichen Homo­
genisierung von Aluminium-Strang­
pressbarren sowie bei Matrizenöfen.
IUT ergänzt damit die Kompetenz und
Präsenz der Unternehmensgruppe auf
dem Aluminiummarkt optimal.
Als Technologieführer für Warm­
auslagerungsöfen und Erwärmungs­
öfen für Strang­pressmatrizen bietet
IUT kundenspezifische Prozesslösun­
gen mit technisch ausgereiften Pro­
dukten, die von hoher Funktionalität
und Verarbeitungsqualität sind. Da­
rüber hinaus verfügt das Unterneh­
men über innovative Produkte für
die Wärmebehandlung von Quali­
tätsbauteilen für die Automobil- und
Luftfahrtindustrie. Das umfangreiche
Know-how stärkt die Position der
Otto Junker Gruppe als Komplettan­
bieter, insbesondere für die Alumini­
um-Halbzeugindustrie.
Mit dem Zusammenschluss stehen
die Fertigungskapazitäten der Otto
Junker Gruppe in Deutschland, Groß­
britannien, China und Tschechien
und deren weltweites Vertriebsnetz
der IUT zur Verfügung. Die Kunden­
beziehungen und regionalen Kontakte
von IUT sind wiederum für die Otto
Junker Gruppe von Nutzen. Die Kon­
struktionsbereiche der erweiterten
Gruppe werden eng zusammenarbei­
ten, um so ihre Ressourcen optimal
zu nutzen. Die Übernahme stärkt das
Know How, die Kompetenz und die
Leistungsfähigkeit der Otto Junker
Gruppe auf dem Aluminiummarkt
weiter. Die strategische Verbindung
der Unternehmen Otto Junker in Lam­
mersdorf, Elhaus in Rielasingen, Ther­
mcon Ovens in Geldermalsen und IUT
in Göteburg trägt auch zur Sicherung
der jeweiligen Standorte dar.
■
Otto Junker takes over majority interest in IUT
As of 1 January 2007, Otto Junker
GmbH took over the majority in­
terest in IUT AB in Sweden. With
this acquisition, the group contin­
ues its strategy of complementing
the product portfolio regarding the
overall process chains of the light
metal and steel industries.
IUT is a market leader in the planning
and design as well as manufacture of
equipment for the artificial ageing of
aluminium sections, die heating fur­
naces and continuous homogenizing
furnaces for aluminium extrusion logs
thus strengthening the competence of
the group on the aluminium market.
As technology leader for artifi­
cial ageing furnaces for aluminium
sections and heating furnaces for
extrusion dies, IUT offers customerspecific process solutions based
on technically mature products of
high functionality and manufactur­
ing quality. Apart from that, the IUT
product range comprises innovative
equipment for the heat treatment of
quality components for the automo­
tive and aircraft industries. Thus IUT
represents a valuable addition to the
present range of products of the Otto
Junker group with its extensive knowhow strengthening the group‘s posi­
tion as a supplier of complete lines,
especially for the aluminium semi-fin­
ished products industry.
The merger now also enables IUT
to use the world-wide marketing net­
work of the group. In return, the cus­
tomer relations and regional contacts
of IUT represent a useful addition
for the whole group. It’s well-proven
manufacturing capacities in Germa­
ny, Great Britain, China and the Czech
Republic are now also available to
IUT. The design departments of the
extended group will work together
closely in order to ensure optimum
utilization of the resources.
This company merger is another
step towards continuous improve­
ment of know-how, competence and
performance of the Otto Junker group
on the aluminium market. The stra­
tegic combination of Otto Junker in
Lammersdorf, Elhaus in Rielasingen,
Thermcon Ovens in Geldermalsen
and IUT in Gothenburg represents as
well a further step in securing the in­
dividual locations. ■
Karmøy appeal sent to Environment Ministry
The Norwegian Pollution Control
Authority (SFT) has rejected Hy­
dro‘s appeal on extended opera­
tion of the Søderberg lines at the
Karmøy aluminium plant. This
means that the Ministry of the
Environment will decide whether
the Søderberg lines can run until
18
the end of 2009, as planned, or
must close as early as September
this year.
„The Søderberg lines at Karmøy give
work to a lot of people, both directly
and indirectly. We need the time un­
til 2009 for restructuring, and this
makes SFT’s rejection of our appeal
very serious,“ says Tom P. Johansen,
head of Hydro’s primary aluminium
production.
In its original plans up to the year
2010, Hydro has worked to encourage
outside businesses to move to the area
surrounding the Karmøy plant, by set­
ALUMINIUM · 3/2007
Norsk Hydro
ECONOMICS
izing Karmøy through
the K6 project.
In December 2006,
Hydro
appealed
against SFT’s rejec­
tion of its application
to postpone the in­
troduction of stricter
limits for emissions
to air from the Søder­
berg lines at Karmøy.
Hydro wants to pro­
Karmøy Norway casting extrusion ingots. The Søderberg lines
duce aluminium at
at Karmøy are threatened to be closed by 1 October 2007
the Søderberg lines
ting up an industrial park. According
until the end of 2009, and then close
to Hydro there will not be enough time
them. Instead, SFT granted 10 months’
for restructuring and establishing new
postponement from 1 January 2007. If
positions up to October 2007.
the Ministry of the Environment sup­
In the SFT’s view, adjusting the
ports SFT’s latest decision, Hydro will
emission limits for the Karmøy plant
have to close the Søderberg lines at
would constitute differential treat­
Karmøy by 1 October 2007.
ment in relation to other actors in the
Deteriorating quality of raw ma­
industry. SFT does not attach much
terials over recent years contributes
importance to the argument that a
to the Søderberg lines at Karmøy not
rapid closure can have commercial
meeting all the stricter emission re­
and market-related consequences for
quirements introduced in 2007. In
the company, and neither does it em­
Hydro’s view, the aluminium works at
phasize the opportunities for modern­
Karmøy, in its entirety, is a good plant.
ALUMINIUM · 3/2007
If the prebaked and Søderberg lines at
Karmøy are viewed together, the total
emissions per tonne of produced alu­
minium are within the new emissions
limits. Therefore, in Hydro’s view the
Søderberg plant can be run in an envi­
ronmentally justifiable manner before
it is closed. Hydro wants to reduce the
emissions from the Søderberg plant
through a number of measures that
have been identified. By adopting the
proposed measures it would be pos­
sible to reduce emissions of PAH16
(polycyclic aromatic hydrocarbons)
to levels approaching the new emis­
sion limits. However, it will be diffi­
cult to meet the requirements regard­
ing dust.
„We have done a great deal to re­
duce emissions to air at all our alu­
minium plants. The Søderberg lines
in Sunndal and Høyanger have been
closed, while Søderberg in Årdal
closes in June 2007. This means that
Karmøy has the last Søderberg lines in
production, and we plan to close them
by the end of 2009,“ says Johansen. ■
19
ECONOMICS
The value engineering in downstream
sectors of modern aluminium industry
V. Kevorkijan, Maribor
We are already well acquainted with
the fact that the BRIC countries (Bra­
zil, Russia, India and China) are of key
importance with regard to the future
of the aluminium industry, as they
provide high economic growth and
new markets for traditional products
and services based on aluminium.
Analysts expect that, with respect to
market size, in the late 21st century
the BRIC markets will outperform
the Western markets in terms of alu­
minium products unless the latter can
develop large numbers of products
and services with high added value.
In the future the world, including its
aluminium segment, will probably be
divided up as follows: the East will
be the area of economic growth, the
development of infrastructure, and
the consequent development of new
markets, while the West will be the
area of innovations and the market­
ing of, mainly, sophisticated products
and services.
One of the key questions is for how
long can the global economy develop
successfully in spite of the huge dif­
ferences and the gaps between rich
and poor. It is of crucial importance
that the poverty of the poor, which is,
to a large extent, also the responsibil­
ity of the rich, is increasingly affecting
the rich as well. In other words, if the
rich want to maintain their position
and acquire even more wealth, they
will have to share an increasing part
of their wealth with the poor.
In response to such challenges the
rich will continue to link up, and, as
we have seen recently, not even the
Atlantic Ocean will represent a sig­
nificant barrier to this process. The
grouping of the leading European
countries (primarily Germany) and
the USA into joint trade areas is al­
ready becoming a necessary response
to the large-scale development and
market changes in the East.
In addition to the industrially
developed countries and the BRIC
countries that will see further indus­
20
trial development, it is also important
to take into account the countries of
the so-called third world that are
rich in raw materials and energy re­
sources (and are for this reason in­
creasingly active in the international
arena); however, many analysts tend
to overlook this fact because of the
intense consumption of aluminium in
the BRIC area.
We should not forget that only those
business visions (especially with re­
spect to aluminium) that will succeed
in bringing together the industrially
developed countries, the BRIC coun­
tries and the third-world countries,
will lead to the best business results,
as well as the best prospects for the
future of the world, civilisation and
the economy.
The aluminium production chain
is surely an activity that, already to­
day, successfully brings together the
countries rich in raw materials with
the BRIC countries and the industri­
ally developed countries. It is also a
good example of how the key contra­
dictions of the modern world affect
the price for aluminium and can, if we
fail to resolve them, even threaten the
future of its production. To overcome
these differences we need a lot more
than just knowledge about profit op­
timisation in the aluminium produc­
tion chain. We need to know how to
compromise successfully at all levels,
from the local to the inter-civilisation
levels, and consider appropriately
also those non-economic values that
are not directly related to profit mak­
ing, but can nevertheless significantly
affect its extent.
In the late 21st century, profit
and added value will be the results
not only of a successful business op­
eration and the optimisation of all re­
sources, but, to a large extent, also of
the skill to conclude inter-civilisation
compromises that will help increase
the wealth of all the participants. Such
a situation will also provide great op­
portunities for aluminium.
The aluminium industry
production chain
The aluminium industry is approx. a
century old. The modern production
chain involves the upstream busi­
ness area (bauxite, alumina and pri­
mary aluminium production) and the
downstream business area (produc­
tion of semis and finished products).
The transformation performed in the
upstream business area results in the
production of primary aluminium
from raw materials (bauxite, alumina),
while products transformed in the
downstream segment are considered
as semi-finished (rolling, wire draw­
ing, extrusion) and finished products
(aluminium foils, cables, doors, win­
dows, cans, automobile parts, etc.).
Fig. 1: The aluminium production chain with
an increasing added value generated along the
downstream and upstream business area.
Generally, 4 kg of bauxite needs to
be refined by the Bayer process to
obtain 2 kg of alumina, which by the
Hall-Herout process results in 1 kg of
primary aluminium. The energy ex­
pended in the Bayer process to pro­
duce alumina from crude bauxite is
about 60 MJ (16. 6 kWh) expressed per
kg of aluminium produced (or, which
ALUMINIUM · 3/2007
ECONOMICS
is the same, 30 MJ per kg of alumina
produced).
The energy required for the HallHeroult process is about 50 MJ (approx. 15 kWh) per kg of aluminium
(assuming that there is 100% current
efficiency). In fact, the current efficiency is usually 85-95%. The energy
required increases as a result to about
55 MJ per kg. However, the electrical
energy is in fact produced by burning fossil fuels in plants that are only
30 to 40% efficient. The real energy
expended in this procedure therefore
is given as about 160-170 MJ/kg of
aluminium.
It is important to note that the cost
of energy represents approx. one third
of the production cost of primary aluminium from alumina and also alumina from bauxite. However, one should
also consider the huge amount of raw
materials consumed in the upstream
part of the production chain, mainly
bauxite, caustic soda, alumina, anode
carbon, electrolytic bath, etc.
In 2006, the world production of
primary aluminium was almost 25
million tonnes. This means that more
than 240 million tonnes of coal (or the
energy equivalent of an energy-producing fuel e.g. gas or oil) was required
in power plants all around the world.
This is a huge amount of energy. In
fact, it is the same amount as 360 to
600 cities consume in a year!
Thus the upstream part of the aluminium production chain is energy
and raw material intensive, having
significant impacts on the environment. The main challenges facing the
upstream segment of the aluminium
industry are: to decrease energy consumption, respect the environment,
reduce costs and increase productivity, improve logistics, etc.
The downstream part of the chain
is faced with some additional challenges such as to develop alloys/
materials, develop markets, develop
and diffuse knowledge of new applications and products, increase the
level of quality of semi-finished and
finished products, but also the same
challenges such as reducing costs and
increasing productivity, which are es-
sential for all sectors of the aluminium
transformation industry to remain
competitive in the world market.
Beside these mainly operational (technical and economical) challenges, the
aluminium industry is also facing the
increasing impact of globalisation
and, particularly after the year 2000,
the economic impact of China.
Added value engineering (AVE)
along the aluminium production
chain
As evident in Fig. 1, every particular
segment involved in the aluminium
production chain operates with specific cost components in predicting its
own added value. However, it is important to note that, along the chain,
the added value assured in the previous segment (e.g. bauxite mining) will
appear in the next one (production
of alumina) as an increased cost. In
such a kind of evaluation it is also very
important to distinguish between the
predicted and assured (realised) added value. Note that the added value
SLITTING LINE 30μ÷10mm
research, innovation, experience
aluminium | copper | brass | stainless steel
SLITTER FOR COPPER
thickness 0.06÷0.20 mm
speed 140 mpm
performances
advantages
special devices
aluminium and alloys |
thickness from
30μ to 10mm
speed till 800mpm
cutting accuracy,
reduced burrs, absence
of scratches and marks,
precise and uniform coils
rewinding, easy threading
and maintenance, reduced
time of machine stops
quick head changing car,
pneumatic cutting
groups, burr masher,
leveller and oiler
ENGINEERING &
INDUSTRIAL PLANTS
ALUMINIUM · 3/2007
our
programme
degreasing, coating,
tension levelling,
slitter, cut-to-length,
ingot milling,
oiling, trimming,
revamping
SELEMA srl
Via Prealpi, 8 I-20034 GIUSSANO (MI) ITALY
phone +39.0362.850701 fax +39.0362.850184
info@selema.com www.selema.com
21
©
Norsk Hydro
ECONOMICS
Unloading of Bauxite in Jamaica
is not really assured before success­
ful selling of the product or, in other
words, the willingness of customers
to pay the difference (“magic delta”)
between cost and market price (which
acts as the movable target).
It is also very important to note that
the sum of all added values contractu­
ally fixed in real time along the chain
(which means in advance, in terms of
selling of the final product) represents
the real “grand delta” which should or
should not be paid by the end user.
Inside each particular segment
of the chain, business activities are
directed toward maximizing of the
added value. On the other hand, due
to the permanent pressure of power­
ful end-users (automotive and trans­
port industry, building segment, etc.)
the cost of finished products shows a
marked tendency to remain the same,
or even to reduce slowly (price reduc­
tion policy typical in the automotive
segment). Thus in the downstream
business area, the producers of fin­
ished parts are always under tremen­
dous pressure from their customers to
keep prices the same or make them
even lower.
In order to keep the added value
of finished products (after paying
all other added values involved in
the production chain) at the proper
(sufficiently high) level, which repre­
sents a permanent challenge to valuebased-management, the producers of
finished products, when reaching
the limits of cost reduction available
through incremental advances in their
core technology, are face-to-face with
just two options: to sell at higher pric­
es or to buy semis at lower prices.
However, the producers of finished
parts, located at the end of the pro­
22
duction chain, have
the privilege of selling
their products direct­
ly to end-users. This
creates several advan­
tages, such as market
knowledge, develop­
ment of new products,
processes, services,
opening new market
segments,
creating
new alliances, etc.
Another advantage of
producers of finished
parts is their ability to buy raw ma­
terials (semis) inside the downstream
business area, particularly through
various alliances and partnerships
with producers of semis.
In contrast, all the advantages of
producers of finished parts are point
of weakness of producers of semis:
they are usually located far away from
the end-users, and are obliged to buy
raw material (primary aluminium)
outside the upstream business area.
The advantage of producers of semis
is their possibility to collect and use
a significant proportion of new and
old aluminium scrap. However, this
advantage is limited by the fact that a
great percentage of aluminium scrap
is also collected and remelted by pro­
ducers of primary aluminium.
Producers of primary aluminium
have two main advantages:
1) They are located just at the end of
the upstream business area, and so
are in a position to negotiate with the
producers of semis as end-users (and
thus, obliged to pay all increases of
alumina and energy prices)
2) Primary aluminium is a strategic
raw material in the modern world and
one of the basic materials for future
development of civilisation.
In spite of all this, improvement of
added value in the primary alumin­
ium production segment is not easy.
Due to the fact that, roughly speak­
ing, one third of the price of primary
aluminium is the cost of energy and
an additional one sixth is the cost of
alumina, their impact on added value
is crucial.
Historically, alumina ore has been
priced either at a fixed price per met­
ric tonne or at a variable price of 12
to 13% of the LME price per tonne
of aluminium. It takes about 2 tonnes
of alumina to produce one tonne of
primary aluminium, so the cost of alu­
mina typically represented about 15%
of the LME price of aluminium.
Because alumina ore is a commod­
ity and the amount of alumina required
per unit of aluminium is fixed as a mat­
ter of physics, the competitiveness of
different primary aluminium smelters
is determined by two factors: power
rates and other conversion costs.
In 2005, the cost of alumina in­
creased by approx. 40%. In the same
period of time, the market price of
alumina soared to over two to three
times its normal price and at times
represented 50 to 60% of the total cost
of primary aluminium!
The cost of electricity increased
significantly in Europe and the United
States and will remain at high levels
also in future. The power requirement
of the aluminium industry is in the
range of 15,700 to 18,800 kWh/t. This
constitutes 40 to 50% of the manufac­
turing cost at the primary aluminium
manufacturing stage.
After a decade of little investment
in alumina refining capacity, resulting
in shortages in the last three years, cur­
rent prices of metallurgical alumina
are still volatile, responding promptly
to changes in the supply and demand
balance.
Currently, alumina production
world­wide is operating at close to
full utilization capacity, and thus in­
creased capacity can only be realized
by either expanding the capacity of
existing refineries (brownfields), or by
building new refineries (greenfields).
Over the past three decades the
majority of new alumina refining
ca­pacity has been realized through
brown­field expansion. Industry fore­
casts estimate that over the next ten
to fifteen years there will be up to 15
million tonnes of new alumina refin­
ing capacity made available through
brownfield expansion. Alone, these
brownfield expansions would not be
sufficient to satisfy worldwide alumi­
na demand. Furthermore, the ability to
continually expand existing refineries
is limited due to bauxite availability,
environmental considerations, infra­
structure constraints and/or overall
plant economy.
ALUMINIUM · 3/2007
ECONOMICS
Therefore, new greenfield projects
are required in order to meet global
needs, but greenfield projects require
a long time to implement because of
the necessary studies and approvals
required.
For most of the past two decades
alumina prices have been linked to
between 11 to 13% of the LME alu­
minium price. Long-term contracts
that were not directly linked to the
LME aluminium price typically took
the form of a fixed market price with
a standard escalation.
As world competition for alumina
continues to grow beyond the exist­
ing capacity of the large, vertically
integrated aluminium companies,
and taking into consideration future
trends for China, most experts agree
that market demand will force alumi­
na prices to be set higher (more like
18%) than the historic 11 to 13% of
the LME aluminium price including
possible delinkage from LME alu­
minium.
However, the planned
alu­mina production ex­
pansion, mostly caused
by rapidly growing de­
mand for alumina in
China, could result in
a deficit of bauxite, too.
The main cost compo­
nents in refining of alu­
mina are bauxite (27%),
caustic soda (11%),
energy (33%), labour
(11%), other (18%).
The main bauxite mine producers
are located in Australia (40%), Brazil
(10%), Guinea (11%), Jamaica (9%),
India (6%) and China (7%). Australia
has huge reserves of bauxite, and
produces over 40% of the world’s
ore. Brazil, Guinea and Jamaica are
important producers, too. India and
China are improving their production
capacities. The United States’ produc­
tion, which was important 100 years
ago, is now negligible.
Australia, the United States, and
China are the largest producers of
alumina. All the U.S. alumina being
made is from imported bauxite.
The largest producers of primary
aluminium are China, the United
States, Russia, and Canada, countries
which have abundant hydroelectric
ALUMINIUM · 3/2007
power. More than 40 other countries
also produce aluminium, includ­
ing Norway, Iceland, Switzerland,
Tajikistan, and New Zealand, which
are small but mountainous, and have
many rivers to provide hydroelectric
power. Other areas of the world with
access to abundant and cheap elec­
tricity, such as the Middle East, are
also expanding their metal produc­
tion capacities.
Sometimes, raw bauxite is shipped
overseas for processing to alumina,
while in other cases it is processed
near the mine. Alumina is lighter
than bauxite because the water has
been removed, and it flows readily
in processing plants, unlike bauxite
which has a sticky, muddy consisten­
cy. Due to the fact that the transporta­
tion of alumina and ingots is cheaper
than the transportation of bauxite, the
production of alumina at locations
without bauxite (USA) will no longer
be profitable.
Hydroxide storage building photo: AOS
In the upstream business area prices
of alumina and energy will be the key
drivers of variable operational costs.
However, by significant rationaliza­
tion in current bauxite mining and
technology-driven efficiency in alu­
mina production, improved logistics
for just-in-time delivery and in ad­
vance planning of new production
capacities, added value engineering
for maximizing value will create new
business opportunities.
In the downstream business area
higher added values will be gener­
ated mostly by implementing innova­
tive solutions in development of new
products, applications and markets
hand in hand with local customers.
During the last few years, the glo­
bal shortage in primary aluminium
and alumina improved the added
values achieved in the upstream sec­
tor. However, after the year 2010,
especially when China will become
alumina self-sufficient, the prices of
primary aluminium and alumina will
probably become more stable, again
generating more added values in the
downstream sector.
Up to the year 2020 there will be
rapid growth in the entire aluminium
business, both upstream and down­
stream. Due to that, the added value
achieved inside a particular segment
of the aluminium production chain
will be influenced not only by the
business activities inside that segment
but also by the dynamic changes in­
side other segments and by the abil­
ity of each of them to be in dynamic
balance with increasing supplies and
demands along the chain.
In practice, if the cost of primary
aluminium exceeds the price of semi
products, which hap­
pened at the begin­
ning of 2006, it would
deteriorate in the final
stage business results
in all segments along
the chain, although for
a limited period of time
some better business
results would probably
appear in the upstream
sector.
From the point of
view of the final busi­
ness result, it is also important if the
entire chain is within one vertically
integrated company or involves sev­
eral different companies specialized
for production inside particular seg­
ments (e.g. production of semi-fin­
ished products).
Restructuring of the production
in downstream segments for
achieving higher added value
The half year of continuous increase
of primary aluminium prices at the
beginning of 2006, the complete un­
certain regarding price movements
and the consequent inability of trans­
formers to determine contractually a
reliable price of their products and to
project the amount of profit, placed
23
➝
ECONOMICS
Norsk Hydro
the producers of semi-finished prod­
ucts in a very difficult position – prob­
ably the most serious since 2000.
The cost of transformation and oth­
er costs command a premium above
the LME price. In spite of the fact that
the cost of transformation, driven pri­
marily by the cost of energy and la­
bour, as well as other costs (financing,
transportation), is continually on the
increase, competition on the global
market, as a rule, is actually pushing
the cost of transformation persistent­
ly down. Consequently, added value
also diminished or is even no longer
created.
In addition, the unstable LME
contributed to a higher business risk,
creating an additional cost for its
Rolled product coils
control. The matter is less critical if
the bulk of orders are lower than the
existing stock of primary aluminium.
However, in the case when the orders
received exceed the stock of primary
aluminium, it becomes very risky
for the producers of semi-finished
products to lock into such a contract
with a customer, because the unsta­
ble LME. In order to reduce such a
risk, producers enhance the stock of
primary aluminium, but this is costly
and in addition contributes to further
increase of LME.
So, let try to answer the question:
how could the producers of semi-fin­
ished products, under these circum­
stances, improve the added value of
their products? First of all, let dis­
tinguish between the added value of
a particular semi-finished product,
which is the price difference (margin)
created by sale of that product on the
market, and the added value of the
entire company producing semi-fin­
24
ished products, which is the net value
difference between all issued and re­
ceived invoices.
To improve the added value of the
company, the (regional or semi-glo­
bal) pro­ducers of semi-finished prod­
ucts could consider several scenarios
including a stronger portfolio strat­
egy directed toward capturing global
growth opportunities, more intensive
vertical (upstream and downstream)
and horizontal integration (acquisi­
tions, alliances) combined with in­
ternal reorganisation. In response to
further globalisation of the aluminium
industry, the local producers of semifinished products need to change
fundamentally and quickly in order to
defend their local market shares. Glo­
bal issues such
as raw materi­
als and energy
prices, logistical
costs and legacy
issues are defi­
nitely out of the
scope of such
producers. The
ability to achieve
leverage in their
positions in lo­
cal markets will
be the key. Cre­
ation of more
differentiated value propositions to
serve local customers and to be the
local developing supplier, creating in­
novations hand in hand with custom­
ers will be crucial in improving added
value. The ability to orientate locally,
where single markets are growing and
where the customers and opportuni­
ties are, by continuously improving
operation performances and driving
innovations every day should be the
main comparative advantage of local
producers. Another important advan­
tage of local producers could be a bet­
ter local market understanding and
the ability to serve local customers
promptly and exactly with the solu­
tions they need. Speed, flexibility and
market knowledge are critical success
factors.
To achieve these advantages, the
local producers of semi-finished
aluminium products should employ
locally advanced marketing tools in
their actions for higher returns as
the key development factor in selling
new products and opening new mar­
kets. Local producers of semis could
only improve the added value of their
products if they are able to sell their
products without middlemen, direct­
ly to the final users, and by listening
to their demands better than global
suppliers.
Restructuring of the production
of semi-finished products toward
achievement of higher added values
is possible only by further reducing
costs (of raw materials, labour, pro­
duction and marketing), by techno­
logical improvements for achieving
a better competitive position on the
market and by increasing the propor­
tion of all kind of finishes used on
aluminium (mechanical and chemi­
cal finishes and coatings). In this con­
nection, various business alliances
between producers of semis and local
producers of final products could be
very effective.
However, it is important to note
that the crucial point of any restructur­
ing of the production of semis toward
products with higher added value is
restructuring of both technology and
marketing capabilities. The essential
part of the new added value could be
created in the process of innovative
adjusted marketing.
In any case, the in-house multipurpose knowledge involved in de­
veloping, production and marketing
is that, which decisively contribute
in the increase of the added value
of products. That involves develop­
ing knowledge (for strategic and
appli­ca­tive research), technological
knowl­edge (for industrial research),
and organizational knowledge (for
management research), marketing
knowl­edge (for marketing research)
and social knowledge (for creating
cultural rapport with local markets
in the sense of initiating alliances and
partnerships).
Conclusion
The current developing stage of the
aluminium industry is strongly af­
fected by China as a global economic
force, and further continuation of
vertical and horizontal integration
and consolidation. The three larg­
ALUMINIUM · 3/2007
ECONOMICS
est producers Alcoa, Alcan and an eventual merger of
Rusal, Sual and Glencore Int., would control one third
of the world production of aluminium, another one third
is already controlled by China’s producers (mostly by
Chalco), while the rest is controlled by several medium
sized producers, which are also completely or partly
integrated (active in the bauxite, alumina and primary
aluminium business as well as production of semi-fin­
ished and finished products).
The biggest aluminium production and transforma­
tion chains, created by the above mentioned producers,
are spread across the entire planet, leaving the nonglobal players only limited resources and market op­
portunities for surviving.
On the planetary level, the future development of
the non-global (i.e. non-integrated) aluminium industry
both in the upstream and downstream sectors seems to
depend most of all on the joint necessity of the global
price leaders to finely well-balance their profit along
the production chain. To do that it will be necessary
to manage strategic, operational and also political risks
and focus on prices and margins as the movable targets.
This will lead to further integrations and consolidations,
creating several new global players.
On the other hand, though it seems unlikely, even
the largest players in the global arena of aluminium are
continually influenced by local factors. This trend of
“growing global through local” will also continue in the
future. The fact is that a global enterprise will always be
sourced by local or regional suppliers of raw materials,
energy and labour, and that market opportunities will at
the same time be deeply affected by local consumption
of aluminium products.
In other words, all resources and market opportuni­
ties in the aluminium industry are located and created
in local areas and (micro-) market seg­ments, while glo­
bal just represents their management from centres of
power. However, since the non-global players are look­
ing for opportunities mostly in their neighbourhood,
creating strong relationships with local customers (and
developing through that really new market opportuni­
ties by working hand in hand with customers), the glo­
bal producers are more involved in “orbiting planet”
and “seizing global opportunities” for better business
results. For certain, the way for non-global producers
of semis and finished aluminium products to survive is
just in their ability to create sufficient added value in
between the existing and future global chains.
Definitely good news for local producers of semis and
finished products is that all natural and other produc­
tion resources (bauxite, alumina, energy, labour) and
market demands are located locally. Global changes in
the aluminium industry are mostly motivated by efforts
by well consolidated centres of power to exert economi­
cal and political domination, particularly in local growth
and where the local customers and opportunities are.
In order to capture growth wherever it is on the planet,
they are establishing a global position quickly through
acquisitions, alliances, and licensing.
Regarding further evolution of the upstream and down­
stream business sectors, it seems that upstream business
activities will probably become more global, while the
downstream side will strengthen the local dimensions
of that business by breaking up (probably under a global
umbrella) the existing global producers of semis and final
products.
It is also important to consider the future availability
of primary aluminium with “equal opportunities for all”
or, more generally, about the future of free trade in stra­
tegic raw materials. If upstream activities become more
consolidated, the independent producers of primary alu­
minium will probably survive in just a few “world oases
of free trade”.
In that case, globalisation of aluminium industry will
prevail and the “laissez-faire” aluminium arena with nonglobal players will disappear forever. Since by “cutting
the trees one at the same time kills the forest”, it seems
that some global players decided to keep their upstream
activities more local and regional, through a network of
apparently independent enterprises “playing non-global
with global resources”.
Author
Dr. Varuzan Kevkorkijan (1957), Principal Scientist, is Head of
applied and industrial projects in the field of aluminium and
aluminium-based composites as well as in the field of alumin­
ium dross processing and recycling of aluminium scrap. He is
an independent researcher.
Lightweight Construction –
From design to serial production
26.– 28. June
Exhibition Centre Salzburg
07
www.eurolite-expo.eu
03202 © 2007
ALUMINIUM · 3/2007
Messezentrum Salzburg GmbH
Am Messezentrum 1
A-5020 Salzburg
Phone: +43 (0) 6 62 / 24 04-0
Fax: +43 (0) 6 62 / 24 04-20
office@messezentrum-salzburg.at
www.messezentrum-salzburg.at
H & K Messe GmbH & Co. KG
Kaiserstraße 142 – 144
D-76133 Karlsruhe
25
Phone: +49 (0) 7 21 / 57 04 44-20
Fax: +49 (0) 7 21 / 57 04 44-21
info@hundkmesse.de
www.hundkmesse.de
ALUMINIUM RECYCLING INDUSTRY
Norsk Hydro
Secondary aluminium activities during 2006
R. P. Pawlek, Sierre
The secondary aluminium activities of the last year are reviewed
in alphabetical order according to
continents and country. Only key
events are mentioned.
Increased costs threaten the future
of the European and North American secondary aluminium industry.
Part of these costs concern safety and
environmental protection; but these
secondary smelters are in direct competition with smelters in countries
without such severe regulation.
Many western smelters have already had to shut down. The trend
will continue unless governments
who make and impose these laws can
restore the market balance with import taxes or other measures.
In the short term this would allow
what remains of their industries to
survive, and in the longer term would
encourage less regulated countries to
enforce similar standards. This would
benefit the environment, workers and
populations world-wide.
26
NORTH AMERICA
In Canada Tower Automotive Inc.,
a Novi, Michigan-based company
which has been operating under
bankruptcy court protection since
February 2005, announced plans to
phase out production at its Toronto
aluminium foundry and mini-mill by
the end of August 2006.
At the beginning of 2006, an Indiana, U.S.A., agency became the primary enforcer of federal air quality rules
affecting secondary aluminium smelters in its jurisdiction. The handoff
covers all Indiana facilities falling under the US Environmental Protection
Agency’s (EPA) Maximum Achievable
Control technology rulebook. Indiana
has a significant share of aluminium
melting furnaces, which are a key
focus, and adherence is still shaky
as regards the complicated reporting
requirements, imposed on that niche
in March 2003. State inspectors will
cease referring violations to the US
EPA for the imposition of penalties.
The handoff does not bar the federal
EPA from site visits. However, companies’ routine air quality filings will
now go to Indianapolis rather than
to the EPA’s Chicago office. An EPA
tabulation from the 1990s listed 60 Indiana sites melting aluminium scrap.
Therefore, environmental officials
took a direct role in enforcing of the
federal government’s sweat furnace
and secondary aluminium smelter
rules. For example, the EPA issued administrative orders requiring Nu-Cor
Automotive Corp., Stroh Die Casting
Co Inc., Beck Aluminum Corp., Del’s
Metal Co and Allcast Inc., and other
companies to comply with hazardous air pollutant emission standards.
These standards require secondary
aluminium smelters and/or aluminium sweat furnaces to destroy hazardous dioxins and furans, substances
that are associated with liver damage
and cancer. Total fines against the
above mentioned companies reached
more than US$ 430,000.
The bankrupt JL French Automotive Castings emerged from Chapter
11 in June. JL French has reached
ALUMINIUM · 3/2007
SPECIAL
new agreements with automotive
customers Chrysler Group, and Ford
Motors, both based in Michigan, and
has ironed out an accord with Detroitbased General Motors.
Harbor Light Metals LLC began
producing aluminium ingot and sow
on the former site of Tobian Metals
Inc., Benton Harbor, Michigan.
Aluminum Association, Can Manufacturers Institute (CMI) and Institute
of Scrap Recycling Industries (ISRI)
released statistics indicating that
Americans and the aluminium industry recycled 51.4 billion aluminium
cans in 2005, for a used beverage can
(UBC) recycling rate of 52%. In the US,
98.9 billion cans (1,308,000 tonnes of
aluminium) were produced in 2005.
The 51.4 billion aluminium cans recycled equaled 680,000 tonnes of
aluminium. Nearly the same amount
– close to 50 billion UBC’s or roughly
US$ 1.5 billion worth of aluminium
was lost to landfill.
The U.S. Conference of Mayors,
Novelis Inc. and Keep America Beautiful, Inc. once more organized the
2006 Cans for Cash contest. During
two weeks in September, more than
30 cities collected nearly 1,100 tonnes
of cans which equates to over 82 million UBC.
ThyssenKrupp Budd, a leading
supplier to the automotive industry,
has sold its US aluminium castings
operations as part of a restructuring
plan to an equity holding concern,
Speyside Equity LLC, for an undisclosed price.
GM Powertrain Bedford will invest
US$ 48 million to renovate its Indiana
aluminium foundry with energy-efficient melting furnaces. Full volume
for both rear-wheel-drive and frontwheel-drive cases is expected late in
2008.
ALUMINIUM
· 3/2007
27
ALUMINIUM RECYCLING INDUSTRY
Aluminium billet producer Northwest Aluminum Specialties has been
bought by its employees for an undisclosed sum. The Oregon-based plant,
capable of producing 22,700 tpy of
billet from scrap and primary metal,
has been transferred to employee
ownership.
J&J Bronze & Aluminum Castings
Corp., Brooklyn, New York, has been
fined by the U.S. Department of Labor’s Occupational Safety and Health
Administration (OSHA). The company was cited for a total of 33 alleged
wilful, serious, and other-than-serious safety and health hazards following OSHA inspections.
Superior Industries International
closed its aluminium wheel manufacturing facility in Johnson City, Tennessee, resulting in around 500 job
losses.
US secondary aluminium alloys
producer Arkansas Aluminum Alloys
(AAA) was closed on 31 October and
interrupted scrap deliveries while
investigators tried to determine the
cause of an explosion that killed two
workers early that morning. Arkansas
Aluminum Alloys has resumed making specification sow on 2 November.
SPX Corp announced it plans to
sell its automotive aluminium and
magnesium die-cast components
business Contech in 2007.
Jupiter Aluminum was struck by
a fire at its Hammond plant on 24
November. The fire may have started
when an aluminium furnace at the
plant became overfilled, and an automatic furnace-extinguishing system
apparently failed. In the meantime, Jupiter Aluminum has resumed partial
production and is considering whether to repair or to rebuild its damaged
rolling building.
Aleris International Inc., a producer
of secondary aluminium metal and
sheet, passed a milestone in its plans
to go private. Aleris’ shareholders
voted 98.7% of their holdings for the
takeover by an offshoot of Texas Pacific Group, Fort Worth, Texas.
SOUTH AMERICA
Brazil reported an aluminium beverage can recycling rate of 96.2% in
2005. The 9.4 billion processed aluminium containers represent about
127,600 tonnes of aluminium, worth
more than US$ 280 million.
Colombia announced its will train
scrap recyclers in order to make their
activities public. Another goal is to
organize recycling into an associate
company where each recycler can
go directly with their material, about
350 tpm of aluminium scrap will be
available.
In Mexico TK Aluminium sold its
aluminium engine casting business to
Tenedora Nemak for about US$ 496
million.
ASIA
China currently produces about 21%
of its aluminium from scrap, of which
55% is imported. If the target of 60%
is met by 2020, China would save 36
million tonnes of alumina and 91 million tonnes of water. The amount of
natural resources saved will be hugely
important. Only four of more than
2000 secondary aluminium companies produced more than 50,000 tpy
in 2004, with 250,000 tpy producer
Shanghai Sigma leading the industry.
The government wants ten companies
to produce 100,000 tpy each by 2010,
with another 30 producing at least
10,000 tpy. Beijing will also promote ➝
ALUMINIUM · 3/2007
27
ALUMINIUM RECYCLING INDUSTRY
the construction of large recycling
parks, mainly in eastern China, and
encourage large overseas companies
to invest in the industry. The huge
majority of the currently more than
2,000 secondary aluminium smelters in China produce a few thousand
tonnes or less each year.
KB Alloys has set up a joint venture with Sunxing in Shenzhen to produce grain refiner rod to be sold in
the European, Middle East and Asian
markets.
China’s secondary aluminium ingot producer Ye Chiu Metal (Taicang)
lifted its designed output capacity to
240,000 tpy by the end of 2006, up
150% from 96,000 tpy currently.
Singapore-listed Midas Holdings
has set up a joint venture to operate China’s oldest aluminium alloy
producer and to build a new alloy
plant. Midas will invest RMB 300m
(US$37.8m) for a 30% stake in Northeast Light Alloy (Nela), making it
the second largest shareholder after
SASAC. Nela has a capacity of 82,000
tpy of magnesium and aluminium alloy products.
End of September 2006, Alcoa
formed an alliance with SMW Automotive Hong Kong to produce cast
aluminium chassis and suspension
components and modules for the automotive industry in China, South Korea,
Japan and the Asia Pacific region.
China’s Gansu Province Aluminium
Industry has ramped up its new 10,000
tpy alloy ingot line to full capacity,
and planned to reach full output at
the end of 2006. The line was started
up in the middle of 2005. Gansu Aluminium also has a capacity to produce
72,000 tpy of aluminium ingot, which
is a combined capacity between Gansu and Longxi Aluminium. Gansu has
a capacity of about 35,000 tpy, with
Longxi having the remaining 37,000
tpy. The two companies are in the
process of restructuring and merging
to form the new Dongxin Company.
China Minmetals Corp announced
plans to build a 34,000 tpy aluminium
alloy plant in eastern Jiangsu province.
The 145 million yuan (US$18m) plant
is likely to be located in Changshu,
about 90 km northwest of Shanghai,
and will take an estimated 1 to 2 years
to construct.
28
UK-based Caparo Group began construction of a new diecasting facility
in Chennal, India, to produce cast
aluminium components for the automotive industry in southern India.
The facility will supply blue-chip automotive companies with production
bases in India, including Honda and
Toyota.
India’s largest aluminium producer, Hindalco Industries, signed a joint
venture deal with California-based
Almex to manufacture high-strength
aluminium alloys. The joint venture,
named Hindalco-Almex Aerospace
Ltd (HAAL), will cost an estimated Rs
1.55 billion (US$33.7m) to set up and
will have a capacity of 46,000 tpy.
Indian secondary aluminium producer Century Aluminium intends to
increase its output to 50,000 tpy from
35,000 tpy by the end of 2007 and
would like to increase it to 100,000
tpy in the long term by securing a
foreign partner. Demand from automotive manufacturers for recycled
aluminium is likely to increase in India to some 350,000 tpy by 2010 from
93,700 tpy now, and consumption in
the general engineering industry,
such as components for washing machines, is forecast to more than treble
to 87,500 tpy from 23,500 tpy. India’s
domestic production of 200,000 tpy is
well below those levels.
Japanese aluminium products
manu­facturer Almine started construction of a new secondary aluminium plant in Masuda, Shimane prefecture. The plant produces products
from aluminium scrap and started
production in April 2006. Alloys for
the automotive sector will be produced in early 2007.
Summit Aluminium, a secondary
aluminium smelter and a subsidiary
of Japanese trading firm Sumitomo
Corp, merged with Showa Aluminium
Alloy, a secondary aluminium smelter
of Showa Denko group, in July 2006.
The new company, with a capacity of
150,000 tpy, is called Summit Showa
Alumi and has its headquarters in
Osaka city in western Japan.
Japan’s Mitsubishi Corporation and
Nippon Light Metal Co announced
the integration of their aluminium
alloy production business into a new
entity called Nikkei MC Aluminium,
effective 1 April 2007. The entity will
have an alloy production of around
310,000 tpy, of which 190,000 tpy will
come from five plants in Japan and
120,000 tpy from four overseas operations (all of them currently owned by
Mitsubishi Corp.).
Daiki Aluminium Industry will increase secondary aluminium production capacity by 17% to 336,000 tpy
through its expansion plans.
Thailand Japanese-owned secondary aluminium producer Daiki Nikkei
Thai Co (DNTC) have been operating their new plant a rate of 66,000
tpy, but the partners plan to increase
production to full capacity of 72,000
to 78,000 tpy. The new plant is based
at the same site as DNTC’s existing
54,000 tpy plant in Chonburi, eastern
Thailand.
Japan’s rolled aluminium products maker Furukawa Sky reported it
had set up a subsidiary in the city of
Ho Chi Minh in Vietnam to produce
cast aluminium products used in automobiles. The plant should produce
around 300,000 units of aluminium
products in 2008. Furukawa’s plan is
to gradually move its aluminium auto
components production to Vietnam.
EUROPE
Increased labour, energy and environmental costs threaten the future of
the European secondary aluminium
industry. Recycling of aluminium has
become less attractive. High wages
and high energy and environmental
costs have reduced the margins significantly. The prospects are bleak
unless companies take action to overcome present conditions. Companies
must reduce labour costs by increasing automation through investment in
new technology, seek niche markets
with higher profit margins, and cut
fixed costs by increasing productivity to 1,000 tpy output per employee.
Producers should also consider moving plants outside of the 15 countries
in the former European Union to
lower-cost sites among the new EU
countries, or out of the EU altogether,
where they would be less burdened
by environmental and high general
costs.
Consumption of scrap by the Asian
ALUMINIUM · 3/2007
SPECIAL
market, and in particular by China,
has left Europe starved of raw materials. It is frightening that scrap imports
to China are estimated to reach 5.5
million tonnes by 2020, far exceeding
the volumes that will be generated by
Europe. Plant closures and company
bankruptcies will increase as companies lose the battle to survive.
The number of refineries in Europe has already dropped sharply to
at present 132, following the collapse
of Hardenberg in the Netherlands and
the closure of Novelis in Borgofranco
in Northern Italy. And this trend will
probably continue.
The possible elimination of the
6% European import tax on primary
aluminium is an additional threat to
the industry. While the duty will likely
remain unchanged in the short term, it
will be cut in time, paving the way for
exporters from low-cost countries to
supply the region. A reduced import
tax might be a severe crisis leading to
further consolidation; so the fight for
survival will go on. Therefore the 6%
ALUMINIUM
· 3/2007
29
ALUMINIUM RECYCLING INDUSTRY
import duty should remain and is necessary for the secondary aluminium
industry to survive.
In France, Alcan began the consultation process with trade unions in
September, as the prospect of job and
production cuts looms over the proposed sale of its troubled 110,000 tpy
primary and secondary casting alloy
plant Affimet in France to RecovCo.
Alcan will invest US$ 7 million
in a special sheet Rhenalu facility in
France to recycle aluminium used
beverage cans (UBC). The new capacity will come on stream by the
start of 2008, and will turn the site at
Neuf-Brisach into Europe’s only fully
integrated UBC processing, rolling
and finishing facility.
Manzoni Bouchet filed for bankruptcy protection in France as the
troubled French pressure die-caster
announced plans to close its Spanish foundry and its plastics business.
French high-pressure and gravity
die-caster Groupe Arche and Dutch
die-casting group Euralcom Group
are rumoured to be interested in buying Manzoni-Bouchet which is one of
Europe’s largest die casters and buys
55,000 tpy of aluminium alloy.
In Germany, Alcan sold its automotive casting activity BDW GmbH &
Co KG to AluCast GmbH, a company
controlled by Parter Capital, a private
equity company based in Frankfurt.
Alcan BDW employs approx. 330 people and recorded a 2005 turnover of
50 million euros.
German aluminium casting alloys
producer Bruch Group announced
plans to build a 120,000 tpy plant in
Marbach, near Stuttgart, after it shuts
down the nearby Asperg plant which
has exhausted scope for expansion.
The new plant will be set up on the
River Neckar, just 12 km from the
old location. Provided the permit application process runs smoothly, as
expected, production can start up at
the end of 2007.
In Hungary, German non-ferrous
and ferrous scrap merchant Scholz
AG has acquired secondary alumin- ➝
ALUMINIUM · 3/2007
29
ALUMINIUM RECYCLING INDUSTRY
ium producer Eural kft from Spanish group Pansoinco SA for an undisclosed sum. Eural has a capacity
to produce 50,000 tpy of aluminium
alloy. Scrap is sourced from Audi’s
manufacturing plant in Györ.
Novelis announced an agreement
with Atlante Srla for the sale of land
in Borgofranco, Italy, that is currently
occupied by a Novelis casting alloys
plant. Novelis sold the land for a
nominal amount, the previously announced charges of US$24m have
been reduced to US$16.5m. The plant
employed 105 people.
European regulators imposed a
US$ 29 million fine on Norwegian
beverage container recycler Tomra
Systems ASA for allegedly abusing the
European Union’s antitrust rules.
Hydro Aluminium agreed to sell
its European automotive casting business to the Mexican group Nemak.
Nemak acquires the European casting operations in Dillingen, Germany;
Linz, Austria; Hungary and Charlottenberg, Sweden.
Russian production of secondary
aluminium is expected to grow 3 to
4% annually over the next five years,
as producers, who are consolidating
rapidly, cater for increasing demand.
Currently, Russia produces about
590,000 tpy of secondary aluminium,
but the global growth of recycled aluminium consumption and stronger
Russian industrial production will
boost output. Consolidation is taking
place as smaller companies are driven
out of business and larger companies
increase their turnover as a result,
partly because of government policy
in Russia. At the end of 2005 there
were 170 exporters of secondary aluminium from Russia, but in 2006 the
number dropped to 90, and there are
indications that by 2007 only 15 to 20
major exporters will remain.
Rusal announced plans to produce
some 500,000 tpy of secondary aluminium by 2011 through acquisitions
and through building its own production plants. The plan to produce
500,000 tpy would give Rusal more
than 60% of the Russian market.
About 440 businesses in Russia produce aluminium alloys from scrap.
JL French was said to be planning
a die-casting plant in Slovakia. The
30
move comes amid speculation about
the company’s UK-based operations.
The new venture in Slovakia may replace the UK operations.
Befesa Aluminio, Spain’s largest secondary aluminium producer,
will increase liquid aluminium alloy
capacity to 50% of total production
by 2007, and will shift all aluminium
scrap processing to its site in Valladolid in a move to save time and
money. Befasa produced just less than
100,000 tonnes of alloy in 2006.
Aluminio Sala, a Spanish familyowned secondary aluminium ingot
producer, announced plans to more
than double capacity to 3,500 to 4,000
tpm from 1,500 tpy by 2007.
Spanish secondary aluminium
producer Iberica de Aleaciones Ligeras (Idalsa) announced it is facing a
financial crisis, struggling under the
weight of EUR 26 million (US$33.4m)
in debt. The news did not surprise
the market as Idalsa, which produces
around 30,000 tpy of alloy, was a supplier to Manzoni-Bouchot, the French
die-caster that filed for bankruptcy
protection.
Novelis is planning to invest US$
32 million in the construction of a new
casthouse at its Sierre, Switzerland,
rolling mill. The facility will house a
multi-alloy ingot casting center based
on the company’s breakthrough Novelis Fusion technology for simultaneously casting multiple alloy layers into
aluminium ingots. The Sierre casting
center is expected to be operational
in early 2008. The new casthouse will
have an initial capacity of 70,000 tpy,
and will lead to the creation of 30 new
jobs at the Sierre plant.
Bernhard Metals has closed and its
assets were sold off after administrators for the United Kingdom second-
ary aluminium ingot producer failed
to broker a last-minute deal with a
potential buyer to save the company
from collapse.
Aluminium die-casting alloy producer Brock Metal Co reduced its
workforce as the company runs well
below capacity because of a sharp
drop-off in demand for die-casting
alloys in the domestic market. Brock
will cut under ten jobs out of a workforce of 60. Alumasc Group put its
zinc and aluminium die-casting alloy
producer Brock Metal Co up for sale
and is actively seeking buyers for the
business.
Administrators of UK high-pressure automotive die caster JL French
UK officially agreed to break the company up and sell its two plants as separate entities. The administrators put
the Presteigne plant in Wales up for
sale. JL French administrators sold the
company’s Presteigne plant in Powys
mid-Wales to a newly formed company called Kaye Engineering Ltd.
The Indian die-casting giant Amtek
has been negotiating to buy Whitham
since early in the sales process, but
talks collapsed after Amtek was unable to reach a supply agreement with
Whitham’s key customer, Ford.
UK die caster Zeus castings filed
for administration and was acquired
by Caparo Engineering Ltd., part of
UK-based Caparo Group. Caparo Engineering Ltd. also acquired UK gravity die caster Bridge Aluminium for an
undisclosed sum.
Hydro Aluminium Deeside announced plans to lift production to
55,000 tpy to boost sales by the end of
2007 in a bid to offset soaring electricity prices. Hydro Aluminium Deeside
produces extrusion ingot from 90%
remelted aluminium scrap. ■
ALUMINIUM · 3/2007
SPECIAL
ALUMINIUM RECYCLING INDUSTRY
U.S. Department of Energy backs secondary
aluminium smelting project
The Department of Energy is backing a project to improve energy
efficiency in aluminium re-melting. This project is being carried
out by a group of companies that
include Secat, Alcan, Arco Aluminum, Aleris International, Century
Aluminum, Logan Aluminum,
Ohio Valley Aluminum and Hydro
Aluminum.
The US$ 5 million project – which
began in 2001 and was due for completion in December 2006 – aims to
save about 13 trillion BTU per year
in energy by 2015 and US$ 57 million per year using year 2000 US gas
prices.
Alumasc puts Brock up for sale
Alumasc Group has put its UK zinc
and aluminium die-casting alloy producer Brock Metal Co up for sale,
and is actively seeking buyers for the
business. Alumasc approached AMC,
which owns one of the UK’s largest
aluminium alloy producers, Mil-Ver
Metals, but was turned down. A possible sale of Brock comes nearly two
years after the demise of one of Alumasc’s most important customers MG
Rover, which had a severe effect on
Alumasc’s engineering business and
forced the company to implement a
massive restructuring programme.
Alu­masc closed its West Midlands
die-caster Copal Castings in February
2006 after failing to find a buyer.
JL French UK lures three potential bidders as sale drags on
JL French UK administrators have
three potential companies, including
one from Spain and one from China,
that may be willing to take the ailing
UK die-caster off their hands. The
sales process is complicated. In order
to seal an agreement, the administrators must secure the backing of Ford,
ALUMINIUM
· 3/2007
31
The objective is to develop new
technologies to be applied either in
a retrofit or in new installations that
will both improve energy efficiency
of secondary aluminium smelting by
25% and also reduce greenhouse gas
emissions. The project partners have
built two experimental reverberatory
furnaces for testing improvements in
oxygen-air-fuel burners, insulation,
refractories, sensors and control systems. The technologies include oxygen enrichment (saving up to 40% of
energy), molten metal stirring (saving
between 5% and 30%) and air preheating (saving between 10% and 20%).
To achieve the targeted energy
saving, all the suggested technologies
would have to be explored and implemented. The financing initial cost of
investment, as well as limitations in
existing plant floor space, are potential stumbling blocks to the introduction of these technologies.
Commercial applications that stem
from this research so far include a heat
flow simulation software package,
which enables companies to simulate
changes to their particular furnace
conditions. In addition, firms can
now run trials for testing refractories,
furnace configuration changes and
burners on model 907 kg and 68 kg
furnaces available through Secat. The
final report will be released in March
2007. ■
JL French’s major customer, which
is signing the business while it is in
administration. Concerns are mounting that the longer the sales process
takes the more likely it is that the US
carmaker may stop supporting the
plant, based in Whitham, Essex, forcing it to close. Whitham, which buys
an estimated 500 tonnes per month of
aluminium alloy ingot was said to lose
as much as £500,000 per month.
scheduled to come on stream by the
beginning of 2008. France’s current
overall UBC recycling rate is 18 per
cent compared with a 50 per cent rate
for all of Europe.
Alcan and CFF sign aluminium
UBC contract
Alcan Specialty Sheet has singed a
multi-year agreement with CFF Recycling division Canibal, France to
support deployment of a used beverage can (UBC) collection network in
France. The partnership aims to significantly expand the current network
of UBC collection equipment in targeted locations in France. Alcan Specialty Sheet has committed to recycle
all the Canibal-collected aluminium
UBCs at Alcan’s Neuf-Brisach plant
in France. Alcan recently announced
plans to invest US$ 7 million in its
specialty sheet rolling and recycling
plant at Neuf-Brisach to recycle aluminium UBCs. The new capacity is
Hindalco and Almex form aluminium alloy joint venture
India’s largest aluminium producer
Hindalco Industries has signed a joint
venture deal with California-based
Almex to manufacture high-strength
aluminium alloys. The joint venture,
named Hindalco-Almex Aerospace
Ltd (HAAL), will cost an estimated
Rs 1.55 billion (US$33.7m) to set up
and will have a capacity of 46,000 tpy.
Hindalco will hold a 70 per cent stake
in the company, which will produce
alloys for the aerospace, transport
and sporting goods industries. First
production is scheduled for the first
quarter of 2008, though full capacity
will be reached in stages over the next
three to four years. The location of
HAAL’s manufacturing facility is still
to be finalized, though it is likely to be
in south-west India. A large portion
of HAAL’s output will be marketed
overseas.
■
ALUMINIUM · 3/2007
31
ALUMINIUM RECYCLING INDUSTRY
Modern furnace installation – design criteria aspects
R. Weiand and C. Hamers, Oberhausen
None of the above aspects can be ignored for a modern furnace installation. Which of these aspects dominate
the list depends mainly on the type of
furnace and on the local environment.
Certainly the priorities are very different for furnaces melting contaminated scraps in contrast to electrically
heated furnaces melting clean metal.
The modernisation targets most
often requested by furnace operating
companies are:
• shorten melting cycle
• reduce dross development
• improve dross removal and
dross handling
• simplify solid and / or liquid
metal charge
• reduce power and fuel costs
• improve waste gas cleanliness
• easily maintain cleanliness
of furnace
• easily treat liquid metal in furnace
• improve workplace and
environmental conditions.
Most of these targets can be reached
or optimised with presently available
technologies and/or modern PLC for
operation and furnace protection.
Generally it should be clear that a
modern, optimised furnace installation has to be based on customized
engineering so as to integrate all the
very specific requirements of each
particular furnace user.
The wide variety of furnace types
presently used in the aluminium industry ranges from fuel fired, double
chamber furnaces, used for melting
contaminated scraps, and reaches to
electrically heated channel inductor
furnaces for melting clean metal. Furthermore there are numerous variations of combined melting / casting or
pure casting furnaces.
To narrow this wide range we like
to concentrate our modernisation
32
thoughts on technical possibilities for
fuel fired combined furnaces. This
group of furnaces represents the largest number of installations in use and
requested.
Frequently observed deficiencies
on furnaces are:
•
•
•
•
•
•
Poorly sealed doors, metal inlets
and/or outlets
Limited access for charging and
for metal treatments
Not optimised burner capacities,
burner regulation mismatch to heat absorption capacities of metal, burner’s flame direction,
dimension and speed
Wrong siting of waste gas outlet in
relation to flame directions
Cascading of outflowing metal
Not optimised metal treatment
possibilities
Delivered modern furnaces:
• Metal bath too deep
• Incorrect expansion joints of
refractory
• Poor stability of furnace body.
These deficiencies are the main fields
of discussion for modernisation and/
or optimisation projects to eliminate
the following negative consequences:
• Furnace deformation and/or
deterioration of body and door
• High energy consumption and
high temperature of refractory
• High waste gas production.
• Quality problems
• High dross formation
• Time-consuming furnace handling.
In addition to the above general information and observations on deficiencies we describe below how a modern
furnace should operate and furthermore provide an outlook for the next
steps in modernisation.
Summary
1. Melting furnace
Basic technical data:
Furnace capacity:
110 t
Melting rate:
25 t/h
Fuel:
natural gas
Heat efficiency rate:
319 kWh/t to 358 kWh/t
(depending on alloy and scrap assembly)
Number of burners:
3 pairs of regenerative burners
Door opening:
9.5 m x 1.9 m
Metal bath depth: approx. 750 mm
Metal surface: 64 m2
Power (electromagnetic stirring) installed:
140 kW
Total weight of furnace:
approx. 630 t
Graphs and photos: IST
The design of new furnaces and
the modernisation of existing ones
have to consider the following basic requirements: production, efficiency, maintenance, environment,
economy.
ALUMINIUM · 3/2007
SPECIAL
ALUMINIUM RECYCLING INDUSTRY
This type of furnace had been equipped with:
• 3 pairs of highly efficient independently operating regenerative burners
• Automated burner control allowing for heat absorption capacity of metal, furnace protection,
and metal temperature adjustment
• Semi-automated thermocouple extraction and insertation
• Adjustable furnace pressure control system
• Programme to record melting cycles so as to optimise programmable melt process
• Full visualisation of all furnace data at all times
• Automated burner control during door operations and thermocouple movements
• Fully sealed large charging door with 9,5 x 1,9 m door opening. Size of door is harmonised with number
and size of charging containers, dross collecting containers, and motorised metal handling equipment
• Electromagnetic stirrer for contact-free liquid metal movement to homogenise temperature and alloy,
and furthermore to maintain cleanlessness of furnace by means of programmable magnetic field intensity,
direction and/or location of stirrer
• Very rigid, bricked refractory for furnace bottom to allow charges of heavy solid metal blocks,
and monolithic refractory for walls and roof
• Rigid but elastic furnace body design to allow for all refractory and body thermal movements
• Hydraulic systems to control furnace tilting speed and to lift and seal furnace door
• Semi-automated metal outlet opening
• Automated waste gas suction hood on furnace door.
This installation has been in successful operation for more than 10 years.
Delivered modern furnaces:
2. Combined melting / casting furnace
Basic technical data:
Furnace capacity:
Melting rates
- without porous plugs:
- with porous plugs:
- number of porous plugs:
Bath surface:
Bath depth:
Burner system
- number of burners
(Pairs of regenerative burner
couples for natural gas)
- Energy of burners:
Door opening:
Tilting angle:
Min. tilting time:
Total weight of furnace:
120 t
22 t/h
24 t/h
24
64 m2
approx. 1000 mm
3
3 x 6000 kW
9.2 x 1.95 m
approx. 27°
approx. 5 min
approx. 570 t
Except for the EMS system, this furnace is
assembled with same equipment as the
melting furnace described before. Priority
here was given to porous plugs to combine
metal movements with metal treatment.
A further step to the next generation of this
type of melting furnace is presently under
engineering review. It integrates the following
technical properties.
Large capacity:
130 t
Melting rate:
approx. 28 t/h
Metal charges:
scraps, ingots, liquid metal
Electro magnetic stirrer:
1
Semi automated fluxing and gas treatment system:
by means of inserted rotating equipment
ALUMINIUM
· 3/2007
33
➝
ALUMINIUM · 3/2007
33
ALUMINIUM RECYCLING INDUSTRY
shell. This implies a
limit on the level of
insulation. A consequence is that the
furnace shell feels
relatively hot.
Summary
To plan a modernisation or to choose
a new modern furnace, it is important that supplier and customer first
discuss technical possibilities and
that the customer’s requirements are
properly summarised. These summarised data are the basis for all design
proposals to be evaluated between
customer and engineer, so as to select
the best solution. In our understanding, the following general design criteria characterise a modern furnace,
whatever it is to be used for.
Criteria
Furnace body
The structure should combine rigid
with well defined elastic behaviour
which is based on computerised stress
and deformation analyses under cold
and hot conditions. The elasticity
provides a springlike backforce to
stabilise the refractory during thermal
deformation. The structure must also
provide a volume optimised for scrap
type and for the number of charges
per melt cycle.
Furnace door
Tiltable furnaces should be preferred
for cascade-free controlled metal
flow, floor-level in-stallations. Casting
furnaces it should have provisions to
move liquid metal and to treat metal.
Furnace door
As an important part of a furnace,
door design should be given high priority. Production operations, gas flow
control, noise control and lifetime of
furnace all require a fully sealed and
adjustable door blade to follow all
foreseeable deformations during fur-
34
Modernised furnace door
nace lifetime. Furthermore, the door
frame should be large enough to give
easy access to all areas of the furnace.
A rigid design to withstand charging,
de-drossing and cleaning operations,
while minimising thermal deformation, should have high priority.
Waste gas suction hood
To control workplace and environment conditions, a flow-optimised
waste gas suction hood above the furnace door should be installed to extract dust and smoke during charging
and de-drossing operations.
Burners
Highly efficient medium-speed burners should be used with a well defined
flame characteristic and direction so
as to optimise heat transfer to metal
rather than to furnace structure.
Burn­ers and automated burner controls should provide the possibility
to adjust energy input according the
heat absorption capacity of the metal
during melting and/or holding conditions.
Refractory:
Only high quality materials should be used;
we prefer a bricked
top quality furnace inner wearing layer with
monolithic materials
above bath and ceiling.
Insulation should be
designed so that metal
freezing point is situated near the inner wearing layer boundry and
not near the furnace
Furnace automation:
Automation should
provide highly flexible programming
to allow for pro­duct
changes or changes
in operating procedures. To optimise
oper­ations by modelling re­cord formats should allow specific operations
to be screened out and simulated in
models. Records should also include
failures of parts and systems on installations so as to simplify and improve
trouble shooting.
The trend in furnace development
is towards higher capacities to allow casting of large slabs up to 9,8 m
length and/or to increase the number
of billets and their quality requirements. For these reasons we expect
ever larger furnace capacities in the
foreseeable future. To minimise production risks and to optimise metal
handling and quality, requires the
closest attention to basic and to detail
design of all furnace properties. Also
process controls should be highly automated to reduce failures.
Other aspects
In addition, it is most relevant to consider logistical circumstances as well
as scrap transport conditions when
Modernised furnace
ALUMINIUM · 3/2007
➝
SPECIAL
ALUMINIUM RECYCLING INDUSTRY
installing a new furnace into an existing plant. This means, sometimes new
ideas have to be developed to suit the
requirements best. Specially for the
automotive industry (motor and gear
production units) such furnaces of
Tower type are recommanded. Such
furnaces, equipped according to
above mentioned modern design criteria lead to Tower-melting furnace
with high efficiency and mainly automated control and process flow.
Authors
Rolf Weiand is consultant for Industrieofen
und Stranggiess Technik GmbH (IST).
Christian Hamers is Managing Director of
IST for projects marketing and sales.
Tower melting furnace
Compact type remelt plant for contaminated scrap
using latest melting technology
Graphs and photos: HE
F. Niedermair, Braunau
Fig. 1: General Plant Layout
Hertwich Engineering has taken
on the challenge and has successfully developed and commissioned
a revolutionary scrap remelt plant
to meet the limited capacity requirement of a typical extruder.
Within recent years Hertwich
Engineering has supplied some
20 such plants to extruders worldwide.
The term “compact” refers to a
remelt plant of compact design, that
comprises all production steps from
36
scrap charging to finished billet into
one combined, automated production
process. The term “revolutionary”
comes to mind since this installation
meets all relevant requirements for a
modern recycling facility, especially
• provides fully automatic charging
• combines gasification-, metal pre heat-, and melting process in one
single integrated system
• largely avoids the emission of di-
oxins by application of an adequate combustion and flue gas cooling re-
gime
•
•
•
•
utilizes the inherent energy of gasified hydrocarbons for reducing fuel
consumption
minimises metal losses at the melting process
minimises manpower requirement
and avoiding shredding or baling of
scrap
ensures high level of safety.
Description of the HE-remelt
plant
Essentially the remelt plant consists of
ALUMINIUM · 3/2007
SPECIAL
ALUMINIUM RECYCLING INDUSTRY
the following elements:
• Combined furnace charging and
skimming machine, fully automated
• Three-chamber melting and
casting furnace
• Degassing
• Horizontal DC casting
• Continuous homogenising
• Cooling station and exit and
sawing. (Figs. 1 and 2)
Combined charging and skimming
machine
Approx. one third of the metal charged
can be contaminated scrap. The average contamination rate (organic substances) is in the range of 2 to 4 weight
% of total metal charged (Fig. 3).
Fig. 2: Overall view of the plant. From left to right: Part of scrap bin accumulator, Skimming rake storage, Three-chamber melting and casting furnace, Horizontal caster, Continuous homogenizer, Weighing/Strapping system.
Horizontal caster
The HE horizontal caster produces 5
strands of diameter 178 mm billet or
6 strands of diameter 152 mm. Continuous casting rate is up to 3 tonnes/
hour. The integrated flying saw automatically cuts the strands into billets
of 7 meters length (Fig. 4). In general a
casting cycle starts on Monday morning and stops on Saturday morning.
Cut-to-length billets are automatically
pin stamped on the cut face and conveyed onto an intermediate table.
Continuous homogeniser
Fig. 3: Combined charging and skimming machine
Single billets from the intermediate
table are introduced into the continuous homogeniser at regular intervals.
While passing through the furnace the
billets are subjected to heating and
holding with very narrow temperature
and time tolerances, consistent for all
billets. Thereafter billets pass through
a cooling station for uniform cooling.
After cooling, billets are moved to the
exit station where they are weighed
and bundled. Strapping and removing of finished bundles are the only
manual operations of the production
cycle after loading of full scrap bins
onto the bin entry accumulator.
Control system
Besides the state-of-the-art process
control and visualisation, the plant
has been designed to ensure
➝
ALUMINIUM
· 3/2007
37
Fig. 4:Horizontal caster with flying saw, billet production
ALUMINIUM · 3/2007
37
ALUMINIUM RECYCLING INDUSTRY
continuous production, even during
frequent, short power outages.
Operational information
•
•
•
Production rate: 1 to 3 tonnes per
hour or 500 to 1.500 tonnes per
months.
Energy consumption: Melting furnace < 600 kWh per tonne or 920
BTU per lb. Continuous homogenizer < 240 kWh per tonne or 370
BTU/lb.
Metal recovery at the melting furnace: Tests on the installation have
shown that, upon charging clean
•
scrap exclusively the quantity of
dross removed from the furnace is
around 0,8% of total charged metal.
This type of dross contains 40 to
60% of recoverable aluminium.
Operating staff: The complete
remelt plant is operated by one
man per shift. A second man is
occupied with handling of
purchased scrap and scrap bin
transport.
Conclusion
This new remelt plant has met all expectations in terms of performance
Otto Junker UK
and efficiency. The innovative concept of this installation represents a
milestone in modern recycling of aluminium scrap regarding:
• versatility in terms of charged
scrap
• scrap maximum yield
• improved operating safety
• substantially improved economics.
Author
Dipl.-Ing. Franz Niedermair (1952) is since
1989 with Hertwich Engineering (HE) in
R&D and marketing. Since 1994 he is Managing Director of HE.
Otto Junker UK
new tilting
Neue Kippdrehtrommelöfen im Programm Launching
rotary furnaces
So stehen in der Gruppe nun neben
den Induktions- und brennstoffbeheizten Herdschmelzöfen moderne
Aggregate für das Schmelzen von
Aluminiumschrotten zur Verfügung.
Im Aufbau besteht der Drehtrommelofen aus einem zylindrischen Stahlmantel mit feuerfester Auskleidung,
der liegend gelagert ist und in Drehbewegung versetzt wird. Die Beheizung erfolgt über einen an der Stirnseite angeordneten Brenner, der beim
Chargieren zur Seite weggeschwenkt
wird. Die Baureihe dieser neu entwickelten Öfen reicht von 1 bis 15 Tonnen Fassungsvermögen und 0,5 bis 5
Tonnen Schmelzleistung pro Stunde.
38
Der Lieferumfang umfasst ein komplettes Anlagensystem mit allen erforderlichen Hilfs- und Nebeneinrichtungen wie Chargiereinrichtung,
Filter- und Abgasreinigungsanlage,
Gießrinnen usw. Ein modernes Prozessleitsystem sorgt für die Steuerung
und Überwachung aller Aggregate
und Prozesse.
Hier die kurze Beschreibung einer
typischen Kippdrehtrommelofenanlage aus dem Bauprogramm: Der Ofen
hat einen Durchmesser von 2 Meter
und ein Fassungsvermögen von 17,25
Tonnen. Der Einsatz eines Sauerstoffbrenners ergibt eine Schmelzleistung
von 5,75 Tonnen pro Stunde. Durch
die Kipp- und Drehbewegung wird
With its launch of a line of highperformance tilting rotary furnaces, Otto Junker UK has added
a new melting technology to the
Group‘s product range, thereby
completing its offering of furnace
equipment. Tilting rotary furnaces
are designed for melting mixed,
contaminated scrap, or highly
oxidized materials such as dross.
They are particularly well suited
for applications involving the addition of salts to minimize oxidation and absorb contaminants.
The core element of a tilting rotary
furnace is a refractory-lined cylindrical steel shell. This tubular shell
O. Junker
Otto Junker UK hat mit der Bau­
reihe leistungsfähiger Kippdreh­
trommelöfen das Programm
der Gruppe um eine alternative
Schmelztechnologie komplettiert.
Die Öfen sind prädes­tiniert für
das Schmelzen einer Mischung
verschiedener Schrotte, von verunreinigten Schrotten und stark
oxidhaltigen Materialien wie Krätze. Insbesondere wenn mit einem
Salzzusatz zur Verringerung der
Oxidation und zur Aufnahme
der Verunreinigungen gearbeitet
werden muss, wird bevorzugt der
Drehtrommelofen eingesetzt.
Kippdrehtrommelofen
Tilting rotary furnace
ALUMINIUM · 3/2007
SPECIAL
is arranged horizontally and driven
to rotate about its axis. The furnace
is heated by a front-mounted burner
which swings away sideways for
charging. The line of newly developed
tilting rotary furnaces ranges from 1
to 15 tonnes in capacity and covers
melt outputs from 0.5 to 5 tonnes per
hour.
The scope of supply comprises the
complete furnace system including
all requisite auxiliary and ancillary
equipment such as the charging machine, filters, off-gas cleaning system,
launder, etc. An advanced process
management system ensures that all
equipment and processes are effectively controlled and monitored. The
newly developed design is characterized by a high thermal efficiency and
hence, low energy consumption, in
addition to high metal yield, low salt
input, and minimum emission rates.
The features of a typical tilting
rotary furnace installation from the
new range can be outlined as follows:
ALUMINIUM RECYCLING INDUSTRY
A furnace measuring 2 metres in diameter has a capacity of 17.25 tonnes.
Equipped with an oxygen burner, it
delivers an output of 5.75 tonnes per
hour. Its tilting and rotary movement
ensures an optimum interaction of the
salt slag and furnace charge or melt,
respectively, while also providing a
very good heat transfer. Short treatment cycles and low energy consumption are achieved as a result.
A charging machine with a capacity of 6 tonnes allows the furnace to be
filled very quickly. After 3 hours, the
recycling process is complete and the
liquid aluminium is poured out within
just a few minutes. The furnace is then
tilted further and set to rotate so that
all salt slag will drain from its interior.
Some 3.5 hours after it was charged,
the system is ready to receive the
next scrap load. Off-gases are processed in an advanced dust collection
system and treated with lime such as
to ensure compliance with applicable
emission thresholds.
■
Spouts and
Stoppers
zum einem ein intensiver Kontakt
zwischen Salzschlacke und Einsatzmaterial bzw. Schmelze erreicht und
zum anderen eine sehr gute Wärmeübertragung ermöglicht. Das Resultat
sind kurze Behandlungszeiten und
ein niedriger Energieverbrauch.
Eine Chargiermaschine mit einem
Fassungsvermögen von 6 Tonnen
sorgt für eine sehr schnelle Beschickung des Ofens. Nach 3 Stunden ist
der Recyclingprozess abgeschlossen
und das flüssige Aluminium wird in
wenigen Minuten abgegossen. Danach wird der Ofen weiter gekippt
und gedreht, so dass die gesamte Salzschlacke aus dem Ofen entfernt wird.
Nach 3,5 Stunden ist der Ofen bereit
für die nächste Charge und es kann
erneut mit dem Chargieren begonnen
werden. Die Abgase werden in einer
modernen Entstaubungsanlage und
durch die Zuführung von Kalk so aufbereitet und gereinigt, dass die Emissionsgrenzwerte klar unterschritten
werden. ■
Ceramic Foam
Filters
C
D
C
D
m
u
i
m
n
u
i
i
min
for Al um
c assttiinngg
Drache
umwelttechnik
Drache Umwelttechnik GmbH · mail@drache-gmbh.de ·
ALUMINIUM
· 3/2007
39
www.drache-gmbh.de
ALUMINIUM · 3/2007
39
ALUMINIUM RECYCLING INDUSTRY
EMP system and the Lotuss vortex
R. Starczewski, Burton-on-Trent
Against a backdrop of rapidly increasing LME price for aluminium
as well as spiralling energy costs,
maximising the metal yield and
economising energy when remelting aluminium has never been
more important than in today’s
economic climate. With this objective in mind EMP Technologies offers its electromagnetic pump and
charge well system from a portfolio of equipment designed to assist
the secondary aluminium cast
house and aluminium recycler in
today’s challenging market.
All images: EMP Technologies
Since the mid-1990’s EMP Technologies has perfected and proven its
systems in over 80 installations in 30
countries around the world using its
circulation method to melt light gauge
scrap. Whatever the reverberatory furnace design or the operating practice,
EMP has a suitable system for circulation or for combined circulation and
light weight scrap charging.
In 2005 EMP was acquired by the
global Pyrotek organisation, which
brought with it the significant benefit
of local support via the many Pyrotek
offices throughout the world.
The principal concept of the system when used in combination with
a reverberatory furnace is to accelerate wetting and melting of light weight
scrap by using a high capacity electromagnetic pump to circulate hot liquid
metal from the hearth to a special ex-
Fig. 1 EMP system applied to a reverberatory furnace
40
ternal charging well, then back
into the hearth.
The electromagnetic pump
circulates liquid metal as illustrated in Fig. 1. The systems are
suited to furnaces of from 5 to
150 tonnes, with pumps available to provide mass flows of up
to 20 tonnes per minute.
EMP and Lotuss for
light gauge scrap melting
The key principles for high-re- Fig. 2: Lotuss vortex in an EMP chargewell
covery and efficient scrap melting are:
While light gauge scrap is usually less
• Rapidly submerge of the scrap into
expensive, often by a wide margin, it
liquid metal, continuously circupresents operational challenges which
lated by a high-capacity molten
may offset the low purchase price.
metal pump
In both cases the Lotuss system
• Prevent direct flame impingement
aids the melting of scalper chips, edge
onto the scrap which would aggratrim, saw chips, turnings, borings,
vate oxidation and metal losses
used beverage cans and other light
• Continuously melt with automated
scrap, while achieving high recovery
scrap feed which is uninterrupted
rates, excellent production rates and
by dross removal.
low energy consumption. The system
The heart of the technology best suited
features rapid scrap submergence to
to this application is the patented LOminimise melt loss as well as strong
TUSS (LOw TUrbulence Scrap Subcirculation of molten metal within the
merging system) vortex design used to
furnace to enhance production rates
melt light weight scrap charged in a
and energy efficiency,
well external to the main furnace, as
illustrated in Fig. 2.
Economics
The systems are capable of absorbing scrap charge rates up to 15 tonnes
The above system can result in very
per hour. Since their introduction,
attractive economic returns for the
many Lotuss systems have been inuser. Summarised below are the procstalled in aluminium cast houses, secess gains that can be conservatively
ondary operations, wheel
expected, based on the experience of
plants, and large foundries
many users:
Higher production
20%
where they commonly
Lower energy usage/kg
10%
achieve metal recoveries
Higher yield
3-4%
above 96%.
Longer
refractory
life
25%.
Cast houses with captive downstream processing may have a readily
Foil bale charging
available supply of light
weight process scrap such
More recently the Lotuss technology
as scalper chips, edge trim
has been applied to the processing of
and saw chips.
in-house generated 6 µm aluminium
Typically, the secondfoil compacted into bales.
ary aluminium producer
Traditional methods make use of
must use a variety of available scrap
induction furnaces or they compact
types to produce secondary alloy.
foil scrap into bales with high densities
ALUMINIUM · 3/2007
SPECIAL
ALUMINIUM RECYCLING INDUSTRY
who have been using the EMP
Although the furnace was already
Lotuss systems for melting
equipped with an electro-magnetic
light gauge scrap additions
stirrer system (EMS) underneath the
have also taken advantage of
furnace, by additionally installing an
the unique vortex well as a
EMP system they were able to furroute for alloy additions into
ther reduce the cycle by over 20% by
the furnace. They have found
charging the magnesium alloy earlier
that by keeping the furnace
in the melt cycle. The installation is
door closed during the whole
pictured in Fig. 5. In addition they
alloying process, they benefit
were able to achieve high yields on
from three advantages:
the magnesium alloy addition, in the
• Maintaining the heat transorder of 97 to 98%.
fer efficiency of the
Eric Shultz, project engineer, de furnace
scribes the use of the EMP system
• Minimizing energy losses
with electromagnetic pump and
• Minimizing environmenchargewell at the company’s Camp
tal emissions to the cast
Drift remelt facility, saying: “The ben house and operators.
Instead of following the
Fig. 3: Compacted foil on conveyor feeding a Lotuss
traditional procedures of
system
alloying directly through
of up to 2,100 kg/m³ to try to minimise
the furnace doors, or by using
losses when charged to the melt furspecially made alloy tablets, the
nace directly. Both these traditional
pure elemental additions can now
methods are inefficient for recycling
be easily dissolved by charging
this type of scrap, as the induction
e.g. manganese flake, iron splatter,
furnace consumes high amounts of
copper cuttings/swarf, or magenergy, and direct charging to furnace
nesium bars directly through the
yields a low level of metal recovery
EMP vortex. This has been undersometimes as low as 80%. Following
taken by many EMP users and is
many years of trials with several large
one of the many benefits attainable
aluminium producers, EMP has develfrom the system.
Fig. 5: Magnesium alloy ready to charge to the EMP Lotuss
oped a special method to efficiently
recycle of this type of clean bailed foil
efits from this investment are enorEconomic benefits to
scrap. Foil bales compacted to densimous. Magnesium was previously
alloying through the vortex
ties of between 800 to 1,400 kg/m³,
loaded into baskets and introduced to
with dimensions up to 600 mm by 400
With the appropriate feeding equipthe metal bath through the main door
mm by 400 mm, have been charged
ment, various alloying elements from
using a forklift with the door open for
continuously through the Lotuss vorlump silicon to magnesium have been
the whole time. Magnesium is now intex with recoveries greater than 98%
effectively added to melts with signifitroduced through the EMP chargewell
(for clean dry process scrap) .
cant savings in alloy losses and a very
with close to 100% recovery. This imquick dissolution time of the alloy eleproves productivity and yields signifiments into the melt.
cantly, while it also improves metal
Alloying
Hulett Aluminium in South Afcleanliness by producing less magneOver the past 10 years some operators
rica, a large producer of 5182 alloy,
sium oxide inclusions.”
installed the system to
These additional benefits, particucharge all of their maglarly the recovery of magnesium, have
nesium additions into
been so financially significant that we
the vortex with the sole
are currently installing a second sysobjective of reducing altem in a similar furnace.
loying cycle time and
achieve homogeneity on
Metal treatment
their 70 tonne furnace.
The operation was from
Also of particular interest is the ability
dry hearth, fully emptyto remove alkali elements and incluing at the end of each cysions in the furnace prior to transfer
cle, and required approx.
to holding a furnace or to the casting
2 tonnes of magnesium
pit/machine. A primary smelter cast
Fig. 4: Compacted foil bales in the EMP chargewell
per charge.
house has indicated that since the in- ➝
ALUMINIUM
· 3/2007
41
ALUMINIUM · 3/2007
41
ALUMINIUM RECYCLING INDUSTRY
ductivity.
Consequently
preliminary
trials
have
been undertaken whereby
Promag
S, a chloride
based fused
flux, has been
added to primary molten
metal.
The
flux was introduced into
Fig. 6: Illustration of EM “metal mover” side stirrer
the furnace
via EMP Lotroduction of the EMP system and its
tuss vortex. These trials were conpowerful circulation in the furnace,
ducted on consecutive melts in a 50
they have stopped using fluxes to
tonnes furnace bath of predominantly
reduce sodium levels in the furnace
primary metal with less than 10% reafter transferring metal from the pot
cycled metal charge. Again the door
room. The kinetic energy of metal cirwas kept closed and no manual stirculation increases the transport of soring was required.
dium to the surface, where it oxidises
The preliminary results have demor vaporises and can be taken off in
onstrated both a further reduction in
the fume.
sodium and in inclusion levels. The
Typical sodium levels prior to the
key fluxing advantage of EMP is the
addition of the EMP System were beability to introduce the flux early in
tween 80 ppm and 100 ppm dependthe melt cycle and to distribute it efing upon the pot tapping process. Prifectively and efficiently.
or to the addition of the EMP system,
the furnace used to be fluxed and then
EMP 620 super pump
manually stirred with a dross rake to
reduce sodium to the desired level.
The circulation within the EMP sysSince the addition of the EMP system,
tem has historically been provided
which achieves a circulation rate of
by a 4” (101,6 mm) diameter electro10 tonnes per minute, the sodium
magnetic tube pump. For more challevel drops to around 10 ppm during
lenging operational applications, inthe normal cycle time. Clearly, limits
cluding dry hearth or where pot-line
below 10 ppm would require the use
metal forms part of the charge, EMP
of additional fused fluxes for example.
has developed a variant 6” (152,4 mm)
This not only saves fluxes and door
diameter electromagnetic tube pump.
opening time, but also reduces the
There are currently 5 of these pumps
cycle time, so increasing furnace proinstalled and operating. This 6” pump
42
has now been developed significantly
further with substantially increased
length and new laminated construction. This improved design significantly increases mass flow to an estimated 20 tonnes per minute.
Installation of the first 620 series
pump system is programmed for
December 2006 in a 150 tonne twin
chamber furnace at a secondary aluminium smelter in Italy. The increased
diameter and power offered by the
upgraded 6” EMP 620 series pump
is expected to significantly increase
mass flow, resulting in improved
heat transfer in the furnace and in
improved temperature/chemical homogeneity of the metal bath.
Stirring systems
A new addition to the EMP range of
products is the EM “metal mover” side
mounted electro-magnetic stirring
system. The system is ideal in applications where no light scrap is charged
but circulation would enhance the
melt cycle and improve chemical and
temperature homogeneity.
Unlike similar underfloor EM systems, the EM “metal mover” is easily
retrofitted to existing furnaces. It requires only a discrete area and operates at a low installed power and at
normal main frequency of 50 Hz.
Three standard sizes are currently
available, offering mass flows of 300,
600 and 750 tonnes per hour.
Author
Richard Starczewski is Sales Manager for
EMP Technologies Limited.
ALUMINIUM · 3/2007
SPECIAL
ALUMINIUM RECYCLING INDUSTRY
T.T. Tomorrow Technology
Strategy for automatic furnace skimming
G. Campice, due Carrare
More accurate, effective, timely
and rapid dross cleaning allows
big production, quality and economic advantages. This is well
known and is the main target of a
new range of manual, automatic
or semiautomatic de-drossing and
furnace cleaning equipment which
easily adapts to every cast house
and aluminium smelter.
The automation (both of the frequency and of the operation itself) of these
routine furnace tending procedures
significantly improves all the aspects
T.T. Tomorrow Technology
In the last five years developments in
the design and manufacture of equipment to skim and clean furnaces
were pushed not only by productivity
and quality issues, but by health and
safety standards. The opportunity to
withdraw operators from hot, dangerous and laborious work areas firmly
the best possible performance for the
following targets:
1)To shorten the time the operations
which need the furnaces door kept
open
2)To skim the furnace in accurate and
effective way, removing the mini mum amount of aluminium
3)To clean the furnace walls and
bottom without damaging the
refractory lining
4)To submerge the scrap in the
molten bath
5)To mix and homogenise the bath.
Rail mounted furnace cleaning equipment during cold tests
supports this choice. T.T. Tomorrow
Technology of Italy has developed
manual, automatic or semi-automatic
furnace cleaning machines designed
to operate in the arduous cast house
environment and meet the safety,
economic and production requirements of today’s aluminium industry.
The furnace cleaning machines have
been successfully installed in a large
number of aluminium production facilities. Each of them has enabled the
user to realize a number of important
benefits, including increased furnace
productivity, improved operator safety, reduced maintenance costs, and a
major fuel saving.
The furnace cleaning machines are
designed and manufactured to reach
44
of the melting process. It is well known
that dross acts as a thermal insulation
on the molten bath, thereby reducing
the efficiency of heat transfer from the
flame to the metal: the opportunity to
easily and quickly remove the dross
from the liquid metal surface results
in higher heat exchange efficiency,
permitting a lower chamber temperature and consequent cost savings in
fuel and in metal oxidation.
During the de-drossing operation
the tool is moved back and forth with
precise and controlled movements
parallel to the liquid surface. This optimum standard of control eliminates
the waves and oscillations that are often experienced with more traditional
de-drossing systems. The operator can
control tool movements in a gradual
and progressive manner through the
joystick of the remote control, or the
movement can be fully automatic
(without any direct intervention by
the operator). If the operator controls
the movements directly, he is positioned in a cabin, or is operating the
remote control console from the safest
location, protected from the potential
risk of splashes of molten metal from
the furnace.
The system can be mounted on
rails in front of the furnace doors,
thus allowing the equipment to operate on more than one furnace, or else
it may be fixed in front of one furnace.
The flexibility and precision of this
furnace tending operation provide a
number of safety, economic and production advantages including:
• Increases furnace utilization by
reducing the amount of time
required to effectively and accu rate de-dross the furnace
• Improves heat transmission
• Increases the speed of the cold
charge melting cycle due to the po tential to mix and submerge the
scrap into the melt
• Avoids dross, sludge and metal
build-up that can progressively
reduce the furnace capacity, pol lute the metal analysis and require
unscheduled downtime to carry
out substantial furnace cleaning
using hammer drills, etc.
• Increases refractory life by avoid
ing the thermal stress caused by
long de-drossing time and the
mechanical stresses that results
when percussion tools are used to
clean the furnaces
• Reduces the manpower required to
carry out the mixing and de-dross ing operations
• Improves the safety of the cast
house by keeping the operator
away from the furnace door during
such operations
• Eliminates the need for forklift
truck operations in front of the
furnaces.
ALUMINIUM · 3/2007
SPECIAL
ALUMINIUM RECYCLING INDUSTRY
Experience with using furnace cleaning machines produced by T.T. Tomorrow Technology has yielded very
positive feedback as regards the following characteristics:
• Ease of use
• High reliability
• Minimal maintenance
• Flexibility (when used with more
that one furnace)
• Easy and user-friendly implemen tation in the existing process
operations.
In accordance with T.T. Tomorrow
Technology design policy, the machine configuration, structural characteristics and working parameters
have been designed to make the
equipment simple, reliable and easy
to maintain. All electrical and hydraulic components have been positioned
on the main frame of the machine on
the side away from the furnace so as
to avoid exposure to heat and molten
metal splashes. This also eliminates
Fixed furnace cleaning, metal mixing and bottom cleaning equipment
the potential for fires from hydraulic
oil that a burst pipe could potentially
project into the furnace. An installation advantage of these machines is
that they need no special foundations
or extensive civil works.
Author
Giovanni Campice is Managing Director of
T.T. Tomorrow Technologies, based in due
Carrare, Italy.
www.to-bicom.de 091xx-07
BESUCHEN SIE UNS:
GIFA
METEC
THERM NEWCAST
PROCESS
Thermprocess 2007
Düsseldorf
12.-16. Juni
Halle 5, Stand B20
Schützt Umwelt
und Umsatz.
Unsere Zweikammer-Schmelzöfen (TCF) verbrauchen
wenig Energie, weisen niedrigste Emissionswerte auf und
arbeiten höchst ökologisch und ökonomisch. Außerdem
funktionieren sie hochsicher und vollautomatisch.
LOI Thermprocess GmbH
Am Lichtbogen 29
45141 Essen, Deutschland
ALUMINIUM
· 3/2007
45
Tel.: +49 (0)2 01 18 91-1
Fax: +49 (0)2 01 18 91-321
E-Mail: info@loi.de
www.loi.de
ALUMINIUM · 3/2007
45
ALUMINIUM RECYCLING INDUSTRY
Advantages of the IRMA process for the in-furnace
treatment of aluminium
Nowadays the use of rotary injectors for in-furnace liquid metal
treatment is the recognized technology. Casthouse users may
choose from a number of technol­
ogies implementing this principle.
There are chiefly two kinds of
installation:
• “single” rotor type, which, as
a rule, is a portable set-up for
furnace treatment via an exist ing opening, for instance a fur nace door or hatch.
• “multiple” rotor type, which is
an automated system using
rotors introduced into the fur nace melt via dedicated open ings located on the roof of the
furnace.
The second type of installation is
more efficient and presents several advantages: shorter treatment
cycle; no fume emissions, since
treatment takes place with the
door closed; very good treatment
results, as regards the removal of
hydrogen, alkaline elements and
inclusions; reduced amounts of
process gas due to the total reaction of the gas injected.
The Novelis PAE IRMA process belongs to this family of technologies.
The latest design features, with new
materials and automation, make it the
most attractive solution for any modern casthouse. In particular it allows
more scrap in furnace charges with
no negative effect on the quality of
finished products.
All images: Novelis
J.-M. Chateau, Voreppe
Fig. 1: A 2-rotor IRMA system
Fig. 2: Mechanisms of removal of impurities from
the metal by rotary injector
Process basics
Principle of IRMA process
The process is based on the distribution of small bubbles of treatment gas
in the furnace melt using rotary injectors inserted simultaneously through
the furnace roof.
The rotor is identical to that used
in Alpur systems (in-line degassing
process) and so it guarantees the
same gas dispersion efficiency as Al-
46
pur. This standardisation
also gives casthouse users
the advantage of total interchangeability between
IRMA and Alpur rotors
and reduces the stock of
replacement parts. The
number of rotors and their
positions are adapted to
the size and shape of the
furnace, thus allow­ing a
homogenous temperature
distribution without excessive turbulence. The
rotors are mounted on a
metal structure. This would be
the gantry fixed on the top of
the furnace for a fixed furnace,
or travelling for a tilting-type
furnace.
A gas mixture panel regulates
the required proportions of gases for each rotor. All treat­ment
sequences are fully automated
and are launched in succession:
gantry position­ing, opening of
furnace hatches, opening of the
process gas circuit, introduction
of the rotors inside the furnace,
treatment sequence, end of cycle etc. For a casthouse facility
with several furnaces, the same
type of support structure is able
to travel between the different
furnaces.
Fig. 3: Automated hatches (closed position)
on furnace roof
Simulation tests and industrial operation have
established that one rotor
is required per 12 tonnes
of furnace capacity, and
that the average treatment time is about 30
minutes. A big capacity
furnace may feature up to
6 rotors, and yet the duration of treatment always
remains the same. Good
treatment results are directly linked
with the small size of the bubbles, the
ALUMINIUM · 3/2007
SPECIAL
same as those obtained in an Alpur
degasser. Their large total surface
area ensures a very high probability
of their interaction with the whole
volume of the melt.
The process gas mixture contains
chlorine. The use of chlorine is beneficial for the removal of alkaline elements as well as the inclusions. The
percentage of chlorine is relatively low,
around 10%, which encourages an intimate mixing with the melt but avoids
the hazard of chlorine emission.
Typical results
[1]
The efficiency of the IRMA process
compared to an in-line degasser of
the Alpur type is basically equivalent.
However, IRMA offers an additional
advantage as a result of the batch
treatment effect, namely the duration
of treatment can be varied as required.
If the quality of the incoming metal
charged in the furnace is inferior, it
will always be possible to increase
IRMA treatment time until final quality specification is on target.
Hydrogen removal: For initial hydrogen levels between 0.35 and 0.60
ml/100 g, measured using Alscan, the
levels recorded after treatment are
less than 0.20 ml/100 g in just less
than 30 minutes. This gives a hydrogen content reduction in the range of
40 through to 70%.
Inclusion removal: It is not the principal aim of IRMA to totally remove
the inclusions, but, as with any process based on the flotation principle, it
achieves a certain degree of efficiency
which counts as a substantial pretreatment. This is especially attractive
if the remelted aluminium contains
'dirty' scrap. IRMA makes it possible
to “ennoble” the metal.
Removal of alkaline elements: The
addition of chlorine removes alkaline
elements. The following curves illustrate sodium and lithium removal
kinetics for a metal with an initial sodium content of 60 ppm and a lithium
content of 30 ppm.
Reduction of melt loss: Using the
ALUMINIUM
· 3/2007
47
ALUMINIUM RECYCLING INDUSTRY
the small size of the bubbles and to a slow speed
of rotation. Melt loss is
estimated at about 10%
less than with traditional
lance treatments.
Fig. 4: An IRMA gantry serving 2 furnaces
IRMA process instead of alternatives results in a significant economy
in melt loss. This is directly due to
eliminating the splash effect thanks to
Energy savings: The
metal temperature drop
is reduced to a minimum
thanks to the short length
of treatment, to the limited amount of process
gas injected into the melt, and to treating the melt with the furnace doors
closed. Measurements made on industrial facilities show energy savings
of about 20%.
Conclusions
The IRMA process fully
meets ever-increasing mol­
ten metal quality requirements since it allows a high­
ly efficient removal of hydrogen, of inclusions and of
alkaline elements. In addition, the other benefits provided by the IRMA system,
such as treatment in a sealed
furnace, fast treatment time
and advanced automation,
also have a substantial impact on productivity and
pro­duction costs, on the
reliability of operations, on
work conditions and on energy savings.
References
[1] P. Le Brun and A. Mathis,
“Improved molten metal quality at the outlet of the furnace
through the IRMA treatment”,
Light Metals 2004, ed. A. T.
Tabereaux (TMS, Warrendale,
Pa), 789-792.
Author
Jean-Marie Chateau is General
Manager of Alpur & Casthouse
equipment sales activity of
Novelis PAE, based in Voreppe, France. He has a long
experience in development of
casthouse equipment and in
sales of liquid metal treatment
solutions.
ALUMINIUM · 3/2007
47
ALUMINIUM RECYCLING INDUSTRY
„Greenmelt“
“Greenmelt”
Umweltfreundlich und mit
hoher Schmelzausbeute
Environmentally
friendly and with a
high melt yield
B. Rieth, Meerbusch
B. Rieth, Meerbusch
Eine saubere und umweltverträgliche
Verwertung von Aluminiumschrotten
war seit jeher ein Schwerpunkt in der
Entwicklung neuer Schmelzöfen von
Thermcon Ovens, einem Unternehmen der Otto Junker Gruppe. Die von
Thermcon entwickelte „Greenmelt“Technologie entstand mit dem Ziel,
ein umweltfreundliches Verfahren
für das Recycling von kontaminierten
Aluminiumschrotten anbieten zu können. „Greenmelt“ setzte einen neuen
Standard als beste verfügbare Technologie und dies nicht nur im Hinblick auf Emissionen, sondern auch in
dem vielleicht noch bedeutenderem
Bereich der Schmelzausbeute. Der
verminderte Schmelzverlust hat aber
nicht nur wirtschaftliche Vorteile für
den Ofenbetreiber, sondern auch
Vorteile für die Umwelt. Jedes dank
hoher Ausbeute zusätzlich gewonnene Kilogramm Aluminium aus den
eingesetzten Schrotten muss nicht als
Primäraluminium erzeugt werden.
Der Greenmelt-1 Ofen der ersten
Generation ist seit 1996 bei Aleris
Aluminum Duffel (ehemals Corus
Aluminium) in Duffel, Belgien in Betrieb. Der 80-Tonnen-Ofen mit einer
Schmelzleistung von ca. 100 Ton­nen
pro Tag verarbeitet aus­schließ­lich Alu­
miniumschrotte in einem Mix aus Folien, Lithoplatten und Aluminiumverpackungen mit einer Verunreinigung
von ca. fünf Prozent. Seine Merkmale
48
sind die Schrott-Vorwärmung, die
Zweikammerbauweise sowie eine
thermische Nachverbrennung.
Dem Greenmelt-2 Ofen von Thermcon bei MAL Magyar Aluminium in
Inotai, Ungarn kommt hinsichtlich der
Stilllegung der Söderberganlage in Inotai eine besondere Bedeutung für die
Erhaltung des dortigen Gießbetriebes
zu. Er ist ausgelegt für den Einsatz von
zugekauften Aluminiumschrotten sowie Ingots. Der Schrott ist mit Folien,
Aluminiumdraht, Verpackungen, Wär­
me­tauschern und Bandmaterial sehr
heterogen zusammengesetzt. Der Ver­
un­reinigungsgrad liegt zwischen zwei
und sieben Prozent. Der 50-TonnenOfen hat eine Schmelzleistung von
ca. 65 bis 70 Tonnen pro Tag. Im Wesentlichen entspricht er der Anlage in
Duffel. Dank einer Optimierung der
Prozessführung besitzt er aber einen
noch geringeren Gasverbrauch. Zusam­
menfassend kann gesagt werden, dass
die Greenmelt-Technologie seit 1996
einen neuen Standard gesetzt hat, der
auch heute noch alle zur Zeit gültigen
Umweltbestimmungen erfüllt.
Großauftrag für die Türkei
Erwähnenswert ist ein Großauftrag,
den Thermcon zur Zeit als General­
unter­nehmer innerhalb der Otto
In the overall aluminium cycle
secondary aluminium is becoming increasingly important. One
result of this is that more and
more melting and casting plants
are built for processing aluminium
scrap as well as primary metal.
This, however, includes not only
well-defined and clean processing
scrap but also, and at an increasing recycling rate, contaminated
material such as beverage cans,
tear-open packs and much more.
Clean and environmentally tolerable
recovery of aluminium scrap has always been a focus in the development
of new melt furnaces by Thermcon
Ovens, a company belonging to the
Otto Junker Group. The “Greenmelt”
technology developed by Thermcon
was created with the aim of providing
an environment-friendly method for
recycling contaminated aluminium
scrap. “Greenmelt” sets new standards as the best available technology,
not only as regards emissions but also
in the perhaps even more important
respect of melt yield. Reduced melt
loss, however, not only has economic
advantages for the furnace operator,
but also brings environmental advantages: every additional kilogramme of
aluminium recovered from the scrap
Fotos: Thermcon Ovens
Sekundär-Aluminium gewinnt
in­nerhalb des gesamten Aluminiumkreislaufs zunehmend an
Bedeutung. Das führt dazu, dass
immer mehr Schmelz- und Gießanlagen gebaut werden, die neben
Primärmetall auch Aluminiumschrott einsetzen. Dabei handelt es
sich aber nicht nur um definierten
und sauberen Prozessschrott, sondern mit steigender Recyclingrate
auch um verunreinigtes Material
wie Getränkedosen, Aufreißverpackungen und anderes mehr.
„Greenmelt“-Ofen bei Aleris Aluminium
Duffel
“Greenmelt” furnace at Aleris Aluminium
Duffel
ALUMINIUM · 3/2007
SPECIAL
used thanks to a higher yield does
not have to be produced as primary
metal.
The “Greenmelt”-1 first-generation furnace has been in operation
since 1996 at Aleris Aluminium Duffel
BV-BA (formerly Corus Aluminium)
in Duffel, Belgium. The 80-tonne furnace, with a melt output of around 100
tonnes per day, processes exclusively
aluminium scrap consisting of a mix
of foils, litho plates and aluminium
packaging with a contamination level
of approx. 5%. Its features are scrap
preheating, a two-chamber structure
and thermal afterburn.
Thermcon’s “Greenmelt”-2 furnace at Magyar Aluminium in Inotai,
Hungary, is particularly important for
the preservation of the foundry operation there because of the closure of
the Söderberg plant. It is designed to
process bought-in aluminium scrap
and ingots. The scrap, consisting of
foils, aluminium wire, packaging, heat
exchangers and strip material, has a
very heterogeneous composition with
contamination levels ranging from 2
to 7%. The 50-tonne furnace melts
around 65 to 70 t/day. Essentially, it
is much like the plant in Duffel but its
gas consumption is even lower thanks
to process control optimisation.
In summary, it can be said that
“Greenmelt” technology has set new
standards since 1996 and still today
complies with all the current environmental provisions.
ALUMINIUM RECYCLING INDUSTRY
A major order from Turkey
Worth mentioning is a major contract
currently being completed by Thermcon, as general contractor within the
Otto Junker Group, for ETI Alüminyum in Seydisehir, Turkey. Following
the privatisation of the previously
state-owned company, ETI belongs to
the Cengiz Group, a very successful
building, energy, mining and tourism
concern in Turkey. ETI operates an
aluminium smelter with output capacity 65,000 tpy, which processes
bauxite from a nearby mine. It also
operates a hot-rolling mill for aluminium strip up to 1200 mm wide, and an
extrusion plant with two presses having extrusion loads of 12.5 and 25 MN
respectively. To expand the range of
products for export, the melting and
casting facilities are currently being
extended.
The contract awarded to Thermcon is intended to reinforce supplies
of rolling slabs and extrusion billets to
the semis production plant. The casting machine for rolling slabs is being
supplied by the US company Wagstaff,
consortium partner to Thermcon in
this project. All the other equipment
comes from Thermcon and includes:
• two melting and casting furnaces each of 30-tonne capacity
• the casting launders with level regulation
• ceramic foam filters
• degassing unit
➝
Gießanlage für Strangpressknüppel
Casting unit for extrusion billets
Junker Gruppe für ETI Alüminyum
in Seydisehir, Türkei abwickelt. ETI
gehört nach der Privatisierung des frü­
heren Staatsunternehmens zu dem in
der Türkei sehr erfolgreichen Bau-,
Energie-, Bergbau- und Touristikkonzern Cengiz Group. ETI betreibt eine
Aluminiumhütte mit einer Kapazität
von 65.000 jato, die das Bauxit aus einer nahe gelegenen Mine bezieht. Zusätzlich betreibt ETI ein Warmwalzwerk für Aluminiumbänder mit max.
1200 mm Breite sowie ein Strangpresswerk mit zwei Strangpressen,
die eine Presskraft von 12,5 und 25
MN aufweisen. Zur Erweiterung der
Palette exportfähiger Produkte erfolgt
zur Zeit der Ausbau der Schmelz- und ➝
Generationswechsel bei Thermcon Ovens
Thermcon Ovens B.V. entstand 1983 als
Hersteller von Schmelzöfen und Gießanlagen für die Aluminiumindustrie. Gegründet
wurde das Unternehmen im holländischen
Geldermalsen von Jan D. de Groot, dessen
weitsichtige und fachkompetente Führung
der Firma seitdem Weltgeltung in der Aluminiumindustrie verschaffte.
Seit Januar 2004 ist Thermcon ein eigenverantwortliches Mitglied der Otto Junker
Gruppe: ein Zusammenschluss, der Thermcon mehr als nur den Rückhalt einer großen
Unternehmensgruppe brachte. Die Nutzung
des weltweiten Vertriebsnetzes und der kostenoptimierten Fertigungsstätten sowie die
ALUMINIUM
· 3/2007
49
Mitwirkung bei Großprojekten der Gruppe
brachte Thermcon in den letzten Jahren
einen deutlichen Aufschwung. Weiterhin
unter der bewährten Leitung durch Jan D.
de Groot wuchs das Unternehmen auf wichtigen west- und osteuropäischen Märkten,
daneben aber auch z.B. in China und der
Türkei zu einem anerkannten Lieferanten
einzelner Öfen oder Gießeinrichtungen
bis hin zur Einrichtung schlüsselfertiger
Gießereien für Pressbolzen, Walzbarren und
Masseln.
Jan D. de Groot hat Ende 2006 die Leitung von Thermcon an ein junges Management-Team übergeben, die der Firma bereits
seit einigen Jahren angehören und dabei
wertvolle Erfahrungen gewinnen konnten:
Tom Schmidt zeichnet verantwortlich für
Vertrieb und Marketing, Sander Weijde
für Beschaffung, Logistik und Verwaltung,
sowie Johan de Groot für Engineering und
Auftragsabwicklung. Als Geschäftsführer
wird das Team durch Heinz Teichert unterstützt: Er ist Geschäftsbereichsleiter Wärmebehandlung der Otto Junker GmbH.
Jan D. de Groot bleibt dem Unternehmen weiterhin verbunden als Berater für
die technologische Weiterentwicklung der
Thermcon-Produkte sowie für alle Fragen,
die über das Tagesgeschäft hinausgehen.
ALUMINIUM · 3/2007
49
ALUMINIUM RECYCLING INDUSTRY
Homogenisierungsofen Gießanlagen. Der Auftrag an Thermcon dient zur Versorgung der Halbzeugfertigung mit Walzbarren und
Strangpress­knüppeln. Die Gießanlage
für die Walz­barren liefert die US-Firma Wag­staff, die bei diesem Auftrag
Konsortialpartner von Thermcon ist.
Alle übrigen Einrichtungen kommen
von Thermcon und umfassen
• zwei Schmelz- und Gießöfen mit einer Kapazität von 30 Tonnen
• die Gießrinnen mit Niveauregulie-
rung
• Schaumkeramikfilter
• den Entgaser
• die automatische Bolzenhand-­
habung
• die Bolzenaufgabe
• einen 50-Tonnen-Homogenisie rungsofen mit 50 Tonnen Kühl kammer vom Konsortialpartner
Otto Junker GmbH
• eine Bolzensägeanlage
• die Automatisierung und
Prozessführung.
Der Auftrag von ETI ist nicht die erste
Referenz von Thermcon in der Türkei.
In Betrieb sind bereits Anla­gen bei
Asas Alüminyum sowie in beiden
Werken von Assan Alüminyum. Umweltaspekte spielten eine große Rolle
bei der Verlegung der Produktion von
Asas Alüminium, die ein Presswerk
mit drei Strangpressen mit 12,5, 16
und 35 MN Presskraft betreiben, an
den neuen Standort Akyazi/Adapazari. In diesem Kontext lieferte Thermcon eine hoch moderne Schmelz-
50
Homogenisation furnace
und Gießanlage, die nicht nur das
Asas-Presswerk, sondern auch an andere Werke mit Bolzen ver­sorgt. Der
Schmelz- und Gießofen mit einer Leistung von 120 Tonnen pro Tag wird
maschinell beschickt.
Hinter der Gießanlage ist ein
automati­sches Bol­zen­hand­habungs­
system von Therm­con mit einem
30-Tonnen-Homoge­ni­sierungsofen,
Kühlkammer und automatischer Bolzensägeanlage installiert.
Assan Alüminyum, ein Unternehmen der türkischen Kibar Gruppe, ist
ein weit über die Grenzen der Türkei
hinaus bekanntes Walzwerk für bis zu
2200 mm breite Aluminiumfolien. Das
Vormaterial wird mit ZweiwalzenGießmaschinen für eine Bandbreite
bis 2400 mm erzeugt. Zum Schmelzen
des Aluminiums lieferte Thermcon
einen stationären Schmelzofen mit
einer Kapazität von 50 Tonnen mit
regenerativen Brennern sowie einen
35-Tonnen-Halteofen für das Stammwerk in Istanbul. Ferner lieferte Thermcon regenerative Brennersysteme
für die Schmelz- und Halteöfen im
Zweigwerk Assan Dilovasi.
• automatic billet handling, billet supply
• a 50-tonne furnace with 50-tonne
cooling chamber from the consor tium partner Otto Junker GmbH
• a billet sawing machine
• the automation and process control
systems.
The ETI contract is not Thermcon’s first
reference in Turkey. Units are already
in operation at Asas Alüminyum and
at the two plants of Assan Alüminyum. Environmental considerations
played a major role in the relocation
of production by Asas Alüminyum,
which operates an extrusion plant
with three presses, respectively with
extrusion loads of 12.5, 16 and 35 MN,
to the new location at Akyazi/Adapazari. In this connection Thermcon is
supplying a highly modern melting
and casting plant which will not only
supply the Asas extrusion plant with
billets, but will also deliver billets to
other plants. The melting and casting
furnace, with an output of 120 t/day,
will be charged mechanically.
Behind the casting unit Thermcon
will provide an automatic billet handling system with a 30-tonne homogenisation furnace, cooling chamber
and automatic billet sawing machine.
Assan Alüminyum, a company belonging to the Kibar Group in Turkey,
is a rolling plant known far beyond
the borders of Turkey as a supplier of
aluminium foils up to 2200 mm wide.
The starting material is produced by
a two-roll casting machine producing strip widths up to 2400 mm. For
melting the aluminium Thermcon is
supplying a static melt furnace of 50
tonnes capacity with regenerative
burners and a 35-tonne holding furnace for the parent plant in Istanbul.
Thermcon is also supplying regenerative burner systems for the melting
and holding furnaces at the branch
plant Assan Dilovasi.
Autor
Author
Dipl.-Ing. Bernhard Rieth ist Marketing­
spezialist und freier Fachjournalist. Als
In­haber der Marketing Xpertise Rieth in
Meerbusch berät er Ausrüstungspartner
der NE-Metall-Halbzeugindustrie in Marketingfragen.
Dipl.-Ing. Bernhardt Rieth is a marketing specialist and freelance journalist. As
proprietor of Marketing Xpertise Rieth in
Meerbusch, he advises equipment partners of the NF metal semis industry on
marketing matters.
ALUMINIUM · 3/2007
SPECIAL
ALUMINIUM RECYCLING INDUSTRY
Internationale Metallindustrie zu Umweltanalysen von Metallen:
Life cycle management
Den gesamten Lebenszyklus eines
Produktes betrachten
Declaration by the
metals industry on
recycling principles
GDA: „Die Frage nach der Materialherkunft greift zu kurz“
Das Recycling von Metallen ist
wich­tiger Bestandteil der Rohstoff­
versorgung eines Landes. Gera­
de für Industrienationen wie
Deutschland ohne nennenswerte
eigene Erzvorkommen sind geschlossene Stoffkreisläufe von
gro­ßer volkswirtschaftlicher
Be­deutung. Metallschrotte sind
un­verzichtbare Rohstoffe für die
Herstellung neuer Produkte.
duktbezogenen Umweltanalysen und
daraus abgeleiteten Entscheidungen
unterstützt die Metallindustrie das
End-of-Life-Recycling. Denn dieser
Ansatz hat den gesamten Lebenszyklus eines Produktes und die damit
verbundenen Stoffströme im Blick.
So können die Umweltwirkungen
der Metallerzeugung ebenso erfasst
werden wie die der Nutzung von
Produkten und ihrer Entsorgung bzw.
Wiederverwertung. Auf diese Weise
lassen sich Ökobilanzen erstellen, die
die Umweltwirkungen der Produktion und des Konsums von Produkten
umfassend abbilden. Sie geben zugleich Antwort auf die Frage nach
dem verantwortungsvollen Umgang
Neben dieser volkswirtschaftlichen
Dimension gibt es noch die ökologische. Recycling spart Energie und
andere knappe Ressourcen. Es prägt
die Ökobilanz gerade im Falle von
metallischen Produkten wesentlich.
Im Fachjargon wird in diesem Kon­
text vom End-of-Life-Recycling von
Produkten gesprochen. Dem steht
eine ökologische Betrachtung gegenüber, die für einen möglichst hohen
Anteil wiederverwerteter Schrot­te
in Produkten plädiert; die Fachwelt
spricht hier vom Recycled-ContentAnsatz. Beide Ansätze treten mit dem
Anspruch an, die Umwelt zu entlasten, kommen aber zu durchaus unterschiedlichen Ergebnissen.
ALUMINIUM
· 3/2007
51
To this end, the metals industry sup­
ports the characterization and modeling of recycling of metal-containing
products in a way that:
1)Encourages good environmental
practices;
2)Aids assessment of the overall life
cycle of products and understanding
of materials;
3)Supports the management of the
life cycle of products and stewardship
of materials;
4)Is consistent with scientific knowledge and technical practices;
5)Reflects economic realities with­
out creating market distortions that
impede environmental objectives.
About metal recycling
GDA
Den Zielen der Nachhaltigkeit
verpflichtet
Dieser Sachverhalt wurde inzwischen
von der internationalen Metallgemeinschaft mit dem spezifischen
Fokus daraufhin aufbereitet, wie das
Recycling in Lebenszyklusanalysen
bzw. Ökobilanzen berücksichtigt wer­
den sollte, um den Zielen einer nachhaltigen Entwicklung zu entsprechen.
Auch die deutsche Aluminiumindus­
trie unterstützt die Grundsatzerklärung der internationalen Metallindustrie zum Recycling.
Stefan Glimm, Geschäftsführer des
Gesamtverbandes der Aluminiumindustrie (GDA) in Düsseldorf, erläutert
den kontroversen Sachverhalt folgendermaßen: „Im Rahmen von pro-
The metals industry works towards the establishment of an
accurate understanding of metals
recycling. Environmental models
and policy discussions that concern product recycling should
characterize material recycling in
a manner that is appropriate and
that promotes the objectives of
sustainable development.
GDA-Geschäftsführer Stefan Glimm: Primär­
erzeugung eine unverzichtbare Voraussetzung für hohe Schrottaufkommen in der
Zukunft.
mit Ressourcen, denn nur sie geben
Auskunft über den Erhalt oder den
Verlust des eingesetzten Metalls im
Stoffkreislauf.“
Der
Recycled-Content-Ansatz,
der einen hohen Recyclinganteil in
Produkten mit hoher Umweltverträglichkeit gleichsetzt, kann eine solch umfassende Umweltbetrachtung
nicht leisten. Stefan Glimm zu den
Nach­teilen dieses Ansatzes:
➝
Metals are highly recyclable and in
fact a large percentage of metallic material is effectively recycled. Collected
metal scrap is converted to new material of equal or similar quality through
metallurgical processes, including re­
melting and refining. Some products
require metal grades that demand
minimal processing; other products
may require more metallurgical and
process controls to meet tighter specifications. Metal inputs for metal production are principally sourced via
the most cost effective route, whether
this is from primary ores or from recycling of recovered metal resources.
The source of the metal however,
whether primary or from recycling
can not be determined by material
properties. Therefore, scrap that is
ALUMINIUM · 3/2007
51
➝
ALUMINIUM RECYCLING INDUSTRY
„Die Frage nach der Materialherkunft
greift zu kurz. Die Aluminiummärkte
wachsen stetig und die meisten Aluminiumprodukte haben eine lange
Haltbarkeit. Dies verringert das zunächst verfügbare Schrottaufkommen
und damit kurzfristig den möglichen
Recyclinganteil in Produkten. Außerdem bleibt bei diesem Ansatz die
Umweltwirkung, die von der Nutzung
eines Produktes ausgeht, außen vor.
Man denke zum Beispiel an den Fahrzeugbau und möglichen Kraftstoffeinsparungen durch die Verwendung von
Leichtmetallen. Die Fixierung auf den
Recyclinganteil von Produkten hilft
Entscheidern nicht dabei, den Einsatz
von Metallen und Metallprodukten
ganzheitlich zu optimieren.“
Eine solch verengte Sichtweise
übersieht, dass die Primärerzeugung
unverzichtbare Vor­aussetzung für ein
späterhin hohes Schrottaufkommen
ist. Angesichts einer weiter wachsen­
den Nachfrage nach Metall und einer
oftmals langen, über Jahrzehnte reichenden Lebensdauer von Metallprodukten sind Primärmetalle unverzichtbar, um die Lücke zwischen Verfügbarkeit von Sekundärrohstoffen
und Nachfrage zu schließen.
Ökonomische und ökologische
Fehlallokationen vermeiden
Die Konzentration auf den Recyc­
linganteil kann zudem Marktstörun­
gen hervorrufen und höhere volkswirtschaftliche Kosten verursachen.
Wenn ein Konstrukteur oder Produktdesigner einen hohen Recycling­
anteil für sein Produkt festlegt, um
in bester Absicht die Umwelt zu entlasten, kann dies dazu führen, dass
Schrotte in eine Produktion gelenkt
werden, wo sie weniger wirtschaftlich
eingesetzt werden. „Bei metallischen
Werkstoffen wie Aluminium, für die
es funktionierende Schrottmärkte
gibt, die Materialverluste ohnehin
mi­ni­mieren, können darüber hinaus
un­gewollt zusätzliche, eigentlich
über­flüssige Transporte entstehen“,
so Glimm. Letzten Endes also ökonomische und ökologische Fehlallokationen auftreten.
Gut gemeint ist eben noch nicht gut
gemacht.
■
52
Sortierung von Schrotten in unterschiedliche Werkstofffraktionen
Sorting of scrap into various material fractions
sorted and clean commands a higher
market price owing to the ease of subsequent processing through recycling.
The final economic value of the metal
product is determined by its utility for
applications and its recycled content
may be high or low, depending on the
availability of secondary material at
the time of manufacture.
Metal scrap that is collected for recycling is material that does not have
to be managed as a waste. It is a valuable resource that is converted into
value-added commodities. Perhaps
even more importantly, recycled metal substitutes or displaces the necessity to mine new metal. Consequently,
metal recycling offsets primary production processes — and their associated energy and resource requirements, environmental emissions, and
other interventions (such as land
use) — required to dig, crush, grind,
smelt, refine and otherwise metallurgically extract and refine virgin ore.
Recycling increases the material and
energy efficiency of product systems
throughout the life cycle and thus is
good management practice.
Facts
The following are relevant to metals
recycling:
a)Recycling of metals has environmental, economic and social value.
Consequently, and for many years,
metals from end-of-life products are
widely recycled at high rates.
b)Recycled metal is readily sold on
the market. The constraint to greater
levels of metal recycling is the availability of feedstock material.
c)Metals are characterized by metallic bonding that provides distinct
structures and properties. As this type
of bonding is not affected by melting,
metals can be, and are, recycled over
and over again.
d)Material grade is determined by
conformity to established specifications. The origin of metal (whether
primary or recycled) in a specific lot
of material is driven by availability
and economics.
e)Metal may be lost during pro­duct
use (e.g. via corrosion or wear), and
some material may not be economically recoverable at end-of-life due to
material dispersion or difficulties in
separating components.
f) Since there is growth in the demand
for metals and since metal products
often have a long service life, there is
a limited supply of used metals available for recycling into new products.
Primary metal production fills the gap
between the availability of secondary
material and total demand.
Comparison of approaches
for modeling recycling
Two approaches for assessing the benefits of recycling are common­ly used:
the “recycled content” approach and ➝
ALUMINIUM · 3/2007
www.
alu-bookshop.de
EINSCHLÄGIGE FACHLITERATUR
AUSSCHLIESSLICH RUND UM
NE-METALLE
ALLES AUS EINER HAND
SUCHEN, FINDEN, BESTELLEN
Giesel Verlag GmbH
Postfach 120158
D-30907 Isernhagen
Tel. +49 511 7304-122
Fax +49 511 7304-157
www.giesel.de · vertrieb@giesel.de
ALUMINIUM RECYCLING INDUSTRY
the “end-of-life” recycling approach.
Their perspectives and purposes are
different.
Recycled content approach
The recycled content approach uses a
metric that looks back to where material feedstock was sourced, and provides a measure of waste diversion.
This approach is based on a waste
management perspective, where the
general aim is to promote a market for
recycled materials that is otherwise
limited, uneconomic or immature.
The recycled content approach assumes that the use of recycled material
is a good indicator of environmental
benefit. However, the metric uses statistical information on material flows
and is not based on an actual assessment of environmental performance.
For example, if product durability is
improved, less scrap material will
be available in the short term. This,
in turn is reducing the possibility of
a high recycled content in the short
term.
The recycled content approach
may be a useful metric for material
that would otherwise be incinerated
or landfilled as waste (assuming that
these waste management treatment
processes would result in higher environmental impacts than the materials recycling), which can be diverted
to recycling and reuse. Importantly,
this is not the case for metals — as
discussed above, metal recycling is
economical and the recycled metal
market is mature.
Unfortunately, application of the
recycled content approach may create
market distortions and environmental
inefficiencies. If a designer specifies
high recycled content in a well-meaning effort to reduce environmental
impacts, it may stimulate the market
to direct recycled feedstock towards
designated products and away from
production where recycling is most
economical. For metals, where there
is a limited supply of recycled feedstocks, market stimulation is ineffective and may result in inefficient
pro­cessing and unnecessary transportation.
End-of-life recycling approach
The end-of-life recycling approach is
based on a product life cycle and material stewardship perspective. It considers the fate of products after their
use stage and the resultant material
output flows.
In characterizing a product system
using this approach, the environmental consequences of the product of
interest are studied, including its endof-life management. Possible changes
to improve the product system can
be considered. The specific origin of
input material (whether primary or
recycled) is not relevant because it is
the net conservation of material that
typically minimizes total environmental impacts. Under this framework, consistent with ISO 14040, it is
acknowledged that material not recycled needs to be replaced by primary
material feedstock.
A designer using an end-of-life recycling approach focuses on optimizing product recovery and material
recyclability. By facilitating greater
end-of-life recycling, the decisionmaker mitigates the loss of material
after product use. This approach assesses the consequences at end-of-
life of the product based on technical
practices, and supports decisions for
an efficient market. This concept allows design for recycling.
Conclusion
For purposes of environmental modeling, decision-making, and policy
discussions involving recycling of
metals, the metals industry strongly
supports the end-of-life recycling approach over the recycled content approach.
The weakness of the recycled content approach arises from the fact that
a simple account of the history of a
material provides no assessment of
actual environmental performance.
The recycled content metric does little to guide decision-makers wishing
to better manage metals and metal
containing products. Moreover, and
of particular concern, pursuit of recycled content may generate market
distortions and result in environmental and economic inefficiencies.
The end-of-life recycling approach
encourages manufacturers, policymakers and other decision-makers
to evaluate real performance and
improve the design and management
of products, including their disposal
and recycling. This forward-looking
perspective supports sustainable development.
By supporting solutions where high
amounts of metal are made available
for the future by recycling, it assists
society in meeting “the needs of the
present without compromising the
ability of future generations to meet
their own needs” (WCED, Our common future, 1987). ■
Agor erweitert Aluminium-Salzschlackeaufbereitung
Die in der Produktion und Vermarktung von Aluminiumsalzschlacke tätige Agor AG, Köln, hat in den ersten
drei Quartalen 2006 einen Umsatz
von 36 Mio. Euro erwirtschaftet, der
zu mehr als 80 Prozent von den deutschen Anlagen stammt. Um den kontinuierlich steigenden Entsorgungsbedarf der Sekundäraluminiumindu-
54
strie zu decken, liefen die in Lünen
und Hannover von der Agor-Tochter
Alsa betriebenen Aufbereitungsanlagen (Gesamtkapazität 300.000 t/a) bei
maximaler Auslastung rund um die
Uhr. Auch die beiden kanadischen
Betriebe waren ausgelastet und lieferten mit ihrem operativen Geschäft
erstmalig einen positiven Ergebnisbei-
trag. Eine dritte, neu gebaute Anlage
der Alsa Süd im bayerischen Töging
hat zum Jahresanfang ihre Produktion aufgenommen. Die Neuinvestition
mit einer Produktionskapazität von
100.000 Tonnen wird bis zum Ende
des ersten Quartals 2007 vollständig
in Betrieb sein.
■
ALUMINIUM · 3/2007
SPECIAL
ALUMINIUM RECYCLING INDUSTRY
Mobile Tauchsonde für die Schmelzeanalyse
Die Innsitec Laser Technologies
GmbH aus Linz hat ein Tauchsonde für die Schmelzanalyse entwickelt, die sich für den flexiblen
Ein­satz in Gießereien eignet. In
Kombination mit einer laserindu­
zierten Plasmaspektroskopie
(LIPS) bietet die Tauchsonde eine
einfache und schnelle Kontrolle
der chemischen Zusammensetzung von flüssigem Metall.
Lasermodul und Tauchsonde
„Quantalizer TS“
punkto Analysestelle und Eintauchtiefe gibt dem Gießer ein Instrument in
die Hand, das auf einfache Weise die
Homogenität der Schmelze überprüft
und sicherstellt. Laufende Kontrollen
der Homogenität tragen zur Gewährleistung der Prozessstabilität bei.
Das Messgerät, das rund um die
Uhr Analysen im flüssigen Metall
durchführen kann, ermöglicht eine
lückenlose Qualitätskontrolle in der
Produktion. Der Quantalizer TS kann
unmittelbar in den Produktionsprozess integriert werden, so dass von
jedem Guss bzw. Gussteil eine che-
Die Tauchsonde „Quantalizer TS“
er­laubt eine Analyse direkt in der
Schmelze, ein freier Zugang zur Materialoberfläche ist nicht erforderlich. Oberflächenverunreinigungen
wie Krätze, Schmelzsalze oder Oxidschichten stellen keine Beeinträchtigung für die Messung dar.
Die Tauchsonde macht es möglich,
Analysen an verschiedenen Stellen im
Schmelz- bzw. Gießofen durchzuführen. Die flexible Einsatzmöglichkeit in
mischen Analyse vorliegt.
Die manuelle Handhabung des
Messkopfes (Lasermodul inkl. Tauchsonde) ist ebenso möglich wie der sta­
tionäre Einsatz, z. B. als per­manente
Installation in einem Schmelz­aggregat
zur Überwachung des Aufschmelzverhaltens bzw. der Bad­qualität oder
für die Chargenfrei­gabe an der Impellerstation. Einsatz­gebiete können
Aggregate wie Schmel­zöfen und -wan­
nen sowie Gieß- und Warmhalteöfen,
Transport­tiegel, Über­führ- und Gießrinnen sein.
■
Engineering
Solutions
Services
Aluminium Solution Provider
ALCUTEC Engineering
ALCUTEC Solutions
ALCUTEC Services
Professional service to ensure conducive
Engineering from feasibility engineering to
plant design and construction.
Complete tailor made plants for the
secondary aluminium industry based on
state of the art components such as tiltable
rotary drum furnaces, casting furnaces,
casting machines, chip dryers with the
related auxiliary equipment.
Professional Project Management for
erection, commissioning and plant
maintenance as well as training of operation
personnel and plant management.
ALCUTEC Engineering GmbH
Forstweg 7 – 9 l D-52382 Niederzier, Germany l Fon: +49 (24 28) - 9 05 68 - 0 l Fax: +49 (24 28) - 9 05 68 - 29
eMail: info@alcutec-gmbh.de l www.alcutec-gmbh.de
CO M PA N Y N E W S
Period
Reported primary aluminium production
(Thousands of metric tonnes)
Africa
North
America
Latin
America
Asia
West
Europe
East/
Cen­tral
Europe
Oceania
Total
Daily
average
Year
2002
1,372
5,413
2,230
2,261
3,928
3,825
2,170
21,199
58.1
Year
2003
1,428
5,495
2,275
2,475
4,068
3,996
2,198
21,935
60.1
Year
2004
1,711
5,110
2,356
2,735
4,295
4,139
2,246
22,592
61.7
Year
2005
1,753
5,382
2,391
3,139
4,352
4,194
2,252
23,463
64.3
Year
2006
1,864
5,333
2,493
3,494
4,175
4,232
2,274
23,865
65.4
Source: IAI
Company news worldwide
Sual Group production continues
stable growth: 2006 results
Aluminium smelting industry
In 2006 Sual Group’s enterprises
mined 5.78 million tonnes of bauxite,
a growth of 6,9% over the results of
2005. Positive production dynamics
was a result of significant rates of
production growth in Middle Timan
bauxite mine and stable volume of
production at Sual’s north Urals bauxite mining unit SUBR.
In 2006 Sual produced 2.31 million
tonnes of alumina, (+0.9%). Primary
aluminium production grew to 1.06
million tonnes (+1,4%) due to continued investment in technical upgrades of the smelters and improved
operating conditions.
Continuing modernization of pro­
duction capacities and effective marketing policies guaranteed an increase
in quantity and quality of Sual Group
downstream activities. Output of rolled and semi-finished products exceeded 2005 levels by 21.3% thanks to an
investment programme, which included the launch of new cast houses and
modernization of rolling mills and extrusion facilities. Foil and aluminium
strip production rose by 4% due to a
programme of production development and market promotion.
Alcoa to invest in Brazil
hydropower project
Alcoa will invest in the Serra do Facaño hydroelectric power project
to be built on the Sao Marcos River
in Brazil’s central region. Alcoa will
hold 35% of the new company. Other
members are: Brazilian federal power
company Furnas Centrais Electricas
SA with 49.5%; the Poços de Caldas
Municipal Electricity Department
with 10%; and construction group
Camargo Correa SA with 5.5%. Construction of the project, budgeted at
US$372m, is expected to start in early
2007, and power generation from the
210 MW power plant is expected
to begin in 2010. The investment is
part of Alcoa’s long-term strategy of
developing energy projects in Latin
America to support its smelters and
to move toward self-sufficiency for its
energy needs.
Australia’s ABARE forecasts 11%
fall in aluminium price in 2007
Aluminium prices are expected to
fall by 11% to an average US$2,260
per tonne in 2007 from an expected
US$2,540/t in 2006. Global consump­
tion growth is expected to remain
healthy, coming in just under 7%
next year after 7% expansion in 2006.
China will remain the driver with
expected consumption growth of
around 19% in 2007, while the US will
56
ease further after an anticipated 5%
decline in consumption in 2006 due to
weaknesses in the key automotive and
residential home sectors. Global production growth is expected to accelerate to 8% in 2007 on a combination
of new capacity (Russia and Iceland),
capacity restarts (USA and Germany)
and low alumina prices encouraging
greater capacity utilisation in China.
The alumina price is expected to
average US$213/t in 2007, represent­
ing a 51% slide from the 2006 expected
average of US$443/t. After touching
highs of US$650/t earlier in 2006, the
price has fallen to around US$200/t as
of November 2006. China’s explosive
growth in alumina production and incremental expansions in other parts
of the world have been the twin drivers of the price decline.
Brazil’s CBA has completed next
stage of smelter expansion
Brazilian aluminium producer CBA
brought on stream the next 70,000 tpy
capacity increase at its Sorocaba aluminium smelter in February 2007. The
expansion stage will lift the plant’s capacity from the current 405,000 tpy to
475,000 tpy. It is part of a longer-term
goal of lifting its capacity to 615,000
tpy by 2011. That will be done in two
further incremental 70,000 tpy hikes.
CBA is also considering building new
alumina capacity to lift its in-house
resources.
Russian aluminium production
up 1.9 per cent in 2006
Russian aluminium production rose
by 1.9% to 3,718 million tonnes last
year. This is only a marginal acceleration from growth of 1,5% in 2005 and,
as in that year, reflected incremental
capacity creep at both producers
– Rusal and Sual – thanks to ongo-
ALUMINIUM · 3/2007
CO M PA N Y N E W S
ing technology upgrades. However,
production in December itself grew
at a faster 2,4%, and there will be a
further acceleration in 2007 as Rusal’s
new 315,000 tpy Khakaz aluminium
smelter comes on stream. The first
potline was fired up in December
2006, and the schedule calls for the
second line to come on stream in January, the third in May and the fourth
in November.
National alumina production rose
by 0.2% to 3,265 million tonnes. It only
caught up with year-earlier levels in
November after being depressed by
lower output at the Pikalevo refinery
earlier in 2006. That resulted from a
long-running stand-off with the supplier of the nepheline raw material, on
which the 250,000 tpy plant operates.
Azeral to double Sumgait
capacity to 60,000 tpy
Azerbaijan Aluminium (Azeral) plans
to double production at its Sumgait
smelter to 60,000 tpy in the first half
of 2007. Output will rise after Azeral
builds the second potline at Sumgait,
which is expected to cost around US$
28m. Starting the second potline will
create 500 new jobs. The company is
also reportedly about to start preparing
to build a new 100,000 tpy aluminium
plant in Gandja. The proposed expansion has been under consideration for
a long time, but has been delayed from
2006 by the prolonged and continued
wrangling over the plant’s ownership
between the government and Dutch
company Fondel.
Moscow regulator and EU Commission approves United Company Rusal deal
Russia has, in principle, approved
the planned merger between Rusal,
Sual and the alumina assets of Swiss
trading company Glencore, with state
authorities planning to complete their
deliberation shortly. The decision,
just two months after the companies
applied for approval in mid-November 2006, has come significantly more
quickly than many had anticipated.
The new company – United Com-
ALUMINIUM · 3/2007
Source: The Aluminum Association & Aluminium Association of Canada
Combined U.S. and Canadian primary aluminium production totalled 5,332,043 metric
tonnes during 2006, a decline of 0,8% from the 2005 total of 5,374,691 tonnes. Production
in Canada rose by 5.4% to a record total of 3,051,127 tonnes but these gains were offset
by an 8.0% reduction in U.S. production which totalled 2,280,916 tonnes at year end.
pany Rusal – will produce 4 million
tpy of aluminium and 11 million tpy
of alumina, with a work force of some
110,000 people in 17 countries on
five continents. The companies will
also need to obtain approvals from
anti-trust authorities outside Russia.
In February the EU Commission approved the planned merger as well.
Chinese smelters post strong
profits on drop in alumina prices
Profits at top Chinese aluminium
smelters Chinalco, Yunnan Aluminium
and Jiaozuo Wanfang Aluminium Co
surged in 2006 as alumina prices fell
and aluminium prices stayed strong.
Chinalco announced net profit off 22.5
billion yuan (US$2.9b) and revenue of
105.5 billion yuan (US$13.6b) in 2006.
Chinalco’s profit rose 50% from the
15 billion yuan (US$1.93b) it declared
in 2005, while revenue rose 44.5 billion yuan (US$5.73b) from 2005.
Yunnan Aluminium expects a profit
to surge 100 to 150% from the 141
million yuan (US$18.2m) it earned
in 2005. Jiaozuo returned to profit in
2006 with a profit of 275 million yuan
(US$35.4m) after making losses of 122
million yuan (US$15.7m) in 2005. Its
revenue increased by 39% to 4.04 billion yuan (US$520.6m) last year.
Chalco will buy more smelters
to boost capacity
Aluminium Corporation of China
(Chalco) plans to buy three other al­
u­minium smelters after it completes
the share buyout of its two listed sub-
Hydro looks at Greenland as
300,000 tpy smelter location
Hydro might build an aluminium smelter in
Greenland with a capacity of up to 300,000
tpy, requiring power-generating capacity
of 500 MW. The Norwegian company has
joined forces with the government of
Greenland to carry out a preliminary feasibility study covering the environmental,
social and economic issues related to a
potential industrial development based on
hydroelectric power supply. Both parties
will take full consideration of Greenland’s
unique natural and environmental conditions, as well as other priorities, in this
non-binding study. In its first phase, the
cooperation will focus on producing the
information needed to decide whether
to initiate a more comprehensive aluminium project. It will review Greenland’s
hydroelectric potential, hydrological data,
environmental issues, as well as protected
and restricted areas. Hydro will outline the
physical and technical requirements for a
primary aluminium smelter, the need for
personnel, and the scope for cooperation
with local businesses in Greenland. Hydro
will also present its programme for personnel training in the primary aluminium
production field.
57
➝
CO M PA N Y N E W S
sidiaries. Chalco will buy Baotou Aluminium Co (BAC), Tongchuan Xinguang Aluminium Co and Lanzhou
Liancheng Aluminium Co from Chalco’s largest shareholder Chinalco. The
acquisition will increase Chalco’s aluminium capacity and market competitiveness. Chinal­co is to buy 80% of the
Inner Mongolian government’s wholly owned Baotou Aluminium group,
which in turn owns 55% of BAC. Chinalco received government approval
to buy a 72% stake in Shaanxi Nonferrous Metals group, which in turn
owns 70.9% of Tongchuan, and also
to buy 100% in Liancheng. BAC produced 307,000 tonnes in 2006, Tongchuan 270,000 tonnes and Liancheng
155,000 tonnes. Chalco is looking to
take full ownership of SAIC and LAC
in a US$ 1 billion deal that will enable it to list on the Shanghai Stock
Exchange.
China halts building of six
metal projects
China has suspended construction of
six metal projects, including Feicheng
Mining Group’s 800,000 tpy alumina
refinery in northern Shanxi province
and Qiya Aluminium Industry Group’s
150,000 tpy aluminium smelter, because they do not have the necessary
en­vironmental approval. With the
exception of Qiya, the projects are
all deemed to have started construc-
tion without proper environmental
assess­ments, and must now complete
the necessary appraisals and await
government approval before resuming construction, said the State Environmental Protection Administration
(Sepa). Qiya’s construction started
in May 2006, but it has pollution
prob­lems, and the local government
had overstepped its authority to approve the project. According to Sepa,
Feicheng had started construction of
its 800,000 tpy alumina project even
though its environmental appraisal
had not been approved. Feicheng must
not resume construction until Sepa approves its environmental appraisal.
■
Bauxite and alumina activities
Guinea bauxite operations so far unscathed by strike
Alcoa and Rusal have played down
the impact on their bauxite and
alumina operations of the nation­
wide general strike that has swept
Guinea during the third week of
the year 2007 (15 January), as the
alumina market watched for signs
of any disruption to supplies.
Rusal
The West African country fell into
the grip of an indefinite general strike
which was called by trade unions to
protest at hyperinflation. The unions
claim the government has failed to
control inflation and President Lansana Conte allegedly freed two prominent corruption suspects. So far,
bauxite mining appears to be continuing, but the unions have threatened
58
to bring production at Compagnie des
Bauxites de Guinée SA (CBG) to a halt
and any disruption is likely to push up
prices. Rusal’s operations in Guinea,
which include the Friguia bauxite and
alumina complex, have not so far been
affected by the strike, and no workers have crossed the picket line. However, an undisclosed number of staff
has downed tools at CBG. Alcoa has
a 45 per cent share in Halco Mining,
a partnership that owns 51 per cent
of CBG, which exports about 12 million tpy of bauxite. While the alumina
market appears to have bottomed out
from the four-year low of US$ 200 per
tonne late in 2006, traders do not rule
out a drop below these levels once
these short-term bullish conditions
have passed.
Bauxite and alumina production
restarted in the West African Republic of Guinea after unionized workers
called off their general strike after 18
days. The strike was not limited to the
bauxite sector but covered by all industries. Workers demanded an end to
Conté’s tenure to protest against hyper­
inflation and corruption. Around 60
people have been killed in civil unrest
related to the strike, which started on
10 January.
Yunnan Aluminium postpones
refinery project
China’s Yunnan Aluminium Co has
postponed building its 800,000 tpy
alumina refinery in Wenshan city
in southern Yunnan province as a
result of low alumina prices. Yunnan Aluminium had planned to start
work on the first 400,000 tpy phase in
2006 with completion scheduled for
the end of 2007 and commissioning
in 2008. However, the company decided to delay the project because of
disappointing alumina prices and the
need to ascertain the level of bauxite reserves at a new mining project
in Wenshan. Even if the company
reaches its required bauxite reserves
at Wenshan it may not start mining
immediately.
Alcan delays Gove alumina
expansion
Alcan has updated its cost estimates
and start-up schedule for the Gove
alumina refinery expansion and upgrade in the Northern Territory, reflecting progress in the fourth quarter
of 2006, additional tie-in requirements
ALUMINIUM · 3/2007
CO M PA N Y N E W S
and weather related delays. Alcan has
revised its cost estimates to US$ 2.3
billion and moved the start-up date
from the first to the second quarter of
2007. The latest increase means costs
have increased by some 53% from
the original estimate. The project was
approved in September 2004 and is
now almost complete, with estimated
capital spending in 2007 of US$ 400
million. It will increase the refinery’s
capacity from 2 to 3.8 million tonnes
per year and is expected to bring Al-
can’s internal alumina production capacity into balance with current requirements, and reduce cash costs at
Gove by US$ 30 per tonne. Expanded
production ramp up will start progressively during the second quarter
of 2007 and continue through the first
quarter of 2008. Saleable production
in 2007 is forecast between 2.3 and
2.4 million tonnes, representing an increase of 500,000 to 600,000 tonnes
compared to 2006’s level of 1.8 million tonnes.
New Indian alumina refinery at
final commissioning stage
Arab Emirates – Dubai’s Dubal and
Alba in Bahrain.
turing upgrades in 2007. Indalex also
detailed some of the improvements
it plans to make, including the installation of a new 600-tonne extrusion press in the second quarter of
2008; the acquisition of an advanced
Brite Dip operation at the company’s
Modesto, California, facility, which
will be operational by March; and the
completion of a press upgrade at the
company’s Burlington, North Carolina, plant.
The new 1.4 million tpy Lanjigarh
alumina refinery in the eastern Indian
state of Orissa is in the final commissioning stage and is due to be fully
commissioned by the end of March.
Vedanta’s lengthy permitting should
shortly receive a recommendation to
India’s Supreme Court from the Central Ministry for Environment and
Forests. ■
Aluminium semis
United Arab Emirates
India’s Darvesh plans aluminium
fabrication plant in Dubai
India’s Darvesh Group will invest
US$ 860 million to build a 135,000
tpy aluminium products plant in Dubai. The new plant, called Noval, will
be the world’s largest single products
facility once completed in 2010. First
production will be in 2008, when output is budgeted at 30,000 tpy of products with this figure rising to 45,000
tpy in 2009 before hitting capacity
in 2010. Darvesh wishes to tap into
primary metal supplies from the big
aluminium producers in the United
U.S.A.
Indalex to close Californian
extrusion plant
Indalex Holding Corp. plans to close
its Watsonville, California, aluminium
extrusion plant by the end of March
or early April, resulting in 99 job
losses, in order to align manufacturing with the needs of the market. Indalex, Lincolnshire, Illinois, made the
announcement while unveiling plans
to invest US$ 20 million in manufac-
On the move
Novelis has appointed two new independent directors, Patrick J. Monahan and
Sheldon Plener. The appointments bring
the size of the board to 13 members.
Alcan has appointed Yves Bouchard as
General Manager for projects and operations, especially for the AP50 pilot project
in Jonquière. Jean Simon has been appointed President, Primary Metal-North
America. He will be responsible for the
Kitimat expansion project. Yvon d’Anjou
has been appointed Vice President, Business Development, Primary Metal. In this
function he will be responsible also for
the Coega project in South Africa, for the
Sohar Aluminium (Oman) project, for the
administration of Alcan Ningxia in China,
and for the Tomago smelter in Australia.
Guy Authier has been appointed Vice
President, Primary Metal, including Quebec
South and United States of America and
co-enterprises. Jeffrey E. Garten has been
appointed as a director of Alcan.
Tim Coe has been appointed regional
Sales and Service Manager for California at
Seco/Warwick.
Hilde Merete Aasheim leaves Hydro’s Corporate Management Board to concentrate
on leading the planning of the integration
of the company’s oil and gas activities with
Statoil.
US private equity group KKR Financial
Corp. announced that Willy Strothotte, a
director of Century Aluminum Corp. and
Minara Resources Ltd., has been elected to
serve on its board.
Venezuela
Aluminium plant construction to
begin in March
Construction works on Venezuela’s
so-called aluminium rolling and smelting social production company will
kick off in March 2007. The plant, a
subsidiary of national basic industries
company Coniba, will have installed
capacity of nearly 130,000 tpy to be
divided between 60,000 tpy at the
roller and 70,000 tpy at the smelter. It
will be built at Caicara del Orinoco in
eastern Venezuela’s Bolivar state. The
technical feasibility study is complete
and earth works are starting in order to
begin basic and detailed engineering.
All the equipment will be installed for
testing before end-2008 with a view
to beginning operations in the first
quarter of 2009. The new plant will
manufacture soft aluminium sheets
designed for the pharmaceutical and
food industries as well as corrugated
sheets and beams for construction.
➝
ALUMINIUM · 3/2007
59
CO M PA N Y N E W S
Alcan Composites targets higher
revenues in 2007
The Brazilian unit of Canadian aluminium giant Alcan’s composite arm
Alcan Composites expects revenues
to rise 18% in 2007. Revenues for last
year totaled some US$ 10 million on
sales of roughly 300,000 m2. Demand
in the civil construction segment in
countries such as Brazil, Chile, Argentina and Venezuela are expected
to see an increased need for Alcan
Composites’ production in 2007. In
2007, the target is to increase exports
from 26% in 2006 to 35% of total sales
volume.
Anzeige
www.inotherm-gmbh.de
China
Alcoa opens Chinese brazing
sheet joint venture
Alcoa has opened Kunshan Aluminium Products Co. Ltd., a 50,000
tpy aluminium brazing sheet facility
in Kunshan City, China. The plant, a
joint venture with Yencheng Engraving ND Alcoa’s third flat-rolled facility in China, will manufacture brazing
sheet primarily for the Asian automotive market. Alcoa also produces aluminium rolled products at Alcoa Bohai Aluminium Industries Company
Ltd., a joint venture with China International Trust & Investment (CITIC),
based in Qinghuangdao, China and at
its Alcoa (Shanghai) Aluminium Products Ltd. facility. The Bohai plant is
the largest foil producer and exporter
in China.
Japan
Alcoa unit wins Japanese beverage contracts
Alcoa Closure Systems International
(CSI) Japan has received contracts to
supply aluminium closure systems to
Japanese beverage producer Suntory
Ltd. and FamilyMart Co. Ltd., a Japa-
60
nese convenience store chain. Suntory will get Alcoa’s 38 mm VT-Lok
aluminium closures for the “Ginza
Cocktail”, Suntory’s new alcoholic
drink introduced in September 2006.
FamilyMart will get 38 mm closures
for its Iki (fashionably chic) series of
sake beverages, which began selling
October 2006.
Russia
Rusal transfers extruded products business to Glavstroy
Rusal transfered its Extruded Products division to Glavstroy, a company
which is managing the construction
assets of Basic Element. The handover is part of the merger agreement
between Rusal, Sual and Glencore.
Rusal’s Extruded Products division
supplies a wide range of products
including aluminium profiles and
systems for the construction industry, interior design developers and
machine-building enterprises. The
division will become part of Glavstroy, adding to a full range of construction related activities including
investment, project development,
production of construction materials
and engineering equipment, facility
launch and management.
Norsk Hydro
Brazil
When customers choose aluminium-made
crash management systems, they often
choose Hydro.
Europe and North America. As part of
an internal reorganisation, Hydro is in
the process of divesting the structures
business unit. Hydro will remain an
important supplier to the automotive
industry within precision tubing, alloys, and rolled and extruded semifinished products, with sale volume of
approximately 1 billion euros.
■
Norway
Hydro maintains leading role
in automotive bumper beams
market
Hydro has increased its share of the
global market for automotive crash
management systems. Product development capacity and complete valuechain management are two reasons.
Engineering capability within product and process development has
been an important success factor for
Hydro, which delivered approx. 7.5
million extruded aluminium bumper
beams in 2006 and 7 million bumper
beams in 2005. Hydro delivers crash
management parts and systems, structural components and assemblies, as
well as fuel filler pipes and rollover
protection systems through its structures business unit, which has production and development facilities in
The Author
The author, Dipl.-Ing. R. P. Pawlek is
founder of TS+C, Technical Info Services
and Consulting, Sierre (Switzerland), a
new service for the primary aluminium
industry. He is also the publisher of the
standard works “Alumina Refineries and
Producers of the World” and “Primary
Aluminium Smelters and Producers of
the World”. These reference works are
continually updated, and contain useful
technical and economic information
on all alumina refineries and primary
aluminium smelters of the world. They
are available as loose-leaf files and/or
CD-roms from the Aluminium-Verlag,
Marketing & Kommunikation GmbH in
Düsseldorf, Germany.
ALUMINIUM · 3/2007
MARKETS AND TECHNOLOGY
Maßgeschneiderte Leichtbauwerkstoffe
für Windkraftanlagen
Tailor-made lightweight materials for
wind turbines
Auf der Suche nach einer Leicht­
baukonstruktion wird der Anwen­
der früher oder später zwangs­
läufig beim Werkstoff Alu­minium
ankommen. Aber er wird dort
nicht stehen bleiben; der näch­
ste Schritt führt ihn nicht selten
zu Verbundwerkstoffen, die ein
Leichtmetall, meist Aluminium,
mit Kunststof­fen, Schäumen oder
auch Holz kombinieren. Welche
Bedeutung dieses Arbeitsgebiet
inzwischen besitzt, mag die Tat­
sache verdeutlichen, dass Alcan
dieses Geschäft mit einer eigenen
Geschäftseinheit, der Alcan Com­
posites, betreibt.
In the ­search for light­weight con­
struc­tion, us­ers will soon­er or
lat­er nec­es­sar­i­ly come ­across the
ma­te­ri­al al­u­min­ium. How­ev­er,
they will not stop ­there; the next
step of­ten ­leads on to com­pos­ite
ma­te­ri­als, ­which com­bine a ­light
met­al – usu­al­ly al­u­min­ium – with
plas­tics, ­foams or even wood. The
im­por­tance ­gained by this ­field of
work is in­di­cat­ed by the fact that
Al­can has a busi­ness di­vi­sion of
its own – Al­can Com­pos­ites – ded­
i­cat­ed to it.
Neu ist diese Entwicklung nicht. Sie
wurde bereits vor mehr als einem
Jahrzehnt aufgegriffen, zum Beispiel
von der früheren Alu­suisse. In dieser
Zeitschrift wurde über Anwendungen
im Schienenfahrzeugbau ausführlich
berichtet.
Verbundwerkstoffe kombinieren
eine Reihe attraktiver Eigenschaften,
wie geringes Gewicht, me­chanische
Festigkeit, Steifigkeit, Zähigkeit, Dauerfestigkeit, Um­formbarkeit, thermische Stabilität und andere. Dabei
lassen sich all diese Eigenschaften
durch Kombinieren verschiedener
Materialien und durch Modifikationen der unterschiedlichsten Art in
einem weiten Bereich ausprägen. Je
nach Anwendungsfall und Belas­tung
stehen heute spezielle, maßgeschneiderte Werkstoffe zur Verfügung.
Die Nutzung von Verbundwerkstoffen macht offensichtlich Fortschritte. Wurden diese zunächst ganz
überwiegend in Verkehrsmitteln ein­
gesetzt, wo es große Mas­sen zu beschleunigen und abzubremsen gilt,
werden jetzt auch Anwendungen ganz
anderer Art vorgestellt. Beispielsweise für Windkraftanlagen, für die Alcan
Composites leichte und dennoch sta­
bile Rotorblätter liefert.
Das Geschäft mit der Windkraft
boomt derzeit. Allein in Deutschland
waren Ende 2005 17.574 Turbinen
installiert. Während sich mittlerweile schon Widerstand gegen eine
„Verspargelung“ der Landschaft regt,
bieten der Ersatz alter durch leistungsstärkere, mo­dernere Anlagen,
aber auch die Er­richtung von Windkraftwerken auf See weitere Ausbaupotenziale. Die Bundesregierung hat
bereits Eignungsgebiete für OffshoreWindparks identifiziert.
Im übrigen Europa steigt die Zahl
der installierten Anlagen
ebenfalls kontinuierlich.
Die Zuwachsraten seit
2005 betragen jährlich
rund 16 Prozent. Auch in
Amerika und Asien stehen
die Signale auf Wachstum.
Bei Alcan dürfte man ob
dieser Entwicklung für das
eigene Geschäft positiv gestimmt sein.
■
Windkraftanlagen werden
immer effizienter. Ein Schlüsselfaktor sind die größeren
Rotorblätter. Ermöglicht wird
dies durch leichte SandwichPaneele, wie sie Alcan Composites herstellt.
Alcan
The performance of wind
turbines is steadily increasing.
One key factor for this success is the larger blade size
produced with light weight
cored sandwich panels from
Alcan Composites.
ALUMINIUM · 3/2007
This de­vel­op­ment is not new. It was
tak­en up al­ready more than a ­decade
ago, for ex­am­ple by the for­mer Al­
u­suisse, and de­tailed re­ports have
ap­peared in this jour­nal ­about ap­pli­
ca­tions in the con­struc­tion of rail­way
ve­hi­cles.
Com­pos­ites com­bine a se­ries of
at­trac­tive prop­er­ties such as low
­weight, me­chan­i­cal ­strength, ri­gid­ity,
tough­ness, fa­tigue re­sis­tance, form­
abil­ity, ther­mal stabil­ity and oth­ers.
All ­these prop­er­ties can be pro­duced
in a wide ­range by com­bin­ing dif­fer­
ent ma­te­ri­als and by mod­ifi­ca­tions of
the most var­ied ­kinds. De­pend­ing on
the ap­pli­ca­tion and the load­ing, now­a­
days spe­cial ­tailor-­made ma­te­ri­als are
avail­able.
The use of com­pos­ites is clear­ly
ad­vanc­ing. Where­as to be­gin with
they were main­ly used in the trans­
port sec­tor ­where ­large mass­es have
to be ac­cel­er­at­ed and ­braked, now ap­
pli­ca­tions of ­quite dif­fer­ent ­kinds are
be­ing pro­posed. For ex­am­ple, Al­can
Com­pos­ites sup­plies ­ light but ­ stable
ro­tor ­blades for wind tur­bines.
The wind tur­bine busi­ness is thriv­
ing. In Ger­ma­ny alone, 17,574 tur­bines
were erect­ed in 2005. In Eu­rope the
number of units installed since 2005
has increased annually by 16%. The
wind energy market is also expected
to grow strongly in the Americas, as
well as in Asia, over the next several years. The mood at Al­can is cor­re­
spond­ing­ly pos­i­tive ­about the fur­ther
de­vel­op­ment of this busi­ness sec­tor.
■
61
MARKT UND TECHNIK
Solide Auftragslage bei Tuben und Aerosoldosen
Die Nachfrage wird durch verstärkte
„Relaunch“-Aktivitäten insbesondere
von Kunden aus der kosmetischen
Industrie beflügelt, aber auch der
pharmazeutische Markt ist durch eine
weiterhin stabile Nachfrage gekennzeichnet.
„Angesichts dieser angespannten
Nachfragesituation spielen die Faktoren Versorgungssicherheit und
Zuverlässigkeit der Lieferanten eine
immer größere Rolle für unsere Kunden“, schildert der Vorsitzende des
Fachverbandes Tuben, Dosen und
Fließpressteile, Oliver Höll, die Situation am Markt. Für die Kunden sei
es in einer solchen Situation wichtig,
eine „Out-of-Stock“-Situation zu vermeiden, die mit unnötigen Kosten und
im schlimmsten Fall sogar mit dem
Abwandern der Verbraucher zu anderen Marken verbunden sein kann.
Tuben und Aluminium-Aerosoldosen gewinnen bei den Konsumenten weiter an Attraktivität, nicht
zuletzt wegen immer höherwertigerer Ausstattungen: dazu zählen
anspruchsvolle Druckbilder, pfiffige
Verschluss­systeme und markante
Formgebungen. Der vor allem in
Teilbereichen der kosmetischen Industrie zu beobachtende Trend zu Packmittelveredelungen lässt
sich nur mit modernster
Fertigungstechnologie umsetzen, die ihren Preis hat.
Diese Innovationen haben
maßgeblich dazu beigetragen, das Image dieser Verpackungen zu heben und
Kunden und Verbrauchern
einen Mehrwert zu bieten.
Die Markterwartungen
für das erste Quartal 2007
sind mehrheitlich von Optimismus geprägt. Die Anfang 2007 erhöhte Mehrwertsteuer wird Branchenexperten
zufolge keinen negativen Einfluss auf
die Nachfrage nach Tuben und Aluminium-Aerosoldosen haben.
Die boomende Mengenentwicklung wird jedoch von erheblichen
Kos­tensteigerungen bei Roh- und
Hilfs­stoffen überschattet. Nach Aussagen verschiedener Branchenunter­
nehmen hat sich der Ergebnisdruck
weiter verstärkt. Die zu­sätzlichen
Kos­tenbelastungen könn­en nicht
durch Produktivitätssteigerungen auf­
gefangen werden. Eine Beibehaltung
GDA
Die deutschen Hersteller von Tu­
ben und Aluminium-Aerosoldosen
erfreuten sich 2006 einer sehr leb­
haften Nachfrage. Die Auftragsein­
gänge in der Branche konnten
zwischen zwei und neun Prozent
zulegen, so dass die Produktions­
kapazitäten gut bis sehr gut aus­
gelastet sind. Die Lieferzeiten bei
Aluminium-Tuben und -Aerosoldo­
sen liegen bei 10 bis 20 Wochen.
der hohen Innovationskraft der Unternehmen macht es immer dringender
erforderlich, die Kostensteigerungen
in den Markt weiterzureichen.
■
European tube industry successful in 2006
The European tube industry looks at a new
record production output of 10 billion tubes
in 2006 based on a sharp rise in deliveries
to 5 billion tubes in the first half of the year
and a satisfactory level of new orders in the
second.
European tube manufacturers have
recently launched several new applications
and innovations. For instance, cult beverages, herbal butter and cheese are three
more products that can now be found in
tubes on the shelves of European grocery
stores. The outward appearance of tubes
has also been enhanced with elaborately
designed closures and decorative processes
as well as appealing shapes. For instance, it
is now possible to combine 8-colour offset
and silk screen printing with foil stamping
in a single work operation on cylindrical
62
or oval tubes. Luxury closures for cosmetic
products enhance the packaging, putting it
on the same level as a fine perfume bottle.
Finished soft-touch surfaces on tubes make
them easier to grip and caress the hand
that uses them. All these features create a
more compelling presentation on the store
shelf and make a more lasting impression
on the consumer in terms of look and feel.
With all their convenient features, tubes
are the logical choice of packaging for travelling, whether to hold dental care, pharmaceutical, cosmetic or body care products.
The new hand luggage regulations the EU
introduced in November 2006 will promote
sales. According to the new standard rules,
any liquids, gels and creams passengers
take into the cabin with them are limited to
containers of 100 ml each. Tubes offer cu-
stomized solutions for addressing this situation. The positive development of volumes
in the European tube industry in 2006 is
overshadowed by two-digit cost increases
for raw materials, energy and transport
services. For this reason the pressure on
margins has substantially risen. Against this
background European tube manufacturers
try to pass on cost increases in the market.
The cosmetics industry accounts for
42 per cent of sales, making it the largest
buyer of tubes. It is followed by dental care
with 22 per cent, pharmaceuticals with 20
per cent, the food industry with 9 per cent
and the household product market with 7
per cent. Aluminium tubes make up 43 per
cent of the total production output, followed by plastic tubes with 31 per cent and
laminate or polyfoil tubes with 26 per cent.
ALUMINIUM · 3/2007
MARKETS AND TECHNOLOGY
Thermcon Ovens liefert Walzbarren-Gießstraße nach China
Die Anlage umfasst zwei energie- und
umweltoptimierte kippbare Schmelzbzw. Gießöfen, die mit modernen Regenerativ-Brennern ausgestattet ist.
Hinzu kommt ein weiterer Brenner,
der ausschließlich im Gießbetrieb
eingesetzt wird. Regenerativ-Brenner
stellen den modernsten Stand der heutigen Brennertechnik dar und senken
wirksam den Brennstoffverbrauch
des Ofens. Beide Öfen werden mit
modernsten internen Entgasungssystemen ausgestattet, um die Wasserstoffkonzentration bis zum Abgießen
möglichst gering zu halten.
Die vollautomatische Anlage ist
SPS- und SCADA-gesteuert und erlaubt so einen vollständig rezepturgestützten metallurgischen Prozess,
der eine konstante Produktqualität
gewährleistet. Die Steuerung der Kipp­
funktion erfolgt automatisch über
eine Laserüberwachung der Überfüh­
rungsrinne, die für einen gleich bleibenden Metallspiegel in der Rinne
und damit für ein optimales Gießergebnis sorgt.
Das eigentliche Rinnensystem ist
so ausgelegt, dass Turbulenzen in der
zur Gießanlage strömenden Schmelze vermieden und die Oxidation und
Wasserstoffaufnahme des flüssigen
Metalls auf ein Minimum reduziert
werden. In dem Rinnensystem zwischen Schmelz- und Gießofen sind
spezielle Entgasungssysteme vorgesehen. Diese Einrichtungen sorgen ergänzend zu der Entgasung innerhalb
des Ofens für eine weitere Senkung
der Wasserstoffkonzentration und
verhindern somit Porosität im Guss.
Eine zuverlässige Abscheidung
selbst feinster Feststoffe wird durch
Tiefbett­filter gewährleistet, die sich
in dieser Anwendung gegenüber
anderen Lösungen als überlegenes
ALUMINIUM · 3/2007
Konzept erwiesen haben. Die Anlage
entspricht somit vollauf dem Ziel des
Betreibers, Produkte von höchster
Qualität und Reinheit für anspruchsvolle Anwendungen in der Luft- und
Raumfahrt zu fertigen.
Die direkt gekühlte VertikalStrang­gießanlage verfügt über einen
innengeführten Zylinder, der für eine
exakte Bewegung des Absenktisches
sorgt, auf dem der Block beim Gießvorgang ruht. Diese Bauweise macht
eine externe Führung des Absenktisches überflüssig und sorgt für optimale geometrische Gleichmäßigkeit
der Blöcke. Die Barrenformsysteme
sind mit einer kontinuierlichen
Schmierung ausgestattet, die für eine
optimale Geometrie der Barrenoberfläche sorgt und die Dicke der Gusshaut minimiert, so dass der Fräsauf-
wand reduziert und die Ausbringung
der Gesamtanlage erhöht wird.
Zum Lieferumfang gehören auch
Strangpresswerkzeuge von großem
Durchmesser, die beim Verpressen
der Bolzen zu Profilen von entscheidender Bedeutung sind. Letztere sind
ebenfalls für Anwendungen in der
Luft- und Raumfahrtechnik bestimmt.
Auch die Gießspiegelüberwachung
für die Barrenformen basiert auf Lasertechnik, so dass ein vollautomatischer Betrieb der Gießanlage über
den gesamten Gießzyklus gewährleistet ist. Der Auftrag befindet sich derzeit in der Phase der Layout-Planung
und Konstruktion; auch erste Vorfertigungsmaßnahmen sind bereits im
Gange. Die Montage ist für die zweite
Jahreshälfte 2007 vorgesehen.
■
Thermcon Ovens delivers casting line to China
To produce high-strength alloy ma­
terial for aerospace applications,
the Chinese Southwest Aluminium
Group has ordered a complete
casting line from Thermcon Ovens
B.V. for the manufacture of rolling
slabs and extrusion billets.
The line will comprise two high-capacity tiltable melting resp. pouring
furnaces with modern regenerative
burners and a dedicated burner used
only in pouring mode. Regenerative
burners represent the most advanced burner technology available and
effectively minimize the furnace energy consumption. Both furnaces are
equipped with the latest in-furnace
degassing technology to minimize hy-
drogen levels before the start of the
pouring cycle.
Operation is fully automatic, relying on PLC and SCADA control for
an entirely recipe-based metallurgical
process that will deliver consistent
product quality. Tilting is automatically controlled via laser-type launder
monitoring systems which automatically ensure a constant metal level
in the launder for optimum casting
results.
The launder system itself is designed to eliminate turbulence in the
metal flow to the casting machine,
thus reducing melt oxide levels and
hydrogen pick-up rates. Special degassing systems are provided in the
launder system between the melting
Otto Junker
Die zur Otto Junker Gruppe gehö­
rende Thermcon Ovens B.V. aus
den Niederlanden hat von der chi­
nesischen Southwest Aluminium
Group den Auftrag über eine kom­
plette Gießstraße für Walzbarren
und Strangpressbolzen erhalten,
die zur Fertigung hochfester legier­
ter Produkte für die Luft- und
Raum­fahrt bestimmt ist.
Ansicht eines kippbaren Schmelzofens
View of a tiltable
melting furnace
63
➝
ALUMINIUM IM AUTOMOBIL
and pouring furnaces. Supplementing
the in-furnace degassing capability, these systems further reduce the
hydrogen concentration to minimize
casting porosity.
Deep-bed filtration units, known to be
superior to other filtration systems,
are used to remove even the finest solid particles. The equipment thus fully
meets the operator‘s objective to produce the highest-quality, purest grade
metal for aerospace applications.
The vertical-type direct chill casting machine is equipped with an
internally guided cylinder providing
a closely toleranced movement of the
platens carrying the ingots during the
casting operation. This design eliminates the need for external platen
guides and maximizes the geometrical uniformity of the ingots. The slab
mould systems are equipped with
continuous lubrication to optimise
the slab surface geometry and minimize the thickness of the shell zone,
thus reducing the scalping depth and
improving line yield.
Large diameter billet extrusion
dies are part of the contract; they are
key to the extrusion of billets into profiles and sections that will likewise be
used for aerospace purposes. The slab
mould level control system is likewise based on laser technology and permits a fully automatic operation of the
caster from the start to the end of the
casting cycle. The project is currently
in its layout and engineering design
phase, with pre-fabrication now ongoing as well. Erection is scheduled
for the second half of 2007.
■
4. VDI-Tagung, 6. und 7. Februar 2007 in Magdeburg
Gießtechnik im Motorenbau
Aluminium hat aufgrund seiner geringen Dichte einen entscheidenden
Vorteil gegenüber Grauguss, der sich
aber keineswegs abhängen lässt. Auch
die Graugießer haben ihre Hausaufgaben gemacht und können mit neuen
werkstoff‑ und verfahrenstechnischen
Lösungen aufwarten. Sie bieten beispielsweise ein „Downsizing“ durch
Verwendung des hochfesten Gusseisens mit Vermiculargraphit – vorgestellt von Dirk Radebach von der
Halberg Guss GmbH in Saarbrücken.
Durchaus eine Herausforderung für
Aluminium, der sich der Werkstoff
jedoch zu stellen weiß, wie mehrere
Übersichtsvorträge zu aktuellen Motorenentwicklungen bekannter Zuliefergießereien zeigten. Herbert Smetan von Hydro Aluminium in Köln
berichtete zu Erfahrungen mit dem
in Dillingen angewandten Kernpaketverfahren, während Stephan Beer
von KS Aluminium Technologie AG
in Neckarsulm auf einen weiterentwickelten Druckgussprozess setzt, bei
64
Alle Fotos: METALL
Umweltanforderungen und Kun­
denwünsche nach akzeptablen
Fahrleistungen bestimmen die
aktuelle Motorenentwicklung, die
noch dazu angehalten ist, mög­
lichst leicht zu bauen. Eine un­
mögliche Quadratur des Kreises?
Nicht unbedingt, wie aktuelle
Lösungsansätze auf der nunmehr
4. VDI-Tagung „Gießtechnik im
Motorenbau“ belegen.
dem Lokasil als verschleißbeständige
Laufflächentechnologie zum Einsatz
kommt. Zur Versteifung des Zylinderdecks präferiert der Redner das sonst
verfahrensbedingt im Druckguss nicht
mögliche Closed-Deck-Design durch
druckgussfeste verlorene Kerne auf
der Basis von Sand oder Salz. Erste
Versuche liefen bereits Ende der
1980er Jahre mit dem sog. „DoehlerVorteile AI‑ZKG gegenüber Fe‑ZKG
geringere Dichte
sehr gute Zerspanbarkeit (bes. bei unter­
eutektischen Legierungen)
sehr dünnwandige Gussteile herstellbar
hohe Wärmeleitfähigkeit
vergleichbarer Wärmeausdehnungs­
koeffizient des Zylinderkopfwerkstoffs
core“. Die Technologie konnte sich
jedoch nicht durchsetzen, was nach
Ansicht des Vortragenden vor allem
daran gelegen habe, dass die Notwendigkeit dieser Technologie in der Motorenentwicklung noch nicht gegeben
war. Angesichts der heutigen hohen
Leistungsansprüche komme künftig
kein Motorenentwickler mehr an der
Closed-Deck-Bauweise vorbei, da
Nachteile AI‑ZKG gegenüber Fe‑ZKG
höhere Fertigungskosten (Materialpreis)
niedrigere Festigkeitskennwerte
höhere Korrosionsneigung
Gefügeänderungen und Kriechneigung bei Temperaturen über 150 °C
Untereutektisches Al ist nicht als direkte Zylinderlaufbahn geeignet
Tab. 1: Bedeutende Vor‑ und Nachteile von AI‑ gegenüber Fe‑Zylinderkurbelgehäusen
(ZKG) nach Heikel, VW
ALUMINIUM · 3/2007
ALUMINIUM IM AUTOMOBIL
sie Garant einer höheren Steifigkeit
sei. Realisieren ließe sich dies auch
im Druckguss durch eine Modifizierung des Doehlercore-Konzeptes mit
einem organischen Warmboxbinder
zusammen mit Cerabeads-Sand. Der
Alumosilikatsand mit kugelförmiger
Kornform zeichnet sich nach Erfahrungen Beers durch eine sehr gute
Fließfähigkeit, hohe Gasdurchlässigkeit, hohe Druckbeständigkeit und
hohe Packungsdichte aus, so dass eine
große Gestaltungsfreiheit erreicht
werde. Die Entkernbarkeit könne
durch den Zusatz von Additiven verbessert werden.
Kurbelgehäuse aus dem
Baukasten
Spektakulär, da sehr wirtschaftlich,
war der Ansatz, den Thomas Uhr von
DaimlerChrysler, vor­stellte. Seine
Lösung: Ein „Baukasten“ für Aluminium-Kurbelgehäuse, der es erlaubt,
für den jeweiligen Anwendungsfall die jeweils optimale Lösung zu
finden. Möglich wird das mit einer
Druckgussform, die auf einem universellen Grundrahmen ba­siert, in den
verschiedenste Schieber eingefahren
werden können. So lassen sich mit ein
und dem selben Grundrahmen verschiedene Hubraumgrößen erzielen.
Weitere Vorteile sind der schnellere
bzw. vorausschauende Werkzeugwechsel sowie die Mini­mierung von
Rüst- und Ausfallzeiten. Das Konzept
funktioniere, so der Re­ferent weiter,
bei Gewährleistung enger Toleranzen
durch Einhaltung einer strengen
Messstrategie, kombi­niert aus den 3
Elementen CT, opti­sche Messtechnik
und taktile Messtechnik.
Kriechen unerwünscht
Nach Ansicht von Christian Heikel
von VW Wolfsburg, ist der Wettstreit
der Zylinderkurbelgehäuse (ZKG)
„Eisen­guss kontra Aluminium“ keineswegs entschieden. Aluminium habe
sowohl Vorteile als auch Nachteile
im Vergleich zu Fe-ZKG (Tabelle 1).
Dies gelte auch für Werkstofflösungen
bei ZKG für Dieselmotoren. Derzeit
führen hier die Eisengusswerkstoffe
deutlich, wenngleich es auch einige
wenige Lösungen in Aluminium gibt.
ALUMINIUM · 3/2007
Als theoretisch denkbar benannte der
Redner auch Verbundlösungen von
Al/Mg. Vor dem Hintergrund deutlich steigender Anforderungen an die
Leistungsausbeute von Dieselmotoren
bestünden hohe Anforderungen an die
Motoren, dem als Problem die geringe
Kriechbeständigkeit des Aluminiums
gegenüber steht. Bereits ab 150 °C sei mit
der Aktivierung von
Kriechvorgängen zu
rechnen, ein Umstand,
dem bei der Konstruktion leicht bauender
Al-ZKGs Rechnung zu
tragen sei.
Eine Verbesserung
der Eigenschaften lässt
sich bei aushärtbaren
Alu­miniumlegierun­
gen bekanntermaßen
durch eine Wärmebehandlung erreichen,
die jedoch einen zusätzlichen Fertigungsschritt und damit einen Kostenfaktor
darstellt. Bianka Hornig-Vorbau von
der Otto-von-Guericke-Universität in
Magdeburg erläuterte Möglichkeiten,
die Wärmebehandlung zu optimieren
oder gar ganz einzusparen. Denkbar
werde dies durch das Zulegieren von
Elementen, die eine Kaltaushärtung
begünstigen und zugleich festigkeitssteigernd seien (Magnesium, Kupfer)
oder durch festigkeitssteigernde Elemente (Nickel, Cobalt). Im ersten Fall
könnten die Wärmebehandlungskosten gesenkt werden, im zweiten
kann die Wärmebehandlung sogar
entfallen. Jedoch müsse mit zum Teil
hohen Kosten für die Legierungselemente gerechnet werden.
Sprühkompaktierte Buchsen
nun auch im Sandguss
Die Lauffläche eines Motorblocks
muss erhöhten Belastungen standhalten, was im Falle des Aluminiums
durch einen erhöhten Siliziumgehalt
erreicht wird. Nach dem Honen gewährleistet die dann freiliegende
Siliziumphase Verschleißfestigkeit
und Ölaufnahme. Notwendig dazu
sind hoch übereutektische Al-SiGusslegierungen, die sich aufgrund
ihrer Dünnflüssigkeit jedoch nicht im
hochproduktiven Druckguss gießen
lassen. Daher werden in diesem Fall
naheutektische Legierungen vergossen. Die gewünschten Eigenschaften
der Lauffläche lassen sich z. B. durch
das Eingießen von Zylinderlaufbuchsen aus sprühkompaktierten, übereutektischen Hochleistungsalumini-
umlegierungen erreichen – eine seit
einigen Jahren etablierte Technologie.
Aufgrund der gestiegenen Anforderungen durch höhere Zünddrücke
und größere Hubräume stellt sich jedoch die Frage, ob es auch möglich
ist, im Sandguss sprühkompaktierte
Zylinderlaufbuchsen
einzugießen.
Wie Peter Krug von der PEAK Werkstoff GmbH in Velbert zeigte, ist ein
einfaches Übernehmen der bisher
im Druckguss verwendeten Buchsen
aus DISPAL (AlSi25Cu4Mg1) nicht
möglich. Seine Vorversuche ergaben, dass die Buchsen im Sandguss
aufgrund der hohen Temperaturbelastung bei der Formfüllung und
der langen Erstarrungszeiten extremen Belastungen ausgesetzt sind.
Teilweise schmolzen ganze Bereiche
der Buchse weg, teilweise verformte
sich die Buchse unter dem Einfluss
von Temperatur und Speisergewicht.
Notwendig war es, eine neue Legierung zu entwickeln, die die guten
Eigenschaften der Druckgussvariante
beibehält, aber dennoch die erhöhten
Gießbelastungen ertragen kann.
Hierzu wurden verschiedene Legierungsvarianten sprühkompaktiert,
die jeweils 25 Gew.‑% Silizium ent­
hielten. Da das Silizium durch die
hohe Er­starrungsgeschwindigkeit voll­
65
ALUMINIUM IM AUTOMOBIL
Hierbei handelt es
sich um eine Weiterentwicklung des
Kippgießverfahrens.
Im Unterschied zum
Rotacast-Verfahren,
bei dem das komplett
mit Kernen bestückte
Werkzeug über einen
Winkel von 180° gekippt wird, kommt
beim NDSC nur ein
reduzierter
KippDiesel-Kurbelgehäuse für DaimlerChrysler V6 3.0 l,
bereich zur AnwenLegierung A 319
dung. Dieser ist nach
Aussage des Vortraständig primär ausgeschieden wird,
genden abhängig von der Geometrie
stand genügend Silizium-­Oberfläche
des jeweiligen Zylinderkopfes. Der
als Reibpartner für den Kolbenring
auf maximal 90° beschränkte Kippzur Verfügung. Der durch den Silizi­
bereich ermögliche eine deutlich einum­gehalt bereits erhöhte E‑Modul
fachere und präzisere Kernlagerung
konn­te durch die Zugabe von Eisen
sowie eine verbesserte Werkzeugund Nickel nochmals deutlich gesteigestaltung und Werkzeugbewegung.
gert werden und lag im Bereich von
Vorteilhaftes Resultat sei eine höhere
100 GPa. Durch Anpassung des Cu/
Reproduzierbarkeit.
Mg‑Verhältnisses konnte die Solidus­
temperatur auf über 530 °C gesteigert
Reaktionsschicht – vorteilhaft
werden. Da sandgegossene Kurbelgeoder schädlich?
häuse gängigerweise wärmebehandelt
wer­den, wurde für Gusslegierungen
Im Fall der Zylinderköpfe müsse, so
des Typs AlSiMg eine kupferfreie VaChristian Heikel von VW Wolfsburg
riante entwickelt, die mit einer Solizudem die korrosive Beanspruchung
dustemperatur nahe 550 °C eine Wärberücksichtigt werden. Prüfungen
mebehandlung des Blockes bei 540 °C
zeigten bei Al-Zylinderkopfwerkohne innere Anschmelzungen überstoffen die Bildung einer Reaktionssteht. 5 Legierungsvarianten wurden
schicht auf der Wassermanteloberin zahlreichen Versuchen sowohl im
fläche, hervorgerufen durch wässSandguss als auch im Kokillenguss geriges Kühlmittel. Es bewirkt eine
nauestens geprüft. Im Ergebnis wurde
chemische Umwandlung der Alumieine geeignete Oberflächenstruktur
niumoberfläche. Edlere Legierungsentwickelt, die eine optimale metalbestandteile, wie Silizium, werden
lurgische Anbindung der Buchse an
in der Schicht eingelagert. Noch sei
den Grundwerkstoff gewährleistet.
nicht zweifelsfrei erwiesen, ob die
Schicht nun einen Schutz bewirke
oder eben nicht. Morphologie und
Schichteigenschaften deuten auf ein
Korrosionsprodukt hin, dessen Bildung – so zeigten es systematische
Untersuchungen – von Temperatur
und Zeit abhängen. Nach Meinung
Heikels kann das Einreißen dieser
Schicht sogar als Rissauslöser wirken.
Der Einfluss der Schichten auf die Lebensdauer des Bauteils, insbesondere
bei zyklischer Belastung, ist Gegenstand weiterer Untersuchungen.
Fazit
Die 4. VDI-Tagung „Gießtechnik im
Motorenbau“ war im Gegensatz zu
ihren Vorgängerveranstaltungen eine
Bestandsaufnahme, die aufzeigte, wel­
che Technologien heute in gro­ßem
Maße Anwendung finden. Eine Antwort auf die Frage „Grauguss oder
Aluminium“ konnte sie nicht bieten,
da zu wenige Referenten aus dem
Graugussbereich vertreten waren.
Vielmehr zeigte sich, dass derzeit beide Konzepte durchaus ihre Berechtigung haben. Deutlich wurde aber
auch, dass ein deutliches Entwicklungspotenzial besteht, um das von
allen Referenten übereinstimmend
benannte Ziel zu erfüllen: leistungsstarke, emissionsarme Motoren zu
gießen.
C. Kammer
Alle Vorträge auf der VDI-Tagung wur­
den in einem Tagungsband zusammengefasst: VDI-Berichte Nr. 1949,
252 S., 189 Abb., 10 Tab., 58,- Euro,
ISBN 978-3-18-091949-2.
■
Zylinderköpfe: Gekippt gegossen
Während sich die Vorgängertagungen
hauptsächlich mit dem Zylinderkurbelgehäuse befassten, standen in diesem Jahr verstärkt Zylinderköpfe im
Mittelpunkt des Interesses, die heute
fast ausschließlich aus Aluminiumlegierungen erzeugt werden.
Ein eigens für Hochleistungszylinderköpfe entwickeltes Gießverfahren stellte Hans-Christoph Saewert
von der Rautenbach AG/Nemak
Europe in Wernigerode mit dem Nemak-Dynamic-Casting-System vor.
66
World leader in
molten metal level control
PreciMeter Control AB, Sweden
phone +46 31 764 55 20 fax +46 31 764 55 29
sales@precimeter.se www.precimeter.com
ALUMINIUM · 3/2007
ALUMINIUM IM AUTOMOBIL
Müller Weingarten AG
Druckgießtechnik für China
Müller Weingarten
vor allem in Indien und
China, unser Geschäft
profitabel ausweiten“, er­
klärte Geschäftsfeldleiter
Jürgen Lamparter.
Am Standort Erfurt präsentierte Lamparter jüngst
Großprojekte, die kurz vor
der Auslieferung standen.
Dazu zählten meh­rere
OptiCast Druckgießmaschine, die Ende 2006 an das jaDruckgießanlagen für das
panisch-chinesische Joint Venture ausgeliefert wurde
chinesisch-japanische Joint
Venture Changan-Suzuki,
Das Geschäftsfeld Druckgießtech­
auf denen Blöcke für 4-Zylinder-Monik der Müller Weingarten AG
toren und Getriebe- sowie Kupplungshat sich 2006 gut entwickelt. Mit
gehäuse aus Aluminium gegossen
Produkt­innovationen, die auf der
werden. Zum Einsatz kommen diese
GIFA im Juni vorgestellt werden,
Motoren im weltweit erfolgreichen
strebt das Unternehmen 2007 ein
Suzuki Swift.
deutliches Wachstum an. „Zwar
Bereits 2006 orderte Changan
Su­zu­ki bei Müller Weingarten komstehen auch wir massiv unter
Preis­druck, dennoch können wir
plette Sys­teme für die Her­stellung von
Motorblöcken so­wie Getriebe- und
über eine Vielzahl neuer Projekte,
ALUMINIUM · 3/2007
Kupp­lungs­gehäusen. Die Lieferung
um­fasst zwei Druckgießmaschinen
Opticast 2500 für die Herstellung von
Motorblöcken sowie eine Maschine
vom Typ Opticast 1750, die Getriebe- und Kupplungsgehäuse fer­tigt.
Vor allem die Peri­phe­rie­lösungen der
An­lagen für Dosieren, Sprü­hen, Entnahme, Küh­len und Entgraten bzw.
Sägen sowie die Form­konzepte sind
be­merkenswert. Die Pro­duktion aller
drei Ma­schinen erfolgte im Müller
Weingarten Werk in Erfurt. Produktionsstart in China ist für April 2007
geplant.
„Der Kunde wünscht sich komplette Anlagen aus einer Hand“, beschreibt Lamparter den aktuellen
Markttrend. Darauf habe sich das
Geschäftsfeld frühzeitig eingestellt
und mit Heck & Becker einen kompetenten Partner für den Formenbau
gewonnen. ■
67
ALUMINIUM IM AUTOMOBIL
Neue Studie belegt:
Hydro’s new aluminium coating
process is simplifying the brazing of
sheet exchangers for automotive applications, and achieving significant
environmental benefits at the same
time. The new process is safer than
the previous technology, thus reducing the potential for occupational
health problems. It also requires less
flux, reduces the amount of waste,
and does not use as much energy as
the previous best available practice.
Hydro has registered “Hybraz” as
the name of the process.
Passenger vehicles normally contain a handful of heat exchangers,
ranging from engine and diesel fuel
coolers to climate control systems
Eine neue Studie belegt, dass die
zunehmende Verwendung von
Aluminium in europäischen Neufahrzeugen Gewicht spart und
Kraftstoffverbrauch samt CO2Emissionen senkt
Norsk Hydro
Environmental bene­
fits in Hydro brazing
technology
and the common radiator. Because
of the need for a large effective surface area, a heat exchanger contains
many fluid channels, fins, headers
and other components. To connect
all these in one step, brazing is the
dominant technology. Flux, in metallurgy, is a substance that removes
passivating oxides from the surface
of a metal or alloy. The flux used
by heat exchanger manufacturers
is typically a fluoride flux, which
needed to be applied to the entire
surface of the components. Unfortunately, there are environmental
and health issues associated with the
use of flux, not least the potential
problems that could be incurred due
to particles in the working environment. Hybraz resolves and simplifies
this by applying a special coating to
the aluminium before shipping to
the customer. This application process – covering tubes, headers and/or
sideplates – also eliminates the need
for fluxing and flux stations on a
heat exchanger manufacturing line.
68
Aluminiumanteil in Neufahrzeugen steigt
Die von Knibb, Gormezano & Partners (KGP) zusammen mit der European Aluminium Association (EAA)
durchgeführte Studie kommt zu dem
Ergebnis, dass die in europäischen
Neu­fahrzeugen verwendete Menge
an Aluminium von 50 Kilogramm
(1990) auf 132 Kilogramm im Jahr
2005 gestiegen ist. Diese Menge wird
bis 2010 voraussichtlich weiter auf
157 Kilogramm steigen. Im Jahr 2005
wurden 2 Mio. Tonnen Aluminiumbauteile in Neufahrzeugen auf die
Straße gebracht. Die erzielten Gewichtseinsparungen werden zu einer
jährlichen Kraftstoffeinsparung von
einer Milliarde Liter und einer Reduktion von ungefähr 40 Mio. Tonnen
CO2-Emissionen während der gesamten Nutzungsdauer der Fahrzeuge
führen.
Die Untersuchung enthält Daten
von Autoherstellern und Zu­lieferern
sowie von EAA-Mitgliedsfirmen und
der KGP. Sie basiert auf der Analyse von 15 Millionen im Jahr 2005 in
Europa produzierten Pkw. Sie untersucht 20 Karosseriebauteile, 17 Fahrgestell- und Aufhängungsteile sowie
25 Baugruppen für die Kraftübertragung. Die Studie konzentriert sich
dabei auf Gussstücke, Strangpressund Schmiedeteile sowie Bleche aus
Aluminium.
In der Fahrzeugkarosserie machen
Klimaanlagen, Motorhauben, Stoßfän­
germittelteile und Lenksäulen das
Gros der Bauteile aus Aluminium aus.
Aluminiumteile im Bereich des Fahrgestells und der Aufhängung eines
Pkw sind in der Hauptsache Räder,
Aufhängungsstreben und Baugruppen
für die Lenkung. In der Kraftübertragung neuer Fahrzeuge sind vor allem
Zylinderköpfe und Motorblöcke, Motorabdeckungen, Pumpen und Kühler aus Aluminium. Inzwischen wird
mehr und mehr Leichtmetall insbesondere in Verschlüssen, im Karosserierohbau sowie in Fahrgestellen
verwendet; dies verbessert auch die
Sicherheit von Fahrzeugen.
Roland Harings, Chairman des
EAA Automotive Board, erklärte: „Europa spielt beim innovativen Einsatz
von Aluminium in Fahrzeugen eine
Vorreiterrolle. Da 100 Kilogramm
Aluminium in einem Fahrzeug die
CO2-Emissionen pro Kilometer um
neun Gramm und sogar zehn Gramm
reduzieren können, wenn man die
Produktion von Kraftstoff berücksichtigt, ist Aluminium als Werkstoff für die Gewichtsreduktion von
Fahrzeugen deutlich im Vorteil. Mit
der fortwährenden Einführung neuer Techniken, die weitere Vorteile in
den Design- und Fertigungsprozessen
mit sich bringen, wird sich der Trend
zur Steigerung des Aluminiumanteils
pro Pkw fortsetzen. Aluminium wird
mit Sicherheit eine wichtige Rolle bei
zukünftigen Generationen umweltverträglicher Fahrzeuge spielen“.
■
Deutsche Autobauer 2006 mit neuen Rekorden
Erneuter Rekord bei der Pkw-Produktion: 2006 liefen 5,4 Mio. Fahrzeuge (+1%)
von den deutschen Bändern. Die deutsche Automobilindustrie zeigt damit einmal mehr, dass es ihr gelungen ist, am Standort Deutschland erfolgreich zu
sein und dennoch die Globalisierung mit einer um 13 Prozent gestiegenen Auslandsfertigung aktiv zu gestalten. Auch das Auslandsgeschäft war von neuen
Exportrekorden geprägt. Die deutschen Hersteller führten knapp 3,9 Mio. Pkw
(+2,5%) aus. Während die Neuzulassungen im Januar wegen der Mehrwertsteuererhöhung rückläufig waren, legten die Autobauer mit Blick auf Produktion
und Export im Januar einen guten Start hin: Die Produktion übertraf mit 494.000
Pkw das Vorjahresvolumen um 16 Prozent.
■
ALUMINIUM · 3/2007
AUTOMOTIVE
Eine Studie von Sapa Technology
in Finspång, Schweden, ergab,
dass Kühler aus Aluminium sehr
widerstandsfähig gegen Korrosion
sind.
Um zu ermitteln, auf welche Weise
Aluminium korrodiert, bedient man
sich bei Sapa Technology des Salzspraytests SWAAT (seawater acetic
acid test). Der Werkstoff wird dabei
in einer Salznebelkammer Feuchtigkeit, Wärme und einem in Intervallen
versprühten Salzspray mit niedrigem
pH-Wert ausgesetzt. Ein Tag in diesem
Milieu entspricht etwa einem Jahr Betrieb des Wärmetauschers auf Straßen
mit Straßensalz. Kühler aus Aluminium überleben oft 30, 40 Tage.
Marja Melander, Forschungs­inge­
ni­eu­­rin bei Sapa Technology, befasst
sich mit der Frage, inwieweit die Tests
der Realität entsprechen. Sie ana­lysiert
die Korrosion in Kühlern und Aluminiumkomponenten bei Kli­ma­anlagen
in Autos, die zwischen vier und zehn
Jahre alt sind. Hierzu wurden zehn
verschiedenen Fahrzeugen mit einer
Fahrleistung von 65.000 bis 380.000
km funktionsfähige Bauteile entnommen. Nach vielen Kilometern Betrieb
bei jeder Witterung und Straßensalz
sind die Kühler schwarz und schmutzig. Mit bloßem Auge war Korrosion
daher kaum zu erkennen, weder außen noch innen. Erst als Melander
das Material in einem lichtoptischen
Mikroskop untersuchte, entdeckt sie
verschiedene Art von Korrosion, jedoch in sehr geringem Umfang. „Dass
auf der Innenseite der Rohre so wenig
Korrosion zu sehen ist, überrascht“,
sagt sie.
Bei der Zusammenstellung des
Materials stach das älteste Fahrzeug
hervor, doch die eingesetzten Legierungen werden nicht mehr verwendet. Die Legierungen sind das A und
O. Wichtig ist die richtige Kombination von Lamellen und Rohren. Die 0,1
mm starken Lamellen, die die Rohre
galvanisch schützen sollen, bestehen
aus einer unedleren Legierung als die
Rohre. Die Rohre sind circa 0,3 mm
stark und meist aus einem langlebigen
Werkstoff gefertigt.
Die Studie von Melander besteht
ALUMINIUM · 3/2007
aus vier Teilen, von denen sich der
erste auf die Kühler bezieht. Anschließend werden die Kondensoren untersucht, dann sind die Evaporatoren
und Ladeluftkühler an der Reihe. Die
Ergebnisse der ersten Teilstudie* – es
ist die erste in Europa veröffentlichte
Studie zum Thema – haben bereits internationale Aufmerksamkeit erregt.
„Wenn diese Studie fertig ist, hoffe
ich, auch Wärmetauscher von Autos
untersuchen zu können, die in Asien
gefahren wurden. Ich möchte herausfinden, wie sich das Klima auf äußere
Korrosion auswirkt und wie es um
die Korrosion an der Innenseite der
Rohre bestellt ist“, so die Forschungsingenieurin.
Anna-Lena Rönn
Magnus Glans
Autokühler im Blickpunkt
Forschungsingenieurin Marja Melander
Research Engineer Marja Melander
Car radiators in focus
Aluminium car radiators are highly resistant to corrosion, according
to a new unique study from Sapa
Technology in Finspång, Sweden.
To examine how aluminium corrodes,
Sapa Technology uses a sea water acetic acid test. The material is tested in a
salt fog chamber, where it is exposed
to moisture, heat and a salt spray with
a low pH sprayed at intervals. 24 hours
in this environment is the equivalent
of one year of real service life for heat
exchangers on salted roads. Aluminium radiators can usually withstand
30 to 40 days in the chamber. Marja
Melander, research engineer at Sapa
Technology, has studied how well the
tests correspond to reality in the first
study to be published in Europe.
Melander studys corrosion in
radiators and in aluminium components in air conditioners in cars that
are between four and ten years old.
Functioning components are collected from ten different cars that have
driven between 65,000 and 380,000
kilometres. The radiators are black
and dirty after being exposed to the
elements, road salt and many kilometres of driving. Hardly any corrosion, internally or externally, could
be seen with the naked eye. Only
when Melander studied the material
with an optical light microscope did
she discover various types of corrosion, but to a very limited extent. “I
am surprised to see there is so little
corrosion on the inside of the tubes,”
she says.
When the material was compiled,
the most notable results pertained to
the oldest car, but these alloys are
no longer used. “Alloys are the allimportant element. It is important to
have the right combination of fins and
tubes. The 0.1 millimetre thick fins
that provide the tube with galvanised
protection are of a more basic alloy
than the tube, while the tube, which is
approx. 0.3 millimetres thick, is often
made from a long-life material.
Melander’s study comprises four
sections, the first of which concerns
radiators. Then the condensers will
be examined, then the evaporators
and the intercoolers. Results from the
first sub study* have already attracted international attention. “When the
study is complete, I hope to be able
to examine heat exchangers from cars
driven in Asia to see how the climate
has affected the external corrosion
and the status of internal corrosion on
the inside of tubes,” says Melander.
Anna-Lena Rönn
*Corrosion study of brazed heat exchangers in cars after real service
life.
69
ALUMINIUM IM AUTOMOBIL
Der neue BMW 1er
Sportlich, innovativ, effizient
Mit einer zweiten Karosserievariante feiert der neue BMW 1er
beim Internationalen AutomobilSalon in Genf am 8. März 2007
seine Weltdebüt. Erstmals ist der
1er dann als Dreitürer zu haben.
Die neue Modellvariante setzt sich
mit ihrer sportlich-eleganten Seitenlinie und ihren agilen Fahreigenschaften in Szene. Eine besonders effiziente Dynamik erreicht
der 1er mit der neuen Generation
von Vierzylinder-Motoren.
Für zusätzliche Leistung und hohe
Wirtschaftlichkeit sorgen ein Aluminium-Kurbelgehäuse und ein neues
Common-Rail-Einspritzsystem
für
die Dieselantriebe bzw. die High Precision Injection (HPI) bei den Benzinern. HPI, eine Direkteinspritzung der
zweiten Generation, erlaubt eine genauere Gemisch-Dosierung und höhere Verdichtung. Dadurch lässt sich
die Wirtschaftlichkeit und Leistung
steigern und zugleich der Verbrauch
senken.
Auch die Auto-Start-Stop-Funktion, die serienmäßig zum neuen BMW
118i/d und 120i/d mit 6-Gang-Schaltgetriebe gehört, senkt den Verbrauch
und CO2-Ausstoß. Sobald der Fahrer
hält, in den Leerlauf wechselt und die
Kupplung loslässt, schaltet BMW AG
sich der Motor ab. Um wieder zu starten, genügt es, die
Kupplung zu treten.
Energie spart auch die
Brake Energy Regeneration.
Dieses innovative System
der Bremsenergie-Rückgewinnung speichert mit Hilfe eines Generators die im
Schubbetrieb frei werdende
Energie direkt in die Batterie. So gewinnt der neue 1er
zusätzliche Power für das
Bordnetz.
Der dreitürige BMW 1er: Ab 26. Mai 2007 im Handel
Eine Klasse für sich ist
im Kompaktsegment der BMW 130i.
mon-Rail-Einspritzsystem. Darüber
Sein Sechszylinder-Reihenmotor mit
hinaus führt die Verwendung eines
Magnesium-Aluminium-VerbundAluminium-Kurbelgehäuses zu einer
kurbelgehäuse und Valvetronicdeutlichen Gewichtsoptimierung. Der
Technologie leistet 195 kW/265 PS
neue Vierzylinder-Diesel mit einem
und macht damit die dreitürige MoHubraum von 2,0 Litern steht für den
dellvariante des 1er zum absoluten
1er in zwei Leistungsstufen zur VerfüSpitzensportler.
gung (120d: 130 kW bzw. 177 PS, VerAuch für die Vierzylinder-Dieselbrauch 4,9 l auf 100 km / 118d: 105
motoren steht ein GenerationswechkW bzw. 143 PS, Verbrauch 4,7 l auf
sel an. Die Motoren zeichnen sich
100 km) . In beiden Varianten wird die
durch Leistungssteigerungen und
neue Antriebseinheit serienmäßig mit
Verbrauchsreduzierungen aus. Erzielt
einem motornahen Dieselpartikelfilwurden sie u. a. mit Modifizierungen
ter ausgerüstet. Damit werden die
an den Brennräumen, der LuftfühEmissionsgrenzwerte der Abgasnorm
rung, der Aufladung mit variabler
Euro 4 deutlich unterschritten.
Tur­binengeometrie sowie am Com■
Rolls-Royce Motor Cars Ltd.
Rolls Royce Phantom Drophead Coupé
Launched at the Detroit Motor Show
2007: the Rolls-Royce Phantom Drophead Coupé. Using the lightweight ri-
70
gidity of an all-aluminium space frame,
it marries modern technology to a
sleek, streamlined convertible body.
The space frame chassis is perhaps
the most rigid one for convertibles
today. The space frame is constructed at the BMW centre for aluminium
competence in Dingolfing, Germany.
Manufactured to within a tolerance
of just 0.1 mm, each space frame is
welded entirely by hand. One of the
more interesting problems encountered by the engineering team was
the proximity of the optional brushed
steel bonnet to the aluminium front
wings. These materials are not normally used alongside each other due
to the adverse corrosion effects of aluminium on steel.
■
ALUMINIUM · 3/2007
MARKETS AND TECHNOLOGY
Neuartige Beschichtung beflügelt Aluminium-Zerspanung
Die besondere Herausforderung beim
Zerspanen von Aluminium be­steht
darin, die Späne abzutransportieren. Die Fräser der Marke „Garant“
schaffen hier deutliche Leistungsverbesserungen. Es handelt sich um
eine Titan-freie Schutzbeschichtung,
die aus einem Zirkonium-StickstoffOxidgemisch besteht. Sie macht die
Oberfläche der Fräser extrem glatt
und sehr gleitfähig. Das sorgt da­für,
dass die Späne besser abtransportiert
werden und Aufbau­schneiden nicht
so leicht gebildet werden können.
Dies unterstützen die
neu­en Frä­ser zu­sätzlich
durch spe­zielle Span­
raum­mulden und große
polierte Span­räume. Da
Auf­bauschneiden
die Der Garant VHM Fräser HPC für besonders hohe
Oberflä­chen­güte beein- Ansprüche bei der Aluminium-Zerspanung
trächtigen, eig­nen sich
die neuen Fräswerkzeuge besonders
tigungskosten bei steigender Oberfläfür die Bearbeitung von Werkstücken
chengüte der Werkstücke.
mit hohen Ansprü­chen an die Oberflä­
Mittlerweile stehen dem Anwenche.
der sieben verschiedene VHM HPC
Die neuen Fräswerkzeuge haFräser zur Verfügung. Die Palette umben im Praxistest bisher alle Werte
fasst zweischneidige VHM und Torus
Microfräser, zweischneidige Mi­croverbessert. Die Zerspanungsdaten
Radiusfräser, drei- und vierschnei­
sprechen für sich. So wurde der
VHM Schruppfräser HPC bei der
dige Schruppfräser ohne KordelproZerspanung von AlCuMg2 mit einer
fil, sechs- und achtschneidige SchaftSchnittgeschwindig­keit von 1130 m/
fräser sowie zweischneidige Radiusmin, einem Vorschub von 0,224 mm
fräser. Demnächst dürften weitere
und einer Schnitttiefe von 20 mm
Fräserbauarten mit der innovativen
eingesetzt. Für Anwender heißt das
Beschichtung versehen werden.
geringere Bearbeitungszei­ten und Fer­
■
Hoffmann
Eine neue Generation von Hochleistungsfräsern, die mit einer Mischung aus Zirkonium, Stickstoff
und Oxiden beschichtet sind, wirkt
sich laut Anbieter (der Hoff­mann
Gruppe) günstig auf die Bearbeitungszeiten und Prozesssicherheit
bei der Aluminiumzerspanung aus.
Ein neues wässriges Reinigungssystem
Auf Basis der Micro Phase Cleaning (MPC) Reinigungstechnologie
von Zestron hat Dürr Eco­clean
ein neues Anlagenkonzept entwickelt. Der Fokus des Systems
liegt auf der Entfernung von
Misch­verunreini­gungen (polare
Emulsionen so­wie unpo­lare Öle
und Fette) in einem Schritt. Eine
Referenzanla­ge des nun serien­
reifen Ver­fahrens wurde vor kur­
zem an einen inter­national tätigen,
französischen Hersteller aus der
Luftfahrtindus­trie ausgeliefert.
Ab­wasseranschluss. Gleichzeitig ermöglicht die Fettstofffreiheit eine flecken- und rückstandsfreie Trock­nung
für ma­xi­male Oberflächenreinheit.
In um­fangreichen Tests wurde die
erzeugbare Oberflächenreinheit im
Zu­sammenhang mit anspruchsvollen
Pro­zess­schritten wie Härten, Kleben
sowie PVD / CVD Beschichtungen
bewiesen.
Das wasserbasierende, tensidfreie
Ver­fahren ermöglicht neben der Entfernung von Mischverunreinigungen
hohe Oberflächenreinheiten von >
50 mN/m. Es basiert auf einer fettstofffreien Formulierung, wodurch
der Reiniger gleichzeitig als Spülmedium verwendet werden kann. Dadurch ent­fallen Wasserspülung und
On the ba­sis of Zes­tron MPC (Mi­
cro ­Phase Clean­ing) tech­nol­o­gy,
Dürr Ecocl­ean has de­vel­oped a
new ­plant con­cept. The fo­cus of
the ­system is on the re­mov­al of
­mixed con­tam­i­nants (po­lar emul­
sions and ­non-­polar oils and greas­
es) in one step. A ref­er­ence ­plant
for the pro­cess, ­which is now
A new water-based
cleaning system
r­ eady for mass pro­duc­tion, was
re­cent­ly sup­plied to an inter­na­tion­
al­ly ac­tive avi­a­tion in­dus­try man­u­
fac­tur­er in ­France
The ­ water-­based pro­cess, ­ which is
free from ten­sioac­tive ­ agents, both
en­ables the re­mov­al of ­mixed con­tam­
i­nants and ­gives a high sur­face clean­
ness lev­el of > 50 mN/m. It is ­based
on a for­mu­la­tion free from fat­ty sub­
stanc­es, such that the clean­er can at
the same time be used as a rins­ing me­
di­um. This elim­i­nates wa­ter rins­ing
and con­nec­tions for ­ waste wa­ter. At
the same time the free­dom from fat­
ty sub­stanc­es en­ables ­ spot-­free and
­residue-­free dry­ing for max­i­mum sur­
face clean­ness.
In ex­ten­sive ­tests the sur­face clean­
ness has been dem­on­strat­ed in the
con­text of de­mand­ing pro­cess ­ steps
such as hard­en­ing, ad­he­sive bond­ing
and PVD/CVD coat­ing.
■
60.000 Literaturangaben zum Thema Aluminium
Kontakt: karsten.hein@aluinfo.de
ALUMINIUM · 3/2007
71
IAJ
ECOLOGY
Conversion of coal to electric power – difficult to do without for a country’s energy supply, but at the same time sharing responsibility
for the warming of the Earth’s atmosphere
America on the way to a new climate policy
The classical environmental policy
role distribution between the political and economic spheres is usually that governments pay continually greater attention to environmental policy, while the economy
warns of the dangers of restrictive
environmental legislation. That is
what happens in Europe, that is
what happens in Germany.
In the ‘promised land’ of the freest
of all market economies this wellrehearsed role distribution has been
turned upside down. In America, it is
representatives of the economy – not
all, but at any rate some of the most
notable – who are far ahead of President George W. Bush in their environmental policy. As is known, Bush is
rather deaf to environmental issues
and only in the very recent past has
he adopted a more conciliatory attitude towards them, having previously shown scant regard for the Kyoto
Protocol and the restriction of CO2
emissions. In contrast, critical opinions calling for a reconsideration of
American climate policy have come
mainly from the economic sphere.
72
One of the protagonists is Alain Belda,
Chairman and CEO of the aluminium
concern Alcoa.
On the occasion of Bush’s State of
the Nation speech Belda and other
leading players in the US-American
economy called on the US Government to quickly enact strong national
legislation to achieve significant reductions of greenhouse gas emissions.
In a letter, these economic big-wigs
demanded mandatory emission caps
to reduce carbon dioxide and other
greenhouse gas emissions. The aim:
to reduce greenhouse gases compared with today’s levels by at least
10% within 15 years, and by 20 to 40%
by 2050.
Alcoa and concerns such as BP
America, Caterpillar, Duke Energy,
DuPont, General Electric and some
others along with leading non-governmental organisations have formed
an unprecedented alliance called the
U.S. Climate Action Partnership (USCAP) to send a clear signal to lawmakers that legislative action is urgently
needed.
“Each year that we delay action to
control emissions increases the risk of
unavoidable consequences that could
necessitate even steeper reductions in
the future, at potentially greater economic cost and social disruption,” said
Belda at congressional and national
press briefings introducing USCAP.
Mandate for action
The USCAP partners have outlined
specific recommendations that form
“Call for Action”. The group believes
a U.S. policy framework must include
mandatory approaches to reduce
green­house gas emissions from economic sectors with the highest emissions; flexible approaches to establish
a price signal for carbon that varies
by economic sector; and incentives
for other countries to take action.
USCAP’s recommendations are
based on six principles specifying that
U.S. climate policy must:
• Account for the global dimensions of climate change
• Recognize the importance of tech-
nology
• Be environmentally effective
• Create economic opportunity and advantage
ALUMINIUM · 3/2007
ECOLOGY
• Be fair to sectors disproportion-
ately impacted
• Recognize and encourage early
action.
USCAP calls for mandatory reductions of greenhouse gas emissions
from major emitting sectors (including large stationary sources and transportation) and energy use in commercial and residential buildings. The
cornerstone of its proposed approach
is a “cap-and-trade” programme that
places specified limits on greenhouse
gas emissions. This will ensure emission reduction targets are met while
simultaneously generating a price
signal that will provide market incentives to stimulate investment and
innovation in the technologies necessary to achieve the environmental
goals. This programme sounds very
familiar to European ears, since it
corresponds to the emission rights
trading introduced in the EU.
“We need major breakthroughs”
As regards its own efforts to reduce
greenhouse gases, Alcoa can already
point to a number of successes, for
example:
• Reducing greenhouse gas emissions by 25% since 1990, a goal
reached seven years ahead of its 2010
target date mainly through aggressive
reduction of Perfluorocarbon (PFC)
emissions.
• Efficiently using energy, thanks to
the company’s energy efficiency net-
USA überdenken Klimapolitik
Bush, bekanntermaßen Umweltfragen eher
verschlossen und erst in jüngster Vergangenheit ein wenig konzilianter gegenüberstehend, hat mit dem Kyoto-Protokoll
und einer Begrenzung der CO2-Emissionen
wenig im Sinn. Kritische Stimmen, die
ein Umdenken in der amerikanischen
Klimapolitik fordern, kommen dagegen
aus der Wirtschaft. Eine von ihnen gehört
Alain Belda, dem Chairman und CEO des
Aluminiumkonzerns Alcoa. Anlässlich
Bush’s Rede zur Lage der Nation rief Belda
work established in 2002 as a partnership within the U.S. Department of
Energy to conduct energy efficiency
surveys at operating locations and
identifying areas of possible improvement.
• Investing in green power. Alcoa
purchased renewable energy certificates (RECs) to effectively power four
of its corporate centres in the United
States. These facilities are now effectively operating on electricity generated by projects that produce electricity from landfill gas, avoiding the
emissions of more than 6,300 tonnes
of carbon dioxide annually.
• Building a cleaner future. Scheduled to open in April, Alcoa’s 320,000
tpy smelter in Iceland will run on
100% hydropower, an abundant and
renewable resource in Iceland, and
has been built to comply with some
die US-Regierung gemeinsam mit anderen
US-amerikanischen Wirtschaftsführern dazu
auf, möglichst schnell US-weite Umweltgesetze zu erlassen, um die Emission von
Klimagasen deutlich zu reduzieren. Ziel
müsse es sein, innerhalb eines Jahrzehnts
die Treibhausgase um zehn Prozent gegenüber dem heutigen Emissionsvolumen zu
reduzieren und bis 2050 um mindestens 60
Prozent. „Wir brauchen einen wirklichen
Durchbruch“, so Belda mit Blick auf eine
neue Klimapolitik.
of the most stringent environmental
regulations in the world.
• Planting ten million trees, which
can absorb more than 250,000 tonnes
of carbon dioxide per year during
their lifetime, by 2020.
“Even though we’ve made substantive changes to reduce greenhouse gas
emissions, we can and should do better,” says Belda. “In fact, we must do
better.” He explained that Alcoa must
now use its leadership position to
encourage others to change as well.
“The changes that are needed can’t be
incremental – we need major breakthroughs,” he says. Meeting the challenge ahead of us won’t be easy – we
recognize it will call for significant
change not only for others, but even
for leaders such as ourselves. But I believe there is no other option. Much
greater is the risk of failing to act.” ■
Developing powers seen critical to climate pact
Emerging giants China and India,
among the world’s top greenhouse
gas producers, could undermine efforts to secure a new global climate
change accord unless granted special
treatment. Any successor to the UN
Kyoto Protocol on carbon emissions
that lacks binding commitments from
China and India would be inefficient
in the fight against global warming.
China’s blistering growth has made it
the number two global carbon emitter, behind the United States, while
India is in fourth place. Given the
sheer size of these developing economies and their heavy consumption of
ALUMINIUM · 3/2007
carbon emitting coal they will make
up an increasing share of global emissions in coming years. The rich world
had to accept most responsibility for
confronting global warming, and coping with this effect, given that most of
the heat-trapping carbon gases now in
the atmosphere came from their cars
and factories. A new climate change
treaty must respect the right of merging economies to grow and develop,
while recognising that unrestricted
emissions from China and India could
intensify ecological pressures that are
already severe.
Developing country leaders in-
sisted in Davos that while they are
open to using more renewable and
clean energy, and would seek to adopt
emission-saving technologies when
possible, they could not accept strict
caps that could threaten their growth.
It would be a matter of fairness that
developing countries should get some
slack on emission limits under a new
international treaty. Without dualspeed carbon restrictions it would be
difficult to convince China and India to join a new climate treaty. This
could in turn make it harder to draw
in the United States, which opted out
of the original Kyoto deal. ■
73
WETTBEWERB
EAA-Wettbewerb
Aluminium Renovation Award 2007 ausgeschrieben
Der von der European Aluminium
Association (EAA) in Brüssel ausgeschriebene europäische „Aluminium in Renovation Award“ wird
alle zwei Jahre für die Renovierung von Gebäuden verliehen, bei
denen Aluminium auf innovative
Weise zum Einsatz kommt.
Der Wettbewerb soll dazu beitragen, die Bedeutung von Aluminium
als nachhaltige Werkstofflösung im
Bauwesen weiter zu festigen – unabhängig davon, ob es sich um den
Erhalt nationaler Kulturbauten oder
von Wohn- oder Nutzbauten handelt.
Zunächst werden europaweit nationale Wettbewerbe durchgeführt, um
jene Gewinner zu ermitteln, die dann
automatisch für den europäischen
Award nominiert werden. Die Preise
werden in den folgenden Kategorien
verliehen:
Wohnbauten
• Privathäuser
• Private Wohnkomplexe und
Mehrfamilienhäuser
• Sozialer Wohnungsbau: Häuser
und Wohnungen.
Nicht-Wohnbauten
• Wirtschaftsgebäude: Büros,
Geschäftshäuser, gewerblich
genutzte Gebäude
• Öffentliche Gebäude: Museen,
Bahnhöfe usw.
• Historische Gebäude.
Außer in den sechs oben genannten
Kategorien können Sonderpreise verliehen werden für Wand- und Dachverkleidungen sowie für Türen, Fenster und Fassadenverkleidungen.
Am Wettbewerb können Architek­
ten, Auftraggeber und Eigentümer,
Pro­jektentwickler und Bauingenieu­
re teilnehmen. Das Vorhaben bzw.
Gebäude muss in Europa liegen. Der
Stand­ort des Bauprojektes definiert
den Austragungsort des nationalen
Wettbewerb.
Aluminium in Renovation ist in
einem weit gefassten Sinn zu verstehen. Das Konzept umfasst sowohl die
Renovierung als auch die Sanierung
oder den Umbau. Entscheidend ist,
dass die ursprüngliche Bausubstanz
74
des Gebäudes erhalten bleibt. Die
funktionelle Umwidmung eines bestehenden Gebäudes, wenn z. B. ein
Lagerhaus in Wohnungen umgebaut
wird, spielt dagegen keine Rolle.
Folgende Kriterien werden bei der
Bewertung der Projekte berücksichtigt:
• Bedeutende Anwendung von
Aluminium
• Modernes Design
• Lebenszyklusansatz
• Energieeffizienz
• Sozio-ökonomische Auswirkung
• Wertzuwachs beim Original gebäude.
Weitere Infos zum Wettbewerb unter
www.aluminium-award.eu.
EAA launches Aluminium in Renovation
Award 2007
The Aluminium in Renovation
Award, to run throughout 2007,
will involve 13 European countries, a series of national competitions and a European final
rewarding the most innovative and
sustainable uses of aluminium in
building renovation.
The winning entries will illustrate that
whether used to preserve a piece of
national heritage or to upgrade the environmental performance of residential or utility buildings, aluminium is
the most sustainable solution.
Awards will be given in various
categories:
Residential
• Private houses
• Private collective housing and apartment buildings
• Social housing: houses and
apartments
Non-Residential
• Utility buildings: offices,
commercial, industrial
• Public buildings: museums, train
stations, town halls etc.
• Historical buildings: churches,
ancient houses etc.
Further to the six above categories,
special prizes can be won for:
• Cladding and roofing
• Doors, windows and curtain walls.
Architects, principals or property
owners, project developers and
building-engineers are invited to
enter. Projects or buildings must be
located in Europe in order to be eligible and the location of the project
determines which national competition the project can enter.
The concept of “aluminium in renovation” will cover not only renovation,
but also restoration and re-construction provided the former structure
of the building has been maintained
such as changing the function of an
existing building, e.g. turning a warehouse into apartments.
The following criteria shall be
taken into account when assessing
the entries:
• Significant use of aluminium
• Contemporary design
• Life cycle thinking
• Energy efficiency
• Socio-economic impact
• Added value to the original
building.
For more information, entry details
and updates on country competitions
go to the website: www.aluminiumaward.eu.
ALUMINIUM · 3/2007
RESEARCH
In search of ways to increase Al-Li-Cu-Mg system
aluminum-lithium alloy processing ductility
Boris V. Ovsyannikov, Valery I. Popov, Victor M. Zamyatin
The aluminium-lithium alloys are
known to have a unique combina­
tion of mechanical properties [1],
such as light density, higher elastic
modulus and considerable strength
properties. The availabil­ity of
these properties allows applying
alloys of this system as a structural
material for aerospace engineering,
which enables to improve some
of aircraft performance characteristics, particularly aircraft mass
reduction, fuel saving, load capacity increase. However, compared
to middle- and high-strength aluminium alloys, aluminium-lithium
alloys have one disadvantage
– re­duced processing ductility. The
insufficient processing ductility of
industrial Al-Li-Cu-Mg-system alloys, particularly during the cold
rolling, prevents them from being
used for commercial production of
light sheets (0.3 to 0.5 mm thick)
without macro- and micro-fissures
due to the increased band breakage during final passes.
This article concerns the search
for the ways to increase the pro­
cessing ductility of Al-Li-Cu-Mgsystem aluminium-lithium alloys
by means of modification of zirconium adding method, adjusting
solution heat treatment conditions
and changing alloy chemical composition.
Possibilities of Al-Li-Cu-Mg alloy
ductility increase by means of
zirconium doping method modification
It is known [2], that zirconium doping
to aluminium alloys as Al-Zr hardener
during their preparation results in the
melt heterogenization due to entry of
large churlish hardly soluble primary
Al3Zr intermetallic compounds into
it. There is a large worldwide experience of zirconium doping by means of
melt treatment by potassium fluozirconate K2ZrF6 allowing zirconium entry into the solution without primary
76
intermetallic compound formation.
This method is not widespread due
to difficulties related to fluozirconate
mixing into the melt, the unstable zirconium fixation and arising a number
of environmental problems [3]. The
equipment and the method of salt
doping using a high speed argon jet
developed by KUMW J.S.Co. allow to
decide a problem of zirconium doping directly into the melt by means of
zirconium aluminothermic reduction
from potassium fluozirconate.
Zirconium was doped to the AlCu-Mg-Li-system alloy (The Russian
standard grade is 1441) during preparation by two methods:
• the first method refers to zirconium
doping to the melt by means of Al2%Zr hardener
• the second method refers to zirconium doping to the melt by means of
blowing the potassium fluozirconate
powder into the melt by high speed
argon jets.
The micro-X-ray spectroscopic
analysis of microsections of both
commercial and test ingots showed
some clearly defined Cu-, Mg- and
Si-containing interlayers included in
the boundaries of grains and dendrite
cells thereof. These interlayers form
an almost solid skeleton. Besides these
interlayers, the specimen microstructure has some compact grains. Some
of these grains include Cu, Mg, Si,
while the others include Al, Cu, Fe.
As to elements like Zr, Mg, Ni and Ti,
they do not form any phase components within 1 to 2 micron localization of the micro-X-ray spectroscopic
analysis method.
Moreover, the electronic microscope analysis (using electronic microscope JEM-200CX) of Al3Zr zirconium aluminide structures in commercial and test specimens was performed by means of thin foil method
with magnification within the range
of 60,000 to 100,000. The commercial
specimen shows metastable β’-phase
(Al3Zr) grains in a form of asteriskshaped dendrite (Fig. 1a). The aver-
a
b
Fig. 1: The β’-phase bright-field image (Al3Zr)
in a commercial (a) and a test (b) ingot made
of alloy 1441, x60,000
age dendrite size may almost double
(half) depending on their location.
Their distribution density changes
likewise. The commercial specimen
includes many plate-shaped Al2LiMg
intermetallic compounds. The commercial specimen bright-field images
contain some large complex-shaped
grains with the average diameter of
200 to 400 nm, uniformly distributed
throughout the specimen volume (Fig.
1b). These grains are lamellar metastable β’-phase dispersion particle aggregations [4].
Metal sheets were produced from
commercial and test specimens by
means of cold rolling followed by
hot rolling. The cold rolling was performed in two stages. At the first stage
2.8 to 3.2 mm thick coils were produced from the 6.5 to 7.0 mm thick
hot-rolled coils. These coils were
exposed to interstage annealing to
remove mechanical hardening. At
the second stage the coils and consequently 0.5 to 1.2 mm thick sheets
were produced from 2.8 to 3.2 mm
thick annealed coils.
The results of the electron micro-
ALUMINIUM · 3/2007
RESEARCH
scope analysis of 1.2 mm thick sheets,
heat-treated at 535 ºC or more, are in­
dicated below. The bright- and darkfield images of the commercial specimen show non-uniformly distributed
β’-phase grains 20 to 30 nm in diameter, formed due to the oversaturated
solid solution decomposition. Their
density occasionally changes by 2-3
times depending on their location.
The distribution non-uniformity of
the β’-phase grains and their low
density affected sheet grain structure
formation: mostly equiaxial recrystallized grains of at least 10 microns
in diameter may be seen. There are
grains up to 5 microns in diameter in
some small locations. These locations
are defined by a higher β’-phase grain
density. Some of coarse distorted intermetallic compounds may be found
inside the grains and at their boundaries. Based on the electron-diffraction
patterns, the intermetallic compound
phase formed during melt crystallizing in microvolumes with a higher
copper concentration was found to
be Li3CuAl5.
The test specimen bright-field images show equiaxial grains 30 to 50
nm in diameter. Like in the molded
condition, these grains represent
Al3Zr metastable phase dispersion
particle aggregations, however, considerably crushed due to deformation.
These grains are uniformly distributed throughout the specimen volume.
At the same time, the dark-field images show the uniformly distributed
β’-phase precipitations up to 10 nm
in diameter, at which the δ’-phase
(Al3Li) precipitations may form. The
test specimen features the uniform
grain structure with the average grain
diameter of 3 to 5 microns.
Mechanical proprieties of the
sheets produced from commercial
and test specimens are listed in table
1. The test-melted alloy 1441 sheets
Fig. 2: Al-Cu-Mg-Li-system alloy (1441) temperature pattern during heating at the rate of
14 degrees per minute
have higher stretch ratio values compared with the commercial-melted
alloy sheets. Sheet strength properties depend on interstage annealing
temperature. At the interstage annealing temperature of 380 to 420
ºC, the instantaneous strength and
yield values of commercial coils are
approx. 30 and 50 MPa higher than
the corresponding values of test coils,
while at the interstage annealing temperature of 440 ºC these differences
are aligned.
Therefore, during analysis of test
and commercial specimens of alloy
1441, the test specimen appeared to
have a more fine-graded and uniform structure, more dispersed and
uniformly distributed zirconium aluminide, resulting in improvement of
alloy operational characteristics, such
as failure viscosity, low-cycle fatigue
and corrosion resistance.
Although the stretch ratio of 1.2
mm thick sheets was considerably
increased, we failed to achieve a
considerable increase in alloy 1441
processing ductility during cold rolling by means of zirconium doping in
the course of potassium fluozirco-
nate reduction. With cold-rolled coil
thickness reduction from 1.2 mm to
0.5 mm, development of cracks and
ruptures in coils was still observed.
Additional annealing of 1.2 mm thick
coils followed by cold rolling failed to
succeed.
Influence of ingot solution heat
treatment conditions on Al-LiMg-Cu-system alloy processing
Analysis of influence of ingot heat
treatment annealing conditions on alloy properties at hot rolling temperatures was performed for Al-Li-CuMg-system alloy processing ductility
increase (The Russian standard grade
is 1441).
The differential thermal analysis
(DTA) of the melted alloy was performed for heat treatment annealing
temperature selection. Fig. 2 shows
the resulting temperature pattern.
This temperature pattern shows the
non-equilibrium solidus temperature of alloy 1441 with the following
chemical composition (mass %): 1.5
Cu; 0.9 Mg; 1.9 Li; 0.10 Zr; 0.03 Fe;
0.02 Si; 0.03 Ti, to be 531 ºC.
Tab. 1: Mechanical properties of heat-treated sheets in alloy 1441 of serial and trial heat lots
Dimensions, mm
0.8x1,200x4,000
1.2x1,200x4,000
Direction
Zr doping by master alloys
Zr doping by potassium fluozirconate
Tensile strength
MPa
Yield strength
MPa
Elongation
%
Tensile strength
MPa
Yield strength
MPa
Elongation
%
L
435-450
355-375
10.0-15.0
435-455
350-380
10.0-13.5
LT
450-470
365-385
10.0-15.0
420-475
335-385
10.0-15.0
L
420-435
330-360
12.5-17.5
407-425
340-350
12.5-16.0
LT
445-465
345-380
10.0-16.0
425-455
340-390
10.0-15.0
ALUMINIUM · 3/2007
77
➝
RESEARCH
Fig. 3: Alloy 1441 ingot properties at deformation temperature depending on solution
heat treatment conditions.
Based on DTA data, metal heat treatment was performed at the following
conditions: 510 to 520 ºC – 24 h, 540
to 550 ºC – 12 and 24 h.
Specimen microstructure analysis
shows that alloy 1441 solution heat
treatment temperature increase from
510 to 550 ºC results in better dissolution of Cu-containing phase interlayers included in boundaries of grains
and dendrites.
The interlayers imperfectly dissolved at 510 ºC become thinner,
more interrupted and split at 550 ºC.
The solution heat treatment temperature increase up to 570 ºC results in
a considerable development of the
secondary porosity.
Fig. 3 shows the mechanical properties of alloy 1441 ingots at higher
temperatures depending on the solution heat treatment temperature. The
best ductility is observed within the
rolling temperature range of 440 to
460 ºC after a 24 h heat treatment annealing at the temperatures of 540 to
550 ºC.
0.5 to 0.6 mm thick sheets were
produced from the ingots treated at
the following industrial conditions:
490 to 510 ºC, 24 h and 540 to 560
ºC, 24 h. With the ingot hot rolling
following the high-temperature solution heat treatment, a higher metal
processing ductility was observed.
During the following cold rolling, 1.2
mm thick sheets were successfully
produced without any cracks. However, the further sheet cold rolling
up to the thickness of 0.5 to 0.06 mm
resulted in formation of many cracks
and ruptures.
Al-Cu-Mg-Li alloy processing ductility increase due to changing of
its chemical composition.
Alloy processing ductility operations
performed by means of zirconium
adding technology improvement and
the ingot heat treatment condition
changing prevented production of
0.3 to 0.5 mm thick cold-rolled sheets,
thus the following step was the study
of the possibility of the alloy processing ductility increase due to changing
of its chemical composition.
During analysis of aluminium alloy
1441 we found that in the course of
the alloy crystallization some coarse
Cu-containing irregular-shaped phases form inside and at the boundaries
of grains with copper concentration
within 1.5 to 1.8%. These phases have
a weak effect on the process ductility
during hot rolling, however their negative effect on the alloy process ductility during the cold rolling becomes
Tab. 2: Mechanical properties of heat-treated sheets in new Al-Li-Mg-Cu alloy
Dimensions, mm
Ageing
Tensile strength
MPa
Yield strength
MPa
Elongation
%
0.4x1,200x4,000
I stage
442-446
345-373
10.0-12.5
II stage
412-425
364-383
7.3-11.5
III stage
454-464
405-419
8.0-9.5
78
prevailing. In addition, their negative
effect still increases with cold-rolled
coil thickness decrease from 1.2 mm
to 0.3 mm.
Electronic microscope analysis
showed that with the decrease of copper concentration in the alloy down to
1.3 to 1.5 mass %, copper may completely transfer into the solid solution,
resulting in a considerable lowering
of the volume share of Cu-containing
grains (Fig. 4) and, as a consequence,
the increase in the alloy process ductility during cold and hot rolling.
In addition, we found that Ga and
Na do not form any phases containing
aluminium and are aggregated mainly
at the grain boundaries, resulting in
brittle grain-boundary crushing during alloy crystallization and shaping.
We found that with concentration of
Ga and Na below 0.001 and 0.0005
mass %, correspondingly, they almost
completely transfer into the solid solution resulting in the process ductility increase.
Calcium in the amount of 0.005 to
0.02 mass % is an additive, fixing the
sodium surplus and other impurity
elements of the alloy, resulting in formation of intermetallic compounds
with a more round shape and in their
coagulation. It improves shear strain
and, as a consequence, increases the
alloy processing ductility. Adding of
one or more elements of vanadium
or scandium group facilitates formation of the uniform and fine-graded
structure. Due to this, the importance
of zirconium as a modifying agent
providing structural hardening of the
half-finished and finished products
made of the alloy increases allowing
the achievement of a necessary level
of strength properties.
Based on analysis results we suggest a new chemical composition of
the Al-Li-Cu-Mg-system alloy (mass
%): Li – 1.6 – 1.9; Cu – 1.3 – 1.5; Mg
– 0.7 – 1.1; Zr – 0.04 – 0.2; Be – 0.02
– 0.2; Ti – 0.01 – 0.1; Ni – 0.01-0.15;
Mn – 0.01 – 0.2; Ga – up to 0.001;
Zn – 0.01 – 0.3; Na – up to 0.0005;
Ca – 0.005 – 0.02; and, at least, one
of the elements, selected from the
group, including V – 0.005 – 0.01 and
Sc – 0.005 – 0.01; the remaining part
falls to Al.
The clad plates were produced from
ALUMINIUM · 3/2007
RESEARCH
flat-shaped ingots of commercial alloy 1441 and of the new alloy.
The plates were produced using the same flow chart consisting of
hot rolling at 430 ºC up to 6.5 mm thick with coiling followed by
the annealing at 400 ºC and the further cold rolling. Coils without ruptures were successfully produced from commercial alloy
1441, however, only up to 0.9 mm thick. The further rolling was
stopped because of tears up to 30 mm deep on the coil side edges
and two ruptures inside the coil. Crack- and rupture-free coils up
to 0.5 mm thick were rolled from the new alloy. Mechanical test
results are listed in Table 2. It shows that the sheets made of the
new alloy have better ductility characteristics comparing with
those of alloy 1441 sheets and the same strength properties. The
new suggested Al-Li-Cu-Mg-system alloy may be used to produce various semi-finished products: sheets, plates, die-forged
parts and forgings. Various products, such as aircraft fuselage
skin panels, framework parts, welded fuel tanks and other aircraft parts may be produced from semi-finished products made
of this suggested alloy.
Summary
a
Fig. 4: Secondary-electron and characteristic X-radiation images of sections of commercial (a) and test (b) specimens of
the Al-Cu-Mg-Li-system alloy
• Zirconium doping to the Al-Li-Cu-Mg-system alloy by means
of potassium fluozirconate doping and heat-treatment of ingots
made of this alloy facilitates the process ductility increase during
hot rolling, however, it has almost no effect on the alloy process
ductility during cold rolling up to thickness of 0.5 to 1.0 mm.
• The optimal chemical composition allowing to eliminate or
decrease the formation of the coarse crystal Cu-containing surplus share in the melt, and restricting the concentration of the
microadditives of alkali-earth metals, vanadium and scandium
is one of the most important factors resulting in a considerable
increase in Al-Li-Cu-Mg-system alloy process ductility during
cold rolling.
• We have developed a new Al-Li-Cu-Mg-system aluminiumlithium alloy having a higher process ductility allowing production of thin sheets with thickness up to 0.3 mm, thin-walled section and doe-forgings with strength and operational properties
necessary for aircraft structural materials.
References
1. N. I. Fridlyander, K. V. Tchuistov, A. L. Berezina, N. I. Kolobnev, Aluminiumlithium alloys. Structure and properties, Kiev: Nauk. dumka, 1992, p. 177.
2. V. I. Napalkov, S. V. Makhov, Alloying and inoculation of aluminium and
magnesium. M., MISIS, 2002, p. 374.
3. A. V. Kurdyumov, S. V. Inkin, V. S. Thulkov, G. G. Shadrin, Metallic impurities in aluminium alloys. M., Metallurgiya, 1988, p.p. 90, 99.
4. V. I. Elagin, Doping transition metals in wrought aluminium alloys. M.,
Metallurgiya, 1975, p. 247.
5. Tite C. N. Y., Gregson P. Y., Pitcher P. D. Further precipitation reactions
associated with Al3Zr particles in Al-Li-Cu-Mg-Zr alloys. // Scr. Met., 1988,
v. 22, #7, pp. 1005-1010.
6. Kumar R. S., Brown S. A., Pickens Y. R. Microstructures evolution during aging of an Al-Li-Cu-Mg-Zr alloy. //Acta Mater., 1996, vol. 44, #5, pp.
1899-1955.
Authors
Boris V. Ovsyannikov – Ph.D, Advanced Materials Chief Specialist, KUMZ
J.S.Co. Valery I. Popov – Master of Science, Deputy Director on Technology,
KUMZ J.S.Co. Victor M. Zamyatin – Doctor of Engineering Science, Professor, Ural State Technical University – UPI, Ekaterinburg.
b
ALUMINIUM · 3/2007
79
RESEARCH
Potentials of new ductility criterions in car
development with lightweight materials
Not only in today’s car development but also in every safety
relevant construction, the material forming behaviour because of
working load is highly considered.
Depending on the respective application on the one side a dimensional accuracy or on the other
side a well-tempered compensation of stress peaks is preferred.
To manifest this daily necessity
in a quantitative parameter new
more valid ductility criterions
have to be developed.
At the state of the art the ductility is
often used to characterize the forming behaviour until fracture of sheet,
cast and extrusion profile metal in a
mainly qualitative way. Nevertheless
the ductility affects attractive in different points of view:
• To evaluate the deformation until
fracture for primary and secondary
forming like rolling, extrusion, wire
drawing and sheet metal forming.
Though there is no quantitative correlation between ductility and formability or workability in these processes, more ductile materials often
guarantee a better workability.
• To indicate the ability of the metal
to flow plastically before fracture. Although ductility measurements are
not used quantitatively in design, a
high tensile ductility indicates the
capacity to compensate local strain
peaks more homogeneous to neighbouring areas.
• To evaluate sensitively material
properties according to the application as a quality criterion.
For the structural designer of aluminium-weight tension structures,
ductility is of great importance beHeat treatment
cause of its role in a relief of stress
concentrations. To characterize material properties concerning the ductility for forming simulation based on
the law of plasticity and crash test
basically the yield strength, tensile
strength and the ultimate strain are
used. In this case it is only possible to
get an impression of a ductile or brittle material behaviour. But in many
cases this impression deceives. As
comprehensible in table 1 the T6 state
features the least fracture necking but
at T7 the ultimate strain takes a minimum value. Because of this a clear
estimation of ductility is practically
impossible and can be interpreted in
different ways.
Because of this fact a lot of real part
testing is indispensable. Today every
structural part has to be checked on
the forming behaviour correlating
the material properties to the part geometry and kind of workload. After
testing the separation of the respective share of these parameters to the
fracture is practically not feasible. As
a result of this, crash tests of different
geometries are not comparable related to their ductility. But for structural
car body optimization in the stage of
vehicle development but also for the
running quality assurance in production a proper material characterisation is just as well inevitable as the
objective quantification of ductility
parameters. Both the objective quantification of ductility and the description in scalar values are the basic
requirements for the crash simulation based on the laws of plasticity
inclusive the material failure prediction. The researched failure limits are
described on the one hand by forced
rupture in achievement of the ductil-
Rp0.2 [MPa]
Rm [MPa]
Ag [%]
A50 [%]
Z [%]
AA 6014 T4
106
206
20.4
26
37
AA 6014 T6
220
265
10.7
12.8
17
AA 6014 T7
201
233
7.6
11
31
Tab. 1: Measured material properties with different heat treatments [LEP03]
80
Audi
R. Schleich, M. Sindel, M. Liewald, Neckarsulm/Stuttgart
Fig. 1: two crashed profiles, same geometry, two different ductilities
ity limit which is due to the increase
and unification of micro-cracks and
-pores and on the other hand by failure because of necking which is due
to an insufficient strain hardening an
the consequential membrane instability of thin-walled structures. Similar
to the formability, the dependence
of ductility to the dominant state of
stress, temperature, strain rate and
the geometry of the specimen has to
be considered accurately. As the Fig. 1
shows, the resulting shape of crashed
specimen can drastically differ.
General approach in ductility
measurement
The simplest approach in ductility
measurement uses the ultimate tensile strain from the uniaxial tensile
test as the main criterion of ductility measurement. A larger ultimate
tensile strain often corresponds with
a more ductile material property
[ALU06]. In spite of the easiness of
ALUMINIUM · 3/2007
RESEARCH
this approach there are two disadvantages to distinguish. On the one hand
neither the strain hardening nor the
kind of necking is considered and on
the other hand there can exist clearly
different material properties which
would be seen subjective with different ductilities but are misinterpreted
with the same properties.
Approach In ductility measurement according to Dieter/Lange
The approach according to Dieter/
Lange adopts that materials with large
ductility not only are characterized by
a large ultimate tensile strain but also
posses the ability to compensate local stress peaks to a wider area and
because of this fact sustain to stronger
necking. In praxis this approach can
act as an indicator for slight variation
of material properties of similar alloys very well. At alloys with a highly
different strain hardening behaviour,
many examples with different subjective interpretations but the same
ductility values according to this
approach are detectable. Because of
this the approach according to Dieter/Lange is not for all relevant cases
well-defined.
The limits of previous ductility
measurement using the ultimate tensile strain show the necessity of further approaches and definitions.
New approach in ductility
measurement
The main aim in developing new ductility criterions consists in improving
the prediction of ductile material behaviour and estimating a non time and
money expansive measuring methodology. Referring to former researches
and made approaches results the
consideration of a ductility criterion
with regard to the uniform elongation, strain hardening effects, form of
necking and the ability to compensate
local stress peaks by using objective
indicators. With additional consideration of strain hardening and with this
the closely linked increase of tensile
force, the logarithmic ratio of yield
strains until ultimate tensile strain is
used. In this place this new approach
offers the possibility of inserting the
ALUMINIUM · 3/2007
Fig. 2: Usage of the new ductility criterion
most adequate and material specific
flow criterion. In all mentioned examples here the flow criterion according
to Ludwik is inserted. Because of the
usage of the necking width and the
anisotropy of the material, this proceeding is nearly alike the description
of a formability.
Conclusion
The new developed non dimensional
ductility value offers the opportunity
for objective material characterisation and evaluation. In order to this
numerous sheet, cast and extrusion
profile metals in different alloys and
heat treatments have been researched
to their ductility and the correlation
between form of failure and the material ductility. Fig. 2 shows the comparison of two uniaxial tensile tests of
aluminium sheet metal (AA6016) in
T4-condition upon delivery and T6condition after twenty minutes of artificial aging and 2% of pre-straining.
Evaluating the ductility by a subjective
point of view, the T4 state would be regarded as the more ductile. This is very
well reflected by the ductility rating according to this new methodology.
In this way it’s also possible to compare ductility of sheet, cast and extrusion profile metal alloys which
were hardly comparable with former
approaches in past. Fig. 3 shows a
comparison of these ductility values.
Sheet metal alloys are subject to little variations of ductility and are on
a higher level as the researched aluminium cast alloys at the same time.
It is conspicuous that the largest variation of ductility appears at extrusion
profiles which can be due to the different heat treat-ments and the larger
material thickness.
A further improvement of these
considerations can be attained with
using the material properties at the
most critical state of stress, the planestrain, instead of the measured properties from the uniaxial tensile test.
Because in a dominant state of planestrain stress materials suffer the smallest strains until failure. Correlating to
this the ductility is also at a minimum
value. For common aluminium sheet
alloys both the forming limit curves
and yield loci for the description of
formability is extensively available.
In this case an analytical calculation
of the most critical ductility value in
81
➝
RESEARCH
the plane-strain-stress-state is imaginable. Furthermore the creation
of a “ductility-map”, so called ductility limit curve (DLC), for all relevant
states of stress is desirable and also
realisable.
The main advantage in using valid
ductility criterions consists on the one
hand in a more precise description of
material forming behaviour for simulation and on the other hand in the
now feasible reduction of real part
testing both in car development and
later for quality assurance. For guaranteeing failure safety only in the early
state of material preselection real part
testing has to be made. In dependency
of the respective material behaviour,
for each geometry and state of stress
a minimum tolerable ductility value
can be easily defined. A correlation
between simulation and the minimum
necessary ductility is also imaginable
but an experimental evaluation promises more reliable results. In reverse
the ductility value can also serve as a
design guideline in the early state of
part development on the one hand for
a specific material preselection and
on the other hand for specific preselection of crash profile geometries.
After specification of part and load
depended minimum necessary ductility value the later measurement of
ductility can be done by laboratory
tests. The respective test application
can also be chosen in comparison to
the state of stress of the real work load
situation. A test application which is
very easy to accomplish is the uniaxial
tensile test with a clear stress state. By
this laboratory tests the material depended ductility values can be measured for a long spell, documented and
be used for analysing quality trends.
This new approach is actually in
further validations at Audi Neckars­
ulm. Previous retrospective investigations and testings with existing material data have been done and showed
significant possibilities of estimating
the ductility properties of sheet, extrusion profile and cast aluminium
alloys. Furthermore on the one hand
more data has been accumulated by
comparing ductility properties with
the results of the corresponding crash
tests. And on the other hand this approach is used accompanying to the
series production in quality assurance
and in development of semi-finished
products for the new car models.
These ductility approaches offer
the possibility of a cost- and time-effective quantitative correlation between workability and ductility for
sheet, cast and extrusion profile applications. Thus for the crash-simula-
tion in car development now exists an
objective evaluating criterion which
has to be seen in addition to the laws
of plasticity and with best possible objectivity to forecast a failure because
of cracking.
References
[DIE67] Dieter, George E., Introduction
to Ductility, Paper presented at an American Society for Metals seminar, Ohio, Oct.
1967.
[ALU06] N.N., Alumatter Aluminium Wis­
sens­datenbank, http://www.alumatter.info;
2006.
[LEP03] Leppin, C., Duktilität und Umformbarkeit von Werkstoffen – Werkstoffcharakterisierung, aber wie?, Forschungsbericht Alcan Technology, 2003.
Authors
Dipl.-Ing. Ralf Schleich: Ph.D. student
Hochschulinstitute Neckarsulm (HIN), an
academic cooperation between the Audi
AG and the Institute for metal forming
technology, University of Stuttgart, exploratory focus on materials and test methods
aluminium technology
Dr.-Ing. Manfred Sindel: Head of quality
assurance aluminium technology, Aluminium- und Leichtbau-Zentrum Audi
AG Neckarsulm
Prof. Dr.-Ing. Mathias Liewald: Director
Institute for metal forming technology,
University of Stuttgart
Geesthachter Schweißtage ’06: Festphase Fügeverfahren
GKSS
Erfolgreicher Tagungsverlauf der
„Geesthachter Schweißtage ’06“
unter Leitung von Dr. S. Sheikhi
und Dr. J. F. dos Santos am 22. und
23. November 2006: Die Gruppe
Fügetechnologie des Institutes für
Werkstoffforschung der GKSSFor­schungszentrum Geesthacht
82
GmbH begrüßte 76 Teilnehmern
aus Industrie und Forschung.
Durch die Teilnehmer aus der Ukraine, Polen und Rumänien bekam
die Tagung ein internationales
Flair.
Die industrielle Bedeutung von Festphase-Fügeverfahren wird
deutlich, wenn Werkstoffe
nicht bzw. mit erhöhtem
Aufwand mittels Schmelzschweißprozessen gefügt
werden kön­nen. Daraus ergibt sich ein Forschungsbedarf auf diesem Sektor. Mit
den Vorträgen im Rahmen
der Geesthachter Schweißtage ’06 konnte das Innovationspotenzial und die Ak-
tualität von Fügeprozessen in fester
Phase gezeigt werden.
Das Fügen artgleicher und artungleicher Werkstoffe bedarf angepasster
bzw. geeigneter Fügeverfahren. Dem
wurde mit den in vier Blocks unterteilten Beiträgen Rechnung getragen.
Im Rahmen der Veranstaltung wurden
in den Beiträgen sowohl die Grundlagen der Fügeprozesse in fester Phase
(Reib-, Rührreib-, Diffusions-, Magnetimpuls- und Ultraschallschweißen)
als auch deren Anwendung bzw. aktuelle Forschungsaktivitäten wiedergegeben. Die Aktualität der Fügeprozesse in fester Phase wurde besonders
durch den Beitrag von Prof. Wilden,
„Neuartige „Lösungswege zum Fügen
durch Ausnutzung von Größeneffekten“, untermauert.
ALUMINIUM · 3/2007
➝
EVENTS
Neue Entwicklungen, Anwendun­gen
und Trends im Reib- und Diffusionsschweißen zeigten u. a. Beiträge wie:
• Hochgeschwindigkeitsreibschweißen von metallischen Verbindungen
• Präzisionsreibschweißen erschließt
neue Anwendungsfelder
• Reibpunktschweißen von Aluminiumlegierungen
• Anwendungsbeispiele für das Diffusionsschweißen von Stahl- und Ti-
tanwerkstoffen
• Strategien zur Erhöhung der Bauteilfunktionalität durch Diffusionsschweißen.
Das Fügen von meist in Mischbauweise (z. B. aus Stahl, Aluminium,
Magnesium und Polymere) geplanten
Strukturen ist eine große Herausforderung für die Industrie. Mit dem
Ultraschallschweißverfahren konnte
ein Lösungswegs für die Herstellung
solcher Mischverbindungen gezeigt
werden. Die Besichtigung des Fügetechnologielabors des GKSS-Forschungszentrums mit Schweißversuchen an unterschiedlichen Anlagen
rundete die Veranstaltung ab. Hier
wurde den Tagungsteilnehmern Ultra­
schall-, Reib-, Rührreib- und Reibauftragschweißen präsentiert.
S. Sheikhi
Einführung in die Technologie des Aluminiums
RWTH Update-Seminar, 26. bis 28. März 2007, Aachen
Das aec – aluminium engineering cen­­
ter aachen, die RWTH Internatio­nal
Academy GmbH und der Gesamtverband der Aluminiumindus­trie e.V.
veranstalten in Kooperation vom 26.
bis 28. März 2007 ein Fortbildungsseminar zum Thema „Einführung in die
Technologie des Aluminiums“.
Namhafte Professoren der Rheinisch-Westfälisch Technischen Hoch­
schule (RWTH) Aachen referieren
über Metallurgie, Herstellung und
Ver­arbeitung von Aluminium. Im Lau­
fe der Veranstaltung wird von metall­
kund­li­chen Grundlagen ausgehend
die gesamte Prozesskette durchlaufen, angefangen von der Erzeugung
von Primär­aluminium über die Gieß-
prozesse, die Bandumformung bis hin
zur Beschichtung und Prüfung fertiger
Bauteile. Die Teilnehmer erhalten sowohl auf theoretischer als auch auf
praktischer Ebene einen umfassenden
Überblick über die einzelnen Schritte
in der Prozesskette.
Die Teilnehmer werden durch
Präsentationen in die jeweiligen Themengebiete eingeführt, deren theoretischer Inhalt später in praktischen
Ver­suchen nachvollzogen wird. Die
Prak­tika setzen sich dabei aus Vorführversuchen von Gieß-, Umform-,
Schweiß- und Beschichtungsprozes­
sen für Aluminiumlegierungen, wie
sie in der Industrie Anwendung finden, und abschließend aus einer dy-
namischen Bauteilprüfung am Fallturmprüfstand zusammen.
Das Seminar richtet sich vor allem
an Naturwissenschaftler, Ingenieure
und Techniker aus der Aluminiumindustrie und der Aluminium verarbeitenden Industrie ohne ausgeprägten
werkstoffwissenschaftlichen Hintergrund, ist aber auch für Kaufleute z.
B. aus Vertrieb und Einkauf geeignet,
die sich einen technischen Überblick
über Aluminium verschaffen wollen.
Anmeldeunterlagen und weitere Informationen: RWTH International
Academy GmbH, Friederike Wolter,
Tel: 0241 8099 367, E-Mail: info@
rwth-academy.com
Metallurgy-Lithmash 2007
Johannes Theimer
28 to 31 May 2007, Moscow, Russia
A total of 300 exhibitors from 16 countries presented their latest products
and technologies at the concurrent
staging of Tube Russia 2006, Metallurgy-Litmash 2006 and Aluminium/Non-Ferrous 2006 in Moscow.
More than 8,000 visitors from the
ALUMINIUM · 3/2007
Russian Federation and neighboring states participated to
view the equipment displayed
on over 34,000 square feet of
exhibit space. The three trade
fairs were organized by Messe
Düsseldorf in cooperation with
leading national and international associations. The annual
event has established itself as
the leading international platform
for the casting, metallurgy, aluminum
and tube and pipe industries in the
Russian Federation. National pavilions from Germany, Austria and Italy
will be represented with joint stands
at Metallurgy-Litmash, Tube Russia,
Aluminium/Non-Ferrous 2007. The
exhibitors were pleased with their
participation and reported promising
business contacts. The next staging of
Tube Russia, Metallurgy-Litmash and
Aluminium/Non-Ferrous will take
place in May 2007 in Moscow – this
time concurrently with wire Russia
2007. For further information on visiting or exhibiting the fair, contact
Messe Düsseldorf North America, 150
North Michigan Avenue, Suite 2920,
Chicago, IL 60601
Tel: (312) 781-5180
e-mail: info@mdna.com
www.mdna.com.
83
EVENTS
ExpoAlumínio 2007 in São Paulo, Brazil
MFO
22 to 24 May 2007, Exhibition Centre Imigrantes
The variety of products and solutions that include aluminium makes
this metal a perpetual source of new
businesses. The companies in the
industry search, inside and outside
Brazil, technological developments
that add value and increase the use
of aluminium. This will be shown at
the 2007 edition of the International
Aluminium Exhibition in São Paulo,
22 to 24 May 2007 – ExpoAlumínio.
After the successful launch of a series
of international aluminium shows
held in Germany, Shanghai and Chicago, German Reed Exhibitions and
the Aluminium Association of Brazil
(Abal) are joining forces to launch
an Aluminium International Pavilion
during this event.
At the trade fair, around 100
expected exhibitors from South
and North America, Europe,
and the rest of the world will
present products, technologies,
and services for aluminium
production and processing. The
pavilion was specially designed
to receive Brazilian and international companies that will be able to
show new equipment and machines.
It will be an excellent opportunity to
disseminate institutionally your company, generate new businesses and
introduce products, equipment, services and technological innovations.
The same place will join companies,
professionals from the entire aluminium chain and its consumer sectors,
such as packaging, civil construction,
machinery, equipment and consumer
goods, etc.
The concept of the Aluminium International Pavilion includes a high
quality full service stand in a good hall
location, networking and lounge facilities, business centre and professional
preparation and on-site-services from
the German aluminium team.
A conference, organised by Abal,
will take place alongside the ExpoAlumínio. Estimated 1,000 attendees,
including international delegates are
expected. The conference programme
will cover the latest developments in
aluminium markets, technologies
and applications. Themes are: smelting, casting, mechanical processing,
surface treatment, sustainable development, recycling, refractories, technological innovations in process and
products.
Organiser of ExpoAlumínio is Abal.
Further information: Tel: +55 11 5084
1544, aluminio@abal.org.br
Organiser of the Aluminium International Pavilion ist Reed Exhibitions
Deutschland. Further information:
Tel: +49 (0)211 90 191 232 / -265,
e-mail: uhuelbach@reedexpo.de (Ulrike Hülbach, project manager) or
oschick@reedexpo.de (Olga Schick,
project assistant), www.reedexpo.de
Call for papers
Extrusion Workshop and 2nd Extrusion Benchmark
20 to 21 September 2007, Bologna, Italy
The demand for properties and quality in extruded profiles stretches to
the limit the ability of extruders and
die makers: ever more complex sections, hard alloys, emerging technologies, microstructure control, are just
some of the every-day manufacturers’ concerns. Key factors for innovation as well as competitiveness are a
skilled engineering analysis and reliable software; however, no reference
community exists for the extrusion
analyst and a common basis for evaluating commercial codes capabilities
is absent.
This two-in-one event provides a
unique opportunity:
• to know the state of the art of the
emerging technologies, innovation
84
and simulation capabilities in the extrusion of light alloys
• to get guidelines for best process
analysis and product optimization
• to understand the potential of your
current simulation tool
• to have the widest information on
extrusion simulation today.
The workshop will be focused on
the latest advances in the extrusion
of light alloys and the related simulation issues. Invited papers by leading
industries will give the state of the
art about ongoing research in extrusion technology. Workshop deadline
for abstract submission is 20 March
2007.
2nd Extrusion Benchmark: Participants are asked for simulating the
extrusion of an industrial case (an especially designed multi-hole die for
emphasizing process-related issues),
on the base of die geometry, material
properties, temperature of billet and
die system, ram speed. The results will
be compared to the experiments, as
performed by the organizers, on the
base of extruded length, profile temperature, profile distortions, press
load. The event addresses to extruders (R&D, production managers), academic and industrial researchers, die
builders, software houses, press and
equipment builders.
Further information:
Tel: +39 051 2090 494
lorenzo.donati@mail.ing.unibo.it
http://diemtech.ing.unibo.it/extrusion07
ALUMINIUM · 3/2007
EVENTS
GDA-Seminar, 21. bis 22. März 2007
Fügen von Aluminiumprofilen und -blechen
Die erfolgreiche Entwicklung und Anwendung von Leichtbaustrukturen ist
immer auch eine Frage der geeigneten
Fügeverfahren für (dünnwandige)
Bauteile. Einen Überblick zum Stand
der Technik und zu neuen Entwicklungen gibt das Seminar „Fügen von
Aluminiumprofilen und -blechen“,
das der Gesamtverband der Aluminiumindustrie (GDA) am 21./22.
März 2007 gemeinsam mit der SLV
Schweißtechnischen Lehr- und Versuchsanstalt Duisburg veranstaltet.
Unter der Leitung von Wolfgang
Heidrich, GDA-Referent für Maschinenbau, informieren Spezialisten
aus der Industrie über die diversen
Fügeverfahren vom Kleben über das
Schrauben und weitere kalte Fügeverfahren bis zum Schweißen und
Löten. Es werden korrosionstechnische Aspekte der verschiedenen
Verfahren, insbesondere bei Multimetallkonstruktionen, thematisiert
sowie Aspekte des Verfahrensablaufs, der Qualitätssicherung und der
Verarbeitungstechniken vorgestellt.
Darüber hinaus werden praktische
Vorführungen und Demonstrationen
von Geräten angeboten.
Das Seminar richtet sich in erster
Linie an Anwender aus Automotive,
Bauwesen und Maschinenbau. Details des Programms sowie Anmeldeunterlagen sind über den GDA, Monika Fuchß, Tel. 0211/4796-285, Fax:
0211/4796-410, zu erhalten. Weitere
Informationen zum Inhalt gibt Wolfgang Heidrich, Tel. 0211/4796-271.
6th Aluminium Two Thousand World
Congress
Tel: 069 75306 747
verbund@dgm.de
www.dgm.de
birgt große Einspar- und Rationalisierungspotenziale.
Weitere Informationen:
Tel: + 49 (0)211 6214-403
www.vdi-wissensforum.de
bömke-carthaus@vdi.de
13-17 March 2007, Florence, Italy
Aluminium Two Thousand is already
considered the event of 2007 in the
aluminium industry. The subjects
range from markets and analysis of
the aluminium industry in future to
foundry, casting, extrusion, anodizing
and coating, automation, architecture,
transport industry, environmental protection and recycling, measuring, testing and quality techniques. In other
words: It is the large aluminium world
for an international audience.
Further information:
Tel: +39 059 2823 90
info@interall.it
www.aluminium2000.com
16. Symposium: Verbundwerkstoffe
DFO-Leichtmetall-Tagung
20. und 21. März 2007, Neuss
Thema der Tagung: Die Oberflächenbehandlung von Leichtmetallen. Im
Vor­dergrund stehen die Vorbehandlung, anodische Oxidation und PVD/Plasmabeschichtung von Aluminium.
Es werden moderne Korrosions- und
Verschleißschutzsysteme vorgestellt.
Wei­tere Tagungsthemen betreffen den
Werkstoff Magnesium.
Weitere Infos:
Deutsche Forschungsgesellschaft für
Oberflächenbehandlung e. V. (DFO)
Tel: +49 (0)2131 40 811 10
service@dfo-online.de
www.dfo-online.de
14. bis 16. März 2007, Bremen
Innovative Verbundlösungen entwi­
ckeln sich zunehmend als Trä­ger
tech­nologischer Fortschritte. Die
umfasst
Ver­bundwerkstofftechnik
heu­te zahlreiche Vertreter moder­ner
Hoch­leistungswerkstoffe und Ferti­
gungs­techniken. Dabei reicht das
Spek­trum von faserverstärkten Leicht­
bauwerkstoffen, zellularen Strukturen
bis zum Kleben hoch beanspruchter
Flugzeugteile und zu neuen Hybriden
und Kompositen an der Schnittstelle
Materialtechnik/Biosphäre.
Further information:
DGM Deutsche Gesellschaft für Materialkunde
ALUMINIUM · 3/2007
16. Deutscher Materialfluss-Kongress
29. und 30. März 2007, Garching
Unter dem Motto „Intralogistik bewegt
– mehr Effizienz, mehr Produktivität“
werden mehr als 600 Experten über
die Zukunft der Logistiktechnologie
dis­kutieren, Forschungsergebnisse vor­
stellen und Pi­lotanwendungen demons­
trieren. Praxis­berichte über Innovationen aus Industrie und Handel über
logistische Technologien, Verfahren
und Konzepte werden die Zukunftsfähigkeit der Trends der Intralogistik
unter Beweis stellen. Im Fokus des
Kon­gresses: die Kostensenkung und
Ef­fi­zienzsteigerung. Die Intralogistik
World Energy Dialogue
17. bis 19. April 2007, Hannover
Energieeffizienz ist das Schwerpunktthema des World Energy Dialogue, der
2007 erneut zentrales TechnologieEvent im Rahmen der Hannover Messe
sein wird. Auch der zweite Fachkongress versteht sich als Plattform für
die relevanten energietechnologischen
Fragestellungen und Lösungsansätze
unserer Zeit. Der World Energy Dialogue 2007 wird vom BDI und der Deutschen Messe AG veranstaltet.
Weitere Informationen:
Deutsche Messe AG
Tel: +49 (0)511/89-31156
uta.philipp@messe.de
www.world-energy-dialogue.com
Alumex 2007
22 to 24 April 2004, Dubai, U.A.E.
Alumex 2007 is the 4th Middle East
aluminium exhibition with focus on
the state-of-the-art technologies and
strategies in manufacturing, processing, surface treatment and conversation of aluminium to structural products. The exhibiton will be accompanied in parallel by a conference that
will place emphasis on applications in
building.
85
➝
EVENTS
Further information:
Tel: +971 4 2667886
tcfmdxb@emirates.net.ae
www.alumexdubai.com
Int. Minor Metals Conference 2007
Fortbildung
Rechte und Pflichten des Immissionsschutz- und Störfallbeauftragten,
13. März 2007, Hamburg
TÜV Nord Akademie, Tel.: 040 8557-2290
E-Mail: akd-hh@tuev-nord.de
25 to 27 April 2007, Tallinn, Estonia
The MMTA‘s conference is held biennially and brings together the world’s
minor metals industry to discuss current and future trends. The programme
focuses on emerging technologies in
electronics, automotive, energy and
terrestrial uses, as well as the role of
renewable resources and energy - all
areas where there is the potential for
exciting growth in demand for a wide
range of minor metals.
Further information:
Tel: +44 (0)20 7659 2022
events@metalevents.com
www.metalevents.com
14. DFO Automobil-Tagung
Wirtschaftliche und technologische Aspekte endkonturnaher Fertigungsverfahren, 13. bis 14. März 2007, Stuttgart
VDI-Wissensforum, Tel: 0211 6214-201
E-Mail: wissensforum@vdi.de
Professionelle Informationsbeschaffung aus Internet und Datenbanken,
13. bis 15 März 2007, Regensburg
Ostbayer. Technologie-Transfer-Institut (Otti), Tel: 0941 29688 27,
E-Mail: hermann.koestlbacher@otti.de, www.otti.de
Qualitätswerkzeuge: Methoden und Instrumente für die Verbesserungsarbeit, 13. bis 14. März 2007, Düsseldorf
VDI-Wissensforum, Tel: 0211 6214-201 E-Mail: wissensforum@vdi.de
Führen ohne Vorgesetzen-Funktion, 20.-22.03.2007, München
Euroforum, Tel: 0211 9686 3641,
E-Mail: judith.rodig@euroforum.com, www.euroforum.de
8. und 9. Mai 2007, Bad Kissingen
Zum 14. Mal treffen sich Fachleute
der Automobilbranche zu dieser drei­
sprachigen Veranstaltung mit hochkarätigen Fachvorträgen und den persönlichen Gesprächen der Fachwelt
am Rande der Tagung. Thematische
Schwerpunkte sind: Neue Lacksyste­
me und Beschichtungsaufbauten, Entwicklung innovativer Beschichtungskonzepte, Berichte aus europäischen
Automobillackierereien, Online-Messtechnik in der Serienlackierung.
Weitere Informationen:
Deutsche Forschungsgesellschaft für
Oberflächenbehandlung e. V. (DFO)
Tel: +49 (0)2131 40 811 10
service@dfo-online.de
www.dfo-online.de
European Coatings Show 2007
8 to 10 May 2007, Nuremberg, Germany
The European Coatings Show 2007
plus Adhesives, Sealants, Construction
Chemicals and the Nürnberg Congress
(7 to 9 May 2007) present a broad range
of top information and contact opportunities for the international coatings
and paint industry. Products on display:
Coating, printing ink and adhesive raw
materials, intermediates for construction chemicals, laboratory and production equipment, testing and measuring
equipment, application, evironmental
protection and safety at work.
86
Der Entwicklungsleiter, 23. bis 25. April 2007, Beilngries
Ostbayer. Technologie-Transfer-Institut (Otti), Tel: 0941 29688 21,
E-Mail: margit.zierl@otti.de, www.otti.de
Controlling im Einkauf, 23. bis 24. April 2007, Essen
Haus der Technik, Tel: 0201 1803 345, E-Mail: information@hdt-essen.de
Vermeidung von Fehlern bei Konstruktion, Verarbeitung, und Betrieb
von Bauteilen und Anlagen aus metallischen Werkstoffen, 3. bis 4. Mai
2007, Essen
Haus der Technik, Tel: 0201 1803 344, E-Mail: information@hdt-essen.de
Key Account Management, 24. bis 26. April 2007, Düsseldorf
Euroforum, Tel: 0211 9686 3648,
E-Mail: monique.broemel@euroforum.com, www.euroforum.de
Further information:
Tel: +49 (0)911 8606 8115
ecs@nuernbergmesse.de
www.european-coatings-show.com
IMA’s 64th Annual Magnesium Conference
13 to 15 May 2007, Vancouver, Canada
Main topics: Automotive and non-automotive applications, environmental
considerations, new emerging technologies, new process technologies,
part processing.
Further information:
Tel: ++ 847-526-2010
info@intlmag.org
www.intlmag.org
Schweißen & Schneiden Russia
28. bis 31. Mai 2007, Moskau
Die Nachfrage nach Schweißtechnik
westlichen Standards nimmt in Russland stark zu. Die erstmals in Moskau
stattfindende Messe dreht sich rund
um das Schweißen, Schneiden und die
verwandten Verfahren. Sie findet bewusst im Umfeld themenverwandter
Messen der Metallverarbeitung und bearbeitung (u. a. Metallurgy-Litmash,
Tube/Wire Russia, Aluminium-Non
Ferrous) statt.
Weitere Informationen:
Tel: +49 (0)201 7244-227
regiani@messe-essen.de
www.messe-essen.de
ALUMINIUM · 3/2007
, Sarah
t
esign
Nichols
entdeck
m by D
u
in
m
rstmals
e
i­
Alu
t
e
r
s
e
d
n
un
. Vo
9. Jahrh
ie Gold
ll
m im 1
stbar w
o
iu
k
de Meta
in
n
d
e
m
n
glänz
lten u
n
e
d
r
Als Alu
s
n
e
u
o
b
s
il
e
s
s
ieur
das
war e
ute hat
r, Ingen piriert.
e
e
wurde,
h
n
is
ig
s
b
e
s
r, D
fängen
beiten in d er­
Künstle
nen An
hen Ar
c
un
rößten
li
g
n
n
r
h
fe
e
r
ö
d
o
entw
ßergew
einige
m
u
ger,
a
iu
u
in
z
nisschlä
Alum
kten
n
e
e
in
it
T
h
h
r
c
c
r
e
u
g
A
ht a
te bis
bsau
was nic
stobjek
le, Stau
n
u
ie
p
K
,
s
e
n
Nichts,
d
arte
, Mo
, Auto­
urde: K
chmuck fen für Häuser
S
,
e
il
probt w
b
o
ür
Wohnm
n Entw
Lampen
hnliche
ö
w
lumi­
.
e
r
g
h
r
uße
talog „A
iel me
a
v
K
h
c
m
li
hin zu a
e
d
en
in d
it. Der
und un
chönhe
rbeiten
S
A
r
n
e
e
d
mobile
lt
n
che
­Verlag
samme
on beste eitausendeins
v
Die ver
d
in
s
Zw
llen zu
Design“
aber im
Er ist a
.
d
n
ir
te
w
num by
o
,
b
u
e
htliche
ange
t nicht n
geschic
npreis
n
e
ig
h
s
c
e
Band is
p
d
p
ä
grafier­
und
m Schn
end foto men
kultur­
g
a
e
r
r
zu eine
in
o
e
v
h
er
len, die
d von h
unterne
empfeh
e anhan
eiträgen
is
s Car­
e
tb
r
e
x
s
d
e
g
T
g
n
u
tellun
ltigen
s
ä
s
lf
u
Entdeck
ie
A
v
r
er 2000
ine
ern und
rt auf e
n Oktob
ie
o
s
v
a
b
ten Bild
ie
d
d
,
ounda­
Der Ban rt in Pittsburgh
Alcoa F
r
e
d
wollen.
A
g
f
n
o
tzu
useum
nterstü
d
negie M
1 mit U
0
0
2
nk Lloy
r
a
ru
von Fra
n
­
bis Feb
u
fe
r
e
r
ü
B
cel
Entw
ttfand.
er, Mar
nd den
ll
u
u
tion sta
n
F
.
h
r
ig
c
s
te
s
s
li
De
uckmin
ext eng
Mit dem
agner, B e Starck u. a. T
W
o
tt
O
ipp
Wright,
es, Phil
rles Eam
a
h
C
,
r
e
Seiten.
der. 296 ter Einband.
il
B
­
e
n
es
oto
120 Du
ftung. F
b­ und
adenhe
r
F
a
.
F
m
0
c
4
2
33
mat 25x
eins.de
Großfor
.
ausend
€
it
9
e
,9
w
4
.z
1
Preis:
ter www
ngen un
Bestellu
NEUE BÜCHER
The current Aluminium Suppliers
Directory 2007
The standard reference work for eve­
ryone who works with aluminium. The
directory has more than 5,000 source
references, encompassing 800 com­
panies in the aluminium producing,
processing and supply industry and a
wide range of service providers. The
companies present their products and
services from production via equip­
ment to applications. Technical mar­
ket information, comprehensive deal­
er references and addresses of testing
institutes, expert assessors complete
this directory. It is now available at
no charge, freely accessible on www.
alu-lieferverzeichnis.com. Here com­
prehensive search functions facilitate
structured and easy research. The
directory is published as a combined
German/English edition and costs 16
euros plus postage and packing.
It can be ordered from:
Fax: +49(0)211-1591-379,
e-mail: a.tappen@alu-verlag.de,
„Die GmbH“-CD
Per Mouseklick rechtssicher schnell entscheiden
GmbH-Geschäftsführer müssen mehr
als 100 wichtige Gesetze und Vor­
schriften beachten. Tatsächlich aber
kennen sie durchschnittlich höch­
stens ein Fünftel davon wirklich und
nicht nur dem Namen nach, so der
WRS Verlag München/Planegg. Viele
Neuregelungen und Änderungen
2007 machen das Dickicht büro­
kratischer Regelungen für die rund
850.000 GmbHs in Deutschland noch
unüberschaubarer. Dabei auch noch
immer neue Gerichtsurteile im Blick
zu haben, ist vielen Geschäftsführern
kaum mehr möglich. Der WRS Verlag
hat mit der CD-ROM „Die GmbH“
eine Praxis-Software entwickelt, die
den Paragrafendschungel lichtet. Ver­
bunden damit sind praxis- und fall­
orientierte Entscheidungshilfen bis
hin zur eigenen Karriereplanung samt
privater Absicherung und Vorsorge.
Rechtssicherheit und Aktualität ha­
ben dabei oberste Priorität. Die On­
line-Aktualisierung sorgt dafür, dass
der Geschäftsführer stets up-to-date
ist. Somit versäumt er z. B. keine neue
für ihn wichtige Rechtsprechung.
Egal, ob es um Personalführung,
den besten Überblick über die Finan­
zen des Unternehmens samt Con­
trolling-Instrumenten‚ Steuern und
Betriebsprüfung, Krisenmanagement,
Haftungsfragen oder den Beirat geht,
„Die GmbH“ gibt mit ein paar Mou­
se-Klicks Auskunft und macht Hand­
lungsvorschläge. Rechner, Verträge,
Formulare und Checklisten vervoll­
ständigen den Nutzwert. Grundge­
danke ist laut WRS Verlag die Alltags­
erfahrung jedes GmbH-Geschäftsfüh­
rers: Wie entscheide ich möglichst
schnell rechtssicher richtig.
WRS Verlag, „Die GmbH“ (CD-ROM),
Preis € 68,00, Bestell-Nr. 06163, Be­
stellungen: Tel: 089/89517-288, EMail: bestellung@wrs.de
Guss im konstruktiven Ingenieurbau
Bauteile aus Eisen- und Aluminiumwerkstoffen in Tragwerken
Konstruktive Ingenieurbauten sind
Tragwerke, die auf der Grundlage von
Ingenieurmethoden entworfen, be­
mes­sen und ausgeführt werden. Ihre
Gebrauchstauglichkeit und Sicherheit
müssen den baurechtlich vorgeschrie­
benen Mindestanforderun­gen ge­nü­
gen. An Stellen mit komplexer Ge­
stalt und besonderer Beanspru­chung
kommen bei derartigen Konstrukti­
onen Gussstücke zur Anwen­dung. Die
Zusammenhänge, die beim Entwurf,
bei der Bemessung, Kon­struktion,
Beschaffung und Verarbeitung von
Gussstücken hilfreich sind, werden
88
in diesem praxisbezogenen Fachbuch
ausführlich beschrieben. Die Lektüre
dieses Titels trägt zu einem gegensei­
tig besseren Verständnis der beiden
Fachkreise – dem konstruktiven In­
genieurbau und der Gießereitechnik
– bei. Noch nicht ausgeschöpfte Po­
tenziale bei der Anwendung von Guss­
stücken in Metallkonstruktio­nen zur
besseren Gestaltung und wirtschaft­
licheren Fertigung können dadurch
optimaler genutzt werden.
DVS-Verlag GmbH, Schweißtechni­
sche Praxis Band 33, 2006, 150 Seiten,
broschiert, € 29,- Bestell-Nr. 200033,
ISBN 3-87155-548-0
ALUMINIUM · 3/2007
LITERATURE SERVICE
Dannbauer, H., Gaier, C., Dutzler, E., Halaszi, C.
Development of a model for the stiffness and life time
pre­diction of self piercing riveted joints in automotive com­
ponents / Entwicklung eines Modells zur Vorhersage der
Steifigkeit und Lebensdauer von Stanznietverbindungen bei
Automobilteilen
MP Materialprüfung 11-12/2006, S. 576-581
Steifigkeit und Festigkeit von Leichtbauteilen in der Automobil­
industrie werden massiv durch die Eigenschaften ihrer Füge­
verbindungen beeinflusst. Die verwendete Fügetechnologie, die
Anzahl und die Lage der Punktfügungen haben dabei sowohl ei­
nen großen technischen als auch wirtschaftlichen Einfluss. Das
Festigkeitsverhalten von Punktschweißungen lässt sich allein
durch die Erhöhung der Festigkeit des Blechs nur sehr gering
erhöhen. Durch die Verwendung von hochfesten Stählen ist da­
her die Verwendung von mechanischen Fügetechnologien wie
Stanznieten oder Durchsetzfügen empfehlenswert, da sie sich
durch höhere Festigkeitswerte auszeichnen. Durch Leichtbau­
weise und Sicherheitsaspekte wird die Bedeutung von höher­
festen Stählen in der Karosserieentwicklung immer größer. Für
eine effiziente Konstruktion und Optimierung dieser komple­
xen Strukturen werden zuverlässige CAE-Techniken benötigt.
Bei Punktschweißungen bestehen bereits gute Modelle für die
Bewertung der Steifigkeit und der Lebensdauer für komplexe
Strukturen, wie z.B. Karosserien. Es gibt jedoch noch keine aus­
reichenden Berechnungsmodelle für Stanznietverbindungen,
da die Festigkeitseigenschaften für mechanische Fügungen we­
sentlich schwieriger abzubilden sind. Daher wurde ein Ersatz­
modell entwickelt, das die korrekte lokale Steifigkeit abbildet
und eine Bewertung der Lebensdauer ermöglicht. Basierend auf
Daten aus Probenversuchen wurde das Ersatzmodell ähnlich
dem, das bereits bei Punktschweißungen Verwendung findet,
unter der Berücksichtigung von zusätzlichen Parametern ent­
wickelt, um eine gute Übereinstimmung mit dem Versuch zu er­
reichen. Zusammenfassend deckt das Ersatzmodell jene Größen
ab (Blechdicke, Stanznietdurchmesser), die im Automobil- und
leichten Nutzfahrzeugbau Verwendung finden. 9 Bild., 5 Que,
in engl.
ALUMINIUM 3 (2007)
Umformen, Verbinden
Kießling, R., Hübner, P., Biermann, H.
Bruchverhalten von ultrafeinkörnigen Werkstoffen bei stati­
scher und zyklischer Beanspruchung
MP Materialprüfung 11-12/2006, S. 547-552
An ultrafeinkörnigen Werkstoffen aus Aluminium, Kupfer, Ti­
tan und Al-1,5MgScZr wurden statische und zyklische Bruch­
mechanikkennwerte ermittelt. Bei statischer Beanspruchung
wiesen alle untersuchten ultrafeinkörnigen Werkstoffe Riss­
widerstandsverhalten auf, das durch duktile Bruchflächen­
morphologien bestätigt wurde. Bei zyklischer Beanspruchung
wurden verringerte Schwellenwerte und geringere Risswachs­
tumsgeschwindigkeiten im Bereich II der Risswachstumskurve
ermittelt. 10 Bild., 21 Que.
ALUMINIUM 3 (2007)
prinzipiell das Fügen von Blechen mit Festigkeiten unter 600
N/mm² als prozesssicher. Ab dieser Festigkeit kommt es ver­
einzelt und beim Fügen von Blechen noch höherer Festigkeiten
vermehrt zu Radialrissen im Fuß des Standnietelements. Die
Ursachen der häufigsten Bruchentstehungen und deren Charak­
terisierung werden im Artikel bestimmt. 11 Bild., 4 Que.
ALUMINIUM 3 (2007)
Kättlitz, W.
On-line Messung des Wasserstoffgehaltes in Aluminium­
schmelzen
Giesserei-Praxis 11/2006, S. 339-342
Die Qualität eines Gussteils steht in direktem Zusammenhang
zur Qualität der Schmelze, aus der das Produkt gefertigt wird.
„To pour or not to pour“ fragt sich der Gießer oft; dies unter­
streicht das Dilemma, die Schmelzequalität vor dem Gießen
richtig zu bewerten. Gießereien werden nur dann wettbewerbs­
fähig bleiben, wenn die Ursache für Ausschuss früh genug im
Herstellprozess erkannt wird und Gegenmaßnahmen ergriffen
werden, um den Ausschuss auf einem technisch und wirtschaft­
lich akzeptablem Anteil zu halten. In Aluminiumschmelzen
haben zwei externe Verunreinigungen einen großen Einfluss
auf die endgültige Qualität der Gussteile: nicht-metallische
Einschlüsse und gelöster Wasserstoff. Daher muss es das Ziel
zukünftiger Entwicklungen sein, den Wasserstofflevel in der
Schmelze quantitativ zu bestimmen und bis zum Gießvorgang
unter Kontrolle zu halten. In dem Beitrag wird ein neues Mess­
verfahren vorgestellt, das eine Wasserstoffbestimmung on-line
in der Schmelze vornimmt und somit eine reale Prozesskon­
trolle erlaubt. 9 Bild.
ALUMINIUM 3 (2007)
Schmelzen
Egner-Walter, A.
Vorhersage des Verzuges dünnwandiger Druckgussteile
Giesserei 93 12/2006, S. 26-31
Die Beherrschung des Verzugs gegossener dünnwandiger Struk­
turbauteile stellt eine große Herausforderung für die Fertigung
dar. Voraussetzung hierfür ist eine genaue Kenntnis der Mecha­
nismen der Verzugsentstehung sowie ihrer bauteilspezifischen
Auswirkungen. Mit Hilfe moderner Simulationsmethoden ist
man heute in der Lage, sowohl den Verzug aufgrund des Gieß­
prozesses und des Stanzens als auch aufgrund der Wärmebe­
handlung genau vorherzusagen. Basierend auf diesen Ergebnis­
sen können dann Optimierungsmaßnahmen abgeleitet werden:
hinsichtlich des Fertigungsprozesses, der Gestalt des Werkzeugs
sowie der Vorkorrektur des Verzugs im Werkzeug. Der Verzug
bei der Wärmebehandlung kann durch simulationsunterstützte
Entwicklung geeigneter Lagergestelle minimiert werden. Mit
den neuen Programmentwicklungen unterstützt die Simulation
den Druckgießer bei der Fertigung dünnwandiger Strukturbau­
teile. 15 Bild., 2 Que.
Materialprüfung
ALUMINIUM 3 (2007)
Eckstein, J., Ruther, M., Roll, K., Roos, E., Seidenfuß, M.
Analyse der Versagensformen beim Halbhohlstanznieten
Schweißen und Schneiden 58 (2206) Heft 11, S. 594-601
Die konsequente Umsetzung innovativer Leichtbaukonstruk­
tionen im Automobilbau stellt immer komplexere Anforde­
rungen an die Fügetechnologie. Kommen bei artgleichen Stahl­
verbindungen vor allem thermische Fügetechnologien zur
Anwendung, werden bei Verbindungen zwischen Stahl und
Aluminium mechanische Fügetechnologien wie Clinchen und
Halbhohlstanznieten eingesetzt. Beim Halbhohlstanznieten gilt
ALUMINIUM · 3/2007
Umformen, Verbinden
Formguss, Gütekontrolle
Mao, H., Brevick, J. R.
Untersuchungen zu extern erstarrten Bestandteilen beim
Kaltkammerdruckgießen
Druckgusspraxis 7/2006, S. 285-292
Das Druckgießverfahren ist ein endabmessungsnahes Formge­
bungsverfahren, bei dem flüssiges Metall in eine mehrfach nutz­
bare metallische Form eingebracht wird. Der Anteil der Schmel­
ze, welcher in der Gießkammer erstarrt, bevor das Metall im
Formhohlraum ist, wird als „extern erstarrter Bestandteile“
89
LITERATURSERVICE
(externally solidified products – EPS) bezeichnet. Diese vorzei­
tig erstarrten Bestandteile haben Auswirkungen auf das Fließ­
verhalten der Schmelze, die Formfüllung, die Mikrostruktur
und die mechanischen Eigenschaften der hergestellten Guss­
teile. Gegenstand der vorgestellten Forschungsarbeiten war
die Durchführung von Versuchen und die Entwicklung eines
Computermodells zur Vorhersage des Gehalts und die Vertei­
lung der ESP, die sich während der Gießkammerfüllung und der
anschließenden Stillstandszeit bilden. 14 Bild., 10 Que.
ALUMINIUM 3 (2007)
Druckguss
folgerungen für die unterschiedlichen stofflichen Eigenschaften
über den Querschnitt eines Zylinderkopfes gezogen. Aus einer
kombinierten Bewertung von Werkstoff und Gießverfahren auf
der Grundlage umfänglicher Untersuchungen wird auf die Do­
minanz des Gießverfahrens verwiesen. Abschließend werden
Entwicklungstendenzen für die Zylinderköpfe abgeleitet. Mit
der weiteren Steigerung der Leistung der Verbrennungsmo­
toren werden sowohl weiterentwickelte Al-Legierungen als
auch Gusseisenwerkstoffe zum Einsatz gelangen. Auf mögliche
Verbesserungen des Fertigungsprozesses wird verwiesen. 23
Bild., 31 Que.
ALUMINIUM 3 (2007)
Pohl, C., Sonsino, C. M., Weise, J., Haesche, M.
Kennwerte der neuen Mg-Legierung MRI-3 unter Miss­
brauchs-, Sonder- und zyklischen Belastungen
Giesserei 93 12/2006, S. 20-25
Neue Magnesiumlegierungen für die Herstellung von ChassisKomponenten für PKW wurden für die Verfahren Sandgießen,
Druckgießen und Squeeze-Casting entwickelt und hinsichtlich
ihrer technologischen und Werkstoffeigenschaften getestet. Ein
Schwerpunkt lag hierbei auf Untersuchungen der Betriebsfe­
stigkeit von Bauteilen (Getriebelagerung) bzw. bauteilentnom­
menen Proben. Bei der vorgestellten Squeeze-Cat-Legierung
MRI-3 zeigten die Kennwerte aus Zug- und Wirkversuchen eine
große Abhängigkeit von Gefügeungänzen. Die Auswertung der
tatsächlichen Schadenssumme bei Bauteilversuchen ergab ein
Dtat im Bereich von 2. Allerdings liegt dieser Wert im Rahmen
der bekannten Streuungen der tatsächlichen Schadenssumme;
deswegen wird für eine Vorbemessung eine Schadenssumme
von Dzul = 0,5 empfohlen. Eine plastische Vorverformung im
Anrissbereich des Bauteils bis 0,75 % reduzierte dessen Lebens­
dauer nicht. 6 Bild., 6 Que.
ALUMINIUM 3 (2007)
Materialprüfung, Mg-Legierungen
Heikel, C., Ambos, E.
Wichtige PKW-Motorenbauteile im Spiegelbild des Wett­
bewerbs der Werkstoffe und Fertigungsverfahren – Zylin­
derköpfe
Konstruieren + Giessen 31 (2006) Nr. 4, S. 2-12
Zylinderköpfe für PKW-Motoren sind geometrisch komplizierte
und hoch beanspruchte Bauteile. Sie werden vorwiegend aus
Aluminiumlegierungen im Kokillengießverfahren gefertigt. Um
den hohen Beanspruchungen im Motor gewachsen zu sein, nutzt
man vielfältige Prüfverfahren für die Entwicklung der Zylinder­
köpfe. Diese reichen von der einfachen statischen Zugprüfung
bis zu komplexen Untersuchungen unter betriebsnahen Tem­
peraturen. Wegen der Kompliziertheit der Betriebsbedingungen
ist jedoch die Prüfung im befeuerten Motor und im Versuchs­
fahrzeug nach wie vor unerlässlich. Die Werkstoffwahl für die
Zylinderköpfe richtet sich nach der Höhe der Beanspruchung.
Unter Bezug auf die spezifische Leistung der Motoren wird eine
grobe Einteilung der Werkstoffe vorgenommen. Nach wie vor
dominieren die Al-Legierungen: AlSi6Cu4, AlSi7Mg(Cu) und
AlSi10Mg(Cu). Für die Fertigung der Zylinderköpfe kommen
zahlreiche Verfahrensvarianten zum Einsatz, die vorgestellt und
auf deren wichtigste Vor- und Nachteile eingegangen wird. Wei­
terhin werden die komplizierten technologischen Bedingungen
beim Gießen der Zylinderköpfe erläutert und daraus Schluss­
Verkehr
Lin, G., Zhang, Z., Zhou, J., Peng, D.
The Effects of High-Temperature Treatment on the Stress
Corrosion Resistance of 7175 Aluminum Alloys
Light Metal Age, Oct. 2006, S.28-29
The effects of a kind of special high-temperature treatment
(HITT) on the stress corrosion resistance of 7175 aluminium
alloy forgings were studied, and its mechanism attempted to be
explained. The results show that HTT facilitates precipitation
of the fine particles containing Cr-rich phases and forming of a
precipitate free zone (PFZ). According to analysis, HTT is one
of the fundamental mechanisms for enhancing the property of
stress corrosion resistance of 7175 aluminum alloys forgings. 4
images., 11 sources.
ALUMINIUM 3 (2007)
Korrosion
Grund, T., Trommer, F., Wielage, B.
Entwicklung eines „Controlled-Atmosphere-Brazing“-Verfah­
rens zum Fügen von Aluminiumguss- und Aluminiumknet­
legierungen
Schweißen und Schneiden 58 (2006) Heft 11, S. 608-613
Der Einsatz von Zinkbasisloten macht es temperaturseitig
möglich, Aluminiumlegierungen jeder Legierungsgruppe zu
fügen. Für verschiedene Grundwerkstoffe und Zinkbasislote
wurde dazu das Ofenlötverfahren „Controlled-AtmosphereBrazing“ (CAB) bezüglich der Prozessführung weiterentwickelt
und qualifiziert. In den Lötversuchen wurden die vom einge­
setzten Lot abhängige Zeit-Temperatur-Führung, die Qualität
der Ofenatmosphäre und die auf die Bauteiloberfläche un das
Ofenvolumen bezogene Flussmittelbeladung variiert. Lötver­
bindungen wurden anhand ihrer Morphologie, Mikrostruktur,
Verbindungsfestigkeit und Korrosionseigenschaften charakte­
risiert. Bei den untersuchten Zinkbasisloten handelte es sich
um Rein-Zink, ZnAl3, ZnAl6Cu1,5 und ZnAl15 mit Arbeitsbe­
reichen zwischen 400 und 450 °C. Die eingesetzten Alumini­
umwerkstoffe waren Knetlegierungen der Legierungsgruppen
1000 (Al99,5), 3000 (AlMn1) und 5000 (AlMg3) sowie eine
Gusslegierung (Al-Si10Mg). Als Lotapplikationsformen wurden
Draht, Folie und Plattierung gewählt. Die Forderungen nach der
Entwicklung und Qualifizierung eines Ofenlötprozesses zum
Fügen von Aluminiumguss- und -knetlegierungen unter Einsatz
von Zinkbasisloten konnte erfüllt werden. 4 Bild. 3 Que.
ALUMINIUM 3 (2007)
Formguss, Verbinden
Für Schrifttum zum Thema „Aluminium“ ist der Gesamtverband der Aluminiumindustrie e.V. (GDA)
der kompetente Ansprechpartner. Die hier referierten Beiträge repräsentieren lediglich einen Aus­
schnitt aus dem umfassenden aktuellen Bestand der GDA-Bibliothek.
Die von der Aluminium-Zentrale seit den dreißiger Jahren kontinuierlich aufgebaute Fachbiblio­thek
wird duch den GDA weitergeführt, ausgebaut und auf die neuen Medien umgestellt. Sie steht allen
Interessenten offen.
Ansprechpartner ist Dr. Karsten Hein, E-Mail: karsten.hein@aluinfo.de
90
ALUMINIUM · 3/2007
PAT E N T E
Patentblatt Dezember 2006
Fortsetzung aus Heft 1-2/07
Vorrichtung zur Herstellung von Form­
teilen aus Aluminium- oder Magnesium­
legierungen, insbesondere zur Herstel­
lung von Kraftfahrzeugteilen. Drache
Umwelttechnik GmbH & Co. KG, 65582
Diez, DE. (B22D 21/04, GM 20 2004 014
151, AT 09.09.2004)
Kabel mit Innenleiter aus Aluminium.
Nexans S.A., Paris, FR. (B32B 15/20, EPA
1 717 020, EP-AT 19.04.2006)
Heißversiegelungsmasse für Alumini­
um- und Polyethylenterephthalatfolien
gegen Polypropylen-Polyvinylchloridund Polystyrolbehälter. Röhm GmbH,
64293 Darmstadt, DE. (C09D 123/00, OS
10 2005 042 389, AT 06.09.2005)
Verfahren zur Herstellung von Alumini­
um. Technological Resources Pty. Ltd.,
Melbourne, Victoria, AU. (C22B 3/36,
EPA 1 716 261, EP-AT 16.02.2005)
Chargenschmelzen von Aluminium-Le­
gierungsschrott in einem Drehtrommel­
ofen. Karl Konzelmann Metallschmelz­
werke GmbH & Co.KG, 30179 Hannover,
DE. (C22B 7/00, OS 10 2005 027 320, AT
13.06.2005)
Verfahren zum Recycling des metal­
lischen Anteiles von vornehmlich auf
der Basis von Aluminium hergestellten
Metallmatrix-Verbundwerkstoffen und
von Aluminium mittels Tiegelschmelz­
extraktion. Deutsches Zentrum für Luftund Raumfahrt e.V., 53175 Bonn, DE;
Fraunhofer-Gesellschaft zur Förderung
der angewandten Forschung e.V., 80686
München, DE. (C22B 7/00, PS 197 11
764, AT 21.03.1997)
Verzahnung aus Aluminium. GKN Sin­
ter Metals GmbH, 42477 Radevormwald,
DE. (C22C 1/04, OS 10 2005 027 135, AT
10.06.2005)
Werkstoff auf der Basis einer AluminiumLegierung, Verfahren zu seiner Herstel­
lung sowie Verwendung hierfür. Mahle
GmbH, 70376 Stuttgart, DE. (C22C 21/00,
EPA 1 718 778, EP-AT 15.02.2005)
Werkstoff für stranggepresstes Rohr
aus Aluminium-Legierung für Wärme­
tauscher mit natürlichem Kühlmittel.
Denso Corp., Kariya, Aichi, JP; Furuka­
wa-Sky Aluminum Corp., Tokio/Tokyo,
JP. (C22C 21/00, EPA 1 721 998, EP-AT
09.05.2006)
Verfahren zur Verarbeitung von Alumi­
nium in einem Rotations- oder Flamm­
ofen. L‘Air Liquide, S.A. a Directoire et
Conseil de Surveillance pour l‘Etude
et l‘Exploitation des Procédés Georges
ALUMINIUM · 3/2007
Claude, Paris, FR. (F27B 7/20, EPA 1 721
111, EP-AT 07.02.2005)
Aluminium-Gusslegierung. Aluminium
Rheinfelden GmbH, 79618 Rheinfelden,
DE. (C22C 21/02, EPA 1 719 820, EP-AT
28.04.2006)
Warmfeste Aluminium-Silizium-Kolben­
legierung. KS Kolbenschmidt GmbH,
74172 Neckarsulm, DE. (C22C 21/04,
EPA 1 721 022, EP-AT 11.01.2005)
Geschmiedete
Aluminium-Legierung,
die ausgezeichnete Dauerfestigkeit auf­
weist. Kabushiki Kaisha Kobe Seiko Sho,
Kobe, Hyogo, JP. (C22C 21/12, EP 1 522
600, EP-AT 26.09.2003)
Verfahren zur Herstellung einer Alu­
minium-Zinkat-Schicht. Tyco Printed
Circuit Group LP, Enfield, Conn., US.
(C23C 18/18, EPA 1 718 785, EP-AT
16.02.2005)
Gliederheizkessel aus Gusseisen oder
Aluminium. Robert Bosch GmbH, 70469
Stuttgart, DE. (F24H 1/32, PS 10 2005 014
616, AT 31.03.2005)
Wärmetauscher aus Aluminium mit
verlötetem Verbindungsbereich. Denso
Corp., Kariya, Aichi, JP. (F28F 3/00, OS
100 48 212, AT 28.09.2000)
Aluminium-Wärmetauscher. Willy Voit
GmbH & Co. KG Stanz- und Metallwerk,
66386 St. Ingbert, DE. (F28F 9/02, GM 20
2006 013 389, AT 31.08.2006)
Sammelrohr für Aluminium-Radiatoren
mit nietartiger Befestigungskonstruk­
tion. Delphi Technologies, Inc., Troy,
Mich., US. (F28F 9/04, EPA 1 715 280,
EP-AT 06.04.2006)
Aluminium-Substrat für einen elek­
trophotographischen Photoleiter und
elektrophotographischer Photoleiter,
der das Aluminium-Substrat enthält.
Fuji Electric Co., Ltd., Kawasaki, Kana­
gawa, JP. (G03G 5/10, OS 198 32 082, AT
16.07.1998)
Aus einer Aluminiumlegierung herge­
stelltes Schwellerstrangpressprofil eines
Kraftfahrzeugs. AUDI AG, 85057 Ingol­
stadt, DE. (B62D 25/02, OS 10 2004 002
297, AT 16.01.2004)
Aluminiumlegierung geeignet für Bleche
und ein Verfahren zu deren Herstellung.
Furukawa-Sky Aluminum Corp., Tokio/
Tokyo, JP; Honda Giken Kogyo K.K., To­
kyo, JP. (C22C 21/00, EP 1 260 600, EPAT 15.05.2002)
Verfahren zur Herstellung eines Form­
körpers aus Aluminiumlegierung, Form­
körper aus Aluminiumlegierung und
Herstellungssystem. Showa Denko Ka­
bushiki Kaisha, doing business as Showa
Denko K.K., Tokio, JP. (C22F 1/043, EPA
1 716 265, EP-AT 17.12.2004)
Aluminiumlegierung, stabförmiges Ma­
terial, geschmiedeter Formkörper und
zerspanter Formkörper und daraus
her­gestellte verschleißfeste Aluminium­
legierung und Gleitteil mit hervorragen­
der Härte, einer anodischen Oxidbe­
schichtung,
Herstellungsverfahren
dafür. Showa Denko Kabushiki Kaisha,
doing business as Showa Denko K.K.,
Tokio, JP. (C25D 11/04, EPA 1 715 084,
EP-AT 21.04.2004)
Umgusskörper zum Eingießen in ein
Gussteil aus Leichtmetall, Verbund­
gussteil daraus und Verfahren zur
Herstellung des Umgusskörpers sowie
Verfahren zur Herstellung des Verbund­
gussteiles. DaimlerChrysler AG, 70567
Stuttgart, DE. (B22D 19/04, OS 103 15
382, AT 04.04.2003)
Verbundmaterial aus Leichtmetall und
mit Kohlenstofffasern verstärktem
Kunststoff. Toray Industries, Inc., Tokio/
Tokyo, JP. (B32B 15/08, EP 0 938 969,
EP-AT 20.08.1998)
Fahrzeugstrukturelement aus Leichtme­
tall. DaimlerChrysler AG, 70567 Stuttg­
art, DE. (B62D 25/00, PS 103 33 037, AT
21.07.2003)
Kühlkokille zum Vergießen von Leicht­
metall-Gusswerkstoffen und Verwen­
dung einer solchen Kokille sowie eines
Gusseisenwerkstoffs. Hydro Aluminium
Deutschland GmbH, 51149 Köln, DE.
C22C 37/00, PS 10 2005 004 481, AT
31.01.2005)
Schleuderstrahlanlage zum Strahlen
von Werkstücken aus Leichtmetalllegie­
rungen. Disa Industrie AG, Schaffhausen,
CH. (B24C 3/18, EPA 1 714 742, EP-AT
21.04.2005)
Verfahren zur Herstellung einer Wasser­
stoffeinschlusslegierung auf Basis von
Mg-REM-Ni. Japan Metals and Chemicals
Co., Ltd., Tokio/Tokyo, JP. (C22C 1/02,
EPA 1 721 996, EP-AT 21.02.2005)
Bauteil, insbesondere Druckgussbauteil,
aus Magnesium, vornehmlich zur Ver­
wendung in Kraftfahrzeugen. Volks­
wagen AG, 38440 Wolfsburg, DE. (F16S
5/00, OS 100 02 262, AT 19.01.2000)
Chargieranlage für Magnesium oder
Magnesiumlegierungen.
Volkswagen
AG, 38440 Wolfsburg, DE. (F27B 14/16,
OS 10 2005 021 723, AT 11.05.2005)
Verfahren und Vorrichtungen zum
Reibrührschweißen von mindestens
zwei Bauteilen aus artverschiedenen
Werkstoffen mit einem verschiebbaren
91
PAT E N T E
Stift und durch die Bauteile fließenden
elektrischen Strom. Hydro Aluminium
Deutschland GmbH, 51149 Köln, DE.
(B23K 20/12, EPA 1 716 959, EP-AT
27.04.2006)
Verfahren zur Herstellung einer Heiz­
folie. Alcan Packaging Selestat, Selestat,
FR. (F24D 13/02, EPA 1 717 521, EP-AT
21.04.2006)
Stossstange mit Halterungen. Alcan
Technology & Management Ltd., Neu­
hausen am Rheinfall, CH. (B60R 19/24,
EPA 1 717 107, EP-AT 12.04.2006)
Verfahren und Vorrichtung zum Gießen
von Metallschmelze. Hydro Aluminium
Alucast GmbH, 66763 Dillingen, DE.
(B22D 21/04, PS 10 2004 043 444, AT
06.09.2004)
Stossfängersystem. Alcan Technology &
Management Ltd., Neuhausen am Rhein­
fall, CH. (B60R 19/24, EPA 1 721 786,
EP-AT 18.04.2006)
Verbundmaterial für Reflektoren. ALA­
NOD Aluminium-Veredlung GmbH & Co,
58256 Ennepetal, DE. (C23C 28/00, GM
298 12 559, AT 15.07.1998)
Instrumententafelträgerstruktur. Alcan
Technology & Management Ltd., Neu­
hausen am Rheinfall, CH. (B62D 25/14,
EPA 1 717 130, EP-AT 25.04.2005)
Außenwandpaneel. Hendrinks Alumi­
nium Geveltechniek B.V., Veenendaal,
NL. (E06B 3/54, EPA 1 719 869, EP-AT
20.04.2006)
Plattform, insbesondere Bordwand für
Fahrzeuge. Alcan Technology & Ma­
nagement AG, Neuhausen am Rheinfall,
CH. (B62D 33/02, PS 100 00 411, AT
07.01.2000)
Wasserkühlsystem für eine Stranggieß­
vorrichtung. Norsk Hydro ASA, Oslo/
Osló, NO. (B22D 11/049, EP 1 157 765,
EP-AT 14.05.2001)
Verpackungsbeutel mit Umverpackung.
Alcan Technology & Management Ltd.,
Neuhausen am Rheinfall, CH. (B65D 5/60
und B65D 33/02, EPA 1 714 888 und EPA
1 714 892, EP-AT 24.11.2005)
Verfahren und Vorrichtung zum Ermit­
teln des Wärmedurchgangskoeffizienten
einer Fassade. Hydro Building Systems
GmbH, 89077 Ulm, DE. (G01N 25/18, OS
10 2005 022 767, AT 18.05.2005)
Seitenfaltenbeutel. Alcan Technology &
Management Ltd., Neuhausen am Rhein­
fall, CH. (B65D 75/58, EPA 1 714 904,
EP-AT 21.04.2005)
Struktur und Verfahren zum Verhindern
elektrolytischer Korrosion von Magne­
siumlegierungselementen. Honda Giken
Kogyo K.K., Tokio/Tokyo, JP. (C25D
13/04, PS 102 97 130, AT 20.08.2002)
Verschließbare Verpackung. Alcan Tech­
nology & Management Ltd., Neuhausen
am Rheinfall, CH. (B65D 75/60, OS 10
2005 028 470, AT 20.06.2005)
Verfahren zum Beschichten einer Zy­
linderlaufbuchse. MAHLE International
GmbH, 70376 Stuttgart, DE. (C23C 4/12,
OS 10 2005 027 828, AT 15.06.2005)
Verfahren zum Verbinden eines Band­
endes mit einem Bandanfang. Alcan
Technology & Management Ltd., Neu­
hausen am Rheinfall, CH. (B65H 19/18,
EPA 1 632 448, EP-AT 07.09.2004)
Rohr zur Verwendung in einem Wärme­
tauscher, Herstellungsverfahren dafür
und Wärmetauscher. Showa Denko Ka­
bushiki Kaisha, doing business as Showa
Denko K.K., Tokio, JP. (C23C 4/08, EPA
1 716 266, EP-AT 10.02.2005)
Flexibles Rohr oder flexibler Schlauch.
Alcan Deutschland Göttingen, DE.
(F16L 59/153, EP 1 286 102, EP-AT
14.08.2002)
Hochleitfähige Rippenmateriallegierung,
Herstellungsverfahren und resultie­
rendes Produkt. Alcoa Inc., Pittsburgh,
Pa., US. (C22C 21/00, EPA 1 713 944, EPAT 09.12.2004)
Kühlungssystem für eine Bandstrang­
gießanlage und damit zusammenhän­
gende Verfahren. Alcoa Inc., Pittsburgh,
Pa., US. (B22D 11/06, EP 8 873 211, EPAT 08.01.1997)
Vorrichtung und Verfahren zur konti­
nuierlichen Metallschmelzezuführung
unter Druck. Alcoa Inc., Alcoa Center,
Pa., US. (B22D 17/20, EPA 1 714 718,
EP-AT 18.04.2002)
92
Wärmetauscher, Verfahren zu dessen
Herstellung und Wärmetauscherrohr.
Showa Denko Kabushiki Kaisha, doing
business as Showa Denko K.K., Tokio,
JP. (F28F 19/06, EPA 1 714 103, EP-AT
07.01.2005)
Verfahren zum miteinander erfolgenden
Verbinden von Endabschnitten von
übereinander angeordneten Elementen.
Sumitomo Light Metal Industries Ltd.,
Tokio/Tokyo, JP. (B23K 20/12, OS 10
2006 000 277, AT 08.06.2006)
Hochfestes
Aluminiumlegierungsrip­
penmaterial für Wärmetauscher und
Herstellungsverfahren dafür. Nippon
Light Metal Co. Ltd., Tokio/Tokyo, JP.
(C22C 21/00, EPA 1 717 327, EP-AT
28.01.2005)
Patentblatt Januar 2007
Hochfeste Al-Zn-Legierung und Ver­
fahren zum Herstellen eines solchen
Legierungsprodukts. Corus Aluminium
Walzprodukte GmbH, 56070 Koblenz,
DE. (C22C 21/00, OS 11 2004 000 596,
WO-AT 09.04.2004)
Quasikristalline Ti-Cr-Al-Si-O Legierung
und deren Verwendung als Beschich­
tungen. ALSTOM Technology Ltd, Ba­
den, CH. (C22C 14/00, PS 50 2004 000
215, EP 1464716, EP-AT 29.03.2004)
Oberflächenbeschichtete
Al/Zn-Stahl­
bleche und Oberflächenbeschichtungs­
mittel. Henkel KGaA, 40589 Düsseldorf,
DE. (C09D 133/26, PS 502 05 303, EP
1436355, EP-AT 12.10.2002)
Blech oder Band aus Al-Mg-Legierung
zur Herstellung von gebogenen Teilen
mit kleinem Biegeradius. Alcan Rhenalu,
Paris, FR. (C22C 21/06, EP 1 481 106, EPAT 04.03.2003)
Gehäuse aus Aluminium-Profilen zur Auf­
nahme elektrischer und elektroni­scher
Bauteile. Palima W.Ludwig & Co., Sarnen,
CH. (H05K 5/04, EP 1 437 939, EP-AT
09.01.2004)
Verfahren zum Planen und Herstellen
eines LNG-Speichertanks oder derglei­
chen und unter Verwendung des Ver­
fahrens hergestellter Aluminium-LNGSpeichertanks. Aker Yards Oy, Turku,
FI. (B65D 90/02, EPA Veröff. Nr.: EP
1723053, EP-AT 01.03.2005)
Mehrschicht Aluminium-Textil Laminat.
Lloveras Calvo, Pedro, San Feliu de Co­
dinas, ES. (B32B 15/14, EPA Veröff. Nr.:
EP 1728623, EP-AT 03.06.2005)
Verfahren zur Verbindung eines An­
schlusselements mit einem aus Alumini­
um bestehenden elektrischen Leiter so­
wie nach diesem Verfahren hergestell­
ter elektrischer Leiter. Gebauer & Griller
Kabelwerke Ges.m.b.H., Poysdorf, AT.
(H01R 4/02, EPA Veröff. Nr.: EP 1730813,
EP-AT 21.10.2004)
Oberflächenbehandlungsmittel
und
Ver­fahren zum Entfernen der beim Ät­
zen von Druckgussteilen aus Alumini­
um anfallenden Si Komponente und
reduzierten Metallsalze. Cheon Young
Für Abonnenten
www.alu-archiv.de
Wissen auf Abruf
ALUMINIUM · 3/2007
PAT E N T E
Chemical Co., Ltd., Kyounggi, KR. (C11D
7/18, EP 1 421 164, EP-AT 25.07.2002)
d. Staates Delaware), Dearborn, Mich.,
US. (C23C 22/68, PS 601 16 180, EP
1154041, EP-AT 20.04.2001)
Drehtrommelofen mit feuerfesten Rühr­
körpern zum Umschmelzen von Alumi­
nium. Metallhüttenwerke Bruch GmbH,
44145 Dortmund, DE. (C22B 21/00,
EPA Veröff. Nr.: EP 1725690, EP-AT
17.03.2005)
Verfahren zur Herstellung von Folie
aus Aluminium-Eisen-Legierung. No­
velis Inc., Toronto, Ontario, CA. (C22C
21/00, PS 601 17 118, EP 1184474, EPAT 06.08.2001)
Aerosoldose aus Aluminium hergestellt
aus einem Blechbund. Exal Corp., Yong­
stown, Ohio, US. (B21D 51/26, EPA Ver­
öff. Nr.: EP 1731239, EP-AT 27.06.2003)
Aluminium Salze phosphorylierter Gly­
cerylether. Kao Corp., Tokio/Tokyo,
JP. (C07F 9/09, EP 1 514 872, EP-AT
03.09.2004)
Verfahren zur Herstellung einer glatten
lackierbaren Oberfläche nach dem Ver­
binden von Aluminium-Teilen. Ford Glo­
bal Technologies, LLC (n.d.Ges.d. Staates
Delaware), Dearborn, Mich., US. (B23K
37/00, PS 101 00 769, AT 10.01.2001)
Scharnierelement für Tür- und Fenster­
rahmen aus Aluminium. Savio S.p.A.,
Chiusa di San Michele, Turin, IT. (E05D
5/02, PS 602 08 486, EP 1365093, EP-AT
29.11.2002)
Verfahren zum Schweißen artungleicher
metallischer Fügepartner, insbesondere
von Aluminium-Kupfer-Verbindungs­
stellen. BLZ Bayerisches Laserzentrum
Gemeinnützige Forschungsgesellschaft
mbH, 91052 Erlangen, DE. (B23K 26/42,
OS 10 2004 009 651, AT 27.02.2004)
Verfahren zum Schweißen von Werkstü­
cken aus Aluminium oder einer Alumi­ni­
umlegierung. Fraunhofer-Gesellschaft zur
Förderung der angewandten Forschung
e.V., 80686 München, DE. (B23K 26/32,
PS 10 2004 027 229, AT 03.06.2004)
Aluminium-Schnalle für Tragegurte.
Stührmann, Jan-Marc, 28211 Bremen,
DE. (A44B 11/04, GM 20 2005 016 661,
AT 21.10.2005)
Variabler Aluminium-Montagesattel für
Stockschrauben zur Befestigung von So­
laranlagen auf Hausdächern bei horizon­
taler Ausrichtung der Montageschiene.
Kaack, Peter, 26386 Wilhelmshaven, DE.
(E04D 13/18, GM 20 2006 014 733, AT
26.09.2006)
Bauteil aus Aluminium und/oder einer
Aluminiumumlegierung. Erbslöh AG,
42553 Velbert, DE; WKW Erbslöh Au­
tomotive GmbH, 42349 Wuppertal, DE.
(F16S 1/00, GM 20 2006 016 433, AT
26.10.2006)
Bor- oder Aluminium-Spiroverbindun­
gen, deren Verwendung in der Elektro­
nikindustrie. Merck Patent GmbH, 64293
Darmstadt, DE. (C07F 5/06, PS 501 04
149, EP 1345948, EP-AT 20.12.2001)
Verfahren zum Diffusionsfügen von Ma­
gnesium/Aluminium Bauteilen. General
Motors Corp., Detroit, Mich., US. (B23K
35/28, EP 1 273 385, EP-AT 08.05.2002)
Konversionsbeschichtung für Alumini­
um durch aufgespritzte KF-Lösungen.
Ford Global Technologies, LLC (n.d.Ges.
ALUMINIUM · 3/2007
Schleifkörper auf der Basis von Alumini­
um- und Zirkoniumoxynitrid. Alcan Ab­
rasifs Refractaires Ceramiques, Gardan­
ne, FR. (C09K 3/14, PS 603 06 428, EP
1576069, EP-AT 18.12.2003)
Verfahren und Form zur Herstellung von
Guss-Stücken, insbesondere von Leicht­
metall-Motorblöcken. Montupet S.A.,
Clichy, FR. (B22C 9/10, PS 603 07 467,
EP 1515812, EP-AT 20.06.2003)
Ein Verfahren zur Herstellung von
Strangpressprodukten aus einer hoch­
festen Aluminium-Legierung, die ausge­
zeichnete Korrosionsbeständigkeit und
Spannungsrisskorrosionsbeständigkeit
aufweist. Sumitomo Light Metal Indus­
tries Ltd., Tokio/Tokyo, JP. (B21C 23/00,
EP 1 430 965, EP-AT 29.10.2003)
Verfahren zur Erhöhung der Bruchzähig­
keit in Aluminium-Lithium-Legierungen.
Alcan Rolled Products Ravenswood LLC,
Ravenswood, W.Va., US. (C22C 21/00, EP
1 359 232, EP-AT 30.01.1998)
Aluminium-Elektrolytkondensator und
Herstellungsverfahren. Matsushita Elec­
tric Industrial Co., Ltd., Kadoma, Osaka,
JP. (H01G 9/008, EP 0 986 078, EP-AT
03.09.1999)
Hochfeste Aluminiumlegierungen für
Flug­zeugrad und Bremselemente. Ho­
neywell International Inc., Morristown,
N.J., US. (C22C 21/10, EP 1 726 671, EPAT 25.05.2006)
Vorrichtung und Verfahren zur Her­
stellung von Gegenständen aus Alumi­
niumlegierungen oder Leichtmetallle­
gierungen. ESJOTECH S.r.l., Torino, IT.
(B22D 18/02, PS 603 03 012, EP 1472027,
EP-AT 31.01.2003)
Verfahren zum Schweißen von Bandma­
terial aus Aluminiumlegierungen. Corus
Technology BV, IJmuiden, NL. (B23K
11/087, PS 603 06 520, EP 1507624, EP-
AT 04.04.2003)
Laufbuchsen aus einer Aluminiumlegie­
rung zum Eingießen in Zylinderblöcke
aus Leichtmetall von Verbrennungs­
motoren und Verfahren zu deren Her­
stellung und Einguss. Volkswagen AG,
38440 Wolfsburg, DE. (F02F 1/16, OS
100 09 135, AT 26.02.2000)
Verfahren und Anlage zum Gießen von
Leichtmetall-Zylinderkurbelgehäusen in
Sandformen. Honsel GmbH & Co KG,
59872 Meschede, DE. (B22C 9/10, PS 10
2005 051 561, AT 26.10.2005)
Verfahren zum Beschichten von aus Mag­
nesium oder einer Magnesiumlegierung
erzeugten Substraten, insbesondere
Mag­nesium-Flachprodukten. Thyssen­
Krupp Steel AG, 47166 Duisburg, DE.
(C23F 17/00, OS 10 2005 031 567, AT
06.07.2005)
Spritzgegossener Kabrioverdeckstapel
aus Magnesium mit einem gemeinsamen
Drehzapfen für eine Gelenkverbindung,
Mittelschiene und hintere Schiene. CTS
Fahrzeug Dachsysteme GmbH, Rochester
Hills, Mich., US. (B60J 7/12, EPA Veröff.
Nr.: EP 1727695, EP-AT 28.02.2005)
Aluminiumlegierungsstreifen
zum
Schweißen. Alcan Rhenalu, Paris, FR;
Alcan Rolled Products Ravenswood LLC,
Ravenswood, W.Va., US. (B23K 1/00,
EPA Veröff. Nr.: EP 1687115, EP-AT
24.11.2004)
Bearbeitung der Oberfläche von Werk­
stücken sowie Umformwerkzeugen.
Alcan Technology & Management Ltd.,
Neuhausen am Rheinfall, CH. (B21D
13/02, EPA Veröff. Nr.: EP 1637247, EPAT 20.09.2004)
Konstruktionselement für die Luftfahrt
mit Variation der anwendungstech­
nischen Eigenschaften. Alcan Rhenalu,
Paris, FR. (C22F 1/053, EPA Veröff. Nr.:
EP 1727921, EP-AT 21.03.2005)
Flexibles Substrat mit PhotovoltaikZellen und daraus hergestelltes Mo­
dul. Alcan Technology & Management
Ltd., Neuhausen am Rheinfall, CH. (H01L
31/042, EPA Veröff. Nr.: EP 1732140, EPAT 06.06.2005)
Kühlkörper für Halbleiterbauelemente,
Verfahren zu dessen Herstellung und
Werkzeug zur Durchführung des Verfah­
rens. Alcan Technology & Management
AG, Neuhausen am Rheinfall, CH. (H01L
23/36, PS 102 00 109, AT 02.01.2002)
Verfahren zum Abtrennen von Abfall­
schichten von plattierten Bändern durch
Walzplattieren. Alcan Rhenalu, Paris,
FR. (B21B 47/04, EP 1 628 786, EP-AT
01.06.2004)
93
PAT E N T E
Säurevorbehandlung für das Verkleben
von Kraftfahrzeugteilen. Alcoa Inc.,
Pittsburgh, Pa., US. (C09J 5/02, PS 600
24 889, EP 1328600, EP-AT 10.10.2000)
Verfahren zur Reinigung eines schmelz­
flüssigen Metalls. Danieli Corus Techni­
cal Services B.V., IJmuiden, NL. (C22B
21/06, EPA Veröff. Nr.: EP 1727917, EPAT 17.02.2005)
Vorrichtung zum Herstellen von Gieß­
formen oder Gießformteilen. Hydro Alu­
minium Alucast GmbH, 66763 Dillingen,
DE. (B22C 15/02, OS 197 45 093, AT
11.10.1997)
Schweißteil und Schweißverfahren.
Hydro Aluminium Deutschland GmbH,
51149 Köln, DE. (B23K 33/00, OS 199 26
796, AT 11.06.1999)
Verfahren zur Herstellung von kör­
nigem Packungsmaterial für die Ver­
wendung beim Brennen von Anoden.
Corus Aluminium Voerde GmbH, 46562
Voerde, DE. (C25C 3/12, PS 103 00 443,
AT 07.01.2003)
Vorrichtung zur Filtration von und
­Zugabe von Kornfeinungsmittel zu
Metallschmelzen.
Hydro
Alumini­
um Deutschland GmbH, 51149 Köln,
DE. (B22D 1/00, GM 200 23 831, AT
09.11.2000)
Sichtschutz- oder Stütz-Wand. Corus
Aluminium Profiltechnik GmbH, 88267
Vogt, DE. (E04B 2/74, GM 20 2006 015
391, AT 07.10.2006)
Bindemittelsystem, Kernsandgemisch
und Verfahren zu seiner Herstellung.
Hydro Aluminium Deutschland GmbH,
51149 Köln, DE. (B22C 1/16, PS 500 11
962, EP 1095719, EP-AT 20.10.2000)
Verfahren und Vorrichtung zum Biegen
von Blechstreifen mit zwei einander
gegenüberliegenden Flanschen. Corus
Bausysteme GmbH, 56070 Koblenz, DE.
(B21D 7/08, PS 601 20 947, EP 1272292,
EP-AT 14.03.2001)
Verfahren zur fraktionierten Kristalli­
sation eines Metalls. Corus Technology
BV, IJmuiden, NL. C22B 21/06, PS 603 03
144, EP 1520053, EP-AT 27.06.2003)
Trägerplatte für den Eckpfosten eines
Ge­länders. Norsk Hydro ASA, Oslo,
NO. (E04F 11/18, EP 1 640 528, EP-AT
08.09.2005)
Verfahren zum Wärmebehandeln von
aus einer Leichtmetallschmelze, insbe­
sondere einer Aluminiumschmelze, er­
zeugten Gussteilen. Hydro Aluminium
Deutschland GmbH, 51149 Köln, DE.
(C22F 1/00, EPA Veröff. Nr.: EP 1727920,
EP-AT 22.03.2005)
Warmfeste Aluminiumlegierung für Wär­
metauscher. Hydro Aluminium Deutsch­
land GmbH, 51149 Köln, DE. (C22C
21/00, EPA Veröff. Nr.: EP 1730320, EPAT 31.03.2005)
Profilelement für Fenster, Türen, Fassa­
den, Trennwände und dergleichen. Hy­
dro Building Systems GmbH, 89077 Ulm,
DE. (E04B 1/78, OS 10 2005 031 033, AT
02.07.2005)
Wärmegedämmtes Verbundprofil. Hy­
dro Building Systems GmbH, 89077 Ulm,
DE. (E06B 3/263, OS 10 2005 032 176,
AT 09.07.2005)
Ein Flachrohr bildender plattenförmiger
Körper, ein Flachrohr, ein Wärmetau­
scher und ein Verfahren zur Herstellung
eines Wärmetauschers. Showa Denko
K.K., Tokio/Tokyo, JP. (F28F 1/02, WO
2005 085736, WO-AT 08.03.2005)
94
Verfahren und Vorrichtung zum gesteu­
erten Abschrecken von Leichtmetall­
gussstücken in einem Flüssigkeitsbad.
Hydro Aluminium Mandl&Berger GmbH,
Linz, AT. (C21D 1/63, PS 501 08 596, EP
1148146, EP-AT 04.04.2001)
Rührvorrichtung zur kontinuierlichen
Behandlung von Metallschmelzen.
Norsk Hydro ASA, Oslo/Osló, NO. (C22B
9/05, PS 600 25 097, EP 1081240, EP-AT
28.08.2000)
Aluminiumfolie mit hoher Reinheit für
elektrolytische Kondensatoren. Pechi­
ney Rhenalu, Paris, FR. (C22C 21/00,
PS 603 03 048, EP 1543173, EP-AT
22.09.2003)
Dekoratives Zierteil und Verfahren zu
dessen Herstellung. Erbslöh AG, 42553
Velbert, DE. (B29C 45/14, OS 10 2005
032 421, AT 12.07.2005)
Verfahren zur Herstellung eines halb­
festen Thixogiessmaterials. Honda Giken
Kogyo K.K., Tokyo, JP. (C21D 1/32, EP 1
460 138, EP-AT 02.09.1997)
Wärmetauscher. Showa Denko Kabushi­
ki Kaisha, doing business as Showa Den­
ko K.K., Tokio, JP. (F28F 9/02, EPA Veröff.
Nr.: EP 1726906, EP-AT 26.05.2006)
Elektrodenfolie für Kondensatoren,
Verfahren zu deren Herstellung und
elektrolytischer Kondensator. Showa
Denko Kabushiki Kaisha, doing business
as Showa Denko K.K., Tokio, JP. (H01G
9/055, EPA Veröff. Nr.: EP 1730756, EPAT 24.03.2005)
Polierzusammensetzung zum chemischmechanischen Polieren. Showa Denko
K.K., Tokio/Tokyo, JP. (C09G 1/02, PS
697 36 035, EPA Veröff. Nr.: EP 0823465,
EP-AT 22.07.1997)
Aluminiumgusslegierung mit hoher
Steifigkeit und kleinem linearem Aus­
dehnungskoeffizienten. Nippon Light
Metal Co. Ltd., Tokio/Tokyo, JP. (C22C
21/02, EPA Veröff. Nr.: EP 1728882, EPAT 23.03.2005)
Lötpaste. Senju Metal Industry Co., Ltd.,
Tokio/Tokyo, JP. (B23K 35/26, EPA Ver­
öff. Nr.: EP 1724050, EP-AT 09.03.2004)
Plastisch bearbeitetes Aluminium­legie­
rungsgussprodukt, ein Verfahren zur
Her­stellung davon und ein Ver­fahren
zum Verbinden unter Verwendung
plastischer Verformung. Nippon Light
Metal Co. Ltd., Tokio/Tokyo, JP; Denso
Corp., Kariya, Aichi, JP. (C22C 21/02, OS
101 01 960, AT 17.01.2001)
Vorrichtung und Verfahren zur Atmo­
sphärenkontrolle bei der Wärmebe­
handlung von Metallen. Nitrex Metal
Inc., St Laurent, Quebec, CA. (G01N
21/35, EPA Veröff. Nr.: EP 1724567, EPAT: 15.05.2006)
Hochtemperatur-Legierungen auf Alumi­
niumbasis. United Technologies Inc., Hart­
ford, Conn., US. (C22C 21/00, EPA Veröff.
Nr.: EP 1728881, EP-AT 31.03.2006)
Al-Legierung mit guter Schneidbarkeit,
ein Verfahren zur Herstellung eines
geschmiedeten Artikels, und der ge­
schmiedete Artikel. Furukawa-Sky Alu­
minum Corp., Tokio/Tokyo, JP. (C22C
21/12, EP 1 359 233, EP-AT 10.04.2003)
Hochfeste Legierung auf Aluminiumba­
sis und ein daraus hergestelltes Produkt.
Federalnoe Gosudarstvatelsky Institut
Uni­tarnoe Predpriyatie “Vserossiisky
Nauchno-Issledovatelsky Institut Aviat­
sionnykh Materialov”, Moskau/Moscow,
RU; Otkrytoe Aktsionernoe Obschestvo
“Samarsky Metallurgichesky Zavod”, Sa­
mara, RU. (C22C 21/10, PS 601 20 987, EP
1306455, EP-AT 25.07.2001)
ALUMINIUM veröffentlicht unter
dieser Rubrik regelmäßig einen Über­
blick über wichtige, den Werkstoff
Aluminium betreffende Patente. Die
ausführlichen Patentblätter und auch
weiterführende Informationen dazu
stehen der Redaktion nicht zur Ver­
fügung. Interessenten können diese
beziehen oder einsehen bei der
Mitteldeutschen Informations-, Pa­
tent-, Online-Service GmbH (mipo),
Julius-Ebeling-Str. 6,
D-06112 Halle an der Saale,
Tel. 0345/29398-0
Fax 0345/29398-40,
www.mipo.de
Die Gesellschaft bietet darüber hin­aus
weitere „Patent“-Dienstleistungen an.
ALUMINIUM · 3/2007
International Journal for Industry, Research and Application
How do your products and services come to appear every month in the
list of supply sources, on the internet – www.Alu-web.de – and in the
annual list of supply sources published by ALUMINIUM ?
�
�
�
Please mark the main group relevant to you
❒
Extrusion
❒
Rolling technology
❒
Foundry
❒
Smelting technology
Indicate the sub-group and/or key word
(if necessary, ask us for the list of key words)
_______________________
_______________________
_______________________
_______________________
_______________________
_______________________
Enter your text, not forgetting your on-line address:
Line 1: ............................................................................................................................................
Line 2: ............................................................................................................................................
Line 3: ............................................................................................................................................
Line 4: ............................................................................................................................................
Line 5: ............................................................................................................................................
Line 6: ............................................................................................................................................
(Maximum 35 characters per line, including spaces.
Price per line for each issue EUR 5,00 + VAT – minimum order 10 issues = 1 year.
Logos are calculated according to the lines they occupy: 1 line = 2 mm).
_______________________________________________________________
Place/Date
Company stamp / Signature
�
… and send this form to us by fax or post:
Fax number
+49-511/7304-157
For information
Tel.: -142
Giesel Verlag GmbH, ALUMINIUM
Rehkamp 3, D-30916 Isernhagen
We will gladly send you a quotation!
Lieferverzeichnis
1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
Smelting technology
Hüttentechnik
Raw materials
Storage facilities for smelting
Anode production
Anode rodding
Casthouse (foundry)
Casting machines
Current supply
Electrolysis cell (pot)
Potroom
Laboratory
Emptying the cathode shell
Cathode repair shop
Second-hand plant
Aluminium alloys
1.2 Storage facilities
for smelting
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
Rohstoffe
Lagermöglichkeiten in der Hütte
Anodenherstellung
Anodenschlägerei
Gießerei
Gießmaschinen
Stromversorgung
Elektrolyseofen
Elektrolysehalle
Labor
Ofenwannenentleeren
Kathodenreparaturwerkstatt
Gebrauchtanlagen
Aluminiumlegierungen
„ Auto firing systems
Automatische Feuerungssysteme
Lagermöglichkeiten
in der Hütte
Möller Materials Handling GmbH
Haderslebener Straße 7
D-25421 Pinneberg
Telefon: 04101 788-0
Telefax: 04101 788-115
E-Mail: info@moeller-mh.com
Internet: www.moeller-mh.com
Kontakt: Herr Dipl.-Ing. Timo Letz
1.4 Anode rodding
Anodenanschlägerei
OUTOKUMPU Technology GmbH
Tel.: +49 (0) 2203 / 9921-0
www.outokumputechnology.com
RIEDHAMMER GmbH
D-90332 Nürnberg
E-Mail: goede.frank@riedhammer.de
Internet: www.riedhammer.de
„ Exhaust gas treatment
„ Removal of bath residues from
the surface of spent anodes
Entfernen der Badreste von der Oberfläche der verbrauchten Anoden
Abgasbehandlung
OUTOKUMPU Technology GmbH
Tel.: +49 (0) 2203 / 9921-0
www.outokumputechnology.com
„ Conveying systems
bulk materials
Förderanlagen für Schüttgüter
(Hüttenaluminiumherstellung)
Möller Materials Handling GmbH
Internet: www.moeller-mh.com
see Storage facilities for smelting 1.2
„ Unloading/Loading equipment
Entlade-/Beladeeinrichtungen
Möller Materials Handling GmbH
Internet: www.moeller-mh.com
see Storage facilities for smelting 1.2
ALSTOM Norway AS
Tel. +47 22 12 70 00
Internet: www.environment.power.alstom.com
„ Hydraulic presses for
prebaked anodes
GLAMA Maschinenbau GmbH
Hornstraße 19
D-45964 Gladbeck
Telefon 02043 / 9738-0
Telefax 02043 / 9738-50
Hydraulische Pressen zur
Herstellung von Anoden
„ Transport of finished anode
elements to the pot room
Transport der fertigen Anodenelemente in Elektrolysehalle
LAEIS GmbH
Am Scheerleck 7, L-6868 Wecker, Luxembourg
Phone: +352 27612 0
Fax: +352 27612 109
E-Mail: info@laeis-gmbh.com
Internet: www.laeis-gmbh.com
Contact: Dr. Alfred Kaiser
„ Open top and closed
type baking furnaces
Vollert GmbH + Co. KG
Anlagenbau
Stadtseestraße 12
D-74189 Weinsberg
Tel.
+49 (0) 7134 / 52-228
Fax
+49 (0) 7134 / 52-203
E-Mail vertrieb@vollert.de
Internet www.vollert.de
Offene und geschlossene Ringöfen
1.3 Anode production
Anodenherstellung
OUTOKUMPU Technology GmbH
Tel.: +49 (0) 2203 / 9921-0
www.outokumputechnology.com
96
RIEDHAMMER GmbH
D-90332 Nürnberg
E-Mail: goede.frank@riedhammer.de
Internet: www.riedhammer.de
Hovestr. 10 . D-48431 Rheine
Telefon + 49 (0) 59 71 58-0
Fax
+ 49 (0) 59 7158-209
E-Mail info@windhoff.de
Internet www.windhoff.de
ALUMINIUM · 3/2007
Lieferverzeichnis
1.5 Casthouse (foundry)
Gießerei
„ Dross skimming of
liquid metal
Abkrätzen des Flüssigmetalls
GLAMA Maschinenbau GmbH
see Anode rodding 1.4
HERTWICH ENGINEERING GmbH
Maschinen und Industrieanlagen
Weinbergerstraße 6, A-5280 Braunau am Inn
Phone +437722/806-0
Fax +437722/806-122
E-Mail: info@hertwich.com
Internet: www.hertwich.com
INOTHERM INDUSTRIEOFENUND WÄRMETECHNIK GMBH
Konstantinstraße 1a
D 41238 Mönchengladbach
Telefon +49 (02166) 987990
Telefax +49 (02166) 987996
E-Mail: info@inotherm-gmbh.de
Internet: www.inotherm-gmbh.de
THERMCON OVENS BV
see Extrusion 2
„ Melting/holding/casting
furnaces
Schmelz-/Halte- und Giessöfen
Stopinc AG
Bösch 83 a
CH-6331 Hünenberg
Tel. +41/41-785 75 00
Fax +41/41-785 75 01
E-Mail: interstop@stopinc.ch
Internet: www.stopinc.ch
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
„ Measurement & Testing
Temperaturmessung
GLAMA Maschinenbau GmbH
see Anode rodding 1.4
Gießereiprodukte – Foundry Products
Balthasar Floriszstraat 34-36/oh
NL-1071 VD AMSTERDAM
Tel.: +31 20 693-5209, Fax -5762
Internet: www.srsamsterdam.com
„ Metal treatment in the
holding furnace
Metallbehandlung in Halteöfen
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
Vollert GmbH + Co. KG
Anlagenbau
see Transport of finished anode elements
to the pot room 1.4
Windhoff Bahn- und
Anlagentechnik GmbH
see Anode rodding 1.4
ALUMINIUM · 3/2007
„ Treatment of casthouse
off gases
„ Degassing, filtration and
grain refinement
Entgasung, Filtern, Kornfeinung
Drache Umwelttechnik
GmbH
Werner-v.-Siemens-Straße 9/24-26
D 65582 Diez/Lahn
Telefon 06432/607-0
Telefax 06432/607-52
Internet: www.drache-gmbh.de
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
Knochenasche
IMPERIAL-OEL-IMPORT
Bergstraße 11, D 20095 Hamburg
Tel. 040/338533-0, Fax: 040/338533-85
E-Mail: info@imperial-oel-import.de
„ Furnace charging with
molten metal
Ofenbeschickung mit Flüssigmetall
GLAMA Maschinenbau GmbH
see Anode rodding 1.4
1.6 Casting machines
Gießmaschinen
„ Transfer to the
casting furnace
Überführung in Gießofen
GLAMA Maschinenbau GmbH
see Anode rodding 1.4
MARX GmbH & Co. KG
www.marx-gmbh.de
see Melt operations 4.13
Windhoff Bahn- und
Anlagentechnik GmbH
see Anode rodding 1.4
„ Bone ash
„ Transport of liquid metal
to the casthouse
Transport von Flüssigmetall
in Gießereien
see Transport of finished anode elements
to the pot room 1.4
Behandlung der Gießereiabgase
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
SIGNODE® SYSTEM GMBH
Packaging Equipment
Non-Ferrous Specialist Team DSWE
Magnusstr. 18, 46535 Dinslaken/Germany
Telefon: +49 (0) 2064 / 69-210
Telefax: +49 (0) 2064 / 69-489
E-Mail: g.laks@signode-europe.com
Internet: www.signode.com
Contact: Mr. Gerard Laks
Vollert GmbH + Co. KG
Anlagenbau
Drache Umwelttechnik
GmbH
Werner-v.-Siemens-Straße 9/24-26
D 65582 Diez/Lahn
Telefon 06432/607-0
Telefax 06432/607-52
Internet: www.drache-gmbh.de
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
THERMCON OVENS BV
see Extrusion 2
„ Pig casting machines
(sow casters)
Masselgießmaschine (Sowcaster)
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
see Equipment and accessories 2.11
97
Lieferverzeichnis
„ Rolling and extrusion ingot
and T-bars
„ Sawing
„ Pot feeding systems
Sägen
Beschickungseinrichtungen
für Elektrolysezellen
Formatgießerei (Walzbarren oder
Pressbolzen oder T-Barren)
Cast-Tec GmbH & Co. KG
Fertigungstechnik & Service
D-44536 Lünen, Brunnenstraße 138
Telefon: 02306/20310-0
Telefax: 02306/20310-11
E-Mail: Info@cast-tec.de
Internet: www.cast-tec.de
Möller Materials Handling GmbH
Internet: www.moeller-mh.com
see Storage facilities for smelting 1.2
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
„ Heat treatment of extrusion
ingot (homogenisation)
Formatebehandlung
(homogenisieren)
„ Vertical semi-continuous
DC casting
Vertikales Stranggießen
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
„ Casthouse machines
Horizontales Stranggießen
Schlichten und Trennmittel
ESK Ceramics GmbH & Co. KG
Max-Schaidhauf-Straße 25
87437 Kempten, Germany
Tel.: +49 831 5618-0, Fax: -345
Internet: www.esk.com
1.9 Potroom
Elektrolysehalle
T.T. Tomorrow Technology S.p.A.
Via dell’Artigianato 18
Due Carrare, Padova 35020, Italy
Telefon +39 049 912 8800
Telefax +39 049 912 8888
E-Mail: gmagarotto@tomorrowtechnology.it
Contact: Giovanni Magarotto
„ Anode changing machine
Anodenwechselmaschine
GLAMA Maschinenbau GmbH
see Anode rodding 1.4
„ Tapping vehicles
Schöpffahrzeuge
see Equipment and accessories 2.11
„ Horizontal continuous casting
„ Slurries and parting agents
GLAMA Maschinenbau GmbH
see Anode rodding 1.4
Gießereimaschinen
Cast-Tec GmbH & Co. KG
Fertigungstechnik & Service
see Casting machines 1.6
„ Crustbreakers
Krustenbrecher
GLAMA Maschinenbau GmbH
see Anode rodding 1.4
1.7 Current supply
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
Stromversorgung
„ Busbars
Stromschienen
Cast-Tec GmbH & Co. KG
Fertigungstechnik & Service
„ Dry absorption units for
electrolysis exhaust gases
Trockenabsorptionsanlage für
Elektrolyseofenabgase
ALSTOM Norway AS
Tel. +47 22 12 70 00
Internet: www.environment.power.alstom.com
see Casting machines 1.6
„ Scales / Waagen
„ Anode transport equipment
Anoden Transporteinrichtungen
1.8 Electrolysis cell
(pot)
GLAMA Maschinenbau GmbH
see Anode rodding 1.4
Elektrolyseofen
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
98
„ Insulating bricks
Isoliersteine
Promat GmbH – Techn. Wärmedämmung
Scheifenkamp 16, D-40878 Ratingen
Tel. +49 (0) 2102 / 493-0, Fax -493 115
verkauf3@promat.de, www.promat.de
„ HF Measurementtechnology
HF Messtechnik
OPSIS AB
Box 244, S-24402 Furulund, Schweden
Tel. +46 (0) 46-72 25 00, Fax -72 25 01
E-Mail: info@opsis.se
Internet: www.opsis.se
ALUMINIUM · 3/2007
Lieferverzeichnis
2
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
Extrusion
Strangpressen
Extrusion billet preparation
Extrusion equipment
Section handling
Heat treatment
Measurement and control equipment
Die preparation and care
Second-hand extrusion plant
Consultancy, expert opinion
Surface finishing of sections
Machining of sections
Equipment and accessories
Services
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
Pressbolzenbereitstellung
Strangpresseinrichtungen
Profilhandling
Wärmebehandlung
Mess- und Regeleinrichtungen
Werkzeugbereitstellung und -pflege
Gebrauchte Strangpressanlagen
Beratung, Gutachten
Oberflächenveredlung von Profilen
Profilbearbeitung
Ausrüstungen und Hilfsmittel
Dienstleistungen
2.1 Extrusion billet
preparation
„ Billet heating units
Anlagen zur Bolzenerwärmung
Pressbolzenbereitstellung
www.otto-junker-group.com
SIGNODE® SYSTEM GMBH
Jägerhausstr. 22
D – 52152 Simmerath
Telefon: +49 2473 601 0
Telefax: +49 2473 601 600
E-Mail: info@otto-junker.de
Kontakt: Herr Teichert
Packaging Equipment
Non-Ferrous Specialist Team DSWE
Magnusstr. 18, 46535 Dinslaken/Germany
Telefon: +49 (0) 2064 / 69-210
Telefax: +49 (0) 2064 / 69-489
E-Mail: g.laks@signode-europe.com
Internet: www.signode.com
Contact: Mr. Gerard Laks
„ Billet transport and
storage equipment
„ Billet heating furnaces
Öfen zur Bolzenerwärmung
Rudolf-Diesel-Str. 1-3
D – 78239 Rielasingen-Worblingen
Telefon +49 7731 5998-0
Telefax +49 7731 5998-90
E-Mail info@elhaus.de
Kontakt: Herr Dr. Menzler
OTTO JUNKER GmbH
ELHAUS INDUSTRIEANLAGEN GmbH
OTTO JUNKER (UK) LTD.
see Extrusion 2
Am großen Teich 16+27
D-58640 Iserlohn
Tel. +49 (0) 2371 / 4346-0
Fax +49 (0) 2371 / 4346-43
E-Mail: verkauf@ias-gmbh.de
Internet: www.ias-gmbh.de
Bolzen-Transport- und
Lagereinrichtungen
OTTO JUNKER GmbH
ELHAUS INDUSTRIEANLAGEN GmbH
see Extrusion 2
„ Hot shears
Warmscheren
De Chamotte 4
NL – 4191 GT GELDERMALSEN
Telefon: +31 345 574141
Telefax: +31 345 576322
E-Mail:
info@thermcon.com
Kontakt: Herr Schmidt
MARX GmbH & Co. KG
www.marx-gmbh.de
see Melt operations 4.13
OTTO JUNKER GmbH
ELHAUS INDUSTRIEANLAGEN GmbH
THERMCON OVENS BV
see Extrusion 2
2.2 Extrusion equipment
Strangpresseinrichtungen
Kingsbury Road
Curdworth
UK - SUTTON COLDFIELD B76 9EE
Telefon: +44 1675 470551
Telefax: +44 1675 470645
E-Mail:
info@otto-junker.co.uk
Kontakt: Mr. Beard
ALUMINIUM · 3/2007
Sistem Teknik Ltd. Sti.
DES San. Sit. 102 SOK No: 6/8
Y.Dudullu, TR-34775 Istanbul/Turkey
Tel.: +90 216 420 86 24
Fax: +90 216 420 23 22
Oilgear Towler GmbH
Im Gotthelf 8
D 65795 Hattersheim
Tel. +49 (0) 6145 3770
Fax +49 (0) 6145 30770
E-Mail: info@oilgear.de
Internet: www.oilgear.de
99
Lieferverzeichnis
„ Press control systems
Pressensteuersysteme
Verpackungseinrichtungen
Oilgear Towler GmbH
see Extrusion Equipment 2.2
SMS Meer GmbH
Josefstraße 10
D-51377 Leverkusen
Tel. 0214 / 734-01
Fax 0214 / 734-1000
E-Mail: info@sms-meer.de
Internet: www.sms-meer.com
SMS Meer GmbH
see Extrusion equipment 2.2
„ Containers
Rezipienten
„ Packaging equipment
H+H HERRMANN + HIEBER GMBH
Fördersysteme für Paletten
und schwere Lasten
Rechbergstraße 46
D-73770 Denkendorf/Stuttgart
Tel. +49 (0) 711 / 9 34 67-0
Fax +49 (0) 711 / 3 46 0911
E-Mail: info@herrmannhieber.de
Internet: www.herrmannhieber.de
Vollert GmbH + Co. KG
Anlagenbau
see Transport of finished anode elements
to the pot room 1.4
„ Temperature measurement
Temperaturmessung
KIND & CO., EDELSTAHLWERK, KG
Bielsteiner Straße 128-130
D-51674 Wiehl
Telefon: +49 (0) 2262 / 84 0
Telefax: +49 (0) 2262 / 84 175
E-Mail: info@kind-co.de
Internet: www.kind-co.de
SMS Meer GmbH
see Extrusion equipment 2.2
Hinterbergstrasse 26
CH-6330 Cham, Switzerland
Tel.: +41 41 741 5741
Fax: +41 41 741 5760
E-mail: bold.ch@fromm-pack.com
Internet: www.fromm-pack.com
Sales Contact: Benno Arnet
„ Heating and control
equipment for intelligent
billet containers
„ Puller equipment
Ausziehvorrichtungen/Puller
Heizungs- und Kontrollausrüstung
für intelligente Blockaufnehmer
S+C MÄRKER GmbH
Steel Technologies
D-51779 Lindlar-Kaiserau
Postfach 11 40
Tel.: +49 (0) 2266 / 92 211
Fax: +49 (0) 2266 / 92 509
E-Mail: extrusion@schmidt-clemens.de
Internet: www.sc-maerker.de
OTTO JUNKER GmbH
ELHAUS INDUSTRIEANLAGEN GmbH
THERMCON OVENS BV
see Extrusion 2
MARX GmbH & Co. KG
www.marx-gmbh.de
see Melt operations 4.13
2.3 Section handling
Profilhandling
SIGNODE® SYSTEM GMBH
SMS Meer GmbH
see Extrusion equipment 2.2
Packaging Equipment
Non-Ferrous Specialist Team DSWE
Magnusstr. 18, 46535 Dinslaken/Germany
Telefon: +49 (0) 2064 / 69-210
Telefax: +49 (0) 2064 / 69-489
E-Mail: g.laks@signode-europe.com
Internet: www.signode.com
Contact: Mr. Gerard Laks
„ Extrusion
Strangpressen
SMS Meer GmbH
see Extrusion equipment 2.2
„ Section cooling
Profilkühlung
OTTO JUNKER GmbH
ELHAUS INDUSTRIEANLAGEN GmbH
see Extrusion 2
„ Homogenising furnaces
Homogenisieröfen
OTTO JUNKER GmbH
ELHAUS INDUSTRIEANLAGEN GmbH
OTTO JUNKER (UK) LTD.
see Extrusion 2
100
OTTO JUNKER GmbH
see Extrusion 2
SMS Meer GmbH
see Extrusion equipment 2.2
ALUMINIUM · 3/2007
Lieferverzeichnis
„ Section saws
Profilsägen
„ Stackers / Destackers
Stapler / Entstapler
Vollert GmbH + Co. KG
Anlagenbau
see Transport of finished anode elements
to the pot room 1.4
OTTO JUNKER GmbH
ELHAUS INDUSTRIEANLAGEN GmbH
see Extrusion 2
OTTO JUNKER GmbH
ELHAUS INDUSTRIEANLAGEN GmbH
see Extrusion 2
2.4 Heat treatment
Wärmebehandlung
„ Extrusion
Strangpressen
SMS Meer GmbH
see Extrusion equipment 2.2
„ Section store equipment
Profil-Lagereinrichtungen
H+H HERRMANN + HIEBER GMBH
Fördersysteme für Paletten
und schwere Lasten
Rechbergstraße 46
D-73770 Denkendorf/Stuttgart
Tel. +49 (0) 711 / 9 34 67-0
Fax +49 (0) 711 / 3 46 0911
E-Mail: info@herrmannhieber.de
Internet: www.herrmannhieber.de
KASTO Maschinenbau GmbH & Co. KG
Industriestr. 14, D-77855 Achern
Tel.: +49 (0) 7841 61-0 / Fax: +49 (0) 7841 61 300
kasto@kasto.de / www.kasto.de
Hersteller von Band- und Kreissägemaschinen
sowie Langgut- und Blechlagersystemen
Vollert GmbH + Co. KG
Anlagenbau
see Transport of finished anode elements
to the pot room 1.4
„ Section transport equipment
Profiltransporteinrichtungen
OTTO JUNKER GmbH
ELHAUS INDUSTRIEANLAGEN GmbH
see Extrusion 2
SMS Meer GmbH
see Extrusion equipment 2.2
ALUMINIUM · 3/2007
SMS Meer GmbH
see Extrusion equipment 2.2
„ Stretching equipment
OTTO JUNKER GmbH
ELHAUS INDUSTRIEANLAGEN GmbH
OTTO JUNKER (UK) LTD.
see Extrusion 2
Reckeinrichtungen
„ Heat treatment furnaces
Wärmebehandlungsöfen
OTTO JUNKER GmbH
ELHAUS INDUSTRIEANLAGEN GmbH
see Extrusion 2
INOTHERM INDUSTRIEOFENUND WÄRMETECHNIK GMBH
see Casthouse (foundry) 1.5
Sistem Teknik Ltd. Sti.
see Billet Heating Furnaces 2.1
SMS Meer GmbH
see Extrusion equipment 2.2
„ Transport equipment for
extruded sections
IUT Industriell Ugnsteknik AB
Industrivägen 2, 43892 Härryda, Sweden
Tel. +46 (0) 301 31510
Fax +46 (0) 301 30479
E-Mail: office@iut.se
Internet: www.iut.se
Transporteinrichtungen
für Profilabschnitte
H+H HERRMANN + HIEBER GMBH
Fördersysteme für Paletten
und schwere Lasten
Rechbergstraße 46
D-73770 Denkendorf/Stuttgart
Tel. +49 (0) 711 / 9 34 67-0
Fax +49 (0) 711 / 3 46 0911
E-Mail: info@herrmannhieber.de
Internet: www.herrmannhieber.de
ELHAUS INDUSTRIEANLAGEN GmbH
see Extrusion 2
SMS Meer GmbH
see Extrusion equipment 2.2
„ Custom designed heat
processing equipment
Kundenspezifische
Wärmebehandlungsanlagen
Sistem Teknik Ltd. Sti.
see Billet Heating Furnaces 2.1
Do you need
more
information?
E-Mail:
Schwichtenberg@giesel.de
101
Lieferverzeichnis
„ Homogenising furnaces
Homogenisieröfen
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
2.6 Die preparation and care
Werkzeugbereitstellung
und -pflege
Castool Tooling Solutions
(North America)
21 State Crown Bvld
Scarborough Ontario Canada MIV 4B1
Tel.: +1 416 297 1521
Fax: +1 416 297 1915
E-Mail: sales@castool.com
Internet: www.castool.com
Sales Contact: Danny Dann
IUT Industriell Ugnsteknik AB
see Heat treatment 2.4
SMS Meer GmbH
see Extrusion equipment 2.2
„ Die heating furnaces
Werkzeuganwärmöfen
IUT Industriell Ugnsteknik AB
see Heat treatment 2.4
Sistem Teknik Ltd. Sti.
see Billet Heating Furnaces 2.1
2.5 Measurement and
control equipment
Presswerkssteuerungen
Profilbearbeitung
„ Processing of Profiles
Profilbearbeitung
Tensai (International) AG
Extal Division
Steinengraben 40
CH-4051 Basel
Telefon +41 (0) 61 284 98 10
Telefax +41 (0) 61 284 98 20
E-Mail: tensai@tensai.com
2.11 Equipment and
accessories
Ausrüstungen und
Hilfsmittel
„ Inductiv heating equipment
Induktiv beheizte
Erwärmungseinrichtungen
MARX GmbH & Co. KG
www.marx-gmbh.de
see Melt operations 4.13
Sistem Teknik Ltd. Sti.
see Billet Heating Furnaces 2.1
Mess- und Regeleinrichtungen
„ Extrusion plant control systems
2.10 Machining of sections
„ Extrusion dies
Am großen Teich 16+27
D-58640 Iserlohn
Tel. +49 (0) 2371 / 4346-0
Fax +49 (0) 2371 / 4346-43
E-Mail: verkauf@ias-gmbh.de
Internet: www.ias-gmbh.de
Strangpresswerkzeuge
„ Ageing furnace for extrusions
SMS Meer GmbH
see Extrusion equipment 2.2
„ Hardness measuring
instuments, portable
Härtemessgerät, tragbar
Form+Test Seidner & Co. GmbH
D-88491 Riedlingen
Telefax 07371/9302-98
E-Mail: linke@formtest.de
„ Temperatur measurement
Temperaturmessung
Haarmann Holding GmbH
Ludwigsallee 57
D-52052 Aachen
Telefon: 02 41 / 9 18 - 500
Telefax: 02 41 / 9 18 - 5010
E-Mail: info.holding@haarmann-gruppe.de
Internet: www.haarmann-gruppe.de
„ Hardening technology
Härtetechnik
Haarmann Holding GmbH
see Die preparation and care 2.6
102
LOI Thermprocess GmbH
Am Lichtbogen 29
D-45141 Essen
Germany
Telefon +49 (0) 201 / 18 91-3 10
Telefax +49 (0) 201 / 18 91-53 10
E-Mail: info@loi.de
Internet: www.loi.de
Sistem Teknik Ltd. Sti.
see Billet Heating Furnaces 2.1
2.7 Second-hand
extrusion plant
Gebr. Strangpressanlagen
ELHAUS INDUSTRIEANLAGEN GmbH
THERMCON OVENS BV
see Extrusion 2
Auslagerungsöfen für
Strangpressprofile
Qualiteam International/ExtruPreX
Champs Elyséesweg 17, NL-6213 AA Maastricht
Tel. +31-43-3 25 67 77
Internet: www.extruprex.com
2.12 Services
Dienstleistungen
Haarmann Holding GmbH
see Die preparation and care 2.6
ALUMINIUM · 3/2007
Lieferverzeichnis
3
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
Rolling mill technology
Walzwerktechnik
Casting equipment
Rolling bar machining
Rolling bar furnaces
Hot rolling equipment
Strip casting units and accessories
Cold rolling equipment
Thin strip / foil rolling plant
Auxiliary equipment
Adjustment devices
Process technology / Automation technology
Coolant / lubricant preparation
Air extraction systems
Fire extinguishing units
Storage and dispatch
Second-hand rolling equipment
Coil storage systems
Strip Processing Lines
3.1 Casting equipment
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
Gießanlagen
Walzbarrenbearbeitung
Walzbarrenvorbereitung
Warmwalzanlagen
Bandgießanlagen und Zubehör
Kaltwalzanlagen
Feinband-/Folienwalzwerke
Nebeneinrichtungen
Adjustageeinrichtungen
Prozesstechnik / Automatisierungstechnik
Kühl-/Schmiermittel-Aufbereitung
Abluftsysteme
Feuerlöschanlagen
Lagerung und Versand
Gebrauchtanlagen
Coil storage systems
Bandprozesslinien
3.2 Rolling bar machining
„ Bar scalping / Barrenfräsen
Walzbarrenbearbeitung
Gießanlagen
„ Band saws / Bandsägen
OTTO JUNKER GmbH
THERMCON OVENS BV
SMS Demag Aktiengesellschaft
see Rolling bar machining 3.2
see Extrusion 2
„ Melting and holding furnaces
Schmelz- und Warmhalteöfen
see Equipment and accessories 2.11
maerz-gautschi
Industrieofenanlagen GmbH
Geschäftsbereich Aluminium
Konstanzer Straße 37
Postfach 170
CH 8274 Tägerwilen
Telefon +41/71/6666666
Telefax +41/71/6666688
E-Mail: aluminium@maerz-gautschi.ch
Kontakt: Stefan Blum, Tel. +41/71/6666621
„ Metal filters / Metallfilter
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
„ Filling level indicators
and controls
Füllstandsanzeiger und -regler
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
„ Melt purification units
Schmelzereinigungsanlagen
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
ALUMINIUM · 3/2007
SMS Meer GmbH
Ohlerkirchweg 66
D-41069 Mönchengladbach
Tel. +49 (0) 2161 / 35 00
Fax +49 (0) 2161 / 35 06 67
E-Mail: info@sms-meer.com
Internet: www.sms-meer.com
„ Slab milling machines
Barrenfräsmaschinen
SMS Meer GmbH
see Rolling bar machining 3.2
3.3 Rolling bar furnaces
SMS Demag Aktiengesellschaft
Eduard-Schloemann-Straße 4
D-40237 Düsseldorf
Telefon: +49 (0) 211 881-0
Telefax: +49 (0) 211 881-49 02
Internet: www.sms-demag.com
E-Mail: communications@sms-demag.com
Geschäftsbereiche:
Warmflach- und Kaltwalzwerke
Wiesenstraße 30
D-57271 Hilchenbach-Dahlbruch
Telefon: +49 (0) 2733 29-0
Telefax: +49 (0) 2733 29-2852
Bandanlagen
Walderstraße 51/53
D-40724 Hilden
Telefon: +49 (0) 211 881-5100
Telefax: +49 (0) 211 881-5200
Elektrik + Automation
Ivo-Beucker-Straße 43
D-40237 Düsseldorf
Telefon: +49 (0) 211 881-5895
Telefax: +49 (0) 211 881-775895
Walzbarrenvorbereitung
„ Homogenising furnaces
Homogenisieröfen
IUT Industriell Ugnsteknik AB
see Heat treatment 2.4
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
OTTO JUNKER GmbH
see Extrusion 2
103
Lieferverzeichnis
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
3.4 Hot rolling equipment
Warmwalzanlagen
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, info@achenbach.de
Internet: www.achenbach.de
„ Annealing furnaces
Glühöfen
EBNER Industrieofenbau Ges.m.b.H.
Ruflinger Str. 111, A-4060 Leonding
Tel. +43 / 732 / 68 68
Fax +43 / 732 / 68 68-1000
Internet: www.ebner.cc
E-Mail: sales@ebner.cc
IUT Industriell Ugnsteknik AB
see Heat treatment 2.4
SIEMAG GmbH
Obere Industriestraße 8
D-57250 Netphen
Tel.: +49 (0) 2738 / 21-0
Fax: +49 (0) 2738 / 21-503
E-Mail: metals@siemag.com
Internet: www.siemag.com
„ Coil transport systems
Bundtransportsysteme
Vollert GmbH + Co. KG
Anlagenbau
see Transport of finished anode elements
to the pot room 1.4
OTTO JUNKER GmbH
see Extrusion 2
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
Windhoff Bahn- und
Anlagentechnik GmbH
see Anode rodding 1.4
„ Hot rolling units /
complete plants
Warmwalzanlagen/Komplettanlagen
SMS Demag Aktiengesellschaft
Eduard-Schloemann-Straße 4
D-40237 Düsseldorf
Telefon: +49 (0) 211 881-0
Telefax: +49 (0) 211 881-49 02
Internet: www.sms-demag.com
E-Mail: communications@sms-demag.com
Geschäftsbereiche:
Warmflach- und Kaltwalzwerke
Wiesenstraße 30
D-57271 Hilchenbach-Dahlbruch
Telefon: +49 (0) 2733 29-0
Telefax: +49 (0) 2733 29-2852
Bandanlagen
Walderstraße 51/53
D-40724 Hilden
Telefon: +49 (0) 211 881-5100
Telefax: +49 (0) 211 881-5200
Elektrik + Automation
Ivo-Beucker-Straße 43
D-40237 Düsseldorf
Telefon: +49 (0) 211 881-5895
Telefax: +49 (0) 211 881-775895
„ Toolings / Werkzeuge
„ Drive systems / Antriebe
see Extrusion equipment 2.2
schwartz GmbH
see Heat treatment 2.4
3.5 Strip casting units
and accessories
„ Bar heating furnaces
Barrenanwärmanlagen
EBNER Industrieofenbau Ges.m.b.H.
see Annealing furnaces 3.3
SMS Demag Aktiengesellschaft
see Hot rolling equipment 3.4
„ Rolling mill modernisation
Walzwerksmodernisierung
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
Bandgießanlagen und
Zubehör
„ Cores & shells for continuous
casting lines
Cores & shells for continuous
casting lines
Bruno Presezzi, Officine Meccaniche
Via per Ornago 8
I-20040 Burago Molgora (Mi) – Italy
Tel. +39 039 63502 229
Fax +39 039 6081373
E-Mail: aluminium.dept@brunopresezzi.com
Internet: www.presezzicaster.com
Contact: Franco Gramaglia
SMS Demag Aktiengesellschaft
see Hot rolling equipment 3.4
OTTO JUNKER GmbH
THERMCON OVENS BV
see Extrusion 2
„ Spools / Haspel
„ Roller tracks
Rollengänge
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
104
SMS Demag Aktiengesellschaft
see Hot rolling equipment 3.4
„ Revamps, equipments & spare parts
for continuous casting lines
Revamps, equipments & spare parts
for continuous casting lines
Bruno Presezzi, Officine Meccaniche
Via per Ornago 8
I-20040 Burago Molgora (Mi) – Italy
Tel. +39 039 63502 229
Fax +39 039 6081373
E-Mail: aluminium.dept@brunopresezzi.com
Internet: www.presezzicaster.com
Contact: Franco Gramaglia
ALUMINIUM · 3/2007
Lieferverzeichnis
„ Twin-roll continuous casting
lines (complete lines)
Twin-roll continuous casting lines
(complete lines)
Bruno Presezzi, Officine Meccaniche
Via per Ornago 8
I-20040 Burago Molgora (Mi) – Italy
Tel. +39 039 63502 229
Fax +39 039 6081373
E-Mail: aluminium.dept@brunopresezzi.com
Internet: www.presezzicaster.com
Contact: Franco Gramaglia
„ Heating furnaces / Anwärmöfen
see Equipment and accessories 2.11
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
schwartz GmbH
see Cold colling equipment 3.6
OTTO JUNKER GmbH
see Extrusion 2
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
3.6 Cold rolling equipment
Kaltwalzanlagen
www.vits.com
see Cold rolling equipment 3.6
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, info@achenbach.de
Internet: www.achenbach.de
SIEMAG GmbH
Obere Industriestraße 8
D-57250 Netphen
Tel.: +49 (0) 2738 / 21-0
Fax: +49 (0) 2738 / 21-503
E-Mail: metals@siemag.com
Internet: www.siemag.com
„ Cold rolling units /
complete plants
Kaltwalzanlagen/Komplettanlagen
Danieli Fröhling
Finkenstrasse 19
D-57462 Olpe
Germany
Tel.: +49 (0) 27 61 / 894-0
Fax: +49 (0) 27 61 / 894-200
E-Mail: d.neumann@danieli-froehling.de
Internet: www.danieli-froehling.de
Sales Contact: Detlef Neumann
Vits Systems GmbH
Winkelsweg 172
D-40764 Langenfeld
Tel.: +49 (0) 2173 / 798-0
Fax: +49 (0) 2173 / 798-244
E-Mail: mt@vits.de, Internet: www.vits.com
„ Process optimisation systems
Prozessoptimierungssysteme
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
SIGNODE® SYSTEM GMBH
Packaging Equipment
Non-Ferrous Specialist Team DSWE
Magnusstr. 18, 46535 Dinslaken/Germany
Telefon: +49 (0) 2064 / 69-210
Telefax: +49 (0) 2064 / 69-489
E-Mail: g.laks@signode-europe.com
Internet: www.signode.com
Contact: Mr. Gerard Laks
„ Coil transport systems
Bundtransportsysteme
Vollert GmbH + Co. KG
Anlagenbau
see Transport of finished anode elements
to the pot room 1.4
Windhoff Bahn- und
Anlagentechnik GmbH
see Anode rodding 1.4
SMS Demag Aktiengesellschaft
Eduard-Schloemann-Straße 4
D-40237 Düsseldorf
Telefon: +49 (0) 211 881-0
Telefax: +49 (0) 211 881-49 02
Internet: www.sms-demag.com
E-Mail: communications@sms-demag.com
Geschäftsbereiche:
Warmflach- und Kaltwalzwerke
Wiesenstraße 30
D-57271 Hilchenbach-Dahlbruch
Telefon: +49 (0) 2733 29-0
Telefax: +49 (0) 2733 29-2852
Bandanlagen
Walderstraße 51/53
D-40724 Hilden
Telefon: +49 (0) 211 881-5100
Telefax: +49 (0) 211 881-5200
Elektrik + Automation
Ivo-Beucker-Straße 43
D-40237 Düsseldorf
Telefon: +49 (0) 211 881-5895
Telefax: +49 (0) 211 881-775895
„ Coil annealing furnaces
„ Drive systems / Antriebe
Bundglühöfen
IUT Industriell Ugnsteknik AB
see Heat treatment 2.4
OTTO JUNKER GmbH
see Extrusion 2
ALUMINIUM · 3/2007
SMS Demag Aktiengesellschaft
see Hot rolling equipment 3.4
„ Process simulation
Prozesssimulation
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
SMS Demag Aktiengesellschaft
see Cold colling equipment 3.6
„ Revamps, equipments & spare parts
Revamps, equipments & spare parts
Bruno Presezzi, Officine Meccaniche
Via per Ornago 8
I-20040 Burago Molgora (Mi) – Italy
Tel. +39 039 63502 229
Fax +39 039 6081373
E-Mail: aluminium.dept@brunopresezzi.com
Internet: www.presezzicaster.com
Contact: Franco Gramaglia
105
Lieferverzeichnis
„ Roll exchange equipment
Walzenwechseleinrichtungen
SMS Demag Aktiengesellschaft
see Hot rolling equipment 3.4
„ Trimming equipment
Besäumeinrichtungen
Danieli Fröhling
Finkenstrasse 19
D-57462 Olpe
Germany
Tel.: +49 (0) 27 61 / 894-0
Fax: +49 (0) 27 61 / 894-200
E-Mail: d.neumann@danieli-froehling.de
Internet: www.danieli-froehling.de
Sales Contact: Detlef Neumann
www.vits.com
see Thin strip / foil rolling plant 3.7
„ Heating furnaces
Anwärmöfen
Vollert GmbH + Co. KG
Anlagenbau
INOTHERM INDUSTRIEOFENUND WÄRMETECHNIK GMBH
see Casthouse (foundry) 1.5
see Transport of finished anode elements
to the pot room 1.4
Windhoff Bahn- und
Anlagentechnik GmbH
see Anode rodding 1.4
schwartz GmbH
see Cold colling equipment 3.6
SMS Demag Aktiengesellschaft
see Hot rolling equipment 3.4
OTTO JUNKER GmbH
see Extrusion 2
„ Rolling mill modernization
Walzwerkmodernisierung
3.7 Thin strip /
foil rolling plant
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
Feinband-/Folienwalzwerke
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, info@achenbach.de
Internet: www.achenbach.de
„ Strip rolling mills
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, info@achenbach.de
Internet: www.achenbach.de
Bandwalzwerke
Danieli Fröhling
Finkenstrasse 19
D-57462 Olpe
Germany
Tel.: +49 (0) 27 61 / 894-0
Fax: +49 (0) 27 61 / 894-200
E-Mail: d.neumann@danieli-froehling.de
Internet: www.danieli-froehling.de
Sales Contact: Detlef Neumann
SIGNODE® SYSTEM GMBH
Packaging Equipment
Non-Ferrous Specialist Team DSWE
Magnusstr. 18, 46535 Dinslaken/Germany
Telefon: +49 (0) 2064 / 69-210
Telefax: +49 (0) 2064 / 69-489
E-Mail: g.laks@signode-europe.com
Internet: www.signode.com
Contact: Mr. Gerard Laks
Vits Systems GmbH
Winkelsweg 172
D-40764 Langenfeld
Tel.: +49 (0) 2173 / 798-0
Fax: +49 (0) 2173 / 798-244
E-Mail: mt@vits.de, Internet: www.vits.com
„ Revamps, equipments & spare parts
„ Strip shears
Bandscheren
Danieli Fröhling
Finkenstrasse 19
D-57462 Olpe
Germany
Tel.: +49 (0) 27 61 / 894-0
Fax: +49 (0) 27 61 / 894-200
E-Mail: d.neumann@danieli-froehling.de
Internet: www.danieli-froehling.de
Sales Contact: Detlef Neumann
Revamps, equipments & spare parts
„ Coil annealing furnaces
Bundglühöfen
OTTO JUNKER GmbH
Bruno Presezzi, Officine Meccaniche
Via per Ornago 8
I-20040 Burago Molgora (Mi) – Italy
Tel. +39 039 63502 229
Fax +39 039 6081373
E-Mail: aluminium.dept@brunopresezzi.com
Internet: www.presezzicaster.com
Contact: Franco Gramaglia
see Extrusion 2
„ Rolling mill modernization
Walzwerkmodernisierung
see Equipment and accessories 2.11
SMS Demag Aktiengesellschaft
see Hot rolling equipment 3.4
106
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, info@achenbach.de
Internet: www.achenbach.de
ALUMINIUM · 3/2007
Lieferverzeichnis
„ Thin strip / foil rolling mills /
complete plant
„ Cable sheathing presses
Kabelummantelungspressen
Feinband- / Folienwalzwerke /
Komplettanlagen
SMS Demag Aktiengesellschaft
Eduard-Schloemann-Straße 4
D-40237 Düsseldorf
Telefon: +49 (0) 211 881-0
Telefax: +49 (0) 211 881-49 02
Internet: www.sms-demag.com
E-Mail: communications@sms-demag.com
Geschäftsbereiche:
Warmflach- und Kaltwalzwerke
Wiesenstraße 30
D-57271 Hilchenbach-Dahlbruch
Telefon: +49 (0) 2733 29-0
Telefax: +49 (0) 2733 29-2852
Bandanlagen
Walderstraße 51/53
D-40724 Hilden
Telefon: +49 (0) 211 881-5100
Telefax: +49 (0) 211 881-5200
Elektrik + Automation
Ivo-Beucker-Straße 43
D-40237 Düsseldorf
Telefon: +49 (0) 211 881-5895
Telefax: +49 (0) 211 881-775895
3.9 Adjustment devices /
Adjustageeinrichtungen
SMS Meer
GmbH
see Rolling bar machining 3.2
ABB Automation Technologies AB
Force Measurement
S-72159 Västeras, Sweden
Phone: +46 21 342000
Fax: +46 21 340005
E-Mail: pressductor@se.abb.com
Internet: www.abb.com/pressductor
„ Cable undulating machines
Kabelwellmaschinen
SMS Demag Aktiengesellschaft
see Process technology/
Automation technology 3.10
SMS Meer
GmbH
see Rolling bar machining 3.2
3.10 Process technology /
Automation technology
Prozesstechnik /
Automatisierungstechnik
4Production AG
Produktionsoptimierende Lösungen
Adenauerstraße 20, D-52146 Würselen
Tel.: +49 (0) 2405 / 4135-0
info@4production.de, www.4production.de
„ Strip flatness measurement
and control equipment
Bandplanheitsmess- und
-regeleinrichtungen
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, info@achenbach.de
Internet: www.achenbach.de
„ Transverse cutting units
Querteilanlagen
Danieli Fröhling
Finkenstrasse 19
D-57462 Olpe
Germany
Tel.: +49 (0) 27 61 / 894-0
Fax: +49 (0) 27 61 / 894-200
E-Mail: d.neumann@danieli-froehling.de
Internet: www.danieli-froehling.de
Sales Contact: Detlef Neumann
SIEMAG GmbH
Obere Industriestraße 8
D-57250 Netphen
Tel.: +49 (0) 2738 / 21-0
Fax: +49 (0) 2738 / 21-503
E-Mail: metals@siemag.com
Internet: www.siemag.com
„ Process control technology
Prozessleittechnik
„ Longitudinal splitting units
Längsteilanlagen
Danieli Fröhling
Finkenstrasse 19
D-57462 Olpe
Germany
Tel.: +49 (0) 27 61 / 894-0
Fax: +49 (0) 27 61 / 894-200
E-Mail: d.neumann@danieli-froehling.de
Internet: www.danieli-froehling.de
Sales Contact: Detlef Neumann
„ Sheet and plate stretchers
Blech- und Plattenstrecker
SMS Demag Aktiengesellschaft
see Process technology/
Automation technology 3.10
Unitechnik Cieplik & Poppek AG
D-51674 Wiehl, www.unitechnik.com
SMS Demag Aktiengesellschaft
Eduard-Schloemann-Straße 4
D-40237 Düsseldorf
Telefon: +49 (0) 211 881-0
Telefax: +49 (0) 211 881-49 02
Internet: www.sms-demag.com
E-Mail: communications@sms-demag.com
Geschäftsbereiche:
Warmflach- und Kaltwalzwerke
Wiesenstraße 30
D-57271 Hilchenbach-Dahlbruch
Telefon: +49 (0) 2733 29-0
Telefax: +49 (0) 2733 29-2852
Bandanlagen
Walderstraße 51/53
D-40724 Hilden
Telefon: +49 (0) 211 881-5100
Telefax: +49 (0) 211 881-5200
Elektrik + Automation
Ivo-Beucker-Straße 43
D-40237 Düsseldorf
Telefon: +49 (0) 211 881-5895
Telefax: +49 (0) 211 881-775895
„ Strip thickness measurement
and control equipment
Banddickenmess- und
-regeleinrichtungen
SMS Meer GmbH
see Rolling bar machining 3.2
ALUMINIUM · 3/2007
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, info@achenbach.de
Internet: www.achenbach.de
ABB Automation Technologies AB
Force Measurement
S-72159 Västeras, Sweden
Phone: +46 21 342000
Fax: +46 21 340005
E-Mail: pressductor@se.abb.com
Internet: www.abb.com/pressductor
107
Lieferverzeichnis
3.11 Coolant / lubricant
preparation
Kühl-/SchmiermittelAufbereitung
„ Rolling oil recovery and
treatment units
3.12 Air extraction systems
Abluft-Systeme
„ Exhaust air purification
systems (active)
Abluft-Reinigungssysteme (aktiv)
Walzöl-Wiederaufbereitungsanlagen
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, info@achenbach.de
Internet: www.achenbach.de
SMS Demag Aktiengesellschaft
Eduard-Schloemann-Straße 4
D-40237 Düsseldorf
Telefon: +49 (0) 211 881-0
Telefax: +49 (0) 211 881-49 02
Internet: www.sms-demag.com
E-Mail: communications@sms-demag.com
Geschäftsbereiche:
Warmflach- und Kaltwalzwerke
Wiesenstraße 30
D-57271 Hilchenbach-Dahlbruch
Telefon: +49 (0) 2733 29-0
Telefax: +49 (0) 2733 29-2852
Bandanlagen
Walderstraße 51/53
D-40724 Hilden
Telefon: +49 (0) 211 881-5100
Telefax: +49 (0) 211 881-5200
Elektrik + Automation
Ivo-Beucker-Straße 43
D-40237 Düsseldorf
Telefon: +49 (0) 211 881-5895
Telefax: +49 (0) 211 881-775895
„ Filter for rolling oils and
emulsions
Filter für Walzöle und Emulsionen
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, info@achenbach.de
Internet: www.achenbach.de
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, info@achenbach.de
Internet: www.achenbach.de
108
SIEMAG GmbH
Obere Industriestraße 8
D-57250 Netphen
Tel.: +49 (0) 2738 / 21-0
Fax: +49 (0) 2738 / 21-503
E-Mail: metals@siemag.com
Internet: www.siemag.com
Vollert GmbH + Co. KG
Anlagenbau
3.17 Strip Processing Lines
Bandprozesslinien
SMS Demag Aktiengesellschaft
Eduard-Schloemann-Straße 4
D-40237 Düsseldorf
Telefon: +49 (0) 211 881-0
Telefax: +49 (0) 211 881-49 02
Internet: www.sms-demag.com
E-Mail: communications@sms-demag.com
Geschäftsbereiche:
Warmflach- und Kaltwalzwerke
Wiesenstraße 30
D-57271 Hilchenbach-Dahlbruch
Telefon: +49 (0) 2733 29-0
Telefax: +49 (0) 2733 29-2852
Bandanlagen
Walderstraße 51/53
D-40724 Hilden
Telefon: +49 (0) 211 881-5100
Telefax: +49 (0) 211 881-5200
Elektrik + Automation
Ivo-Beucker-Straße 43
D-40237 Düsseldorf
Telefon: +49 (0) 211 881-5895
Telefax: +49 (0) 211 881-775895
„ Filtering plants and systems
Filteranlagen und Systeme
„ Strip Processing Lines
Bandprozesslinen
Bergwerk- und WalzwerkMaschinenbau GmbH
Mercatorstraße 74 – 78
D-47051 Duisburg
Tel.: +49 (0) 203-9929-0
Fax: +49 (0) 203-9929-400
E-Mail: bwg@bwg-online.de
Internet: www.bwg-online.com
„ Colour Coating Lines
Bandlackierlinien
www.bwg-online.com
see Strip Processing Lines 3.17
„ Strip Annealing Lines
Bandglühlinien
www.bwg-online.com
see Strip Processing Lines 3.17
Dantherm Filtration GmbH
Industriestr. 9, D-77948 Friesenheim
Tel.: +49 (0) 7821 / 966-0, Fax: - 966-245
E-Mail: info.de@danthermfiltration.com
Internet: www.danthermfiltration.com
3.14 Storage and dispatch
Lagerung und Versand
SMS Demag Aktiengesellschaft
see Coolant / lubricant preparation 3.11
Bundlagersysteme
see Transport of finished anode elements
to the pot room 1.4
„ Rolling oil rectification units
Walzölrektifikationsanlagen
3.16 Coil storage systems
SIEMAG GmbH
Obere Industriestraße 8
D-57250 Netphen
Tel.: +49 (0) 2738 / 21-0
Fax: +49 (0) 2738 / 21-503
E-Mail: metals@siemag.com
Internet: www.siemag.com
„ Stretch Levelling Lines
Streckrichtanlagen
www.bwg-online.com
see Strip Processing Lines 3.17
„ Lithographic Sheet Lines
Lithografielinien
www.bwg-online.com
see Strip Processing Lines 3.17
ALUMINIUM · 3/2007
Lieferverzeichnis
4
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
Foundry
Gießerei
Work protection and ergonomics
Heat-resistant technology
Conveyor and storage technology
Mould and core production
Mould accessories and accessory materials
Foundry equipment
Casting machines and equipment
Handling technology
Construction and design
Measurement technology and materials testing
Metallic charge materials
Finshing of raw castings
Melt operations
Melt preparation
Melt treatment devices
Control and regulation technology
Environment protection and disposal
Dross recovery
4.2 Heat-resistent technology
Feuerfesttechnik
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
Arbeitsschutz und Ergonomie
Feuerfesttechnik
Förder- und Lagertechnik
Form- und Kernherstellung
Formzubehör, Hilfsmittel
Gießereianlagen
Gießmaschinen und Gießeinrichtungen
Handhabungstechnik
Konstruktion und Design
Messtechnik und Materialprüfung
Metallische Einsatzstoffe
Rohgussnachbehandlung
Schmelzbetrieb
Schmelzvorbereitung
Schmelzebehandlungseinrichtungen
Steuerungs- und Regelungstechnik
Umweltschutz und Entsorgung
Schlackenrückgewinnung
4.5 Mold accessories and
accessory materials
Formzubehör, Hilfmittel
„ Refractories
Feuerfeststoffe
Silca Service- und Vertriebsgesellschaft
für Dämmstoffe mbH
Auf dem Hüls 6, D-40822 Mettmann
Tel. 02104/97270, Fax 02104/76902
E-Mail: info@silca-online.de
Internet: www.silca-online.de
„ Fluxes
Flussmittel
Solvay Fluor GmbH
Hans-Böckler-Allee 20
D-30173 Hannover
Telefon +49 (0) 511 / 857-0
Telefax +49 (0) 511 / 857-2146
Internet: www.solvay-fluor.de
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
„ Solution annealing furnaces/plant
Lösungsglühöfen/anlagen
Promat GmbH – Techn. Wärmedämmung
Scheifenkamp 16, D-40878 Ratingen
Tel. +49 (0) 2102 / 493-0, Fax -493 115
verkauf3@promat.de, www.promat.de
„ Casting launder linings
4.6 Foundry equipment
Gießereianlagen
Cast-Tec GmbH & Co. KG
Fertigungstechnik & Service
D-44536 Lünen, Brunnenstraße 138
Telefon: 02306/20310-0
Telefax: 02306/20310-11
E-Mail: Info@cast-tec.de
Internet: www.cast-tec.de
Gießrinnenauskleidungen
Silca Service- und Vertriebsgesellschaft
für Dämmstoffe mbH
Auf dem Hüls 6, D-40822 Mettmann
Tel. 02104/97270, Fax 02104/76902
E-Mail: info@silca-online.de
Internet: www.silca-online.de
ERNST REINHARDT GMBH
Postfach 1880, D-78008 VS-Villingen
Tel. 07721/8441-0, Fax 8441-44
E-Mail: info@ernstreinhardt.de
Internet: www.Ernst-Reinhardt.com
„ Heat treatment furnaces
Wärmebehandlungsöfen
THERMCON OVENS BV
see Extrusion 2
see Foundry equipment 4.6
„ Tolls for the foundry
Gießerei-Werkzeuge
4.3 Conveyor and storage
technology
Förder- und Lagertechnik
Albert Turk GmbH & Co. KG
D-58540 Meinerzhagen,
Tel. 02358/2727-0, Fax 02358/2727-27
„ Casting machines
4.7 Casting machines
and equipment
Gießereimaschinen
und Gießeinrichtungen
Gießmaschinen
Vollert GmbH + Co. KG
Anlagenbau
see Transport of finished anode elements
to the pot room 1.4
ALUMINIUM · 3/2007
OTTO JUNKER GmbH
THERMCON OVENS BV
see Equipment and accessories 2.11
see Extrusion 2
109
Lieferverzeichnis
Molten Metall Level Control
4.11 Metallic charge
materials
4.13 Melt operations
Schmelzbetrieb
Metallische Einsatzstoffe
Ostra Hamnen 7
SE-430 91 Hono / Schweden
Tel.: +46 31 764 5520
Fax: +46 31 764 5529
E-mail: sales@precimeter.se
Internet: www.precimeter.se
Sales Contact: Rolf Backberg
OTTO JUNKER GmbH
THERMCON OVENS BV
see Extrusion 2
„ Mould parting agents
Kokillentrennmittel
Schröder KG
Schmierstofftechnik
Postfach 1170
D-57251
Freudenberg
Tel. 02734/7071
Fax 02734/20784
www.schroeder-schmierstoffe.de
Scholz AG
Am Bahnhof
D-73457 Essingen
Tel. +49 (0) 7365-84-0
Fax +49 (0) 7365-1481
E-Mail: infoscholz@scholz-ag.de
Internet: www.scholz-ag.de
„ Aluminium alloys
Aluminiumlegierungen
„ Melting furnaces
Schmelzöfen
Büttgenbachstraße 14
D-40549 Düsseldorf/Germany
Tel.: +49 (0) 211 / 5 00 91-43
Fax: +49 (0) 211 / 50 13 97
E-Mail: info@bloomeng.de
Internet: www.bloomeng.com
Sales Contact: Klaus Rixen
4.8 Handling technology
Handhabungstechnik
THERMCON OVENS BV
see Extrusion 2
Vollert GmbH + Co. KG
Anlagenbau
see Transport of finished anode elements
to the pot room 1.4
METALLHÜTTENWERKE BRUCH GMBH
Postfach 10 06 29
D-44006 Dortmund
Telefon +49 (0) 231 / 8 59 81-121
Telefax +49 (0) 231 / 8 59 81-124
E-Mail: al-vertrieb@bruch.de
Internet: www.bruch.de
METALLHANDELSGESELLSCHAFT
SCHOOF & HASLACHER MBH & CO. KG
Postfach 600714, D 81207 München
Telefon 089/829133-0
Telefax 089/8201154
E-Mail: info@metallhandelsgesellschaft.de
Internet: www.metallhandelsgesellschaft.de
Konstruktion und Design
see Extrusion 2
see Equipment and accessories 2.11
MARX GmbH & Co. KG
Lilienthalstr. 6-18
D-58638 Iserhohn
Tel.: +49 (0) 2371 / 2105-0, Fax: -11
E-Mail: info@marx-gmbh.de
Internet: www.marx-gmbh.de
4.9 Construction and
Design
THERMCON OVENS BV
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
ALERIS Recycling (German Works) GmbH
Aluminiumstraße 3
D-41515 Grevenbroich
Telefon +49 (0) 2181/16 45 0
Telefax +49 (0) 2181/16 45 100
E-Mail: recycling@aleris.com
Internet: www.aleris-recycling.com
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
„ Holding furnaces
4.10 Measurement
technology and
materials testing
Messtechnik und
Materialprüfung
SRS Amsterdam BV
www.srsamsterdam.com
see Casthouse (foundry) 1.5
110
Warmhalteöfen
„ Pre alloys
Vorlegierungen
METALLHANDELSGESELLSCHAFT
SCHOOF & HASLACHER MBH & CO. KG
Postfach 600714, D 81207 München
Telefon 089/829133-0
Telefax 089/8201154
E-Mail: info@metallhandelsgesellschaft.de
Internet: www.metallhandelsgesellschaft.de
Büttgenbachstraße 14
D-40549 Düsseldorf/Germany
Tel.: +49 (0) 211 / 5 00 91-43
Fax: +49 (0) 211 / 50 13 97
E-Mail: info@bloomeng.de
Internet: www.bloomeng.com
Sales Contact: Klaus Rixen
ALUMINIUM · 3/2007
Lieferverzeichnis
„ Degassing, filtration
Entgasung, Filtration
see Equipment and accessories 2.11
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
„ Heat treatment furnaces
Wärmebehandlungsanlagen
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
„ HCL measurements
HCL Messungen
OPSIS AB
Box 244, S-24402 Furulund, Schweden
Tel. +46 (0) 46-72 25 00, Fax -72 25 01
E-Mail: info@opsis.se
Internet: www.opsis.se
„ Melt treatment agents
4.17 Environment protec
tion and disposal
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
4.15 Melt treatment devices
Schmelzbehandlungseinrichtungen
IUT Industriell Ugnsteknik AB
Industrivägen 2, 43892 Härryda, Sweden
Tel. +46 (0) 301 31510
Fax +46 (0) 301 30479
E-Mail: office@iut.se
Internet: www.iut.se
Steuerungs- und
Regelungstechnik
Drache Umwelttechnik
GmbH
Werner-v.-Siemens-Straße 9/24-26
D 65582 Diez/Lahn
Telefon 06432/607-0
Telefax 06432/607-52
Internet: http://www.drache-gmbh.de
Schmelzebehandlungsmittel
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
4.16 Control and
regulation technology
Umweltschutz und
Entsorgung
„ Dust removal / Entstaubung
NEOTECHNIK GmbH
Entstaubungsanlagen
Postfach 110261, D-33662 Bielefeld
Tel. 05205/7503-0, Fax 05205/7503-77
info@neotechnik.com, www.neotechnik.com
„ Flue gas cleaning
Rauchgasreinigung
OTTO JUNKER GmbH
THERMCON OVENS BV
see Extrusion 2
see Equipment and accessories 2.11
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
„ Heat treatment technologies
Wärmebehandlungsverfahren
Wärmebehandlungstechnologien
ALUTEC-BELTE AG, ALUMINIUMTECHNOLOGIE
Lindenweg 5
D-33129 Delbrück
Tel.:
+49 (0 ) 52 50 / 98 79-0
Fax:
+49 (0 ) 52 50 / 98 79-149
E-Mail: info@alutec-belte.com
Web: www.alutec-belte.com
Metaullics Systems Europe B.V.
P.O.Box 748
NL-2920 CA Krimpen a/d Yssel
Tel. +31-180/590890
Fax +31-180/551040
E-Mail: info@metaullics.nl
Internet: www.metaullics.com
Dantherm Filtration GmbH
Industriestr. 9, D-77948 Friesenheim
Tel.: +49 (0) 7821 / 966-0, Fax: - 966-245
E-Mail: info.de@danthermfiltration.com
Internet: www.danthermfiltration.com
4.18 Dross recovery
Schlackenrückgewinnung
Do you need
more information?
E-Mail:
Schwichtenberg@giesel.de
5
OTTO JUNKER GmbH
THERMCON OVENS BV
see Extrusion 2
Materials and Recycling
Werkstoffe und Recycling
„ Aluminium foam
Aluminiumschaum
„ Granulated aluminium
Aluminiumgranulate
4.14 Melt preparation
Schmelzvorbereitung
OTTO JUNKER GmbH
THERMCON OVENS BV
see Extrusion 2
ALUMINIUM · 3/2007
Alulight International GmbH
Lach 22
A-5282 Ranshofen
Telefon ++43 / 7722 / 62216-26
Telefax ++43 / 7722 / 62216-11
E-Mail: office@alulight.com
Internet: www.alulight.com
ECKA Granulate Austria GmbH
Bürmooser Landesstraße 19
A-5113 St. Georgen/Salzburg
Telefon +43 7722 62216-41
Telefax +43 7722 62216-44
Kontakt: Walter Rajner
E-Mail: w.rajner@ecka-granules.com
111
Lieferverzeichnis
6
Machining and Application
Bearbeitung und Anwendung
„ Machining of aluminium
Aluminiumbearbeitung
„ Joining of light metals
Fügen von Leichtmetallen
6.3 Equipment for forging
and impact extrusion
Ausrüstung für Schmiedeund Fließpresstechnik
„ Hydraulic Presses
Hydraulische Pressen
Haarmann Holding GmbH
see Die preparation and care 2.6
6.1 Surface treatment
processes
Prozesse für die
Oberflächenbehandlung
Henkel KGaA
Standort Heidelberg
Hans-Bunte-Straße 4
D-69123 Heidelberg
Tel. +49 (0) 6221 / 704-204
Fax +49 (0) 6221 / 704-515
„ Pretreatment before
adhesive bonding
Vorbehandlung vor dem Verkleben
Henkel KGaA
D-40191 Düsseldorf
Tel. +49 (0) 211 / 797-30 00
Fax +49 (0) 211 / 798-36 36
Internet: www.henkel-technologies.com
Henkel KGaA
see Prozesse für die Oberflächentechnik 6.1
„ Spectrocolor Interferencecolouring
„ Adhesive bonding / Verkleben
Henkel KGaA
see Prozesse für die Oberflächentechnik 6.1
„ Anodising / Anodisation
Henkel KGaA
see Prozesse für die Oberflächentechnik 6.1
Spectrocolor Interferenzfärben
Henkel KGaA
see Prozesse für die Oberflächentechnik 6.1
„ Joining / Fügen
Henkel KGaA
see Prozesse für die Oberflächentechnik 6.1
Do you need
more
information?
E-Mail:
Schwichtenberg@giesel.de
Henkel KGaA
see Prozesse für die Oberflächentechnik 6.1
„ Waste water treatment
Abwasseraufbereitung
Henkel KGaA
see Prozesse für die Oberflächentechnik 6.1
„ Cleaning / Reinigung
LASCO Umformtechnik GmbH
Hahnweg 139, D-96450 Coburg
Tel. +49 (0) 9561 642-0
Fax +49 (0) 9561 642-333
E-Mail: lasco@lasco.de
Internet: www.lasco.com
„ Thermal coating
Thermische Beschichtung
Berolina Metallspritztechnik
Wesnigk GmbH
Pappelhain 30
D-15378 Hennickendorf
Tel.: +49 (0) 33434 / 46060
Fax: +49 (0) 33434 / 46701
E-Mail: info@metallspritztechnik.de
Internet: www.metallspritztechnik.de
8
Literature
Literatur
„ Technikcal literature
Fachliteratur
Taschenbuch des Metallhandels
Fundamentals of Extrusion Technology
Giesel Verlag GmbH
Verlag für Fachmedien
Ein Unternehmen der Klett-Gruppe
Rehkamp 3 · 30916 Isernhagen
Tel. 0511 / 73 04-122 · Fax 0511 / 73 04-157
„ Technical journals
Fachzeitschriften
International Journal for Industry, Research and Application
„ Paint stripping / Entlackung
Henkel KGaA
see Prozesse für die Oberflächentechnik 6.1
„ Pretreatment before coating
Vorbehandlung vor der Beschichtung
Henkel KGaA
see Prozesse für die Oberflächentechnik 6.1
112
6.2 Semi products
Halbzeuge
„ Wires / Drähte
DRAHTWERK ELISENTAL
W. Erdmann GmbH & Co.
Werdohler Str. 40, D-58809 Neuenrade
Postfach 12 60, D-58804 Neuenrade
Tel. +49(0)2392/697-0, Fax 49(0)2392/62044
E-Mail: info@elisental.de
Internet: www.elisental.de
Giesel Verlag GmbH
Ein Unternehmen der Klett-Gruppe
Rehkamp 3 · 30916 Isernhagen
Tel. 0511 / 73 04-122 · Fax 0511 / 73 04-157
ALUMINIUM · 3/2007
IMPRESSUM / IMPRINT
International
ALUMINIUM
Journal
83. Jahrgang 1.1.2007
Herausgeber / Publisher
Dr.-Ing. Peter Johne
Redaktion / Editorial office
Dipl.-Vw. Volker Karow
Chefredakteur, Editor in Chief
Franz-Meyers-Str. 16, 53340 Meckenheim
Tel: 02225/83 59 643, Fax: 02225/18 4 58
E-Mail: vkarow@online.de
Dipl.-Ing. Rudolf P. Pawlek
Fax: ++41-274 555 926
Hüttenindustrie und Recycling
Dipl.-Ing. Bernhard Rieth
Walzwerkstechnik und Bandverarbeitung
Verlag / Publishing house
Giesel Verlag GmbH, Verlag für Fachmedien, Unternehmen der Klett-Gruppe, Postfach 120158, 30907 Isernhagen; Rehkamp
3, 30916 Isernhagen, Tel: 0511/7304-0, Fax:
0511/7304-157. E-mail: Giesel@giesel.de
Internet: www.alu-web.de.
Postbank/postal cheque account Hannover, BLZ/routing code: 25010030; Kto.Nr./ account no. 90898-306, Bankkonto/
bank account Commerzbank AG, BLZ/
routing code: 25040066, Kto.-Nr./account
no. 1500222
Geschäftsleitung / General Manager
Dietrich Taubert,
Tel: 05 11/73 04-147,
Taubert@giesel.de
Objektleitung / Publication Manager
Stefan Schwichtenberg
Tel: 05 11/ 73 04-142,
Schwichtenberg@giesel.de
Anzeigendisposition / Advertising
layout
Beate Schaefer
Tel: 05 11/ 73 04-148,
BSchaefer@giesel.de
Vertriebsleitung / Distribution Manager
Jutta Illhardt
Tel: 05 11/ 73 04-126,
Illhardt@giesel.de
Abonnenten-Service / Reader service
Kirsten Voß
Tel: 05 11/ 73 04-122,
Vertrieb@giesel.de
Herstellung & Druck / Printing house
BWH GmbH, Beckstr. 10, D-30457 Hannover
Jahresbezugspreis
EUR 285,– (Inland inkl. 7% Mehrwertsteuer und Versandkosten). Europa EUR
289,- inkl. Versandkosten. Übersee US$
375,– inkl. Normalpost; Luftpost zuzügl.
US$ 82,–.
Preise für Studenten auf Anfrage. Aluminium erscheint zehnmal pro Jahr. Kündigungen jeweils sechs Wochen zum Ende
der Bezugszeit.
Subscription rates
EUR 285,— p.a. (domestic incl. V.A.T.) plus
postage. Europe EUR 289,- incl. surface
mail. Outside Europe US$ 375,– incl. sur-
ALUMINIUM · 3/2007
face mail, air mail plus US$ 82,–.
Aluminium is published monthly (10 issues a year). Cancellations six weeks prior
to the end of a year.
Anzeigenpreise
Preisliste Nr. 47 vom 1.1.2007.
Advertisement rates
price list No. 47 from 1.1.2007.
Die Zeitschrift und alle in ihr enthaltenen
Beiträge und Abbildungen sind urheberrechtlich geschützt. Jede Verwertung außerhalb der en­gen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des
Verlages unzulässig und strafbar. Das gilt
insbesondere für Ver­vielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Bearbeitung in elektronischen Systemen. Der Verlag übernimmt
keine Gewähr für die Richtigkeit der in
diesem Heft mitgeteilten Informationen
und haftet nicht für abgeleitete Folgen.
Haftung bei Leistungsminderung durch
höhere Gewalt oder andere vom Verlag
nicht verschuldete Umstände (z. B. Streik)
ist ausgeschlossen.
This jour­nal and all con­tri­bu­tions con­
tained there­in are pro­tect­ed by copy­right.
Any util­iza­tion out­side the ­strict lim­its of
copy­right leg­is­la­tion with­out the ex­press
con­sent of the pub­lish­er ist pro­hib­it­ed
and ac­tion­able at law. This ap­plies in
par­tic­u­lar to re­pro­duc­tion, trans­la­tions,
mi­cro­film­ing and stor­age or pro­cess­ing in
elec­tron­ic ­ systems. The pub­lish­er of­fers
no guar­an­tee that the in­for­ma­tion in this
vol­ume is ac­cu­rate and ac­cepts no li­abil­ity
for con­se­quenc­es de­riv­ing there­from. No
li­abil­ity what­soev­er is ac­cept­ed for per­fo­
mance lag ­caused by ­vorce ma­jeure or by
cir­cum­stanc­es be­yond the ­publisher’s con­
trol (e.g. in­dus­tri­al ac­tion).
ISSN: 0002-6689
© Giesel Verlag GmbH
Verlagsrepräsentanz / Representatives
Nielsen-Gebiet 1 (Schleswig-Holstein,
Ham­burg, Bremen, Niedersachsen ohne
Osnabrück):
Giesel Verlag GmbH
Tel: 05 11/73 04-145,
Fax: 05 11/73 04-157
E-mail: giesel@giesel.de
www.giesel-verlag.de
Nielsen-Gebiet 2 (Nordrhein-Westfalen,
Raum Osnabrück):
Medienbüro Jürgen Wickenhöfer
Minkelsches Feld 39, 46499 Hamminkeln
Tel: 0 28 52 / 9 4180, Fax: 0 28 52 / 9 4181
E-mail: info@jwmedien.de
www.jwmedien.de
Nielsen-Gebiet 3a (Hessen, Saarland,
Rheinland-Pfalz):
multilexa GmbH, publisher services
Unterm Hungerrain 23, 63853 Mömlingen
Tel: 0 60 22/35 14, Fax: 0 60 22/3 80 80
E-mail: thomas.werner@multilexa.de
www.multilexa.de
Nielsen-Gebiet 3 b (Baden-Württemberg):
G. Fahr, Verlags- und Pressebüro
Marktplatz 10, 72654 Neckartenzlingen
Tel: 0 71 72/30 84, Fax: 07172/2 14 78
E-mail: info@verlagsbuero-fahr.de
Nielsen-Gebiet 4 (Bayern):
G. Fahr, Verlags- und Pressebüro
Marktplatz 10, 72654 Neckartenzlingen
Tel: 0 71 72/30 84, Fax: 07172/2 14 78
E-mail: info@verlagsbuero-fahr.de
Nielsen-Gebiet 5, 6 + 7 (Berlin, Mecklenburg-Vorpommern, Brandenburg,
Sachsen-Anhalt Sachsen, Thüringen):
multilexa GmbH, publisher services
Unterm Hungerrain 23, 63853 Mömlingen
Tel: 0 60 22/35 14, Fax: 0 60 22/3 80 80
E-mail: thomas.werner@multilexa.de
www.multilexa.de
Netherlands, Belgium, Luxembourg
BSW International Marketing
Bent S. Wissing
Oestbanegade 11 – DK-2100 Kopenhagen
Tel: +4535/385255
Fax: +45 35/385220
bsw@worldonline.dk
Switzerland
JORDI PUBLIPRESS
Postfach 154 · CH-3427 Utzenstorf
Tel. +41 (0)32 / 666 30 90,
Fax +41 (0)32 / 666 30 99
E-Mail: info@jordipublipress.ch
www.jordipublipress.ch
Austria
Verlagsbüro Forstner
Buchbergstraße 15/1, A-1140 Wien
Tel: +43(0)1 / 9 79 71 89
Fax: +43(0)1 / 9 79 1329
E-Mail: forstner.wolfgang@aon.at
Italy
MediaPoint & Communications
SRL
Corte Lambruschini – Corso Buenos
Aires, 8
Vo piano – Interno 7, I-16129 Genova
Tel: +39(0)10 / 5 70 49 48,
Fax: +39(0)10 / 5 53 00 88
E-mail: info@mediapointsrl.it
www.mediapointsrl.it
USA, Canada, Africa, U.A.E. etc.
John Travis
Rayleigh House
2, Richmond Hill
Richmond, Surrey TW10 6QX
Großbritannien
Tel: +44 (0)7799001442
Fax:+44 (0)1344291072
E-Mail: apt@aluminiumindustry.com
United Kingdom
John Travis
Rayleigh House
2, Richmond Hill
Richmond, Surrey TW10 6QX
Großbritannien
Tel: +44 (0)7799001442
Fax:+44 (0)1344291072
E-Mail: apt@aluminiumindustry.com
Scandinavia and Denmark
BSW International Marketing
Bent S. Wissing
Oestbanegade 11 – DK-2100 Kopenhagen
Tel: 0045/35/385255
Fax: 0045 /35/385220
bsw@worldonline.dk
France
DEF & Communication
Axelle Chrismann
48 boulevard Jean Jaurès, F-92110 Clichy
Tel: +33 (0)1 47 30 71 80,
Fax: +33 (0)1 47 30 01 89
E-Mail: achrismann@wanadoo.fr
113
VORSCHAU / PREVIEW
Im nächsten Heft
Special: Die internationale
Strangpressindustrie
Hydro
Fachbeiträge zu Verfahren und Technologien,
Maschinen und Anlagen, Projekte
Der deutsche und europäische Markt für Presserzeugnisse
Die chinesische Strangpressbranche
Weitere Themen
Profilbearbeitung und Profilanwendungen
Aktuelles aus der Branche
Wirtschaft
Wirtschaft, Märkte, Technik
Produktionstechnik als Wettbewerbsfaktor im Substitutionswettstreit zwischen Aluminium und Stahl
Anwendungen
Forschung:
Herstellung von Schraubenrotoren durch
Strangpressen
Erscheinungstermin: 3. April 2007
Anzeigenschluss: 15. März 2007
Redaktionsschluss: 12. März 2007
In the next issue
Special: The international extrusion
industry
Other topics
Technical papers about technologies, plant and machinery, projects
Economics, markets, technology
The German and European market for extrusion
products
Latest news from the industry
Applications
The extrusion industry in China
Processing and applications
Economics
Production technology as a factor in the competition between aluminium and steel
Research
The extrusion of screw rotors
Day of publication: 3 April 2007
Advertisement deadline: 15 March 2007
Editorial deadline: 12 March 2007
114
ALUMINIUM · 3/2007
www
aluminiumePaper.com
Please be our guest
and discover the benefits of the
Aluminium ePaper yourself in a
free three-month trial:
•
accessible at least a week before
the printed edition
•
available from any location
•
simple download
•
keyword researches
•
linked list of contents
•
direct contact with advertisers