Clean Economy, Living Planet

Transcription

Clean Economy, Living Planet
for a living planet
®
Clean
Economy,
Living Planet
Building the Dutch
clean energy
technology
industry
This report was commissioned by:
WWF-Netherlands (Wereld Natuur Fonds)
PO Box 7
3700 AA Zeist
This report was prepared by:
Roland Berger Strategy Consultants
World Trade Center
Strawinskylaan 581
1077 XX Amsterdam
The Netherlands
Authors:
Ward van den Berg – Senior Research Associate
Arnoud van der Slot – Partner
Editor:
Donald Pols
Programme Leader Climate Programme
dpols@wwf.nl
© Copyright:
Disclaimer:
Wereld Natuur Fonds, November 2009
While every effort has been made to ensure that this document and the
sources of information used here are free of error, we are not responsible or
liable for the accuracy, currency and reliability of any information provided in
this publication.
1
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
Clean Economy, Living Planet
Building the Dutch Clean Energy Technology Industry
2
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
Executive Summary
This report investigates the potential and challenges for a strong Dutch Clean
Energy Technology industry with a focus on renewable energy and energy
saving products, processes and technologies. For the first time countries are
ranked by their Clean Energy Technology sales. To enable this comparison we
have made an inventory of Clean Energy Technology companies in the Netherlands. On the basis of lessons from leading countries, an analysis of the situation in the Netherlands and interviews with experts we make recommendations for building a strong Clean Energy Technology industry in the Netherlands
and quantify the potential contribution of this sector to CO2 reduction, jobs
and future sales. The study has been overseen by an expert group consisting
of representatives of Rabobank, Energy Research Centre of the Netherlands
(ECN), Delft University of Technology, FME-CWM (technological-industrial
sector association) and WWF – NL.
The market for Clean Energy Technology (CET) is booming and was larger than the
pharmaceutical industry in 2007. By 2020, at EUR 1,600 bn, it will be the third
industrial sector in the world.
The worldwide market for Clean Energy Technology is growing fast. Between
2000 and 2008 wind energy grew by 24% a year, biodiesel by 31% and solar
by 53%. With a total volume of EUR 630 bn a year in 2007 the Clean Energy
Technology market is already larger than the global pharmaceutical industry.
Sales from energy efficiency products totaled EUR 540 bn and renewable
energy technologies contributed EUR 91 bn. Despite the crisis growth is expected to continue at an annual rate of 5% for efficiency and 15% for
renewables (in a scenario where CO2-emissions are reduced by 80% in 2050).
This will result in a total market volume of EUR 1,600 bn in 2020, making it
one of the largest industries in the world.
WWF-NL ranked countries by Clean Energy Technology sales for the first time. The
Netherlands is lagging behind in 17th place.
If you look at relative income from sales (weighted by GDP), Denmark, Brazil
and Germany rank highest. The Netherlands is at position 17.
The Danes are global market leaders in wind turbines and insulation and
number one overall. Brazil is number two because of its large scale production
of bio-ethanol. Germany has a long tradition in building machinery and equipment that made a good basis for its clean technology industry. Germany excels
in several technologies, particularly in wind- and solar energy.
The Netherlands has a top 10 position only in insulation and solar energy.
3
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
The Netherlands are missing out for three reasons:
1) Subsidies do not contribute sufficiently to a stronger economic position
The Dutch government invests relatively high amounts in research and
development, but this does not result in higher international sales. The most
important reason for this is that individual technologies are not supported
consistently over the product life cycle. For example: solar energy receives a
considerable amount of R&D support, but a lot less support in the demonstration and market development phase.
Another reason is that innovation in knowledge centers is not well connected
to commercial companies. Furthermore, Clean Energy technologies hardly
play a role in public private partnerships.
2) There is not enough capital, especially in the seed phase
In the Netherlands there is a shortage of capita for Clean Energy Technology. In 2008 investments in clean technology decreased substantially in the
Netherlands, by 34%. Meanwhile, in the rest of Europe they increased by
55%. In the seed phase especially, the Netherlands are far below the European
average. Furthermore, Dutch Banks invest much more in fossil energy than in
clean energy (<6%).
3) The Dutch home market for Clean Energy Technology is underdeveloped
A well developed home market is a precondition for the development of Clean
Energy Technology companies. It enables the experience and reference
projects that businesses need to compete internationally. There is a clear
correlation between a high share of wind energy in total electricity demand
and international sales from wind energy products.
The Netherlands has the potential as well as the responsibility to reach a global
top 10 position in the clean tech market.
Dutch CO2 emissions per capita are among the highest in the world
(seventh place). The Netherlands emits three times the global average. This
contrasts sharply with its 17th position in the Clean Energy Technology
country rankings.
However, the Netherlands has the knowledge (third place in basic science),
wealth (sixth economy in GDP per capita) and capacity (> 260 companies
active in Clean Energy Technology) to be a leader in the world market for
4
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
Clean Energy Technology. We already rank 7th in solar PV and insulation and
11th in wind energy. That is a strong base to build on.
A top-10 position in 2015 will bring large benefits:, 8,000 extra jobs, EUR 1.6 bn in
additional sales, and 130 Mton less CO2.
WWF-NL believes the Netherlands should strive for at least a top-10 position
in 2015. This would lead to a reduction in CO2–emissions, both in the Netherlands and in the countries where Dutch products, processes and technologies
are applied, of at least 130 Mton (more than six times the current Dutch
Kyoto target of 20 Mton). Realizing a top-10 position would also lead to 8000
additional jobs and almost double employment in the Dutch Clean Energy
Technology sector to 17,000 FTEs. Dutch sales will increase with EUR 1,6 bn
to EUR 2,5 bn.
5
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
Contents
1
The urgency of Clean Energy Technology
8
1.1 CO2 emissions must be reduced to limit global warming to 2°C and limit the harmful
and irreversible impacts on ecosytems.
9
1.2 Clean Energy Technology reduces CO2 emissions by increasing energy efficiency and
enabling alternative sources like solar, wind and biomass
10
2
Clean Energy Technology and the position of the Netherlands
11
2.1 Clean Energy Technology is a growth market that is expected to reach
EUR 1.6 trillion by 2020 and thus an attractive business opportunity
11
2.2 The Netherlands ranks 17th in overall, GDP-weighted Clean Energy Technology
sales and achieves a top-10 position only in insulation
13
3
The potential for Clean Energy Technology in the Netherlands
18
3.1 The Netherlands has an excellent knowledge base but fails to turn it into practical
Clean Energy Technology solutions delivered on a commercial scale
18
3.2 The Netherlands has the capital and CO2 emissions responsibility to contribute
more to Clean Energy Technology
19
3.3 The Netherlands is home to more than 260 companies active in a broad range
of Clean Energy technologies
20
4
Lessons from leading Clean Energy Technology countries
23
4.1 The leaders Denmark, Brazil, Germany and Spain achieve success through early
and consistent government support, high investment and a strong home market
23
4.2 Dutch government spending on Clean Energy Technology R&D is relatively high but
the same technologies are not consistently supported throughout the entire
innovation cycle
25
4.3 Capital for Clean Energy Technology ventures in the Netherlands is scarce,
especially in the seed phase
27
4.4 The Dutch home market is underdeveloped, with a low share of renewable energy
sources in the primary supply and modest energy efficiency gains in recent years
29
6
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
5
Towards the worldwide top-10
30
5.1 The Netherlands should aspire to a top-10 position in 2015 and the 15% annual
growth needed to achieve it
31
5.2 A top-10 position will reduce CO2 emissions by 130 Mton in 2015 and add
8,000 jobs and EUR 1.6 billion in sales to the Dutch economy 31
5.3 After a careful selection process, WWF NL has identified six companies that could
lead the industry’s growth, and has nominated these for the WWF Cleantech Star
31
5.4 The six nominees demonstrate that a top-10 ambition is realistic. Such companies
will take the Dutch Clean Energy Technology industry a long way towards achieving
that ambition
33
6
Epilogue
35
Appendix 1Sources
36
Appendix 2Expert group and jury
42
Appendix 3Profiles of WWF Cleantech Star nominees
43
7
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
0 Preface
In this report the World Wild Fund for Nature Netherlands (WWF NL) investigates the
rationale, potential and challenges of building a strong Dutch industry in Clean Energy
Technology and recommends three courses of action. WWF NL turns to Clean Energy
Technology because energy efficiency and renewables are the most important options to
reduce energy related CO2 emissions and prevent serious impacts of climate change.
Recent studies indicate that an average global warming of 2°C will result in dangerous
and irreversible effects to humans and nature, which rapidly worsen above 2°C warming.
Ecosystems cannot adapt any longer and more than 30% of species may disappear. WWF
NL wants to see fast and large-scale application of solutions that reduce CO2 emissions. This
report finds that this is best achieved by stimulating Clean Energy Technology business,
and goes on to examine what is happening in the Netherlands today, how that compares to
other countries and what should be done to build a strong Dutch Clean Energy Technology
industry.
This report is structured in five chapters and an epilogue. The first chapter explains the
threat of global warming and the potential contribution of Clean Energy Technology to
reducing CO2 emissions. It also defines Clean Energy Technology for the purposes of this
report. Chapter 2 looks at past and expected market growth based on two scenarios and
ranks the Netherlands against other countries by (GDP-weighted) Clean Energy Technology
sales. Chapter 3 is devoted to the potential of Clean Energy Technology in the Netherlands
and assesses its knowledge position and current economic activity. In chapter 4 we analyze
the success of the leading countries (Denmark, Brazil, Germany and Spain) and identify
where the Netherlands can improve to build a strong domestic Clean Energy Technology
industry. Chapter 5 quantifies the impact that a top-10 ambition will have on CO2 emissions
reduction, jobs and sales. It also presents the six WWF Cleantech Star nominees that could
lead the way. The epilogue briefly summarizes the main findings.
For its data and insights, the report draws on many sources. A complete list can be found in
appendix 1. Appendix 2 introduces the expert group that supervised the report and the jury
that selected the WWF Cleantech Star nominees and winner. Finally, appendix 3 contains
the visions of the nominees themselves.
November 2009,
World Wide Fund for Nature – The Netherlands
8
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
1 The urgency of Clean Energy Technology
Clean Energy Technology is essential to limiting global warming and protecting
ecosystems by reducing CO2 emissions through energy efficiency and renewable
energy
Climate change comes at a cost to both our economy and our environment. As
temperatures rise agricultural output will fall, damage from floods and storms
will increase, (tropical) diseases will become more prevalent and access to water will become more of a problem for more people. The cost of inaction has
been estimated between U-SD 20 and 26 trillion in 2100. The Stern report
commissioned by the British government put the cost at a 5 to 20% reduction
in GDP. But that is just the financial aspect. The cost to our environment is
greater and irreversible. The Earth’s flora and fauna will suffer both directly
from higher temperatures and indirectly through the damage to their habitats.
Ecosystems will disappear. Even small temperature increases will cause coral
bleaching and threaten some amphibians (see figure 1). Temperature rises of
3° or 4°C and more will lead to major extinctions around the globe.
Figure
1 – The of
impact
of rising
temperatures
(examples)
Examples
impact
of higher
temperatures
WATER
0.4 to 1.7 bn
1.0 to 2.0 bn
More than 30 % species at
increasingly high risk of extinction
Increasing amphibian
extinction
ECOSYTEMS
Increased coral
bleaching
Most corals
bleached
Major extinction
around the globe
Wide spread coral mortality
low altitudes
Decreases for some cereals
Increase for some cereals
high altitudes
Crop
productivity
FOOD
additional people
with increased water
stress
1.1 to 3.2 bn
All cereals decrease
Decrease in some regions
Increased damage from floods and storms
COAST
Addition people at risk of
coastal flooding at year
0 to 3 m
Changed distribution of
some disease vectors
HEALTH
2 to 15 m
Substantial burden on
health services
Increased burden from malnutrition and diarrheal , cardio respiratory and infectious disease
0
1
2
Source: WWF NL, UN Intergovernmental Panel on Climate Change
1
Average annual costs, based on Kemfert 2005, Watkiss, 2005 and Ackermann, 2006
3
4
5C
9
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
1.1CO2 emissions must be reduced to limit global warming to 2°C and limit
the harmful and irreversible impacts on ecosytems.
In 2009, G8 leaders agreed to CO2 emission cuts that would limit global
warming to 2°C above pre-industrial levels. Any rise above that level risks the
extinction of more than 30% of the Earth’s wildlife. Global warming’s threat
to the natural habitats of at least 2,500 species has placed these species on the
“red list”.2 Examples include polar bears on melting ice caps, tigers competing
with men for food and orang utans finding less and less fruit due to shifting
rain patterns. If we assume no new government policies beyond those already
adopted by mid-2008, the International Energy Agency (IEA) has calculated
that global primary energy demand will expand by 45% percent between 2006
and 2030, putting us on a path towards a 6°C rise in global temperatures.
To limit global warming to 2°C, the IEA proposes a “450 Policy scenario” that
aims to stabilize the amount of CO2-eq in the atmosphere at 450 ppm (parts per
million), which requires at most 26.4 Gigatons of CO2 emissions by 2030. 3
Figure 2 – World energy-related CO2 emissions abatement and 2008
investments required [Gt, USD bn]
42
40
Reference scenario
38
36
End-use energy
efficiency
34
Power plants
energy efficiency
32
Renewables
30
Biofuels
Nuclear
28
450 scenario
26
2007 2010
2015
2020
2025
CCS
2030
Source: IEA 2009
Figure 2 shows that energy efficiency and renewables are the most important
options to achieve the 450 scenario. It should be noted that even in the 450
policy scenario there is a 50% probability that temperature increases will
exceed 2°C. More needs to be done.4 However, it is encouraging that in July
2009, in L’Aquila, G8 leaders committed themselves to the 2°C ceiling and to
working towards an 80% reduction in their CO2 emissions by 2050. However,
there is no agreement yet on the financial support of developing countries’
climate policy. 5
Based on database retrieval from the International Union of Conservation of Nature’s red list
From IEA World Energy Outlook 2009 excerpts
4
The 450 Policy scenario calls for significant mitigation measures to be taken immediately, achieving peak emissions as soon as possible (but no later than 2015)
and reducing them by at least 3% annually thereafter. However, if we want to avoid additional irreversible consequences and (ecological and economic) costs, we
need to cap emissions at 400 ppm CO2-eq or even reduce levels to 350 ppm CO2-eq (from today’s estimated 396 ppm CO2-eq).
5
NRC Handelsblad
2
3
10
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
1.2 Clean Energy Technology reduces CO2 emissions by increasing energy
efficiency and enabling alternative sources like solar, wind and
biomass
It is not energy use per se that causes global warming. It is the emission of
CO2 that results from burning fossil fuels to generate energy. Solutions should
therefore be sought not only in reducing primary energy demand but in
alternative sources that do not emit CO2. In the 450 Policy scenario energy
efficiency must result in a 16% reduction in total energy use relative to the
reference scenario and renewable energy supply must increase by 42% – both
by 2030 (see figure 3). Clean Energy Technology enables both.
Energy efficiency is the most cost-effective way to reduce CO2 emissions.
Simply put, using less energy not only saves fossil fuel but money. Thus the
investments needed are offset by lower energy bills that result from lesser
volumes and lower prices (due to falling demand). Clean Energy Technology
contributes to energy efficiency by enabling, for example, low-energy lighting,
better insulation and more effective energy storage.
Solar, wind and biomass sources do not cause CO2 emissions. Solar and wind
can be used to generate heat and electricity, and biomass has the additional
advantage that it contains molecules that can be converted to liquid form to
replace fossil-based transport fuels. Clean Energy Technology enables these
solutions by developing solar cells and wind turbines, electric cars and
biofuels.
Clean Energy Technology therefore is defined as those technologies that contribute directly to reducing CO2 emissions. There are other technologies that are
equally necessary and valuable, such as the recycling of fossil-based materials,
material efficiency and carbon capture and storage. These, however, affect CO2
emissions only indirectly or in the case of CCS, only present a solution after
CO2 has been created (end of pipe).
Clean Energy Technologies, thus defined, are urgently needed to cut CO2
emissions, limit global warming and protect crucial ecosystems. The market is
responding. The next chapter analyzes the size and growth of Clean Energy
Technology markets and the position of the Netherlands therein.
11
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
2 Clean Energy Technology and the position of
the Netherlands
The market is responding to climate change by developing Clean Energy
Technologies but the Netherlands has yet to contribute.
In the 450 policy scenario, energy efficiency and renewable energy solutions
must be applied on a large scale. Clearly that implies significant business
opportunities for any technology that enables these solutions. Clean Energy
Technology is set to become the next economic boom, similar to the internet
in the 1990s. This chapter analyzes that market, its expected growth and the
relative position of the Netherlands compared to other countries.
2.1 Clean Energy Technology is a growth market that is expected to reach
EUR 1.6 trillion by 2020 and thus an attractive business opportunity
Clean Energy Technology is already a large and growing market today. With
total sales of EUR 630 billion in 2007, it is bigger than the global pharmaceutical industry. The Clean Energy Technology market consists of two segments.
Energy efficiency sales in 2007 totaled EUR 540 billion, renewable energy
added EUR 90 billion (see figure 3). By 2020, Clean Energy Technology will
be one of the world’s main industries. In a business-as-usual scenario, the
energy efficiency and renewable energy segments will grow by 2.5% and 9%
per year to EUR 790 billion and 275 billion respectively in 2020. This is not
surprising. Between 2000 and 2008, worldwide annual growth averaged 24%
for wind energy (from 4 to 27 GW annual installed capacity), 53% for solar
(0.3 to 5.6 GW annual installed capacity), 31% for biodiesel (2 to 11 Mton
output) and 29% for energy-saving light bulbs (from 528 million to 2.4 billion
units sold).6
Figure 3 Market development energy efficiency and renewable energy
Global renewable energy2)
Global energy efficiency1)
market [EUR bn] grows by 5 % market [EUR bn] grows by 15 %
Global market volume
2007 [EUR bn]
+5% p.a.
1,025
+15% p.a.
2007
2010
2020
2007
2010
Electr. industry
2,400
Automotive
2,000
CET in 2020
1,600
Engineering
1,350
CET in 2007
630
Pharmaceutical
520
2020
1) Energy efficiency includes insulation, electric engines, heating and cooling, household appliances and measurement and steering equipment
2) Renewable energy includes wind , solar , geothermal energy, hydropower, solar heating, biogas installations
2007-2020 [EUR bn]
Source: GreenTech made in Germany 2.0, Roland Berger Strategy Consultants
6
Based on figures from GWEC, EPIA, Emerging Markets and World Watch Institute,
energy-saving light bulbs includes figures from 2000 to 2006.
12
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
In the 450 policy scenario, average annual growth is expected to be even
higher: 5% for energy efficiency and 15% for renewable energy.7 That will
result in a EUR 1,600 billion total market for Clean Energy Technology in
2020, making it one of the world’s biggest industries after automotive and
electronics. Government targets will drive this market. The EU objectives of
20% renewable energy supply in 2020 alone translate into an annual additional market demand for more than 47 Gtoe in 2020, which shows an annual
growth of 27% between 2012 and 2020. The US has no targets at the federal
level, but 19 states have set targets for energy efficiency and 29 for renewable
energy (of which 17 aim for 20% or more). China wants to see a 15% share of
renewable sources in primary energy demand by 2020, but already has plans
to increase it to 20 % and has included a reduction in energy consumption
per unit GDP of20% per 2010.8
The financial and economic crisis
will have limited impact on forecasted growth. (Private) investments may be delayed, but most
public stimulus packages contain
(incentives for) sustainable investments. Wind is one example
(see box insert). In short, we can
expect robust growth in demand
for Clean Energy Technology
and attractive business opportunities for companies that can
make it work.
The bottleneck to the large-scale
application of Clean Energy
Technology will clearly not be
a lack of demand. True, wind
parks will have to be built, solar
cells installed, houses insulated
and electronic and biodiesel
fueled cars bought – all in large
volumes.
BOX:
Pre­
and
post­crisis
forecasts
for
wind
energy
Before
the
crisis,
wind
energy
was
expected
to
add
17%
of
capacity
(in
gigawatts)
each
year
between
2008
and
2012.
In
2009
this
growth
is
now
expected
to
slow
to
about
10‐
11%
,
due
to
financing
conditions
(15‐30%
equity
now
required),
low
oil
prices
(less
urgency,
longer
paybacks)
and
general
economic
uncertainty.
However,
this
will
pick
up.
In
2012,
worldwide
capacity
is
still
expected
to
reach
50
GW
(see
graph).
Both
incidental
and
structural
drivers
remain.
Wind
is
especially
supported
in
most
economic
stimulus
packages,
growth
will
be
strong
in
countries
less
dependent
on
financial
markets
(most
notably
China),
governments
have
set
ambitious
targets
in
the
US,
Europe,
China
and
India,
and
Europe’s
Emissions
Trading
Scheme
(ETS)
carries
cost
penalties
for
fossil
energies.
The business cases for such investments depend in part on macro-trends such
as energy security (becoming less dependent
on oil and gas from unreliable or
politically undesirable sources), oil prices, CO2 pricing
schemes and consumer and electoral appetites for sustainable products and
policies. These level the playing field between Clean Energy Technology and
7
8
BMU Greentech 2.0 and Roland Berger analysis
Based on Laura Fulley, American Council for an Energy-Efficient Economy, Directive 2009/28/EC of the European Parliament
and of the Council and The Guardian (2009), Martinot (2007)
13
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
fossil-based alternatives. However, these macro-trends are hard to influence
and already increasingly favor cleaner solutions.
The challenges are more on the supply side. To reach the targets, new technologies must be developed, technologies that exist today in the lab must
be made to work and demonstrated under real-life conditions, and working
applications must be made cost-competitive with existing alternatives. In
other words, Clean Energy Technology businesses are needed to develop and
deliver turbines, solar cells, cars, batteries, insulation materials and low-energy
products – to name but a few examples. If and when Clean Energy Technologies become commercially available, they will be used. Contrary to the
macro-trends that impact demand, the development of this supply side can be
influenced. That makes stimulating these businesses, encouraging start-ups
and helping ventures develop and grow, the best lever for accelerating the
large-scale application of Clean Energy Technology.
2.2The Netherlands ranks 17th in overall, GDP-weighted Clean Energy
Technology sales and achieves a top-10 position only in solar and
insulation
The need and potential for Clean Energy Technology, both ecological and
economic, have clearly been established. Unfortunately, the Netherlands does
not seem to be succeeding in capturing (and contributing) its fair share.
A ranking of countries’ sales in Clean Energy Technology does not exist
anywhere. Yet there is no better way to assess both the technical and commercial viability of a country’s technologies and their success in finding large-scale
application. If Clean Energy Technology products and services are actually supplied to and bought by customers, those customers must find them both useful
and valuable. In this report we have therefore compiled the first such ranking.
It includes the 27 EU member states and all G7 and BRIC countries and the
major renewable energy and energy efficiency segments (see appendix 1 for
a full list of countries and segments analyzed). Renewable energy consists of
five major technologies to create heat, electricity and transportation fuels. The
energy efficiency technologies are those that are only dedicated to increasing
efficiency or replacing less efficient technologies. For example, insulation is
only used to retain heat or cold in buildings. Heat pumps replace the older
central-heating boilers. We have not included products in which incremental
advances have or can be made, such as household appliances. Although the
contribution of such products can be high, they are not solely dedicated to
reducing CO2 emissions.
14
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
It is important to note that we have excluded hydro power in this ranking.
The environmental damage that hydro power and hydro dams may cause also
contributes to global warming. Also, hydro power has been used for more than
a century and so does not represent a new or innovative application of (Clean
Energy) technology. We acknowledge that this is an important industry sector
in countries like Austria, Germany, France and China.
Country market shares and overall volumes are listed by technology, with
each step in an individual technology’s value chain analyzed separately. For
example, in solar we look into silicon, cells and modules.
All segments sales are added to yield the world’s first aggregate country ranking by sales. A country’s position in the ranking reflects its ability to produce
and sell products and services that reduce CO2 emissions. High ranking countries also generate high economic value and employment for a skilled workforce. Many have strong domestic demand and so the spin-off employment to
install Clean Energy Technologies locally is also high. These so-called “green
collar jobs” are local, not threatened by outsourcing and available to relatively
low skilled workers.
A broad range of sources was used to obtain and validate the necessary data
(see appendix 1 for complete details):
•
•
•
•
Industry trade organizations – e.g. the Global Wind Energy Council, European Photovoltaic Industry Association, European Biodiesel Board;
Broker and industry reports – e.g. from Sarasin, HSBC, Douglas-Westwood, Frost & Sullivan, Global Data, Jefferies;
Company sources – e.g. annual reports, company websites, investor presentations, press releases;
Other sources – e.g. IEA working group documents, Eurostat, data and
insights available from expert group members (see appendix 2).
Based on this comprehensive study, figure 6 presents the first Global Clean
Energy Technology rankings by aggregate product sales over 2008 in absolute
(EUR billion) and relative terms (as a % of GDP). In absolute terms the Netherlands ranks 12th with sales of some EUR 900 million, its GDP-weighted
ranking is 17th.
15
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
Figure 4 Clean Energy Technology sales by country 2008 in absolute
and relative terms [EUR bn, % GDP]
Absolute global Clean Energy Technology product sales 2008 [EUR bn]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
DE
US
JP
CN
DK
BR
ES
FR
UK
KR
IN
NL
BE
AT
FI
TW
IT
TR
SE
IL
GR
IE
CA
AU
PL
NO
0
5
10
15
20
21
Relative global Clean Energy Technology product sales weighted by GDP 2008 [% EUR]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
DK
BR
DE
ES
FI
CN
AT
BE
KR
IL
JP
FR
IN
IE
TW
SK
NL
GR
US
UK
SE
TR
KG
HU
PL
NO
0
1
2
3
4
Denmark, Brazil and Germany top the GDP-weighted rankings. The Netherlands would have to increase its sales by a factor of four to challenge Germany
for third place. Denmark has been able to capture a large share of the global
wind market. Danish wind turbine manufacturer Vestas has a 20% market
share, but component manufacturers like LM Glasfiber and offshore installation contractors such as A2Sea have also made Denmark their home. In energy
efficiency, Danish Rockwool is a leader in global insulation markets.
16
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
Brazil owes its second place almost exclusively to the large-scale production
of bioethanol. Brazilian sugar cane provides its most efficient feedstock. The
switch to bioethanol domestically has also made Brazil much less dependent
on foreign oil.
Germany has a long tradition in building machinery and equipment and this is
the basis for its leading Clean Energy Technology industry. Germany excels in
a broad range of technologies. Repower, Siemens and Enercon have strong
positions in wind. Qcells is the world’s largest manufacturer of photovoltaic
solar cells. Knauf is a European leader in insulation. Next to biodiesel,
Germany is home to most of the world’s biogas installations.
Wind energy and biofuels are the most important markets in Clean Energy
Technology worldwide (with 29% and 27% of total sales respectively). The
rapid expansion of wind power capacity in Europe, the US and China in recent
years has created a 27 GW (capacity) market in 2008. The relatively low cost
of wind and biomass favors their use over solar (12% of the overall market).
The largest energy efficiency market is insulation with 13% of total Clean
Energy Technology sales in 2008. Figure 5 shows the position of the Netherlands in each of these four main segments. Only in insulation and PV solar do
the Netherlands achieve a top-10 position.
Figure 5 Dutch market position in major Clean Energy Technology
segments 2008 – weighted by GDP [%]
Wind turbines
0,00
1
2
3
4
5
DK
ES
DE
IN
BE
11
NL
Biofuels
0,01
0,02
0,03
0,00
World market segments
Biofuels
Wind
27%
29%
PV Solar
0,00
1
2
3
4
5
TW
NO
CN
DE
JP
7
NL
0,01
0,02
0,03
Solar
1
2
3
4
5
BR
DE
US
AT
FR
16
NL
0,01
0,02
0,03
0,01
0,02
0,03
Insulation
0,00
13%
12%
20%
Other
Insulation
1
2
3
4
5
DK
FI
IE
FR
UK
7
NL
In wind, three of the four leaders (Denmark, Spain and Germany) hold sway;
the fourth (Brazil) leads the field in biofuels (followed by Germany).
Many lower ranked countries, however, show up in the top-5 in individual
segments. Belgium owes its top-10 position overall to its strong position in
wind (#5). Hansen transmission employs more than 1,300 people in Belgium.
17
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
The US is 19th overall, but third in biofuels thanks to its extensive, mainly first
generation ethanol production in the Midwest. The UK (20th overall) has a
strong domestic insulation market with the company Kingspan, which takes
it into the fifth position in that segment, behind France (8th overall), Ireland
(14th), Finland (5th) and the leader Denmark. In PV solar, the ranks are led
by Taiwan (15th overall) and Norway (26th overall). Norway is a dominant
supplier of silicon for solar cells; Taiwan has become the major producer of PV
solar cells.
The Netherlands has no leading positions in any of the major segments. It has
a few start-up companies in wind energy that are mainly focusing on developing prototypes for offshore wind turbines. The few suppliers to this industry
are smaller still. A new initiative (FLOW, Far and Large Offshore Wind) may
give these companies, like Darwind and 2-B Energy a much needed boost after
earlier initiatives were denied the necessary permits. Offshore wind is yet to
grow into a substantial industry and the Netherlands could still emerge as a
major player.
In biomass, the Netherlands still plays a modest role – despite the Port of
Rotterdam that is a major point of entry for biomass into Europe and a strong
petrochemical cluster that could pioneer biobased chemicals and materials.
Although biomass co-firing in power plants is relatively common, the equipment can also be used to burn coal and is mostly supplied by foreign manufacturers. Biodiesel production is limited (certainly compared to the large fossil
fuel refinery capacity in Pernis). Plans to increase capacity fivefold are yet to
be realized. (First generation) biofuels have not found favor with government,
although the biobased economy is now becoming a policy priority. For a gas
country, biogas installations are few. In insulation, the Netherlands does have a
strong company in Synbra.
It would seem, therefore, that the Netherlands neither profits nor contributes
as much as it should. Of the countries included in our ranking, the Netherlands is the 14th economy by GDP. In GDP per capita it even ranks sixth. It
is an open, trading nation with a long tradition of science, (civil) engineering,
even wind mills. Surely, then, the Netherlands could do much better. The next
chapter examines the potential for Clean Energy Technology in the
Netherlands.
18
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
3The potential for Clean Energy Technology in
the Netherlands
The Netherlands has the knowledge, capital, responsibility and (emerging)
industry to play a much larger role in Clean Energy Technology
The Netherlands may play a relatively minor role in this growing and attractive industry, but it has the potential to do much better. The Clean Energy
Technology industry, for the most part, is relatively young. Countries that
have the knowledge, capital, ambition and entrepreneurial drive can catch up
quickly. This chapter examines the potential for Clean Energy Technology in
the Netherlands.
3.1 The Netherlands has an excellent knowledge base but fails to turn it into
practical Clean Energy Technology solutions delivered on a commercial
scale
The Netherlands historically has a strong tradition of R&D in areas related to
Clean Energy Technology. Only five countries in our ranking spent more on
renewable energy R&D in 2006 (latest available figures) and all but one rank
higher in generating sales.9 Whereas Dutch expenditures saw a steady decline
this decade (from 0.03% in 2000 to 0.02% in 2006), Denmark has raised its
R&D investments almost sixfold since 2002. It is now first in our country
rankings. Finland, long and by far the biggest spender, ranks fifth. Korea and
Japan both outspend and outrank the Netherlands, too.
Until the early 2000s, however, the Netherlands was the second or third
largest spender on Clean Energy Technology related R&D. It has consistently
managed to turn these investments into world-class (academic) knowledge.
Citation scores for scientific disciplines related to Clean Energy Technology
place the Netherlands squarely in the global top-3 (see figure 6).
9
Based on the IEA energy R&D expenditures database
19
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
Figure 6 Publication productivity (OECD countries) and citation impact scores
by discipline (NL) 2003-2006
Publication productivity
Citation impact score of Dutch universities 2003-2006
1.5
1.3
1.2
1.1
1.0
0.9
1.66
Physics and material sciences
1.4
US
Denmark
Switzerland
1.53
Chemistry and chemcial technology
1.41
Electrotechnology
Canada The Netherlands
Mechanical engineering
Sweden
United Kingdom
Belgium Norway Ireland
Envirornmental sciences
Germany
Australia
Instruments and armamentarium
Austria
Finland France
Agricultural sciences
1.34
1.28
1.26
1.24
Average
Japan
0.8
South Korea
Biological sciences
1.21
General and production technology
1.20
Global average 1.00
# publication (2006) per EUR 1 m spent (2004)
Source: NOWT
What the Netherlands has not done, however, is turn this excellent knowledge
base into true innovations: practical applications delivered on a commercial
scale. Its low ranking in GDP-weighted Clean Energy Technology sales is
evidence of that. So is the relatively modest number of 2.7 patents per million
inhabitants when compared with Denmark’s whopping 20.3.10 The good
news, however, is that although the Netherlands needs to raise the (economic
and ecological) productivity of its knowledge, it does have a large and highquality knowledge base to leverage.
3.2 The Netherlands has the capital and CO2 emissions responsibility to contribute more to Clean Energy Technology
The Netherlands is the sixth economy in the world in per capita GDP: about
EUR 38,000 for each man, woman and child. However, half of the 15 largest
economies (per capita) top it in the country rankings. Indeed, three of the top4 in GDP-weighted Clean Energy Technology sales are not even among that
15, having a GDP per capita of less than EUR 32,000. Only Denmark at EUR
44,000 per capita has more wealth to spend on sustainability.11
But the Netherlands also has a larger responsibility than most. In CO2 emissions per capita it is seventh in the world with annual emissions of more
than 11 tons – roughly three times the global average.12 That may even be
understating it. A lot of CO2 produced in the Netherlands is actually emitted
(released) elsewhere. It is transported out of the Netherlands in the bunkers of
10
11
12
OECD Compendium of Patent Statistics 2008
GDP measured per head, US $, current prices, current exchange rates from OECD statistics
IEA/OECD CO2 emissions from fossil fuel combustion, 2009
20
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
international shipping, air freight and passenger flights. The high CO2 emissions are also related to our relatively large petrochemical industry. Clearly, the
Netherlands has the economic endowment and ecological duty to do more.
3.3 The Netherlands is home to more than 260 companies active in a broad
range of Clean Energy technologies
No comprehensive list of Clean Energy Technology companies in the Netherlands exists. There is no public register, Clean Energy Technology is not
recognized as a category in (government) statistics, start-up companies are
largely still below the radar and for many companies Clean Energy Technology
is only part of their business, often in an early stage of development and not
or not yet flagged as a focus for future growth. This chapter presents the first
overview of the Dutch Clean Energy Technology sector and its star performers, drawing on a broad range of sources:
•
•
•
•
•
Business associations – including Holland Solar, Stichting Platform
Bio-Energie and incubators such as Yes!Delft;
Newspapers and magazines – including Het Financieele Dagblad,
NRC Handelsblad, FEM Business and the Energiegids;
Market research reports – including reports by BTM, Global Data and
Frost & Sullivan;
WWF NL and its partners – including FME, ECN, the Universities of
Utrecht and Delft, Rabobank and Roland Berger Strategy Consultants;
Other sources – including company databases (e.g. REACH), government
reports and websites (e.g. SenterNovem, Energy transition platforms) and
the “Koplopersloket”.
Our first tally of Dutch Clean Energy Technology companies comes to 266.
These companies are active in a broad range of technologies (see figure 9).
Most focus on energy efficiency, mainly through heating, cooling and ventilation (19%), insulation (6%) and lighting (3%). About a quarter are biobased
(biomass, biofuels, biogas, algae, biorefinery) and 20% target renewable
sources solar and wind. E-mobility, at 6%, is also a significant category.
21
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
Figure 7 Dutch Clean Energy Technology Companies by type 2008 [#, 266]
Energy storage
Biogas
5%
Lighting
Solar thermal
3%
3%
Other
8%
1%
Biofuel companies
Biomass combustion
6%
9%
2%
2%
1%
CHP
Algae
Biorefinery
PV Solar 9%
19%
Wind energy
8%
Heating /Cooling / Ventilation
1%
3%
Ocean power 2%
4%
1%
6%
IT energy efficiency
6%
Measuring and steering equipment
2%
Insulation
E-mobility
Energy efficiency consultancy
Fuel cells
Efficient water pumps
Source: Roland Berger analysis
Of the sales included in the Clean Energy Technology ranking, half were in insulation through companies such as Synbra; 18% in photovoltaic solar through
companies that include Scheuten Solar and OTB Solar; 12% in biodiesel (e.g.
through BioValue and SunOil Biodiesel); and 9% in both biogas and wind.
There are a number of biogas installations at power plants and sewage installations and the offshore wind industry is served by many larger and smaller
companies that include turbine builders like Emergya Wind Technologies and
innovative SMEs like Ampelmann and 2-B Energy. Most have their operations in the provinces of Zuid-Holland and Noord-Brabant (over 40 companies
each), follow by Noord-Holland, Gelderland and Overijssel (20-40 each).
The knowledge and the seeds for a Dutch Clean Energy Technology industry
are clearly there. Many excellent and promising companies could form the
basis for a strong domestic industry. However, compared to international
competitors Dutch companies are still small. Almost half (46%) have annual
sales of less than EUR 2.5 million. Only about a third exceed the EUR 10
million mark and most of those are larger corporations, like Philips, where
Clean Energy Technology is only part of the portfolio.
22
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
In the leading countries, by contrast, (dedicated) Clean Energy Technology
companies are many times larger. For example, in wind energy a company like
EWT has total assets of EUR 18 million.13 Its Danish competitor Vestas has
295 times that (EUR 5308 million).14 PV solar company Solland has a production capacity of 170 MWp – less than a sixth of that of Qcells in Germany.15
The largest and operational Dutch biodiesel producer, Biovalue, has a capacity
of 80,000 tons.16 Foreign competitors have ten, twenty, thirty times that. Even
a leading (and multinational) insulation materials company like Synbra has
only 13% of the sales of Denmark’s Rockwool.17 The small size and embryonic nature of most Dutch companies is an important reason for the relatively
weak sales position of the Netherlands. The next chapter examines how the
Netherlands can learn from leading countries to build a strong domestic Clean
Energy Technology industry.
Chambers of Commerce register
Annual report 2008
15
Company websites
16
Company website
17
Rockwool Annual report 2008 and Chambers of Commerce register
13
14
23
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
4 Lessons from leading Clean Energy Technology
countries
The Netherlands should learn from leading countries Denmark, Brazil, Germany
and Spain that building a strong domestic Clean Energy Technology industry
requires early and consistent government support, high investment and a strong
home market
Building a strong Dutch Clean Energy Technology industry will mean
creating more and larger companies. The Netherlands can find inspiration in
the best practice examples of Denmark, Brazil, Germany and Spain that lead
the country rankings in Clean Energy Technology sales. This chapter seeks to
understand the reasons behind their success and analyze the relative
underperformance of the Netherlands.
4.1 The leaders Denmark, Brazil, Germany and Spain achieve success through
early and consistent government support, high investment and a strong
home market
We have analyzed the success of the top-4 countries in Clean Energy
Technology – Denmark, Brazil, Germany and Spain – and found that they
share three distinct key success factors:
•
•
•
Early and consistent government support over the innovation cycle;
High investment in sectors with a strong domestic fit; and
Strong home markets for Clean Energy Technology applications.
Brazil has become the world leader in ethanol research since the early 1970s.
Research focused on raising the yield of sugar cane and improving the
efficiency of ethanol plants. Public research centers initiated the development
of full ethanol and flex fuel vehicles, which was later taken up and accelerated
by (private) industry. The government also strongly stimulated the development of a home market through mandatory blending and price support.
Government support also adapted to changing market circumstances, e.g. low
oil prices or ethanol shortages. Thus government support was early, (pro)active
and consistent over the entire cycle: from R&D through product development
to market development.
The same holds for Denmark and Germany. In 1977, Denmark set up a
comprehensive program for wind energy R&D at the Risoe National Laboratory
and the Technical University of Denmark. The government gave strong
24
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
(financial) support to the testing of prototypes and since the early 1980s
stimulated an early home market with investment subsidies for wind parks
and feed-in tariffs.18 The German government has likewise stimulated the
home market for wind and solar energy, invested in wind and solar
demonstration projects and set up government funded R&D programs targeting
business and academia.
A common characteristic of these countries is that they started their development during the oil crises in the 1970s. Absence of natural resources in the
form of oil and gas created the incentive to find alternatives. The controversy
surrounding nuclear energy in the 1980s has led to a reinforcement of
governments’ renewable energy policy.
Capital is a necessary, if not sufficient, condition for building a Clean Energy
Technology industry. In Denmark, Germany and Spain strong sales in Clean
Energy Technology are correlated with high investments in technology and
private equity. Particularly in Denmark and the US, companies are accelerated
by venture capital.19 In Germany, many small and medium sized, family-run
businesses invested in the field. Also in Germany and in Spain, large corporations like Siemens and Abengoa provided capital for expansion to successful
innovators. Most investments in these countries were made in segments with
a strong domestic fit, i.e. the same technologies that benefitted from
government support throughout their innovation cycles.
Last, but not least, a strong home market is indispensible. It allows companies
to experiment, gain experience and quickly traverse the learning curve –
both giving them a competitive lead and providing them with reference and
showcase projects. For smaller countries, this means benefitting from a first
mover advantage. Denmark captured first mover advantage in wind in the
early 1980s and its Clean Energy Technology sales in wind were driven by the
domestic demand for wind energy it established early on (see figure 8). Other
early movers in wind, like Spain and Germany, demonstrate the same effect.20
Sweden is a front-runner in heat pumps since it installed the first in 1979,
Brazil has led the ethanol market since the early 1970s and Austria has been
the European leader in solar thermal applications since the end of that decade.
An incentive structure that obligates utilities to buy renewable electricity at above-market rates set by the government.
EVCA year book 2007, 2008, fDi Intelligence
20
See Joanna I. Lewis and Ryan H. Wiser (2007)
18
19
25
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
Figure 8 Home market versus wind sales [%GDP]
CET wind Sales /
GDP [% EUR]
20
DK
18
16
14
12
ES
10
8
DE
6
4
2
0
US
FI BE
JP
0
2
4
26
WInd energy in total electricity [% TWh]
Source: IEA, Roland Berger analysis
4.2 Dutch government spending on Clean Energy Technology R&D is relatively
high but the same technologies are not consistently supported throughout
the entire innovation cycle
The Netherlands currently underperforms on all three key success factors.
Dutch government spending on Clean Energy Technology R&D is relatively
high but does not translate into a strong economic position. The main reason
is that the government does not consistently support the same technologies
throughout the innovation cycle.
There are funds available for every stage. There are energy research subsidies
(EOS) for short-term and long-term R&D. There is also an EOS facility for
demonstration projects. Market development is supported through an energy
investment allowance and subsidies for sustainable energy (SDE) that include
feed-in tariffs.21 In every stage of innovation, however, different technologies
are favored over others.
In R&D, for example, most financial support goes to energy efficiency in
industry, solar and biofuels. Solar, however, only comes sixth in funds for
demonstration projects and fourth in market development support. The tables
for demonstration projects are led by biofuels, but in market development it
only comes fifth. In that stage, biomass for electricity takes most of the funds
available. But its share of demonstration and R&D funds is negligible (7th and
Senter Novem is responsible for government subsidy programs, like EOS, EIA and SDE
21
26
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
6th respectively). Both the priorities and amounts vary wildly – from stage to
stage and from year to year.22
As a result, many Clean Energy Technology innovations struggle to progress
from one stage to the next, especially where this involves the transfer of
knowledge from one actor to the other – typically from academia to industry.
Technologies proven in the lab must be made to work under real-life conditions, in demonstration projects, before anyone will invest in their application
on a commercial scale. Demonstration projects, however, are too expensive for
research groups or start-ups and too risky for industry: what works in the lab
often will not work on a demonstration scale without extensive (and costly)
rework and engineering, if at all. There is currently neither sufficient nor
sufficiently consistent government funding to encourage either party to
collaborate in demonstration projects.
Today, there are more than 60 public-private partnerships that are specifically
designed to bridge the gap between academia and industry R&D on themes
that include high tech systems and materials, chemicals and energy, health,
and water, climate and the environment. Yet of the total EUR 2.3 billion invested, the combined budget of five PPPs related to renewable energy amounts
to less than EUR 100 million, or less than 5%.23 Energy efficiency only plays
a role in one roadmap (process intensification) in one PPP. No PPPs focus
on large-scale demonstration or implementation projects in either renewable
energy or energy efficiency.
The Netherlands even risks falling further behind as other countries are
implementing economic stimulus packages that include significant “green
funds”. USD 120 billion of the US stimulus is expressly directed to Clean
Energy Technology and the US is building Clean Energy Technology Centers
to bring research and business together on the model of the old Bell Labs.
China will invest USD 660 billion over the next ten years in Clean Energy
R&D. Japan is spending almost USD 85 billion in five years to build a Clean
Energy Technology sector with a focus on LED lighting, hybrid cars,
renewable energy and smart grids. In Europe, almost USD 100 billion will
be invested in sustainability and Sweden, for example, is betting heavily on
electric vehicles, smart grids and biofuels. By comparison, only EUR 2 billion
of the Dutch stimulus package has been earmarked for sustainability, and that
includes earlier subsidies already in the works. Other governments seem to
have better understood that they should not “let a good crisis go to waste”.24
22
The R&D funding is based on the Ministry of Economic Affairs’ Monitor public energy R&D expenditures,
while home market funding is based on EIA and SDE expenditures, as given by Senter Novem
23
Commissie van Wijzen ICES/KIS
24
Based on HSBC’s Building a green recovery, EU commission SET plan and Dutch government budget
27
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
4.3 Capital for Clean Energy Technology ventures in the Netherlands is scarce,
especially in the seed phase
Not only public funding, but also private funding (and the lack thereof) is a
major obstacle to Clean Energy Technology innovation. Dutch private equity
investments in Clean Energy Technology are less than our peers, the Scandinavian countries, UK, Portugal and Spain. Moreover, where PE investments in
the European Clean Energy Technology sector have risen by 55% in 2008, in
the Netherlands they dropped by 34%.
Funds are especially short in the seed stage, the stage between proof of principle (in a lab) and prototype into which most demonstration projects also fall.
This stage is underdeveloped as it is (see figure 9).
Figure 9 Distribution of Venture Capital investments by stage 2008 [% of total]
SEED
Proof of
principle
START-UP
Prototype
Proof of
concept
EXPANSIE
Market
entry
First
product
Growth
60,2
63,3
65,8
UNDERDEVELOPED
SEED MARKET FOR CET
35,4
All sectors
in Europe
35,1
33,9
CET in
Europe
CET in
The Netherlands
4,4
1,6
0,3
Source: EVCA, NVP
Only 1.6% of European PE investments in Clean Energy Technology are in the
seed stage, against a 4.4% average for all sectors. In the Netherlands, however,
it is almost nonexistent (0.3% of the total, less than EUR 1 million) and flat. By
comparison, start-up and later-stage venture funds grew by more than 1400%
each (to EUR 47 and 92 million, respectively) and expansion funding fell by
87% to EUR 34 million. According to venture capitalists in the Benelux, there
is insufficient private equity in the Netherlands to finance both smaller and
high risk start-up companies and to fund expansionary growth of larger Clean
Energy Technology firms.
Banks too are less than enthusiastic investors in Clean Energy Technology. Of
all energy investments by Dutch banks in 2006 (some EUR 125 billion), less
than 6% was in renewable energy.25 In the coming years, the supply of capital
25
Nielsen, Jens Buurgaard and Donald Pols e.a, Investing in climate change:
Dutch banks compared 2007, Profundo, 2007
28
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
in the Dutch market will only decrease further. New financing applications
have fallen to 22% of young technology companies in 2009 from 28% in
2007, while rejections increased over the same period from 13% to 53% of
applications, according to a survey of Tornado Insider on the Dutch investment climate for Technology start-up companies.26 The government is also
pulling back. Public investments fell from EUR 21 million in 2007 to EUR 12
million in 2008, the Technopartner budget (seed stage) has decreased by an
average 19% each year from 2004 and in 2008 only EUR 10.5 of the reserved
EUR 12 million was awarded in matching to seed funds.27 Between 2006 and
2008, only 35% of the budget allocated through Technopartner was actually
invested and venture capitalists are reserving available capital for follow-on
investments in portfolio companies rather than in new ventures.
At the same time, demand for capital will continue to rise. Declining valuations in successive funding rounds point to capital demand that already exceeds
supply. Also, according to venture capitalists in the Benelux, there is no
shortage of investment opportunities, as there are many good ideas in
universities .The academic base from which new ventures may spring is
getting better and bigger: between 1993-1996 and 2003-2006 the citation
impact score of Dutch academic groups rose by 12% and between 1993 and
2006 the number of Ph.D.s per 1,000 people between the ages 25-34 rose
from 1 to 1.5.28 Technopartner, meanwhile, is accepting fewer applications
(3 out of 13 in 2009 versus 7 out of 14 in 2005).
Tornado Insider has executed the survey for TechnoPartner
Technopartner website and press releases
28
NOWT
26
27
29
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
4.4 The Dutch home market is underdeveloped, with a low share of
renewable energy sources in the primary supply and modest energy
efficiency gains in recent years
The Netherlands is lagging behind in developing a home market for Clean
Energy Technology applications. Where in Denmark renewable energy sources
account for more than 17 % of primary energy supply, in the Netherlands it is
less than 4%. That supply has grown by 10% since 2005 annually, but from a
very small base.29 In energy efficiency, too, other countries have far more developed home markets. The Netherlands improved its energy efficiency by only
0.6 % p.a. between 1990-1996. Between 1996 and 2000, it outperformed
other EU countries, but since then, Dutch energy efficiency improvements
have not exceeded the EU average.30
There is not much support for a home market. A country like Germany employs a wide range of renewable energy policy instruments: quota obligations,
feed-in tariffs, tax exemptions, direct taxation, direct subsidies, R&D subsidies
(e.g. for PPPs), thermal regulations, dispatch priority and subsidized loans.
The Netherlands only uses feed-in tariffs, tax exemptions, and direct and PPP
subsidies – and on a smaller scale.31
Thus the Netherlands falls short on all three key success factors. However, the
relatively young age of the Clean Energy Technology industry means that it is
by no means too late to improve Dutch performance.
IEA Renewables information 2009
Odyssee/Mure Energy Efficiency Profile The Netherlands
31
Roland Berger analysis of European policies
29
30
30
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
5 Towards the worldwide top-10
The Netherlands has the potential and the ingredients for a strong domestic
clean energy technology industry.
The Netherlands has the potential to build a strong clean energy technology
industry. The companies are present, the technology base is strong, and as one
of the richest countries, the financial resources are available.
Clean Energy Technology is needed to limit climate change and save crucial
ecosystems. It is also a growing industry with attractive business opportunities
and the Netherlands have the potential to play a larger role.
The previous chapter explained what can be done to emulate the example of
leading countries and to build a strong Dutch Clean Energy Technology
industry. This chapter discusses what target that industry should set itself and
what would be the effects on the climate and the economy if it succeeds.
5.1 The Netherlands should aspire to a global top-10 position in 2015 and the
15% annual growth needed to achieve it
The Netherlands should not be content with its mediocre ranking, or a total
sales figures that compares to the average countries’ GDP-weighted CET
industry size. Given its potential, in both knowledge and companies, and long
tradition of responsibility and environmental engagement, the Netherlands
should be more ambitious and aspire to a top-10 position in Clean Energy
Technology sales by 2015. That would allow the Dutch Clean Energy Technology industry to both capture and contribute its share of a global growth
market that is vital to the sustained health of our planet and its species.
In a business-as-usual scenario sales growth for Dutch Clean Energy Technology will be limited to the average annual growth of 7.5% that is forecast for
the global market as a whole. Dutch industry would add EUR 600 million to
its sales between now and
Priva
–
50
years
of
smart
innovation
2015 to reach a total of
EUR 1.5 billion. In this
Priva
provides
energy‐efficient
climate
control
and
process
automation
for
horticulture
scenario, the Netherlands and
commercial/industrial
buildings.
Solutions
include
heat
exchange
between
would retain its 17th place greenhouses
and
residential
areas,
combining
fish
farming
and
cultivating
vegetables,
– at best. Other countries and
intelligent
building
systems
with
low
total
costs
of
ownership.
Priva
has
a
high
ratio
of
R&D
investment
to
turnover
and
consistently
introduces
new,
innovative
products.
are positioning themselves Its
business
complements
existing
Dutch
strengths
in
greenhouse
farming
and
solves
a
to seize the opportunities specific
Dutch
challenge:
reducing
CO2
emissions
from
greenhouses.
With
growing
worldwide
demand
for
greenhouses,
this
healthy,
family‐owned
business
will
continue
in Clean Energy
to
contribute
to
a
better
climate
both
within
and
outside
greenhouses
and
buildings.
31
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
Technology and bolster their sustainability credentials. It is not unlikely that
the Netherlands would even concede market share to others and drop further
down the rankings.
For a global top-10 position, sales must increase by almost threefold. To pass
Israel and claim tenth place in the (GDP-weighted) country rankings, the
Dutch Clean Energy Technology industry must exceed EUR 2.5 billion by
2015. That requires additional sales of EUR 1.6 billion and assumes that the
growth of other countries’ Clean Energy Technology sales averages the overall
market growth of 7.5%. It also means that the Dutch Clean Energy Technology industry must realize an average annual growth rate of 15% between
2008 and 2015.
5.2 A global top-10 position will reduce CO2 emissions by 130 Mton in 2015
and add 8,000 jobs and EUR 1.6 billion in sales to the Dutch economy
A top-10 position in 2015 means the Dutch Clean Energy Technology industry
will contribute 130 Mtons to global CO2 abatement by 2015. The abatement
potential has been calculated on a lifetime basis. The sales in 2015 will prevent CO2 from being emitted year on year. Where Dutch companies are active
in only part of the value chain of a Clean Energy Technology, their relative
share in the total cost price of the technology was taken as a proxy for their
share of total CO2 emissions. As explained above, a top-10 scenario will add
EUR 1.6 billion in Clean Energy Technology sales to the 2008 total of EUR
900 million. Today, the industry employs 9,000 FTEs on a combined turnover
of EUR 900 million. That workforce is forecast to almost double to some
17,000 FTEs – an additional 8,000 jobs.
5.3 After a careful selection process, WWF NL has identified six companies
that could lead the industry’s growth, and has nominated these for the
WWF Cleantech Star
The Netherlands is not starting from scratch. There are many promising
companies in the Netherlands today that could help realize the 15% per
annum additional growth
OTB
Solar
–
bright
perspectives
for
solar
power
needed for a top-10
position. To stimulate and OTB
Solar
makes
machines
that
reduce
the
cost
per
watt
of
producing
photovoltaic
solar
cells.
As
the
cost
per
watt
is
the
key
growth
driver
for
large‐scale
solar
energy
support the industry’s
production,
OTB
Solar
makes
a
major
contribution
to
reducing
CO2
emissions
wherever
growth, WWF NL has
solar
cells
made
with
successive
generations
their
equipment
are
installed.
In
the
past
evaluated all 260+
two
years,
its
turnover
has
tripled.
An
ongoing
record
of
innovations
has
earned
OTB
Solar
the
World
Economic
Forum’s
“Technology
Pioneer
Award”
no
less
than
four
companies in Dutch
times.
The
company
builds
on
a
regional
tradition
of
high
tech
suppliers
to
the
semiconductor
industry
and
works
closely
with
partners,
like
Eindhoven
Technical
University,
to
increase
the
efficiency
of
solar
cells
and
solar
cell
production.
OTB
Solar
is
also
achieving
notable
success
in
reducing
the
use
of
dangerous
substances
in
production.
32
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
Clean Energy Technology today to identify which companies have the potential to lead by example and in both ecological and economic contribution. After
careful selection, six companies were nominated for the WWF Cleantech Star.
With the nominations and the award, WWF NL wants to highlight promising
Dutch Clean Energy Technology companies and inspire others to follow.
The nominees are companies that successfully sell innovative products that
reduce CO2 emissions. To qualify, companies must (1) provide products or services that structurally contribute to the transition towards renewable energy
and/or energy efficiency; (2) invest in knowledge, production capacity and/
or innovative solutions to realize that contribution; and (3) have a successful
strategy focused on growth, profitability and corporate social responsibility.
The selection process began with a long-list of all 260+ Dutch companies in
Clean Energy Technology. These companies were then evaluated along six
(categories of) criteria:
1. Exclusion criteria – not active in fossil fuel exploration and/or production,
at least 50% of total sales in Clean Energy Technology, headquartered in
the Netherlands, not involved in insolvency or bankruptcy proceedings;
2. Economic criteria – (growth in) sales, profits, book value and solvency;
3. Environmental contribution criteria – product contribution to CO2 emissions reduction, number of products sold, share of total sales;
4. Innovation criteria – R&D budget and FTEs, cooperation with knowledge
partners, recent innovations;
5. CO2 emissions – address aberrations in Dutch CO2 emission profile32;
6. Global market – active in an attractive segment of the global Clean
Energy Technology market.
In each successive round,
Scheuten
Solar
–
see
it.
feel
it.
the evaluations dig
eeper. First, the jury
Scheuten
Solar
is
an
innovator
in
the
design,
development,
production
and
installation
reduced the long-list to a of
photovoltaic
solar
energy
modules.
Its
Optisol®
range
is
versatile,
attractive
to
short-list of 21 companies architects
and
builders
and
used
in
the
outside
layer
of
buildings.
It
replaces
conventional
materials
such
as
glass
in
roofs,
façades
and
skylight
elements
and
on the basis of publicly
produces
energy
at
the
same
time.
Its
ability
to
innovate
and
its
strong
and
sustained
available information.
investment
in
R&D,
has
allowed
Scheuten
Solar
to
quadruple
its
turnover
in
recent
These companies were
years.
If
the
promising
thin
film
technology
the
company
is
working
on
can
be
as
successfully
introduced,
Scheuten
Solar
will
further
increase
both
its
contribution
to
then sent a detailed
reducing
CO2
emissions
and
its
economic
success.
questionnaire on economic performance (development of sales and profits, market shares and global
footprint, strategy and ambition), innovation
performance (product introductions, share of turnover, R&D budget and FTEs,
partnerships) and ecological performance (current CO2 emissions reduction,
future potential, characteristics of the product’s contribution). These answers
33
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
were combined with
BioMCN
–
driven
by
nature
(and validated by)
BioMCN
is
the
first
in
the
world
to
produce
biomethanol
using
an
innovative
process.
detailed analysis of all
Biomethanol
can
be
used
either
as
a
fuel
itself
or
as
a
feedstock
for
other
available (public) data
environmentally‐friendly
fuels.
The
company
takes
crude
glycerine,
a
residue
stream
of
biodiesel
production,
and
converts
it
into
methanol
–
thus
using
its
full
energy
potential
to nominate six of the
and
substituting
for
methanol
produced
from
natural
gas.
In
the
future,
BioMCN
will
shortlisted companies.
switch
to
biogas
and
even
use
CO2
itself
as
a
feedstock.
The
current
and
potential
In the final round, each
contribution
to
reducing
CO2
emissions,
or
even
CO2
levels
directly,
is
clear.
BioMCN
works
closely
with
the
universities
of
Wageningen,
Groningen
and
Leuven,
research
nominee was invited to
give a presentation on its institutes
like
ECN
and
industrial
partners.
It
has
a
strong
fit
with
existing
Dutch
strengths
in
the
petrochemical
industry.
ecological, economic and
innovation performance and its vision for reducing CO2 emissions, sustainabi
lity, business and its own role therein. The nominees are introduced, with the
reasons for their nomination, in the boxes throughout this chapter. The visions
written by the companies themselves have been included in appendix 3. It is
WWF NL’s intention to award one WWF Cleantech Star each year.
5.4 The six nominees demonstrate that a top-10 ambition is realistic. Such
companies will take the Dutch Clean Energy Technology industry a long way
towards achieving that ambition
In the country ranking, total sales equaled EUR 900 million today. If this sales
figure grows by only as much as the average market rate of 7.5%, they will
add almost another EUR 600 million and 6,000 jobs by 2015. However, other
countries will also exhibit KyotoCooling
–
the
“heat
wheel”
this growth, and the
KyotoCooling
is
a
promising
company
that
was
founded
in
2008.
It
has
developed
a
Netherlands will reside
rotary
heat
exchanger
that
uses
temperature
differences
between
inside
and
outside
air
on its 17th position. The
to
cool
data
centers,
but
without
outside
air
entering
the
computer
room
–
thus
Dutch CET sales are EUR preventing
contamination
and
loss
of
humidity
control.
Despite
its
young
age,
1 billion short.
KyotoCooling
has
already
installed
seven
such
cooling
systems
around
the
world.
With
an
expected
80%
savings
in
energy
use,
translating
into
a
25%
savings
on
the
total
energy
bill,
the
contribution
to
reducing
CO2
emissions
and
coolants
will
be
significant.
The
Netherlands
has
a
relatively
large
data
center
industry,
and
with
its
test
and
demonstration
location
at
partner
KPN,
KyotoCooling
looks
set
to
capture
a
large
share
of
domestic
and
international
markets.
The ambitions of our six
nominees will help in
advancing the Dutch
position. All have the
ambition and the potential to grow sales of the six companies combined by
an additional EUR 1.2 billion, above the average market rate of 7,5 %. Their
sales target reflect the leadership role they aspire in their industry. In addition,
they add some 2,000 jobs Dutch Clean Energy Technology sales (and on their
own).
32
The WWF Cleantech Star should develop a product that addresses climate change problems in which the
Netherlands has a relatively large share.
34
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
The combined potential is more than sufficient to take the Netherlands easily
into the top-10, and even as far an eighth place in 2015’s country rankings of
GDP-weighted Clean Energy Technology sales (see figure 10) – with annual
sales for the Dutch Clean Energy Technology industry exceeding the EUR 2.7
billion mark.
Figure 10 Country ranking by weighted sales 2015 in top-10 scenario
[rank by % GDP]
Lemnis
Lighting
–
LED
there
be
light
Lemnis
Lighting
sold
its
first
LED
lamps
in
2006.
It
changed
the
lighting
business
model
from
selling
bulbs
to
providing
light
by
making
bulbs
that
last
more
than
20
years,
that
are
up
to
90%
more
efficient,
easily
recycled
and
contain
no
dangerous
substances
like
mercury.
The
technology
can
also
be
applied
to
outdoor
and
greenhouse
lighting.
In
2009,
Lemnis
Lighting
won
the
World
Economic
Forum’s
“Technology
Pioneer
Award”
and
the
World
Bank’s
“Lighting
Africa
Award”.
The
company
is
a
global
player
and
revenue
prospects
are
excellent.
Lemnis
Lighting
works
with
industrial
partners,
NGOs
and
universities,
and
continues
a
long‐standing
Dutch
tradition
of
producing
light
bulbs.
By
its
own
calculations,
if
every
Dutch
household
were
to
replace
4
60W
bulbs
with
its
6W
alternatives,
2.3
billion
kWh,
EUR
545
million
in
energy
costs
and
1.4
Gt
of
CO2
would
be
saved.
The
company’s
contribution
to
emissions
reduction
will
be
significant.
Source: Roland Berger Analysis
CET country ranking by weighted sales [% EUR]
1
Demark
2
Brazil
3
Germany
4
Spain
5
Finland
6
China
7
Austria
8
The Netherlands
9
Belgium
…
16
17
18
Slovakia
The Netherlands
Greece
35
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
6 Epilogue
This report illustrates the need and potential for a strong Dutch Clean Energy
Technology industry. The urgency is clear. Recent studies indicate that an
average global warming of 2°C will result in dangerous and irreversible effects
to humans and nature, which rapidly worsen above 2°C warming. Ecosystems
cannot adapt to the rate of change and species will become extinct.The only
way to prevent that is to limit global warming to that upper boundary of 2°C.
Fortunately, a global consensus seems to be emerging to enforce that target.
The means are also clear. CO2 emissions must be reduced and reduced sharply.
Annual emissions must be cut at least to 450 ppm CO2-eq through increased
energy efficiency and the substitution of oil and gas by renewable energy
sources. Clean Energy Technology is our best hope of doing that. The world is
increasingly realizing this and Clean Energy Technology markets are growing
accordingly. The Netherlands is neither contributing nor capturing as much
as it could, and should. But it has the potential to do much better by learning
from leading countries such as Denmark, Brazil, Germany and Spain.
The Netherlands could jump from its current 17th place to the global top-10 in
the country rankings by GDP-weighted sales.
The result – and our goal – would be 130 Mton reduction in CO2 emissions
that would bring with it an additional 8,000 jobs and EUR 1.6 billion in sales
for the Dutch economy. What is good for the planet and its people, to paraphrase a popular creed in the case of Clean Energy Technology, is also good
for profits. And it can be done. Our WWF Cleantech Star nominees demonstrate that. These companies have the potential to contribute a large part of
the ecological and economic benefits we aim for. Together with business partners such as business association FME-CWM and Rabobank, WWF NL will
be taking initiatives to help grow the Dutch clean energy technology industry.
We will start by bringing stakeholders together in a Round Table session and
developing an Action Programme. Together we can build a strong Dutch
Clean Energy Technology industry.
36
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
Appendix 1 Sources
I. General sources
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Ackerman, Frank and Elizabeth Stanton (2006), Climate Change – the
Costs of Inaction, Report to Friends of the Earth England, Wales and
Northern Ireland
Aki, Helen, Zachary Arnold, Genevieve Bennett, Jesse Jenkins, Chris
Knight, Ashley Lin, Taj Walton and Adam Zemel, Case Studies in American Innovation – A New Look at Government Involvement in Technological Development The Breakthrough, Breakthrough Instute, 2009
Andersen, Per Dannemand Review of Historical and Modern Utilization
of Wind Power, 1999
Andersen, Per Dannemand, Mads Borup and Michael Holm Olesen, Innovation in energy technologies, Risø Energy Report 5, 2006
Beintema, N. M., A. F. D. Avila, and P. G. Pardey. Agricultural R&D in
Brazil: Policy, Investments, and Institutional Profile. Washington, D.C.:
IFPRI, Embrapa, and FONTAGRO, August 2001
BTM Consult ApS, World Market Update 2007 and 2008
Bundesministerium für Bildung und Forschung, die Hightech Strategie
zum Kloimaschutz, 2007
Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit,
Greentech made in germany 2.0,Verlag Franz Vahlen München, 2009
Colares, Juscelino F., A Brief History of Brazilian Biofuels Legislation (June
25, 2008). Syracuse Journal of Law & Commerce, Vol. 35, No. 2
Commissie van Wijzen ICES/KIS Advies van de Commissie naar aanleiding van de Midterm evaluatie van de Bsik-projecten, 2008
Emerging Markets, Biodiesel 2020, Global Market Survey, Feedstock
Trends and Market Forecasts, 2009
European Commission, Investing in the Development of Low Carbon
Technologies, SET plan, 2009
European Union, Directive 2009/28/EC of the European Parliament and
of the Council, 2009
European Photovoltaic Industry Association, Global Market Outlook for
Photovoltaics until 2013, 2009
Faninger G.H. Solar Thermal systems in Austria, status report 2005 presented to the IEA Solar heating and Cooling Programma, 2005
Fulley, Laura, State Renewable Portfolio Standards and Energy Efficiency
Resource Standards, presentation of American Council for an EnergyEfficient Economy
Garnaut, R., The Garnaut Climate Change Review, Cambridge University
Press, Cambridge, 2008
37
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Global Wind Energy Council, Global wind 2008 report, 2009
Jacobson, S., and V. Lauber, The Politics and policy of energy system
transformation – explaining the German diffusion of renewable energy
technology, Energy Policy, 34, pp. 256-276, 2004
Kamp, L.N., Learning in wind turbine development : a comparison
between the Netherlands and Denmark, Universiteit Utrecht, 2002
Kemfert, Claudia (2005). “Global Climate Protection: Immediate Action
Will Avert High Costs.” DIW Weekly Report 1(12): 135-141. Yyy
Kristinsson, Kari and Rekha Rao, Learning to Grow: A Comparative Analysis of the Wind Energy sector in Denmark and India, DRUID Working
Paper No. 07-18, 2007
Krohn, S. Wind Energy Policy in Denmark: 25 years of Success – What
now? Danish Wind Energy Association, 2002
Krohn, S. Wind Energy Policy in Denmark Status 2002, Danish Wind
Energy Association, 2002
Lauber, V., L. Metz, Three Decades of Renewable Electricity Policies in
Germany, Energy and Environment,15(4), pp 599-623, 2004
Lewis, J.l. and Ryan H. Wiser, “Fostering a Renewable Energy Technology
Industry: An International Comparison of Wind Industry Policy Support
Mechanisms,” Energy Policy 35, no. 3 (March 2007): 1844–1857
Lohse, Ulf, Developments in the German PV SectorTechnology advances
and cluster building, eclareon GmbH, 2009
Martinot, E., and L. Junfeng, Powering China’s Development: The Role
of Renewable Energy, Worldwatch Institute, 2007
Nielsen, Jens Buurgaard and Donald Pols e.a, Investing in climate change:
Dutch banks compared 2007, Profundo, 2007
Nederlands Observatorium Wetenschap en Technologie, Wetenschaps- en
Technologie Indicatoren Rapport 2008, 2008
Nordbo, J., Technology Action Programs as a way forward, WWF Global
Climate Policy Discussion paper, 2008
Odyssee/Mure, Energy Efficiency Profile Netherlands, 2008
OECD/IEA, CO2 emissions from fossil fuel combustion – highlights,
2009
OECD/IEA, Excerpts from World Energy Outlook 2009, 2009
OECD/IEA, World Energy Outlook 2008, 2008
OECD/IEA, IEA Wind 2004 Annual Report, 2004
OECD, OECD Compendium of Patent Statistics 2008
Pinxteren, H., W. Segeth, A. van Stel, Accenten in Funderend Energieonderzoek, Nederlandse Organisatie voor Wetenschappelijk Onderzoek,
2009
PriceWaterHouseCoopers, Monitoring publiek gefinancierd Energieonderzoek 2007, 2008
SenterNovem, Jaarverslag EIA 2008, 2EIA0902, 2009
38
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
•
•
•
•
•
•
•
•
Stern, Nicholas. 2006: The Stern Review on the Economics of Climate
Change.
Vaekstfonden, The Energy Industry in Denmark – perspectives on entrepreneurship and venture capital, 2006
Watkiss, Paul, Tom Downing, Claire Handley and Ruth Butterfield
(2005). The Impacts and Costs of Climate Change. Brussels, European
Commission DG Environment.
Watts, Jonathan, China makes renewable power play to be world’s first
green superpower, The Guardian, 2009
Wintour, Patrick, Larry Elliot, The Guardian, G8 agrees to climate targets
despite differences with developing nations, 2009
World Watch Institute, Strong Growth in Compact Fluorescent Bulbs
Reduces Electricity Demand, 2008
Wrobel, Paul, Clean Energy: The Brazilian Ethanol experience, 2007:
Embassy of Brazil, London
Wüstenhagen, R. and M. Bilharz, Green Energy Market Development in
Germany, working paper, University of St. Gallen, 2004
II. Interviewees
•
•
•
•
•
•
•
•
Jos Peeters, Capricorn
Ruud Koornstra, Tendris
Marcel Wubbolts, DSM
Rob Voncken, BioMCN
Dolf van Griethuyzen, Ballast Nedam
Dick Tommel, Stichting Platform Bio-Energie
Marco Waas, Technische Universiteit Delft
Michel Hendrik, E2 Cleantech
III. Country ranking
Countries analyzed
• EU 27
• Brazil
• India
• China
• Russia
• United States of America
• Switzerland
• Taiwan
• Australia
• Canada
39
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
•
•
•
•
•
•
•
•
Norway
Japan
South Korea
Turkey
Israel
Mexico
Malaysia
New Zealand
Segments analyzed
• Wind energy
• PV solar
• Thermal solar
• CSP
• Geothermal
• Biodiesel
• Bioethanol
• Biogas
• Heat pumps
• Insulation
• Lighting
• Electric vehicles
• Fuel cells
• Flywheels
Data sources
Asociación de la Industria Fotovoltaica – Presentado el Informe anual de ASIF
2009: “Hacia la consolidación de la energía fotovoltaica en España”
Asociación de la Industria Fotovoltaica – Hacia un suministro sostenible de
electricidad
Asociación de la Industria Fotovoltaica - Situación en el mundo
Biofuels Platform - statistics
BMU Greentech 2.0
Bosch Thermotechnik - The market for thermotechnology
BSRIA - Super Successful Heat Pumps
BTM Consult - World Market Update
Bundesverband Solarwirtschaft - Statistische Zahlen der deutschen Solarstrombranche (Photovoltaik)
Bundesverband Solarwirtschaft - The Photovoltaic and Solar Thermal
Central Bureau of Statistics – Statline database
Clean Edge – Clean Energy Trends 2008
Comext – External trade database
40
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
ConvergeNet - UPS Systems: What are the Options?
Emerging Markets Online – Biodiesel 2020: Global Market Survey, Feedstock
Trends and Forecasts
Energy Information Administration, Form EIA-63B, “Annual Photovoltaic
Module/Cell
EurObserv’er - Barometer (various versions)
European Biodiesel Board - statistics
European Photovolatics Industry Association – Global Market Outlook for
Photovoltaics until 2013
European Photovolatics Industry Association – Solar generation V 2008
European Solar Thermal Industry Association – Concentrated Solar Thermal
Power – Now!
Eurostat – Statistics database
Geothermal Energy Association - Geothermal Industry Employment: Survey
Results & Analysis
Global Wind Energy Council – Global Wind Report 2008
GlobalData - Global Geothermal Energy Market Analysis and Forecasts to
2012
GlobalData – Global Solar Thermal Power Market Analysis and Forecasts to
2013
Globalinsulation magazine - On the Chinese insulation industry
IEA-SHC - Solar Heat Worldwide Markets and Contribution to the Energy Supply 2006, edition 2009
Interconnection Consulting - Thermal Insulation in Europe 2008 Development
and Trends
International Geothermal Association- IGA News 72
Jefferies - CleanTech Primer
Lux Research - The $41 billion energy storage market: the next big energy
investments
MAKE Consulting – The Wind Forecast – Supply side, Demand side
Manufacturers Survey.”
Markets in Germany - Status Quo and Perspectives
Policy Research Institute, Ministry of Agriculture, Forestry and Fisheries, Japan
-Biofuels Policies in Asia
Power Electronics Technology - Energy Storage Device Market to Hit $12 Billion By Decade’s End
Renewable Fuels Association - statistics
Roland Berger - various reports
Sarasin – Sustainability report
Societe Generale - Green New Deal
Solar Energy Industry Association – US Solar Industry in Review 2008
Solarbuzz - Marketbuzz 2009
Sonne Wind & Wärme – Der Markt wächst
41
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
Worldwatch Institute - Strong Growth in Compact Fluorescent Bulbs Reduces
Electricity Demand
Investor presentations, annual reports, press releases, websites from and
broker reports on various companies:
• Bosch
• CRH
• Danfoss
• GE
• Kingspan
• NEM
• Osram
• Philips
• Recticel
• Rockwool
• Saint Gobain
• Siemens
• Solel
• Synbra
• Vestas
• Schott Solar
V. Dutch Clean Energy Technology companies
• Business associations – including Holland Solar, Stichting Platform BioEnergie and incubators such as Yes!Delft;
• Newspapers and magazines – including Het Financieele Dagblad, NRC
Handelsblad, FEM Business and the Energiegids;
• Market research reports – including reports by BTM, Global Data and
Frost & Sullivan;
• WWF NL and its partners – including FME, ECN, the Universities of
Utrecht and Delft, Rabobank and Roland Berger Strategy Consultants;
• Other sources – including company databases (e.g. REACH), government
reports and websites (e.g. SenterNovem, Energy transition platforms) and
the “Koplopersloket”.
42
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
Appendix 2 Expert group and jury
Expert group
• Donald Pols, WWF NL
• Arjette Stevens, WWF NL
• Chris Hellinga, Technische Universiteit Delft
• Daan Dijk, Rabobank
• Wouter de Ridder, Rabobank
• Paul Veendrick, Rabobank
• Charley Droste, FME and Cleantech Holland
• Hans van der Spek, FME and Cleantech Holland
• Arnoud van der Slot, Roland Berger
Jury
•
•
•
•
•
•
•
•
•
•
Donald Pols, WWF NL
Arjette Stevens, WWF NL
Chris Hellinga, Technische Universiteit Delft
Daan Dijk, Rabobank
Wouter de Ridder, Rabobank
Paul Veendrick, Rabobank
Charley Droste, FME and Cleantech Holland
Hans van der Spek, FME and Cleantech Holland
Arnoud van der Slot, Roland Berger
Sjoerd van Keulen, Holland Financial Centre and WWF NL
43
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
Appendix 3 Profiles of WWF Cleantech Star nominees
BioMCN – driven by nature
Duurzaamheid is hét bestaansrecht van BioMCN
De productie van reguliere methanol in West Europa op basis van aardgas is al
jarenlang niet meer rendabel. Om die reden hebben de vorige eigenaren van
de fabrieken in Delfzijl enkele jaren geleden besloten de productie te stoppen.
In plaats van het afbreken en verhuizen van de fabrieken naar een andere
locatie om ‘meer van hetzelfde’ te doen, blies BioMCN deze oude technologie
nieuw leven in door de omschakeling te maken naar een duurzaam alternatief.
Een duurzaam alternatief in de vorm van bio-methanol; een belangrijke ‘groene’ chemische bouwsteen en belangrijker nog, een 2e generatie bio-brandstof.
BioMCN is driven by nature.
Een toenemende rol van betekenis
In de omschakeling van fossiele naar duurzame transport brandstoffen spreekt
men hoofdzakelijk over ethanol en biodiesel. Naarmate de publieke opinie
over bio-brandstoffen kritischer wordt, wordt de voorkeur gegeven aan zogeheten 2e generatie bio-brandstoffen.
BioMCN is de eerste producent van bio-methanol op industriële schaal en
daarmee tevens de grootste producent van 2e generatie bio-brandstoffen ter
wereld.
Bio-methanol heeft verschillende belangrijke voordelen, omdat het identiek is
aan zijn fossiele variant. Methanol is een belangrijke chemische bouwsteen dat
gebruikt wordt in diverse chemische toepassingen, variërend van plastic tot
verf, van antivries tot harsen en nog veel meer. Al deze toepassingen kunnen
met behulp van bio-methanol duurzaam worden geproduceerd.
BioMCN concentreert zich echter pro-actief op het gebruik van bio-methanol
in transportbrandstoffen. Door het nog altijd groeiende gebruik van fossiele
brandstoffen neemt de uitstoot van broeikasgassen in de transportsector nog
altijd toe, ondanks steeds schonere motoren. En als gevolg van hoger wordende olieprijzen wordt het ook steeds aantrekkelijker bronnen aan te boren die
voorheen onrendabel waren, met alle negatieve gevolgen voor het
milieu tot gevolg.
Dit probleem vraagt om een gedegen oplossing. Oplossingsrichtingen variëren
van elektrisch rijden tot waterstof, van biodiesel tot DME en nog veel meer.
44
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
De grote aantrekkingskracht van bio-methanol is dat het toegepast kan worden
in de vervaardiging van vrijwel al deze verschillende brandstoffen.
Bio-methanol is met andere woorden een breed inzetbare oplossing die niet
alleen op korte termijn oplossingen biedt, maar die ook uitstekend past in de
infrastructuur van de toekomst.
Maatschappelijk verantwoord ondernemen
Naast het produceren van bio-methanol streeft BioMCN tevens op andere
gebieden naar een milieubewuste en duurzame bedrijfsvoering. Veel aandacht
wordt besteed aan bijvoorbeeld de dialoog met lokale milieugroeperingen, het
hergebruiken van de (weinige) afvalstoffen, het selecteren van leveranciers
met eenzelfde MVO-gerichte visie en het reduceren van het aantal
logistieke bewegingen. Initiatieven op kleine schaal vindt BioMCN ook belangrijk, zoals het zo min mogelijk printen en het kiezen voor meer verantwoorde
alternatieven voor kerstgeschenken en personeelsbijeenkomsten.
De (nabije) toekomst
BioMCN heeft zichzelf tot doel gesteld een leidende rol te spelen in de
mondiale transitie naar duurzame, non-fossiele brandstoffen.
BioMCN wil in de komende 5 tot 10 jaar ook in andere werelddelen fabrieken
openen, al dan niet in samenwerking met locale partners.
Naast de brede inzetbaarheid van bio-methanol in verschillende toepassingen,
wordt ook de haalbaarheid van de inzet van andere duurzame grondstoffen
onderzocht. Zodoende kan flexibel worden ingespeeld op veranderingen in de
beschikbaarheid en prijs.
Het ultieme doel is om ook (atmosferische) CO2 als grondstof in te gaan zetten
en zodoende weer om te zetten in een nuttig product. Het grote voordeel van
deze aanpak is dat CO2 overal ter wereld beschikbaar is, en dat vele – zo niet
alle – knelpunten rondom de productie van biobrandstoffen kunnen worden
vermeden.
45
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
Scheuten Solar en duurzaamheid
Het begrip duurzaamheid en Scheuten zijn onlosmakelijk met elkaar verbonden. Dit komt onder andere tot uiting in de mission statement van onze
onderneming:
Scheuten is een bedrijf van en voor mensen. Wij verbinden zonne-energie en glas tot
innovatieve concepten. Wij geven energie, duurzaamheid, groei en leven aan onze
klanten en de wereld.
Basis van ons bestaan
Bijdragen aan een duurzame maatschappij is geen zijweg die we als bedrijf bewandelen. Duurzaamheid vormt de basis van het bestaan van Scheuten Solar.
Wij investeren continu in innovatieve producten en productieprocessen. Zonnepanelen die nóg meer output genereren en een solar waardeketen waarin
processen naadloos op elkaar aansluiten en uitstoot van schadelijke stoffen tot
een absoluut minimum beperkt.
Een ‘sustainable’ denkwijze is onontbeerlijk en cruciaal voor de producten die
we maken en de markt waarin we opereren. Een markt die groeiend is en die
in de komende decennia alleen nog maar groter wordt. Uitputtelijke energiebronnen verliezen meer en meer terrein op niet-fossiele brandstoffen. De
groeiende vraag naar duurzame energie biedt Scheuten Solar de mogelijkheid
om een nóg grotere stempel te drukken op het aanbod van zonne-energie.
Dankzij de groeiende vraag is het mogelijk om de economische en ecologische
terugverdientijd te verkleinen. Zo dragen we bij aan een maatschappij die
niet langer wordt gedomineerd door vervuilende energiebronnen, maar door
schone energie die voor iedereen beschikbaar is.
Impulsen voor PV-markt
Het succes van groene energie – zowel op korte als op lange termijn – wordt
sterk beïnvloed door beleidsbeslissingen op het gebied van duurzaamheid.
Cruciaal zijn ontwikkelingsprogramma’s en andere stimulerende maatregelen die de definitieve doorbraak van duurzame energie mogelijk maken. Een
zonnepaneel is een product dat door innovatieve opschaling goedkoper wordt,
waardoor het op grotere schaal kan worden toegepast en zodoende kan concurreren met fossiele stroom. Scheuten Solar investeert in innovaties met als
doel de kosten en hoeveelheden van grondstoffen te reduceren en tegelijkertijd de efficiency te vergroten.
Om dit te bereiken, nemen we positie in de gehele PV (Photo Voltaic) waardeketen. In Pennsylvania, USA investeren we in de duurzame ontginning van
46
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
zeer zuiver silicium. In Duitsland worden modulen geassembleerd tot hoogwaardige zonnesystemen. In Europa (en wereldwijd) ligt een belangrijke focus
op onze projectenorganisatie die turnkey projecten ontwikkelt en realiseert.
Dankzij innovaties en nieuwe businessmodellen is Scheuten Solar in staat om
continu impulsen te geven aan de groei van de markt voor zonne-energie.
Duurzame waardeketen
Dankzij een heldere visie en ondernemingsfilosofie draagt Scheuten Solar bij
aan een duurzame samenleving. Het is van groot belang dat dit gedachtegoed
wordt gedeeld en gedragen binnen de totale onderneming. Het doel is dan ook
om de interne organisatie zoveel mogelijk te baseren op de grondprincipes van
maatschappelijk verantwoord ondernemen. Hiertoe is bijvoorbeeld een
werkgroep opgericht die bekijkt hoe we het ‘groene bewustzijn’ van medewerkers kunnen vergroten en hoe we intern een breed draagvlak kunnen creëren
voor het duurzame beleid dat op managementniveau wordt gemaakt.
Voor Scheuten Solar betekent duurzaamheid óók de continuïteit van onze
onderneming. Door nu al intensief te werken aan toekomstige duurzame
product-markt combinaties ontstaan nieuwe kansen. Bijzondere aandacht gaat
bijvoorbeeld uit naar de rol die we kunnen spelen in de energiebehoefte in
bebouwde omgevingen; het integreren van zonnesystemen in bestaande
huizen en gebouwen biedt eindeloze mogelijkheden die totale energiestromen
gaat transformeren. De toekomst bestaat voor ons uit een interne organisatie
die zeer bewust is van maatschappelijk verantwoord ondernemen en samen
door een natuurlijke selectie gekozen leveranciers en klanten werkt aan een
duurzame waardeketen.
47
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
Priva: duurzaamheid in de genen!
Priva toont al jaren aan dat het mogelijk is om duurzame oplossingen te ontwikkelen voor complexe vraagstukken op het gebied van klimaatbeheersing en
procesbeheer in glastuinbouw en utiliteitsbouw. Duurzaamheid is voor Priva
dan ook geen etiket of modetrend: duurzaamheid is het bestaansrecht van dit
familiebedrijf uit het Westland.
De missie van Priva maakt duidelijk waar het ons om te doen is: we realiseren
wereldwijd oplossingen voor het op duurzame wijze voorzien in basisbehoeften van mensen: vakkundig en op natuurlijke wijze gekweekt voedsel en
siergewas, en een leefomgeving die optimaal is afgestemd op de wensen van
de gebruiker.
Priva streeft daarbij naar een minimale belasting van onze planeet en maakt
daarom in haar oplossingen zo efficiënt mogelijk gebruik van schaarse natuurlijke hulpbronnen als water en energie. Priva stimuleert de ontplooiing van
haar medewerkers, gelooft in de groeipotentie van haar klanten en vertrouwt
op de kracht van haar partners, dealers en toeleveranciers.
Efficiency
Priva is een internationaal bedrijf. In meer dan zeventig landen worden onze
producten gebruikt. Het familiebedrijf is wereldmarktleider in de glastuinbouw, en ook in de gebouwenwereld speelt het bedrijf internationaal een
steeds grotere rol. Onze producten helpen ondernemers in deze sectoren om
hun bedrijfsvoering efficiënter in te richten, waardoor ze met minder gebruik
van schaarse hulpmiddelen als energie en water een hoger rendement kunnen
behalen. Privaproducten dragen zo bij aan het duurzaam ondernemen van
onze eindgebruikers. Daarmee is het onze business, geen etiket of modetrend:
we verdienener gewoon ons brood mee.
De filosofie van Priva is om de sectoren waarin we werkzaam zijn stap voor
stap verder te brengen in hun ontwikkeling. Door lokaal aanwezig te zijn
en ter plaatse opleiding van lokale mensen te verzorgen, kunnen we ook in
gebieden waar de technologie minder ver gevorderd is, helpen om efficiënter
te werken. Een goed voorbeeld hiervan is het Saas-project: in China brengen
we lokale partijen bij elkaar die met de techniek van Priva zélf de uitvoering
ter hand nemen. We realiseren dit proefproject op het terrein van de Shanghai
Academy for Agricultural Sciences. Zo worden lokale kwekers geholpen om
meer productie per vierkante meter te realiseren, met minder gebruik van
water en bestrijdingsmiddelen. En in Mexico leren we kwekers samen met het
bedrijf Koppert (expert in biologische bestrijdingsmiddelen) om op een
duurzame wijze om te gaan met de kwaliteit van hun product. Uiteindelijk
leidt dit tot een kwaliteits- en kwantiteitsverbetering van de totale sector.
48
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
Groei als kernwaarde
De belangrijkste kernwaarde van Priva is groei. Groei van onze eindgebruikers, dealers, partners, medewerkers, Priva zelf, maar groei staat ook voor
ontwikkeling van de sectoren waarin Priva werkzaam is.
Om groei en ontwikkeling te stimuleren brengt Priva partijen bij elkaar. Door
verbindingen te leggen ontstaan nieuwe combinaties, vaak op de grenzen van
sectoren, landen en overheden.
Dit levert een ideaal klimaat op voor innovatie. Een aantal voorbeelden van
deze samenwerking:
- Priva betrekt overheden bij het combineren van woonwijken, industrie
en glastuinbouw. Deze zgn. sustainable delta’s voorzien in hun eigen
energiebehoefte en hebben een gesloten watercircuit. De Naaldwijkse
wijk Hoogeland is hier een voorbeeld van: telersvereniging Prominent
levert warmte uit warmtekrachtkoppeling en gesloten kas én koude aan
een woonwijk van koop- en huurwoningen en een verzorgingstehuis: de
kas als energiebron.
- Het gesloten kasconcept belast het milieu niet met afvalwater: het water
wordt gereinigd van schimmels en meststoffen en wordt hergebruikt in
de kas.
- Priva ontwikkelde samen met een aantal partners het EcoFutura-concept,
waarbij viskweek en groenteteelt gecombineerd worden in een gesloten
systeem. De afvalstoffen van de vissen dienen als voedingsbodem voor
de planten. Dit EcoFuturaconcept wordt op franchisebasis aangeboden
aan kwekers van groenten die hun teelt op verantwoorde wijze willen
uitbreiden. EcoFutura is gebaseerd op vegetarisch visvoer waardoor het
ecologisch evenwicht ook niet verstoord wordt.
- Scholen worden benaderd om de luchtkwaliteit in de klaslokalen te verbeteren. Als onderdeel van dit project monitoren kinderen in de scholen
zelf de luchtkwaliteit, zodat er ook een bewustwordingsproces op gang
gebracht wordt bij de jeugd.
Niet de directe inkomsten uit deze projecten zijn de belangrijkste drijfveer
om in deze projecten te investeren, Priva investeert vooral in deze pilots om
te laten zien dat technisch al veel mogelijk is én om de sector als geheel te
ontwikkelen.
Duurzame toekomst
In de toekomst draagt Priva bij aan duurzaam ondernemerschap door haar
eigen ontwikkeling van exportgericht naar lokale aanwezigheid. Door dicht bij
de klant te opereren (in dezelfde tijdszone) wordt het vertrouwen groter en
kunnen we in nieuwe regio’s de tuinbouw op een hoger peil brengen. Door
lokaal sales en service aan te bieden, beperken we uiteraard ook het aantal
vliegbewegingen.
49
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
Op het gebied van open field tuinbouw is nog veel te winnen. Immers: 75%
van het totale zoetwaterverbruik wordt gebruikt door de agrarische sector.
Door inefficiënt gebruik gaat de helft hiervan direct verloren. Door de kennis die Priva heeft opgedaan in de bedekte teelt op het gebied van efficiënt
gebruik van water en energie in te zetten voor de open field toepassingen,
kunnen ook deze teelten efficiënter produceren. Denk hierbij aan de grootschalige wijnbouw, soft fruit en de buitenteelt van tomaten, sla en dergelijke.
In de utiliteitsbouw is het vooral de ontwikkeling van relatief eenvoudige
klimaatbeheersing naar complexe energieclusters die potentie heeft. Energieuitwisseling en waterhergebruik door clustering van woonwijken, tuinbouw
en industrie in zogenaamde sustainable delta’s biedt een enorm potentieel aan
duurzame gebiedsontwikkeling. Door samenwerking aan te gaan met partijen
in de sectoren en met overheden, kunnen we pilots en proefprojecten opstarten, om te laten zien dat het technisch mogelijk is!
Met geringe investeringen valt daarnaast in de utiliteitsbouw nog veel winst te
behalen op het gebied van energiebesparing. Energiemonitoring in gebouwen
kan tot 30 procent besparingen op energiekosten opleveren.
Priva Campus
De Priva Campus, het hoofdkantoor van Priva in De Lier, gemeente Westland,
is een van de eerste CO2-neutrale gebouwen van Nederland. In het gebouw
wordt geen conventionele energie gebruikt voor verwarming of koeling. De
Priva Campus maakt gebruik van koude- en warmteopslag in bronnen diep
onder de grond. Ook de gebruikte materialen zijn recyclebaar en duurzaam:
de bamboevloeren in het restaurant, het hout in het dak en de stenen vloer in
het atrium.
Priva creëert in de Priva Campus het ideale klimaat om innovatie mogelijk te
maken. De open structuur van het pand nodigt uit tot kennisuitwisseling tussen de medewerkers onderling. Door professionals van verschillende disciplines in teams samen te brengen in een inspirerende, transparante omgeving,
ontstaan nieuwe mogelijkheden tot communicatie en interactie. Maar
ook tot het delen van kennis met partijen buiten Priva, een belangrijke voorwaarde voor nnovatie. Daarnaast is de Priva Campus natuurlijk vooral ook een
mooi gebouw waar het prettig werken en verblijven is. De Priva Campus is
met recht het visitekaartje van Priva!
Inspirerend
Meiny Prins, algemeen directeur van Priva en Zakenvrouw van het Jaar 2009:
“Respect voor elkaar en onze omgeving, betrokkenheid bij elkaar en onze
klanten én de ambitie om onze beloften waar te maken. Dat zijn elke dag de
uitgangspunten bij het handelen van demensen van Priva. Het maakt Priva
een inspirerend bedrijf dat duurzaamheid in haar genen heeft.”
50
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
KyotoCooling “groene” technologie?
De basisgedachte bij de ontwikkeling van het idee om met een warmtewiel
datacenters te koelen was niet een groene gedachte. Men zou kunnen redeneren dat Groen slechts een bijproduct is van KyotoCooling. Dit is nu in het
geheel niet meer waar, echter in eerste instantie werd gewoon naar een betere
oplossing dan de bestaande gezocht. Hierbij was de financiële besparing en
versimpeling richtinggevend.
Vandaag is dit in principe nog steeds zo, de financiële onderbouwing van
investering versus besparing is de basis, echter het “echte” groene label wordt
meer en meer maatgevend. Bij twee van de drie huidige buitenlandse opdrachtgevers was “groen” zelfs maatgevend, beide opdrachtgevers willen laten
zien dat zij maatschappelijk verantwoord Datacenters bedrijven als onderdeel
van hun totale bedrijfsvoering.
Aangezien de markt vandaag nog geen verschil( lees geld) maakt tussen licht
groen en donker groen is de financiële onderbouwing van de investeringen
in KyotoCooling nog sterk bepalend. Voor ons is merkbaar dat groen wel verschuift van “nice to have” naar “need to have”. Alle potentiële klanten willen
voor een groene technologie opteren als vertrekpunt. Pas als de technologie
nog als te jong of te kostbaar wordt aangemerkt gaat men over naar de klassieke “veilige” keuzes.
KyotoCooling wordt door ons als “value proposition” naar de merkt gepresenteerd: groen, financieel energiebesparend en een financieel modulaire bouwwijze. Deze laatste is zeer belangrijk bij de ontwikkeling van datacenters. Pas
investeren in apparatuur op het moment dat de klanten van het Datacenter
het ook echt nodig hebben.
Al met al verschaft de combinatie van verbetering van de onderliggende financiële business case en groene technologie KyotoCooling een uitstekende markt
positie. Voor de goede orde ingeschat wordt dat 3-4 % van wereld energieconsumptie door Datacenters wordt verbruikt. Dit aandeel zal de komende jaren
blijven stijgen. 1-1,5 % van dit verbruik wordt nu aangewend voor koeling van
de DC’s. KyotoCooling kan hier 80% van besparen.
De Datacenter industrie, een relatief jonge < 25 jaar, wordt zich steeds meer
bewust van haar enorme energieverbruik. De komst van Obama als president van de VS en de sterk gestegen energieprijzen heeft een ieder “wakker”
gemaakt. De zeer conservatief ingestelde markt, vanwege haar belofte van
continuïteit 24/7 en dus wars van verandering, lijkt zich geheel te openen
voor nieuwe groene technologieën. Ook zij weten dat ze moeten. Interessant
is hierbij dat de klanten van het Datacenter steeds meer belangstelling hebben
voor de “groenheid” van het bewuste DC.
KyotoCooling lijkt dus op het juiste moment te zijn geïntroduceerd.
51
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
KyotoCooling werkt ook samen met reeds bestaande technologieën met als
doel technologieën in elkaar te integreren. Kostenvoordelen spelen een rol,
maar vooral het “ontzorgen” van klanten waarbij steeds meer via “proven
concepts” en garanties, potentiële risico’s van klanten worden uitgesloten.
KyotoCooling werkt inmiddels samen met Amerikaanse en Duitse technologieën samen.
KyotoCooling zal zich de komende jaren, wellicht decennia, blijven ontwikkelen in de DC industrie. Opvallend van deze industrie is dat zij eigenlijk een
lage graad van organisatie kent. Er zijn geen of nauwelijks beroepsverenigingen die zich primair met dit kostbare deelveld van ICT bezig houden.
De testinstallatie die samen met KPN is opgebouwd in Amersfoort is dan ook
uniek, niet alleen vanwege het KyotoCooling proces, maar vooral door de
mogelijkheid allerlei facetten van koeling van het DC te demonstreren en te
kunnen testen. Er is geen andere installatie van deze omvang in de wereld.
Naast feitelijke nieuwe ontwikkelingen zal KyotoCooling zich ook richten op
educatie en verspreiding van de bestaande inzichten.
Keep it KyotoCool
52
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
“Taking cell production to the next level”
Zonnestroom zal een belangrijk onderdeel worden van de wereldwijde
elektriciteit productie. De huidige productie van zonnecellen zal tot een factor
van 50 moeten worden vergroot om jaarlijks 1.8 % van de huidige elektriciteit
productiecapaciteit van ~20.000 GW te kunnen produceren. Zonnestroom is
een grote groeimarkt.
De belangrijkste groeidrijver is een lagere kostprijs. Een lagere kostprijs kan
worden gerealiseerd door middel van goedkopere productie en hogere efficiëntie van de zonnecellen. Beide manieren om de kostprijs te verlagen worden
mogelijk gemaakt door productieapparatuur. Daarom is deze apparatuur zeer
belangrijk in het realiseren van een lagere kostprijs en de verdere adoptie van
zonnestroom. In de komende jaren wil OTB Solar uitgroeien tot een duidelijke
leider in zonnestroom productietechnologie.
OTB Solar wil actief bijdragen aan het verlagen van de kostprijs van zonnestroom. OTB Solar realiseert haar doel door continue innovatieve productie
technologieën te introduceren die de efficiëntie van zonnecellen verhogen
en de productiekosten verlagen. In de afgelopen jaren heeft OTB Solar haar
marktpositie sterk verbeterd door onder meer een sterke eigen organisatie in
Azië op te bouwen. Daarnaast zijn enkele nieuwe productie tools succesvol
geïntroduceerd in de markt. Recente verkopen aan top 10 spelers bewijzen dat
wij op de goede weg zijn!
Op dit moment worden bij de productie van zonnecellen vervuilende chemicaliën en gassen gebruikt. Green processing is een belangrijk onderdeel van
onze strategie. OTB Solar gebruikt met haar gepatenteerde plasma bron, in
vergelijking met de concurrentie, minder dan 50% van de benodigde energie
en gassen. Daarnaast neemt OTB Solar deel in een onderzoeksproject van
Fraunhofer om wet chemical etching te vervangen door dry etching gebruik
makend van de gepatenteerde plasma bron. Dit zal het gebruik van vervuilende chemicaliën sterk verminderen.
Overzicht recent ontwikkelingen in marktgebieden en producten
Elektriciteitsopwekking uit duurzame bronnen wordt de pijler voor de 21ste
eeuwse energievoorziening, waarmee leveringszekerheid en betrouwbaarheid
wordt gegarandeerd. De opwekking uit duurzame bronnen als zon en wind
heeft gemiddeld over langere termijn meer dan voldoende potentieel en is
betrouwbaar en voorspelbaar.
53
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
De wereldwijde markt voor zonnestroom is tussen 1998 en 2008 gemiddeld
met meer dan 40% per jaar gegroeid. Belangrijkste drijfveer voor deze sterke
groei is de marktstimulatie geweest op basis van een teruglever model wat
Duitsland in 2000 heeft ingevoerd. Teruglever vergoedingen en andere marktstimulering middelen zijn vervolgens succesvol ingevoerd in landen als Spanje,
Italië en Frankrijk, diverse Amerikaanse staten waaronder Californië en New
Jersey en Aziatische landen als Zuid Korea. Ook Japan heeft een lange traditie
van stimulering van zonnestroom.
Al deze stimulering heeft een significante uitbreiding van zonnecel productiecapaciteit tot gevolg gehad. In de afgelopen jaren is deze capaciteit gemiddeld
met 75% per jaar gegroeid. Leveranciers van productietechnologie hebben
geprofiteerd van deze uitbreiding en zijn daardoor zelf ook sterk gegroeid.
De productie capaciteit uitbreiding is tot stand gekomen bij de grootste 15
zonnecel fabrikanten in de wereld en bij kleinere en startende bedrijven.
Hieronder is de uitbreiding van de productiecapaciteit in de afgelopen jaren
weergegeven:
MW
Top 15 players
Other players
Production capacity (MW)
2005
1,577
720
2,297
2006
2,630
1,383
4,013
2007
4,117
2,481
6,598
2008
7,272
5,047
12,319
Bron: Credit Suisse, November 2008
De zonnecel productiecapaciteit uitbreiding is op twee manieren gerealiseerd.
Bestaande spelers kopen voornamelijk individuele productietools (bijvoorbeeld
DEPx). Startende bedrijven kopen meestal complete turnkey productielijnen
(bijvoorbeeld LINEx).
De kredietcrisis heeft ook de wereldwijde zonnestroom markt geraakt. Door
gebrek aan krediet worden momenteel minder grootschalige zonnecel parken
ontwikkeld. Daarnaast is in Spanje de teruglever regeling gemaximaliseerd.
De wereldwijde groei van zonnecel installaties stagneert daardoor. In 2009
zal naar verwachting ongeveer 7GW worden geïnstalleerd in vergelijking met
6.5 GW in 2008. Doordat meer zonnecellen worden geproduceerd dan vraag
is zijn producenten onder prijsdruk komen te staan. Hierdoor zijn de prijzen
van zonnecellen, op module niveau in 2009, al meer dan 30% gedaald. Deze
lagere prijzen zal het mogelijk maken om op korte termijn grid parity te bereiken in Zuid Europa waarna de marktgroei wederom zal versnellen. De prijs
van zonnecellen op moduleniveau gedaald naar minder dan USD 2/Wp.
54
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
Overzicht verwachte ontwikkelingen in marktgebieden en producten
OTB Solar verwacht dat zonnecel productie expansie zich zal concentreren
in een aantal als gevolg van lokale stimulering maatregelen. De zonnecel
industrie wordt bijvoorbeeld sterk gestimuleerd in China, Maleisië, Taiwan en
Singapore. Genoemde expansie zal vooral plaatsvinden in bestaande zonnecel
productiebedrijven. Deze bedrijven kopen alleen individuele productietools.
OTB Solar heeft haar organisatie ingericht om optimaal te profiteren van de
productie expansie door zonnecel fabrikanten die individuele productietools
kopen. China is in 2008 Duitsland gepasseerd als ’s werelds grootste producent van zonnecellen. Deze leidende positie zal in de komende jaren verder
worden versterkt door productiecapaciteit uitbreidingen. In 2009 heeft OTB
Solar daarom een sales & service kantoor geopend in Sjanghai om optimaal te
profiteren van deze expansie. Dit kantoor zal OTB Solar in staat stellen om
altijd dichtbij haar klanten te zijn. OTB Solar is ook een project gestart om te
kijken naar de lokalisatie van de productie van onderdelen en componenten.
Dit zal de snelheid van service verder vergroten.
De productiecapaciteit expansie zal vooral plaatsvinden door middel van
individuele productietools. OTB Solar heeft de meerderheid van haar R&D
budget daarom gericht op deze productietools. In 2009 heeft OTB Solar de
eerste DEPx nieuwe generatie tool geïnstalleerd bij een top 10 speler. Deze
tool is prijscompetitief en biedt in vergelijking met de vorige generatie een fors
hogere capaciteit ~40% voor een gelijke prijs. Er wordt fors geïnvesteerd door
OTB Solar in 2009 en 2010 om ervoor te zorgen dat de tool goed zal presteren en om daarnaast additionele applicaties toe te kunnen voegen. De markt
heeft positief gereageerd op de DEPx nieuwe generatie. DEPx is inmiddels aan
4 top 10 spelers verkocht.
De ontwikkeling van een Ink Jet Printing tool op industriële schaal is versneld
in 2009. Hierdoor zal OTB Solar een dergelijke tool hopelijk al in 2010 op
de markt kunnen brengen. Dit zal het individuele productietools aanbod van
OTB Solar sterk versterken. De tool zal de efficiëntie van zonnecellen significant kunnen verhogen (~0.5%). Het proces is simpel en kan retrofit worden
ingebouwd in bestaande productielijnen. De marktpotentie van deze tool is
daarom substantieel!
55
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
Lemnis Ligthing Essay
De noodzakelijke transitie naar een duurzame wereld kan alleen gerealiseerd worden als alle stakeholders, consumenten, overheden, NGO’s en het
bedrijfsleven als partners samenwerken. Tendris de moedermaatschappij van
Lemnis Lighting demonstreert sinds 2002 dat je succesvol kunt ondernemen
door goed te zijn voor mens, natuur en milieu. Dat is ondernemen zonder
verliezers in de keten. Vanuit de overtuiging dat we - zonder in te boeten op
kwaliteit van leven - moeten stoppen met verspillen, hebben we twee jaar
geleden een nieuw product geïnitieerd. Een product dat inmiddels model staat
voor de duurzame transitie van duizenden andere producten. Een ‘Lampje’!
Ruim 19% van de elektriciteit in de wereld wordt gebruikt voor verlichting. De gloeilamp is na de zon al meer dan honderd jaar onze belangrijkste
lichtbron maar verspilt daarbij 98% van de benodigde energie. De ouderwetse
gloeilamp is daarmee hét symbool van verspilling. Hierdoor is er binnen
Lemnis Lighting met urgentie gewerkt aan de ontwikkeling van een nieuwe
duurzame lichtbron. Ons licht bespaart 90% energie, gaat 25 jaar mee, bevat
geen toxische stoffen en heeft een hoge kwaliteit lichtbeleving. Door deze ontwikkeling heeft Lemnis Lighting als kleine speler nu al een revolutie weten te
realiseren in de mondiale lichtindustrie. Ook is het nieuwe LED licht geadopteerd door de Clinton Foundation, is het winnaar van de “Technology Pioneer
2009 award” van het World Economic Forum, de “Lighting Africa Award” van
de Wereldbank en is het al succesvol toegepast in openbare, kantoor- en huishoudelijke verlichting en kaslampen. Wij zijn erg trots dat wij met vereende
krachten het duurzame verschil kunnen maken. Na Afrika, China en India zal
zeer binnenkort ook Nederland kennis kunnen maken met de groenste lamp
ter wereld van Lemnis Lighting.
De Lemnis LED technologie ontwikkelt zich, steeds vaker in samenwerking
met Nederlandse TU’s, op dit moment nog sneller. Er verschijnen veel nieuwe
ontwerpen, zuiniger, met een grotere lichtopbrengst en in voorheen onbereikbare kleuren als blauw en wit. Dit betekent dat er steeds meer toepassingen
mogelijk zijn. Lemnis loopt voorop in deze ontwikkelingen en past haar LED
technologie toe in ondermeer de Pharox consumenten lampen. Het productassortiment van Lemnis breidt zich steeds verder uit. De innovatie op het
gebied van buitenverlichting: een substantiële energiebesparing tot wel 95%
ten opzichte van de gangbare fluorescentielampen. Met laag energieverbruik,
lange levensduur, lage aanschafkosten, passend op bestaande masten en nauwelijks onderhoud als voordeel en ook in Nederland toegepast op inmiddels
meer dan 150 lokaties. Ook heeft Lemnis Lighting een revolutionair concept
ontwikkeld voor de glastuinbouw. Deze verlichting geeft dezelfde planten-
56
Clean Economy, Living Planet - Building the Dutch Clean Energy Technology Industry
groei als bij conventionele kasverlichting, maar met slechts een kwart van het
energieverbruik. Door LED verlichting te gebruiken in de kassen besparen we
per hectare het jaarlijkse energieverbruik van 500 Nederlandse huishoudens.
Ook zijn er inmiddels spectaculaire ontwikkelen op het gebied van industriële
algenteelt met specifieke ledsystemen.
Het delen van kennis en technologie met internationale partners en zelfs
concurrenten maakt dat Lemnis mondiaal opvalt door haar vernieuwende en
duurzame businessmodel. Zo produceren wij inmiddels ook de huismerken
LED verlichting voor Albert Heijn (puur & eerlijk) en een deel van het LED assortiment van Philips. Aangezien de duurzame positieve impact van de wereld
centraal staat in de visie van de onderneming worden ook daar de keuzes op
gebaseerd. In onze ogen is er namelijk altijd zowel in prijs als kwaliteit een
duurzaam alternatief voor iedere niet duurzame concurrent. Dit demonstreren
we telkens weer in de praktijk en vervullen daarmee een voorbeeld functie.
Drie jaar geleden was LED technologie de verlichting van de toekomst die volgens de gevestigde industrie pas breed in 2017 zou worden geïntroduceerd.
Door de inzet van Lemnis en haar partners hebben we die ontwikkeling met
bijna acht jaar weten te versnellen. Ook de koplopers rol van Lemnis bij de
Nationale en Europese overheden heeft dit proces versneld. Lemnis heeft een
voorsprong en een voortrekkersfunctie die zij graag zelfstandig zonder afhankelijke te worden van de gevestigde industrieën wil handhaven. Graag blijft zij
de industrie uitdagen om duurzame verbeteringen toe te passen.
for a living planet
This report is supported by
FME-CWM and Rabobank.
®