here - National Institute of Occupational Safety and Health
Transcription
here - National Institute of Occupational Safety and Health
December 2012, Vol. 9, No. 2 ISSN 1675-5456 PP13199/12/2012(032005) Journal of OCCUPATIONAL SAFETY AND HEALTH National Institute of Occupational Safety and Health National Institute of Occupational Safety and Health (NIOSH) Ministry of Human Resources Malaysia Journal of Occupational Safety and Health Editor-in-chief Ir. Haji Rosli bin Hussin Executive Director NIOSH, Malaysia Editorial Board Associate Editors Prof. Dr. Krishna Gopal Rampal Universiti Kebangsaan Malaysia Ir. Daud Sulaiman NIOSH, Malaysia Fadzil Osman NIOSH, Malaysia Raemy Md. Zein NIOSH, Malaysia Prof. Dr. Ismail Bahri Universiti Kebangsaan Malaysia Dr. Jeffereli Shamsul Bahrin BASF East Asia Regional Headquartes Ltd. Dr. Abu Hasan Samad Prince Court Medical Centre Secretariat Mohd Rashidi Rohmad Roslina Md Husin Nor Akmar Yussuf Idayu Kassim The Journal - Aims to serve as a forum for the sharing of research findings and information across broad areas in Occupational Safety and Health. Publishes original research reports, topical article reviews, book reviews, case reports, short communications, invited editorial and letters to editor. Welcomes articles in Occupational Safety and Health related fields. Journal of Occupational Safety and Health December 2012 Vol. 9 No. 2 Contents Keselamatan Lif Di Rumah Pangsa Kos Rendah Di Wilayah Persekutuan Ahmad Fauzi Awang 1 - 24 Accident Risk Indices Of Malaysia’s Firefighters Working In 12 And 24 Hours Shift Works Dr. Sharifah Osman @ Liew Shyuan Yei, Prof. Dr. Ismail Bahari, Prof. Madya Dr. Kadir Arifin, Dato’ Wan Mohd Nor Bin Hj. Ibrahim and Mr. Chen Teck Foong 25 - 30 Quantitative Measurement of Occupational Safety and Health Management Systems Performance Aziz Basiran1 and Ismail Bahari 31 - 38 Safety Intervention Need Analysis System For Construction Industry 1, 2* Asmalia Che Ahmad, 1Normazlina Mohamed Zi, 1Ismail Bahari, & 1Azizah Jaafar 39 - 46 The Use of Mobile Technology Applications for Crisis Management During Hajj Hana Al-Nuaim (DSc) and Miadah Al-Masry (MSc) 47 - 60 Safety Cultures: Japan, Malaysia And The World Ryoichi Horiguchi* 61 - 64 This page has been intentionally left blank Original Article J. Occu. Safety & Health 9 : 1-24, 2012 Keselamatan Lif Di Rumah Pangsa Kos Rendah Di Wilayah Persekutuan Ahmad Fauzi Awang Jabatan Keselamatan Dan Kesihatan Pekerjaan Pahang Tingkat 3, Wisma Persekutuan, Jalan Gambut, 25000 Kuantan, Pahang. Tel: 09-5161014, Fax: 09-5161215, Hphone: 019-3366375 Email: ahmadfauzi@mohr.gov.my Abstract Kerosakan lif penumpang yang sering berlaku di rumah pangsa kos rendah merupakan salah satu isu utama di JKKP Wilayah Persekutuan. Statistik menunjukkan bilangan rumah pangsa paling tinggi terletak di Wilayah Persekutuan. Ini bermakna bilangan lif di rumah pangsa kos rendah adalah tertinggi di Wilayah Persekutuan berbanding negeri – negeri lain. Satu kajian ‘Field Labarotary’ telah dijalankan diperingkat JKKP Wilayah Persekutuan bagi mencari punca permasalahan ini dan seterusnya mencadangkan penambahbaikan berdasarkan kepada permasalahan yang telah dikenalpasti. Kajian ini merangkumi beberapa tindakan seperti mengadakan dialog dengan wakil penghuni rumah pangsa kos rendah di sekitar Wilayah Persekutuan bagi mengenalpasti masalah-masalah yang dihadapi oleh penghuni runmah pangsa kos rendah, penyediaan senarai semak pemeriksaan lif bagi mengenalpasti masalah – masalah teknikal, mengadakan perjumpaan dengan wakil syarikat – syarikat lif bagi mendapatkan data – data yang diperlukan daripada firma – firma kompetan lif dan pengurusan lif di rumah pangsa kos rendah dan menjalankan operasi khas pemeriksaan lif di 409 unit lif yang beroperasi di rumah pangsa kos rendah bagi mengenalpasti kelemahan – kelemahan pada lif yang sedang beroperasi. Kajian telah mengenalpasti beberapa faktor penyumbang kepada isu keselamatan lif di rumah pangsa kos rendah di antaranya bilangan orang kompetan yang diiktiraf oleh Jabatan Keselamatan dan Kesihatan Pekerjaan di dapati tidak mencukupi untuk menjalankan pemeriksaan yang diperlukan ke atas kesemua lif secara komprehensif, kegagalan syarikat lif menunaikan tanggungjawab menjalankan pemeriksaan yang diwajibkan ke atas lif yang berkait rapat dengan isu bilangan orang kompetan yang ada pada setiap firma kompetan, kegagalan pemilik atau badan pengurusan bersama memastikan lif di periksa pada jangkamasa yang ditetapkan serta memastikan lif sentiasa mempunyai sijil kelayakan yang sah, kegagalan JKKP sendiri mengambil tindakan yang diperuntukan oleh Akta dan Peraturan ke atas perlanggaran peruntukan oleh firma kompetan atau pemilik bangunan, ketiadaan kerjasama di antara agensi – agensi kerajaan yang terlibat di dalam rekabentuk dan penyenggaraan lif di rumah pangsa kos rendah dan paling utama ialah isu vandalime yang berkaitan dengan sikap penduduk dan pengguna lif di rumah pangsa kos rendah yang tidak bertanggungjawab merosakan lif. Analisa Operasi Lif Di Rumah Pangsa Kos Rendah Di Wilayah Persekutuan 1. Pengenalan Jabatan Keselamatan dan Kesihatan Pekerjaan Wilayah Persekutuan (JKKP WP) telah mengadakan operasi khas pemeriksaan keselamatan lif di rumah pangsa kos rendah yang terletak di sekitar Wilayah Persekutuan. Operasi telah diadakan pada 22 – 24 Februari 2010. 1.1.Senarai Semak Audit Keselamatan Lif Satu senarai semak audit keselamatan lif telah dibangunkan bagi memastikan audit yang dijalankan mengunapakai merit dan kriteria yang seragam. Secara amnya senarai semak ini mengandungi tiga elemen utama iaitu; • Pengurusan Elemen pengurusan bertujuan mengenalpasti aspek pematuhan pemilik lif dan starikat penyenggara di dalam mematuhi kehendak perundangan.Elemen ini digredkan daripada A hingga E mengikut kriteria yang telah ditetapkan. Ia mengandungi tiga sub-elemen 1 utama; o Kontrak Penyenggaraan o Pemeriksaan 2nd Schedule o Penyenggaraan • Keperluan Umum Elemen keperluan umum bertujuan mengauditkan kualiti dan keadaan lif-lif dan peralatan-peralatan yang dipasang bagi mengoperasikan lif. Elemen ini perlu bagi memastikan tahap vandalisme yang dilakukan ke atas lif-lif yang dipasang di rumah pangsa kos rendah. Elemen ini juga digredkan daripada A hingga E mengikut kriteria yang telah ditetapkan. Ia mengandungi empat sub-elemen utama; o Bilik Jentera o Lift Car o Lift Pit o Car Top & Lift Shaft • Komponen Keselamatan Elemen komponen keselamatan bertujuan memastikan keadaan peralatan keselamatan yang dipasang pada lif sentiasa berada di dalam keadaan baik. Elemen ini pada dasarnya tidak Keselamatan Lif Di Rumah Pangsa Kos Rendah Di Wilayah Persekutuan boleh gagal. Jika mana-mana elemen ini gagal, ia akan menyebabkan lif tidak boleh dibenarkan beroperasi kerana ianya akan mendatangkan risiko kepada pengguna. Terdapat enam komponen yang perlu diperiksa oleh pegawai yang terdiri daripada; o Brakes o Landing door o Buffer o Safety gear o Governor o Wire rope Status Penyenggaraan Kerajaan Swasta 54% 219 1.2.Rumah Pangsa Sebanyak 409 unit lif yang digunakan di 52 blok rumah pangsa kos rendah dan rendah sederhana telah diperiksa sepanjang operasi dijalankan. Lif-lif yang terpilih merupakan lif yang akan tamat tempoh sijil berperakuan pada Mac 2010 sehingga Mei 2010. Rajah 1 menunjukkan pecahan kategori rumah pangsa yang terlibat. 46% 190 Rajah 2: Pengurusan Rumah Pangsa 1.3.Syarikat Lif Operasi lif ini turut mendapat kerjasama daripada syarikat – syarikat kompetan lif yang mempunyai kontrak penyenggaraan lif dengan pengurusan rumah pangsa yang terpilih.. Sebanyak 13 syarikat telah dipilih dan terdiri daripada ahli persatuan MALEA dan juga bukan MALEA. Rajah 3 menunjukkan syarikat-syarikat lif dan bilangan lif yang terlibat sementara Rajah 4 menunjukkan pecahan bilangan lif di antara MALEA dan bukan MALEA. Lima kategori rumah pangsa terlibat di dalam operasi ini iaitu Program Perumahan Rakyat (PPR), Kuarters Putrajaya, Kuarters ATM, Perumahan Awam, Joint Management Board (JMB) kos sederhana dan JMB kos Rendah. Empat kategori pertama diuruskan oleh kerajaan (46% daripada lif terlibat) sementara dua kategori lain diuruskan oleh pihak swasta (54%). Rajah 2 menunjukkan pecahan pengurusan rumah pangsa. Operasi melibatkan 192 unit lif yang mempunyai kontrak dengan syarikat lif yang bernaung di bawah persatuan MALEA sementara 217 unit lagi mempunyai kontrak dengan syarikat yang tidak bernaung dengan MALEA. 100 20 5% Kuarters ATM 80 34 8% Kuarters Putrajaya 8 2% Count Kategori Rumah Pangsa Perumahan Awam 102 25% JMB Kos Sederhana 60 94 23% 62 15% 40 61 15% 117 29% JMB Kos Rendah 20 128 31% PPR 22 5% 33 8% 10 2% SML Sigma New w in Potensi Terus EITA Syarikat Lif 29 7% Antah Schindler Fujitech Dover 125 8 2% 4 1% Hitachi 100 18 4% Royden 75 Count 13 3% Otis 50 26 6% Kone 25 MS Bevator 0 0 29 7% Rajah 3: Syarikat Lif dan Bilangan Lif yang terlibat. Rajah 1: Kategori dan Bilangan Rumah Pangsa Kos Rendah yang Terlibat di dalam Operasi 2 Original Article J. Occu. Safety & Health 9 : 1-24, 2012 Persatuan Lif MALEA NON-MALEA 53% 217 2.1.Analisa Am Lif Analisa am merangkumi analisa data-data am lif tersebut contohnya status lif, pemasangan CCTV, beban maksima, penumpang maksima, kekerapan ‘breakdown, kekerapan kerja baikpulih dan lain lain. 47% 192 2.1.1.Status lif Data operasi jelas menunjukkan 15 unit lif atau 4% daripada keseluruhan lif yang diperiksa gagal beroperasi disebabkan oleh pelbagai masalah diantaranya disebabkan oleh isu vandalisme, kegagalan pemunya mendapatkan ganti peralatan yang rosak dan juga masalah yang timbul di antara pemilik lif dan syarikat penyenggara dari segi penyelesaian bayaran penyenggaraan. Rajah 5 menunjukkan status lif yang terlibat di dalam operasi. Rajah 4: Pecahan bilangan lif di antara MALEA dan Non-MALEA 1.4.Pegawai Operasi ini bukan sahaja melibatkan pegawai pegawai daripada JKKP WP tetapi turut melibatkan pegawai-pegawai lantikan baru di pelbagai Bahagian di Ibupejabat dan JKKP Selangor. Sebanyak 33 pegawai gred J36 – J48 daripada JKKP WP, 36 pegawai gred J41 daripada Ibupejabat dan 4 pegawai Gred J41 daripada JKKP Selangor terlibat di dalam operasi yang dijalankan selama tiga hari ini. Status Lif Pegawai-pegawai ini dibahagikan kepada beberapa kumpulan dengan setiap kumpulan di ketuai oleh pegawai JKKP WP dan dianggotai oleh 2 pegawai daripada ibupejabat atau JKKP Selangor. Setiap kumpulan akan mengikuti orang kompetan daripada syarikat lif ke rumah pangsa yang telah ditetapkan untuk menjalankan audit dan pemeriksaan keselamatan lif. Ahli-ahli kumpulan ditukarkan pada setiap hari pemeriksaan bagi memberi lebih pendedahan. Beroperasi Tidak Beroperasi 4% 15 1.5.Analisa Sebanyak 409 data audit keselamatan telah berjaya diperolehi hasil daripada operasi yang telah dijalankan selama tiga hari berturut-turut. Analisa telah dijalankan ke atas data – data yang diperolehi menggunakan perisian Statistic Package for Social Science (SPSS) versi 17. Beberapa statistik dan keputusan telah diperolehi hasil daripada operasi yang dijalankan 96% 394 Rajah 5: Status Lif 2. Analisa dan Statistik daripada Operasi yang diJalankan iaitu bahagian pertama merangkumi analisa am tentang lif yang terlibat di dalam operasi sementara bahagian kedua merupakan analisa kepada 3 elemen utama senarai semak iaitu pengurusan, keperluan am dan komponen keselamatan. Analisa yang dijalankan dibahagikan kepada dua bahagian 3 Daripada 409 unit yang diperiksa, didapati 15 unit atau 4% tidak beroperasi disebabkan oleh pelbagai masalah. Walaupun peratusannya kelihatan kecil, tetapi isu penggunaan lif di rumah pangsa kos rendah kelihatan besar disebabkan oleh penggunaan lif adalah penting di mana boleh dikatakan penggunaan lif adalah 24 jam sehari untuk pelbagai kegunaan dan oleh pelbagai lapisan masyarakat. Masalah ini kelihatan serius bila banyak laporan – laporan negatif berkaitan dengan lif di rumah pangsa kos rendah disiarkan di akhbar – akhbar tempatan. Keselamatan Lif Di Rumah Pangsa Kos Rendah Di Wilayah Persekutuan 2.1.2.Pemasangan CCTV Data yang diperolehi menunjukkan pemasangan CCTV di rumah pangsa kos rendah tidak begitu menggalakkan. Pemasangan CCTV paling tinggi direkodkan ialah di rumah pangsa kategori kos sederhana iaitu sebanyak 10.8% (44 daripada 102 unit) lif dilengkapi dengan CCTV diikuti oleh rumah pangsa kategori PPR sebanyak 4.5% (18 daripada 128 unit). Pemasangan CCTV di rumah pangsa kategori Perumahan Awam dan Kos Rendah adalah dibawah 3% sementara bagi kategori kuarters Kuarters Putrajaya dan Kuarters ATM, tiada langsung CCTV dipasang. Rajah 6 menunjukan perbandingan pemasangan CCTV di antara pelbagai kategori rumah pangsa. Rajah 6: Pemasangan CCTV di Rumah Pangsa Kos Rendah 2.1.3.Beban Maksima Lif Beban maksima lif yang dipasang di rumah pangsa kos rendah secara umumnya direkabentuk berbeza-beza dengan nilai minimum ialah 610 kg dan maksima 1225 kg. Bagi tujuan analisa, beban maksima bagi lif dirumah pangsa telah di bahagikan kepada tiga kategori iaitu 610 – 750kg, 751 – 1000kg dan 1001-1225kg. Bagi kategori pertama iaitu 610-750kg, ianya merupakan lif yang bersaiz kecil dan daripada data yang diperolehi 58 daripada 409 unit lif yang diperiksa berada di dalam kategori ini. 50% daripadanya dipasang di rumah pangsa kos rendah, 33% di rumah pangsa kos sederhana dan selebihnya di perumahan awam dan kuarters ATM. Faktor utama pemilihan lif kategori ini adalah kos pemasangan yang murah dan juga rekabentuk rumah pangsa sebelum era PPR dimana gagal mengambil kira keselesaan pengguna. Kategori kedua (751 – 1000kg) dipasang di PPR(7% daripada 128 unit), kos rendah (6% daripada 117 unit) dan kos sederhana (5% daripada 102 unit). Faktor kos masih merupakan penyebab utama pemilihan lif kategori ini. Kategori ketiga (1001 – 1225kg) dipasang disemua jenis rumah pangsa. Rekabentuk lif kategori ini ternyata mengambil kira bilangan serta keselesaan pengguna. Rumah pangsa moden seperti PPR dan kuarters putrajaya mengutamakan pemasangan lif di dalam kategori ini. Jadual 1 menunjukkan statistik rekabentuk beban maksima lif yang dipasang d irumah pangsa yang terlibat di dalam operasi sementara rajah 7 menunjukkan secara grafik perbandingan lif yang dipasang di rumah pangsa. Kategori Rumah Pangsa Julat Beban 610Kg750Kg Max Count % within Julat Perumah JMB Kos JMB Kos Kuarters Kuarters PPR Rendah Sederhana ATM Putrajaya an Awam 0 29 19 4 0 6 58 .0% 50.0% 32.8% 6.9% .0% 10.3% 100.0% .0% 24.8% 18.6% 50.0% .0% 30.0% 14.2% Total Beban Max % within Kategori Rumah Pangsa 751Kg1000Kg Count % within Julat 9 7 5 0 0 0 21 42.9% 33.3% 23.8% .0% .0% .0% 100.0% 7.0% 6.0% 4.9% .0% .0% .0% 5.1% 119 81 78 4 34 14 330 36.1% 24.5% 23.6% 1.2% 10.3% 4.2% 100.0% 93.0% 69.2% 76.5% 50.0% 100.0% 70.0% 80.7% Beban Max % within Kategori Rumah Pangsa 1001Kg1225Kg Count % within Julat Beban Max % within Kategori Rumah Pangsa Total Count % within Julat 128 117 102 8 34 20 409 31.3% 28.6% 24.9% 2.0% 8.3% 4.9% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% Beban Max % within Kategori Rumah Pangsa ! Jadual 1: Beban Maksima Lif di Rumah Pangsa 4 Original Article J. Occu. Safety & Health 9 : 1-24, 2012 Rajah 8: Perbandingan Penumpang Maksima Lif di Rumah Pangsa Jadual 7: Perbandingan Beban Maksima Lif di Rumah Pangsa 2.1.4.Kapasiti Penumpang Maksima Lif Rekabentuk kapasiti penumpang di rumah pangsa juga berbeza-beza dengan nilai minima ialah 9 orang dan maksima 18 orang. Untuk tujuan analisis, kapasiti penumpang ini dibahagikan kepada tiga kategori iaitu 9-11 penumpang, 12-14 penumpang dan 15-18 penumpang. ‘Trend’ yang sama seperti beban maksima didapati daripada data yang diperolehi.lif bagi kategori pertama di dapati popular dipasang di rumah pangsa kos rendah, kos sederhana dan perumahan awam. Sepertimana beban maksima ianya disebabkan oleh faktor kos dan rekabentuk rumah pangsa era PPR. Kategori kedua (12-14 penumpang) banyak dipasang di perumahan awam dan sebahagian di rumah pangsa PPR. Perumahan awam mengguna pakai konsep bina dan jual. Bagi memastikan harga rumah di dalam had yang ditetapkan, kategori ini menjadi pilihan bagi perumahan awam untuk memberikan keselesaan kepada penumpang. Kategori ketiga yang boleh memuatkan sehingga 18 penumpang. Kebanyakkan rumah pangsa moden yang dibina mempunyai ketinggian di antara 14 -18 tingkat yang menyebabkan bilangan keluarga dan ahli keluarga yang tinggal di satusatu blok adalah tinggi. Oleh itu rumah pangsa jenis ini memerlukan lif yang boleh membawa lebih ramai penumpang dalam satu-satu masa. Rajah 8 menunjukkan perbandingan penumpang maksima lif dirumah-rumah pangsa. 2.1.5.Kekerapan ‘Breakdown’ Data ‘breakdown’ yang dikumpul sepanjang operasi dijalankan menunjukkan julat yang besar dengan nilai minimum adalah 0 dan maksimum 50 kali. Bagi tujuan analisa kekerapan ‘breakdown’ di kategorikan di dalam 5 julat yang berbeza iaitu 0-10 kali, 11-20 kali, 21-30 kali, 31-40 kali dan 41-50 kali. Rajah 9 menunjukan 82% lif mengalami breakdown dalam julat pertama iaitu kurang dari 10 kali sementara 12% lagi diantara 10-20 kali. Selebihnya 6% mengalami breakdown lebih daripada 20 kali merupakan lif-lif yang bermasalah. Rajah 9: Kekerapan ‘Breakdown’ 5 Rajah 10 menunjukkan perbandingan masalah ‘breakdown’ bagi setiap syarikat. Jelas menunjukan syarikat yang bermasalah di dalam menjalankan pemeriksaan 2nd shedule dan penyenggaraan akan mengalami masalah ‘breakdown’ yang melebihi 10 kali bagi sebahagian lif yang dibawah kontrak mereka. Keselamatan Lif Di Rumah Pangsa Kos Rendah Di Wilayah Persekutuan Rajah 12: Perbandingan Baikpulih Lif di antara Syarikat Lif Rajah 10: Perbandingan Kekerapan Breakdown di antara Syarikat Lif 2.2.Analisa Elemen Pengurusan Analisa elemen pengurusan bertujuan melihat pematuhan kepada keperluan Peraturan. Ianya merangkumi tiga sub-elemen; 2.1.6.Kekerapan ‘Repair’ Julat bagi baikpulih lif juga agak besar di antara 0 hingga 20 kali. Lima kategori diwujudkan bagi tujuan analisa iaitu 0-5 kali, 6-10 kali, 11-15 kali, 16-20 kali dan lebih dari 20 kali. 74% lif dibaikpulih 0-5 kali sementara 17% lagi 6-10 kali. Selebihnya 9% dibaikpulih melebihi 10 kali sepertimana ditunjukkan di dalam rajah 11. 2.2.1.Kontrak lif Merujuk kepada senarai semak, kontrak lif merupakan sub-elemen pertama di dalam elemen pengurusan. Data yang diperolehi menunjukkan 92% lif yang diperiksa mematuhi keperluan Peraturan yang ditetapkan. 10 unit lif (2%) daripada lif yang diperiksa didapati telah luput tempoh kontrak di dalam masa sebulan sementara 21 unit (5%) lagi lif luput tempoh kontrak melebihi 3 bulan. Rajah 13 menunjukkan taburan pematuhan pemunya lif kepada syarat kontrak. Rajah 12 pula menunjukkan perbandingan baikpulih lif di antara syarikat lif. Syarikat yang bermasalah di dalam menyempurnakan pemeriksaan 2nd schedule dan penyenggaraan di dapati menjalankan kerja baikpulih yang lebih kerap. Rajah 11: Kekerapan Baikpulih Rajah 13: Pematuhan Lif kepada Keperluan Kontrak 6 Original Article J. Occu. Safety & Health 9 : 1-24, 2012 Rajah 16 menunjukkan beberapa syarikat lif begitu ketara gagal mematuhi keperluan pemeriksaan 2nd schedule. Syarikat Potensi Terus misalnya gagal menjalankan pemeriksaan pada kesemua lif dibawah senggaraannya sementara Dover, Eita dan Sigma juga menunjukkan prestasi yang lemah di dalam pematuhan kepada keperluan ini. Namun beberapa syarikat seperti Newwin, SML dan Fujitech menunjukkan prestasi yang baik dengan menjalankan pemeriksaan di kesemua lif dibawah seliaan mereka dengan sempurna. Rajah 14 menunjukkan taburan pematuhan syarat kontrak di antara syarikat lif. Empat syarikat lif telah dikenalpasti gagal mengadakan kontrak dengan pemunya secara berterusan dan menimbulkan ‘gap’. Salah satu sebab kepada masalah ini ialah perbincangan dan persetujuan mengenai terma-terma kontrak yang mengambil masa di antara dua pihak. Jika dilihat perbandingan prestasi pemeriksaan di antara MALEA dan Non-MALEA seperti yang ditunjukkan oleh Rajah 17, jelas menunujukan syarikat lif yang bernaung dibawah persatuan MALEA lebih bertanggungjawab di dalam melaksanakan pemeriksaan 2nd schedule. Rajah 14: Pematuhan Kontrak oleh Syarikat Lif 2.2.2.Pemeriksaan 2nd Schedule Peraturan Lif memerlukan setiap lif diperiksa oleh orang kompetan setiap tiga bulan. Salah satu tujuan operasi lif di adakan ialah untuk melihat sejauh mana syarikat lif mematuhi kehendak Peraturan. Rajah 16: Prestasi Pemeriksaan 2nd Schedule di antara Syarikat Lif Analisa data operasi seperti yang ditunjukkan di dalam rajah 15 menunjukkan 84 unit lif atau 21% tidak dibuat pemeriksaan 2nd schedule, 18 unit (4%) hanya sekali, 14 unit (3%) sebanyak dua kali, 85 unit (21%) lif sebanyak 3 kali dan hanya 208 unit lif (51%) yang berjaya melakukan pemeriksaan 2nd schedule sebanyak empat kali setahun seperti yang dikehendaki oleh Peraturan. Rajah 17: Prestasi Pemeriksaan 2nd Schedule di antara MALEA dan Non-MALEA Rajah 18 menunjukkan purata lif bagi setiap orang kompetan di syarikat lif yang terlibat di dalam operasi. Keputusan yang diperolehi menunjukkan syarikat yang mempunyai purata lif bagi setiap orang kompetan yang tinggi akan mempunyai masalah di dalam melaksanakan pemeriksaan mengikut kehendak Peraturan. Rajah 15: Pematuhan kepada Pemeriksaan 2nd Schedule 7 Keselamatan Lif Di Rumah Pangsa Kos Rendah Di Wilayah Persekutuan Rajah 21 menunjukkan perbandingan prestasi penyenggraan di antara syarikat lif yang bernaung di bawah MALEA dengan syatrikat yang bukan ahli MALEA. Terdapat sedikit perbezaan dimana MALEA adalah lebih bertanggungjawab di dalam menjalankan tangunggjawab memenuhi peruntukan Peraturan. Rajah 18: Perbandingan Purata Bilangan Lif bagi Setiap OYK di Syarikat Lif 2.2.3.Penyenggaraan Selain daripada pemeriksaan 2nd schedule, Peraturan lif juga memerlukan setiap lif disenggara sekali setiap bulan dan dilakukan oleh juruteknik yang digaji dan dilatih oleh syarikat lif. Rajah 20: Prestasi Penyenggaraan Lif di antara Syarikat Lif Analisa dan keputusan di rajah 19 menunjukkan prestasi penyenggaraan adalah lebih baik daripada pemeriksaan 2nd schedule. 309 unit lif atau 76% lif yang terlibat di dalam operasi telah disenggara secara sempurna iaitu sebanyak 12 kali setahun sementara 64 unit lagi (16%) hanya disenggara sebanyak 9 kali dan selebihnya 36 unit lif dijalankan senggaraan kurang daripada 6 kali. Rajah 21: Prestasi Penyenggaraan Lif di antara MALEA dan Non-MALEA 2.3.Analisa Elemen Keperluan Am Keperluan am merupakan elemen kedua di dalam senarai semak yang dibangunkan. Ia mempunyai empat elemen; 2.3.1.Bilik jentera Bilik jentera merupakan salah satu elemen penting bagi lif. Senarai semak yang dibangunkan memperuntukkan 7 sub-elemen bagi bilik jentera. Bilik jentera di anggap cemerlang (skor A) jika kesemua sub-elemen yang diperiksa di dalam operasi berkeadaan memuaskan. Skor B jika mana-mana satu sub-elemen tidak dipatuhi, skor C jika mana-mana dua elemen tidak dipatuhi, Rajah 19: Prestasi Penyenggaraan Lif 7 syarikat lif daripada 13 yang terlibat di dalam operasi gagal menjalankan penyenggraan yang lengkap sementara 6 syarikat lagi mematuhi keperluan penyenggaraan 100% seperti ditunjukkan di dalam rajah 20. 8 Original Article J. Occu. Safety & Health 9 : 1-24, 2012 skor D jika mana-mana tiga sub-elemen tidak dipatuhi dan skor E jika lebih daripada tiga subelemen tidak dipatuhi. Rajah 22 menggambarkan senario bilik jentera bagi lif yang terlibat di dalam operasi. 2.3.3. Rajah 22: Skor bagi Bilik Jentera masalah dan 128 unit lagi (31%) hanya bermasalah di dalam salah satu sub-elemen. Walaubagaimanapun 32% lagi lif yang diperiksa di dapati mempunyai sekurang-kurangnya 2 subelemen yang berada di dalam keadaan tidak memuaskan. Lift Pit Sub-elemen ini menunjukkan 91% unit lif berada di dalam keadaan yang baik. Peratusan yang tinggi ini adalah disebabkan orang awam tidak ada akses untuk memasukinya menyebabkannya masalah vandalism adalah minima. Lif-lif yang berada di dalam keadaan tidak memuaskan iaitu sebanyak 9% adalah disebabkan kegagalan mematuhi pemeriksaan berjadual yang menyebabkan timbulnya masalah ‘wear & tear’. Secara keseluruhannya 56% bilik jentera yang diperiksa berada di dalam keadaan baik dengan hanya sekurang-kurangnya hanya satu subelemen tidak dipatuhi. Di dalam operasi ini di dapati 24 unit yang dipasang tidak mempunyai bilik jentera. 2.3.2.Lift Car Elemen kedua yang dilihat semasa operasi keselamatan lif dijalankan ialah keadaan ‘lift car’. Kriteria yang sama seperti bilik jentera digunakan bagi menentukan skor bagi elemen ini. Rajah 23 menunjukkan keputusan yang diperolehi. Rajah 24: Skor bagi ‘Lift Pit’ 2.3.4. Car Top & Lift Shaft Sepertimana juga sub-elemen ‘lift pit’, subelemen ‘Car Top & Lift Shaft’ juga tidak mempunyai akses untuk orang awam menyebabkannya tidak terdedah kepada masalah vandalism. 94% daripada lif yang diperiksa berada di dalam keadaan baik. Rajah 23: Skor bagi ‘Lift Car’ Secara amnya majoriti ‘lift car’ bagi lif yang diperiksa berada di dalam keadaan baik dengan 152 unit (37%) tidak mempunyai sebarang Rajah 25: Skor bagi ‘Car Top & Lift Shaft’ 9 Keselamatan Lif Di Rumah Pangsa Kos Rendah Di Wilayah Persekutuan 2.4.Komponen Keselamatan Komponen keselamatan merupakan elemen ketiga di dalam senarai semak. Ianya merupakan komponen komponen keselamatan yang tidak boleh gagal di dalam mana-mana lif. Kriteria skornya adalah A jika berada di dalam keadaan baik semasa pemeriksaan dan E jika sebaliknya. 2.4.1. unit lif (5%) di dapati mempunyai masalah dari segi kualiti dan keadaan semasa yang tidak memuaskan. Brakes Kebanyakkan lif yang diperiksa tidak menghadapi masalah brakes. Hanya 9 unit lif didapati brakes perlu diganti. Rajah 28: Skor bagi ‘Buffer’ 2.4.4. Rajah 26: Skor bagi ‘Brakes’ 2.4.2. Landing Door Sebanyak 383 unit lif atau 94% lif yang diperiksa di dapati berada dalam keadaan memuaskan. Selebihnya sebanyak 26 unit lif (6%) lagi berada di dalam keadaan sebaliknya. Safety Gear Komponen keselamatan ‘safety gear’ sebenarnya sukar untuk diperiksa oleh kerana kedudukannya. Kaedah terbaik untuk memastikan keadaannya ialah melalui ujian. Ujian tidak dijalankan ke atas komponen ini semasa operasi. Pemeriksaan hanyalah melibatkan pemerhatian visual. Didapati 99% lif yang diperiksa berada dalam keadaan memuaskan. Rajah 29: Skor bagi ‘Safety Gear’ 2.4.5. Rajah 27: Skor bagi ‘Landing Door’ 2.4.3. Buffer Komponen keselamatan ‘Buffer’ juga secara keseluruhannya berada di dalam keadaan yang disenggara dengan sempurna. Hanya 21 10 Governor Komponen keselamatan ‘governor’ juga menunjukkan aliran yang serupa dengan lain-lain komponen keselamatan. Majoriti lif yang diperiksa menunjukkan komponen ini berada dalam keadaan baik dengan 396 unit (97%) di dapati memuaskan dan 13 unit lagi (3%) bermasalah. Original Article J. Occu. Safety & Health 9 : 1-24, 2012 Rajah 32 menunjukkan skor elemen pengurusan bagi lif yang terlibat di dalam operasi. Keseluruhannya sebanyak 194 unit lif (47%) di dapati cemerlang di dalam aspek pengurusan di mana mematuhi segala keperluan Peraturan yang telah di tetapkan. Selebihnya 116 unit dikategorikan sebagai B, 64 unit sebagai C, 28 unit sebagai D dan 7 unit lagi sebagai E. Rajah 30: Skor bagi ‘Governor’ 2.4.6. Wire rope Sub-elemen terakhir dibawah elemen komponen keselamatan ialah ‘wire rope’. 96% Lif di dapati berkeadaan baik dan 4% lagi bermasalah. Rajah 32: Skor Elemen Pengurusan 3.2.Purata Elemen Keperluan Am Nilai Skor bagi elemen keperluan am ditakrifkan sebagai; [Bilik Jentera + Lift Car + Lift Pit + Car Top] GRMEAN = ------------------------------------------------------- 4 Rajah 31: Skor bagi ‘Wire Rope’ Rajah 33 menunjukkan skor elemen pengurusan am di mana hanya 30 unit lif (7%) sahaja yang didapati berada dalam keadaan yang cemerlang dari segi keselamatan. Majoriti lif yang diperiksa mendapat skor B iaitu sebanyak 262 unit (64%) selebihnya 108 unit (26%) mendapat skor C, 6 unit (1%) skor D dan 3 unit lagi skor E. 3. Analisa Skor Keseluruhan Lif Bagi mendapatkan skor keseluruhan, analisa kualitatif dijalankan di mana grade yang diperolehi oleh setiap elemen di beri nilai di mana skor A=5, B=4, C=3, D=2 dan E=1 dan N/A=0. 3.1.Skor Pengurusan Nilai Skor bagi elemen pengurusan ditakrifkan sebagai; [ Kontrak + 2nd Schedule + Maintenance ] MGMEAN= -------------------------------------------------------- 3 Rajah 33: Skor Elemen Keperluan Am 11 Keselamatan Lif Di Rumah Pangsa Kos Rendah Di Wilayah Persekutuan 3.3.Purata Elemen Keperluan Komponen Keselamatan Nilai Skor bagi elemen komponen keselamatan ditakrifkan sebagai; [Brakes + Landing Door + Buffer + Safety Gear + Governor + Wire Rope] SCMEAN = -------------------------------------------------------- 6 Rajah 34 menunjukkan skor elemen komponen keselamatan di mana di dapati majoriti lif yang diperiksa mempunyai kualiti komponen yang cemerlang iaitu sebanyak 352 unit lif atau (86%). 11 unit lagi mendapat skor B, 1 unit skor C dan 1 unit skor E. Rajah 35: Skor Keseluruhan Keselamatan Lif 4. Keselamatan Lif di antara Rumah Pangsa Rajah 34: Skor Elemen Komponen Keselamatan 3.4.Skor Keseluruhan Skor keseluruhan bagi lif yang terlibat di dalam operasi ini merupakan purata skor kepada elemen pengurusan, elemen keperluan am dan elemen komponen keselamatan. Ia ditakrifkan sebagai; Analisa descriptive telah dijalankan ke atas data yang diperolehi menggunakan kaedah ‘compare means’ untuk melihat perbezaan keselamatan lif di antara rumah pangsa. Jadual 2 menunjukkan keputusan analisa yang diperolehi; Keputusan menunjukkan ‘mean’ keseluruhan bagi overall score adalah 4.4380 dengan nilai paling rendah adalah 3.6632 iaitu skor yang diperolehi oleh perumahan ATM dan tertinggi adalah 4.6306 skor yang diperolehi oleh perumahan awam. Mean bagi kuarters ATM dan JMB kos rendah berada di bawah mean keseluruhan sementara selebihnya lebih tinggi daripada mean keseluruhan. Secara amnya boleh disimpulkan lif yang berada di Perumahan Awam dijaga paling baik dan sebaliknya lif yang berada di kuarters ATM berada di dalam keadaan paling teruk. Perbezaan mean di antara kategori boleh dilihat dengan lebih jelas menerusi rajah 36. Kategori Rumah Skor Keseluruhan [ MGMTMEAN + GRMEAN + SCMEAN ] =--------------------------------------------------3 Pangsa Analisa menunujukkan hanya 11 unit lif (3%) daripada 409 unit lif yang diperiksa di dapati memenuhi kehendak Peraturan dari segi keselamatan. Majoriti lift sebanyak 351 unit (86%) berada dalam keadaan baik tetapi masih ada kecacatan yang sepatutnya boleh diperbaiki, 42 unit lagi (10%) adalah sederhana sementara 13 unit lagi berada dalam keadaan yang teruk yang boleh membahayakan keselamatan pengguna. Mean Std. Deviation Minimum Maximum Variance PPR 4.4160 .40339 2.39 5.00 .163 JMB Kos Rendah 4.3618 .69896 1.08 5.00 .489 JMB Kos 4.5351 .28705 3.83 4.92 .082 Kuarters ATM 3.6632 .13804 3.44 3.75 .019 Kuarters Putrajaya 4.5605 .30769 3.83 4.92 .095 Perumahan Awam 4.6306 .10705 4.44 5.00 .011 Total 4.4380 .48732 1.08 5.00 .237 Sederhana Jadual 2: ‘Means’ di antara Rumah Pangsa 12 Original Article J. Occu. Safety & Health 9 : 1-24, 2012 MGMEAN Status Penyenggaraan 1 GRMEAN SCMEAN SCORE1 Kerajaan 4.2860 4.1842 4.8281 4.4327 Swasta 4.4033 4.0582 4.8661 4.4425 Total 4.3488 4.1167 4.8484 4.4380 Jadual 3: ‘Mean’ di antara Lif yang diuruskan oleh Kerjaan dan Swasta Rajah 36: Graf ‘Box-Plot’ untuk Kategori Rumah Pangsa 5. Keselamatan lif di antara rumah pangsa yang uruskan oleh kerajaan dan swasta Sementara rajah 37 menunjukkan perbezaan ‘mean’ di antara keduanya secara grafik. Jadual 4 adalah keputusan ‘Independent Samples t-test’ untuk membandingkan ‘means’ di antara kerajaan dan swasta. P-value = 0.073 > 0.05, ‘equal variances assumed’ perlu dirujuk dan didapati nilai = 0.42 > 0.05. Ertinya perbezaan ‘means’ di antara kerajaan dan swasta adalah tidak ‘significance’. Analisa descriptive juga dijalankan bagi melihat perbezaan di antara rumah pangsa di bawah pengurusan kerajaan dan swasta. Jadual 3 menunjukkan ‘mean’ bagi lif di bawah pengurusan pihak swasta sedikit lebih baik berbanding kerajaan dengan nilai ‘mean’ adalah 4.4425 berbanding 4.4327 bagi lif yang diuruskan oleh pihak kerajaan. Rajah 37: Graf Box-Plot untuk lif di bawah Pengurusan Kerajaan dan Swasta Independent Samples Test Independent Samples Test Levene's Test for Equality of Variances t-test for Equality of Means 95% Confidence Interval of the Difference F SCORE1 Equal variances Sig. 3.234 t .073 df -.202 Sig. (2- Mean Std. Error tailed) Difference Difference Lower Upper 407 .840 -.00979 .04837 -.10488 .08530 -.207 394.722 .836 -.00979 .04731 -.10280 .08321 assumed Equal variances not assumed Jadual 4: Independent Samples Test (Kerajaan vs Swasta) 13 Keselamatan Lif Di Rumah Pangsa Kos Rendah Di Wilayah Persekutuan 6. Keselamatan lif di antara syarikat lif Analisa descriptive turut dijalankan ke atas syarikat lif yang terlibat bagi melihat kualiti lif dari segi keselamatan di bawah senggaraan mereka. Keputusan ditunjukkan di dalam jadual 5 dan rajah 37; Std. Deviation Minimum Maximum Variance Analisa juga di buat untuk melihat perbezaan di antara MALEA dan Non-MALEA seperti ditunjukkan oleh rajah 38. Daripada rajah tidak dapat dinafikan means bagi MALEA adalah sedikit lebih tinggi jika dibandingkan dengan Non-MALEA menunjukkan perkhidmatan yang disediakan oleh ahli gabungan MALEA sedikit lebih baik dibandingkan dengan Non-MALEA. Syarikat Lif Mean MS Elevator 4.4090 .53611 3.36 5.00 .287 Kone 4.6132 .33063 3.50 5.00 .109 Otis 3.8034 .77467 1.56 4.47 .600 Jadual 6 menunjukkan dengan lebih terperinci perbezaan Royden 4.8457 .09000 4.67 4.92 .008 bagi elemen-elemen yang dikaji serta ‘score keseluruhan Hitachi 4.1736 .11198 4.08 4.33 .013 di antara MALEA dan Non-MALEA. Dover 4.4798 .34103 3.64 5.00 .116 Fujitech 4.8542 .03858 4.83 4.92 .001 Antah Schindler 4.6717 .24462 3.17 5.00 .060 EITA 4.3777 .37652 3.44 4.92 .142 Potensi Terus 4.1609 .10691 3.81 4.28 .011 Newwin 4.5682 .03290 4.50 4.58 .001 Sigma 3.9798 .94909 1.08 4.81 .901 SML 4.8417 .06149 4.75 4.92 .004 Total 4.4380 .48732 1.08 5.00 .237 Jadual 5: Mean di antara Syarikat Lif Jadual 5 menunjukkan ‘mean’ keseluruhan adalah 4.4380 dengan nilai paling rendah ialah 3.8034 iaitu Otis dan paling tinggi ialah 4.8542 iaitu Fujitech. Dengan itu dapat disimpulkan Fujitech memberikan perkhidmatan terbaik penyenggaraan lif dan sebaliknya otis memberikan perkhidmatan yang paling tidak memuaskan. 8 syarikat memberikan perkhidmatan melebihi mean keseluruhan sementara 5 syarikat lagi iaitu EITA, Otis, Potensi Terus, Hitachi, MS Elevator dan Sigma memberikan perkhidmatan di bawah mean keseluruhan. Rajah 39: Graf ‘Box-Plot’ antara MALEA & NON-MALEA Persatuan Lif SCMEAN GRMEAN MGMTMEAN SCORE MALEA 4.7500 4.0742 4.5556 4.4599 NON-MALEA 4.9355 4.1544 4.0799 4.3899 Total 4.8484 4.1167 4.3032 4.4228 Jadual 6: ‘Mean’ di antara MALEA & NON-MALEA Jadual 7 adalah keputusan ‘Independent Samples t-test’ untuk membandingkan ‘means’ di antara MALEA & Non-MALEA. P-value = 0.01< 0.05, ‘equal variances not assumed’ perlu dirujuk dan didapati nilai > 0.05. Ertinya perbezaan ‘means’ di antara MALEA & Non-MALEA adalah tidak ‘significance’. Rajah 38: Graf ‘Box-Plot’ untuk Syarikat Lif 14 Original Article J. Occu. Safety & Health 9 : 1-24, 2012 Independent Samples Test Independent Samples Test Levene's Test for Equality of Variances t-test for Equality of Means 95% Confidence Interval of the Difference Std. Error F SCORE Equal variances assumed Sig. 6.655 t .010 Equal variances not assumed df Sig. (2-tailed) Mean Difference Difference Lower Upper 1.446 407 .149 .07001 .04843 -.02520 .16522 1.401 293.400 .162 .07001 .04999 -.02837 .16840 Jadual 7: Independent Samples Test (MALEA VS NON-MALEA) 7. Keselamatan lif bagi Rumah Pangsa yang dilengkapi CCTV Analisa juga dijalankan bagi membandingkan perbezaan ‘means’ bagi rumah pangsa yang dilengkapi dengan CCTV dan yang tidak dilengkapi CCTV. Jadual 8 menunjukkan rumah pangsa yang dilengkapi CCTV mempunyai nilai ‘score’ yang lebih tinggi. Secara amnya boleh disimpulkan rumah pangsa yang dilengkapi CCTV adalah lebih selamat. CCTV SCMEAN GRMEAN MGMTMEAN SCORE Ada 4.8353 4.2412 4.3647 4.4804 Tiada 4.8519 4.0841 4.2870 4.4077 Total 4.8484 4.1167 4.3032 4.4228 assumed’ adalah 0.119 di mana adalah lebih besar daripada 0.05. oleh itu dapat disimpulkan walaupun ‘mean’ rumah pangsa yang dilengkapi CCTV lebih tinggi tetapi ianya tidak ‘significance’. Pemasangan CCTV di rumah pangsa tidak memberi kesan ketara kepada keselamatan di rumah pangsa. 8. Keselamatan lif yang sedang beroperasi dan tidak beroperasi Analisa juga dijalankan bagi membandingkan perbezaan ‘means’ bagi lif yang beroperasi dengan lif yang gagal beroperasi. Jadual 10 menunjukkan ‘mean’ bagi lif yang sedang beroperasi jauh lebih tinggi jika dibandingkan dengan ‘mean’ bagi lif yang gagal beroperasi. Perbezaan ini digambarkan dengan lebih jelas di dalam rajah 39. Jadual 8: ‘Mean’ bagi CCTV Jadual 9 merupakan keputusan ujian ‘Independent Samples t-test’ bagi CCTV. P-value ialah 0.022 di mana adalah lebih kecil daripada nilai =0.05 (P-value = 0.01< 0.05). Nilai pada ruangan ‘equal variances not Independent Samples Test (cctv) Independent Samples Test (CCTV) Levene's Test for t-test for Equality of Means Equality of Variances 95% Confidence Interval of the Difference F SCORE1 Equal variances assumed Equal variances not 5.276 Sig. .022 t df Sig. (2-tailed) Mean Std. Error Difference Difference Lower Upper .901 407 .368 .05352 .05940 -.06325 .17029 1.183 214.893 .238 .05352 .04526 -.03568 .14273 assumed Jadual 9: Independent Samples Test (CCTV) 15 Keselamatan Lif Di Rumah Pangsa Kos Rendah Di Wilayah Persekutuan 9. Kesimpulan Status Lif SCMEAN GRMEAN MGMTMEAN SCORE Beroperasi 4.9120 4.1491 4.3308 4.4640 Tidak Beroperasi 3.1778 3.2667 3.5778 3.3407 Total 4.8484 4.1167 4.3032 4.4228 Beberapa kesimpulan dapat dibuat hasil daripada analisa ke atas audit keselamatan yang telah dijalankan; 9.1.Beban orang kompetan (CP) di dapati berbeza di antara syarikat lif. Beban di kira sebagai purata bilangan lif yang perlu disenggara oleh CP setiap tahun. Beban paling minima ialah 201 unit lif yang perlu diperiksa oleh CP yang bekerja di syarikat Potensi Terus sementara paling maksima ialah 589 unit lif yang perlu diperiksa oleh CP yang bekerja di syarikat Otis. Kemampuan CP membuat pemeriksaan lif bagi yang mempunyai beban yang tinggi boleh dipersoalkan. Jadual 10: ‘Mean’ bagi Status Lif 9.2.Peratusan lif yang gagal beroperasi adalah kecil (15 unit atau 4%) tetapi memberi impak yang besar kepada reputasi keselamatan lif di rumah pangsa kos rendah. Oleh itu kerosakan lif di rumah pangsa perlu dipandang berat oleh pelbagai pihak yang berkepentingan. Peratusan yang kecil ini sebenarnya menggambarkan masalah kerosakan lif di rumah pangsa adalah satu masalah yang serius. Rajah 40: Graf Box-Plot untuk Status Lif 9.3.Pemasangan CCTV mendapat sambutan dirumah pangsa kos sederhana (10% lif dipasang dengan CCTV). Ujian ‘mean’ menunjukkan terdapat perbezaan di antara rumah pangsa yang dipasang dengan CCTV dan rumah pangsa yang tidak dipasang CCTV. ‘Mean’ bagi rumah pangsa yang dipasang CCTV adalah lebih tinggi skornya berbanding dengan rumah pangsa yang tidak dipasang dengan CCTV. Secara amnya boleh dianggap kualiti lif yang dipasang dengan CCTV adalah lebih baik tetapi ujian ‘Independent Samples t-test’’ yang dijalankan menunjukkan perbezaan Jadual 11 merupakan keputusan ujian ‘Independent Samples t-test’ bagi status lif. P-value ialah 0.00 di mana adalah lebih kecil daripada nilai =0.05 (P-value = 0.00< 0.05). Nilai pada ruangan ‘equal variances not assumed’ adalah 0.015 di mana adalah lebih kecil daripada 0.05. oleh itu dapat disimpulkan perbezaan ‘mean’ di antara lif yang beroperasi dengan lif yang tidak beroperasi adalah ‘significance’. Oleh itu dapat disimpulkan keselamatan lif bagi lif yang sedang beroperasi adalah lebih selamat dibandingkan dengan lif yang tidak beroperasi. Independent Samples Test (Status) Independent Samples Test (Status) Levene's Test for t-test for Equality of Means Equality of Variances 95% Confidence Interval of the Difference F SCORE1 Equal variances assumed Equal variances not 101.868 Sig. .000 t df Sig. Mean Std. Error (2-tailed) Difference Difference Lower Upper 9.881 407 .000 1.13903 .11527 .91242 1.36563 3.539 14.099 .003 1.13903 .32181 .44926 1.82879 assumed Jadual 11: Independent Samples Test (Status Lif) 16 Original Article J. Occu. Safety & Health 9 : 1-24, 2012 ‘mean’ di antara keduanya adalah tidak ‘significance’. Penggunaan CCTV tidak memberi impak yang besar ke atas tahap keselamatan lif di rumah pangsa. 9.4.Dua faktor utama menentukan rekabentuk beban maksima lif dirumah pangsa kos rendah. Faktor pertama ialah kos dan keduanya disebabkan oleh peredaran masa yang mementingkan keselesaan pengguna. baik. 92% lif yang diperiksa di dapati mempunyai kontrak yang sah. Hanya 5% lif yang diperiksa di dapati gagal mengadakan kontrak sementara 2% lagi masih di dalam proses perbincangan untuk persetujuan terma kontrak. 9.10.Pemeriksaan 2nd schedule. Hanya 51% lif yang mematuhi keperluan pemeriksaan ini iaitu empat kali setahun. 84 unit lif (21%) di dapati langsung tidak dijalankan pemeriksaan ini. Syarikat lif di mana beban CP yang tinggi didapati gagal menjalankan pemeriksaan ini dengan sempurna. Kajian juga menunjukkan syarikat lif di bawah MALEA lebih bertanggungjawab di dalam melaksanakan tanggungjawab sebagai penyenggara lif yang mempunyai kontrak dengan pemilik lif. 9.5.Faktor kos dan peredaran masa juga merupakan faktor penentu kepada rekabentuk penumpang maksima lif yang dipasang di rumah pangsa kos rendah. 9.6.Lif yang dipasang di rumah pangsa kos rendah direkabentuk untuk pelbagai kegunaan. Lif digunakan untuk mengangkut penumpang dan juga barang-barang termasuk perabot. Kajian menunjukkan tiada satu pun rumah pangsa kos rendah yang dipasang dengan lif yang diasingkan di antara lif penumpang dan lif barang. Faktor ini juga merupakan penyumbang kepada isu vandalism. 9.11.Peraturan lif memerlukan lif disenggara oleh juruteknik daripada syarikat lif sekali setiap bulan. 76% lif di dapati memenuhi keperluan ini di mana telah disenggara sebanyak 12 kali setahun. Peratusan yang lebih tinggi daripada pemeriksaan 2nd shedule disebabkan oleh aktiviti ini tidak perlu dilakukan oleh CP. Ianya boleh dilakukan oleh juruteknik yang terlatih. Namun 31 unit lif (8%) di dapati gagal mengadakan sebarang aktiviti penyenggaraan. Prestasi syarikat yang bernaung di bawah MALEA di dapati lebih baik dibandingkan dengan syarikat lain. 9.7.Kajian menunjukkan majoriti lif (82%) mempunyai kekerapan ‘breakdown’ di bawah 10 kali setahun sementara selebihnya melebihi 10 kali (18%) setahun. Masalah ‘breakdown’ di rumah pangsa secara puratanya masih lagi di bawah kawalan dan boleh diterima dengan mengambilkira kekerapan pengoperasian lif di rumah pangsa yang sentiasa digunakan 24 jam sehari. Walaubagaimanapun di dapati syarikat lif dengan CP yang mempunyai beban yang tinggi di dapati lebih bermasalah di mana lif di bawah senggaraan syarikat ini mempunyai kekerapan ‘breakdown’ yang lebih tinggi. 9.12.Sub-elemen bilik jentera yang diperiksa melihat kepada tujuh sub-elemen. Lif yang mempunyai skor A & B di anggap berada di dalam keadaan baik bagi elemen ini. Hanya 62% lif di dapati mempunyai bilik jentera yang dianggap berada di dalam keadaan baik selebihnya 38% lagi di dapati tidak memuaskan. Faktor penyebab kepada kegagalan sub-elemen di bilik jentera merupakan kombinasi kegagalan syarikat lif menjalankan tanggungjawab dan juga isu vandalisme. Walaupun bilik jentera sentiasa sentiasa terkunci, masih terdapat bukti di mana bilik jentera dipecah masuk dan juga persekitaran bilik jentera disalah guna untuk tujuan lain. 9.8.Kajian turut menunjukkan 91% atau 373 unit lif pernah dibaiki kurang daripada 10 kali kekerapan. Selebihnya 9% (36 unit) mempunyai kekerapan dibaiki melebihi 10 kali. Lif-lif yang dibaiki lebih daripada 10 kali ini merupakan lif yang bermasalah yang mengundang rungutan orang ramai. Juga di dapati lif yang disenggara oleh syarikat lif dengan CP yang mempunyai beban yang tinggi memerlukan kekerapan kerja pembaikan yang lebih tinggi. Ini disebabkan beban yang tinggi menyebabkan sesetangah lif gagal disenggara dengan sempurna oleh CP yang menyebabkan kerosakan yang lebih teruk dan berulang. 9.13.Sub-elemen ‘lift car’ mengandungi tujuh sub-elemen. Kajian menunjukkan 68% lif yang diperiksa berada di dalam keadaan baik manakala 32% lagi di dapati tidak memuaskan. Penyebab utama kepada masalah elemen ini adalah isu vandalisme. Elemen ini terdedah kepada penggunaan orang awam pada sepanjang masa yang terdiri daripada pelbagai latarbelakang. 9.9.Kepatuhan pemilik lif mematuhi keperluan perundangan iaitu perlu ada kontrak penyenggaraan lif yang sah dengan syarikat lif yang diiktiraf adalah 9.14.Sub-elemen ‘lift pit’ yang mengandungi tujuh sub elemen di dapati jauh lebih baik dibandingkan dengan 17 Keselamatan Lif Di Rumah Pangsa Kos Rendah Di Wilayah Persekutuan dua elemen di atas. 91% daripadanya di dapati berkeadaan baik. Elemen ini tidak terdedah kepada isu vandalisme kerana orang awam tiada akses kepadanya. Kegagalan mana-mana sub-elemen jelas disumbangkan oleh kegagalan syarikat lif menjalankan tanggungjawabnya. merupakan yang tertinggi di antara tiga elemen yang dikaji iaitu 86% daripadanya mendapat skor A. 9.20.Daripada ketiga-tiga elemen yang dikaji, di dapati ‘mean’ bagi keperluan am paling rendah nilainya. Oleh kerana elemen keperluan am berkait rapat dengan isu vandalisme dapat disimpulkan masalah vandalisme merupakan isu utama yang menyumbang kepada masalah keselamatan lif di rumah pangsa kos rendah. 9.15.Sub-elemen ‘car top & lift shaft’ juga menunjukkan peratusan yang tinggi bagi keadaan baik (94% mendapat gred A & B) . Pengguna lif tiada akses untuk masuk ke elemen ini. Oleh itu elemen ini terlindung daripada isu vandalisme oleh pengguna yang tidak bertanggungjawab. 9.21.Skor keseluruhan bagi lif yang terlibat di dalam kajian ini merupakan purata skor tiga elemen utama iaitu pengurusan, keperluan am dan komponen keselamatan. Kajian mendapati daripada 409 unit lif yang terlibat, hanya 11 unit lif (3%) yang mendapat skor A iaitu lif yang berada di dalam keadaan baik dari perspektif semua elemen yang dikaji. Majoriti lif di rumah pangsa kos rendah berada di dalam gred B iaitu sebanyak 86% (351 unit) dan selebihnya 47 unit lagi mendapat skor C,D & E yang menunjukkan lif-lif ini mempunyai masalah-masalah yang perlu diselesaikan. 9.16.Komponen keselamatan mengandungi enam elemen yang berasingan iaitu brakes, governor, landing door, wire rope, safety gear dan buffer. Secara keseluruhannya kesemua elemen – elemen komponen keselamatan bagi lif yang diperiksa di dapati berada di dalam keadaan yang amat baik. Kesemua elemen mendapat skor A melebihi 94%. Kedudukan elemen komponen keselamatan lif yang terlindung daripada akses kepada pengguna merupakan penyebab utama kepada prestasi yang amat baik ini. Faktor yang lain ialah fokus yang diberikan oleh syarikat penyenggara ke atas komponen keselamatan semasa pemeriksaan dijalankan turut menyumbang kepada statistik yang baik ini. 9.22.Perbandingan ‘mean’ di antara kategori rumah pangsa menunjukkan lif di perumahan awam adalah yang terbaik dengan nilai ‘mean’ adalah 4.05 dan yang paling teruk ialah lif yang dipasang di kuarters ATM. 9.17.Elemen pengurusan yang dikaji merupakan gabungan kepada sub elemen kontrak, pemeriksaan 2nd schedule dan penyenggaraan yang perlu dilaksanakan oleh pemilik lif melalui syarikat lif yang dilantik. Hanya 47% lif mematuhi sepenuhnya keperluan elemen pengurusan. Ini bermakna 53% peratus lagi lif gagal melaksanakan sebahagian keperluan Peraturan berkaitan penggunaan lif. 9.23.Perbandingan ‘mean’ di antara rumah pangsa di bawah pengurusan kerajaan dengan swasta menunjukkan terdapat perbezaan di antara keduannya dengan rumah pangsa di bawah pengurusan swasta adalah lebih baik dengan nilai ‘mean’ adalah 4.4425 dibandingkan dengan kerajaan iaitu 4.4327. Walaubagaimanapun perbezaan ‘mean’ di antara keduannya adalah tidak ‘significance’. Ini bermakna perbezaan yang wujud adalah tidak ketara dan boleh disimpulkan secara statistiknya tiada perbezaan yang wujud di antara lif yang disenggara oleh Kerajaan dan Swasta 9.18.Elemen keperluan am merupakan purata bagi skor sub-elemen bilik jentera, ‘lift car’, ‘lift pit’ dan ‘car top & lift shaft’. 64% lif yang diperiksa di dapati mempunyai skor A yang bermaksud kesemua sub elemen yang dikaji berada di dalam keadaan yang memuaskan. 36 % lagi lif yang diperiksa di dapati mempunyai sebahagian sub-elemen yang berada di dalam keadaan tidak memuaskan. Elemen ini berkaitan rapat dengan isu-isu vandalisme pada lif lif di rumah pangsa kos rendah. Oleh itu statistik 36% lif yang mempunyai skor tidak memuaskan menunjukkan masalah vandalisme masih lagi tinggi di rumah pangsa kos rendah. 9.24.Perbandingan ‘mean’ di antara MALEA dan Non MALEA menunjukkan lif di bawah senggaraan syarikat yang bernaung dengan MALEA adalah lebih baik dengan nilai ‘mean’ adalah 4.4599 dibandingkan dengan non-MALEA iaitu 4.3899. Walaubagaimanapun perbezaan ‘mean’ di antara keduannya adalah tidak ‘significance’. Ini bermakna perbezaan yang wujud adalah tidak ketara dan boleh disimpulkan secara statistiknya tiada perbezaan yang wujud di antara lif yang disenggara oleh MALEA & N0n-MALEA. 9.19.Elemen komponen keselamatan merupakan purata bagi skor enam sub-elemen. Skor yang diperolehi 18 Original Article J. Occu. Safety & Health 9 : 1-24, 2012 9.25.Perbandingan ‘mean’ di antara lif yang dipasang dengan CCTV dan lif yang tidak dipasang dengan CCTV menunjukkan terdapat perbezaan di antara keduannya dengan lif yang dilengkapi dengan CCTV mempunyai nilai’mean’ yang lebih tinggi. Walaubagaimanapun perbezaan ‘mean’ di antara keduannya adalah tidak ‘significance’. Ini bermakna perbezaan yang wujud adalah tidak ketara dan boleh disimpulkan secara statistiknya tiada perbezaan yang wujud di antara lif yang dilengkapi dengan CCTV dan lif yang tidak dilengkapi dengan CCTV. 9.26.Perbandingan ‘mean’ di antara lif yang beroperasi dengan lif yang tidak beroperasi menunjukkan terdapat perbezaan di antara keduanya dengan lif yang beroperasi mempunyai nilai ‘mean’ yang lebih tinggi. Ujian yang dijalankan juga menunjukkan perbezaan di antara keduannya adalah ‘significance’. Ini bermakna perbezaan di antara keduannya adalah ketara dan boleh disimpulkan secara statistiknya terdapat perbezaan yang ketara di antara keduanya dengan lif yang beroperasi adalah jauh lebih baik. sebagai jurutera stim. Konsep yang sama mungkin boleh dilaksanakan ke atas lif di mana rekabentuk dan pemasangan diwajibkan oleh firma kompetant manakala pemeriksaan tahunan boleh dijalankan oleh mana-mana individu yang layak sebagai CP dan tidak terikat dengan manamana firma kompetant. Langkah ini boleh mewujudkan lebih ramai individu sebagai CP tanpa terikat dengan mana-mana firma kompetant dan seterusnya dapat mengurangkan bayaran pemeriksaan oleh CP disebabkan persaingan diantara CP akan mendorong kepada penurunan caj perkhidmatan. 10.1.3.Mengkaji perlaksanaan pemeriksaan tahunan lif di negara-negara yang sudah ‘establish’ seperti Singapura, Hong Kong dan Australia dengan mengambil mana-mana perlaksanaan yang baik dan praktikal untuk dilaksanakan di Malaysia. 10.2.Isu peraturan lif – relevancy Kajian turut menunjukkan pematuhan kepada keperluan perundangan pemeriksaan lif yang melibatkan tiga isu utama iaitu kontrak penyenggaraan antara pemilik dengan firma kompetant (7% lif yang diperiksa di dapati tidak mempunyai kontrak) , pemeriksaan ‘2nd schedule’ (hanya 51% lif yang diperiksa didapati menjalankan pemeriksaan 2nd schedule secara sempurna) dan penyenggaraan bulanan gagal dipatuhi (Hanya 76% lif yang diperiksa melakukan penyenggaraan yang sempurna). Terdapat tiga faktor penyumbang kepada kegagalan pematuhan; 10.Pelan Tindakan 10.1.Isu beban orang kompetan Kajian menunjukkan masalah menjalankan pemeriksaan ‘2nd schedule’ secara sempurna yang diwajibkan akan terjejas bila bilangan purata lif bagi setiap orang kompetan (CP) terlalu tinggi. Jabatan perlu melihat kembali polisi yang diamalkan sekarang di mana tiada kawalan langsung bilangan maksima yang mampu di selia oleh setiap CP. Jabatan perlu memberi perhatian kepada cadangan cadangan berikut; 10.2.1.Kegagalan JKKP sendiri bertindak ke atas ketidakpatuhan pemilik atau firma kompetant yang gagal menjalankan tanggungjawab dan tiada prosedur komprehensive bagi memastikan setiap firma kompetan dan pemilik lif menunaikan tanggungjawab. Setakat ini belum ada rekod yang menunjukkan JKKP mengambil tindakan undang-undang ke atas mana mana pemilik atau firma yang gagal mematuhi keperluan perundangan. 10.1.1.Menghadkan bilangan lif yang perlu di selia bagi setiap CP. Kajian perlu dijalankan bagi menentukan bilangan ideal lif bagi setiap CP. Contohnya katakan bilangan ideal lif bagi setiap CP ialah 300 unit, Jika syarikat A ada 3 orang CP, bilangan maksima lif yang boleh di selia oleh syarikat A ialah 900 unit. Jika syarikat A mahu mengambil kontrak lebih daripada 900 unit lif, ia tiada pilihan selain daripada mengambil inisiatif bagi melayakkan lebih CP. 10.2.2.Kegagalan firma kompetan menunaikan tanggungjawab sepertimana dikehendaki oleh Peraturan. Kegagalan ini mungkin disebabkan oleh; 10.1.2.Konsep CP di ubah menggunapakai konsep jurutera stim. Bagi dandang stim, pembinaan dan pemasangan wajib di kendalikan oleh syarikat yang mempunyai lesen sebagai pembina dandang stim tetapi pemeriksaan tahunan boleh dilakukan oleh mana-mana individu yang layak 10.2.2.1.Bilangan CP yang terhad menyebabkan firma kompetan hanya memberi perhatian kepada pelanggan daripada kategori ‘good pay master’. 19 Keselamatan Lif Di Rumah Pangsa Kos Rendah Di Wilayah Persekutuan 10.2.2.2.Firma kompetan mengambil peluang di atas kelemahan jabatan di dalam menguatkuasakan Peraturan lif. 10.2.3.Kegagalan pemilik / JMB menunaikan tanggungjawab. Ini disebabkan oleh; 10.2.3.1.Kekangan kewangan. Kekurangan kewangan merupakan salah satu penyebab yang telah dikenalpasti penyumbang kepada kegagalan mengadakan penyenggaraan berjadual dan juga penukaran alat ganti yang dikenalpasti mengalami kerosakan. JKKP perlu mengambil langkah proaktif bagi mewujudkan kerjasama di antara Jabatan yang berkepentingan untuk melihat kepada keperluan rekabentuk, penyenggaraan, peraturan penggunaan dan sebagainya. 10.4.Isu Kekangan Kewangan untuk Penyenggaraan Lif di Rumah Pangsa. Penggunaan lif melibatkan kos penyenggaraan dan juga kos bayaran pemeriksaan. Sebahagian besar kos yang diperukan adalah untuk bayaran penyenggaran bulanan dan juga kos alat ganti jika berlaku kerosakan. 10.2.3.2.Kekurangan pengetahuan Jabatan perlu merangka satu pelan tindakan yang drastik dengan mewujudkan satu jawatankuasa khas untuk melihat kembali relevansi Peraturan lif yang sedia ada samada masih relevan digunapakai atau perlukan satu pembaharuan yang drastik yang lebih sesuai dipraktikkan untuk disesuaikan dengan keperluan semasa. 10.3.Isu Kerjasama dengan Agensi Lain Sekurang-kurangnya terdapat 3 agensi yang terlibat di dalam rekabentuk, pemasangan, penyelenggaraan dan pemeriksaan lif di rumah pangsa kos rendah. Kementerian Perumahan Kerajaan Tempatan (KPKT) merupakan agensi yang bertanggungjawab membina dan merekabentuk rumah pangsa kos rendah milik kerajaan termasuk lif penumpang yang akan dipasang dan digunakan. Dewan Bandaraya Kuala Lumpur pula bertanggungjawab di dalam menyelenggara dan membaiki kerosakan lif sementara JKKP terlibat di dalam melulus dan pemeriksaan lif. Faktor tiada kerjasama di antara agensi terlibat tidak dapat dinafikan. Setakat ini tiada jawatankuasa dibentuk di antara agensi terlibat untuk melihat kepada rekabentuk dan penggunaan lif yang paling sesuai untuk kegunaan di rumah pangsa kos rendah. Kajian menunjukkan daripada 3 elemen yang dikaji, elemen keperluan am yang terdiri daripada keadaan – keadaan di ‘lift pit’, ‘lift car’ dan ‘car top & machine room’ memberikan purata skor paling rendah. Elemen keperluan am berkait rapat dengan isu vandalism dan fakta ini membuktikan isu vandalism adalah penyumbang terbesar di dalam masalah lif di rumah pangsa. Isu vandalism berpunca daripada dua penyumbang utama; Isu penyenggaraan tidak dijalankan dengan sempurna adalah disebabkan kegagalan pemilik membuat bayaran kepada firma kompetan yang dilantik. Masalah ini agak ketara bagi rumah pangsa milik swasta di mana kegagalan membayar kos penyenggaraan menyebabkan keenganan firma kompetan menjalankan pemeriksaan. Kos bayaran pemeriksaan bagi memperbaharui sijil kelayakan walaupun agak kecil dibandingkan dengan kos untuk penyenggaraan, masih memberi masalah kepada komuniti rumah pangsa kos rendah terutamanya kategori swasta. Sesuai dengan slogan kerajaan sekarang, ‘Rakyat di dahulukan, Pencapaian diutamakan’ JKKP mungkin boleh memberikan cadangan kepada kerajaan supaya caj-caj pemeriksaan lif bagi rumah pangsa kategori kos rendah dikecualikan. 10.5.Isu Breakdown & Repair 18% lif di dapati mengalami kekerapan breakdown melebihi 10 kali sementara 9% lif didapati di baiki lebih daripada 10 kali. Lif – lif di dalam kategori ini perlu di beri fokus yang lebih antaranya; 10.5.1.Menambah pemeriksaan 10.3.1.Sikap tidak bertanggungjawab pengguna lif yang sengaja merosakkan lif; kekerapan audit dan 10.5.2.Memastikan orang kompetan yang terlibat mengemukakan laporan penyenggaraan dan pemeriksaan setiap bulan. 10.3.2.Aktiviti perpindahan keluar dan masuk penghuni yang tidak di kawal dengan mengangkut peralatan – peralatan bersaiz besar dan beban yang melampaui had rekabentuk lif. 10.5.3.Mengadakan perbincangan dengan syarikat penyenggaraan / pemunya / wakil penduduk bagi mencari jalan penyelesaian. 20 Original Article J. Occu. Safety & Health 9 : 1-24, 2012 LAPORAN PEMERIKSAAN KESELAMATAN DAN KESIHATAN PEKERJAAN BAGI LIF PENUMPANG BAHAGIAN A Nama & Alamat Bangunan Nama & Alamat Syarikat Penyenggara / JMB Nama PIC No. Telefon Bilangan Blok Nama Syarikat Kompeten Lif Yang dilantik BAHAGIAN B Nama Blok yang diperiksa Nama Pemeriksa Bilangan Lif : : : : : : : : : : Kapasiti Lif Beroperasi(Y/N) Max. Load (Kg) 1.PMA 2.PMA 3.PMA 4.PMA BAHAGIAN C i. Kekerapan Breakdown/Tahun 1.Lift 1 2. Lift 2 3.Lift 3 4. Lift 4 ii.Kekerapan Kerja-Kerja Pembaikan 1.Lift 1 2. Lift 2 3.Lift 3 4. Lift 4 iii.Penyediaan CCTV (Ada/Tidak) 1.Lift 1 2. Lift 2 3.Lift 3 4. Lift 4 21 Bil. Penumpang Max Keselamatan Lif Di Rumah Pangsa Kos Rendah Di Wilayah Persekutuan KRITERIA UNTUK SENARAI SEMAK PEMERIKSAAN LIF DI RUMAH PANGSA KOS RENDAH DI WILAYAH PERSEKUTUAN BIL ELEMEN A B KRITERIA C D E 1 Kontrak Penyenggaraan dengan Syarikat yang diiktiraf Kontrak penyenggaraan masih sah Tiada kontrak penyenggaraan kurang daripada 1 bulan Tiada kontrak penyenggaraan di antara 1 bulan sehingga 2 bulan Tiada kontrak penyenggaraan di antara 2 bulan sehingga 3 bulan Tiada kontrak penyenggaraan melebihi 3 bulan 2 Pemeriksaan 2nd Schedule Pemeriksaan dijalankan dengan sempurna 75% pemeriksaan dijalankan 50% pemeriksaan dijalankan 25% pemeriksaan dijalankan Pemeriksaan tidak dijalankan 3 Service and Adjusted according to clause 31(5) Dijalankan setiap bulan 75% dijalankan 50% dijalankan 25% dijalankan Tidak dijalankan 4 Bilik Jentera i. Laluan ke bilik jentera dalam keadaan baik • Gagal mematuhi mana-mana satu elemen di dalam Kategori A • Gagal mematuhi mana-mana dua elemen di dalam Kategori A • Gagal mematuhi mana-mana tiga elemen di dalam Kategori A • Gagal mematuhi lebih daripada tiga elemen di dalam Kategori A • Gagal mematuhi mana-mana satu elemen di dalam Kategori A • Gagal mematuhi mana-mana dua elemen di dalam Kategori A • Gagal mematuhi mana-mana tiga elemen di dalam Kategori A • Gagal mematuhi lebih daripada tiga elemen di dalam Kategori A • ii. Tiada tumpahan minyak iii.‘Access ladder dan lampu dalam keadaan baik. Gagal mematuhi mana-mana satu elemen di dalam Kategori A • Gagal mematuhi mana-mana dua elemen di dalam Kategori A • Gagal mematuhi mana-mana tiga elemen di dalam Kategori A • Gagal mematuhi lebih daripada tiga elemen di dalam Kategori A ii. Bilik sentiasa berkunci iii.Mempunyai tanda amaran iv. Alat pemadam api masih sah v. Sistem Pengudaraan berfungsi vi.Kebersihan dan ‘lighting’ memuaskan vii.Controller berada di dalam keadaan baik viii.Tiada kebocoron (water leakage) di dalam bilik jentera 5 Lift Car i. Sistem penggera keselamatan berfungsi dengan baik ii. Pengudaraan berada di dalam keadaan baik iii.PMA Plate No. iv. Pengcahayaan /mentol / penghadang mentol berada di dalam keadaan baik v. Lantai dan dinding di dalam keadaan baik vi.‘control buttons and panel’ berada di dalam keadaan baik vii.Lift Car Door, Landing Door Gap & Leveling di dalam keadaan memuaskan 6 Lift Pit i. Berkeadaan Kering dan bersih iv. Counterweight run-by mematuhi jarak minima v. Counterweight safety fencing / compensating chain/rope di dalam keadaan memuaskan vi.Travelling cable di dalam keadaan memuaskan vii.Partition for Common Lift Pit viii. Pit Stop switch berfungsi 22 Original Article J. Occu. Safety & Health 9 : 1-24, 2012 KRITERIA UNTUK SENARAI SEMAK PEMERIKSAAN LIF DI RUMAH PANGSA KOS RENDAH DI WILAYAH PERSEKUTUAN (samb.) BIL ELEMEN A B 7 Car Top & Lift Shaft i. Berkeadaan Bersih ii. ‘car’ dalam keadaan baik a. Car guide shoe b. Car guide rails iii.Counterweight berkeadaan baik a. Guide rail b. Guide roller shoe c. Frame d. Tie rods e. Filler iv. Switches; o Safety Limit o Emergency Stop Switch o Trap Door Switch o Inspection Switch di dalam keadaaan baik o Landing Door Locking Devices. v. ‘Car top railing’ dan ‘Facial Plates’ di pasang dengan selamat. vi.Governor Rope Secured Properly to the Linkage. 8 Safety Components i. Traction Machine ii. Landing Door KRITERIA C • Gagal mematuhi mana-mana satu elemen di dalam Kategori A • • • • • • Lining brake / shoes in good condition Traction and deflector sheave in good condition Surface free from oil Brake drums properly engaged No abnormal noise generated Traction Machine Guard Installed • • Door gap properly secured Mechanical lock / electrical contact / pulley / counterweight / wirerope iii.Buffer • Spring stiffness vi.Safety Gear • Distance between gap v. Governor i. Wire Rope • • • • • • • D Gagal mematuhi mana-mana dua elemen di dalam Kategori A • E Gagal mematuhi mana-mana tiga elemen di dalam Kategori A • Gagal mematuhi lebih daripada tiga elemen di dalam Kategori A Electrical Tripping Speed Mechanical Tripping Speed Governor Rope Condition Groove Cleanliness Guard Installed • Tension • Breakage • Diameter Nota: Tahap Keseluruhan Pemeriksaan Lif A - Cemerlang B - Baik C - Memuaskan 23 D E - - Kurang Memuaskan Tidak Memuaskan Keselamatan Lif Di Rumah Pangsa Kos Rendah Di Wilayah Persekutuan LIF PMA ELEMEN A B Kotrak Management 2nd Sch. Service Bilik Jentera General Requirements 1 Lift Car Lift Pit Car Top & Lift Shaft Break Landing Door Safety Components Safety Gear Governor Wire Rope Buffer Kontrak Management 2nd Sch. Service Bilik Jentera General Requirements Lift Car Lift Pit Car Top & Lift Shaft 2 Break Landing Door Safety Components Safety Gear Governor Wire Rope Buffer Kontrak Management 2nd Sch. Service Bilik Jentera General Requirements Lift Car Lift Pit Car Top & Lift Shaft 3 Break Landing Door Safety Gear Safety Components Governor Wire Rope Buffer Kontrak Management 2nd Sch. Service Bilik Jentera General Requirements 4 Lift Car Lift Pit Car Top & Lift Shaft Break Landing Door Safety Gear Safety Components Governor Wire Rope Buffer **Nyatakan sub - elemen yang gagal dipatuhi di dalam ruangan catatan bagi setiap eleman. 24 SKOR C CATATAN D E Original Article J. Occu. Safety & Health 9 : 25 - 30, 2012 Accident Risk Indices Of Malaysia’s Firefighters Working In 12 And 24 Hours Shift Works **Dr. Sharifah Osman @ Liew Shyuan Yei Universiti Malaysia Sarawak (UNIMAS) *Prof. Dr. Ismail Bahari Universiti Kebangsaan Malaysia(UKM) *Prof. Madya Dr. Kadir Arifin Universiti Kebangsaan Malaysia (UKM) *Dato’ Wan Mohd Nor Bin Hj. Ibrahim Jabatan Bomba dan Penyelamat Malaysia (JBPM) *Mr. Chen Teck Foong TULP Offshore Crewing Sdn Bhd **Cognitive Sciences Department Faculty of Cognitive Sciences & Human Development University Malaysia Sarawak (UNIMAS) * Industrial Safety Management Programme Faculty of Science & Technology, National University of Malaysia (UKM) ° Director General Fire and Rescue Department Malaysia QESH Department +TULP Offshore Crewing Sdn Bhd Abstract Work shift has been shown to correlate with accident rates. Understanding of such correlation is pertinent especially among emergency response personnel since the decisions that they make determines not only the outcome of their responses but also the risks of accidents to themselves. A questionnaire data derived study used together with a semi quantitative risk analysis method was adopted to estimate the levels of accident risks between firefighters working on two work shifts. Two hundred and forty eight Malaysia’s Fire and Rescue Department firemen from 24 fire stations working on shifts were selected as respondents. The accident rate among firefighters in year 2006 was 52.8 %. Results showed that the Accident Risk Index (ARI) among firefighters working the 24 hours shift was higher (ARI = 3.14) compared with those in the 12 hours shift (ARI = 2.98). However, there were no significant difference in overall severity of the accidents between the two shifts (p>0.05). The difference in risk levels was attributed to the difference in the likelihood of accident occurrence. Keywords: Shift work, firefighters, Accident Risk Index, Malaysia. evening, night or weekend shift’. Shift work also has been defined as any work performed outside the hours of 7:00 to 18:00 (Monk & Folkard 1992). Many types of jobs in the service sector require round-the-clock staffing and /or coverage extending beyond the standard daytime hours. Fire fighters are a good example, they must be available 24 hours a day, in fact most career firefighters work in shift (Schirmer & Glazner 1983). Fire fighter provides the society with essential life-saving service. They are subjected to be effects of shift work, the physical and mental demands and the inherent dangers of their profession, all of which can contribute to accidents. There are general indications that shift work can be correlated with raised of accident rates (Harrington 1994, Introduction According to the International Labour Office, shift work is defined as ‘A method of work organization under which groups or crews of workers succeed each other at the same workstations to perform the same operations, each crew working a certain schedule or shift so that the undertaking can operate longer than the stipulated weekly hours for any worker. Often the term is used when more than one work period is scheduled in a workdays or when most of the working hours fail outside the standard workday, such as **Corresponding address: Sharifah Liew (Email: sharifahliew@fcs.unimas.my) 25 Accident Risk Indices Of Malaysia’s Firefighters Working In 12 And 24 Hours Shift Works Totterdell et. al 1995, Linda 1996, Smith et. al 1998, Harma et. al 1999, Christine 2001, Irwin et. al 2004, Jurriaan et. al 2004). Many significant accidents happen in the early hours of the morning shift when workers are tired. Some accidents that have been attributed to shift work include the tragedy of Three Mile Island nuclear plant and the Chernobyl nuclear tragedy. Price and Hooley (1976) observed a periodicity to the injuries sustained by shift workers and suggested that the frequencies of such injuries increase at night. Accident risk was expressed and discussed in terms of Accident Risk Index (ARI), a term calculated as described by Ismail (2002). ARI is a function of the level of exposure to an accident and the consequence of such exposure. The level of exposure was calculated based on the function of population exposed and the likelihood of an accident occurring as a result of such exposure. Levels of consequence and likelihood were expressed as indices based on their respective rating categories pre-determined and accepted by 10 senior officers of the Fire and Rescue Department of Malaysia. The categorization of rating scales for consequence and likelihood were as shown in tables 1 and 2. In Malaysia, 66.80% of fire stations operate on a 12 hours shift and 33.20% of fire stations operate on 24 hours shift (Fire & Rescue Department of Malaysia 2004). Firefighter who works on 12 hour shifts can be divided into 3 groups and those who work on 24 hours shift can be divided into 2 groups. The purpose of this study is to determine the comparison of risk between different shifts among firefighters in Malaysia. Hypothesis of this study is that the Accident Risk Index is higher among the firefighters on the 24 hours shift compared to those on the 12 hours shift . Since the size of population exposed to hazard was constant for 12 and 24 hour work shifts, level of ARI was dependent on different levels of exposure, consequence and likelihood. Each parameter used in calculating ARI was determined based on the feedback participants gave when answering the questions in the questionnaires. The questionnaire was designed to facilitate participants to give their perceptions on the index for each parameter, based on their work experiences. To ensure correct and uniform understanding of the questions given to them, the questionnaires were answered by the participants in group sessions guided by a researcher. Methodology Participants A total of 248 firefighters from Malaysia’s Department of Fire and Rescue, from 24 fire stations in Peninsular Malaysia and Sabah voluntarily participated in this study. This study was conducted over a period of three months, starting from July 2006 to October 2006. The firefighters worked on either a 12 hour or a 24 hour shift system. Likelihood Consequence/Severity 7 injury per year 4 – 6 injury per year 1 - 3 injury per year < 1 injury per year Permanent disablement or death Total work day lost > 4 days Total work day lost < 4 days < Minor injury Index 4 3 2 1 Table 1: Categories and indices for the parameters used in calculating Accident Risk Index (ARI) Firefighters working on a 12 hours shift works in 3 groups’ rotation shift. The first group in the 12 hour shift category starts from 0800 hr to 2000 hr for the first day, second group works from 2000 hr first day to 0800 hr the second day and the third group works from 0800 hr to 2000 hr the third day. Firefighters working on the 24 hours shift were divided into a two groups rotation shift. First group in the 24 hours shift starts from 0800 hr first day to the second day 0800 hr and the second group works from 0800 hr second day to 0800 hr the third day. The work schedule on daytime duties (0730 – 2130 hrs) included maintenance of vehicles and other fire fighting and rescue equipments, paper work, training for emergency service and actual performance of such services, sports, and drills. For night duty (2130 - 0730 hrs), the team was divided into five groups, each group alternately working on a 2 hours shift. They take naps in the standby rooms during night duty except when they are on a night shift or when they are called out on an emergency. Level of Risk Descriptions 8-16 High Risk - - - Unacceptable risk if action is not taken Report must be made to senior officer of the station Remedial action and mitigation measures must be taken immediately 4-6 Medium Risk - - - Tolerable risk Control measures must be taken to prevent increase in the level of risk. Status of risk will be discussed in monthly meeting for S&H 1-3 Low Risk - Accepted risk - Risk level is monitored Table 2: Categories of Risk Accident Index (ARI) and what they mean Assessment of Accident Risk 26 Original Article J. Occu. Safety & Health 9 : 25 - 30, 2012 This study involved 120 firefighters working the 12 hr work shift and 128 firefighters working on the 24 hr shift. Majority (45.0 %) of the participants on the 12 hr shift were between the ages of 26 - 35 years while the majority (35.2 %) in the 24 hr work shift was above 46 years old. This shows that firefighters on 24-h shift were older than the firefighters on the 12 hour shift. Majority of firefighters from both shifts were married and has secondary level education. The majority of firefighters on both shifts have normal Body Mass Index. There were however, overweight firemen, i.e. 35.7 % on the 12 hour shift and (36.1%) on the 24 hour shift. Others fall under the category of obesity, 18.9 % in the 24 hour shift and 12.1 % in the 12 hour shift (Table 3). Feedback from the questionnaires revealed that firefighters working the 24 hr shift recorded a higher percentage of accident (53.9 %) compared to those working the 12 hr shift (52.5 %). Table 4 shows the statistical comparison in severity of accidents between both work shifts. Severity of accidents was measured in terms of indices explained in table 1. T-tests showed no significant difference (p<0.05) in severity of accidents between both work shifts. The severity scores for 12 hr and 24 hr work shifts were 1.40 ± 0.77 and 1.41 ± 0.75 respectively. Chi-square analysis on the severity of accidents experienced by firefighters working the 12 hr and 24 hr work shifts showed Socio-demography 12-h shift 24-h shift significant differences (p<0.05) among the four categories of factors N=120 N=127 severity. Most of the firefighters on both shifts were involved n (%) n (%) in accidents with minor injuries (76.2 % for 12 hr shift and Age 71.0 % for the 24 hr). Different work shifts showed different < 25 17 (14.2) 20 (15.6) 26-35 54 (45.0) 44 (34.4) dominant levels of accident severity. Firefighters on the 24 hr 36-45 17 (14.2) 19 (14.8) work shift experienced higher percentage (21.7%) of accident > 46 32 (26.7) 45 (35.2) with less than 4 days absence from work compared to those Body BodyMass Body Mass Body Index Mass Index Body Mass Index Body Mass Index Body Mass Index Body Body Mass Index Mass Mass Index Index Index working hr2 shift %). Marital Status Underweight Underweight Underweight Underweight Underweight Underweight Underweight Underweight Underweight 11(0.9) (0.9)1 (0.9) 1 (0.9) 1 (0.9) 1 (0.9) 221(1.6) (1.6) (0.9) 112(0.9) (0.9) (1.6) 2 the (1.6) 212(1.6) (1.6)2(12.7 (1.6) 22(1.6) (1.6)However, the 12 hr work shift showed higher of(43.4) accidents with more than 4 Single 29 Normal (24.2) (21.1) Normal Normal Normal Normal Normal Normal Normal Normal 59 59(51.3) (51.3) 59 27 (51.3) 59 (51.3) 59 (51.3) 59 (51.3) 53 53 59(43.4) (43.4) (51.3) 59 59 53(51.3) (51.3) (43.4) 53 (43.4) 53 (43.4) 53percentage (43.4) 53 (43.4) 53 53(43.4) Married 89 (74.2) 97 (75.8) days absence than those in the 24 hr work shift (Table 5). Overweight Overweight Overweight Overweight Overweight Overweight Overweight Overweight Overweight 41 41(35.7) (35.7) 41 (35.7) 41 (35.7) 41 (35.7) 41 (35.7) 44 44 41(36.1) (36.1) (35.7) 41 41 44(35.7) (35.7) (36.1) 44 (36.1) 44 (36.1) 44 (36.1) 44 (36.1) 44 44(36.1) (36.1) Divorced 2 (1.6) 4 (3.1) Obesity Obesity Obesity Obesity Obesity Obesity Obesity Obesity Obesity 14 14(12.1) (12.1) 14 (12.1) 14 (12.1) 14 (12.1) 14 (12.1) 23 23 14(18.9) (18.9) (12.1) 14 14 23(12.1) (12.1) (18.9) 23 (18.9) 23 (18.9) 23 (18.9) 23 (18.9) 23 23(18.9) (18.9) Table 6 shows a statistical comparison on the likelihood Education Level of accidents between firefighters working the two shifts. SRP/SPM 30the (25.0) 49 Feedback Feedback Feedback Feedback from from Feedback from the Feedback from questionnaires questionnaires the Feedback from the questionnaires Feedback Feedback from questionnaires the(38.3) from the questionnaires revealed revealed from from questionnaires therevealed the questionnaires the that revealed that questionnaires questionnaires firefighters revealed firefighters thatrevealed that firefighters revealed that firefighters working revealed working revealed that firefighters working firefighters thatthe working that the that firefighters 24 working 24 firefighters the firefighters hrhr working the 24 hr 24 working the working hr working the 24 hr 24 thehr the 24 the 24 hr 24 h T-test of the means showed significant differences (p<0.05) SPM 86 (71.7) 73 (57.0) shift shift recorded recorded shiftshift recorded ashift recorded ahigher higher shift recorded a higher percentage shift recorded percentage a higher shift shift recorded apercentage higher recorded recorded apercentage of higher ofaccident percentage aaccident higher of apercentage ahigher accident higher of(53.9 percentage (53.9 accident ofpercentage percentage accident %) (53.9 %) of compared accident (53.9 compared of %)(53.9 accident of compared %) ofaccident (53.9 accident compared to %) tothose those (53.9 compared %) to(53.9 (53.9 compared working those working %) to those %) compared %) to working compared those the compared the working to 12 those 12 working to thethose to working 12 the tothose those 12 the working working 12 the working 12the the 12 the12 1 STPM/A-Level 3 (2.5) 4 (3.1) in the likelihood of accident between both work shifts. The hrhrDiploma shift shift hr(52.5 (52.5 shift hr shift %). (52.5 hr %).shift (52.5 hr%). shift (52.5 hr(0.0) shift (52.5 hrhr %). shift shift (52.5 %).(52.5 (52.5 %). %). %). 0%). 1 (0.8) likelihood indices for 12 hr and 24 hr work shifts were Degree 1 (0.8) 1 (0.8) 2.13 and 2.22 respectively. These indices suggest that the Table TableTable 44shows shows Table 4 Table shows the 4the Table shows statistical 4statistical the shows Table 4the statistical Table shows Table statistical 4comparison the comparison shows 44statistical the shows comparison shows statistical the comparison in the statistical the incomparison severity severity statistical statistical comparison in severity incomparison ofof severity comparison in accidents comparison accidents severity of in accidents severity ofinaccidents between between of severity ininaccidents severity of severity between accidents both between of both accidents of between ofboth accidents accidents between bothbetween bothbetween both between bothboth bo likelihood of accidents were between 1 to 6 times in the past Body Index work workMass shifts. work shifts. work shifts. Severity Severity work shifts. work Severity shifts. ofSeverity ofwork shifts. accidents accidents work Severity of work shifts. accidents Severity ofshifts. shifts. was accidents was of Severity accidents measured Severity measured of Severity was accidents was of measured accidents of was measured in ofinaccidents terms accidents was terms measured in measured was terms ofin ofindices was terms indices was measured inofmeasured terms measured indices in of explained explained terms indices of in explained indices terms in of inexplained terms in indices terms inof table table explained indices of in ofexplained 1. indices table 1. indices in table explained in 1. explained table explained 1. in table 1.in table 1. inintable table 1. 1 year. Firefighters working on the 24 hr work shift have higher Underweight 1 (0.9) 2 (1.6) T-tests T-tests T-tests showed showed T-tests showed T-tests no no showed T-tests significant significant showed no T-tests significant no showed T-tests T-tests significant no difference showed difference significant showed no showed difference significant no difference (p<0.05) (p<0.05) significant no nodifference significant significant (p<0.05) difference in (p<0.05) inseverity difference severity (p<0.05) in difference difference severity (p<0.05) inofof severity (p<0.05) in accidents accidents severity (p<0.05) of (p<0.05) inaccident accidents severity ofinaccidents between between of severity in inaccidents severity of severity between accidents both between both ofto accidents of between of both accidents accidents between both between both both between bo likelihood of an compared those on the 12between hr bothboth Normal 59 (51.3) 53 (43.4) work work shifts. work shifts. work shifts. The The work shifts. severity severity work The shifts. The severity work shifts. scores scores The severity work work shifts. The severity scores for shifts. for shifts. scores severity 12 The 12 for hr The scores hr The severity and 12 for and severity scores severity hr 12 24 for 24 and hr scores hr 12 for and work 24 scores work scores hr 12 hr 24 for and shifts hr work shifts hr for 12 for and 24 work hr 12 were hr shifts 12 24 were and hr work hr shifts hr and 1.40 24 and were 1.40 work shifts hr 24 were 24 ± ± 1.40 work 0.77 hr shifts hr 0.77 were work 1.40 work ± and shifts and were 0.77 1.40 ± shifts 1.41 shifts 0.77 1.41 were and 1.40 ± 0.77 were and 1.41 were ± 1.40 0.77 1.41 and 1.40 1.40 ± and 0.77 1.41 ± ± 0.77 1.41 0.77 and and 1.41 and 1.41 1.4 Overweight 41 (35.7) 44 (36.1) shift. Obesity 14 (12.1) 23 (18.9) ±±0.75 0.75±respectively. respectively. 0.75 ± 0.75 respectively. ± 0.75 respectively. ± 0.75 respectively. ± respectively. 0.75 ±±0.75 0.75 respectively. respectively. respectively. Table 3: Socio-demography of respondents Parameter Parameter Parameter Parameter Parameter Shift Shift Parameter Shift NN Parameter Shift Parameter Parameter NShift Min Min NShift Min N Max Max Shift Min NShift Shift Max Min Mean Mean NMax Min NNMean Max s.d. Min s.d. Mean Max Min Min s.d. Mean Max ts.d. tMean Max Max s.d. tMean s.d. Mean tMean pps.d. t s.d. s.d. tp pt tpt p p pp 0.95 0.95 0.95 0.95 0.95 0.95 Severity Severity Severity Severity Severity 12 12hrSeverity hr 1263 63 Severity hr12Severity hr Severity 63 1211hr 6312 hr 63 1 412 4 163 hr 12 1241.40 hr 1hr 1.40 63 463 163 1.40 0.77 40.77 11.40 4110.77 1.40 0.06 0.06 40.77 1.40 440.06 0.77 1.40 0.06 0.77 1.40 1.40 0.06 0.77 0.06 0.77 0.77 0.060.06 0.060.95 0.950.95 24 24hrhr 2469 69 hr24 hr69 2411hr 69 24 hr 69 1424 4 169 hr 24 2441.41 hr 1hr 1.41 69 469 169 1.41 0.75 40.75 11.41 410.75 11.4140.75 1.41 440.75 1.410.75 1.41 1.410.750.75 0.75 Table 4: Statistical comparison between the levels of accident severity experienced by firefighters working the 12 hr and 24 hr work shifts 22 2 Parameter Parameter Parameter Parameter Parameter Parameter Parameter Parameter Parameter Shift Shift ShiftShiftShiftShift Shift Shift Shift pp 2 12-h 12-h 12-h12-h 12-h12-h 24-h 24-h 12-h12-h 24-h 12-h24-h 24-h24-h 24-h24-h 24-h NN % N% N %N % N %NN%NN % N % % N% % N% N% N% NN% % % Severity Severity Severity Severity Severity Severity Severity Severity Severity Minor MinorMinor injury injury Minor injury Minor injury Minor injury 48 48 Minor injury 76.2 Minor Minor 76.2 48injury 48 76.2 injury injury 48 76.2 48 76.249 76.2 49 48 48 71.0 48 76.2 71.0 492776.2 49 76.2 71.049 71.049 71.049 71.049 49 71.071.0 71.0 <<44days days < 4absence absence days < 4 days < absence 4 days absence < 4 days absence 6<64 absence < days < 9.5 49.5 64days days absence 69.5 absence absence 69.5 69.515 15 9.5 6 21.7 621.7 15 69.5 15 9.5 9.5 21.715 21.715 21.715 21.715 15 21.721.7 21.7 p2 p2 p 2 p2 2 p pp Parameter Parameter Shift Parameter Parameter Parameter N Shift Min Shift Shift NShift Max N NMin N Mean Min Min Max Min Max s.d. Max Mean Max Mean t Mean s.d. Mean s.d. s.d. p s.d. tt Severity Severity 12 Severity hr Severity Severity 63 1212 1hrhr 12 63 12 63 hr 4 hr 6363 1.40 11 24 hr 69 2424 1hrhr 24 69 24 69 hr 4 hr 6969 1.41 11 tt pp pp 0.95 0.95 0.95 140.77 14 1.40 41.40 0.06 4 1.40 0.77 1.40 0.77 0.95 0.77 0.06 0.77 0.06 0.06 0.06 0.95 140.75 14 1.41 41.41 4 1.41 0.75 1.41 0.75 0.75 0.75 Accident Risk Indices Of Malaysia’s Firefighters Working In 12 And 24 Hours Shift Works Parameter 2 Parameter Parameter Parameter Parameter Shift Shift Shift Shift Shift p 12-h 12-h 12-h 12-h 24-h 12-h 24-h 24-h 24-h 24-h N % NN % N% N N %% NN % N %N %% 2 2 2 2 pp pp absence from work compared to those working the 12 hr shift (12.7 %). However, the 12 hr shift Severity showed Severity work Severity Severity Severityhigher percentage of accidents with more than 4 days absence than those in the 24 hr work shift (Table 5). Minor injury Minor Minor injury Minor injury Minor 48 injury 76.2 injury 4848 76.2 76.2 48 48 49 76.2 76.2 71.0 4949 71.0 71.0 4949 71.0 71.0 < 4 days absence < <4 4days days << absence 4absence 64days days 9.5 absence absence6 6 9.5 9.5 615 6 9.5 21.7 9.5 1515 21.7 21.7 1515 21.7 21.7 > 4 days absence > >4 4days days 4shows absence 84days days 12.7 absence 8 8 12.7 12.7 8 82 12.7 12.7 2.9 on the 2 2 likelihood 2.9 2.9 28.212 2 2.9 2.9of 0.04 8.212 8.212 8.212 8.212 0.04 0.04 0.04 0.04 Table 6> >absence aabsence statistical comparison accidents between Disability Disability Disability Disability Disability 1 1.6 1 1.6 1.6 1T-test 13 1.6 1.6 4.4 3 3 4.4 4.4 3 3 4.4 4.4significant differences firefighters working the two 1shifts. of the means showed (p<0.05) in the likelihood of accident between both work shifts. The likelihood indices Total for Total Total 63 hr100 6363 100 100 6363 692.13 100 100 100 69 69respectively. 100 6969 (12.7 100 100These absence from work compared to those working 12 hr100 shift %). However, the 12 12 Total hr andTotal 24 work shifts were and the 2.22 indices suggest hr work shift showed percentage of accidents than 4 days than that the likelihood of higher accidents were between 1 to 6with timesmore in the past year.absence Firefighters Table Evidence severity among shiftoffirefighters those in the shift5: (Table 5).ofhigher working on 24 thehr 24work hr work shift have likelihood an accident compared to those onanalysis the 12 of hr the shift. Chi-square same datathe showed significant Table 8of shows the Risk Indices (ARI) of firefighters Chi-square analysis Chi-square Chi-square Chi-square Chi-square on analysis analysis severity analysis analysis onon the ofthe on accidents on severity severity the the severity severity experienced of accidents accidents ofofAccident accidents accidents by experienced experienced firefighters experienced experienced byby firefighters firefighters by by firefighters firefighters Table 6 shows a statistical comparison on theonlikelihood ofhr work accidents between differences (p<0.05) among the different categories of working 12 hr and 24 shifts. ARI for firefighters (p<0.05) among (p<0.05) (p<0.05) (p<0.05) (p<0.05) among among among among working the 12 working working hr and working working the 24 the12 hr12work the hrthe hrand 12 and 12 shifts hr 24 hr 24 and hr and showed hrwork 24 work 24hrhr shifts significant work shifts workshowed shifts showed shifts differences showed showed significant significant significant significant differences differences differences differences firefighters working theyear, two1 shifts. T-test the12means showed significant differences likelihood less than one time to 3the times in of on hr work shifton (1.40 Xon 2.13) was 2.98, whereas ARI the four (i.e. categories the the four four of the the categories severity. categories four fourincategories categories Most ofofseverity. severity. of of of severity. severity. firefighters Most Most of Most of Most the the onof firefighters of firefighters both the thefirefighters shifts firefighters were onboth both involved on shifts shifts both both were shifts were in shifts involved were involved wereinvolved involved inin inin (p<0.05) likelihood of accident work shifts. likelihood indices a year, 4 to times in in athe year and more than 7 times inbetween a forboth 24 hr shift (1.41The X 2.22) was 3.14. Accidents Risk accidents 6with accidents minor accidents accidents injuries accidents with with minor (76.2 minor with withinjuries minor %injuries minor for 12 injuries (76.2 injuries (76.2 hr shift %(76.2 %(76.2 for and for 12 %the 12 71.0 %for hrhr for shift % 12 shift 12for hrand hrand shift the shift 71.0 71.0 24 and and hr). %% 71.0 for 71.0 Different forthe %the %for 24 for 24the hr). the hr). 24 Different 24 Different hr). hr).Different Different Parameter Shift N firefighters Max Mean s.d.work These psuggest to the 12 for 12 hr work wereMin 2.13 and 2.22for respectively. year) between the hr twoand work24 shifts. None shifts of the Index the 24 hr shift twasindices higher compared work shifts showed work workshifts different work shifts work showed shifts showed shifts dominant showed showed different different levels different different dominant dominant of accident dominant dominant levels levels severity. of levels of levels accident accident of Firefighters ofaccident accident severity. severity. severity. on severity. Firefighters Firefighters the 24 Firefighters Firefighters ononthe theon 24 on 24the the2424 experienced anythe accident during of theaccidents past year. Majority of hr 24 the hr work wasFirefighters higher than the 12 hr that likelihood were between 1 work to 6 shift. timesA in pastshift year. hr work shift hr experienced hr work work hr hr shift work shift work higher experienced experienced shift shift percentage experienced experienced higher higher (21.7%) higher percentage higher percentage percentage of percentage accident (21.7%) (21.7%) (21.7%) with (21.7%) of of accident less accident of of than accident accident with with 4 days less less with with than than less less 4 4 than days than days 4 4 days days the firefighters were involved inhr accidents least to 3 times work shift; both indices were within the0.02 acceptable Likelihood 63 1have 2 4likelihood 2.13 2.40 working on the1224 hr workatshift higher of an0.25 accident compared to those low risk in the paston year % among 24 hr work shift 24 hr 69 and 85.0 2 % 4 category.2.22 0.56 the(98.4 12 hr shift. among 24 hr shift) (Table 7). 5 55 55 Chi-square analysis ofNthe same showed significant differences (p<0.05) Parameter Shift Min data Max Mean s.d. t p among the different categories of likelihood (i.e. less than one time in year, 1 to 3 times in aLikelihood year, 4 to 6 times a year)0.25 between 2.40 the two work 12 hrin a year and 63 more 2than 7 4times in2.13 0.02shifts. None of the firefighters experienced any during 24 hr 69 2 accident 4 2.22 the 0.56past year. Majority of the firefighters were involved in accidents at least 1 to 3 times in the past year (98.4 % among 24 hr work shift and 85.0 % among 24 hr shift) (Table 7). Table 6: T-test on likelihood of accident between firefighters working the 12 hr and 24 hr shifts. Chi-square analysis of the same data showed significant differences (p<0.05) among the different categories ofShift likelihood (i.e. less than one time in year, 1 top 3 times in Parameter a year, 4 to 6 times in a12-h year and more than 724-h times in a year) between the two work shifts. None of the firefighters any accident N experienced % N % during the past year. Majority of the firefighters were involved in accidents at least 1 to 3 times in the past year (98.4 % among 24 hr work shift and 85.0 % among 24 hr shift) (Table 7). Likelihood < once time 1-3 times 4-6 times Parameter > 7 times Total 0 62 0 1 0 98.4 0 Shift 1.6 12-h N % 63 100 0 59 5 5 0 85.0 7.5 7.5 24-h N % 69 100 7.484 0.02 p LikelihoodTable 7: ϰ2 analysis of likelihood of accidents between 12 hr and 24 hr work shifts Risk Indices < onceTable time 8 shows 0 the Accident 0 0 0(ARI) of firefighters working on 12 hr and 24 hr work shifts. ARI for firefighters on 12 1-3 times 62 98.4 59 85.0hr work shift (1.40 X 2.13) was 2.98, whereas ARI for the 024 hr 0shift (1.41 X 2.22) Risk Index for the 24 4-6 times 5 was 7.53.14. Accidents 7.484 0.02 5 hr work 7.5 shift. A 24 hr work shift was higher 7 times 1 1.6 hr>work shift was higher compared to the 12 than the 12 hr work shift; both indices were within the acceptable low risk category. Total 63 100 69 100 Table 8 shows the Accident Risk Indices (ARI) of firefighters working on 12 hr 28 and 24 hr work shifts. ARI for firefighters 6on 12 hr work shift (1.40 X 2.13) was 2.98, whereas ARI for the 24 hr shift (1.41 X 2.22) was 3.14. Accidents Risk Index for the 24 Original Article J. Occu. Safety & Health 9 : 25 - 30, 2012 Shift Shift Shift Severity (S) (L) Accidents Index (ARI) Shift Severity Shift Severity (S) Severity (S) Severity (S)Likelihood Likelihood (S) Likelihood (L) Likelihood (L)Likelihood (L) Accidents Accidents (L) Risk Risk Accidents Risk Index Accidents Index (ARI) Risk (ARI) Index Risk Index (ARI)(ARI) 12-h 12-h12-h 24-h 24-h24-h 12-h 24-h 1.40 1.40 12-h1.40 1.41 1.41 24-h1.41 1.40 1.40 1.41 1.41 2.13 2.132.13 2.22 2.222.22 2.98 2.982.98 3.14 3.143.14 2.13 2.13 2.22 2.22 2.98 2.98 3.14 3.14 Note: ARI = S Note: Note: ARIARI =Note: S =x x SL LNote: ARI x L =ARI Sx= LS x L Table 8: Accidents Risk Index among shift firefighter Discussion Discussion Discussion Discussion Discussion The main objective this study determine whether shifts (12 hr and 24 hr while atwork night they are less more serious. Research Discussion TheThe main main objective The objective main Theof ofmain objective this of this objective study study ofwas was thiswas ofto to study this determine to study determine was to was whether determine whether to determine work whether work shifts whether shifts work (12frequent (12 hr work shifts and hr but and shifts 24 (12 24 hrhr(12 hr andhr24 and hr24 hr shifts) currently practiced by firefighters from the Department of Fire and Rescue, done by from Bjerner et.al (1955) showed that firefighters 24 hr shifts) shifts) currently currently shifts)shifts) practiced currently practiced currently by practiced by firefighters practiced firefighters by firefighters from by from firefighters the the Department from Department the Department the of of Fire Department Fire and of and Rescue, Fire of Rescue, Fire and Rescue, and on Rescue, Malaysia influenced the likelihood and severity of accidents, and the overall accident risk shift had lowest frequency of injuries occurred between The main objective of this study was to determine whether Malaysia Malaysia influenced Malaysia influenced Malaysia the influenced the likelihood influenced likelihood theand likelihood the and severity likelihood severity and of accidents, severity of and accidents, severity ofand accidents, and of theaccidents, the overall overall and accident the and accident overall the risk overall accident risk accident risk1000 risk hr to 1200 hr and 2400 hr to 0800 hr. level. Questionnaire survey revealed that there were almost equal percentages in the work shifts (12 hr and 24 hr shifts) currently practiced by level. level. Questionnaire Questionnaire level.level. Questionnaire survey Questionnaire survey revealed revealed survey survey that revealed that there revealed there were thatwere there that almost almost there were equal were equal almost percentages almost percentages equalequal percentages in the in percentages the in thein the Although this study did notexperienced differentiate between the times firefighters from Department ofworking Fire and number of firefighters working the 12 hr and 24 hr work shifts that had number number of number firefighters ofthefirefighters number of firefighters working of firefighters theRescue, working the 12 12 working hrMalaysia and hr theand 24 12 the24 hr12 work and hrhrwork 24 and shifts hrshifts 24work that hr that work had shifts had experienced shifts that experienced had that experienced had experienced of accidents, itthe showed that there wereof at least two factors influenced theThe likelihood and done severity ofJurriaan the accidents. research by et. al (2004) likelihood index accidents. accidents. The accidents. The research accidents. research The done research done The byresearch Jurriaan byaccidents, done Jurriaan done by et.and Jurriaan al et.by (2004) alJurriaan (2004) et.showed showed alshowed et. (2004) althat that (2004) showed that the the likelihood showed likelihood that the that index likelihood the index likelihood of ofindexindex of of that the influenced the level shift of accident’s risk, likelihood and overall accident risk Netherlands’s level. Questionnaire survey who revealed accident among fireman work on 24 hr work was 1.5 accident accident among accident among accident Netherlands’s Netherlands’s among among Netherlands’s fireman Netherlands’s fireman who fireman who work fireman work who on on the who work the 24work 24 on hr hr the work onwork 24 the shift hr24 shift work was hrwas work 1.5 shift 1.5shift was 1.5 was 1.5 Inet.al this study work shiftfound did not affect the overall that there were almost equal percentages infirefighters. the number ofStudyconsequence. compared with 2.2 that of Malaysia by Dembe (2005) also compared compared with compared with 2.2 compared 2.2 that with that of Malaysia 2.2 of with Malaysia that 2.2 of that firefighters. Malaysia firefighters. of Malaysia firefighters. Study Study firefighters. by Dembe by Study Dembe Study et.al by et.al Dembe (2005) by (2005) Dembe et.al also also (2005) et.al found found (2005) also found also severity of the accidents but affected the likelihood orfound the firefighters working the 12 hrhad and the 24 hrgreatest work shifts that had risk that overtime schedule incremental of injury, with overtime workers that that overtime overtime that schedule overtime that schedule overtime had schedule had the schedule the greatest greatest had the incremental had greatest incremental the greatest incremental risk risk incremental of injury, of injury, risk with of risk with injury, overtime of overtime injury, with workers overtime with workers overtime workers workers frequency of the accident. The difference in likelihood affected experienced accidents. The research done by Jurriaan et. al having aa 61% higher injury rate compared to workers in aainjobs without after having having 61% ahaving 61% higher having higher alikelihood 61% injury a injury 61% higher ratehigher rate injury compared compared injury rateamong tocompared rate workers to compared workers inoverall workers jobs toaAccident workers jobs without inwithout aRisk jobs inovertime, overtime, a without jobs overtime, without after overtime, after overtime, after after theto Index. ARI was significantly higher (2004) showed that the index of accident controlling for age, gender, occupational, industry and region. This finding is consistent controlling controlling controlling for for age, controlling age, gender, for gender, age, for occupational, gender, occupational, age, gender, occupational, industry occupational, industry and industry and region. region. industry and This This region. and finding finding region. This is consistent is finding This consistent finding is consistent is consistent in the 24 hr work shift group relative to the 12 hr work shift. Netherlands’s fireman who work on the 24 hr work shift was with other studies that have identified overtime work as particularly hazardous with with other other with studies studies with other studies that have studies have that identified identified that haveStudy have overtime identified overtime identified work overtime work overtime as as particularly work particularly work as particularly as hazardous hazardous particularly hazardous hazardous 1.5 compared with 2.2 that that ofother Malaysia firefighters. by (Fredriksson et al 1999, Nylen 2001, Lowery 1998 Van 2001). Firefighters on 2001). 12 hour shifts in Malaysia work ± 56 hours (Fredriksson (Fredriksson (Fredriksson et alet (Fredriksson 1999, al found 1999, Nylen etthat al Nylen 1999, et 2001, al2001, 1999, Nylen Lowery Lowery Nylen 2001, 1998 2001, Lowery 1998 Van Lowery Van 2001). 1998 2001). 1998 Van Van 2001). Dembe et.al (2005) also overtime schedule had per week compared with firefighter on shift 24 h who works the greatest incremental risk of injury, with overtime workers This study expressed work accident risk as Accident Risk (ARI). ARI is aais(ARI). 84 hours per week. That shows that on is thea 24-h having a 61% higher injury rate to accident workers in aas Accident ThisThis study study expressed Thisexpressed study Thiscompared study work expressed work accident expressed work risk work accident risk accident as±Accident risk as risk Risk Accident Risk asIndex Index Accident Index Risk (ARI). (ARI). Risk Index ARI Index ARI (ARI). is firemen aARI ARI is a function of exposure and consequence (or severity). Exposure is a function of population shift work more hours compared with those on the 12-h shift. jobs without overtime, after controlling for age, gender, function function of function exposure of exposure function ofand exposure of exposure and consequence consequence and consequence and (or (or consequence severity). severity). (orExposure severity). (or Exposure severity). isExposure aisfunction aExposure function is of a function population of is apopulation function of population of population Study donethe by Sirpa et al.the (2002) concluded thataccident shift workers exposed to the hazards and likelihood accidents. percentage of accident occupational, and This finding islikelihood consistent exposed exposed toindustry exposed the to the hazards exposed hazards toregion. the and tohazards and likelihood the likelihood hazards and of of and accidents. of likelihood accidents. ofAlthough Although accidents. of Although accidents. the Although the percentage Although percentage percentage ofthe accident ofpercentage accident of of accident working moreequal, than 70detail hours analysis per week of increases the risk of with other studies that have identified overtime work as among firefighters working on the 12 hr and 24 hr shift appeared among among firefighters firefighters among among firefighters working working firefighters onworking the on the 12 working hr 12onand hrthe and on 24 12the hr 24 hrshift hr 12 and shift hrappeared 24 and appeared hr24 shift hr equal, appeared shift equal, detail appeared detail equal, analysis analysis equal, detail ofdetail analysis of analysis of of occupational accidents almost 4 fold compared with shift particularly hazardous (Fredriksson et al revealed 1999, Nylen 2001, the severity of such accidents significant differences within the respective the the severity severity theof severity the of such such severity accidents ofaccidents such of revealed such accidents revealed accidents significant revealed significant revealed significant differences differences significant differences within within differences the the within respective respective within the respective the respective who work no more thanwith 50 hours Lowery 1998 Van 2001). the two work shifts. For exampleworkers categories between percentage of accidents lessper week. categories categories between categories between categories thebetween the twotwo between work the work shifts. two the shifts. work two ForFor work example shifts. example shifts. Forpercentage example For percentage example percentage of accidents ofpercentage accidents ofwith accidents with ofless accidents lesswith with less less than 4 work days loss was higher (21.7 %) in the 24 hr work shift compared to the 12 hr thanthan 4 work 4expressed work than days days 4than loss work loss 4was work days was higher loss days higher was (21.7 loss (21.7 higher was %) %) in higher (21.7 the in the 24 (21.7 %)hr 24inwork hr %) the work in24 shift the hr shift 24 compared work hr compared work shifttocompared shift the to the compared 12 hr 12tohrtheto12the hr12 hr This study work accident the risk opposite as Accident Risk work shift (9.5 %). However, was observed for accidents with more than 44more work work shift shift (9.5 work (9.5 %). work shift %). However, (9.5 shift However, %). (9.5 the However, %). the opposite However, opposite the was opposite was the observed opposite observed was for observed was for accidents observed accidents for with accidents for with more accidents more than with than with 4 more than 4than 4 Conclusion Index (ARI). ARI is a function of exposure and consequence work days loss. work work days days loss. work loss. work days days loss. (or severity). Exposure is aloss. function of population exposed Primary data collected via questionnaire and applied with a to the hazards and likelihood of accidents. Although the Statistical analysis on the likelihood of accidents that it was significantly Statistical analysis Statistical on analysis on the the likelihood analysis likelihood on theon of likelihood the accidents of likelihood accidents ofshowed showed accidents showed of accidents thatrisk showed that it estimation was itshowed was significantly thatsignificantly itthat wasitwas significantly was significantly semi quantitative method used to estimate percentageStatistical ofStatistical accidentanalysis among firefighters working on the higher in the 24 hr work shift than the 12 hr shift. In other words accidents were more accident risk among Malaysian firefighters. The estimation higher in higher the 24 higher 24 hr inwork hrthework in24 shift thehr shift 24 than work hr than the work shift the 12than shift 12 hr hrthe than shift. 12 In the hr other In12 shift. other hrwords shift. In words other accidents In accidents other wordswords were accidents were more accidents more were were more more 12 hrhigher andin 24the hr shift appeared equal, detail analysis of shift. the frequent among those working on the 24 hr work shift than the 12 hr work shift. The revealed that the Accident Risk Index was higher in the 24 hr severity of such accidents revealed significant differences frequent frequent among frequent among frequent those those among working among working thoseonthose working on the the 24 working 24 hr onwork hr theon work 24 shift thehrshift 24 work than hrthan the work shift the 12shift than 12 hr work hr the than work 12 shift. thehrshift. 12 work The hrThe work shift. shift. The The likelihood of accidents was high in all categories of likelihood (Table 7). Mourice et al. work shift compared to the 12 hr work shift. Such difference within the respective categories between the two work shifts. likelihood likelihood of likelihood accidents of likelihood accidents ofwas accidents was ofhigh accidents high inwas all in all categories high was categories in high allin of categories all likelihood of categories likelihood of (Table likelihood of (Table likelihood 7). 7). Mourice (Table Mourice (Table 7). et Mourice al. et7).al.Mourice et al. et al. (1975) reported that accident were more frequent and less serious during shift, while was significantly attributed toduring theshift, difference in theshift, likelihood For example percentage of accidents with lessaccident than 4frequent work (1975) (1975) reported reported (1975) that (1975) reported that accident accident reported that were accident were that more more frequent were were more and more frequent and lessless frequent serious and serious less during and during serious lessday day serious day shift, during while day while shift, day while while of accident happening rather than the severity of accident. at night they are less frequent but more serious. Research done by Bjerner et.al (1955) days loss was higher (21.7 %) in the 24 hr work shift compared at night at night they at they are night at are less night they less frequent are they frequent less are butfrequent less but more more frequent serious. but serious. more butResearch more serious. Research serious. done Research done by Research by Bjerner done Bjerner done by et.alBjerner et.al by (1955) (1955) Bjerner et.al (1955) et.al (1955) toshowed theshowed 12 hrthat work shift (9.5 However, opposite was firefighters on 24 hr had lowest frequency of injuries occurred between showed that showed that firefighters firefighters showed that%). firefighters on that 24 onfirefighters hr 24 shift shift hrthe on shift had 24on had hr lowest 24 shift lowest hr had frequency shift frequency lowest had lowest of frequency injuries of injuries frequency occurred of occurred injuries of injuries between occurred between occurred between between observed days 1000 hrfortoaccidents 1200 hrwith andmore 2400than hr 4towork 0800 hr.loss. 1000 1000 hr to hr1200 1000 to 1200 hr 1000 hrand hr to 1200 hr and 2400 to2400 1200 hrhrand to hrhr0800 2400 toand 0800 hr. 2400 hr hr. to 0800 hr to 0800 hr. hr. Acknowledgement Statistical Although analysis on the likelihood of accidents showed that this study did not differentiate between the times of accidents, it showed Although Although this Although this study Although study did this did not study this not differentiate study differentiate did not diddifferentiate between notbetween differentiate the between the times times between of accidents, of times accidents, the times of itaccidents, showed itof showed accidents, it showed it showed would like tothe graciously thank the Director General and itthat was there significantly higher in the 24 hr work shift than the 12 theWe were at least two factors that influenced level of accident’s risk, likelihood that that there there were that were at there that least at there least were two two were at factors least factors at least two that that factors influenced two influenced factors that the influenced that the level influenced level of the accident’s of level accident’s the level of risk, accident’s of risk, likelihood accident’s likelihood risk, likelihood risk, likelihood all senior officers of the Department of Fire and Rescue, hr shift. In other words accidents were more frequent among and consequence. In In this study work shift did not affect the overall severity of the andand consequence. consequence. and and this this study study Inthan work this In work study this shift study work diddid not work shift not affect shift did affect the not didthe overall affect notoverall affect the severity severity overall the overall of severity of the and the severity of theto ofthis the Malaysia who have given their permission support those working on theconsequence. 24Inhrconsequence. work shift the 12 hrshift work accidents but affected the likelihood or the frequency of the accident. The difference in accidents accidents but accidents but affected accidents affected but the affected the but likelihood likelihood affected the or likelihood the the or likelihood the frequency frequency or the or of frequency the the of frequency the accident. accident. of the The of accident. the The difference accident. difference The in difference The in difference in in study. Sincere thanks also go to the firemen who participated shift. The likelihood of accidents was high in all categories and contributed to the success of this study. of likelihood (Table 7). Mourice et al. (1975) reported that accident were more frequent and less serious during day7shift, 7 7 7 29 7 Accident Risk Indices Of Malaysia’s Firefighters Working In 12 And 24 Hours Shift Works References Linda, K.G., 1996. Factors related to injury of shift working firefighters in the Northeastern United Sates. Journal od Safety Science 21, 255-263. Bjerner, B., Holm, A., 1995. Diurnal variation in mental performance. British Journal Industries Medicine 12, 103-110. Lowery, J., et al. 1998. Risk factors for injury among construction workers at Denver International Airport. Am J Ind Med 34, 113-120 Christine, H. 2001. Psychology and Work. Shift Work. New York. Taylor & Francis Inc. Monk, T.M., Folkard, S. 1992. How to make shift work safe & productive. Des Plaines. American Society of Safety Engineers. Dembe, A.E. et al. 2005. The impact of overtime and long work hours on occupational injuries and illnesses: new evidence from the United States. Occup Environ Med 62, 558-597. Mourice, M. 1975. Shift work- Economic advantages and social costs. International Labour Office, Geneva. Fredriksson K., et al. 1999. Risk factors for neck and upper limb disorders: Result from 24 years of follow up. Occup Environ Med 56, 59-66 Nylen, L., Voss, M., Floderus B. 2001. Mortality among women and men relative to unemployment, part time work, overtime work: a study based on data from Swedish twin registry. Occup Environ Med 58, 52-57 Harma MI., Ilmarian JE. 1999. Towards, the 24 hour society new approaches for aging shift workers. Scand J Work Environ Health 25, 610-615 Harrington JM. 1994. Shift work and health- a critical review of the literature on working hours. Ann Acad Med (Singapore) 23, 699-705 Price, W.J., Hooley, D.C. 1976. The last minutes of flight 2869: An analysis of crew shift work scheduling. National Institute of Occupational Safety & Health. Shiftwork & Health. US Dept of Health. Education Welfare. Washington. 287-294. International Labor Organization (ILO). 1990. Condition of work and employment programme: Shift work. No. WT-8. Geneva. Schirmer, J. & Glazner, L. 1983. Firefighting in New Jersey: Hazards and Methods of Control. New Jersey State Department of Heatl. Trenton.New Jersey. Irwin.B.H & B.P. McCall. 2004. The impact of shift work on the risk and severity of injuries for hospital employees: an analysis using Oregon workers’ compensation data. Occupational Medicine 54, 556-563. Sirpa, L., Marketta, H., Ritva, L., Eira Viikari, J.2002. Perceived physical work capacity, stress, sleep disturbance and occupational accidents among fire fighters working during a strike. Finland. Taylor & Francis work. (16) 3, 264-274. Ismail, B. 2002. Pengaturan sendiri di dalam pengurusan keselamatan dan kesihatan Pekerjaan. Malaysia: Mc Graw Hill (M) Sdn Bhd. Smith L., et al. 1998. Work shift duration: a review comparing eight and 12 hours shift systems. Occup Environ Med 55, 217-229 Fire and Rescue Department of Malaysia. 2004. Maklumat perjawatan bahagian operasi JBPM. Totterdell, P., et al. 1995. Recovery from work shifts: how long does it take. J Appl Psychol 80, 43-57 Jurrian, B., et al. 2004. The physical demand upon (Dutch) Fire fighters in relation to maximum acceptable energetic workload. Ergonomics. (47) 4, 446-460. Van der Hulst M., Geuts S. 2001. Association between overtime and psychological health in high and low reward jobs. Work stress 15, 227-240 30 Original Article J. Occu. Safety & Health 9 : 31 - 38, 2012 Quantitative Measurement of Occupational Safety and Health Management Systems Performance Aziz Basiran1 and Ismail Bahari Faculty of Science Physics, University Kebangsaan Malaysia Correspondance author: Aziz Basiran Email add.: azizehs@streamyx.com / aziz_ehs@yahoo.com AZIZ BIN BASIRAN AZIZ EHS CONSULTANT SDN BHD Tel. No.: 603-8210 0775 Hp. No.: 012-393 8102 Abstract Various types of Occupational Safety and Health Management Systems (OSH-MS) exist in the market. Basically, these systems have similar basic principles and even elements. However, the importance of these elements in terms of successful management of OSH differs according to the end-user. OSH Practitioners with different roles and responsibilities have different views on which element or elements contribute significantly to the overall success of OSH management. There are no standardization in terms quantifying the elements that qualifies an OSH-MS. A study was carried out to quantify the implementation of an OSH-MS through the determination of weighing factors for the different elements in an OSH-MS. Respondents for this study comprised of top safety and health management, safety and health officers (SHO) / radiation protection officers (RPO), DOSH officers, auditors and consultants who are very familiar with OSH-MS. Sample of this study was based on purposive sampling due to strict criteria and prerequisites to be met. Questionnaires were distributed to the identified organizations and personnel. Results from this study established that, auditor has the highest level of understanding of OSH-MS compared with top safety and health management, SHO / RPO, DOSH officers and OSH consultants. Among all the elements in the OSH-MS studied for their levels of importance in terms of the overall success of implementing an OSH-MS, OSH policy is the most critical element, followed by hazard identification, risk assessment and control, employee participation, responsibility and accountability and competence and training. The weighing factor for these top 5 elements are OSH policy (0.36); hazard identification, risk assessment and risk control (0.25); employee participation (0.15); responsibility and accountability (0.14); and competence and training (0.10). Application of the weighing factors of these elements allows the quantification of audit status (Audit Score) based on the equation: audit score = 0.36 [OSH Policy] + 0.25 [Hazard Identification, Risk Assessment and Risk Control] + 0.15 [Employee Participation] + 0.14 [Responsibility and Accountability] + 0.10 [Competence and Training]. Minimum tolerable target for each element of an OSH-MS was also determined. The minimum tolerable frequency of OSH policy is reviewed by top management is yearly; the minimum tolerable frequency of risk management is reviewed is yearly; the minimum tolerable percentage of employees who should be made known on relevant legal and other requirements is ≥90%; the minimum tolerable percentage of OSH objectives and programme(s) achieved / implemented is between 80 – 89%; the minimum tolerable percentage of money budgeted for OSH in a year compared to organization revenue is between 1 – 5%; the minimum tolerable number of hours for each employee needed to be trained on OSH per year is between 30 – 39 hours; the minimum tolerable percentage of employees who should be communicated on matters related to OSH is ≥90%; the minimum tolerable percentage of employees participation and involvement in hazard identification, risk assessment and determining controls is ≥90%; the minimum tolerable percentage of employees who should be involved in establishing OSH documents is <50%; the minimum tolerable frequency by which OSH document is reviewed is yearly; the minimum tolerable frequency in reviewing implement control measures is yearly; the minimum tolerable number of emergency drills conducted with reports in a year is between 1 – 3 times; the minimum tolerable frequency on OSH inspection per year is quarterly basis; the minimum tolerable percentage of compliance with related OSH legal requirements is ≥90%; the minimum tolerable duration between the accident and the investigation is 1 day; the minimum tolerable percentage of corrective and preventive action taken / closed is ≥90%; the minimum tolerable conformance level in terms of control of records is between 80 – 89%; the minimum tolerable ratio of internal auditor who should be trained in OSHMS internal audit versus number of employees in the organization is 1:50; and the minimum tolerable frequency of management review that should be conducted by top management is yearly or less. 31 Quantitative Measurement of Occupational Safety and Health Management Systems Performance Imagination is more important than knowledge. - Albert Einstein 2.2 Scope Management works in the system. Leadership works on the system. - Stephen Covey OSH policy is the most important element in OSH-MS. - Aziz Basiran 1. Introduction • Various types of OSH-MS. • Basic principles and elements. • The importance of these elements in terms of successful management of OSH differs according to end-user. • Different views. • No standardization in terms of quantifying the elements. Questionnaires were distributed to the identified organizations and personnel. Respondents of this survey were selected by purposive sampling. Respondents for this study comprised of top safety and health management, safety and health officers (SHO) / radiation protection officers (RPO), DOSH officers, auditors and consultants who are very familiar with OSH-MS. 2.1 Objectives 2.3 Respondents 3. Results and Discussion 2. Method This study used the OHSAS 18001 and MS 1722 OSH-MS as the systems in study. Both systems were selected because they are certifiable and are widely used by industries in Malaysia. Results from this study established that, auditor has the highest level of understanding of OSH-MS compared with top safety and health management, SHO / RPO, DOSH officers and OSH consultants. The objectives of the study are to quantify the implementation of an OSH-MS through the determination of weighing factors QUANTITATIVE for the different MEASUREMENT OF OCCUPATIONAL SAFETY AND HEALTH MANAGEMENT SYSTEMS PERFORMANCE elements in an OSH-MS and to quantify OSH-MS audit results in order to measure performance. 7LTO"!;(?!!]$HJ%HG!4W!"$3,!"&+#+H/!4W!$H!SPB<NP$ ?(! >(! ;(! [(! A(! 9(! @(! =(! E(! ?:(! ??(! ?>(! ?;(! ?[(! ?A(! ?9(! ?@(! ?=(! ?E(! 181I1693$ SPB!C4&%31! "#I&41++!C$0/%3%I$/%4H! ]+-I4H-%M%&%/1!$H'!L334VH/$M%&%/1! Q4#I+/+H3+!$H'!70$%H%HG! SPB!X43V#+H/$/%4H! SPB!]+340'-! Q4##VH%3$/%4H! B$*$0'!F'+H/%W%3$/%4H^!]%-J!L--+--#+H/!$H'!]%-J!Q4H/04&! O+G$&!$H'!S/,+0!]+YV%0+#+H/-! P1-/+#!C&$HH%HG^!X+R+&4I#+H/!$H'!F#I&+#+H/$/%4H! SPB!SMZ+3/%R+-! C0+R+H/%4H!$H'!Q4H/04&!N+$-V0+-! N$H$G+#+H/!4W!Q,$HG+! "#+0G+H31!C0+R+H/%4H^!C0+I$0+'H+--!$H'!]+-I4H-+! SI+0$/%4H$&!C043+'V0+-!_C043V0+#+H/!$H'!Q4H/0$3/%HG`! C+0W40#$H3+!N4H%/40%HG!$H'!N+$-V0+#+H/! FHR+-/%G$/%4H!4W!L33%'+H/!$H'!FH3%'+H/! LV'%/! N$H$G+#+H/!]+R%+K! Table 3.1 Ranking of Each Element of an OSH-MS 32 O!6B! ?! ;! [! A! ?>! ?=! ?:! >! 9! @! =! ?[! ?E! ?;! ?9! ?@! ?A! E! ??! <! @! QUANTITATIVE MEASUREMENT OF OCCUPATIONAL SAFETY AND HEALTH MANAGEMENT SYSTEMS PERFORMANCE Original Article J. Occu. Safety & Health 9 : 31 - 38, 2012 7LTO"!;(>!!a+%G,%HG!b$3/40!W40!74I!A!"&+#+H/-!4W!$H!SPB<NP! O!6B! ?! >! ;! [! A! 181I1693! C4&%31! B$*$0'!F'+H/%W%3$/%4H^!]%-J!L--+--#+H/!$H'!]%-J!Q4H/04&! "#I&41++!C$0/%3%I$/%4H! ]+-I4H-%M%&%/1!$H'!L334VH/$M%&%/1! Q4#I+/+H3+!$H'!70$%H%HG! P1,Q2,6Q$R!495O! :(;9! :(>A! :(?A! :(?[! :(?:! ?(::! Table 3.2 Weighing Factor for Top 5 Elements of an OSH-MS L!I+0W40#$H3+!4W!$H!SPB<NP!%H!$!I$0/%3V&$0!40G$H%-$/%4H!#$1!M+!#+$-V0+'!W04#! QUANTITATIVE MEASUREMENT OF Audit Score SYSTEMS = 0.36 [OSH Policy] + 0.25 A performance of an OSH-MS in a particular OCCUPATIONAL SAFETYorganisation AND HEALTH MANAGEMENT PERFORMANCE VH%/-!$V'%/!-340+!-,4KH!%H!+YV$/%4H!M+&4K)! [Hazard Identification, Risk Assessment and Risk Control] + may be measured from units audit score shown in 0.15 [Employee Participation] + 0.14 [Responsibility and equation below: LV'%/!P340+!c!:(;9!dSPB!C4&%31e!f!:(>A!dB$*$0'!F'+H/%W%3$/%4H^!]%-J!L--+--#+H/!$H'! Accountability] + 0.10 [Competence and Training]. 7LTO"!;(;!a+%G,%HG!b$3/40!4W!"$3,!"&+#+H/!4W!$H!SPB<NP ]%-J!Q4H/04&e!f!:(?A!d"#I&41++!C$0/%3%I$/%4He!f!:(?[!d]+-I4H-%M%&%/1!$H'! L334VH/$M%&%/1e!f!:(?:!dQ4#I+/+H3+!$H'!70$%H%HGe(! O!6B! 181I1693! P1,Q2,6Q$R!495O! ?! >! ;! [! A! 9! @! =! E! ?:! ??! ?>! ?;! ?[! ?A! ?9! ?@! ?=! ?E! C4&%31! B$*$0'!F'+H/%W%3$/%4H^!]%-J!L--+--#+H/!$H'!]%-J!Q4H/04&! "#I&41++!C$0/%3%I$/%4H! ]+-I4H-%M%&%/1!$H'!L334VH/$M%&%/1! Q4#I+/+H3+!$H'!70$%H%HG! O+G$&!$H'!S/,+0!]+YV%0+#+H/-! P1-/+#!C&$HH%HG^!X+R+&4I#+H/!$H'!F#I&+#+H/$/%4H! SMZ+3/%R+-! LV'%/! Q4##VH%3$/%4H! N$H$G+#+H/!]+R%+K! X43V#+H/$/%4H! "#+0G+H31!C0+R+H/%4H^!C0+I$0+'H+--!$H'!]+-I4H-+! C0+R+H/%4H!$H'!Q4H/04&!N+$-V0+! FHR+-/%G$/%4H!4W!L33%'+H/!$H'!FH3%'+H/! SI+0$/%4H$&!C043+'V0+-!_C043V0+#+H/!$H'!Q4H/0$3/%HG`! C+0W40#$H3+!N4H%/40%HG!$H'!N+$-V0+#+H/! ]+340'-! N$H$G+#+H/!4W!Q,$HG+! Table 3.3 Weighing Factor of Each Element of an OSH-MS 33 :(>;>! :(?9>! :(:EA! :(:E>! :(:9A! :(:A>! :(:[A! :(:[[! :(:;@! :(:;?! :(:>=! :(:>9! :(:>:! :(:?=! :(:?>! :(:?>! :(:?>! :(::=! :(::A! ?(::! =! E! Quantitative Measurement of Occupational Safety and Health Management Systems Performance No Element OSH Key Performance Indicator (KPIs) 1 OSH Policy 1.1 Minimum tolerable percentage of persons who should be made known on OSH policy: a) Employees. b) Persons working under the control of the organisation (contractors and sub-contractors). c) Visitors. Minimum Tolerable Target No 2 Hazard 2.1Minimum tolerable Identification, percentage of hazard Risk that should be identified Assessment for: and a) Routine activities. Determining b) Non-routine activities. Controls c) Facilities at the workplace. d) Activities of persons having access to the workplace (contractors). e) Activities of persons having access to the workplace (visitors). 2.2Minimum tolerable percentage of risk that should be assessed for: a) Routine activities. b) Non-routine activities. c) Facilities at the workplace. d) Activities of persons having access to the workplace (contractors). e) Activities of persons having access to the workplace (visitors). OSH Key Performance Indicator (KPIs) identification and risk assessment: a) Members of top management. b) Employees. c) Contractors. . 2.4Minimum tolerable percentage of persons who should be made known on the results of hazard identification and risk assessment: a) Members of top management. b) Employees. c) Contractors. d) Visitors. ≥ 90% ≥ 90% ≥ 90% 1.2Minimum tolerable frequency of communication on OSH policy among: a) Employees. Monthly b) Persons working under Monthly the control of the organisation (contractors and sub-contractors). 1.3Minimum tolerable frequency of OSH policy is reviewed by the organisation’s top management to ensure that it remains relevant and appropriate to the organisation. (Note: Review doesn’t mean revise). Element Minimum Tolerable Target ≥ 90% ≥ 90% ≥ 90% ≥ 90% ≥ 90% ≥ 90% 80-89% 2.5 Minimum tolerable frequency of communication on hazard identification and risk assessment among: a) Members of top Weekly management. b) Employees. Weekly c) Contractors. Weekly d) Visitors. Once in 2 years or less Yearly 2.6Minimum tolerable frequency of risk management is reviewed. (Note: Review doesn’t mean revise). ≥ 90% ≥ 90% ≥ 90% 3 ≥ 90% Legal and 3.1Minimum tolerable Other percentage of the Requirements identification of relevant: a) Legal requirements. b) Other requirements. 3.2Minimum tolerable percentage of persons who should be involved in identifying relevant legal and other requirements: a) Members of top management. b) Employees. c) Contractors. ≥ 90% ≥ 90% ≥ 90% Yearly ≥ 90% ≥ 90% ≥ 90% ≥ 90% ≥ 90% 80-89% 3.3 Minimum tolerable percentage of persons who should be made known on relevant legal and other requirements a) Members of top management. b) Employees. c) Contractors. d) Visitors. ≥ 90% 2.3Minimum tolerable percentage of persons who should be involved in establishing hazard Table 3.4 Minimum Tolerable Target 34 80-89% 71-90% 71-90% 70-79% Original Article No Element J. Occu. Safety & Health 9 : 31 - 38, 2012 OSH Key Performance Indicator (KPIs) Minimum Tolerable Target No Element OSH Key Performance Indicator (KPIs) Minimum Tolerable Target 3.4Minimum tolerable frequency of communication on relevant legal and other requirements among: a) Members of top Monthly management. b) Employees. Monthly c) Contractors. Half Yearly d) Visitors Once in year or less objectives and programme(s) achieved/implemented. 4.5Minimum tolerable percentage of employees participating in OSH programmes in making: a) Suggestion. b) Inspection. c) Campaign/Promotion. 3.5 4.6Minimum tolerable ratio of employees who have obtained reward and recognition in terms of their contribution in OSH in comparison to the total number of employees who participated in the programme. 1:50 4.7Minimum tolerable ratio of OSH improvement suggestions from employees in comparison to the total number of employees. 1:10 Minimum tolerable time to access the identified relevant legal and other requirements. (Note: The register of legal and other requirements available for reference). 3.6 Minimum tolerable percentage of accessibility of relevant legal and other requirements’ books available for reference. 3.7 > 20min < 90% Minimum tolerable Yearly frequency of the identified legal and other requirements is reviewed. (Note: Review doesn’t mean revise). 4 Objectives 4.1Minimum tolerable and percentage of persons who Programme(s) should be involved in establishing objectives and programme(s): a) Members of top management. b) Employees. c) Contractors. 4.8 Minimum tolerable Yearly frequency by which the OSH objectives and programme(s) are reviewed. (Note: Review doesn’t mean revise). 5 ≥ 90% ≥ 90% < 50% 4.2Minimum tolerable percentage of persons who should be made known on objectives and programme(s): a) Members of top 80-89% management. b) Employees. ≥ 90% c) Contractors. 80-89% d) Visitors. < 50% 4.3Minimum tolerable frequency of communication on objectives and programme(s) among: a) Members of top management. b) Employees. c) Contractors. d) Visitors. 4.4Minimum tolerable percentage of OSH 70-79% 80-89% 80-89% Resources, 5.1 Minimum tolerable ratio Roles, of human resources with Responsibility, specialized skills on OSH in Accountability comparison to the total and Authority number of employees. 1:50 5.2 Minimum tolerable percentage amount of money budgeted for OSH in a year compared to organisation revenue. 1-5% 5.3 Minimum tolerable ratio of employees with specific OSH roles and responsibilities in comparison to the total number of employees. 1:50 6 Competence, 6.1 Minimum tolerable Training and percentage of employees Awareness that should be trained on OSH awareness in comparison to the total number of employees. 80-89% ≥ 90% 80-89% < 50% 6.2 Minimum tolerable percentage of contracted individual needs to be trained. 80-89% Table 3.4 Minimum Tolerable Target (Cont’d) 35 ≥ 90% 80-89% Quantitative Measurement of Occupational Safety and Health Management Systems Performance Minimum Tolerable Target 6.3 Minimum tolerable number 10-19% of hours for each employee needed to be trained on OSH per year. No Element OSH Key Performance Indicator (KPIs) No 7 Communication 7.1 Minimum tolerable percentage of personnel who should be communicated on matters related to OSH. a) Employees. ≥ 90% b) Contractors. 80-89% c) Visitors. < 50% 8 Participation 8.1 Minimum tolerable and percentage of employees Consultation participation and involvement in: a) Hazard identification, 80-89% risk assessment and determination of controls. b) Incident investigation. 80-89% c) Development and review < 50% of OSH policies and objectives. 8.2 Minimum tolerable percentage of employees that should be consulted where there are any changes that affect their OSH. 70-79% 9 Documentation 9.1 Minimum tolerable percentage of employees who should be involved in establishing OSH documents. < 50% 9.2 Minimum tolerable frequency of all OSH documents that should be communicated to all relevant personnel. Yearly 10 Control of 10.1 Minimum tolerable Documents frequency by which OSH document is reviewed. Yearly 11 Operational 11.1 Minimum tolerable Control percentage of employees that should be involved in determining control measures. 70-79% 11.2 Minimum tolerable frequency in reviewing implemented control measures. (Note: Review doesn’t mean revise).3 Quarterly 11.3 Minimum tolerable percentage of employees Element OSH Key Performance Indicator (KPIs) trained on specific operational control requirements. Minimum Tolerable Target 12 Emergency 12.1 Minimum tolerable Preparedness number of emergency drills and Response conducted with reports in a year. 1-3 12.2 Minimum tolerable percentage of emergency preparedness and response. 70-79% 13 Performance 13.1 Minimum tolerable Measurement percentage of OSH and monitoring performed versus Monitoring the number that required monitoring. 70-79% 13.2 Minimum tolerable frequency on OSH inspection per year. 14 Evaluation of 14.1 Minimum tolerable Compliance percentage of compliance with related OSH legal requirements. 14.2 Minimum tolerable percentage of compliance with other related OSH requirements. 15 Incident 15.1 Minimum tolerable Investigation percentage of safety and health committee needed to be trained in incident investigation. 15.2 Minimum tolerable duration between the accident and the investigation. Quarterly ≥ 90% ≥ 90% ≥ 90% 1 day 16 Nonconformity, 16.1 Minimum tolerable Corrective percentage of corrective Action action taken/closed. and Preventive 16.2 Minimum tolerable Action percentage of preventive action taken/closed. 80-89% 17 Control of 17.1 Minimum tolerable Records conformance level in terms of control of records. 80-89% ≥ 90% 18 Internal 18.1 Minimum tolerable Half Yearly Audit frequency of OSH management system internal audit that should be conducted by the organization’s internal auditors with reports. 70-79% Table 3.4 Minimum Tolerable Target (Cont’d) 36 Original Article No Element J. Occu. Safety & Health 9 : 31 - 38, 2012 OSH Key Performance Indicator (KPIs) 18.2 Minimum tolerable ratio of internal auditor who should be trained in OSH management system internal audit versus number of employees in the organisation. Research Limitation Minimum Tolerable Target 1:50 The major limitation in conducting the research is the time factor that is inadequate. Conclusion 18.3 Minimum tolerable ratio of internal auditor who should be trained in certificated course (e.g. IRCA) versus number of employees in the organisation. 1:50 19 Management 19.1 Minimum tolerable Review frequency of management review that should be conducted by the organization’s top management to discuss all elements of OSH management systems. Yearly or Less The study was carried out to determine the weighing factors for OSH-MS and OSH KPIs. The study reveals that good strategies to approach the organisations need to be devised in persuading them to participate in such research. The organizations need to be adequately convinced on the importance of the research that generally it would help them to improve the overall business performance or otherwise they may tend to believe that such research can give bad implications by disclosing their weaknesses to the external agencies. It’s nice to be important, but it’s more important to be nice. ~ John Cassis Experience tells you what to do; confidence allows you to do it. ~ Stan Smith Table 3.4 Minimum Tolerable Target (Cont’d) When you appeal to the highest level of thinking, you get the highest level of performance. ~ Jack Stack Don’t manage people, manage systems. Lead people. ~ Aziz Basiran 37 This page has been intentionally left blank Original Article J. Occu. Safety & Health 9 : 39 - 46, 2012 Safety Intervention Need Analysis System For Construction Industry 1, 2* Asmalia Che Ahmad, 1Normazlina Mohamed Zi, 1Ismail Bahari, & 1Azizah Jaafar 1 Universiti Kebangsaan Malaysia, Selangor 2Universiti Teknologi MARA, Perak *Corresponding author: asmalia809@gmail.com Abstract Safety Intervention Need Analysis System (SINAS) is a web-based safety management program that aspires the identification for the need of construction safety intervention. It can be accessed through the website www.sinas.org. This first phase of SINAS project development only focus on safe design intervention. SINAS was created to provide assistance for safety practitioners in identifying the need of safe design intervention. This was put forward through the investigations of construction accidents that relate to design. The SINAS process of need analysis are carved up to six steps i.e. user information, accident details, accident evaluation, result of the need analysis, construction design intervention and safety intervention need analysis report. At the end of the process, Safety Intervention Need Analysis Report will be generated. This report is an essential document to proof the need of safe design intervention. Additionally, SINAS also offers recommendations for construction designers and professionals on suitable safe design intervention to prevent construction accidents and minimises construction risks. Keywords: construction, design, intervention, need analysis, safety Introduction SINAS is an acronym for Safety Intervention Need Analysis System. It is a web-based program that aims to identify the need for construction safety intervention. SINAS can be accessed by the address www.sinas.org (Figure 1). For the first phase of SINAS project development, only the design intervention will be addressed. In order to identify the need of safe design intervention, SINAS was designed to provide assistance in discovering the root causes of accident particularly in design aspect. The SINAS journey to discover the root causes related to design begins by clicking the button START (Figure 1). Other than discovering the root cause, SINAS also provides suitable and accurate recommendations on safe design intervention to prevent construction accidents and enhances safety measures. 39 Safety Intervention Need Analysis System For Construction Industry Figure 1: The webpage of SINAS showing the website address, START button and library SINAS are developed to guide competent construction Safety Intervention Need Analysis accident investigators to investigate the root causes or potential A safety need analysis is an analysis to identify whether such situation or activity needs an intervention in order to improve safety feature. SINAS was developed to assist the identification of the need analysis by discovering the root cause of construction accidents explicitly related to design. The need analysis journey starts by clicking the button START (Figure 1). After clicking the START button, 6 icon buttons will appear (Figure 2). These buttons represent 6 steps to analysis the need of safety intervention The process of need analysis consist of: • Step 1 –User information • Step 2 –Accident details • Step 3 –Accident evaluation • Step 4 –Result of the need analysis • Step 5 –Construction design intervention • Step 6 –Safety intervention need analysis report causes of construction accident within the aspect of design. This investigation reveals the need analysis for safe design intervention. Consequently, it facilitates selection of safe design intervention. In addition, SINAS allows construction designers, safety practitioners as well as project contractors to view potential safe designs that may be integrated into construction design and during design decisions. This can be attained from SINAS library (Figure 1). SINAS library list down safe design interventions, which can be carried out to eliminates and reduces hazards as well as risks in construction and maintenance works. These design intervention may assist architects, engineers or construction designers to address Step 1 - User information potential hazards during the design phase of construction The first step is to fill in the user information (Figure 2). The information are classified to personal, company and project information. These information are essential for generating report at the end of the analysis. project. In that way, those professionals could incorporate safe design in their designs decisions thus eliminate or mitigate potential hazards which reduces risk along construction and maintenance phase in construction projects. 40 Original Article J. Occu. Safety & Health 9 : 39 - 46, 2012 Figure 2: Icon buttons to identify the need for safe design intervention & user details Step 2 - Accident details o Who - Particular about the victim and those involved in the accident. Numbers of victim, gender, age, citizenship, job description and years of experience. The user is required to fill in the accident details as the second step. This step replicates the accident investigation report. The following are required facts (Figure 3a, 3b, 3c, 3d): o o When - Date, time, weather & condition where the accident took place o Where - Area and location of accident What - Description of situation before, during and after the accident. Description of work that might lead to the accident. Type of accident. Numbers of fatalities and injuries. Figure 4 represents the example of overall accident details. 3a 3c 3b 3d Figure 3a, 3b, 3c, 3d: The required facts for accident details 41 Safety Intervention Need Analysis System For Construction Industry Figure 4: The overall accident details Step 3 - Accident evaluation o C - The design failed to encourage the constructor from implementing safety protection measures The third step is evaluation of the construction accident. By referring to the accident details, the user could evaluate the need for safety intervention in design aspect with assistance by SINAS (Figure 5). The evaluations are basically lying on 5 statements related to design, safety and construction. The statements namely are: o o o A - The design failed to provide temporary safety measures D - The design could be enhance to consider construction worker safety E - The construction drawing could be upgraded to diminish hazards associated to the accident The level of agreement to these statements could be responded using 5-point Likert as follows: 1 - strongly disagree 4 - agree 2 - disagree 5 - strongly agree 3 - neutral o B - The design failed to provide permanent safety measures Figure 5: The accident evaluation 42 Original Article J. Occu. Safety & Health 9 : 39 - 46, 2012 Step 4 - Result of the need analysis according to type of accident i.e. fall, electrocution, roadwork, excavation, renovation and demolition (Figure 6). On the other hand, if the result illustrates that the accident was not related to design, safe design intervention was not a necessity. The accident may be caused by other factors and need other sort of intervention. SINAS will calculate the evaluation and generate result on the need of safe design intervention. If the result demonstrates that the accident was related to design, therefore, there is a need to intervene safety in design aspect (Figure 6). At the same time, SINAS will suggest safe design intervention Figure 6: The result for need analysis of safe design intervention Figure 7a: List of safe design intervention 43 Safety Intervention Need Analysis System For Construction Industry Figure 7b: List of safe design intervention (continued) Step 5 - Construction design intervention Step 6 - Safety intervention need analysis report A list of safe design intervention will appear on the display as the fifth step (Figure 7a & 7b). The user will select the suitable safe design intervention according to the construction of building element and design category. Example of building elements are ceiling, floor, staircase, wall etc whereas design category is classified as permanent or temporary design. Figure 7a: List of safe design intervention Based on input from step 1 until 5, SINAS will generate Safety Intervention Need Analysis Report (Figure 8). This report contains an analysis that is useful as a proof on the need of a design related intervention. It also performs as recommendation document for suitable safe design intervention. Figure 8: Safe design intervention need analysis report 44 Original Article J. Occu. Safety & Health 9 : 39 - 46, 2012 Conclusion whereby the safety intervention library may be enriched in future with the addition of new and more appropriate safe design intervention by the users. Safety Intervention Need Analysis System (SINAS) is a webbased safety management system to revolutionize construction safety. SINAS focuses on the need for safety intervention based on construction accident investigation mainly on design related issues. This system provides useful assistance to safety practitioners, especially the accident investigators in identifying the root causes of construction accidents related to construction design. SINAS library enhances ideas to improve safety in design decision of construction designers and professionals. SINAS is designed as a living system Acknowledgements SINAS project was funded by Universiti Kebangsaan Malaysia under the UKM-GUP-JKKBG-08-09-033 research grant. The researchers graciously thank UKM and all other parties involved for their support and contribution to the success on the development of SINAS. 45 Safety Intervention Need Analysis System For Construction Industry Health & Safety Executive (HSE) (2007). Construction (Design and Management) Regulations 2007. United Kingdom. Bibliography Behm, M. (2004). Establishing the link between construction fatalities and disabling injuries and the design for construction safety concept. Oregon State University. Unpublished PhD Dissertation Ministry of Human Resource (MoHR) (2009). Occupational safety and health master plan 2010-2015. Malaysia. Szymberski, R. (1997) Construction project safety planning. TAPPI Journal. 80(11): 69-74. Behm, M. (2005). Linking construction fatalities to the design for construction safety concept. Safety Science. 43:589 611 Toole, M. (2005). Increasing engineer’s role in construction safety : Opportunities and barriers. Journal of Professional Issues in Engineering Education and Practice. July: 199 207 Behm, M. (2006). An analysis of construction accidents from a design perspective. The Center to Protect Workers Rights. Silver Spring, M.D. Weinstein, M., Gambatese, J.A., Hecker, S. (2005). Can design improve construction safety? : Assessing the impact of a collaborative safety-in-design process. Journal of Construction Engineering and Management. October: 1125-1134 Gambatese, J.A., Hinze, J., Haas, C.T. (1997). Tool to design for construction worker safety. Journal of Architectural Engineering. March : 32-41. Gambatese, J.A., Behm, M., Rajendran, S. (2008). Design’s role in construction accident causality and prevention: Perspectives from an expert panel. Safety Science. 46(4) : 675-691. Workcover, New South Wales. (2001). CHAIR Safety in Design Tool. Australia. Haslam, R.A., Hide, S.A., Gibb, A.G.F., Gyi, D.E., Pavitt, T., Atkinson, S., Duff, A.R. (2005). Contributing factors in construction accidents. Applied Ergonomics. 36: 401 415. 46 Original Article J. Occu. Safety & Health 9 : 47 - 60, 2012 The Use of Mobile Technology Applications for Crisis Management During Hajj Hana Al-Nuaim (DSc) Computer Science Department | Faculty of Computer and Information Technology | King Abdulaziz University P.O. Box 80200, Jeddah 21589 E-mail: hnuaim@kau.edu.sa Tel: 00966 2 6952771 Miadah Al-Masry (MSc) King Abdulaziz University | Computer Science Department Faculty of Computer and Information Technology | King Abdulaziz University P.O. Box 80200, Jeddah 21589 E-mail: malmasre@kau.edu.sa Tel: 00966 2 6830771 Statement of Contribution: The Hajj is probably the biggest religious economic and environmental phenomenon that occurs yearly that involves people from most countries of the world, young and old, rich and poor, highly educated and illiterate; a combination that makes the 6 day Hajj problematic for the pilgrims, local authorities and citizens of the city of Makkah. Very limited research has been conducted in this area and most of what has been researched has focused on city planning, construction and movement routes while ICT research has ignored the HAJJ. Abstract The mountainous holy city of Makkah, Saudi Arabia faces major challenges in construction, transportation, and provision of services to millions who visit the city for religious purposes. During the annual six-day Hajj season, more than 3 million pilgrims are in constant movement around the holy sites at the same time. Human overcrowding leading to chaos, panic, and stampede has resulted in the deaths of hundreds of pilgrims over the years. Although large-scale expansion projects are in constant development, a solution must be found that provides the pilgrims with knowledge so they are able to make accurate and wise decisions during their movement from site to site. This research proposes a pilgrim assistant application using location-based services and augmented reality technology that can deliver real-time visual information and graphical directions to pilgrims’ mobile devices in their native languages, ultimately giving pilgrims control over their own safety. Keywords: Location-based services, augmented reality, Makkah, crowd management, congestion, Hajj 1. Introduction The unrestrained growth of cities without any control or follow-up monitoring is a serious concern among city planners around the world. In addition, the rapidly increasing size of cities can lead to a massive need for the administrative authority to manage and provide for population needs. This is especially true when there are increasing demands placed on scarce resources, which can create numerous environmental problems, such as water shortages, traffic congestion, and the misuse of urban land (Kim 2008). Under these circumstances, strategic planning for sustainable and intelligent cities is a crucial challenge for planners and urban scientists (Kim 2008). Many cities have problems in terms of space limitations, which lead to crowd concentrations and traffic jams in small areas. Mass evacuation of large urban settings has occurred throughout world history, but, until recently, these situations were dispersed and infrequent (McGuire 2005). Tragic outcomes due to congestion happen as a result of man-made or unexpected environmental events. 47 They might also be a result of the failure of local authorities to respond in a timely manner to such circumstances (Al-Sharief 2006). Metropolitan cities are laid out to handle automotive traffic, with varying degrees of success. Nevertheless, major power outages in New York, the attacks of 9/11, and the recent death of 19 people and injury of more than 300 people during a stampede at a music festival in Duisburg, Germany show that urban cities need to be prepared to handle a mass evacuation of individuals on foot. During disasters, chaos and dangerous situations may occur due to human behavior, rather than the event itself. Escape panic situations normally exhibit the following characteristics (McGuire 2005): • People walk or run considerably faster than normal. • People’s interactions become physical in nature (e.g., they push at times). • Moving and passing of a bottleneck becomes uncoordinated. The Use of Mobile Technology Applications for Crisis Management During Hajj • At exits, arcing and blocking are observed. • Congestions build up. • The physical interactions in a congested crowd add up and cause alarming pressures that can bend steel barriers and break down brick walls. • Fallen or injured people act as obstacles, further impeding escape. • People show a tendency toward mass behavior, which means that they do what others do, even though they may normally never do so. • Alternative exits are often ignored or overlooked during escape situations. Research has shown that knowledge is important to individuals’ acting efficiently in a dangerous situation. Cities need to promote their citizens’ knowledge and allow them to develop their individual potential in interacting with others. In addition, cities should play a part in the construction of their environment and establish person−context exchange dynamics (Martinez 2006). Kim (2008) suggested that the advancement of information and communications technologies (ICTs) with widespread economic activities provides scientists and engineers with powerful tools for implementing urban strategies that promote sustainability and informed decision making, regardless of how challenging and complicated the tasks are due to the multiple facets of complex urban systems. An example of a complex urban system with its own unique problems is the holy city of Makkah, Saudi Arabia. As it tries to educate, develop, and provide services for its citizens, Makkah has to accommodate millions of pilgrims and visitors who are performing rituals in small areas, creating congestion, traffic jams, and environmental problems leading to chaos, delays, and even death. Similar to the local authorities of any other city, Makkah authorities face the challenges of investing in their own citizens, who need to alter their lifestyles to cope with a mass influx of people into their city, as well as managing millions of visitors that differ from year to year. That is, they must provide services to both groups of individuals. Local authorities have an additional burden in regulating the private sector that views the city as a yearlong lucrative market and aggressively pursues financial profit by building commercial accommodations, restaurants, and shopping venues for visitors while ignoring safety codes and building regulations. 2. The City of Makkah Makkah is in the western region of Saudi Arabia. Considered to be the holiest city for all Muslims, it is the capitol of the Makkah Almukarramah region. The city is located at 25/21 north latitude and 49/39 north longitude, 909 feet (277m) above sea level. It has an area of 550 km². As shown in Figure 1, Makkah is surrounded by many mountains, such as Mount Ajyad (1,332 feet), Mount Abu Qubays (1,220 feet), Mount Quayqin (1,401 feet), and Mount Hira (2,080 feet), and despite its small area, the city’s population density is high (Makkah Municipality 2010). Fig. 1. Makkah City 3. The Hajj 48 The Hajj is one of the five pillars of Islam that must be performed during a specific time between the 8th and 13th Dhu’l-hijjah (the 12th month of the Muslim lunar calendar). It is obligatory once in a lifetime for every adult Muslim, male or female, who is physically and mentally fit with the means to perform it. Although Islam requires the hajj to be performed once in a lifetime, many Muslims perform hajj many times and some yearly as long as they are able, prompting local authorities to introduce quota systems for the different countries and official passes for residents in an attempt to control the number of pilgrims. The Hajj must be completed in specific locations or ritual sites: the Holy Mosque Al-Haram, Mina, Muzdalefah, and Arafat, all located in a geographical area of 802² km, as shown in Figure 2 (Ministry of Hajj 2010). These sites have fixed boundaries and are connected by a limited number of roads. Original Article J. Occu. Safety & Health 9 : 47 - 60, 2012 Al-Mekat Mina Arafat 13 km² Al-Haram 135,000m² 3 4 1 6 2 5 7 Makkah Mina 8 km² Muzdalefah 12 km² Fig. 2. Hajj rituals site map The Hajj ritual starts after pilgrims don special white, simple clothing that is mandatory for men in Al-Mekat. Later, they head to Al-Haram in Makkah, and then go to a sleepover in Mina before moving on to Arafat. On the 9th Dhu’l-hijjah, pilgrims embark on a five-kilometer trip after sunset from Arafat to Muzdalifah before they return to the Mina area, which lies approximately three kilometers west of Muzdalefah (Ministry of Hajj 2010). According to Abdulrazek (2005), with more than 3 million pilgrims and support service providers moving at the same time in such a small enclosed area, extreme congestion is created and concentrated in three main areas: Al-Haram Mosque, Mina, and Arafat (Figures 3−8). Fig. 3−4. The Grand Holy Mosque Fig. 5−6. Mount Arafat 49 The Use of Mobile Technology Applications for Crisis Management During Hajj Fig. 7−8. Mina 4. Research Motivation Given the yearly increase of pilgrims, who do the same thing at the same time in a small geographical area, the problems of traffic and human congestion are magnified; consequently, many tragedies have occurred in the past. The major challenge facing urban planners and designers for the city of Makkah is planning the movement of pedestrians, which include women, children, and the elderly; vehicles; and mass transit during the period of Hajj (Shehata and Koshak 2005). Yet, with all of the expansions, plans, and successes, the Hajj seasons have been plagued with tragedies due to dangerous overcrowding and stampedes, fires, human bottlenecks, traffic jams, and environmental pollution (see Table 1). Pilgrims come from countries all over the world. Many are elderly and/or have a low level of education. The unified dress requirement also complicates individuals’ efforts to stay close to their group or family in crowds, causing confusion and chaos. Most of the problems and major tragedies occur due to pilgrims’ limited knowledge about how, when, and where to move. The local government is continuously looking for better procedures to protect pilgrims by deploying tens of thousands of security personnel to help to organize them and direct their movement. However, this creates an additional burden on authorities to oversee the safety of their own personnel as well. Local authorities have worked on various solutions to resolve these problems. Each year, they formulate many plans to avoid the congestion in order to ease traffic and pilgrim mobility (Shehata and Koshak 2005). Construction projects include the Holy Mosque expansion, the Stoning Bridge multilevel expansion, and the Metro Link rail. The expansion projects that aim to resolve the problem of limited space may solve some problems when completed, but they cause others, such as the need to close the areas surrounding them during construction and maintenance, thereby diverting congestion to other places. Congestion in tunnels used to ease and divert traffic leads to air Date Accidents Casualties 1975 Fire Death of 200 pilgrims Place Camps for pilgrims near Makkah 1990 Suffocation Death of 1,426 pilgrims Inside a pedestrian tunnel Stampede Death of 270 pilgrims Death of 118 pilgrims, with another 180 injured Death of 35 pilgrims. Death of 14 pilgrims Death of 251 pilgrims, with another 244 injured Death of 346 pilgrims, with another 289 injured 1994 1998 2001 2003 2004 2006 Al-Jamarat in Mina Table 1. Major accidents during Hajj from 1975 to 2006 50 Original Article J. Occu. Safety & Health 9 : 47 - 60, 2012 pollution in the tunnels, which affects the pilgrims on foot and the infantry inside. The lack of proper ventilation has led authorities to periodically block pilgrim entry into the tunnel, reducing tunnel capacity and causing major delays and frustration. 5. Objectives of This Research Human behavior during chaotic events accounts for most of the injuries and fatalities that happen during crises. In Makkah, physical expansions alone may increase problems and make management more difficult, and educating pilgrims on exit and entry of buildings and structures is always challenging. Standing in crowds for hours in extreme heat or cold (due to the changing seasons in which Hajj is performed), having only the view of the back of other pilgrims, and being cut off from any type of information regarding what is going on or how long the wait will be or if they are actually going in the right direction create panic and frustration that cause unpredictable behavior that could trigger chaos and stampede. For Makkah to cope with a mass influx of people from different countries, incomes, ages, languages, and educational backgrounds, it must utilize ICTs to provide more efficient and cost-effective solutions that target the pilgrims themselves in an attempt to increase their knowledge. Such solutions should focus on pilgrims’ direct interaction with their environment to make correct and sensible choices by providing them with vital information to make accurate, timely, and wise decisions for their own safety and the safety of others. This would reduce tragedies, delays, and inconveniences. In an effort to manage crises by reducing crowd congestion, delays, panic, and inconveniences during Hajj, it is necessary to provide visually oriented pilgrims on foot with self-control in terms of navigation through the holy sites. Therefore, the main objective of this research is to design, develop, and evaluate the usability of the Mobile Pilgrim Assistant (MPA) prototype as an application that exploits emerging technologies such as location-based services (LBS) and augmented reality (AR) delivered via mobile phones to provide vital information to pilgrims to help them make accurate, timely, and wise decisions for their own safety and the safety of others. 6. Emerging Mobile Technologies ICTs and LBS technologies, such as geographic information systems (GISs), are raising the possibility of a 51 dramatic transformation in the way people perceive and move about the urban environment, as well as how they interact with each other in an urban space (Kim 2008). In addition, LBSs are services that employ their capability to increase location awareness and to allow simpler user interactions to adapt to a particular environment. These services are accessible with mobile devices through networks, utilizing the ability to identify the location of the mobile device (Steiniger, Neun, and Edwardes 2006; Fang, LiXiaolei, and Fuling 2007). Navigation systems based on a global positioning system (GPS) have become very popular, mainly because they allow people to rapidly explore unknown areas. However, if we try to integrate augmented reality techniques, we will find that the GPS system works only outdoors, because the required satellite links are blocked or are unreliable inside buildings, and the GPS receivers require an unobstructed view of the sky (Mulloni et al. 2009). But in general, the GPS system has many real-world applications (Mulloni et al. 2009) including: • location: determining a basic position (to answer “Where am I?”); • navigation: getting from one location to another (to answer “Where can I go?”); • tracking: monitoring the movement of people and things (to answer “How can I go?”); • mapping: creating maps of the world (to answer “How can I go on the actual map?”); and • timing: bringing precise timing to the world (to answer “When will it all happen?”) AR is a relatively new technology that combines imaginary information like a virtual object introduced into the real world in real time with interactive visualizations that allow the user to imagine a real, three-dimensional (3D) environment (Mulloni, Dünser, and Schmalstieg 2010). Although this technology is being utilized in many areas, such as medicine, manufacturing, visualization, path planning, entertainment, and military applications, it has received a great deal of attention as a new method for displaying location-based information in the real world (Mulloni et al, 2009). AR can be used to enhance the user’s interaction and perform tasks, especially when the virtual object shows real information that the user cannot detect using his or her senses (Azuma 1997). An application is classified as an AR system if it has four The Use of Mobile Technology Applications for Crisis Management During Hajj characteristics (Azuma 1997). First, it must combine the real and the virtual. Second, it must be interactive in real time. Third, it must be registered in 3D to ensure that the user cannot tell the difference between the real world and the virtual augmentation of it. Finally, the system must appear to be working in a single, real environment. Interactive AR systems must also have some characteristics to allow a high degree of vision and utility to ensure that the virtual objects interact with the user in a natural manner (Vallino 1998). These characteristics include the virtual objects in the augmented view being registered, virtual and real objects being visually indistinguishable, virtual objects exhibiting standard dynamic behavior, and the user’s having unconstrained motion within the workspace (Vallino 1998). The cost must be lowered to allow for broader usage and a minimal run-time setup (Vallino 1998). However, indoor and outdoor terms that are frequently used in AR technology need to be differentiated. Indoor localization refers to the determination of a user’s location taking place within a closed area or inside a building, such as a campus, company, museum, or exhibition (Mulloni et al. 2009). Technologies used to achieve this include active radio frequency identifier (RFID), ultrasonic, infrared, magnetic, and radio sensors, but all require a permanent electronic infrastructure to facilitate measurements (Mulloni et al. 2009). Outdoor localization refers to the determination of a user’s location, the place in the open air or through buildings, such as a town, street, or city exhibition using technology such as a GPS (Mulloni et al. 2009). Nevertheless, GPS-based navigation systems only work outdoors because the required satellite links are blocked inside buildings. Therefore, LBS applications can be built, which give users the ability to see the real world around them. Additional information can be added by computer graphics to represent the real world in real time (Fang et al. 2007). AR systems usually need to adapt to other assistive technologies to achieve an advanced LBS system (Fang et al. 2007); consequently, other techniques should be looked at that combine LBSs to provide advanced LBS on personal computers (PCs) or mobile devices using either indoor or outdoor localization (Fang et al. 2007). In the past few years, mobile phones have become an increasingly attractive platform for AR (Wagner and Schmalstieg 2003). There were more than 1.22 billion mobile phones sold in 2008. Further, it is estimated that this number will rise to 1.8 billion units in 2012, with 800 million of them being smart phones (Wagner and Schmalstieg 2003). Mobile phones are now in their third generation, but the second generation was a challenge when it came to importing a fully featured PC-based AR framework, such as the Studierstube4 platform, which is able to import existing applications and permit them to run on mobile phones. The third-generation Studierstube ES includes enhanced compatibility requirements and additional elements in the design, such as an asymmetric client−server technique that is specific to mobile devices (Wagner and Schmalstieg 2003). Users GUI System (Mobile Interface) User + Admin User Interface Layer Main System Layer Mobile AR System Identification Layer Sensors System DB Sensors DB Wireless Network (WLAN) Bluetooth Storage Layer Communication Company (e.g. STC) WI-FI Network Layer RFID Fig. 9. Architecture model of MPA 52 Original Article J. Occu. Safety & Health 9 : 47 - 60, 2012 Map Marker Pollygon Fig. 10. Google map references shape for Al-Haram A collaboration between AR technology and mobile phones to include smart phones, such as personal digital assistants (PDAs), can determine a user’s location indoors based on what the camera phone sees and outdoors ? by receiving virtual information from a database or another system, such as a GPS (Ravi et al. 2005). The phone allows users to interact with their real environment in real time based on that information. For example, the WIKITUDE mobile AR navigation system helps drivers to easily recognize and follow the suggested route in the real world, rather than looking at an abstract map (Wagner and Schmalstieg, 2003). 7. Mobile Solution for Hajj Crisis Management The proposed MPA system is an application that is downloaded on a mobile phone upon request. Then, archived data, real-time information, and maps are delivered when requested. The system is maintained and updated from an administrative website on a central server. The MPA went through traditional software and usability engineering life cycles that involved iterative design, prototyping, and constant solicitation of feedback from potential users. A user profile was created for 30 former pilgrims to assess the difficulties faced during Hajj regarding lack of information and the type of information needed and the most critical times that information is needed. The data helped in determining content and usability and functional requirements for the MPA. different layers, including the: • User Interface Layer: This is the part of the system with which users interact, utilizing either their personal mobile devices as clients of the system or their local devices as administrators of the system, where updates for information and services are requested. • Main System Layer: This is the presentation layer between the user and the server system that provides icons representing current available services to users as well as updates and responses to queries for the GPS system responsible for producing digital maps. • Identification Layer: Each location has numerous sensors that have unique identification codes to send the correct data to the user requesting the data. • Storage Layer: This contains two database servers that store system-archived data and realtime, sensor-generated data. Database management systems manipulate data received from requests and sensors and send them to the main system layer. • Network Layer: This is the backbone infrastructure of the system. 7.1 MPA Architecture As shown in Figure 9, the architectural model of the MPA presents real-time (R) data and archived (A) information as a distributed system composed of 53 From the administrative Web site for MPA, with all location points archived for this application, using Google Maps’ Javascript API V3 reference such as maps, markers, and regions, the administrator has the The Use of Mobile Technology Applications for Crisis Management During Hajj option to change a map region; alter the data by adding text, images, movies, etc. that belong to the location; and add a search point (virtual points) (see Figure 10). 7.2 MPA Design and Implementation Designing applications for mobile use faces some usability hurdles such as (Stockbridge and Mughal 2007): • small screens, which restrict the number of fewer visible options at any given time, thereby making almost all interactions harder and making it difficult to find room for multiple windows; • the difficulty of operating a graphical user interface (GUI) widgets without a mouse, which allows users to access menus, hit buttons, and scroll; • slow and error-prone text entry, even on devices with mini-keyboards; and • download delays, even with a faster 3G service. The MPA was therefore, designed based on guidelines for mobile phones with touch screens developed by Zamzami and Al-Nuaim (2009). The prototype was implemented using Microsoft Visual Studio 2008 with SQL server 2008 database Step 1: Login and User Identification ID support. To export the application on a mobile phone, Microsoft Mobile SDK 6.0 and Window’s Web server for Web services were used. The MPA implementation was classified into four parts: • Mobile Applications (i.e., mobile apps): This term is used to describe Internet applications that run on mobile devices. They utilize Microsoft Mobile Center as synchronization applications software for Windows 7 and a new version of the Windows Mobile Device Center to transfer information, settings, and files between the mobile phone and the PC. • Web Services: This is a software system designed to support interoperable machine-to-machine interaction over a network. It describes a standardized method of integrating Web-based applications using the Extensible Markup Language (XML), Simple Object Access Protocol (SOAP), Web Services Description Language (WSDL), and Universal Description, Discovery, and Integration (UDDI) open standards over an Internet protocol backbone. • The Administrator Web Site: This is a set of interconnected Web pages or files located on the same server, providing a graphical user interface to the system administration responsible for updating or modifying data. This Web site was created using the model–view–controller (MVC) Crowd level DB Location 1 Camera +sensor Location 2 Camera +sensor Step 2: user_request Location 3 Step 3: Camera phone will open a 3D real world image Camera +sensor Step 4: Graphics and Text appear on the image from the real world Fig. 11. Main steps for MPA 54 Original Article software. • The SQL Database: To create the storage layer (i.e., data layer), the following tools were used: Visual Studio 2008; .NET Framework 3.5 (installed with Visual Studio 2008); SQL server 2008; and LINQ to SQL classes, as LINQ enables developers to query data sources using a querylike syntax. The system uses the GPS for automatic user location detection without the users’ request. Therefore, it is necessary that the mobile phone used supports GPS applications. Further, the users should be in an open space. 2. The users can request archived information. Then, the system uses Web services to load the data from the distributed database from specific servers for the first time after the users log in, allowing the data to be hands-on with all users, anytime and anywhere. This reduces the need to browse the Web in crowded situations, especially when no network coverage is available in that area. Users can also request real-time data using the mobile camera to represent their locations graphically. 3. If up-to-date information becomes available; the system alerts and reminds users to load updates when they reach an area of network coverage and when it is safe to interact with the phone. 4. Based on the crowd level detected by the system through location sensors, the system decides on the type of display that is most effective for users. Users who are stuck between pilgrims blocking their vision can only make use of directions displayed in text format, not graphical arrows. multiple options for either archived information or real-time information. The archived information includes: • details about any holy site destination, with either stored images or live broadcasts; As shown in Figure 11, the detailed steps for the MPA that show the management of the system and the information update process are: 1. J. Occu. Safety & Health 9 : 47 - 60, 2012 • information about Hajj, including all of the plans for Hajj season, guidelines, and new pilgrim movement rules or policies established by the Ministries of Transport, Hajj, and Culture; • general maps displayed in two-dimensional or three-dimensional perspectives and threedimensional directions from one area to another; and • location maps for facilities and services pilgrims need, such as hotels, pilgrims’ camps, parking, and hospitals. If users need to go to a ritual site or know the direction of it, or distance to it, or any real-time information about a specific service or general location, they can select the “Where can I go?” option from the main screen. After filtering through different options, a pop-up arrow appears on the screen pointing to the selected location accompanied by text to clarify the distance from the location and provide instructions if other services are needed. Using a similar step, users can select the “Where am I?” option and choose the desired service from the menu. The GPS hardware is set up using the GPS control panel in the mobile settings, such as: • GPS API Interface: This class is used to open, close, and query the device’s state and to query the position data from GPS hardware. • GPS Position: This contains the GPS position data received from the GPS hardware. • GPS Device: This contains the GPS device’s state data received from the GPS hardware. The interactive process for navigating through the system’s screens involves several steps. The first step is an alert message delivered from mobile network connectivity providers to users’ mobile phones, questioning whether they would like to download the system. Upon agreement, the application is downloaded once. After selecting the preferred interface language, the system provides each user with a unique identification code. After log in, users can view the main screen, with 8. MPA Testing 55 The mobile phone used for testing the prototype was the HTC Touch Viva with a Windows platform. Given that Hajj is performed once a year, the researcher had only one chance to perform the test on the MPA with target users The Use of Mobile Technology Applications for Crisis Management During Hajj during the six days of rituals to determine the effectiveness and efficiency of such a tool within the context of mobility, as well as the practicality of its use in a crowded environment; therefore, oversight or performance errors would not be tolerated. As a pilot, the efficiency of the application was assessed in the context of functionality, mobility, lighting, and usability by testing it with freshman students on the vast grounds of the campus of King Abdulaziz University in Jeddah, Saudi Arabia (Figure 12). Results provided the researcher with guidelines for the redesign of the MPA to prepare it for testing during the following Hajj season in a real environment. Students’ comments that the application would help them to find their classrooms the first weeks of the semester encouraged the researcher to propose the application to university administrators for download by students to help them to find their way around campus. Although results from the testing the MPA on campus were encouraging, human behavior during real crowd and crisis situations is what will ultimately assess its usability and usefulness during such critical times. To evaluate the usability, the effectiveness, and the efficiency of the system, a prototype- testing was done with target users. Two groups were selected for testing in the real environment and tasks were selected to evaluate the proposed prototype. Group A (21 volunteers) was selected from a Hajj company for local pilgrims, while Group B (19 volunteers) was selected from two other companies; all at the Mina camp site. The MPA was tested in Mina and Al-Haram (the Grand Holy Mosque) during the Hajj season. Group A performed the test in their camp site in Mina, while Group B performed the test in Al-Haram with a real crowd situation close to the congested entrances. Users were given a user profile questionnaire in their camp site to determine their familiarity with mobile applications and Hajj information and their preferred language (Arabic or English). A consent form that illustrates the general purpose of the study was signed by each user. As a form of device orientation, the user held the device and explored the application for a few minutes through the device to get used to it before starting the main test. 8.1 Testing Procedure The users were each handed a list of tasks along with the mobile phone. They were instructed to comment after each task was completed, while the researcher recorded observed user behavior and comments. After performing each task, participants were asked to rate the difficulty of the task they had just performed, and at the end of all tasks they were asked to answer the user satisfaction questionnaire Fig. 12. Using KAU as a simulated environment for MPA Very Difficult Task1 0 Task2 0 Task3 0 Task4 1 Task5 0 Task6 1 Task7 0 Difficult Normal Easy Very Easy total 0 4 5 12 21 0 6 5 10 21 1 3 7 10 21 1 1 7 11 21 1 4 8 8 21 1 0 8 11 21 0 2 5 14 21 Table 2. Frequency of ratings for Group A Very Difficult Task1 1 Task2 1 Task3 0 Task4 1 Task5 0 Task6 0 Task7 0 Difficult Normal Easy Very Easy Total 1 2 4 11 19 0 0 3 15 19 0 1 4 14 19 1 1 6 10 19 2 1 5 11 19 0 0 5 14 19 1 1 3 14 19 56 Original Article Difficult Normal Easy Very Easy total 0 4 5 12 21 0 6 5 10 21 1 3 7 10 21 1 1 7 11 21 1 4 8 8 21 1 0 0 2 8 5 11 14 J.21 Occu. Safety 21 & Health 9 : 47 - 60, 2012 Very Difficult Task1 1 Task2 1 Task3 0 Task4 1 Task5 0 Task6 0 Task7 0 Difficult Normal Easy Very Easy Total 1 2 4 11 19 0 0 3 15 19 0 1 4 14 19 1 1 6 10 19 2 1 5 11 19 0 0 5 14 19 1 1 3 14 19 Table 3. Frequency of ratings for Group B about the perceived ease of use of the prototype and provide their general opinions about using the MPA to guide them during Hajj navigation. One of the important instructions that were given to each participant before conducting the test was to talk out loud expected behaviors when receiving alerts from the simulated Hajj administration center. Finally, descriptive statistics were used, such as frequencies and percentages for comparisons. 8.2 Data Analysis A user rating for the difficulty of each task (Group A) is presented in Table 2. On average, 82% of users found the application either easy or very easy based on the average results of each task. In addition, the user rating for the difficulty of each task (Group B) is presented in Table 3. On average, 88% of users found the application either easy or very easy based on the average results of each task completed them with little confusion.. 8.3 User Satisfaction According to the user satisfaction results (Table 4), nearly all of the 21 participants in group A found the MPA prototype usage satisfactory (up to 4.66) from a 5-point scale. In addition, the user satisfaction results (Table 5), nearly all of the 19 participants in Group B found the MPA prototype usage fully satisfactory (up to 4.73) from a 5-point scale standard. Mean of 21 users User Satisfaction Item 4.48 In general, the interaction with the MPA was OK 4.81 The user prefers to use maps through MPA rather than paper maps . 4.57 4.67 4.81 4.66 In case the user loses his group or path, he/she prefers to use the MPA rather than asking someone . According to the experience of the user with the MPA, he/she would like to use the application during Hajj. The users are satisfied that the MPA could be helpful all year long for visitors to Makkah, not just during Hajj season. Average Table 4. Group A user satisfaction Mean of 19 users User Satisfaction Item 4.42 In general, the interaction with the MPA was ok. 4.84 The user prefers to use maps through MPA rather than paper maps . 4.68 4.84 4.89 4.73 In case the user loses his group or path, he/she prefers to use the MPA rather asking someone . According to the experience of the user with the MPA, he/she would like to use the application during Hajj. The users are satisfied that the MPA could be helpful all year long for visitors to Makkah, not just during Hajj season. Average Table 5 Group B user satisfaction 57 The Use of Mobile Technology Applications for Crisis Management During Hajj Although the test was successful and the attitudes were positive toward the prototype, there were obstacles, such as: • Due to the limitation time for testing and the congested environment of the test, users were given the application already downloaded and activated. Therefore, it was not possible to assess the ease of login of the application and the download procedure. • Some users encountered difficulty using the touch screen, which led to clicking objects more than once that may have caused a delay in the screen’s appearance. • Due to the testing environment, noise made discussion between the researcher and the users very difficult in some cases. 9. Conclusion The Hajj is probably the biggest religious economic and environmental phenomenon that occurs yearly that involves people from most countries of the world, young and old, rich and poor, highly educated and illiterate; a combination that makes the 6 day Hajj problematic for the pilgrims, local authorities and citizens of the city of Makkah. Very limited research has been conducted in this area and most of what has been researched has focused on city planning, construction and movement routes while ICT research has ignored the HAJJ. Tremendous amounts of time, effort, and money have been spent to promote the welfare, safety, and convenience of all pilgrims in Makkah by developing construction projects and guidelines for pilgrim mobility, all of which have alleviated some of the problems. Nevertheless, due to the mountainous landscape of Makkah, the growing number of pilgrims every year, and major main path rerouting caused by new projects that take years to complete, bottlenecks, congestions, and delays have increased. The rapid convergence of ubiquitous computing technology, ICTs, and LBS technologies, such as GISs, are increasing the possibility of a dramatic transformation in the way people perceive and move about the urban environment, as well as how they interact with each other in an urban space. AR systems are currently being developed that promise increased convenience, awareness, transparency, and access to information. In addition, social opportunities are being created that break 58 down traditional barriers by receiving and delivering services in any location and at any time, thereby creating knowledge citizens in cities. The new generation of mobile phones is equipped with sensors, cameras, and GPS capabilities. In addition, they have more processing power and larger screens that are capable of displaying images, maps, or videos, thereby optimizing Internet browsing for mobile use. Using LBS and AR technologies delivered via mobile phones will be a valuable, cost-effective, and real-time solution that will supply pilgrims with much-needed timely information and e-services. This will give them control over their own safety and mobility and provide them with a better Hajj experience. It will also reduce bottlenecks, overcrowding, stampedes, and even death. Most research on the use of LBS and AR investigates and discusses the problems of the obstruction of signals by buildings and moving objects, such as vehicles and trees, that disturb sensors and tracking. However, for the open outdoor landscape of most of the ritual sites of the Hajj, such obstacles should not be a problem. It is only during the visit to the holy mosque that buildings and mountains might disturb LBS mobile services. Despite the proposed and ongoing large-scale expansion construction projects, Makkah will always be one of the most complex urban systems. Further, the Hajj will remain one of the most complex religious and economic activities. The purpose of this research was to propose a mobile pilgrim assistant (i.e., the MPA) that required no physical construction of buildings and roadways, but utilized existing and emerging technologies that could be used immediately with the cooperation of the local authorities and mobile network providers through the use of devices that are already available to most pilgrims. The MPA represents a cost-effective, immediate, and efficient method of communication that should be the focus of local authorities, given that it targets pilgrims directly and increases their knowledge. It could provide pilgrims with real-time data and information to make informed decisions during difficult and challenging situations that could be life-threatening. The MPA was tested in Mina in a simulated crowd situation and Al-Haram in a real crowd situation during the Hajj season. Over 85% of the participants in the two groups pointed out that the MPA tasks were between easy and very easy to use in terms of the simple design instead of a GPS system, and on a scale from 1 to 5 the user satisfaction was 4.66 in Group A and 4.73 in Group B. So we note that the users in the real environment showed more encouragement and satisfaction than those in the simulated environment. Original Article J. Occu. Safety & Health 9 : 47 - 60, 2012 Kabbani, H., & Abdeen, Y. (2007). The city (notification, conception, and properties) study of urbanization grouping in Syria. Retrieved from http://www.t1t.net/ save.php?action=save&id=83 Finally, every year, the holy places become crowded with pilgrims during the Hajj season, so there is a high demand for using ICT for crowd management from the government, individuals, citizens, and pilgrims. The MPA can be a useful tool that can be used during Hajj that gives the pilgrims control in critical situations. Hopefully, the MPA will be fully exploited, implemented, and adapted by mobile service providers and local authorities to give pilgrims control over their own mobility experience and safety. Kim, T. (2008). Planning for knowledge cities in ubiquitous technology spaces: Opportunities and challenges. In T. Yigitcanlar, K. Velibeyoglu, & S. Baum (Eds.), Creative urban regions: Harnessing urban technologies to support knowledge city initiatives.. Information Science Reference, Hershey, PA, IGI Global. References Koshak, D. (2006). Developing a Web-based GIS for Hajj traffic plan. Journal of Urban Planning Research, 6(6). Abdulrazek, M. (2005). Electronic Hajj . Proceedings from the Fifth Conference of the Hajj Research. Retrieved from http://www.minshawi.com/other/abdalrazaq.htm Makkah Municipality (2010). Retrieved from http://www. holymakkah.gov.sa/ Martinez, A. (2006). Knowledge citizens: A competence profile. In F. J. Carrillo (Ed.), Knowledge cities: Approaches, experiments, and perspectives. New York: Elsevier Butterworth Heinemann. Abu-Anzeh, D., & Ledraa, D. (2007). Planning the knowledge city: Can it be an option for Riyadh? Retrieved from http://faculty.ksu.edu.sa/abuanzeh/My%20 Publications/ English%20Publications/Knowledge%20 City.pdf McGuire, J. (2005). Crowd management and evacuation modelling system. Proceedings of the Southwest Decisions Sciences Institute 2005. TX, USA. Retrieved from http://www.swdsi.org/swdsi05/Proceedings05/ paper_pdf/Crowd%20Management%20by%20J_ McGuirel%20(F4D2).pdf Abu-Rizaiza, P. (2005). Suggested solution to decrease jamming during rites of Hajj. Mecca, Umma AL Qura University. Al-Sharief, R. (2006). Measuring service quality in a religious pilgrimage context: An empirical study on Hajj management using Serqual. (Unpublished doctoral dissertation). University of Bradford, UK. Ministry of Hajj. (2010). Holy Sites. Retrieved From http:// www.hajinformation.com/ main/j.htm Mistry, P. (2010). Sixthsense: Integrating information with the real world. Retrieved from http://www.pranavmistry. com/projects/sixthsense/#PICTURES Algadhi, S. (2010). Designing for crowd safety at Jamarat and Tawaf . Proceedings from the Transport and Crowd Management Workshop 2010. Park Hyatt Resort, Jeddah, Saudi Arabia, Umm Al Qura University and Center of Research Excellence in Hajj and Omrah. Mulloni, A., Dünser, A., & Schmalstieg, D. (2010). Zooming interfaces for augmented reality browsers . In MobileHCI, Proceedings of the 12th international conference on Human computer interaction with mobile devices and services Lisbon, Portugal. ACM Azuma, R. (1997). A survey of augmented reality . In Presence: Teleoperators and Virtual Environments 6(4), pp 355-385. Mulloni, A., Wagner, D., & Schmalstieg, D. (2009). Indoor positioning and navigation with Camera Phones . In IEEE Pervasive Computing, 8(2), pp 22 - 31. Dvir, R. (2005). Knowledge city seen as a collage of human knowledge moments. In F. J. Carrillo (Ed.), Knowledge cities: Approaches, experiments, and perspectives (245 272) New York: Elsevier Butterworth Heinemann. O Hare, G., & O Grady, M. (2003). Gulliver s genie: A multi agent system for ubiquitous and intelligent content delivery. Computer Communications, 26(11), 1177 1187. Fang, L., LiXiaolei, L., & Fuling, B. (2007). Autonomic LBS based on context: Preview of IEEE wireless communications, networking and mobile computing, 2007. Proceedings form the WiCom 2007 International Conference. Washington DC, IEEE, Publisher. Ravi, N., Shankar, P., Frankel, A., Elgammal, A., & Lftode, L. (2005). Indoor localization using camera phones. 59 The Use of Mobile Technology Applications for Crisis Management During Hajj Proceedings of the 7th IEEE Workshop on Mobile Computing Systems and Applications. Washington, IEEE Vallino, J. (1998). Interactive augmented reality. (Unpublished doctoral dissertation). University of Rochester, Rochester, New York. Samirad, T. (2009). King Fahd s expansion of the Holy Mosques of Makkah and Madinah. Retrieved from http:// www.saudinf.com/main/b7.htm Wagner, D., & Schmalstieg, D. (2003). First steps towards handheld augmented reality . Proceedings of the 7th IEEE International Symposium on Wearable Computers. Washington DC: IEEE. Shehata, A., & Koshak, N. (2007). Using 3D GIS to assess environmental hazards in built environments (A case study: Mina) . Al-Azhar Engineering Journal, 2(2). Yigitcanlar, T., O Connor, K., & Westerman, C. (2008). The making of knowledge cities: Melbourne s knowledge based urban development experience . Cities, 25(2), 63 72. Steiniger, S., Neun, M., & Edwardes, A. (2006). Foundations of location-based services (Lesson 1). Retrieved from http://garr.dl.sourceforge.net/project/jump-pilot/w_ other_freegis_documents/articles/lbs_lecturenotes_ steinigeretal2006.pdf Zamzami, U., & Al-Nuaim, H. (2009). Design of a context aware user interface in mobile learning. (Unpublished master s thesis). King Abdulaziz University, Jeddah, Saudi Arabia. Stockbridge, L. & Mughal, L. (2007). Serco ExperienceLab Design Guidelines for Mobile phones. Retrieved from http://experiencelab.typepad.com/files/mobile-phone design-guidelines-jun-07.pdf 60 Original Article J. Occu. Safety & Health 9 : 61 - 64, 2012 Scientific Conference on Occupational Safety and Health (SCI-COSH) at NIOSH, in Kuala Lumpur, 13 and 14 December 2011 Safety Cultures: Japan, Malaysia And The World Ryoichi Horiguchi* First and foremost, I would like to express my humble gratitude to the organizing committee of this memorable conference. I am also grateful to all of you in the audience, who continuously strive to promote work safety and health everyday for allowing me to share my ideas about safety and health at work with you and exchanging with one another our knowledge and experiences on occupational safety and health. smoking currently kills five million people a year worldwide. However, there are not many people who would identify smoking as a negative factor for safe in the workplace. My second question is, therefore, to know whether workers should quit smoking in order to promote not only health but also safety in the workplace. To tell the truth, I was a smoker. More than a decade have passed since I quit smoking. So, this question does interest me personally as well. Introduction Now let us review safety cultures in terms of work environment in Japan, Malaysia and worldwide so as to build a platform of knowledge for the work safety at an international level. In September 2011 at the 19th World Congress on Safety and Health at Work in Istanbul, I met a Turkish prominent scholar and we exchanged our ideas on the topic of work safety. Turkey, as you well know, is one of the Muslimmajority countries and Muslims comprise 99% of the whole population. And I have heard that in Turkey, a fatalism based on its faith is so pervasive among people that Turkey has a lot of cases on injuries and deaths at the workplace. In such a fatalism, an accident would be accepted as a fate which their God has already decided, because of God being in control of everything. Smoking And Safety Cultures What is the relationship between the death toll in the workplace and the male tobacco smoking ratios? Let us examine the relationship in 96 countries so as to grasp the mainstream of the world. These 96 countries are not chosen by my individual preference but by the criterion without bias, that is, each is a country complete with the data necessary to this study, such as labour force population, death toll in the workplace, and so on. And all the data are obtained through the International Labour Organization (ILO) and the World Health Organization (WHO). It is true that Turkey has recorded six times as many deaths in the workplace as Japan. The question is to know to what extent their religious beliefs prevent them from promoting a positive safety culture and, what should they do in order to reduce injuries and deaths in the workplace? This question must also be of your concern, since Malaysia is a Muslimmajority country, of which 60% of your population are Muslims. And this is my concern as well, not because of my faith, but because of my academic interests. The first findings is as follows. According to my analysis, there is almost no correlation between the smoking prevalence and the fatal accidents, because the correlation coefficient is -0.05. *Ryoichi Horiguchi, Ph.D., Associate Professor of History at Kinki University, Japan, whose academic interests focus on the safety culture as well as on the history of safety campaign. Email: ryoichi.horiguchi@gmail.com Next, let us examine the case of female smoking ratios. In this case, the correlation coefficient shows -0.51, and this means a negative moderate correlation. However, this dose not mean that the more women smoke, the more the death toll happens in the workplace. Because correlation does not always mean that one thing causes the other. The second concern for me is the relationship between work safety and smoking. We know well that tobacco smoking is bad for one’s health. In fact, according to WHO, tobacco Let us take a case of Japan. This case is a good example showing that women’s smoking prevalence does not promote safety. Because the female smoking ratios have not almost 61 Safety Cultures: Japan, Malaysia And The World correlation coefficient is 0.59, and it means a positive moderate correlation. In this case, it is not 96 countries but 87 ones that we have analysed, because of the lack of data on GII. And in the relationship between GII and the death toll in 87 countries, the correlation coefficient is 0.79, which means a positive strong correlation. increased, while the death toll has decreased in the long term. As for the men’s smoking ratios, they have been gradually decreasing throughout this period. As we can see above, on one hand, it is not men’s smoking but rather women’s smoking that cause concern to the death toll in almost countries of the world. On the other hand, not women’s smoking but men’s smoking that is the cause of such concern in Japan. It seems that smoking is inconsistent with work safety. How should we explain synthetically this contradictory situation? In proportion to death toll mitigation, women smokers are increasing in the world, whereas men smokers have decreased in Japan. How can we understand such a situation? Is it true to say that Japan is inscrutable? From the findings mentioned above, it is concluded that this study reveals that not only the tobacco-free workplace but also the gender equality coexists with safety in the workplace. Religions And Safety Cultures A common point to both of the cases is the equalization of smoking ratios between men and women. The less the difference between the two ratios, the safer the workplace becomes. Let us verify this assumption. Finally, let us refer to the topic of religions. Religion is one of the social factors which would rule strongly human behaviours. Work safety is subjected to the safety culture of the community to which they belong. For this reason, religious beliefs have something to do with the safety culture at the workplace. Because a fatalism is not practiced only by Muslim but more or less by people of other religions. For example, a kind of fatalism is found as Karma in Buddhism, Hinduism and so on, and is embodied as Divine predestination in Christianity. Gender Equality And Safety Culture To calculate respectively the correlation coefficients of the two cases on the gender difference, we have the following results: This table below shows the average of the death toll by religion in 94 countries, China and South Korea excepted, because theses countries do not predominant religion. And we have 11.4 deaths per 100,000 persons for Christianity (63 countries), 13.1 for Jewish (Israel), 14.1 for Hinduism (India and Mauritius), 15.2 for Islam (20 countries) and 17.6 for Buddhism (8 countries). Japan is included in Buddhism. 0.53 of the correlation coefficient in 96 countries (including Japan) in 2006; 0.72 of the correlation coefficient in Japan between 1965 and 2009. Hence, whether in Japan or worldwide, we can say that there are fewer deaths in the workplace where women smoke on more equal terms with men. This does not mean that a larger number of women are recommended to smoke. If so, what on earth does this mean? Religions Christianity Jewish Hinduism Islam Buddhism To reveal the answer first of all, it is to say that the gender equality in the workplace coincides with safe work. To make sure of this fact, let us see the relationship between the Gender Inequality Index (GII) and the gender disparity in smoking. GII stands for an index, which is produced by the United Nations, showing the loss in human development due to inequality between men and women. Death Toll per 100,000 person 11.4 13.1 14.1 15.2 17.6 If we identify social factors which have a great influence on the safety culture, we must say that it is, above all, the gender equality as well as GNP. The other factors such as religion is secondary. But important as well. According to the relationship between GII and the gender disparity in smoking prevalence in 87 countries, the 62 Original Article J. Occu. Safety & Health 9 : 61 - 64, 2012 Conclusion References (selected): As a conclusion, this study reveals that the gender equality have much more to do with safety in the workplace than the religious beliefs do. It has to be stressed that we can keep our own beliefs but must change our gender relationship for better safety at work, because the work safety is in harmony with the equality between men and women. And, in addition, we presume that the work safety can be realized not only through gender equality but also in all kinds of relationships, domestic or international. This includes equality in factors such as race, ethnicity, culture, labour, age, income, status and so on. In other words, we aim to live in an open society where everyone is welcome, which means an equal society which enable to promote safety in the workplace. Horiguchi, R. (2011). Birth of Safety First: Social History of Safety Campaign. Tokyo: Fuji Shuppan. [in Japanese, forthcoming publication] ILO. (2005). Introductory Report: Decent Work-Safe Work. Geneva: International Labour Office. WHO. (2009). WHO Report on the Global Tobacco Epidemic, 2009: Implementing Smoke-free Environments, Geneva: WHO Press. 63 This page has been intentionally left blank References: All references must be formatted in accordance with the Publication Manual of the American Psychological Association (APA), Fifth Edition. For example: Journal Articles: Smith, A.B., Adam, K.D., & Jones, L.J. (1992). The hazards of living in a volcano. Journal of Safety Research, 23(1), 81-94. Book: Perez, A.K., Little, T.H., & Brown, Y.J. (1999). Safety in numbers. Itasca, IL: National Safety Council. On-Line Publication: National Institute of Occupational Safety and Health. Sick Building Syndrome. www.niosh.com.my/ safetytips.asp?safetyid=1 (accessed October 2004) Government Publication: Ministry of Health Malaysia & Academy of Medicine Malaysia (2003). Clinical Practise Guidelines on Management of Obesity 2003. Tables and Figures: Tables and figures should be on separate sheets from the text, in accordance with APA style, numbered consecutively and given a short but explicit title. Title for table should be above table. Title for figures should be below figure, Figures must be supplied as glossy photographs or professionally or electronically drawn artwork using heavy white paper and black ink. A notation should be made in the text showing approximately where each table or figure should appear (e.g., Insert Table 3 here). When referring to a particular table or figure in the text always use its number. All tables will be re-set in the production process. All figures will be scanned from the original. Computer Disks: If you send a computer disk with your submission, please label it with the author(s) name(s) and manuscript title. Disks will not be returned. Only Microsoft Word format is accepted. Offprints: Authors will receive 1 complimentary journal. Subscription Information Journal of Occupational Safety and Health (ISSN 1675-5456) is published bi-annually by Communication, Business and Information Dissemination Division, NIOSH, Malaysia. Subscription is free and subscription form can be download at www.niosh.com.my. Any enquiries. please contact Roslina 603-8911 3879 or email: journal@niosh.com.my Secretariat Address National Institute of Occupational Safety and Health Lot 1, Jalan 15/1, Section 15, 43650 Bandar Baru Bangi Selangor Darul Ehsan, Malaysia Tel.: 603-8911 3879 Fax.: 603-8926 5655 Email: journal@niosh.com.my Website: www.niosh.com.my KDN No.: PP13199/12/2012(032005) Printed By Visual Press Sdn Bhd No. 11-3, 2nd Floor, Jalan SP 2/4, Serdang Perdana, Section 2, 43300 Seri Kembangan Tel. (603) 8941 2313 Fax. (603) 8943 0313 Email:kreatif@visualpress.com.my